

Innlevert Ålesund, 31.05.2018

Bachelor thesis

IE303612 – Bachelor Thesis

Event Sourcing

Candiate numbers:

10014

10058

Totalt antall sider inkludert forsiden: 87

Obligatorisk egenerklæring/gruppeerklæring

Den enkelte student er selv ansvarlig for å sette seg inn i hva som er lovlige

hjelpemidler, retningslinjer for bruk av disse og regler om kildebruk.

Erklæringen skal bevisstgjøre studentene på deres ansvar og hvilke

konsekvenser fusk kan medføre. Manglende erklæring fritar ikke studentene fra

sitt ansvar.

Du/dere fyller ut erklæringen ved å klikke i ruten til høyre for den enkelte del 1-6:

1. Jeg/vi erklærer herved at min/vår besvarelse er mitt/vårt eget arbeid,

og at jeg/vi ikke har brukt andre kilder eller har mottatt annen hjelp

enn det som er nevnt i besvarelsen.

2. Jeg/vi erklærer videre at denne besvarelsen:

• ikke har vært brukt til annen eksamen ved annen

avdeling/universitet/høgskole innenlands eller utenlands.

• ikke refererer til andres arbeid uten at det er oppgitt.

• ikke refererer til eget tidligere arbeid uten at det er oppgitt.

• har alle referansene oppgitt i litteraturlisten.

• ikke er en kopi, duplikat eller avskrift av andres arbeid eller

besvarelse.

3. Jeg/vi er kjent med at brudd på ovennevnte er å betrakte som fusk og

kan medføre annullering av eksamen og utestengelse fra universiteter

og høgskoler i Norge, jf. Universitets- og høgskoleloven §§4-7.

4. Jeg/vi er kjent med at alle innleverte oppgaver kan bli

plagiatkontrollert.

5. Jeg/vi er kjent med at NTNU vil behandle alle saker hvor det foreligger

mistanke om fusk.

6. Jeg/vi har satt oss inn i regler og retningslinjer i bruk av kilder og

referanser på biblioteket sine nettsider

Publiseringsavtale

Studiepoeng: 20

Veileder: Hao Wang

Fullmakt til elektronisk publisering av oppgaven

Forfatter(ne) har opphavsrett til oppgaven. Det betyr blant annet enerett
til å gjøre verket tilgjengelig for allmennheten (Åndsverkloven §2).

Alle oppgaver som fyller kriteriene vil bli registrert og publisert i Brage
med forfatter(ne)s godkjennelse.

Oppgaver som er unntatt offentlighet eller båndlagt vil ikke bli publisert.

Jeg/vi gir herved NTNU i Ålesund en vederlagsfri rett til å
gjøre oppgaven tilgjengelig for elektronisk publisering: ja nei

Er oppgaven båndlagt (konfidensiell)? ja nei
(Båndleggingsavtale må fylles ut)
- Hvis ja:
Kan oppgaven publiseres når båndleggingsperioden er over? ja nei

Er oppgaven unntatt offentlighet? ja nei
(inneholder taushetsbelagt informasjon. Jfr. Offl. §13/Fvl. §13)

Dato: 31.05.2018

NTNU ÅLESUND PAGE I
BACHELOR THESIS

PREFACE

When we read the problem description for this thesis, we heard of event sourcing for the

first time. We saw event sourcing as an interesting concept as an alternative to CRUD,

which we had used for all previous programming projects where data storage was

involved.

Our goal for the thesis was to find out how you can use event sourcing in a modern

system. We wanted to understand what advantages event sourcing has over CRUD.

While also looking into what new problems and complexities arise when developing an

event sourced system.

We learned a lot while working on this thesis. We ended up with a distributed system,

using microservice architecture and event-driven architecture for our solution. These

were very interesting concepts that were somewhat new to us. We had heard about them

before, but never developed a system using them. We think we ended up with a very

interesting solution and many new experiences to take with us for future projects.

We would like to thank DRIW for a very interesting assignment that we have learned a

lot from. We also want to thank our supervisor Hao Wang for valuable insight, advice,

and feedback we got along the way.

NTNU ÅLESUND PAGE II
BACHELOR THESIS

ABSTRACT

Most systems today are typically using CRUD operations to handle creating, reading,

updating, and deleting data. The problem with CRUD is that it every time you update or

remove data you lose important business information.

This is a problem that can be solved with event sourcing. Event sourcing provides a full

audit log of everything that has happened in a system. This provides traceability for the

all changes that has happened. It also fits naturally into an event-driven architecture,

which helps you keep a system loosely coupled. CQRS is often combined with event

sourcing, this gives flexible read models when it comes to structure and scaling.

The thesis is inspired and supported by DRIW who provided the problem description. The

problem was to develop an example architecture for an order system based on event

sourcing, implementing a prototype of this, and figuring out what benefits event sourcing

brings in this kind of system.

The result of our thesis is a prototype system, using event sourcing for data storage. This

system handles simple business logic involving orders, picking, and invoicing. The

prototype has been developed as a distributed system using microservice and event-

driven architecture. Apache Kafka is used for publish/subscribe messaging and to provide

a persistent message queue in the prototype implementation. All events saved in the

event store is made available on Kafka topics that other application can subscribe to. The

events received from Kafka is used to change the state of the receiving system or to

update read models. This prototype also includes simulator applications that simulate

user interaction with the system.

Event sourcing is a very interesting concept and combining it with CQRS it allows you to

disconnect the write model from the read model. This can help avoid the difficulties of

mapping normalized database rows to objects, by having read models in the format you

require. If you have complex queries that are difficult to perform on your read model you

can always create a new read model optimized for this query.

Event sourcing is more complex than the CRUD approach to data storage. Therefore,

CRUD is most likely the better option if you don’t require an audit log and are not

developing an event-driven system. Event sourcing combined with CQRS gives an

eventually consistent read model. This is not strictly bad but is something the developer

need to be aware of.

We ended up with a solid prototype of a distributed ordering system by using event

sourcing and CQRS along with microservice and event-driven architecture.

The prototype received very positive feedback from DRIW. We found two benefits of

event sourcing that interested them. That it provides traceability and it fits naturally into

an event-driven architecture.

NTNU ÅLESUND PAGE III
BACHELOR THESIS

TERMINOLOGY

Abbreviations

API – Application Programming Interface

CAP – Consistency, Availability, Partitioning tolerance

CLOB – Character Large Object

CQRS – Command, Query, Responsibility, Segregation

CQS – Command, Query, Separation

CRUD – Create, Read, Update, Delete

CSV – Comma-Separated Values

DDD – Domain Driven Design

DTO – Data Transfer Object

FK – Foreign Key

HDD – Hard Disk Drive

HTTP – Hypertext Transfer Protocol

JDBC – Java Database Connectivity

JPA – Java Persistence API

JSON – JavaScript Object Notation

JVM – Java Virtual Machine

LRU – Least Recently Used

MQTT – Message Queuing Telemetry Transport

NoSQL – Non-relational SQL

ODBC – Open Database Connectivity

OOP – Object Oriented Programming

PK – Primary Key

POJO – Plain Old Java Object

REST – Representational state transfer

RFC – Request for comment

RPC – Remote Procedure Calls

SQL – Structured Query Language

SSD – Solid State Drive

UUID – Unique Universal Identifier

VM – Virtual Machine

NTNU ÅLESUND PAGE IV
BACHELOR THESIS

TABLE OF CONTENT

PREFACE ... I

ABSTRACT .. II

TERMINOLOGY ... III

ABBREVIATIONS ... III

TABLE OF CONTENT .. IV

FIGURE LIST .. VIII

LISTINGS .. IX

1 INTRODUCTION ... 1

1.1 LIMITATIONS .. 1

2 THEORY ... 2

2.1 SOFTWARE ARCHITECTURE ... 2
2.1.1 Monolithic architecture ... 2
2.1.2 Microservice Architecture ... 2
2.1.3 Event-Driven Architecture .. 3

2.2 DESIGN .. 5
2.2.1 Domain-Driven Design ... 5
2.2.2 Command-query separation .. 5
2.2.3 Command-query responsibility segregation .. 5
2.2.4 Design Patterns ... 7

2.2.4.1 Visitor .. 7
2.2.4.2 Façade .. 7
2.2.4.3 Builder ... 7
2.2.4.4 Dependency Injection .. 7

2.3 DISTRIBUTED SYSTEM AND PROCESSING .. 8
2.3.1 Distributed Systems ... 8
2.3.2 CAP Theorem .. 8
2.3.3 Consistency ... 8

2.3.3.1 Strong consistency ... 8
2.3.3.2 Weak consistency .. 8
2.3.3.3 Eventual Consistency .. 8

2.3.4 Serialization/Deserialization ... 8
2.3.4.1 JavaScript Object Notation .. 9

2.3.5 Unique Universal Identifier .. 9
2.3.6 Communication ... 9

2.3.6.1 Hypertext Transfer Protocol .. 9
2.3.6.2 Representational State Transfer ... 10
2.3.6.3 Messaging system .. 10

2.3.7 Two general problem .. 11
2.4 STORAGE AND CACHING... 12

2.4.1 Cache replacement algorithms .. 12
2.4.1.1 Least Recently Used .. 12

2.4.2 Databases .. 12
2.4.2.1 Relational database .. 12
2.4.2.2 Graph database .. 13
2.4.2.3 Index .. 13

2.4.3 Create Read Update Delete ... 13
2.4.4 Event Sourcing .. 14

2.4.4.1 Advantages .. 16
2.4.4.2 Disadvantages .. 16
2.4.4.3 Schema evolution .. 17
2.4.4.4 Projections ... 17

2.5 EXISTING SOLUTIONS ... 17
2.5.1 Relational database transaction log .. 18
2.5.2 Learning analytics ... 18

NTNU ÅLESUND PAGE V
BACHELOR THESIS

2.5.3 Analysis of learning analytics system .. 18
2.5.4 Evaluation of NoSQL databases for event store implementation .. 18
2.5.5 Applying CQRS to increase performance .. 18
2.5.6 Flight Scheduling .. 18
2.5.7 Akka ... 18
2.5.8 Eventuate ... 18
2.5.9 Event Store .. 18
2.5.10 NEventStore... 19
2.5.11 Blockchain ... 19

3 MATERIALS AND METHOD .. 20

3.1 METHOD .. 20
3.1.1 Project planning .. 20
3.1.2 Literature review ... 20

3.2 MATERIALS .. 20
3.2.1 Java ... 20

3.2.1.1 Generics ... 20
3.2.1.2 Enum ... 21

3.2.2 IntelliJ IDEA ... 21
3.2.3 Gradle ... 21
3.2.4 Git.. 21
3.2.5 Jira .. 21
3.2.6 Office 365 OneDrive ... 21
3.2.7 VM AutoDeploy ... 21
3.2.8 Postman ... 21
3.2.9 Postgres ... 22
3.2.10 Kafka ... 22

3.3 LIBRARIES AND FRAMEWORKS ... 22
3.3.1 Spring framework .. 22
3.3.2 Spring Data JPA ... 23
3.3.3 Spring Framework JDBC .. 23
3.3.4 Spring Web .. 24
3.3.5 Spring Integration Kafka ... 24
3.3.6 Lombok .. 24
3.3.7 OkHttp ... 24
3.3.8 Jackson .. 24
3.3.9 Liquibase ... 25
3.3.10 Postgres JDBC driver ... 25
3.3.11 H2 Database.. 25

4 RESULTS .. 26

4.1 SOFTWARE ARCHITECTURE .. 26
4.1.1 Microservice architecture ... 27
4.1.2 Event-driven architecture .. 27

4.2 AGGREGATES ... 28
4.2.1 Customer ... 28
4.2.2 Product .. 28
4.2.3 Order ... 29
4.2.4 Stock Unit .. 30
4.2.5 Pick job ... 31
4.2.6 Invoice ... 32

4.3 KAFKA ... 33
4.4 EVENTS .. 34
4.5 LIBRARY .. 35
4.6 EVENT STORE ... 36

4.6.1 Structure .. 36
4.6.2 Database table .. 37
4.6.3 Querying the event store ... 38

4.6.3.1 JPA .. 39
4.6.3.2 JDBC ... 39

NTNU ÅLESUND PAGE VI
BACHELOR THESIS

4.6.4 Snapshot .. 40
4.7 PROJECTION ... 42
4.8 CQRS .. 43

4.8.1 Commands ... 43
4.8.2 Queries .. 43

4.9 CONFIGURATION .. 44
4.10 SIMULATOR .. 46

4.10.1 Random timings of scheduled commands .. 47
4.10.2 Random timings in pick simulation ... 47
4.10.3 Address register .. 48

4.11 EVENT STORE APPLICATIONS ... 49
4.11.1 Order system ... 49
4.11.2 Warehouse system ... 49
4.11.3 Invoice system ... 51

4.12 PROJECTION APPLICATIONS .. 52
4.12.1 Hash map projections.. 52
4.12.2 Relational database projection ... 52

4.13 SIMULATOR APPLICATIONS .. 53
4.13.1 Customer command simulator... 53
4.13.2 Product command simulator ... 53
4.13.3 Order command simulator .. 53
4.13.4 Pick command simulator ... 53

4.14 PICK ALLOCATION SERVICE .. 54
4.15 SYSTEM DIAGRAM .. 55

5 DISCUSSION .. 56

5.1 SOURCES .. 56
5.2 TECHNOLOGICAL CHOICES ... 57

5.2.1 Programming language (Java) ... 57
5.2.2 PostgreSQL ... 57
5.2.3 Kafka ... 57

5.3 PROJECT ... 57
5.4 REFLECTION ... 57

5.4.1 Kafka event store ... 57
5.4.2 How small to make a microservice? .. 57
5.4.3 JPA or JdbcTemplate .. 57
5.4.4 Alternative event implementation (Polymorphism over visitor) .. 58
5.4.5 Evolving data and schema ... 58
5.4.6 Lots of different opinions about ES and CQRS ... 58
5.4.7 Snapshot interval ... 58
5.4.8 Simple simulator implementations .. 58

5.5 PROBLEMS ... 59
5.5.1 Two generals problem (event store and Kafka)... 59
5.5.2 Synchronization and race conditions .. 59
5.5.3 Get all rest calls .. 59
5.5.4 Event duplication .. 59
5.5.5 Product and stock unit primary key .. 60

5.6 IMPROVEMENTS ... 60
5.6.1 Split up applications .. 60
5.6.2 Creating a more generic solution .. 60
5.6.3 Business logic and validation .. 60
5.6.4 Production configuration profile ... 60
5.6.5 In memory aggregate cache .. 61
5.6.6 Async commands ... 61
5.6.7 Ensuring required values have been set .. 61
5.6.8 Add façade in front of AggregateRepository and EventHandler ... 61
5.6.9 Store events “forever” in Kafka .. 61
5.6.10 Initial data of an aggregate ... 62
5.6.11 Avoid mixing asynchronous and synchronous... 62
5.6.12 Persistent projections .. 62

NTNU ÅLESUND PAGE VII
BACHELOR THESIS

5.6.13 Smoke testing ... 62

6 CONCLUSION.. 63

7 REFERENCES .. 64

APPENDIX .. A-1

A. DATABASE CONFIGURATION .. A-1
B. DIAGRAMS ... B-1

NTNU ÅLESUND PAGE VIII
BACHELOR THESIS

FIGURE LIST

Figure 1: CQRS model. ... 6
Figure 2: CQRS with event sourcing. ...14
Figure 3: Illustration of how events can be applied to aggregates.15
Figure 4: Aggregate rehydration activity diagram. ..15
Figure 5: High-level context model of the system without simulator applications.26
Figure 6: The Customer aggregate class. ...28
Figure 7: The Product aggregate class. ..28
Figure 8: The Order aggregate class diagram. ..29
Figure 9: StockUnit aggregate class diagram. ..30
Figure 10: PickJob aggregate class diagram. ..31
Figure 11: Invoice aggregate class. ..32
Figure 12: The visitor pattern is used to find the concrete type of an event.34
Figure 13: A generic event store class diagram. ...36
Figure 14: Activity diagram describing the rehydration process.37
Figure 15: The event database entity. ...37
Figure 16: Snapshot database entity. ..40
Figure 17: Generic projection application architecture. ..42
Figure 18: The general structure of the simulator application.46
Figure 19: The states of the order aggregate. ..49
Figure 20: The states of the pick job aggregate. ...50
Figure 21: The states of pick lines in the pick job aggregate.50
Figure 22: The states of the invoice aggregate. ..51
Figure 23: Pick simulator picking activity diagram. ...54
Figure 24: System diagram..55
Figure 25: Command handling in event store. .. B-1
Figure 26: Consuming events in projection. ... B-2
Figure 27: Simulator command generation, continues in Figure 28. B-3
Figure 28: Simulator command scheduling, follows Figure 27. B-4
Figure 29: Aggregate rehydration. .. B-5
Figure 30: Aggregate rehydration with snapshotting. .. B-6

NTNU ÅLESUND PAGE IX
BACHELOR THESIS

LISTINGS

Listing 1: Example of an enum. ..21
Listing 2: Script used to create the Kafka topics, linux version.33
Listing 3: Abstract Event class..34
Listing 4: Abstract CustomerEvent class with visitor pattern.34
Listing 5: JPQL Query that returns all events with a specified aggregate id.39
Listing 6: EventRecord entity that maps to the event table.39
Listing 7: Converting EventRecord entities to event. ...39
Listing 8: Query for loading all events for a given aggregate.40
Listing 9: Query for loading all events for a given aggregate, after a given timestamp. .40
Listing 10: Class that describes a Snapshot. ..41
Listing 11: Method that will save a snapshot. ...41
Listing 12: A Kafka listener consuming an event belonging to a customer aggregate.42
Listing 13: Example of a command class. ..43
Listing 14: A REST controller method that changes the name of a customer.43
Listing 15: A REST controller method that returns a list of all orders.43
Listing 16: A REST controller method that returns a specific instance of a resource.44
Listing 17: A REST controller method that returns all orders with a specific status.44
Listing 18: Example configurations from the order command simulator application.44
Listing 19: PropertyValues class used to load custom properties.45
Listing 20: How the values used to genereate a random time is generated.47
Listing 21: Methods used for generating a random time in milliseconds.47
Listing 22: Method used to generate a random normally distributed value.47
Listing 23: Eager loading of products. ...52

NTNU ÅLESUND PAGE 1
BACHELOR THESIS

1 INTRODUCTION

This bachelor thesis was written at NTNU in Ålesund in collaboration with DRIW. DRIW is

a local software development company that develops systems for wholesale distributors.

