
The Music Industry on Blockchain
Technology

Andreas Fougner Engebretsen
Hallvard Kristoffer Boland Haugen

Master of Science in Communication Technology

Supervisor: Danilo Gligoroski, IIK
Co-supervisor: Chris Carr, IIK

Department of Information Security and Communication Technology

Submission date: June 2018

Norwegian University of Science and Technology

The Music Industry on
Blockchain Technology

Andreas Fougner Engebretsen
Hallvard Kristoffer Boland Haugen

Submission date: June 2018
Responsible professor: Danilo Gligoroski, IIK
Supervisor: Chris Carr, IIK

Norwegian University of Science and Technology
Department of Telematics

Title: The Music Industry on
Blockchain Technology
Student: Andreas Fougner Engebretsen
Hallvard Kristoffer Boland
Haugen

Problem description: The music industry is a complex network of creators and

administrative roles. Artists, composers, songwriters, producers, publishers, record
labels, and collectors all want a piece of the revenue. The distance between the
creators of music and the consumers is large. The money travels through a long
chain of third-party companies before they reach the creators. Slow royalty payouts
make it difficult for artists to rely on income from this alone.

The industry also faces different challenges with standards and transparency.
Contracts and split sheets between the different players are hidden between each
joint in the chain. There is no global copyright register and no common platform for
licensing creative work. This makes it difficult for music consumers and potential
customers to obtain the rights to use.

In our thesis we focus on the problems related to transparency, and slow and
reduced royalty payouts as a result of excessive middlemen in the industry. Our goal
is to create a proof of concept (POC) demonstration of music copyright registration
and licensing through smart contracts on the Ethereum blockchain.

We spent the last semester researching the music industry and its complex
composition of various players. For our master project we will attempt to develop
a decentralized application on the Ethereum blockchain. The inherent nature of
blockchain technology provides a set of attractive properties which seems to solve the
problems described in the paragraph above. More specifically, we will use the Solidity
programming language to write the back end logic for our application. This logic will
define licensing features with automatic payouts to appropriate right holders as well
as how music copyrights will be issued in the form of sell- and tradeable Ethereum
tokens.

Given that we are satisfied with the back end, we will develop a web application
for users to interact with it. This will provide a graphical user interface for copyright
registration and licensing. The application will be created in a JavaScript-based
framework (Angular 2 / React). In order to read and write data(code) from the
blockchain we will use the web3.js library.

Responsible professor: Danilo Gligoroski, IIK
Supervisor: Chris Carr, IIK

ii

Abstract

The topic of revenue streams in the music industry has been frequently
discussed since the transition from sales to streaming started when Spotify
launched in 2008. Even though revenues in the industry have reached
new heights, musicians express dissatisfaction with lower royalty payouts.
Moreover, it has become increasingly more difficult to understand the
royalty calculations. With today’s complicated licensing agreements,
money flows through a complex chain of third parties before it reaches the
musicians. The industry struggles with transparency and efficiency, and
the musicians are paying the price. Meanwhile, blockchain technology
has developed since its first implementation with Bitcoin in 2008. Today,
more advanced blockchains can run decentralized transparent applica-
tions that utilize the technology’s efficient transaction system. With the
industry issues and the promises of blockchain in mind, we investigate
how blockchain technology can be applied to solve value chain problems
within the music space.

In this thesis, we identify core issues in the music industry, propose a
decentralized application (dApp) that attempts to solve these issues and
implement the proposed solution. We develop the business logic using
smart contracts on the Ethereum blockchain and make an associated
web application using a JavaScript framework. The dApp works as
a global copyrights database where musicians can register and license
musical works. We exploit Ethereum’s efficient transactional system to
manage license purchases. Furthermore, we discuss the advantages and
disadvantages of blockchain based solutions.

Sammendrag

Inntektsstrømmer i musikkbransjen har blitt hyppig diskutert siden over-
gangen fra salg til streaming som startet da Spotify ble lansert i 2008. Selv
om inntekter i bransjen har nådd nye høyder er musikere utilfreds med
lavere royaltyutbetalinger. Det er også blitt stadig vanskeligere å forstå
beregningene bak utbetalingene. Med dagens kompliserte lisensavtaler
flyter penger gjennom en kjede av tredjeparter før det når musikerne. Næ-
ringen sliter med åpenhet og effektivitet og det er musikerne som betaler
prisen. I mellomtiden har blokkjedeteknologien utviklet seg fra den første
implementeringen av Bitcoin i 2008. I dag kan mer avanserte blokkjeder
kjøre desentraliserte og transparente applikasjoner som benytter seg av
teknologiens effektive transaksjonssystem. Med bransjens problemer og
blockchains løfter i i fokus, undersøker vi hvordan blokkjedeteknologi kan
brukes til å løse problemene i musikkindustrien.

I denne masteroppgaven identifiserer vi kjerneproblemer i musikk-
bransjen, foreslår en desentralisert applikasjon (dApp) som sikter på
å løse disse problemene, for så å implementere den foreslåtte løsnin-
gen. Vi utvikler forretningslogikken ved hjelp av smarte kontrakter på
Ethereum-blokkjeden og lager en tilhørende webapplikasjon ved hjelp av
et JavaScript-rammeverk. Den desentraliserte applikasjonen fungerer som
en global opphavsrettsdatabase der musikere kan registrere og lisensiere
musikalske verk. Vi utnytter fordelene ved Ethereums transaksjonssystem
for å håndtere lisenskjøp.

Preface

This Master’s Thesis is written by Andreas Fougner Engebretsen and Hal-
lvard Kristoffer Boland Haugen as part of the Communication Technology
Program at the Department of Information Security and Communication
Technology, Norwegian University of Science and Technology. It is the
final deliverable for the program, and was conducted during the spring
semester of 2018. The thesis builds on a pre-study conducted by Andreas
and Hallvard in the fall of 2017 that uncovers issues in the music industry.

Acknowledgements

First of all, we would like to express our gratitude to Chris Carr, our
supervisor, and Danilo Gligoroski, the responsible professor for the guid-
ance and valuable feedback throughout the semester. They believed in
our idea and helped us define our own subject for this thesis making
necessary adjustments along the way. Secondly, we would like to thank
the Ethereum Community for the available tutorials and articles online.
It would be impossible to learn Solidity and smart contract deployment
without them. Finally, we would like to thank our family and friends for
asking tough questions and providing input along the way.

Contents

List of Figures xi

Glossary xiii

List of Acronyms xv

1 Introduction 1
1.1 Motivation . 1
1.2 Goals and Research Question . 2
1.3 Research Methods . 2
1.4 Outline . 3

1.4.1 Background Analysis . 3
1.4.2 Planning and Developing the Proof-of-Concept 3
1.4.3 Contributions, Discussion and Conclusion 3

2 Background 5
2.1 The Music Industry . 5

2.1.1 Songs Are Two Different Pieces of Work 5
2.1.2 License and Royalty Types 8
2.1.3 Royalty Collectors . 9
2.1.4 On-Demand Streaming Services 12

2.2 Issues in the Music Industry . 15
2.2.1 Industry Structure and the Relationships Between Players . . 15
2.2.2 Lack of Information and Standards 17
2.2.3 Status Quo . 19
2.2.4 Accessibility and Competition 20

2.3 Blockchain . 21
2.3.1 Overview . 21
2.3.2 The Bitcoin Protocol . 22
2.3.3 Defining a Distributed and Decentralized Network 23
2.3.4 Properties of Distributed and Decentralized Networks 24

2.4 Ethereum . 26

vii

2.4.1 Platform for Decentralized Applications 26
2.4.2 Smart Contracts . 26
2.4.3 Two Types of Accounts . 26
2.4.4 Ethereum Virtual Machine 26
2.4.5 Consensus and block time . 27
2.4.6 Token system . 27
2.4.7 Transparent Trustless Decentralized Applications 28

2.5 Related Work . 29
2.5.1 Ujo Music . 29
2.5.2 Musicoin . 29
2.5.3 SongFreedom . 30
2.5.4 Blokur . 30

3 Application System Design 31
3.1 Rights Done Right . 31

3.1.1 Choosing the Etheruem Blockchain 31
3.1.2 Music Licensing Use Cases 34

3.2 System Architecture . 34
3.2.1 Client: Web browser . 34
3.2.2 Web Server: Angular Application 34
3.2.3 Ethereum blockchain: Back-end Execution Environment . . . 35
3.2.4 Firebase Server: Data storage and Authentication 35
3.2.5 Application Deployment . 35

3.3 Application Storage . 37
3.4 Technologies . 40

3.4.1 Development Environment 40
3.4.2 Application Dependencies . 45

4 Implementating a Decentralized Application 49
4.1 Implementing Smart Contracts . 49

4.1.1 WorkBase.sol - The Application’s Core Contract 50
4.1.2 TokenOwnership.sol - Copyrights as Tokens 53
4.1.3 LicenseBase.sol - Storing License Contracts on Ethereum . . 56
4.1.4 LicensePurchase.sol - Handling License Purchases 57

4.2 Building a Web Application with Angular 61
4.2.1 Project Structure . 61
4.2.2 Authentication and Authorization 62
4.2.3 Services . 63
4.2.4 Models . 65
4.2.5 Components . 66
4.2.6 Modules . 67

5 Results 69
5.1 Background Analysis . 69
5.2 Smart Contracts . 71

5.2.1 Functioning Proof-of-Concept 71
5.2.2 Ethereum Community and Education 74

5.3 Web Application . 75

6 Evaluation and Discussion 87
6.1 Challenges with Blockchain Technology 87

6.1.1 Scalability . 87
6.1.2 Block Time . 87
6.1.3 Transaction Fees . 88
6.1.4 Programming Language . 88

6.2 Is the Music Industry Ready for Blockchain? 89
6.3 Necessity of Blockchain . 90
6.4 Blockchain as an Economic Transaction System 90
6.5 Immutability . 91
6.6 Centralized vs. Distributed Storage 92
6.7 Web Application . 93

7 Conclusion 95
7.1 Future Work . 96

7.1.1 Legal Issues . 96
7.1.2 Higher Degree of Decentralization 96
7.1.3 Decentralied App Governance 97
7.1.4 Code Enhancements . 97

References 99

Appendices
A GitHub Repository 103

List of Figures

2.1 Royalty Flow for Musical Compositions 11
2.2 Royalty Flow for Sound Recordings . 12
2.3 U.S. Music Industry Revenues 2017 . 13
2.4 Categoric Flow of Streaming Royalties 14
2.5 Bitcoin Blocks . 22
2.6 Blockchain Decentralized Position . 24
2.7 Ethereum Blocks . 27

3.1 Application Deployment Diagram . 36
3.2 Sequence Diagram of create work use case 39
3.3 Ganache - Account Balances 1 . 41
3.4 Truffle terminal commands . 43
3.5 Ganache - Migration transactions . 44
3.6 Cloud Firestore Collection . 48

4.1 Token Balance Diagram . 58

5.1 MetaMask Wallet 1 . 72
5.2 MetaMask Wallet 2 . 72
5.3 Ganache - Purchase License Transaction Details 72
5.4 Ganache - Withdraw Balance Transaction Details 73
5.5 Ganache - Account Balances 2 . 73
5.6 Home View . 76
5.7 Sign Up View . 77
5.8 Create Work View . 78
5.9 Approve Work View . 79
5.10 Create License View . 80
5.11 View Work View . 81
5.12 Purchase License View . 82
5.13 Receipts View . 83
5.14 Generated Royalties View . 84
5.15 Withdraw Royalties View . 85

xi

Glossary

Ethereum Ethereum is a blockchain based software platform that enables smart
contracts and decentralized applications (dApps) to be built and run without
any downtime, fraud, control or interference from a third party.

Ethereum Virtual Machine The Ethereum Virtual Machine is the runtime envi-
ronment for smart contracts in Ethereum.

Fiat Money Fiat money is a currency without intrinsic value that has been estab-
lished as money, often by government regulation.

Gas The cost for running a transaction on the Ethereum blockchain. It represents
the "work" a transaction requires to be processed..

Right Coin The official ERC721-token for Rights Done Right. It has the abbrevia-
tion RCN..

Smart Contracts Smart contracts are self-executing contracts with the terms of
the agreement between buyer and seller being directly written into lines of
code.

Trustlessness Trustlessness is a model that does not require trust to safely interact
and transact.

xiii

List of Acronyms

ASCAP American Society of Composers, Authors and Publishers.

BaaS Backend-as-a-Service.

BMI Broadcast Music, Inc..

CLI command line interface.

dApp decentralized application.

ETH Ether.

EVM Ethereum Virtual Machine.

GRD Global Repertoire Database.

ICO initial coin offering.

IMDb Internet Movie Database.

NTNU Norwegian University of Science and Technology.

POC proof-of-concept.

PRO performance rights organization.

RCN Right Coin.

SESAC Society of European Stage Authors and Composers.

xv

Chapter1Introduction

In this chapter we explain the motivation for the research project and state our
objectives and research question. We then explain the method for how we will answer
the research question as well as outline the structure of the thesis.

1.1 Motivation

Blockchain technology combines decentralization with cryptographical hashing al-
gorithms to establish trustless economic transaction systems. Some claim that it is
the most important technological invention of our age [1]. Even though blockchain
has a lot of attractive properties and promises, few companies, organizations, and
governments have embraced its potential in real practical applications. Today, al-
most ten years after blockchain’s birth with the release of bitcoin’s white paper [2],
more people are starting to understand and develop innovative solutions that go
beyond cryptocurrencies [3]. Bitcoin was the first blockchain application that demon-
strated the ideas of trustless cryptographically secured transaction systems. Newer
second-generation blockchains, such as Ethereum, attempts to facilitate autonomous
trustless decentralized applications (dApps) that can potentially disrupt conventional
economic systems. The music industry is one example of such a financial system.
Blockchain technology seems to offer solutions to problems that musicians have
complained about regarding transparency, efficiency and fairness along the industry
value chain [4] [5] [6]. We find it compelling to research the possibilities of applying
blockchain technology to existing issues in today’s music industry. People within
the music space have also expressed their interest. Nick Mason, one of the founding
members of the rock band Pink Floyd, expressed his interest in the foreword on the
Blockchain For Creative Industries Research Cluster Middlesex University report [4]:

“If blockchain technology is going to be the future, we need to dig in and make it
happen.”

- Nick Mason

1

2 1. INTRODUCTION

1.2 Goals and Research Question

Based on the motivation, we define the following goals:

G1: Identify the core problems in the music industry and understand
how blockchain technology can be utilized to resolve the issues.

The music industry is a complex hierarchy of different players. We define G1 to
understand the structure of the industry and how revenues flows through the value
chain before it reaches the musicians. This knowledge is vital in order to understand
how the promises of blockchain can apply in music industry applications. G1 also
involves researching which blockchain properties are meaningful and relevant to the
discussion. In addition to the mentioned analytical goal, we also define a more
specific practical goal:

G2: Demonstrate that musicians and other industry players can ben-
efit from transparent blockchain based decentralized applications.

Blockchain technology seems to have a lot of promises in many different industries
and applications. The Ethereum platform enables developers to make decentralized
applications residing on the blockchain. We define G2 to get a better understanding of
how to develop such a decentralized application and to provide an actual solution that
addresses authentic problems. In our case, the goal is to create a Proof-of-Concept
(POC) demonstration that can offer players in the music industry valuable features.

To reach the defined goals, we address the following research question:

RQ: How can blockchain technology be utilized in order to solve prob-
lems related to transparency, efficiency, and fairness along the music in-
dustry value chain?

1.3 Research Methods

In this thesis, we investigate the potential of applying blockchain technology in
the music industry by following the design science approach. We do this by first
analyzing the relationship between industry players to identify the core problems. We
then proceed to implement a POC music copyright database and licensing solution,
utilizing the Ethereum blockchain platform. We evaluate the results and discuss
benefits and challenges for blockchain based solutions.

1.4. OUTLINE 3

1.4 Outline

The structure of the thesis is split into three distinct parts:

1.4.1 Background Analysis

The first part is the background analysis found in the second chapter:

• Chapter 2: Background explains the structure of today’s music industry and
exposes the core issues within the music space. The chapter also describes the
basics of blockchain technology and the Ethereum platform. Moreover, it dis-
cusses the most important properties and implications of trustless decentralized
applications.

1.4.2 Planning and Developing the Proof-of-Concept

The next part consists of chapters 3 and 4, which contain planning and implementation
of the proof-of-work solution.

• Chapter 3: Application System Design demonstrates the use cases for
our POC, proposed system architecture, and relevant technologies.

• Chapter 4: Implementing a Decentralized Application presents the
technical implementation of the Ethereum-based back-end logic as well as the
front-end code.

1.4.3 Contributions, Discussion and Conclusion

The last three chapters make up the final part of the thesis. Here we present the
project’s contributions which primarily includes the results of the POC. We evaluate
and discuss the results before offering our conclusion.

• Chapter 5: Results presents our contributions including the results from the
background analysis and the POC solution. The project’s open source nature
also contributes to the blockchain development community.

• Chapter 6: Discussion and Evaluation highlights the advantages and
disadvantages for Ethereum-based dApps compared to traditional centralized
systems. Furthermore, we evaluate our implementation and point to specific
areas with improvement potential.

• Chapter 7: Conclusion summarizes the presented work by answering the
research question. It also presents future work.

Chapter2Background

This chapter forms the background analysis of the master project. We present a
detailed description of today’s music industry players and the relationship between
them. Furthermore, we analyze how these relationships provide a basis for complex
industry issues. This chapter also includes a high-level description of blockchain
technology and its most important properties. Finally, we give an overview for the
Ethereum blockchain and explain how it facilitates decentralized applications.

2.1 The Music Industry

In this section, we will give an overview of the structure of today’s music industry.
The process of writing and recording music, and getting it out to consumers involves
a network of players - each with different roles and responsibility. We argue that it
is essential to have an understanding of who does what to grasp the critical industry
problems we attempt identify.

2.1.1 Songs Are Two Different Pieces of Work

When most people talk about a song, they typically refer to a recording that one can
hear on the radio or streaming services. However, in the music industry the term
describes more than what is heard. A song consists of two elements; the musical
composition and the recording of a musical composition.

Musical Composition

Most modern music starts with the act of writing notes or lyrics down on a piece of
paper. We define everything about a song which can be written down as a musical
composition. That includes notes, chord progressions, arrangement, melodies and so
on. A composer is a person who writes musical compositions in different music genres.
In most modern music that contains lyrics, we typically use the term songwriter. A
songwriter can either write the instrumental composition or the lyrics for a song.

5

6 2. BACKGROUND

Songwriters obtain copyrights for their work once it is created. If a song has several
authors, they agree on how many percent of the copyrights they each own. That is
often the case when a person (or group) writes the instrumental composition, and a
different person writes the lyrics.

