
Continuous Queries on Streaming Data

Sara Phrida K. Norrhall

Master of Science in Computer Science

Supervisor: Herindrasana Ramampiaro, IDI
Co-supervisor: Kjetil Nørvåg, IDI

Department of Computer Science

Submission date: June 2018

Norwegian University of Science and Technology

Abstract

We are all living in a world that is becoming more digital for every day.
While people are connecting to the Internet, there has been an explosion
of applications that are being used on a daily basis. All of these applica-
tions have especially one thing in common - they are all generating data
that are valuable for stakeholders to understand their users. Despite that,
few know how to take advantage of this information. To unlock the infor-
mation hidden in these applications, the concept of visualizations of both
stored and streaming data has been explored. Furthermore, this project
has investigated how a system can be implemented that makes it possible
to visualize relevant information based on the interests of users. To filter
out relevant content, the system performs continuous queries defined by
the user. The filtering allows the system to avoid unnecessary storage and
indexing of irrelevant data, in addition to making the visualization both
intuitive and straightforward to interpret as all information that would not
provide the user with valuable insights are excluded. The project has also
explored how Machine Learning can be used to unlock valuable information
about the data, and thus a sentiment analysis was performed. This project
has utilized available information provided by Twitter as proof of concept.
The system has been implemented to be modular, allowing other sources of
streaming data to be used. The proposed solution should also consider the
various aspects of big, streaming data and tolerate high enough through-
puts of events. Our experiments show the practicality and feasibility of the
proposed approach.

i

ii

Sammanfattning

Vi lever alla i en värld som för var dag blir allt mer digitaliserad. Sam-
tidigt som människor kopplat upp sig mot internet s̊a har det skett en
explosion av applikationer som m̊anga av oss använder dagligen. Dessa ap-
plikationer har särskilt en sak gemensam – de genererar alla data värdefull
för intressenter som vill först̊a sina användare. Trots det, s̊a vet f̊a hur de
skall dra nytta av denna information. För att utvinna informationen som
dessa applikationer döljer s̊a har en modell för att synliggöra b̊ade lagrad
och strömmad data undersökts. Dessutom har detta projekt undersökt hur
ett system kan implementeras som gör det möjligt att synliggöra relevant
information baserad p̊a användarnas intressen. För att filtrera ut relevant
inneh̊all utförde systemet kontinuerliga fr̊agor definierade av användarna.
I tillägg tillät filtreringen systemet att undvika onödig lagring och index-
ering av irrelevant data, n̊agot som gjorde synliggörandet b̊ade intuitivt och
okomplicerat, genom att all information som inte förser användarna med
värdefull information har uteslutits. Projektet har ocks̊a undersökt hur
”Machine Learning” kan användas för att ge värdefull kunskap om dessa
data och därför utfördes en sentimentanalys. Detta projekt har använt
tillgänglig data fr̊an ”Twitter” för att bevisa modellen. Systemet har im-
plementerats för att vara modulärt och p̊a s̊a sätt kunna användas även
för andra källor där strömmad data används. Den föreslagna lösningen tar
ocks̊a i beaktande olika aspekter av stora volymer strömmad data och kan
tolerera händelser av tillräckligt höga niv̊aer av genomströmmande data.
Experiment visar genomförbarheten av det föreslagna tillvägag̊angssättet.

iii

iv

Preface

This thesis is written by Sara Phrida Kristina Norrhall as part of a five
years study program in Computer Science at the Norwegian University of
Science and Technology (NTNU) in Trondheim. The thesis is the final
requirement for a degree in Master of Science (MSc) with specialization in
Databases and Search. The work was conducted during the spring semester
of 2018.

Acknowledgements

The motivation for the project was formed together with associate pro-
fessor Heri Ramampiaro at the Department of Computer Science (IDI).
Together with professor Kjetil Nørv̊ag, they have been my supervisors dur-
ing the last year, and I would like to express my sincere gratitude for their
guidance and support. They have allowed me to work independently and
explore things on my own. Although, they have always been there when
guidance was needed. I would also like to thank my father for giving me
valuable input throughout the year and my mother for giving me input on
this report. You both are an inspiration to me. Finally, I would like to
thank my boyfriend for his emotional support whenever needed.

Sara Phrida Kristina Norrhall 13.6.2018

v

vi

Contents

Abstract i

Sammanfattning iii

Preface v

Acknowledgements v

List of Figures x

List of Listings xi

List of Tables xii

Acronyms xiii

1 Introduction 1
1.1 Background . 1
1.2 Motivation . 2
1.3 Research Goals . 3
1.4 Research Strategy . 4
1.5 Contributions . 8
1.6 Scope and Limitations . 8
1.7 Thesis Structure . 9

2 Background Theory 11
2.1 Big Data . 11
2.2 Streaming Data . 12
2.3 Social Media Analysis . 13
2.4 Visualization . 15
2.5 Metrics for Measuring Relevance 16
2.6 Technologies . 18

3 Related Work 29

vii

3.1 Related Frameworks to Handle Big Data 29
3.2 Related Methods to Handle Streaming Data 32
3.3 Related Methods to Visualize Streaming Data 35
3.4 Classification and Ranking of Microblogs 38

4 Ranking of Results from Continuous Queries 41
4.1 Domain . 41
4.2 Task . 42
4.3 Theoretical Solution . 43
4.4 Implementation . 52

5 Experiments and Results 65
5.1 Goals with Experiments . 65
5.2 Evaluation Methodology . 66
5.3 Experiments . 67
5.4 Results . 73

6 Evaluation and Discussion 93
6.1 Evaluation of Results . 93
6.2 Discussion . 99

7 Conclusion and Future Work 101
7.1 Conclusion . 101
7.2 Future Work . 104

Bibliography 106

Appendices 113

A Figures 114

B Listings 123

C Project Code 129
C.1 GitHub Projects . 129
C.2 Data Generator . 129
C.3 Specialization Project . 129

viii

List of Figures

1.1 Research Process . 5
1.2 Adapted Research Process 5

2.1 Spark Streaming . 20
2.2 Anatomy of a topic in Kafka 21
2.3 An overview of visualization options in Kibana 24
2.4 Linear, Gaussian and Exponential curves 27

3.1 The BAD system in context of other systems 31
3.2 Overview of the Taghreed interface 37
3.3 Overview of the Cloudberry interface 38

4.1 Setup for initial project . 45
4.2 Extended setup for current project 45
4.3 A high-level overview of the Machine Learning mechanism . 47
4.4 The proposed solution in context of other systems 49
4.5 Twitter Streaming API . 54
4.6 Creation of DStream . 56
4.7 An overview of the implemented system 63

5.1 Communication timeline for testing load performance 68
5.2 Communication timeline for measuring execution time of the

filter-function . 70
5.3 Testing environment for ranking Tweets based on relevance . 71
5.4 Setup for final execution . 72
5.5 Classification of 1000 Tweets/second 73
5.6 Processing time for classifying 1000 Tweets/second 73
5.7 Classification of 5000 Tweets/second 74
5.8 Processing time for classifying 5000 Tweets/second 74
5.9 Classification of 10000 Tweets/second 75
5.10 Processing time for classifying 10000 Tweets/second 75
5.11 Classification of 15000 Tweets/second 76
5.12 Processing time for classifying 15000 Tweets/second 76
5.13 Classification of 20000 Tweets/second 77

ix

5.14 Processing time for classifying 20000 Tweets/second 77
5.15 Keyword: Zlatan . 78
5.16 Keyword: Sweden . 79
5.17 Keyword: Basketball . 79
5.18 Keyword: Obama . 80
5.19 Keyword: Trump . 80
5.20 Keyword: Netflix . 81
5.21 Keyword: America . 81
5.22 Keywords: European countries 82
5.23 Comparison of all keywords 82
5.24 Ranked list of most relevant Tweets 85
5.25 Adding filter on keyword Texas 87
5.26 Ranked list with Tweets based on the keywords Trump, America,

President, and Texas . 88
5.27 Dashboard created in Kibana 91

A.1 Number of retrieved Tweets 115
A.2 Number of distinct users . 115
A.3 Predicted sentiment . 116
A.4 Distribution of used device type 116
A.5 Cloud showing the most trending hashtags 117
A.6 Table showing the Tweets that are most re-tweeted 117
A.7 Top 10 most popular hashtags 118
A.8 Ranked list of the most relevant Tweets 119
A.9 Timeline of when Tweets was created 120
A.10 Global map showing lat-long pairs 121
A.11 Dashboard created as part of the specialization project . . . 122

x

List of Listings

2.1 Example of a query for the Boolean model 25
2.2 Query for ranking music videos 27
4.1 Producer of Tweets to topic in Kafka 55
4.2 DStream subscribing to the topic ”twitterdata” 56
4.3 DStream subscribing to the topic ”keyworddata” 57
4.4 Returned results from the Knowledge Graph Search API . . 57
4.5 Example of the filter-function 57
4.6 Creation of Naive Bayes Classifier” 58
4.7 Computation of Sentiment 59
4.8 Mapping of data types . 60
4.9 Mapping of type geo-point 61
4.10 Query for finding most relevant Tweets based on the terms

Trump, America, and President 62
5.1 Method for measuring execution time 69
5.2 Method call for measuring execution time on filter-function 69
5.3 Top-k results from the ranking function 83
B.1 Example of Tweet in JSON format 123
B.2 Example of Tweet in Twitter4j Status format 123
B.3 Words to test filter-function on 124
B.4 Explanation of how the ranking score is calculated for a Tweet124
B.5 Words to filter Tweets on in final execution 128

xi

List of Tables

2.1 Confusion matrix for possible prediction outcomes 16

5.1 Metrics for 1000 Tweets/second 73
5.2 Metrics for 5000 Tweets/second 74
5.3 Metrics for 10000 Tweets/second 75
5.4 Metrics for 15000 Tweets/second 76
5.5 Metrics for 20000 Tweets/second 77
5.6 Metrics for keyword Zlatan 78
5.7 Metrics for keyword Sweden 79
5.8 Metrics for keyword Basketball 79
5.9 Metrics for keyword Obama 80
5.10 Metrics for keyword Trump 80
5.11 Metrics for keyword Netflix 81
5.12 Metrics for keyword America 81
5.13 Metrics for keywords European countries 82
5.14 Ranked list of most relevant Tweets 86
5.15 Ranked list with Tweets based on the keywords Trump, America,

President, and Texas . 89
5.16 Visualization in Kibana . 90

xii

Acronyms

BAD Big Active Data. 30

BDMS Big Data Management Systems. 30

BI Business Intelligence. 16

CCR Cumulative Citation Recommendation. 38

DAG Directed Acyclic Graph. 32

DBMS Database Management Systems. 30

DSMS Data Stream Management Systems. 30

ETL Extract, Transform, Load. 13

IBM International Business Machines Corporation. 36

IBMWA IBM Watson Analytics. 36

JSON JavaScript Object Notation. 45

KB Knowledge Base. 38

ML Machine Learning. 14

NLP Natural Language Processing. 14

SA Sentiment Analysis. 14

SQL Structured Query Language. 30

UDF User-Defined Function. 33

VCA Visual Content Analysis. 35

xiii

xiv

Chapter 1

Introduction

This chapter gives an introduction to the project by providing a background
for the problem and research area. It will describe the motivation along
with the primary goal, associated research questions and chosen research
strategy. The scope and limitations will be explained in addition to the
contributions of the project. Finally, the chapter will present an outline of
the following sections.

1.1 Background

The thesis is concerned with streaming data and the use of visualization
tools to gain insights into the incoming data. Furthermore, the thesis ex-
plores how the incoming data can be classified to avoid unnecessary storage
of irrelevant information. The work presented in this thesis is a continua-
tion of the results of the specialization project made as part of the course
TDT4501 [1]. The specialization project showed how data from Twitter
could be visualized in near real-time. However, since there were no con-
straints to what data should be sent into the system, all types of filtering
had to happen in the visualization tool. To avoid unnecessary indexing
and storage, we want to filter out spam and irrelevant information and
only push data that are relevant to the user. In that way, the user will get
a visualization of the relevant information that is easy to interpret. Such
a system can be of use for companies and other stakeholders who wish to
turn the information generated in applications into knowledge, allowing
them to understand their users and get useful business insights.

Therefore, the main contribution of this project is to develop a system that
can filter out relevant information from Twitter. By combining historical

1

1.2. MOTIVATION

and real-time data with sentiment analysis, stakeholders can analyze events
and opinions to understand their users and customers better.

1.2 Motivation

As an increasing number of people from all over the world connects to the
Internet, a huge portion of those people finds their way to social media
applications, such as Twitter1, Facebook2 and YouTube3. Twitter is a
platform where people tend to express their feelings freely, making it an
ideal source for a vast amount of opinions about a wide spectrum of topics
[2]. By the end of 2017, the micro-blog application had 330 million monthly
active users that post approximately 500 million status updates every day,
all over the world4. These status updates, hereafter called Tweets, are
short, concise and straight to the point and thus making the threshold
for posting updates very low. The simple expression form might explain
the popularity and enormous volume of Tweets. In addition to opinions,
Twitter users also tend to comment on real-world events, both locally and
globally, whenever something captures their attention. The Twitter users
are functioning as first-hand witnesses, meaning that there is a chance that
they will report about an event before traditional media does.

The amount of data that are being stored and produced every day is enor-
mous and keeps growing. It is clear that this data is valuable and offers
various possibilities. Despite that, the potential hidden in this data is still
in many ways unexplored and not fully utilized. Due to the informal nature
of Tweets and the way people choose to express themselves with humor and
sarcasm, computers have difficulties with interpreting and understanding
the semantics of the Tweets. Another challenge with Twitter data is due
to its volume. As Twitter users are continuously posting statuses about
events and opinions, Twitter contains lots of interesting information that
could help companies and other stakeholders to facilitate decision making.
However, as it is almost impossible to interpret all incoming Tweets by the
eye, there is a need to summarize them. One way to solve this is to use visu-
alization. The goal with visualization tools is to allow users to quickly and
intuitively understand the content, context, and the organization of the
incoming data stream. By overcoming the grammatical challenges with
Twitter and by visualizing the relevant content, we will be able to explore

1Twitter: https://twitter.com
2Facebook: https://www.facebook.com
3YouTube: https://www.youtube.com
4https://www.statista.com/statistics/282087/number-of-monthly-active-

twitter-users/

2

https://twitter.com
https://www.facebook.com
https://www.youtube.com
https://www.statista.com/statistics/282087/number-of-monthly-active-twitter-users/
https://www.statista.com/statistics/282087/number-of-monthly-active-twitter-users/

1.3. RESEARCH GOALS

the information hidden in social media.

1.3 Research Goals

This section will present the goal of the project and the associated research
questions.

The specialization project presented a solution that utilized a suitable vi-
sualization tool together with a Big Data platform to visualize streaming
data. This thesis will continue the development of the proposed system
with a focus on making the output as relevant as possible for the user. The
goal is defined as:

To examine how a system can be implemented, which can visu-
alize relevant information from Twitter based on user-defined
queries and provide valuable insights for the user.

Various aspects of the system need to be considered to fulfill the described
project goal. The primary motivation of this project is to explore the
information hidden in social media, by extracting relevant Tweets from
Twitter. Hence, there is a need to examine how Tweets can be detected
and classified as relevant in real-time. The project should also look into
how relevance should be defined with respect to the stated project goal.

The research question for the project can be defined as follows:

RQ 1: How can Tweets be detected in real-time based on a user-
defined continuous query?

This research question is one of the most important questions be-
cause it will answer how the main parts of the system should be
implemented. The different parts include how the data should be ex-
tracted from Twitter, how it can be filtered and classified as relevant,
and lastly how it can be presented to the user.

RQ 2: How can a Tweet be classified as relevant relative to a
query?

This question should be considered as a supplement for RQ 1 as it
will focus on examining how the data can be filtered and classified as
relevant. To answer this question, the definition of relevance for this
specific case has to be considered.

3

1.4. RESEARCH STRATEGY

RQ 3: How can Tweets be ranked based on relevance?

Once the Tweets has been filtered, there is a need to rank them based
on how relevant they are to a specific query. It is important that
the system can update the ranking list continuously whenever new
matches arrive. Since the motivation behind this project is to allow
stakeholders interpret Twitter data and draw conclusions about their
users, it is vital that the ranking will be based on both new, streaming
data and historical, stored data.

Furthermore, it is important that the system is implemented with respect to
the characteristics of large volumes of streaming data and different aspects
regarding performance should be examined.

RQ 4: How does the implemented system perform with increasing
amount of queries?

The system will be filtering out Tweets based on queries from users.
This research question will answer how performance is affected when
the number of queries is increasing.

RQ 5: How does the implemented system perform with increasing
amount of data?

Two characteristics of Twitter data are velocity and volume. This
question will investigate how the implemented system manages to
handle a significant amount of data arriving at high speed.

1.4 Research Strategy

This section will present the research process and methods used in the
different stages for approaching the stated research goal. The overall re-
search process will first be presented before the phases of literature review,
development and experiments are explained in further details.

1.4.1 Overall Research Process

An overview of the research process can be found in Figure 1.1. The figure
was retrieved from the book Researching Information Systems and Com-
puting [3], and the elements that were found most relevant for this project
are marked in red. The adapted figure can be found in Figure 1.2.

4

1.4. RESEARCH STRATEGY

Figure 1.1: Research Process found in [3]

Figure 1.2: Adapted Research Process

The steps of personal experiences, motivation, and literature review were
necessary for determining the project goal and associated research ques-
tions. The approach used for determining the goal and the research ques-
tions was based on the Goal/Question/Metrics paradigm defined by Basili
[4]. The paradigm is used as a mechanism for defining and interpreting
software measurement along with templates for defining goals and gener-
ating research questions. The approach starts by defining the project goal
by including purpose, perspective, and environmental characteristics. Fur-
thermore, a set of research questions are defined to supplement the project
goal. The literature review did also provide a conceptual framework for

5

1.4. RESEARCH STRATEGY

the project to be done and specified the research methodology including
strategy and data generation methods.

The chosen research strategy for this project is Experiment. The reason
for this strategy is mainly due to the stated project goal which is to ex-
amine how a system can visualize relevant information from Twitter based
on user queries. According to [3], the Experiment strategy includes testing
hypotheses and seeking to prove or disprove a causal link between a factor
and an observed outcome. When using this strategy, it is crucial that all
factors that might affect the results be carefully excluded from the study.
The strategy also focuses on investigating cause and effect of relationships.
The project will utilize a method triangulation by combining Observa-
tion and Documents as methods used for Data Generation. The use of
triangulation will allow us to look at the results in different perspectives,
where observations include observing how the system behaves based on dif-
ferent variables, and documents include the visuals to be produced in this
project.

The last step of the research process is Data analysis, where a Quantitative
approach will be used. Quantitative data analysis uses mathematical ap-
proaches such as statistics to examine and interpret the data. The data
analysis will mainly be based on evaluating the system to see if the pro-
posed functions behave as intended and meet the requirements. However,
some Qualitative analysis will also be performed, as the goal of the project
is to create visualizations that also will be evaluated.

1.4.2 Literature Review

A preliminary study started with a literature review of existing systems and
research of Big Data and streaming data. Since the scope of the project
is rather broad, a research method called Snowballing Sampling or Chain-
referral Sampling has been used [5]. The research method is mentioned by
Lewis-Beck et al. in the SAGE Encyclopedia of Social Science Research
Methods. However, it is possible to apply the technique to other research
fields as well. The Snowballing method is a process where one starts with
a few numbers of papers, and by looking at the relevant work mentioned in
those papers, it is possible to extend the reading list. As one can imagine,
the method tends to generate large numbers of possibly relevant articles,
meaning that the researcher must be able to determine which paper is
worth using. For this specific project, materials that could help reach the
defined goal were chosen. The search was executed using Google Scholar5

5Google Scholar: https://scholar.google.no/

6

https://scholar.google.no/

1.4. RESEARCH STRATEGY

and the NTNU University Library6. The chosen articles were prioritized
based on the number of citations, as well as known publishers and authors.
The publication date was also a priority as this is a research field that is
moving quickly and, therefore, recently introduced research provides the
latest discoveries.

For the specialization project, the chosen method resulted in relevant sources
regarding Big Data Management Systems and streaming data. As the
project proceeded, a need for performing Sentiment Analysis with some
Machine Learning technique emerged, and articles regarding those topics
were reviewed as well. For this thesis, the focus shifted to examine lit-
erature about classification of relevant information. Various ranking and
filtering techniques were also examined.

1.4.3 Development

The development of the final system has been done using an Incremental
and Iterative Development methodology [6]. The methodology is based
on the statement that incremental development is distinctly different from
iterative development and that they should be treated differently but at the
same time be used together. The definition of incremental development says
that it is a staging and scheduling strategy where the work is divided into
smaller parts which are then developed at different times and integrated as
they are completed. Iterative development is a rework scheduling strategy
where the system is revised and improved repeatedly. By taking advantage
of the incremental approach, one will get the opportunity to refine the
development process and adjust the requirements as the project proceeds.
The iterative approach, on the other hand, will enhance the product quality,
even if it probably will imply rework.

A total of three iterations were used to implement the final system. By
using an agile methodology, each iteration was treated like a sprint. The
first sprint was focusing on the requirements of the system and building
a simple prototype including the main parts of the system. The second
sprint was an initial implementation of the prototype and was focusing on
the task of filtering the incoming Tweets. Lastly, the ranking function was
defined, and the final system was implemented after evaluating the result
of the second sprint.

To adapt the incremental methodology, the work to be conducted were
divided into smaller tasks. A type of agile methodology similar to the
Kanban method was used to keep track of the tasks [7]. The various tasks

6NTNU University Library: https://www.ntnu.edu/ub

7

https://www.ntnu.edu/ub

1.5. CONTRIBUTIONS

were tracked by using a digital post-it board. The categories on the board
were ”to do”, ”doing”, ”done”. The tasks were formulated based on the
goal and research questions defined in section 1.3.

1.4.4 Experiments

Some experiments had to be performed to evaluate the proposed solution.
A total of three experiments were conducted in addition to one final exe-
cution of the whole system. The experiments were defined concerning the
stated project goal and research questions and the goal was to test various
aspects of performance in addition to ranking based on relevance.

1.5 Contributions

The thesis introduces a system for visualization of relevant content in the
Twitter stream based on a user-defined continuous query. The implemented
system is an attempt to test the various theories regarding the subject of the
project. It aims to help companies and other stakeholders to understand
the Twitter users which will lead to useful business insights that can help
them make decisions. The user of the system will be able to subscribe for
themes of interest and get updates whenever new information is available.
However, the system will be implemented as modular as possible which will
make it usable for other applications and data sources as well.

To provide exciting content for the visualization tool, the thesis will also
explore sentiment analysis and ranking techniques.

1.6 Scope and Limitations

The parts in this Master’s thesis shall be developed, implemented and
written during the spring semester of 2018. The official time limit for the
project is 21 weeks, and the submission deadline is the 13th of June. All
work regarding this thesis will be done by one person, Phrida Norrhall. It
should be emphasized that the final solution should not be considered as
a system ready for production but regarded as an attempt to prove the
underlying theories. Furthermore, the project has not been focusing on the
accuracy of either the sentiment analysis or the proposed filter and ranking
functions, and the output is only used as a proof of concept.

8

1.7. THESIS STRUCTURE

The data that will be used is retrieved from Twitter through the Twitter
Streaming API7, which returns a sample of public statuses that match one
or more filter predicates [8]. The API has recently changed the name to
Filter real-time Tweets8, but for simplicity, it will still be referred as the
Twitter Streaming API throughout this thesis. Due to resource limitations,
retrieving streaming data and the visualization of it will be performed on
a single computer.