Their products include order system, warehouse management, transport management,

etc. They have started development of a new product named TRACE, and in that regard,

they are considering if event sourcing can be beneficial in a new order module they are

developing.

The goal of the thesis project is to develop an example architecture for an order system,

based on event sourcing. The solution should include a prototype implementation of a

system based on this architecture, that can handle simple business logic. The business

logic should include ordering of products, picking of products for orders and invoicing of

orders. The implementation should also include a simulation of user interaction with the

system.

After our meeting with DRIW about this assignment we interpreted it as that they also

wanted to know about any advantages or disadvantages we could find when applying

event sourcing to a system like this.

The thesis is structured in such a way that it will give the reader insight into how event

sourcing works in general and an explanation of various concepts and theory we have

used or discussed. Followed by a description of the different tools and technologies that

you would need to understand in order recreate the solution.

After that, we will look at which approaches we used to build the event sourced system,

which results we got from building this system, what challenges we encountered, a

retrospective on what we could’ve done differently, and then we will end the thesis with a

conclusion.

We presume that the reader has some basic knowledge of software development and

object-oriented programming. The thesis has been written according to those

presumptions.

1.1 Limitations
As already mentioned the business logic of the system should be simple. This could result

in some unforeseen problems with implementing more complex business logic.

NTNU ÅLESUND PAGE 2
BACHELOR THESIS

2 THEORY

In this section, we will go through some of the theory that will be necessary to have

some knowledge of to reproduce our results.

2.1 Software Architecture
The software architecture of a system tells you something about how a system should be

organized and how the overall structure should be designed. It describes a high-level

structure of a system and its components. More specifically it shows the relationships

between components and how they interact with each other. (1)

Which software architecture to use is decided in the early stages of the development

process, this will help the developers get a good overview of the system. Good software

architecture will also make it easier to communicate with the stakeholders, it lowers the

overall cost, makes the software easier to maintain and debug, and makes your system

more scalable.

We will now go through some of the architectures we have used or discussed in the

thesis. We are going to look at some of the advantages and disadvantages of each one

and see how they compare to each other.

2.1.1 Monolithic architecture

A monolith is an application built as a single unit running as a single executable. (2)

It can be difficult to implement and maintain a monolithic architecture as the code base

grows. However, it does have some performance advantages. It can communicate with

the different parts of the application with method calls, shared memory or message

passing. This gives much lower latency than HTTP and RPC calls.

Some problems of monolithic architecture are: (3)

1. Large monoliths can be difficult to maintain and evolve.

2. Can suffer from dependency hell where adding and updating libraries can cause

compilation issues or make the program operate unexpectedly

3. Any change in one module of a monolith requires restarting the whole application.

This can result in considerable downtime. This can also result in slow down

development and testing.

4. Deployment may be suboptimal due to conflicting requirements of different

modules. This can result in a one size fits all configuration which can be expensive

for some modules.

5. Monoliths can limit scalability. One way to handle additionally incoming requests is

to create a new instance of the monolith to split the load. But traffic may only

cause stress to some modules, in which case it is inefficient to create new

instances of modules that don’t require it.

6. Monoliths create a technology lock-in. Modules are bound to use the same

language and framework

2.1.2 Microservice Architecture

Microservice architecture is somewhat contradictory to the monolith architecture. A

monolith keeps all functionality in a single large executable, while microservices split

functionality up into many smaller executables. Microservices solve some of the problems

mentioned about monolithic architecture, in the previous section: (3)

1. Microservices implement a limited amount of functionality. Making their code base

small.

2. Microservices can gradually transition to a new version. The new version could run

alongside the old version and let other services can gradually transition to using

the new service

NTNU ÅLESUND PAGE 3
BACHELOR THESIS

3. Changing a module of a microservice architecture does not require a complete

restart of the whole system. Only the affected module needs to be restarted. The

small services also help speed up restart which causes development and testing to

speed up.

4. Microservices naturally work well with containerization. The developers have more

freedom when it comes to configuring the environment the service will run in.

5. Scaling a microservice architecture does not require duplicating all modules of the

system. Developers can deploy and remove instances of specific services

depending on load.

6. The microservice module is only “locked in” by the technology used for

communication between them. Otherwise, developers can freely develop each

service in different languages and frameworks.

A microservice is a small application that can be run independently, scaled independently

and tested independently. It should have a single responsibility, only do one thing, and

be easily understood. (4)

The microservices architecture is based on having your application run as small

independent services that can communicate with each other. This architecture will make

your applications easier to scale and faster to develop. This is an alternative approach to

the monolithic architecture which runs all its services in a single container or executable.

Another benefit of this architecture is that it can provide better reliability for your

system. Let’s say one of your services fail or is temporarily unavailable. The rest of your

system should be able to continue functioning, albeit with somewhat reduced

functionality until the failing service is available again.

As mentioned microservices can help scale your system by simplifying creation and

removal of application instances. It can also help gradually transition to new versions,

but this will come at the cost of more complex deployments. Some of this can be

alleviated by using continuous tools.

Designing the boundaries of microservices can be difficult, but it is important to get them

right to avoid having tightly coupled microservices. If the bounds of the microservices are

not designed carefully, you could also end up with a distributed monolith. A distributed

monolith gives problems of both microservices and monoliths.

2.1.3 Event-Driven Architecture

When developing microservices and distributed systems you need coordination and

communication between the applications and services. This is where event-driven

architecture can be useful.

An event-driven architecture is a software architecture where applications publish, detect

and respond to events. An event represents a change in the state of the system. The

architecture includes producers, processors, responders and communication links. (5)

This approach can be used to produce events for state changes. When the state of

something in your system is updated, a new event is created. That event will then be

published to a topic which works as a logical separation of messages, subscribers of that

topic will be notified of this change. A service may do some work when it receives the

notification of a state change. Then it may publish another event to its subscribers that a

state has changed. This will cause the system to be driven by events and hence the

name event-driven.

Event-driven architecture can be used to solve consistency problems between distributed

and microservice applications where using two-phase or distributed transactions is

difficult or impossible because of lack of support in databases. (6) By using the event-

driven architecture, applications can use events to tell other systems that they need to

NTNU ÅLESUND PAGE 4
BACHELOR THESIS

perform a certain task. If the task fails, they can publish an event to signal the failure so

that other listening systems can make changes necessary to recover from this failure.

One of the advantages of using an event-driven architecture is that you have a loosely

coupled system. This means that the components and services of your system can have

little knowledge of each other. An important benefit you get from loose coupling is the

system becomes much more scalable. (7)

The loose coupling of an event-driven system can also be problematic as it becomes

difficult to see the flow of the events in the system as it grows. The only way to figure

out the flow is to monitor the system. This can make it hard to modify and debug the

system. (8)

NTNU ÅLESUND PAGE 5
BACHELOR THESIS

2.2 Design
In this section, we will first take a look at software development approaches followed by

a selection of design patterns we discuss later in the report or have applied in our

solution. Software design approaches are important to understand the relationships

between modules and what functionality each module has.

2.2.1 Domain-Driven Design

The idea behind domain-driven design (DDD) is to design software applications in such a

way that it automates or emulates a real-world process or system. The software

development team will work together with a domain expert to come up with a conceptual

description of the system using a ubiquitous language (UL). (9)

This conceptual description is a model that the system developers can use to build

software, while still being able to collaborate with anyone who is involved in the project

by discussing and making complex design decisions.

Among several modeling terms, Eric Evans describes an aggregate as, “…a cluster of

associated objects that are treated as a unit for the purpose of data changes…”. (9)

An aggregate thus defines the consistency boundaries for groups of related entities.

When you request or store aggregates you want to make sure that transaction isn’t

crossing aggregate boundaries. (10)

2.2.2 Command-query separation

The term CQS was first introduced by Bertrand Meyer. (11) CQS is based on having

command and query methods. Only command methods can create side effects like

changing the state of objects. Query methods should only return information and they

should not create any side effects.

CQS can be implemented in OOP languages by having getters that return values and

does not change state. The setters will have a void return type and only change the

state.

2.2.3 Command-query responsibility segregation

CQS and CQRS are similar concepts, but CQRS is applied on a higher level. CQS talks

about separating command and query methods. While CQRS talks about separating

command and query messages and having separate objects to handle these messages.

(12) For example, splitting a CustomerService class into a CustomerWriteService and

CustomerReadService. Where commands are handled by the CustomerWriteService and

queries are handled by the CustomerReadService. Udi Dahan and Greg Young were the

first to mention CQRS. (12,13)

NTNU ÅLESUND PAGE 6
BACHELOR THESIS

Figure 1: CQRS model.

With CQRS there are separate read and write models. Commands received will be

validated against the write data store, if the command is valid it will be applied to the

write data store to mutate its state. When the changes have been applied to the write

data store the changes will be published as a message or event to the read data stores

which can update their state based on the changes to the write data store. See Figure 1

for a visualization.

This separation allows you to build multiple read models which can be optimized for the

queries your system requires. These read models can have a different structure from the

write model. This allows for more efficient queries and avoids conversions of normalized

database rows into objects which can be difficult. You can keep the write model

normalized for optimized writes while you have read models that are denormalized to

allow for efficient queries. (14) It also allows you to scale the read side of the system

independently of the write side. This can be advantageous in a system that has more

read operations performed than write operations.

Commands could also be handled asynchronously. If for some reason the write data

store is down or have other problems, the commands can be stored in a queue and

processed whenever the write data store comes online again. (13) However, this does

require some way of notifying users the result of the command when it eventually gets

processed. This could be solved with web sockets.

CQRS can add several benefits in some systems, but it doesn’t fit everywhere. In many

systems, it works well to have the same data store for write and read operations. In

these cases, it can add a lot of complexity if you attempt to apply CQRS to them. (15)

The messaging style between the write and read model makes the read model eventually

consistent which is something the developer must consider when developing a system

with CQRS.

NTNU ÅLESUND PAGE 7
BACHELOR THESIS

2.2.4 Design Patterns

Design patterns help solve common problems in software development. Applying design

patterns saves time by reusing solutions others have found before you. It can also help

create a better understanding among the developers as it creates a common vocabulary

for certain classes and objects that help developers recognize the purpose of classes and

objects.

2.2.4.1 Visitor

The visitor pattern lets you define a new operation to perform on an object structure

without altering the classes of objects it operates on. When dealing with polymorphic

types the visitor pattern can be useful if you need to perform operations based on the

concrete type of an object. The visitor pattern works well when the type of operation to

perform is changed, but it can be difficult to maintain if the class structure changes often.

Adding new elements to the class structure requires updating all implementation of the

visitor. The visitor can also accumulate state as it visits elements. (16)

2.2.4.2 Façade

The façade pattern is a way of hiding the complexity of multiple subsystems by

implementing a façade class that will provide a simple interface that the client can use to

access the system. Apart from simplifying and unifying subsystems, the façade pattern

also great for avoiding tightly coupled clients and subsystems. (17)

2.2.4.3 Builder

The builder pattern is a way of separating the construction of a complex object from its

representation, this will allow the same construction process to create different

representations. (16) The benefit of this pattern is that it allows encapsulation of how a

complex object is constructed by allowing the objects to be constructed in multiple steps.

This also means that you can hide the representation of the product from the client and

because the client only sees an abstract interface you can easily swap product

implementation. (17) The builder pattern can also involve validation of the parameter

value passed to it. To ensure that the required parameters are set and the parameter

values set are allowed. (18)

2.2.4.4 Dependency Injection

Dependency injection is a technique where an object declares its dependencies and

another object, or a framework will inject the required dependencies when the object is

instantiated. This technique enables loose coupling because the object that has its

dependencies injected does not need to know about the creation of the objects that are

injected.

NTNU ÅLESUND PAGE 8
BACHELOR THESIS

2.3 Distributed system and processing
In this section, we will describe what a distributed system is and what technologies are

being used to handle communication between components on a network.

2.3.1 Distributed Systems

Distributed systems are systems where multiple computers are involved by passing

around messages to each other over a network. (19) Some of the benefits you get when

developing distributed systems are resource sharing, openness, concurrency, scalability

and fault tolerance. These benefits also create some of the main design issues that need

to be considered, because these systems are larger and more complex to design. (1)

2.3.2 CAP Theorem

In 2000 Eric Brewer stated that a distributed data store could only provide two of the

following 3 guarantees: (20)

• Consistency

o All reads occurring after an update should see the updated state.

• Availability

o All requests will receive a response.

• Partition tolerance

o The system should continue to operate even when messages are delayed

or even dropped between the nodes in the data store.

It was later shown to be impossible to provide all three guarantees. (21)

2.3.3 Consistency

One way of dealing with the CAP theorem is to relax the systems consistency guarantees.

This involves reducing the consistency guarantees from a strong consistency to a weak

consistency.

2.3.3.1 Strong consistency

After an update is performed any read access should return the updated value. (22)

2.3.3.2 Weak consistency

After an update is performed it is not guaranteed that a read access will return the

updated value. There is an inconsistency window, which is the period between an update

is performed and the moment when any observer is guaranteed to see the updated

value. (22)

2.3.3.3 Eventual Consistency

Eventual consistency is a form of weak consistency. It makes the guarantee that if no

new updates are performed on the data, it will eventually reach the state of the last

update performed. (22) Before the last update is performed the data is said to be stale.

2.3.4 Serialization/Deserialization

When working with a distributed system, you often have to pass objects around to the

different applications in the system. This involves serialization and deserialization of the

object being sent.

Serialization is the process of converting data structures or object state into a format

that can be stored or transmitted. It is also possible to later reconstruct the serialized

data in the same or another computer environment, also known as deserialization.

Two common serialization formats are XML and JSON. These formats are language

NTNU ÅLESUND PAGE 9
BACHELOR THESIS

independent which is very useful because you don’t have to depend on a specific

programming language or platform.

2.3.4.1 JavaScript Object Notation

JSON stands for JavaScript Object Notation is a lightweight-interchange format that is

easy for humans to read and write. It’s also easy for machines to parse and generate

which makes it great for transmitting and storing data. (23)

A JSON formatted string can be created using two different kinds of structures. The first

structure is a collection of name-value pairs that define a JSON object. The second one is

an ordered list of values, which is known as a JSON array. So then, a JSON string can be

a list of objects in the form of an array or it can be an object that contains a list and so

forth.

2.3.5 Unique Universal Identifier

UUID stands for Universal Unique Identifier and can be used for generating a value that

is almost certainly going to be unique. It is a 128-bit number that is made up of 32-

hexadecimal digits. This makes UUIDs a great alternative to use as an identifier in a

database because we know in advance that the chance of two UUIDs being the same is

negligible. (24)

In distributed systems, it’s difficult to make sure that you’ll generate unique numbers

when hundreds or thousands of values must be generated every minute or second.

However, with UUIDs you can be confident that a generated value is going to be unique,

a good example of how this could be useful is that means you don’t have to check with

e.g. a database if the id already exists. You can simply just set the unique identifier of

that object or entity on the client side when the object is created.

2.3.6 Communication

When developing distributed applications, we need to facilitate communication between

the applications. In this section, we will mention some common types of communication

for these types of systems.

2.3.6.1 Hypertext Transfer Protocol

“HTTP is an application-level protocol with the lightness and speed necessary for

distributed, collaborative, hypermedia information systems.” (25)

The HTTP protocol is built on top of the TCP protocol for reliable transport. It is based on

a client-server architecture. Where the client sends an HTTP request, and the server

answers the request with an HTTP response. It is possible to have an application acting

as both a client and a server at the same time.

Each request sent by a client defines a method. Methods indicate what action the

receiver should perform on a resource identified by the URI included in the request.

There are several different methods that can be used, but some of the more common

ones are: (25)

• GET

o Requests a resource identified by a given URI.

• POST

o Requests that the server to accept the data included in the request.

• PUT

o Requests that the server accepts the data included in the request if the

data already exists with the given URI the data in the request should be

considered a modified version that the server is requested to accept.

NTNU ÅLESUND PAGE 10
BACHELOR THESIS

• DELETE

o Requests that the server deletes the data identified by the given URI.

A developer does not need to follow these method definitions strictly. But if the system

developed should be publicly accessible, it makes it easier to understand for others, if

developers use the methods as defined in the HTTP RFC.