A music publisher is a company that represents songwriters. Songwriters often
sign a publishing contract in which they transfer the copyrights in their work to their
publishing company. Signing such a contract typically involves a signing bonus or
publisher advance to the songwriter. There are different types of contracts. Most
of them leave the publishing company with two main tasks. The first is to connect
songwriters existing songs with suitable recording artists in order to get the songs
professionally recorded in a studio. The publisher also promotes songs to media
production companies such as film studios and advertising agencies. In addition to
promoting songwriter’s work, the second task is to ensure that songwriters get paid.
That involves licensing songs, monitor where songs are used, and distribute collected
royalties to songwriters. There are many different types of licensing agreements,
each of which generates a different type of royalty. We will discuss these types
more in-depth in a later section. A standard publishing contract states that the
publisher distributes 50% of the collected royalties for a given song to the appropriate
songwriter(s) while keeping 50% as payment for its services [7].

Sound Recording

A person who performs a musical composition in a studio is called a recording artist.
In the previous paragraph, we explained how it is common practice for songwriters
to be represented by a publishing company. Similarly, recording artists are often
represented by a record label. They sign a record label contract defining different
relationship terms, such as the time the contract is valid between the two. The artist
sometimes enjoys a record label signing bonus for entering into such an agreement.
The main task of a record label is to develop their affiliated artists by providing a set
of different services. For instance, a label helps with marketing, promotion, touring
and distribution. Additionally, a record label facilitates studio time for their artists
and connects them with music producers. During studio sessions, a producer may
take on many different roles, such as suggesting changes to a song’s arrangement
or coaching the artists to perform in a specific way. In addition, a producer is
often responsible for the technical engineering part of the recording process such
as controlling the actual audio recordings, mixing the different recordings together,
and sometimes help with the final mastering of the track. Both the artist and the
producer are considered authors of a sound recording, yet the former typically enjoys
a bigger piece of the pie when the track is used commercially.

The result of a finished studio recording session is the master recording file.

2.1. THE MUSIC INDUSTRY 7

Sound recording copyrights protect this file. Note that sound recording copyrights
are separate from the musical composition copyrights protecting the musical com-
position being recorded. The record label owns both the digital master file and the
copyrights that protect it according to a standard record label contract. In return,
the record label is responsible for licensing this sound recording and distribute the
collected royalties to appropriate artists and producers. Today, there are three major
record labels. The so-called "Big Three" are Universal Music Group, Sony Music
Entertainment, and Warner Music Group. Most record labels outside of these are
subsidiaries which live under one of the Big Three’s corporate umbrella. In fact, the
three major labels account for almost 80% of the whole music market today [8].

Independent Musicians

Not every musician has a company representing them. This is often the case for little-
known artists trying to make a name for themselves in the business. These are called
independent (indie) artists, and they often follow a do-it-yourself approach. That
involves writing their own songs and record them in their own studio. Independent
artists enjoy certain benefits such as more freedom and complete ownership of their
work. However, the road to success may present more challenges for indie musicians.
An independent record label is a record label that operates without any funding or
advances to indie artists when signing a contract. They typically take care of music
production and distribution in return for a percentage of any future profits the music
provides. Signing with an independent record label may also provide some benefits
in terms of networking and promotion, and many indie artists choose to begin their
career this way. Some artists who write and record their own music never sign with
a major label nor an indie label. These self-released musicians typically sign with
a music aggregator that takes care of distributing music to on-demand streaming
services. Two well-known music aggregators are CD Baby and TuneCore. Small
indie labels can also sign up with aggregators for distribution.

The Merlin Network is a global digital rights agency that operates in the inde-
pendent record label sector. They represent tens of thousands indie labels from
53 countries. “Merlin represents by far the most commercially significant set of
rights outside of the three major labels” according to their website1. Many consider
them the fourth big label because of this. Their main focus is digital distribution.
“Merlin licenses digital music services seeking to offer their users the widest possible
range of independent music from around the globe. Merlin has struck deals with
the world’s most important new-generation digital music services”2. These services
include Spotify, Google Play, YouTube, and others.

1http://www.merlinnetwork.org/what-we-do - [Accessed: 22-04-2018]
2http://www.merlinnetwork.org/whowelicense - [Accessed: 22-04-2018]

8 2. BACKGROUND

2.1.2 License and Royalty Types

Like live concerts, digital and retail sales, merchandise and signing bonuses, licensing
royalties is a vital source of income for artists and songwriters. Licensing royalties
are fees that companies pay for a license to use music in their business. The type of
license required depends on many different factors. Most licenses and corresponding
royalties fall into four main categories.

1. Public performance royalties are paid to copyright holders for a license to
perform songs publicly. Music played over the radio, in a restaurant or a bar
is considered a public performance. More specifically, a public performance
“occurs when a song is sung or played, recorded or live, on radio and television, as
well as through other media such as the internet, live concerts, and programmed
music services.”3

Public performance royalties apply to both musical compositions and sound
recordings. Thus, if an online radio station wants to stream a song, they have
to obtain a public performance license from all copyright holders (usually a
publisher and a record label).

2. Synchronization (sync) royalties are paid to copyright holders for a license
to synchronize music with some visual media output. Some examples are film,
television shows, advertisements, video games, accompanying website music,
movie trailers, etc.
Sync royalties apply to both musical compositions and sound recordings. Thus,
if an ad agency wants to use a song in a commercial, they have to obtain a
sync license from all copyright holders.

3. Mechanical royalties are paid to copyright holders when musical composi-
tions are copied and sold on a "mechanically reproduced" medium. Traditionally,
record labels paid these royalties to songwriters when mechanically manufactur-
ing albums and vinyl for their sound recordings which is where the name stems
from. Nowadays, streaming services also have to pay streaming mechanical
royalties (also known as streaming mechanicals) to songwriters when their
musical compositions are streamed on their platform.

4. Print royalties are the least common type. They apply to musical compo-
sitions which are transcribed to a print piece and then distributed. “Print
royalties are paid to the copyright holder based on the number of copies made
for the printed piece.”4

3https://www.bmi.com/faq/entry/what_is_the_difference_between_performing_right_royalties_mechanical_r
- [Accessed: 18-03-2018]

4https://www.musicbed.com/knowledge-base/4-types-of-music-royalties/109 - [Accessed: 18-03-
2018]

2.1. THE MUSIC INDUSTRY 9

2.1.3 Royalty Collectors

We mentioned earlier that publishers and record labels monitor where their musicians’
work is used as well as collecting appropriate royalties based on this. That is true to
some extent. However, this job requires a tremendous amount of work. For publishers
and record labels to focus on their core business, other organizations specialize in
the space of royalty collection. Each country (sometimes world territory) has their
own group of copyright collecting agencies. They issue various licenses, monitor
where musical works are used and collect and distribute royalties to right holders. In
many cases, this structure of intermediaries makes the licensing process easier. For
instance, a digital radio station does not have to negotiate deals with every publisher
and record label when playing popular music. The relationship between publishers,
record label, and collectors are slightly different for each world territory. Some have
different collectors for different royalty types.

Performing Rights Organizations

Agencies that collect public performance royalties are known as Performing Rights
Organizations (PROs). In the US market, there are three big PROs. They are called
American Society of Composers, Authors and Publishers (ASCAP), Broadcast Music,
Inc. (BMI) and Society of European Stage Authors and Composers (SESAC). A
PRO is responsible for collecting public performance royalties for musical works.
As mentioned in Figure 2.1, this includes fees paid by radio stations, restaurants,
concert venues, bars, nightclubs, etc., which grants a public performance license
allowing musical works to be performed in their public environment. All the musical
compositions the publisher represents become a part of the PRO’s catalog when
signing a contract. Thus, companies only need to buy a license from one PRO to
get permission to utilize a big catalog of musical compositions. The PROs keep
a percentage of the royalties for their service before they distribute the money to
appropriate right holders. TONO is the only PRO in Norway. They offer the same
services to songwriters and publishers in Norway as ASCAP, BMI and SESAC offer
in the US.

SoundExchange is another PRO in the US which collects royalties for sound
recordings. That includes a fee paid by non-interactive digital radio services that
broadcast music over internet, satellite or cable. The fee grants a statutory license
allowing for streaming sound recordings in their public environment. Note that
SoundExchange is not eligible to collect royalties for sound recordings played over
the FM/AM radio network. That is due to a US copyright law resulting from
terrestrial broadcasters arguing that performers benefit from free promotion through
radio plays [9]. SoundExchange is currently fighting to close this “seemingly unfair”

10 2. BACKGROUND

loophole5. SoundExchange is a non-profit organization. They distribute 50% of
collected royalties to record labels and 50% to artists.

Mechanical Royalty Collectors

The Harry Fox Agency (HFA) was established by the National Music Publishers’
Association in 1927. HFA is the leading provider of rights management and royalty
services in the US mechanical licensing space with over 48,000 publisher clients6.
They negotiate mechanical licensing deals with small and major record labels as well
as on-demand streaming services.

Collecting Sync and Print Royalties

Sync and print licenses are in almost all cases negotiated on a case-by-case basis
directly between the licensee and the publisher. For instance, if a company wants to
release a guitar book containing chords and lyrics of famous country songs, they would
have to contact the publishers who hold the copyrights in the musical compositions
and negotiate terms such as the number of printed books and price per copy.

Royalty Flow

Royalties for musical compositions and sound recordings travel through several players
before musicians enjoy their share. Figure 2.1 and 2.2 illustrate how the money flows
through a chain of intermediaries before it reaches songwriters and recording artists
respectively.

5https://www.soundexchange.com/advocacy/closing-the-amfm-radio-royalty-loophole/ - [Ac-
cessed: 19-03-2018]

6https://www.harryfox.com/publishers/why_affiliate.html - [Accessed: 17-03-2018]

2.1. THE MUSIC INDUSTRY 11

Royalty Flow for Musical Compositions

Figure 2.1: How musical compositions royalties flow for different license categories.
Figure is created by us, but inspired by Kirstin Thomson [10].

12 2. BACKGROUND

Royalty Flow for Sound Recordings

Figure 2.2: How sound recording royalties flow for different license categories.
Figure is created by us, but inspired by Kirstin Thomson [10].

2.1.4 On-Demand Streaming Services

On the topic of different licensing and royalty types, we also need to talk about
on-demand streaming services. On-demand means that end users can choose what
music to stream. Some examples are Spotify, Tidal and Apple Music. Numbers
show that these services are becoming the primary platforms where regular people
consume music. “Streaming music platforms accounted for almost 2/3rd of total U.S.
music industry revenues in 2017 and contributed nearly all of the growth.” [11] The
substantial growth of these industry revenue sources makes them important to study.

Spotify is the leading player in the music streaming space with over 150 million
monthly users and 75 million paying subscribers7, making it the most popular on-
demand streaming service in the world. They use a standard freemium business
model strategy earning money through advertisements and payments from premium
subscribers. Premium users enjoy on-demand uninterrupted high- quality music
streaming with options like listening to their playlist in offline mode. Non-paying

7https://investors.spotify.com/financials/press-release-details/2018/Spotify-Technology-SA-
Announces-Financial-Results-for-First-Quarter-2018/ - [Accessed: 24-03-2018]

2.1. THE MUSIC INDUSTRY 13

Figure 2.3: Streaming makes up the majority of revenue in the US music industry.
Figure source: 2017 RIAA Revenue Statistics [11]

users have access to the same content, but with some limitations which include
advertisements, lower sound quality and no option for offline streaming. Most on-
demand music streaming services offer more or less the same subscription-based
service with minor differences. In addition to similar business models, they also
share the same licensing requirements in order to offer music through their digital
platforms. What do these license agreements look like? We will use Spotify as an
example for answering this question.

Streaming Royalties

Spotify has to compensate both songwriters and recording artists for the music they
offer in their catalog. They do this by paying streaming royalties. The streaming
royalty type does not directly fall into any of the four main categories mentioned in
the previous chapter. A single stream is considered a hybrid of a digital mechanical
reproduction and a performance of a musical work [12]. Furthermore, it also requires
permission to play the actual master recording itself. Thus, Spotify pays royalties in
three different categories; mechanical and performance royalties to songwriters and
master recording usage to recording artists. However, these royalties are not paid
directly to musicians. Spotify negotiates licensing agreements with big companies
that represent the majority of music copyrights. Figure 2.4 illustrates the companies
of which streaming royalties flow through before they reach musicians.

14 2. BACKGROUND

Figure 2.4: How streaming royalties flow for different license categories. Figure is
created by us, but inspired by Kirstin Thomson [10].

Other Expenses

Streaming royalties are not the only expenses for Spotify. Swedish news reported that
in order to secure necessary music rights, Spotify more or less gave away 18% of its
company stocks. “When Spotify was launched in October 2008, the service was pulled
out of fresh rights agreements with Sony BMG, Universal Music, Warner Music, EMI,
and Merlin. The record companies bought in Spotify at the time - for a mocker.
They received 18 percent of Spotify shares for almost 100,000 SEK” [13]. (Translated
by us. 100,000 SEK was approximately $13,500 at the time). Furthermore, Spotify
also pays annual administrative fees to get permission to utilize the major record
labels’ music catalog.

2.2. ISSUES IN THE MUSIC INDUSTRY 15

2.2 Issues in the Music Industry

While investigating the structure of the industry, different issues and areas of friction
became apparent to us. The various problems affect many industry players, but
the hardest impact is on the musicians. Even though the music market is growing
each year due to an increase in paying consumers [11], musicians point to lower and
unfair payouts [6]. During our research, we learned that the root cause of this claim
is the transition from sales-based to license-based industry revenues. 10 years ago,
physical sales (albums and vinyls) accounted for the majority of industry revenues.
By looking at the sales numbers, it was easier for musicians to understand where
royalties came from. Today, most people listen to music through streaming and
digital radio services. These modern ways of music consumption is available as a
result of secret licensing deals between powerful players in the industry. These deals
often involve complex royalty calculations that cause musicians to get less insight
into their earnings. Furthermore, we discovered that there are two main causes for
most of the problems today:

1. The hierarchical structure of players and the relationship between them

2. Lack of information and standards

A report titled Fair Music: Transparency and Payment Flows in the Music
Industry [5] written by Rethink Music in 2015 points to the same industry problems
as we found in our background analysis. Rethink Music is a project group initiated
by the Berklee College of Creative Entrepreneurship that discusses the future of
music. There are dozens of issues with today’s industry. Rethink Music lists many
problems - some of which are more profound than others. In this section, we will
discuss the most critical issues that our proposed solution attempts to solve.

2.2.1 Industry Structure and the Relationships Between Players

In this subsection, we discuss concrete problems that arise as a result of today’s
hierarchical industry structure and the relationships between the different players.

Transparency

To “follow the money” is easier said than done in today’s nontransparent music
industry. Nontransparency refers to secret contracts and split sheets that are kept
hidden at each joint in the revenue chain. Most arrangements are non-disclosure
agreements (NDAs) unavailable for anyone but the contractual parties. The secret
agreements within the industry hierarchy ultimately make it nearly impossible for
a musician to know precisely how much money their creative work is worth and

16 2. BACKGROUND

generating. The value of a song or a recording is not set by the musician, but rather
an intermediary. Spotify passed iTunes’ revenue in Europe as early as in the first
quarter of 2014 [14] with the same percentage (70%) of their revenue being passed
on to right holders [5]. However, even though total industry revenues have increased,
musicians continue to complain about low royalty payouts. Where is the money
going? As mentioned, music licensing through streaming services and digital radio
leads to a complex economic model. One example is Spotify’s pro rata model which
dynamically values a per-stream rate based on disclosed factors [15]. Hidden variables
in royalty calculations make transparency an issue.

For a streaming service to grant access to a major label’s repertoire, the two
parties negotiate a NDA licensing contract. These licensing deals may include advance
payments, administration fees, preferred advertising slots on the platform and equity
in the service, all of which are direct benefits for the label. For artists, however,
the additional assets may not end up in their pockets. One can imagine the label’s
benefits result in lower streaming royalties for the artists. In a leaked contract
between Sony Music Entertainment and Spotify from 2011, the advance payments
totaled to $42,5 million for the following three years [16]. An advance payment is
paid to cover future royalty payments. It is unknown how much of this payment is
shared with the label’s artists. Large publishing companies have made similar deals.
Another leaked contract between Sony/ATV (a major publishing company) and
DMX (a background music provider) unveiled a 30% lower royalty rate in exchange
for a more substantial administration fee [5]. This deal had a critical impact on
the musicians’ profit. Given the leaked contracts’ years of publication, it should be
worth mentioning that these additional fees have lowered over the years as streaming
services’ market share has grown significantly [17].

The example above is just one of many agreements made in the industry that
does not directly benefit the musicians. The lack of transparency at every joint of
the income chain, where every party takes a cut, is the main reason why musicians
never gain full insight into how much revenue their work is generating.

Efficiency

Royalties for streams, radio plays, album sales, and commercial use can take as
long as three years from a recording is consumed by a listener until they reach the
artist [5]. Payouts are delayed due to the numerous transactions that have to take
place before the publisher or record label can pay the musicians. As stated previously,
today’s music industry relies heavily on a network of administrative, third-party
companies. The licensing transition has added players to the chain, making the
distance between musicians and music consumers significant. It is a hierarchy created
at a time when internet or digital music platforms did not exist. Fifteen or twenty

2.2. ISSUES IN THE MUSIC INDUSTRY 17

years ago, these additional administrative roles were necessary so new albums would
reach the consumers. Today it is possible for musicians to release music and reach
an audience without companies representing them. Given the platforms we have now
some of the mentioned middlemen leads to more bureaucracy. For every player in
the chain of payments, the less efficient the industry becomes.

International performances is another phenomenon that leads to efficiency issues.
When a musician’s work is performed in another country than the country that the
musician resides in, the royalty claim will be made by a local PRO, extending the
income chain with another administrative party. The process begins when a PRO,
residing in the country or territory where the performance took place, calculates
and receives a claim on the musician’s PRO’s behalf. The money is then sent to
the musician’s PRO where the same process repeats. In other words, two PROs
will process the royalty claim before they send the money further down the chain.
To speed up the process, BMI, together with 12 other copyright societies created
FastTrack8. This system is a decentralized network of copyright documentation that
can be accessed by collective societies around the world. With a shared database,
collective societies can spend less time on locating musical works from other societies
when claiming on their behalf. It also contributes to more accurate calculations and
less friction when more societies share one database. The database does not, however,
include every society meaning it is not a fully adopted database and millions of
creative works are missing. The database is only available to member societies and
payments are not made directly from a local PRO to the right owners leaving much
potential for further efficiency measures.

2.2.2 Lack of Information and Standards

In this subsection, we discuss how the music industry lacks an official public copyright
database. Additionally, we discuss the implications of the fact that there are no
adopted standards for reporting nor a general international licensing regulation.

