
Development of an Automated Bin
Picking System for Cluttered
Environments

Sondre Aleksander Vadheim
Hans Bratland Østerdal

Master of Science in Mechanical Engineering

Supervisor: Olav Egeland, MTP
Co-supervisor: Tingelstad Lars, MTP

Department of Mechanical and Industrial Engineering

Submission date: June 2018

Norwegian University of Science and Technology

ENTNU
Fak:ultet for ingeni0rvitenskap

Institutt for maskinteknikk og produksjon

Dato

08.06.18

Referanse

OEG

MASTEROPPGA VE 2018

Sondre A. Vadheim & Hans Bratland 0sterdal

Tittel: Utvikling et Automatisert System for Plukking i Ustrukturerte Omgivelser

Title: Development of an Automated Bin Picking System for Cluttered Environments

Oppgavetekst:

Presise 3D-kameraer er nyttige redskaper for a innhente informasjon om objekters plassering og
orientering i rommet, mens robotarmer tilbyr h0y fleksibilitet og man0Verbarhet. I denne oppgaven skal
disse komponentene kombineres, for a produsere et autonomt gjenkjennings-og-plukk system som er i
stand til a identifisere og plukke objekter fra lagerbokser. Systemet skal tilpasses AutoStore's
navrerende l0sninger, og skal testes ut instituttets Agilus-celle.

1. Beskriv kinematikken av en robotcelle bestaende av en robot med fastmontert 3D-camera og en
robot en med fastmontert gripel0sning.

2. Lage et system for a gjenkjenne spesifikke objekter i 2D, og estimer plassering i bildet, samt
bildeprosessering av dybdebilde.

3. Lage et system som fastslar gripeposisjon av objekter relativt til robotene i rommet.
4. Lage en gripel0sning tilpasset AutoStore's helautomatiske lager-og plukkesystem.
5. Implementere et autonomt system som er i stand ti! a gjenkjenne og plukke opp objekter fra

tilsvarende lagerbokser som benyttes av AutoStore.
6. Gjennomfore praktiske eksperimenter hvor resultatene blir vurdert og diskutert.

Oppgave utlevert: 15.01.18

Innlevering: 11.06.18

Utfort ved Institutt for Maskinteknikk og Produksjon, NTNU.

Trondheim, 2018-06-08

{)�orfid�
Faglrerer og veileder

I

Preface

This is a master thesis in Production Technology at NTNU, under the study
program Mechanical Engineering with Mechanical and Industrial Engineering as
specialisation. The thesis was written during the spring semester of 2018, and
was conducted with the cooperation of AutoStore AS. Guidance and problem
description was carried out by our supervisors Olav Egeland, and Lars Tingelstad.

Trondheim, June 11, 2018

Sondre Vadheim Hans Bratland Østerdal

II

III

Acknowledgment

We would like to thank the following persons for their help during the develop-
ment of this Master’s thesis.

Our main supervisor Professor Olav Egeland for constructing a problem
description that was both challenging and interesting, and for the guidance given
during the period.

We also want to show our gratitude to Lars Tingelstad for guidance and help
with the problem formulation, and for valuable feedback during the development
of the thesis.

We would also like to mention the employees at the institute lab for produc-
ing the physical components for our gripper module, and Ph.D candidate Adam
Leon Kleppe for helping us with the Agilus robot cell.

The help and guidance have been greatly appreciated, and have contributed
to a steady work process.

Lastly, we would like to thank all the fellow students at the office for providing
a social and positive work environment.

S.V & H.B.Ø

IV

V

Abstract

The amount online purchases conducted by consumers show no sign of declining,
and the growth in retail sales have rapidly increased over the last decade. This
growth is driving the demand for automated packing and shipping systems, that
can perform the highly repetitive work of locating and transporting products
from inventory bins to shipping bins. This master thesis addresses this possibility
thought the development of an automated bin picking system.

The system was developed at the Agilus robot cell at the Department of Me-
chanical and Industrial Engineering workshop during the spring semester of 2018.
The proposed system utilises a combination of computer vision modules in 2D
and 3D, robotics, and deep neural networks. Two neural networks have been
trained for the task of performing object detection on specific objects, and eval-
uated in terms of performance. The kinematic relation between the camera and
the robotic manipulators of the cell have been described, and a grasping approach
based on a deep neural network has been implemented. A fully automated bin
picking system has been realised in the robotic cell at the institute workshop.

Each module of the final system is presented with the associated results. The
individual modules are combined to one single system, that is capable of per-
forming autonomous bin picking operations. The final results demonstrate that
the system is able to perform the intended task with a relatively high success
rate. The results from the individual modules are also presented, and a discus-
sion is presented based on the obtained results. The results obtained from our
experiments during practical work are discussed in context to the possibility of
implementing a similar system in a real storage setting, where new products are
added to the inventory list continuously. Finally, strengths and weaknesses of
the proposed system are discussed, along with potential improvements for future
work.

VI

VII

Sammendrag

Andelen nettbaserte salg blant forbrukere har økt kraftig det siste ti̊aret, og denne
tendensen ser ogs̊a ut til å vedvare i tiden fremover. Denne veksten driver et-
terspørselen etter automatiserte pakke- og forsendelsessystemer, som kan utføre
det høyt repeterende arbeidet med å finne og transportere produkter fra lagerbe-
holdere til fraktbeholdere. Denne masteroppgaven adresserer denne muligheten
gjennom utviklingen av et automatisert plukkesystem.

Systemet ble utviklet p̊a Agilus-robotcellen ved Institutt for maskinteknikk og
produksjon verkstedet i løpet av v̊arsemesteret 2018. Det foresl̊atte systemet
benytter en kombinasjon av datasynmoduler i 2D og 3D, robotikk, og dype
nevrale nettverk. To nevrale nettverk har blitt trent for oppgaven med å utføre
objektgjenkjennelse p̊a bestemte objekter, og er blitt evaluert n̊ar det gjelder
ytelse. Det kinematiske forholdet mellom det brukte kameraet og robotmanipu-
latorene i cellen er blitt beskrevet, og en gripleøsning basert p̊a et dypt nevralt
nettverk er blitt implementert. Et fullt automatisert plukkesystem har blitt re-
alisert i robotcellen ved instituttverkstedet.

Hver modul i det endelige systemet presenteres med tilhørende resultater. De
enkelte modulene er kombinert i ett enkelt system, som kan utføre autonome
plukke operasjoner. De endelige resultatene viser at systemet er i stand til å
utføre den tiltenkte oppgaven med en relativt høy suksessrate. Resultatene fra
de enkelte modulene presenteres ogs̊a, og en diskusjon presenteres basert p̊a de
oppn̊adde resultatene. Resultatene fra v̊are eksperimenter fra det praktisk ar-
beidet diskuteres i sammenheng med muligheten for å implementere et lignende
system i en reell lagersituasjon, der nye produkter legges til produkt sortimentet
kontinuerlig. Avsluttningsvis er styrker og svakheter i det foresl̊atte systemet
diskuteres, sammen med potensielle forbedringer for fremtidig arbeid.

VIII

Contents

Preface II

Acknowledgment IV

Abstract VI

Sammendrag VIII

List of Figures XIII

List of Tables XVII

List of Abbreviations XIX

1 Introduction 1
1.1 Background . 1
1.2 Problem Formulation . 3
1.3 Thesis Structure . 4

2 Background and Theory 5
2.1 Computer Vision . 5

2.1.1 2D: Perspective Transformation 6
2.1.2 3D: Structured Light . 7
2.1.3 Processing Depth Images 10

2.1.3.1 HDR: High Dynamic Range 10
2.1.3.2 Bilateral Filtering 11
2.1.3.3 Median Filter . 12
2.1.3.4 Outlier Filter . 13

2.1.4 Eye-in-Hand Calibration . 13
2.1.5 Deep Neural Networks . 15

2.1.5.1 Convolutional Neural Network 16
2.1.5.2 Hyperparameters 19

2.1.5.2.1 Loss Function 19
2.1.5.2.2 Gradient Descent 20
2.1.5.2.3 Learning Rate 20

IX

X CONTENTS

2.1.5.2.4 Mini-Batch Size 21
2.1.5.2.5 Number Of Training Iterations 21
2.1.5.2.6 Momentum 22
2.1.5.2.7 Weight Initialisation 22
2.1.5.2.8 Dropout 22

2.1.5.3 Overfitting . 24
2.1.5.4 Datasets . 25
2.1.5.5 Transfer Learning 26
2.1.5.6 Deep Learning Architectures 27

2.1.5.6.1 Faster R-CNN: Faster Region based Con-
volutional Neural Network 27

2.1.5.6.2 SSD: Single Shot MultiBox Detector . . . 29
2.2 Robotics . 31

2.2.1 Robot Kinematics . 31
2.2.1.1 Joints . 31
2.2.1.2 Rotation Matrix 32
2.2.1.3 Euler Angles . 33
2.2.1.4 Quaternion Angles 34
2.2.1.5 Translation . 35
2.2.1.6 Homogeneous Transformation 35
2.2.1.7 Forward Kinematics 36
2.2.1.8 Inverse Kinematics 37
2.2.1.9 Trajectory Planning 38

2.2.2 ROS: Robotic Operation System 38
2.2.2.1 Nodes . 39
2.2.2.2 Messages . 39
2.2.2.3 Topics . 39
2.2.2.4 Services . 40

2.2.3 Grasping . 41
2.2.3.1 Dexterity Network Project 41
2.2.3.2 Dex Net 3.0 . 42

2.2.4 Grippers . 45
2.2.4.1 Vacuum Gripper 46

3 Method 49
3.1 Physical Setup . 50

3.1.1 The Objects Used For Object Detection 51
3.1.2 Gripper Module and Suction Cup 52
3.1.3 KUKA Agilus KR 6 R900 SIXX 54
3.1.4 Zivid 3D Camera . 55
3.1.5 Eye-in-Hand Camera Calibration 56
3.1.6 Master Computer . 57

3.2 Software Development . 58
3.2.1 Image Acquisition . 58
3.2.2 Object Detection . 60
3.2.3 Grasp Planning . 67

CONTENTS XI

3.2.4 Robot Control . 70
3.3 Complete System . 74

4 Results 77
4.1 Physical Results . 77

4.1.1 Physical Setup . 77
4.1.2 Eye-In-Hand Calibration . 78

4.2 Software Results . 80
4.2.1 Image Acquisition . 80
4.2.2 Object Detection . 81
4.2.3 Grasping . 87
4.2.4 Robot Control . 89

4.3 Complete System . 90
4.3.1 Bin Picking Without Object Detection 90
4.3.2 Bin Picking With Object Detection 92

5 Discussion 95
5.1 Object Detection . 95

5.1.1 Improved Autonomous Labeling 96
5.2 Grasping . 97
5.3 Suction Cup . 102
5.4 Bin Picking . 103
5.5 Bin Picking In The Industry . 104

5.5.1 Object Detection . 104
5.5.2 Grasping . 105

6 Concluding Remarks and Future Work 107
6.1 Conclusion . 107
6.2 Future Work . 108

References 111

A Appendix 121
A.1 Test Objects . 121
A.2 State Machine Details . 123
A.3 TensorBoard Training Graphs . 127
A.4 Digital Appendix . 129

XII CONTENTS

List of Figures

2.1 Central-Projection Model . 6
2.2 Structured Light . 8
2.3 Structured Light Phase Unwrapping and Depth Calculation 10
2.4 HDR Processing . 11
2.5 Bilateral Filter . 12
2.6 Median Filter . 13
2.7 Hand-Eye Robot-World Calibration 14
2.8 Fully Connected Deep Neural Network 15
2.9 Sigmoid Function . 16
2.10 Convolution Operation Performed On a Pixel 17
2.11 Max Pooling With 2× 2 Filter and Stride of 2 18
2.12 Fully Connected Layer . 19
2.13 Learning Rate . 21
2.14 Dropout to a Deep Neural Network 23
2.15 Classification Improvement with Dropout 24
2.16 Overfitting . 25
2.17 Transfer Learning . 26
2.18 Faster R-CNN . 27
2.19 Region Proposal Network . 28
2.20 SSD Feature Map . 29
2.21 SSD Architecture . 30
2.22 Rotation Matrix . 32
2.23 Translation Vector . 35
2.24 Homogeneous Transformation . 36
2.25 Forward Kinematics . 37
2.26 Inverse Kinematics . 38
2.27 ROS .msg files . 39
2.28 ROS Topics . 40
2.29 ROS .srv files . 40
2.30 ROS Service Call . 40
2.31 Dex Net 3.0 Suction Cup Model 44
2.32 Dex Net 3.0 Spring Model . 45
2.33 Venturi Vacuum Generator . 47

XIII

XIV LIST OF FIGURES

3.1 Pipeline Of Proposed Bin Picking System 50
3.2 Robot Cell, Simulated and in Real World 51
3.3 Objects To Be Detected and Picked By The Object Detection Module 52
3.4 Theoretical Lifting Capacity . 53
3.5 CAD Model of Gripper Module, and Physical Result 54
3.6 Direction of Rotation for the KUKA Agilus KR 6 R900 SIXX Robot 55
3.7 The Zivid 3D Camera . 56
3.8 Collected Camera and Hand Poses for Calibration 57
3.9 ILSVRC Winners From 2010 To 2016 61
3.10 Pascal VOC Winners and Scores 62
3.11 TensorFlow Popularity on GitHub 63
3.12 Automatic Image Labeling Program Pipeline 65
3.13 Bounding Box Proposal From our Automated Labeling System . . 66
3.14 Robot Pose Pipeline . 73
3.15 State Diagram . 75

4.1 Pipeline of The Physical Bin Picking Cell 78
4.2 Comparison of The Effect of Distortion Correction 79
4.3 Comparison Between Depth Image Captured With Default and

Custom Camera Settings . 80
4.4 Validation Accuracy From Training SSD and Faster R-CNN 82
4.5 Total Loss From Training SSD and Faster R-CNN 83
4.6 Evolution of Biases During Training Represented in a Histogram

Plot . 84
4.7 Object Detection Test Results . 85
4.8 Comparison of Faster R-CNN and SDD Results 87
4.9 Validation of The GQ CNN Grap Proposal Module 88
4.10 Result of New Axis Range Configuration for Agilus2 89
4.11 Result of New Axis Range Configuration for Agilus1 90
4.12 Test A: Bin Picking Setup . 91
4.13 Test B: Bin Picking Using Object Detection 92

5.1 Result of Changing The Background For Object Detection 96
5.2 Labeled Images Using Our Improved Automatic Labeling Program 97
5.3 Grasp Quality Reduced Due to Depth Image Quality 98
5.4 GQ-CNN Object Segmentation Failure 98
5.5 Example of Our Proposed Object Segmentation Module 99
5.6 GQ-CNN Object Segmentation . 100
5.7 Failure During Picking Due To Object Occlusion 101
5.8 Object Detection and Region Proposal Mask R-CNN 102

A.1 Test Objects pt.1 . 121
A.2 Test Objects pt.2 . 122
A.3 Auto Labeled Training Data . 124
A.4 Auto Labeled Training Data . 125
A.5 Manual Labeled Training Data . 126

LIST OF FIGURES XV

A.6 Test and Validation Training Dataset 127
A.7 Graphs from TensorBoard - Accuracy 127
A.8 Graphs from TensorBoard - Total Loss 128
A.9 Prediction During Training . 128

XVI LIST OF FIGURES

List of Tables

2.1 Loss Functions . 20

3.1 Technical Data, KUKA Agilus KR6 R900 SIXX 55
3.2 Zivid 3D Camera Settings . 59
3.3 Pre-traind Models: SSD and Faster R-CNN 64
3.4 Hyperparameters Used During Training of The Object Detection

Networks . 67
3.5 Modified Axis Range For Agilus1 and Agilus2 71

4.1 S1 Score Results For The SSD Network 86
4.2 S1 Score Results For The Faster R-CNN Network 86
4.3 Test A: Bin Picking Without Object Detection 91
4.4 Test B: Bin Picking With Object Detection 93

A.1 State Transition Table . 123
A.2 Global State Machine Variables . 123

XVIII LIST OF TABLES

List of Abbreviations

API . Application Programming Interface

ASRS . Automated Storage and Retrieval System

CAD . Computer-Aided Design

CNN . Convolutional Neural Network

Dex Net . Dexterity Network

Faster R-CNN Faster Regional Convolutional Neural Network

GCP . Google Cloud Platform

GQ-CNN . Grasp Quality- Convolutional Neural Network

HDR . High Dynamic Range

RGB-D Image Red, Green, Blue and Depth Image.

RoI . Region of Interest

ROS . Robotic Operating System

RPN . Region Proposal Network

SSD . Single Shot multibox Detector

XIX

XX CHAPTER 0. LIST OF ABBREVIATIONS

Chapter 1

Introduction

1.1 Background

The amount online purchases conducted by consumers show no sign of declining,
and the growth in retail sales have rapidly increased over the last decade. Global
e-commerce sales are estimated to experience an increased growth of 265.11%
in the year 2021 compared to 2014, with sales reaching 4.88 trillion US dollars
worldwide [1]. According to a review of the Norwegian e-commerce behaviour
for 2016 by PostNord, as much as 65% of the Norwegian population conducted
online purchases every month, with an estimated national annual spending of 5.1
billion euros [2]. This was a national growth of 26% compared to the previous
year in the percentage of the population who shopped online every month, and a
0.7 billion euro increase in the total national amount spent on online purchases.
This growth is driving the demand for automated packing and shipping systems,
that can perform the highly repetitive work of locating and transporting prod-
ucts from inventory to shipping bins. These operations are ideal for automation,
but presents challenges related to object detection and grasping due to irregular
item poses within the storage bin, large assortments, different sizes and weights,
and different material and geometrical properties of the items. Human workers
are typically still needed in the pick-and-placing operation from the storage con-
tainer to the shipping container, which is not particularly desirable in tight labor
markets. However, recent development in the field of deep learning has greatly
improved robots ability to perform reliable classification of objects through com-
puter vision, as well as determining robust grasping locations for transportation.
This opens new opportunities for developers and companies that are capable pro-
ducing reliable and robust automated bin picking systems for costumers, where
the pick-and-place operation is central. The opportunities are also great for
customers who successfully are able to implement an autonomous system, as it
has the potential of reducing cost related to manual labor while increasing the
productivity of the operation.

The traditional pick-and-place operations that utilises computer vision and

1

2 CHAPTER 1. INTRODUCTION

robotics have mainly been related to industrial applications in the production
industry. The picking operation is most often categorised either as a structured
or a semi structured picking operation, where the position and orientation of the
objects are fully or partly known. Pick-and-place operations related to inventory
handling in e-commerce warehouses are referred to as bin picking, and is usually
categorised as a random picking operation, where the objects are positioned at
random locations and orientations within a storage bin. This bin picking op-
eration has proven difficult to automate as it is hard to generalise patterns for
successful object detection and grasping, due to the large variety and randomness
within the bin. Several companies are developing and offering autonomous bin
picking solutions that are based on the technology and possibilities introduced
by deep learning [3], [4], [5].

1.2. PROBLEM FORMULATION 3

1.2 Problem Formulation

Our collaborator, AutoStore AS, delivers automated storage and retrieval system
(ASRS) solutions to companies, saving inventory space and reducing the amount
of manual labor in the process. Optimisation of space is achieved by utilising
mobile robots that bring inventory bins to the shipping area, where the products
are manually localised and transferred to a shipping bin. This thesis will study the
possibility of replacing the manual pick-and-place operation with an automated
bin picking solution capable of recognising and picking specific objects. This
will be done by examining the theory of the components that can be used in an
autonomous bin picking system, and to produce a physical system based on the
theory presented. The scope of this problem formulation is concretised in the
following list of objectives:

• Robot Kinematics
Describe the kinematics of a robotic system consisting of two robots, where
one robot is equipped with a gripper and one robot is quipped with a 3D
camera.

• Computer Vision
Describe and develop a system capable of identifying and localising specified
objects in 2D, and to process 3D images to extract relevant data.

• Grasping
Develop a system capable to determining a suited grasping point given a
3D image of a scene, relative to the robotic manipulators.

• Gripper
Develop a gripper solution compliant with AutoStore’s automated storage
and retrieval system.

• Physical Implementation of the System
Implement a complete autonomous system capable of recognising and grasp-
ing objects from a storage bin that is equal in size to the bins that are used
at AutoStore.

• Practical Experiments
Conduct practical experiments in order to evaluate the system, and to
present a discussion based on the results.

4 CHAPTER 1. INTRODUCTION

1.3 Thesis Structure

The objective of this thesis is both theoretical and practical, and includes an
extensive literature and theory research that covers the available technologies
that can be applied in an automated bin picking system. The practical objective
is based on this theory, and is used to create an automated bin picking system.
The structure of this thesis can be summed up in the following list:

• Chapter 1. Introduction
The background and motivation behind this thesis is presented, along with
the problem formulation.

• Chapter 2. Background and Theory
The background and theory behind a final proposed bin picking system is
presented. The chapter is divided into a computer vision section, and a
robotics section.

• Chapter 3. Method
The methods used for testing and evaluation of the practical experiments
are presented.

• Chapter 4. Results
The results based on the Method chapter are presented.

• Chapter 5. Discussion
Discussions and personal thoughts based on the findings in the Results
chapter are presented. Weaknesses and strengths from the practical work
are discussed, and possible improvements are proposed.

• Chapter 6. Concluding Remarks and Future Work
The work of this thesis is concluded, and suggestions to further improve
the system are presented for future work.

• Appendix
Relevant appendixes for the thesis are listed.

Chapter 2

Background and Theory

Creating an autonomous bin picking system requires several individual compo-
nents, working and communicating together in order to fulfill the intended op-
eration. This chapter will cover the theory behind the necessary components in
a potential bin picking system. The chapter is separated in a computer vision
section, and a robotics section. The computer vision section covers aspects of 2D
and 3D image transformations, and object detection using deep neural networks.
The robotics section covers the kinematic aspects of robot movement, the ROS
communication system, and grasping.

2.1 Computer Vision

Computer vision is the field of study in which computers gain a higher level of
understanding of their surroundings, though the use of digital sensors. Process-
ing of the acquired data is often required, in order to enhance or remove certain
features that are of importance for the computer when it interprets the infor-
mation. The data may contain 2D or 3D information of the scene, and can be
represented in an RGB image, depth image, or a point cloud. Two central terms
used within computer vision are object detection and object segmentation, which
we define as follows:

• Object Detection
Object detection is the process of locating and classifying objects within
an image, and to output class probabilities along with the location of the
objects within the input image.

• Object Segmentation
Object segmentation is the process of locating and extracting specific re-
gions and boundaries that may be of interest in an image.

Since computer vision was introduction in the 1950s, there have been large
advancements in the field of object detection and object classification, and is

5

6 CHAPTER 2. BACKGROUND AND THEORY

today applied in numerous applications in our society

2.1.1 2D: Perspective Transformation

Capturing 2D images involves transforming a 3-dimensional scene onto a 2-
dimensional plane. This transformation is referred to as a perspective projection,
where information regarding the depth of the scene is lost. Several camera mod-
els have been proposed, but the central-projection model is often used for the
purpose of computer vision [6]. The model is illustrated in Figure 2.1, where the
rays converge to the origin of the camera frame {C}.

Figure 2.1: Illustration of the central projection model, where the image plane is
located in front of the camera’s origin. The plane is located at z = f , on which
a non-inverted image is formed. [6]

The image is projected onto the image plane which is located at z = f , where
f is the focal length. The image is non inverted, opposed to images obtained from
a traditional pinhole model. The world coordinates P = (X,Y, Z) is projected
to the image plane p = (x, y) by

x = f
X

Z
, y = f

Y

Z

which is the perspective projection. As a result of this transformation from
3-dimensional space to 2-dimensional space, parallel lines in the real world are
projected to straight lines that intersect at a vanishing point. The transformation
is not one-to-one, and it is therefore not possible to uniquely determine (X,Y, Z)

2.1. COMPUTER VISION 7

given (x, y). The image plane point can be expressed in homogeneous form p̃ =
(x′, y′, z′) where

x′ =
fX

z′
, y′ =

fY

z′
, z′ = Z

or in matrix form

p̃ =

f 0 0
0 f 0
0 0 1

XY
Z

where the non-homogeneous image plane coordinates are

x =
x′

z′
, y =

y′

z′
.

Normalised image plane coordinates are achieved when f = 1. The world co-
ordinates can also be written on homogeneous form CP̃ = (X,Y, Z, 1)T , resulting
in a linear representation of the perspective projection:

p̃ =

f 0 0 0
0 f 0 0
0 0 1 0

CP̃.