Every response message contains a status code, this code is used to indicate what the

status of the request is. The status code is defined by a three-digit number and there are

5 different categories for these response codes: (25)

• 1xx: Informational – Not in use

• 2xx: Success, the request was successful

• 3xx: Redirection, Further action must be taken to satisfy the request

• 4xx: Client Error – Request has bad syntax or cannot be performed

• 5xx: Server Error – The server failed to fulfill an apparently valid request

The first digit of the code defines what category the code belongs to. Each status code

consists of the status code integer and a reason phrase. Example: 404 – Not Found. This

code is a client error code. It is mostly used to tell the client that the resource defined in

the request, could not be found. The reason phrases defined in the RFC are only

recommendations, it is not required to use them as defined. However, the category

definitions of a status code are not optional. (26)

2.3.6.2 Representational State Transfer

Some of the earlier standards for web services were heavyweights. They had much more

functionality than many systems required, and there was a lot of overhead involved in

creating, processing and interpreting the messages. A more lightweight approach was

developed, this was the REST architecture. (1)

The REST stands for Representational State Transfer. (27) The architecture was

developed alongside the HTTP protocol. REST uses the HTTP protocol for transferring

data and uses the URI, methods and status codes built into HTTP.

A REST web service allows clients to perform stateless operations on the resources it

provides access to. When the REST service receives a request, it will look at the URI and

method defined in the HTTP request to decide what to with the request. The URI is used

to identify what resource the action should be applied to and the method is used to

identify what action to take on the given resource.

A benefit of using REST interfaces is reduced coupling between systems. The client

systems and the server systems can evolve independently if they stay consistent with the

defined interface.

2.3.6.3 Messaging system

While HTTP and REST work well for many use cases, it is not the best solution for

communication between microservices and distributed applications. Using synchronous

HTTP calls can even be an anti-pattern in some cases. (28) Asynchronous HTTP through

polling is possible but can result in many unnecessary HTTP calls being made.

Another solution to this kind of communication is to use a messaging system. This

enables asynchronous communication between services. Some messaging systems also

provide persistent message queues which can be used to buffer messages for a service if

the service goes down. When the service comes back up it will start reading from the log

of buffered messages and continue its operation.

NTNU ÅLESUND PAGE 11
BACHELOR THESIS

2.3.7 Two general problem

The two general problem is a thought experiment named by Jim Gray. (29) It involves

coordinating the actions of two generals when they are communicating over an unreliable

link. It is similar to the Byzantine generals problem described by Lamport et al. (30)

The problem involves coordinating an attack on a city between two or more generals.

They can only communicate with each other by messengers. These messengers have a

small change of getting lost after they leave their camp to deliver a message to another

camp.

With two generals named X and Y. A messenger leaves X to deliver a message to Y. To

be sure that the message reached Y, a messenger will travel back to X to confirm this. If

this messenger is lost, X is not sure if Y got the initial message and Y is not sure if X got

the confirmation. If the confirmation reaches X, Y is still not sure if X got the

confirmation. Therefore, X must send a confirmation back to Y. This will just keep going

and both generals will be uncertain if the other general got his message.

There is a simple proof that no fixed length protocol exists: Let P be the

shortest such protocol. Suppose the last messenger in P gets lost. Then

either this messenger is useless or one of the generals doesn't get a

needed message. By the minimality of P, the last message is not useless

so one of the general doesn't march if the last message is lost. This

contradiction proves that no such protocol P exists.

- Jim Gray, Notes on Data Base Operating Systems p465. (29)

NTNU ÅLESUND PAGE 12
BACHELOR THESIS

2.4 Storage and caching
Most applications and systems store data. Often by persisting the data in files or

databases. Data can be copied to a faster storage medium than the original copy, this is

called caching.

Examples of caching can be moving data from an HDD or SSD to memory or storing data

retrieved over network communication to an HDD or SSD for faster access next time it is

required.

2.4.1 Cache replacement algorithms

In both hardware and software caches are often implemented to increase performance.

In hardware, a cache is a fast memory that stores copies of data. Accessing this cache is

more efficient than accessing the original data. (31) Caches can also be implemented in

software. For example, you can keep data loaded from a file or a database in some data

structure in application memory for more efficient access if used repeatedly.

There is usually some limitation to the size of a cache. Therefore, you can end up in

situations where you need to evict data from the cache, to make room for new data. To

help decide what data to evict we use a cache replacement algorithm.

2.4.1.1 Least Recently Used

The LRU algorithm is a cache replacement algorithm based on evicting the data that has

not been used for the longest time. This requires having some timestamp associated with

the data. The timestamp is updated for every access to the specific data entry. The

timestamp is used when the cache is full to decide what data to evict if a data entry

needs to be added. The algorithm finds the oldest entry by timestamp and removes the

entry from the cache.

2.4.2 Databases

A database is an organized collection of data. It allows you to structure data using

different kinds of database models. Something all the models have in common is that

pieces of information are linked together somehow so that the computer quickly and

easily can access the data you’re looking for. (32)

2.4.2.1 Relational database

The relational database was invented by Edgar F. Codd at IBM in 1970. The data stored

in tables which is made up of columns and rows with data stored inside it. It is then

indexed so that it will be easier to find relevant information. Through its lifecycle the data

can be read, changed/updated and/or deleted. (33)

Additionally, each row has a unique identifier called a primary key. These unique

identifiers can be used to link together rows in different tables and thereby creating a

relationship between tables.

Each table has a single primary key which can be used to define the relationship between

tables. When a table row is connected to a row in another table, it has a foreign key

column that references the primary key of the table in connects to.

In a database table, each column must have a name and a datatype. While the name

doesn’t have to be specified in a specific way, there are conveniences for it. The name

describes which attribute the column will have and the datatype describes what kind of

data is going to be stored in it. The column’s type defines what kind of values it can

contain. For instance, if the column is supposed to contain numbers, it will be defined as

such and an error will be generated if you try to insert a new record that doesn’t contain

exclusively numbers in that specific column.

NTNU ÅLESUND PAGE 13
BACHELOR THESIS

Below is a list of the datatypes we have used:

• UUID – Universal unique identifier. Formatted as a 32-digit hexadecimal number.

• nvarchar – A Unicode string variable, with a max size between 1 to 4000

characters.

• CLOB – Character large object. Used to store large character data, such as XML or

JSON strings.

• timestamp – A unique number that stores exact time and date for when a

database entry was created or updated.

A table can have multiple foreign keys, but only one primary key. This can create

different kinds of relationships between tables known as "one-to-many", "many-to-one",

"one-to-one" or "many-to-many".

An example of a "one-to-many" relationship could be the relationship between a

customer table and an order table. A single row in the customer table would be able to

link to multiple rows in the order table, but not the other way around. Each order would

only have one link back to the customer table, and this is all handled using primary- and

foreign keys.

To access, update and manage data in a relational database management system

(RDBM) we use Structured Query Language (SQL). It’s a simple language that was

designed at IBM by Donald D. Chamberlain and Raymond F. Boyce after they had learned

about Edgar F. Codd’s relational model. (34)

A benefit of the relational database is that it has been around for quite some time now

which means that it’s easier to understand when sufficient standards exist for the

approach. The database language (SQL) used to query data has ISO level standards that

specify the grammar and usage, in addition to the language being easy to use and learn.

One of the problems with relational databases is large join queries. As the database

grows and more relationships are created, the join queries become difficult to perform

efficiently. To make these kinds of queries more efficient a graph database could be

used.

2.4.2.2 Graph database

A graph database uses the graph data structures which consists of vertexes/nodes,

edges/relationships, and properties. The vertices can be viewed as an entity such as a

student, a class or a subject. The edges can be viewed as relationships between the

students, classes they’re attending or subjects they are studying. Graph databases are

thus built from entities and the relationships that exist among them. (35)

In a relational database, you strictly must follow the data structure of your data tables.

Some of the benefits of using a graph database are that you are allowed more flexibility

towards the data structure, which allows you to easily change the structure without

having to make several changes in other nodes. (35) They also provide fast queries

based on the relationships between nodes and complex interactions between them.

2.4.2.3 Index

An index is a data structure that enables faster searching in a database at the cost of

additional writes and storage space to maintain the index data structure. (36)

2.4.3 Create Read Update Delete

The acronym CRUD is short for created, read, update, and delete. These are the four

basic functions of a persistent storage, such as a relational database. These functions or

command are used to get data into and out of a database. (37) This model allows you to

create data, read data from storage, update the current data with new values or delete

existing data. (38)

NTNU ÅLESUND PAGE 14
BACHELOR THESIS

2.4.4 Event Sourcing

Event Sourcing is an alternative to CRUD. It can be described as a pattern or an

architecture which allows you to capture all changes that have been made to a system as

a sequence of events. Below is a closer look at what an event is, as described by Betts D

et al.: (14)

• Events are something that has happened in the past.

• In event sourcing an event is immutable, it cannot be changed or undone. To

nullify an event, you could create a new event that counteracts it.

• An event has a single publisher and can have multiple consumers that may

receive the events.

• When using event sourcing, an event usually describes some business intent. The

name of the event is typically described in the past tense.

Figure 2: CQRS with event sourcing.

When using CQRS with event sourcing an event is typically a result of a command. The

command term in this context comes from the CQRS pattern described in 2.2.3 and is

defined as an operation that effects some change to the system.

It is not required to use CQRS with event sourcing, but the two patterns do however

accompany each other nicely. In most event sourced systems without CQRS, you will

encounter a problem when trying to query for a specific resource, that is because the

event store stores the changes made to the system and not the current state. (39) For

example, querying for all customers named Bob. To find all customers named Bob you

would need to load all customer events. Then rehydrate all customer aggregates, so that

you could check if their name is Bob in their current state. With CQRS you can build read

models that keep the current state and use these for such queries.

NTNU ÅLESUND PAGE 15
BACHELOR THESIS

Figure 3: Illustration of how events can be applied to aggregates.

When the event sourcing system receives a command, the command is validated for

required values and business requirements. If the command passes validation it will

result in one or more events being created. These events will be applied to an aggregate

which is defined in the command. Aggregates stem from domain-driven design as

described in 2.2.1. In event sourcing, each aggregates state is built up from all the

events belonging to it.

Figure 4: Aggregate rehydration activity diagram.

The events belonging to an aggregate that have been saved to the event store should

never be updated or removed. Instead of removing or updating events to correct for

errors you should create a new event that counteracts the effects of the problematic

NTNU ÅLESUND PAGE 16
BACHELOR THESIS

event. (40) But there are cases where updating events may be useful, for example when

migrating events to a new schema. (41)

When validating a command, it may be necessary to check the current state of an

aggregate. For example, you probably don’t want an order line to be added to an order

that has already been processed and sent to a customer. To check for things like this you

need to rehydrate the aggregate. The process of rehydrating the aggregate involves

querying the event store for all events belonging to the aggregate sorted from the oldest

event to the newest. Then you apply all these events to an empty aggregate. The result

is the current state of the aggregate. (14) See Figure 4 for an activity diagram describing

the rehydration process.

Depending on how you define your aggregates and how long the system has been

running, the rehydration process can become slower over time. Even if the events are

small and the operations to apply them are performed quickly, it may start to become a

bottleneck in your system if you have thousands of events that must be applied to an

aggregate to check the current state of it. To solve this problem, you can implement

snapshotting.

A snapshot is the state of an aggregate at a certain point in time, that have been

persisted or cached in memory. Using snapshots, you can avoid having to load the full

event stream of an aggregate. Instead, you load the events that have occurred after the

time the snapshot was made. This way you load the aggregate state from a snapshot and

only apply events that occurred after the timestamp or version of the snapshot. (40)

2.4.4.1 Advantages

Event sourcing is useful to have because your applications current state will always be

build up from a sequence of past events. That means you will be able to build up your

applications state to any point in time, which will allow you to easier test and debug a

system because you can always go back and recreate what has already happened.

A feature of event sourcing known as smoke testing can be used to simulate the use of a

real system to make sure that it will work properly before it’s used in production. If you

have an event store with all the changes leading up to the current state, you can rerun

those events and if you get the state you were expecting you can be confident that the

tested system will work in production as well.

Another major benefit is that you are going to have full traceability of a system which

supports business intelligence. You will be able to analyze the data you have and reveal

interesting patterns in your business analysis. Furthermore, you'll be able to improve

certain aspects of your business intelligence and correct errors that previously weren't

visible.

When everything that happens in the system is made up of events, it would also be

natural to have the system be driven by these events. That is where the event-driven

architecture that is described in chapter 2.1.3 comes in.

2.4.4.2 Disadvantages

We must deal with the eventually consistent nature of the system. If command handling

is implemented asynchronously, other applications using the system must be aware of

this and should be developed to handle error situations that can occur after they have

sent a command to the event sourced system. In an order system, situations can occur

where two users place an order for an item that there is only one left off in stock. If the

orders are placed around the same time, the first users’ command will reach the event

store and is accepted. But the eventually consistent read models may not have updated

with this information before the second user submit their command. This command will

be rejected at the event store and the application will have to handle this. Either by

displaying a message in the UI or by sending an email notifying the user that the order

could not be placed.

NTNU ÅLESUND PAGE 17
BACHELOR THESIS

Event sourcing is more complex than CRUD. Most developers have worked with systems

using CRUD, while event sourcing may not be as well-known as CRUD.

The event store does not have an explicit schema for events. In an SQL database, there

is an explicit schema to follow with defined values and data types. In an event store, all

events of an aggregate are stored. These events can differ in what values they hold and

what datatypes are used. Therefore, the event stores schema is implicit. It’s up to the

event store to be aware of how events have been stored. This makes schema evolution

and data conversion more difficult. (42)

2.4.4.3 Schema evolution

There are a couple of techniques that can be used to handle schema evolution for event

store, as described by Overeem et al.: (41)

• Multiple versions

o This technique uses multiple versions of an event. A version number is

used to extend the event structure, which can be read by all the event

listeners. The event listeners should contain knowledge of different

versions of events to support them. The event store will remain intact

because older version won't be changed.

• Upcasting

o This technique uses a component known as an upcaster that will change an

event before giving it to the application. This differs from the multiple

versions technique because the event listeners are not aware of the

different versions of events. The listeners only need to support the latest

version because the upcaster changes the event.

• Lazy transformation

o This technique also uses an upcaster to change the events before they are

given to the application. Additionally, the result of the change is stored in

the event store. The change is therefore only applied once for every event.

On following reads, the change is no longer necessary.

• In place transformation

o This technique is typically used with NoSQL databases as described by

Betts et al. (42). This technique involves reading the data from an event

store, transforming it to use the new schema and then write the updated

data back to the database.

• Copy and transformation

o This technique involves copying and changing events before sending them

to a new store. This means that while the new event store is created, the

previous event store will stay intact.

2.4.4.4 Projections

A projection is used to build the current state of your application from a stream of

events. It takes the event stream and projects it to a structural representation. A

projection can be projected to any structural representation. For example, a relational

database like Postgres or MS SQL, or a graph database such as Neo4j. (43)

2.5 Existing solutions
We didn’t manage to find any existing solutions that specifically involved implementing

an order- and warehouse system using event sourcing. However, we did find some

examples of applications using event sourcing and CQRS together, or similar concepts in

other types of systems.

NTNU ÅLESUND PAGE 18
BACHELOR THESIS

2.5.1 Relational database transaction log

Relational databases use transaction logs to keep track of changes and to recover from

crashes. This is similar to event sourcing in many ways, but events capture intent along

with what happened. (14)

2.5.2 Learning analytics

Stein Kjetil Sørhus at NTNU used event sourcing in his master thesis about applying

learning analytics to better understand how students handle OOP programming

exercises. Event sourcing was used to store events that were collected from student

running automated tests while working on programming exercises. The data was then

used for analysis. (44)

2.5.3 Analysis of learning analytics system

Andreas Haugen Pedersen at NTNU analyzed the system made by Stein Kjetil Sørhus

mentioned in 2.5.2. The analysis was done to check if the learning analytics system

followed event sourcing and CQRS principles. (45)

2.5.4 Evaluation of NoSQL databases for event store implementation

Johan Rothsberg at Linköping university explored the possibility of using NoSQL

databases in an event store implementation. He compared an existing relational database

implementation with an implementation using a Neo4j graph database. He concluded

that the existing implementation using a relational database performed better than the

NoSQL alternative. (38)

2.5.5 Applying CQRS to increase performance

Rajković et al. show that the CQRS pattern can be applied to improve response time and

reduce the amount of data transferred in a medical information system. (46)

2.5.6 Flight Scheduling

Debski et al. developed a prototype flight scheduling system using event sourcing and

CQRS. They used Akka for message passing between entities; Scala language for

development; Apache Cassandra for the event store implementation and Apache Kafka

as a persistent message queue. They also performed some scalability tests on the

applications read and write parts. (47)

2.5.7 Akka

Akka is a framework for developing distributed systems using the actor model. It uses an

event sourcing model for persisting state of actors in the system. Their implementation

also has snapshot capability. (48)

2.5.8 Eventuate

Eventuate is a framework for developing asynchronous microservices. They have two

versions, one is Eventuate Tram which uses JDBC or JPA for persistence and the other

being Eventuate ES which uses event sourcing. (49)

2.5.9 Event Store

Event Store is an open source event store implementation of an event store. It has a

.NET and HTTP API. (50) There is also a JVM API on GitHub that works with Scala and

can be used from Java by using tools from Akka. (51)

NTNU ÅLESUND PAGE 19
BACHELOR THESIS

2.5.10 NEventStore

A library for abstracting different storage implementations when event sourcing is used

for data storage. (52)

2.5.11 Blockchain

The concept of blockchain technology is very similar to how the event sourcing pattern

works. You have a type of storage or ledger that is made up of a chain of events and you

can only append events to the chain. (53)

The difference is that in the blockchain technology, that we know from the

cryptocurrency market, is that the ledger that stores all the events is public and that the

authenticity of the ledger continuously must be verified by what is called a miner. The

miners will take a block of events and try to solve a mathematical problem based on a

cryptographic hash algorithm.

