
Marius Fylling and Lars Klubbenes

Automating and simplifying the cre-
ation of virtual machines for stu-
dents

An on-premises cloud

Candidate 10013 and 10020, 91 pages including frontpage

Bachelor thesis

for the degree of baccalaureatus

Aalesund, June 2018

Norwegian University of Science and Technology

Faculty of Information Technology and Electrical Engineering

Department of ICT and Natural Sciences

ii ii

NTNU

Norwegian University of Science and Technology

Bachelor thesis

for the degree of baccalaureatus

Faculty of Information Technology and Electrical Engineering

Department of ICT and Natural Sciences

c© 2018 Marius Fylling and Lars Klubbenes. All rights reserved

Bachelor thesis at NTNU

iii

Obligatorisk egenerklæring/gruppeerklæring

Den enkelte student er selv ansvarlig for å sette seg inn i hva som er lovlige hjelpemidler, retningslinjer

for bruk av disse og regler om kildebruk. Erklæringen skal bevisstgjøre studentene på deres ansvar og

hvilke konsekvenser fusk kan medføre. Manglende erklæring fritar ikke studentene fra sitt ansvar.

Du/dere fyller ut erklæringen ved å klikke i ruten til høyre for den enkelte del 1-6:

1. Jeg/vi erklærer herved at min/vår besvarelse er mitt/vårt eget arbeid,

og at jeg/vi ikke har brukt andre kilder eller har mottatt annen hjelp

enn det som er nevnt i besvarelsen.

2. Jeg/vi erklærer videre at denne besvarelsen:

 ikke har vært brukt til annen eksamen ved annen

avdeling/universitet/høgskole innenlands eller utenlands.

 ikke refererer til andres arbeid uten at det er oppgitt.

 ikke refererer til eget tidligere arbeid uten at det er oppgitt.

 har alle referansene oppgitt i litteraturlisten.

 ikke er en kopi, duplikat eller avskrift av andres arbeid eller

besvarelse.

3. Jeg/vi er kjent med at brudd på ovennevnte er å betrakte som fusk og

kan medføre annullering av eksamen og utestengelse fra universiteter

og høgskoler i Norge, jf. Universitets- og høgskoleloven §§4-7 og 4-8 og

Forskrift om eksamen §§14 og 15.

4. Jeg/vi er kjent med at alle innleverte oppgaver kan bli plagiatkontrollert

i Ephorus, se Retningslinjer for elektronisk innlevering og publisering av

studiepoenggivende studentoppgaver

5. Jeg/vi er kjent med at høgskolen vil behandle alle saker hvor det

forligger mistanke om fusk etter høgskolens studieforskrift §31

6. Jeg/vi har satt oss inn i regler og retningslinjer i bruk av kilder og

referanser på biblioteket sine nettsider

iv

Publiseringsavtale

Studiepoeng: 20

Veileder: Mikael Tollefsen

Fullmakt til elektronisk publisering av oppgaven

Forfatter(ne) har opphavsrett til oppgaven. Det betyr blant annet enerett til å gjøre verket
tilgjengelig for allmennheten (Åndsverkloven §2).
Alle oppgaver som fyller kriteriene vil bli registrert og publisert i Brage HiM med
forfatter(ne)s godkjennelse.
Oppgaver som er unntatt offentlighet eller båndlagt vil ikke bli publisert.

Jeg/vi gir herved NTNU i Ålesund en vederlagsfri rett til å
gjøre oppgaven tilgjengelig for elektronisk publisering: ja nei

Er oppgaven båndlagt (konfidensiell)? ja nei
(Båndleggingsavtale må fylles ut)
- Hvis ja:
Kan oppgaven publiseres når båndleggingsperioden er over? ja nei

Er oppgaven unntatt offentlighet? ja nei
(inneholder taushetsbelagt informasjon. Jfr. Offl. §13/Fvl. §13)

Dato: 31. Mai 2018

v

vi

Contents

1 Abstract 1

1.1 Abstract . 2

2 Introduction 3

2.1 What we need to create . 4

2.2 Current situation . 4

2.3 Challenges . 4

2.4 Hypothesis . 5

2.5 Acronyms . 5

3 Theoretical baselines 7

3.1 Introduction . 8

3.2 Precursors . 8

3.3 Virtualization: A look into the virtual world of servers 8

vii

viii CONTENTS

3.3.1 History . 8

3.3.2 Hypervisor . 10

3.3.3 Hypervisor technologies 11

3.4 Stateless APIs . 11

3.5 Stateless . 12

3.5.1 The session state . 12

3.5.2 The stateless constraint 13

3.5.3 Authentication and authorization 13

3.6 Technologies to choose from . 15

3.6.1 Perl . 15

3.6.2 Python . 15

3.6.3 Django . 15

3.6.4 Flask . 15

3.6.5 PHP . 16

3.6.6 Node.js . 16

3.6.7 GoLang . 16

3.6.8 React . 17

3.6.9 Angular . 17

3.7 Data storage . 17

3.7.1 Data mapping . 17

3.7.2 A database . 18

CONTENTS ix

3.7.3 Data stores . 18

3.7.4 Database schema . 19

3.8 Hardware . 20

3.8.1 Existing hardware . 20

3.8.2 Improvements to existing hardware 20

4 Technical Documentation 21

4.1 Introduction . 22

4.2 The big picture . 22

4.2.1 The infrastructure . 22

4.3 The API . 23

4.3.1 API Endpoints . 24

4.4 Authentication . 25

4.4.1 How does JWT work? 26

4.4.2 Why use JWT? . 28

4.4.3 Authentication directories 31

4.5 Data storage . 33

4.5.1 Structured data storage 33

4.5.2 File storage . 33

4.6 Creating a virtual machine . 34

4.6.1 The VM Template . 34

4.6.2 The VM Startup Agent 35

x CONTENTS

4.6.3 The Queue Manager . 35

4.6.4 Creating a VM - Diagram 37

4.7 Foreign keys in VMWare . 37

4.8 The user panel - Front end . 38

4.8.1 Quick overview of front ends 38

4.8.2 Angular front end . 38

4.8.3 Front end API calls . 42

5 Manual 45

5.1 User manual . 46

5.2 Introduction . 46

5.2.1 Logging in to AutoDeploy for the first time 46

5.2.2 Creating your first Virtual Machine 47

5.2.3 Connecting to the virtual machines 51

5.2.4 Managing the virtual machine 54

5.3 Administration of AutoDeploy 55

5.3.1 Managing the database 55

5.3.2 Starting, stopping and managing the AutoDeploy services 55

5.3.3 Managing the virtual machines 56

5.3.4 Creating a new template 58

5.3.5 Disabling a template . 62

CONTENTS xi

6 Research Strategy 63

6.1 Research methods . 64

7 Discussion 67

7.1 Introduction . 68

7.2 Front-end . 68

7.3 Queue Manager . 68

7.4 Deployment of VMs . 69

7.5 Programming languages . 69

7.6 Planned functions . 70

7.7 The future . 71

8 Conclusion 73

xii CONTENTS

Chapter 1

Abstract

1

2 Abstract

1.1 Abstract

This thesis is based on a project in cooperation with NTNU.

Most people will at some point have sat down in front of a computer, performing

some task, and realized: "This isn’t going to work. I have a hammer, but right now

I need a screwdriver."

Because so many different operating system platforms exist, many tools will be

incompatible no matter which OS you choose. From Office on windows, to Linux

specific server utilities, not having access to these tools present a problem when

trying to learn how to use them, or use them to learn.

But what if we didn’t have to choose at all? Just get a Windows PC when we want

to use Microsoft proprietary software or a quick Ubuntu machine when we want

to host a website? This is actually something we can do with virtualization today.

But doing it on consumer grade hardware is often painfully slow. So, why not just

use the much more appropriate servers at NTNU?

So we were tasked with creating a solution that enables NTNU students and faculty

to easily create and maintain their own virtual machines. The solution we created

contains an easy to use website front-end, and a separate back-end that controls the

logic of creating, updating, and controlling the VMs. The system is user friendly,

accessible everywhere, reliable, and created with cutting edge programming tech-

niques in mind.

Chapter 2

Introduction

3

4 Introduction

2.1 What we need to create

The delivery for NTNU is a system that the students can use to maintain and cre-

ate/deploy virtual machines for use in school. The system must be user friendly,

easy to use and stable. Technically, the system must be stateless and de-coupled.

2.2 Current situation

Traditional ways to create and maintain servers are fading fast. Most companies

today use cloud based services and cloud servers, and the old "on-premises"-way

of thinking is going away. [1]

Today, the cost of starting a service or starting a company is, in IT-perspective, a

lot cheaper than it used to be. You don’t need to purchase a brand new, state of the

art server. All you need is your credit card, and a cloud service will get you the

services you need for a very small fee, often as little as $5 USD.