The perspective projection makes it possible to establish the relationship be-
tween the pixel coordinates in an image and the image coordinates in the image
plane. The pixel coordinates can be expressed as

u =
x

ρw
+ u0, v =

y

ρh
+ v0 (2.1)

where ρw and ρh are the width and height of each pixel respectively, and (u0, v0)
is the principal point where the optical axis intersects the image plane. The pixel
coordinates from Equation 2.1 can be converted into homogeneous coordinates
S = (u′, v′, w′), given the homogeneous coordinates of the image plane:

S =

1/ρw 0 u0

0 1/ρh v0

0 0 1

x′y′
z′

 .

2.1.2 3D: Structured Light

Structured light is a method of acquiring 3D information in an image, that was
first presented in computer vision literature in the 1990s. The operating principle
is to project a known pattern onto a scene of interest, and thereafter measure
the distortion in the pattern to calculate the depth information for each pixel in
the image. Figure 2.2 illustrates the general concept, where a spatially varying
3D structured illumination is generated by a special projector modulated by a
spatial light modulator.

8 CHAPTER 2. BACKGROUND AND THEORY

Figure 2.2: Illustration of the principle of structured light. Trigonometry can be
used to calculate the distance between the camera and a point in the scene. [7]

Trigonometry can be applied in order to calculate the distance between the
imaging sensor, the structured light projector, and the object surface point [8].
The principle of the triangulation can be expressed as

R = B
sinθ

sin(α+ θ)

where R is the distance between between camera and a point P in the scene, B
is the fixed distance between the camera and the projector, and θ and α are the
relative angles between the light beam to P and the projector and camera. An
essential aspect of this triangulation based 3D imaging, is the technique used to
differentiate a single projection light spot from the acquired image during a 2D
projection pattern. There exists several techniques for this purpose, which differs
in the achievable resolution and accuracy of a system. One popular technique is
the phase shift technique, due to its high speed and accuracy.

Phase Shift

Phase shifting involves projecting several sinusoidal fringe patterns over the scene,
and measure the pixel intensity for each projection at each pixel point. This
method has several advantages, such as high resolution, high speed 3D measure-
ments, and is less sensitive to surface reflectivity and variations [9].

The intensities for each pixel (x, y) of three separate projected fringe patterns
can be denoted as

I1(x, y) = I0(x, y) + Imod(x, y)cos(φ(x, y)− θ)
I2(x, y) = I0(x, y) + Imod(x, y)cos(φ(x, y))

I3(x, y) = I0(x, y) + Imod(x, y)cos(φ(x, y) + θ)

2.1. COMPUTER VISION 9

where I1(x, y), I2(x, y) and I3(x, y) are the intensities of the three fringe patterns,
I0(x, y) is the DC component, Imod(x, y) is the modulation signal amplitude,
φ(x, y) and θ is the phase and the constant phase shift angle, respectively.

In order to obtain absolute phase pixel by pixel, a temporal phase unwrapping
algorithm is applied. Instead of comparing a pixel’s intensity to its neighbours,
the algorithm compares information from other phase values at the same camera
pixel. The phase information φ(x, y) can be retrieved, or unwrapped, from the
intensities in the three fringe patterns:

φ′ = arctan

(√
3

I1(x, y)− I3(x, y)

2I2(x, y)− I1(x, y)− I3(x, y)

)
.

Discontinuities may appear in the arc tangent function at intervals of 2π, and
can be removed by adding or subtracting multiples of 2π on the φ′(x, y) value:

φ(x, y) = φ′(x, y)± 2kπ

where k is an integer that represents the projection period. The 3D coordinates
(x, y, z) can be obtained on basis of the difference between the measured phase
φ(x, y), and the phase value from a reference plane. The result is visualised
in Figure 2.3, along with the phase unwrapping process. The depth Z can be
calculated as

Z

L− Z
=

d

B
, −→ Z =

L− Z
B

d

which simplifies to

Z ≈ L

B
d ∝ L

B
(φ− φ0)

where L is the distance from the camera to the reference place, and B is the
distance between the camera and the projector. d is the distance between the light
rays from the projector and the camera through the point P on the interference
plane.

10 CHAPTER 2. BACKGROUND AND THEORY

(a) Phase unwrapping process. (b) Structured light calculation of depth in a
scene.

Figure 2.3: Illustration of the phase unwrapping process, and a scene captured
by a camera and a pattern projector. [7]

2.1.3 Processing Depth Images

An acquired depth image may often experience some degree of deviations and
noise within the measurements. This might be due to numerous reasons, such
as random noise, surface properties of objects in the scene, or movement. Post
processing images may reduce the amount of uncertainty in an image, and help
accentuate features in the image that might be of importance.

2.1.3.1 HDR: High Dynamic Range

High dynamic range imaging, or HDR imaging, is a technique in which several
separate images are combined to increase the overall dynamic range of luminosity
in the image [10]. This is usually achieved by capturing a set of images of a
scene, and adjusting the iris (aperture) of the camera between each frame. The
aperture determines the opening of the lens, and therefore the amount of light
being absorbed at the camera sensor. HDR imaging can be applied to generate
both RGB images and depth images. If a depth image is acquired with the
structured light technique, the degree in which a surface reflects or absorbs the
emitted light beams will influence the quality of the reconstructed depth image,
as the light beams might be under- or overexposed in the image. The HDR
technique allows the camera to capture RGB images of the projected light beams
on dark areas at a high iris setting, and bright areas when at a low iris setting.
The final HDR image combines the relevant data captured in the RGB images
to create an improved depth image, as can be seen in Figure 2.4.

2.1. COMPUTER VISION 11

⇓
HDR Processing

⇓

Figure 2.4: The two first rows shows the initial RGB and depth images with iris
set at 13, 20, 30 and 70, from left to right. The processed image can be seen at
the bottom, where a high dynamic range is obtained. Note that the images in
the first row are not the actual structured light images used to obtain the depth
image, but the RGB images that were taken with the same iris settings.

2.1.3.2 Bilateral Filtering

Bilateral filtering is a method for smoothing an image, while at the same time
preserving the edge features. The filter is often applied in 2D and 3D computer
vision for the purpose of filling holes and to reduce noise, and to accentuate edges.
It is a non-linear filter where the output is a weighted average of the input [11].
Initially the filter starts with a standard Gaussian filter with a spatial kernel f ,
but the weight of each pixel also depends on a function g in the intensity domain.
g ensures that the weight of pixels with large intensity differences are reduced.
The resulting filtering Js of a pixel s can be expressed as

Js =
1

k(s)

∑
p∈Ω

f(p− s) g(Ip − Is) Ip

where Ω is all the pixels in the image, p is the neighbourhood pixels around s, and
Is and Ip are the intensity of the pixel and the neighbourhood pixels, respectively.
k(s) is a normalisation term on the form

12 CHAPTER 2. BACKGROUND AND THEORY

k(s) =
∑
p∈Ω

f(p− s) g(Ip − Is).

The result of a bilateral filtering operation on a depth image can be seen in
Figure 2.5, where the edges are preserved while the overall image is smoothened.

(a) Depth image before bilateral filtering. (b) Depth image after bilateral filtering.

Figure 2.5: Illustration of the effects of a bilateral filter applied to a depth image
to smoothen the image while preserving the edge features.

2.1.3.3 Median Filter

The median filter is a commonly used filter for 2D and 3D image processing, and
is often applied for noise reduction or smoothing. It is widely used in digital
image processing, due to its ability to reduce noise, while still preserving edges
in the image. The filter considers each pixel in an image and replaces the value
by the median of the surrounding neighbourhood given by a mask. The median
filter process can be expressed as

g(x, y) = med{f(x− i, y − j), i, j ∈W)

where f(x, y) is the original pixel value and g(x, y) is the new pixel value at
position (x, y). W is a two dimensional mask with a defined size given by i, j.
Figure 2.6 illustrates the before and after effect of a median filter, where much
of the noise is replaced with more representative values.

2.1. COMPUTER VISION 13

(a) Depth image before median filtering. (b) Depth image after median filtering.

Figure 2.6: Illustration of the effects of a median filter applied to a depth image
to reduce noise. This reduction can especially be observed around the area of the
t-shirt. The mask has a size of 6× 6 pixels.

2.1.3.4 Outlier Filter

Outlier filters are commonly used filters for reducing the noise in depth images
and point clouds, where the outliers are points in the scene that are not considered
as a part of an object. There are several approaches and algorithms that have
been proposed for the purpose of this filtering. One typical implementation of
this filter, is to calculate the average distance to each points k nearest neighbours.
The resulting dataset has a mean and a standard deviation that is assumed to be
Gaussian distributed. All the points that have a mean distance to its k nearest
neighbours that is greater then the mean and standard deviation of the complete
dataset, are considered to be outliers and therefore removed from the image.

2.1.4 Eye-in-Hand Calibration

The problem of identifying the relative position and orientation between a static
mounted camera on a robotic hand and a known frame, can be solved by per-
forming an eye-in-hand calibration. Following [12], calibration can be achieved
by taking a series of images of a static calibration object, where the pose and
orientation of the mounted camera is changed between each image. The corre-
sponding base to hand transformations of the robotic manipulator are recorded
at each iteration. Figure 2.7 illustrates the problem at hand, where B is the
transformation between the hand coordinate frame to the robot base. A is the
transformation from the camera coordinate frame to the world coordinate frame,
and Z is the transformation between the base and world. Finally, X denotes the
transformation between the hand and camera frame.

14 CHAPTER 2. BACKGROUND AND THEORY

Figure 2.7: Illustration of the Hand-Eye calibration, where a camera (eye) is
mounted at the end-effector (hand) of a robotic manipulator. Images of a sta-
tionary calibration object is acquired at several different robot poses, and used
to estimate the distance X. [13]

Assuming that the transformation B are known, and the transformation A
can be calculated by a calibration software, the problem can be formulated as:

AX = ZB, (2.2)

where X and Z are unknown. The transformation AX is the transformation
from the robotic hand to the calibration object via the camera, and ZB is the
transformation from the robotic hand to the calibration object via the robot base.
Equation 2.2 can be solved by passing a series of matrices Ai and Bi containing
the relevant transformation for image i, and solving X and Z:

AiX = ZBi → Z = AiXB−1
i

Ai+1X = ZBi+1

Ai+1X = AiXB−1
i Bi+1

A−1
i Ai+1X = XB−1

i Bi+1.

This set of equations corresponds to solving

AX = XB (2.3)

where A = A−1
i Ai+1 and B = B−1

i Bi+1. The Equation 2.3 is called a Sylvester
equation, and can be solved with respect to X though numerical or methodolog-
ical approaches.

2.1. COMPUTER VISION 15

2.1.5 Deep Neural Networks

The concept of neural networks was first introduced in the 1940’s by Warren
S.McCulloch and Walter Pitts in the paper A Logical Calculus Of The Ideas Om-
manent In Nervous Activity [14], and was inspired by the structure of the human
brain. There are large varieties of structures among deep neural networks, but
the basic principle is tho similar. The following section is related to deep neural
networks in computer vision, but the general concepts may also be applicable for
other deep neural network applications. A standard deep neural network consists
of several layers of neurons, or nodes, that are connected between each layer [15].
Figure 2.8 shows a deep neural network consisting of an input and an output
layer, and one hidden layer.

Figure 2.8: Illustration of a fully connected deep neural network structure with
one hidden layer. [16]

The node is the basic computational unit of the network that outputs a single
value based on one or several inputs from nodes in previous layers. Each input has
an associated weight w depending on the relative importance of the connection.
The neurons apply a function f to the sum of inputs, which is referred to as
its activation value. This value is fed to the next layer of neurons, where the
weighted sum from all connections to a particular neuron is computed along with
its bias. This sum might be any positive or negative number. However, it is often
desirable to represent the activation value as a value between 0 and 1, which can
be achieved by applying the Sigmoid function to the weighted sum. In doing
so, a very negative inputs results in an activation value close to zero, and high
values results in an activation value close to one, as illustrated in Figure 2.9. The
Sigmoid function is defined as

σ(x) =
1

1 + e−x

16 CHAPTER 2. BACKGROUND AND THEORY

where x is a given input value.

Figure 2.9: Illustration of the Sigmoid function. [17]

The actuation values of neurons in a given hidden layer in the network can
be expressed in matrix form as

ai = σ(Wai−1 + b), i = 1, · · · , N

where a is the actuation values for the neurons in a given layer i, W is the
weight value matrix between the connections from layer i − 1 to layer i. b
contains the biases for each neuron, which are constant values that are added
to each neuron. The biases increases the flexibility of the learned network, by
shifting the Sigmoid function along the x-axis. The last layer of the network is
the classification layer, where the neuron with highest value is the most probable
class in an input image. During the training phase of the network, the weight and
bias parameters are tuned in order to achieve the correct classification between
the input and the output. This is a computational expensive operation, which
often involves tuning and adjusting up to hundred million parameters [18].

2.1.5.1 Convolutional Neural Network

A Convolutional Neural Network (CNN) is a type of neural network structure
that is often used in classification tasks related to computer vision. Krizhevsky
et al, demonstrated the accuracy of the network structure in 2012 [19], where it
won the computer vision competition ILSVRC-12 [20], with significant margin.

The CNN structure usually consists of one or more characteristic convolutional
layers, followed by one or more pooling and fully connected layers. This network
structure takes advantage of the 2D input structure, by local connections and
tied weights, followed by pooling, which results in translation invariant features.

2.1. COMPUTER VISION 17

Convolution Layer

The initial step of a convolution neural network is the convolution layer. Here,
a given feature is projected on the input image, creating a stack of processed
filtered images. The projected feature structure is projected over each pixel in the
input image, and the rate of accuracy within the structuring element is mapped
onto a new filtered image. This process can be observed in Figure 2.10, where
the mapped pixel represents the weighted sum of itself and nearby pixels. The
concept of the convolution layer is to quantify the probability for a given feature
to be present in the image, represented by the filtered output image. Pixel areas
with relative high mapped values, indicates that the given feature is present in
the given area of the image. The process can be repeated for a set of different
feature structures, creating a stack of filtered images.

Figure 2.10: Convolution operation performed on a pixel. A source pixel is filtered
with a convolution filter, and the new value is mapped in a new image. [21]

Pooling Layer

Pooling is often referred to as sub-sampling, and is an operation that extracts the
most important information present in an image. This is normally achieved by
max pooling, where the structuring element extracts the highest value within its
boundaries as it moves through the image. This reduces the amount of informa-
tion and size of the network, but retains the most important information in the
an image, due to the fact that close outgoing connections usually contains similar
information. The operation makes the information invariant to translation and
rotation, and enables deeper layers to detect translated and rotated features. The
size of the pooling structure is defined manually, where a too large filter might
lead to too generalised information. A visual illustration of the pooling process
can be seen in Figure 2.11, where a 2×2 max pooling filter is applied to an image.

18 CHAPTER 2. BACKGROUND AND THEORY

Figure 2.11: Max pooling with 2× 2 filter and stride of 2. [22]

Fully Connected Layer

The last layer in a CNN is usually a fully connected layer, where high-level
features from the previous layers are used to learn non-linear combinations. The
number of neurons in the last layer is equal to the number of classes that the
network is able to classify. A Softmax function is usually applied, in order to
obtain a probabilistic representation of the presence of each class in the image.
The Softmax function is defined as

σ(z)i =
ezi∑K
k=1 e

zk
(2.4)

where z is the input vector with n elements, and i is the index of the output
units from i = 1, · · · ,K. Due to the nature of Equation 2.4, the output from
the function is always between 0 and 1, and all outputs always sums up to 1
as illustrated in Equation 2.5. The output can be thought of as the network’s
certainty of presence for for each of the n classes in an image, where the class with
highest output is most lightly to be present in the input image of the network.

1.5
−0.6
−0.2
0.4

 =⇒ Softmaxfunction =⇒

0.61
0.07
0.11
0.2

 . (2.5)

Figure 2.12 illustrates the final fully connected layer of a convolutional neural
network, where the network is used to classify two different classes.

2.1. COMPUTER VISION 19

Figure 2.12: A fully connected layer where both neurons in the final layer are
connected to all the neurons in the previous layer. [23]

2.1.5.2 Hyperparameters

Hyperparameters are variables that are chosen before initialising the training,
that influences the networks ability to learn form the input data. This is im-
portant in order to achieve a good generalisation of the data pattern so that the
model best can solve the deep learning problem. Hyperparameters effects the
higher level properties of the network, such as the learning rate and complexity.
This section will cover some of the most important hyperparameters, and cover
how they effect the networks performance during training [24].

2.1.5.2.1 Loss Function

The loss function is used in the training phase of the network, and serves as
an indicator of the accuracy of the network during training. It compares the
difference between the predicted classification by the system, and the actual input
label. Through iterations of training, the network will try to reduce the value of
the loss by adjusting the parameters of the network. There are several different
types of loss functions, as seen in Table 2.1, where y is the true label as one-hot
encoding, ŷ is the true label as +1/ − 1 encoding. o represents the output of
the last layer of the network, (j) denotes the j th dimension of a given vector,
and σ denotes the classification and/or localisation loss. The classification loss
concerns the proposed object label, while the location loss concerns the predicted
placement of the object in an image.

20 CHAPTER 2. BACKGROUND AND THEORY

Commonly Used Loss Functions
Symbol Name Equation
L1 L1 loss ||y − o||1
L2 L2 loss ||y − o||22
L1 ◦ σ Expectation loss ||y − σ(o)||1
L2 ◦ σ Regularised expectation

loss
||y − σ(o)||22

L∞ ◦ σ Chebyshev loss maxj |σ(o)(j) − y(j)|
hinge Hinge (margin) loss

∑
j max(0, 1

2 − ŷjo(j))

hinge2 Squared hinge (margin)
loss

∑
j max(0, 1

2 − ŷjo(j))2

log Log (cross entropy) loss −
∑
j y(j)logσ(o)(j)

log2 Squared log loss −
∑
j [y

(j)logσ(o)(j)]2

Table 2.1: Table containing some of the most commonly used loss functions. [25]

2.1.5.2.2 Gradient Descent

Gradient descent is an optimisation algorithm used to adjust the parameters in
the network. The optimisation is achieved by minimising the loss function, which
is dependent on the weights and biases of the network. Minimising the loss func-
tion with gradient descent implies finding and adjusting the partial derivatives
of the weight and bias parameters. The updated parameters can be expressed as

θt=θt−1−εt∇L(θt−1)

where θ is a given parameter, ε is the learning rate of the network and L is the
loss function that is to be minimised with respect to θ.

2.1.5.2.3 Learning Rate

The learning rate influences the networks rate of change with respect to the
weights and biases, during the training phase. It is an important hyperparameter
to tune, as it drastically changes the training dynamic of the whole network. A
high learning rate results in large adjustments of the weights in the direction of
the gradient of the mini batch. This may lead to the network overshooting the
optimal weights that minimises the loss function. A low learning rate results
in small adjustments of the weights, and as a result, it requires more training
steps. Figure 2.13 illustrates how the learning rate affects the steps towards the
global minimum of the loss function. A high learning rate will enable the weights
to jump over a sub optimal local minimum, but never converge to a specific
minimum as shown in Figure 2.13 (a). A low learning rate allows the network
to converge to a minimum, but the optimisation may get stuck at a sub optimal
local minimum, as shown in Figure 2.13 (b).

2.1. COMPUTER VISION 21

(a) A high learning rate dur-
ing training.

(b) A low learning rate dur-
ing training.

Figure 2.13: Comparison between the effect of a high and a low learning rate
during training. A high learning rate will make large adjustments in the param-
eters to reach the minimum of the loss function, while a low learning rate makes
small adjustments to reach the same minimum. [26]

It is therefore often desirable to use a decreasing learning rate, to overcome
this issue. By first using a high learning rate to rapidly converge towards the
global minimum, and a smaller learning rate to converge at a lower scale. This
approach reduces training time, and ensures fine tuning of the weights at the
end of the training phase. Bergstra and Bengio [27] suggests a method that
continuously reduces the learning rate εt, as the amount of iterations t passes a
given threshold T with an initial learning rate ε0:

εt =
ε0T

max(t, T)

2.1.5.2.4 Mini-Batch Size

The mini-batch size B determines the number of images passed though the net-
work before adjusting the weights and biases according to the loss function. The
direction of the gradient is calculated for each image, as it passes though the net-
work. The average of all individual gradients is calculated after completing the
batch, and the weights are modified according to this average. Mini-batch size B
influences the computing time by enabling fast matrix calculations, and reduces
the effect of noise in the labeled training set. Larger B yields faster computation
as long as the GPU’s have enough memory, thus B can be optimised independent
of the other hyperparameters.

2.1.5.2.5 Number Of Training Iterations

The number of training iteration T is a hyperparameter that is not necessarily
predefined before training, as it is a measure of how many times the weights
have been updated. As mentioned in Section 2.1.5.2.1, the theoretical goal is to
train the network until a number of iterations is reached where the loss function
is minimised. In practice, this will not yield satisfying results as consequence
of a overfitting issue. The ideal number of iterations Tideal is reached when the

22 CHAPTER 2. BACKGROUND AND THEORY

accuracy of the validation set reaches its maximum. The loss function for the
training set might continue improving as T increases, but in reality the network
is losing its ability to generalise and recognise features in the validation set. To
counteract this problem, the trained model should be saved at regular intervals
as the training phase progresses.

2.1.5.2.6 Momentum

The momentum β is a parameter that influences how much the weights are up-
dated, depending on the values from the previous iteration. While using gradient
descent during training, each step is defined by Equation 2.6 and Equation 2.7,
where the step is dependent on the current gradient and a proportion of the pre-
vious step. This allows weights to be updated even if the gradients becomes zero,
and allows it to pass local inflection points and small local minimums. The size
of the momentum decides how large local minimum curves the model can recover
from.

θt = θt−1 − vt (2.6)

vt = βvt−1 + εt∇L(θt−1) (2.7)

2.1.5.2.7 Weight Initialisation

Weight initialisation is the initial value for the weights and biases in the network.
A common practice in the early years of neural network was to set the weights
with a small random deviation around 0, based on the assumption that half of the
final weights would be negative and other half positive. As the neural networks
increased in size, this method often caused signals to vanish or explode depending
in the deviation around zero. Glorot and Bengio. [28] suggested a popular used
technique to avoid this issue, by selecting the variance of the distribution around
zero based on the network size:

Var(W) =
2

nin + nout

where nin and nout are the number of inputs and outputs of the layers.
In the recent years, neural networks have become more complex, causing a

need for a better weight initialisation in order to avoid vanishing and exploding
signals. Kumar [29] suggested several techniques based on the activation function
used in the network, while Kotutwar and Marchant [30] makes use of data statis-
tics for weight initialisation, which proves to be more efficient in more practical
approaches.

2.1.5.2.8 Dropout

Dropout is a method applied to reduce the issue of overfitting in neural networks
used for classification, by randomly cutting connections between neurons during

2.1. COMPUTER VISION 23

the training phase. This action prevents the units from co-adapting too much,
meaning that the network can not rely on a given connection to be present at
all times for a given class or feature. This forces the network to learn a redun-
dant representation of an object, instead of relying on only a few characteristic
features of the objects. This practice is illustrated in Figure 2.14, which results
in increased robustness of the network in term of generalisation and reduced
probability of overfitting.

(a) A standard neural deep
neural network.

(b) A deep neural network
after applying dropout.

Figure 2.14: Illustration of the before and after effect of applying dropout to a
deep neural network, where random connections are cut. [31]

The paper Dropout: A Simple Way to Prevent Neural Networks from Over-
fitting [32], demonstrates the improvements in accuracy on different network
structures while training on the well known datasets MNIST, SVHN, CIFAR-
10, CIFAR-100 and ImageNet. In the demonstration, classification experiments
were conducted with networks of several different architectures, while keeping all
hyperparameters and the dropout rate fixed. The dropout rate represents the
probability of retaining a connection in the network, and is usually set in the
range of 0.5 to 0.8 for hidden layers and 0.8 for the input layers. Figure 2.15
illustrates the improvement in accuracy of the MNIST dataset on different net-
work structures with and without dropout, and this is also the tendency for all
the other datasets as well.

24 CHAPTER 2. BACKGROUND AND THEORY

Figure 2.15: Classification error for different architectures with and without
dropout on networks consisting of two to four hidden layers. A significant
improvement in the classification error can be observed for all structures after
dropout is applied. [32]

2.1.5.3 Overfitting

Overfitting of a network may occur when the parameters of the network are too
adapted to the training data, and therefore the network loses its ability to gen-
eralise to new data. This may significantly effect the accuracy of a deep neural
network based classifier, when classification is conducted on images that were not
included in the training dataset. Models that are overfitted have failed to identify
the general patterns that accurately differentiate the classes of the dataset, and
instead characteristics of the training dataset have been memorised in the model.
The presence of overfitting can be evaluated graphically by comparing the eval-
uation error and the test error during training, as shown in Figure 2.16. At the
point where the validation error increases, the model starts to lose its ability to
generalise the characteristic features of the training set. The resulting outcome
is that the model achieves a high accuracy for the specific training set, but a low
accuracy on new classifications that were not included in the training set.

