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Abstract

In this thesis a framework for backtesting counterparty credit exposure is developed and
implemented. Using the Heath, Jarrow and Morton model for simulation of interest rates,
separate models are implemented for risk-neutral pricing of interest rate derivatives, and
for simulation of future real-world interest rates. The models are combined to simulate
distributions of credit exposure for a simple swap contract between a financial institution
and a typical counterparty. The implemented framework is discussed with respect to prac-
tical use, model assumptions, and potential improvements.

The results show that the model performs well in most periods, but fails to capture the
impact of the unprecedented low interest rates prevailing after the financial crisis. A pro-
posed improvement of the model is to increase the volatility of the real-world interest rate
model to better capture unexpected future events.
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Sammendrag

I denne oppgaven er det utviklet og implementert et rammeverk for backtesting av motpart-
seksponering. Ved hjelp av Heath, Jarrow og Mortons modell for simulering av renter er
det implementert separate modeller for risikonøytral prising av rentederivater, og for simu-
lering av fremtidige renter. Modellene er deretter kombinert for å simulere fordelinger av
kreditteksponering for en enkel swapkontrakt mellom en finansiell institusjon og en typisk
motpart. Det implementerte rammeverket diskuteres deretter med hensyn til praktisk bruk,
modellenes forutsetninger, og eventuelle forbedringer.

Resultatene viser at modellen fungerer bra i de fleste perioder, men den sliter med å fange
effekten av de lave rentene som har vært rådende etter finanskrisen. Foreslåtte forbedringer
av modellen er øke volatiliteten slik at modellen har bedre forutsetninger for fange frem-
tidige uforutsette hendelser.
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Chapter 1
Introduction

At the end of 2017, the world gross notional value of all outstanding derivative contracts
in the over-the-counter (OTC) market totalled almost 532 trillion USD. For comparison,
the total capitalisation of listed equities only totalled 79 trillion USD. The OTC derivatives
market has experienced rapid growth in the later years from 70 trillion USD in 1998 to a
peak of more than 700 trillion USD in 2013. Of today’s total notional value of derivatives,
roughly 80% are interest rate derivatives, meaning their value is dependent on interest rates
of various types. Of all OTC interest rate derivatives, almost 75% are swap contracts [4].

Financial institutions like banks, insurers and pensions are major dealers in the OTC
derivatives market. With the use of interest rate derivatives, financial institutions can help
other corporations and individuals to hedge out uncertain cash-flows on loans by trans-
ferring the risk associated with changes in the interest rate to itself. Although derivatives
provide this beneficial risk-sharing effect, their use often also leads to speculative bubbles
and increased risks from the leverage these instruments provide. The leverage in deriva-
tives can get large because contract values or prices are often small compared with the
gross notional amount covered by the contract. Movements in the underlying risk-factors
can then lead to large fluctuations in the contract value. A prime example of this was found
in the market of credit defaults swaps (CDS) in the run-up to the financial crisis. The CDS
were originally created as a hedge against mortgage backed securities, but ended up instead
being used as speculative vehicles. The gross notional value of the CDS market, totalling
over 62 trillion USD at its peak in 2007, made the whole market more intertwined and
dependent. These exposures became visible when the housing market crashed, and lead to
an escalation of the crisis and to the bankruptcy of some of the most prominent investment
banks on Wall Street [21].

The CDS market under the financial crisis underlined a key characteristic of OTC deriva-
tives: There is both an uncertainty in the future value of a derivatives contract, but also in
the counterparty’s ability to fulfil its obligations. Having a hedged position with two dif-
ferent counterparties is therefore not a safe position, because if one of the counterparties
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Chapter 1. Introduction

defaults the now unhedged position is exposed to losses. From the standpoint of a financial
institution, wishing to maximise profits while keeping the risk at at acceptable levels, the
need for mathematical modelling to accurately estimate potential exposures and losses in
the future are therefore of great importance.

The challenge when developing a framework to measure and forecast such counterparty
credit exposure associated with future movement in derivative prices is twofold. Firstly,
the derivatives traded needs to be priced correctly and consistent with the underlying risk-
factors and observed market prices. One therefore needs a model for pricing derivatives,
given possible future risk-factors. The second challenge is to model and generate these un-
derlying future risk-factors. These two tasks, pricing and scenario generation, are highly
related and are usually both done by stochastic modelling and simulations. Implementing
and combining these two tasks will be the main focus of this thesis.

Although the mathematical approach to model interest rates as stochastic variables is rela-
tively new, many different models and approaches exists. One of the first popular models
was developed by Vasicek (1977), who derived a time homogeneous short-rate model.
This model and several others, including the model by Cox, Ingersoll and Ross (1985),
concerned only the modelling of the shortest interest rate, called one-factor models. This
type of models gained popularity mainly due to their possibility of pricing bonds and bond
options analytically, not necessarily because they reflected reality in an accurate way. The
first important alternative to one-factor models was proposed by Ho and Lee (1986). They
modelled the evolution of not only the short rate, but the entire yield curve in a binomial-
tree setting. This multi-factor approach to interest rate modelling was further developed
and the next big breakthrough came from Heath, Jarrow and Morton (HJM) (1992) and
their celebrated framework for continuous time modelling of interest rate dynamics. By
choosing the instantaneous forward rates as fundamental quantities to model, they de-
rived an arbitrage-free framework for the stochastic evolution of the entire yield curve,
where the forward-rates dynamics are fully specified through their instantaneous volatility
structures. This framework is automatically fitted to market data, meaning that the model
produces bond prices consistent with prices observed in the market. In this thesis, the HJM
framework is implemented and used for simulation of risk-factors and counterparty credit
exposure [6].