This part was previously done partly by individuals with huge computing power, but

today large computer centres are beginning to take over this duty. (54)

The way a blockchain works is that each event is run through a cryptographic hash

function which produces a unique value that is stored in the succeeding event. This

means that the hash value will be changed if any changes are made to that event.

This creates a link between nodes since the hashed value is stored in the event, if you

change one event the preceding event will also be changed. So, if you want to change

something, you would have to change every single event ever made on that chain. This

makes the blockchain very secure. (55)

NTNU ÅLESUND PAGE 20
BACHELOR THESIS

3 MATERIALS AND METHOD

In this section, we will look at the software development methods, materials, libraries,

and frameworks which we have used in our thesis.

3.1 Method
A brief look at the software development methods we have used. Our team only

consisted of two people, so it was difficult to strictly follow any of the methods we are

familiar with as they are suited better for larger teams.

3.1.1 Project planning

We have used the agile software development management method SCRUM to plan our

project. SCRUM is achieved by having a group of three to nine developers develop small,

concrete updates to a system in short iterations called sprints. The length of a sprint

should be between one to four weeks. (1)

SCRUM defines a product- and a sprint backlog. The product backlog contains a list of

issues that need to be completed in the lifetime of the project, while the sprint backlog

contains a set of issues that have been taken from the backlog.

The goal of each sprint is to complete as many issues as possible before the sprint is

completed. The items have been completed and tested can be put out in production.

While the issues that did not get completed can be returned to the backlog and be used

in a future sprint.

3.1.2 Literature review

A literature review is a way of showing the reader that you have good control over the

subject. That is done by carefully surveying the literature the thesis is based on. You

have to be critical of the information that’s been gathered and make sure that the

sources are trustworthy.

When you have analyzed the gathered material and compared the different points of

view, you will gain a deeper understanding of the subject you are working with and that

will ultimately contribute to a better result.

3.2 Materials
The tools we have used in our thesis are all software development and managing tools.

3.2.1 Java

Java is an object-oriented programming language. It enables us to write code in a

human-readable format which later can be compiled into bytecode that can be executed

by the Java Virtual Machine (JVM).

Java can run on many platforms and operating systems. Java will run on any system that

has a JVM implementation. These systems can be anything from household appliances to

server machines. This can save development time when an application is required to run

on different operating systems.

Java is one of the most used languages when it comes to developing distributed web

applications and services. For these kinds of applications frameworks like Java EE and

Spring are often used. According to tiobe.com Java is currently the most popular

programming language. (56)

3.2.1.1 Generics

Generics were introduced in Java Development Kit 5 (JDK) and it was described by

Oracle as a way of allowing “…a type or method to operate on objects of various types

NTNU ÅLESUND PAGE 21
BACHELOR THESIS

while providing compile-time type safety.”, this is very convenient because it makes it

allows you to reuse code. Type variables, classes, interfaces, methods, and constructors

can all be declared as a generic.

3.2.1.2 Enum

An enum is a data type used for representing a variable as a fixed set of predefined

constants. The natural convention for the naming of an enum type’s field is to write them

in uppercase letters, this is because they are constants.

Listing 1: Example of an enum.

3.2.2 IntelliJ IDEA

IntelliJ is a software development tool. It is an integrated development environment

(IDE) which supports several languages, technologies, and frameworks that can be used

in the software development process. (57) It works well when developing multiple

application at the same time by using the run dashboard which gives a simple way to

start, stop and check the state of multiple applications running at the same time.

3.2.3 Gradle

This is a tool used for automating the building process by declaring the project

configuration in a separate file. In the Gradle file, you declare which plugins, libraries or

dependencies your application needs to execute. (58)

3.2.4 Git

Git is a version control system that you can use to track the changes that have been

made to source code. Git allows you to make changes to a file and easily distribute those

changes among the people involved. (59) An example of a version control hosting service

would be Bitbucket, which is a web-based solution for development projects that use Git.

3.2.5 Jira

Jira is a project management tool that is used to track issues. With Jira, you can have a

list of tasks, issues or bugs that you wish to solve during the lifetime of your project. You

can then add a set of these issues to your teams’ weekly workload. The people involved

will then be able to see what issues have been solved, which are currently in progress

and which ones are yet to be solved. (60)

3.2.6 Office 365 OneDrive

A cloud service for students that allows you to store and edit files in the cloud. This tool

is provided by NTNU’s SharePoint website and it’s a good way of collaborating when

writing a report or thesis.

3.2.7 VM AutoDeploy

VMDeploy is a service provided by the LAB at NTNU in Ålesund to host virtual machines

that will run on the university’s server. We used it to develop and test our applications.

3.2.8 Postman

This is an API development environment that you can use for sending HTTP requests to

test your application. You can send any type of HTTP request and receive a response in

either XML or JSON. (61)

public enum Day {

 MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY, SATURDAY, SUNDAY

}

NTNU ÅLESUND PAGE 22
BACHELOR THESIS

3.2.9 Postgres

This is an open source object-relational database system that uses and extends the SQL

language combined with many features that safely store and scale most complicated data

workloads. (62)

3.2.10 Kafka

Apache Kafka is a distributed messaging service. Its basic functions are to publishing

messages to topics, this is done by a producer. and subscribing to topics to be notified of

new messages to the topic. Kafka can be distributed over servers in a cluster and can be

configured to replicate data over multiple nodes for fault tolerance. Each partition of the

system will have a leader, other nodes called followers will copy the leader’s data. If the

leader were to fail one of the followers is “promoted” to be the leader. Kafka will attempt

to distribute the leader role for different partitions to different servers to spread the load.

There are two roles for applications using the Kafka system, producer, and consumer. A

producer publishes messages to a given topic and consumers “consume” messages on a

given topic. (63)

3.3 Libraries and frameworks
A list of the libraries and frameworks we have used.

3.3.1 Spring framework

Spring Framework is an open source Java application framework. It was created in 2003

because of the complexity of the early J2EE applications. It is not a competitor to Java

EE, but it integrates some selected specifications from Java EE. (64)

Spring is meant to handle all the “plumbing” involved in creating large enterprise

applications and letting the developer focusing on implementing business logic. Creating

an application that receives REST requests and reads or writes to a database can be done

quickly with some configuration through properties files and annotations in the java code.

Spring has an inversion of control container. The container keeps track of beans, which

are objects whose lifecycle are managed by Spring. This container is used to perform

dependency injection.

There is a version of Spring called Spring Boot. This version comes with a built-in tomcat

server. This simplifies running Spring applications as you don’t need to deploy the

application to an application server. The application can be built to a jar file that contains

all necessary files and dependencies, including the Tomcat application server.

Spring Boot annotation that we have used:

• @ConfigurationProperties – Annotation used for externalized configuration. Used

to inject configuration property values into a class or bean.

• @PostConstruct – Annotation used to define a method as initialization method

which will be executed after dependency injection is done.

• @Autowired – Annotation for bean injection that tells Spring where an injection

needs to happen. It allows you to skip configuration because that is handled by

Spring.

• @Component – Annotation used to detect and configure beans. Spring will scan

through your project and mark this as a bean.

• @Repository – Annotation used to indicate that a class is a repository. A

repository is “a mechanism for encapsulating storage, retrieval, and search

behavior which emulates a collection of objects”. (9) This annotation also includes

the @Component annotation.

NTNU ÅLESUND PAGE 23
BACHELOR THESIS

• @EnableScheduling – Annotation used for detecting @Scheduled annotations and

enabling a background task executor.

• @Scheduled – Annotation used for configuring and scheduling when a method can

be executed.

• @EnableAsync – Annotation used for detecting and enabling asynchronous

method execution.

• @Async – Annotation used for indicating that a method will run asynchronously on

a separate thread.

3.3.2 Spring Data JPA

The Spring Data JPA is a way of accessing data in a relational database. JPA stands for

Java Persistence API which is a set of definitions, protocols, and tools that will help you

develop your software application. This means that the Spring Data JPA has all the

building blocks in place so that a developer quickly and easily can map database tables

and entries to java objects.

Instead of writing SQL queries you can use annotations that will tell the JPA framework

which class objects will be mapped to tables a relational database and which attributes

an entry might have. By using this information, the JPA framework will perform ORM

mapping of database rows. Below is a common list of annotations that we have used in

our thesis:

• @Entity

o Tells JPA that this class will be mapped to a table.

• @Id

o Tells JPA that the following variable is a primary key.

• @GeneratedValue

o Tells JPA that the following variable will be an auto-generated value.

Typically used with the @Id annotation to generate a primary key.

• @ManyToOne

o Tells JPA that the class will have a many-to-one relationship with the

specified table.

• @OneToMany

o Tells JPA that the class will have a one-to-many relationship with the

specified table.

Spring provides the developer with high-level abstractions from the database in form of

repositories. These repositories are generic interfaces that the developer can extend.

When extending the interface, the developer provides the type of the entity and its

identifier through generics. (65)

3.3.3 Spring Framework JDBC

Spring Framework JDBC is a lower abstraction over the database than using a JPA

framework. It lets the developer take care of defining connection parameters, specifying

SQL statements, declaring parameters and providing parameter values and performing

operations on each row of the result set. While Spring still takes care of opening and

closing connections, preparing and executing statements, iteration over the result set,

transactions, and exceptions. (66)

The Spring JdbcTemplate is used to connect to a database and execute SQL queries. It

makes it easier for the developer by handling the creation and release of resources, as

NTNU ÅLESUND PAGE 24
BACHELOR THESIS

well as making it simpler to execute SQL queries or updates, checking for errors and

handling exceptions.

3.3.4 Spring Web

This is a Spring module that provides support to help you create web applications. It

makes use of different annotation such as @RestController, @RequestMapping,

@RequestParam and @PathVariable, which very useful when you are developing a

RESTful web service. Below is a short list of most common Spring Web annotations:

• @RestController – Handles HTTP request, this annotation bundles together the

@Controller and @ResponseBody annotation.

• @RequestMapping – Tells Spring which type of HTTP request method the specified

method should map to. Can also be replaced with @GetMapping, @PostMapping,

@PutMappnig or @DeleteMapping.

• @RequestParam – Tells Spring to retrieve the URL query parameter and map it to

the method argument.

• @PathVariable – Tells Spring to retrieve the URL path parameter and map it to

the method argument.

3.3.5 Spring Integration Kafka

The Spring Integration Kafka is an extension to Spring which provides support for core

concepts that will help you develop an event-driven Kafka application. One of the main

features is the @KafkaListener annotation, this will mark a method to be the target of a

Kafka message listener on the specified topics.

3.3.6 Lombok

Project Lombok focuses on trying to avoid writing repetitive boilerplate code. Getters,

setters, constructors, hashCode and equals methods can be generated by Lombok.

Below you can see a short list of some of the most used annotations:

• @NoArgsConstructor – Tells Lombok to create an empty constructor for the class.

• @Getter – Tells Lombok to create getter methods for all the fields of the class.

• @Setter – Tells Lombok to create setter methods for all the fields of the class.

• @Data – This annotation does a couple of things, it tells Lombok to use a bundle

of features which include some of the most common annotations. Those are the

@Getter, @Setter, @ToString, @EqualsAndHashCode and

@RequiredArgsConstructor annotations.

3.3.7 OkHttp

OKHttp is an open source project designed to be an efficient HTTP client. It can be used

to send HTTP requests and read their response. It allows all requests to the same host to

share a socket, reusing connections and threads will reduce latency and saves memory.

(67)

3.3.8 Jackson

Jackson is an API used to process JSON for Java. Its main functionality is to serialize

POJO to JSON strings and to deserialize JSON strings into POJO. (68) This functionality is

provided by the ObjectMapper class from the Jackson library. The ObjectMapper then

takes care of the conversion of the java objects from and to JSON strings. (69)

NTNU ÅLESUND PAGE 25
BACHELOR THESIS

3.3.9 Liquibase

Liquidbase is a tool used for database version control. Typically, you would choose to use

this tool when you expect your database schema to change over time. You will have a

change-log file which defines a database schema and the changes made in it over time.

You can then append changes to the file and thus have a complete record of all the

changes which have been applied to your schema. Another useful feature is that it

generalizes some SQL syntax which makes it easier to switch database implementation.

(70)

3.3.10 Postgres JDBC driver

The Java Database Connectivity (JDBC) is an API that defines how a client may access a

database. (71) The Postgres JDBC driver is then the driver you need to connect your

Java application to the Postgres database management system. (72)

3.3.11 H2 Database

H2 is a database management system for relational databases. It can be embedded into

Java applications. The database can be configured to run in-memory which means that

the data is volatile and therefore it will not be stored on the disk. This is a good feature

to have when you are developing and testing your application. Some of the advantages

of using the H2 Database include extremely fast queries, it supports SQL and JDBC API,

and it can be used with the PostgreSQL ODBC driver. (73)

NTNU ÅLESUND PAGE 26
BACHELOR THESIS

4 RESULTS

The system has been developed as a distributed system with microservice- and event-

driven architecture. Events are published to Kafka and REST requests are used for

communication between the applications. For data storage, we use event sourcing. The

applications have been split up to separate different functionality into smaller and more

manageable applications. We ended up with a total of 14 applications in our system.

4.1 Software architecture

Figure 5: High-level context model of the system without simulator applications.

Figure 5 shows a high-level context model of the system, each node represents a

microservice application. Some of the projection applications have been left out to make

it easier to visualize.

Following the CQRS pattern, we have separated the write and read models. The

components on the left side make up the command side of the system. These

applications receive commands through REST requests and validate these commands

against the data in their event store. If the command pass validation the changes

requested by the command are applied to the event store by producing one or more

events. When events are applied to the event store they are also published to their

respective Kafka topic.

The query side of the system subscribe to the Kafka topics they are interested in and

receive the events published to these topics. These events are used to change the data in

the read model according to the events published by the command side. These read

models can be queried through REST interfaces.

NTNU ÅLESUND PAGE 27
BACHELOR THESIS

4.1.1 Microservice architecture

The system has been split into multiple applications. These applications have been

separated based on domain and functionality. The different applications can be grouped

together in four categories:

• Event store

• Projection

• Service

• Simulator

An event store application receives commands from services and simulators. These

commands will be validated against the events in the event store to check if the

command can be applied or if it should be rejected. If a command passes validation, one

or more events will be generated and saved to the event stores database. The events

created represents the changes in state, requested by the command. When the events

have been saved to the database they will also be published to the respective Kafka

topic. The event store makes up the write model of the CQRS pattern.

Projection applications make up the read models of the CQRS pattern. A projection

application is subscribed to one or more Kafka topics based on what type of events the

read model is interested in. The projection uses the events it receives from Kafka to build

its read model. Information in the read model can then be queried through REST

interfaces. The projection application decides by itself how the read model should be

structured and how it stores it.

A service uses information it receives by querying projection to apply commands to an

event store application.

A simulator application simulates user interaction with the system. The simulators will

read from the projections and create commands based on the current state of the

system. These commands are then sent to the event store applications by using REST

requests.

The service and simulator can look quite similar in the way they work, but the simulator

is meant to simulate user input to the system, while a service could perform some

scheduled task that produces some commands as input based on the state of the system.

Using a microservice architecture gives us the benefit of smaller more manageable code

bases for each application. It can also be beneficial to have the projections as

microservices as you could just deploy multiple instances of the projections to scale up

the read side of the system.

4.1.2 Event-driven architecture

The event store applications publish events to Kafka when they perform different

operations on aggregates. Other applications can listen to events and perform actions

based on the events it consumes.

As described in 2.1.3 event-driven architecture gives our system a low coupling between

the different event store applications and projections. If one of these applications were to

go offline it would have little to no effect on other applications. During this kind of

downtime, Kafka will work as a buffer for the events that occur so that when the

application comes online again it can start processing any events that have occurred

during the downtime.

Kafka becomes a very central part of our architecture, as seen in Figure 5. If Kafka were

to fail it would halt all communication between the different parts of the system. But as

mentioned in 3.2.10 Kafka is designed to be distributed over multiple nodes for fault

tolerance. This means that Kafka is very reliable because of the low probability that all

the distributed Kafka nodes will fail simultaneously.

NTNU ÅLESUND PAGE 28
BACHELOR THESIS

4.2 Aggregates
For our system we ended up with 6 aggregate types that we will go through in this

section.

4.2.1 Customer

Figure 6: The Customer aggregate class.

The customer aggregate represents a customer in the system and contains:

• Id

• Name

• Address values

4.2.2 Product

Figure 7: The Product aggregate class.