2.1. COMPUTER VISION 25

Figure 2.16: The presence of overfitting in deep learning models can be indicated
by comparing the error of the validation dataset, and the training dataset. If
the training error decreases while the validation error increases, the model shows
signs at it is memorising rather then generalising the training data. [33]

Several actions can be applied to reduce the presence of overfitting in a model,
such as adding more data to the training set, reducing the model complexity, and
applying dropout.

2.1.5.4 Datasets

When deep learning within computer vision began to show promising results, it
was mainly due to two factors: fast GPUs and availability of large amount of
labeled training data. Deep learning models require high quality training data
to achieve its potential, which often needs to be labeled or sorted by humans.
This is a time consuming process, especially in supervised training where datasets
usually has to be created manually or semi-automated. Furthermore, a dataset
is made by collecting raw data, and structuring the information into a numerical
representation that is suitable for deep learning algorithms. Datasets usually
consists in pairs of input data and labeled or categorised output data, which
represents the ground truth in the input data. To overcome the need of creating
huge dataset for each specific task, large general training sets are used to train
the model before the application relevant data is used to optimise the model for
its application, as explained in Section 2.1.5.5. Datasets are usually divided into
two parts, where about 80% is used for training, and the remaining section is
used for testing or validation. Two popular datasets used for training are the
ImageNet and the COCO datasets.

• ImageNet
ImageNet is a large scale image database consisting of over 14 million im-
ages, where over 1 million of the images are assigned with bounding box
annotation. The images in the dataset are distributed over 20 000 cate-
gories, with approximately 650 images per category [34].

26 CHAPTER 2. BACKGROUND AND THEORY

• COCO: Common Objects in Context
COCO is a large object detection and segmentation dataset, released by
Microsoft. It consists of over 200 000 labeled images and 1 500 000 labeled
objects. The dataset was created using Amazon Mechanical Turk, with
focus on images containing contextual relationships and non iconic object
views. The COCO dataset also contains a large amount of labeled objects
in cluttered environments with a high number of instance per image [35].

2.1.5.5 Transfer Learning

Deep neural networks requires a massive amount of labeled data during training,
in order to adjust weights and biases between the layers during training. The
number of parameters might be in the range of hundred millions [36] and an
extensive amount of labeled data and computational power is therefore neces-
sary during training, both of which is often not accessible for many applications.
Transfer learning is a way of reducing the dependence of the two, by reusing a
pretrained network from a larger dataset [37]. Today there are several public
available datasets of sufficient size for training large neural networks, such as
COCO and ImageNet. The weight and biases learned from these datasets can be
used for new target objects, due to the fact that neural networks learn general
features early in the network structure, while specific features for classification
are learned in the last layers. During transfer learning, only the last layers are
trained for the classification task, which allows deep learning to be applied in
applications where there are limited available labeled data. Figure 2.17 demon-
strates the concept of transfer learning, where the classifier of the target task is
trained after transferring the parameters from the source task.

Figure 2.17: Illustration of how the layers and weights of a pre-trained model are
transferred to a new classification application. During training, only the weights
and biases of the last classification layers are trained. [36]

2.1. COMPUTER VISION 27

2.1.5.6 Deep Learning Architectures

Deep learning algorithms may have a large diversity in terms of architecture, due
to the flexibility that is provided by the neural networks when creating an end to
end model. This section will cover two commonly used architectures for object
detection in 2D images.

2.1.5.6.1 Faster R-CNN: Faster Region based Convolutional Neural
Network

The Faster R-CNN model is the third deep neural network based on the work
of Girschick et al. in [38] and was presented in 2016 as Faster R-CNN: Towards
Real-Time Object Detection with Region Proposal Networks [39]. This iteration
introduced a region proposal network (PRN), that generates a set of object pro-
posals with a corresponding objectiveness score from an image. Figure 2.18 il-
lustrates the steps in the model, which drastically reduced the computation time
from 2 seconds per image to 10 ms per image, compared to the previous released
iteration. Faster R-CNN performed a state-of the-art result at VOC 2007 with a
mAP score of 78.8%, when trained on the COCO, VOC07, and VOC12 datasets.

Figure 2.18: Illustration of a Faster R-CNN model. The region proposal module
proposes regions of interest in the feature map, which reduces computation time
in the classification module. [39]

The Faster R-CNN network consists of two separate modules, where the first
is a deep fully convolutional network that proposes regions of interest. The second
module is a Fast R-CNN detector that utilises the proposed regions of the first
module.

28 CHAPTER 2. BACKGROUND AND THEORY

Region Proposal Network

The main goal of the Faster R-CNN is to reduce computation time, by shar-
ing computation between the Region Proposal Network (RPN) and the object
detection network. The RPN takes an image as input and outputs rectangular
bounding boxes of object proposals, where each proposal has its own objectness
score. The region proposals represent a Region of Interest (RoI), and are gen-
erated by sliding a small network over the convolutional feature map output by
the last shared convolutional layer. The input of this small network is a n × n
spatial window of the input convolutional feature map, and each sliding window
is mapped to a lower-dimensional feature. This feature is in turn fed as input
to two sibling fully connected layers. The first layer is a box-regression layer
(reg), and the other layer is a box-classification layer (cls). As a result of the
sliding window approach, the fully connected layers are shared across all spatial
locations in the image. This architecture is implemented with an n × n convo-
lutional layer that is followed by two sibling 1 × 1 convolutional layers (reg and
cls, respectively). Multiple region proposals are predicted at each sliding window
location, where the maximum amount of proposals for each location is denoted
as k. The reg layer has 4k outputs which contains the bounding box coordinates
of k boxes, while the cls layer outputs 2k scores that estimates the probability of
an object present in each proposal, or not. The term anchor represents the pa-
rameterization of k proposals relative to k reference boxes. An anchor is located
at the center of a given sliding window, and is associated with a scale and aspect
ratio, which can be seen in Figure 2.19.

Figure 2.19: Illustration of the region proposal network of a Faster R-CNN net-
work. The network outputs 2k scores as an estimation whether an object is
present or not in the proposal, and 4k bounding box coordinates. [39]

2.1. COMPUTER VISION 29

Fast R-CNN Detector

The proposed regions as fed in to the second module, which is a Fast R-CNN
detector [40]. For each proposal or RoI r, the forward pass outputs a class
posterior probability distribution p, along with a set of predicted bounding box
offsets relative to r. A detection confidence is assigned to r for each object class
c, where the estimated probability is given by

Pr(class = c | r) , pc.

Further, a non-maximum suppression algorithm from a R-CNN model is ap-
plied for each class [38].

2.1.5.6.2 SSD: Single Shot MultiBox Detector

The Single Shot MultiBox Detector (SSD) was presented by Liu et al. [41], and
is an object detection approach where the network is able to detect objects in
images, using a single deep neural network. The model is based on feed-forward
convolution networks that produces fixed size bounding boxes with corresponding
scores, and predicts the presence of object classes inside each box. These boxes
are applied on top of the feature map at multiple scales and aspect rations, as seen
in Figure 2.20. The final classification is achieved by a non-maximum suppression
step over all boxes.

Figure 2.20: The right image shows an input image with ground truth labels
around the training objects. The center and right image illustrates the evaluation
of a set of boxes of different aspect ratios and scales. [41]

The architecture of the network can be seen in Figure 2.21, where the first
section consists of convolution layers taken from an image classification network
VGG-16 [42] referred to as the base model, truncated before the classification
layer. This base model can be substituted with other feature extraction networks,
such as Inception-ResNet V2 [43]. The base model which performs feature extrac-
tion is followed by convolutional feature layers that decrease in size progressively,
allowing predictions of detection at multiple scales.

30 CHAPTER 2. BACKGROUND AND THEORY

Figure 2.21: Illustration of the architecture of the SSD network, which uses a
VGG16 base model, where several feature layers are added to the end of the
network, which predicts the offsets to default boxes of different scales and aspect
ratios and their associated confidences. [44]

For the feature layers of size m× n with p channels, a 3× 3× p small kernel
predicts a score for a category, or a shape offset relative to the default box
coordinates. At each of the m × n locations where the kernel is applied, an
output value is produced. Each feature map cell is associated with a set of
default bounding boxes, which tile the feature map in a convolutional manner.
This connection ensures that the position of each box relative to its corresponding
cell is fixed.

For each box out of k at a given locations, c class scores and the four offsets
relative to the original default box shape are computed. This results in a total of
(c+ 4)k filters that are applied around each location in the feature map, yielding
(c + 4)k × m × n outputs for a m × n feature map. Finally, the prediction is
obtained by applying non-maximum suppression over all boxes.

2.2. ROBOTICS 31

2.2 Robotics

Robotics is concerned with the study of machines that can replace or aid humans
in execution of different tasks, both in physical applications and in decision mak-
ing. The following section will cover some of the most important aspects related
to robotics applied for bin picking, such as motion, communication systems, and
grasping.

2.2.1 Robot Kinematics

An industrial robot is a multifunctional manipulator that can be modeled as an
open chain of rigid bodies (links), connected in series by kinematic joints. One
end of the chain is mounted to a base, while an end-effector is mounted to the
other end. The relationship between positions, velocities and acceleration of the
links and end-effector of the robot is referred to the kinematics of the robot, and
is obtained by composition of the elementary motions of each link with respect
to the previous one.

This section will present some of the most important concepts related to kine-
matics of robotic manipulators. The theory presented in this section is derived
from the book Robotics - Modelling, Planning and Control [45].

2.2.1.1 Joints

There are several types of joints that can be applied in robotics, but the two most
commonly seen are the revolute and the prismatic joints.

Revolute Joints

Revolute joints creates a relative rotational motion between two links. There
are two basic configurations of the revolute joint, depending on the relationship
between the center line of the link and the axis of rotation. The axis of rotation
can be coincident with the center line of the link, or it can be perpendicular to
the center line of the link. For both cases, the revolute joint provides one degree
of freedom, where the axis of rotation is in the Z direction.

Prismatic Joints

A prismatic joint creates a relative transnational motion between two links. Sim-
ilar to the revolute joint, there are two basic configurations of the prismatic joint.
The axis of translation can either be collinear with the fixed link, or it can be
orthogonal to it. One degree of freedom is provided, and the axis of translation
is in the Z direction.

32 CHAPTER 2. BACKGROUND AND THEORY

2.2.1.2 Rotation Matrix

The rotation matrix is a method of representing rotation, or orientation, of a
frame relative to a reference frame. This is done by projecting unit vectors x′y′z′

of a frame onto the reference frame axis xyz. The degree of projection onto each
axis varies at a constant rate, as the degree of rotation about an axis varies. This
relation is represented with the rotation matrix about the x, y and z axis of the
reference frame, and are given by

Rx =

cos α -sin α 0
sin α cos α 0

0 0 1

 (2.8)

Ry =

cos β 0 sin β
0 1 0

-sin β 0 cos β

 (2.9)

Rz =

1 0 0
0 cos γ -sin γ
0 sin γ cos γ

 (2.10)

where α, β and γ are the angles rotated about the x, y and z axis, respectively.
The rotation matrices describes the necessary rotation about an axis in space in
order to align the axes of the reference frame with the corresponding axes of the
body frame. This is illustrated in Figure 2.22.

(a) Rotation about the X axis. (b) Rotation about the Y axis.

(c) Rotation about the Z axis.

Figure 2.22: Illustrations of a -30 degree rotation about the X, Y and Z axes.

2.2. ROBOTICS 33

2.2.1.3 Euler Angles

The rotation matrices are useful for calculating relative rotation between frames,
but this representation provides a redundant description of frame orientations.
The rotation is characterised by 9 elements in a 3× 3 matrix, which are directly
related by six constraints due to the orthogonality condition given by

RTR = I3 (2.11)

where I3 denotes the 3 × 3 identity matrix. The implication of Equation 2.11
is that only three independent parameters are needed to describe the relative
orientation of frame in space. This representation is referred to as a minimal
representation, and is denoted by

Φ = [ϕ ϑ ψ]T (2.12)

where ϕ, ϑ and ψ are a set of angles that form a rotation sequence. In total there
are 12 rotation sequences out of 27 possible combinations that guarantee that
two successive rotations are not made about parallel axes. Each set represents a
triplet of Euler angles.

YZX Angles

One of the most common triplet of Euler angles are the ZYX angles, also known
as Roll-Pitch-Yaw angles or RPY angles. For this triplet, ϕ, ϑ and ψ in Equation
2.12 represents the rotation defined with respect to a fixed frame attached to the
center of gravity of a rigid body. The rotation resulting from RPY angles can be
obtained by

• Rotating the reference frame by the angle ψ about the x axis (yaw). The
matrix Rx(ψ) describes this rotation, which is defined in Equation 2.10.

• Rotating the reference frame by the angle ϑ about the y axis (pitch). The
matrix Ry(ϑ) describes this rotation, which is defined in Equation 2.9.

• Rotating the reference frame by the angle ϕ about the z axis (roll). The
matrix Rz(ϕ) describes this rotation, which is defined in Equation 2.8.

The resulting frame orientation is obtained by composition of rotations with
respect to the fixed frame, followed by computation via premultiplication of the
the matrices of elementary rotation,

R(Φ) = Rz(ϕ)Ry(ϑ)Rx(ψ)

where R(Φ) can be written as

R(Φ) =

cϕcϑ cϕsϑsψ − sϕcψ cϕsϑcψ − sϕsψ
sϕcϑ sϕsϑsψ − cϕcψ sϕsϑcψ − cϕsψ
−sϑ cϑsψ cϑcψ

 . (2.13)

34 CHAPTER 2. BACKGROUND AND THEORY

The set of Euler angles can be obtained by comparing the inverse solution to
a given rotation matrix

R =

r11 r12 r13

r21 r22 r23

r31 r32 r33

and the expression of R(Φ) in Equation 2.13. The resulting inverse solution is
given in two separate ranges for ϑ. When ϑ ∈ (−π/2, π/2) the following solutions
are true:

ϕ = Arctan2(r21, r11)

ϑ = Arctan2(−r31,
√
r2
32 + r2

33) (2.14)

ψ = Arctan2(r32, r33).

When ϑ ∈ (π/2, 3π/2) the following solutions are true:

ϕ = Arctan2(−r21,−r11)

ϑ = Arctan2(−r31,−
√
r2
32 + r2

33) (2.15)

ψ = Arctan2(−r32,−r33).

The solutions for Equation 2.14 and Equation 2.15 degenerate when cϑ = 0
and the angle ϑ = π/2. For this circumstance, it is only possible to determine
the sum or difference of ϕ and ψ.

2.2.1.4 Quaternion Angles

A quaternion is a four element vector that provides a convenient mathematical
notation for representing orientation and rotation of objects in three dimensions.
Quaternions gives a simple way to encode this axis–angle representation in four
elements, and can be used to apply the corresponding rotation to a position
vector, representing a point relative to the origin in R3. The Euler rotation is
represented with a triplet of Euler angles, that have an ambiguity in the spec-
ification of the Euler angles, meaning that a (yaw, pitch, roll) convention does
not interoperate with an algorithm that assumes (roll, pitch, yaw). Quaternion
on the other hand represents the rotations as a single rotation which is faster in
terms of computation time and avoids Gimbal lock [46]

A quaternion q is generally represented in the form

q = s+ xi + yj + zk

where s, x, y, z are real numbers and i, j, k are the imagery fundamental units
quaternion. An orientation and rotation defined with a unit rotation axis u =

2.2. ROBOTICS 35

[ux, uy, uz] and a scalar θ can than be represented with unit quaternions (s2 +
x2 + y2 + z2 = 1) as

q = e
θ
2 (uxi,uyj,uzk) = cos

θ

2
+ (uxi, uyj, uzk) sin

θ

2
= [qw, qx, qy, qz].

2.2.1.5 Translation

In the same way that rotation matrices describes the relative orientation between
two frames, translation vectors describes the relative displacement between two
frames in space. The translation vector O0

1 in Figure 2.23 illustrates the transla-
tion between the origin of frame 0 and and frame 1, and is given by

O0
1 =

xy
z

 .

Figure 2.23: Translation vector O0
1 illustrating the relative displacement between

frame 0 and frame 1.

2.2.1.6 Homogeneous Transformation

The rotation matrix, translation vector, and a [001]T vector can be combined
in a single matrix, in order to express the relative orientation and displacement
between two frames. The [001]T vector is included to simplify matrix operations,
and constitutes the bottom row of the combined 4 × 4 matrix called the homo-
geneous transformation matrix. From Figure 2.24, let P be an arbitrary point
in space, and p0 and p1 be the vector from the origin of frame 0 and frame 1,
respectively. The vector O0

1 is the vector representing the translation between
the frames, and R0

1 is the rotation matrix to frame 1 relative to frame 0.

36 CHAPTER 2. BACKGROUND AND THEORY

Figure 2.24: Representation of a point P in two different coordinate frames.

From this, the location of point P relative to frame 0 can be expressed as

p0 = O0
1 + R0

1p
1 (2.16)

and represents the coordinate transformation of a bound vector between two
frames. The inverse transformation can be calculated by premultiplicating R0T

1

on both sides of Equation 2.16, resulting in

p1 = −R1
0O

0
1 + R1

0p
0.

Introducing

p̂ =

(
p
1

)
where p is a point in a frame, a compact representation is achieved between
the relationship the coordinates of the same point in two separate frames. The
coordinate transformation can be expressed by the 4× 4 matrix

T0
1 =

(
R0

1 O0
1

0T 1

)
which is the homogeneous transformation matrix.

2.2.1.7 Forward Kinematics

Forward kinematics relates a set of given joint angles on a robotic manipulator
to the end position and orientation of the end-effector frame, relative to the
base frame. Given the joint angles and the DH parameters for an open chain
manipulator consisting of n number of links or rigid bodies, the position of the
end-effector can be determinated by the successive homogeneous transformation
from the base frame to the end-effector frame as follows

T0
n =

n∏
i=1

Ti−1
i (θi). (2.17)

2.2. ROBOTICS 37

Equation 2.17 can be written as

T0
n(q) =

(
n0
n(q) s0

n(q) a0
n(q) p0

n(q)

0 0 0 1

)
where q is a (n × 1) vector containing the joint angles, and nn, sn,an are the
unit vectors of a frame attached to the end-effector. pn is the position vector
of the end-effector frame, relative to the base frame. Figure 2.25 illustrates the
issue of forward kinematics, where the joint angles are known, but the position
of the end-effector is unknown. The vector p0

2 represents the displacement from
the base frame to the end-effector frame, and is extracted from the homogeneous
transformation from the base frame to the end-effector frame.

Figure 2.25: 2D illustration of the forward kinematics issue. The joint angles are
know, but the position of the end-effector is unknown. The vector p0

2 represent
the position of the end-effector relative to the base frame.

2.2.1.8 Inverse Kinematics

Inverse kinematics is the process of transforming a given position of the end-
effector in space to the necessary values in the joint space to achieve the position.
Especially in terms of bin picking, the inverse kinematics problem is generally
more relevant than the forward kinematics problem described in Section 2.2.1.7,
as the goal is to pick up items at certain known locations in space. For the
forward kinematics, each set of joint values corresponds to a single position of
the end-effector frame. However, for the inverse kinematics problem there might
be multiple or an infinite number of joint values for a given end effector frame.
Thus, the inverse kinematics problem is much more complex, as the equations
to solve are generally nonlinear. Figure 2.26 illustrates the inverse kinematics
problem, where the desired end-effector frame is known, while the joint angles
are unknown.

38 CHAPTER 2. BACKGROUND AND THEORY

Figure 2.26: 2D illustration of the inverse kinematics issue. The relative position
of the end-effector frame and the base frame p0

2 is given, but the corresponding
joint values are unknown. Two possible configurations may result in the desired
end-effector position.

2.2.1.9 Trajectory Planning

Path and trajectory planning is an important topic when using manipulators,
as it is the process of generating geometric and motion paths between an initial
state and a goal state.

In the simplest form a path planner generates a path between two states with-
out any constrains and time concerns. However, for more complex application
were the workspace is restricted with static and somethings dynamic obstacles,
collision avoiding is needed. Furthermore, for the case of bin picking, the motion
also needs to take into account the external forces that may occur between the
gripper and the grasped object.

The objective of the trajectory planning is to generate the reference inputs for
the manipulator control system in order to obtain desired movement. A trajectory
planning algorithm uses a geometric path, and the kinematic and dynamic con-
straints of the manipulator in order to generate trajectory of the joints, expressed
as a sequence of values of position, velocity and acceleration [47]. An extensive
amount of research in robotics has focused on path and trajectory planning the
last 30 year, resulting numerous different approaches [48].

2.2.2 ROS: Robotic Operation System

The Robotic Operation System, or ROS, was initially released in 2007, and is an
open-source, meta operating system for a wide variety of robotic platforms. The
software runs on Unix-based platforms and provides services that include hard-
ware abstraction, low level device control, implementation of commonly used
functionality, message passing between processes, and package management. Li-
braries are provided though ROS for obtaining, building, writing, and running
code across multiple computers. The main goal of ROS is to support reusage of

2.2. ROBOTICS 39

code in robotics research and development, enabling sharing and collaboration.
This section will cover some of the fundamental concepts in the ROS structure,
such as nodes, messages, topics, and services.

2.2.2.1 Nodes

A ROS node is an executable file in a ROS package that performs computations,
and can either be written in Python or C++ [49]. Due to the software architecture
of ROS, it is desirable to create individual modules, or nodes, that operate specific
aspects of a system. A robot control system will therefore usually be composed of
several individual nodes that are run simultaneously, communicating with each
other in order to achieve the desired behaviour. Communication between nodes
is most often accomplished by publishing messages that are sent to topics, and
as services.

2.2.2.2 Messages

Messages are specific data structures that are used as communication between
nodes. Message descriptions are stored in .msg files in a sub directory of a
ROS package, where variable names and data types are defined. The structure
of a .msg file can be observed in Figure 2.27, where two variables x and y are
defined as an integer and a Boolean type, respectively. ROS supports standard
primitive types (integer, floating point, Boolean), and a single message might
publish several variables with different types [50].

datatype variable1
datatype variable2

For example

int x
bool y

Figure 2.27: The structure of a .msg file.

2.2.2.3 Topics

Topics are channels where nodes either publish messages, or subscribe to publi-
cations from separate nodes. A single node might subscribe or publish to several
topics, which simplifies the communication structure of the system. This can be
seen in Figure 2.28, where Node A subscribes to several other nodes. Topics are
often used in situations where continuous data streaming is preferable, such as
sensor data and actuator control data. For situations where nodes shall perform
remote procedure calls, services might be more suited instead of topics.

40 CHAPTER 2. BACKGROUND AND THEORY

Figure 2.28: ROS nodes communicating over a topic. Node B, Node C and Node
D subscribes to to topic message that is published from Node A.

2.2.2.4 Services

Services are another way nodes can communicate with each other in ROS, and
offers a one-to-one request / response interaction between the nodes [51]. An
operating ROS node offers a service under a sting name, and a client calls the
service by sending a request message before waiting for a response. The response
might be a computation or configuration of hardware and software. The call and
the response messages are predefined in .srv files, that builds directly upon the
ROS .msg format. The .srv file consists of a request and a response message
type, that is separated by ’----’, as can be seen in Figure 2.29. Figure 2.30
illustrates the general interaction between two nodes during a service call.

int request

int response

Figure 2.29: The structure of a .srv file.

Figure 2.30: General interaction during a service call between Node A and Node
B. Node A sends a request, and waits until it receives a response.

2.2. ROBOTICS 41

2.2.3 Grasping

Obtaining a robust and secure grasp on objects when performing bin picking, is
critical to ensure a reliable system. Failure to locate a suitable grasp may result in
a halt in the operation, which in turn reduced the productivity and profitability
of the system. Damage to the objects may also occur as a result of mid air grasp
failure. Several factors influence the grasp success rate, such as the geometry,
size, mass, center of gravity, surface texture, as well as the end-effectors ability
to pick up novel objects.