No Public Registry

There is no verified global registry for music, so it can be challenging to figure out
who owns what in order to obtain various licenses. A musical work is copyrighted as
soon as it is written down, recorded or edited in any form. A song might involve
several songwriters, producers, and recording artists, which can potentially lead to
multiple publishing companies and record labels sharing the copyrights. To use the
music commercially in a legal manner, one needs to get consent from every copyright
holder. That can be a tedious process when there is no common registry to find
them.

8http://www.fasttrackdcn.net/our-products/cis-net/ - [Accessed: 21-05-2018]

18 2. BACKGROUND

The movie and visual content industry have managed to create and adopt the
International Movie Database (IMDb), but the music industry is still running without
a shared database. Several attempts have been made to create a universal music
registry that every copyright owner can upload copyrights to. The Global Repertoire
Database (GRD) is one attempt. The EU commissioner launched the project in 2008
with the ambition that a group of legal, administrative and technological experts
would fix some of the problems in the music industry today. It was backed by
the world’s biggest record labels, technological companies, and collective societies.
Unfortunately, the project failed when key players withdrew their funding fearing
that their operational costs would surpass their revenue. It left the GRD group $13.7
million in debt [18]. The fear of high restructuring costs amongst the intermediaries
keeps the industry from adapting to a more efficient system.

Collective societies around the world have managed to create a shared database
for their repertoires, as discussed earlier in this section. However, only member
societies can access it, excluding millions of creative works.

Standards

The music industry has partly agreed upon a set of identifiers for both sound recordings
(International Standard Recording Code) and musical compositions (International
Standard Musical Work Code) in order to uniquely identify a musician’s work.
However, these have not been widely adopted as right holders often insist on defining
their own data reporting standards. Some of these reporting standards are based
on artist names or names of tracks, making human errors an issue when calculating
royalties. Rethink Music uncovered multiple royalty calculation mistakes in one
artist’s quarterly report solely due to spelling errors. Such mistakes is one of the
reasons that royalties do not make it to their rightful owner. In fact, Rethink Music
estimates that anywhere between 20-50% of music payments never make it to their
rightful owners [5].

The transition to subscription based platforms has made music more accessible.
Today, music is consumed at a global scale. However, the licensing agreements that
facilitate easy access are often negotiated at a regional level. There are no global
standards for how music should be licensed as different regions have different licensing
regulations. A stream in the United States might not be worth the same as a stream
in Europe. Digital radio stations pay different amounts of royalties depending on
their licensing terms with the right holders. Differences in licensing agreements
ultimately affect the musicians. Their work’s value is dependent on different factors,
such as location and platform, which makes it challenging to verify that the pay is
actually correct.

2.2. ISSUES IN THE MUSIC INDUSTRY 19

2.2.3 Status Quo

With today’s technology, there are no technical boundaries for making changes for
the better for the musicians. Nevertheless, fundamental changes have not been made
as powerful players in the complex hierarchy of the music industry would not benefit
from too much change. More accurate royalty calculations, public copyright databases,
and more transparent processes might unveil redundant jobs and unsympathetic
deals. Despite few incentives for dominant players to change, some improvements
have recently been made, and some are on their way.

Songwriter Credits

Earlier this year, Spotify made it possible to view credits for every song on their
desktop app getting the songwriters and producers one step closer to getting the
acknowledgment they deserve9. This update will increase songwriter and producer
recognition and facilitate more collaborations and job opportunities.

Increased Royalty Rate

After a US court ruling in January, streaming services are now required to pay a
higher percentage of their revenue to songwriters. By the end of 2022, streaming
services will pay 15.1% of their revenue to PROs, an increase from today’s 10.5% [19].

Music Modernization Act

The US government is soon expected to change their copyright laws. Royalty payouts
to songwriters have dropped throughout the digital music age, especially since the rise
of streaming services [20]. The Music Modernization Act (MMA) is a newly suggested
bill10, that has already been passed unanimously in the House of Representatives,
may change that. Some of the key changes include:

• Market-based rates for songwriters

• Establish a collective society for publishers and songwriters to track credits
and distribute royalties when digital services use their work

• Establish a publicly accessible database with copyright information for every
song

• Services are no longer liable for making sure every right holder is paid their
fair royalty share

9https://artists.spotify.com/blog/spotify-now-displays-songwriter-credits - [Accessed: 11-03-
2018]

10https://musictechpolicy.files.wordpress.com/2017/12/fact-sheet.pdf - [Accessed: 11-03-2018]

20 2. BACKGROUND

• Right to recognition for adjunct musicians (producers, sound engineers, mixers)

• Royalty protection for pre-1972 performances.

The bill has received criticism for not addressing several other issues such as lack
of performer royalties to recording artists for terrestrial radio airplay. Independent
songwriters are also criticizing the complex collecting structure described in the
suggested bill claiming that more money will ultimately end up in the hands of the
major publishers and not its rightful owners [21].

2.2.4 Accessibility and Competition

Another reason for seemingly lower revenues is tougher competition among musicians.
Technology has opened many doors for aspiring musicians and songwriters. A song
can now be written, produced, recorded and distributed from anywhere at any time.
Neither prior music knowledge, production experience nor money, is required to enter
today’s industry. At the same time, new music today is more available than ever
before. Digital sales platforms (iTunes, Amazon, etc.) limit consumers to the songs
that they have purchased, making exploring new content an expensive affair. The
rise of the streaming services has made it possible for consumers to listen to any
song available on their platform at no extra cost. As a result, even though the music
industry is generating more revenue than earlier, royalties are paid to a broader
spectrum of artists. This paper will not continue to discuss this issue, as it is a
natural consequence of the technological advancements made over the past decades.

2.3. BLOCKCHAIN 21

2.3 Blockchain

In this section, we will give a short explanation of what blockchain is and how it works.
There are several well-written articles and white papers explaining implementations
and technicalities in depth. This paper will not focus on the details, but rather give an
overview of the technology and discuss its most important properties. Our research
question focuses on utilizing blockchain technology to solve the music industry
problems mentioned above. This question is mainly discussed in part two and
part three of this thesis. We consider a fundamental knowledge about blockchain’s
most critical aspects and their implications a prerequisite to engaging in the further
discussion.

2.3.1 Overview

The idea of blockchain was first presented in 2008 when a person (or group) under
the alias Satoshi Nakamoto released the white paper for Bitcoin [2]. Nakamoto’s
core idea was to make a peer-to-peer version of electronic cash without the need of
a trusted third party responsible for processing and verifying transactions. Today,
financial transactions usually take place through a bank or another payment provider.
With the current method, everyone has to trust that the bank or supplier performs
the transactions as it should. Nakamoto suggested replacing these intermediaries with
a public decentralized distributed database called the blockchain. Blockchain stores
data in blocks that are linked together to make a chain. Hence, the name blockchain.
This chain is the very foundation of the technology and is sometimes called the digital
ledger. Each node in the network stores a copy of the same blockchain. Every time a
new block of data is processed, all nodes verify the new block and then updates their
ledger. There is no central «master» copy of the ledger, and no nodes in the network
are trusted more than other nodes. The invention of the blockchain enabled Bitcoin
to become the first electronic currency without the use of a trusted authority [22].

With no trusted third party, several questions arise. If Bob sends Alice $10,
how can we be sure that Bob has $10 available? Can we be sure that he does not
send “the same” $10 to more receivers simultaneously? What if Bob tries to go
back and change the record of an earlier transaction? Without a centralized node,
the blockchain has to be designed in such a way that false transactions will not
be accepted and it should not be able to alter previous entries on the ledger. The
system has to assure everyone that their copy of the ledger is accurate. This trust is
established through a consensus algorithm. This algorithm is the basic mechanics for
how everyone on the network agrees on which block to accept to keep their copy of
the ledger in sync as transactions occur. Bitcoin currently uses the proof-of-work
consensus algorithm which is briefly explained in the next paragraph.

22 2. BACKGROUND

2.3.2 The Bitcoin Protocol

Today, there are many different blockchains. Bitcoin and Monero are two examples
focusing on electronic peer-to-peer cash systems. Ethereum and EOS are two
other examples with a more general-purpose. The different blockchains have different
objectives and predetermined rules. They also differ in what data they store. However,
their core idea concerning trust establishment without intermediaries is very similar.
In this paragraph, we use the Bitcoin blockchain as the example to illustrate the
network’s consensus algorithm.

The Bitcoin blockchain organizes transactions into blocks. In addition to a set of
transactions, blocks also contain a sequence number, a timestamp, a nonce (random
number used only once), the hash of the previous block and some other metadata.

Figure 2.5: The data contained in a Bitcoin block. The backward arrows illustrate
how each block include the hash of its predecessor. The figure is created by us.

Proof-of-work is the algorithm used in Bitcoin that allows for decentralized
consensus. This algorithm establishes consensus for the next valid block the network
should accept and add to the chain. The process is called mining. Miners are
transaction processing nodes that compete to solve a difficult proof-of-work puzzle.
The puzzle is a complicated mathematical problem, but its solution is easy to verify.
Mining nodes store pending transactions locally in their memory. They use special
software to select a collection of said transactions for which they attempt to build
a block. “A block is a valid addition to the chain if its nonce is chosen so that the
block’s hash is less than a target value” [23]. That is, the concatenation of all data
within the block needs to be hashed to an output level starting with a certain amount
of 0s. Miners solve this problem using a brute force method that selects different
nonce values. The difficulty level of the proof-of-work puzzle is “adjusted periodically
by an adaptive algorithm based on the recent blockchain history(...)”. The goal is to
“(...) to maintain the long-term invariant that one new block will be mined every
ten minutes on average” [23]. In other words; Bitcoin aims to mine a new block of
transactions every 10 minutes. This is also described as a block time of 10 minutes.

2.3. BLOCKCHAIN 23

When a miner solves the puzzle, he broadcasts the block to the network, and the
other miners verify that the solution is valid before they append it to their chain.

2.3.3 Defining a Distributed and Decentralized Network

In its purest form, a blockchain is just a data structure that makes up a database.
The unique thing about it is that no central entity owns and governs the system.
The blockchain is completely maintained and publicly owned by the nodes that
make up the network. The previous chapter explained how the Bitcoin blockchain
establishes consensus in a decentralized fashion and spreads the data across a dis-
tributed network of nodes that processes and verifies the validity of blocks. There
are many indecisive definitions for the two phrases decentralized systems and dis-
tributed systems. They are somewhat related, but not identical. Vitalik Buterin, the
founder of the Ethereum Blockchain, explained in an article written in 2017 [24] that
decentralization can be categorized into different types. He illustrates three separate
axes of centralization/decentralization:

1. “Architectural (de)centralization — how many physical computers is a
system made up of? How many of those computers can it tolerate breaking
down at any single time?”

2. “Political (de)centralization — how many individuals or organizations
ultimately control the computers that the system is made up of?”

3. “Logical (de)centralization — does the interface and data structures that
the system presents and maintains look more like a single monolithic object, or
an amorphous swarm? One simple heuristic is: if you cut the system in half,
including both providers and users, will both halves continue to fully operate
as independent units?”

Where does blockchain fit into the three axes? Buterin explains it like this:
“Blockchains are politically decentralized (...), architectural decentralized (...), but
they are logically centralized (...) [24].” Figure ?? illustrates where Buterin places
blockchain in a centralized/decentralized combination diagram.

It is worth mentioning that these placements are highly debateable. However, we
agree with Buterin’s definitions. Considering Buterin’s placements of the blockchain
on the three mentioned axes, we can discuss each of them in more detail:

1. Architectural decentralized implies that data is processed and stored across
a network of physical nodes. This architecture is the reason we also call
blockchains distributed systems.

24 2. BACKGROUND

Figure 2.6: Vitalik illustrates blockchain’s placements in a chart that includes the
three dimensions. Figure source: Vitalik Buterin [24]

2. Politically decentralized implies that no single entity controls the system. This
is where decentralized consensus, explained in the previous section, becomes
relevant. The consensus algorithm enables continuously common agreement
about the current state of the blockchain without a trusted central entity.

3. Logically centralized implies that there is only one agreed upon state of the
system. The blockchain looks and behaves like one single computer system.

To summarize we can conclude that blockchains are distributed networks inher-
ently characterized by several decentralized elements. However, from a logical point
of view, they operate as a centralized system to the outside world.

2.3.4 Properties of Distributed and Decentralized Networks

Decentralized and destributed systems provide several attractive properties. Security,
immutability and transparency are the three most relevant examples in our discussion.

Security

In the same article, Buterin argues that the decentralized parts of blockchains provide
several security properties:

1. “Fault tolerance — decentralized systems are less likely to fail accidentally
because they rely on many separate components that are not likely”(to fail at
the same time).

2.3. BLOCKCHAIN 25

2. “Attack resistance — decentralized systems are more expensive to attack and
destroy or manipulate because they lack sensitive central points that can be
attacked at much lower cost than the economic size of the surrounding system.”

3. “Collusion resistance — it is much harder for participants in decentralized
systems to collude to act in ways that benefit them at the expense of other
participants, whereas the leaderships of corporations and governments collude in
ways that benefit themselves but harm less well-coordinated citizens, customers,
employees and the general public all the time.”

Immutability

Blockchain’s nature also provide the immutability property. Immutability is defined
as something that is unable to be changed. Once a block is accepted by the network
and added to the chain, its data can never be altered. The explanation for how
immutability is ensured is that all blocks include the calculated hash of its predecessor.
If an attacker changed some data within block number n that the network would
accept, he would have to recalculate a valid block hash for that block. However, if the
hash of block n changes, then block (n+1) will reference the old block n hash which
does not exist anymore. This mismatch breaks the entire chain of blocks [25]. If an
adversary can recalculate each block followed by the tampered block, the attacker
could potentially replace the data for the entire blockchain. However, this attack
is highly implausible as it requires a tremendous amount of hashing power. The
immutability property is vital as the blockchain can prove data integrity and all
users can be confident that the data will not alter in the future.

Transparency

The fact that all data held by the blockchain is publicly available and managed only
by the network itself ensures a level of transparency that conventional centralized
transaction systems do not offer. The data in question varies depending on the
blockchain we study. In the case of the Bitcoin blockchain, the data constitutes
monetary transactions between entities. On the Ethereum blockchain, the data may
also include complex scripts that automatically execute if certain conditions are met.
The next section includes a more in-depth discussion regarding Ethereum and its
properties. Generally speaking, blockchain technology ultimately provides a clear
reality which is fundamentally different from what traditional centralized systems
offer.

26 2. BACKGROUND

2.4 Ethereum

2.4.1 Platform for Decentralized Applications

Ethereum is a public blockchain-based computing platform for decentralized applica-
tions (dApp) that launched in July 2015. Vitalik Buterin first described the system
in a white paper [26]. Some refer to Ethereum as a “second-generation” blockchain
as it is not solely a cryptocurrency system like Bitcoin. Buterin himself explained in
an interview with the newspaper The Pioneer [27] that his team “focuses on creating
a new blockchain architecture that’s designed to be general-purpose so that you can
use it for any applications that might benefit from being on a blockchain.” There
are several types of applications that can benefit from blockchain technology. Some
examples are voting systems, domain name registries, financial exchanges, crowd-
funding platforms, company governance, or intellectual property such as musical
works [3].

2.4.2 Smart Contracts

Ethereum features something called smart contracts. These contracts are scripts
that can be added to the Ethereum blockchain. Due to blockchain’s immutability,
a smart contract can never be altered once it is deployed to the network. As a
result, there exists pieces of code that all users can interact with on the blockchain.
Smart contracts are similar to classes in object-oriented languages. They define state
variables and functions. We call the former state variables because they define the
internal state of the contract. These variables can be of many different types such as
integers, arrays, strings and mappings (similar to HashMap in Java). Functions can
either read values from state variables or modify them.

2.4.3 Two Types of Accounts

Ethereum features two types of accounts: smart contract accounts and externally
owned accounts (regular Ethereum-wallets). Both types have an Ethereum address
and a balance. An externally owned account is controlled by an associated private
key held by the owner of that Ethereum wallet. In contrast, smart contract accounts
are controlled by their own code.

2.4.4 Ethereum Virtual Machine

Ethereum is described as a blockchain with an integrated Turing-complete program-
ming language. The part of the protocol that handles the execution and the internal
state of smart contracts is referred to as the Ethereum Virtual Machine (EVM). From
a practical standpoint, the EVM can be thought of as a large decentralized computer
managing millions of objects (smart contracts). To avoid infinite computational loops,

2.4. ETHEREUM 27

Figure 2.7: The data contained in an Etheruem block. Notice that smart contracts
are part of the data contained in the block. These are computer programs that
anyone can interact with. The figure is created by us.

DDOS attacks, or network spam by deploying infinite worthless smart contracts,
the EVM is powered by gas called ether (ETH). Gas is paid to the nodes running
the EVM. The amount of gas a user has to pay is determined by the amount of
computation or storage an execution requires.

2.4.5 Consensus and block time

Even though Ethereum and Bitcoin both currently use the proof-of-work consensus
algorithm, there are slight differences to the protocol. Block time is one example.
Block time refers to how long it takes for the network to complete the mathematical
puzzle and assign a new valid block to the blockchain. While the Bitcoin network
aims for a block time of 10 minutes, the Ethereum aims for a block time of 12
seconds [28]. However, the actual average block time seems to be closer to 15
seconds11. Ethereum has a relatively fast block time as the platform is supposed to
facilitate a variety of different applications, many of which require transactions to be
confirmed more responsively. To achieve this, the difficulty level of the proof-of-work
puzzle is significantly lower than Bitcoin’s.

2.4.6 Token system

We often read about coins and tokens in the cryptocurrency space. These terms
should not be confused with one another. A coin is defined as cryptocurrency used
as a currency, e.g., Bitcoin, Litecoin, and Monero. A token represents a tradeable
asset or a utility used in dApps. [26]

11https://etherscan.io/chart/blocktime - [Accessed: 16-05-2018]

28 2. BACKGROUND

Ethereum has defined several token systems. ERC20 is the name of the most
well-known standard. Everyone can create their own ERC20 token, but dApp
projects mostly use them for raising funds through something called an initial coin
offering (ICO). REP is one example of an ERC20 utility token offered by the Augur
project through their ICO [29]. The token is used to create stake shares on Augur’s
Ethereum-based decentralized prediction market platform. The ERC20 standard
represents fungible tokens. Fungible refers to something that can be replaced by
another identical item. A dollar is an example of a fungible item. One can always
exchange it for a different dollar and keep the same value.

The ERC721 is a different token standard that represents non-fungible assets.
Non-fungible tokens are inherently unique and cannot be replaced. It is the exclusive
characteristics that give the ERC721 token value, rather than the number of tokens
owned. One ERC721 token represents one unique non-fungible item such as a
house or a rare collectible. There is no limit for how many ERC721 tokens an
Ethereum account can hold. The ERC721 standard merged (was officially accepted
by the Ethereum Foundation as a standard token system) in March 201812. The
game CryptoKitties was the first popularly-adopted implementation of the ERC721
standard [30].