The product aggregate represents a product that can be ordered through the system. It

contains:

• Id

• Name

• Quantity

• Price

NTNU ÅLESUND PAGE 29
BACHELOR THESIS

4.2.3 Order

Figure 8: The Order aggregate class diagram.

The order aggregate represents an order placed by in the system. It contains:

• Id

• Customer id

• Address

• Status

• Order lines

The customer id is a UUID value that references the customer the order belongs to. The

status value represents the status of the order, these status values are defined in the

OrderStatus enum. An enum is used to ensure type safety during compilation.

The list of order lines contains all the order lines of the order. The order line object has a

UUID reference to the product ordered and an integer value for the quantity.

NTNU ÅLESUND PAGE 30
BACHELOR THESIS

4.2.4 Stock Unit

Figure 9: StockUnit aggregate class diagram.

The stock unit represents a product in the warehouse. It contains:

• Id

• Quantity

• Requests

The id UUID value is created to match the id of a product aggregate. The quantity value

keeps track of the quantity currently available for picking. The requests map keeps track

of requests for picking the stock. This was implemented so we only allow picking to start

if the quantity is high enough.

The stock request holds references to the pick job and pick line that caused the request

and the quantity needed.

NTNU ÅLESUND PAGE 31
BACHELOR THESIS

4.2.5 Pick job

Figure 10: PickJob aggregate class diagram.

The PickJob class represents a pick job in the warehouse. Each pick job references the

order aggregate it belongs to. The pick job also references the id of the picker that is

working on.

The status value represents the status of the pick job, the values are defined in the

PickJobStatus enum to ensure type safety during compilation.

The pickLines map contains all the pick lines that must be completed to complete the

pick job. Each pick line corresponds to an order line in the order aggregate that created

the pick job.

The PickLine also has an enum value that represents the status of the pick line.

NTNU ÅLESUND PAGE 32
BACHELOR THESIS

4.2.6 Invoice

Figure 11: Invoice aggregate class.

The invoice aggregate represents an invoice for an order, the order it belongs to is

referenced in the orderId field. The invoice has a status field whose values are defined in

an enum to ensure type safety during compilation. The invoice has a set of invoice lines

that corresponds to an order line in the order the invoice belongs to.

NTNU ÅLESUND PAGE 33
BACHELOR THESIS

4.3 Kafka

Listing 2: Script used to create the Kafka topics, linux version.

The Kafka topics were set up so that there is one topic for each aggregate type. And all

events belonging to an aggregate type are stored in the same topic. This results in each

topic having multiple event types. Which we must deal with when deserializing the JSON

received from Kafka.

cd ~/development/kafka_2.11-1.0.0/bin

kafka-topics.sh --create --zookeeper localhost:2181 --replication-factor

1 --partitions 1 --topic orders

kafka-topics.sh --create --zookeeper localhost:2181 --replication-factor

1 --partitions 1 --topic customers

kafka-topics.sh --create --zookeeper localhost:2181 --replication-factor

1 --partitions 1 --topic products

kafka-topics.sh --create --zookeeper localhost:2181 --replication-factor

1 --partitions 1 --topic pick-jobs

kafka-topics.sh --create --zookeeper localhost:2181 --replication-factor

1 --partitions 1 --topic stock-units

kafka-topics.sh --create --zookeeper localhost:2181 --replication-factor

1 --partitions 1 --topic invoices

echo "Topics created"

sleep 3s

NTNU ÅLESUND PAGE 34
BACHELOR THESIS

4.4 Events

Listing 3: Abstract Event class.

The event classes all inherit from an abstract event class that defines fields for all the

values that are required for all events.

Listing 4: Abstract CustomerEvent class with visitor pattern.

Each aggregate type has their own abstract event class that all events for the aggregate

inherit from. This abstract class defines an abstract method called visit that enables the

visitor pattern.

The visitor pattern is used when we need to deal with the concrete type of an event

object, which is one of the ways to use it as described in 2.2.4.1. When we deserialize

events for an aggregate from the event store, we get the events as objects of the

aggregates abstract event type.

The @JsonTypeInfo annotation is used to handle polymorphic deserialization. The class of

the event is included in the JSON object as a property named “@class”. This helps

Jackson figure out the concrete class of the serialized event when performing

deserialization.

Figure 12: The visitor pattern is used to find the concrete type of an event.

Figure 12 shows an example of event class inheritance for the customer aggregate.

@JsonTypeInfo(use = JsonTypeInfo.Id.CLASS, include = JsonTypeInfo.As.PROPERTY,

property = "@class")

public abstract class Event {

 private UUID id;

 private UUID aggregateId;

 private Instant timestamp;

 /** Constructors etc... **/

@JsonTypeInfo(use = JsonTypeInfo.Id.CLASS, include = JsonTypeInfo.As.PROPERTY,

property = "@class")

public abstract class CustomerEvent extends Event {

 public abstract void accept(CustomerEventVisitor visitor);

 /** Constructors etc... **/

NTNU ÅLESUND PAGE 35
BACHELOR THESIS

4.5 Library
We created a commons library that contains classes that were reusable in multiple

microservice applications. This helped keep different classes and interfaces consistent

between the systems. When modifying classes that multiple applications use we don’t

have to change it in multiple locations.

Example of classes in commons library

• Events

o Event data structures

o Event handler interfaces

o Event visitor interfaces

• Commands

o Command data structures

o Command handler interfaces

• Aggregate classes

• Utility

o TimeUtil

o JsonParser

o HttpClient

• API

o Projection API

o Command API

NTNU ÅLESUND PAGE 36
BACHELOR THESIS

4.6 Event store
We created our own event store implementation using a Postgres database.

4.6.1 Structure

Figure 13: A generic event store class diagram.

See Figure 25 for a sequence diagram describing the process of handling commands.

On the top level, there is a REST interface for receiving commands. Commands are

received in an HTTP POST request that contains the command as a JSON object in the

body of the request. The REST controller class will take this request and deserialize it to a

java object and pass into the command handler.

When the command handler receives a command, it takes the aggregate id included in

the command and asks the aggregate repository to rehydrate the aggregate.

See Figure 14 for an activity diagram of the rehydration process. To perform the

rehydration the aggregate repository queries the event repository for all events for the

given aggregate id, ordered by timestamp in ascending order to get the oldest events

first. The event repository performs this query on the underlying PostgreSQL database,

and return the resulting events to the aggregate repository. The aggregate repository

then creates an instance of a rehydration visitor and passes it an empty aggregate. The

rehydration visitor is then used to apply all the events to the aggregate, by changing the

state of the aggregate object. The result of this process is an aggregate object with

values according to the current state of the aggregate. The command handler then

validates the command it received against the aggregates state. To check if it can apply

the command without breaking business rules or leaving the system in an inconsistent

state. If the command passes validation, events are created to satisfy the changes

requested in the command. These events are then passed on to the event handler. The

NTNU ÅLESUND PAGE 37
BACHELOR THESIS

event handler takes the events it receives and saves them to the event store. If

successful, the events are also published to the appropriate Kafka topic.

Figure 14: Activity diagram describing the rehydration process.

4.6.2 Database table

See Database configuration for the Liquibase XML configuration used to set up the

database with event and snapshot tables and indexes.

Figure 15: The event database entity.

The table used to hold the events has 6 columns:

• id

o A UUID column that acts as an id for each event. This is the primary key

of the table

• aggregate_id

NTNU ÅLESUND PAGE 38
BACHELOR THESIS

o A UUID column that indicates what aggregate the event belongs to.

• aggregate_type

o A nvarchar column that indicate what type of aggregate the event belongs

to, Ex: CUSTOMER, ORDER, PRODUCT, etc. The values in this column

were string representations of values in that AggregateType java enum.

• data

o A CLOB column that contains the event serialized into text, our system

used JSON as serialization format.

• type

o A nvarchar column that indicates what type of event is stored in the row.

The value for this row was created by using the simple class name from

java. Ex: someEvent.getClass().getSimpleName().

• timestamp

o A timestamp column that indicates when the event was added to the

event store, needed to order the event correctly when rehydrating an

aggregate.

4.6.3 Querying the event store

There are only two read queries we need to perform towards the event store. There

might be other queries that can be done for debugging and testing reasons, but these

two are the only ones needed for the system to work:

1. Retrieve all events for a given aggregate id and order them by timestamp value in

ascending order. To get the oldest events first.

2. Retrieve all event for a given aggregate id, after a given timestamp, and order

them by timestamp in ascending order.

The first query is used to get all events for an aggregate when you need to rehydrate it.

The second one is used to rehydrate an aggregate when you have a snapshot version for

it. In this case it retrieves all events that occurred after the current state of the snapshot,

to only get the events that have not already been applied.

We also added an index on the aggregate id column since this is the column used in the

WHERE clause of the queries. This increase search performance as described in 2.4.2.3.

This index is created by the create script for the database shown Database configuration.

NTNU ÅLESUND PAGE 39
BACHELOR THESIS

4.6.3.1 JPA

Listing 5: JPQL Query that returns all events with a specified aggregate id.

Only the first query mentioned before has been implemented in JPA. The query to

retrieve all events after a timestamp was not implemented in JPA as the only event store

to support snapshots had been switched to use JDBC.

Listing 6: EventRecord entity that maps to the event table.

The events are mapped from their EventRecord JPA entities into the Event objects by

parsing the json string stored in the data field.

Listing 7: Converting EventRecord entities to event.

4.6.3.2 JDBC

We started to implement queries against the event store using Springs JdbcTemplate.

This has been implemented as a repository class with generic methods for querying for

events. The repository class can be used for retrieving all events of an aggregate or just

the events after a given timestamp, to be used when loading a snapshot.

@Query(value = "" +

 "SELECT e " +

 "FROM EventRecord e " +

 "WHERE e.aggregateId = :aggregateId " +

 "AND e.aggregateType = :aggregateType " +

 "ORDER BY timestamp ASC")

List<EventRecord> findAllAggregateEventsWithCustomQuery(

 @Param("aggregateId") UUID aggregateId,

 @Param("aggregateType") String aggregateType);

@Entity

@Table(name = "event")

@NoArgsConstructor

@AllArgsConstructor

@Data

public class EventRecord implements Serializable {

 @Id

 private UUID id;

 @Column(name = "aggregate_id")

 private UUID aggregateId;

 @Column(name = "aggregate_type")

 private String aggregateType;

 private String data;

 private String type;

 private Timestamp timestamp;

}

public <T extends Event> List<T> getAllForAggregate(UUID aggregateId,

AggregateType aggregateType, Class<T> clazz) {

 List<EventRecord> eventRecords =

 repository.findAllAggregateEventsWithCustomQuery(

 aggregateId,

 aggregateType.toString());

 List<T> events = new ArrayList<>();

 for (EventRecord eventRecord : eventRecords) {

 T event = parser.readJson(eventRecord.getData(), clazz);

 events.add(event);

 }

 return events;

}

NTNU ÅLESUND PAGE 40
BACHELOR THESIS

Listing 8: Query for loading all events for a given aggregate.

This query loads all the events for a given aggregate. The query can be used for different

classes if they extend the Event base class as defined in the method signature.

Listing 9: Query for loading all events for a given aggregate, after a given timestamp.

This query can be used to load all event for a given aggregate, but only the ones after a

given timestamp. This can be used along with snapshots to avoid loading unnecessary

events. As the previous query, this can also be used for all type of classes if they extend

the Event base class.

4.6.4 Snapshot

Figure 16: Snapshot database entity.

Snapshots are stored in a database table. Along with the aggregate state in JSON format

we include aggregate id, a version number and a timestamp. The aggregate id and

version make up a composite primary key for the table, as we do not need multiple

snapshots of one aggregate at the same version.

public <T extends Event> List<T> findAllForAggregate(UUID aggregateId,

AggregateType aggregateType, Class<T> clazz) {

 final String sql =

 "SELECT data " +

 "FROM event " +

 "WHERE aggregate_id = ? AND aggregate_type = ? " +

 "ORDER BY timestamp ASC";

 final Object[] args = new Object[] {aggregateId, aggregateType.toString()};

 return jdbc.query(sql, args, (rs, rowNum) ->

 jsonParser.readJson(rs.getString("data"), clazz));

}

public <T extends Event> List<T> findAllForAggregateAfter(UUID aggregateId,

AggregateType aggregateType, Class<T> clazz, Timestamp timestamp) {

 final String sql =

 "SELECT data " +

 "FROM event " +

 "WHERE aggregate_id = ? AND aggregate_type = ? AND timestamp > ? " +

 "ORDER BY timestamp ASC";

 final Object[] args = new Object[] {

 aggregateId, aggregateType.toString(), timestamp

 };

 return jdbc.query(sql, args, (rs, rowNum) ->

 jsonParser.readJson(rs.getString("data"), clazz));

}

NTNU ÅLESUND PAGE 41
BACHELOR THESIS

Listing 10: Class that describes a Snapshot.

Snapshots are performed by taking a rehydrated aggregate and serializing its state to

JSON. This JSON string is stored in a Snapshot object that includes a version and

timestamp value for the snapshot. The version value indicates how many events were

used to create the snapshot. If the snapshot was created after applying 1000 events to

an aggregate the version value would be 1000. The timestamp value is the timestamp of

the last event that was applied to the snapshot.

The main reason we implemented snapshots was the StockUnit aggregate. The StockUnit

aggregate keeps track of the quantity of a product in the warehouse system, this value

changes for every order that requests a given stock unit. Therefore, the number of

events for a StockUnit aggregate will keep increasing for every order, because of the

QuanityChanged events. Because of this, we decided to implement snapshots on the

StockUnit aggregate.

Snapshotting of other aggregates may also be necessary if the system had been running

and building up events over a longer amount of time.

Listing 11: Method that will save a snapshot.

See Figure 30 for an activity diagram describing the rehydration process including

snapshotting. The submitSnapshot methods take the values passed to it and creates an

object of the Snapshot class. This is then passed to the createSnapshotForAggregate

method in the SnapshotService class that will save the snapshot. @Async is used to tell

Spring to run this method asynchronously. This is done to ensure that saving of

snapshots does not block the rehydration process, which would slow down the processing

of commands.

@Data

@NoArgsConstructor

@AllArgsConstructor

public class Snapshot {

 private UUID aggregateId;

 private Integer version;

 private String data;

 private Instant timestamp;

}

@Async

public CompletableFuture<Snapshot> createSnapshotForAggregate(Snapshot snapshot)

{

 LOG.info(

 "Creating snapshot for aggregate: " +

 snapshot.getAggregateId() +

 " version: " +

 snapshot.getVersion());

 repository.saveSnapshot(snapshot);

 return CompletableFuture.completedFuture(snapshot);

}

NTNU ÅLESUND PAGE 42
BACHELOR THESIS

4.7 Projection

Figure 17: Generic projection application architecture.

See Figure 17 for a class diagram of the general structure of the projection applications.

The general architecture for a projection is to have one or more Kafka listeners,

depending on what type of events the projection is interested in.

Listing 12: A Kafka listener consuming an event belonging to a customer aggregate.

See Figure 26 for a sequence diagram of the general event handling process in the

projection applications. When the Kafka listener consumes an event, it receives the event

serialized in JSON format. It takes the JSON and parses it to the appropriate event type

based on what topic it is consuming from.

After the event is parsed into a java object it is passed on to a visitor that will pass the

concrete type of the event to an event handler. The event handler will make the

necessary changes to the projections repository based on what type the events is.

@KafkaListener(topics = "customers")

public void listenForCustomerEvent(ConsumerRecord<String, String>

consumerRecord) {

 CustomerEvent event =

 jsonParser.readJson(consumerRecord.value(), CustomerEvent.class);

 event.accept(visitor);

}

NTNU ÅLESUND PAGE 43
BACHELOR THESIS

4.8 CQRS
We applied the CQRS pattern to our system. This pattern fits into an event sourced

system and provides us with some benefits as mentioned in 2.2.3. One of these benefits

being that we can separate the write and read models. Combining this with the

microservice design of the projections we can easily scale the read models by deploying

multiple instances of them. Another benefit is that we can structure the read model

however we want and can decide how the read model is stored.

4.8.1 Commands

Command classes are implemented as data structures. They carry data but have no

functionality on their own.

Listing 13: Example of a command class.

A command is sent to the event store application as JSON in the body of an HTTP POST

request and is received by a command controller.

Listing 14: A REST controller method that changes the name of a customer.

This controller deserializes the JSON text into a command object and passes it to the

command handler that will validate the command. If the command passes validation the

appropriate events will be created and submitted to the event store, these events mutate

the state according to the command.

Each command has its own URL suffix in the command REST controller. As an example,

the customer controller has these URL suffixes:

• /customer/create – To create a new customer.

• /customer/change-address – To change the address of a customer.

• /customer/change-name – To change the name of a customer.

These suffixes follow the same pattern which is taking the name of the command class

and writing it in lisp case also known as kebab case.

4.8.2 Queries

Queries are performed against projections using REST calls. Read calls use the GET HTTP

method. The general way the projection REST controllers are set up is to have a getAll

and getOne query. Some projections have queries to retrieve objects based on specific

values, an example of this is to retrieve all orders with a specific status.

Listing 15: A REST controller method that returns a list of all orders.