A large number of autonomous bin pick solution utilises model-based grasp
planning which relies on object recognition and pose estimation [52], [53]. More
recently data-driven approaches have become more popular [54], [55], [56] that
uses neural networks for object detection followed by object pose estimation.
These networks typically require an extensive amount of training data as well
as a 3D model of the objects. In terms of bin picking, the grasp solution needs
to be scalable for new products, since the range of observed object categories in
warehouse settings is often large and dynamic. Some recent work conducted on
novel grasping is presented in the following list:

• Lerrel Pinto and Abhinav Gupta [57] utilises a self-supervising algorithm
that learns to predict grasp locations via trial and error, which proves to
efficiently generalise to novel objects. After 700 robot hours and 50 000
grasping attempts, they achieved 73 % success rate on seen objects and 66
% on novel objects.

• Andy Zeng and Shuran Song et al. [58] used an affordance-based grasp-
ing algorithm which is model-free and agnostic to object identity, improv-
ing generalisation to novel objects without re-training, thus demonstrating
great scalability.

• A research team at Google demonstrated that a learning-based hand-eye
coordination approach for robotic grasping from 2D images was able to
achieve satisfying results. They collected 900.000 grasps over a two months
period using 14 manipulators in parallel and trained a deep neural network
on the obtained grasp samples [59].

This section will cover one of the most promising approaches to suction grasp-
ing that might be applied for novel objects related to bin picking.

2.2.3.1 Dexterity Network Project

The Dexterity Network (Dex Net) project was first presented in 2017, and is one
of several deep learning based grasp algorithms that has been developed within
the recent years. The first iteration of the dexterity network project, Dex Net
1.0, introduced a dataset containing over 10 000 different 3D objects and over
2.5 million parallel jaw grasps for the objects. Each grasp includes data related
to grasp parameters, uncertainty in grasp, contact model and quality matrix.

42 CHAPTER 2. BACKGROUND AND THEORY

Multi-View Convolutional Neural Networks (MV-CNNs) was used for 3D object
classification and trained on the introduced dataset. Dex Net 2.0 was introduced
later in 2017, and was an improved version of the Dex Net 1.0 version that
reduced the data collecting time by generating a synthetic training dataset from
6.7 million point clouds, grasps, and analytic grasp metrics generated from Dex
Net 1.0. A third iteration was released in 2017, and is covered in the following
section.

2.2.3.2 Dex Net 3.0

Dex Net 3.0 was released in the beginning of 2018 and is a suction grasping based
dataset used to train deep neural networks associated to bin picking. Suction
based end-effectors has several advantages compared to parallel jaw grippers,
such as a single point of contact and increased agility. Suction based grasps has
proven to generate good results in contexts of random object bin picking, and
is the preferred end-effector used in Amazon Picking Challenge. The Dex-Net
3.0 dataset was designed to train a deep neural network that takes into account
these external wrenches, material properties, and robustness to perturbations in
the end-effector pose, in order to evaluate sampled grasps in a depth image. The
dataset contains over 2.8 million points clouds with suction grasps and robustness
labels, and 1 500 3D object models with a total of 350 000 labeled grasp poses.

Following [60], a robot equipped with an RGB-D camera examines a depth
image y, where the goal is to locate most robust suction grasp u, so that the
robot can lift and relocate the desired object. The grasps are parameterized by
a target point p ∈ R3 with a corresponding approach direction v ∈ S2. Success
is represented as a binary grasp quality function, S, where S = 1 represents a
successful transport of the object, and S = 0 otherwise. However, the robot may
not be capable of predicting the success of suction grasp directly from y, due to
several factors such as the latent state of the object x. Valuable data regarding
object geometry, inertial, material properties, and relative pose between object
and camera may be inadequate due to occlusion and noise in the depth image.
External wrenches from gravity and the surroundings on the object also represents
a source of uncertainty. The robustness of a grasp, u, from a given depth image
y, with respect to an environment p is the probability of success Q of grasping
under uncertainty in sensing, control, and disturbing wrenches

Q(u,y) = P(S | u,y).

Objective

The best suited grasp location implies finding the grasp that maximises the ro-
bustness given a depth image

π∗(y) = argmaxu∈CQ(u,y)

where Q is the robustness function and C specifies a set of constrains on the set
of available grasps, and includes kinematic feasibility or collisions. In practice,

2.2. ROBOTICS 43

the robot does not have an explicit representation of the robustness function Q,
however it has the ability to sample from the stochastic environment. As a hand
coded database of possible object states is challenging, an approximation of π∗

is calculated by training a Grasp Quality Convolutional Neural Network (GQ
CNN) on samples containing success labels, point clouds, and suction grasps
from the model by minimising the cross-entropy loss L:

min
θ∈Θ

N∑
i=1

L(Si, Qθ(ui,yi)).

Learning Q instead of directly learning π∗ increases the flexibility of the model
and allows for enforcement of task-specific constraints without the need to retrain
the learned model. Given a pre trained GQ-CNN with weights θ̂, deep robust
grasping policy can be executed by

πθ(y) = argmaxu∈CQθ̂(u,y).

Contact Model

Dex Net 3.0 presents a contact model between the surface of the object and the
suction cup, in order to estimate the deformation energy required to maintain a
seal. The suction cup material is modelled as a quasi-static spring model, and
the contact wrenches is calculated through the perimeter of the suction cup and
the object surface. The success metric first evaluates whether or not a seal can be
obtained between the perimeter of the suction cup and the surface, and secondly
if a given seal can withstand external wrenches on the object. The upward lifting
force is created as a result of a difference in air pressure between the inside of
the suction cup and the outside surrounding. If a gap between the suction cup
perimeter and the object surface occurs, the lift force will be reduced due to a
reduction of the difference in air pressure. It is therefore critical to locate a planar
surface on the object, and to examine if the location can handle wrench during
transportation.

In order to determine the possibility of obtaining seal, the suction cup is
represented as a spring system C parameterized by (n, r, h), where n is the number
of perimeter components, r is the radius of the cup, and h is the height of the
cup. An illustration of this spring system can be seen in Figure 2.32 and in Figure
2.31. The spring system C is composed of a structural spring that represents the
physical structure of the spring, and a flexion spring that represents the resistance
of bending along the objects surface. During evaluation whether seal formation is
possible or not, a configuration of C is calculated and projected onto the surface of
an object in the scene. The target’s surface is modelled as a triangular meshM,
and the seal is evaluated under quasi-static conditions as a proxy for the dynamic
possibility of seal formation. The system classifies a complete seal between C and
M if all of the perimeter springs of C have fully connection with the surface of
M.

44 CHAPTER 2. BACKGROUND AND THEORY

Figure 2.31: The suction cup is modelled as a quasi-static spring, where a seal
formation is categorised as feasible if the energy required to maintain the seal in
each spring is lower than a given threshold. [60]

External Wrench Forces

Several types of wrenches can be experienced by the suction cup during lifting, so
a wrench analysis is introduced to determinate if the suction cup can withstand
external wrenches during the pick. The following forces defines the wrench map
G, which also are illustrated in Figure 2.32:

• Vacuum Force (V): The resulting pulling force from the difference in air
pressure.

• Actuated Normal Force (fz): The force that the suction cup material
applies by pressing into the object along the z axis.

• Frictional Force (ff = (fx, fy)): The force in the tangent plane of con-
tact, as a result of the normal force between the suction cup and the object,
fN = fz + V .

• Torsional Friction (τz): The torque experienced by the frictional forces
in the perimeter of contact.

• Elastic Restoring Torque (τe = (τx, τy)): The torque about axes in the
contact tangent plane resulting from elastic restoring forces that are present
in the suction cup what are pushing on the object along the boundary of
the contact ring.

2.2. ROBOTICS 45

Figure 2.32: The left figure is an illustration of the suction cup modelled as a
quasi-static spring, which is used for evaluation for seal formation. The right
figure illustrates the wrench forces experienced on the modelled suction cup. [60]

Certain constrains are present, which limits the magnitude of the contact
wrenches. These constrictions are due to the friction limit at the surface, limits
on the elastic behaviour of the suction cup material, and limits in regards to the
vacuum force. The final evaluation of the wrench analysis implies evaluation of
the robustness of candidate suction grasps. The robust wrench resistance metric
W for u and x is defined as

λ(u,x) = P(W | u,x)

and represents the probability of a successful grasp under perturbations in object
pose, friction, gripper pose, and disturbing wrenches.

2.2.4 Grippers

The end-effector is located at the end of a robotic arm, and is a device that
allows the robot to interact with the environment. Depending on the operation
requirement, the end-effector is selected in order to best serve the task at hand.
End-effectors for certain tasks include cameras, cutting tools, welding guns, mag-
nets etc. For the practical case of bin picking, the end-effector is a gripper that
allows the robot to pick up and move objects. There are a large variety of grippers
available on the market, and the different grippers all have certain advantages
and dis-advantages related to certain operations.

Grippers are generally divided into four categories based on the different psy-
chical principles used for grasping [61]:

• Impactive
Mechanical grippers where prehension is achieved by impactive forces that
work against the surface of the object to be acquired.

• Ingressive
Grippers that achieve prehension by penetrating the objects surface, and
can include pins, needles, and hooks.

46 CHAPTER 2. BACKGROUND AND THEORY

• Astrictive Grippers that achieve prehension by suction forces to the sur-
face of the object. The suction force can be produced through vacuum,
magnetism or electrostatic charge displacement.

• Contigutive
Grippers that achieve prehension through direct contact where adhesion
takes place on the surface of the object, such as glue, surface tension, and
freezing.

The following section will cover one of the most relevant and most used gripper
for grasping related to bin picking.

2.2.4.1 Vacuum Gripper

Vacuum grippers are a part of the astrictive grasping category, and are exten-
sively used throughout the packing industry [62]. This is mainly due to its ease
of implementation, low cost and gripping strength, which is achieved by applying
a negative pneumatic pressure to one or several suction cups. An analysis from
the 2016 Amazon Picking Challenge found that 62% of the competing teams that
scored better than zero points relied on some form of vacuum suction for picking,
while five teams relied on force closure and/or friction [63]. The Amazon Picking
Challenge winners in 2016 and 2017 both used a vacuum based end-effectors.

Venturi Ejector

Vacuum can be achieved several ways, but a commonly used method is through a
Venturi vacuum ejector. This method generates vacuum though a series of steps,
and is illustrated in Figure 2.33:

• Compressed air is led from the supply source to the ejector.

• A constriction of the cross section in the nozzle results in increased flow
velocity of the air.

• At the exit of the nozzle the cross section suddenly increases, resulting in
a vacuum as the air expands.

• The compressed air along with the vacuumed air both leave through an
outlet port.

The pressure drop created the vacuum is given by

p1 − p2 =
ρ

2
(v2

2 − v2
1)

where v1 is the slower initial velocity, v2 is the faster velocity at the narrow
section, and ρ is the density of the air (or other used fluids). Venturi ejectors
are easy to mount, and no additional equipment is necessary. However, high

2.2. ROBOTICS 47

operational costs related to compressed air consumption may be present, and the
operation produces loud noises.

Figure 2.33: Illustration of the concept of Venturi vacuum generators. Com-
pressed air is directed to the inlet, where the air is accelerated through a nozzle,
before the the cross section suddenly increases. This generates a vacuum, as the
pressure suddenly decreases. [64]

Vertical Lifting Force

At initial contact between the suction cup and the object surface, the suction cup
is compressed against the surface of an object to obtain a seal. This will prevent
leakage and thereby maintain suction force. For a typical circular suction cup,
the lifting force on an object is given by

F = (Pa − Pv)A

where A is the area of contact between the suction cup and the object, Pa is
the atmospheric pressure, and Pv is the applied vacuum pressure [65]. When
vacuum grippers are used on smooth surfaces, the power consumption of the
gripper head is minimal, where the largest contributing factor to reduction in
efficiency is the air leakage rate. The rate is dependant of the degree porosity
of the object material at the contact surface. The theoretical suction force Fs
acting perpendicular to the object surface is given by

Fs = ∆PA

where ∆P is the generated vacuum, and A is the area of the suction surface. The
theoretical holding force Fh of the suction cup can be calculated by

Fh = m(g + a)S

where m is the mass of the object, g is the gravitational acceleration, and a
is the acceleration experienced from the robotic movement [66]. S is a safety
factor, that accounts for other external factors that may influence the actual
performance. The safety factor is determined by a NS-EN standard [67], and is
usually a factor of 2.

48 CHAPTER 2. BACKGROUND AND THEORY

The theoretical vertical lifting capacity with a suction cup with diameter D
and safety factor S can be expressed as

Fs = Fh

∆PA = m(g + a)S

m =
∆PA

(g + a)S

m =
∆PπD2

(g + a)S4
(2.18)

and can be used to estimate the necessary suction cup diameter for a given weight.

Chapter 3

Method

This chapter will present our work and findings while pursuing an automated
bin picking system, and will cover some of our discoveries and choices that we
made while conducting our work. A simplified pipeline for the proposed system
can be seen in Figure 3.1, where the Start state initialises the hardware and
software of the system, before an RGB and a depth image is acquired in the
Image Acquisition state. The RGB image is sent to the object detection module,
where a user defined object is located using a deep neural network. The location
of the object is used to crop out the corresponding area in the depth image, which
is used to locate the best suited grasping location given by another deep neural
network in the Grasp Planning state. The grasping location is sent to the Robot
Manipulation state, where a robot performs the picking operation. The series of
actions can be repeated for a new object after completing the pick, or the system
can exit the operation. We substantiate this pipeline based on a set of system
requirements that we define:

• Realistic Setting
The goal of the practical work was to create an autonomous bin picking
system compliant with AutoStore’s ASRS solution. We therefore assumed
that the inventory bin was placed at a static location.

• Object Defined Picks
The system should be able to pick specific products from the bin, to repli-
cate the product ID in an order. The solution should therefore included an
object detection module for this purpose. In addition, the system should
be able to pick novel undefined objects as well.

• Grasping
The system should be able to handle a large variety of product geometries,
to replicate the large selection of products that may be present in a realistic
warehouse setting. The scope of this solution was however limited to objects
up to 1 kg, and use of a suction gripper.

49

50 CHAPTER 3. METHOD

Figure 3.1: Pipeline of our proposed bin picking system. A product is specified
in the Start state, which is used to obtain a bounding box of the object in the
Object Detection state. The Object Detection and Grasp Planning states uses an
RGB image and a depth image from the Image Acquisition state, and a grasping
location is proposed and sent to the Robotic Manipulation state where the final
picking action is performed.

3.1 Physical Setup

The practical work was conducted at the small robot cell at the Department of
Mechanical and Industrial Engineering laboratory, which consisted of the follow-
ing hardware:

• Two KUKA Agilus KR 6 R900 sixx, six axis robot manipulators

• Two KUKA KR C4 compact robotic controllers

• Four given objects used to train our object detection network

• Schunck suction cup test set

• Custom made gripper module

• Zivid 3D camera

• Master computer

The physical setup of the robot cell can be seen in Figure 3.2, along with a
simulated model in Moveit!. The left robot will be referred to as Agilus1, and was
equipped with a custom made vacuum gripper. The right robot will be referred
to as Agilus2, and was equipped with a Zivid 3D camera for computer vision. The
camera did not necessarily have to be attached to a robot since it only was used
at a stationary position. However, due to the range of the camera and placement
of the bin with respect to Agilus1, the camera had to be moved in order to avoid
collision between the camera and gripper.

3.1. PHYSICAL SETUP 51

(a) Simulated robot cell in moveit!. (b) Robot cell in the real world.

Figure 3.2: Illustration of the simulated and physical robot cell.

3.1.1 The Objects Used For Object Detection

The objects that we wanted to detect and pick in our system can be seen in Figure
3.3, and included a t-shirt, an IPhone, a hair wax box and a SD memory card.
The objects have a large variety in terms of form, material, physical properties,
mass, and were chosen to represent the large variety of product attributes that
might be present in an actual warehouse.

52 CHAPTER 3. METHOD

(a) T-shirt (b) IPhone

(c) Hair wax (d) SD-card

Figure 3.3: The four test objects used to train our object detection module in
this thesis. The objects represents the large variety of product attributes in an
industrial warehouse.

3.1.2 Gripper Module and Suction Cup

The gripper module and the suction cup serves as the connection between the
robot and the environment, and was custom made for our setup. The gripper
module is based the theory presented in Section 2.2.4.1, and is a single point of
contact suction gripper. In order to select a suitable suction cup for our 1 kg
system requirement, the maximum working capacity of the vacuum ejector had
to be found. A vacuum gauge was therefore mounted between the vacuum ejector
and a suction cup placed on a suitable surface for maximum seal. The maximum
vacuum capacity of the ejector was estimated to -0.87 mPA, when the input
pressure was measured to 4.5 bar. Figure 3.4 illustrates the theoretical lifting
capacity versus cup diameter derived from Equation 2.18, with a safety factor
S = 2 and robot acceleration a = 3m/s

2
, and a constant vacuum ∆P = 0.87mPA.

3.1. PHYSICAL SETUP 53

0 0.01 0.02 0.03 0.04 0.05 0.06

D[m]

0

1

2

3

4

5

6

7

8

9

10

m
[k

g
]

Figure 3.4: The theoretical lifting capacity m[kg] with a suction cup with diam-
eter D[m], on a surface with µ = 1, S = 2 and maximum system acceleration

a = 3m/s
2
. The vacuum ∆P is constant at -0.87 mPa.

From 3.4 we see that our 1 kg requirement is satisfied with a 2 cm suction
cup diameter. A suction cup test set was therefore ordered from Schunk, where
the majority of the suction cup diameters were in the range from 1 to 3 cm.

The gripper module consisted of three individual parts, as can be seen in
Figure 3.5, and was designed in Autodesk Fusion 360. The gripper module was
designed with a 30 cm long slender shaft with a mount for the vacuum ejector
at the top, in order to pick objects next to the bin walls without collision. As
a consequence of this additional length, the vertical approach angel was heavily
restricted due to the walls. This could potentially be solved by a more complex
gripper that has a revolution joint at the tip [68], [69]. The ordered suction cups
used in our setup have a mounting diameter of either 1.5 cm, 1.7 cm, 2.4 cm or
2.7 cm. The gripper module was therefore made with a changeable mounting
system, so that the different suction cups easily could be changed.

54 CHAPTER 3. METHOD

(a) The final CAD model of the gripper and
suction cups.

(b) The manufactured gripper, along with
suction cups.

Figure 3.5: Illustration of the CAD design of the gripper and the manufactured
product. The different suctions cups are easy to change with the designed mount-
ing system.

3.1.3 KUKA Agilus KR 6 R900 SIXX

Two KUKA Agilus KR 6 R900 robots were used in the practical work of this
thesis, where one robot was equipped with the Zivid camera, and the other robot
was equipped with the vacuum gripper. This robot model is a 6 degree of free-
dom manipulator, which provides high agility in terms of pose and orientation
of the end-effector. This is naturally an important feature for a robot that is
intended to perform random bin picking, where objects have arbitrary locations
and orientations. The technical data for the robot model can be seen in Table
3.1, along with an illustration of the robot and its axes of rotation in Figure 3.6.
The robots were connected to two KUKA KR C4 controllers that handles input
and output signals, robot control, PLC communication, and safety drivers.

3.1. PHYSICAL SETUP 55

KUKA Agilus KR 6 R900 SIXX
Maximum Reach 901.5 mm

Maximum Playload 6 kg
Pose Repeatability

(ISO 9283) a ±0.03 mm

Number of Axis 6
Footprint 320 × 320 mm
Weight 52 kg

Motion Range: A1 ±170◦

Motion Range: A2 −190◦/45◦

Motion Range: A3 −120◦/156◦

Motion Range: A4 ±185◦

Motion Range: A5 ±120◦

Motion Range: A6 ±350◦

Table 3.1: Technical data for the KUKA ag-
ilus KR6 R900 SIXX manipulator. [70]

ahttps://www.iso.org/obp/ui/#iso:std:
iso:9283:ed-2:v1:en

Figure 3.6: Illustration of direc-
tional rotation of the robot axes.
[71]

3.1.4 Zivid 3D Camera

The Zivid camera is a high performance 3D camera for robotic and industrial
applications, and was used in our system. The camera is capable of capturing
colored full HD resolution 3D images with a 0.1mm depth accuracy at 0.6 meters,
and operates on the principle of structured light, as covered in Section 2.1.2. The
camera has a real time feature at 10 Hz, which allows robots and machines
to rapidly see and understand the environment in three dimensions. The Zivid
camera also has the ability to capture difficult parts such as shiny metallic objects
and dark absorbing plastics, due to HDR processing (explained in Section 2.1.3.1).
The camera was delivered with a software for capturing and viewing acquired
point clouds, as well as live streaming. The camera supported APIs for C++
and .NET, and can be run on Windows and Linux operation systems.

The camera was chosen for our system, due to its high precision in depth
measurements and its ability to acquire depth images of shiny or absorbing ma-
terials. In our system the camera was mounted the Agilus2 robot, and moved into
position for each iteration where we needed to acquire RGB images and depth
images. An illustration of the camera can be seen in Figure 3.7.

https://www.iso.org/obp/ui/##iso:std:iso:9283:ed-2:v1:en
https://www.iso.org/obp/ui/##iso:std:iso:9283:ed-2:v1:en

56 CHAPTER 3. METHOD

Figure 3.7: The Zivid 3D camera was used in the practical work of this thesis,
due to its high precision in depth measurements. [72]

3.1.5 Eye-in-Hand Camera Calibration

Eye-in-hand calibration was applied in order to determine the transformation
between the initial last link of the kinematic chain of Agilus2, and the mounted
Zivid camera. The calibration allowed us to accurately determine the location of
the camera relative to the robot hand frame, and also to transfer points in the
captured image to the world frame. A precise calibration was necessary, as the
final suction location was dependant of this calibration. Several algorithms and
software programs are provided for the purpose of eye-in-hand calibration, such
as OpenCV, MATLAB and ROS i.e. For our work, we used software provided
by the Zivid company, where the outputs of the calibration were the intrinsic
and extrinsic parameters of the camera, along with the camera distortion coeffi-
cients. Following the proposed procedure from Section 2.1.4, the calibration was
conducted using a checkerboard of size 9× 5 with a 20 mm pattern as the static
calibration object. A total of 17 images were taken, and the corresponding trans-
formations from the robot base to the hand were recorded. We made certain to
have a large variation in the position and orientation in which the images were
taken, so that the calibration was representative for entire work space.

Calibration

In order to perform eye-in-hand calibration with the proposed procedure from
Section 2.1.4, the following equation was solved:

AX = XB. (3.1)

A dataset with transformation A and B was gathered by capturing images of
the stationary checkerboard, along with its corresponding base to hand transfor-
mation from different positions. Equation 3.1 was then solved by utilising Zivid’s
implementation of the calibration process [73]. Figure 3.8 illustrates different
positions of the camera used for the calibration.

3.1. PHYSICAL SETUP 57

Figure 3.8: Illustration of the camera poses (blue frame), robot hand (red frame),
and the checkerboard (black frame) used in the calibration process. The images
were sampled with large variation in positions, in order to obtain a representative
calibration for the entire work space.

3.1.6 Master Computer

The master computer was the control unit in the system, and received and trans-
mitted signals to the other components in the system. The computer was a
custom build computer with 16 GB RAM, and a Intel Core i7-4790K CPU pro-
cessor operating at 4.00 GHz × 8. The graphic card was a GeForce GTX TITAN
X, and the computer was run on Ubuntu 16.04.

58 CHAPTER 3. METHOD

3.2 Software Development

The software for the system was mainly written in Python, but some aspects of
the software were written in C++ and MATLAB. The programs that were written
in Python controlled the object detection module, along with the grasping and
robot control modules. The Zivid camera was controlled with a C++ program,
while MATLAB was used for supplementary modules.

3.2.1 Image Acquisition

The Zivid camera was controlled through a C++ program, and was responsible
for the RGB-D image acquisition. The program initiated the connection between
the computer and the camera, and defined the camera settings that had been pre-
calibrated for better results. The camera acquired four images with varying iris
openings (13, 20, 30 and 70), before HDR processing was performed. The specific
camera settings for our setup can be seen in Table 3.2. The Zivid camera writes
the captured data as a .zdf file that contains all the information obtained by
the camera. Therefore, the .zdf file had to be post processed in order to extract
the desired RGB and depth image. This was done with an image extraction
module written in Python, that extracted the R, G, B and D channels, before
combining them into an RGB image and a depth image, respectively. Both
the Zivid program in C++ and the image extraction module in Python utilised
several imaging processing functionalists, in order to enhance features and to
reduce noise in the image. The Zivid API contained several classes where camera
settings could be adjusted and different filters may be applied to the RGB-D
image. The image extraction module imported functionalities from the OpenCV
and NumPy API, and used filters to reduce noise, and to change other properties
of the image. The following is a sequenced explanation of the processing steps
used in in the Zivid camera and image extraction module, in order to capture a
high quality depth image.