Students already have access to a server service hosted at NTNU Aalesund, but it

is very limited. It’s very hard for the administrator to maintain, because the virtual

machines all have client software installed that is almost impossible to update.

Also it’s slow when creating new VMs, and crashes often.

2.3 Challenges

We need to provide students with a real world or "cloud-feel". But with on-

premises servers. The project is an improvement of an already existing system.

In short, the system should allow the students to create and maintain their servers,

while the servers themselves are hosted in the local VM datacenter in Aalesund.

[2]

One of the big challenges in this is to create a system that is not only versatile and

stable, but also dynamic and maintainable. The system API has to be stateless, and

the VM clients must be able to have updates installed from the outside.

2.4. Hypothesis 5

We will need to get the current virtual machines merged over to the new system

from the old one. Because these contain important user data.

Finding the tools best suited for this project will require research. This is a large

project, so finding tools that interact well with each other is imperative.

2.4 Hypothesis

What can we do to improve the use of virtual machines to aid students in higher

education?

- What tools do we need to achieve this?

- What are the major challenges of implementing such a system?

The new world of IT consists of major use of cloud services, and the students need

to be able to use a as close to as possible-experience system without major costs

from renting cloud VMs for all students. The system that we are creating should

give a student the needed experience with very basic cloud services.

2.5 Acronyms

This section lists various acronyms used throughout this thesis (in alphabetical

order).

• AJAX: Asynchronous JavaScript and XML.

• ADP: AutoDeploy

• API: Application Programming Interface.

• CLR: Common Language Runtime.

• CMS: Console Monitor System. (May also refer to Content Management

system)

6 Introduction

• CP: Control Program.

• CSS: Cascading Style Sheets.

• DOM: Document Object Model.

• HTML: Hypertext Markup Language.

• HTTP: Hypertext Transfer Protocol.

• JSON: JavaScript Object Notation.

• JVM: Java Virtual Machine.

• MVC: Model View Controller.

• VDI: Virtual Desktop Interface.

• VM: Virtual Machine.

Chapter 3

Theoretical baselines

Tools: Programming theories, languages and biases.

7

8 Theoretical baselines

3.1 Introduction

In this chapter we will go through the theoretical baselines. This includes pro-

gramming theories, languages, technical information about the current situation

and some history about virtualization.

3.2 Precursors

NTNU made some prerequisites for the project. They wanted it to be stateless

and be based on a front end framework that was widely used, relatively new and

it should be maintained in the foreseeable future by their creators. We did not get

any requests for specific implementations so we included this choice as a part of

our research.

The system was requested to be stateless, so that the back end and front end can

be decoupled. This will ease the amount of work required to maintain the system.

It also makes upgrading either part of it much easier since they are completely

separate.

The old system has a lot of VMs running on VMware ESXi, and these would have

to be handled without any added data loss or downtime.

3.3 Virtualization: A look into the virtual world of servers

3.3.1 History

In the very early days computers were huge behemoths taking up entire floors

of buildings. They cost millions and needed near constant maintenance. They

were operated by mysterious men in lab coats and you were never allowed to be

anywhere near it. However, if you had a very good reason you could write your

program on punch cards and hopefully get the results back the following day. This

is called a batch processing system. It is how computation was done for a long

time in the early days.

3.3. Virtualization: A look into the virtual world of servers 9

The next leap forward was multi user systems. This meant that more than one

simultaneous user would be possible. But it presented a new challenge in how

they would interact with the system. The old way of punch cards would not work

for more than on user. IBM’s solution to the problem was in two parts. The

first was CMS. CMS stands for console monitor system and was a small single

user operating system. CMS handled the user interaction. The other was CP,

or Control program. CP created virtual machines running CMS. Together they

formed CP/CMS. Along with Multics (another time-sharing operating system),

they started the idea of virtualization. [3]

Many of the ideas from Multics are still present in operating systems to this day.

It is a spiritual successor in many ways.

On a number of points we were influenced by Multics, which sugges-

ted the particular form of the I/O system calls and both the name of

the Shell and its general functions. [4]

Though Unix itself does not run any virtual operating systems. It virtualizes the

user space instead. This means it allows system resources to be shared amongst

users. It was easily ported to different hardware platforms, so you could run the

same software on them.[5] However, this required the software to be compiled for

the platform as well. [3]

For the same software to run truly independently from the platform then applica-

tion virtualization is required. The first of which was oracle’s java. It combines

many of the earlier concepts by running a “java virtual machine” every time a java

program is executed. That way they have a small operating system all to itself. This

means it can run anywhere oracle has ported the java runtime environment. This

can be anything from phones to cars or datacenters. The main drawback is some

tasks are much slower, such as those who are heavily hardware dependent.[6][6]

10 Theoretical baselines

In more recent years we see a shift towards virtual machines. Now in the form of

“VDI” or virtual desktop infrastructures. VDI allows users to access a full desktop

with the same resources from any place or device. This of course means it is very

flexible. Files do not need to be stored locally which is good from both a security

and performance perspective. And, resources like CPU and memory be can shared

when not in use. This is very much a resurgence of the original 1960’s idea of a

centralized server running full virtual operating systems. [7]

The first concept of virtualization is usually has its origins around the Mainframe

days, mid and late 1960. This is when IBM invested a lot of time to create good

time-sharing solutions. Time-sharing sparked the possibility for small businesses,

and even individuals, to use a computer - without actually owning one. This is

often a very similar to what is driving virtualization ahead today. The capacity of

one single server is often so large that is it very inefficient to be used for one single

purpose, and there the concept of time-sharing comes back. A really good way to

improve utilization of the server is through virtualization.[8] [9] [7]

3.3.2 Hypervisor

A hypervisor is the piece of software that controls and allows you to run multiple

operating-systems on one computer. This hypervisor creates a virtual platform,

and on top of this platform you create the virtual machines. The hypervisor then

manages and monitors the VMs. There are two fundamental types of hypervisors,

and they are similar in many ways, but they are actually quite different. [10]

3.4. Stateless APIs 11

Classification Characteristics and Description

Type 1: nat-

ive or bare

metal

Native hypervisors are software systems that run directly on the

host’s hardware to control the hardware, and to monitor the guest

operating systems. Consequently, the guest operating system runs

on a separate level above the hypervisor. Examples of this classic

implementation of virtual machine architecture are Oracle VM,

Microsoft Hyper-V, VMWare ESX and Xen.

Type 2: hos-

ted

Hosted hypervisors are designed to run within a traditional oper-

ating system. In other words, a hosted hypervisor adds a distinct

software layer on top of the host operating system, and the guest

operating system becomes a third software level above the hard-

ware. A well-known example of a hosted hypervisor is Oracle

VM VirtualBox. Others include VMWare Server and Worksta-

tion, Microsoft Virtual PC, KVM, QEMU and Parallels.

Table 3.1: LLC [10]

3.3.3 Hypervisor technologies

There are, as indicated before, quite a lot of different hypervisors to look at. The

benefits from native or bare metal versus hosted hypervisors are also quite com-

parable.

3.4 Stateless APIs

What does it mean that something is stateless?

Put in simple terms, stateless means that every request must contain all the inform-

ation needed for the API or server to understand the request. [11]

You must treat the server like it has no memory, it will never remember the client

or the clients information. In the design process of the API or server, you can never

12 Theoretical baselines

use sessions or similar methods of containing information about a client.

A way to solve this is to use tokens. A token can be generated to contain certain

information, and be time-based. If used correctly, this can be a perfect way to

communicate with a stateless API.

A stateless API is often referred to as a REST-API, or RESTful API.

3.5 Stateless

3.5.1 The session state

Traditionally, a web application would use remote sessions. In this approach, you

would save the application state on the server, and the client would not need to

worry about this. See the following quote from Roy T. Fielding’s dissertation:

The remote session style is a variant of client-server that attempts to

minimize the complexity, or maximize the reuse, of the client com-

ponents rather than the server component. Each client initiates a ses-

sion on the server and then invokes a series of services on the server,

finally exiting the session. Application state is kept entirely on the

server. [11]

While this approach is great in many cases and does indeed introduce some ad-

vantages, it does reduce the scalability of the server:

The advantages of the remote session style are that it is easier to cent-

rally maintain the interface at the server, reducing concerns about in-

consistencies in deployed clients when functionality is extended, and

improves efficiency if the interactions make use of extended session

context on the server. The disadvantages are that it reduces scalability

of the server, due to the stored application state, and reduces visibility

3.5. Stateless 13

of interactions, since a monitor would have to know the complete state

of the server. [11]

3.5.2 The stateless constraint

Using the REST architectural style you need to follow a set of constraints that

include the statelessness of the server. According to Fielding, the REST stateless

constraint is defined as the following:

5.1.3 Stateless

Each request from client to server must contain all of the information

necessary to understand the request, and cannot take advantage of any

stored context on the server. Session state is therefore kept entirely on

the client.

