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Problem Description
Due to global warming the world must shift to a more environmental friendly energy supply. At the
same time billions of people do not yet have electrical power supply. Stand-alone systems will be
an important contribution in the future.

To get an optimal operation of a stand-alone hybrid energy supply with renewable energy several
things must be predicted, like the production of the renewable energy sources and the power load
of the consumers. Artificial intelligent methods like artificial neural networks and fuzzy logic have
proven to be suitable for such short term production. Secondly the power electronics converters
must be controlled to obtain the wanted energy flow. Here artificial intelligent methods can also
be used.

The project consists of presenting the suitable artificial intelligent methods. Calculations and/or
simulations should be performed to test the performance. The results should be compared with
more classical methods like PI control.

Design of the stand-alone plant is not included in the project. Laboratory work should be
performed.
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Sammendrag

Kunstig inteligens (KI) er en samlebetegnelse for mange ulike regneteknikker.
De har til felles at de bruker ulineære algoritmer og at de er inspirert av pros-
esser i naturen, særlig hvordan mennesker tar avgjørelser. Bruken av KI for
optimal drift av en stand-alone kraftforsyning har blitt undersøkt. Dette
inkluderer prediksjon, estimering, optimalisering og regulering. En presen-
tasjon av relevante KI teknikker har blitt gjort. KI teknikkene har blitt
sammenlignet med klassiske tilnærminger som for eksempel PI-regulering.
De nye teknikkene som ble undersøkt viste seg å være veldig kraftfulle og
skulle blitt brukt mer enn de brukes i dag. KI er spesielt lovende for bruk
innen overvåkning av systemer. Men det kan også brukes til å regulere om-
forere direkte. En regulator for en DC/DC boost omformer ble dimensjonert.
Den viste seg å være betydelig bedre enn en klassisk PI-regulator. Om regne-
tiden er kortere eller lengre enn klassiske tilnærminger kommer an på anven-
delsen. Sammenlignet med PI-regulatorer har KI-regulatorene lang regnetid.
Sammenlignet med klassiske vindkraftpredikteringsteknikker er derimot KI
teknikker veldig raske. En ulempe med KI er manglen på regler for å avgjøre
den indre strukturen i algoritmene.
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Summary

Artificial intelligence (AI) is a collective term for several computing tech-
niques. They have in common that they use non-linear algorithms and that
they are inspired from different processes in the nature, in particular how
human beings make decisions. The use of AI for optimal operation of a
stand-alone power plant has been investigated. This includes prediction,
estimation, optimization and control. A presentation of some relevant AI
techniques are given. A comparison with classical approaches such as for
example PI control was made. The new techniques that were investigated
proved to be very powerful and should be used more frequently than it is
used today. AI techniques are especially promising for supervisorial con-
trol, but can also be used to control converters directly. A controller for a
DC/DC boost converter was developed. It proved to be significantly bet-
ter than a classical PI controller. Whether the computing time is shorter or
faster than for classical approaches depends on the application. Compared to
PI controllers the AI algorithms have a long computing time. Compared to
classical wind power prediction techniques on the other hand AI techniques
are very fast. A disadvantage with AI is the lack of rules for deciding the
inner structure of the algorithms.
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Chapter 1

Introduction

Artificial intelligence (AI) is a wide term including a lot of computing tech-
niques. These techniques have in common that they are based on how living
creatures behave, in particular how a human being is thinking. Decisions
are made based on reasoning and the algorithms can sometimes learn from
previous measurements. The theory behind the relevant AI techniques is
presented in Chapter 2.

Several aspects must be taken into account when operating a stand-alone
power plant. The diesel generator should be operated in a way that minimizes
the fuel consumption. At the same time the generator set and the converters
should be controlled to maintain the stability of the grid at all time. This
report includes a literature study of the use of artificial intelligence for energy
management and converter control, presented in Chapter 3 and 4 respectively.
Converter control is also further investigated by simulations and practical
measurements, presented in Chapter 5 and 6 respectively. Comparisons with
classical techniques are made throughout the report. The work also includes
considerations on the implementation of AI in real time.

1



Chapter 2

AI theory

In this chapter mainly two artificial intelligence techniques are presented:
Artificial neural networks and fuzzy logic sets. A brief introduction to genetic
algorithms is also given.

2.1 Artificial neural networks

2.1.1 The perceptron

Fig. 2.1: Perception

The building brick in artificial neural networks (ANN) is the perceptron. A
graphic presentation of a perceptron is given in Figure 2.1. A perceptron exe-
cutes the mathematical function in Equation 2.1, where x is the input vector,

2



2.1. ARTIFICIAL NEURAL NETWORKS 3

w the weighting vector and b the threshold. tanh(x) is defined in Equation
2.2. The tanh(x) function ensures that the output is always between -1 and
1.

y = tanh[
n∑
i=1

xiwi − b] (2.1)

tanh(x) = e2x − 1
e2x + 1 (2.2)

2.1.2 Logic operators AND, OR and exclusive-OR

In order to understand how neural networks work some simple functions can
be implemented. Only a single perceptron is needed to implement the logic
functions AND and OR. The perception is trained with measurements. First
the perceptron can be trained to perform the function AND. The vectors in
Table 2.1 can for example be inserted into the Matlab Neural Network Tool-
box. The initially random weights will then be updated to suit the relations
between the inputs and the outputs. This is what is called training.

Variable Values
x1 0 0 1 1
x2 0 1 0 1
y 0 0 0 1

Table 2.1: Training set for the logic function AND

Variable Values
x1 0 0 1 1
x2 0 1 0 1
y 0 1 1 1

Table 2.2: Training set for the logic function OR

The exact same neuron can later be trained with the vectors in Table 2.2 to
perform the function OR. This shows one of the main ideas behind ANN.
They model relations without changing the equations in the model. Only the
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weights are changed. But the network has to be more advanced if the rela-
tions are more advanced. On single perceptron is not enough to implement
the logic function exclusive-OR, with the training vectors given in Table 2.3.
Then a network of perceptions must be used.

Variable Values
x1 0 0 1 1
x2 0 1 0 1
y 0 1 1 0

Table 2.3: Training set for the logic function exclusive-OR

2.1.3 Multilayer perception networks

Fig. 2.2: MLP

Multilayer perception networks (MLP) are built up of perceptions. This is
shown schematically in Figure 2.2. The Equations 2.3 and 2.4 represents a
three layer MLP on matrix form. This is a MLP with r inputs, s neurons in
in the hidden layer and t outputs.


y1,1
y1,2
...
y1,s

 = tanh



w1,11 w1,12 . . . w1,1r
w1,21 w1,22 . . . w1,2r

. . . . . .
. . . ...

w1,s1 w1,s2 . . . w1,sr



x1
x2
...
xr

−

b1,1
b1,2
...
b1,r


 (2.3)
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y2,1
y2,2
...
y2,t

 = tanh



w2,11 w2,12 . . . w2,1s
w2,21 w2,22 . . . w2,2s

. . . . . .
. . . ...

w2,t1 w2,t2 . . . w2,ts



y1,1
y1,2
...
y1,s

−

b2,1
b2,2
...
b2,t


 (2.4)

There is no rule for how many neurons that is appropriate. This depends on
the application. The number of hidden layers on the other hand is easier.
For most practical applications one hidden layer is enough, two on the limit.
To get the right number of neurons many techniques can be applied. One is
testing different structures to see what structure that gives the best result.
Another more methodical way to do it is to use genetic algorithms. In [6]
a method for deciding the number of neurons in a network to perform time
series forecasting is proposed, using genetic algorithms. A presentation of
genetic algorithms is given in Section 2.4.