Zivid Camera:

• Exposure Time
The exposure time defines the time interval where image sensor is exposed
to the light of the scene. This parameter is correlated one-to-one with
the amount of light entering the camera, and will therefore effect the over-
all brightness of the image. The Zivid class Zivid::Settings::ExposureTime
was used to set the exposure time, and is assigned a value between 8333
microseconds and 100000 microseconds.

• Brightness
The brightness defines the light output form the projector. This parameter
will affect the overall enlightenment of the scene, which is projected from
the structured light projector. The parameter was defined in the class

3.2. SOFTWARE DEVELOPMENT 59

Zivid::Settings::Brightness, and the brightness is assigned a value between
0 and 1.

• Outlier Filter
The outlier filter removes points based on the number of connected com-
ponents. This filter will decrease the amount of noise in an image, and
is explained in detail in Section 2.1.3.4. The filter was enabled through
the class Zivid::Settings::Filters::Outlier, and the threshold of the filtering
(the maximum number of connected components to be removed) was de-
fined in the class Zivid::Settings::Filters::Outlier::Threshold. The threshold
is assigned an integer above 0.

• Reflection Filter
The reflection filter detects and removes points likely to arise from re-
flections, which is useful for shiny materials. Shiny objects may reflect
some of the structured light pattern onto other surfaces, resulting in noise
when calculating depth in the image. The filter was enabled in the class
Zivid::Settings::Filters::Reflection.

• Iris Opening
Several iris openings were defined for each of the images used in the HDR
reconstruction, which is described in detail is Section 2.1.3.1. The iris
opening effects the amount of light absorbed by the camera, and therefore
allows the camera to capture images in different light ranges. The iris
opening was defined in the class Zivid::Settings::Iris, and is assigned a value
between 0 and 72.

Table 3.2 contains the specific camera settings used in our setup, that were
found though experiments using different camera settings on different objects.

Zivid 3D Camera Settings
Setting Value
Exposure Time
(microseconds)

11600

Brightness 1.00
Outlier Filter ENABLED
Outlier Threshold 5
Reflection Filter ENABLED
Iris Size 13U, 20U, 30U, 70U

Table 3.2: Table containing the specific camera settings for the Zivid 3D camera
used in our practical work.

Image Extraction Module:

• NaN Value Removal
NaN (Not a Number) values are a form of noise that is often present in

60 CHAPTER 3. METHOD

depth images, and occurs in areas of the image where the camera is unable
to calculate the depth values from the structured light patterns. These
values were removed with the NumPy imported function np.nan to num(),
which replaces the NaN values with a defined value.

• Image Resizing
The initial size of the depth images was 1920×1020, but for the purpose of
reducing computational time during the bin picking operation, the depth
image was resized to 720× 450. This was done with the imported OpenCV
function cv2.resize().

• Median Filtering
A median filter was applied to the depth image, for the purpose of reducing
noise in the image. Isolated noise pixels was replaced with a more probable
neighbourhood pixel value, resulting in a more complete depth image. Me-
dian filters are explained in Section 2.1.3.3, and the function was imported
from OpenCV through cv2.medianBlur().

• Bilateral Filtering
A bilateral filter was applied to the depth image, to further smoothen the
image, while preserving the edge features in the image. The operation is
explained in Section 2.1.3.2, and the function was imported from OpenCV
through cv2.bilateralFilter().

3.2.2 Object Detection

The object detection module was written in Python, and was based on a deep
neural network approach that used the TensorFlow framework. This approach
was chosen over traditional object detection methods, due to the tendency seen
in object detection benchmarks and competitions the recent years. The datasets
described in Section 2.1.5.4 are often used as benchmarks for object detection,
where new algorithms can be tested and compared to already existing approaches.

Object Detection Benchmarks

The ImageNet Large Scale Visual Recognition Challenge (ILSVRC) [20] was cre-
ated as a competition for image classification and object detection based on the
ImageNet dataset, and is today considered the most prestigious computer vision
competition. Figure 3.9 illustrates the performance of the winners of the classi-
fication competition from 2010 until 2016 along with the general approach used.
Since the introduction of deep neural networks in 2012, a significant improvement
can be seen in terms of top five score.

3.2. SOFTWARE DEVELOPMENT 61

Figure 3.9: Best results on the ILSRRC competition from 2010 to 2016 for image
classification. The introduction of neural networks in 2012 greatly improved the
top five error score. The top five score indicates that the correct classification is
present within the first five most probable classifications. [74]

Another annual benchmarking competition is the Pascal VOC challenge,
which uses a dataset of 11530 images consisting of 27 450 RoI annotated ob-
jects and 6929 segmented objects. Figure 3.10 illustrates the winning approaches
from 2007 until 2014, and the achieved top 5 error rate. As with the ILSRRC
challenge, a significant improvement can be observed after the introduction of
deep neural networks in 2013.

62 CHAPTER 3. METHOD

Figure 3.10: The best scores each year in the Pascal VOC challenge from 2007-
2014. The introduction of deep neural networks in 2013 significantly increased
the mAP score, compared to previous years. [75]

The leaderboards for the KITTI and COCO datasets for object detection
related classifications are also dominated by deep learning approaches [76] [77].

The general tendency after the introduction of deep learning for object detec-
tion is clear, as it has improved the performance of object detection algorithms.
Also, the traditional methods seems to have stagnated on a non-pleasing level.
For our system, we therefore trained two networks for the task of object detection
using the TensorFlow framework.

TensorFlow

The TensorFlow framework was developed by the Google Brain team and was
released as an open source software at the end of November 2015. The software li-
brary allows for large numerical computations, using data flow graphs. The nodes
in the graph represents mathematical operations, while the graph edges repre-
sents the multidimensional data arrays (tensors) communicated between them.
There are several possible deep learning frameworks available, but TensorFlow
was chosen as the framework for our deep learning network module based on the
following factors:

• General Market Development
There are today several different available framework for deep learning, but
none of them are yet to be considered a standard in the marked. However,
the market development indicates that TensorFlow is the preferred frame-
work among developers and programmers, and we wanted our framework

3.2. SOFTWARE DEVELOPMENT 63

to reflect the development at large software corporations, and the commu-
nity in general. Large international companies e.g. Google, ebay, Intel and
Lenova uses the TensorFlow framework in their products. Figure 3.11 il-
lustrates the number of stars given on the TensorFlow repository as it was
introduced on GitHub, which substantiates its popularity among develop-
ers. The same tendency can be seen in the number of Stack Overflow posts
related to each framework [78].

Figure 3.11: Histogram plot illustrating the number of stars on the TensorFlow
GitHub repository compared to other framework repositories. The graph sub-
stantiates the popularity of the TensorFlow framework among developers. [79]

• Availability of Pre-trained Models
TensorFlow offers a large variety of pre-trained networks for object detec-
tion on GitHub [80]. This allowed us to choose and customise pre-trained
models according to the specific use case, by applying transfer learning.

• Availability of Cloud Computing Optimised for the Framework
Deep learning training requires a large amount of computational power to
train networks. One way of solving this issue is to outsource the computa-
tion to a cloud computing service such as Google Cloud Platform (GCP).
TensorFlow is supported by most of the cloud computation services, but is
facilitated on GCP [81] (since GCP and TensorFlow both are developed by
Google).

• Extensive Documentation, Tutorials, and Guides
We had little previous experience on the filed of deep learning, and were

64 CHAPTER 3. METHOD

therefore dependent on sufficient documentation, tutorials, and guides for
building our system, and for understanding deep learning in general. Ten-
sorFlow offers high quality tutorials on their home page [82], along with an
extensive API documentation [83].

The two networks that we trained for our object detection module were:

• Faster R-CNN

• SSD

Both networks are described in detail in Section 2.1.5.6, and were also avail-
able with pre-trained weights on the TensorFlow Model repository on GitHub
[84]. The achieved scores and speeds for the two networks are listed in Table
3.3, and are based on the COCO dataset. The two networks were chosen due
to previous performed experiments, where the networks have showed convincing
results [39], [41]. The networks were also relatively fast compared to other models
listed in the TensorFlow Model Zoo, which is important for processing speed.

Pre-Trained Object Detection Models
Model Name COCO mAP Score Speed (ms)
ssd inception v2 coco 24 42
faster rcnn inception v2 coco 28 58

Table 3.3: Achieved score and speed on the COCO dataset for
faster rcnn inception v2 coco and ssd inception v2 coco. A Nvidia GeForce GTX
TITAN X graphics card was used in the test.

Deep learning algorithms are dependent on a large training datasets to achieve
good results in terms of classification. The datasets are used for training and
validation, and are often hard to acquire for specific use cases. The training
phases also requires an extensive amount of computational power, which might
not be easily accessible.

Image Gathering

The issue of capturing images for our training set was solved and automated by
creating a camera rig where the Zivid camera was facing towards a rotating table.
In the processes of gathering images, we placed one object at the time on the
rotating table. The image acquisition was controlled by a Python script, and
sequences of 20 images were captured where the object was placed at different
positions on the rotating table and with different camera angles. After 500 images
of each objects, we captured 500 more in a realistic setting with multiple objects
present in the same image. A high percentage of our dataset consisted of single
objects, something that might be an issue in terms of variation during training.
However, Girshick et al. [38] demonstrated that good results can be obtained for
detecting multiple objects within an image, when training on a dataset consisting

3.2. SOFTWARE DEVELOPMENT 65

of only single objects. Our final dataset had a total of 625 images/class, which
is approximately the same ratio as the ImageNet dataset (650 images/class).

Labeling the Dataset

We were able to minimise the time spent on manually labeling our training im-
ages, by manipulating the scene in which the objects were placed. The majority
of the images in the dataset were taken on a uniform black background, where
the objects were clearly isolated on each image. With the use of binarization and
morphological operations, we obtained a segmented image with a bounding box
proposal around each object. The program was written in MATLAB, and an
illustration of the result from the labeling process is shown in Figure 3.13. This
process is also demonstrated in the demonstration video for this thesis, which
is attached in the digital appendix and online [85]. From the segmented image
we extracted the bounding box (BB = [x1, x2, y1, y2]), which together with the
class label represented the ground truth used for training. The final label also
contained information regarding the image path and image dimensions, and was
saved in a .xml file that contained all the labeling information. The general
pipeline for the operation can be seen in Figure 3.12, where the different steps
from the unlabeled to the labeled dataset are illustrated. The labeled images and
.xml files were eventually run through a manual labeling program, for quality
control and correction when needed. The labels and images were then converted
into a single .TFRecord file, which is recommended file structure to use in Ten-
sorFlow during the training phase.

Figure 3.12: Illustration of the automatic labeling pipeline. Images from the
training set were imported to MATLAB along with labeling information. The
images were processed in order to obtain a binary representation, which was
used to extract the bounding box BB around an object. The bounding box
information was combined with the labeling information as the .xml file was
created and exported.

66 CHAPTER 3. METHOD

Figure 3.13: Illustration of the proposed bounding box region from the automated
labeling program.

Training

Training a complex deep neural network on a large dataset is a time consum-
ing operation, so we therefore applied transfer learning as described in Section
2.1.5.5. The most basic features such as edges, corners and colors were there-
fore already learned from a much more extensive dataset than our own, and as a
consequence, we only needed to train the last layers in order to detect our four
objects. Even so, a considerable amount of calculation power was necessary, and
training on our local CPU became too time consuming. This issue was resolved
by outsourcing the computation to a cloud computing service. There are several
possible providers of this service, where the most popular are Amazon Web Ser-
vices, Google Cloud Platform (GCP) and Microsoft Azure. Google’s computing
service supports the TensorFlow framework, and also allows for 300$ worth of
computation for new users. This made GCP our desired choice, where we exe-
cuted the computation. The resulting training time was drastically reduced to
about an hour.

In order to train networks on the cloud, the input data, code, and depen-
dencies had to be available to Google’s servers. Our local computer and GCP
communicated through Google Cloud SDK, which allowed us to perform oper-
ations on the cloud from the terminal on our Ubuntu computer. This would in
turn allow us to upload our data, and to export the trained data files to our
computer.

Running the command gcloud init allowed us to access several common
SDK setup tasks, such as authorising the SDK tools to access the GCP, and
setting up the default SDK configuration. After the successful configuration, the
labeled dataset for our networks was uploaded to a bucket in the cloud, along
with the hyperparameter configuration and file structures. The bucket is the
storage center where the files are organised on GCP. Uploading was performed
with the gsutil cp command, which allowed data to be copied between the
local file system and the cloud. The uploaded files included the frozen weights
from the pre-trained models, along with the training data, configuration for the
hyperparameteres and the architecture of the network. Uploading the specified
folder and files was done with the command

$ gsutil cp -r dir gs://objectdetection prosjekt

3.2. SOFTWARE DEVELOPMENT 67

Before starting the training phase, the configuration details had to be assem-
bled. During training, the Cloud Machine Engine service will allocate one or
several virtual machines based on the job configuration chosen. The computing
specifications in terms of CPU, GPU and RAM was defined and adapted to the
requirements of our networks. The hyperparameters were also defined, and the
final values are summarised in Table 3.4.

Hyperparameters
Hyperparameter Faster R-CNN SSD

Number of classes 4 4
Dropout rate 0.8 0.8

Activation function RELU RELU
Score converter Softmax Sigmoid
Learning rate 0.0003 0.004
Momentum 0.9 0.9
Batch size 1 24

Evaluation size 167 167
Initialiser (ssd,mean) (0.1,0) (0.03,0)

Loss function
Loc: L1

Clas: Cross entropy
Loc: L1

Clas: Sigmoid

Table 3.4: Overview of some chosen hyperparameters used during training of the
Faster R-CNN and SSD networks. Loc is short for location loss, and Clas is short
for classification loss.

During training, the weights and biases in the model were saved at given
intervals after a given number of global steps was processed. These checkpoints
allowed us to validate the model against the test data during training, and to
continue training at a later point in time.

3.2.3 Grasp Planning

Gasping was planned using the GQ-CNN deep neural network presented in Sec-
tion 2.2.3.2 for grasp quality prediction. While we trained two networks for
object detection, we did not prioritise to train a new network for grasp quality
prediction. The reason being that it would be a tedious process to generate a
large enough training set with grasp proposals. Also, the characteristics that
determines whether a surface is suited for grasping is not directly dependant on
specific objects, but rather the properties of the objects.

The GQ-CNN model trained on the Dex Net 3.0 dataset claims to be the one
of the most robust solutions so far in terms of success rate on novel objects (98%
on simple shapes, 82% on typical household items, 58/81% on adversarial objects)
[60]. The pre-trained GQ-CNN model is trained on the Dex Net 3.0 dataset that
contains 2.8 millions single viewpoint point clouds with corresponding suction

68 CHAPTER 3. METHOD

grasp with robustness labels.
The viewpoint in the training dataset is directly above the objects, with a

distance of 65 cm and with a planner background. Due to this static viewpoint,
a similar viewpoint was necessary in our physical setup. The depth image also
had to be processed before being used by the network, to resemble the training
data as much as possible in order to obtain robust results. We also took advantage
of the pipeline proposed in the Dex Net 2.0 paper [86] for utilising the network,
and the corresponding GitHub repertory [87].

The GQ-CNN takes a depth image and a grasp proposal as inputs and returns
a grasp quality score, which is the predicted probability of success. A sample of
possible grasp candidates is thus needed to be generated in order to find a robust
quality grasp. Algorithm 1 shows the pseudo code of the grasp sampler, and
Algorithm 2 shows how we utilised the grasp sampler and GQ-CNN to obtain a
final grasp location. Following is a list of the most important parameters in the
code, and how they affect the behaviour of the grasping module.

• SamplesInit
The number of initial grasp location sampled in the image. These locations
are placed at random locations within the allowed work space area, which
is defined in the code. A high num seed value results highly representative
sampling of the entire image, but results in a longer computation time.

• SamplesIter
The number of sampled grasps around the best proposed locations from the
previous sample iteration.

• numIters
Number of sample-and-refit iterations to compute the final grasp location.

• minDist
Minimum admissible distance between suction points. A high value ensures
increased diversity of the samples.

• angleThresh
The maximum angle between the optical axis of the camera and the grasp
approach axis (surface normal). This ensures that the grasp is possible to
be executed with the limitations that occur due to the walls in the bin.

• minDepth
The minimum allowed picking distance from the camera in z direction.

• maxDepth
The maximum allowed picking distance from the camera in z direction.

• pgraspThresh
A threshold on the prediction score from GQ-CNN during grasp sampling.
A low threshold increases computation time since more grasps are evaluated
between each iteration.

0https://berkeley.app.box.com/s/szbchyt3tou9e4ct6dz8c5v99vhx0s84

https://berkeley.app.box.com/s/szbchyt3tou9e4ct6dz8c5v99vhx0s84

3.2. SOFTWARE DEVELOPMENT 69

• GaussianVariance
The sampled points generated form the previous iteration are placed around
the proposals with scores over pgraspThresh. These samples are distributed
over the previous proposal using a Gaussian distribution with variance G.
A high G results in higher diversity in the samples.

Algorithm 1: Grasp Sampler(depthIm,Gasussian=false,pgrasp=false)

Result: Sample of grasp candidates
1 grasp;
2 SamplesInit;
3 SamplesIter;
4 angleThresh;
5 MinDist;
6 minDepth;
7 maxDepth;
8 pointCloudNormal = surfaceNormal(depthImage);
9 GaussianVariance;

10 if pGrasp is true than then
11 Samples = SamplesIter;
12 else
13 Samples = SamplesInit;
14 end
15 while length of grasps is lower than Samples do
16 if Gaussian is true then
17 grasp(u,v) = RandomGaus-

sian(GaussianVariance,pGrasp(i),0:im.height,0:im.width);

18 else
19 grasp(u,v) = RandomGaussian(0:im.height,0:im.width);
20 end
21 grasp(n) = pointCloudNormal(grasp(u,v));
22 dist = distToOtherPoints(grasp(u,v),grasps(u,v));
23 angle = angleToCamereaOpticAxis(grasp(n));
24 depth = depthImage(grasp(u,v));
25 if angle is larger then angleThresh, dist is larger then MinDist, depth is

larger then minDepth and smaller than maxDepth then
26 grasp(add to end) = grasp;
27 else

28 end

29 end

70 CHAPTER 3. METHOD

Algorithm 2: Get Grasp

Result: Final grasp
30 numIters;
31 pgraspThresh;
32 grasps = GraspSampler(depthImage);
33 for i to numIters do
34 for j to length of grasps do
35 pGrasp = GQCNN(depthIm,grasps(j));
36 if pgrasp is higher then pgraspThresh then
37 pgrasps(add to end)=pgrasp;
38 else

39 end

40 end
41 grasps = GraspSampler(depthIm,Gaussian=True,pgrasp);

42 end

The pixel coordinates and the surface normal of the grasping point that
achieved the highest prediction score from the network were used to calculate
the transformation between the camera and the suction location. First, the pixel
coordinates (u, v) were used to calculate the relative translation O between the
camera and the suction location in the scene:

OC
S =

XY
Z

 =

0
0
d

fx s x0

0 fy y0

0 0 1

−1uv
1

 . (3.2)

Secondly, the unit surface normal (xu, yu, zu) was used to calculate the relative
rotation RC

S between the suction point to the camera, and was given by

RC
S =

 x2
u xuyu − zu xuzu + yu

yuxu + zu y2
u yuzu − xu

zuxu − yu zuyu + xu z2
u

 . (3.3)

Finally, Equation 3.2 and Equation 3.3 are combined to create the homoge-
neous transformation between the camera and the suction location:

TC
S =

(
RC
S OC

S

0T 1

)
.

3.2.4 Robot Control

ROS, as covered in Section 2.2.2, was chosen for the overlying control software
of the Agilus1 and Agilus2 robotic manipulators, due to its general popularity
among developers and the availability of detailed explanations of concepts [88],
tutorials [89], and API’s [90]. This software utilises several other software frame-
works such as Moveit! [91] and RViz. The Moveit! software provides software

3.2. SOFTWARE DEVELOPMENT 71

plugins for motion planning, inverse kinematics, trajectory planning and sup-
ports APIs for Python and C++. Moveit! and ROS were already installed and
configured for Agilus1 and Agilus2 at the robot cell at IPK, along with RViz for
visualisation. This pre-setup allowed for a simple drag and drop placement of
the end-effector in RViz, and the corresponding inverse kinematics, motion and
trajectory planning was computed and executed by the Moveit! software. How-
ever, several modifications was necessary for our purpose in the configuration of
Moveit!. New end-effectors for the robots, and objects in the scene were added
to the model, in order to calculate new collision matrices and to adjust the joint
limitations for our use.

Moveit! Configuration

The new configuration of the robot cell was conducted with the Moveit! Setup
Assistant. The configuration was initialised by loading a
kuka kr6r900sixx.xacro file which contained the information regarding CAD
files for visualisation and collision, pose and orientation of the objects relative to
a world frame, and relations between parent and child links for the different CAD
models. This kuka kr6r900sixx.xacro file included several other .xacro
files that contained the specific limitations for the robotic joint rotations. These
limitations were modified such that the motion planner generated more desirable
trajectories, in terms of the end-effector orientation and joint configurations. The
modifications of the joint ranges limited the work area/joint space for the suc-
tion gripper while performing a pick, so that the external wrenches to the suction
cup were reduced. It also ensures that the trajectory of the Zivid camera was
controlled, so that the power cable and the USB data cable were not at risk of
being stretched during motion. The CAD model of our custom made suction
module was attached as the final child link of the kinematic chain of Agilus1,
while the CAD model of the Zivid 3D camera was attached as the final link of
the kinematic chain for Agilus2. The new joint limitations are listed in Table 3.5.

Modified Axis Range
Joint Agilus1 Agilus2
A1 −140◦/20 −30◦/120◦

A2 −120◦/30◦ −150◦/− 40◦

A3 10◦/140◦ −120◦/156◦

A4 −90◦/90◦ −90◦/90◦

A5 −10◦/120◦ −120◦/120◦

A6 −180◦/180◦ 90◦/270◦

Table 3.5: Modified axis range for the suction gripper end-effector (Agilus1), and
the Zivid camera end-effector (Agilus2). The new configurations have signifi-
cantly reduced range compared to the robots maximum capability, in order to
control the trajectory proposed by the inverse kinematic solver.

After loading the kuka kr6r900sixx.xacro file to Moveit! Setup Assis-

72 CHAPTER 3. METHOD

tant, the program generated a Self-Collision Matrix. This matrix maps the robots
physical joints that never will collide, and therefore reduces the computation time
during inverse kinematics computations by defining these configurations as a de-
fault success. Two planning groups were created, where a set of joints and links
were defined for each group. The two defined groups can be used by any ROS
node to control the robots through a Python API named /moveit commander.
The two planning groups we defined were named

• agilus1

• agilus2

where agilus1 was the Agilus1 robot with the addition of the gripper module.
Likewise, agilus2 was the Agilus2 robot with the Zivid camera attached. The
final step of the Moveit! Setup Assistant was to create the configuration files
that defined our robot properties in Moveit!, in order to control the two newly
defined planning groups.

Robot Control

The robots were controlled through a Python API for ROS and Moveit!. During
system launch, a primary node is provided by Moveit! called /move group. This
node served as an integrator between the user interface, and ROS parameter
server. The node provided a set of ROS actions and services that could be used
for different operations, such as inverse and forward kinematics, collision control
and visualisation integration. The configuration files that were generated by the
Moveit! Setup Assistant were imported by the node, in order to know the physical
properties of the manipulators.

Our proposed system consisted of four static manipulator poses, and one
dynamic pose given by the grasping module. The pipeline of the different robot
poses during a picking operation can be seen in Figure 3.14, where the poses are
as follows:

• Default Start Position
This is the starting position of the robots, defined by the KUKA KR C4
controller. The robots will always start at this given position as the system
is initialised.

• Image Position
The agilus2 planning group manoeuvres into position over the bin, in order
to take an RGB-D image of the scene with the Zivid camera.

• Zivid Home
The agilus2 planning group retreats from the bin after the images are taken,
so that the other robot can perform the pick.

• Suction Standby
The agilus2 planning group manoeuvres into position directly over the bin
and is ready to perform the grasping operation.

3.2. SOFTWARE DEVELOPMENT 73

• Suction Location
The aguilus2 planning group moves to the suction location given by the
grasping module, in order to perform the actual picking operation.

• Move to New Bin
The agilus2 planning group transports the picked object from the storage
bin, to a new container. The whole series of operations might be repeated
for a new object, or the system can end the operation.

Figure 3.14: Illustration of the general movements performed by the agilus1 and
agilus2 planning groups.