2.4.7 Transparent Trustless Decentralized Applications

The big potential of smart contracts is that they can potentially serve as the back-end
code of trustless dApps. In the blockchain space, the word trustless is defined as
something that does not require a trusted third party to work safely and correctly.
Thus, trustless decentralized applications means that there is no requirement for a
trusted third party to handle the communication with the app because all interaction
and transactions would be transparent and determined only by the app’s code. We
have mentioned the phrase decentralized applications throughout this paper without
clearly expressing what it means. Investopedia gives this definition13: “Decentralized
applications (dApps) are digital applications or programs that exist and run on a
blockchain or P2P network of computers instead of a single computer, and are outside
the purview and control of a single authority.”

We agree with this explanation. However, we argue that dApp projects addition-
ally should be open source. When smart contracts deploy to the blockchain, they are
stored as bytecode. Anyone can view the bytecode since the blockchain is transparent.
If a dApp project is open source, anyone can compile the solidity contracts themselves
and verify that the resulting bytecode is identical to the bytecode on the Ethereum

12https://github.com/ethereum/EIPs/pull/841 - [Accessed: 24-04-2018]
13https://www.investopedia.com/terms/d/decentralized-applications-dapps.asp - [Accessed: 25-

04-2018]

2.5. RELATED WORK 29

blockchain. Assuming this is the case, the public is offered complete insight into a
dApp’s inner workings.

The combination of blockchain’s inherently transparent nature and open source
back-end systems is what makes decentralized applications trust-free and fully trans-
parent [3]. One can be confident the EVM will execute all incoming requests in a
deterministic manner predetermined only by the contract code. Besides, all transac-
tions between accounts can be traced and examined. Ultimately, interacting with a
dApp will never involve malicious computing or invisible bias during transactions.

2.5 Related Work

Our project is not the first application that attempts to solve issues in the music
industry. In this section, we will briefly talk about other organizations and companies
that have similar goals. Even though three of the following four projects are blockchain
based, they are all slightly different from our contribution.

2.5.1 Ujo Music

Ujo Music14 is an online music platform with a similar business model as iTunes.
Users can purchase digital recordings and download them. Unlike iTunes, Ujo makes
it possible for all artists to release music directly without labels or aggregators.
Additionally, it runs on the Ethereum blockchain making all sales royalties go directly
to the musicians. Listeners can also pay a certain price to get access to exclusive
content. In addition, listeners get to view every transaction made and see who gets
paid and at what percentage share. As we have mentioned in the music background
section, most people consume music through streaming services and various types of
radio nowadays. We do not believe that digital sales is the future and consider Ujo
Music’s business model a bit outdated.

2.5.2 Musicoin

Musicoin15 is a platform for publication and consumption of music. The service is
similar to soundcloud.com - a free online streaming and download service. However, it
is built on Ethereum and uses smart contracts to automatically collect and distribute
royalty payments. Musicoin.org was introduced together with a new token called
$MUSIC (MC) which acts as a digital currency. In particular, they have a pay-per-
play (PPP) smart contract. That means that consumers spend a specific number of
MC every time they stream a song. Musicoin challenges today’s streaming services
such as Spotify and Apple Music by lowering the entry barrier for indie artists. Also,

14https://ujomusic.com/ - [Accessed: 18-02-2018]
15https://musicoin.org/how-it-works - [Accessed: 19-02-2018]

30 2. BACKGROUND

they claim to pay more per play to musicians than their competitors. The team has
currently a beta running at musicoin.org.

2.5.3 SongFreedom

SongFreedom16 is a platform for cinematographers and other musicians who want
to license music for their work. SongFreedom (soon to be Fyr-Fly) makes it easier
for people to buy licenses from an ever-growing music library. The platform is
not blockchain-based but it does simplify the process of getting a legal license for
musicians.

2.5.4 Blokur

By using artificial intelligence and blockchain technology, Blokur17 gathers music
copyrights from different sources and places them in a single blockchain state. It
is a platform for right holders where they can register their copyrights and shares.
For instance, Blokur allows its users to register performing rights, sales rights
(mechanical), commercial rights (synchronization), etc. from country to country. If
there is a conflict of rights data in a specific region, their algorithm will spot it and
request the user to solve it. Blokur also has a licensing ecosystem under development
that will enable close to instant payments to the different stakeholders.

16https://www.songfreedom.com/about - [Accessed: 18-02-2018]
17https://www.blokur.com/-[Accessed: 02-06-2018]

Chapter3Application System Design

The second part of the thesis includes Chapter 3 and Chapter 4. In these chapters
we explain the system design and the technical implementation of our solution.

In this chapter, we apply the properties of blockchain to the music industry issues
described in the background analysis. To be more specific, we explain why we use
the Ethereum blockchain as the underlying infrastructure for our dApp. Moreover,
we discuss different planning aspects of our POC. These aspects include use cases,
proposed system architecture, data storage and relevant technologies.

3.1 Rights Done Right

To test the potential of Ethereum and smart contracts, we have developed a proof-
of-concept Ethereum-based copyright database and music licensing dApp. We call it
Rights Done Right. The goal of the POC demonstration is to show that blockchain
technology can be used to securely implement essential use cases both from the
perspective of copyright holders (songwriters, artists, record labels and publishers)
and licensees (users who are granted a license to use music legally in some manner).
In this section, we discuss why we use the Ethereum blockchain and which use cases
our dApp implements.

3.1.1 Choosing the Etheruem Blockchain

In section 2.3 and 2.4, we discussed aspects and properties of blockchain technology.
While some apply exclusively to Ethereum, others hold true for blockchain in general
(including Ethereum). Our dApp benefits from many of the mentioned qualities in
the following ways:

31

32 3. APPLICATION SYSTEM DESIGN

• Security

◦ As mentioned in 2.3.4, blockchains are fundamentally fault-, attack- and
collusion resistant. As a result of these security properties, the back-end
system of our dApp will have zero downtime (unless an attacker is able
to simultaneously compromise more than 50% of the nodes in the entire
Ethereum network as explained in section 2.3.4). Today, modern web
applications have to be careful about deployment configurations and choice
of web host as they need to watch out for attacks such as distributed
denial of service (DDOS) attacks. Luckily, applications on the Ethereum
blockchain do not have to be equally worried about such attacks as the
fundamental underlying infrastructure has built-in security measures. In
our case, security properties are incredibly important because our dApp
may deal with serious licensing contracts that involve huge amount of
royalties. In these situations, it is extremely important that the back-end
system carrying those transactions never goes down or gets compromised
by an adversary.

• Trust and Transparency

◦ Our dApp assures a high level of trust and transparency to all users.
This property addresses the issue regarding musicians’ lack of royalty
insight. The music industry structure makes it very hard to know whether
royalties flow through all intermediaries in a correct and fair manner. As
mentioned in the background chapter, between 20-50% of music payments
do not make it to the rightful owners. Missing royalties would certainly
not be an issue when licensing music through our platform. The trust-free
and open-source nature of our dApp assure users that licensing contracts
indeed execute only as they are programmed to do. Furthermore, the
Ethereum transactions carrying the licensing royalties can precisely be
traced from sender to recipient at all times.

◦ The transparent nature of Ethereum also facilitates a global copyright
database, accessible to everyone. As there are no access restrictions for
who can write or read data from the Ethereum blockchain, our dApp can
indeed function as a global public copyright database.

• Efficient smart contracts

◦ All functionality offered by our dApp, such as copyright registration
and music licensing, is done through smart contracts. One feature that
makes smart contracts desirable building blocks for dApps is their ability
to instantly execute code and enforce transactions automatically when
certain conditions are met. Generally, One can think of smart contracts

3.1. RIGHTS DONE RIGHT 33

as accelerated replacements for traditional third-party intermediaries. In
our case, this enables users to get a copyright proof once they register
a musical work to the database. More importantly, it enables users to
purchase a music license and the corresponding royalty payments will be
transferred to the relevant rightful copyrights owners right away. This
automated payment process is more efficient than conventional royalty
payment processes.

• Token System

◦ The ERC721 token interface can represent copyrights as a non-fungible
asset on the Ethereum blockchain. The standard defines ownership for an
asset as well as methods for transferring that ownership. By implementing
the ERC721 standard, everyone can interact with the copyright token
as any other ERC721 tokens. Thus, copyrights can be traded or sold on
exchanges or marketplaces. Furthermore, it implies that users can keep
track of (and transfer) their copyrights by holding their tokens in a digital
Ethereum wallet that supports the ERC721 standard.

• Immutability

◦ Blockchain’s immutability property ensures that all data within our dApp
is unaltered and can never change in the future. In particular, this
implies that musicians can be confident that their entries to the copyright
database is safe and immutable. Additionally, licensees can be confident
that they deal with license contracts designed only by the people holding
the copyrights for associated works. Generally speaking, one can think of
this property as data integrity. It is considered a fundamental requirement
in almost all applications.

The mentioned technical properties are not the only reason Ethereum is a preferred
platform for dApps. In fact, there are other dApp blockchains with similar technology
and features such as EOS, NEO, and Cardano. However, Ethereum’s significant
position in today’s blockchain space is an essential reason for why we chose it as
our platform. The whole Ethereum project involves strong leadership and a big
group of people working on improving the platform. Instead of bragging about
profits and economic growth, the foundation talks about a long-term vision that
involves a clear scaling strategy and a strong commitment to keeping the network fully
decentralized [31]. These things are important to blockchain start-ups and developers
and may be the main reason why Ethereum has established itself as the leading dApp
platform. Compared to other blockchain ecosystems, Ethereum is relatively mature
with a big community and proper documentation for the programming language
Solidity. We will discuss Solidity further in a later section.

34 3. APPLICATION SYSTEM DESIGN

3.1.2 Music Licensing Use Cases

We focus on three essential use cases on our POC dApp.

1. Register a musical work: Musicians should be able to register musical works
to the public database. The process should be fast and easy and result in a
digital copyright proof when successfully registered.

2. Create license contracts: Copyright owners should be able to create licensing
contracts for the works they have registered in the database. As mentioned
earlier, there are many types of licenses - each with different purposes.

3. Search for musical works and purchase licenses from the database:
Every user should be able to search through the database to get information
about registered works. This information should include details about the work
and its owners. When inspecting a musical work, relevant licensing contracts
should be displayed and available for purchase.

In addition to the described use cases, all users should also be able to see their
related user data. For copyright owners, this includes an overview of all uploaded
works and how much royalties these works have generated. For licensees, this includes
receipts for all purchased licenses.

3.2 System Architecture

In this section, we will explain the architecture of our system. The dApp is divided
into four separate physical nodes: client, web server, Ethereum blockchain, and
Firebase server.

3.2.1 Client: Web browser

The client is a device running a web browser that displays the web application’s
view. Through the presented user interface, a client can pass data and requests to
the application. Google Chrome is the desired browser since the application relies on
a particular chrome-extension to communicate with the blockchain.

3.2.2 Web Server: Angular Application

A web server hosts the Angular web application written in HTML, CSS, and Type-
Script (including all dependencies). These files are all executed on the client side to
render the application’s user interface. It passes input from the client to the appropri-
ate functions in the back-end. The web application connects to two back-end systems:
an external, centralized database called Firebase and the Ethereum blockchain. The

3.2. SYSTEM ARCHITECTURE 35

latter connection is made possible through a javascript API called Web3.js which
injects into the client’s browser through the MetaMask Chrome extension. Both
MetaMask and Web3.js will be discussed in detail later in a later section. Web3.js
facilitates the JSON-RPC communication protocol used between the web app and the
Ethereum network. The communication protocol between the web app and Firebase
is HTTP TCP/IP.

3.2.3 Ethereum blockchain: Back-end Execution Environment

The Ethereum blockchain with deployed smart contracts functions as our main
back-end. The functions written in the deployed contracts are responsible for all
business logic, validation and vital data storage with regards to the registration of
copyrights as well as servicing our licensing features. Due to high storing costs with
Ethereum, only crucial data is stored on the blockchain. Supplemental data is stored
in a regular, centralized database. A more in-depth discussion about the location of
data can be found in Section 3.3.

3.2.4 Firebase Server: Data storage and Authentication

Firebase is a platform based on Google Cloud Services that works as a Backend-as-a-
Service (BaaS) in our application. Using Firebase as a BaaS allows for a serverless
application architecture. This design is beneficial as it removes the need for writing
traditional server-side components. Firebase is responsible for three different tasks
in our application:

1. User authentication

2. Data Storage

3. File Storage

3.2.5 Application Deployment

Figure 3.1 shows a deployment diagram of our dApp. The diagram follows basic
Unified Modeling Language (UML) syntax. It illustrates the different hardware
components (nodes), what software components (artifacts) run within each node,
and the communication protocols that connect the nodes together.

36 3. APPLICATION SYSTEM DESIGN

Figure 3.1: Deployment diagram showing the architecture of the system. A web
server hosts the web application and communicates with a dual backend: business
logic and vital storage on the blockchain and authentication and storage with Firebase
services.

3.3. APPLICATION STORAGE 37

3.3 Application Storage

Our application stores data both to the Ethereum blockchain and Firebase. This
section will discuss why this is the case. The application handles different data
objects for different use cases. For the sake of simplicity, we will use the “register
musical work” use case to outline the data storage.

A musical work is defined as an object with multiple attributes:

– Title

– Type of work (song, recording, composition, lyrics, etc.)

– Description

– Time of registration

– List of all contirbutors and their respective share of ownershop

– A file embodying the work itself

All these attributes describe the musical work in different aspects. However, we
argue that some of them are more critical than others. For instance, the file of
the work itself is enough to identify the musical work. The list of contributors and
their share of ownership identifies the work’s split sheet. These are the only two
essential work attributes used in the back-end business logic. For that reason, these
are the only properties we need to store on Ethereum. However, storing data/files
on Ethereum is very expensive. The following calculation shows how expensive it
can be store a 5MB file:

According to the yellow paper of Ethereum, storing 256 bits(8 bytes) on the
blockchain will cost approximately 20,000 in gas [32]. The calculation below is done
with values from ETH Gas Station1 and CoinMarketCap2:

Price of storing 8 bytes on the blockchain with a given gas price3:

20, 000 × 12 GWEI = 240, 000 or 0.00024 ETH

For a 1MB file (1 000 000 Bytes) the total cost of gas will reach:

1, 000, 000
8 Bytes

× 0.00024 ETH = 30 ETH

1https://ethgasstation.info/
2https://coinmarketcap.com/currencies/ethereum/
3Value as of the 30th of May 2018 at 22:00 CEST

38 3. APPLICATION SYSTEM DESIGN

The cost of 1 ETH at the time4: $550.42

30 ETH × $550.42 ≈ $16, 500/MB

The total cost of gas in USD for storing a 1 Megabyte file on the Ethereum
blockchain would (at the given date and time) cost approximately $16,500.

As blockchain storage is costly, our application aims to minimize the number
of bytes processed and stored on Ethereum. To achieve this, we do not store any
files on the blockchain. Instead, we store the MD5-hash-representation of the file.
This digital fingerprint (also known as the file checksum) is only 128 bits of data.
Storing a hash of a file instead of the file itself is known as checksum-based storage.
This design is common practice for Ethereum-based dApps as it allows for cheap
storage of a large amount of data. Conclusively, the work object stored on Ethereum
contains the following properties:

– The checksum of the file

– List of all contributors and their respective share of ownership

– Time of registration

The entire work object (as defined at the beginning of this section) is stored on
Firebase. This data has two purposes

1. The information is displayed to clients when querying works

2. The data contains searchable keywords for the application’s database search
function.

Figure 3.2 demonstrates the sequence for the "create work" use case. It shows
how data sequentially flows between the different components. As the user selects a
file to register, it is immediately pushed to Firebase. Once the upload is complete,
the file’s metadata returns to the application. This data includes the hash of the
file among other attributes. When the user has provided all required properties for
the work and pushes the "Create Work" button, the application sends a request to
Ethereum to process and store the contributors, split sheet and the hash of the file.
If the work is successfully stored on the blockchain, the application pushes the entire
work object (including all properties and the file itself) to Firebase.

4Value as of the 30th of May 2018 at 22:00 CEST

3.3. APPLICATION STORAGE 39

Figure 3.2: A simplified sequence diagram to illustrate the data flow in the applica-
tion. The selected copyright file is stored in Firebase before the user submitting the
work form in our application. The work with only essential properties is stored on
the blockchain first, and if successful pushed to Firebase with additional properties.

40 3. APPLICATION SYSTEM DESIGN

3.4 Technologies

This section discusses the different tools and technologies used to develop our solution.
We have split them into two categories: development environment and application
dependencies.

3.4.1 Development Environment

Some of the technologies we have used are not vital parts of our application and have
only had assistive roles throughout development. The following technologies do not
serve a purpose once the dApp is officially deployed, but they have been beneficial
for testing purposes.

Visual Studio Code (v1.23.1)

All code is written in Visual Studio Code. This text editor is optimized for web
application development. Additionally, Visual Studio Code makes it easy to import
support extensions and packages that handles issues such as compilations errors. For
instance, we used the JuanBlanco.solidity package that features syntax highlighting
and code completion for the Solidity programming language.

Ganache (v1.1.0)

This desktop application is a locally hosted Ethereum blockchain that comes with
10 test accounts with a pre-filled balance of a 100 ETH. Ganache is a JavaScript
implementation of the actual Ethereum blockchain5. The blockchain is automatically
initialized once the application is open. Every transaction and block can be reviewed
and examined, giving us meaningful insight into how our smart contracts’ functions
affect the state of the chain. Ganache’s quick setup, simple user interface and
integration with the Truffle framework (explained in next paragraph) made it ideal
for hosting the contracts used in our web application.

5http://truffleframework.com/ganache/

3.4. TECHNOLOGIES 41

Figure 3.3: Test accounts with their corresponding balance on a running Ethereum
client.

42 3. APPLICATION SYSTEM DESIGN

Truffle Framework (v4.1.0)

Truffle, an Ethereum development framework, describes itself as the “Ethereum swiss
army knife”. Its purpose is to make dApp development more accessible for developers
by simplifying compilation and migrations of smart contracts written in Solidity.
Initializing a project using truffle gives us a specific project structure, as well as a
set of predefined folders and scripts. Once installed, we are provided with a handful
of terminal commands that makes building and deploying very simple:

"Truffle compile": The framework compiles our Solidity contracts and creates
separate JSON-files as artifacts (one for each contract). These artifacts are used
during the deployment of the contracts and the files should not be altered once they
have been created6.

"Truffle migrate": The framework also allows us to deploy the contracts to a
running blockchain. It gives us two prewritten deployment scripts as a two-step
migration process. When we run the command in a terminal window, the two
deployment scripts are executed, and our contracts are deployed to our running local
Ethereum blockchain.