This constraint brings in the properties of visibility, reliability, and scalability:

Visibility is improved because a monitoring system does not have to

look beyond a single request datum in order to determine the full

nature of the request. Reliability is improved because it eases the task

of recovering from partial failures. Scalability is improved because

not having to store state between requests allows the server compon-

ent to quickly free resources, and further simplifies implementation

because the server doesn’t have to manage resource usage across re-

quests. [11]

3.5.3 Authentication and authorization

Well, if you don’t keep anything on the client. How do you intend to authenticate

the client?

14 Theoretical baselines

If the client requests protected resources that requires authentication, every re-

quest must, as Fielding wrote, contain all necessary data to be properly authentic-

ated/authorized. A quote from RFC 7235 [12]:

HTTP authentication is presumed to be stateless: all of the inform-

ation necessary to authenticate a request MUST be provided in the

request, rather than be dependent on the server remembering prior re-

quests. [12]

And authentication data should belong to the standard HTTP Authorization header.

From the RFC 7235:

4.2. Authorization

The Authorization header field allows a user agent to authenticate it-

self with an origin server – usually, but not necessarily, after receiving

a 401 (Unauthorized) response. Its value consists of credentials con-

taining the authentication information of the user agent for the realm

of the resource being requested. [12]

In the end, for authentication, you could use Basic HTTP Authentication. This

will transmit the username and password to the server encoded using Base64:

Authorization: Basic <credentials>

This is of course insecure, especially if it is sent over normal unencrypted HTTP.

Instead, one would use something like a token. The token can be generated based

on metadata, an expiration date and other information that might be considered

important for the application:

Authorization: Token <token>

3.6. Technologies to choose from 15

3.6 Technologies to choose from

3.6.1 Perl

Perl (Practical Extraction and Report Language) is really an old and true program-

ming and scripting language. The Hypervisor we intend to use is has a long and

trusted use of this language to script and automate the processes. [13]

3.6.2 Python

Python by it self is a very good programming language with very versatile options.

Although it is often better to use frameworks to deal with web requests instead of

"re-inventing the wheel".

3.6.3 Django

Django is a Python framework. Django deals with the HTTP and Web requests

and has a lot of built in features.

This is a very popular choice now a days. With a very versatile way to work and

an easy workflow this would probably be a good choice. The issue here is that this

takes a normal approach where backend and frontend is not decoupled, and the

system will therefore also not be stateless.

You could have used Django for the RESTful API, but this would be very overkill

and thus created a system that would probably be a memory hogger[14] if you

were to compare this to other frameworks.

3.6.4 Flask

Flask is also a Python framework. Flask is what you would call a lightweitght

framework created with APIs and simple websites in mind. The framework is

optimized to use little resources when it runs, and it is very simple to work with.

16 Theoretical baselines

3.6.5 PHP

PHP is a programming language that gets a lot of hate, but also a lot of love. Today

it is still the most used web programming language out there,[15] and with the

proper tools the programming language can be used for both decoupled purposes

and for normal coupled purposes. PHP is usually either used as a functional based

or an object-oriented programming language, and it is also normal to implement

the MVC-method of thinking.[14]

However, PHP is also considered a dinosaur. This is a programming language

that, even though it is very well maintained, it is old and dusty. There is a lot of

deprecation, which can break your project down the line. [16]

3.6.6 Node.js

Node.js is a runtime enviroment for JavaScript execution. It lets you use your

JavaScript knowledge to create backend-applications. Node is sadly not always a

good choice for backend applications because it is single threaded, so all instruc-

tions must be executed in sequence.This leads to bad scaling. [17]

3.6.7 GoLang

GoLang is a programming language created by Google, and can in many ways

remind you of C. In fact according to "The Go Programming Language"

Go is sometimes described as a "C-like" language," or as "C for the

21st century"

[18]

It is considered to be one of the fastest programming languages, and is a very good

choice for backend services. But, since it is so new there are things missing like

documentation and some libraries. It can also be hard to maintain since not many

use it in production at the moment. [18]

3.7. Data storage 17

3.6.8 React

React is a front-end framework based on TypeScript and JavaScript and can be a

really good choice for front-end applications. React is simple to work with and will

give great results. The React frontend can be used in combination with a RESTful

API based on any technology you would whish for. [19]

3.6.9 Angular

Angular is a front-end framework similar to React. It uses TypeScript, which it

compiles to become JavaScript. The compiler is based on Node.js, but after you

compile it you can take Node.js completely out of your stack.

Angular is a great choice for frontend, it is very versatile and is easy to customize.

It works perfectly as a de-coupled frontend together with a RESTful API.[20]

3.7 Data storage

There is a lot of options when it comes to storage. First, we need to map what data

we are going to store.

3.7.1 Data mapping

A few of the things we are storing are:

• User information (no passwords)

• Virtual Machine information

• Virtual Machine Queue

• Template information

Now that we have mapped all the data that has to be stored, we can start looking

at solutions that would give good enough performance and good data reliability.

18 Theoretical baselines

3.7.2 A database

With a database you will have a well-organized collection of data, great for storing

user information or similar data with relations.

3.7.3 Data stores

All of our data is relational data, with potential foreign keys in almost all tables.

The natural data storage method would be a relational database, but the data could

also be stored in flatfile or similar.

Flatfile database

A flat file database is normally a database that consists of files stored directly on the

hard-drive. There are many downsides to this, among them are bad performance

and no integrity. [21]

Relational databases

Relational databases is normally based on tables with information that contains

structured data with pre-defined data-fields. A relational database is easy to keep

the integrity of, and normally has very good performance. Examples of free rela-

tional databases are MySQL and MariaDB. [22]

3.7. Data storage 19

3.7.4 Database schema

oslist - Templates

id int(11), PK, AI

name varchar(45)

description text

disabled tinyint(4)

template varchar(1111)

users

id int(11), PK, AI

email varchar(450)

firstname varchar(450)

lastname varchar(450)

username varchar(450)

admin tinyint(4)

maxvms int(11)

vm

id int(11), PK, AI

vmname varchar(450)

vmowner int(11)

state varchar(110)

ip varchar(45)

macAddress varchar(450)

defaultPw varchar(45)

created varchar(450)

queue

id int(11), PK, AI

command varchar(45)

vmname varchar(45)

param varchar(45)

vmowner int(11)

timestamp varchar(45)

executed int(11)

software text

This is a theoretical implementation of a database schema with a relational data-

base, in this case MySQL, as the database system manager. [22]

20 Theoretical baselines

3.8 Hardware

Since the hardware is pre-existing infrastructure, we are only going to describe the

hardware needed. For virtualization, you need hosts that can be the hypervisor.

For stability and high availability we need a few servers, such that in a case where

one server goes down there is not a major outage in the virtualization. [23]

3.8.1 Existing hardware

The existing setup includes 4 VMWare ESXi hosts, 40TB of storage and 2x10Gbit/s

networking. This setup is good, but not perfect. A few of the flaws include:

- Next to no High Availability setup, if a host goes down your server goes down

with it. - Single-point-failure for storage, a VM is only stored one place. - No

automatic backup system.

3.8.2 Improvements to existing hardware

The hardware should be improved with better high availability setup, including

2 or 4 (in pairs) servers that are completely the same. The reason they should

be the same is so that they are good matches when it comes to configuring high

availability. [24]

The storage solution is also too slow. A solution to better this is to add SSD disks

for cache. Also, the storage has the same weakness as the servers - single-point-

failure will take it down. Adding another storage solution that mirrors the first

might be a solution.

Chapter 4

Technical Documentation

21

22 Technical Documentation

4.1 Introduction

In this chapter we will take a look at the technical documentation of the finished

product, as well as some of the issues and challenges we had. This chapter con-

tains for the most part only statements based on our experience with the software

involved and the development performed.

4.2 The big picture

The application we created is based on de-coupling the front-end and back-end.

This means in practice that we are developing two, or more, individual systems

that will communicate with different techniques.

4.2.1 The infrastructure

The application is incredibly easy to create a good and stable infrastructure for.

The front-end needs a standard HTTP-server, such as Apache2 or nginx. The

back-end needs Python and a few dependencies.

Below is the topology for the service in production. This is very generalized, but it

shows how the traffic egresses through the topology, and how things are connected.