2.1.4 Training of MLPs

Training of ANNs is done like training of a single perception, only with a
more generalized algorithm. The idea behind ANNs is to learn from previ-
ous measurements. An input vector is applied to the network and an output
vector of the network is calculated. The calculated output vector is com-
pared with measurements, and weight corrections are calculated on the base
of the output error. The bigger and more complex the neural network is the
more training sets are needed. As a rule of thumb one claims that to train a
network with W weights to estimate within an error ε, W/ε training sets are
needed [3]. The threshold b is also associated with a weight that is updated.

A network with many neurons take long time to train. With too many
neurons in the network a phenomena called overtraining can also occur. This
means that the network learns all the details in the training sets, but has
little capability of generalizing.
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2.1.5 Other networks

There are many different types of artificial neural networks, each suitable for
different purposes [3][12]. In [13] a study of the use of the different neural
network types within industrial applications was made. The distribution is
81.2 % for the MLP, 5.4 % for Hopfield networks, 8.3 % for Kohonen networks
and 5.1 % for others. The MLP presented in this chapter is therefore without
doubt the most used network.

2.2 Fuzzy logic sets

Fuzzy sets where first proposed in 1965 and is a modification of the traditional
thinking in programming. Often variables are classified with hard limiters
[4]. For example a man is said to be high if he is higher than 175 cm and
not high if he is below. In fuzzy sets the fuzzy variables (for example the
height of a man) and different properties (like high, low and normal) are
related with membership functions. For example a man is said to be 0 %
high if he is 175 cm or lower and 100 % high if he is 185 cm or taller. With a
linear relationship in between the main is 50 % high if he is 180 cm. In this
chapter the different parts of a fuzzy set is explained and an example from
the Matlab Fuzzy Toolbox is presented.

2.2.1 Membership functions

In an example from the Matlab Fuzzy Logic Toolbox the tip to give in a
restaurant was calculated on the base of the service and how good the food
is. The Figures 2.3 - 2.5 show the membership functions for this example.
Membership functions relate fuzzy variables (service, food quality and tip)
and linguistic variables (good, poor, high, low, etc.). The food was said to
be 100 % delicious if it got the grade 9 (from 0 to 10) and 0 % delicious if
it got the grade 7. The service was described with three linguistic variables.
The output of the example with the restaurant was the tip given in per-
cent. The fuzzy variable tip had three linguistic variables: low, average and
generous.
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Fig. 2.3: Membership function service

Fig. 2.4: Membership function food

Different curves can be chosen for the membership functions. In Figure 2.3
gaussian membership functions are chosen, while the membership functions
in the Figures 2.4 and 2.5 are so called trapezoidal and triangular membership
functions respectively.
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Fig. 2.5: Membership function output tip

AI techniques have no general design procedures and there is no rule for which
type of membership functions to choose or how many linguistic variables that
are appropriate for each fuzzy variable. There are examples of that gaussian
membership functions give better fit to testing data, but are less robust and
less capable of generalizing than triangular and trapezoidal functions [2][8].
Regarding the spacing of the membership functions, an overlap of 20 % to
50 % between the linguistic variables are often suggested as a good approach
[3].

2.2.2 Rules

The inputs and the output in a fuzzy set is related with if then statements.
The statements use the linguistic variables to compare the input and out-
put variables instead of using numbers that is the traditional approach in
computer programming [3]. There are two types of rules; and and or. The
number and type of rules to use needs to be decided by the person imple-
menting the fuzzy model. In controllers the rules usually cover all possible
combinations of linguistic variables. In the tip example presented above three
rules were used.
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Rule 1: if service is poor or food is rancid then tip is cheap
Rule 2: if service is good then tip is average
Rule 3: if service is excellent or food is delicious then tip is generous

2.2.3 Mamdani and Sugeno

There are two main types of fuzzy controllers, Mamdani and Sugeno [3]. In
Mamdani fuzzy controllers the properties are not different for the input and
output variables. In Sugeno controllers the output is a function of the input
variables. This function can of course also be a constant. The defuzzification
technique used in the Mamdani method requires a powerful computing unit.
It is the most suitable technique for capturing expert knowledge. Sugeno is
more suited for optimization and control [3].

2.2.4 Aggregation and defuzzification

Based on the fuzzy input variables the membership of each of the output
membership functions is decided. There are different ways of doing this. If
the degree of membership of a trapezoidal membership function is 0.2 the top
of the membership function can simply be cut at 0.2. An other approach is to
scale the membership function so that the width of the top of the trapezoidal
shape is equal to the one with 1 as maximum. The weighting of the different
inputs and rules is called aggregation. The modified output membership
functions are put together to a new shape. The center of gravity (COG)
of this figure (Equations 2.5 and 2.6) gives the output value. This is called
defuzzification.

COG =
∫ b
a µA(x)x dx∫ b
a µA(x) dx

(2.5)

COG =
∑b
x=a µA(x)x∑b
k=a µA(x)

(2.6)
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2.2.5 Adaptive fuzzy logic

For time variant processes and non linear processes with a wide range of
operating points it is desirable to change the parameter of the controller.
For classical controllers look up tables are frequently used. Fuzzy controllers
can be tuned on line when controlling a process. The rule base is usually kept
constant, but the membership functions can be adjusted. In [15] a method for
drawing trapezoidal membership functions was proposed. Although there are
examples of fuzzy control tuning by changing the shapes of the membership
functions adaption by tuning input and output gain is more frequently used.
Such controller setups are presented in Chapter 4.

Fig. 2.6: Command gensurf in Matlab
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2.2.6 Graphical presentation

Fig. 2.7: Simulation results for fuzzy block

In the tipper example how much tip to give was a result of two variables,
namely the service and the food quality. In Figure 2.6 the tip is presented
as a function of the two input variables. The system can also be simulated
in Matlab Simulink. In Figure 2.7 the tip example has been simulated with
two sinus signal inputs. The two signal representing the service and the food
quality have the same amplitude but a different frequency and phase angle.
The result is shown in the lower part of the figure.

2.3 ANFIS

An adaptive neuro-fuzzy inference system (ANFIS) is a hybrid between neu-
ral networks and fuzzy sets. Neural networks must often be regarded as black
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boxes. The outputs from a neural network are based on the training sets and
there are no logic rules inside the model. In a fuzzy system the relationships
between the input and the output fuzzy variables are given as if then state-
ments. This is more transparent and easier to understand. On the other
hand there are few rules for defining the different membership functions and
rules in a fuzzy system. An ANFIS has layers with neural networks and at
least one rule layer. In this way it combines the best of two worlds, namely
the transparency of the fuzzy sets and the ability neural networks have to
learn [3].