1.7 Thesis Structure

The remainder of the thesis is structured as follows:

Chapter 2 - Background Theory: Provides the relevant background
theory needed for understanding the work to be conducted.

Chapter 3 - Related Work: An overview of related work and research
regarding topics that concerns the subject of the project.

Chapter 4 - Ranking of Results from Continuous Queries: A pre-
sentation of the implemented solution and decisions made during the pro-
cess.

Chapter 5 - Experiments and Results: Presents the conducted exper-
iments and its associated results.

Chapter 6 - Discussion: Gives an evaluation and discussion of the results
and the project as a whole.

Chapter 7 - Conclusion: Provides a conclusion and an introduction to
future work.

7https://developer.twitter.com
8https : / / developer . twitter . com / en / docs / tweets / filter - realtime /

overview

9

https://developer.twitter.com
https://developer.twitter.com/en/docs/tweets/filter-realtime/overview
https://developer.twitter.com/en/docs/tweets/filter-realtime/overview

10

Chapter 2

Background Theory

This chapter describes the background theory needed for understanding
the foundation of the work to be conducted in this project. The topics
here are not explained in detail, and only the parts relevant to this project
will be covered. The chapter starts by describing the concepts of Big Data,
Streaming Data, and Social Media Analysis. Some metrics for measuring
relevance will be presented, before describing the chosen technologies used.

2.1 Big Data

Big Data is a term for data sets that are so large and complex that orig-
inal Database Management Systems (DBMS) cannot handle them. There
exist many definitions of Big Data where Gartner defines one of the most
acknowledged definitions [9]. The data management challenges are defined
as three dimensions: Volume, Velocity and Variety. These dimensions
concern the amount of data that is being produced and stored, the speed
at which it is generated in addition to its variated structure.

In the world of Big Data there exists a distinction between Batch Processing
and Stream Processing. In a batch processing model, the data is being
collected in batches before it is being sent to the system for processing.
The stream processing model, on the other hand, feeds data into the system
piece-by-piece and the processing is usually done in real-time.

As data sizes have outpaced the capabilities of single machines, users have
needed new systems to scale out computations to multiple nodes. As a
result, there has been an explosion of different systems that are targeting
diverse computing workloads. Unfortunately, most big data applications
need to combine many different processing types. Specialized engines may,

11

2.2. STREAMING DATA

therefore, cause both complexity and inefficiency when users must create
their own engine by combining disparate systems [10]. Some developers
have tried to avoid this problem by building unified engines, and one ex-
ample of such engine will be presented later in this chapter.

2.2 Streaming Data

Big Data that are being generated at a steady high-speed rate can be
defined as Streaming Data. Streaming data differs from traditional struc-
tured, stored data. Unstructured, or semi-structured data, such as Twitter
messages are being generated in volumes that grows every day. A stream
of data can be described as a time-stamped, temporally ordered collection
of unstructured or semi-structured data. The data elements in this stream
arrive online at high speed, and the system has no control over the arrival
order, either within a data stream or across streams. Once an element
from a data stream has been processed, it is discarded or archived which
makes it hard to be retrieved again, meaning that the arriving data must
be treated immediately or it will be lost [11]. For that reason, streaming
data requires new models and algorithms than the ones that have been
used for structured data.

Along with the explosion of applications involving streaming data, there
has been a shift of focus in the industry. The most important thing is
no longer how big your data is. It is far more important how fast you
can analyze it and gain insights. One central aspect of streaming data is
therefore time. The incoming data must somehow be partitioned to have
any value. A standard way to do this is to divide the stream into fragments
called windows. There exist various types of windows, and the type used
for this project is called sliding windows. Sliding windows have a fixed
length and are separated by a time interval t. The stream processor can
then keep the recent n records of the stream that has arrived within the
last t time units. The records are being held in working space, and those
that are too old will be dropped.

There are two main categories of queries for streaming systems: continuous
queries and ad-hoc queries [12]. The first represents queries that are asked
for every incoming record in the system, and it must be defined a priori.
Examples of continuous queries are ”What is the maximum value seen so
far?” or ”Send a notification when a Tweet about Basketball is posted”.
The other category represents queries that are asked once and run to com-
pletion over the current state of the stream. An ad-hoc query is created
to obtain information as the need arises and one example might be ”How

12

2.3. SOCIAL MEDIA ANALYSIS

many users have tweeted about Basketball the last week?”. This type of
query requires that the stream processor remember the state of previously
seen records. So for the stated example, it needs to keep track of the last
week’s tweets.

2.2.1 The Streaming ETL Process

Data ingestion is the process of getting data from its source to its final des-
tination as efficiently and correctly as possible. The data ingestion process
has often been discussed under the name of Extract, Transform and Load
(ETL). The ETL concept first became popular in the 1970s and is a process
that has typically been used in data warehousing. As a computational need
for streaming data has emerged, the concept of ETL has evolved with it.
However, the main idea behind the three steps in the process is yet still the
same. Data Extraction is the process where data is extracted from different
data sources. These sources can both be streaming and static. Data Trans-
formation is where the retrieved information is transformed into the proper
format needed for storing it. Lastly, Data Loading takes the processed data
and loads it into the final data storage system.

Traditionally, ETL was constructed as a pipeline of batch processes, where
each process took its input from one file and wrote its output to another.
The next process in the pipeline could then consume the output. Older
applications, such as data warehouses, were not dependent on receiving
the most current data nor were they sensitive to the latency introduced
by the process of reading and writing of files. Newer applications, on the
other hand, such as real-time analytics applications need to provide a more
accurate model of the real world to accommodate real-time decision mak-
ing. Hence, it is dependent on receiving the most current data while at the
same time avoid latencies. With the evolution of modern applications, the
ETL process can now be seen as a streaming problem [13].

2.3 Social Media Analysis

People express opinions and feelings through messages and statuses in so-
cial media, and analysis of this can be done for many reasons. One of the
reasons is to classify conversation topics to find trending topics that are
being discussed. Another reason is to analyze the sentiment of people to a
subject. Sentiment can be defined as “A thought, view, or attitude, espe-
cially one based mainly on emotion instead of reason”[2]. By performing

13

2.3. SOCIAL MEDIA ANALYSIS

this analysis, stakeholders such as product companies can see ratings of
their products or services from the perspective of their users.

2.3.1 Sentiment Analysis

Sentiment Analysis (SA) refers to the use of Natural Language Processing
(NLP and Text Analysis to extract, identify and characterize the sentiment
content of a text unit [14]. SA can be used for a great variety of occasions
and applications, for example, to predict the success of a political campaign
or a product launch, or to decide whether to invest in a particular company
or not. Other use cases are targeted advertising and reviews of products and
services. Twitter is a platform that contains a lot of sentiment information,
and it is often used when performing SA.

2.3.2 Machine Learning

One way to perform sentiment analysis is to use Machine Learning (ML)
[15]. ML is the study and construction of algorithms that can learn from
data and make data-driven predictions. ML can be supervised or unsu-
pervised. The supervised approach means that the training data consist of
a set of training examples that have been labeled. A supervised learning
algorithm analyzes the training data and produces an inferred function,
which can be used for mapping new items. Examples of problems that
are solved with supervised learning are classification and regression. The
unsupervised learning approach, on the other hand, does not require any
human intervention and is instead used to describe hidden structures in
unlabeled data. Examples of problems that are solved with unsupervised
learning are clustering and association problems.

2.3.3 Naive Bayes

Due to the nature of microblogs, with its limited message size and the wide
range of topics that are being discussed, sentiment extraction is indeed
a challenging process. However, the most common way to solve it has
been to use long-known machine learning algorithms, which turns sentiment
extraction into a classification problem [16]. Naive Bayes is a multiclass
classification algorithm that can be used for supervised learning [17]. The
algorithm uses datasets containing classified Tweets to train the classifier.
Naive Bayes is not a single algorithm, but a family of probabilistic classifiers
of supervised learning algorithms. The algorithms are based on Bayes’

14

2.4. VISUALIZATION

theorem and the ”naive” assumption that there is independence between
every pair of features. Naive Bayes can be trained very efficiently. With
only one single pass to the training data, it can compute the conditional
probability distribution of each feature. The algorithm then applies Bayes’
theorem to compute the conditional probability distribution of a label, and
use it for prediction. Bayes’ theorem in 2.1 describes the probability of an
event A, based on conditions that might be related to the event. Both A
and B are events. P (A|B) is a conditional probability and the likelihood
of event A occurring given that B is true. P (B|A) is similar but is instead
the likelihood of event B occurring given that A is true. P (A) and P (B)
are the probabilities of observing A and B independently of each other.

P (A|B) =
P (B|A)P (A)

P (B)
(2.1)

There are different versions of Naive Bayes, multinomial naive Bayes and
Bernoulli naive Bayes. Both of these versions can be used for document
classification. Within the context of this project, each observation will be
a Tweet, and each feature represents a term whose value is the frequency
of the term (in multinomial naive Bayes) or a 0 or 1 indicating whether the
term was present in the document or not (in Bernoulli naive Bayes).

2.4 Visualization

Due to the evolvement of real-time applications, stakeholders need to get
insights into data streams immediately to facilitate decision making. One
way to solve this is to visualize these applications. Data visualization is a
visual depiction of information, meaning that it is used to present or com-
municate information in an imagery way often in the form of dashboards.
However, visualization of real-time data streams presents many interesting
challenges due to the data being dynamic, transient, high-volume and tem-
poral. The visualizations need to be able to handle abstract and dynamic
data behavior and to present the data in ways that make sense to and are
usable by humans [18]. Compared to static data, dynamic data has some
unique characteristics that make it more challenging to analyze and visual-
ize. For example, with a continuous data stream, the total amount of data
that are being analyzed can be massive in size. In cases where the data rate
is exceptionally high, stakeholders may struggle in examining the data and
interpret it in real time. Visualization tools should, therefore, be able to
allow users to quickly and intuitively understand the content, context, and
organization of the incoming data stream. It is vital that these tools con-
nect to the user’s mental model of the problem in addition to the data and

15

2.5. METRICS FOR MEASURING RELEVANCE

its changing behavior. Before the development of today’s existing Business
Intelligence (BI) tools, understanding raw data was a multi-step process.
Executives had to present their questions to a database expert who then
could execute a query against the database or data warehouse. The result
was then given to another person who could write the necessary code to
represent it as a dashboard or a readable document. At this point, the
data presented was out of date and not in real-time any more, which often
made it irrelevant. With today’s BI tools, companies can bypass many
unnecessary steps and avoid bottlenecks [19].

2.5 Metrics for Measuring Relevance

An important aspect of information retrieval and full-text search is rele-
vance and more precisely, the ability to rank results by how relevant they
are to a given query. This section will present characteristics and measure-
ments that should be considered when estimating relevance. Furthermore,
some known scoring functions will be presented.

2.5.1 Precision and Recall

Two measurements is important when discussing relevance, Precision and
Recall. The calculation on these depends on four different values called
true-positives (tp), false-positives (fp), true-negatives (tn), and false-negatives
(fn). Where tp and tn are the numbers of records that has been correctly
classified as positive or negative, while fp and fn are the numbers of records
that has been falsely classified as positive or negative. The relationship be-
tween these values can be seen in the confusion matrix shown in Table
2.1.

Predicted
Positive Negative

Actual
Positive tp fn
Negative fp tn

Table 2.1: Confusion matrix for possible prediction outcomes

Precision is the number of relevant documents retrieved divided by the total
number of retrieved documents and can be seen as a measure of exactness

16

2.5. METRICS FOR MEASURING RELEVANCE

or quality:

Precision =
relevant documents retrieved

retrieved documents
(2.2)

By using the values presented in Table 2.1, precision can be calculated as
follows:

Precision =
tp

tp + fp
(2.3)

Recall, on the other hand, is the number of relevant documents retrieved
divided by the total number of all relevant documents, and can be seen as
a measure of completeness or quantity:

Recall =
relevant documents retrieved

total relevant documents
(2.4)

Or by using the possible prediction outcomes:

Recall =
tp

tp + fn
(2.5)

In other words, high precision means that a search returned substantially
more relevant results than irrelevant ones, thus high quality, while high
recall means that a search returned most of the relevant results, thus high
quantity. Optimal recall and precision are achieved when the search result
returns all and only the relevant documents in the corpus.

2.5.2 Scoring Functions

Term Frequency - Inverse Document Frequency

The Term Frequency - Inverse Document Frequency (TF-IDF) is a numer-
ical statistic that provides information about word importance [20]. Given
a collection of documents that make up a corpus, TF-IDF assigns scores to
words in each document based on how important the word is in describing
the document.

The score is a product of two distinct features:

Term frequency (TF): The number of times a term appears in one field.
The more often it appears, the more likely it is to be relevant.

17

2.6. TECHNOLOGIES

Inverse document frequency (IDF): The number of times each term
appears in all documents. The more often it appears, the less likely it is to
be relevant. This means that terms that appear in many documents will
have a lower weight than terms that are more unique.

Following equations shows how the TF-IDF weight of a term within a
document is calculated, where t is a term appearing in document d:

TF − IDF (t, d) = TF (t, d) · IDF (t) (2.6)

IDF (t) = log
N

DF (t)
(2.7)

By applying this scoring function, a word that often appears in a small
number of documents will get a high weight and a word that occurs either
few times within a document or many times across all documents in the
corpus will get a lower weight. Common words such as ’the’, ’is’, and ’it’
will, therefore, get low weights.

Vector Space Model

The Vector Space Model (VSM) is an algebraic model for representing
text documents as vectors of terms. VSM is often used for comparing a
multiterm query against documents to rank the documents based on their
similarity to the query. The output of the model is a single score that
represents how well the document matches the given query. The score is
calculated by comparing the deviation of angles between each document
vector and the original query vector [21].

To calculate the similarity between documents and the query, the cosine
similarity measure can be used. Given two vectors of attributes, A and B,
the cosine similarity, cos(θ), is defined as follows:

similarity = cos(θ) =
A ·B
‖A‖‖B‖

=

∑n
i=1 AiBi√∑n

i=1 A2
i

√∑n
i=1 B2

i

(2.8)

2.6 Technologies

This section will present the technologies used in this project. Every choice
of technology has been made with regards to the project goal and its fulfill-
ment. Hence, technologies and frameworks that can handle transformation

18

2.6. TECHNOLOGIES

and indexing of streaming data, machine learning, and visualization of data
streams has been chosen.

2.6.1 Apache Spark

Apache Spark is a unified analytics engine for large-scale processing of
data. It has a programming model that is similar to MapReduce [22] but
has extended it with a data-sharing abstraction called Resilient Distributed
Datasets, or RDDs [10]. RDDs are fault-tolerant collections of objects dis-
tributed across a cluster that can be manipulated in parallel. To create
RDDs, users have to apply operations that are called transformations to
their data. Examples of these are map, filter and groupBy. Spark ex-
poses RDDs through Application Programming Interfaces (APIs) in Java,
Scala, R and Python, which makes it possible for users to pass local func-
tions to run on the cluster. Because of this unified API, applications are
easy to develop.

Spark lazily evaluates RDDs, meaning that the user has to call for another
operation type called actions for Spark to start. This behavior allows Spark
to find an efficient plan for the user’s computation. Examples of actions
are count, collect and save. When an action is called, Spark looks at
the whole graph of transformations that the user has called to create an
execution plan.

By implementing the extension of RDDs, Spark can take care of different
kinds of processing workloads that previously needed separate engines. Ex-
amples of these processing types are SQL, streaming, machine learning, and
graph processing. So where prior systems required writing data to storage
and then passing it to another engine, Spark can run diverse functions over
the same data, often in memory. However, one should notice that Spark is
strictly a processing engine, meaning that it does not persist data for use
outside of the current execution. As soon as the engine has performed the
whole execution graph, one must send it to a separate system for offline
storage.

Spark Streaming

Spark Streaming is one of the most popular streaming processing engines.
It allows processing of a stream of data on a Spark cluster. It builds on
the general Spark execution engine, but instead of having RDDs as its
central abstraction it has discretized streams called DStreams. The main
idea behind DStreams is to treat computation of a data stream as “a series

19

2.6. TECHNOLOGIES

of deterministic batch computations on small time intervals” [23]. Hence,
a DStream is defined by a time interval, which is used to pre-group the
incoming stream elements into discrete chunks. These chunks forms RDDs
which can be processed by the Spark execution engine, as can be seen
in Figure 2.1. This way of handling streaming data is defined as micro-
batching.

Figure 2.1: Spark Streaming

The motivation behind Spark Streaming was to have a system that pro-
vides consistency, efficient fault recovery, and robust integration with batch
systems. Thus by using DStreams, Spark Streaming can treat the incoming
stream as a series of short batch jobs which will bring down the latency.
Consequently, Spark Streaming is a streaming processing engine that has
many of the benefits of batch processing models in addition to the ones
for stream processing. So even if Spark Streaming is not defined as ”true”
streaming where events flow into the system at a given rate, it is still pos-
sible to implement many streaming operations on top of this architecture.
A DStream group together a series of RDDs and lets the user manipulate
them through both stateless and stateful operators. One example of the
former is map which act independently on each time interval, while an ex-
ample of the latter is aggregation over a sliding window, which operates on
multiple time intervals and may produce new RDDs as intermediate states.

Spark Machine Learning Library

Spark has its own library for machine learning functions called MLlib1.
MLlib is a distributed machine learning framework that runs on top of the
Spark core. The library contains a variety of learning algorithms and is
accessible from all Spark’s programming languages. It consists of standard
learning algorithms and features, which includes classification, regression,
clustering, and collaborative filtering, where classification will be in focus
for this project.

1MLlib: https://spark.apache.org/mllib/

20

https://spark.apache.org/mllib/

2.6. TECHNOLOGIES

2.6.2 Apache Kafka

Apache Kafka2 is an open-source stream-processing software platform that
was initially developed at LinkedIn3. The project started as an answer to
the problems regarding building real-time streaming applications and the
piping of data between systems. The development at LinkedIn was at first
very ad hoc, meaning that they built piping between systems and applica-
tions as it was needed. Over time this became increasingly more complex,
with data pipelines between all kinds of systems. However, the problem
was not only about data transportation. The developers also wanted to be
able to transform the data. With the rise of processing platforms such as
Hadoop, there was a need for getting the data from the users in an asyn-
chronous way with low-latency. Consequently, LinkedIn started on building
a system that would focus on modeling streams of data [24]. The project
is now part of the Apache Software Foundation and aims to provide a
unified, high-throughput, low-latency platform for handling real-time data
feeds. Kafka allows users to publish and subscribe to streams of records,
similar to a message queue.

Kafka has some capabilities that should be explained to understand how
it works. Firstly, Kafka is run as a cluster on one or more servers that can
be distributed to multiple data centers. The streams of records are stored
in the Kafka cluster in categories called topics, where each record consists
of a key, a value, and a timestamp. Topics are multi-subscriber, meaning
that a topic can have zero, one, or many consumers that are subscribing
to the data that are being written to it. For each topic, the Kafka cluster
maintains a partitioned log as can be seen in Figure 2.2.

Figure 2.2: Anatomy of a topic in Kafka [25]

Each partition is an ordered, immutable sequence of records that is ap-

2Apache Kafka: https://kafka.apache.org/
3LinkedIn: https://www.linkedin.com/

21

https://kafka.apache.org/
https://www.linkedin.com/

2.6. TECHNOLOGIES

pended to the log continuously. The records in the partitions have a se-
quential id number that is called the offset which is used to identify each
record within a partition uniquely. Furthermore, Kafka has four core APIs
which allows applications to integrate with the system. The API used for
this project is called the Producer API, and it allows an application to
publish a stream of records to one or more Kafka topics [25].

A traditional enterprise messaging system typically has two models - queu-
ing and publish-subscribe. Where in a queue, a pool of consumers can read
from a server and each record are sent to one of them, and in publish-
subscribe, the record is broadcasted to all consumers. Each of the two
models has a strength and a weakness. Publish-subscribe allows the user
to broadcast data to multiple processes, but it is not able to scale process-
ing since every message goes to every subscriber. Queuing, on the other
hand, allows the user to scale the processing by dividing processing of data
over multiple consumer instances. However, queues are not able to han-
dle multiple subscribers, once one process reads the data it will be gone.
Luckily, Kafka generalizes these two concepts and allows the users to both
divide processing over a collection of processes while also allowing broad-
casting of messages to multiple consumer groups. As every topic in Kafka
has these properties, there is no need to choose one or the other.

Kafka gives some guarantees that are useful when retrieving data streams.
Messages sent by a producer to a specific topic will be appended in the
order they are sent. At the same time, a consumer instance will see records
in the order as they are stored in the log. Another advantage is that all
published records will be persisted in the Kafka cluster, even if they have
been consumed or not. Kafka is using a configurable retention period,
meaning that a retention policy can be set to an optional amount of time.
A record will then be available for consumption during the retention period
before it is being discarded to free up space. Also, as Kafka’s performance
is effectively constant with respect to data size, there is no problem to store
data for a longer time.

2.6.3 The Elastic Stack

The following section will present parts of the Elastic stack that has been
used in this project. The components in the stack can reliably and securely
take data from any source, in any format and allow full-text searches, anal-
ysis, and visualizations of it in near real time.

22

2.6. TECHNOLOGIES

Elasticsearch

To analyze and process information from real-time applications that con-
tain semistructured or unstructured data there is a need for an analytics
engine that can handle voluminous data and full-text searches. Elastic-
search4 is a highly scalable open-source full-text search and analytics en-
gine that is built upon Apache Lucene5, which is an open-source full-text
search engine written in Java. Elasticsearch is often used as the underlying
engine for applications that have complex search features and requirements
and allows users to get near real-time data insights. Near real-time means
that there is a slight latency from the time that the data is being indexed
until the time it becomes searchable. However, the latency usually is just
a second and Elasticsearch is, therefore, suitable for analytics applications.
An example of a typical use case is applications where it is vital to quickly
investigate, analyze, visualize, and ask ad-hoc questions on millions or bil-
lions of records. For these cases, it is common to use Elasticsearch to store
the data and then use another part of the Elastic stack, called Kibana, to
build custom dashboards that visualize different aspects of the data that
are important for the user [26].

A few concepts should be presented to understand the core functionality of
Elasticsearch. To utilize Elasticsearch one has to define a cluster. A cluster
is a collection of one or more nodes, where each node is a single server, which
together holds the entire data set. The cluster provides indexing and search
capabilities across all nodes. An index is a collection of documents that
have similar characteristics. A document is a basic unit of information
that is being indexed, expressed in JavaScript Object Notation (JSON).
An index is identified by its name and has to be set if the visualization
tool presented in the next section is going to discover it. The name is also
used when performing search, update, and delete operations against the
documents in the index.

Since Elasticsearch is going to store a significant amount of data that possi-
bly can exceed the hardware limits of a single node, it provides the ability
to divide the defined index into smaller pieces called shards. The main
advantages with sharding are that it allows the content volume to be split
horizontally and it also allows operations to be distributed and parallelized
across shards which will increase performance. As for all environments
where failures can be expected at any time, it is essential to have a failover
mechanism in case a shard or node goes offline or disappears. The mecha-
nism in Elasticsearch allows the user to make copies of the index’s shards
into something called replicas. There are two primary reasons why repli-

4Elasticsearch: https://www.elastic.co/products/elasticsearch
5Apache Lucene: https://lucene.apache.org

23

https://www.elastic.co/products/elasticsearch
https://lucene.apache.org

2.6. TECHNOLOGIES

cation is important. First of all, it provides high availability if something
goes wrong with the shards or nodes. However, this is depending on that
a replica is never allocated on the same node as the original shard. Sec-
ondly, replication allows the system to scale out the search volume and
throughput since searches can be executed in parallel on all replicas [27].