The illustration below is for a single-server topology. The application is very much

able to handle scaling with a multi-server topology, or with containerization of the

service, but this is out of scope.

4.3. The API 23

The user
Browse

AutoDeploy

Apache2

Angular files

Python
Flask API

MySQL
Database

HTTPS

HTTP
Reverse proxy

Disk IO

SQL

Queue
Manager

SQL

VM
Startup Manager

HTTPS
API Requests

vCenter Server
VMWare ESXi

Hypervisor

VMWare ESXi
Hypervisor

VMWare ESXi
Hypervisor

VMWare ESXi
Hypervisor

VMWare ESXi
Hypervisor

VMWare ESXi
Hypervisor

VMWare ESXi
Hypervisor

VMWare ESXi
Hypervisor

VM
Startup Manager

VM
Startup Manager

VM
Startup Manager

VM
Startup Manager

Redudant storage
RAID5/6

iSCSI

HTTPS – RESTful API

The production environment for this application is based upon a single Ubuntu

Linux server with Apache2 and MySQL installed. The AutoDeploy-API and

AutoDeploy-Queue is also installed as systemctl service on this server.

4.3 The API

The AutoDeploy-API is a Python Flask application that handles all API requests

for this application. It is also the only place in the web-application that talks to the

SQL server. The API handles requests from users through the Angular front-end,

and requests from the VM Startup Manager that runs on the provisioned virtual

machines. The API is RESTful and stateless.

24 Technical Documentation

4.3.1 API Endpoints

Table 4.1: API Endpoints

Endpoint POST Data Headers Response Protected

Authentication

/login username,

password

none user (array),

token(string)

No

/verify none Auth information Yes

Getters

/getuser None Auth user (array) Yes

/getvms None Auth vms (array) Yes

Deleters

/deletevm id (VM id) Auth information Yes

Adders

/addqueue command,

vmname,

param,

software

Auth information Yes

/createvm vmnwame,

template,

software

(json)

Auth information Yes

The information response looks like this:

Response: error or success, like this:

{‘failed’:false, ‘info’:’Echoable text to show user..’}

4.4. Authentication 25

4.4 Authentication

Because the API is stateless, the implementation of authentication must be done

correctly and with precision. A good token-implementation is required.

The application implements JSON Web Token. This is a token algorithm that lets

you create a token with a payload. When the user successfully logs in using their

NTNU credentials, a JSON Web Token will be returned and must be saved locally,

either in local storage or in a cookie.

Every time the user wants to communicate with the API, the user agent (usually

the browser) will need to include the authentication header in the request. The

Authentication header is explained in more detail in section 3.4.3.

Example of communication between the browser and the API Server:

Browser Server

/login – POST Data: username, password – Header: none

Response: user (array), token (string, JWT)

/verify – POST Data: none, Headers: Authentication: Bearer <token>

Response: Status (success, failed)

In the first step, the user agent sends a login request to the /login route of the API.

26 Technical Documentation

This endpoint requires POST data to be submitted with the username and password

of the user. This route is not protected by any token requirements because of

the nature of the route. In the response of this request, if the user authenticated

successfully, there will be returned an JSON Web Token.

4.4.1 How does JWT work?

The structure of JWT is quite simple. The token contains 3 parts, separated with

dots (.). They are[25]:

• Header

• Payload

• Signature . . .

A typical JWT token looks something like this:

xxxxxx.yyyyy.zzzzz

The header

Consists of two parts - the type of token, and the hashing algorithm being used

(such as HMAC SHA256 or RSA).

{ "alg": "HS256", "typ": "JWT" }

The JSON is Base64Url-encoded to form the first part of the JWT.

The payload

The payload consists of claims. Claims are data about an entity, usually the user

and related metadata. There are three types of claims; registered, public and private

claims.

4.4. Authentication 27

• Registered claims: Predefined claims, things like issuer, expiration time,

subject and audience.

• Public claims: Information that is defined by those using JWTs.

• Private claims: Custom claims, created to share information between parties.

An example payload could be:

{ "sub": "1234567890", "name": "John Doe", "admin": true }

The payload is then, like the header, Base64Url encoded.

It is important to know that even though the information in the JWT token is

tamper-proof, it can be read by anyone that has obtained the token. Do not use

the payload to transverse secret information without encrypting the information.

The signature

The signature is used to verify that the token is not tampered with. The signature

in our implementation of JWT is a HMAC SHA256 algorithm.

Implemented like this:

HMACSHA256 base64UrlEncode(header) + ”.” +

base64UrlEncode(payload),

secret

The HMAC SHA256 algorithm can be illustrated like this:

28 Technical Documentation

key

i_pad

i key pad

XOR

64 Byte

<= 64 Byte

key

o_pad

o key pad

XOR

64 Byte

<= 64 Byte

i key pad message

hash sum 1

o key pad hash sum 1

hash sum 2

SHA1 - 1st pass

SHA1 - 2nd pass

64 Byte

20 Byte

Please understand that the algorithm is out of scope of this paper.

The end result

The output of the three parts are Base64-URL strings separated by dots. It is easy

to work with, and can easily be passed in HTML and HTTP applications.

4.4.2 Why use JWT?

There are many benefits from using JWT, instead of something like Security As-

sertion Markup Language (SAML). One of them is size. JSON is less verbose

than XML, and that makes it so that when JSON is encoded its size is smaller.

This makes JWT a good choice to be passed in HTML and HTTP environments.

4.4. Authentication 29

[25]

SAML and JWT use the same signing-method, where you use a public/private key

pair in the form of a X.509-certificate for signing. This is also a place where JWT

comes out ahead of SAML.[25]

30 Technical Documentation

Size comparison

JWT

SAML

The SAML version is 6856 characters, and the JWT version is 155 characters.

4.4. Authentication 31

Quite the difference! Imagine every single HTTP request has to carry this weight.

JWT is quite a lot lighter to use.

4.4.3 Authentication directories

Actual authentication is handled by a user directory. We are using Lightweight Dir-

ectory Access Protocol, LDAP, to speak with a Microsoft Active Directory server.

This is because we want the users of NTNU to authenticate with their normal pass-

words. We do not store the passwords themselves, only a user reference and some

cached user information.

The implementation of this is as follows:

User wants to
authenticate

LDAP Service

Microsoft
Active Directory Service

Win-ntnu-no

MySQL Database

API Service

HTTPS API Request

LDAP
Authentication Request

User browser

Authentication status

Authentication status
Returns with token if successful

LDAP
Authentication Status

Write user information
(not passwords)

32 Technical Documentation

Alternative authentication methods

We could also have implemented other user directories or other methods of au-

thentication, like Feide. Feide was not implemented because of the very time-

consuming implementation period, and would have added a complexity that is not

needed for this project. [26]

But as of now, the only way to authenticate is via LDAP.

4.5. Data storage 33

4.5 Data storage

4.5.1 Structured data storage

For the structured data, we are using a relational database. We are using MySQL as

the relational database systems manager. We chose a relational database because

of the nature of our data. [22]

Database structure

As referenced earlier in the paper, this is the database structure that is implemented

in this project:

oslist - Templates

id int(11), PK, AI

name varchar(45)

description text

disabled tinyint(4)

template varchar(1111)

users

id int(11), PK, AI

email varchar(450)

firstname varchar(450)

lastname varchar(450)

username varchar(450)

admin tinyint(4)

maxvms int(11)

vm

id int(11), PK, AI

vmname varchar(450)

vmowner int(11)

state varchar(110)

ip varchar(45)

macAddress varchar(450)

defaultPw varchar(45)

created varchar(450)

queue

id int(11), PK, AI

command varchar(45)

vmname varchar(45)

param varchar(45)

vmowner int(11)

timestamp varchar(45)

executed int(11)

software text

4.5.2 File storage

There are not a lot of file storage used in the main solution of AutoDeploy, except

for the templates and the virtual machines.

34 Technical Documentation

The templates and virtual machines are all stored on the VMWare Storage Solu-

tion, which is one or more iSCSI targets mounted on all the ESXi hosts. The

templates are not stored on the webserver and the webserver can normally not

reach these templates.

4.6 Creating a virtual machine

There are a few things that are key elements involved in creating a virtual machine,

excluding AutoDeploy. Theese are:

• The hypervisor and all related services

• The VM template

• The VM startup agent

• The QueueManager

4.6.1 The VM Template

Normally, in VMWare, you can create a virtual machine using 2 methods. Blank

virtual machine and manually installing an operating system, or via a virtual ma-

chine template.

A virtual machine template in VMWare is in short a virtual machine that has been

installed with the needed software, and then converted into a template - then a

template can be used to create many clones. The process to create new virtual

machines from this template is called Cloning, and in practise is basically like

cloning a virtual machine.