2.4 Genetic algorithms

Genetic algorithm are used for optimization later in this report and the the-
ory behind will therefore be briefly presented. Like every other optimization
algorithm genetic algorithms work by changing some parameters in a system
to obtain an optimal solution. These parameters can for instance be dif-
ferent gains in a controller. Optimization algorithms also have an objective
function that shall be minimized or maximized. This function can be the ab-
solute value of the output error of a controlled system. In genetic algorithms
each set of variable parameters are regarded as a DNA, and can be called
an individual. Initially a population of certain (often 10-30) individuals are
randomly generated. The population undergoes processes like in the nature.
The crossover probability is quite high. In the crossover process two new
DNA strings are made by cutting and pasting together two old DNA strings.
Other processes from nature such as migration and mutation are also taken
into account. Migration means that an individual leaves the population and
that a new one comes in, whereas mutation means that a random change
in the DNA occurs. The migration and mutation probabilities are low, but
insures that the optimization does not stop in a local minimum of maximum.

The different populations that are generated are called generations. If the
optimization converges the average error in every generation gets smaller and
smaller. Genetic algorithms is regarded as an artificial intelligence technique
and is a very powerful way of optimizing.



Chapter 3

Energy management

Artificial intelligence techniques have a variety of applications within the
field of renewable energy production. Possible applications are production
and load forecasting, design, modeling, energy management and control [1].
Design and modeling will not be discussed in this project. However, the
other above mentioned topics will be investigated. The basis of a good en-
ergy management is to have good prediction of the production and the load.
Secondly the energy management algorithm must be a good one. This chap-
ter presents examples of doing this with artificial intelligent techniques. The
chapter is based on literature studies only. It is desirable to compare the AI
techniques with conventional methods. Such studies, however, have not been
found for all the applications.

3.1 Power flow

As mentioned above one part of operating a stand-alone power plant is to
decide the power flow, in other words when to start the diesel engine, when
to charge the battery etc. In [5] an algorithm for deciding when to start
or stop the diesel engine was proposed using artificial neural networks. In
addition to on/off the algorithm also gave the diesel power production refer-
ence. The stand-alone plant is shown in Figure 3.1. The AC load consisted
of some houses and a water destilation plant cleaning water through osmosis.
Access of fresh water is a big problem many places in the world. Often it is

13
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transported a long way, causing high CO2 emissions from the trucks trans-
porting the water. Therefore it is better to have a distributed production of
fresh water. From an electric point of view the osmosis unit is an induction
machine (a pump).

Fig. 3.1: Scheme stand-alone plant in [5]

All the components in Figure 3.1 were modeled and implemented in a simu-
lation program. The objective of the neural network model was to decide the
power flow. Therefore the energy was the main focus of the modeling. The
model of the solar panel was given by Equation 3.1, where GN is the normal-
ized irradiance GN = G/(1000W/m2), Ilg is the light generated current, ISCR
is the short circuit current, It is the short circuit current temperature current,
Tc is the cell temperature and Tr is the cell temperature reference.

Ilg = ISCRGN + It(Tc − Tr) (3.1)

The fuel consumption FC of the diesel engine was given by Equation 3.2
where PDG is the diesel operating power, PGD is the rated power of the diesel
generator, α is the fuel consumption efficiency and FCrated is the fuel con-
sumption at rated power. An interesting point is that the diesel engine has
a high consumption at no load. It is therefore desirable to run the diesel
generator at either full load or to turn it off completely.
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Several models of the battery were given modeling different phenomena.
These models will not be presented here. The bidirectional inverter was
modeled with Equation 3.3. PINV,LOSS was modeled as IR2, where R is the
AC resistance.

FC = α(PDG − PDG,rated) + FCrated (3.2)

PINV,DC = PINV,AC + PINV,LOSS (3.3)

The reverse osmosis unit was operated in steady state and the energy con-
sumption is linear to the water that was produced.

Fig. 3.2: ANN model from [5]

The artificial neural network was trained with simulation results and tested
with a real model. The rating of the system was as follows. The solar panels
produced 1.2 kW under standard test conditions with rated voltage at 110 V.
A 5 kW Honda diesel engine was used connected to a 6 kVA generator. Nine
12 V 125 Ah SunGel200 batteries were used. The bi-directional inverter had
a rating of 5 kVA. The reverse osmosis unit had a capacity of 1 m3/day, with
a power demand of 0.78 kW.

The system was tested through 186 cases that covered all the different op-
erating conditions (different production from the solar panels, different load
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etc.). The ANN model decided when to turn on and off the diesel engine as
well as it estimated the power needed from the diesel engine. The needed
power was estimated with an average accuracy of 97 %.

The model did not include predictions and was only for made for secure
operation in every operating point. It illustrates the ability neural networks
have to store and use measurements in an efficient way. To cover the small
mistakes in estimation error a standard PI-controller is used. With this
controller the stability in the AC grid was maintained.

3.2 Hybrid energy storage

Energy storage systems are often designed using a hybrid power supply. Then
the qualities of different energy storage mediums can be combined to satisfy
the demand of the load and to prolong the lifetime of the energy supply. The
combination of a fuel cell and a battery makes it possible to downsize the
fuel cell to only cover average power. A battery has a much faster response
than a fuel cell and can be used to cover the peaks. The same combina-
tion can be done with high energy density/low power density batteries and
super-capacitors. It is essential to share the power flow between the different
sources at all time.

In [18] a three layer control strategy was proposed for performing power man-
agement in a hybrid power supply consisting of a fuel cell and a battery. On
the top a pure supervision system chosed between three operating modes:
Only battery, hybrid power supply or battery charge. This system was op-
erated based on certain conditions and was implemented in the stateflow
toolbox in Matlab. For example one condition was that the minimum fuel
cell off time was 3 min. In a wind diesel system such a condition should also
be applied to the on/off control of the diesel generator set. It is not good
for the diesel engine to be turned on and off too often. The article took non
linearities and losses into account when modeling of the components in the
system. For example the battery was modeled as the circuit in Figure 3.3,
where Voc and Ra are functions of the state of charge (SOC).



3.2. HYBRID ENERGY STORAGE 17

Fig. 3.3: Battery model used in [18]

In the second layer of the control the power reference of the fuel cell was
decided based on demanded power, SOC of the battery, the battery power
from the previous sampling, the temperature of the fuel cell and the fuel cell
power itself from the previous sampling. The schematic view of the fuzzy
controller that was used is given in Figure 3.4.

Fig. 3.4: Fuel cell controller in [18]

In the third layer of the controller the duty cycles for the PWM command
was calculated based on voltage and power reference values. For the inverter
traditional PI-controllers were chosen. However, for the DC/DC converter
connecting the fuel cell to the DC-bus a neuro-fuzzy controller was used. The
controller manages to share the fluctuations in load power between the fuel
cell and the battery in a satisfactory way. When connecting both a fuel cell
and a battery to a DC-bus the power sharing can also be done by using a fast
PI controller for the battery converter and a slow PI controller for the fuel
cell. This, however, can lead to stability problems if the battery runs empty,
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because the SOC of the battery is not a part of the control strategy.