@Data

public class ChangeCustomerNameCommand {

 private final UUID customerId;

 private final String name;

}

@RequestMapping(method = POST, value = "change-name")

public void submitChangeCustomerNameCommand(

 @RequestBody ChangeCustomerNameCommand command) {

 commandHandler.handleCommand(command);

}

@RequestMapping(method = RequestMethod.GET)

public List<Order> getAll() {

 return orderRepository.getAll();

}

NTNU ÅLESUND PAGE 44
BACHELOR THESIS

To get all objects of a resource the getAll query is performed by making a GET call

directly to the resource.

Listing 16: A REST controller method that returns a specific instance of a resource.

To retrieve a single object of a resource the getOne call can be used. This is done by

performing a GET call on the resource and including the id of the resource as a path

variable. If no object is found for the given id a response with code 404 will be returned.

The method that handles this is shown in Listing 16.

Listing 17: A REST controller method that returns all orders with a specific status.

To retrieve all orders of a specific status, the desired status can be included as a query

parameter. When the request is received for orders of a specific status the Java 8 stream

API is used to filter the orders.

4.9 Configuration

Listing 18: Example configurations from the order command simulator application.

To configure the system for different environments we used Spring profiles. We created a

application.properties and application-dev.properties and configured the dev properties

file with properties to use for running the applications locally on our own computer.

These properties are mostly IP-addresses for different command and projection APIs and

the IP-address of the Kafka host.

@RequestMapping(value = "{id}", method = RequestMethod.GET)

public ResponseEntity getOne(@PathVariable("id") UUID id) {

 Optional<Order> orderOptional = orderRepository.getOne(id);

 if (orderOptional.isPresent()) {

 return ResponseEntity.ok(orderOptional.get());

 } else {

 return ResponseEntity.notFound().build();

 }

}

@RequestMapping(params = "status", method = RequestMethod.GET)

public List<Order> getAllByStatus(@RequestParam("status") OrderStatus status) {

 return orderRepository

 .getAll()

 .stream()

 .filter(order -> order.getStatus().equals(status))

 .collect(Collectors.toList());

}

application.properties file:

logging.file=logs/logfile.log

simulator.customerProjectionUrl=http://158.38.101.50:8082/customers

simulator.customerCommandUrl=http://158.38.101.50:8080/customers

simulator.productProjectionUrl=http://158.38.101.50:8084/products

simulator.productCommandUrl=http://158.38.101.50:8080/products

simulator.orderProjectionUrl=http://158.38.101.50:8081/orders

simulator.orderCommandUrl=http://158.38.101.50:8080/orders

application-dev.properties:

simulator.customerProjectionUrl=http://localhost:8082/customers

simulator.customerCommandUrl=http://localhost:8080/customers

simulator.productProjectionUrl=http://localhost:8084/products

simulator.productCommandUrl=http://localhost:8080/products

simulator.orderProjectionUrl=http://localhost:8081/orders

simulator.orderCommandUrl=http://localhost:8080/orders

NTNU ÅLESUND PAGE 45
BACHELOR THESIS

This way all API URLs will point to localhost when the application is run in dev profile.

This is easy to set up in IntelliJ’s run configurations. While running the application

without dev profile would point all API URL to the NTNU server that was running the

applications. The properties for the different files can be seen in Listing 18.

Listing 19: PropertyValues class used to load custom properties.

To load custom property values that are not configured by Spring we created a class

called PropertyValues annotated with the @ConfigurationProperties annotation. In the

@ConfigurationProperties we have defined the prefix our custom properties. The

properties being loaded can be seen in Listing 18. By using the prefix and the field names

in the PropertyValues class, Spring will be able to find and load the values from

application.properties. As with other Spring properties, this class would load the values

from the application.properties or application-dev.properties depending on what

configuration profile the application is running in.

@Configuration

@ConfigurationProperties(prefix = "simulator")

@Getter

@Setter

public class PropertyValues {

 private String customerCommandUrl;

 private String customerProjectionUrl;

 private String productCommandUrl;

 private String productProjectionUrl;

 private String orderCommandUrl;

 private String orderProjectionUrl;

}

NTNU ÅLESUND PAGE 46
BACHELOR THESIS

4.10 Simulator
The purpose of the simulator applications is to generate input to the other applications.

In the case of event sourcing with CQRS, this involves generating commands to change

the state of the system and sending these to the event store. The way we have designed

the simulator applications they are generating commands at a set interval and sends

them with REST calls to the command controller of the event store it is simulating input

for.

Figure 18: The general structure of the simulator application.

See Figure 27 and Figure 28 in the appendix for sequence diagrams of the command

generation process. The SimulatorTickScheduler is the class that triggers the command

generation. It will call on the act method in the CommandSimulator at a set interval. This

is implemented by using the Spring @Scheduled annotation and defining a value for the

scheduling rate, which is the time between each call to the act method.

The CommandSimulator class is the class that ties the application together. When it is

called on by the SimulatorTickScheduler it will ask the CommandGenerator class to

generate a set of commands that can be submitted. When the CommandGenerator has

generated the commands, the CommandSimulator will pass them to the

CommandScheduler with a randomly generated timestamp for when the command

should be submitted. This is done to spread the commands out over a period instead of

sending a lot of commands at once and then nothing until the next simulator tick. The

commands will be uniformly distributed over a period from current time to current time

plus the scheduling rate. This should result in a steady stream of commands.

The CommandGenerator uses the ProjectionApi to query a projection for the current state

of the system. The commands will be generated based on data returned by the

projection.

NTNU ÅLESUND PAGE 47
BACHELOR THESIS

The ProjectionApi is a class from the commons library that acts as an abstraction over

the HTTP calls that are being performed.

The CommandScheduler will schedule the commands received from the

CommandSimulator by using a ThreadPoolTaskScheduler that allows to schedule

Runnable objects to be executed at a specific time. The commands are wrapped by a

Task class that will be executed by the thread pool.

The CommandApi is used to submit the commands to a command controller. Like the

ProjectionApi class, the CommandApi class acts as an abstraction over the HTTP calls

being made.

4.10.1 Random timings of scheduled commands

When the commands are scheduled they are scheduled at a random time between the

start of the command generation and the start of the next command generation.

Listing 20: How the values used to genereate a random time is generated.

The currentTime and endTime Instant values are fields in the CommandSimulator class.

These values are used to generate the random value that is used for scheduling the

commands. The simulatorBatchLength value is a constant value defined in the Config

class. This value represents the time between each tick of the SimulatorTickSchduler in

milliseconds.

Listing 21: Methods used for generating a random time in milliseconds.

The getRandomInstantInBatch method is used in the CommandSimulator class to

generate a random Instant value between the current values in the currentTime and

endTime field of the class. This is done by using the getRandomInstantBetween method

In the TimeUtil class. It is used to get a random instant value uniformly distributed

between the given beginning and end Instant values.

4.10.2 Random timings in pick simulation

Listing 22: Method used to generate a random normally distributed value.

The time it takes for the pick command simulator to complete one pick line is randomly

generated using a normal distribution.

The formula shown in Listing 22 is used to generate the random value. It uses javas

ThreadLocalRandom class to generate a random value with a standard normal

distribution, this value is then scaled by multiplying it with a defined standard deviation

and adding a defined mean. This produces values distributed in a normal distribution with

currentTime = Instant.now();

endTime = currentTime.plus(Config.simulatorBatchLength, ChronoUnit.MILLIS);

//In CommandSimulator class

private Instant getRandomInstantInBatch() {

 return TimeUtil.getRandomInstantBetween(currentTime, endTime);

}

//In TimeUtil class

public static Instant getRandomInstantBetween(Instant a, Instant b) {

 long aMillis = a.toEpochMilli();

 long bMillis = b.toEpochMilli();

 return Instant.ofEpochMilli(random.nextLong(aMillis, bMillis));

}

private double getGaussDistributedPickTime() {

 return random.nextGaussian() *

 Config.PICK_TIME_STDEV + Config.PICK_TIME_MEAN;

}

private double getGaussDistributedPickTime() {

 return random.nextGaussian() *

 Config.PICK_TIME_STDEV + Config.PICK_TIME_MEAN;

}

NTNU ÅLESUND PAGE 48
BACHELOR THESIS

the defined values as standard deviation and mean. The mean and standard deviation

values are defined in the Config class as static constants (public static final).

4.10.3 Address register

A simple helper class was created to be able to use proper addresses in commands that

set addresses in customer and order aggregates.

At startup of the simulator application, the @PostConstruct annotation will be detected by

Spring, and the method annotated will be run. This allows the AddressRegister to load

the addresses from a CSV file at startup. It will loop through all lines of the file and store

the address, postal code and postal code location in a list as an instance of the

AddressEntry class.

Later the CommandGenerator will use the AddressRegister when it needs an address for

a command. This is done by calling the getRandomAddress() method that returns a

random AddressEntry object from the list that was created at startup.

NTNU ÅLESUND PAGE 49
BACHELOR THESIS

4.11 Event store applications
In this chapter we will describe some of the applications in more details and will describe

how the aggregates react to changes in other aggregates.

The general functionality of the event store applications where described in 4.1.1 and

they follow the event store structure described in 4.1.2. The event store applications

handle one or more aggregates and for each aggregate, it manages the event store

repeats the structure, except for the event repository which is generic and can handle

multiple event types.

4.11.1 Order system

The order system manages the customer, product and order aggregates. It reacts to

events produced by the warehouse and invoice systems.

Figure 19: The states of the order aggregate.

Figure 19 shows the different states of the order aggregate and how it is affected by the

events produced by other aggregates. The order is created when an OrderCreated event

is created. During the REGISTERING state, it is possible to add order lines to the order.

The order is moved to the REGISTERED state by a change status command. When it

reaches the REGISTERED state, the order will be waiting for the warehouse system to

publish a pick job started event. This will cause the order to move into the PICKING

state, which signals that picking for the order is in progress.

In the current implementation of the system, the product and customer aggregates will

not react to any changes in other aggregates.

4.11.2 Warehouse system

The warehouse system manages the stock unit and pick job aggregates. It reacts to

events produced by the order system.

NTNU ÅLESUND PAGE 50
BACHELOR THESIS

Figure 20: The states of the pick job aggregate.

As seen in Figure 20 the pick jobs are created when the orders are created. The pick job

will get pick lines corresponding to the order lines of the order it belongs to.

When the warehouse system receives an OrderRegistered event from the order system,

it will move the pick job into the waiting state. In this state, it will be waiting for all the

pick lines to reach the ready state, which indicates that they are ready for picking.

When all pick lines belonging to the pick job reach the ready state the pick job will be

moved to the ready state. In the ready state, the pick job is waiting for the pick

command simulator to start the pick job.

Figure 21: The states of pick lines in the pick job aggregate.

When the pick job has been started, it will be moved to the in-progress state. When all

pick lines have been completed it will be moved to the completed state.

Pick lines are created when order lines as created for the corresponding order as seen in

Figure 21. When the order corresponding to the pick job is moved to the registered state

the pick lines are moved to the waiting for allocation state.

In this state, the pick lines are waiting for the pick allocations service to allocate the pick

lines for picking. When the pick allocation service allocates a line, the lines are moved to

the ready state.

NTNU ÅLESUND PAGE 51
BACHELOR THESIS

In the ready state, the pick line is waiting for the pick command simulator to start

picking that line by sending a command that created a pick line started event.

When the pick command simulator starts picking a line it will be moved to the in-

progress state.

In the in-progress state, the pick lines are waiting for the pick command simulator to

finish the pick line by sending a command that creates a pick line completed event. When

this event is created the pick line is moved to the completed state.

4.11.3 Invoice system

Figure 22: The states of the invoice aggregate.

The invoice aggregate is created when an order is created. The invoice will receive a new

invoice line every time an order line created event is received for the order that

corresponds to the invoice. When the invoice system receives an order ready for

transport event the invoice will change state to generated.

NTNU ÅLESUND PAGE 52
BACHELOR THESIS

4.12 Projection applications
We have developed a total of 6 projections, all of these except one was implemented

using a hash map to store data. The only projections to not use a hash map was the

relational database projection.

4.12.1 Hash map projections

The hash map projections were implemented to be volatile and they are required to build

up their state from the Kafka event stream at every startup. This was done by setting a

random UUID value as the Kafka group id. The hash map projections are:

• Customer projection

• Product projection

• Order projection

• Invoice projection

• WMS projection

The Warehouse Management System (WMS) projection has read models for stock units

and pick jobs.

4.12.2 Relational database projection

The relational database projection was implemented with an H2 in-memory database.

This means that it needs to build its state at every startup. But it should be a trivial

change to switch it over to a PostgreSQL database for non-volatile storage.

The current implementation of the RDB projection builds up a read model of customers,

products and orders which can be queried with SQL queries.

Because the customer, product, and order events are stored in different topics in Kafka

the events may be received at different paces, depending on the number of event in each

topic. Which could lead to a situation where a product referenced by an order line does

not exist yet. When the create order line event is received.

Listing 23: Eager loading of products.

To solve this, we implemented functionality to eagerly create product aggregates as seen

in Listing 23. This way the product is created if it does not exist already, it will contain

only an id at this point. There will be a period where the product is an empty object with

only the id. But eventually when the create product event belonging to it is received from

the product Kafka topic it will be updated with the proper values.

private Product getProduct(UUID id) {

 if (productRepository.exists(id)) {

 return productRepository.getOne(id);

 } else {

 Product product = new Product();

 product.setId(id);

 return productRepository.save(product);

 }

}

NTNU ÅLESUND PAGE 53
BACHELOR THESIS

4.13 Simulator applications
The general purpose of the simulator applications was described in 4.1.1. And some more

general functionality as described in 4.10. We have developed 4 simulators for our

system and in this chapter, we will describe more specifically how they generate the

commands they use to simulate user interaction.

4.13.1 Customer command simulator

The customer command simulator is responsible for creating and populating the values in

customer aggregates.

It runs in batches with a defined length. For each batch a random number will be

generated, this number will be used to decide how many new customers to create in the

current batch.

The simulator will also query the customer projection for information about the existing

customers. Based on this information the simulator will generate commands to set the

name and address of customers.

For each customer, without a name, a change name command will be created.

For each customer, without an address, a change address commands will be created. The

address will be chosen randomly from the address register.

4.13.2 Product command simulator

The current implementation of the product command simulator is quite simple. It creates

a large number of products in a batch, this is only done once for every run of the

simulator application.

4.13.3 Order command simulator

The order command simulator simulates orders being created in the system. This is done

by querying the product, customer and order projection for information. Based on the

information returned by the projection the commands are generated as follows.

Every batch the simulator runs a random number is generated to decide how many new

orders to create this batch. Similar to the customer command simulator.

For each order without an address defined a change address command is generated, the

address used is picked randomly from the address register.

For each order without a customer, a change customer command is generated. The

customer assigned to the order is randomly picked from the customer information

returned earlier by the customer projection.

For each order that does not have any order lines associated with it a random number of

create order line commands will be created. The quantity for the order line is generated

randomly and the product is chosen randomly from the information retrieved from the

product projection earlier.

4.13.4 Pick command simulator

The pick command simulator simulates having several pickers working on the pick jobs

created in the warehouse system.

The simulator has a defined number of pickers. This number decides how many pick jobs

can be worked on at once. At start up the simulator generates a set of random UUIDs

that acts as the picker id for the simulated pickers.

The simulator will query the pick job projection for all pick jobs. It will then filter this

result to get only the pick jobs in the in-progress state. It will then loop through this list

to find out what pickers are currently busy.

NTNU ÅLESUND PAGE 54
BACHELOR THESIS

When it has found out what pickers are free to take on a pick job. The simulator will filter

the list of pick jobs to get all pick jobs in the ready state.

Figure 23: Pick simulator picking activity diagram.

The simulator will then go through the pick jobs in the ready state and generate all

commands necessary for the pickers to complete the pick job they are assigned to.

See Figure 23 for an activity diagram of the picking process that the simulator follows.

This includes a command to assign the pick job to the picker. Then a command to set the

pick job to an in-progress state. After this, the simulator will send out commands to start

the pick lines associated with the pick job. Between the command to start a pick line and

the command that completes it, there is a normally distributed random delay as

described in 4.10.2.

After all the pick lines are completed a complete pick job command will be submitted to

set the pick job to the completed state.

4.14 Pick allocation service
Because of the aggregate boundaries and microservice boundaries are stopping us from

making changes to the pick job aggregate and the stock unit aggregate we created the

pick allocation service. Its intention is to move the pick lines to a ready state if there is a

large enough quantity of product to pick. But in the current implementation, the quantity

in stock is not properly implemented so the pick allocation service currently just moves

pick lines into the ready state.

The stock requests in the stock unit aggregate were meant to provide a consistent way to

change the quantity of product in stock and allow picking to start with the approved

requests. As seen in Figure 21 the pick lines will react to events generated by approving

stock requests. This is done by querying the stock allocation projection to check for all

stock requests. It will then go through the stock requests and send commands to the

warehouse system to approve the stock requests.

NTNU ÅLESUND PAGE 55
BACHELOR THESIS

4.15 System diagram

Figure 24: System diagram.

This diagram shows a high-level overview of the system. The simulators query

projections for information. Based on this information, commands are generated to

change the state of the system. These commands are sent to the event store applications

who validate and apply them by creating events. The events are stored in an event store

and publishes the events to topics on Apache Kafka. The events are then picked up by

other event store applications or the projections.

NTNU ÅLESUND PAGE 56
BACHELOR THESIS

5 DISCUSSION

In this section we are going to reflect on the quality of the sources we have found, design

choices we have made, problems with the current solution that we would like to solve,

and what improvements we would have implemented if we had more time.