Kibana

Kibana6 is an analytics and visualization platform that is designed to work
with Elasticsearch. After storing the data in Elasticsearch indices, Kibana
allows the user to search, view and interact with it. Kibana has a simple,
browser-based interface which will enable users to quickly create dynamic
dashboards that will display changes to Elasticsearch in near real-time.
An example of a valuable visualization in the context of Twitter could be
exploring trending hashtags on Twitter right now, or for a specific time
interval. Hence, Kibana allows users to perform advanced data analysis
and visualizations in near real-time [28].

Figure 2.3 shows an overview of some of the different visualization types
provided by Kibana.

Figure 2.3: An overview of visualization options in Kibana

6Kibana: https://www.elastic.co/products/kibana

24

https://www.elastic.co/products/kibana

2.6. TECHNOLOGIES

The Practical Scoring Function

As Elasticsearch is built on top of Lucene, it can take advantage of its
full-text search capabilities. By default, Lucene is returning results in de-
scending order of relevance where relevance is represented as a positive
floating-point number called score. This score is calculated based on
various types of query clauses where different clauses are used for differ-
ent purposes. Examples of query clauses are calculating how similar the
spelling of a found word is to the original search term or the percentage
of terms that were found. The most common example, however, is to cal-
culate how similar the contents of a full-text field are to a full-text query
string [29].

The standard similarity algorithm used in Lucene and Elasticsearch is TF-
IDF. However, in addition to term frequency and inverse document fre-
quency, Lucene has added another feature called field-length normalization.
This factor is based on how long every field is. If an index over books con-
tain the fields title and content, a term appearing in the short title

field will most likely give more weight than the same term appearing in the
longer content field.

These three factors are calculated and stored at index time. To calculate
the score, Lucene and Elasticsearch uses a formula called the practical
scoring function together with the Boolean model. The Boolean model
uses the AND, OR, and NOT conditions to find all the documents that match
the query. An example of a boolean query can be seen in Listing 2.1. The
query will return documents that include both President and America, and
either Trump or Obama. The goal of this process is to exclude documents
that cannot match the defined query before calculating the relevance score.

Listing 2.1: Example of a query for the Boolean model

1 President AND America AND (Trump OR Obama)

The practical scoring function borrows concepts from TF-IDF and the Vec-
tor Space Model but can also be combined with other features such as
boosting a specific property that is important for the query clause [30]. To
calculate the score, both the documents and the query are represented as
vectors where each number in the vector is the weight of a term calculated
by TF-IDF. It should be mentioned that TF-IDF is the default way of
calculating the term weights. However, other similarity algorithms such as
the Okapi-BM25 can also be used in Elasticsearch [31].

25

2.6. TECHNOLOGIES

Boosting of Relevance Score

Even if TF-IDF and Okapi-BM25 are both great algorithms for finding
documents that are textually similar to a submitted query, there are oc-
casions where the practical scoring function needs to be augmented with
other scoring heuristics. An example of an occasion where text similarity
is not the most important factor is geo search. Imagine that a user is inter-
ested in finding a gas station. Ranking the relevance score of gas stations
based on their textual similarity to the query would not be useful to the
user. Instead, the ranking score should be based on how geographically
close they are to the user. Examples of other factors that might be used to
boost the relevance score are popularity and temporality [32].

Elasticsearch provides various features which allow the user to implement
a customized ranking function based on the occasion. Two convenient
features are called script score and function score. Imagine that we
want to rank music videos on a website using a combination of textual
relevance relative to a query and the popularity of the videos on the website.
A total of three factors should be taken into considerations:

• score: textual similarity of the video’s metadata based on TF-IDF

• likes: The number of likes a given video has received

• views: The number of views a given video has received

A formula can be constructed to take all factors into consideration:

score ∗ log(likes + views + 1)

The formula treats the sum of likes and views as a coefficient. The num-
ber 1 is added in case both of them are 0. The logarithm of the coefficient
is then used to not let the most popular videos dominate all results. Listing
2.2 shows an example of how function score and script score has been
utilized to implement the proposed formula and rank music videos based
on the query Justin Bieber.

26

2.6. TECHNOLOGIES

Listing 2.2: Query for ranking music videos

1 {

2 "query": {

3 "function_score": {

4 "query": {

5 "match": {

6 "message": "Justin Bieber"

7 }

8 },

9 "script_score": {

10 "script": "_score * log(doc['likes'].value + doc['views'].value + 1)"

11 }

12 }

13 }

14 }

Another use case where functional scoring techniques are useful is for show-
ing relevance based on trends. Such relevance score cannot be based on sim-
ple metrics such as likes or views but must continuously be updated based
on the current time. A video that receives 1000 views in 1 hour should be
considered more trendy and thus relevant than a video that receives 10000
views in 24 hours. Elasticsearch provides various decay functions that al-
low the user to weight more recent documents higher. The function can
be based on three different curves, linear, Gaussian, and exponential dis-
tribution. Each document is then mapped to a point on the chosen curve
to determine its score. An illustration of the different curves can be seen
in Figure 2.4. The linear distribution has a decay where all points in time
decay evenly. The Gaussian distribution decays slowly for values near the
origin before falling distinctly and finally tapering off for low enough val-
ues. Lastly, the exponential distribution has the shape of a parabola, the
farther away from the origin, the faster the values are decayed.

Figure 2.4: Linear, Gaussian and Exponential curves

27

28

Chapter 3

Related Work

This chapter presents a selection of research related to this project. The
first parts are focused on related frameworks, research related to stream
processing and visualization of data streams. Finally, some research related
to classification and ranking of microblogs will be presented.

3.1 Related Frameworks to Handle Big Data

As mentioned earlier, Big Data can be defined by the three V’s - Volume,
Velocity, and Variety. Research has advanced regarding the volume of
Big Data, while research about velocity of data is still an issue that is
becoming more urgent to solve. Data arrives at high speed, and analytics
of this information is often time sensitive. In 2013 Twitter realized that
the analysis platform Hadoop1 did not meet their latency requirements as
they had hoped [33]. Twitter had tried to build a real-time related query
suggestion and spelling correction service with strict latency requirements.
This service was supposed to suggest trending queries to users in real-time,
and Twitter wanted it to do so within 10 minutes after a major news event
breaks. The first implementation was built on a typical Hadoop-based
analytics stack. However, since Hadoop is designed to handle petabyte-
scale datasets through large batch jobs, it was not suitable for the strict
latency requirements that Twitter had for the application. This discovery
points out that there is a need for data analytics platforms that can handle
“big” as well as “fast” data.

To handle high velocity, it must have been inherited into the system design
from the early beginning, and this is not the case in many of today’s systems

1Hadoop: https://hadoop.apache.org/

29

https://hadoop.apache.org/

3.1. RELATED FRAMEWORKS TO HANDLE BIG DATA

[34]. Especially traditional Database Management Systems (DBMSs) are
not able to support microblogs as they expect all data to be managed as
persistent data sets and not data with high arrival rate. Because of this
significant limitation in DBMS, several Data Stream Management Systems
(DSMSs) has been introduced. A challenge when working with queries
for microblog data is that they often require indexing of both real-time
and historical data. So even if DSMS is better at handling data streams
with high arrival rates, the systems are limited to support the concept of
continuous queries. Continuous queries are queries that are issued once
and then logically run continuously over the data stream [12]. This gives
incremental answers for queries that are registered a priori. However, this
is somehow different from the needs of microblog queries where the users
are mostly asking about data that has already arrived at the system. The
functionality of indexing and querying historical data is something that
most DSMS lack.

To handle indexing of historical data, high arrival rates, and semistruc-
tured data, the development of Big Data Management Systems (BDMSs)
has become a trend. The developers behind AsterixDB2 has defined some
design decisions as they believed were important when designing a BDMS
[35]. They wanted the system to have a flexible, semistructured data model
and a full query language with at least the power of Structured Query Lan-
guage (SQL), and the ability to support a variety of data types and query
types. The system should be able to do automatic indexing, continuous
data ingestion, and scale gracefully to manage and query large volumes of
data.

Different approaches have been proposed to solve the problem of combining
real-time and historical data. One example is the Big Active Data (BAD)
system from the University of California [36]. The BAD system is an
extension of AsterixDB, and the goal is to create a scalable system that
will act as a platform for what they call active data. The platform is
designed to deliver data of interest to a large number of users while still
supporting analyses of historical information, without compromising the
relationships between data items. One can think of BAD as a combination
of BDMS and DSMS. It will leverage from BDMS because of AsterixDB
and its functionality, but it also includes concepts from DSMS for the real-
time data analysis. BAD strives for a Publish/Subscribe-pattern where it
collects data from a large number of sources and then publish it to an even
higher number of subscribers that are interested in both incoming data as
well as the changing of state for historical data. Figure 3.1 summarizes
how the BAD system fits into the overall active systems platform space.

2AsterixDB: https://asterixdb.apache.org

30

https://asterixdb.apache.org

3.1. RELATED FRAMEWORKS TO HANDLE BIG DATA

Figure 3.1: The BAD system in context of other systems [37]

As previously mentioned, one of the leading challenges with today’s existing
BDMSs is that they often are specialized in different processing types.
This means that users must create their own engine by combining different
systems to achieve the desired result. There have been many interesting
attempts to benefit from both DSMSs and BDMSs. One example of a
system that has been ”glued” together are Apache Storm3, a popular
streaming engine, and MongoDB4, a successful persistence store. In an
article written by Grover and Carey, this combination is evaluated against
AsterixDB [38], which is considered to be a unified engine. The authors
argue that the glued solution requires that the end user understand the
layout of the cluster and can include specific information in the source code.
The authors conclude that AsterixDB outperforms the glued solution when
it comes to both performance and user experience.

3Apache Storm: http://storm.apache.org
4MongoDB: https://www.mongodb.com

31

http://storm.apache.org
https://www.mongodb.com

3.2. RELATED METHODS TO HANDLE STREAMING DATA

3.2 Related Methods to Handle Streaming

Data

Many existing systems handling streaming data origins from the MapRe-
duce programming model. The model was designed as an abstraction that
allows users to express simple computations without having to take count
of the details of parallelization, fault tolerance, data distribution and load
balancing [22]. It was inspired by the map and reduce primitives that are
present in many functional programming languages. The map function
takes key-value pairs as input and produces a set of intermediate key-value
pairs. The MapReduce model then groups together all pairs associated
with the same key and passes them to the reduce function, which will
produce the final output key-value pairs. Systems that are based on this
programming model typically operates on static data by scheduling batch
jobs. However, streaming data is not static, and instead of treating streams
as streams, they are often batched into static data sets and then processed
in a time-agnostic fashion. By looking at the definition of streaming data,
presented in the last chapter, it is clear that it has emerged a need of having
a different architecture than the one used for batch processing.

One system that has tried to solve this new need is Apache Flink5.
Flink is an open-source system for processing streaming and batch data
[39]. Flink is based on the philosophy that many applications can be
expressed and executed as pipelined fault-tolerant data flows. This phi-
losophy concerns real-time analytics, batch processing of historical data
and iterative algorithms, like ML and graph analysis. A Flink runtime
program is a Directed Acyclic Graph (DAG) of stateful operators that are
connected with data streams. To handle both streams and batch process-
ing, Flink has two APIs called DataSet API, for processing finite data
sets, and the DataStream API, for processing potentially unbounded data
streams. The APIs in addition to a highly flexible windowing mechanism,
allows Flink programs to compute both early approximate results as well
as delayed accurate results in the same operation. Flink is based on the
Actors model, a model for concurrent computations in distributed systems,
which means that actors are the universal primitive which messages are ex-
changed through [40]. The model defines some general rules for how the
system’s components should behave and interact with each other. In this
case, the components are the FlinkClient, the Job Manager, and multiple
Task Managers. The actors can only communicate with each other through
messages that are being sent asynchronously. When an actor is receiving
a message, the actor itself can create more actors, send messages to other

5Apache Flink: https://flink.apache.org

32

https://flink.apache.org

3.2. RELATED METHODS TO HANDLE STREAMING DATA

actors or designate what to do with the next message it will receive.

The previously mentioned system AsterixDB does also support ingestion
of data streams. The mechanism used is called Data Feeds and allows hav-
ing continuous data streams arriving into AsterixDB from external sources
[38]. The functionality of establishing a connection with a data source and
receiving, parsing and translating its data into the right storage objects is
contained in a feed adapter. The feed adapter may operate in push or pull
mode. Push mode involves one initial request by the adapter to the data
source to set up the connection. Once the connection is authorized, the data
source can push data to the adapter without any further requests. However,
when operating in pull mode, the adapter has to make separate requests
every time it wants to receive data. When defining a feed, there is also an
option to include the specification of a user-defined function (UDF) that
will be applied to each incoming feed record before persistence. The UDFs
allows users to perform sentiment analysis, feature extraction, filtering of
records, and other useful operations. A feasibility analysis of stream-based
processing of semi-structured data has been conducted by Päkkkönen [41].
The goal of the analysis was to compare AsterixDB with a composite sys-
tem made by Spark Streaming and the Cassandra6 NoSQL database.
Where Spark Streaming was used for processing streams and Cassandra
for persistence. The study focused on finding out how the two systems
performed when a content analysis and a sentiment analysis was executed
on a stream of Tweets. The results of the study indicated that the two
systems scaled roughly similarly. However, the author concludes that As-
terixDB performed relatively better in the processing of semi-structured
Twitter data, by achieving higher throughput and lower latency than Spark
Streaming + Cassandra.

Apache Storm7 is another system for distributed real-time computations.
Storm uses some key abstractions called spouts and bolts. The spouts work
as the sources of streams in a computation while the bolts will process input
streams and produce output streams. Similar to other systems, the bolts
can run functions, filter the data, aggregate or join, or talk to databases.
A Storm application is designed as a topology with the shape of a DAG,
where the spouts and bolts work as the graph nodes and the edges of the
graph are streams going from one node to another. Altogether, the DAG
works as a data transformation pipeline. A Storm cluster contains two
types of nodes, a master node called Nimbus node and worker nodes called
Supervisor nodes. The Nimbus node is responsible for distributing code
around the cluster, assigning tasks to the worker nodes and monitoring
for failures. The Supervisor nodes are listening for work assigned to its

6Cassandra: https://cassandra.apache.org/
7Apache Storm: http://storm.apache.org

33

https://cassandra.apache.org/
http://storm.apache.org

3.2. RELATED METHODS TO HANDLE STREAMING DATA

machine and starts and stop work processes based on what Nimbus wants.
The coordination between Nimbus and the Supervisors is done through a
ZooKeeper8 cluster. Both Nimbus and the Supervisors are fail-fast and
stateless. Hence, all state is kept in Zookeeper. Meaning that in case of
a system failure, both Nimbus and the Supervisors can be restarted like
nothing happened, which makes Storm a fault-tolerant system.

Storm has been used in many popular applications. For a long time Storm
served as the main platform for real-time analytics on Twitter. However,
when the amount of data that was being processed in real-time started to
increase, many limitations of Storm became apparent. Twitter needed a
system that could scale gracefully, had better performance, and was easier
to manage while also working on a shared cluster infrastructure. Twitter
argues that the Storm topology can be challenging to handle in production
because of difficulties in debugging [42]. When a topology misbehaves, it is
important to find the root-cause as soon as possible to avoid long system
downtimes. Since Storm is built on multiple components in one topology
that is bounded into one operating system process, debugging can be very
challenging. Hence, Twitter needed a system with a clearer mapping from
the logical computation units to each physical process. However, since
Twitter has a large number of existing applications relying on Storm, it
was essential that the new system was compatible with Storm. The re-
sulting system is called Heron9 and is API-compatible with Storm, which
allows Storm users to migrate to Heron easily. Heron is, as Storm, de-
signed as a topology with spouts and bolts forming a DAG. As for Storm,
the spouts generates the input, and the bolts do the computation. The
Heron topology is equivalent to a logical query plan for a database system,
meaning that this logical plan is translated into a physical plan before the
actual execution. Each topology is run as an Aurora10 job, which consists
of multiple containers. One container is called the Topology Master and
the remaining containers each run a Stream Manager, a Metrics Manager
and a number of processes called Heron Instances. The Stream Manager
is responsible for routing the incoming tuples in one container, and the
Metrics Manager collects and exports metrics from all the components in
the system. The Heron instances are the spouts and bolts that run user
logic code. Heron allows for many containers to run in parallel and it is
the Topology Master’s job to control these. For coordination of resource
schedulers, Heron relies on ZooKeeper.

Previous work has been done to investigate how Storm, Flink and Spark
Streaming perform compared to each other. The motivation behind the

8ZooKeeper: https://zookeeper.apache.org
9Heron: https://twitter.github.io/heron/

10Aurora: http://aurora.apache.org

34

https://zookeeper.apache.org
https://twitter.github.io/heron/
http://aurora.apache.org

3.3. RELATED METHODS TO VISUALIZE STREAMING DATA

work was to provide benchmarks for three representative computation en-
gines to simplify the process when choosing the most appropriate plat-
form for a given need. To test the different platforms, a full data pipeline
was constructed using Kafka and Redis11 to mimic the real-world produc-
tion scenarios. The authors argue that Storm and Flink behave like true
streaming processing systems with lower latencies, while Spark Streaming
can handle higher throughput but at the cost of somewhat higher latencies.
Based on the results, the authors conclude that there is no clear winner
and that all platforms have their advantages and disadvantages [43].

3.3 Related Methods to Visualize Stream-

ing Data

Real-time visualization of data streams has become one of the most im-
portant research topics in the visualization domain. The need for finding
suitable tools that can extract the content, context and the organization
of the incoming data stream has increased with the explosion of real-time
data applications. The Visual Content Analysis of Real-Time Data Streams
project (the VCA project) is a project at the Pacific Northwest National
Laboratory. Their goal was to allow users to quickly grasp dynamic data in
forms that are intuitive and natural without requiring intensive training in
the use of specific visualization or analysis tools and methods [18]. In their
research, they have tried to develop dynamic visualization tools that are
suitable for different fields and disciplines. Examples of areas are cyberse-
curity, computer networks, counterintelligence, supercomputing, biological
sciences and homeland security.

During the last couple of years, several visualization software products
have been developed that do not require any coding experience. Hence,
the products are more or less plug-and-play and can be used by companies
that want to get insights into their raw data without having to do any
coding. One example of a graphical system that can perform ad-hoc explo-
ration and visualization of customer data sets is Tableau12. The system
allows companies to prepare interactive visualizations through a desktop
application that can either connect to an online data source or work offline
on a downloaded source of data [44]. It supports a wide variety of charts,
graphs, maps and other graphics and the created charts can easily be in-
tegrated into websites and other applications. According to the developers
behind Tableau, the system is a convenient alternative for companies and

11Redis: https://redis.io/
12Tableau: https://www.tableau.com

35

https://redis.io/
https://www.tableau.com

3.3. RELATED METHODS TO VISUALIZE STREAMING DATA

customers who do not own a dedicated analytic database server by them-
selves. Another analytics tool is Microsoft’s Power BI13, which allows
users to connect to different data sources, such as Excel, MySQL, Google
Analytics and Salesforce to mention a few. The tool provides cloud-based
BI services, known as Power BI Services, together with Power BI Desktop
which is a desktop-based interface. Power BI offers interactive visualiza-
tions, allowing end users to create custom dashboards and reports without
having to depend on experts on databases.

In 2015, International Business Machines Corporation (IBM) released the
IBM Watson Analytics (IBMWA) software [45], which is a data analyt-
ics software that automates descriptive, predictive, and visual analytics. In
contrast to the Watson system that won Jeopardy in 2011, which is based on
cognitive computing, IBMWA is based on advanced statistics. To present
the process of IBMWA, one can explain it in four stages - Refine, Explore,
Predict and Assemble. The first step is used for data exploration and ma-
nipulation and the second step allows the user to use their own words to
discover the data. The third step is used for predictive analytics, where
the user selects a target attribute and the program creates a diagram show-
ing the factors that are most likely to influence business outcomes. The
final step is used to display the findings as visualizations on dashboards.
The program has been described as very user-friendly. However, it requires
data preprocessing, statistical conceptual understanding as well as domain
expertise.

With regards to the domain of this project, some research related to visu-
alization of Twitter data has been conducted. Taghreed is implemented
to be a complete system for efficient and scalable querying, analyzing, and
visualizing geo-tagged microblogs. The system is built on four main com-
ponents to manage and query billions of microblogs records. First, it uses
an indexer that handles both main-memory and disk-resident indexes. The
main-memory indexes would digest the incoming records in real-time with
high arrival rates. When the memory becomes full, a flushing manager
is responsible for transferring main-memory contents to the disk indexes.
The second component is a query engine that provides query optimization
and query processing on top of the system indexes. The third component
is a recovery manager that restores the system in case of failure, and lastly,
an interactive visualization is used which allows the end user to interact
with the system. An overview of the visualization can be seen in Figure
3.2. The authors do also discuss other alternatives such as using Aster-
ixDB to support interactive queries on big semi-structured data. However,
they argue that AsterixDB is not suitable to handle microblogs as it, up to
that date, did not support digesting and indexing of fast streaming data in

13Power BI: https://powerbi.microsoft.com/en-us/

36

https://powerbi.microsoft.com/en-us/

3.3. RELATED METHODS TO VISUALIZE STREAMING DATA

real-time or had mechanisms to manage data flushing for memory-resident
data to disk [46]. It should be emphasized that the Data Feed functionality
described in section 3.2, was introduced after this article was published.

Figure 3.2: Overview of the Taghreed interface [46]

Another system that has been focusing on visualizing Twitter data is
Cloudberry. Cloudberry is a system that allows users to interactively
query, analyze, and visualize a significant amount of data with temporal,
spatial, and textual dimensions. These attributes are commonly available
in social media and the reason why Twitter was used as the subject for
demonstration. Despite the critiques made by the creators of Taghreed,
Cloudberry is built with AsterixDB running as backend and has utilized
the Data Feed functionality. The authors argue that it allow scalability, as
it can utilize a computer cluster to store, index, and query large amounts
of information. The idea behind the system was to create a platform for
analytical purposes, where the user can use the interface to zoom into more
specific details on both spatial and temporal dimensions. On top of As-
terixDB is the Cloudberry middleware which is responsible for processing
front-end requests and transforming them into efficient AsterixDB queries.
Lastly, a Web interface called TwitterMap is developed which displays the
spatial and temporal distribution of Tweets. The user can interact with
the interface by sending filter and aggregation requests to the Cloudberry
middleware which will update the visualization [47]. Figure 3.3 gives an
overview of the interface.