Figure 3.4 shows successful compilation and migration of the contracts. We can
view the four transactions made above on our running Ganache blockchain. This is
illustrated in Figure 3.5.

6http://truffleframework.com/docs/getting_started/compile - [Accessed: 01-02-2018]

3.4. TECHNOLOGIES 43

Figure 3.4: Truffle commands successfully executed in terminal.

44 3. APPLICATION SYSTEM DESIGN

Figure 3.5: The four transactions made during migration to the blockchain

3.4. TECHNOLOGIES 45

Angular CLI (v1.7.4)

Angular CLI is a Command Line Interface that automatically sets up an Angular
project with its necessary files, configurations, and folders. It allows developers to
generate code through the CLI that follows the best practices of Angular development.
Angular CLI uses the module bundler webpack.js to set up a local web server which
hosts the web application.

3.4.2 Application Dependencies

The following are technologies that our dApp depends on and would not function
without.

Solidity (v0.4.19)

Solidity is the official language for smart contracts on the Ethereum blockchain.
According to the documentation7, it is a language that is influenced by C++, Python,
and JavaScript, and runs on top of the Ethereum Virtual Machine (EVM). All business
logic that dictates the rules of the dApp is written in Solidity. The programming
language is still in its early days which means that developers are provided with fewer
options and more limitations than what they usually can expect from a more mature
programming language like Java. Our contracts are compiled with compiler-version
0.4.19. The low version number reveals how 19 minor changes have been released
over the past two years while a major version release has yet to be made. The latest
release at the time of writing this paper is 0.4.24.

In the very beginning of developing our smart contracts, we used an online Solidity
IDE called Remix8. This online environment made it easy to learn the syntax and
concepts of the language. However, Remix becomes a liability when writing more
complex smart contracts do to browser memory issues. Thus, the browser IDE does
not facilitate complex dApp projects.

Angular (v6.0.0)

One of the most commonly used JavaScript frameworks is Angular. With its
large community and continuous improvements and development, it is an excellent
option for web application development. “Angular combines declarative templates,
dependency injection, end to end tooling, and integrated best practices to solve
development challenges.”9 Angular projects are single page applications where multiple
components are dynamically loaded on a single page rather than routing between

7http://solidity.readthedocs.io/en/v0.4.24/index.html - [Accessed: 21-01-2018]
8https://remix.ethereum.org/ - [Accessed: 23-01-2018]
9https://angular.io/docs - [Accessed: 08-01-2018]

46 3. APPLICATION SYSTEM DESIGN

entire pages. This improves the user experience by faster transitions between the
views.

We use Angular v.6.0.0 which is the latest version of the framework at the time
of writing this paper. TypeScript (a superset of JavaScript) is the primary language
of the framework. Angular makes it easy to import external libraries and handle
dependencies. In our application we use Bootstrap and Angular Material for styling,
AngularFire2 for connecting to Firebase, and of course Web3.js to communicate
with our blockchain to mention a few. The project consists of one module with
multiple components and services. Some key features of the Angular application will
be explained in detail later in this paper.

Web3.js (v1.0.0-beta.34)

After doing some research on how we could reach the functions of our deployed
Solidity contracts, we landed on web3.js as a great provider for a web-based solution.
Web3.js is a “collection of libraries which allows us to interact with a local or remote
Ethereum node, using an HTTP or IPC connection”10. It is a JavaScript API backed
by the Ethereum Foundation that gives us some predefined functionality that our
front-end code can benefit from.

For us to understand how we use Web3.js in our Angular project we used a
tutorial11 for inspiration. This tutorial was a great way to learn how to use Web3.js
and how we connect the front-end of the application to the deployed smart contracts.

MetaMask (v4.6.1)

Regular web browsers are not initially equipped with the right tools to communicate
with a blockchain. As previously stated, Web3.js handles this type of communication,
but this framework is not available unless it is injected into the browser. This is
where MetaMask comes in. This Google Chrome extension gives us access to our
blockchain by injecting Web3.js into the application’s JavaScript context.12

MetaMask enables the users of our web application to read from and write to
the blockchain. Reading from the blockchain is free of charge, but writing to the
blockchain requires gas. Using their Ethereum address and corresponding private key,
users can log in to MetaMask and approve or reject transactions from their address.
The extension opens a window automatically when executing "write-functions" to
the deployed contract.

10https://web3js.readthedocs.io/en/1.0/ - [Accessed: 25-01-2018]
11https://github.com/Nikhil22/angular-truffle-starter-dapp - [Accessed: 27-01-2018]
12https://metamask.io/ - [Accessed: 26-01-2018]

3.4. TECHNOLOGIES 47

Firebase

Firebase is a development platform backed by Google. The platform allows for web
applications with serverless architecture. Its connection with our front-end web
application is established through the official library13 for Angular. The serverless
architecture paradigm allows us to pass data from JavaScript directly to a set of
predefined service endpoints without having to set up a server and create methods
for GET, POST, etc. In our application, we use three separate Firebase features:
authentication, database, and storage.

Firebase Authentication: The Authentication SDK by Firebase provides us
with email and password based authentication. Users on our platform can authenticate
themselves by an email and a password and receive a token that lasts for the duration
of their session. Authentication SDK is made available through the AngularFire2
library in our web application.

Firebase Firestore: Another feature we use is the Firebase database, more
specifically the Cloud Firestore NoSQL database. Firestore is flexible as it does not
enforce every document in a collection to have the same fields. The database stores
incoming objects as documents in collections. A document can have multiple fields,
each of which maps to a value. Figure 3.6 displays a snapshot of work one from the
‘works’ collection in our Firestore database.

Cloud Storage: The Firebase Cloud Storage is a file storage service backed
by Google. We use this service whenever a file is uploaded to the web application.
It stores files in an appropriate folder, e.g., /uploadedWorkFiles. Cloud Storage is
compatible with Firebase’s Authentication SDK and can easily be scaled to handle
much traffic.

13angularfire2 v5.0.0-rc.7

48 3. APPLICATION SYSTEM DESIGN

Figure 3.6: Screenshot of our Cloud Firestore database. On the left is a list of our
collections, followed by a list of documents with a key equal to the Work ID. On the
right is an example of a stored musical work with all the corresponding attributes.

Chapter4Implementating a Decentralized
Application

In this chapter, we explain the technical implementation of our decentralized applica-
tion. The back-end logic is written in a collection of smart contracts. The front-end
user interface is written in an Angular web application project. Developing the dApp
is what has kept us occupied for the majority of time during the master project. We
encourage interested readers to visit our public repository1 on GitHub to inspect the
code. Also, the repository includes a "README-file" explaining how to download,
run, and test the dApp locally on any computer. In this chapter, we discuss the
most critical parts of the code. This includes important data structures, functions,
communication protocols, and other essential aspects of the dApp. We also justify
some of our technical design decisions and explain how different designs impact the
gas cost of interacting with the dApp.

4.1 Implementing Smart Contracts

This section describes the implemented smart contracts that dictate the rules of
the application. There are five distinct smart contracts to keep things organized.
Logically related code is bundled together in separate files instead of one giant file.
Like Java and other object oriented programming languages, Solidity supports code
inheritance. Our inheritance system looks like this:

• contract WorkBase

• contract ERC721

• contract TokenOwnership is WorkBase, ERC721

• contract LicenseBase is TokenOwnership

• contract LicensePurchase is LicenseBase
1https://github.com/hkbhaugen/RightsDoneRight/

49

50 4. IMPLEMENTATING A DECENTRALIZED APPLICATION

Thus, LicensePurchase inherits all data and functions defined in its parent con-
tracts. Ultimately, this is the deployed contract our application points to. We will
discuss only the most essential parts of each of these contracts. Most of the details
are explained using in-line comments in the code.

4.1.1 WorkBase.sol - The Application’s Core Contract

This contract defines the most fundamental code used throughout the back-end
system. It includes constant data types, state variables, and functions for managing
the state variables. When a contract deploys to the Ethereum blockchain, the EVM
dedicates storage space where values for internal state variables are stored.

Storing Musical Work

Workbase contains a lot of the core data of the app. Firstly, it defines a musical work
as a struct. A struct is a custom data type that may include several attributes of
different types:

1 // every musical work is represented by a struct with a set of
variables

2 struct Work {
3
4 // timestamp from the block when this work was registered
5 uint64 birthTime ;
6
7 // the MD5 -hash of the uploaded file
8 bytes32 fingerprint ;
9
10 // list of contributors Ethereum address
11 address [] contributors ;
12
13 // list of percentage ownership assigned to each contributor
14 uint [] splits ;
15 }

The contract then declares an array that holds Work structs:
1 // An array containing the work struct for all registered works in

existence .
2 // the index of the struct in the array is the ID of the work
3 Work [] public workDB ;

The workDB is the application’s master database that holds all the registered
musical works. Whenever a user registers a new work, it is added to this array. Its
index position in the array becomes the work’s unique ID. This is shown in the
createWork() function:

4.1. IMPLEMENTING SMART CONTRACTS 51

1 // function for registering a work
2 // This will update the work list of all contributors and assign RCN

- tokens according to the _splits [] argument
3 function createWork (bytes32 _fingerprint , address [] _contributors ,

uint [] _splits) public returns (bool) {
4
5 require (_contributors . length == _splits . length);
6
7 // get the timestamp for when the current block is mined
8 uint64 _birthTime = uint64 (now);
9
10 //A work struct with info about the work. PS: this data is

permanent
11 Work memory _newWork = Work ({
12 birthTime : _birthTime ,
13 fingerprint : _fingerprint ,
14 contributors : _contributors ,
15 splits : _splits
16 });
17
18 // we push the newly created work - struct to the workDB
19 // Its ID (index in the workDB array) is assigned the newWorkId

variable
20 uint _newWorkId = workDB . push (_newWork) - 1;
21
22 // set the work to inactive until all contributors has approved

the splits
23 // NOTE: this is also the default value , so vi may skip this

code -line
24 workIdToApproved [_newWorkId] = false ;
25
26 // emit the createWork event
27 CreateWork (_newWorkId , _birthTime , _fingerprint , _contributors ,

_splits);
28
29 // return that the function executed successfully
30 return true ;
31 }

Mappings

The mapping data type in solidity plays an important role in many smart contracts.
It can be thought of as a hash table that stores data by connecting a key with a
value. It is declared as the following:

1 mapping (_KeyType => _ValueType)

WorkBase declares eight different mappings. To avoid confusion, we will only
discuss a few of them. One of the mappings keeps track of whether a work has been
approved or not. It is defined as the following:

52 4. IMPLEMENTATING A DECENTRALIZED APPLICATION

1 // mapping from workId to a boolean approved value
2 mapping (uint => bool) public workIdToApproved ;

Notice how the workIdToApproved mapping is updated in the createWork function
described above. A work is not approved until all involved contributors have approved
it. When a work is approved, it is considered valid, and the smart contract will
issue copyright tokens to the contributors as proof of ownership of that work. The
following function does this:

1 // Function for issuing RCN - tokens to contributors of a work.
2 // Called only after _allContributorsApproved returns to true
3 function _issueRcnTokens (uint _workId) internal returns (bool) {
4 // variable containing the relevant work struct
5 Work memory _work = workDB [_workId];
6
7 // list of all contributors
8 address [] memory _contributors = _work . contributors ;
9
10 // list of splits
11 uint [] memory _splits = _work . splits ;
12
13 // Loop over all contributors
14 for (uint i= 0; i < _contributors . length ; i++) {
15 address _contributor = _contributors [i];
16
17 // update mapping from contributors to their worklist
18 // meaning this contributor has one or more tokens related

to this work
19 addressToWorkList [_contributor]. push (_workId);
20
21 // update mapping from workId to tokenHolders
22 workIdToTokenHolders [_workId]. push (_contributor);
23
24 // Loop from value 0 to _splits [i] (_splits [i] = number of

tokens for _contributors [i])
25 for (uint j= 0; j < _splits [i]; j++) {
26
27 // create new rcn - token and push it to the master rcnDB
28 // its value is the related workId and its index in the

array becomes the tokenId
29 uint _newTokenId = rcnDB . push (_workId) - 1;
30
31 // Fill the tokenID -list in workIdToTokenList
32 workIdToTokenList [_workId]. push (_newTokenId);
33
34 // call the internal transfer function for assigning

token ownership
35 _transferToken (0, _contributor , _newTokenId);
36 }
37 }
38 }

4.1. IMPLEMENTING SMART CONTRACTS 53

4.1.2 TokenOwnership.sol - Copyrights as Tokens

The _issueRcnTokens function shown above creates and issues tokens to contributors.
These tokens represent copyrights for an approved work. The work’s splits-attribute
determines how many tokens each contributor is issued. We define one token to
represent 10% ownership of a work’s overall copyrights. Thus, the _issueRcnTokens
function issues 10 tokens when executed. Theoretically, we could define one token
to be 1% (issue 100 tokens for one approved work). 100 tokens would allow for
finer granularity and more flexible split-options. However, issuing that many tokens
would require significantly more EVM-computations and result in a more expensive
transaction. While experimenting with different percentages ownership per token, we
learned that the cost scales linearly with the number of issued tokens. That is, issuing
100 tokens instead of 10 tokens results in a 10 times more expensive transaction.

The copyright token has the token symbol “RCN” which is an abbreviation for
RightCoin. Hence, the function name _issueRcnTokens. We stored all issued tokens
in a public array declared like this:

1 //A master database of all issued copyright tokens .
2 // Whenever a work is created and approved , a number of tokens are

issued and added to this array .
3 //A tokens index in the array is its tokenId .
4 uint [] public rcnDB ;

We use a mapping to keep track of which tokens are owned by what Ethereum
account. It is declared like this:

1 // mapping from tokenID to the address of its owner
2 mapping (uint => address) public tokenIdToOwner ;

54 4. IMPLEMENTATING A DECENTRALIZED APPLICATION

The following _transferToken function updates the tokenIdToOwner mapping.
Notice how this function is called at the end of the _issueRcnTokens function
mentioned earlier. _transferToken is an internal function that is responsible for
actually assigning ownership of a unique token to a person. In our case, internal
functions means that they are used in different use cases by different components of
the back-end code.

1 // function for token ownership assignment
2 // used in _issueToken () and transfer ()
3 function _transferToken (address _from , address _to , uint _tokenId)

internal {
4 // increase the token count associated with the _to address
5 addressToTokenCount [_to]++;
6
7 // for " newborn tokens ", we insert the (token => address) key -

value pair in the tokenIdToOwner mapping
8 // for existing tokens , we update the address - value of a tokenID

-key to the _to address
9 tokenIdToOwner [_tokenId] = _to;
10
11 // For existing tokens , the _from address is not 0x0
12 // This is the case in transer () , and we have to to more checks

and operations
13 if (_from != address (0)) {
14
15 addressToTokenCount [_from]--;
16
17 // clear approved transfer allowance for the token
18 delete tokenIdToApproved [_tokenId];
19
20 // get the workId associated with the _tokenId
21 uint _workId = _getWorkIdfromTokenId (_tokenId);
22
23 // check if _to address already has the workId in his

workList
24 if (_workIdNotInWorkList (_workId , _to)) {
25
26 // add the workId to worklist associated with the _to

address
27 addressToWorkList [_to]. push (_workId);
28
29 // add the _to address in workIdToTokenHolders mapping
30 workIdToTokenHolders [_workId]. push (_to);
31 }
32 }
33 }

4.1. IMPLEMENTING SMART CONTRACTS 55

We have previously mentioned Ethereum’s ERC721 token standard which repre-
sents unique non-fungible items. Our copyright RCN-token implements this standard.
One can see from TokenOwnership’s contract definition that it inherits from the
ERC721 interface contract:

1 contract TokenOwnership is \ textbf { ERC721 }, WorkBase {}

The TokenOwnership contract is required to fill in implementation for the functions
declared by the ERC721 standard because of this inheritance. The ERC721 standard
is defined as the following:

1 /// @title Interface for contracts conforming to ERC -721: Non - Fungible
Tokens

2 /// @author Dieter Shirley <dete@axiomzen .co > (https :// github .com/dete)
3 contract ERC721 {
4 // Required methods
5 function totalSupply () public view returns (uint256 total);
6 function balanceOf (address _owner) public view returns (uint256

balance);
7 function ownerOf (uint256 _tokenId) external view returns (address

owner);
8 function approve (address _to , uint256 _tokenId) external ;
9 function transfer (address _to , uint256 _tokenId) external ;
10 function transferFrom (address _from , address _to , uint256 _tokenId)

external ;
11
12 // Events
13 event Transfer (address from , address to , uint256 tokenId);
14 event Approval (address owner , address approved , uint256 tokenId);
15
16 // Optional
17 // function name () public view returns (string name);
18 // function symbol () public view returns (string symbol);
19 // function tokensOfOwner (address _owner) external view returns (

uint256 [] tokenIds);
20 // function tokenMetadata (uint256 _tokenId , string

_preferredTransport) public view returns (string infoUrl);
21
22 // ERC -165 Compatibility (https :// github .com/ ethereum /EIPs/ issues

/165)
23 function supportsInterface (bytes4 _interfaceID) external view

returns (bool);
24 }

We are not going to discuss how our TokenOwnership contract implements all
these functions. The full implementation can be found in our GitHub repository
(link in the beginning of chapter 4).

The fact that all ERC721 tokens follow the same standard and all ERC721-
functions are public facilitates a standard way for users to interact with RCN-tokens

56 4. IMPLEMENTATING A DECENTRALIZED APPLICATION

as any other ERC721 tokens. That means that one can transfer the ownership
of specific copyrights to another Ethereum-account using an Ethereum-wallet that
supports the ERC721 standard. Toshi2 is an example of such a wallet. Additionally,
it is possible to sell copyrights tokens on a marketplace or an exchange.

4.1.3 LicenseBase.sol - Storing License Contracts on Ethereum

The LicenseBase contract is similar to WorkBase. It includes code for storing
license profiles on the blockchain that can be viewed and purchased through our web
application. A license profile defines data about a licensing agreement. It is defined
as a custom struct data type.

1 //A struct containing the birthTime and fingerprint of a license
profile

2 struct LicenseProfile {
3 // The block number for when the license profile is created
4 uint birthTime ;
5
6 // price (in wei)
7 uint price ;
8
9 //MD5 -hash of the profile - document describing the terms for the

profile
10 bytes32 fingerprint ;
11 }

When created, license profiles are stored in an array defined like this:

1 // An array containing the licenseProfile structs for all registered
licenseProfiles in existence

2 // the index of the struct in the array is the ID of the
licenseProfile

3 LicenseProfile [] public licenseProfileDB ;

LicenseBase also implements the function createLicenseProfile that will create a
licenseProfile struct and push it to the licenseProfileDB array. This database array
contains all licenseProfile structs in existence. We will not show the createLicense-
Profile function as it is very similar to the createWork function described in the
previous section.