3.3 Prediction

To perform an optimal power flow it is often useful to know what one can
expect. Artificial intelligence can be used to predict based on previous mea-
surements.

3.3.1 Wind power prediction

In [2] a method for forecasting wind speed production using an adaptive
neuro-fuzzy inference system (ANFIS) was presented. A classification of
power forecasting depending on how far ahead the power should be pre-
dicted was defined. This classification is shown in Table 3.1 and will be used
throughout the report.

Power forecast type Time span
Intermediate term 6 hours - 2 days
Short term 30 minutes - 6 hours
Very short term less than 30 minutes

Table 3.1: Power forecast classification

For intermediate term wind speed forecasting numeric weather prediction
(NWP) techniques are frequently used. These techniques are based on flow
equations. NWPs proves to be less suitable on a short time interval because
it takes too long time to do the calculations. For doing short term prediction
the NWPs have often been supplemented with so called persistence models.
They are based on correlation between the present speed and the speed some
time ahead. The ANFIS model in [2] was an alternative to the persistence
models. The big advantages of the ANFIS model were that it is fast and that
it does not include modeling of the wind farm topography. The same ANFIS
model can be applied to different wind farms as long as it is trained with
the measurements from each wind farm. In the article the wind speed was
predicted 2.5 s ahead in time based on 4 previous measurements. More input
variables would probably have given a more accurate forecast but a too long
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Fig. 3.5: Results of different prediction methods in [2]

training time. Several simulations were done with the ANFIS model using
different raw data. The results were compared with a persistence model. The
input data to the ANFIS model was splined. This is a interpolating tech-
nique. The ANFIS model always took in 4 inputs but the spline interpolated
different number of points between the measurements. Spline is not useful for
persistence models because the correlation is already known for interpolated
points. As seen in Figure 3.5 the output of the model depends heavily on
the spline. The prediction tested over 8 months gave an error of 30 % for the
persistence model. The best ANFIS model had a prediction error of about
3 %. Without splining the improvement was of about 5 %.
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3.3.2 Load prediction

There are many reasons for predicting the power load in an electricity grid.
On a long term basis load prediction is used for maintenance scheduling and
for taking decisions on whether or not to buy new equipment. If it is a marked
with coal or gas fired powerplants it is important to buy the right amounts of
fuel. Short term prediction of the load is important to insure that the grid is
in operation at any time. In the nordic countries the electricity is traded in
a marked. Every day before 12 o’clock the electric power producers have to
report to the stock marked how much energy they are going to produce the
following 24 hours [7]. Knowing what is coming is essential to gain as much
money as possible. In [8] a method for predicting the spot price directly was
proposed. This is not relevant for stand-alone power supply where the price
only is relevant when planning.

A more interesting approach can be found in [9] where a method for pre-
dicting the power consumption one hour ahead using a fuzzy logic system
was presented. The measured data were from peninsular Malaysia and the
software tool FuzzyTECH 5.52 was used to implement the fuzzy logic model.
The inputs of the model was previous load demand, temperature and time.
The output was the predicted load at the indicated time. The model did
not take into account weekly or monthly variations, nor special events such
as festivals or other events when the electricity demand was expected to be
abnormal. The previous load demand and the load estimate was given by the
linguistic variables very small, small medium, large and very large. The
temperature was given in low temp, medium temp and high temp. All the
fuzzy variables were normalized between 0 and 1. Triangular and trapezoidal
shapes were chosen for the membership functions. This is often more robust
than bell functions [2][8]. An example of a rule can be If (previous load
demand is small and temperature is low temp and time is 00) then (load de-
mand is small). With the given membership functions there were many rule
combinations. In the end 210 rules were used. The center of gravity method
was used for defuzzification. The fuzzy model was tested on measured data
from Wednesday 26th of Feb 2003. The average error was of less than 1 %.
The biggest error was 2.26 % and the smallest 0.03 %. Both these estimates
were too low.

1 % error is quite good. The prediction could most likely be improved by
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using an ANFIS model. An ANFIS model is easier to train from measure-
ments. The simple fuzzy logic model can be tuned by modifying the member-
ship functions. As for the structure in artificial intelligence models in general
there is no algorithm for deciding what membership functions to use. Differ-
ent variations must be tested. In the fuzzy model a overlap of 25 %-50 % is
often regarded as appropriate [3].

Estimation one day ahead based on AI perform as good as statistic tech-
niques. Often, however, the focus on special events such as Christmas, 17.
of May etc. is more important than changing the calculating algorithm to
one based on AI [26].



Chapter 4

Control

In a stand-alone power supply the dynamic behavior given by for example
change in load, diesel generator set on/off and change in production of re-
newable energy must be handled at all time. If a AC-grid is being used a
frequency of 50 Hz along with a given voltage must be kept within acceptable
limits. For doing this controllers are installed both on the diesel generator set
and on the inverter connecting the battery to the AC-grid. The voltage can
be controlled with the excitation of a synchronous generator. The generator
can also turn even if the diesel motor is stopped (using a clutch). In this
case the generator will work as a synchronous condenser delivering reactive
power to the grid and stabilizing the grid with its inertia. The control of the
diesel generator set will not be further discussed here.

There have been presented a lot of articles about the use of ANNs in control
[12]. Examples are current control of inverter drives, prediction of trajectories
in robot control, control of turbo generators and regulation of temperature.
In this chapter mainly the control of DC/DC converters is presented. A
brief presentation of the inverter is also given. The information is based on
literature study only.

22
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4.1 Inverter

The inverter is an important component in a stand-alone plant. AC grids
are normally used and the inverter is needed to interface batteries and solar
panels with the grid.

4.1.1 Voltage source inverter

Fig. 4.1: Voltage source inverter, source [25]

In the latest years the voltage source inverter (VSI) has become the preferred
converter for medium power and medium voltage applications. A circuit
diagram of a VSI is shown in Figure 4.1. Here the diodes in anti parallel with
the transistors are not drawn. As switches IGBTs are often used because of
their high efficiency and their fairly high maximum voltages. PWM control
is preferred because it reduces the size of the filters needed between the
converter and the grid.

4.1.2 Phase locked loop

To synchronize the converter with the frequency in the grid a phase locked
loop (PLL) is used. The schematic view of a PLL is shown in Figure 4.2.
The PLL gives the θ to the vector control. θref is usually zero, fn is 50 Hz
and Tdq are the transformations given in the next section. The controller and
filter parameters must be set to suitable values.
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Fig. 4.2: Phase locked loop source [14]

4.1.3 Vector control

Fig. 4.3: Vector control schematic, source [25]

Vector control is often used in electric drives and is also suited for the con-
trol of the voltage and the frequency in a AC minigrid. The idea behind is
to transform the sinusoidal voltages and currents into constant values. The
transformations are given in the Equations 4.1 - 4.2 [27]. In these equations
a symmetrical three phase system is assumed. A can be either voltage or
current. ωt = θ is given by the phase locked loop. When changing to control
based on artificial intelligence it is most likely the best to keep the transfor-
mations that are used in classical control and only replace the controller (the
block multivariable PI in Figure 4.3). The use of an intelligent controller
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could for example decrease the derivative of the current. Less variations in
current can increase battery lifetime. A disadvantage with such a controller
is that it most likely pushes the system closer to the limit of instability, as
it does not respond so fast. The use of AI controllers for inverters has not
been further investigated.
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4.2 DC/DC converter

The most important use of DC/DC converters in stand-alone power plants is
to connect solar panels to the inverter. This is important to operate the solar
panels at a voltage that gives the maximum power. If a DC grid is being
used the DC/DC converter becomes more important. DC/DC converters are
nonlinear. Because of their non linear behavior DC/DC converters and con-
trol based on artificial intelligent techniques go well together. In this section
control of the boost (step-up) converter is treated. The circuit diagram for
such a converter is shown in Figure 4.4.