37

3.4. CLASSIFICATION AND RANKING OF MICROBLOGS

Figure 3.3: Overview of the TwitterMap interface [48]

3.4 Classification and Ranking of Microblogs

The task of filtering a time-ordered corpus of documents that are highly
relevant to a predefined set of entities was introduced at the TREC Knowl-
edge Base Acceleration14 track in 2012. Two main families of approaches
occurred, namely Classification and Ranking. An experiment made by Ba-
log and Ramampiaro, compared classification and ranking for cumulative
citation recommendation (CCR) [49]. The goal with CCR is to automat-
ically filter vitally relevant documents from a textual stream consisting of
news and social media content and evaluate their citation-worthiness to
target Knowledge Base (KB) entities. An example of a Knowledge Base
is Wikipedia. In other words, the goal with CCR is to propose documents
that a human would want to cite in the Wikipedia article of the target
entity. Common to both classification methods and ranking methods is an
initial step that provides a filter to identify whether a document contains
a mention of the target entity. The filtering step is based on strict string
matching and uses known name variants of the entity extracted from DB-
pedia15 to find mentions. The goal with identifying entity mentions was to
maintain high recall and keep the number of false positives at a low rate.
An earlier experiment conducted by the same authors had investigated how
recall was affected when expanding the filter with known name variants [50].
The experiment achieved a recall of 86.2% and 84.2% on the training and
testing periods, respectively, by just using the name of the URL. By adding

14TREC Knowledge Base Acceleration: http://trec-kba.org/
15DBpedia: http://www.dbpedia-spotlight.org/

38

http://trec-kba.org/
http://www.dbpedia-spotlight.org/

3.4. CLASSIFICATION AND RANKING OF MICROBLOGS

known name variants with DBpedia, the recall were pushed to 97.4%. The
authors concludes that using DBpedia variants with strict matches provides
a balanced setting for identifying entity mentions. After identifying entity
mentions, the experiment continues to investigate whether classification or
ranking performs best. The study concludes that ranking methods outper-
form classification methods with respect to their ability to identify central
documents. Even if the CCR task does not concern microblogs explicitly,
some parallels can be drawn and the work conducted in the study are in
many ways applicable to the work to be done in this project.

After the arising of microblogs, research regarding the ranking of relevant
content has emerged. Before presenting part of this research, Twitter’s
ranking algorithm will be explained. At the beginning of the Twitter his-
tory, a user’s timeline composition was easy to describe. It would show
all the Tweets from the people you follow since your last visit, in reverse-
chronological order. However, this strategy is not able to avoid spam nor
present the most relevant content for the user. During the past years, Twit-
ter has made subtle additions to their application to boost user engagement.
One of those additions is their ranking algorithm. The motivation behind
the algorithm is that recency does not always equal relevance, and Twitter
wants to present content that is even more relevant to the user [51]. Histor-
ically, a Tweet’s relevance has been determined by the user’s interests and
rationale. To solve this, each Tweet is scored by a relevance model at pub-
lication time. To calculate the score, the model uses a variety of features
such as the Tweet itself, the author of the Tweet and the user. The goal
with the score is to predict how exciting and engaging a Tweet would be
for a specific user. A set of the highest-scoring Tweets is shown at the top
of the timeline while the remainder is shown below in reverse-chronological
order.

Through the history, the majority of all microblogging search engines has
relied on keyword-based retrieval strategies. However, as the need for re-
turning even more relevant answers has increased, research that explores
other strategies has taken place. A paper written by Tao et al. investigates
if there exist additional micropost characteristics that are more predictive
of a post’s relevance and interestingness than its keyword-based similar-
ity with the query [52]. The authors explore sixteen features along two
dimensions: topic-dependent and topic-independent. Examples of topic-
dependent features are the retrieval score derived from retrieval strategies
based on statistics or the semantic overlap score which determines the over-
lap between the semantic meaning of a search topic and a micropost. Topic-
independent features, on the other hand, can be divided into Syntactical
features (presence of URLs or hashtags), Semantic features (the diversity
of semantic concepts mentioned in the post) and Social context features

39

3.4. CLASSIFICATION AND RANKING OF MICROBLOGS

(the authority and popularity of the user who posted the micropost). The
analysis concludes that an understanding of the semantic meaning of the
Tweets plays a vital role in determining the relevance of a Tweet based on
a query. The authors also point out that the length of a Tweet and the
social context of the user posting it have little impact on the prediction of
relevancy.

The feature set is a widely discussed theme in research regarding the rank-
ing of microblogs. Duan et al. proposes a feature set based on Content
relevance features, Twitter specific features, and Account authority features.
Where the first refers to those features which describe the content relevance
between queries and Tweets and the second to those features which repre-
sent the particular characteristics of Tweets, such as the number of retweets
and likes. The last refers to features which represent the influence of the
authors [53]. The paper proposes a Tweet ranking strategy by applying
learning to rank algorithms to determine the best set of features. However,
the paper concludes that the system performs best by using a set of five
different features, where whether a Tweet contains a URL or not is the
most effective feature. Regarding account authority, the authors conclude
that the number of times other users have listed an account performs better
than the number of followers which was used earlier on Twitter.

40

Chapter 4

Ranking of Results from
Continuous Queries

This chapter will provide the solution for the stated project goal and as-
sociated research questions. The chapter will provide an insight into the
development phase and how the solution was implemented. The task and
domain for the project will be introduced, before the conducted approach
is presented by explaining the process through each iteration introduced in
section 1.4.3. The solution and different decisions through each sprint will
be described before the practical implementation will be presented.

4.1 Domain

This section outlines the domain for the project.

4.1.1 Twitter

The domain for this project will be Twitter. Twitter is considered as
a microblog where users can follow other users and post messages that
their followers can read. These messages are called Tweets and have a
restricted message length, which makes them concise and straight to the
point. Twitter constitutes a wide spreading instant messaging platform,
and people use it to get informed about world news, reviews and critiques,
product launches and events for a specific geographical location, to mention
a few. Since tweets naturally contain rich sentiment information, they are
often used for sentiment analysis. Twitter provides samples of its data

41

4.2. TASK

available as data streams for consumers and developers which makes it
ideal for analysis and research.

There exist some sentiment labels in the Twitter-domain [2]. Consider
the following Twitter example message: RT @louisa has won a #gold

medal. The tweet shows three of these sentiment labels. The symbol #
is called a hashtag, and it is used to denote a topic, subject or category
of a tweet. RT is used at the beginning of a tweet to indicate that the
message is a so-called ”retweet”, a reposting of a previous tweet. The
character @, as in, @louisa is called a mention and is used to reply to other
users by indicating their usernames. Another sentiment label is emoticons,
which refers to a digital icon or a sequence of keyboard symbols that serves
to represent a facial expression. All of these labels are suitable for Social
Media analysis, and Twitter is considered as a suitable data source to prove
the underlying theories for this project.

4.2 Task

This section presents the tasks to conduct the project within.

4.2.1 Filtering on Relevant Keywords

The primary task for this project is filtering the Twitter stream on words
inserted by the user. Throughout this report, the inserted search words
will be referred to as keywords. As mentioned in section 1.1, the system
from the specialization project sent all retrieved Twitter data straight to
Elasticsearch and Kibana, including non-relevant information as spam [1].
By filtering the Twitter stream directly in Spark, noisy information with no
value can be excluded and make the visualizations as relevant as possible
for the user. The user will, therefore, insert a query based on what he
or she wants to visualize. The system then needs to find a list of related
keywords based on the query which will be used by the Spark engine to
filter the Twitter data. The reason why it is important to find related
keywords is mainly due to the nature of tweets. The maximum length of a
Tweet was initially set to 140 characters, but since November 7, 2017, the
length was extended to 280 characters for all languages except Japanese,
Korean, and Chinese [54]. However, regardless of the extension, a Tweet is
still very concise and straight to the point and is often too short to contain
any detailed information. This means that a Tweet itself might not give
any useful insights. However, all Tweets generated daily will collectively
provide valuable information about public opinions and current trends. As

42

4.3. THEORETICAL SOLUTION

the fixed message length prohibits detailed descriptions of the messages,
filtering on only one keyword will probably be too narrow, and a lot of
useful and essential Tweets will be discarded. To increase the vocabulary
and improve the analytics of a specific theme, related keywords that means
the same as the keyword inserted by the user needs to be found. One
example might be the keyword President, where other related keywords
are Trump and Obama.

4.2.2 Sentiment Analysis

The other task for this project is sentiment analysis. More precisely, the
task of classifying whether a tweet is positive or negative. However, the
focus of this project is not the implementation or execution of the sentiment
analysis. But it is used to show how Spark and its libraries can be utilized,
and also how it can be visualized in Elasticsearch and Kibana. The goal of
the project is to create a visualization that allows the user to understand
the data in an intuitive way. Thus by classifying the sentiment on every
incoming Tweet, the user will be able to interpret the overall feelings and
opinions about a topic.

4.3 Theoretical Solution

The problem that was going to be solved had its background in streaming
data and the use of visualization tools to gain insights into the incoming
data. In recent years, several attempts have been made to solve this prob-
lem. Two examples were mentioned in section 3.3, where Cloudberry is
perhaps the most comparable to what is trying to be developed in this
project. One thing, however, distinguishes Cloudberry from the chosen so-
lution as it retrieves all data from Twitter and then performs filtration after
it has been stored. In this project, there is a wish to avoid unnecessary
storage of irrelevant information, and thus the filtering should take place
earlier in the pipeline.

Following is a review of the work done in each of the three sprints conducted
in the development phase. Each section will provide an explanation of
decisions made and any challenge that has arisen.

43

4.3. THEORETICAL SOLUTION

4.3.1 First Sprint

The main focus of this iteration was to implement a pipeline with the chosen
technologies presented in section 2.6. After the pipeline was realized, a
classification model used for sentiment analysis was implemented.

Implementation of Pipeline

The first step of the sprint was to become familiar with existing technologies
to find possibilities and limitations with each of them. This was to a large
extent done during the specialization project. However, for this project,
the streaming ETL process mentioned in section 2.2.1 was going to be
taken into account, and thus let the Extraction part be separated from the
Transformation and Loading parts. By considering the ETL process, the
goal was to create a pipeline that could extract data from Twitter, make
appropriate transformations, before loading it to the final data storage
system. The pipeline should be fault-tolerant and executed in real-time.
The Transformation part of the system needed to be an analytics engine
for large-scale data processing that was able to handle streaming data and
support machine learning for the sentiment analysis task. Based on the
motivation that Spark is a unified engine that targets various processing
workloads, such as stream processing and machine learning, it was used as
the underlying technology responsible for the Transformation part. Even
if Spark Streaming is fully capable of receiving Twitter messages directly
from the Twitter Streaming API, it is mainly a stream processing engine
and should also be treated like that. To distribute the workload, and allow
the Spark engine to focus on the Transformation part, another technology
was going to be used to extract Tweets from the Twitter Streaming API.
Kafka provides publish-subscribe messaging and can be thought of as a
distributed, partitioned, replicated commit log service. One of the main
use cases of Kafka is to build real-time streaming data pipelines that reliably
get data between systems or applications. As Kafka provides integration
with Spark, it was seen as a natural choice for the task. An advantage with
Kafka is that it keeps the extracted data throughout the retention period.
All messages written to Kafka will be written to disk and replicated for
fault-tolerance. Consequently, this means that if the Spark application
would go down, the data would not be lost but stored in Kafka. Similarly
to Spark Streaming, Kafka is also able to retrieve Tweets from the Twitter
Streaming API. Hence, Kafka was chosen as the technology responsible for
the Extraction part. The rest of the pipeline was implemented as for the
initial project, where Tweets were sent to Elasticsearch for offline storage.
Elasticsearch allows the incoming data to be stored in a distributed manner

44

4.3. THEORETICAL SOLUTION

while at the same time visualize it in near real-time through Kibana. The
seamless integration between Elasticsearch and Kibana was the main reason
for using the Elastic stack in the proposed solution. Figure 4.1 and Figure
4.2 shows the evolvement of the pipeline.

Figure 4.1: Setup for initial project

Figure 4.2: Extended setup for current project

A challenge that arose during the implementation of the pipeline was pars-
ing the stream to appropriate format. The Twitter Streaming API returns
Tweets that are encoded using JavaScript Object Notation (JSON). JSON
is based on key-value pairs with named attributes and associated values.
These attributes and their state are used to describe objects. Two core
objects that are represented as JSON in Twitter are Tweets and Users.
Where each Tweet has an author, a message, a unique ID, a timestamp
of when it was posted and sometimes other metadata shared by the user.
Each User has a username, an ID, a number of followers, and often an
account biography [55]. An example of a Tweet in JSON format can be
found in Appendix B in Listing B.1. However, to take advantage of the
Twitter4j library and extract the information needed for the visualization,
the incoming JSON objects must be parsed to Twitter4j Status objects1.
After an extensive investigation of how Kafka process and converts an ob-
ject into a stream of bytes before transmitting it, the solution was to use a

1http://twitter4j.org/javadoc/twitter4j/Status.html

45

4.3. THEORETICAL SOLUTION

StringSerializer and send Tweets in raw JSON-format. Spark is then able
to utilize the Twitter4j library to parse the raw JSON string into a Twit-
ter4j Status object. Example of a Tweet that has been parsed to a Status
object can be seen in Listing B.2 in Appendix B.

Sentiment Analysis

The next part of the first sprint was focusing on implementing a machine
learning algorithm that could perform sentiment analysis. Even if the visu-
alization in Kibana could provide exciting findings just by showing standard
information about the received Tweets, there is a need to demonstrate how
the Machine Learning library in Spark can be utilized to provide valuable
information. By including sentiment analysis in the visualization, the re-
lation between positive and negative Tweets related to a specific topic will
be shown, and stakeholders can use it to get business insights about for ex-
ample customers and users of a product or service. To perform sentiment
analysis, a classification model was implemented in Spark. Spark’s Machine
Learning library MLlib supports both Bernoulli Naive Bayes and multino-
mial Naive Bayes, where the latter was used for the model. The advantage
of using Naive Bayes as classification algorithm is that the data only needs
one pass against the training set to classify it. Hence, considering this as
a proof of concept it was decided to be suitable for the task.

Figure 4.3 shows an overview of the Machine Learning mechanism to be
implemented. The first step is to create a model using Naive Bayes classi-
fier. Given a training dataset with annotated data, the Data Preparation

step is responsible for preparing the raw data for the Classifier. Dur-
ing the Data Preparation step, predefined features are extracted for each
record in the dataset. Each record is transformed into a vector of tokens,
where each token is an occurring term along with its frequency. As the
Tweets may contain frequently occurring words that might skew the sen-
timent, a list containing stop words is uploaded and broadcast. Removing
stop words will hopefully remove noise and make the model as accurate as
possible. After the preferred features are extracted, and all stop words in
the Tweets are removed, it is sent to the Classifier. The Classifier

takes the desired classification algorithm as a parameter and builds and
stores the model. In Figure 4.3, f is the extracted feature and c is the
sentiment classification - Positive, Negative or Neutral.

46

4.3. THEORETICAL SOLUTION

Figure 4.3: A high-level overview of the Machine Learning mechanism

4.3.2 Second Sprint

After the pipeline had been implemented and records were transferred
smoothly between the different parts of the system, the focus was on an-
swering RQ1 and RQ2. The sprint started by exploring related research
concerning filtering and classification of microblogs. Based on previous re-
sults, a method for filtering the incoming stream was implemented. How-
ever, as stated in both RQ1 and RQ2, each Tweet should be classified and
filtered based on queries determined by the user. Hence, related research
regarding continuous queries and various possibilities of generating user
input were examined. Finally, a solution that combined them both were
implemented.

Filter Function

As stated in section 3.4, research regarding classification of microblogs has
emerged with its increasing popularity. Especially the feature set used for
determining relevance has been a popular topic. As stated in RQ2, the def-
inition of relevance has to be considered for this specific use case, and thus
which feature set to use. For a system that is focusing on event detection,
a proper feature could be locations in terms of latitude-longitude pairs.

47

4.3. THEORETICAL SOLUTION

However, the use case for this specific system is that a user should be able
to filter the incoming stream based on interests. In this context, relevance
will, therefore, be defined as the textual similarity between a user’s inter-
est and the content of a Tweet. Hence, a keyword-based retrieval strategy
was chosen as feature set for the query. Since the chances are small that a
Tweet will contain exactly the word that the user has searched for, there is
a need to expand the filter and find other related words that can be used
to filter the incoming stream. However, the system should be user-friendly
and require as little as possible from the user, and thus the expanding of
the vocabulary should be done automatically. The CCR task mentioned
in section 3.4, performs an initial filtering step to identify whether a doc-
ument contains a mention of the target entity. The filtering was based on
strict string matching and used known name variants retrieved from DB-
pedia to expand the filter. As the approach was used for identifying entity
mentions in Wikipedia articles and had shown to provide high recall, it
would be interesting to implement a similar method for filtering on Tweets
which has a completely different structure regarding length and content. A
method for retrieving related words was, therefore, implemented. However,
instead of using DBpedia, another existing Knowledge Base was utilized,
more precisely the Google Knowledge Graph. Google provides a read-only
API called Knowledge Graph Search API2, which lets you find entities in
the Knowledge Graph by returning a ranked list of the most notable entities
that match certain criteria.

Before continuing with examining user-defined queries, the implemented
filter function was tested with static, predefined words and by monitoring
the output, it was found to be successful.

User-Defined Continuous Query

To answer RQ1, the concept of continuous queries and how it can be ex-
ecuted on streaming data had to be explored. As stated in the previous
chapter, a challenge when working with microblog data is that they often
require indexing of both real-time and historical data since users are mostly
asking about data that has already arrived at the system. This is indeed
a requirement for this project as well and has been solved by using Elas-
ticsearch. However, for the proposed solution we are also going to ask for
information before it has arrived at the system. A system that has tried
to implement the same idea is the BAD system presented in section 3.1.
The BAD system is designed to deliver data of interest for users while still
supporting analysis of historical information based on AsterixDB and its

2Google Knowledge Graph: https://developers.google.com/knowledge-graph/

48

https://developers.google.com/knowledge-graph/

4.3. THEORETICAL SOLUTION

streaming functionalities. By allowing the users to subscribe for themes of
interests, the system will collect data from various sources and provide it
for the user. The BAD system is comparable to the proposed solution for
this project, but instead of using AsterixDB, Spark and Spark Streaming is
utilized. Furthermore, this project will investigate how the same idea can
be solved by allowing users to submit a continuous query instead of using
subscriptions. The definition of a continuous query is that it is asked for
every incoming record in the system, and must be defined a priori. Hence,
it needs to be retrieved by Spark. Figure 4.4 shows how the vision behind
this solution fits into the overall active systems platform space.

Figure 4.4: The proposed solution in context of other systems

However, the query should not only be of a specific type, but it should also
be defined by the user. Therefore, functionality for generating user input
was examined. There are various possibilities for retrieving user input, and
options such as using a socket and implementing a form in HTML and PHP
were tested. As different options were reviewed, the need for storing the
input became evident. The same approach used for retrieving Tweets with
Kafka was tested and proved to be suitable for the task. Kafka provides a
Kafka Console Producer where the user can insert words and send it to a
defined topic. The Spark application is then able to create a new DStream
by subscribing to that topic. The same way Tweets are being stored, so
will the user-defined query be.

49

4.3. THEORETICAL SOLUTION

Filter Based on Query

The last step of the second sprint was to combine the user-defined query
with the implemented filter function. One specific challenge arose during
this step. As Spark is treating the user-defined query provided by Kafka
as a stream, it contains mutable objects. The implemented filter function,
however, can not filter on mutable objects as they are constantly changing.
To overcome this problem, some interim storage was needed. The user in-
put should be written to a distributed repository and different options such
as MemCached3, HBase4, and a regular database were examined. However,
due to the time constraints and limited resources, it was concluded to use
a regular file as proof of concept. Consequently, the words inserted by
the user will, together with the related words retrieved from the Google
Knowledge Graph Search API, be written to a separate file. The filter
function will then read from the file and check if the Tweets contains any
of the words. The function will create a new DStream by selecting only
the records on which the given function returns true.

Since the proposed solution may potentially lead to many words being
read from the file, it is essential that the function is tested. An experiment
should, therefore, be conducted to investigate how the execution time be-
haves when the number of words increases.

4.3.3 Third Sprint

The focus of the third and last sprint was to answer RQ3. In the context of
the project, relevance was defined as the textual similarity between a Tweet
and the query. Hence, the sprint started with an examination of known
statistical scoring functions that can be used to rank the incoming Tweets
based on their relevance to a query. Furthermore, a set of requirements
were formulated to answer the research question properly. Finally, various
possibilities for implementing a ranking function was investigated before
the final function was realized.

Requirements

To provide a basis for what the ranking function should achieve, a set of
requirements were formulated as followed:

3MemCached: https://memcached.org/
4HBase: https://hbase.apache.org/

50

https://memcached.org/
https://hbase.apache.org/

4.3. THEORETICAL SOLUTION

1. The function should return a ranked list based on both historical,
stored data and streaming, real-time data

2. Recent posted Tweets should be considered as more relevant than old
ones

3. The function should rank Tweets based on keywords determined by
the user

Choice of Technology

With the defined requirements in mind, an investigation of how the ranking
function could be implemented begun. The function should be implemented
somewhere in the proposed pipeline. To avoid unnecessary computations,
the ranking function needs to be applied after the Tweets have been fil-
tered in Spark, and thus Kafka was not appropriate for the task. The choice
whether to use Spark or Elasticsearch was determined based on their capa-
bilities of implementing known scoring functions and whether they fulfilled
the stated requirements.

MLlib has the possibilities of implementing various feature extraction algo-
rithms such as TF-IDF5, which makes Spark a potential candidate for the
task. As explained in section 2.5.2, TF-IDF uses a collection of documents
that make up a corpus, to assign scores to words in each document which
represents how important the word is. In this context, the corpus would
be the collection of all retrieved Tweets. However, as Spark is strictly an
in-memory processing engine, it does not persist data for use outside of the
current execution. Once a Tweet has been processed, it will be gone. To
use Spark for this task, there is a need to retain a vocabulary of words seen
in all Tweets which will function as the corpus for TF-IDF. The second
requirement can quite easily be met by adding a temporal aspect to the
ranking function. The third requirement is also achievable since Spark is
already retrieving user-defined keywords for the filter function. However,
the first requirement makes it more complicated. To provide a ranking list
based on both historical and real-time data, Spark must keep a list of the
top-k most relevant Tweets, where a naive approach would be to justify for
every incoming record, whether or not it should be added to the list.

Elasticsearch, on the other hand, is built on top of Lucene and is by that
able to take advantage of its full-text search capabilities. By utilizing the
practical scoring function provided by Lucene, Elasticsearch can implement
a ranking function based on known scoring functions that will be applied
on every incoming record. Each record will then be assigned a score based

5https://spark.apache.org/docs/2.2.0/mllib-feature-extraction.html

51

4.4. IMPLEMENTATION

on the defined query, and the score will continuously be updated as new
records arrive at the system. Consequently, the first and third requirements
can be considered as fulfilled. As Elasticsearch also has its ways of boosting
the relevance score, the second requirement can be achieved by applying a
decay function.

After both possibilities were considered, it was concluded to use Elastic-
search as the underlying technology for the ranking function.

4.4 Implementation

This section will provide an overview of the practical implementation. The
section begins with a description of the prerequisites needed. Furthermore,
the most central parts of the solution will be described based on the steps
of the ETL process.

4.4.1 Prerequisites

The project has been developed using IntelliJ IDEA, which is a Java inte-
grated development environment developed by JetBrains6 that also offers
support for Scala applications. The Spark program was implemented using
Spark version 2.2.1. Spark itself has been developed in Scala but provides
high-level APIs in Java, Scala, Python, and R. The process of choosing
which language to use, was depending on a few requirements as perfor-
mance, the complexity of the language, integration with existing libraries
and the best utilization of Spark’s core capabilities. Since Java is more
verbose compared to the other which unnecessarily increases the lines of
code, the choice was mainly between Scala and Python. Comparing Scala
and Python, the most significant difference is that Scala is up to 10 times
faster than Python. The syntax for Python might be easier to learn, but
since Spark is developed in Scala, knowing Scala will make the source code
more understandable if something does not function as expected. Another
reason for choosing Scala is that new features in Spark will be available in
Scala before other languages. Hence, the Spark program has been devel-
oped in Scala and more specifically Scala version 2.11 since later releases
are not compatible with Spark. Kafka version 1.0.1 was used, and the
Kafka Producer has been developed in Java version 1.8.0.