5.1 Sources
In the early stages of the thesis we did a literature review. The goal of the literature

review was to find as many reliable sources as possible to further support our

understanding of event sourcing. Among the sources, we found there were books written

by professionals that use event sourcing in their own systems, as well as blog posts and

YouTube videos made by those who were some of the first to describe the concept.

Along the way, we changed our idea of how we should develop the system several times.

We found in our research that big companies like Netflix use event sourcing to solve the

problems they had with scalability in some of their services.(74) When we saw how they

had implemented event sourcing and the thought process behind getting a good result,

that caused us to change our perception of how we should develop our own system. So,

we could then take the knowledge we previously had and combine it with new ideas to

get the best result possible.

We also used several bachelors- and masters theses, blog-posts from credible sources

such as Greg Young and Martin Fowler, and multiple journal articles to gather as much

information as possible about the subject. By assimilating this material and comparing it

to the limited number of books we could find, we steadily gained a good understanding of

how we should implement the solution.

In the field of software engineering, there is a lack of standards to follow in general and

especially when you are working with technologies that are relatively new. In our case

that meant we had to take this concept of an event sourcing pattern and try to use it in

our own version of an ordering system. We think we did a good job of using existing

technologies to our advantage and in using the right architecture and design patterns.

NTNU ÅLESUND PAGE 57
BACHELOR THESIS

5.2 Technological choices

5.2.1 Programming language (Java)

We chose to write the software in the Java programming language. That was because it

is the language we have the most experience with, it is being used by DRIW and because

of all the existing Java specific libraries. Additionally, it can be used with the Spring

framework and Spring Boot which provides several features and modules that make

certain things faster and easier.

5.2.2 PostgreSQL

We chose to use the PostgreSQL database because we were already familiar with

relational databases and because it has proven to perform better than the graph

database Neo4j at reading and writing events. (38)

5.2.3 Kafka

The reason we chose Kafka to handle event messaging was that it seemed like a good fit

for our project and because event sourcing is listed as a popular use case for Kafka. (75)

We also found a benchmarking of Kafka that showed that it performs very well. (76)

5.3 Project
In our thesis, we tried to follow the agile software development method SCRUM as much

as possible throughout the project. The problems we encountered with SCRUM were that

we spent a lot of time performing a literature review, while these software development

methods promote early delivery and continual improvement to the systems.

So, we ended up with splitting the project in two where the first phase was mostly

involved with preparing the thesis by doing the literature review. While the second phase

mostly involved developing the software.

5.4 Reflection

5.4.1 Kafka event store

To start out we attempted to implement the event store using Kafka. This worked to

some degree, but we were missing some functionality. Since Kafka works as a stream of

messages it is difficult to query it for specific events. This is required to be able to

validate new commands as you need to be able to retrieve all events for a given

aggregate to perform the rehydration of the aggregate. To solve this, we ended up with

our simple implementation of an event store using a Postgres database. We still use

Kafka as a messaging backbone to transport events produced to other application that

are interested.

5.4.2 How small to make a microservice?

If we had fully followed the microservice architecture rule of single responsibility we

should have split up some of the applications into multiple applications.

We have one application that acts as an event store for the order, customer and product

aggregates. These should have been split into 3 applications. They ended up as one

application because it was the first application we developed early in the project and we

had not considered using microservices yet. We didn’t prioritize splitting the applications,

but it is something we would have done if we had more time.

5.4.3 JPA or JdbcTemplate

We started out using Spring Data JPA repositories for connecting to the Postgres SQL

server. This was done because it was quick and simple and allowed us to quickly start

NTNU ÅLESUND PAGE 58
BACHELOR THESIS

developing the system without spending a lot of time on our database communication.

We later started switching over to Spring Data JDBC template as we felt using JPA for our

simple database communication was unnecessary.

Having JPA perform a mapping from row to object just to have the object discarded

immediately seemed unnecessary. With Spring Data JDBC we could rather perform the

JSON parsing to respective event object immediately from the result set.

5.4.4 Alternative event implementation (Polymorphism over visitor)

The current implementation of events requires a visitor to be able to deal with the

concrete type of events when they are deserialized from the event store or received from

a Kafka topic. The approach to this using a visitor makes it somewhat difficult to add new

events as you must update the implementation of all visitors of the new events

aggregate type.

This could have been done differently by having an apply to aggregate abstract method

on the events. That every event override. For a customer event this could look like:

applyToAggregate(customerAggregate). This way we would only need to create the new

event class and override the abstract method.

This approach would, however, make it difficult to implement the event handling

differently in all the different applications as they may want to deal with the event in

different ways. The approach we currently use with the visitor pattern allows each

application to create their own event handling by creating a new implementation of the

visitor.

We think our current implementation works better that the polymorphic way, but there is

probably room for improvement.

5.4.5 Evolving data and schema

In the event implementation, we used Jackson to include the full class name in the JSON

object, as shown in 4.4. This should, in theory, enable us to use the multiple version

techniques described in 2.4.4.3, To evolve the schema. It should be possible to create a

new version of the event in a different package and Jackson should be able to tell them

apart at deserialization. It does, however, require changes to the event handler and

visitor interfaces or to create a new version of each to include the new event version.

So, it should be doable in theory, but it is might be easier to use something like an

upcaster as described in 2.4.4.3.

5.4.6 Lots of different opinions about ES and CQRS

One of the problems we had during our study/research of event sourcing was that there

is no defined standard for these kinds of systems. The community around event sourcing

and CQRS are also much smaller than the CRUD community, so it can be more difficult to

find good solutions to problems encountered. There also seem to be many opinions about

how to implement these kinds of systems, some can be conflicting and make it difficult to

figure out what the correct solution is.

5.4.7 Snapshot interval

We wanted to do some more analysis on what the interval between snapshots should be.

We were planning to run some tests to find a good value for this, but we did not have

time to do this. Currently, we have just set the interval value to 1000, without having

any specific reason to believe this is an optimal value.

5.4.8 Simple simulator implementations

The current implementations of the simulators are quite simple in the way the query the

projections and create commands based on this and schedule these commands to run

NTNU ÅLESUND PAGE 59
BACHELOR THESIS

over a period until the next command generation batch. It would be interesting to have

some more complex and random behavior, but we found the current solution to work

well to the test the system and see the event-driven parts working. It also recovers well

from restarting the simulators in the middle of batches.

5.5 Problems
Some problems with the current solution that we would fix if we had more time.

5.5.1 Two generals problem (event store and Kafka)

There is a problem with our implementation of the event handlers that take care of

saving new events to the event store and publishing them to Kafka.

If the event is saved to the event store, but the Kafka publish fails it would leave the

Kafka messages inconsistent compared to the event store. If we turn the actions around

and try to publish to Kafka first and then save to the event store, we end up with the

same problem. If the Kafka commit is performed successfully and saving to the event

store fails, they will also be inconsistent. Either both actions need to be performed or

none of them. This requires something like a two-phase commit.

A solution this could be to change the implementation a bit. We could have the event

handler only take care of saving to the event store, this way its either successful or fails

without leaving inconsistencies. To take care of publishing to Kafka we could set up a

scheduled task that runs with short intervals and publishes any new event in the event

store to Kafka. This could be done by including a bit or Boolean value on each event in

the event store that tells you if it has been published successfully, or the task could keep

track of the timestamp of the last successfully published event and use that to find the

new events to publish. This way if the Kafka publishing fails it can just retry it later.

5.5.2 Synchronization and race conditions

There are currently some race conditions in the event store applications that have not

been addressed. Currently, the commands are received on the rest controllers which

Spring will multithread. This could cause multiple commands for the same aggregate to

reach the event store close to each other. Depending on the time it takes to reach the

event store they could be processed at the same time. This could cause inconsistencies in

the event store if they both pass validation without reading the changes the other

command makes.

To solve this, we could lock the event store based on the aggregate id of the commands.

This would still allow multiple different aggregates to be updated at the same time, but if

multiple commands for one aggregate is received they would have to wait for the

command before them to be fully applied.

5.5.3 Get all rest calls

We had some problems with the get all REST requests after the system had been running

for a while. They would load so much data that some of the simulator applications did not

have enough memory to load and process all of it. This is something we could have

solved by including pagination functionality to the REST requests. This is something we

did not have enough time to implement but should be implemented if we continued

developing the system.

5.5.4 Event duplication

Kafka provides at least once delivery. Therefore, we could end up with duplicate events

in the Kafka stream. This should be taken care of to avoid side effects.

It could be solved by implementing some deduplication functionality. This could be done

by keeping the ids of all events received events in a set and checking for each event

received if it has already been received.

NTNU ÅLESUND PAGE 60
BACHELOR THESIS

5.5.5 Product and stock unit primary key

The current implementation creates stock unit instances when the warehouse system

receives a product created event. Currently, the id of the stock unit is set to the same as

the created product. This creates a tight coupling between the two aggregate types that

should probably be avoided.

This was implemented this way at first because we handled the event-driven parts of the

systems in the event store which can only be searched by primary key. So we made the

stock unit and product ids the same to be able to find the stock unit instance when a

product event was received. We should have done the event-driven processing on a

higher level and used the projections to search for the stock unit, and instead give the

stock unit its own unique id. The product id could then be added as another value in the

aggregate.

5.6 Improvements
The improvement that could have been made if we had more time. The solution works

without these, but some of these could help increase performance or speed up

development if they were fixed.

5.6.1 Split up applications

Currently, we are not completely following the microservice principle of single

responsibility. Examples of this are the order system event store and the warehouse

system event store. These event store applications handle multiple aggregates each. The

order system handles order, customer and product. The warehouse system handles pick

job and stock unit aggregates. If we were to follow these principles fully these two

applications should have been split into 5 applications focusing on one aggregate each.

The reason why it ended up like this is that we started developing the system before we

had fully grasped all the theory parts. After we learned about the single responsibility

principle we considered splitting the applications but decided against it because of time

constraints and because we thought that splitting these small applications further would

just create additional overhead in our case.

If we were to continue development of the system we would probably consider this if the

applications grew larger or for reasons like scaling, deployment, and technology used for

the implementation as mentioned in 2.1.2.

5.6.2 Creating a more generic solution

The event store applications generally follow the same architecture. There may be some

more generic implementation for these applications so that it would be easier to add a

new event store to the system. We didn’t prioritize this for our solution. It would have

little to no impact on how the system works but would simplify the process of expanding

it. If we were to continue expanding the system, it may have been something worth

spending some time on figuring out.

5.6.3 Business logic and validation

Improving business logic was one of the things we wanted to do but couldn’t because of

the time constraints. Currently, the business logic of the system is quite simple and

mostly serves to test out the event sourcing and event-driven nature of the system. We

decided that focusing on the architecture and implementation of the system was more

important than improving the business logic.

5.6.4 Production configuration profile

Currently, the default Spring configuration profile is the one we use for production

settings as shown in 4.9. This was mostly for simplicity when running the applications on

the auto deploy virtual machines as we could just run the applications without having to

NTNU ÅLESUND PAGE 61
BACHELOR THESIS

set any profiles. When running the applications in IntelliJ IDEA we set the dev profile to

be used in the IDE, but in any proper system, we should not run the applications in a

production environment as default. This was just for simplicity during development and

we would change this if we ever were to get this up running as a proper system.

5.6.5 In memory aggregate cache

One improvement we could make to increase the performance of aggregate rehydration

would be to store rehydrated aggregates in a cache in memory. This way if an aggregate

is updated often it would not be necessary to load all events for it and replay them to get

the current state of the aggregate for every update. Instead, we could have it cached in

memory after the first time it’s retrieved.

Depending on the number of aggregates it may be necessary to have some algorithm to

decide which aggregates to keep in memory. For this, we may be able to use something

like the LRU cache replacement algorithm.

5.6.6 Async commands

In the current implementation of the system, the command REST controller is

multithreaded by Spring so multiple commands can be processed at the same time, but

each command request is handled synchronously.

To improve the throughput of the command REST controller we could change the

command handling to be handled asynchronously.

5.6.7 Ensuring required values have been set

Currently, our implementation has some cases where a no argument constructor is used

to create objects, and then setters are used to set all the values. A couple of times

during development this resulted in required values not being set. The reason for using

the no argument constructors and setters were that it looks cleaner in code that the full

constructor.

We think a better solution to this is to use the builder pattern described in 2.2.4.3. This

would work similar to setting the values with the setters, but when building the object,

we could check if the required values have been set and throw an exception if anything is

missing or have illegal values.

5.6.8 Add façade in front of AggregateRepository and EventHandler

As seen in Figure 13 the aggregate command handler is aware of both the event handler

used for saving/writing events and the repository used to retrieve/read events.

We could have abstracted away from the fact that there is one class dealing with saving

and one class dealing with reading events by using the façade pattern described in

2.2.4.2 and placing a façade in front of these. This would help decouple the classes and

give the impression that there is one class dealing with both.

5.6.9 Store events “forever” in Kafka

In the current implementation of the system, the events are saved in the event store and

published to Kafka. The events published to Kafka are stored “forever”, because the

events are only available to other applications through Kafka. This results in two full

copies of the events which waste storage space.

From the article about the flight scheduling system mentioned in 2.5.6. We got the idea

that we could have the events in the Kafka topics be stored for a limited amount of time.

This would be implemented so that when an application first starts up and need to load

all events it will first start loading them from the event store. When finished loading them

from the event store it would connect to Kafka and start receiving event there. This way

NTNU ÅLESUND PAGE 62
BACHELOR THESIS

Kafka only need to store the events long enough that it acts as a buffer for the events

that occur while the application is loading events from the event store.

Currently, there is no way for other applications to load events directly from the event

store. This would have to be implemented for this to work.

5.6.10 Initial data of an aggregate

In our current implementation, some values that would be required in a proper

implementation are not set by the create command that creates the aggregate instance.

We should have included all the required values in the create command, but with our

current simple business logic, this would reduce the number of events. We decided to

keep our current way of handling the create command to give the system more traffic to

test the system with. In a more production-ready system, this should have been

changed.

5.6.11 Avoid mixing asynchronous and synchronous

Currently, we are mixing synchronous HTTP calls with the asynchronous messaging. The

stock allocation service application should probably be changed to use messages for

communication instead of HTTP calls.

Mixing these kinds of communication in a microservice system can be an anti-pattern as

described in 2.3.6.3.

5.6.12 Persistent projections

In the current implementation of the projections, they are stored in memory, as

described in 4.12. This makes them volatile. Because of this, they must be rebuilt at

every startup. We have not had any problem with this, but for a system that has been

running for a while building the projection from the beginning at every startup would

most likely take more time as the event store grows.

To solve this, we should change them to be persisted. This would only require them to

catch up with events that have occurred since they went offline, which should reduce

downtime.

5.6.13 Smoke testing

Smoke testing as described in 2.4.4.1 could have been implemented to check if the

system operates as expected after an update, by running through all events that have

occurred and checking if the state is the same as before the update.

NTNU ÅLESUND PAGE 63
BACHELOR THESIS

6 CONCLUSION

The result of our thesis is a working prototype of an ordering system based on event

sourcing and CQRS. This prototype handles simple business logic involving orders,

picking, and invoice. It also includes simulator applications that simulate user interaction

with the system.

We also found two benefits of event sourcing that DRIW found interesting. It provides full

traceability and fits naturally into an event-driven architecture.

We built the system as a distributed system, using microservice and event-driven

architecture. The microservices are running on Spring BOOT. The event-driven

architecture uses Apache Kafka as a publish/subscribe messaging service. The event

store applications publish their events to Kafka topics, which other applications can

subscribe to. These applications can use the events received through Kafka to react to

state changes in other applications. This could involve changing state in the receiving

system or updating a read model.

We implemented read models for each aggregate type in the system. Most of the read

models are stored in memory in a hash map data structure, but we did implement one

read model using a relational database.

Based on our experiences through this project, we think event sourcing is a very

interesting concept that can be very beneficial in some applications. It provides a full

audit log of all changes that have happened, this gives full traceability of the system and

can be beneficial for applying business intelligence and analysis. It also fits naturally into

an event-driven architecture when you make the events in the event store available to

other applications. This could be done through publishing to topics in a messaging

system, like Apache Kafka which we used. CQRS also gives some benefits through the

separation of read and write models. This allows you to build read models that are

optimized for reading and gives a lot of freedom to what kind of data store is used for

these read models and how you structure them.

Event sourcing doesn’t fit into every system because it adds more complexity than a

CRUD approach. CRUD is also something most developers are already familiar with, while

event sourcing is not as well known. CRUD is most likely a better option for applications

where you are not very interested in an audit log, applying business intelligence, or

developing an event-driven system.

We have learned a lot from working on this thesis. We learned about event sourcing

which is a very interesting concept that we had not heard of before. We were also able to

apply microservice and event-driven architecture which we had heard of before, but

never applied in any of the projects we have previously worked on. And in the end, we

were able to produce an interesting prototype solution that got positive feedback from

DRIW. Below is a statement we got from DRIW in Norwegian.

Dette må være en av bacheloroppgavene med best timing. Vi setter nå

(i mai 2018) i gang arbeid med den nye ordremodulen i TRACE

produktet til Driw. I forbindelse med dette er de vurderingene som er

gjort i bacheloroppgaven til nytte for de valgene vi gjør nå fremover.