We keep track of which contracts belong to which works in a mapping defined
like this:

1 // mapping from licenseProfileIdToWorkId
2 mapping (uint => uint) public licenseProfileIdToWorkId ;

2https://itunes.apple.com/us/app/toshi-ethereum-wallet/id1278383455?mt=8

4.1. IMPLEMENTING SMART CONTRACTS 57

4.1.4 LicensePurchase.sol - Handling License Purchases

The LicensePurchase contract defines the function used when buying a specific license
for a work. It is implemented like this:

1 function buyLicense (uint _licenseId) public payable returns (bool
success) {

2
3 // License profile has to be activated in order to buy it
4 require (activatedProfiles [_licenseId]);
5
6 // license profile struct variable
7 LicenseProfile memory _licenseProfile = licenseProfileDB [

_licenseId];
8
9 // the amount of weis the purchaser sent in the transaction
10 uint _amount = msg. value ;
11
12 // validate transaction value
13 require (_amount == _licenseProfile . price);
14
15 // associated workId
16 uint _workId = _getWorkIdByLicenseProfileId (_licenseId);
17
18 // list of tokens associated with the work associated with

_licenseId
19 uint [] memory _tokenList = _getTokenListFromWorkId (_workId);
20
21 // the value of which we increase each tokenBalance
22 // compared to what we would expect
23 uint incrementValue = (msg. value / _tokenList . length);
24
25 // loop over all tokens belonging to the work associated with

_licenseId
26 for (uint i = 0; i < _tokenList . length ; i++) {
27 // update the tokenIdToBalance mapping increasing the

balance of the relevant tokens
28 tokenIdToBalance [_tokenList [i]] += incrementValue ;
29 }
30
31 // uppdate the addressToPurchasedLicenseIds mapping adding the

_licenseId to the list value
32 addressToPurchasedLicenseIds [msg. sender]. push (_licenseId);
33
34 // increment the count of which a license profile has been

purchased
35 licenseProfilePurchaseCount [_licenseId]++;
36
37 // Emit LogPurchase event
38 LogPurchase (uint64 (now), _licenseId , _workId);
39
40 return true ;
41 }

58 4. IMPLEMENTATING A DECENTRALIZED APPLICATION

This function is quite complicated as it contains multiple function calls and
statements. Notice the following details:

• The function definition includes the "payable" keyword. That allows the function
to receive ETH as a part of the transaction.

• The function receives a licenseProfile as input. That is the licenseProfile that
the sender of the transaction wants to purchase.

• The amount of ETH sent with the transaction has to be equal to the price of
the licenseProfile input.

As mentioned earlier, smart contracts are accounts with its own ETH balance.
When users execute the buyLicense function, they send ETH to the smart contract
increasing the balance of the contract. That may seem strange as it looks like the
contract owns all the paid royalties. However, this is not the case. The smart contract
defines a mapping named tokenIdToBalance. It is defined like this:

1 // mapping from a tokenId to its balance
2 // the sum of all token balances is equal to the contract ’s balance
3 mapping (uint => uint) public tokenIdToBalance ;

This mapping specifies how much of the contract’s balance each token is entitled
to. In fact, the entire contract balance is the sum of all tokens’ aggregated enti-
tlement as defined in the mapping. Notice how the buyLicense function updates
tokenIdToBalance to increase the balance for each relevant token when somebody
purchases a license. This concept is illustrated in the following figure:

Figure 4.1: Illustrates the concept of token balances when a license is purchased.

4.1. IMPLEMENTING SMART CONTRACTS 59

Figure 4.1 demonstrates how the state of the smart contract changes when
somebody purchases a license. For the sake of simplicity, we assume that there only
exists one work (associated with tokens [1,2,..10]) on the application. The initial
contract balance is equal to 50 ETH. That is also the total sum of the values in the
tokenIdToBalance mapping. The transaction represents a purchase of a licenseProfile
with ID 5. This license costs 20 ETH and is associated with tokens [1,2,..10]. When
the EVM executes the transaction, the contract’s final balance increases to 70 ETH.
At the same time, the smart contract code updates its tokenIdToBalance mapping.
Tokens [1,2,..10] are now entitled to 7 ETH each.

The reason we implemented the described balance control scheme is to save
gas. A more expensive approach would be a forwarding design. In such a scheme,
the licensePurchase contract would receive ETH from the purchase transaction and
immediately forward it to appropriate token owners. However, every forwarded
transaction cost gas which the initial purchaser ultimately would have to pay.

60 4. IMPLEMENTATING A DECENTRALIZED APPLICATION

The LicensePurchase contract also defines a function named withdrawFrom-
WorkId(). This function enables token owners to withdraw the generated royalties
(held by the contract) for a given work. The code for this is the following:

1 // function for withdrawing the balance of all owned tokens
associated with one work

2 function withdrawFromWorkId (uint _workId) public returns (bool
success) {

3
4 // list of tokens owned by msg. sender associated with the input

_workId
5 uint [] memory _ownedTokens = getTokensFromWorkIdAndAddress (

_workId , msg. sender);
6
7
8 uint _totalWithdraSum = 0;
9
10 // iterate over owned tokens
11 for (uint i = 0; i < _ownedTokens . length ; i++) {
12 uint _tokenId = _ownedTokens [i];
13
14 // increase the withdraw sum with the balance of _tokenId
15 _totalWithdraSum += tokenIdToBalance [_tokenId];
16
17 // reset the balance associated with _tokenId
18 delete tokenIdToBalance [_tokenId];
19 }
20
21 // transfer the sum from the contract balance to msg. sender
22 msg. sender . transfer (_totalWithdraSum);
23
24 LogWithdrawFromWorkId (msg.sender , _workId , _totalWithdraSum);
25
26 return true ;
27 }

The function takes a workID as input and evaluates which relevant tokens
msg.sender owns (msg.sender is the Ethereum address of the user who initiated the
transaction). For these tokens, the function calculates the aggregated token balance
sum. This sum is then sent from the smart contract account to the account of
msg.sender.

4.2. BUILDING A WEB APPLICATION WITH ANGULAR 61

4.2 Building a Web Application with Angular

In this section, we will discuss the source code of our web application. That includes
a brief walkthrough of the Angular project structure, essential components, services,
and models. We would like to provide some insight into how our application functions
and justify some of the decisions we have made during development.

4.2.1 Project Structure

The Angular project consists of two main folders: the node modules folder and
the source folder. The former contains all the JavaScript libraries on which our
application depends. Some examples are Web3.js, AngularFire2, and RxJS (a reactive
programming library).

– node_moduels

– src

◦ app

∗ auth
∗ blockchain-services
∗ firestore-services
∗ models
∗ components

· create-work
· create-work.component.css
· create-work.component.html
· create-work.component.ts
· home
· login
· ...

∗ app-routing.module.ts
∗ app.component(.ts, .html, .css)
∗ app.module.ts

◦ index.html

◦ ... config files, global stylesheet, ...

The second folder is our source code. It contains an app folder with all our
services, components and models. It also defines our single web page index.html

62 4. IMPLEMENTATING A DECENTRALIZED APPLICATION

where the HTML-body is dynamically loaded with the different component views.
Additionally, the source folder contains some configuration files, an environment
specification, and global stylesheets. In the next section, we will review the contents
of the app folder.

4.2.2 Authentication and Authorization

Like any other user based application, our application needs to have some form of
authentication. The official Firebase library for Angular can provide us with this.
In the auth folder, we have an authentication service that checks if a user is logged
in. If that is the case, the service returns the user’s details from a collection in
Firestore. The current user is set as an observable, meaning that other components
and services can subscribe to this user object and have access to the user’s details.
The authentication service also features methods for user sign in, sign up, and sign
out.

On our platform, we do not wish to give the same access to every user. Users will
have access to different views depending on their needs when signing up. Angular
features so-called Route Guards. A guard is a class used to restrict access to one
or multiple views in the application. We use route guards to provide users with
only relevant functionality. For example, copyright owners may want to register a
copyright for musical works that they own. The same does not apply to licensees
who simply want to purchase licenses for different works. Another example is that
non-registered users of the platform should only be able to query the copyright
database and view the results, but not purchase licenses.

4.2. BUILDING A WEB APPLICATION WITH ANGULAR 63

4.2.3 Services

In Angular, services are classes with a specific task or purpose. Unlike components,
they do not have a user interface or any templates related to them. Services can
serve multiple components, and they are often used to fetch data from (and pass
data to) other servers. “Service providers can be injected directly into components
as dependencies.”3. The application has two separate sets of services: one set for
blockchain related tasks and one set for Firebase.

Blockchain Services

In our suggested solution, there are two services related to the blockchain: web3.service.ts
and the ethereum.service.ts.

The first service is mainly for establishing a Web3.js provider so that we can
connect our Angular application to the running blockchain. That is the service where
MetaMask is set as the current Web3 provider.

The second service provides the components with access to the functionality of
the deployed smart contract. Code snippet 1, taken from this service, illustrates
how we manage to call the create work function of the deployed smart contract with
specified parameters. This method is called once a user registers a work. Since
this contract function writes to the blockchain, we also specify which Ethereum
address (account) that will pay for the transaction as well as a total gas limit for the
transaction. One could also specify the gas price, but we did not find this necessary
as it can be adjusted in a MetaMask window before accepting the transaction.

1 createWork (account , fingerprint , contributors , splits): Observable <any >
{

2 return Observable . create (observer => {
3 this . LicensePurchase . deployed ()
4 . then (instance => {
5 // Calling the function ’createWork ’ from the contract

with respective parameters
6 return instance . createWork (fingerprint , contributors ,

splits , { from: account , gas: 6400000 });
7 })
8 . then (value => {
9 // Passing the returned value to the observable
10 observer .next(value);
11 observer . complete ();
12 })
13 . catch (e => {
14 console .log(e);
15 observer . error (e);
16 });

3https://angular.io/guide/architecture

64 4. IMPLEMENTATING A DECENTRALIZED APPLICATION

17 });
18 }

Firebase Services

The second set of services is related to Firebase. We have a service for every collection
in Firestore (license profiles, purchases, users, and works). The complexity of these
services is generally low. They have a push method and one or two get methods.

The user service has more complicated methods than the other services. While the
other services push data to a new document in their respective Firestore collection, the
user service gets the logged in user’s document and modifies its attributes. Retrieving
the user document is done by subscribing to the current user from the authentication
service. The method displayed in the code below is the method that updates every
contributor’s user document.

1 pushUnapprovedWorksToUsers (contributorIds , workId) {
2 // Looping through all contributors
3 contributorIds . forEach (uid => {
4
5 // Get the user document for the current contributor
6 const doc = this .afs.doc(‘ users /${uid }‘).ref;
7
8 // Run a transaction to prevent others from writing to the same

document at the same time.
9 this .afs. firestore . runTransaction (transaction => {
10 return transaction .get(doc). then (snapshot => {
11
12 // Directly appending to the value of array property in

Firestore is not possible .
13 // We do for that reason have to take a snapshot of the

stored array and push to it locally .
14 let unapprovedWorksArray = snapshot .get(’unapprovedWorks ’);
15 if (typeof unapprovedWorksArray !== ’undefined ’) {
16 unapprovedWorksArray . push (workId);
17 } else {
18 // Create a new array if the array does not already exist

in the document
19 unapprovedWorksArray = new Array <number >();
20 unapprovedWorksArray . push (workId);
21 }
22
23 // Replaces the current value of ’unnaprovedWorks ’ with the

local array variable
24 transaction . update (doc , ’unapprovedWorks ’,

unapprovedWorksArray);
25 });
26 });
27 });
28 }

4.2. BUILDING A WEB APPLICATION WITH ANGULAR 65

The method takes in an array of user IDs related to the proposed musical work
and a work ID. We iterate over the contributor IDs and modify the user document of
every contributor of the work. The user service has similar methods for the approved
work array as well as for both inactivated and activated license profile arrays. These
methods are all triggered by successful registration on the blockchain.

4.2.4 Models

The application has a few models that are used as data types containing a set of
attributes in our components. These models are defined in separate interfaces and
can be used by any component or service in the application. Not only do models
ensure better code quality, but they also enforce object storage with identical property
names.

One example is the work model as seen in the code below. This model is used as
a data type describing a work object. Some of the properties are optional (as seen by
the question mark behind the name) and do not have to be set when a Work object
is instantiated.

1 import { Contributor } from ’./ contributor ’;
2
3 export interface Work {
4 workId ?: number ;
5 title : string ;
6 typeOfWork : string ;
7 description : string ;
8 contributors : Array < Contributor >;
9 fingerprint : string ;
10 uploadedBy ?: string ;
11 birthTime ?: number ;
12 approvedStatus ?: boolean ;
13 downloadUrl ?: string ;
14 }

The work model is used In the create-work component. The value of the form
is set to an instance of the work model type when the form is submitted. All the
mandatory properties are set in the form while other methods set the optional
properties. The reason for this is because some of the properties can only be set
once an event from the Solidity contract is returned and provides the component
with some additional data. Other properties like the ‘downloadUrl’ and ‘uploadedBy’
depend on information from Firestore.

66 4. IMPLEMENTATING A DECENTRALIZED APPLICATION

4.2.5 Components

Every view of our application is a component. The components consist of a TypeScript
file and related templates in HTML and CSS. The HTML and CSS files define the
user interface, and the TypeScript file handles the data flow both to and from the
user interface.

The TypeScript file imports models and services to handle this flow. By using
services and models, components function as a control center for data flow between
the user interface and the services that communicate with the back-end.

All Angular applications require a root component “that connects a component
hierarchy with the page DOM.” (https://angular.io/guide/architecture). Our root
component (app.component.ts) checks if a user is logged in and renders the applica-
tion’s navigation bar. The root component will load other components to the view
based on the current path (URL).

The create-work component displays a form that a copyright owner can fill out
and submit to register a work. The instance of the work model is set to the form
value. As mentioned, only a few attributes of the work object are added to the
blockchain when the work is submitted. The sequence is explained in Figure XX.
The following code shows how this is implemented in the create-work component:

1 createWork = () => {
2
3 // Displaying current status for the user
4 this . setStatus (’Creating work ... (please wait)’);
5
6 // Pushing vital properties to the Blockchain . Since the logged in

user pays for the
7 // Ethereum transaction the ’user. ethereumAddress ’ is sent as a

parameter as well.
8 this . _ethereumService . createWork (this .user. ethereumAddress , this .

fingerprint ,
9 this . contributorsToChain , this . splitsToChain)
10 . subscribe (eventCreatedWork => {
11
12 // If the transaction is successfully completed and the work

has been
13 // stored on the blockchain .
14 if (eventCreatedWork .logs [0]. type === ’mined ’) {
15
16 this . setStatus (’Work stored on blockchain .’);
17
18 // Sets the ID that the work was given on the blockchain to a

property of the Work instance .
19 // tslint :disable -next -line: radix
20 this . work . workId = parseInt (eventCreatedWork .logs [0]. args.

workId);

4.2. BUILDING A WEB APPLICATION WITH ANGULAR 67

21
22 // Sets a property of the Work instance equal to the download

URL from the returned
23 // metadata object upon file upload completion to Firebase .
24 this . work . downloadUrl = this . metadata . downloadURL ;
25
26 // Overwriting the contributors property of the Work instance

to an array of more complex objects
27 this . work . contributors = this . contributorsToFirestore ;
28
29 // Pushing the new Work to the ’works ’ collection in

Firestore and updating fields in every
30 // contributor ’s user document in the ’users ’ collection .
31 this . pushToFireStore (this . contributorIds , this . work);
32
33 } else {
34 this . setStatus (’Not mined ’);
35 }
36 }, e => {
37 this . setStatus (’Error creating work; see log.’);
38 });
39 }

4.2.6 Modules

The basic building blocks of an Angular application are modules. In our application,
there are two modules: the routing module and the root module. The root module
imports all components, dependencies and services and launches the application. The
routing module defines all possible routes in the application, specifies the paths and
places necessary guards. The routing module is imported into the root module.

Chapter5Results

The third and final part of the thesis includes chapter 5-7 where we outline the
results of our investigation, discuss those results, and present our conclusion where
we answer the research question.

In this chapter, we outline the results of our research. It can be split into three
main contributions: background analysis, back-end smart contracts, and front-end
web application.

5.1 Background Analysis

Research and Identify Music Industry Problems

Our research provides a detailed description of the complex modern music industry.
Furthermore, it delineates key issues in the industry and uncovers the fundamental
reasons behind them. As we gained knowledge of the overall hierarchy of the music
industry and how it has changed over the years, we were able to discover several
issues and group them into categories and subproblems:

1. The industry structure and friction between the players

• Non-transparent value chain and NDA licensing contracts between players

• Slow non-automatic royalty payment system

2. Lack of information and standards

• No official global copyright database

• No international standards for licensing and reporting

69

70 5. RESULTS

Applied Blockchain Concepts

During our research, we connected blockchain properties with the mentioned issues.
We learned about the Ethereum blockchain and realized that the platform facilitates
trustless decentralized application. While conventional applications require users
to trust a third party, Ethereum-based applications don’t have this requirement.
This distinction has profound consequences in terms of transparency and trust.
Furthermore, we explain how these elements can be applied in the music space to
increase hierarchical transparency, and make the whole music industry more fair for
musicians. The modern music industry relies heavily on trusted entities. A blockchain
based music industry would be a transparent community with publicly available
transactions and licensing contracts. Our research also suggests that blockchain, as
an economic transaction system, can solve problems related to today’s inefficient
money flow. By using blockchain, fast global royalty payments can become a reality.

5.2. SMART CONTRACTS 71

5.2 Smart Contracts

Our master project’s second contribution is the back-end code implemented in smart
contracts. The results serve as a proof-of-concept demonstration and not as a finished
product. For that reason, the implementation itself is not deployed, and people
cannot easily interact with it. However, we have demonstrated how to compile
and deploy the smart contracts to a local Ethereum test network. The code solves
concrete problems and works as intended.

5.2.1 Functioning Proof-of-Concept

Our POC successfully implements four important components:

1. An open, transparent global music copyright and licensing database that
contain.

– Split sheets for musical works

– License contracts for musical works

We believe that the open database may facilitate unified licensing standards
that could be internationally accepted.

2. A correct working implementation of the standard ERC721 token system which
enables copyrights to be represented by unique tradeable tokens. Figure 5.1
and 5.2 shows the Metamask wallet for the two users John Grey and Andreas
Engebretsen (Lambendo). The Metamask wallet partly supports the ERC721
standard. It can show the number of RCN-tokens held by the user, but it does
not show the unique ID of the tokens. Moreover, MetaMask currently does not
support functions for sending RCN-tokens to other Ethereum wallets (users).

3. Users can create and purchase license contracts for single musical works. Figure
5.3 shows a transaction representing a user buying a license. Notice that it
carries 8 ETH (the price of the license) to the smart contract.