All parts of the system are available through Maven Central Repository7.

6IntelliJ: https://intellij-support.jetbrains.com/hc/en-us
7Maven Central Repository: https://mvnrepository.com

52

https://intellij-support.jetbrains.com/hc/en-us
https://mvnrepository.com

4.4. IMPLEMENTATION

To write a Spark Streaming program, one will have to add the proper
dependencies to an SBT or Maven project, where the former has been used
for the Spark application and the latter for the Kafka Producer. To ingest
data from the Twitter source, one must also add the corresponding artifact
to the dependencies. The Spark application and the Kafka Producer is
available at Github, and links to them can be found in Appendix C.

Elasticsearch version 6.2.4 and corresponding Kibana version 6.2.4 has been
used and added to the SBT project in the Spark application. Before any
data could be stored in Elasticsearch, the nodes and cluster had to be con-
figured. The system is implemented to run on one node with an index
called visualization. As the implementation only will run on one ma-
chine, there is no point for replication, and thus the number of replicas is
set to 0.

4.4.2 Extraction

The Twitter Streaming API

The Twitter data are delivered through an open, streaming API connection.
A single connection is opened between the application and the API. The
link allows the user to receive the data through repeated requests by the
client application, rather than as batches as might be expected from a
REST API [56]. Instead, new results will be sent through the link whenever
there are new matches, which leads to a low-latency delivery mechanism
that can support high throughput. Figure 4.5 shows the overall interaction
between the client application and the Twitter Streaming API.

53

4.4. IMPLEMENTATION

Figure 4.5: Twitter Streaming API [56]

To retrieve data from the Twitter API, one must first create an application
on the Twitter API website8. The creation is necessary to get the keys
needed for accessing the API. For this project, the twitter4j library has been
used. Twitter4j is an open-source, unofficial Java library, that provides a
Java-based module that can easily access the Twitter Streaming API.

Sending Tweets to a Topic in Kafka

Some prerequisites must be in place before Tweets can be sent to Kafka.
By referring to Listing 4.1, the most important parts will be explained.
Line 1-11 sets the properties for the Kafka producer which are then being
initialized on Line 13. Line 15-21 initializes a new ConfigurationBuilder
which sets the authentication keys retrieved from the Twitter API web-
site. The ConfigurationBuilder are then used on Line 23-24 to create a
TwitterStream. Line 26-31 creates a new StatusListener which will listen
on new Status updates. For each new Status, the TwitterObjectFactory is
used to parse it to the right format, before the Kafka producer sends it to

8Twitter: https://apps.twitter.com/

54

https://apps.twitter.com/

4.4. IMPLEMENTATION

the given topic. Line 34 starts the stream by calling the sample-function.
The argument ”en” means that the stream is filtered on Tweets written in
English.

Listing 4.1: Producer of Tweets to topic in Kafka

1 Properties props = new Properties();

2 props.put("bootstrap.servers", "localhost:9092");

3 props.put("acks", "all");

4 props.put("retries", 0);

5 props.put("batch.size", 16384);

6 props.put("linger.ms", 1);

7 props.put("buffer.memory", 33554432);

8 props.put("key.serializer",

9 "org.apache.kafka.common.serialization.StringSerializer");

10 props.put("value.serializer",

11 "org.apache.kafka.common.serialization.StringSerializer");

12
13 Producer<String, String> producer = new KafkaProducer<>(props);

14
15 ConfigurationBuilder cb = new ConfigurationBuilder();

16 cb.setDebugEnabled(true)

17 .setOAuthConsumerKey(consumerKey)

18 .setOAuthConsumerSecret(consumerSecret)

19 .setOAuthAccessToken(accessToken)

20 .setOAuthAccessTokenSecret(accessTokenSecret)

21 .setJSONStoreEnabled(true)

22
23 TwitterStreamFactory tf = new TwitterStreamFactory(cb.build());

24 TwitterStream twitterStream = tf.getInstance();

25
26 StatusListener listener = new StatusListener() {

27 public void onStatus(Status status) {

28 String rawJson = TwitterObjectFactory.getRawJSON(status);

29 producer.send(new ProducerRecord<String, String>(topicName, rawJson));

30 }

31 };

32
33 twitterStream.addListener(listener);

34 twitterStream.sample("en");

Subscribing to a Topic in Kafka

After Tweets have been sent to the right topic by Kafka, Spark Streaming
can subscribe to that topic and receive the stream. As mentioned ear-
lier, Spark Streaming discretizes the incoming stream into tiny, sub-second
micro-batches called DStreams. Spark Streaming’s Receivers accept data
from the Kafka Producer and buffer it in the memory of Spark’s workers’
nodes. The Spark engine is then able to run short tasks to process the
DStreams and later output the results to other systems. The Spark tasks
are assigned dynamically to the workers based on the locality of the data
and available resources to achieve better load balancing and faster fault
recovery [57].

To receive streams with Spark Streaming, a new StreamingContext must

55

4.4. IMPLEMENTATION

be created as shown in Listing 4.2, where tweets will retrieve the input
DStream.

Listing 4.2: DStream subscribing to the topic ”twitterdata”

1 val kafkaParams = Map[String, Object](

2 "bootstrap.servers" -> "localhost:9092",

3 "key.deserializer" -> classOf[StringDeserializer],

4 "value.deserializer" -> classOf[StringDeserializer],

5 "group.id" -> "my-group"

6)

7 val ssc = new StreamingContext(sparkContext, Seconds(1))

8 val tweets = KafkaUtils.createDirectStream[String, String](ssc,

9 PreferConsistent,

10 Subscribe[String, String](topicName,

11 kafkaParams))

12 .map(record => record.value)

To create a DStream with Kafka one has to utilize the KafkaUtils library
which allows us to create an input stream that pulls messages from Kafka
brokers. The function takes three arguments where ssc is the Streaming-
Context, PreferConsistent is the location strategy which will consistently
distribute partitions across all executors, Subscribe subscribes to the right
topic and applies the appropriate settings. In this case, the topicName is
set to ”twitterdata”. Lastly, the stream is represented in key-value pairs
and a map function is performed to retrieve only the values.

Figure 4.6 shows how the incoming data stream is being divided into small
batches which will form the DStream, stored in tweets. The DStream will
be stored in memory as RDDs.

Figure 4.6: Creation of DStream

4.4.3 Transformation

Filter Function

As explained in the previous section, the filter function is based on a con-
tinuous query defined by the user. To receive the input, a new topic called

56

4.4. IMPLEMENTATION

“keyworddata” was set up. By using the built-in Kafka Console Producer,
the user can insert keywords and send it to the topic. The Spark applica-
tion is then able to use the initialized StreamingContext to set up a new
DStream that are listening to the topic. Listing 4.3 subscribes to a new
topic, where topicName is set to ”keyworddata”.

Listing 4.3: DStream subscribing to the topic ”keyworddata”

1 val filterLines = KafkaUtils.createDirectStream[String, String](ssc,

2 PreferConsistent,

3 Subscribe[String, String](topicName,

4 kafkaParams))

5 .map(record => record.value)

When the keywords have been retrieved in Spark, the next step is to utilize
the Knowledge Graph Search API to retrieve related words that can expand
the query. The following example will search for the word ”Trump” and
return the top 10 highest ranked results shown in Listing 4.4:

https://kgsearch.googleapis.com/v1/entities:search?query=Trump&

key=API_KEY&limit=10&indent=True

Listing 4.4: Returned results from the Knowledge Graph Search API

1 Donald Trump

2 Presidency of Donald Trump

3 Protests against Donald Trump

4 Donald Trump 2017 presidential inauguration

5 Presidential transition of Donald Trump

6 US Presidential Election 2016

7 The Trump Organization

8 Trump International Hotel Las Vegas

9 Melania Trump

10 Trump International Hotel and Tower

The keywords and its associated words will be written to a separate file.
The filter function will then read from the file and check if the Tweets con-
tains any of the words. The function will create a new DStream containing
the Tweets for which the function returns true. An example of the function
can be seen in Listing 4.5. Throughout this report, the filter function will
be referred to as the filter-function.

Listing 4.5: Example of the filter-function

1 val filteredTweets = tweets.filter(status => readWords().exists(status.contains(_)))

57

https://kgsearch.googleapis.com/v1/entities:search?query=Trump&key=API_KEY&limit=10&indent=True
https://kgsearch.googleapis.com/v1/entities:search?query=Trump&key=API_KEY&limit=10&indent=True

4.4. IMPLEMENTATION

Sentiment Analysis

The goal of the sentiment analysis is to classify whether a Tweet is Positive,
Negative or Neutral. The model created with Naive Bayes is applied in real-
time to the retrieved Tweets to determine the sentiment of each of them.

Listing 4.6 shows how the method for generating a classification model us-
ing the multinomial Naive Bayes algorithm has been implemented. Line 14
illustrates how MLlib in Spark has been utilized to train the model based on
the training set. Where labeledRDD is the training data with the extracted
features “polarity” and “status”, lambda is the additive smoothing param-
eter and modelType defines whether the method should us multinomial or
Bernoulli Naive Bayes.

Listing 4.6: Creation of Naive Bayes Classifier”

1 def createAndSaveNBModel(sc: SparkContext,

2 stopWordsList: Broadcast[List[String]]): Unit = {

3 val tweetsDF: DataFrame = loadTrainingFile(sc,

4 PropertiesLoader.trainingSetFilePath)

5 val labeledRDD = tweetsDF.select("polarity", "status").rdd.map {

6 case Row(polarity: Int, tweet: String) =>

7 val tweetInWords: Seq[String] = getStrippedTweetText(tweet,

8 stopWordsList.value)

9 LabeledPoint(polarity, transformFeatures(tweetInWords))

10 }

11
12 labeledRDD.cache()

13
14 val naiveBayesModel: NaiveBayesModel = NaiveBayes.train(labeledRDD,

15 lambda = 1.0,

16 modelType = "multinomial")

17 naiveBayesModel.save(sc, PropertiesLoader.naiveBayesModelPath)

18 }

Once the model has been trained with the training dataset, it can be used
to classify sentiment for the incoming data stream. Each record is processed
in the same way as the training dataset was, where the Data Preparation

step extracts the features and removes words that are occurring in the stop-
words list, before passing it forward to the Classifier. The Classifier

uses the trained model to classify the sentiment for each Tweet and returns
the result to the Spark system. Line 5 in Listing 4.7 shows how MLlib is
used for prediction. The predictions are later translated into “POSITIVE”,
“NEGATIVE”, or “NEUTRAL” to visualize it more intuitively in Kibana.
It is also worth noting that the model is only working on Tweets written
in English and all non-English Tweets will be classified as neutral.

58

4.4. IMPLEMENTATION

Listing 4.7: Computation of Sentiment

1 def computeSentiment(text: String,

2 stopWordsList: Broadcast[List[String]],

3 model: NaiveBayesModel): Int = {

4 val tweetInWords: Seq[String] = getStrippedTweetText(text, stopWordsList.value)

5 val polarity = model.predict(transformFeatures(tweetInWords))

6 normalizeMLlibSentiment(polarity)

7 }

8
9 def normalizeMLlibSentiment(sentiment: Double) = {

10 sentiment match {

11 case x if x == 0.0 => "NEGATIVE"

12 case x if x == 2.0 => "NEUTRAL"

13 case x if x == 4.0 => "POSITIVE"

14 case _ => "NEUTRAL" //neutral if model can't figure out sentiment

15 }

16 }

4.4.4 Load

Extracting Appropriate Fields

A visualization should allow the user to quickly and intuitively understand
the content, context, and the organization of the incoming data stream.
As can be seen in Listing B.1 in Appendix B, every incoming Tweet con-
tains various fields where some of them might not be of interest for our
visualization. To extract the fields needed, a HashMap is used as shown in
Listing 4.8. As the Tweets have been parsed to Twitter4j Status objects,
it is simple to extract the appropriate fields.

59

4.4. IMPLEMENTATION

Listing 4.8: Mapping of data types

1 val tweetMap = tweets.map(status => {

2 val status = TwitterObjectFactory.createStatus(json)

3 val hashtags = status.getHashtagEntities().map(_.getText())

4 val formatter = new SimpleDateFormat("yyyy-MM-dd'T'HH:mm:ss")
5 val sentiment = predictSentiment(status)

6
7 HashMap(

8 "userID" -> status.getUser.getId(),

9 "userScreenName" -> status.getUser.getScreenName(),

10 "userName" -> status.getUser.getName(),

11 "userDescription" -> status.getUser.getDescription(),

12 "message" -> status.getText(),

13 "messageLength" -> status.getText.length(),

14 "hashtags" -> hashtags.mkString(" "),

15 "createdAt" -> formatter.format(status.getCreatedAt.getTime()),

16 "friendsCount" -> status.getUser.getFriendsCount(),

17 "followersCount" -> status.getUser.getFollowersCount(),

18 "coordinates" -> Option(status.getGeoLocation).map(geo =>

19 {s"${geo.getLatitude},${geo.getLongitude}"}),
20 "placeCountry" -> Option(status.getPlace).map(place =>

21 {s"${place.getCountry}"}),
22 "userLanguage" -> status.getUser.getLang,

23 "statusLanguage" -> status.getLang,

24 "sentiment" -> sentiment,

25 "deviceType" -> status.getSource,

26 "retweetCount" -> status.getRetweetCount

27)

28 })

29 tweetMap.foreachRDD{ tweet => EsSpark.saveToEs(tweet, "visualization/tweets")

30 }

Elasticsearch allows for automatic detection of types, meaning that there is
no need for explicitly defining the types in the application. When the Spark
application is executed, the index, type and data fields will automatically
be created. This feature is called Dynamic Mapping [58]. By referring to
Listing 4.8, the userID field will automatically be mapped as type number

and createdAt as type date. However, some mappings can be hard for
Elasticsearch to detect. As Twitter is a worldwide used application, it is
of great interest to see where a Tweet was tweeted by extracting a user’s
geo-location. Elasticsearch has its own data type for geo-location called
geo-point9. A field of this type will accept latitude-longitude pairs, which
can be extracted from a Tweet shown as coordinates in Listing 4.8. This
field would dynamically be mapped as a string and not a geo-point and
hence the mapping has to be done manually in Elasticsearch. Fortunately,
Elasticsearch provides a full Query Domain-Specific Language based on
JSON to define queries, and the manual mapping can be seen in Listing
4.9. However, it is important to point out that the manual mapping has
to be done before the Tweets are being stored in Elasticsearch as types
cannot be changed in retrospect.

9Geo-point: https://www.elastic.co/guide/en/elasticsearch/reference/

current/geo-point.html

60

https://www.elastic.co/guide/en/elasticsearch/reference/current/geo-point.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/geo-point.html

4.4. IMPLEMENTATION

Listing 4.9: Mapping of type geo-point

1 PUT visualization

2 {

3 "mappings": {

4 "tweets": {

5 "properties": {

6 "coordinates": {

7 "type": "geo_point"

8 }

9 }

10 }

11 }

12 }

4.4.5 Ranking Function

Listing 4.10 contains the implemented ranking function. It is based on
Elasticsearch as the underlying technology and is implemented by using
its Query DSL in JSON. The following example contains the query needed
for listing the most relevant Tweets based on the terms ”Trump”, ”Amer-
ica”, and ”President”. The query is built on two components, aggs and
query. The first component, aggs, is an abbreviation for aggregation. The
aggregation framework in Elasticsearch allows the user to aggregate data
based on a search query. There are different types of aggregations, but
for this specific case, the Bucketing aggregation was used. The Bucket-
ing aggregation builds buckets, where each bucket is associated with a key
and a document criterion. The key in this case will be the message-field
in each Tweet and the document criterion will be the max score. The
next component is query which is responsible for both the query and any
defined function score. For this case the function score is defined as
a Gaussian function with four parameters. The parameters are set to give
a higher score to Tweets created during the last 24 hours and removing
any penalties for all Tweets created within the last hour. The function will
be performed at the createdAt-field. For a Tweet should be considered a
match, at least one of the keywords needs to be found in the message-field.

The ranking function will be applied to all incoming Tweets at indexing
time and will continuously be updated according to the decay function.

61

4.4. IMPLEMENTATION

Listing 4.10: Query for finding most relevant Tweets based on the terms
Trump, America, and President

1 {

2 "aggs": {

3 "top_k": {

4 "aggs": {

5 "max_score": {

6 "max": {

7 "script": "_score"

8 }

9 }

10 },

11 "terms": {

12 "field": "message.keyword",

13 "order": {

14 "max_score": "desc"

15 }

16 }

17 }

18 },

19 "query": {

20 "function_score": {

21 "functions": [

22 {

23 "gauss": {

24 "createdAt": {

25 "origin": "now",

26 "scale": "24h",

27 "offset": "1h",

28 "decay": 0.5

29 }

30 }

31 }

32],

33 "query": {

34 "bool": {

35 "minimum_should_match": 1,

36 "should": [

37 {

38 "match_phrase": {

39 "message": "America"

40 }

41 },

42 {

43 "match_phrase": {

44 "message": "President"

45 }

46 },

47 {

48 "match_phrase": {

49 "message": "Trump"

50 }

51 }

52]

53 }

54 }

55 }

56 }

57 }

62

4.4. IMPLEMENTATION

4.4.6 System Overview

Figure 4.7 provides an overview of the implemented system and the multiple
steps presented in this chapter. The system starts by receiving the Tweets
and user input. Furthermore, the Tweets are being processed and filtered
in real-time, and the sentiment is predicted. Finally, the Tweets are made
available by storing and visualizing them.

Figure 4.7: An overview of the implemented system

63

64

Chapter 5

Experiments and Results

This chapter will present the planning and setup used to perform the ex-
periments. It will present the goal, along with the dataset and metrics
used. A total of three experiments in addition to a final execution will be
explained before presenting the results.

5.1 Goals with Experiments

The overall project goal presented in section 1.3 is to implement a solution
that can visualize relevant information from Twitter based on user queries.
It is essential that the implemented system has high performance and can
handle a significant amount of data to facilitate near real-time decision
making. The experiments should, therefore, be designed to measure how
the system performs under increasing load. The system should also allow
the user to insert queries based on interests. Hence, another part of the
experiment should measure how performance is affected by increasing num-
ber of terms to filter the stream on. Lastly, it is of interest to retrieve a list
of the most relevant Tweets based on the query. An investigation of how
the ranking function described in section 4.4.5 performs will, therefore, be
conducted.

As mentioned in section 4.2, the tasks for this project is to filter the in-
coming stream on relevant keywords and to classify the sentiment of each
Tweet. These tasks have been implemented in the system and will be part
of the experiments. However, the accuracy of neither the sentiment analy-
sis nor the filtering is not a primary focus of this experiment. Hence, the
output from both tasks will be used as a proof of concept, showing how
streaming data can be transformed and analyzed and how the results can
be used to give insights to the user.

65

5.2. EVALUATION METHODOLOGY

5.2 Evaluation Methodology

5.2.1 Dataset

Training data: The classification model was trained with data retrieved
from Sentiment1401. The dataset was a result of a research project at Stan-
ford University and contains 1.600.000 Tweets together with its annotated
sentiment, where there are equally many Tweets considered as positive and
negative. The persons behind the project argue that it would be compli-
cated to manually collect enough data to train a classification model for
Tweets due to its wide range of topics. Instead, they used distant su-
pervision which automatically annotates a large amount of data, without
any human intervention, using emoticons as noisy labels. Meaning that
a Tweet would be considered as positive if it contains a positive emoti-
con or negative if it contains a negative emoticon [59]. The training data
from Sentiment140 contains the columns ”polarity”, ”id”, ”date”, ”query”,
”user” and ”status”. Since the goal is to get the sentiment of the tweets,
we are only interested in ”polarity” and ”status”. These columns will be
retained while discarding the rest.

Test data: As stated in section 5.1, the experiment should measure how
the system handles increasing load of incoming data. A dataset with a
size of 36GB and approximately 6.500.000 Tweets were collected using the
Twitter Streaming API from April 15, 2018, to April 23, 2018. This dataset
was used to control the input rate during the first two experiments. Fur-
thermore, there is also a need to show how the sentiment of all incom-
ing Tweets can be classified and visualized in Kibana with real-time data.
Therefore, Tweets was received as explained in section 4.4.2 and nearly
835.000 Tweets were filtered by Spark and retrieved by Elasticsearch. The
execution started May 16, 2018, and ended May 22, 2018. This dataset
was also used for the third experiment.

Data Generator: To control the throughput of Tweets per second and
simulate a Twitter stream, a Data Generator was used. The Data Generator
is developed in Node.js2 and allows the user to read the collected test data
and output the Tweets to a socket in a configurable rate of Tweets per sec-
ond. The Data Generator was initially implemented as part of an earlier
Master Thesis made by Thor Martin Abrahamsen [60], and has been used

1Sentiment140: http://help.sentiment140.com/home
2https://nodejs.org/en/

66

http://help.sentiment140.com/home
https://nodejs.org/en/

5.3. EXPERIMENTS

with permission and some modifications. Link to the Data Generator can
be found in Appendix C.

5.2.2 Evaluation Metrics

The number of processed Tweets per second and the processing time will
be measured to evaluate the performance of the system. The experiment
will be repeated with increasing load until the system is too congested to
successfully process and store the incoming Tweets in a stable manner.
Furthermore, the performance of the filtering is of interest as the number
of search words is increasing. The execution time of the filter-function
will, therefore, be measured. The last experiment will investigate how the
proposed ranking function performs. The evaluation of the function will
be based on the three requirements presented in section 4.3.3.

For the two initial experiments, a Statistics component has been imple-
mented. The component will report the rate at which records are processed
as well as execution time.

5.3 Experiments

The experiments will be divided into different parts to evaluate various
aspects of the system. During the first part of the experiments, a load
performance test will be executed to investigate how the implemented sys-
tem handles increasing velocity of the incoming data. The next part will
investigate how the system handles increasing number of terms to filter the
stream on. The last experiment will explore how the ranking algorithm per-
forms and thus rank the incoming Tweets based on their relevance. Lastly,
the results will be used to perform the final execution of the system where
the visualization will be created.

5.3.1 Test Setup

All experiments were executed in a small-scale environment running in local
mode. The experiments were performed on a Dell OptiPlex 9020 with the
following hardware:

• Intel® Core™ i7-4770 CPU @ 3.40GHz x 8

• 16 GB DDR3 1600 MHz RAM

67

5.3. EXPERIMENTS

5.3.2 Experiment 1: Test Load Performance

In the initial experiments, the velocity of the incoming data is of interest to
see how the implemented system performs under increasing pressure. The
purpose of the investigation is to examine how many Tweets/second the
system can handle while still having stable performance.

To vary the incoming data rates, the Data Generator was used and con-
nected to the Kafka Producer instead of the Twitter Streaming API. For a
duration of ten minutes, a given rate of Tweets per second was ingested by
the Data Generator. The various ingestion rates were set to 1000, 5000,
10000, 15000, and 20000 Tweets per second. Both the input rate from the
Kafka Producer and the processing time after classifying and transforming
the Tweets were reported to the Statistics component, to discover po-
tential bottlenecks. The experiment was tested with a batch interval of 1
second. However, before anything was reported, each test started with a
five minutes warm-up round.

An overview of the communication timeline can be seen in Figure 5.1.

Figure 5.1: Communication timeline for testing load performance

68

5.3. EXPERIMENTS

5.3.3 Experiment 2: Increase Number of Keywords

As explained in the last chapter, the incoming Twitter stream will be fil-
tered on a list of words. For each word the user is inserting, nine related
words will be retrieved and written to a separate file in addition to the
queried word. For every incoming micro-batch, Spark will read from the
file and filter out those Tweets that contain any of the words in the file.
To find out how the system performs with respect to the size of the list,
an experiment was designed to measure the execution time of the filter-
function as new words are inserted into the list.