4.2.1 Transfer function model

A state space model of a boost converter is given in Equation 4.3 [19]. x1 is
capacitor voltage and x2 inductor current. This equation is highly non-linear
because D is a function of Vin and the capacitor voltage. In fact D is to be
controlled by the PI or fuzzy controller.

[
dx1
dt
dx2
dt

]
=
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− 1
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] [
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]
+
[

1
L

0

]
Vin (4.3)
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Fig. 4.4: Schematic of boost converter

The jacobian method can be used to linearize Equation 4.3 [20]. The lin-
earized equation is given in Equation 4.4. Here ∆x1, ∆x2 and ∆D are the
state space variables. The equation is valid for small deviations from the
operating point (x1, x2, D)

[
d∆x1
dt

d∆x2
dt

]
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− 1
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] [
∆x1
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]
+
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1
L
x2
− 1
C
x1

]
∆D (4.4)

The transfer function from ∆D to ∆Vout can be found based on the state
space equation using the formula in Equation 4.5. C is in this case the
measurement matrix.

H(s) = C(sI − A)−1B (4.5)
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Fig. 4.5: Fuzzy controller with output gain tuning, source [23]

4.2.2 Fuzzy control of DC/DC converters

There are many different ways of implementing a fuzzy controller. One thing
that has to be designed is the logic within the controller like the number of
membership functions and rules. In the literature for fuzzy control of con-
verters it seems like the standard is to have the error and the derivative of
error as input and change in duty cycle as output. Usually the input and
output values are between -1 and 1 or 0 and 1. Then the inputs and outputs
must be scaled to fit in with the process. Adjusting the output gain on line
with an other fuzzy controller in parallel can give better response in some
cases [22]. This is shown schematically in Figure 4.5.

In [15] an adaptive fuzzy logic controller (AFLC) for controlling DC/DC con-
verters was presented. The rules were decided in forehand but the properties
of the trapezoidal membership functions were adjusted to suite the converter
and the load. The controller was applied to three converters: Buck, boost
and buck-boost. Simulations were used for tuning the controller and the con-
verters were tested with hardware. The criteria for the adaption algorithm
was the least error. For the practical tests the AFLC was implemented into a
ST52E420 micro controller. The goal was to control the output voltage. The
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inputs of the fuzzy controller were output voltage error and change in error.
The output of the fuzzy controller was the change in duty cycle. The adap-
tive fuzzy controller however could control all the three converters within
acceptable deviations of voltage.

Fig. 4.6: Fuzzy controller with integrator in parallel, source [22]

For DC/DC boost converters good results have been found by using one fuzzy
controller with a simple integral part in parallel [23][24]. In Figure 4.6 this
structure is shown. This structure is not adaptive, however the controller
parameters must be tuned. If one has a good simulation model of the phys-
ical system this model can be used to tune the controller. This controller is
further investigated in the next chapter.

Another strategy can be to tune Kp and Ki in a PI controller with a fuzzy
controller. The idea is to have larger Kp when the error or change in error
is big. There are several different strategies for developing such a controller
[28][29][30]. One fuzzy tuned PI controller tuned is developed in the next
chapter.

4.2.3 Maximum power point tracking

Due to the physics of the semiconductors solar panels have a certain i-v char-
acteristic. This means that for each and every solar radiation and tempera-
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ture (in the semiconductors) it exists an operating voltage on the terminals of
the solar panel that gives a maximum power output. The search for the max-
imum power is called maximum power point tracking (MPPT) and different
algorithms are proposed for finding the ideal operating point [11].

Fig. 4.7: Schematic diagram for MPPT, source [10]

In [10] a method for doing maximum power point tracking (MPPT) of solar
panels using artificial neural networks was proposed. The high power system
to control consisted of a solar panel, a step-down converter and a DC-motor
as load. See Figures 4.7 and 4.8. The control system was implemented in a
PC. A data acquisition system converted the analog measurements of solar
radiation, panel temperature as well as current and voltage measurements
into digital signals that the PC could read.

In the controller the actual power drawn from the solar panel was calculated
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Fig. 4.8: Step-down converter, source [10]

using the voltage and current measurements. The maximum power that was
possible to achieve was given by a artificial neural network. The inputs to
the ANN model were the solar radiation and the temperature of the solar
panel. If the difference between the actual power and the achievable power
was bigger than a certain limit, ∆Pmax, the perturb and observe technique
was activated. With the perturb and observe technique the control signal
was changed in one direction. Then the power output was measured again.
If the power output was higher after the perturbation than before the con-
trol signal was changed more in the same direction. If not, the direction of
the perturbation of the control signal was changed. If the measured power
arrived at a maximum the control signal remained unchanged and a compar-
ison was made with the neural network again. A flow cart of the algorithm
is shown in Figure 4.9.

The power output of the system was of about 97 % of the theoretical achiev-
able power. The article said nothing about how the neural network was
trained. This can be done on site, which demands a powerful digital con-
troller. This gives a result that is optimal for each and every site and panel.
The neural network can also be trained with simulations or one panel of each
type can be tested and on can assume that the rest of the panels behave the
same way. A problem with some MPPT techniques is that they perturb all
the time. As a result of that the drawn power is most of the time less than
the maximum power. This was not the case with the control system treated
in the article referred to in this paragraph, because the perturb and observe
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Fig. 4.9: Flow chart, source [10]

algorithm was only activated when the difference between the actual power
and the theoretical maximum power was bigger than a certain limit. Another
problem with many MPPT techniques is that they can stop the iterations
at a local minimum. This was not mentioned in the article [10]. A way
of solving this could be to have the voltage corresponding to the maximum
power as a output of the neural network model instead of just having the
maximum power as the output. Then the perturb and observe algorithms
starts to search near the right voltage immediately.
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4.2.4 Comparison of different controllers

In [16] a FLC, a PI-controller and a fixed frequency sliding mode controller
were compared for the control of a step-down (buck) converter. Sliding mode
control is also known as hysteresis control and is a very robust non linear
control strategy. The PI-controller was of pure classical type. It was de-
signed using bode plots. Suitable phase and gain margin were chosen. In
PI controllers there is a trade off between speed and robustness. A smaller
gain margin makes the controller faster but closer to the limit of instability.
Transfer function theory is not developed for fuzzy controllers. They have
to be designed on the bases of experts or by adaption algorithms. The in-
put of the fuzzy logic controller in [16] was output voltage error and change
in error. The output was change in duty cycle. The fixed frequency slid-
ing mode controller (FFSMC) will not be discussed in detail here. For the
comparison two sliding mode controllers were developed, SMC1 and SMC2.