Because we are not creating standard virtual machines in VMWare, we need some

specialized software installed, in addition to the standard applications installed.

One of the applications installed on all the templates, and therefore also on all

Linux AutoDeploy Virtual Machines, is Fail2Ban. Because of the fact that all the

4.6. Creating a virtual machine 35

Virtual Machines are assigned a public IP address, we employ fail2ban to make

sure that there is no easy way to brute force the SSH connection. With the standard

configuration of fail2ban, you will be blocked permanently from connecting over

SSH after the third failed login attempt. Harsh, but necessary.

The specialized software installed is the VM Startup Agent, an application de-

veloped to handle simple requests from AutoDeploy.

4.6.2 The VM Startup Agent

A startup agent is something that is very common among virtual machines. Usually

this is an agent that gives the hyper-visor or the management software access to

manage the virtual machines operating system. [27]

AutoDeploy has to be able to control the deployment of the virtual machines, and

this is done via this agent. After a virtual machine is created, the queue manager

will populate the MAC Address table and from there the virtual machine will be

able to pull its config from the API. The Agent makes sure that there is no manual

action required from system administrators before the user requesting the virtual

machine can log in and start utilizing the resources assigned to the machine.

In addition to the AutoDeploy agent we have the standard VMWare Tools installed,

this is mainly to make sure the virtual machine has the required drivers installed,

but also so that the hypervisor can shutdown and control the virtual machine better.

Without VMWare Tools, the hypervisor has only one option to shut down the VM,

and that is to kill it.

4.6.3 The Queue Manager

When a user clicks a button in the UI, usually the action that is performed is a

queue action. This means that the UI/API creates a queued task, and it is the

QueueManagers job to crawl these tasks and perform them. In short, the queuem-

anager is the Perl script that communicates with VMWare via the VMWare Perl

36 Technical Documentation

SDK.

The basic process of the queuemanager is a loop that waits for tasks that are not ex-

ecuted. If there exists such tasks, the task will be executed in the manner described

in the description of the task.

A Queued task

A queued task contains the following information:

• Command - what command to perform

• VM Name - what virtual machine is the command to be performed on.

• param - Additional parameters, like template name.

• Status - Is the task executed?

• Software - What software should be installed?

The status is set by the QueueManager when the task is executed.

4.7. Foreign keys in VMWare 37

4.6.4 Creating a VM - Diagram

Newly created VM
username-web01

VM Startup
Script

Set
hostname

Create
user

Install
updates

Install
software

Newly created VM
username-web01

VM Startup
Script

Set
hostname

Create
user

Install
updates

Install
software

Newly created VM
username-web01

VM Startup
Script

Set
hostname

Create
user

Install
updates

Install
software

Newly created VM
username-web01

VM Startup
Script

Set
hostname

Create
user

Install
updates

Install
software

ACTION:
A user requests a
Virtual machine

«username-web01»

Angular
Frontend
Creation form

Python Backend
/api/createvm

MySQL
Database: adp
Table: queue

QueueManager
Actively reads from queue

VMWare
vCenter

Creates a new virtual machine

from template.

User press
HTTPS

API

Writes to
Queue

SQL

SQL
Reads queue

API Request
Clone VM Template

HTTPS API – Get VM information

VM Done!
Send email to user

VM Complete!!

Reads MAC from new VM

Write MAC

4.7 Foreign keys in VMWare

Our implementation of deployment in VMWare uses the virtual machines name

and MAC address as foreign keys.

The only identification from the AutoDeploy QueueManager and the vCenter API

is the name of the virtual machine. It is because of this that we have to be very

careful not to have any possibility of to two virtual machines being created with

the same name. This would result in double action.

The other foreign key is the MAC Address of the main ethernet interface of the

deployed virtual machine. We remove the separators and we are left with a unique

string.

Example of MAC address with separators removed:

E4A4715DE968

38 Technical Documentation

The MAC address is used as foreign key when the AutoDeploy Startup agent com-

municates with the API. This is because it is possible to retrieve the MAC from

the VMWare API before the VM is completely deployed.

4.8 The user panel - Front end

4.8.1 Quick overview of front ends

The front end in software development is the part the end user will see and interact

with. When using the front end, it will make requests to the back end which

handles the logic of the application. The received data is then presented to the

user. [28]

Front ends are at their core html. It is the base of any website regardless of other

tools. It describes the structure of webpages and links data together with hyper-

text. [12] Then a CSS file is added to control the look of the site, for example

the background and fonts. But neither are very good at handling dynamically up-

dating content. We solve this by using another cornerstone of web development,

JavaScript.

JavaScript is a high-level scripting language that enables dynamic updating of the

content being presented. It controls multimedia, animation and is a staple of the

web. But since most sites use similar elements it makes sense to not reinvent the

wheel every time one is made. Therefore, we add a framework on top of JavaScript

so we can create a beautiful site without thinking too much about setting up build

systems etc. But in the end the code is compiled to JavaScript, and everything is

made up of these 3. (Html,stylesheet, js). [29]

4.8.2 Angular front end

The frontend is written in Typescript and uses Angular 4 as a framework. Typescript

is a superset of JavaScript meant to make writing faster, and the code more read-

able. We use Angular because it does a lot of work in the background to make life

4.8. The user panel - Front end 39

easier for the developer.

Angular uses what we call modules too provide context for components such as

application domain. Meaning you can tie together a component on your site, like

a form or a text field, to a service such as our API. [29]

All Angular applications have a root module. this is the entry point; all the sub-

sequent functionality is imported to this module. When you navigate within the

site, for example /dashboard in our project, then the dashboard module is loaded

by a service called router. The router is responsible for navigation within the pages

of the application.

Each "page" has its own html, css/scss files. These are injected into the main html

file so that the other components do not have to be implemented for each page.

Having a menu, header and imports for each page is less effective than just putting

the page elements you wish to display at a given moment into a single view. [29]

To visualize this, one can think of it like a collection of webpages put into a single

webpage. And you can modify which pages are viewable as you please.

When the user wants to create a VM we simply remove the table containing the

VMs and present a form with options instead. Nothing else has changed, and the

time spent getting the other components is saved. When the form is filled and the

user clicks the create button a call is made to the server via the apiconnect class,

containing the options for the new VM.

This is done asynchronously so the rest of the page is not "frozen" until we get a

response. When the response does arrive, give the user a "toast" notification and

send them back to the dashboard.

The dashboard of course has its own functions that are executed when it is loaded.

These include retrieving the VMs and displaying them in a table. Each table item

has start, stop and delete functions.

40 Technical Documentation

Here we see an overview of the flow of the main components of the program.

First, logging in. Dashboard. And VM creation. The arrow from the "forms

inputs" represents getting sent back to the dashboard after completing a VM.

The first page presented to the user is the logincomponent. Here the user provides

a LDAP account name and password. This class is encapsulated and not accessible

4.8. The user panel - Front end 41

to other components.

Here we see the dashboard which the user will be sent to after the login completes.

The table displays all the VMs the user has access to. The top of each column has a

search field so you can search by name, ip and status. The far right column houses

the action bar. Here you can start, stop and delete the existing vms. Pressing the

"new vm" buttons brings up the vm creation interface.

42 Technical Documentation

The new vm interface (forms.inputs in flow overview diagram) lets the user set the

create vms with a specified set of preferences. First, the name of the vm. Then the

user can set the operating system he or she wants, and select software to be pre-

installed from a list of choices. The available software of course varies based on

the operating system selected. When the server responds after creating the vm and

installing the software, a "toast" message is displayed to the user and the dashboard

replaces the new vm interface.

(Toast message)

4.8.3 Front end API calls

To be able to display any data, you need to fetch it somehow. So the front end has

a set of calls that it communicates with the back end with. It requests and modifies

it with a set of "Application Interface Calls" that are all defined and executed from

our "API connect service" class.

4.8. The user panel - Front end 43

Table 4.2: API Service methods

Request

Method

POST Data Headers Response HTML

Method

Authentication

login username,

password

none user (array),

token(string)

Post

verify none Auth information Post

Getters

getOs None Auth user (array) Get

getVms None Auth vms (array) Get

Delete

deleteVm id (VM id) Auth information Post

Adders

addQueue command,

vmname,

param,

software

Auth information Post

createVm vmnwame,

template,

software

(json)

Auth information Post

44 Technical Documentation

Chapter 5

Manual

User, administration and maintenance manual

45

46 Manual

5.1 User manual

5.2 Introduction

This chapter contains the user documentation, administration documentation and

maintenance manual for the AutoDeploy system. A short summary of how to use

the system, and how to do things like creating new templates or maintaining the

adp-server.