To measure the execution time of the filter-function, a method called
time was created as can be seen in Listing 5.1. The method is called
as shown in Listing 5.2 and sends the execution time to the Statistics

component before returning the result from the filter-function. Figure
5.2 shows the communication timeline for the conducted experiment. As
can be seen in the Figure, the Data Generator is sending Tweets directly
to Spark without using the Kafka Producer. The reason for that is simply
that the only function of interest for this test is the filter-function. The
Kafka Producer is saving all data written to a topic during the retention
period, which will increase the pressure of the computer’s resources. Hence,
by not using the Kafka Producer, there will be less shared resources.

Listing 5.1: Method for measuring execution time

1 def time[R](block: => R): R = {

2 val t0 = System.nanoTime()

3 val result = block // call-by-name

4 val t1 = System.nanoTime()

5 val time = (t1 - t0) / 1000000.0

6 println("Elapsed time: " + time + " ms")

7 classification.setTime(time)

8 result

9 }

Listing 5.2: Method call for measuring execution time on filter-function

1 val filteredTweets = tweets.filter(status =>

2 time { readFromFile().exists(status.contains(_)) })

69

5.3. EXPERIMENTS

Figure 5.2: Communication timeline for measuring execution time of the
filter-function

The test was executed eight times with different keywords: Zlatan, Sweden,
Basketball, Netflix, America, Obama, and Trump. The words were chosen
based on their various probabilities of generating matches. Where some
words were expected to have few matches, and some were expected to have
many matches. Each test started with a five minutes long warm-up round
where no keywords were inserted. Then for every five minutes, the same
chosen keyword was inserted, and the list of keywords was increased by ten
words. The reason for inserting the same keyword for every round and thus
increasing the list with the same ten words, was mainly due to keeping the
number of matches as constant as possible. The goal of the experiment is
to see how the execution time behaves when the size of the list increases.
Unless any of the first ten words gives a match, neither will the same words
do when they are repeated. Consequently, the function will read through
the entire list. By executing each round for five minutes and calculate the
average execution time, the result will compensate for any matches in the
Twitter stream and reveal how the function behaves.

Lastly, another test was executed with the same time constraints. However,
instead of using only one keyword, different keywords were inserted every
five minutes. A total of 20 European countries were used as keywords. The
list of words can be found in Listing B.3 in Appendix B.

A total of 6.300.000 Tweets was generated for each test by the Data Generator.

70

5.3. EXPERIMENTS

The average execution time, the size of the list and number of matches was
reported.

5.3.4 Experiment 3: Rank Tweets based on Rele-
vance

The filtering function in Spark can primarily be seen as a filter for removing
spam and irrelevant information, in order to not store unnecessary data.
However, there is also a need for finding the most relevant information. The
goal of the proposed ranking function in section 4.4.5 was to create a list of
the most relevant Tweets based on the user’s interests which could be part
of the final visualization. An experiment was conducted to test the result
of the ranking function. The experiment applied the ranking function on
every incoming Tweet in Elasticsearch, and it was evaluated both in regards
to calculation of the relevance score and the resulting visualization.

Figure 5.3 shows an overview of the testing environment for the experiment.

Figure 5.3: Testing environment for ranking Tweets based on relevance

71

5.3. EXPERIMENTS

5.3.5 Final Execution: Visualize Stream

To show how the implemented system explained in Chapter 4 works, a final
execution was conducted. The execution started with a five minute warm-
up round to allow the Kafka Producer and the Spark application to be
started properly. After five minutes, three chosen keywords was inserted:
Trump, America and President. The words were chosen mainly because
of their high probability of generating matches.

It should be emphasized that during this execution, the Kafka Producer
is retrieving Tweets from the Twitter Streaming API and not the Data

Generator. On an average day, about 6000 Tweets are posted on Twitter
per second. The Twitter Streaming API allows users to access a small por-
tion (<=1%) of those. Furthermore, the stream received from the Twitter
Streaming API has been filtered on Tweets written in English, which means
that an even smaller portion of all Tweets will be retrieved. Consequently,
the rate at which the system will be retrieving Tweets is a lot less com-
pared to the first experiment. However, the goal of the final execution is to
test the whole implemented pipeline. Which means that all parts described
in Chapter 4 should be part of the execution, including retrieving Tweets
from the Twitter Streaming API that has been generated in real-time.

An overview of the setup for the final execution can be seen in Figure 5.4.

Figure 5.4: Setup for final execution

72

5.4. RESULTS

5.4 Results

This section presents the result of the described experiments.

5.4.1 Experiment 1: Test Load Performance

The following section will present each of the five tests. The input rate and
processing time will be presented, along with some associated metrics.

Table 5.1: Metrics for 1000 Tweets/second

Average Input Rate: 1000 Tweets/second
Total Input Size: 600 000 Tweets
Average Processing Time: 201 ms

Figure 5.5: Classification of 1000 Tweets/second

Figure 5.6: Processing time for classifying 1000 Tweets/second

73

5.4. RESULTS

Table 5.2: Metrics for 5000 Tweets/second

Average Input Rate: 4995 Tweets/second
Total Input Size: 3 000 000 Tweets
Average Processing Time: 207 ms

Figure 5.7: Classification of 5000 Tweets/second

Figure 5.8: Processing time for classifying 5000 Tweets/second

74

5.4. RESULTS

Table 5.3: Metrics for 10000 Tweets/second

Average Input Rate: 9998 Tweets/second
Total Input Size: 6 000 000 Tweets
Average Processing Time: 226 ms

Figure 5.9: Classification of 10000 Tweets/second

Figure 5.10: Processing time for classifying 10000 Tweets/second

75

5.4. RESULTS

Table 5.4: Metrics for 15000 Tweets/second

Average Input Rate: 14479 Tweets/second
Total Input Size: 9 000 000 Tweets
Average Processing Time: 231 ms

Figure 5.11: Classification of 15000 Tweets/second

Figure 5.12: Processing time for classifying 15000 Tweets/second

76

5.4. RESULTS

Table 5.5: Metrics for 20000 Tweets/second

Average Input Rate: 14617 Tweets/second
Total Input Size: 12 000 000 Tweets
Average Processing Time: 240 ms

Figure 5.13: Classification of 20000 Tweets/second

Figure 5.14: Processing time for classifying 20000 Tweets/second

77

5.4. RESULTS

5.4.2 Experiment 2: Increase Number of Keywords

Each of the tested keywords will be presented with regards to the execution
time when the number of words is increasing. The number of matches is
also presented along with the percentage of total matches.

Table 5.6: Metrics for keyword Zlatan

Number of matches: 589
Percentage of total: 0,000093%

Figure 5.15: Keyword: Zlatan

78

5.4. RESULTS

Table 5.7: Metrics for keyword Sweden

Number of matches: 14918
Percentage of total: 0,0024%

Figure 5.16: Keyword: Sweden

Table 5.8: Metrics for keyword Basketball

Number of matches: 14207
Percentage of total: 0,0023%

Figure 5.17: Keyword: Basketball

79

5.4. RESULTS

Table 5.9: Metrics for keyword Obama

Number of matches: 32513
Percentage of total: 0,0052%

Figure 5.18: Keyword: Obama

Table 5.10: Metrics for keyword Trump

Number of matches: 264263
Percentage of total: 0,042%

Figure 5.19: Keyword: Trump

80

5.4. RESULTS

Table 5.11: Metrics for keyword Netflix

Number of matches: 338164
Percentage of total: 0,054%

Figure 5.20: Keyword: Netflix

Table 5.12: Metrics for keyword America

Number of matches: 541177
Percentage of total: 0,086%

Figure 5.21: Keyword: America

81

5.4. RESULTS

Table 5.13: Metrics for keywords European countries

Number of matches: 284270
Percentage of total: 0,045%

Figure 5.22: Keywords: European countries

Figure 5.23: Comparison of all keywords

82

5.4. RESULTS

5.4.3 Experiment 3: Rank Tweets based on Rele-
vance

The query defined in Listing 4.10, will return the most relevant Tweets
based on the terms Trump, America, and President by taking into account
both TF-IDF and a decay function. An example of ten Tweets that have
been ranked as the most relevant at a given time is shown in Listing 5.3.

Listing 5.3: Top-k results from the ranking function

1 {

2 "top_k": {

3 "doc_count_error_upper_bound": -1,

4 "sum_other_doc_count": 111475,

5 "buckets": [

6 {

7 "key": "RT @Harry69250942: Make America great again I trust my

8 president Donald trump https://t.co/jBQwPsAaYH",

9 "doc_count": 1,

10 "max_score": {

11 "value": 9.097686767578125

12 }

13 },

14 {

15 "key": "And lastly, STFU about this Trump shit. Trump is President cuz

16 Trump is the personification of what America really...

17 https://t.co/L6IlW2BGBh",

18 "doc_count": 1,

19 "max_score": {

20 "value": 9.008153915405273

21 }

22 },

23 {

24 "key": "@MAGAKrissy @AMErikaNGIRLBOT @POTUS Under President Trump,

25 America has been re-born. Its called the "Birth of Trump". ",

26 "doc_count": 1,

27 "max_score": {

28 "value": 9.002861022949219

29 }

30 },

31 {

32 "key": "RT @PastorDScott: I've never heard a President ask God to bless

33 America as much as President Trump does.",

34 "doc_count": 4,

35 "max_score": {

36 "value": 8.791154861450195

37 }

38 },

39 {

40 "key": "RT @ACTBrigitte: We have reached a point in America where the

41 Democrats would rather defend MS-13 than President Trump.",

42 "doc_count": 3,

43 "max_score": {

44 "value": 7.863028526306152

45 }

46 },

47 {

48 "key": "@RealEagleWings1 @DonnaWR8 Another win for President Trump

49 and for the women of America! Thank you President Trump...

50 https://t.co/lR3HMMGWBq",

51 "doc_count": 1,

83

5.4. RESULTS

52 "max_score": {

53 "value": 7.844945907592773

54 }

55 },

56 {

57 "key": "indictments for TREASON AGAINST AMERICA AND PRESIDENT

58 TRUMP OPEN UP GITMO FOR OBAMA HILLARY MUELLER AND COMEY

59 https://t.co/rDGZmGA6jm",

60 "doc_count": 1,

61 "max_score": {

62 "value": 7.7633562088012695

63 }

64 },

65 {

66 "key": "President Trump promised the Iranian people that

67 America would stand

68 with you when the time was appropriate. https://t.co/MTyfPoLRTZ",

69 "doc_count": 1,

70 "max_score": {

71 "value": 7.6242146492004395

72 }

73 },

74 {

75 "key": "@WeWantTrump2020 President Trump 2020",

76 "doc_count": 1,

77 "max_score": {

78 "value": 7.538751602172852

79 }

80 },

81 {

82 "key": "@realDonaldTrump Thank you, President Trump!",

83 "doc_count": 1,

84 "max_score": {

85 "value": 7.2856059074401855

86 }

87 }

88]

89 }

90 }

91 }

92 }

Listing B.4 in Appendix B explains how the relevance score has been
calculated for a given Tweet. The score is the sum of the TF-IDF for
every term in the query, where the term frequency has been normalized.
Lastly, the score is multiplied by the decay function which is shown at
the end of the listing.

To fulfill the stated research goal, there is also a need to visualize the re-
turned list of ranked items. The same Tweets shown in Listing 5.3 has been
visualized in Figure 5.24. However, there is one difference. Listing 5.3 has
aggregated the Tweets into buckets based on the key. Which means that
retweeted messages go into the same bucket. For the visualization in Fig-
ure 5.24 no aggregation is done and the Tweets with the highest score is
shown. Hence, Tweet number four and Tweet number ten are two retweeted
messages with the same content. For readability, the visualization can also
be seen in Table 5.14.

84

5.4. RESULTS

Figure 5.24: Ranked list of most relevant Tweets

85

5.4. RESULTS

Table 5.14: Ranked list of most relevant Tweets

Time Message Sentiment
May 22nd 2018,
04:53:34.000

RT @Harry69250942: Make America great
again I trust my president Donald trump
https://t.co/jBQwPsAaYH

POSITIVE

May 22nd 2018,
04:59:43.000

And lastly, STFU about this Trump shit.
Trump is President cuz Trump is the
personification of what America really...
https://t.co/L6IlW2BGBh

POSITIVE

May 22nd 2018,
03:38:24.000

@MAGAKrissy @AMErikaNGIRLBOT
@POTUS Under President Trump, America
has been re-born. Its called the ”Birth of
Trump”. BOT..

POSITIVE

May 22nd 2018,
01:45:23.000

RT @PastorDScott: I’ve never heard a Pres-
ident ask God to bless America as much as
President Trump does.

POSITIVE

May 22nd 2018,
03:36:54.000

RT @ACTBrigitte: We have reached a point
in America where the Democrats would
rather defend MS-13 than President Trump.

POSITIVE

May 21st 2018,
21:18:27.000

@RealEagleWings1 @DonnaWR8 Another
win for President Trump and for the women
of America! Thank you President Trump...
https://t.co/lR3HMMGWBq

POSITIVE

May 22nd 2018,
03:06:27.000

indictments for TREASON AGAINST
AMERICA AND PRESIDENT TRUMP
OPEN UP GITMO FOR OBAMA
HILLARY MUELLER AND COMEY
https://t.co/rDGZmGA6jm

POSITIVE

May 22nd 2018,
02:44:42.000

President Trump promised the Iranian
people that America would stand with
you when the time was appropriate.
https://t.co/MTyfPoLRTZ

POSITIVE

May 22nd 2018,
04:20:45.000

@WeWantTrump2020 President Trump 2020 POSITIVE

May 21st 2018,
21:26.25.000

RT @PastorDScott: I’ve never heard a Pres-
ident ask God to bless America as much as
President Trump does.

POSITIVE

The ranking function has been based on the same keyword that is inserted
in the filtering step in Spark. However, it is still possible to add other
keywords that might be of interest to the user. While this experiment was
performed, a school shooting was conducted at a high school in Santa Fe,
Texas. By simply adding the keyword Texas in the Kibana user interface
as shown in Figure 5.25, the filter and thus the ranked list is updated.

86

5.4. RESULTS

The updated list can be seen in Figure 5.26, where the number of created
Tweets related to the keywords indicates that a breaking news event has
occurred. For readability, the list can also be seen in Table 5.15

Figure 5.25: Adding filter on keyword Texas

87

5.4. RESULTS

Figure 5.26: Ranked list with Tweets based on the keywords Trump,
America, President, and Texas

88

5.4. RESULTS

Table 5.15: Ranked list with Tweets based on the keywords Trump,
America, President, and Texas

Time Message Sentiment
May 19th 2018,
00:40:16.000

Trump being elected President. America not
looking good. God help us all! Praying for
Texas https://t.co/3m9lCp01HA

POSITIVE

May 18th 2018,
21:08:56.000

President Trump Comments on ’Horrific At-
tack’ in Santa Fe, Texas - Breaking199
https://t.co/s014gvNS5t

NEGATIVE

May 19th 2018,
02:51:03.000

PRESIDENT TRUMP Demands Govern-
ment Action At ”Every Level” After Texas
School Shooting https://t.co/JSCx8fkcKg
https://t.co/9psvby72vO

POSITIVE

May 18th 2018,
22:04:07.000

Texas? well, that is America...
https://t.co/bFFB9J8sfz

NEUTRAL

May 18th 2018,
22:35:14.000

RT @mcpli: After today’s Texas
shootings, Gov. Cuomo to President
Trump in all caps: DO SOMETHING
https://t.co/IHTOPWLkyp

POSITIVE

May 19th 2018,
02:25:20.000

RT @joncoopertweets: Armed Trump sup-
porter comes to Texas high school where 10
students died to say ’Make America Great
Again’ Read more: ...

POSITIVE

May 19th 2018,
06:23:31.000

Heartache in Texas; wedding in Windsor;
Trump v. Amazon again; three Fox sto-
ries; President Aniston; Lowry on the p...
https://t.co/JHxVyw0Bkx

NEGATIVE

May 18th 2018,
20:30:04.000

President Trump promises action from his
administration after Texas school shoot-
ing STORY: https://t.co/n6iQfKmS1V
https://t.co/sxUJvC0d4c

POSITIVE

May 18th 2018,
22:15:02.000

RT @NBCNews: ”We’re with you in
this tragic hour,” President Trump
says after Texas school mass shooting.
https://t.co/V30L0OrZaG

NEUTRAL

May 19th 2018,
01:29:57.000

RT @NYDailyNews: Gov. Cuomo pleads
with President Trump and Congress to ”DO
SOMETHING” in aftermath of Texas high
school shooting https://t...

POSITIVE

May 19th 2018,
07:05:22.000

RT @RedNationRising: The same people
blaming Sen. Ted Cruz, President Trump,
and the NRA for Santa Fe High School shoot-
ing in Texas wer...

POSITIVE

89

5.4. RESULTS

5.4.4 Final Execution: Visualize Stream

Figure 5.27 shows the dashboard created after running the system for al-
most a week. The dashboard includes the following visualizations:

Visualization type Description
Metric Number of retrieved Tweets
Metric Number of distinct users
Pie Predicted sentiment
Pie Distribution of used device type
Tag Cloud Cloud showing the most trending hashtags
Data Table Table showing the Tweets that are most re-tweeted
Vertical Bar Top 10 most popular hashtags
Saved Search Ranked list of the most relevant Tweets
Vertical Bar Timeline of when Tweets was created
Coordinate Map Global map showing lat-long pairs

Table 5.16: Visualization in Kibana

A close-up of the visualizations can be found in Appendix A.

90

5.4. RESULTS

Figure 5.27: Dashboard created in Kibana

91

92

Chapter 6

Evaluation and Discussion

This chapter will begin with an evaluation and discussion of the experi-
ments and results presented in Chapter 5. Furthermore, a discussion of the
system and the project as a whole will be given with reflections upon the
findings.

6.1 Evaluation of Results

This section will evaluate the results presented in the previous chapter.
Each experiment will be evaluated individually.

6.1.1 Experiment 1: Test Load Performance

Section 5.4.1 shows the results of the first experiment where the goal was
to investigate how the system behaves under increasing pressure. The
experiment was repeated five times with various input rates. According
to Databricks1, the company founded by the creators of Spark, each batch
should be processed within 80% of the batch interval [61]. If the average
processing time is closer or greater than the batch interval, the application
will start queuing up the incoming records in a backlog and add latencies.
For the conducted experiment, the batch interval was set to 1 second,
meaning that each batch should be processed within 800 ms. Figure 5.6,
5.8, 5.10, 5.12, and 5.14 shows the processing time for the various input
rates. The average processing time is slightly increasing from 201 ms to
240 ms for the first test compared to the last. However, all results are by
far within the boundaries of what is considered as stable, and every record

1Databricks: https://databricks.com/

93

https://databricks.com/

6.1. EVALUATION OF RESULTS

can be processed in near real-time. In addition to stable processing time,
none of the tests introduced any scheduling delay.

Except for the result in Figure 5.5, the classification rates in Figure 5.7,
5.9, 5.11, and 5.13 might appear rather unstable. A possible reason for the
varying input rate may be due to a bug in the Kafka Spark integration.
The group.id that was set in Listing 4.2 is a string that uniquely identi-
fies the group of consumer processes in which this consumer belong. If all
the consumer instances have the same consumer group, which is the case
here, then the records will effectively be load balanced over the consumer
instances. If they have different consumer groups, then each record will
be broadcast to all the consumer processes. The Kafka Consumer API
used in Spark pre-fetches records into buffers. To keep performance high,
Spark wants to keep cached consumers on the executors instead of recreat-
ing them for each batch, which is the preferable procedure. According to
Spark the cache is keyed by topicpartition and group.id. However, due
to a bug described in the issue SPARK-191852, this does not seem to work
as intended. It is possible to disable caching for Kafka consumers. How-
ever, when disabling the cache, a workaround is needed to avoid the bug.
According to Spark, the workaround solution is to use a separate group.id
for each call to createDirectStream and thus go against the purpose of
the group.id. Once the bug is resolved, caching can be used as it was
supposed to and the input rate will probably flow more evenly. However,
by looking at the average input rate, the first four tests show that they
are almost consistent with what was generated by the Data Generator.
Although the last test was set to 20000 Tweets/second, it did only achieve
14617 Tweets/second on average which indicates that the maximum rate
that the implemented system can handle is ∼15000 Tweets/second.

The average throughput can be compared to other related work such as
the feasibility analysis of AsterixDB and Spark Streaming + Cassandra
[41]. Like this project, the study was performing sentiment analysis on a
stream of Tweets. The result of the study showed that Spark Streaming
by itself was able to process ∼7000 Tweets/second and when integrated
with Cassandra the throughput was ∼1000 Tweets/second [41]. However,
the classification task was performed by reading the records from Cas-
sandra, whereas for this experiment, the records were classified at arrival
time. This approach is suggested as further work by the author. Another
difference between the study and this experiment is the used version of
Spark. Whereas this project has used version 2.2.1, the feasibility analysis
used version 1.3.1. Consequently, there has probably been made improve-
ments to Spark Streaming between the versions. Other related work is the
benchmarking investigation, where a pipeline consisting of Kafka and Spark

2Spark bug: https://issues.apache.org/jira/browse/SPARK-19185

94

https://issues.apache.org/jira/browse/SPARK-19185

6.1. EVALUATION OF RESULTS

Streaming were tested [43]. The pipeline was constructed to simulate an
advertisement analytics pipeline, and some operations such as filtering of
irrelevant events, projection and join were performed. The test was per-
formed with throughput varied from 50000 to 170000 events/second and
showed that Spark Streaming was able to achieve high throughput with
some tuning of the batch interval. However, this result was performed
with ten instances of Kafka producers and between 25 to 30 nodes. The
authors point out that the reason for using ten instances of Kafka is that
individual producers begin to fall behind at around 17000 events/second,
which is in good agreement with the results for this project.

Considering the domain for this specific project, the goal is to visualize
data generated from Twitter. As stated earlier, the average number of
generated Tweets is 6000 Tweets/second. Hence, a throughput of 15000
Tweets/second should be regarded as approved.

6.1.2 Experiment 2: Increase Number of Keywords

Section 5.4.2 shows the result for the second experiment. The goal of
the experiment was to investigate how the execution time of the filter-
function behaves as the list of words increases. As seen in all results,
the time it takes to filter increases as new words are inserted, which is
expected behavior. However, what is interesting is the rate at which the
execution time increases. For all observations, a regression line has been
added. Although none of the observations are perfectly straight, they are
all following the regression line to some extent and should be considered as
linear. Hence, the time complexity for the filter-function is O(n).

However, even if all observations are linear, they are increasing at different
rates. Figure 5.23 shows a comparison between the different keywords. As
can be seen in the figure, the keywords Sweden, Zlatan, Basketball, and
Obama performed similarly to each other. This as opposed to the keywords
Trump, Netflix, and America who have a less steep increase in execution
time. The observation with 20 different European countries is intermediate
between the other two groups. The most logical reason for the various
steepness in execution time is depending on the number of matches for each
of the keywords. The way the filter-function works is that it returns a
boolean depending on whether a Tweet contains any of the words in the
list. If there is a match, the function will stop reading the list and return
true. The group of observations that had a steeper gradient had between
0,000093% and 0,0052% matches, whereas the other group had between
0,042% and 0,086% matches. This indicates that the function had to read
through the whole list of words more often for the first group of observations

95

6.1. EVALUATION OF RESULTS

compared to the other group which will affect the average execution time.