For the simulations three phenomena were investigated, start up, change in
load and change in input voltage. For start up the FLC had the longest
response time. FLC and PI had the same overshoot and SMC2 had the
biggest overshoot. SMC1 was the controller with best response for start up.
For change in load SMC1 had the biggest overshoot. The overshoot was
almost the same for PI, FLC and SMC2, but the response time for the FLC
was better than the others. The behavior of the different controller was very
different for the change in input voltage. FLC and SMC2 proved to be the
best controllers for handling the change in input voltage. FLC was claimed
to be easier to implement than SMC2. Both these controllers were regarded
to have the best over all dynamic performance.
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4.3 Commercial products

Producers might not always write in the data sheet that they have used AI-
techniques. There are however some industrial products that we know use
these techniques. The J300 Series IGBT inverters from Hitachi use fuzzy
logic control. It calculates optimal acceleration and decelerations times. The
control is sensorless and is based on rotor resistance estimation. The VS-
615G5 from Yaskawa Drive uses a neural network as flux observer.



Chapter 5

Simulations on Boost
converter

In this chapter simulations in a boost converter are performed. Different
control strategies are tested. A classical PI approach is compared with two
controllers using fuzzy logic. This chapter is based on the authors work using
the theory presented in Chapter 4.

5.1 Converter setup

5.1.1 Parameters

A boost converter was to be controlled. It had the parameters given in Table
5.1. The parameters were chosen based on an experimental setup treated in
the next chapter. The circuit diagram for the converter is shown in Figure
5.1.

5.1.2 Transfer function model

The boost converter is a highly non linear system. The parameters of the
PI controller must therefore be decided based on a certain operating point.

34
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Parameter Value
L 37 mH
C 3300 µF
Rload 331 Ω

Table 5.1: Parameters boost converter

Fig. 5.1: Circuit diagram boost converter

Non-linear controllers like fuzzy controllers often have a wider operating area.
A bode plot for the transfer function presented in Section 4.2 with the pa-
rameters for the converter in the simulation model is shown in Figure 5.2.
One can read from the figure that the bandwidth is smallest when the input
voltage is low.

5.2 Controller design

Description Abbreviation
PI controller PI
PI controller with fuzzy tuning PItuned
Fuzzy logic controller with integrator in parallel FLCpara−int

Table 5.2: Abbreviations of controllers

In this section three different controllers are designed. The abbreviations are
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Fig. 5.2: Bode plot of transfer function for boost converter

given in Table 5.2. Both of the controllers using fuzzy logic had triangular
membership functions and 7x7 rules. All controllers had a saturation block
that limited the output of the controller between -0.9 and 0.9. Anti wind-up
was also used for all the controllers.

5.2.1 PI controller

To design the parameters of PI Ziegler-Nichols method was used. This is
an experimental method for finding suitable controller parameters [20]. A
proportional controller was used at first. The gain was increased until a
standing oscillation was observed at the exit. The critical gain Kpc and the
period Tic of the oscillation was noted. Suitable controller parameters are
found by multiplying the values of Kpc and Tic by 0.45 and 0.85 respectively.
These constants are empiric constants. The transfer function for PI is given
in Equation 5.1. The values of Kp and Ki are given in Table 5.3. It is seen
from Figure 5.2 that the bandwidth is smallest at minimum input voltage.



5.2. CONTROLLER DESIGN 37

The controller parameters must therefore be designed based on this operating
point.

hPI(s) = Kps+Ki

s
(5.1)

Input voltage Kp Ki

60 V 8.1 27.36
180 V 17.1 81.97

Table 5.3: Parameters for PI

5.2.2 PI controller tuned with fuzzy controller

Fig. 5.3: Surface plot PItuned

The parameters of a PI controller can be tuned using a fuzzy controller. This
can be done by having a forward coupling from the disturbance or it can be
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Fig. 5.4: Optimization PItuned

done more generally by only tuning the parameters based on the output
error. In the simulations a fuzzy controller with error and derivative of error
was used to tune the PI controller. The surface plot of PItuned is shown in
Figure 5.3. It shows the output of the fuzzy controller as a function of the
two input parameters error and change in error. As seen in the figure the
rules were made for making Kp larger when the error or the change in error
was big.

Since there is no transfer function theory for fuzzy controllers other methods
must be used to decide the parameters. It was chosen to use genetic algo-
rithms for doing this. All the sets of parameters were tested on the simulation
file of the boost converter. The average and least error in every generation is
shown in Figure 5.4. It is clear that the optimization converges. The error is
the absolute value of the output voltage error in pu for a 1 s simulation with
step time of 1 µs. For a brief introduction to genetic algorithms see Section
2.4.

The optimal parameters are shown in Table 5.4. k1 and k2 are input gains
of the fuzzy controller for error and difference in error respectively. k3 is the
offset of Kp. k4 is the output gain of the fuzzy controller. The formula for
Kp is given in Equation 5.2 where fFL is the output of the fuzzy controller.
Ki is set to 3.4Kp since this is the relation between the two constant in
Table 5.3 (60 V input voltage). It is seen from Table 5.4 that the Kp is
significantly higher for this converter than for the one designed with Ziegler



5.2. CONTROLLER DESIGN 39

Nichols method.

Kp = k3 + k4fFL (5.2)

Parameter Value
k1 73.2
k2 9598
k3 20
k4 20

Table 5.4: Parameters for PItuned

5.2.3 Fuzzy controller with integrator

Fig. 5.5: Schematics FLCpara−int

A fuzzy controller with an integrator, FLCpara−int, was designed. This struc-
ture has been found in [23] and [24], however a anti wind-up was added. This
gave faster response. The schematics of the controller is shown in Figure 5.5.
The surface plot for FLCpara−int is shown in Figure 5.6. The rules for this
controller is taken from [23]. The genetic algorithm toolbox in Matlab was
used to tune the four parameters of FLCpara−int; gain for error, gain for
derivative of error, output gain of fuzzy controller and integrator gain. The
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fitness of the different generations in the optimization is shown in Figure 5.7.
The blue dots are the average in every generation, whereas the blue ones are
the best individuals. It is seen that the error is much less than it was for
PItuned. The result of the optimization is given in Table 5.5.

Parameter Value
k1 100
k2 6315
k3 3.21
k4 0.023

Table 5.5: Parameters for FLCpara−int

Fig. 5.6: Surface plot FLCpara−int
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Fig. 5.7: Optimization FLCpara−int

5.3 Description of simulation case

The response of the output voltage of the boost converter given a perturba-
tion was investigated. The perturbation in this case was a change in the input
voltage. The voltage steps down from 180 V to 60 V after 0.5 s. The simula-
tion lasts for 1 s. The output capacitor had an initial voltage of 200 V. The
robustness of the fuzzy controller with integrator in parallel was also tested.
This was done by parametric variations.