5.2.1 Logging in to AutoDeploy for the first time

Navigate your browser to https://autodeploy-new.uials.no/. The browser will ask

for your NTNU credentials. Enter your NTNU username and password. You are

now logged in.

The NTNU username and password is the same as when you log in

to Eduroam, or when you use FEIDE. The username normally is the

same as the prepending part before the @ in your NTNU email ad-

dress.

5.2. Introduction 47

5.2.2 Creating your first Virtual Machine

After you have logged in, you can start creating virtual machines. Normally, you

can create a maximum of 5 virtual machines, but this can be adjusted on a per-user

basis.

To create your first virtual machine, you click the plus-icon on the left-hand side.

This will, if you are on mobile or on a device with low screen resolution, bring up

a menu.

48 Manual

Click on New VM. This will bring you to a form that you will be able to fill in to

create your virtual machine.

First, you fill in the name of your new virtual machine. This can be anything, as

5.2. Introduction 49

long as it is without spaces and only use the characters [a-Z0-9]. The resulting

name will be appended to a prefix containing your NTNU username - like this:

olanord-testvm2, where testvm2 is the name entered in the form and olanord is

the NTNU username.

Operating System

The next thing you will have to select is the operating system template. As of

now, there is only Windows Server 2012 R2 and Ubuntu Server 16.04 available for

selection. It is very possible to supply more templates, but this must be developed

by the data-lab team.

Some OS templates will also come pre-installed and pre-configured with some

kinds of software. Examples for the future might be Microsoft SQL Server or

Docker.

Software options

Next, you have the option to select software that shall be installed on your virtual

50 Manual

machine. This is a very simple process, so no configuration will be done to the

software. There can be a wide range of selections, and they also vary with the kind

of template you have selected.

Click CREATE VM to create the virtual machine.

VM Creation complete

Finally, the virtual machine you have worked so hard to get is finally under way.

The creation process can take anywhere from 10 minutes to 2 hours, depending on

the load of the servers and the size of the template.

When the Virtual Machine is finished and ready for use, an email will be sent

to your student email address containing the IP address, the password and other

detail regarding the virtual machine. The username for authentication will always

be your NTNU username.

Example email

5.2. Introduction 51

5.2.3 Connecting to the virtual machines

In the previous section we described how you can create your own virtual machine.

In the end, you would receive an email with the details of the virtual machine; an

IP and a password. How do you use this information to connect and use the virtual

machine?

Connecting to a Linux VM

The connection to a Linux VM is done via Secure Shell, or SSH. This is a secure

and encrypted way to communicate with the terminal sessions of your server. To

connect to your server via this protocol you will need a SSH client.

Connecting from a Windows PC

The Windows PC does not come with a SSH client, so we need to retrieve a free

and good SSH client from the internet. We recommend PuTTY. PuTTY can be

retrieved from https://www.putty.org/. Please navigate there with your browser

and download PuTTY before continuing.

Open PuTTY, and enter the IP address sent to you in the email in the Hostname

(or IP address) field.

52 Manual

After entering the IP, make sure PuTTY is set to use SSH. You can select SSH

under Connection type.

Click Open. If everything is configured correctly, you will get a black window

asking for a username. Enter your NTNU username, for example olanord. Press

enter, and you will be asked for a password. Enter the password you received in

the email.

The first time you log in to a Linux VM it will ask you to change

your password immediately after login. You have to first supply with

the password you received in the email, and then enter a good and

secure password twice. This will disconnect PuTTY, do not worry.

Make sure you use the new password when you re-connect. 3 failed

password attempts will block your IP.

5.2. Introduction 53

Connecting from Mac or Linux

Mac and Linux both have built in SSH clients. Open Terminal or similar terminal

emulators and enter the following command. Replace the username and IP, of

course:

ssh olanord@158.38.101.xxx

This will bring you to a prompt asking for password. Enter the password supplied

in the email and press enter.

The first time you log in to a Linux VM it will ask you to change your

password immediately after login. You have to first supply with the

password you received in the email, and then enter a good and secure

password twice. This will disconnect SSH, do not worry. Make sure

you use the new password when you re-connect. 3 failed password

attempts will block your IP.

Connecting to a Windows machine

The Windows virtual machines use Remote Desktop Protocol to deliver you a

remote desktop.

Connecting from Windows

Open Remote Desktop Connection, enter the IP or hostname of your virtual ma-

chine in the Computer-field. Click Connect. It will ask for your username and

password. Enter your NTNU username, for example olanord, and the password

you have received in the email.

After logging in to the Windows virtual machine, please change the

log-in password as soon as possible. Do not use the default password.

54 Manual

Connecting from other operating systems

You will need a compatible RDP client. On Mac, the recommended client is

Microsoft Remote Desktop, available in the App Store. On Linux, any RDP

client can be used. A good example is Remmina, available on the website ht-

tps://www.remmina.org/. The connection is performed in a very similar way as

from Windows, but it might of course vary from client to client.

5.2.4 Managing the virtual machine

It is important that you regularly run software updates on the virtual machine.

You do this with apt-get update; apt-get upgrade; on Linux, and with Windows

Update on Windows. It is also very important that you regularly check that the

software running on the VM is the intended software.

Never use simple passwords or deploy un-safe applications. It will get hacked.

5.3. Administration of AutoDeploy 55

5.3 Administration of AutoDeploy

There are some aspects of the administration of AutoDeploy that we sadly will not

be able to cover in this section, but the most important parts are covered.

5.3.1 Managing the database

To manage the database, navigate to http://autodeploy-new.uials.no/phpmyadmin.

The username is root and the password is the standard UIALS password (without).

From this page you can manage the adp database and perform the required opera-

tions.

5.3.2 Starting, stopping and managing the AutoDeploy services

The AutoDeploy server has two services installed specially from AutoDeploy, as

well as MySQL and Apache2.

1. autodeploy-api

2. autodeploy-queue

The autodeploy-api service is the Web RESTful API that is available through

56 Manual

apache reverse proxy at autodeploy-new.uials.no/api (reverse-proxyed to 127.0.0.1:5000/).

The Autodeploy-queue service is the queue manager that works the queue and

performs VMWare actions. If this service stops, you will not be able to power off,

power on or create virtual machines.

Managing the services

To start or stop a process, you can enter:

sudo service autodeploy-api start

sudo service autodeploy-api stop

Also, if you want to view the status of a service, you type this:

sudo service autodeploy-api status

The logs from the services are written to syslog. To view the logs raw, enter this:

sudo less /var/log/syslog

You can also tail the log and view only items from a selected service with tail and

grep, like this:

tail -f /var/log/syslog | grep autodeploy-api

5.3.3 Managing the virtual machines

There are a few tasks that might become relevant, such as renaming a virtual ma-

chine or trouble-shooting.

Renaming a virtual machine

The first step is to rename the virtual machine in the database. You do this by

connecting to the database with phpMyAdmin (described above) and navigating

5.3. Administration of AutoDeploy 57

to the adp.vm table. From there you can search for the VM by name using the

Search tab. Re-name it accordingly.

The next step is to rename the virtual machine in VMWare. You do this by logging

in to VMWare with your UIALS credentials, find the VM and rename it. The name

in the database and in VMWare has to be 100% the same.

The last step is to either re-boot the re-named VM, the start-up script should take

care of the renaming. The other way to do this to avoid downtime is to do it

manually in the command line. Like this, replacing newhostname:

sudo hostname newhostname

sudo echo newhostname > /etc/hostname

sudo echo ’127.0.0.1 newhostname’ » /etc/hosts

58 Manual

Troubleshooting the startup script

Sometimes, a virtual machine might not be configured correctly by the startup-

script. Most of the time this is solved by rebooting the VM. You do this in VMWare

vCenter.

If this does not solve the issue, you can try to re-deploy a new Virtual Machine,

maybe with a new and different name?

5.3.4 Creating a new template

It is important to first understand what a template is before you set out to create

a new template. In short, a template is a virtual machine that is configured to be

cloned and deployed with a start-up agent. The concept of templates is described

in more detail earlier in this paper.

Step 1: Cloning an existing template

The easiest way to create a new template is to clone an existing virtual machine,

and the easiest way to do this is to simply deploy a virtual machine with AutoDe-

ploy. Follow the guide above to create a virtual machine.

There is one pre-cursor for this to work - the desired operating system has to be

available for deployment already. If you intend to create a new template with a

different OS, for example CentOS or FreeBSD, you need to create a new template

and create a modified startup-script for this purpose.

5.3. Administration of AutoDeploy 59

Step 2: Modifying the VM

Make sure you do all modifications with the hialsvmadmin/Administrator ac-

counts, depending on operating system.