The end-effector frame was defined in Cartesian coordinates (x, y, z) for the
location in space, and quaternion coordinates (x, y, z, w) for the orientation. The
movement of the manipulators were controlled through actions provided by the
mentioned Python API /moveit commander. First, a new node is created for the
operation with the following code:

1 rospy . i n i t n o d e (’ move group python inter face ’ ,
2 anonymous=True)

A MoveGroupCommander object was instantiated to create an interface to a
group of joints. The group of joints we wanted to use is referred to as a move
group, and was defined as a planning group in the Moveit! Setup Assistant. Two
objects were defined, gripper group and zivid group, which were used to plan and
execute motions for the robot with the suction module attached and the Zivid
camera, respectively.

1 gr ippe r g roup = moveit commander . MoveGroupCommander(” a g i l u s 1 ”)
2 z i v i d g roup= moveit commander . MoveGroupCommander(” a g i l u s 2 ”)

In order to visualise the planned trajectories for gripper group and the zivid group,
the move group python interface node was set to publish a stream of joint values
that was used by RViz.

1 d i s p l a y t r a j e c t o r y p u b l i s h e r = rospy . Pub l i she r (’ /move group/
d i sp lay p lanned path ’ , moveit msgs . msg . Disp layTrajectory ,
q u e u e s i z e =20)

74 CHAPTER 3. METHOD

Moving to a defined position and orientation in space was done with the
following actions, where the state variable contains the location and orientation
necessary to perform the picking operation calculated by the grasping module:

1 p o s e t a r g e t = geometry msgs . msg . Pose ()
2 p o s e t a r g e t . o r i e n t a t i o n .w = s t a t e [9] [4]
3 p o s e t a r g e t . o r i e n t a t i o n . x = s t a t e [9] [5]
4 p o s e t a r g e t . o r i e n t a t i o n . y = s t a t e [9] [6]
5 p o s e t a r g e t . o r i e n t a t i o n . z = s t a t e [9] [7]
6 p o s e t a r g e t . p o s i t i o n . x = s t a t e [9] [1]
7 p o s e t a r g e t . p o s i t i o n . y = s t a t e [9] [2]
8 p o s e t a r g e t . p o s i t i o n . z = s t a t e [9] [3]
9 gr ippe r g roup . s e t p o s e t a r g e t (p o s e t a r g e t)

A motion plan was created and visualised by RViz for the target as the motion
was being executed:

1 plan1 = gr ippe r g roup . plan ()
2 d i s p l a y t r a j e c t o r y . t r a j e c t o r y . append (plan1)
3 d i s p l a y t r a j e c t o r y p u b l i s h e r . pub l i sh (d i s p l a y t r a j e c t o r y) ;
4 c o l l i s i o n o b j e c t = moveit msgs . msg . C o l l i s i o n O b j e c t ()
5 gr ippe r g roup . go (wait=True)
6 gr ippe r g roup . execute (plan1)

3.3 Complete System

The complete bin picking system was modelled as a state machine, which is
illustrated in Figure 3.15. Each state represents a sequence of operations in
the system, and the machine can only be in one state at any given time. This
structure allowed us to control the conducted sequence of operations during bin
picking operations, where transition between two states are controlled by the
inputs and outputs from the previous state. This allowed the system to recover
from errors or failures that might occur in a state, without necessarily needing
to restart the whole system. The state variables and all inputs and outputs of
each state were defined in the main Python script as a global array:

1 g l o b a l s () [’ s t a t e ’] = np . array ([[’ R o b o t z i v i d s t a t e ’ , 0] , [’
Rob o t g r i ppe r s t a t e ’ , 0] , [’ Z i v id po s e ’ , 0] , [’ Image s tate ’ , 0] , [’
Gr ipper pose ’ , 0] , [’ Grasping pose ’ , 0] , [’Vacuum ’ , 0] , [’
P i c k s u c c e s s ’ , 0] , [’ P l a c e s u c c e s s ’ , 0] , [’Tw g ’ , 0 , 0 , 0 , 0 , 0 , 0 , 0]] ,
dtype=ob j e c t) .

A full overview of the inputs and outputs of the system are listed in Appendix
A.2.

During operation, a typical series of operations were conducted:

• RobotsNotConnected
This is the initial state of the system, which initialises robot connection
to the master computer, along with communication between the master
computer and the Zivid camera.

3.3. COMPLETE SYSTEM 75

• RobotsHome
This is the initial operating state where all necessary system components
are connected, and the system is ready to perform bin picking.

• Perception
This is the state where perception related computations are conducted.
This includes the image acquisition, image processing, object detection,
and grasp computation.

• GripperReady
This is the state that performs trajectory planning and gripper activation.

• Grasping
This is the state that performs the final suction and picking operation.

• Placing
This is the state that transports the grasped object from the initial bin, to
the new bin.

Figure 3.15: Diagram that illustrates the different states of the system and the
possible transitions. The condition for the transition between two states were
given by the outputs from previous state, and is described in detail in Appendix
A.2

.

76 CHAPTER 3. METHOD

Chapter 4

Results

The results from our proposed system will be presented in the following chapter.
First the results from the individual modules and modifications are presented,
and thereafter the system as a whole.

4.1 Physical Results

The following section will cover the results and discoveries made related to the
physical development of the practical work.

4.1.1 Physical Setup

The proposed bin picking system consisted of several physical components that
communicates through a series of input and output ports. Figure 4.1 illustrates
a simple schematic representation of the system, where the master computer
controls the Zivid camera, and the KUKA robots.

77

78 CHAPTER 4. RESULTS

Figure 4.1: Pipeline of the hardware in our proposed bin picking cell, where the
master computer is the control unit in the system.

4.1.2 Eye-In-Hand Calibration

The eye-in-hand calibration was performed according to Section 3.1.5 with soft-
ware provided by the Zivid company. In total, 17 images were taken along with
the recorded robot pose at each iteration. The output from the calibration soft-
ware were the intrinsic and extrinsic parameters of the camera, and the distortion
coefficients.

Intrinsic Parameters

The intrinsic parameters were contained in a camera matrix K is defined as

K =

fx s x0

0 fy y0

0 0 1

where f is the focal length of the camera, s is the axis skew, and (x0, y0) is
the optical center measured in pixels. These values are only a function of the
camera, meaning that they are independent of camera positioning and orientation
in space. However they may differ among assumed identical camera models, due
to montage differences and production variations of the individual parts.

The resulting camera matrix of the calibration was estimated to

K =

1042.844930 0.000000 361.2227610
0.000000 1043.510680 233.4071770
0.000000 0.000000 1.000000

and camera distortion coefficients Kd was estimated to

4.1. PHYSICAL RESULTS 79

Kd =
(
−0.285000 0.414000 0.141000 0.00149 0

)
.

The parameters obtained from K and Kd were used in the transformation
of pixel coordinates to image coordinates, which was necessary to express the
position of objects detected in the scene. The result of applying lens correction
with the values from Kd can be seen in Figure 4.2.

Figure 4.2: The left image is taken before the lens correction, where a square is
drawn between the outer corners. The left image illustrates the effect of the lens
correction, where the identical square is drawn over the corrected image.

Extrinsic Parameters

The extrinsic camera parameters describes the cameras location and orientation
in the world. The calibration estimated the homogeneous transformation matrix
between the robot hand and the mounted camera TH

C as

TH
C =

−0.21450341 −0.0099235 −0.9766728 −0.01687626
0.97644116 −0.02620892 −0.21418624 −0.08095245
−0.02347206 −0.99960723 0.01531161 0.16465542

0 0 0 1

 .

The mean translation deviation was estimated to 0.0032±0.0015m and a mean
orientation deviation of 0.0045 ± 0.0024rad. The deviations were measured by
compering the estimated position calculated using TH

C in some random sampled
positions against the true positions as

TW
C TC

H −TW
H = Deviation

where TW
H is the transformation from the world frame to the hand of Agilus2,

TW
C is the transformation from the world frame to the camera, and TC

H is the
transformation from the camera to the hand on Agilus2.

The transformation matrix TH
C was used to estimate the rigid transformation

TW
G between the world frame W and the grasping location G:

TW
G = TW

H TH
CTC

STS
G

80 CHAPTER 4. RESULTS

where TC
S is the transformation from the Zivid camera to the suction location

found bu the grasping module, and TS
G is the transformation between the suction

location and the hand of Agilus1. The transformation TW
G was used by Moveit!

to generate the trajectory to the suction location that was executed by the robots,
as described in Section 3.2.4.

4.2 Software Results

The following section will cover the results and discoveries made related to the
software development of the practical work.

4.2.1 Image Acquisition

Following the proposed image processing pipeline from Section 3.2.1, we were able
to capture high quality depth images of the bin with the Zivid camera. This was
essential for the picking operation, as the grasping module determines the suction
location based on this depth image. Figure 4.3 illustrates the improvement from
a captured depth image where the default camera settings are used, to a depth
image where we used our proposed camera settings and processing tools.

(a) Depth image using default camera settings

(b) Depth image using custom camera settings and post processing.

Figure 4.3: Comparison of the initial depth image which was acquired while
using the default camera settings on the Zivid camera (a), and a depth image
with custom camera settings and post processing (b).

4.2. SOFTWARE RESULTS 81

4.2.2 Object Detection

The following section will present the results obtained form the development of
our object detection module. The results are separated into a training section
and testing section.

Training

During the training of the SSD and Faster R-CNN networks, the visualisation
tool TensorBoard was used to interpret the results of the networks, and to get
an understanding of how the network behaved during training and evaluation.
TensorBoard was accessed though the command

$ tensorboard --logdir=gs://objectdetection prosjekt

which created a local host server where a visual representation is presented by
TensorFlow. TensorBoard allowed us to evaluate to progress of the networks as
they trained on the provided dataset, through graphs, diagrams, and histogram
plots. Based on the theory presented in Section 2.1.5.3 regarding overfitting
during training, we continuously monitored the development of the evaluation
accuracy as the training progressed. Several configurations with different hy-
perparameters were tested for both networks, to evaluate the performance and
behaviour during training. On the basis of the theory covered in Section 2.1.5.2
and the results we observed, we found that hyperparameters listed in Table 3.4
yielded the best results. The validation precision for both networks can be seen
in Figure 4.4, and the corresponding total loss graph during the same training
period can be seen in Figure 4.5.

82 CHAPTER 4. RESULTS

(a) Validation accuracy SSD

(b) Validation accuracy Faster R-CNN

Figure 4.4: Illustration of the development for validation accuracy for the SSD
and the Faster R-CNN networks. Both graphs shows that the accuracy converges
to between 0.9 and 1.

The validation precision is calculated according with Pascal mAP@0.5IOU
[92]. From the validation accuracy curve we observed that both networks ex-
perienced a rapid increase in accuracy, before it stabilises around 0.9. Is is not
possible to exclude the possibility of overfitting being present in the networks at
a given point, as we do not observe a sudden decrease in the score. This can
be explained by the limited variation we have between the training set and the
validation set, as these are relatively similar. The results form the total loss
graphs indicated that our trained networks yielded sufficient classifications for
the training set. The validation graph indicated that the networks converged
towards their highest validation accuracy, and we therefore stopped the training
and saved the frozen graphs at the highest peak in the validation accuracy. Fur-
ther testing after we exported the trained networks showed that they performed
satisfying results on new images, and we therefore stopped further training with
new hyperparamters.

4.2. SOFTWARE RESULTS 83

(a) SSD

(b) Faster R-CNN

Figure 4.5: Illustration of the total loss development of the two networks during
training. The total loss curves converge towards 1.2 and 0.1 for the SSD and the
Faster R-CNN networks receptively.

The illustration in Figure 4.6 (a) illustrates the biases in a feature extraction
layer early in the Faster R-CNN network structure, where the height of each
histogram represents the frequency of occurrence for a given bias value. The
figure illustrates that the frozen bias values that were imported from transfer
learning are not changed during the training period, because the layer extracts
a general feature that is not specific for our objects. Figure 4.6 (b) illustrates
how the bias values from the class prediction layer evolved during training, as
these were trained for our specific objects. We observe that the biases initially
were normally distributed around zero, but rapidly changed in the fist steps.
The bias values stabilised at the same number of steps as the total loss and
validation accuracy stabilised. More graphs from our trained models can be
found in Appendix A.3.

84 CHAPTER 4. RESULTS

(a) The frozen biases from a feature extrac-
tion layer.

(b) Evolution of the bias values from the class
prediction layer.

Figure 4.6: Histogram illustrating the evolution of the bias values from a pre-
trained feature extraction layer, and a class prediction layer during training for
the Faster R-CNN network.

Testing

The results from TensorBoard indicated good results for both networks, where
the Faster R-CNN network seemed to have a small advantage in terms of the
validation accuracy and total loss results. To test and compare our networks in a
realistic setting, we created a new dataset consisting of 40 images in realistic and
challenging bin situations. The trained networks were loaded into a Python script
along with the new images, that outputted all object predictions with bounding
box proposals that were over a given threshold t = 0.75. Some of the results
can be seen in Figure 4.7, and proves that both networks were able to detect
the test objects, but in some varying degree. However, the results illustrates the
neural networks ability to learn and generalise features, as it detects objects in
new positions and orientations not used in the training set.

4.2. SOFTWARE RESULTS 85

Figure 4.7: Illustration of the prediction made of the SSD and Faster R-CNN
networks. The left side of the figure are the results from the Faster R-CNN
network, and the right side are the results from the SSD network.

A score value S1 for both the networks was defined and calculated with the
given formula

S1 =
TruePositive

TruePositive + TrueNegative + FalsePositive

where

• TruePositive
indicates that the network was able to output a classification, and the
classification was correct.

• TrueNegative
indicates that the network was able to output a classification, but the clas-
sification was incorrect.

86 CHAPTER 4. RESULTS

• FalsePositive
indicates that the network did not output a classification, even if there was
a trained object in the image.

The resulting data and the calculated S1 score for each object and the total
score for the networks can be seen in Table 4.1 and Table 4.2.

S1 Score SSD Network
iPhone SD Card Hair Wax T-shirt

∑
True Positive 11 7 4 8 30
True Negative 3 0 0 0 3
False Positive 6 4 6 1 17
S1 score 55% 64% 40% 89% 60%

Table 4.1: Test results for the SSD network.

S1 Score Faster R-CNN
iPhone SD Card Hair Wax T-shirt

∑
True Positive 17 6 7 8 38
True Negative 10 0 0 5 15
False Positive 0 5 3 1 9
S1 score 63% 55% 70% 57% 61%

Table 4.2: Test results for the Faster R-CNN network.

The total S1 score is almost identical between the two networks, but there
are some interesting variations internally. As we can observe in Table 4.1 and
Table 4.2, the Faster R-CNN network has a five times higher TrueNegative rate,
compared to the SSD network. In a realistic automated bin picking situation,
there would be a product ID in the incoming order, that would correspond to
the correct object in the bin. In this situation, the system would score a higher
accuracy, since it only outputs the prediction of the highest probability to the
corresponding product ID. The accuracy in this scenario can be calculated as a
S2 score:

S2 =
TruePositive

TruePositive + FalsePositive

assuming that the TrueNegative probabilities generally are lower than the True-
Positive probabilities. The SSD network has twice the FalsePositve rate, which
contributes to a lower S2 score. The resulting S2 scores are calculated to 81%
and 64% for the Faster R-CNN and SDD network, respectively. The S2 score
favours the Faster R-CNN network, since it generally outputs a higher number
of classifications, which can be seen in Figure 4.8.

4.2. SOFTWARE RESULTS 87

(a) The Faster R-CNN network finds the
Tshirt, Iphone and SD card, but not the
Hair Wax.

(b) The SSD network was only able to find
the Tshirt.

Figure 4.8: The Faster R-CNN network generally outputs a higher amount of
classifications, compared to the SSD network.

4.2.3 Grasping

Our grasping module was configured for our physical setup, and modified to
perform as intended for our use case. The module first sampled a total of 250
random grasps over the entire depth image input, before three iterations of 150
grasp samples were sampled around the best proposals from the previous itera-
tion. The sampled grasps were evaluated by the GQ-CNN network, where the
final grasping proposal is the assumed best grasp of all the samples. The num-
ber of samples effects the quality and the overall processing time of the module,
and should therefore be adapted to the scene in which it is applied. If the scene
contains only a few objects, the grasping module will quickly converge at the
assumed best grasping location. Likewise, if the scene contains several objects,
a higher sample rate might be necessary in order to get a representative final
suction location. A series of test were conducted to evaluate the final proposed
grasping location, based on our own intuitive understanding related to grasping.
The results of the tests are illustrated in Figure 4.9, and yields satisfying results
in terms of accuracy and robustness. The figure should be read from top to bot-
tom, where each column illustrates the prediction sequence for a given image,
and each row illustrates the steps (random sampling, three iterations of propos-
als, final suction location in the depth and RGB image) from the input image to
the final proposal.

88 CHAPTER 4. RESULTS

Figure 4.9: Illustration of the steps in the GQ CNN grasping module. Each
column represents the steps for a given input image, the upper four rows shows
grasping proposals, and the two lower rows shows the final proposal in the depth
and RGB image.

4.2. SOFTWARE RESULTS 89

4.2.4 Robot Control

The modified axis range configuration from Section 3.2.4 resulted in improved
end-effector trajectories, in terms of movement control during the transition be-
tween robot poses. Movement between the the robot pose Default Start Po-
sition and Image position for the agilus2 move group is illustrated in Figure
4.10, before and after the modified configuration. The new configuration ensured
that the power supply cable of the Zivid camera and USB cable never were tan-
gled or stretched. Likewise, Figure 4.11 illustrates how Agilus1 moves from the
Suction Location to Move to New Bin. The new configuration ensured that
the external forces on the suction cup was reduced during transportation.

(a) The original inverse kinematic
movement performed by Agilus2.

(b) The result of modification to the
axis range.

Figure 4.10: Illustration of the movement performed by the agilus2 move group
while moving from robot pose Default Start Position to Image position.

90 CHAPTER 4. RESULTS

(a) The original inverse kinematic
movement performed by Agilus1.

(b) The result of modification to the
axis range.

Figure 4.11: Illustration of the movement performed by agilus1 move group while
moving from robot pose Suction Location to Move to New Bin.

4.3 Complete System

Following the state machine implementation described in Section 3.3, we com-
bined the separate modules of the system to create a complete autonomous bin
picking system. The sequence and transition between states were controlled by
a Python script, where the only user input was whether to pick specific objects
using the Faster R-CNN network, or to pick objects based on the most proba-
ble suction location. The Faster R-CNN network was preferred above the SSD
network based on the S2 score, which was significantly higher. The S2 is more
relevant than the S1 in our bin picking system, as this score generally gives a
better indication if a given object is present in the image. A series of tests were
conducted in order to evaluate the robustness of the system as a whole.

4.3.1 Bin Picking Without Object Detection

In the first test (Test A), we wanted to evaluate the robustness of the system
while picking novel objects without object detection. In this test, grasping was
perform on the object that was best suited within the entire bin, based on the
outcome of the grasping module. A total of 12 objects were placed at random
locations in the bin before the test was started, as can be seen in Figure 4.12.
The test was repeated three times to calculate the average success score. The
results can be seen in Table 4.3, and illustrations of each object can be found in
Appendix A.1.

4.3. COMPLETE SYSTEM 91

Bin Picking: Test A
Test 1 Test 2 Test 3

Item Nr Item Prob S/F Prob S/F Prob S/F
1 Iphone 0.68 1 0.66 1 0.16 1
2 SD Card 0.89 1 0.89 1 0.49 1
3 Hair Wax 0.41 1 0.95 1 0.36 1
4 3D Printed Object1 0.58 1 0.21 0 0.25 0
5 3D Printed Object2 0.215 0 0.25 1 0.30 1
6 3D Printed Object3 0.32 1 0.50 1 0.42 1
7 3D Printed Object4 0.13 0 0.69 0 0.20 0
8 Small Box 0.73 1 0.32 1 0.65 1
9 Large Box 0.03 1 0.08 0 0.23 0
10 Tape 0.51 1 0.11 0 0.23 1
11 Metal Object 0.20 1 0.28 1 0.76 1
12 Bottle 0.22 0 0.18 1 0.49 1

Score 0.75 0.67 0.75
Average Score 0.72

Table 4.3: Test A: Bin picking without object detection. The Prob column lists
the estimated probability of success outputed from GQ-CNN, and S/F is short
for Success/Failure during the picking operation.

Figure 4.12: The objects and the setup used for one of the tests in test A.

92 CHAPTER 4. RESULTS

4.3.2 Bin Picking With Object Detection

In the second test (Test B), we wanted to pick up specific objects from the bin,
using object detection to recognise and locate the objects. Our four test objects
were put in a bin a long with 8 novel objects that were not used during the
training phase of the object detection network. The novel objects all show some
resemblance in features and characteristics to the trained objects, so that the
object detection network had a challenging task at hand. The four test objects
and the novel objects can be seen in Figure 4.13, along with the final setup of
the test. The test was repeated three times to calculate an average score, and
the results can be seen in Table 4.4.

(a) The trained objects (Iphone box, SD
card, t-shirt and hair wax) along with sim-
ilar novel objects.

(b) The final setup of the objects in the
bin.

Figure 4.13: Test B: Bin picking specific objects using deep neural network for
object detection and grasp planning.

4.3. COMPLETE SYSTEM 93

Bin Picking With Object Detection: Test B
Test 1 Test 2 Test 3

Item OD/GQ S/F OD/GQ S/F OD/GQ S/F
Iphone 0.97/0.76 1 0.98/0.45 1 0.96/0.98 1

SD Card 0.96/0.645 1 0.90/0.54 1 0.97/0.82 1
Hair Wax 0.97/0.87 1 0.93/0.71 1 0.85/0.002 1

T-shirt 0.95/0.76 0 0.97/0.47 1 0.95/0.15 0
Score 0.75 1.00 0.75

Average Score 0.83

Table 4.4: Test B: Bin picking without object detection. The OD/GQ column
lists the predicted object detection score, and the probability of success from
GQ-CNN. The S/F column lists the Success/Failure for each operation.

Demonstration Video

A demonstration video was produced to show the performance of the system dur-
ing random bin picking with object detection. The demonstration also illustrates
how we automated the labeling process of the images for the training phase of
the object detection networks, and our development of the custom made grip-
per module. The video can be found in the digital appendix under the name
”DemonstrationVideoMaster.mp4”, and is also available online [85].

94 CHAPTER 4. RESULTS

Chapter 5

Discussion

The following chapter will present discussions based on the obtained results from
our practical work. Strengths and weaknesses of the system will be covered, and
certain improvements are suggested.

5.1 Object Detection

After testing the two object detection networks with multiple images, it became
evident that both the Faster R-CNN and SDD network had a tendency to perform
correct classification more often on certain objects. From Table 4.1 and Table
4.2, we observed that both networks scored the highest number of TruePositive
for the IPhone object, whereas the hair wax scored the worst. In particular,
both networks achieved low scores when trying to detect the hair wax when it
was positioned on top of another object. On the contrary, we observed that
the IPhone was detected with a relatively high accuracy, despite experiencing
occlusion or placement on top of other objects. The geometry of the iPhone and
the hair wax can explain why the iPhone generally has a higher detection rate,
and is related to the form of the ground truth bounding box label. As a result
of the iPhone’s rectangular shape, the labeled bonding box generally fits better
around the object, whereas the bounding box for the circular Hair Wax will have
a large portion of the background in every labeled training image. In addition,
our training data had little variation in the background of the scene, which led
the network to weight the black background within the labeled rectangle too
high. Placing the object on top of another object, made the network unable to
recognise the object, since the dark uniform background in the bounding box was
not present. When changing the background of the input images to resemble the
black background of the training set, we observed that the accuracy of the Faster
R-CNN and the SSD networks improved. This is illustrated in Figure 5.1.

95

96 CHAPTER 5. DISCUSSION

Figure 5.1: Illustration of the improvement in accuracy for the SSD network, as
the background is changed to one which is resembles the black background of the
training set.

5.1.1 Improved Autonomous Labeling

We suggest a solution to the explained issue related to the lack of variation in
the background of the training set, by improving the automatic labeling program
from Section 3.2.2.

The labeling program could be improved by automatically replacing the uni-
form black background with a texture image. This could by done by obtaining
a segmentation mask of the binary object representation, and cropping out the
background in order to replace it with a new image. The original, binary, and
texture images are possessed beforehand, so that they all have the same resolu-
tion. This way, the placement of the cropped object and bounding box are in
the same position in all cases. The results can be seen in Figure 5.2, where the
variation in the background is clear. The cropping process is not perfect, but
it demonstrates the concept of the improved automatic labeling system. If we
were to train a new network using this technique, we would have to retake all the
images so that the background of the object would be completely black. This
would improve the threshold value when converting to binary representation, and
therefore improve the cropping at the edges of the objects. As can be observed
in Figure 5.2, most of the objects are only partly cropped as a result of too low
threshold for the specific image.