4. Musicians get real-time information about generated license royalties. These
royalties can be withdrawn at any time. Figure 5.4 shows a transaction where
a user requests the smart contracts to withdraw generated royalties. Figure
5.5 shows the user’s balance after the withdrawal request. Notice how it has
increased to 106.3 ETH from its initial default balance (100ETH).

72 5. RESULTS

Figure 5.1: The MetaMask Ethereum
wallet shows that John Grey holds 7
RCN-tokens that represent unique copy-
rights in various musical works

Figure 5.2: The MetaMask Ethereum
wallet shows that Andreas holds 133
RCN-tokens that represent unique copy-
rights in various musical works

Figure 5.3: User with address 0x5178f567D00785b9109279b548bf0DC2847D3c84
buys a license. The transaction carries 8 ETH to the smart contract address
0x1E69c020F56f35D8636b8ECe700732FE67817f1a

5.2. SMART CONTRACTS 73

Figure 5.4: A transaction where user 0x46Ebca9b5Fc8d095f130Bc2C2ec54E994Fce2F8c
sends a requests transaction to withdraw royalties for one of the user’s work.

Figure 5.5: Eight of the test accounts on our local Ethereum network. Notice how
the third user (with address 0x46Ebca9b5Fc8d095f130Bc2C2ec54E994Fce2F8c) has
just withdrawn royalties from the work into his personal account, giving him a total
balance of 106.31 ETH.

74 5. RESULTS

It is worth mentioning that there are problems and use cases within the music
licensing space that our POC does not implement. Below are listed some unresolved
problems:

– A concrete suggestion for an international standard defining how licensing
should be regulated.

– Single license contracts that involve several musical works. Two examples that
most often involve huge music catalogs are streaming contracts and public
performance contracts.

5.2.2 Ethereum Community and Education

In addition to solving specific industry issues, our back-end code also serves as a
contribution to the Ethereum dApp development community due to the project’s open
source nature. Our code and documentation can provide specific answers and ideas
for other dApp projects in the Ethereum space. Furthermore, several educational
institutions are becoming more interested in the potential of blockchain technology.
It is not unthinkable that our implemented smart contracts (and concepts provided
throughout our thesis) can be used for educational purposes. In fact, we encourage
teachers, professors, and students to study the technicalities of our code and apply
the same ideas to solve other problems in other industries.

5.3. WEB APPLICATION 75

5.3 Web Application

The third contribution of our master’s project is the front-end web application. We
developed a graphical user interface (GUI) for two reasons:

1. Showcase the systems architecture and functionality provided by the back-end
smart contracts.

2. Make it easy for users to interact with the blockchain without dealing with a
command line terminal

The web application is a platform where users can search a copyright database
containing all registered works on the blockchain. Registered users can also register
new works, create license profiles for those works, and buy licenses for different
musical works. The rest of this section demonstrates the dApp’s use cases with a
description and a screenshot of the corresponding GUI.

76 5. RESULTS

Home

The home view is minimalistic and straightforward. It contains a search field where
both registered and non-registered users of the platform can search the database to
get specific details about musical works. The home view (as with every other view)
also includes a menu button for users who have created an account and logged in.
Clicking this button enables the user to navigate to different views.

Figure 5.6: This is the home view. It includes a simple search bar and a profile
menu button for logged in users.

5.3. WEB APPLICATION 77

Sign up

Users who want to register music to the database and license their work must sign
up by creating an account. The same goes for users that wish to purchase licenses
for the use of music. Creating an account is similar to any other user registration
processes. It involves filling out a form with information such as name and Ethereum
address. We also require a unique username (email address) and password for login
and authentication purposes.

Figure 5.7: This is the sign up form when creating an account on the platform.
The picture shows the independent producer, Lambendo, signing up on the platform.

78 5. RESULTS

Create Work

This use case is available to every user who wants to register a musical work to the
blockchain. As mentioned, some examples of musical works are recordings, lyrics,
song compositions, notes, melodies, and full symphony arrangements. There are
three pieces of information required to register a work: metadata (title, type of work,
description), contributors and their share of the copyrights of the work, and the
actual file embodying the work the user wants to copyright.

Figure 5.8: This is the user interface when registering a musical work. The picture
shows Lambendo registering his track “Say You Love Me (feat. John Grey). The
contributors split their royalties in the following manner: Lambendo will have 80%
ownership and the vocalist, John Grey, gets 20%.

5.3. WEB APPLICATION 79

Approve work

When a work has successfully registered on the blockchain and in the database, a
notification is sent to all contributors who were listed in the registration process.
This notification is visible in the contributors’ personal profile view. From here,
users can review the uploaded file and verify that the data for the work is indeed
correct. Approving a work implies that the user acknowledges the work information
and accepts the suggested split sheet.

Figure 5.9: This is the user interface showing a contribution notification on John
Grey’s personal profile view. Both Lambendo and John Grey have to approve this
information before the work becomes a valid entry in the database on the blockchain

80 5. RESULTS

Create License

When all involved contributors approve a work, it is ready to be licensed. There
are many different types of licenses. A synchronization license allows for using the
musical work in a video production. A public performance license allows for playing
the song publicly (for instance in a restaurant or through radio). As mentioned
earlier, the application makes it possible to create something we define as license
profiles. A license profile contains different licensing data. It includes the following:
metadata (the type of license, short description, The ID of the musical work to which
the license applies), price (in ETH), and a file containing complete licensing terms.
There are no requirements for how detailed these terms have to be. In some cases, it
would be sufficient to specify for what region and for how long the license is valid.
In more severe cases, these terms would be defined by high-level management and
lawyers. This would be the case if a big record label would license music for a major
film studio or a streaming service such as Spotify.

Figure 5.10: This is the user interface when registering a license profile. The
picture shows a synchronization profile allowing video production users to use the
musical work (work ID 3) in a commercial. The attached file is a standard Master
Use (MU) License for Advertising.

5.3. WEB APPLICATION 81

View Work

When a musical work is registered and approved by all involved contributors, it
becomes a valid entry in the public database on the blockchain. Anyone can query
this database and retrieve information about specific musical works. All data,
including the split sheet between the contributors, is open and will be displayed
on the application. As we’ve mentioned previously, our dApp stores data to two
different back-end systems: the Ethereum blockchain and in a centralized database
(Firebase). The boxes illustrate this by showing where the different data is stored.

Figure 5.11: This is the user interface when viewing a musical work. The picture
shows the information for “Suit ‘n Tie (Lambendo Remix)”. Notice how both boxes
include an identical digital fingerprint as their first field. When these fingerprints are
equal, users can be confident that the displayed information is accurate. A mismatch
between the displayed fingerprints signals that the centralized storage (Firebase
Storage) has been compromised.

82 5. RESULTS

Purchase License

Registered users have the availability to purchase licenses for different license profiles.
One example: a restaurant that wants to use music on their premises. The application
allows users to search and license the music they need in a matter of seconds.

In the previous view, we saw the user interface when viewing data for a musical
work. Below the information boxes, there is a list containing the different license
profiles that have been created for that particular musical work. Clicking on one of
these will cause it to expand showing more information about each license profile.
From here, it is also possible to purchase a license.

Figure 5.12: When clicking on one of the license profiles below the information boxes,
the user can view more information about it. The image shows the user interface for
the synchronization profile associated with the song “Suit ‘n Tie (Lambendo Remix)”
shown on the previous view. Purchasing the license is as simple as clicking the “ETH
8” button at the bottom of the view and confirm the transaction in the MetaMask
wallet.

5.3. WEB APPLICATION 83

Purchase Receipts

Licensing music traditionally involves signing a document (manually or digitally)
that serves as a receipt that confirms the agreement. Our application provides a
somewhat different proof. Buying a license through our application involves sending
a transaction to the blockchain. This transaction carries the money and some other
necessary data required to process the purchase. When the transaction is finished
(when the block containing the transaction is successfully mined), the user receives a
purchase notification which is available on the purchaser’s personal profile view. The
receipt includes the following information: The unique hash of the transaction that
carried out the purchase, the block number and timestamp for when the transaction
was confirmed on the blockchain, and the ID of the musical work for which the
license applies. This information is sufficient to prove a valid license purchase. Using
services such as etherscan.io1, it is easy to check and verify the transaction that
carried out the license purchase.

Figure 5.13: this is the user interface for viewing purchase receipts. The picture
shows Walt Disney Studio’s profile. They have currently licensed two musical works
for use in their movies. Clicking on a receipt will cause it to expand and reveal more
information about the purchase.

1https://etherscan.io/

84 5. RESULTS

Generated Royalties

The personal profile view keeps a list of all the works in which the user has complete
or partial ownership. When users license any of those works through the application,
the balance for that particular work will update in real time. Automatic updates
to the balance enable musicians to keep track of how much money their work is
generating.

Figure 5.14: The user interface that shows how users can keep track of their
royalties in real-time. The picture shows Lambendo’s personal profile view containing
a list of all works that he has ownership in/of. The list keeps a real-time sum of how
much royalties each of the tracks have generated. The track “Suit ‘n Tie (Lambendo
Remix)” is completely owned by Lambendo. It has generated 13 ETH of royalties
which means that it has been licensed for that exact amount through our application.

5.3. WEB APPLICATION 85

Withdraw Royalties

The previous view illustrated how a user can keep track of financial data for each
of the works they have ownership of. As mentioned, one of the application’s smart
contracts holds all generated royalties until copyright owners withdraw it. By clicking
on any given work on their personal profile view, users can view more information
about it and withdraw any royalties to their personal Ethereum wallet.

Figure 5.15: This is the user interface found on the personal profile view showing
information for musical works the user has ownership of. The bottom right “Withdraw
Balance”-button enables a user to instantly send the sum of generated royalties for
that work to its private Ethereum wallet.

Chapter6Evaluation and Discussion

In this chapter, we evaluate the results and discuss relevant topics that we encountered
during our research and development. The following discussions cover themes that
apply to most blockchain-based projects. We clarify those themes and analyze how
they relate to our decentralized application and the music industry in general.

6.1 Challenges with Blockchain Technology

Blockchain technology has existed for around ten years, but today’s most advanced
blockchain platforms still face numerous critical limitations. Even though we have
not focused on these issues throughout our thesis, we want to discuss them and
point out that they restrain adoption. In this section, we will present some of the
main challenges for the Ethereum blockchain and what implications they have on
our dApp.

6.1.1 Scalability

Ethereum’s scalability issue is their primary challenge. Currently, the network
can process 15-20 transactions per second. Compared with centralized e-commerce
systems, that number is significantly low. Scaling the platform is the number one
priority for the Ethereum foundation. We are not going to discuss the different
measures they currently work on to increase the transaction throughput. The scaling
issues affect all deployed dApps on the platform. The consequence is non-responsive
applications which are generally not acceptable for most users. In our case, basic use
cases, such as to register a work, withdraw royalties, or purchase a license, would take
undesirably long time whenever the Ethereum network would experience congestion.

6.1.2 Block Time

The average block time on the Ethereum network is 15 seconds. Thus, users of any
Ethereum dApp would have to wait on average 15 seconds every time they send a

87

88 6. EVALUATION AND DISCUSSION

transaction. Without going into details, this limitation is somewhat related to the
previous one. Compared to today’s responsive applications, a 15 second waiting
time is substantially higher than what most users accept. Despite this limitation,
we believe that the advantages that we have pointed out throughout the thesis can
make the lack of responsiveness worth it.

6.1.3 Transaction Fees

Another obvious drawback is the cost of communicating with Ethereum dApps. In a
centralized world, companies pay hosting companies to rent servers and computing
resources. These costs are likely priced into the products and services offered.
However, those costs are usually hidden from the consumers as they do not pay directly
every time they use an application. On the Ethereum blockchain, computational
power and data storage come at a price. Users have to pay this price directly in the
form of gas to miners that maintain the Ethereum network. There are two elements
to this discussion:

1. The price the user has to pay for a transaction. The fee is determined by two
factors: number of required gas-units and the cost of each unit. The gas cost
fluctuates depending on multiple factors such as the network traffic and ETH
price.

2. The principle of paying for transactions. Most users are not used to continuously
pay micro amounts when interacting with applications on the internet.

We did some calculations to figure out how many USD it would cost to register a
work. We learned that the fee for registration of one work would be between $0.10
and $0.60, depending on the gas price. For an independent right holder, this amount
may not be too high, as the copyright registration is a one time process. However,
for a major label with millions of works in their catalog, the cost is significantly
higher. We recognize the issue. Whether or not users will accept it needs to be
further investigated.

6.1.4 Programming Language

We also want to point out that developing on blockchain platforms is a challenge
when compared to other more established platforms such as Java or .NET. We
were presented with several problems when working with Solidity (the programming
language for the Ethereum blockchain). Although its community and documentation
are the biggest within the blockchain space, the language is characterized by several
shortcomings compared to more mature languages. While developing the smart
contracts we encountered many technical limitations. These are a few examples:

6.2. IS THE MUSIC INDUSTRY READY FOR BLOCKCHAIN? 89

1. No built-in string functions.

2. Functions cannot have nested arrays as inputs.

3. Functions cannot return dynamic arrays.

4. Custom types (structs) cannot contain attributes of the mapping type.

The limitations of the language made development trickier than expected. They
forced us to create front-end JavaScript functions to convert user input strings to
other compatible Solidity types. That was particularly a problem when dealing with
MD5-hashes for uploaded files. We had to convert the hash strings to byte-arrays
before the back-end Solidity functions would process the data.

6.2 Is the Music Industry Ready for Blockchain?

Although our POC demonstrates that blockchain can bring clear value propositions
to musicians, we would like to question if major industry organizations are ready to
change their traditional corporation. Generally speaking, we have yet to witness any
industry adopt these types of trustless decentralized applications. To continue this
debate, we would like to discuss whether or not there are enough incentives for the
industry as a whole to adopt blockchain technology.

When evaluating the results of the master project, our dApp indeed fulfills its
goal of demonstrating the potential of blockchain based solutions. We illustrate
how smart contracts can increase industry transparency and resolve the slow royalty
payment system. Moreover, we show how copyrights can be stored in a transparent
distributed database instead of in closed company systems. For those reasons, we
argue that decentralized applications have the potential to disrupt the music industry.
However, it seems like the music industry is not ready for blockchain technology. We
do not have clear answers to whether blockchain solutions can co-exist with current
contractual and copyright systems. Adoption by industry players depends on their
ability to identify clear value propositions offered by innovations such as Ethereum
dApps. Our thesis mainly points out how musicians would benefit from blockchain
based solutions. However, it is not as easy to imagine that big record labels and
royalty collecting societies would be motivated to transform their current business
operation radically. To be more specific, it is unlikely that powerful players would
welcome a licensing platform that is beyond their own control.

Blockchain technology is not going to turn the music industry upside down any
time soon. We predict a slow transition with incremental changes that eventually
might result in a drastic industry shift. Ultimately, we imagine that collaborations be-

90 6. EVALUATION AND DISCUSSION

tween high-profile artists, songwriters, and blockchain start-ups will have a significant
influence on how the industry transforms the next 5-10 years.

6.3 Necessity of Blockchain

The third discussion we would like to address is whether or not we need blockchain
technology to solve the issues in the music industry. Even though our dApp indeed
provides solutions to current issues, it is interesting to discuss why some of them
not yet have been solved using centralized solutions. Let us look at the two problem
categories we defined in the background analysis (from Chapter 2.2):

1. The hierarchical structure of players and the relationship between them

2. Lack of information and standards

Blockchain technology definitely seems to provide solutions to problems within
the first category. In fact, we argue that blockchain innovations will be the driving
force that ultimately solves the issues. We cannot see how the music space would
become more transparent and fair as long as a small group of dominant companies
continues to control the industry.

That said, we argue that it is indeed possible to create centralized solutions to
problems within the second category. There are no technological limitations for
creating a universal registry for copyrights and adapting to international licensing
standards. However, several attempts to solve these issues have already been made.
One example is the EU commissioned Global Repertoire Database (GRD) as men-
tioned in the Background chapter. This project failed - not because of technological
limitations, but due to major players fearing for their positions and their operational
costs. Perhaps blockchain technology will be the breaking point forcing the industry
to change.

6.4 Blockchain as an Economic Transaction System

Ethereum and other blockchains use either cryptocurrencies or tokens when transfer-
ring value across the network. In some aspects, one can argue that these transaction
systems deliver well on their promises as values are transferred faster than traditional
financial systems and in a correct manner. However, the fiat value of these cryp-
tocurrencies and tokens is very volatile. Building financial systems based on highly
volatile building blocks, such as ETH, makes little sense. Today’s modern economics
exclusively revolve around government regulated fiat currencies that everyone ulti-
mately relies on in their daily life. Thus, we argue that blockchains at the moment

6.5. IMMUTABILITY 91

do not provide a sound basis for financial transaction systems. However, one might
argue that the currency’s volatility will drop if its popularity and adoption grows.

The volatility in the discussion has profound consequences for our dApp. With our
current implementation, every license profile is set to cost a specific amount of ETH.
This value is static as it is stored on the blockchain. The consequence is that the fiat
price for a license contract will change significantly on a daily basis. One possible
solution to this problems is to save license prices in US dollars instead of in ETH.
However, this would require an "Ethereum Oracle" to calculate the corresponding
ETH value every time a work is licensed. Oracles are trusted third-party data
providers that feed smart contracts with necessary data. That said, the Ethereum
community has not agreed whether or not the presence of third-party oracles weakens
blockchain’s core decentralization objectives. In the future, we need to research other
pricing strategies that might work better while the cryptocurrencies are volatile.

6.5 Immutability

The blockchain immutability property provides both advantages and disadvantages
regarding data on the blockchain. On the one hand, it provides data integrity as no
stored records on the blockchain can be altered. This property is fundamental in
most applications, including our dApp. One example is the fact that contributors of
a musical work can be confident that their shares of ownership will not change once
the work is registered to the blockchain. On the other hand, immutability limits the
possibilities of changing data such as information about registered works or licensing
terms. One can argue that these attributes should not be static as musicians may
want to change specific parameters in the future.

Another issue regarding immutability is the challenge of patching vulnerabilities
to a deployed contract. The inherent nature of blockchain limits the possibilities to
easy update smart contracts and fix any validation or security-related bugs. From a
developer’s standpoint, not being able to patch vulnerabilities after deployment is
perceived as a significant challenge. The contracts must be deployed with the utmost
level of confidence that every edge case, loophole, and validation is handled. There
is a "workaround" for this challenge. It involves "killing" the current contract and
deploy a new updated one. Some developers in the community do not consider this a
viable option as it may freeze considerable amounts of ETH held by the old contract.
Furthermore, re-deploying a smart contract would weaken a blockchain company’s
reputation considerably.

92 6. EVALUATION AND DISCUSSION

6.6 Centralized vs. Distributed Storage

When developing a decentralized application, data storage becomes an issue in almost
all cases due to blockchain’s storage costs. Developers have to chose between two
different storage systems: centralized data centers or distributed peer-to-peer systems.
This section will discuss advantages and disadvantages for each of them.