5.4 Results and discussion

5.4.1 Voltage response

The voltage response is shown in Figure 5.8. The input voltage is the graph
at the top, with the output voltage using the three different converters below.
FLCpara−int had the least deviation from the reference voltage and the short-
est settling time. The maximum error in the output voltage is only 3 % for
FLCpara−int compared to 20 % for PI. The details for all the three controllers
are given in Appendix B. PItuned is quite aggressive because of the large Kp.
Oscillations are expected because of this. However there are oscillations in
the controller loop for both the controllers with fuzzy logic.
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Fig. 5.8: Uin, PI, PItuned and FLCpara−int

5.4.2 Parametric variations

FLCpara−int was tested for 10 %, 20 % and 30 % increase and decrease in L
and C, and Rload. At 10 % variation no difference was observed. With 20 %
variation the response of the output voltage was still the same, except from
when Rload was decreased. Then large oscillations occurred in the output
voltage (200− 250 V). At 30 % variations the simulations stopped because
the anti wind-up became an algebraic loop. It is assumed that this error
is related to the simulation program and that it is not a problem for the
implementation of the controller.
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5.4.3 Discussion

The good performance of FLCpara−int represents a major amelioration for
the control of boost converters. But although settling time was shorter and
error was smaller for FLCpara−int compared to PI there are concerns. As
previously mentioned there is no transfer function theory for fuzzy controllers.
Genetic algorithms proved to be an effective way of optimizing the controller
parameters, however the stability can never be guarantied as it is impossible
to test the system for an infinite number of disturbances. In this chapter
an experimental method was used to find the parameters of the PI. Ziegler
Nichols is however well documented in theory and transfer functions can
always be used for PI controllers to check the phase and gain margins.

An other problem is the oscillations in the controller loop for PItuned and
FLCpara−int. The reason for these oscillations were not understood. However,
the frequency of the oscillations seems to correspond with the resonance
frequency of the converter. The resonance frequency for different operating
points can be seen in Figure 5.2. The reason for the big oscillations that was
experienced when Rload was decreased could be that the resonance frequency
of the converter was slightly changed.

Based on the experience from the simulations it is the author’s opinion that
AI is more suitable for supervisorial control, i.e. setting the reference values
for classical controllers controlling the converters. If this had been found out
earlier the focus of this report would have been shifted.
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Practical work

Fig. 6.1: Experimental setup

In this chapter experimental work is carried out on a boost converter.

44
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6.1 dSPACE

The laboratory experiments were performed using a so called dSPACE. It is
a tool that makes it possible to control hardware applications in real time
using controllers implemented in Matlab Simulink. The dSPACE is suitable
for prototype testing. It has both analogue and discrete inputs and outputs.
In this setup the analogue ports were used. The analogue inputs were used
for measuring voltage and current. They took in a −10 to 10 V signal. The
5 V PWM signal had its own output port. A more detailed presentation of
the dSPACE is given in Appendix A.

6.2 Power circuit

6.2.1 Power supply

In order to do a step in input voltage two variacs connected to a relay were
used as power supply. After the relay the voltage was rectified with a diode
rectifier and smoothen with a capacitor bank of 6600 µF. The use of this
fairly big capacitor bank resulted in a slow voltage source, unable to step
the voltage. An attempt of using a smaller capacitor bank resulted in oscil-
lations.

6.2.2 Converter

The converter that was used was one leg of a 20 kW three phase inverter
designed by Kjell Ljøkelsøy at SINTEF. The converter had a 3300 µF capac-
itor bank. The PWM signal was provided by the dSPACE. All other logic
such as for example dead time was handled by the converter. The IGBTs
could handle a switching frequency of 25 kHz. In these experiments 10 kHz
was used. Between the power supply and the converter a 37 mH iron core
inductor was placed. This inductor should have been a bit bigger and it
should have had a ferrite core. This however is not important for the results.
The circuit of the converter as well as a picture of it is shown in Figure 6.2
and 6.3 respectively.
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Fig. 6.2: Circuit diagram boost converter

Fig. 6.3: Converter
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6.2.3 Load

The load was a water cooled resistance of 331 Ω. It was supposed to model
an inverter delivering constant power.

6.3 Controller design

6.3.1 PI controller

The PI controller worked with a sampling time of 30 µs. It was the same as
the one used in the simulations. See Section 5.2.1.

6.3.2 PI with fuzzy tuning

Fig. 6.4: Surface plot of fuzzy controller with 9 rules
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The dSPACE could not handle a pure fuzzy controller because of lack of
computing power. Therefore only a PI controller with fuzzy tuning was
implemented as an alternative to the pure PI. The controller designed in this
section has the same strucure of the fuzzy part as the one in Section 5.2.2,
however with fewer rules. A simple fuzzy controller with 9 rules for tuning a
PI controller was tested. This controller had a sampling time of 400 µs, i.e.
four times the period of the PWM signal. A surface plot of the controller is
shown in Figure 6.4.

The relationship between Ki and Kp was set to 3.4, as this is the relation-
ship found by Ziegler Nichols method in Section 5.2.1. Kp is given by two
parameters: The offset k3 and the output gain of the fuzzy controller k4.
Kp = k3 + k4fFL, where fFL is the output of the fuzzy controller. Two
different cases of k3 and k4 were measured.

6.4 Description of experiments

The response of a decrease in input voltage for the power circuit described in
the previous section was examined. The voltage dropped from approximately
180 V to approximately 80 V within 0.5 s. The input voltage as well as
the output voltage, input current, duty cycle and the output of the fuzzy
controllers are shown in the figures in the following sections.

6.5 Results

6.5.1 PI controller

The measurements with the PI controller is shown in Figure 6.5. The output
voltage of the converter was at 200 V as it was supposed to be. The measure-
ments are quite noisy. It is more noise for the PI controller than for the PI
controller with fuzzy tuning. This is most likely due to the higher sampling
frequency of the PI controller. High sampling frequency is not always good.
The output of the controller is shown in the figure as contr. The duty cycle
increased as the input voltage went down, as it is supposed to do.
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Fig. 6.5: Response of PI controller
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6.5.2 PI with fuzzy tuning

In this section the results of the PI controller with fuzzy tuning are presented.
In Figure 6.6 the response is shown with k3 = 2 and k4 = 8. This gives a
big influence of the fuzzy controller. In Figure 6.7 k3 = 8 and k4 = 2. The
constants k3 and k4 are explained in Section 5.2.2. The differences between
the two graphs are not significantly. The fuzzy controller is not so well
tuned. This can be seen in Figures 6.6 and 6.7 where the output of the fuzzy
controller is plotted on the bottom. contr is the output of the controller.

It was desirable to do more experiments, however problems occurred with
the control of the converter. It is seen from the figures that there is a per-
turbation that shakes the converter and the controller. The responces of this
unknown perturbation occours with a fairly constant time intervall, however
the length of this interval is different for the two controllers. The reason for
this perturbation was not understood.
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Fig. 6.6: Response of fuzzy tuned controller, k3 = 2, k4 = 8
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Fig. 6.7: Response of fuzzy tuned controller, k3 = 8, k4 = 2
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6.6 Discussion

Big problems were experienced when controlling the converter with the dSPACE
and with finding a suitable power supply. A good voltage source was used
at first. This source could step the voltage very fast. The components in the
converter were chosen based on having such a quick voltage source. How-
ever, the voltage source got broken, and the replacement was a much slower
voltage source. Because of the slow dynamics of the input voltage source in
combination with the big output capacitor of the converter it was hard to see
any difference at all between the controllers. The experiments were however
useful for the author and led to an increased understanding of digital control,
for example that higher sampling frequency gives more noise.