So, one of the best reasons to create a new Virtual Machine template is to have

pre-configured software installed to save time. When you have the virtual machine

ready, all you have to do is make sure that all software you install is for ALL

users. You can do all necessary configuration, but this is also where you have to

remember to configure everything for all users.

Step 3: Re-naming the virtual machine

Follow the guide above to rename the virtual machine. The recommended tem-

plate name format is autodeploy-opeartingsystem-software. The name must be

unique. An example can be: autodeploy-windows2012r2-mssql

60 Manual

Step 4: Clear the template

Delete the user that was created when the template was deployed the first time.

Also, navigate to adp.vm in the database and remove the VM from AutoDeploy.

Step 5: Add the template to AutoDeploy

Connect to the database with phpMyAdmin, described above. Navigate to the table

adp.oslist. There are 5 fields you need to fill in. Name and description are user-

friendly names and descriptions of the template. Options is available software

options for the template. The template field is where you enter the name of the

template. It is very important that this field is correct. Also, if you want to disable

a template you can set the disabled to 1.

Example options field: ["apache2","php7.0", "nginx", "python", "python3", "python-

pip", "python3-pip", "default-jre", "default-jdk", "docker", "postgresql", "tmux"]

5.3. Administration of AutoDeploy 61

62 Manual

Step 6: Test the template

Make sure to test the template a few times to make sure that the template works as

desired.

Make sure to reboot and SWITCH OFF the VM Template after you are fin-

ished.

Complete!

After testing, the template should be ready for use. The AutoDeploy users can now

take advantage of the template immediately.

5.3.5 Disabling a template

Connect to the database with phpMyAdmin, described above. Navigate to the table

adp.oslist. Find the template you wish to disable and set the field "disabled" to 1.

Chapter 6

Research Strategy

63

64 Research Strategy

6.1 Research methods

To measure our success we need to look at our research questions. They aim to find

a solution to a specific problem and are therefore exploratory as opposed to explan-

atory or descriptive. Also both qualitative and quantitative research methodology

can fit our research questions. Our main question can be answered qualitatively

by interviews with users or studying system interaction. Thus we get more of an

insight in what this system has meant to them during their studies. [30]

Qualitative data, with their emphasis on peoples lived experiences.

are fundamentally well suited for locating the meanings people place

on events, processes, and structures of their lives and for connecting

these meanings to the social world around them. [30, p. 11]

We questioned fellow students to supplement our own understanding and exper-

ience using the old system. Events like crashes, data-loss and general downtime

was noted. Also general "feelings" of the students experiences such as frustrations

provided a good qualitative understanding of the old system. We plan on doing the

same when the new system is fully operational.

Identifying challenges is a major part of software development. Therefore we

wanted to explore how our initial thoughts were changed over the course of the

project. We set out knowing some of the challenges beforehand, and the rest were

discovered by testing, implementing and research. Most of the literature for the

development part of a project like this is invariably technical documents from de-

velopers like Oracle and Google.

We also wanted to set aside some time for research into the history and origins of

vitalization to get a better understanding of what we are actually making. Most of

these documents are dissertations and historical documents from the depths of the

archives at IBM and Bell labs.

6.1. Research methods 65

We used Google scholar so we could confirm that our sources are highly cited

and trustworthy. Zotero was used to keep track of references. We used BIBTEX to

format the reference bibliography in our LATEX document.

66 Research Strategy

Chapter 7

Discussion

67

68 Discussion

7.1 Introduction

In this chapter we will discuss what we have done, and how we could improve on

what we have done, the errors we have done and what we could have done better.

Our findings suggest that it is very possible to offer a effective solution to the

problem of incompatible platforms used by students. And, more importantly, make

one that is easy enough to use for everyone, not just the computer engineering

students.

Our choices of tools were for the most part good, but of course no project turns out

exactly how we envisioned it when we set out.

7.2 Front-end

There were some hurdles that could have been avoided in the front end. In hind-

sight a lot of issues arose from utilizing a bad template and not building our site

from the ground up. We spent a little too much time reverse engineering because

of the poor documentation for the template. But, in the end this led to insight

into how Angular is used in a professional setting, and the end result is very user

friendly and stable.

7.3 Queue Manager

In the backend-section some compromises had to be made. One of them is the

queue management. There is a lot of software out there designed to be queue

managers, like RabbitMQ[31] or ZeroMQ.[32] This is software designed to deliver

messages between software. Had we used something like this instead, the system

would probably have been better. But designing a new one or implementing one

correctly could have been a thesis in itself. A good implementation of a queue

should also include error-handling in the queue. Most queue-managers have this,

but the one implemented in AutoDeploy does not handle errors thrown by external

7.4. Deployment of VMs 69

APIs (including VMWare). The implementation is somewhat basic and only takes

a very strict and defined set of commands. In the future, the queue manager can

probably be replaced with a out of the box solution like the ones mentioned above.

7.4 Deployment of VMs

The deployment solution itself is not perfect, but it does everything we need it to.

In most cases the deployment works without hitch, and gives the user a virtual ma-

chine within minutes. But, the use of a startup-script instead of a virtual machine

agent is something that was not the best of decisions. This has, in the past, caused

a lot of headache. Some times the virtual machine does not get its configuration

when it is asked for, and then the VM is stuck in a ghost-type state until it gets re-

booted. This could probably have been solved by utilizing a VM agent instead of a

startup script. A lot of popular VM host providers, like Digital Ocean and Azure,

use VM Agents.[33] This is a program or utility that always runs on the virtual

machine. It communicates with control software via either proprietary channels

or via HTTP RESTful APIs. This would enable the control software itself to take

control over ghosted VMs, and make the deployment process more agile. In the

future it is possible to replace the VM Startup script, just by utilizing the Script

update functions.

7.5 Programming languages

In the end, the project has a lot of quirks and funky workarounds to make this

work. We did encounter a lot of problems with the VMWare implementation itself

as well, both because the API changes with time, and because after a lot of trial

and error we decided that the Python SDK was not good enough and we switched

back to Perl. This is why the Queue Manager is written in Perl. Perl is a good

language, no doubt, but we did have a vision to keep the number of programming

languages to a minimum. We ended up with 3 major languages, and that is not too

bad (Python, Perl and TypeScript (Angular)).

70 Discussion

7.6 Planned functions

There were a some planned functions that sadly did not make it in to the current

version, some of them is were not implemented because of technical issues and

others because of time constraints. A function that we used a lot of time to try and

implement was to beeing able to show the user a percentage on triggered processes.

For example, we could show the user that the VM they created is 67% complete.

After a lot of work, we had to conclude that this function was not technically

feasible because of the shortcomings of the VMWare SDK. Today you will get a

toast notification saying "Creating VM..." in a message pop up when the VM is

being created. This you also get an email when the VM is ready, so that you don’t

have to wait around for the creation to finish.

Another planned function was having a web VNC view of the VM. This would

mean no ssh client would be needed, and a full terminal window would be access-

ible right in the web interface. This would enable total control of the VM, with

no software at all installed on their local machine. This could have been possible

with a lot of trial and error, but in the end we decided to postpone this function

because of time constraints - and because of the risk of creating a security hole if

not implemented correctly.

We also did look into better templating. A vision we had was to use a script

language called Ansible to create templates automatically. This would enable a

teacher or, possibly, a student, to create templates very fast. All you would have

to do is to create an Ansible-playbook and add this to an OS template. Sadly, this

was a function that we were not able to implement due to time constraints, but also

because of the way templating works in the current version. This might be a fine

project for students coming after us to tackle.

7.7. The future 71

7.7 The future

All in all, the project turned out great. We have learned a lot from the mistakes. Not

only is it important reach for the impossible, but it is also important to sometimes

allow yourself to fail. The best ways to learn is to challenge yourself. Sadly, in this

project, a lot of the challenges were due to technical limitations in the VMWare

Hypervisor and its API / SDK. There is a consensus in our team that replacing

VMWare with another hypervisor like Xen or OpenVZ would open up a lot more

opportunities and possibilities - but it would also require a complete rewrite of

AutoDeploy back-end.

We believe that the new AutoDeploy will give students access to a broader set of

computer tools, by allowing them to easily create Virtual Machines. The VMs they

create can be used to learn, explore and discover new things. Who knows, maybe

the new big thing on the internet one day will be developed by a student at NTNU

Aalesund, using the endless opportunities you get with a VM from AutoDeploy.

72 Discussion

Chapter 8

Conclusion

In this project we wanted to create a better VM solution for NTNU. We believe we

succeeded in doing that, since the system we delivered is much more user friendly

and stable. Even though there are still some issues that will have to be corrected,

we have created a platform that the students can use in many years to come, and

other students can build upon.