Centralized storage is used in most applications today. We call it centralized
because the data centers that stores the information are controlled and maintained by
a third party. Centralized systems are popular because of their easy configurability
and integration with any application. Today, giant tech companies such as Facebook,
Google, Apple, Amazon and Microsoft control a huge share of all data on the internet.
Their centers are targets for hackers as they are filled with huge amounts of sensitive
information. Most consumers use services like Facebook and Google, and they store
data on these platforms. However, history has shown that the giant technology
companies cannot always protect themselves. Apple’s iCloud system was hacked in
2014 [33], and Dropbox was hacked in 2012 [34]. Centralized data centers are single
point of failure, and there is always a change of data theft. Security challenges is not
the only concern in the discussion. Users ultimately have to trust the third party’s
intentions. Some users worry about their data being provided to governments, law
enforcement agencies, or advertising agencies.

Distributed peer-to-peer (P2P) systems is an alternative to centralized storage
systems. P2P storage systems spread data across a network a nodes, making them
more secure, possibly faster, cheaper and censorship resistant. Distributed storage
systems leverage the enormous amounts of unused storage space located on user’s
hard drive around the world. There are many distributed peer-to-peer storage
systems operating today. Some of them address the issue of expensive storage on
blockchains. Swarm1 and Storj2 are two work-in-progress cloud storage services built
into the Ethereum web3 protocol. Key people in the Ethereum space have stated
their interests in said decentralized storage systems. Vitalik Buterin explained that
“distributed file storage systems like Storj have the potential to eliminate high markup
costs and market inefficiencies and provide a much higher level of privacy, reliability
and quality of service than we see today.”3.

Etheruem based storage systems are still in beta stage or not available at all. For
that reason, we utilize Google’s Firebase service to store data in our dApp. The data
we store include:

1https://github.com/ethersphere/swarm - [Accessed: 15-03-2018]
2https://storj.io// - [Accessed: 25-05-2018]
3https://www.bitrates.com/coin/STORJ/overview/USD - [Accessed: 06-06-2018]

6.7. WEB APPLICATION 93

• Metadata for registered musical works (title, type, description)

• Metadata for registered license contracts (type, description)

• The file of all registered musical works and complete license contract terms

We recognize that this centralized solution contradicts our goals in terms of being a
trustless application. If someone would be able to compromise Google’s data centers,
the hacker could easily change data within our app. This would have profound
consequences as users could potentially purchase a "false license". Another trust issue
with our current architecture is the fact that we rely on Google for retrieving the
hash representation for files that we store on Ethereum. Since Firebase performs the
MD5-hash algorithm and sends the results back to the application, we have to trust
that the calculation is done correctly, and that the results accurately represents the
file. However, the algorithm behind the hash output is a global standard and could
be cross-checked manually. For the reasons explained in this paragraph, a small
part of our solution is more centralized than we intended it to be. Yet, we consider
the application to be overall decentralized, even though the current solution is not
optimal.

6.7 Web Application

Our third contribution, the implemented web application, serves two important roles
in our research. It contains a graphical user interface that is designed to be both
educational and intuitive.

1. The web application is characterized by visual educational elements that
illustrate the back-end functions executed by the deployed smart contract.
These functions are triggered by different front-end buttons located throughout
the web application. Additionally, the user interface also illustrate the overall
physical architecture of the application. This is done by displaying where the
different properties of a work are stored. For a regular user of the platform,
clarification of the system architecture and a visual aid to back-end logic might
not be of particular interest. However, we believe that educational institutions
and other developers will benefit from a user interface that reflects technicalities
that take place behind the scenes.

2. Be that as it may, we do focus on the application’s intuitiveness. Despite the fact
that our dApp serves only as a POC, the platform still has many user-friendly
features such as a user system, search features, intuitive routing/navigation,
drag-and-drop file upload, and a primitive push notification system. These are
important features because they facilitate easy interaction with the Ethereum
blockchain without having to deal with a command line interface.

94 6. EVALUATION AND DISCUSSION

If we were to focus solely on the user experience, some of the smart contract
functionality would naturally be hidden from the interface. In a future stage of
development, we should move our focus to strengthening the user-friendliness, and
abstract the most complicated blockchain technicalities away from the users.

Forthcoming efforts should also investigate different pricing models for license
profiles. One improvement would be to let registered users request specific licenses
with suggested terms. Then based on the terms and a negotiated price, the right
holders may or may not approve the license. We believe that this will increase the
right holders’ revenues and ease obtainment of licenses.

Chapter7Conclusion

In this chapter, we present our conclusion by elaborating on the objectives and
answering the research question. Additionally, we summarize the most critical
limitations that we encountered during our investigation and suggest how to overcome
these limitations in future work.

Our research question is the following:

RQ: How can blockchain technology be utilized in order to solve prob-
lems related to transparency, efficiency, and fairness along the music in-
dustry value chain?

We conclude that blockchain technology can be utilized in multiple ways to
meet specific problems in today’s industry. Our research found problems related to
transparency, efficiency, standards, and inaccessible copyright information. One way
to utilize blockchain technology has been demonstrated through the development of
our decentralized application built with these issues in mind. The application proves
that properties of blockchain can be applied to real-world challenges. Ethereum,
with its self-enforcing smart contracts, enables automated transactions tailored for
specific scenarios.

Based on the issues uncovered in our background analysis, our application offers a
number of improvements. It streamlines the money flow by putting the right holders
in control of their own royalty payouts. Furthermore, it exposes transactions and split
sheets for different works to the public, making the payment process more transparent.
The application also collects copyright information to a public registry stored on
the Ethereum blockchain. By using blockchain as the underlying infrastructure, we
establish trust without the need for a third party.

In addition to answering the RQ in a positive way, our project revealed multiple
disadvantages that makes blockchain technology less attractive for various industries.

95

96 7. CONCLUSION

As mentioned in Chapter 6, the technology has yet to achieve satisfactory results
with regards to scalability and processing time. Moreover, most blockchains are not
free to engage with nor built for data storage. The available development tools are
relatively new and primitive. These disadvantages hinder dApp development.

Our application works well when testing it on a local host. However, it is difficult
to conclude whether or not the results would be equally satisfactory in a real-world
scenario. That would require dealing with real copyright material and licensing
agreements on the main Ethereum network. As we do not have contacts in the music
industry, neither artists nor music organizations have tested the application at the
time of publishing this paper.

7.1 Future Work

When evaluating our decentralized application and its functionality, we identify
several areas of improvements. In this section, we summarize the most critical
aspects of our solution that should be investigated further in the future.

7.1.1 Legal Issues

There are several legal issues regarding our dApp that we do not discuss in our thesis.
We are not confident that license contracts signed by two parties over the Ethereum
blockchain are considered valid from a legal perspective. Moreover, to complicate the
matter further, countries have different copyright laws and regulations that needs to
be accounted for. Doing business through self-enforcing, autonomous applications
controlled only by its own code is a new concept that brings new legal questions
without clear answers. This thesis did not focus on legal issues regarding this topic.
Future work should investigate the intersection between blockchain and law.

7.1.2 Higher Degree of Decentralization

Data storage is a serious limitation for all Ethereum based applications. We recognized
early in our development phase of this project that Ethereum is not a good platform
for storing much data. The current system architecture involves a centralized third
party, Google’s Firebase service, for data storage. Our architecture increases the
degree of centralization as users have to trust Google’s infrastructure and security.
Future work should research the potential of migrating to a complete decentralized
architecture. A migration would involve changing our current data storage platform
to a decentralized storage provider such as Storj or Swarm. As mentioned in the
discussion chapter, these are work-in-progress distributed cloud storage systems that
integrate well with Ethereum dApps. Changing to decentralized storage would be an

7.1. FUTURE WORK 97

enhancement to our contribution, as it will strengthen our core objectives regarding
trust.

7.1.3 Decentralied App Governance

Governance is another critical limitation in our suggested solution. The dApp
implementation currently allows anyone to upload files and claim ownership for a
particular work. There is no third party that governs the copyright registration
process. A key point about dApps is that they should not be governed by a third
party. We were not able to come up with a solution to this problem. Future work
should investigate the possibilities for how users can prove that they only register
musical works that they actually own.

7.1.4 Code Enhancements

Writing code is a continuous process that does not terminate once an application
works. It is likely that cleaner and more robust code can be written for our smart
contracts. We define two areas of improvement.

Optimization

The quality of Solidity code is determined by how gas-efficient the code is. We
have limited the data input to the different contract functions to keep the data
processing (gas usage) to a minimum. Fewer number of computations lead to less gas
usage. However, there are certain operations in our contracts that require substantial
amount of gas. One example is the function that issues tokens to the right holders
once every right holder has approved the work. This high gas usage is due to a
double for-loop which causes many operations; one for each token issued. The more
granular the shares become, the more tokens will be produced, and gas usage will
increase. The gas used by a transaction is paid by the initiator who is a user of
our platform. To keep users costs low, future development should strive for code
optimization throughout the deployed contracts.

Validation and Security

Due to blockchain’s immutability property, it is of the utmost importance that our
contract functions only for the purposes intended. Validation and security should be
taken into account while developing contracts to ensure safe function calls. In our
application, it is essential that our users only have access to their balance and their
related work. Under no circumstance should other users be able to withdraw balances
for other users nor exchange rights on their behalf. In our solution, some validation
measures have been implemented. For instance, it is only the message sender’s (the
transaction initiator’s) related work balances that is available for withdrawal. Be

98 7. CONCLUSION

that as it may, the deployed contract may be not completely secure as our dApp is
only intended to be a POC. Future work should identify security issues and update
the code with stronger security and validation.

References

[1] J. Naughton, “Is blockchain the most important IT invention of our age?,” The
Guardian, 2016. <www.theguardian.com> [online article accessed: 2018-05-01].

[2] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” 2008. White
Paper, <www.bitcoin.org/bitcoin.pdf> [accessed: 2018-04-01].

[3] R. Beck, J. S. Czepluch, N. Lollike, and S. Malone, “Blockchain - the gateway to
trust-free cryptographic transactions,” in 24th European Conference on Informa-
tion Systems, ECIS 2016, Istanbul, Turkey, June 12-15, 2016, p. Research Paper
153, 2016.

[4] M. O’Dair, Z. Beaven, D. Neilson, R. Osborne, and P. Pacifico, “Music on the
blockchain,” Technical report 1 - Blockchain For Creative Industries Research
Cluster, 2016. Middlesex University.

[5] R. Music, “Fair music: Transparency and payment flows in the music industry,”
Recommendations to increase transparency, reduce friction, and promote fairness
in the music industry., 2015. Berklee Institute for Creative Entrepreneurship.

[6] L. Marshall, “‘let’s keep music special. f—spotify’: on-demand streaming and
the controversy over artist royalties,” Creative Industries Journal, vol. 8, no. 2,
pp. 177–189, 2015. Taylor & Francis.

[7] B. Plumb, “The songwriter and music publisher relationship: Part iv,” Royalty
Exchange, 2018. <www.royaltyexchange.com> [blog post accessed 2018-03-14].

[8] H. McDonald, “Music royalties explained,” The Balance Careers, 2017.
<www.thebalancecareers.com/big-three-record-labels-2460743> [accessed: 2018-
04-22].

[9] F. Staff, “Public performance rights for sound recordings,” Future of Music
Coalition, 2018. <www.futureofmusic.org> [online article accessed: 2018-04-01].

[10] K. Thomson, “Music and how money flows,” Future of Music Coalition, 2015.
<www.futureofmusic.org> [online article accessed: 2018-03-21].

99

100 REFERENCES

[11] J. P. Friedlander, “News and notes on 2017 riaa revenue statistics,” Strate-
gic Data Analysis, Recording Industry Association of America (RIAA), 2017.
<www.riaa.com> [accessed: 2018-04-19].

[12] M. Foreman, “Music royalties explained,” The Pro Audio Files, 2018.
<www.theproaudiofiles.com/music-royalties-explained/> [accessed: 2018-04-22].

[13] M. Jerräng, “Så fick spotify skivbolagen med sig,” International Data Group,
Computer Sweden, 2009. <www.computersweden.idg.se> [online article accessed:
2018-03-27].

[14] I. Lunden, “In europe, spotify royalties overtake itunes earnings by 13%,”
TechCrunch, 2014. <www.techcrunch.com> [online article accessed: 2018-03-21.

[15] J. Muikku and P. Durgam, “Pro rata and user centric distribution models: A
comparative study,” Digital Media Finland, 2017.

[16] M. Singleton, “This was Sony music’s contract with Spotify,” The Verge, 2015.
<www.theverge.com> [online article accessed: 2018-03-21].

[17] P. Kafka, “Spotify’s new deal with universal music group means some albums will
go behind a paywall,” Recode, 2017. <www.recode.net> [online article accessed:
2018-03-21].

[18] K. Milosic, “Grd’s failure,” The Music Business Journal, 8 2015. Berklee College
of Music, <www.thembj.org> [online article accessed: 2018-04-05].

[19] A. Nicolaou, “Songwriters’ court victory deals a blow to spotify,” Financial Times,
2018. <www.ft.com> [online article accessed: 2018-05-02].

[20] P. Resnikoff, “My song was streamed 178 million times. i was paid $5,679. . . ,”
Digital Music News, 2015. <www.digitalmusicnews.com> [online article accessed:
2018-03-02].

[21] P. Galdston and D. Wolfert, “The music modernization act misses the mark,” Va-
riety, Penske Media Corporation, 2018. www.variety.com, [online article accessed:
2018-03-26].

[22] E. Staff, “Blockchains: The great chain of being sure about things,” The
Economist. Retrieved, vol. 18, 2016.

[23] J. A. Kroll, I. C. Davey, and E. W. Felten, “The economics of bitcoin mining, or
bitcoin in the presence of adversaries,” in Proceedings of WEIS, vol. 2013, p. 11,
2013.

[24] V. Buterin, “The meaning of decentralization,” 2017.
<medium.com/@VitalikButerin/the-meaning-of-decentralization-
a0c92b76a274> [online blog post accessed: 2018-05-20].

[25] A. Lewis, “A gentle introduction to immutability of blockchains,” Bits on Blocks,
2016. <www.bitsonblocks.net> [online article accessed: 2018-04-01].

REFERENCES 101

[26] V. Buterin et al., “A next-generation smart contract and decentralized application
platform,” 2013. White Paper, <www.github.com/ethereum/wiki/wiki/white-
paper> [accessed 2018-23-03].

[27] A. Khan, “Ethereum to create a new blockchain architecture that’s designed to be
general-purpose,” Pioneer News Group, 2017. <www.dailypioneer.com> [online
article accessed: 2018-04-11].

[28] V. Buterin, “Toward a 12-second block time,” Ethereum Foundation, 2014.
<blog.ethereum.org/2014/07/11/toward-a-12-second-block-time> [online blog
post accessed: 2018-04-02].

[29] J. Peterson, J. Krug, M. Zoltu, A. K. Williams, and S. Alexander, “Augur:
a decentralized oracle and prediction market platform,” 2018. White paper,
<www.augur.net/whitepaper.pdf> [accessed: 2018-05-03].

[30] Staff, “Cryptokitties: Collectible and breedable cats empowered by blockchain
technology,” 2017. White Paper, <www.drive.google.com/open?id=1soo-
eAaJHzhw_XhFGMJp3VNcQoM43byS> [accessed: 2018-06-13].

[31] G. Konstantopoulos, “How will ethereum scale? top talks from devcon3 sum-
marized,” 2017. <https://medium.com/loom-network/how-will-ethereum-scale-
top-talks-from-devcon3-summarized-f51f99ed4602> [online blog post accessed:
2018-05-23].

[32] G. Wood, “Ethereum: A secure decentralised generalised transaction ledger,”
Ethereum project yellow paper, vol. 151, pp. 1–32, 2014.

[33] A. Charlton, “icloud accounts at risk of brute force attack as hacker ex-
ploits ’painfully obvious’ password flaw,” International Business Times, 2015.
<www.ibtimes.co.uk> [online article accessed: 2018-06-05].

[34] S. Gibbs, “Dropbox hack leads to leaking of 68m user passwords on the internet,”
The Guardian, 2016. <www.theguardian.com> [online article accessed: 2018-06-
05].

AppendixAGitHub Repository

All the source code for the Rights Done Right project can be found in the following
repository:

• https://github.com/hkbhaugen/RightsDoneRight/

Follow the instructions in the README-file on how to setup the local blockchain
and run the application.

103

	List of Figures
	Glossary
	List of Acronyms
	Introduction
	Motivation
	Goals and Research Question
	Research Methods
	Outline
	Background Analysis
	Planning and Developing the Proof-of-Concept
	Contributions, Discussion and Conclusion

	Background
	The Music Industry
	Songs Are Two Different Pieces of Work
	License and Royalty Types
	Royalty Collectors
	On-Demand Streaming Services

	Issues in the Music Industry
	Industry Structure and the Relationships Between Players
	Lack of Information and Standards
	Status Quo
	Accessibility and Competition

	Blockchain
	Overview
	The Bitcoin Protocol
	Defining a Distributed and Decentralized Network
	Properties of Distributed and Decentralized Networks

	Ethereum
	Platform for Decentralized Applications
	Smart Contracts
	Two Types of Accounts
	Ethereum Virtual Machine
	Consensus and block time
	Token system
	Transparent Trustless Decentralized Applications

	Related Work
	Ujo Music
	Musicoin
	SongFreedom
	Blokur

	Application System Design
	Rights Done Right
	Choosing the Etheruem Blockchain
	Music Licensing Use Cases

	System Architecture
	Client: Web browser
	Web Server: Angular Application
	Ethereum blockchain: Back-end Execution Environment
	Firebase Server: Data storage and Authentication
	Application Deployment

	Application Storage
	Technologies
	Development Environment
	Application Dependencies

	Implementating a Decentralized Application
	Implementing Smart Contracts
	WorkBase.sol - The Application’s Core Contract
	TokenOwnership.sol - Copyrights as Tokens
	LicenseBase.sol - Storing License Contracts on Ethereum
	LicensePurchase.sol - Handling License Purchases

	Building a Web Application with Angular
	Project Structure
	Authentication and Authorization
	Services
	Models
	Components
	Modules

	Results
	Background Analysis
	Smart Contracts
	Functioning Proof-of-Concept
	Ethereum Community and Education

	Web Application

	Evaluation and Discussion
	Challenges with Blockchain Technology
	Scalability
	Block Time
	Transaction Fees
	Programming Language

	Is the Music Industry Ready for Blockchain?
	Necessity of Blockchain
	Blockchain as an Economic Transaction System
	Immutability
	Centralized vs. Distributed Storage
	Web Application

	Conclusion
	Future Work
	Legal Issues
	Higher Degree of Decentralization
	Decentralied App Governance
	Code Enhancements

	References
	GitHub Repository