5.2. GRASPING 97

Figure 5.2: Illustration of the labeled output images with the improved version
of our automatic labeling program. The variation in the background should
theoretically decrease the weighting of the black background as an attribute of
the objects.

5.2 Grasping

The grasping module generally located logical and intuitive suction locations
based on the input depth map, but certain factors effected success and execution
of the proposed location.

Depth Image Quality

A high quality depth image is essential for the GQ-CNN, in order to locate to
assumed best suction location. As explained in Section 3.2.1, the initial depth
image undergoes a series of feature enhancement and noise removal operations.
The improvement in the processed image is evident, however it proved hard to
obtain a high quality depth image for all object surfaces, textures, and angles.
As can be observed in Figure 5.3, the noise in the depth readings of the image
forces the GQ-CNN to exclude the best suited suction locations on the object.
As a consequence, the execution of the picking operation may result in failure
due to the torque that occurs during lifting.

98 CHAPTER 5. DISCUSSION

Figure 5.3: The grasping module avoids the best grasping locations around the
center line of the object, due to the noise that is present in that area.

This issue can partly be resolved by applying more smoothing filters to even
out and remove more noise in the depth image, but at the expense of reduced
texture and edge details. The texture and edge details are crucial for determining
whether or not the suction cup is able to establish a tight seal on the surface,
and should therefore be prioritised over noise removal by smooting filters.

Object Segmentation

The GQ-CNN network generally performed well on semi structured bin picking
operations, where the objects are clearly separated. A higher failure rate was
observed when performing bin picking without object detection, when two or
more objects were stacked side-by-side. This often caused the GQ-CNN network
to evaluate the side-by-side objects as one solid object. The final suction location
was therefore located close to the center of the combined objects, which in reality
might be close to the edge of the objects. This type of failure may be caused by the
fact that the network is only trained on single object depth images. The scenario
is illustrated in Figure 5.4, where execution of the pick results in failure due to
the external forces that occur. This issue is however greatly reduced when object
detection is performed during the picking operation, as the detection network
allows the system to crop out specific areas of the depth image where the specific
object is located.

Figure 5.4: The GQ-CNN evaluates two objects stacked side-by-side as one solid
object. The final suction location is therefore given as if the two object were one,
and the execution of the pick may result in failure.

5.2. GRASPING 99

In order to solve the issue described above, we propose a separate object
segmentation module in the bin picking pipeline that has the potential to resolve
the issue where several object are evaluated as one. Figure 5.5 illustrates the
result of a proposed object segmentation module, that could be implemented
in our system to increase the success rate. The module is based on the work
presented in [93], and uses a modified Canny edge detector to extract robust
edges in the image. The result from testing the grasping module using this
segmentation method is shown in Figure 5.6, where a clear improvement can
be observed compered to initial grasping proposal in Figure 5.4. The proposed
module gives a good demonstration of the improvement, but it is limited to simple
geometric shapes as it performers poorly on more complex object such as the t-
shirt. A more robust segmentation algorithm is therefore necessary in order to
be successfully applied in a realistic setting. A deep neural network might be
used for the purpose of complex segmentation, as demonstrated in [94] and for
uniform bins in [95].

Figure 5.5: Illustration of a possible object segmentation algorithm that can be
used to separate the objects in the scene.

100 CHAPTER 5. DISCUSSION

(a) Final grasping location when using object segmentation to crop out the large box.

(b) Final grasping location when using object segmentation to crop out the green object.

Figure 5.6: Illustration of the same situation as in Figure 5.4, but here segmen-
tation is applied to separate the two objects. The resulting grasping location is
located at a more desirable location for both objects.

We also observed that segmentation module affected the estimated probability
of grasping success given by the grasping module, which can be explained as result
of the segmented image resembles the images used during the training phase of
the network. The output probabilities from our tests (Test A and Test B) are
generally misleading, due to the same reason related to the difference between
the training images and the input image.

Object Occlusion

Bin picking with object detection may partly resolve the issue of object segmen-
tation, as described above, but it may also introduce a new issue. Since the
location of the object within the image is represented with a single rectangular
bounding box, there are no assurances that the bounding box only contains the
desired object. In cases when an object is occluded the object simply does not
fill the whole bounding box area, the bounding box may contain several objects.
The current system have no method of separating these objects from each other.
Furthermore, the policy of the grasping module is to favour grasp locations close
to the camera, in order to prevent picking objects that are occluded by other ob-
jects. Therefore, the objects laying on top of the intended object are more likely

5.2. GRASPING 101

to be grasped. This is illustrated in Figure 5.7, where the bounding box proposal
of the Iphone also includes a smaller object laying on top. As a result, the final
suction location is placed on another object then intended, and the systems fails
to pick the correct object.

Figure 5.7: The figure illustrates how the large bounding box proposal of the
Iphone also includes a separate object that is more suited for grasping. As a
result, the final suction location is located on an unintended object.

This issue may be resolved by replacing the current object detection networks
with a segmentation mask network, such as the Mask R-CNN network [96]. This
deep learning network was introduced in January of 2018, and is an extension
of the Faster R-CNN used in our practical work, that predicts an object mask
in parallel with bounding box proposals. This allows object segmentation to be
predicted at a much higher accuracy, since the proposals can have an arbitrary
form, as illustrated in Figure 5.8. Training this network would however require
a dataset with segmentation labeling, which is harder to require then the rect-
angular bounding box notation. A more suitable approach would be combining
object detection with a novel segmentation method.

102 CHAPTER 5. DISCUSSION

Figure 5.8: The Mask R-CNN network outputs object masks in parallel with
bounding box proposals. The mask boundaries of the detected objects are much
more accurate than the Faster R-CNN and the SDD networks used in our prac-
tical work.

5.3 Suction Cup

The choice of the suction cup also had a large impact on the number of failed
attempts during the test, and was mainly due to two reasons:

• Diameter Size
The diameter of the suction cup limits the areas on an object where a
successful suction can be performed. A small diameter allows us to pick
objects with a small region suitable for forming seal, and is therefore gener-
ally more suited for small objects. The small diameter will however strug-
gle while picking large objects, as the smaller cup has lower lifting capacity
compared to a larger sized suction cup. A small suction cup is also more
prone for external forces during lifting. On the contrary, a large diameter
will handle these forces better, but will struggle to create a seal between
the object surface and the suction cup on small objects.

• Material and Design
The material properties and design of the suction cup affects the perfor-
mance of the picking operation. The flexibility of the material and the
design determines how well the suction cup performs on different surfaces.
A soft suction cup is able to obtain a thigh seal on a non planner continu-
ously differential surfaces, due its the ability to deform accordingly to the

5.4. BIN PICKING 103

surface. A flexible and long suction cup is able to tilt in order to obtain
seal, and works well when the approach angle deviates from the surface
normal of the suction location. The flexibility and soft material comes with
the expense of the ability to resist wrenches during lifting, which reduces
the lifting capability in terms of weight and force tolerance.

In a realistic bin picking operation for a warehouse, these issues could be
reduced by grouping similar objects to different picking stations that are cus-
tomised for the product range characteristics. Small objects would generally
require a small and flexible suction cup, while larger objects would require one or
several larger suction cups to perform the picking operation. A combination of
suction grippers and parallel grippers could also be considered for certain objects,
to improve the robustness during transportation.

5.4 Bin Picking

The results of the bin picking operations presented in Section 4.3 clearly proves
that our proposed system was able to pick random and specific objects from
a cluttered environment. We observed that many of the failed attempts were
related to the training dataset that was used during training of the grasping
network. This dataset only contains grasp proposals for scenes with a single
object, which often resulted in poor suction locations proposals when objects
were cramped together in the bin. An improvement for this issue would be to
extend the dataset to include training grasps with multiple objects in the scene, or
utilising object segmentation as suggest earlier. An improved success rate could
be achieved by introducing some form of quality control of the picking operation,
to ensure that the correct object was pick and transported as planned.

Quality Control

In a realistic setting, it would be natural to perform some sort of quality control
of the picking operation to ensure that the correct object was picked and that
the transportation was successful. Possible control methods might include:

• Object Detection
A new round of object detection might be performed while the intended
object is transported from the storage bin. The image used for this object
detection should be taken from an angle that limits the view to only the
picked object, and not the rest of the bin. The output from this object
detection will indicate whether or not the pick was successful. Bar code
scanning might also be a possibility, as it is fast and able to differentiate
products that are nearly identical (such as an Iphone 6 box and an Iphone
6S box).

• Vacuum Measurement
A vacuum sensor might be mounted between the vacuum generator and

104 CHAPTER 5. DISCUSSION

the suction cup, in order to continuously read the vacuum value during
the picking operation. A sudden drop in the vacuum for this time interval
would indicate that the object was dropped during transportation.

• Torque Measurement
Torque sensors could be used at the end-effector of the robotic arm, so that
measurements before and during the picking operation could be compared.
No difference in torque would indicate that the pick was a failed attempt,
and a sudden drop in difference during transportation indicates that the
object was dropped. The torque sensor could also be used to measure the
weight of the picked object, in order to compare the value with the known
object weight. This quality control presupposes that the weight of each
object inside a bin is differentiable. This strategy has the advantage to of
being simple to implement in a large scale, since the weight of each product
is already available in most settings.

• Grasp Probability Control
In situations where the grasping module proposes a final grasp location with
a corresponding success probability under a given threshold, the system
should notice a manual worker for guidance. The worker would be able
to correct or guide the robot to a more suited grasping location, to ensure
that the pick does not result in failure. This functionality is implemented
and demonstrated in the bin picking systems provided by SuperPick [97].
The same approach could be implemented for the object detection module,
if the classification is under a given threshold.

5.5 Bin Picking In The Industry

AutoStore AS put us in contact with one of their many costumers, Komplett,
which is Norway’s larges e-commerce store. Through conversations with director
P̊al Vindegg, we got insight to the requirements needed for a potential automated
bin picking system. On average Komplett receives between 2 000 and 3 000
new products every month, with a total of 20 000 to 30 000 products in their
inventory. Following is an evaluation of the feasibility of implementing a similar
bin picking system as we have proposed in this thesis in terms of object detection
and grasping.

5.5.1 Object Detection

In the case of Komplett, an inventory size of 20 000 to 30 000 products would
require an immense amount of labeled training images to train networks for object
detection, as well as continuously updating the networks as new items are removed
or added to the product list. The issue of acquiring object specific training
datasets has traditionally been one of two drawbacks related to deep learning,
where the other being the necessary computation power needed. A storage facility

5.5. BIN PICKING IN THE INDUSTRY 105

with the rate of product change and size in product inventory as Komplett would
require a dataset lager in size than the largest available public datasets today,
which for comparison is the ImageNet dataset with 14 million images distributed
over 20 000 categories. The computation issue is a problematic aspect due to
the tremendous amount of computing power required to continuously retrain the
network in order to add new classes. This is however not a problem in regards
to capability, but rather in terms of cost and time. Incrementally adding new
classes and retraining a previous trained network introduces new issues in regards
to decreasing performance. Konstantin Shmelkov et. al proposes a solution to
this issue by introducing a loss function that balances the interplay between
predictions and the new classes [98], but the final results will still experience a
lower success rate.

Object Segmentation

A object detection based bin picking system introduces several problematic is-
sues, but it would not be necessary to implement this module in certain bin
picking scenarios. At Komplett, all the different products are kept separate in
individual bins, so there will not be situations where multiple different products
are present within the same bin. In this scenario, individual object detection will
not be necessary, since the bin only contains one particular product type. In an
automated bin picking system it would therefore be sufficient to use computer
vision as a tool to determine the grasping location for a robotic manipulator. An
object segmentation network could be implemented in the pipeline, to segment
the objects that are suited for grasping. The advantage with this approach, is
that the object segmentation network does not typically require additional train-
ing as new products are added to the inventory. Assuming that most products are
contained in some form of box etc., the variation in product geometry between
new and present products will be limited, thus the segmentation success rate will
not be noticeably affected. Several segmentation networks have been proposed
and published, that yields satisfying results [99], [100], [101].

5.5.2 Grasping

The deep learning based grasping module applied in the practical work of this
thesis has demonstrated that it is capable of locating robust grasping locations
under the right conditions. Through our research and experiments, we have found
that many of the grasping algorithms that are being developed and published are
capable of consistently locating robust grasping locations on novel objects. The
Dex Net 3.0 publication achieved a 95% success rate when grasping simple novel
objects [60] with a suction gripper, and Amaury Depierre et. al. achieved a
86.88% success rate when grasping novel objects with a parallel gripper [102].
The Google Brain Team achieved a success rate of 90% on novel objects while
training a deep neural network from 900 000 grasp attempts during self-supervised
learning, which was obtained from 14 robotic manipulators in parallel [103].

106 CHAPTER 5. DISCUSSION

The advancements and success rates demonstrated by these state-of-the-art
grasping algorithms shows the promising potential for a fully implemented au-
tonomous bin picking system. If the quality control proposals from Section 5.4
are implemented in the bin picking system, the success rate would increase further
and make the overall system more robust.

Chapter 6

Concluding Remarks and
Future Work

6.1 Conclusion

The practical purpose of this master thesis was to create an autonomous bin pick-
ing system, capable of recognising and picking specific objects from a cluttered
environment. Through an extensive literature research, we got a clear under-
standing of the possible technological approaches that could be used for the task
at hand. The problem formulation from Section 1.2 was concretised into six ob-
jectives that have been successfully achieved through our practical work. First,
the kinematics of the robot cell was described, and the eye-in-hand coordination
from the camera to the robots were estimated with and mean deviation of 0.0032
m in translation and 0.0045 rad in orientation. Secondly, a gripper was designed
and manufactured according to the system requirements, in order to be complaint
with AutoStore’s ASRS bins.

Next, deep neural networks were chosen as the preferred method for object
detection and grasping, as these methods have shown significant increased per-
formance since their introduction on their respective fields. This tendency was
confirmed by comparing benchmarks, and through the reports from previous
Amazon Picking Challenges. From the results, it became evident that our object
detection and grasping module were able to detect and pick a large variety of
objects in a realistic setting. The results also substantiates the robustness gener-
ally displayed by deep learning approaches. The creation of a sufficient training
dataset for object detection was a challenge, but it was resolved to some extent
by automating the labeling process, which yielded satisfying results. The SSD
and Faster R-CNN object detection networks both provided adequate stability
in terms of classification, where the latter achieved a higher S1 and S2 score
(0.61>0.60 and 0.81>0.64). The use of the rectangular bounding box notation,
combined with the lack of variation in the scene of the training dataset, were iden-

107

108 CHAPTER 6. CONCLUDING REMARKS AND FUTURE WORK

tified as the main sources of inaccuracy. On the basis of this finding, we proposed
an improved automatic labeling pipeline that included background manipulation
in order to increase the variation in the scene.

Finally, the individual modules were combined to a single autonomous bin
picking system, and was evaluated and discussed in terms of robustness and
feasibility of implementation in a realistic setting. The overall results of the
proposed bin picking system yielded promising results, as it achieved a success
rate of 0.72 while picking unspecified objects, and a success rate of 0.83 while
using the object detection module. The quality of the acquired depth image of
the scene had a large impact on the success rate of the proposed system. The
grasping module was very sensitive to small amounts of noise in the image, which
resulted in grasping locations that were not particular suited for grasping. The
GQ-CNN also struggled to distinguish and separate objects that were stacked
side-by-side, as the network often evaluated these objects as a single object.
However, a possible solution to this issue was demonstrated by the introduction
of an object segmentation module in the pipeline.

Our work presented in this thesis substantiates that bin picking could be im-
plemented in a realistic warehouse setting in the near future, given that the object
detection module in our system is replaced with an object segmentation module.
The object segmentation module could easily be scaled up as new products are
added to the inventory, while our object detection module would require new
training data and retraining.

The proposed work presented in this thesis fulfills the described problem for-
mulation, but certain improvements could be implemented to further increase the
success rate and the robustness of the system.

6.2 Future Work

The practical work and experiments conducted in this master thesis demonstrated
how deep learning, computer vision, and robotics can be combined to create an
autonomous bin picking system. Each of the separate modules in our system have
been thoroughly explained, and weaknesses and strengths have been identified.
The following section will address some of the aspects of our system that we feel
could be improved for future work.

• Improved Training Dataset for Object Detection
As mentioned in Section 5.1, our object detection dataset has an limited
amount of variation in terms of the object scenery and in the background.
We proposed a solution to this issue in Section 5.1.1, where the black back-
ground of the scene is replaced with a random texture image. This method
would be of interest to test, in order to compare the effect in accuracy of a
more varied dataset.

• Segmentation Module
The problem of object segmentation, as described in Section 5.2, may be

6.2. FUTURE WORK 109

resolved by introducing a separate object segmentation module in our pro-
posed system pipeline. Introducing a such module could reduce the failure
rate of the picking operation, as the system would be able to separate tightly
stacked objects within the bin, and not evaluate them as one single object.

• New Object Detection Network
The issue of object segmentation for grasping discussed in Section 5.2 may
be resolved by replacing our Faster R-CNN network with a network capa-
ble of object detection with object mask proposals. This could increase
the success rate of the bin picking operation by replacing the current rect-
angular bounding boxes for object proposal with a more accurate region
proposal. Pre-trained neural networks for object detection, including the
Mask R-CNN network, can be found at TensorFlow’s GitHub repertory
[84].

• Dex Net 4.0
The suction location module of our proposed system is based on the Dex Net
3.0 contribution, which is currently the latest released iteration in the Dex
Net project. Our experiments indicated that this network performed better
when the object in the bin were separated, as opposed to when the objects
were stacked tightly together. During our work, a new iteration in the Dex
Net project (Dex Net 4.0) was announced to be released during the summer
months of 2018. This release will introduce several improvements compared
to its predecessor, such as dual grasping with suction and/or parallel-jaws,
use of high resolution depth images, and an improved training dataset for
multiple objects. Replacing the Dex Net 3.0 based module with a Dex Net
4.0 based module in our system will most likely improve the success rate
of our experiments. News, releases, and updates regarding the Dex Net
project are posed continuously on their home page [104].

110 CHAPTER 6. CONCLUDING REMARKS AND FUTURE WORK

References

[1] Retail e-commerce sales worldwide from 2014 to 2021 (in billion
u.s. dollars). https://www.statista.com/statistics/379046/
worldwide-retail-e-commerce-sales/. Accessed: 2018-04-14.

[2] E-commerce in the nordics 2017. https://www.postnord.com/
globalassets/global/english/document/publications/
2017/e-commerce-in-the-nordics-2017.pdf. Accessed: 2018-
05-24.

[3] Capsen. http://www.capsenrobotics.com/capsen-pic.html.
Accessed: 2018-05-24.

[4] Superpick. https://www.softroboticsinc.com/superpick/. Ac-
cessed: 2018-05-24.

[5] Righthand robotics. https://www.righthandrobotics.com/. Ac-
cessed: 2018-05-24.

[6] Peter Corke. Robotics, Vision and Control: Fundamental Algorithms in
MATLAB, volume 73 of Springer Tracts in Advanced Robotics. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2011.

[7] Structured-light 3d surface imaging: a tutorial. https://www.
osapublishing.org/aop/fulltext.cfm?uri=aop-3-2-128&
id=211561. Accessed: 2018-06-01.

[8] Jason Geng. Structured-light 3d surface imaging: atutorial. Adv. Opt.
Photon., 3(2):128–160, Jun 2011.

[9] Tyler Bell, Beiwen Li, and Song Zhang. Structured Light Techniques and
Applications, pages 1–24. American Cancer Society, 2016.

[10] Zhan Song, Hualie Jiang, Haibo Lin, and Suming Tang. A high dynamic
range structured light means for the 3d measurement of specular surface.
Optics and Lasers in Engineering, 95:8 – 16, 2017.

[11] Frédo Durand and Julie Dorsey. Fast bilateral filtering for the display
of high-dynamic-range images. ACM Trans. Graph., 21(3):257–266, July
2002.

111

https://www.statista.com/statistics/379046/worldwide-retail-e-commerce-sales/
https://www.statista.com/statistics/379046/worldwide-retail-e-commerce-sales/
https://www.postnord.com/globalassets/global/english/document/publications/2017/e-commerce-in-the-nordics-2017.pdf
https://www.postnord.com/globalassets/global/english/document/publications/2017/e-commerce-in-the-nordics-2017.pdf
https://www.postnord.com/globalassets/global/english/document/publications/2017/e-commerce-in-the-nordics-2017.pdf
http://www.capsenrobotics.com/capsen-pic.html
https://www.softroboticsinc.com/superpick/
https://www.righthandrobotics.com/
https://www.osapublishing.org/aop/fulltext.cfm?uri=aop-3-2-128&id=211561
https://www.osapublishing.org/aop/fulltext.cfm?uri=aop-3-2-128&id=211561
https://www.osapublishing.org/aop/fulltext.cfm?uri=aop-3-2-128&id=211561

112 REFERENCES

[12] Eye-in-hand calibration. http://wiki.zividlabs.com/files/
handeye/Skotheim_EyeInHand.pdf. Accessed: 2018-05-07.

[13] Parameterizations for reducing camera reprojection error for robot-
world hand-eye calibration. https://ieeexplore.ieee.org/stamp/
stamp.jsp?tp=&arnumber=7353795. Accessed: 2018-05-05.

[14] Warren S. McCulloch and Walter Pitts. A logical calculus of the ideas
immanent in nervous activity. The bulletin of mathematical biophysics,
5(4):115–133, Dec 1943.

[15] Heung-Il Suk. Chapter 1 - an introduction to neural networks and deep
learning. In S. Kevin Zhou, , Hayit Greenspan, , and Dinggang Shen,
editors, Deep Learning for Medical Image Analysis, pages 3 – 24. Academic
Press, 2017.

[16] Illustration of a simple fully connected neural network.
https://hackernoon.com/deep-learning-cnns-in-\
tensorflow-with-gpus-cba6efe0acc2. Accessed: 2017-10-27.

[17] Illustartion of the sigmoid function. http://www.ai-junkie.com/
ann/evolved/nnt5.html. Accessed: 2017-10-28.

[18] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classi-
fication with deep convolutional neural networks. In F. Pereira, C. J. C.
Burges, L. Bottou, and K. Q. Weinberger, editors, Advances in Neural
Information Processing Systems 25, pages 1097–1105. Curran Associates,
Inc., 2012.

[19] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet clas-
sification with deep convolutional neural networks. In Proceedings of the
25th International Conference on Neural Information Processing Systems -
Volume 1, NIPS’12, pages 1097–1105, USA, 2012. Curran Associates Inc.

[20] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh,
Sean Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bern-
stein, Alexander C. Berg, and Li Fei-Fei. ImageNet Large Scale Visual
Recognition Challenge. International Journal of Computer Vision (IJCV),
115(3):211–252, 2015.

[21] Illustration of convolution operation. https://
datascience.stackexchange.com/questions/23183/
why-convolutions-always-use-odd-numbers-as-filter-\
size. Accessed: 2017-10-28.

[22] Illustartion of convolution operation. https://www.quora.com/
What-is-max-pooling-in-convolutional-neural-networks.
Accessed: 2017-10-28.

http://wiki.zividlabs.com/files/handeye/Skotheim_EyeInHand.pdf
http://wiki.zividlabs.com/files/handeye/Skotheim_EyeInHand.pdf
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7353795
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7353795
https://hackernoon.com/deep-learning-cnns-in-\tensorflow-with-gpus-cba6efe0acc2
https://hackernoon.com/deep-learning-cnns-in-\tensorflow-with-gpus-cba6efe0acc2
http://www.ai-junkie.com/ann/evolved/nnt5.html
http://www.ai-junkie.com/ann/evolved/nnt5.html
https://datascience.stackexchange.com/questions/23183/why-convolutions-always-use-odd-numbers-as-filter-\size
https://datascience.stackexchange.com/questions/23183/why-convolutions-always-use-odd-numbers-as-filter-\size
https://datascience.stackexchange.com/questions/23183/why-convolutions-always-use-odd-numbers-as-filter-\size
https://datascience.stackexchange.com/questions/23183/why-convolutions-always-use-odd-numbers-as-filter-\size
https://www.quora.com/What-is-max-pooling-in-convolutional-neural-networks
https://www.quora.com/What-is-max-pooling-in-convolutional-neural-networks

REFERENCES 113

[23] Illustartion of convolution operation. https://sites.google.com/
site/zhangleuestc/tracking-with-randomized-convnets.
Accessed: 2017-10-28.

[24] Yoshua Bengio. Practical recommendations for gradient-based training of
deep architectures. CoRR, abs/1206.5533, 2012.