6.7 Implementation of AI in a DSP

Controllers and estimators based on AI often demand a DSP with higher per-
formance than PI controllers. A 49 rules fuzzy controller with seven mem-
bership functions for the two inputs and the output was implemented on
the above mentioned dSPACE. Then only a sampling time of 100 ms was
achieved, which must be regarded as useless for applications within power
electronics. In a dSPACE the matlab code is being translated and down-
loaded into the DSP. When written directly in C++ the code can be more
efficient. In [24] a computing time of 3.6 µs was achieved when implement-
ing a fuzzy controller with a 33x33 rulebase on a Texas Instruments DSP.
The reference PI controller in the same paper had a computing time of 1 µs.
With modern DSPs is is not a problem to implement controllers based on AI,
however the prize of the DSPs will always be higher than the ones needed to
implement a PI controller.
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Conclusions and further
work

7.1 Conclusions

For energy management artificial intelligence techniques are especially suited
for sharing power within hybrid energy sources. It is also suited for predic-
tion, in particular short term prediction. Wind power 2.5 s ahead in time
has been predicted using an adaptive neuro inference system (ANFIS) with
an average error of 3 %. This prediction algorithm also had the advantage
of being fast.

The most suitable controller designed of the ones tested is a fuzzy controller
with an integrator in parallel. The maximal deviation from the reference in
output voltage for a boost converter with fuzzy control was 3 % compared
to 20 % for a classical PI controller. This must be regarded as a very good
result. A disadvantage with fuzzy controllers is the lack of designing proce-
dures. No transfer function theory is developed for fuzzy controllers. As an
alternative genetic algorithms proved to be suitable for deciding optimal con-
troller parameters, however the stability can never be guaranteed. Despite
the good results obtained when controlling the boost converter in Chapter 5
it is the authors opinion that controllers based on AI are most suitable for
supervisorial control, i.e. setting the reference values for PI controllers con-
trolling the converters. An exception may be when the converter has a need

54
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for a very accurate response and that it undergoes only a limited number of
perturbations.

Fuzzy controllers can easily be implemented in modern DSPs. However, they
demand longer computing time than PI controllers and may, with cheap DSPs
or inefficient code, be the limitation on the bandwidth of the controller.

7.2 Proposed further work

Artificial intelligence can be useful for many applications within the field of
electrical engineering, like for example estimation, prediction, control and
even modeling. Within distributed generation the applications for inverters
can be further investigated. For example can a non linear control give less
variations in the current and thus increase battery lifetime.

It would have been interesting to look at the application within electrical
drives. One could have tried to look at alternatives to classical observers
and estimators. In that case the controller should be implemented in a
DSP directly to get more efficient code than what is achievable with a
dSPACE.

Artificial intelligence is still on a stage where different applications must be
tested and comparisons must be made to classical approaches. The goal must
be to get an overview of the different applications where AI is suited. Based
on the research that has been done up until now it seems like this is within
supervisorial control, non-linear systems, estimation and prediction.
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Appendix A

dSPACE

In this appendix the dSPACE 1104 at ENO is explained.

A.1 Getting started

• Start the computer and login. Login studadm can be used.

• Start Matlab. Choose the right platform RTI1104.

• When connected open a new Simulink file. The dSPACE communi-
cation blocks can be found in the Simulink Library. The next section
treats the most useful dSPACE blocks. Most of the other blocks can
be used like constant, step, ramp, sum, gain, integrator, mux, demux,
saturation etc. Scopes and to file/to workspace can not be used. Log-
ging must be done with Control Desk. Remember to use terminators
at all loose ends.

• Open configuration parameters and choose a suitable sampling time
(simulation time step). The analogue inputs and outputs can handle
down to approximately 6 µs. There is a trade off between the complex-
ity of the controller and the achievable sampling time. 20− 50 µs is a
suitable sampling time.

• Press ctrl+B. The model is now being build and downloaded to the
dSPACE. This may take some time. After it is finished the Control
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Desk can be opened. Here the simulation can be stopped and started
again.

A.2 Input and output blocks

Useful blocks are the analogue inputs (DS1104MUX_ADC) and outputs
(DS1104DAC_C) and the PWM block (DS1104SL_DSP_PWM3). The
analogue outputs are useful for controlling voltage sources or electronic loads.
The analogue inputs can be used to take measurements from voltage and
current probes. A ±10 V signal in the dSPACE board correspond to a ±1
signal in the Simulink file. The PWM block DS1104SL_DSP_PWM3
generates PWM signals for three legs. The inputs are the duty cycles and
a boolean value for start/stop of PWM signal generation. The PWM sig-
nals can be found on the dSPACE board on the Slave I/O PWM contact.
PWM signals for A, B and C are found at pin number 7, 8 and 9 respec-
tively. The complementary signals are found at pin number 26, 27 and
28. Many converters demands a constant 5 V on signal. This can be gen-
erated with the DS1104SL_DSP_BIT_OUT_C0. Choose suitable pin
number. The slave PWM contact can also take in signals with the block
DS1104SL_DSP_BIT_IN_C0. This can for instance be an error signal
from the converter supervisory control.

A.3 Logging

The logging of input data can be done using the Control Desk. Execute the
following steps.

• Open a new layout.

• Find CaptureSettings in the right menu (under DataAcquisition) and
paste it into the layout. Do the same with PlotterArray (also under
DataAcquisition).

• Find the .sdf file in the File Selector (at the bottom of the screen).
Drag the .sdf file to the ds1104 in the left menu (Platform). A new flag
with the .sdf filename now appears next to the File Selector.
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• Find the variables that shall be logged in this new flag and drag them
into the PlotterArray.

• Double click on the CaptureSettings window and choose the only Cap-
ture available. Also choose the variables. For acquisition Simple can
be used. Then one has to save manually. Autosave saves the file au-
tomatically (overwrites the file). Autoname makes a new file with a
unique name for each capture.

• If wanted a trigger can be used to start the capture of data. This can
be for example be a step function in the Simulink file.

• If a real time error appears the sampling time might be too small.
Increase the sampling time in Configuration parameters in Simulink.
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Details of simulations

Controller Abbreviation
PI Figure B.1
PItuned Figure B.2
FLCpara−int Figure B.3

Table B.1: Overview of the figures

Table B.1 gives the overview of the plots that are shown in this appendix.
In the plots the input voltage, output voltage and input current are shown
as well as the output of the controller (input to the PWM block) and the
output of the fuzzy controller. For FLCpara−int the plot fuzzy is the output
of the fuzzy controller after the gain. The oscillations in the output voltage
for PItuned and FLCpara−int can be found again in the output of the fuzzy
controller. This is a disadvantage with the fuzzy controllers.
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Fig. B.1: Details of PI
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Fig. B.2: Details of PItuned
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Fig. B.3: Details of FLCpara−int
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