The observation in Figure 5.22 was somewhat different from the other ob-
servations. Whereas the others were tested with the same keyword, this
observation was tested with 20 keywords consisting of different European
countries. The overall execution time could be considered as increasing
linearly compared to the regression line. However, between 100 and 200
inserted words, the average execution time seems to be decreasing. This
behavior makes sense if compared to the hypothesis that the execution time
will increase slower if the list of words has a high probability of generating
matches.

6.1.3 Experiment 3: Rank Tweets based on Rele-
vance

The results of the experiment present how a customized scoring function
has been implemented by taking advantage of the built-in features in Elas-
ticsearch. Listing 5.3 shows the returned list with the ten most relevant
Tweets corresponding to the executed query presented in Listing 4.10.

The function was implemented with respect to the predefined requirements
in section 4.3.3. First of all, the ranked list should be based on both
historical and real-time data. This requirement has been satisfied by using
Elasticsearch as the fundamental technology. As all Tweets are indexed
and stored in the established cluster, the ranking function can update the
relevance score for each Tweet and combine it with the score calculated
for newly arrived Tweets. As the function is based on both posting time
and TF-IDF, the ranking list will continuously be updated to provide the
most relevant Tweets at any time. The second requirement said that recent
posted Tweets should be considered as more relevant than old ones. This
requirement has been fulfilled by defining a decay function in the query.
The decay function was set to give higher score to Tweets created during
the last 24 hours and removing any penalties for all Tweets created within
the last hour. An example of how the decay function has been applied can
be seen in Figure 5.24 or Table 5.14. Tweet number four and ten are both
retweeted messages with the exactly same content. Hence, their TF-IDF
score will be the same. However, the time of creation is what is of interest
here. One Tweet was created May 22nd 2018, 01:45:23, and the other May
21st 2018, 21:26:25. By applying the decay function, the newest Tweet
will be placed higher up in the ranking list. The last requirement concerns
the query, and that the ranking function should be based on keywords
determined by the user. The implemented function is based on the boolean
model, where at least one of the stated keywords needs to be matched. The

96

6.1. EVALUATION OF RESULTS

three keywords used for this experiment, is the same keywords that were
used for filtering the dataset in Spark during the final execution. Hence,
the keywords used has been determined by the user. Yet this solution is
not considered as optimal. A query can easily be created in Kibana by
utilizing the user interface as shown in Figure 5.25. This will allow the
user to extend the query at any time and is useful for trend detection
as shown in the Texas example. However, to create the query defined
in Listing 4.10, some coding knowledge is required. The current solution
requires that the keywords are inserted in both Kafka and Elasticsearch.
Optimally, the query should be created automatically by reading the list
of words that has been inserted by the user in Kafka to increase usability.
Another disadvantage with the query is that it only checks matches on
the message-field. This is presumably the most valuable field, but there is
possibilities that more important information is to be found in other fields
such as the userDescription-field.

6.1.4 Final Execution: Visualize Stream

The resulting dashboard in Figure 5.27 can be compared with the result
from the specialization project shown in Figure A.11 in Appendix A. For
the former project, no filtering was done prior to the Tweets arrival in
Elasticsearch. This resulted in a dashboard containing Tweets written from
all over the world in 92 different languages. For the current project, the
Tweets were filtered on keywords, and Kafka retrieved only those written
in English from the Twitter Streaming API. Not surprisingly, this resulted
in less number of retrieved Tweets and a great majority of those were from
the United States. Except for the number of retrieved Tweets, the biggest
difference between the two dashboards is the level of relevance. By looking
at the new dashboard, it is clear that the data has been filtered, where
both hashtags and messages are related to the inserted keywords.

As mentioned in section 3.3, some related projects exists within the do-
main of visualizing Twitter data. The Taghreed system was focusing on
geo-tagged microblogs whereas Cloudberry was built as a more generic so-
lution that can utilize Big Data with various attributes. The interface of
both systems is mainly built as a map with additional features such as
explicit Twitter messages and timelines. The appearance of the proposed
system is somewhat different compared to the others. The dashboard does
also include a heat map. However, that is not the central object of the
dashboard. The goal of the proposed dashboard has been to show both
general information such as the number of users and a timeline, but also
more explicit information such as the ranked list of relevant Tweets and
the most popular hashtags. However, the imagination of the user is the

97

6.1. EVALUATION OF RESULTS

limit when creating the dashboard, and the result in Figure 5.27 is just
an example of how it can be done. If the user would like more informa-
tion about any feature, he or she can in an intuitive and user-friendly way
add queries directly in the interface of Kibana. As the proposed system is
built on an existing search engine, Elasticsearch is responsible for returning
the relevant information and update the dashboard. Hence, compared to
Taghreed and Cloudberry whom both have implemented their own query
engines to update the visualizations upon requests from the user, the pro-
posed solution is depending on the Elastic stack to deal with requested
queries. By looking at Figure 5.27, it is clear that what earlier needed both
database experts and someone that could interpret the results, can now be
performed by anyone. Filters in Kibana can both be defined as a full-text
search as shown in Figure 5.25, or by clicking on any of the created visual-
izations. It is also possible to combine different filters to gain more insights
into the data. This is similar to Cloudberry which allows their users to
drill down to more fine-grained information or type in keywords to focus
on a particular topic. It is hard to tell which of the systems that perform
best with regards to the underlying query engines, as this project has not
been focusing on the performance of Elasticsearch. However, there exists
multiple use cases of how the Elastic stack has been used for application
search3.

Another aspect that had to be considered was the task of choosing which
keywords to use. The keywords should have a high probability of generating
matches, but at the same time exclude spam and irrelevant information.
Some parallels can be drawn to the measurements, precision and recall,
presented in section 2.5.1. The purpose of the system is to get as many
relevant tweets as possible, that is, a high quantity of Tweets with high
quality. Three keywords were used for the final execution. The keywords
Trump and President were chosen based on what is trending on Twitter
right now and America was chosen based on its high probability of getting
matches. However, this is indeed a balancing act, and it might be that
the choice of using America was too general and gave much information
that was not of interest. The keyword America also generated some other
general words in its list of related words, such as United States. Which
means that every Twitter user that has declared the United States as his
or her home country will be a match.

3Use cases: https://www.elastic.co/use-cases?usecase=application-search

98

https://www.elastic.co/use-cases?usecase=application-search

6.2. DISCUSSION

6.2 Discussion

This section will give a final discussion of the system and reflections upon
the findings.

The proposed solution can be compared with the BAD system presented in
section 3.1. The BAD system is designed to deliver data of interest to users
from a variety of data sources. By combining real-time and historical data
and allowing the users to subscribe for specific themes, the system can col-
lect data and provide it for the users in a seamless way. When formulating
the motivation behind the proposed solution, the BAD system was used as
an inspiration. However, instead of using the Publish/Subscribe-pattern,
this project looked into how to solve the same idea with continuous queries.
The BAD system was built by extending AsterixDB, whereas the proposed
system used Spark as the underlying analytics engine. The advantages
with AsterixDB compared to Spark is that it allows fast data ingestion,
scalable query executions in addition to distributed storage, whereas Spark
is strictly a processing engine and does not persist data outside of the cur-
rent execution. However, this has not been considered as a problem. To
index and store the retrieved Tweets, parts of the Elastic stack was used.
The Elastic stack does not only allow indexing and storing of data, but it
also provides various search capabilities and the possibility of visualizing
it. These features have been of great value for this project and the com-
posed system of Kafka + Spark + Elasticsearch + Kibana has shown to
provide the needed functionality to fulfill the project goal. As mentioned,
the BAD system uses a Publish/Subscribe-pattern which means that users
can subscribe to a topic, and whenever new information regarding that
topic is found, the user is notified. This is somehow different from how the
proposed system works. The solution uses continuous queries to filter the
incoming stream based on the interests of the user. This means that all
records that match the query will be stored in Elasticsearch and be made
available for the user. Hence, the user will not be explicitly notified when
new records arrive, but the visualizations will be updated automatically.
This approach is considered to be appropriate for the proposed system as
the visualization is supposed to give a high-level representation of all infor-
mation regarding the defined query, whereas the BAD system will return
more specific information such as explicit Tweets regarding a topic. For
example, if the user is interested in getting information about news-related
issues that may affect travel from the airport in Los Angeles (LAX), he or
she might subscribe for themes regarding ”bomb” and ”LAX”. The BAD
system would then notify the user whenever new Tweets have been written
with those words, whereas the proposed system would give an overview of
all Tweets containing those words. Hence, the proposed system is more

99

6.2. DISCUSSION

appropriate for use cases where the goal is detection of trends, and the
BAD system for detection of explicit information. However, if the user
would like more detailed information such as specific Tweets, it is possible
to include that in the visualization as shown in Figure 5.27.

Another aspect of Spark that had to be considered was the use of batch
intervals. As Spark is using micro-batches to perform transformations on
streams of data, a batch interval had to be defined. As the goal of the
project was to visualize Twitter data in near real-time, the batch interval
was set to 1 second. It should be noticed that Spark Streaming’s smallest
batching window is 500 ms, which means that if a particular use case
requires results to be generated at even higher resolution, it will not be
able to deliver. An example of such use case is when stream processing
is used for monitoring a manufacturing process that must be able to react
within milliseconds on change of conditions such as humidity, pressure, and
temperature. In such cases, too much latency can be a significant threat
to the entire monitoring infrastructure. However, the latency requirements
for this application are not that strict, and Spark Streaming was considered
as a suitable streaming processing engine for the task.

100

Chapter 7

Conclusion and Future Work

This chapter gives a conclusion to the work done in this thesis. Further-
more, the chapter will include pointers to interesting directions for future
research and improvements to the system.

7.1 Conclusion

This section will present the fulfillment of the stated research questions as
well as a conclusion of the project goal.

7.1.1 Research Questions

To conclude whether this project has fulfilled its goal, each research ques-
tion should be answered individually.

RQ 1: How can Tweets be detected in real-time based on a user-
defined continuous query?

This was considered to be the primary research question for this project
as it would try to answer how the main parts of the system should be
implemented. The proposed solution was based on the ETL process and
consisted of a pipeline of Kafka, Spark, and parts of the Elastic stack. There
are many advantages to let Kafka handle the data extraction. Since Kafka
is reliable, scalable, and efficient, it is an appropriate tool for building data
pipelines. As mentioned in section 2.6.2, Kafka can continuously receive
Tweets and keep them stored for a given amount of time. Consequently, the
implemented system will be more fault-tolerant as downtime in the Spark
application will not lead to any data loss as every record is persisted in

101

7.1. CONCLUSION

Kafka. Spark was used for the data transformation as it is a unified engine
that can handle both streaming data and machine learning. The last part
of the pipeline are parts of the Elastic stack consisting of Elasticsearch
and Kibana. Elasticsearch should mainly be considered as a search and
analytics engine. However, for this project, it has both been used as a
search engine, but also as a storage medium where all retrieved Tweets
are being indexed and stored. As all components of the pipeline can scale
horizontally to hundreds of nodes, its potential has not been fully utilized
during this project as it has been used in a small-scale environment running
in local mode.

To perform continuous queries, it was decided to use Kafka to receive user
input. The chosen method did fulfill the requirements for this project as it
should be considered as a proof of concept. However, this part of the system
has a lot of potentials. For example, a user interface should be implemented
to make the query insertion more intuitive for the user. The user should
also be able to change the query by adding and deleting keywords as the
need arises. Another improvement that should be considered is the use
of a file as intermediate storage of the inserted query. If the system is
being scaled to multiple nodes, other options that are more suitable for
distributed systems should be investigated.

The proposed system shows how Tweets can be detected in real-time and
how relevant Tweets can be filtered based on a user-defined continuous
query. Hence, the research question is considered to be fulfilled.

RQ 2: How can a Tweet be classified as relevant relative to a
query?

To answer this question, the definition of relevance for this specific project
had to be defined. As the domain for this project was Twitter, relevance
was defined to be the textual similarity between a user’s interest and the
content of a Tweet, and thus a keyword-based retrieval strategy was cho-
sen as the feature set for the query. Based on the CCR task mentioned
in section 3.4, it was decided to use strict string matching as filtration ap-
proach and add some known name variants to extend the query. The Google
Knowledge Search API was used to extend the search vocabulary. By refer-
ring to Figure 4.4, it is clear that the API returns some phrases that might
not be optimal to use as keywords and the probability that any Tweet will
match phrases like Donald Trump 2017 presidential inauguration is
considered as low. The idea of extending the vocabulary with known name
variants has many potentials. However, regarding the nature and struc-
ture of Tweets, the name variant should probably be of a shorter length to
increase the probability of generating matches in the Twitter stream. As
mentioned in section 5.1, the goal of the filtering task was never to investi-

102

7.1. CONCLUSION

gate how accurate the filter function is with regards to precision and recall.
Instead, it was mainly used as a proof of concept, showing how a Tweet
can be classified as relevant based on a continuous query.

RQ 3: How can Tweets be ranked based on relevance?

Based on the definition of relevance, a ranking function was implemented as
shown in section 4.10 by utilizing the built-in functions of Elasticsearch. An
experiment was conducted to investigate the results of the function, both in
regards to calculation of the relevance score and the resulting visualization.
The result showed that the relevance score was calculated by taking the
sum of the TF-IDF for every term in the query multiplied by the defined
decay function. The function was found successful as two Tweets with the
same content were given a different score of relevance based on the time the
Tweets were posted. However, a drawback of the implemented function is
that it requires some coding knowledge from the user and that it is not able
to read from the list of words that have been inserted by the user in Kafka.
The proposed ranking function is also quite naive as it is calculating and
updating the score for every Tweet continuously. The question that should
be considered for future work is whether all Tweets needs to be ranked or
if it is enough to maintain a small list with only the top-k most relevant
Tweets.

Even if the proposed ranking function has room for improvement, it is
based on both new, streaming data and historical, stored data. It is also
updating the ranking list continuously whenever new matches arrive and
thus the research question is considered to be answered.

RQ 4: How does the implemented system perform with increasing
amount of queries?

To answer this question, an experiment was conducted to test how the
execution time of the filter-function behaved as the number of search
words increases. The result from the experiment showed that the time
complexity for the function is O(n) which was expected behavior.

RQ 5: How does the implemented system perform with increasing
amount of data?

Another experiment was conducted to answer this question. The first ex-
periment investigated how the system behaves under increasing pressure.
By experimenting with various input rates, it was shown that the processing
time should be considered as stable for all tests. However, the maximum
throughput that the system can handle is ∼15000 Tweets/second.

103

7.2. FUTURE WORK

7.1.2 Project Goal

The project has been an attempt to investigate the intersection between
information retrieval and processing of streaming data by implementing a
solution that could visualize relevant content from Twitter based on user-
defined queries. The goal of the project was stated as:

To examine how a system can be implemented, which can visu-
alize relevant information from Twitter based on user-defined
queries and provide valuable insights for the user.

The final execution presented in section 5.4.4 shows how Twitter data can
be visualized in near real-time. By using continuous queries determined by
the user, relevant content has been filtered from the Twitter stream, and the
dashboard consists of various visualizations that in different ways provides
the user with valuable insights. The final execution was performed with
Trump, President, and America as keywords. However, the system is not
limited to political opinions among the users of Twitter. The system has
been built as modular as possible so that every building block is possible to
replace. By using Kafka, it is possible to connect other data sources than
the Twitter Streaming API.

All technologies used for this project are examples of state-of-the-art within
different areas of Big Data computations that are frequently used in the
industry. This project has allowed me to learn these technologies and
explore topics that will be of great value for my future career.

As stated in section 1.6, the implemented system should only be seen as
a prototype used to prove the underlying theories. The proposed solution
shows how new information can be revealed from already existing data by
executing a continuous query on streaming data, and thus the project goal
is considered to be fulfilled.

7.2 Future Work

This section provides a summary of improvements that should be consid-
ered in future work.

Filter Function

The proposed solution uses known name variants to increase the search vo-
cabulary. As discussed in the previous section, the name variants retrieved
from the Google Knowledge Search API may not always be appropriate for

104

7.2. FUTURE WORK

filtering of Tweets. To improve the filtering and increase the number of
relevant matches, it is important that the known name variants be suitable
for the structure of the records. In the case of Twitter data which contains
Tweets that are short, concise and straight to the point, the known name
variants should probably not be longer than one word to increase the prob-
ability of generating matches. Another interesting aspect that should be
tested is the accuracy of the filter function regarding precision and recall.
By using a dataset that contains documents that are marked as relevant
or not relative to a query, it would be possible to investigate this aspect.
Lastly, the intermediate storage medium that is used for storing the inserted
keywords should be improved. Examples of options that might be suitable
for a distributed environment are MemCached1, HBase2, and Redis3.

Ranking Function

Some improvements regarding the ranking function have already been men-
tioned. First and foremost, the function should be able to read from the
same file as the filter function does and create the ranking query automat-
ically. This will make the system more usable as the user does not need
to insert the keywords more than once nor have any coding experience.
The proposed ranking function should also be considered as quite naive.
A more sophisticated ranking function could, therefore, be to maintain a
shorter list of relevant records and thus not need to calculate and update
the relevance score for every record in the system. Algorithms such as
rank-join should be investigated to see how it can be implemented on both
stored and streaming data.

Scale to Test in a Realistic Environment

During this project, the proposed system has only been tested in a small-
scale local environment. To fully utilize the potential of the used technolo-
gies, the experiment should be conducted in a larger environment consisting
of multiple nodes to simulate a more realistic use case. It would also be
interesting to connect other types of data sources to Kafka and thus test
to visualize other content types than Tweets.

1MemCached: https://memcached.org/
2HBase: https://hbase.apache.org/
3Redis: https://redis.io/

105

https://memcached.org/
https://hbase.apache.org/
https://redis.io/

106

Bibliography

[1] P. Norrhall, “Visualization of Trends on Twitter.”
https://www.dropbox.com/s/8sfjvmo41ls8982/

fordypningsprosjekt-final.pdf?dl=0, 2017.

[2] A. Kanavos, N. Nodarakis, S. Sioutas, A. Tsakalidis, D. Tsolis, and
G. Tzimas, “Large Scale Implementations for Twitter Sentiment
Classification,” Algorithms, vol. 10, no. 1, p. 33, 2017.

[3] B. J. Oates in Researching Information Systems and Computing,
p. 137, SAGE, 2005.

[4] V. R. Basili, “Software Modeling and Measurement: the
Goal/Question/Metric Paradigm,” tech. rep., 1992.

[5] M. Lewis-Beck, A. Bryman, and T. Futing Liao, “The SAGE
Encyclopedia of Social Science Research Methods.”
http://methods.sagepub.com/reference/the-sage-

encyclopedia-of-social-science-research-methods, 2004.
Retrieved 2017-11-27.

[6] A. Cockburn, “Using both Incremental and Iterative Development,”
STSC CrossTalk (USAF Software Technology Support Center),
vol. 21, no. 5, pp. 27–30, 2008.

[7] D. Radigan, “Kanban - A brief Introduction.”
https://www.atlassian.com/agile/kanban, 2018. Retrieved
2018-04-30.

[8] Twitter, “Connecting to a Streaming Endpoint - Twitter
Developers.” https://developer.twitter.com/en/docs/tweets/

filter-realtime/guides/connecting, 2017. Retrieved 2017-11-27.

[9] D. Laney, “3D Data Management: Controlling Data Volume,
Velocity and Variety,” META Group Research Note, vol. 6, p. 70,
2001.

107

https://www.dropbox.com/s/8sfjvmo41ls8982/fordypningsprosjekt-final.pdf?dl=0
https://www.dropbox.com/s/8sfjvmo41ls8982/fordypningsprosjekt-final.pdf?dl=0
http://methods.sagepub.com/reference/the-sage-encyclopedia-of-social-science-research-methods
http://methods.sagepub.com/reference/the-sage-encyclopedia-of-social-science-research-methods
https://www.atlassian.com/agile/kanban
https://developer.twitter.com/en/docs/tweets/filter-realtime/guides/connecting
https://developer.twitter.com/en/docs/tweets/filter-realtime/guides/connecting

BIBLIOGRAPHY

[10] M. Zaharia, R. S. Xin, P. Wendell, T. Das, M. Armbrust, A. Dave,
X. Meng, J. Rosen, S. Venkataraman, M. J. Franklin, et al., “Apache
Spark: A Unified Engine for Big Data Processing,” Communications
of the ACM, vol. 59, no. 11, pp. 56–65, 2016.

[11] C. Rohrdantz, D. Oelke, M. Krstajic, and F. Fischer, “Real-time
Visualization of Streaming Text Data: Tasks and Challenges,” in
VIS-Week, 2011.

[12] S. Babu and J. Widom, “Continuous Queries over Data Streams,”
ACM Sigmod Record, vol. 30, no. 3, pp. 109–120, 2001.

[13] J. Meehan, C. Aslantas, S. Zdonik, N. Tatbul, and J. Du, “Data
Ingestion for the Connected World,” in CIDR, 2017.

[14] B. Pang, L. Lee, et al., “Opinion Mining and Sentiment Analysis,”
Foundations and Trends® in Information Retrieval, vol. 2, no. 1–2,
pp. 1–135, 2008.

[15] R. S. Michalski, J. G. Carbonell, and T. M. Mitchell, Machine
Learning: An Artificial Intelligence Approach. Springer Science &
Business Media, 2013.

[16] A. Baltas, A. Kanavos, and A. K. Tsakalidis, “An Apache Spark
Implementation for Sentiment Analysis on Twitter Data,” in
International Workshop of Algorithmic Aspects of Cloud Computing,
pp. 15–25, Springer, 2016.

[17] “MLlib: Naive Bayes.”
http://spark.apache.org/docs/2.2.0/mllib-naive-bayes.html,
2018. Retrieved 2018-05-23.

[18] G. Chin Jr, M. Singhal, G. Nakamura, V. Gurumoorthi, and
N. Freeman-Cadoret, “Visual Analysis of Dynamic Data Streams,”
Information Visualization, vol. 8, no. 3, pp. 212–229, 2009.

[19] O. Rist, “The Best Data Visualization Tools of 2017.”
http://uk.pcmag.com/cloud-services/83744/guide/the-best-

data-visualization-tools-of-2017, 2017. Retrieved 2017-12-01.

[20] K. Sparck Jones, “A Statistical Interpretation of Term Specificity
and its Application in Retrieval,” Journal of documentation, vol. 28,
no. 1, pp. 11–21, 1972.

[21] G. Salton, A. Wong, and C.-S. Yang, “A Vector Space Model for
Automatic Indexing,” Communications of the ACM, vol. 18, no. 11,
pp. 613–620, 1975.

108

http://spark.apache.org/docs/2.2.0/mllib-naive-bayes.html
http://uk.pcmag.com/cloud-services/83744/guide/the-best-data-visualization-tools-of-2017
http://uk.pcmag.com/cloud-services/83744/guide/the-best-data-visualization-tools-of-2017

BIBLIOGRAPHY

[22] J. Dean and S. Ghemawat, “MapReduce: Simplified Data Processing
on Large Clusters,” Communications of the ACM, vol. 51, no. 1,
pp. 107–113, 2008.

[23] M. Zaharia, T. Das, H. Li, S. Shenker, and I. Stoica, “Discretized
Streams: An Efficient and Fault-Tolerant Model for Stream
Processing on Large Clusters.,” HotCloud, vol. 12, pp. 10–10, 2012.

[24] J. Kreps, “Putting Apache Kafka To Use: A Practical Guide To
Building a Streaming Platform.”
https://www.confluent.io/blog/stream-data-platform-1/,
2018. Retrieved 2018-06-02.

[25] “Apache Kafka - Introduction.”
https://kafka.apache.org/intro.html, 2017. Retrieved
2018-04-02.