[25] Katarzyna Janocha and Wojciech Marian Czarnecki. On loss functions for
deep neural networks in classification. CoRR, abs/1702.05659, 2017.

[26] Illustration of different learning rates. http://sebastianraschka.
com/Articles/2015_singlelayer_neurons.html. Accessed:
2017-12-02.

[27] James Bergstra and Yoshua Bengio. Random search for hyper-parameter
optimization. J. Mach. Learn. Res., 13:281–305, February 2012.

[28] Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training
deep feedforward neural networks. In Yee Whye Teh and Mike Titterington,
editors, Proceedings of the Thirteenth International Conference on Artificial
Intelligence and Statistics, volume 9 of Proceedings of Machine Learning
Research, pages 249–256, Chia Laguna Resort, Sardinia, Italy, 13–15 May
2010. PMLR.

[29] Siddharth Krishna Kumar. On weight initialization in deep neural net-
works. CoRR, abs/1704.08863, 2017.

[30] Saiprasad Koturwar and Shabbir Merchant. Weight initialization of deep
neural networks(dnns) using data statistics. CoRR, abs/1710.10570, 2017.

[31] Dropout: a simple way to prevent neural networks from overfit-
ting. https://www.semanticscholar.org/paper/Dropout%
3A-a-simple-way-to-prevent-neural-networks-Srivastava\
-Hinton/34f25a8704614163c4095b3ee2fc969b60de4698. Ac-
cessed: 2018-06-01.

[32] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and
Ruslan Salakhutdinov. Dropout: A simple way to prevent neural networks
from overfitting. Journal of Machine Learning Research, 15:1929–1958,
2014.

[33] H2o world-top 10 deep learning tips & tricks - arno
candel. https://www.slideshare.net/0xdata/
h2o-world-top-10-deep-learning-tips-tricks-arno-candel.
Accessed: 2018-06-01.

[34] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. ImageNet: A
Large-Scale Hierarchical Image Database. In CVPR09, 2009.

https://sites.google.com/site/zhangleuestc/tracking-with-randomized-convnets
https://sites.google.com/site/zhangleuestc/tracking-with-randomized-convnets
http://sebastianraschka.com/Articles/2015_singlelayer_neurons.html
http://sebastianraschka.com/Articles/2015_singlelayer_neurons.html
https://www.semanticscholar.org/paper/Dropout%3A-a-simple-way-to-prevent-neural-networks-Srivastava\-Hinton/34f25a8704614163c4095b3ee2fc969b60de4698
https://www.semanticscholar.org/paper/Dropout%3A-a-simple-way-to-prevent-neural-networks-Srivastava\-Hinton/34f25a8704614163c4095b3ee2fc969b60de4698
https://www.semanticscholar.org/paper/Dropout%3A-a-simple-way-to-prevent-neural-networks-Srivastava\-Hinton/34f25a8704614163c4095b3ee2fc969b60de4698
https://www.slideshare.net/0xdata/h2o-world-top-10-deep-learning-tips-tricks-arno-candel
https://www.slideshare.net/0xdata/h2o-world-top-10-deep-learning-tips-tricks-arno-candel

114 REFERENCES

[35] Tsung-Yi Lin, Michael Maire, Serge J. Belongie, Lubomir D. Bourdev,
Ross B. Girshick, James Hays, Pietro Perona, Deva Ramanan, Piotr Dollár,
and C. Lawrence Zitnick. Microsoft COCO: common objects in context.
CoRR, abs/1405.0312, 2014.

[36] M. Oquab, L. Bottou, I. Laptev, and J. Sivic. Learning and transferring
mid-level image representations using convolutional neural networks. In
2014 IEEE Conference on Computer Vision and Pattern Recognition, pages
1717–1724, June 2014.

[37] S. J. Pan and Q. Yang. A survey on transfer learning. IEEE Transactions
on Knowledge and Data Engineering, 22(10):1345–1359, Oct 2010.

[38] Ross B. Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Rich
feature hierarchies for accurate object detection and semantic segmentation.
CoRR, abs/1311.2524, 2013.

[39] Shaoqing Ren, Kaiming He, Ross B. Girshick, and Jian Sun. Faster R-
CNN: towards real-time object detection with region proposal networks.
CoRR, abs/1506.01497, 2015.

[40] Ross B. Girshick. Fast R-CNN. CoRR, abs/1504.08083, 2015.

[41] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott E.
Reed, Cheng-Yang Fu, and Alexander C. Berg. SSD: single shot multibox
detector. CoRR, abs/1512.02325, 2015.

[42] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks
for large-scale image recognition. CoRR, abs/1409.1556, 2014.

[43] Christian Szegedy, Sergey Ioffe, and Vincent Vanhoucke. Inception-v4,
inception-resnet and the impact of residual connections on learning. CoRR,
abs/1602.07261, 2016.

[44] Image of ssd architecture. http://silverpond.com.au/img/blog/
multiclass-details/architecture.png. Accessed: 2017-12-12.

[45] Bruno Siciliano, Lorenzo Sciavicco, Luigi Villani, and Giuseppe Oriolo.
Robotics: Modelling, Planning and Control. Springer Publishing Company,
Incorporated, 1st edition, 2008.

[46] James Diebel. Representing attitude: Euler angles, unit quater-
nions, and rotation vectors. https://www.astro.rug.nl/software/
kapteyn-beta/_downloads/attitude.pdf, 2006.

[47] Trajectory planning in robotics. https://link.springer.com/
content/pdf/10.1007%2Fs11786-012-0123-8.pdf. Accessed:
2018-05-20.

 http://silverpond.com.au/img/blog/multiclass-details/architecture.png
 http://silverpond.com.au/img/blog/multiclass-details/architecture.png
https://www.astro.rug.nl/software/kapteyn-beta/_downloads/attitude.pdf
https://www.astro.rug.nl/software/kapteyn-beta/_downloads/attitude.pdf
https://link.springer.com/content/pdf/10.1007%2Fs11786-012-0123-8.pdf
https://link.springer.com/content/pdf/10.1007%2Fs11786-012-0123-8.pdf

REFERENCES 115

[48] Alessandro Gasparetto, Paolo Boscariol, Albano Lanzutti, and Renato
Vidoni. Path Planning and Trajectory Planning Algorithms: A General
Overview, pages 3–27. Springer International Publishing, Cham, 2015.

[49] Nodes. http://wiki.ros.org/Nodes. Accessed: 2018-04-21.

[50] Messages. http://wiki.ros.org/Messages. Accessed: 2018-04-23.

[51] Services. http://wiki.ros.org/Services. Accessed: 2018-04-23.

[52] Kai-Tai Song, Cheng-Hei Wu, and Sin-Yi Jiang. Cad-based pose estimation
design for random bin picking using a rgb-d camera. Journal of Intelligent
& Robotic Systems, 87(3):455–470, Sep 2017.

[53] J. Pyo, J. Cho, S. Kang, and K. Kim. Precise pose estimation using land-
mark feature extraction and blob analysis for bin picking. In 2017 14th
International Conference on Ubiquitous Robots and Ambient Intelligence
(URAI), pages 494–496, June 2017.

[54] Pat Marion, Peter R. Florence, Lucas Manuelli, and Russ Tedrake. A
pipeline for generating ground truth labels for real RGBD data of cluttered
scenes. CoRR, abs/1707.04796, 2017.

[55] Andy Zeng, Kuan-Ting Yu, Shuran Song, Daniel Suo, Ed Walker Jr.,
Alberto Rodriguez, and Jianxiong Xiao. Multi-view self-supervised deep
learning for 6d pose estimation in the amazon picking challenge. CoRR,
abs/1609.09475, 2016.

[56] M. Schwarz, A. Milan, C. Lenz, A. Muoz, A. S. Periyasamy, M. Schreiber,
S. Schller, and S. Behnke. Nimbro picking: Versatile part handling for
warehouse automation. pages 3032–3039, May 2017.

[57] Lerrel Pinto and Abhinav Gupta. Supersizing self-supervision: Learning to
grasp from 50k tries and 700 robot hours. CoRR, abs/1509.06825, 2015.

[58] Andy Zeng, Shuran Song, Kuan-Ting Yu, Elliott Donlon, Francois Robert
Hogan, Maria Bauzá, Daolin Ma, Orion Taylor, Melody Liu, Eudald Romo,
Nima Fazeli, Ferran Alet, Nikhil Chavan Dafle, Rachel Holladay, Isabella
Morona, Prem Qu Nair, Druck Green, Ian Taylor, Weber Liu, Thomas A.
Funkhouser, and Alberto Rodriguez. Robotic pick-and-place of novel ob-
jects in clutter with multi-affordance grasping and cross-domain image
matching. CoRR, abs/1710.01330, 2017.

[59] Sergey Levine, Peter Pastor, Alex Krizhevsky, and Deirdre Quillen. Learn-
ing hand-eye coordination for robotic grasping with deep learning and large-
scale data collection. CoRR, abs/1603.02199, 2016.

[60] Jeffrey Mahler, Matthew Matl, Xinyu Liu, Albert Li, David Gealy, and Ken
Goldberg. Dex-net 3.0: Computing robust robot suction grasp targets in
point clouds using a new analytic model and deep learning. arXiv preprint
arXiv:1709.06670, 2017.

http://wiki.ros.org/Nodes
http://wiki.ros.org/Messages
http://wiki.ros.org/Services

116 REFERENCES

[61] G.J. Monkman. Robot grippers for use with fibrous materials. The Inter-
national Journal of Robotics Research, 14(2):144–151, 1995.

[62] Giacomo Mantriota. Theoretical model of the grasp with vacuum gripper.
Mechanism and Machine Theory, 42(1):2 – 17, 2007.

[63] N. Correll, K. E. Bekris, D. Berenson, O. Brock, A. Causo, K. Hauser,
K. Okada, A. Rodriguez, J. M. Romano, and P. R. Wurman. Analysis and
observations from the first amazon picking challenge. IEEE Transactions
on Automation Science and Engineering, 15(1):172–188, Jan 2018.

[64] How does a vacuum generator work? https://www.festo.com/wiki/
en/Function_of_a_vacuum_generator. Accessed: 2018-06-05.

[65] Gareth Monkman. An analysis of astrictive prehension. 16:1–10, 02 1997.

[66] Theoretical holding force of a suction cup. https:
//www.schmalz.com/en/vacuum-knowledge/
the-vacuum-system-and-its-components/
system-design-calculation-example/
theoretical-holding-force-of-a-suction-cup/. Accessed:
2018-06-03.

[67] Ns-en standard (13155:2003+a2:2009). https://www.standard.no/
no/Nettbutikk/produktkatalogen/Produktpresentasjon/
?ProductID=382830. Accessed: 2018-05-25.

[68] S. Wade-McCue, N. Kelly-Boxall, M. McTaggart, Douglas Morrison,
Adam W. Tow, J. Erskine, R. Grinover, A. Gurman, T. Hunn, D. Lee, An-
ton Milan, Trung Pham, G. Rallos, A. Razjigaev, T. Rowntree, R. Smith,
K. Vijay, Zheyu Zhuang, Christopher F. Lehnert, Ian David Reid, Pe-
ter I. Corke, and Jürgen Leitner. Design of a multi-modal end-effector and
grasping system: How integrated design helped win the amazon robotics
challenge. CoRR, abs/1710.01439, 2017.

[69] Carlos Hernandez, Mukunda Bharatheesha, Wilson Ko, Hans Gaiser,
Jethro Tan, Kanter van Deurzen, Maarten de Vries, Bas Van Mil, Jeff van
Egmond, Ruben Burger, Mihai Morariu, Jihong Ju, Xander Gerrmann,
Ronald Ensing, Jan van Frankenhuyzen, and Martijn Wisse. Team delft’s
robot winner of the amazon picking challenge 2016. CoRR, abs/1610.05514,
2016.

[70] Kr agilus. https://www.kuka.com/en-de/products/
robot-systems/industrial-robots/kr-agilus. Accessed:
2018-06-04.

[71] Kuka agilus kr 6 r900 sixx rotation axis image. https://www.
eurobots.net/used-robot-agilus-kr-6-r900-sixx-en.html.
Accessed: 2018-06-01.

https://www.festo.com/wiki/en/Function_of_a_vacuum_generator
https://www.festo.com/wiki/en/Function_of_a_vacuum_generator
https://www.schmalz.com/en/vacuum-knowledge/the-vacuum-system-and-its-components/system-design-calculation-example/theoretical-holding-force-of-a-suction-cup/
https://www.schmalz.com/en/vacuum-knowledge/the-vacuum-system-and-its-components/system-design-calculation-example/theoretical-holding-force-of-a-suction-cup/
https://www.schmalz.com/en/vacuum-knowledge/the-vacuum-system-and-its-components/system-design-calculation-example/theoretical-holding-force-of-a-suction-cup/
https://www.schmalz.com/en/vacuum-knowledge/the-vacuum-system-and-its-components/system-design-calculation-example/theoretical-holding-force-of-a-suction-cup/
https://www.schmalz.com/en/vacuum-knowledge/the-vacuum-system-and-its-components/system-design-calculation-example/theoretical-holding-force-of-a-suction-cup/
https://www.standard.no/no/Nettbutikk/produktkatalogen/Produktpresentasjon/?ProductID=382830
https://www.standard.no/no/Nettbutikk/produktkatalogen/Produktpresentasjon/?ProductID=382830
https://www.standard.no/no/Nettbutikk/produktkatalogen/Produktpresentasjon/?ProductID=382830
https://www.kuka.com/en-de/products/robot-systems/industrial-robots/kr-agilus
https://www.kuka.com/en-de/products/robot-systems/industrial-robots/kr-agilus
https://www.eurobots.net/used-robot-agilus-kr-6-r900-sixx-en.html
https://www.eurobots.net/used-robot-agilus-kr-6-r900-sixx-en.html

REFERENCES 117

[72] The zivid camera. http://www.zividlabs.com/. Accessed: 2017-12-
02.

[73] Frank C Park and Bryan J Martin. Robot sensor calibration: solving
AX= XB on the Euclidean group. IEEE Transactions on Robotics and
Automation, 10(5):717–721, 1994.

[74] Real-time, in situ intelligent video analytics: Harnessing the power of gpus
for deep learning applications. https://www.dsiac.org/resources/
journals/dsiac/winter-2017-volume-4-number-1/
real-time-situ-intelligent-video-analytics. Accessed:
2018-06-01.

[75] Pascal voc benchmark. http://player.slideplayer.com/26/
8688198/data/images/img46.png. Accessed: 2017-12-12.

[76] Kitti leaderboard. http://www.cvlibs.net/datasets/kitti/
eval_object.php?obj_benchmark=2d. Accessed: 2018-05-10.

[77] Coco leaderboard. http://cocodataset.org/
#detection-leaderboard. Accessed: 2018-05-10.

[78] The unreasonable popularity of tensorflow. http://deliprao.com/
archives/168. Accessed: 2018-05-12.

[79] Will google own ai? https://whatsthebigdata.com/2017/03/07/
8505/. Accessed: 2018-05-12.

[80] Tensorflow model zoo. https://github.com/tensorflow/models/
blob/master/research/object_detection/g3doc/detection_
model_zoo.md. Accessed: 2017-10-04.

[81] Running distributed tensorflow on compute en-
gine. https://cloud.google.com/solutions/
running-distributed-tensorflow-on-compute-engine. Ac-
cessed: 2018-05-12.

[82] Tensorflow tutorials. https://www.tensorflow.org/tutorials/.
Accessed: 2018-05-12.

[83] Tensorflow api documentation. https://www.tensorflow.org/api_
docs/. Accessed: 2018-05-12.

[84] Tensorflow github repository. https://github.com/tensorflow. Ac-
cessed: 2018-06-03.

[85] Development of an automated bin picking system for cluttered environ-
ments. https://youtu.be/bWHmY9RrQKc. Accessed: 2018-06-04.

http://www.zividlabs.com/
https://www.dsiac.org/resources/journals/dsiac/winter-2017-volume-4-number-1/real-time-situ-intelligent-video-analytics
https://www.dsiac.org/resources/journals/dsiac/winter-2017-volume-4-number-1/real-time-situ-intelligent-video-analytics
https://www.dsiac.org/resources/journals/dsiac/winter-2017-volume-4-number-1/real-time-situ-intelligent-video-analytics
http://player.slideplayer.com/26/8688198/data/images/img46.png
http://player.slideplayer.com/26/8688198/data/images/img46.png
http://www.cvlibs.net/datasets/kitti/eval_object.php?obj_benchmark=2d
http://www.cvlibs.net/datasets/kitti/eval_object.php?obj_benchmark=2d
http://cocodataset.org/#detection-leaderboard
http://cocodataset.org/#detection-leaderboard
http://deliprao.com/archives/168
http://deliprao.com/archives/168
https://whatsthebigdata.com/2017/03/07/8505/
https://whatsthebigdata.com/2017/03/07/8505/
https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/detection_model_zoo.md
https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/detection_model_zoo.md
https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/detection_model_zoo.md
https://cloud.google.com/solutions/running-distributed-tensorflow-on-compute-engine
https://cloud.google.com/solutions/running-distributed-tensorflow-on-compute-engine
https://www.tensorflow.org/tutorials/
https://www.tensorflow.org/api_docs/
https://www.tensorflow.org/api_docs/
https://github.com/tensorflow
https://youtu.be/bWHmY9RrQKc

118 REFERENCES

[86] Jeffrey Mahler, Jacky Liang, Sherdil Niyaz, Michael Laskey, Richard Doan,
Xinyu Liu, Juan Aparicio Ojea, and Ken Goldberg. Dex-net 2.0: Deep
learning to plan robust grasps with synthetic point clouds and analytic
grasp metrics. CoRR, abs/1703.09312, 2017.

[87] Berkeley autolab’s gqcnn package. https://github.com/
BerkeleyAutomation/gqcnn. Accessed: 2018-05-26.

[88] Ros concepts. http://wiki.ros.org/ROS/Concepts. Accessed:
2018-05-31.

[89] Ros tutorials. http://wiki.ros.org/ROS/Tutorials. Accessed:
2018-05-31.

[90] Ros api. http://wiki.ros.org/APIs. Accessed: 2018-05-31.

[91] Moveit! https://moveit.ros.org/. Accessed: 2018-05-05.

[92] The pascal visual object classes (voc) challenge. http://host.robots.
ox.ac.uk/pascal/VOC/pubs/everingham10.pdf. Accessed: 2018-
06-05.

[93] Giorgio Toscana and Stefano Rosa. Fast graph-based object segmentation
for RGB-D images. CoRR, abs/1605.03746, 2016.

[94] X. Li, L. Zhao, L. Wei, M. H. Yang, F. Wu, Y. Zhuang, H. Ling, and
J. Wang. Deepsaliency: Multi-task deep neural network model for salient
object detection. IEEE Transactions on Image Processing, 25(8):3919–
3930, Aug 2016.

[95] Zheng Wu, Ruiheng Chang, Jiaxu Ma, Cewu Lu, and Chi-Keung Tang.
Annotation-free and one-shot learning for instance segmentation of homo-
geneous object clusters. CoRR, abs/1802.00383, 2018.

[96] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross B. Girshick. Mask
R-CNN. CoRR, abs/1703.06870, 2017.

[97] Superpick. http://info.softroboticsinc.com/
binpicking-orderfulfillment-superpick. Accessed: 2018-
05-26.

[98] Konstantin Shmelkov, Cordelia Schmid, and Karteek Alahari. Incremen-
tal learning of object detectors without catastrophic forgetting. CoRR,
abs/1708.06977, 2017.

[99] Mary J Bravo and Hany Farid. Recognizing and segmenting objects in
clutter. Vision Research, 44(4):385–396, 2004.

[100] D. Rao, Q. V. Le, T. Phoka, M. Quigley, A. Sudsang, and A. Y. Ng. Grasp-
ing novel objects with depth segmentation. In 2010 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems, pages 2578–2585, Oct
2010.

https://github.com/BerkeleyAutomation/gqcnn
https://github.com/BerkeleyAutomation/gqcnn
http://wiki.ros.org/ROS/Concepts
http://wiki.ros.org/ROS/Tutorials
http://wiki.ros.org/APIs
https://moveit.ros.org/
http://host.robots.ox.ac.uk/pascal/VOC/pubs/everingham10.pdf
http://host.robots.ox.ac.uk/pascal/VOC/pubs/everingham10.pdf
http://info.softroboticsinc.com/binpicking-orderfulfillment-superpick
http://info.softroboticsinc.com/binpicking-orderfulfillment-superpick

REFERENCES 119

[101] Max Schwarz and Sven Behnke. Data-efficient deep learning for rgb-d object
perception in cluttered bin picking. 2017.

[102] Amaury Depierre, Emmanuel Dellandra, and Liming Chen. Jacquard: A
large scale dataset for robotic grasp detection. March 2018.

[103] Sergey Levine, Peter Pastor, Alex Krizhevsky, Julian Ibarz, and Deirdre
Quillen. Learning hand-eye coordination for robotic grasping with deep
learning and large-scale data collection. The International Journal of
Robotics Research, 37(4-5):421–436, April 2018.

[104] Dex net github documentation. https://berkeleyautomation.
github.io/dex-net/. Accessed: 2018-05-24.

https://berkeleyautomation.github.io/dex-net/
https://berkeleyautomation.github.io/dex-net/

120 REFERENCES

Appendix A

Appendix

A.1 Test Objects

(a) Iphone (b) HairWax (c) SD-card

(d) 3D Printed Object4 (e) 3D Printed Object1 (f) Bottle

Figure A.1: Objects used in Test A.

121

122 APPENDIX A. APPENDIX

(a) 3D Printed Object2 (b) 3D Printed Object3 (c) Tape

(d) Large Box (e) Small Box (f) Metal Object

Figure A.2: Objects used in Test A.

A.2. STATE MACHINE DETAILS 123

A.2 State Machine Details

Current State Input Next state Output
Robots not connected RT == True Robot Home RP = Home

Robots Home

I == False
GL == False
RC == True

Perception
GL

RP = Image

RT == False Robots not connected System failure

GL == True Gripper Ready
RP = ready

GT

Perception
RT == False Robots not connected System failure

GL = valid Robot Home
GL

RP = Home

Gripper Ready
RC & RT == False Robots not connected System failure

GT == false Robots Home
GL = False
RP = home

GT = True Grasping
V
G

Grasping

V == true
G == true

Placing
P
V

RT == False Robots not connected System failure

V == Error
G = Error

Robots Home
VG = false
VG = false
RP = Home

Placing
RT == False Robots not connected System failure
V == false Robots Home Clear inputs

Table A.1: The table shows all possible states and the transition between them,
and the outputs resulting from each input. The first column lists the possible
states of the machine, while second column lists the a set of possible of inputs at
this state. The third column lists the next state in the system, and is dependant
of the inputs of the current state. The last column shows the outputs from the
current state.

Global State Variables Abbreviation Comments
Robot Connection RC master computers connection to the PLC

Camera Connection CC master computers connection with the camera
Robot Pose RP Current robot pose
Perception I Outcome of image acquisition and processing
Vacuum V Vacuum on off status

Grasp Location GL Status on grasp location computation
Grasp Trajectory GT Status on grasp trajectory computation

Grasp G Outcome of grasp execution
Place P Outcome of place execution

Table A.2: Explanation of inputs and outputs of the state machine.

124 APPENDIX A. APPENDIX

Figure A.3: Auto Labeled images for training

A.2. STATE MACHINE DETAILS 125

Figure A.4: Auto Labeled images for training

126 APPENDIX A. APPENDIX

Figure A.5: Manual Labeled Training images

A.3. TENSORBOARD TRAINING GRAPHS 127

Figure A.6: Test and validation training dataset consists of 20 % of the manual
and auto labeled images.

A.3 TensorBoard Training Graphs

Figure A.7: Example of accuracy during training with different hyperparameters

128 APPENDIX A. APPENDIX

Figure A.8: Example of total loss during training with different hyperparameters

Figure A.9: Example of predictions during training with different hyperparame-
ters.

A.4. DIGITAL APPENDIX 129

A.4 Digital Appendix

A digital appendix was submitted with the thesis, which contained the most
relevant software:

• DemonstrationVideoMaster.mp4
Demonstration video while bin picking with object detection.

• Readme.txt
Readme file.

• BinPick main.py
Main code used while running the system.

• BinPickCapture.cpp
Image acquisition for the Zivid camera.

• GetRGBDim.py
Extraction of the relevant channels to create an RGB and depth image.

• OD.py
Object detection module.

	oppgavebeksrivelseendeligresized
	MasteroppgaveHansØsterdalSondreVadheim
	MasteroppgaveHansØsterdalSondreVadheim