We managed to keep the front- and back-end separate, which was an important

goal for both us and NTNU. This means if either the site or back-end crashes the

other will not, though you will not be able to log in. It also means it’s possible to

work on either one without knowing anything about the other.

Through research we found the best tools to be a mix of Angular, Python, and Perl.

They provide performance, maturity and good documentation.

In the end this project was very much a success. We are very pleased with suc-

cessfully tying together two very different areas of computer science. One very

user oriented, the other traditionally reserved only for the most dedicated of the IT

community. Presenting this very intimidating software in an approachable way;

was perhaps the biggest challenge we faced.

73

74 Conclusion

Bibliography

[1] Karissa Miller and Mahmoud Pegah. ‘Virtualization: Virtually at the Desktop’.

In: Proceedings of the 35th Annual ACM SIGUCCS Fall Conference. SIGUCCS

’07. New York, NY, USA: ACM, 2007, pp. 255–260. ISBN: 978-1-59593-

634-9. DOI: 10.1145/1294046.1294107.

[2] S. Agrawal, R. Biswas and A. Nath. ‘Virtual Desktop Infrastructure in Higher

Education Institution: Energy Efficiency as an Application of Green Com-

puting’. In: 2014 Fourth International Conference on Communication Sys-

tems and Network Technologies. Apr. 2014, pp. 601–605. DOI: 10.1109/

CSNT.2014.250.

[3] IBM. Virtualization. en. a key to virtualization. Google-Books-ID: BNS7KNMAa_IC.

PediaPress, 2014. URL: http : / / pediapress . com / books / show /

virtualization-a-key-to-virtualization-wo/.

[4] Dennis M Ritchie, Ken Thompson and Bell Laboratories. ‘The UNIX Time-

Sharing System’. en. In: University of California Berkeley 17.7 (1974),

p. 11.

[5] Dennis M. Ritchie. ‘The evolution of the unix time-sharing system’. en. In:

Language Design and Programming Methodology. Ed. by G. Goos et al.

75

76 BIBLIOGRAPHY

Vol. 79. Berlin, Heidelberg: Springer Berlin Heidelberg, 1980, pp. 25–35.

ISBN: 978-0-13-110362-7. DOI: 10.1007/3-540-09745-7_2. URL:

http://link.springer.com/10.1007/3-540-09745-7_2 (visited

on 22/05/2018).

[6] James Gosling et al. The Java R© Language Specification. en. Specification.

Oracle, LLC., Feb. 2018, p. 772.

[7] Melinda Varian. ‘VM and the VM Community: Past, Present, and Future’.

en. In: Princeton University (Aug. 1997), p. 70.

[8] Oracle LLC. 1.1.1. Brief History of Virtualization. 2012. URL: https://

docs.oracle.com/cd/E26996_01/E18549/html/VMUSG1010.

html (visited on 10/04/2018).

[9] Oracle LLC. Oracle R© VM. 2012. URL: https://docs.oracle.com/

cd/E26996_01/E18549/html/index.html (visited on 10/04/2018).

[10] Oracle LLC. User’s Guide for Release 3.0.3 - 1.1.2. Hypervisor. 2012. URL:

https : / / docs . oracle . com / cd / E26996 _ 01 / E18549 / html /

VMUSG1011.html (visited on 10/04/2018).

[11] Roy Thomas Fielding. Architectural Styles and the Design of Network-based

Software Architectures. 2000. URL: https : / / www . ics . uci . edu /

~fielding/pubs/dissertation/top.htm (visited on 10/04/2018).

[12] Julian F. Reschke and Roy T. Fielding. Hypertext Transfer Protocol (HTTP/1.1):

Authentication. en. Specification. World Wide Web Consortium, 2014. URL:

https://tools.ietf.org/html/rfc7235 (visited on 10/04/2018).

[13] The Perl Foundation. Perl.com. en-us. 2018. URL: https://www.perl.

com/about (visited on 10/04/2018).

[14] Scott Trent et al. ‘Performance Comparison of PHP and JSP as Server-Side

Scripting Languages’. en. In: Middleware 2008. Ed. by Valérie Issarny and

Richard Schantz. Vol. 5346. Berlin, Heidelberg: Springer Berlin Heidelberg,

BIBLIOGRAPHY 77

2008, pp. 164–182. ISBN: 978-3-540-89855-9. DOI: 10.1007/978-3-

540-89856-6_9. URL: http://link.springer.com/10.1007/

978-3-540-89856-6_9 (visited on 22/05/2018).

[15] World Wide Web Consortium et al. Usage Statistics and Market Share of

Server-side Programming Languages for Websites, May 2018. Tech. rep.

World Wide Web Consortium, 2018. URL: https://w3techs.com/

technologies/overview/programming_language/all (visited on

22/05/2018).

[16] Comparing Node.js vs PHP Performance. en. Mar. 2015. URL: http://

www.hostingadvice.com/blog/comparing-node-js-vs-php-

performance/ (visited on 22/05/2018).

[17] Golang vs Node.js Comparison: Performance, Speed, Scalability and Other

| DA-14. Jan. 2018. URL: https://da-14.com/blog/golang-vs-

nodejs-comparison-performance-speed-scalability-and-

other (visited on 22/05/2018).

[18] Alan A. A. Donovan and Brian W. Kernighan. The Go Programming Lan-

guage. en. Google-Books-ID: SJHvCgAAQBAJ. Addison-Wesley Profes-

sional, Nov. 2015. ISBN: 978-0-13-419056-3.

[19] Facebook. React - A JavaScript library for building user interfaces. en. Spe-

cification. Facebook, Inc., 2018. URL: https://reactjs.org/index.

html (visited on 23/05/2018).

[20] Angular.IO. Angular - Architecture overview. 2018. URL: https://angular.

io/guide/architecture (visited on 11/05/2018).

[21] Indiana University. What are flat file and relational databases? 2017. URL:

https://kb.iu.edu/d/ahrp (visited on 04/05/2018).

78 BIBLIOGRAPHY

[22] S. Sumathi and S. Esakkirajan. Fundamentals of Relational Database Man-

agement Systems. en. Google-Books-ID: MQNtCQAAQBAJ. Springer, Mar.

2007. ISBN: 978-3-540-48399-1.

[23] VMWare. How VMware HA Works - VMware vSphere 4 - ESX and vCen-

ter Server. 2018. URL: https://pubs.vmware.com/vsphere-4-esx-

vcenter/index.jsp?topic=/com.vmware.vsphere.availability.

doc_41/c_useha_works.html (visited on 22/05/2018).

[24] Federico Calzolari. ‘High availability using virtualization’. In: arXiv:0910.1719

[cs] (Oct. 2009). arXiv: 0910.1719. URL: http://arxiv.org/abs/

0910.1719 (visited on 11/04/2018).

[25] Pace Eugenio. JWT_IO - JSON Web Tokens Introduction. en. Tech. rep.

Auth0,Inc, 2018. URL: http://jwt.io/ (visited on 14/05/2018).

[26] Hildegunn Vada. Feide integration guide. en. Tech. rep. UNINETT, A/S.,

2016, p. 29.

[27] Oracle LLC. About VMware Tools - vSphere Documentation Center. 2018.

URL: https : / / pubs . vmware . com / vsphere - 50 / index . jsp ?

topic = %2Fcom . vmware . vsphere . upgrade . doc _ 50 % 2FGUID -

28C39A00-743B-4222-B697-6632E94A8E72.html (visited on 05/05/2018).

[28] Steve Faulkner (The Paciello Group) et al. HTML 4.01 Specification. en.

Specification. World Wide Web Consortium, 1999, p. 389. URL: http:

//webx.ubi.pt/~hgil/utils/HTML/html40.pdf.

[29] Brendan Eichc, Rand Mckinney and Oracle LLC. JavaScript Language Spe-

cification. Wesley Publishing Company, Nov. 1996.

[30] Matthew B. Miles, A. Michael Huberman and Johnny Saldana. Qualitative

Data Analysis. en. SAGE, Apr. 2013. ISBN: 978-1-4522-5787-7.

[31] RabbitMQ - Messaging that just works. 2018. URL: https://www.rabbitmq.

com/ (visited on 26/05/2018).

BIBLIOGRAPHY 79

[32] Distributed Messaging - zeromq. 2017. URL: http://zeromq.org/ (vis-

ited on 26/05/2018).

[33] Daniel Gicklhorn. Azure Virtual Machine Agent Overview. en-us. 2018.

URL: https://docs.microsoft.com/en-us/azure/virtual-

machines/windows/agent-user-guide (visited on 05/05/2018).