[26] “Getting Started - Elasticsearch Reference [6.2].”
https://www.elastic.co/guide/en/elasticsearch/reference/

current/getting-started.html, 2018. Retrieved 2018-04-22.

[27] “Basic Concepts - Elasticsearch Reference [6.2].”
https://www.elastic.co/guide/en/elasticsearch/reference/

current/_basic_concepts.html, 2018. Retrieved 2018-04-22.

[28] “Introduction - Kibana User Guide [6.2].” https://www.elastic.

co/guide/en/kibana/current/introduction.html, 2018.
Retrieved 2018-04-22.

[29] C. Gormley and Z. Tong, “What is Relevance? - Elasticsearch: The
Definitive Guide [2.x].” https://www.elastic.co/guide/en/

elasticsearch/guide/current/relevance-intro.html, 2015.
Retrieved 2018-05-11.

[30] C. Gormley and Z. Tong, “Theory Behind Relevance Scoring -
Elasticsearch: The Definitive Guide [2.x].”
https://www.elastic.co/guide/en/elasticsearch/guide/

current/scoring-theory.html, 2015. Retrieved 2018-05-11.

[31] S. Robertson, H. Zaragoza, et al., “The Probabilistic Relevance
Framework: BM25 and Beyond,” Foundations and Trends® in
Information Retrieval, vol. 3, no. 4, pp. 333–389, 2009.

[32] A. Cholakian, “A Gentle Intro to Function Scoring.”
https://www.elastic.co/blog/found-function-scoring, 2014.
Retrieved 2018-05-12.

109

https://www.confluent.io/blog/stream-data-platform-1/
https://kafka.apache.org/intro.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/getting-started.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/getting-started.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/_basic_concepts.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/_basic_concepts.html
https://www.elastic.co/guide/en/kibana/current/introduction.html
https://www.elastic.co/guide/en/kibana/current/introduction.html
https://www.elastic.co/guide/en/elasticsearch/guide/current/relevance-intro.html
https://www.elastic.co/guide/en/elasticsearch/guide/current/relevance-intro.html
https://www.elastic.co/guide/en/elasticsearch/guide/current/scoring-theory.html
https://www.elastic.co/guide/en/elasticsearch/guide/current/scoring-theory.html
https://www.elastic.co/blog/found-function-scoring

BIBLIOGRAPHY

[33] G. Mishne, J. Dalton, Z. Li, A. Sharma, and J. Lin, “Fast Data in
the Era of Big Data: Twitter’s Real-time Related Query Suggestion
Architecture,” in Proceedings of the 2013 ACM SIGMOD
International Conference on Management of Data, pp. 1147–1158,
ACM, 2013.

[34] A. Magdy, “Scalable Microblogs Data Management,” in Proceedings
of the 2016 on SIGMOD’16 PhD Symposium, pp. 32–36, ACM, 2016.

[35] S. Alsubaiee, Y. Altowim, H. Altwaijry, A. Behm, V. Borkar, Y. Bu,
M. Carey, I. Cetindil, M. Cheelangi, K. Faraaz, et al., “AsterixDB: A
Scalable, Open Source BDMS,” Proceedings of the VLDB
Endowment, vol. 7, no. 14, pp. 1905–1916, 2014.

[36] S. Jacobs, M. Y. S. Uddin, M. Carey, V. Hristidis, V. J. Tsotras, and
N. Venkatasubramanian, “A BAD Demonstration: Towards Big
Active Data,” Proceedings of the VLDB Endowment, vol. 10, no. 12,
pp. 1941–1944, 2017.

[37] M. J. Carey, S. Jacobs, and V. J. Tsotras, “Breaking BAD: A Data
Serving Vision for Big Active Data,” in Proceedings of the 10th ACM
International Conference on Distributed and Event-based Systems,
pp. 181–186, ACM, 2016.

[38] R. Grover and M. J. Carey, “Data Ingestion in AsterixDB,” in
EDBT, pp. 605–616, 2015.

[39] P. Carbone, A. Katsifodimos, S. Ewen, V. Markl, S. Haridi, and
K. Tzoumas, “Apache Flink: Stream and Batch Processing in a
Single Engine,” Bulletin of the IEEE Computer Society Technical
Committee on Data Engineering, vol. 36, no. 4, 2015.

[40] G. A. Agha, “Actors: A Model of Concurrent Computation in
Distributed Systems.,” tech. rep., Massachusetts Inst of Tech
Cambridge Artificial Intelligence Lab, 1985.

[41] P. Pääkkönen, “Feasibility Analysis of AsterixDB and Spark
Streaming with Cassandra for Stream-based Processing,” Journal of
Big Data, vol. 3, no. 1, p. 6, 2016.

[42] S. Kulkarni, N. Bhagat, M. Fu, V. Kedigehalli, C. Kellogg, S. Mittal,
J. M. Patel, K. Ramasamy, and S. Taneja, “Twitter Heron: Stream
Processing at Scale,” in Proceedings of the 2015 ACM SIGMOD
International Conference on Management of Data, pp. 239–250,
ACM, 2015.

[43] S. Chintapalli, D. Dagit, B. Evans, R. Farivar, T. Graves,
M. Holderbaugh, Z. Liu, K. Nusbaum, K. Patil, B. J. Peng, et al.,

110

BIBLIOGRAPHY

“Benchmarking Streaming Computation Engines: Storm, Flink and
Spark Streaming,” in Parallel and Distributed Processing Symposium
Workshops, 2016 IEEE International, pp. 1789–1792, IEEE, 2016.

[44] R. Wesley, M. Eldridge, and P. T. Terlecki, “An Analytic Data
Engine for Visualization in Tableau,” in Proceedings of the 2011
ACM SIGMOD International Conference on Management of data,
pp. 1185–1194, ACM, 2011.

[45] R. E. Hoyt, D. Snider, C. Thompson, and S. Mantravadi, “IBM
Watson Analytics: Automating Visualization, Descriptive, and
Predictive Statistics,” JMIR public health and surveillance, vol. 2,
no. 2, 2016.

[46] A. Magdy, L. Alarabi, S. Al-Harthi, M. Musleh, T. M. Ghanem,
S. Ghani, and M. F. Mokbel, “Taghreed: A System for Querying,
Analyzing, and Visualizing Geotagged Microblogs,” in Proceedings of
the 22nd ACM SIGSPATIAL International Conference on Advances
in Geographic Information Systems, pp. 163–172, ACM, 2014.

[47] J. Jia, C. Li, X. Zhang, C. Li, M. J. Carey, et al., “Towards
Interactive Analytics and Visualization on One Billion Tweets,” in
Proceedings of the 24th ACM SIGSPATIAL International Conference
on Advances in Geographic Information Systems, p. 85, ACM, 2016.

[48] Cloudberry, “Cloudberry Demo - TwitterMap.”
http://cloudberry.ics.uci.edu/apps/twittermap, 2016.
Retrieved 2018-05-31.

[49] K. Balog and H. Ramampiaro, “Cumulative Citation
Recommendation: Classification vs. Ranking,” in Proceedings of the
36th international ACM SIGIR conference on Research and
development in information retrieval, pp. 941–944, ACM, 2013.

[50] K. Balog, H. Ramampiaro, N. Takhirov, and K. Nørv̊ag, “Multi-step
Classification approaches to Cumulative Citation Recommendation,”
in Proceedings of the 10th Conference on Open Research Areas in
Information Retrieval, pp. 121–128, Le centre de hautes etudes
internationales d’informatique documentaire, 2013.

[51] “Using Deep Learning at Scale in Twitter’s Timelines.” https://

blog.twitter.com/engineering/en_us/topics/insights/2017/

using-deep-learning-at-scale-in-twitters-timelines.html,
2017. Retrieved 2018-02-21.

111

http://cloudberry.ics.uci.edu/apps/twittermap
https://blog.twitter.com/engineering/en_us/topics/insights/2017/using-deep-learning-at-scale-in-twitters-timelines.html
https://blog.twitter.com/engineering/en_us/topics/insights/2017/using-deep-learning-at-scale-in-twitters-timelines.html
https://blog.twitter.com/engineering/en_us/topics/insights/2017/using-deep-learning-at-scale-in-twitters-timelines.html

BIBLIOGRAPHY

[52] K. Tao, F. Abel, C. Hauff, and G.-J. Houben, “What Makes a Tweet
Relevant for a Topic,” Making Sense of Microposts (# MSM2012),
pp. 49–56, 2012.

[53] Y. Duan, L. Jiang, T. Qin, M. Zhou, and H.-Y. Shum, “An
Empirical Study on Learning to Rank of Tweets,” in Proceedings of
the 23rd International Conference on Computational Linguistics,
pp. 295–303, Association for Computational Linguistics, 2010.

[54] A. Rosen, “Tweeting Made Easier.”
https://blog.twitter.com/official/en_us/topics/product/

2017/tweetingmadeeasier.html, 2017. Retrieved 2018-04-05.

[55] “Introduction to Tweet JSON - Twitter Developers.”
https://developer.twitter.com/en/docs/tweets/data-

dictionary/overview/intro-to-tweet-json.html, 2018.
Retrieved 2018-04-13.

[56] Twitter, “Consuming Streaming Data - Twitter Developers.”
https://developer.twitter.com/en/docs/tutorials/

consuming-streaming-data, 2017. Retrieved 2018-06-02.

[57] T. Das, M. Zaharia, and P. Wendell, “Diving into Apache Spark
Streaming’s Execution Model.”
https://databricks.com/blog/2015/07/30/diving-into-

apache-spark-streamings-execution-model.html, 2016.
Retrieved 2017-12-05.

[58] C. Gormley and Z. Tong, “Dynamic Mapping - Elasticsearch: The
Definitive Guide [2.x].” https://www.elastic.co/guide/en/

elasticsearch/guide/current/relevance-intro.html, 2015.
Retrieved 2018-05-11.

[59] A. Go, R. Bhayani, and L. Huang, “Twitter Sentiment Classification
using Distant Supervision,” CS224N Project Report, Stanford, vol. 1,
no. 2009, p. 12, 2009.

[60] T. M. Abrahamsen, “Scaling Machine Learning Methods to Big Data
Systems,” Master’s thesis, NTNU, 2017.

[61] Databricks, “Debugging Spark Streaming Application.”
https://docs.databricks.com/spark/latest/rdd-streaming/

debugging-streaming-applications.html, 2018. Retrieved
2018-06-05.

112

https://blog.twitter.com/official/en_us/topics/product/2017/tweetingmadeeasier.html
https://blog.twitter.com/official/en_us/topics/product/2017/tweetingmadeeasier.html
https://developer.twitter.com/en/docs/tweets/data-dictionary/overview/intro-to-tweet-json.html
https://developer.twitter.com/en/docs/tweets/data-dictionary/overview/intro-to-tweet-json.html
https://developer.twitter.com/en/docs/tutorials/consuming-streaming-data
https://developer.twitter.com/en/docs/tutorials/consuming-streaming-data
https://databricks.com/blog/2015/07/30/diving-into-apache-spark-streamings-execution-model.html
https://databricks.com/blog/2015/07/30/diving-into-apache-spark-streamings-execution-model.html
https://www.elastic.co/guide/en/elasticsearch/guide/current/relevance-intro.html
https://www.elastic.co/guide/en/elasticsearch/guide/current/relevance-intro.html
https://docs.databricks.com/spark/latest/rdd-streaming/debugging-streaming-applications.html
https://docs.databricks.com/spark/latest/rdd-streaming/debugging-streaming-applications.html

Appendices

113

Appendix A

Figures

114

Figure A.1: Number of retrieved Tweets

Figure A.2: Number of distinct users

115

Figure A.3: Predicted sentiment

Figure A.4: Distribution of used device type

116

Figure A.5: Cloud showing the most trending hashtags

Figure A.6: Table showing the Tweets that are most re-tweeted

117

Figure A.7: Top 10 most popular hashtags

118

Figure A.8: Ranked list of the most relevant Tweets

119

Figure A.9: Timeline of when Tweets was created

120

Figure A.10: Global map showing lat-long pairs

121

Figure A.11: Dashboard created as part of the specialization project

122

Appendix B

Listings

Listing B.1: Example of Tweet in JSON format

1 {

2 "tweet": {

3 "created_at": "Thu Apr 06 15:24:15 +0000 2017",

4 "id_str": "850006245121695744",

5 "text": "1\/ Today we\u2019re sharing our vision for the future

6 of the Twitter API platform!\nhttps:\/\/t.co\/XweGngmxlP",

7 "user": {

8 "id": 2244994945,

9 "name": "Twitter Dev",

10 "screen_name": "TwitterDev",

11 "location": "Internet",

12 "url": "https:\/\/dev.twitter.com\/",

13 "description": "Your official source for Twitter Platform news,

14 updates & events. Need technical help? Visit https:\/\/twittercommunity.com\/

15 \u2328\ufe0f #TapIntoTwitter"

16 },

17 "place": {

18
19 },

20 "entities": {

21 "hashtags": [

22
23],

24 "urls": [

25 {

26 "url": "https:\/\/t.co\/XweGngmxlP",

27 "unwound": {

28 "url": "https:\/\/cards.twitter.com\/cards\/18ce53wgo4h\/3xo1c",

29 "title": "Building the Future of the Twitter API Platform"

30 }

31 }

32],

33 "user_mentions": [

34
35]

36 }

37 }

38 }

Listing B.2: Example of Tweet in Twitter4j Status format

123

1 StatusJSONImpl{

2 createdAt=Thu Apr 06 15:24:15 CEST 2017,

3 id=850006245121695744,

4 text='1\/ Today we\u2019re sharing our vision for the future

5 of the Twitter API platform!\nhttps:\/\/t.co\/XweGngmxlP',
6 urlEntities=[URLEntityJSONImpl{

7 url='https:\/\/t.co\/XweGngmxlP',
8 expandedURL='https:\/\/cards.twitter.com\/cards\/18ce53wgo4h\/3xo1c'}],
9 user=UserJSONImpl{

10 id=2244994945,

11 name='Twitter Dev',
12 screenName='TwitterDev',
13 location='Internet',
14 description='Your official source for Twitter Platform news,

15 updates & events. Need technical help? Visit https:\/\/twittercommunity.com\/

16 \u2328\ufe0f #TapIntoTwitter'}
17 }

Listing B.3: Words to test filter-function on

1 Sweden

2 Norway

3 Denmark

4 Finland

5 Netherlands

6 Spain

7 France

8 Italy

9 Portugal

10 Germany

11 Greece

12 Switzerland

13 Poland

14 Austria

15 Belgium

16 Ukraine

17 Croatia

18 Iceland

19 Cyprus

20 Romania

Listing B.4: Explanation of how the ranking score is calculated for a Tweet

1 {

2 "hits": {

3 "total": 111490,

4 "max_score": 9.304917,

5 "hits": [

6 {

7 "_shard": "[visualization][2]",

8 "_node": "meWimDjoRXavG-MQk3-l9A",

9 "_index": "visualization",

10 "_type": "tweets",

11 "_id": "ET1WhWMBtZQDwiDZS8Hf",

12 "_score": 9.304917,

13 "_source": {

14 "coordinates": null,

15 "userDescription": "Poet, Patriot, Sovereign Human, Being.

16 I follow back Patriots!

17 "friendsCount": 2344,

18 "userLanguage": "en",

19 "sentiment": "POSITIVE",

124

20 "placeCountry": null,

21 "deviceType": "Twitter for Android",

22 "userScreenName": "Lady_Greenstone",

23 "statusLanguage": "en",

24 "createdAt": "2018-05-22T02:53:34",

25 "message": "RT @Harry69250942: Make America great again I trust my

26 president Donald trump https://t.co/jBQwPsAaYH",

27 "retweetCount": 0,

28 "userID": 1167806174,

29 "messageLength": 101,

30 "userName": "Annie Oakley",

31 "followersCount": 2279,

32 "hashtags": ""

33 },

34 "_explanation": {

35 "value": 9.304917,

36 "description": "function score, product of:",

37 "details": [

38 {

39 "value": 10.268894,

40 "description": "sum of:",

41 "details": [

42 {

43 "value": 3.953562,

44 "description": "weight(message:america in 1749)

45 [PerFieldSimilarity], result of:",

46 "details": [

47 {

48 "value": 3.953562,

49 "description": "score(doc=1749,freq=1.0 = termFreq=1.0\n),

50 product of:",

51 "details": [

52 {

53 "value": 3.6883576,

54 "description": "idf, computed as

55 log(1 + (docCount - docFreq + 0.5) / (docFreq + 0.5)) from:",

56 "details": [

57 {

58 "value": 4168,

59 "description": "docFreq"

60 },

61 {

62 "value": 166652,

63 "description": "docCount"

64 }

65]

66 },

67 {

68 "value": 1.0719031,

69 "description": "tfNorm, computed as

70 (freq * (k1 + 1)) / (freq + k1 * (1 - b + b * fieldLength / avgFieldLength))

71 from:",

72 "details": [

73 {

74 "value": 1,

75 "description": "termFreq=1.0"

76 },

77 {

78 "value": 1.2,

79 "description": "parameter k1"

80 },

81 {

82 "value": 0.75,

83 "description": "parameter b"

84 },

125

85 {

86 "value": 17.942,

87 "description": "avgFieldLength"

88 },

89 {

90 "value": 15,

91 "description": "fieldLength"

92 }

93]

94 }

95]

96 }

97]

98 },

99 {

100 "value": 3.740428,

101 "description": "weight(message:president in 1749)

102 [PerFieldSimilarity],

103 result of:",

104 "details": [

105 {

106 "value": 3.740428,

107 "description": "score(doc=1749,freq=1.0 = termFreq=1.0\n),

108 product of:",

109 "details": [

110 {

111 "value": 3.4895205,

112 "description": "idf, computed as

113 log(1 + (docCount - docFreq + 0.5) / (docFreq + 0.5)) from:",

114 "details": [

115 {

116 "value": 5085,

117 "description": "docFreq"

118 },

119 {

120 "value": 166652,

121 "description": "docCount"

122 }

123]

124 },

125 {

126 "value": 1.0719031,

127 "description": "tfNorm, computed as

128 (freq * (k1 + 1)) / (freq + k1 * (1 - b + b * fieldLength / avgFieldLength))

129 from:",

130 "details": [

131 {

132 "value": 1,

133 "description": "termFreq=1.0"

134 },

135 {

136 "value": 1.2,

137 "description": "parameter k1"

138 },

139 {

140 "value": 0.75,

141 "description": "parameter b"

142 },

143 {

144 "value": 17.942,

145 "description": "avgFieldLength"

146 },

147 {

148 "value": 15,

149 "description": "fieldLength"

126

150 }

151]

152 }

153]

154 }

155]

156 },

157 {

158 "value": 2.574904,

159 "description": "weight(message:trump in 1749)

160 [PerFieldSimilarity], result of:",

161 "details": [

162 {

163 "value": 2.574904,

164 "description": "score(doc=1749,freq=1.0 = termFreq=1.0\n),

165 product of:",

166 "details": [

167 {

168 "value": 2.4021797,

169 "description": "idf, computed as

170 log(1 + (docCount - docFreq + 0.5) / (docFreq + 0.5)) from:",

171 "details": [

172 {

173 "value": 15085,

174 "description": "docFreq"

175 },

176 {

177 "value": 166652,

178 "description": "docCount"

179 }

180]

181 },

182 {

183 "value": 1.0719031,

184 "description": "tfNorm, computed as

185 (freq * (k1 + 1)) / (freq + k1 * (1 - b + b * fieldLength / avgFieldLength))

186 from:",

187 "details": [

188 {

189 "value": 1,

190 "description": "termFreq=1.0"

191 },

192 {

193 "value": 1.2,

194 "description": "parameter k1"

195 },

196 {

197 "value": 0.75,

198 "description": "parameter b"

199 },

200 {

201 "value": 17.942,

202 "description": "avgFieldLength"

203 },

204 {

205 "value": 15,

206 "description": "fieldLength"

207 }

208]

209 }

210]

211 }

212]

213 }

214]

127

215 },

216 {

217 "value": 0.90612656,

218 "description": "min of:",

219 "details": [

220 {

221 "value": 0.90612656,

222 "description": "Function for field createdAt:",

223 "details": [

224 {

225 "value": 0.90612656,

226 "description":

227 "exp(-0.5*pow(MIN[Math.max(Math.abs(1.526957614E12(=doc value)

228 - 1.52699379671E12(=origin)))

229 - 3600000.0(=offset), 0)],2.0)/5.384830386217238E15)"

230 }

231]

232 },

233 {

234 "value": 3.4028235e+38,

235 "description": "maxBoost"

236 }

237]

238 }

239]

240 }

241 }

242]

243 }

244 }

Listing B.5: Words to filter Tweets on in final execution

1 Trump

2 Donald Trump

3 Presidency of Donald Trump

4 Protests against Donald Trump

5 Donald Trump 2017 presidential inauguration

6 The Trump Organization

7 United States presidential election 2016

8 Presidential transition of Donald Trump

9 Trump International Hotel Las Vegas

10 Melania Trump

11 President

12 Barack Obama

13 Donald Trump

14 Bill Clinton

15 George W. Bush

16 Assassination of John F. Kennedy

17 Ronald Reagan

18 Franklin D. Roosevelt

19 John F. Kennedy

20 Abraham Lincoln

21 America

22 United States

23 North America

24 Latin America

25 Americas

26 South America

27 Bank of America

28 Captain America

29 Indigenous peoples of the Americas

30 Club America

128

Appendix C

Project Code

C.1 GitHub Projects

Spark Application: https://github.com/phrida/MasterProject

Kafka Producer: https://github.com/phrida/KafkaProducer

C.2 Data Generator

Data Generator: https://github.com/phrida/DataGenerator

Data Set: https://www.dropbox.com/s/flut7z4zmxxljo0/rawTweetsFinal.
json?dl=0

C.3 Specialization Project

Specialization Project: https://www.dropbox.com/s/8sfjvmo41ls8982/

fordypningsprosjekt-final.pdf?dl=0

129

https://github.com/phrida/MasterProject
https://github.com/phrida/KafkaProducer
https://github.com/phrida/DataGenerator
https://www.dropbox.com/s/flut7z4zmxxljo0/rawTweetsFinal.json?dl=0
https://www.dropbox.com/s/flut7z4zmxxljo0/rawTweetsFinal.json?dl=0
https://www.dropbox.com/s/8sfjvmo41ls8982/fordypningsprosjekt-final.pdf?dl=0
https://www.dropbox.com/s/8sfjvmo41ls8982/fordypningsprosjekt-final.pdf?dl=0

	Abstract
	Sammanfattning
	Preface
	Acknowledgements
	List of Figures
	List of Listings
	List of Tables
	Acronyms
	Introduction
	Background
	Motivation
	Research Goals
	Research Strategy
	Contributions
	Scope and Limitations
	Thesis Structure

	Background Theory
	Big Data
	Streaming Data
	Social Media Analysis
	Visualization
	Metrics for Measuring Relevance
	Technologies

	Related Work
	Related Frameworks to Handle Big Data
	Related Methods to Handle Streaming Data
	Related Methods to Visualize Streaming Data
	Classification and Ranking of Microblogs

	Ranking of Results from Continuous Queries
	Domain
	Task
	Theoretical Solution
	Implementation

	Experiments and Results
	Goals with Experiments
	Evaluation Methodology
	Experiments
	Results

	Evaluation and Discussion
	Evaluation of Results
	Discussion

	Conclusion and Future Work
	Conclusion
	Future Work

	Bibliography
	Appendices
	Figures
	Listings
	Project Code
	GitHub Projects
	Data Generator
	Specialization Project