For oss er det to av funnene som Oscar og Robert har gjort som er

veldig interessant. Det ene er hvor godt event sourcing passer med en

eventbasert arkitektur. Det spiller på lag. Det andre er hvor bra

modellen er for sporbarhet. Dvs. koble ikke bare når endringen har

skjedd, men i hvilken sammenheng den skjedde. Dette er interessant.

Erfaringene som Robert og Oscar har gjort seg i denne oppgaven lever

videre i produktdesignet på den nye ordremodulen i Driw.

- Arne Unneland, DRIW AS.

NTNU ÅLESUND PAGE 64
BACHELOR THESIS

7 REFERENCES

1. Sommerville I. Software engineering. Tenth edition, global edition. Boston, Mass.

Amsterdam Cape Town: Pearson Education Limited; 2016. 810 p. (Always learning).

2. Fowler M. Microservices [Internet]. martinfowler.com. [cited 2018 May 22].

Available from: https://martinfowler.com/articles/microservices.html

3. Dragoni N, Giallorenzo S, Lafuente AL, Mazzara M, Montesi F, Mustafin R, et al.

Microservices: yesterday, today, and tomorrow. arXiv:160604036 [cs] [Internet].

2016 Jun 13 [cited 2018 May 15]; Available from: http://arxiv.org/abs/1606.04036

4. Thönes J. Microservices. IEEE Software. 2015 Jan;32(1):116–116.

5. Liu L, Özsu MT, editors. Encyclopedia of database systems. New York: Springer;

2009. 5 p. (Springer reference).

6. De La Torre C. Challenges and solutions for distributed data management

[Internet]. [cited 2018 May 20]. Available from: https://docs.microsoft.com/en-

us/dotnet/standard/microservices-architecture/architect-microservice-container-

applications/distributed-data-management

7. Michelson B. Event-Driven Architecture Overview [Internet]. Boston, MA: Patricia

Seybold Group; 2006 Feb [cited 2018 May 12]. Report No.: 681. Available from:

http://www.customers.com/articles/event-driven-architecture-overview

8. Fowler M. What do you mean by “Event-Driven”? [Internet]. martinfowler.com.

[cited 2018 Apr 25]. Available from: https://martinfowler.com/articles/201701-

event-driven.html

9. Evans E. Domain-driven Design: Tackling Complexity in the Heart of Software.

Addison-Wesley Professional; 2004. 563 p.

10. Fowler M. DDD_Aggregate [Internet]. martinfowler.com. [cited 2018 May 21].

Available from: https://martinfowler.com/bliki/DDD_Aggregate.html

11. Meyer B. Object-oriented software construction. 2nd ed. Upper Saddle River, N.J:

Prentice Hall PTR; 1997. 1254 p.

12. Young G. Command Query Separation? | Greg Young [Internet]. [cited 2018 May

20]. Available from: http://codebetter.com/gregyoung/2009/08/13/command-

query-separation/

13. Dahan U. Clarified CQRS [Internet]. [cited 2018 May 20]. Available from:

http://udidahan.com/2009/12/0/

14. Betts D, Domínguez J, Melnik G, Simonazzi F, Subramanian M. Exploring CQRS and

Event Sourcing. 1st ed. Microsoft patterns & practices; 2013. 376 p.

15. Fowler M. CQRS [Internet]. martinfowler.com. [cited 2018 May 20]. Available from:

https://martinfowler.com/bliki/CQRS.html

16. Gamma E, editor. Design patterns: elements of reusable object-oriented software.

Reading, Mass: Addison-Wesley; 1995. 395 p. (Addison-Wesley professional

computing series).

NTNU ÅLESUND PAGE 65
BACHELOR THESIS

17. Freeman E, Robson E, Sierra K, Bates B, editors. Head First design patterns.

Sebastopol, CA: O’Reilly; 2004. 638 p.

18. Bloch J. Effective Java. Third edition. Boston: Addison-Wesley; 2018. 392 p.

19. Coulouris GF, editor. Distributed systems: concepts and design. 5th ed. Boston:

Addison-Wesley; 2012. 1047 p.

20. Brewer EA. Towards Robust Distributed Systems (Abstract). In: Proceedings of the

Nineteenth Annual ACM Symposium on Principles of Distributed Computing

[Internet]. New York, NY, USA: ACM; 2000 [cited 2018 May 20]. p. 7–. (PODC ’00).

Available from: http://doi.acm.org/10.1145/343477.343502

21. Gilbert S, Lynch N. Brewer’s Conjecture and the Feasibility of Consistent, Available,

Partition-tolerant Web Services. SIGACT News. 2002 Jun;33(2):51–59.

22. Vogels W. Eventually Consistent. Commun ACM. 2009 Jan;52(1):40–44.

23. JSON [Internet]. [cited 2018 May 1]. Available from: https://www.json.org/

24. Leach P, Mealling M, Salz R. A Universally Unique IDentifier (UUID) URN

Namespace. 2005 [cited 2018 May 15]; Available from: https://www.rfc-

editor.org/info/rfc4122

25. Berners-Lee T, Fielding R, Frystyk H. Hypertext Transfer Protocol -- HTTP/1.0. 1996

[cited 2018 Mar 12]; Available from: https://www.rfc-editor.org/info/rfc1945

26. Fielding R, Gettys J, Mogul J, Frystyk H, Masinter L, Leach P, et al. Hypertext

Transfer Protocol -- HTTP/1.1. 1999 [cited 2018 Mar 12]; Available from:

https://www.rfc-editor.org/info/rfc2616

27. Fielding RT. Architectural Styles and the Design of Network-based Software

Architectures. University of California, Irvine; 2000.

28. De La Torre C. Communication in a microservice architecture [Internet]. [cited 2018

May 25]. Available from: https://docs.microsoft.com/en-

us/dotnet/standard/microservices-architecture/architect-microservice-container-

applications/communication-in-microservice-architecture

29. Gray J. Notes on Data Base Operating Systems. In: Operating Systems, An

Advanced Course [Internet]. London, UK, UK: Springer-Verlag; 1978 [cited 2018

May 19]. p. 393–481. Available from:

http://dl.acm.org/citation.cfm?id=647433.723863

30. Lamport L, Shostak R, Pease M. The Byzantine Generals Problem. ACM Trans

Program Lang Syst. 1982 Jul;4(3):382–401.

31. Silberschatz A, Galvin PB, Gagne G. Operating system concepts. 9. ed., internat.

student version. Hoboken, NJ: Wiley; 2014. 829 p.

32. Introduction to Computer Information Systems/Database - Wikibooks, open books

for an open world [Internet]. [cited 2018 May 22]. Available from:

https://en.wikibooks.org/wiki/Introduction_to_Computer_Information_Systems/Dat

abase#Database_Definition_and_Examples

33. Codd EF. A relational model of data for large shared data banks. Communications of

the ACM. 1970;11.

NTNU ÅLESUND PAGE 66
BACHELOR THESIS

34. Chamberlin DD, Boyce RF. SEQUEL: A structured English query language. In ACM

Press; 1976 [cited 2018 May 15]. p. 249–64. Available from:

http://portal.acm.org/citation.cfm?doid=800296.811515

35. Intro to Graph Databases Series - YouTube - YouTube [Internet]. [cited 2018 May

21]. Available from:

https://www.youtube.com/playlist?list=PL9Hl4pk2FsvWM9GWaguRhlCQ-pa-ERd4U

36. Database index. In: Wikipedia [Internet]. 2018 [cited 2018 May 22]. Available from:

https://en.wikipedia.org/w/index.php?title=Database_index&oldid=830318096

37. CRUD Database [Internet]. [cited 2018 May 12]. Available from:

http://docs.jboss.org/tools/latest/en/seam/html/crud_database_application.html

38. Rothsberg J. Evaluation of using NoSQL databases in an event sourcing system.

Linköpings Universitet; 2015.

39. Young G. CQRS and Event Sourcing | Greg Young [Internet]. [cited 2018 May 20].

Available from: http://codebetter.com/gregyoung/2010/02/13/cqrs-and-event-

sourcing/

40. GOTO Conferences. GOTO 2014 • Event Sourcing • Greg Young [Internet]. [cited

2018 Apr 25]. Available from: https://www.youtube.com/watch?v=8JKjvY4etTY&t=

41. Overeem M, Spoor M, Jansen S. The dark side of event sourcing: Managing data

conversion. In: 2017 IEEE 24th International Conference on Software Analysis,

Evolution and Reengineering (SANER). 2017. p. 193–204.

42. Scherzinger S, Regensburg O, Klettke M, Storl U. Cleager: Eager Schema Evolution

in NoSQL Document Stores. :4.

43. The Good of Event Sourcing: Projections - DZone DevOps [Internet]. dzone.com.

[cited 2018 May 22]. Available from: https://dzone.com/articles/the-good-of-event-

sourcing-projections

44. Sørhus SK. Applying Learning Analytics in the course TDT4100 at NTNU [Internet].

2015 [cited 2018 May 22]. Available from:

https://brage.bibsys.no/xmlui/handle/11250/2358386

45. Pedersen AH. Bruk av Event Sourcing for logging og visualisering av bruk av

nettressurser [Internet]. 2015 [cited 2018 May 22]. Available from:

https://brage.bibsys.no/xmlui/handle/11250/2352356

46. Rajković P, Janković D, Milenković A. Using CQRS Pattern for Improving

Performances in Medical Information Systems. :6.

47. Debski A, Szczepanik B, Malawski M, Spahr S, Muthig D. A Scalable, Reactive

Architecture for Cloud Applications. IEEE Software. 2018 Mar;35(2):62–71.

48. Persistence • Akka Documentation [Internet]. [cited 2018 May 22]. Available from:

https://doc.akka.io/docs/akka/2.5.4/scala/persistence.html

49. Eventuate [Internet]. [cited 2018 May 22]. Available from: https://eventuate.io/

50. Documentation | Event Store [Internet]. [cited 2018 May 22]. Available from:

https://eventstore.org/docs/

NTNU ÅLESUND PAGE 67
BACHELOR THESIS

51. EventStore.JVM: Event Store JVM Client [Internet]. Event Store; 2018 [cited 2018

May 22]. Available from: https://github.com/EventStore/EventStore.JVM

52. NEventStore [Internet]. [cited 2018 May 23]. Available from:

http://neventstore.org/

53. Blockchain or Event Sourcing | LinkedIn [Internet]. [cited 2018 Apr 25]. Available

from: https://www.linkedin.com/pulse/blockchain-event-sourcing-lee-hambley/

54. D’Aliessi M. How Does the Blockchain Work? [Internet]. Michele D’Aliessi. 2016

[cited 2018 May 26]. Available from: https://medium.com/@micheledaliessi/how-

does-the-blockchain-work-98c8cd01d2ae

55. What is Blockchain Technology? A Step-by-Step Guide For Beginners [Internet].

Blockgeeks. 2016 [cited 2018 May 26]. Available from:

https://blockgeeks.com/guides/what-is-blockchain-technology/

56. TIOBE Index | TIOBE - The Software Quality Company [Internet]. [cited 2018 Mar

13]. Available from: https://www.tiobe.com/tiobe-index/

57. IntelliJ IDEA: The Java IDE for Professional Developers by JetBrains [Internet].

JetBrains. [cited 2018 May 22]. Available from: https://www.jetbrains.com/idea/

58. Gradle Build Tool [Internet]. Gradle. [cited 2018 May 22]. Available from:

https://gradle.org/

59. Git - About Version Control [Internet]. [cited 2018 May 22]. Available from:

https://git-scm.com/book/en/v2/Getting-Started-About-Version-Control

60. Atlassian. Jira | Issue & Project Tracking Software [Internet]. Atlassian. [cited 2018

May 22]. Available from: https://www.atlassian.com/software/jira

61. Postman [Internet]. Postman. [cited 2018 May 22]. Available from:

https://www.getpostman.com/

62. PostgreSQL: About [Internet]. [cited 2018 Apr 27]. Available from:

https://www.postgresql.org/about/

63. Apache Kafka [Internet]. Apache Kafka. [cited 2018 Mar 13]. Available from:

https://kafka.apache.org/intro

64. Spring Framework Overview [Internet]. [cited 2018 May 22]. Available from:

https://docs.spring.io/spring/docs/current/spring-framework-

reference/overview.html

65. Spring Data JPA - Reference Documentation [Internet]. [cited 2018 May 22].

Available from: https://docs.spring.io/spring-

data/jpa/docs/current/reference/html/#repositories.definition

66. Data Access [Internet]. [cited 2018 May 22]. Available from:

https://docs.spring.io/spring/docs/current/spring-framework-reference/data-

access.html#jdbc

67. OkHttp [Internet]. [cited 2018 May 22]. Available from:

http://square.github.io/okhttp/

NTNU ÅLESUND PAGE 68
BACHELOR THESIS

68. jackson: Main Portal page for the Jackson project [Internet]. FasterXML, LLC; 2018

[cited 2018 May 22]. Available from: https://github.com/FasterXML/jackson

69. baeldung. Intro to the Jackson ObjectMapper [Internet]. Baeldung. 2016 [cited

2018 May 22]. Available from: http://www.baeldung.com/jackson-object-mapper-

tutorial

70. Liquibase | Database Refactoring | Databases [Internet]. [cited 2018 May 2].

Available from: https://www.liquibase.org/databases.html

71. Khazanchi A, Kanwar A, Saluja L. JAVA DATABASE CONNECTIVITY (JDBC) - DATA

ACCESS TECHNOLOGY [Internet]. International Journal of Engineering and

Computer Science; 2013 [cited 2018 May 22]. Available from:

https://www.ijecs.in/index.php/ijecs/article/download/2085/1931/

72. PostgreSQL JDBC: Connecting To The PostgreSQL Database [Internet]. [cited 2018

May 22]. Available from: http://www.postgresqltutorial.com/postgresql-

jdbc/connecting-to-postgresql-database/

73. H2 Features [Internet]. [cited 2018 May 23]. Available from:

http://www.h2database.com/html/features.html

74. Scaling Event Sourcing for Netflix Downloads [Internet]. [cited 2018 Apr 25].

Available from: https://www.infoq.com/presentations/netflix-scale-event-sourcing

75. Apache Kafka [Internet]. Apache Kafka. [cited 2018 Mar 13]. Available from:

https://kafka.apache.org/intro

76. Benchmarking Apache Kafka: 2 Million Writes Per Second (On Three Cheap

Machines) [Internet]. [cited 2018 May 10]. Available from:

https://engineering.linkedin.com/kafka/benchmarking-apache-kafka-2-million-

writes-second-three-cheap-machines

NTNU ÅLESUND PAGE A-1
BACHELOR THESIS

APPENDIX

A. Database configuration
The liquibase XML for setting up the event store database. This XML includes the index

on aggregate id in the event table and a snapshot table used for storing snapshots.

<?xml version="1.0" encoding="UTF-8"?>

<databaseChangeLog

 <!-- schema info tags --> >

 <changeSet id="event_table" author="1">

 <createTable tableName="event">

 <column name="id" type="uuid">

 <constraints nullable="false"

 primaryKey="true"

 primaryKeyName="event_pk"/>

 </column>

 <column name="aggregate_id" type="uuid">

 <constraints nullable="false"/>

 </column>

 <column name="aggregate_type" type="nvarchar(100)">

 <constraints nullable="false"/>

 </column>

 <column name="data" type="clob">

 <constraints nullable="false"/>

 </column>

 <column name="type" type="nvarchar(100)">

 <constraints nullable="false"/>

 </column>

 <column name="timestamp" type="timestamp">

 <constraints nullable="false"/>

 </column>

 </createTable>

 </changeSet>

 <changeSet id="2" author="1">

 <createIndex tableName="event"

 indexName="aggregate_id_index"

 unique="false">

 <column name="aggregate_id" type="uuid"/>

 </createIndex>

 </changeSet>

 <changeSet id="3" author="1">

 <createTable tableName="snapshot">

 <column name="aggregate_id" type="uuid">

 <constraints primaryKey="true"

 primaryKeyName="snapshot_aggregate_id_pk"/>

 </column>

 <column name="version" type="bigint">

 <constraints primaryKey="true"

 primaryKeyName="snapshot_version_pk"/>

 </column>

 <column name="data" type="clob">

 <constraints nullable="false"/>

 </column>

 <column name="timestamp" type="timestamp">

 <constraints nullable="false"/>

 </column>

 </createTable>

 <createIndex tableName="snapshot"

 indexName="snapshot_aggregate_id_index"

 unique="false">

 <column name="aggregate_id" type="uuid"/>

 </createIndex>

 </changeSet>

</databaseChangeLog

NTNU ÅLESUND PAGE B-1
BACHELOR THESIS

B. Diagrams

Figure 25: Command handling in event store.

NTNU ÅLESUND PAGE B-2
BACHELOR THESIS

Figure 26: Consuming events in projection.

NTNU ÅLESUND PAGE B-3
BACHELOR THESIS

Figure 27: Simulator command generation, continues in Figure 28.

NTNU ÅLESUND PAGE B-4
BACHELOR THESIS

Figure 28: Simulator command scheduling, follows Figure 27.

NTNU ÅLESUND PAGE B-5
BACHELOR THESIS

Figure 29: Aggregate rehydration.

NTNU ÅLESUND PAGE B-6
BACHELOR THESIS

Figure 30: Aggregate rehydration with snapshotting.