The mathematical rigour and elegance in the the derivation of the HJM model is impres-
sive, but the the true test of any financial model is always its applicability for practical
use. As for most financial models, the HJM framework relies on some highly idealised
assumptions like deterministic volatility and normally distributed interest rates which is
known to some degree to be incorrect [9]. To test the models applicability, it is common
procedure to preform historical backtests. Using historical market data, it is possible to test
how precise the model has been in the past to give an indication of what level of accuracy
to expect in the future. Since this thesis concerns risk management with respect to counter-
party credit exposure, the main part is dedicated to simulating the underlying risk-factors
and the resulting credit exposures from previous historical periods before comparing with
actual, realised risk-factors and exposures. The models predictive powers and usefulness

2



can then be assessed.

The thesis starts of in chapter 2 by introducing the powerful concept of Monte Carlo, a
useful tool when modelling stochastic processes. Chapter 3 outlines the principles behind
risk-neutral pricing, which is the fundamental concept used to price derivatives. Chapter
4 introduces formal definitions and some intuition behind interest rates, the market price
of risk, and interest rate derivatives. Chapter 5 concerns interest rate modelling and the
complete derivation and practical implementation of the HJM model, while volatility is
the focus of chapter 6. Chapter 7 describes the specifics of counterparty credit risk, why
it is important, and how the interest rate modelling framework can be applied in this set-
ting. Chapter 8 details the Methodology and portfolios used in the backtesting simulations
to come, while chapter 9 contains preliminary data analysis and estimation of parame-
ters used in the model. The main results are presented in chapter 10. The chapter starts
off by presenting results from the conducted backtests, before a discussion with respect
to model assumptions and practical use. The thesis is then concluded in chapter 11 with
some additional remarks on possible future work.
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Chapter 2
Monte Carlo

2.1 The Principles of Monte Carlo
Monte Carlo simulations are used to model the probability of different outcomes in a pro-
cess that cannot easily be predicted due to the effect from random variables. Monte Carlo
is therefore a useful tool when studying phenomenons in finance with a stochastic nature
like asset prices and interest rates where a simulation based approach is needed.

One simple example of Monte Carlo is the problem of solving

α =

∫ 1

0

f(x)dx,

as an expected value E[f(U)] when U is uniformly distributed between 0 and 1. By
drawing Ui’s independently from [0, 1], the integral can be represented by

α̂n =
1

n

n∑
n=1

f(Ui),

also called the Monte Carlo estimate [14]. Assuming f is integrable over [0, 1], the strong
law of large numbers says that

α̂n → α with probability 1 as n→∞.

The estimation error α̂n−α will approximate a normal distribution with mean 0, and with

error variance σ2
e =

σ2
f

n , where σ2
f can be estimated by the standard sample variance,

S2
f =

1

n− 1

n∑
n=1

(f(Ui)− α̂n)2.

It is also important to note that the convergence rate of a Monte Carlo algorithm is of order
O(n−

1
2 ). This means that by doubling the number of draws or simulated scenarios, the
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Chapter 2. Monte Carlo

estimation error is reduced with a factor of
√

2. Although its relative slow convergence,
the Monte Carlo approach has significant advantages compared to other methods because
its convergence is independent on the dimensions of the problem [14].

2.2 Order Statistics
A useful tool when evaluating a a random sample resulting from a Monte Carlo simulation
is the concept of order statistics. The following formal definition is given in [13]:

Definition 2.2.1. The order statistics of a random sampleX1, ...Xn are the sample values
placed in ascending order. They are denoted X(1), ...X(n). The order statistics are then
random variables satisfying X(1) ≤ ... ≤ X(n). In particular,

X(1) = min
1≤i≤n

Xi

X(n) = max
1≤i≤n

Xi

The ordered sample can then be used to describe properties of the simulated distribution
like the mode, the maximum and the minimum, in addition to other desired percentiles for
creating confidence intervals.

6



Chapter 3
Derivative Pricing Theory

A central part of this thesis concerns the pricing of interest derivatives by simulations,
using the Monte Carlo approach. This chapter starts out with an outline of the basic idea
of derivatives pricing. The foundation of a model in discrete mathematical finance is then
given. The chapter ends with a description of the principles of arbitrage and risk-neutrality,
and how they can be applied to price derivatives. A recommended introduction into the
general probability theory and stochastic processes used in the derivations can be found in
appendix A. For a more in depth description and proofs, see Glasserman [14] and Bingham
& Kiesel [3].

3.1 Principles of Derivatives Pricing

The mathematical theory of derivatives pricing is both elegant and practical. A financial
derivative, also called a contingent claim is defined as a starting point.

Definition 3.1.1. A derivative security, or a contingent claim, is a financial contract whose
value at expiration date T i completely determined by the price of the underlying asset at
time T .

Glasserman [14] starts by outlining 3 core principles behind the theory of pricing contin-
gent claims, and importantly how they can be applied to the Monte Carlo framework to
evaluate prices.

1. If a derivative security can be perfectly replicated (equivalently, hedged) through
trading in other assets, then the price of the derivative security is the cost of the
replicating trading strategy.

2. Discounted (or deflated) asset prices are martingales under a probability measure
associated with the choice of discount factor (or numeraire). Prices are expectations
of discounted payoffs under this martingale measure.

7
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3. In a complete market, any payoff (satisfying modest regularity conditions) can be
synthesized through a trading strategy, and the martingale measure associated with
a numeraire is unique. In an incomplete market there are derivative securities that
cannot be perfectly hedged; the price of such a derivative is not completely deter-
mined by the prices of other assets.

Glasserman’s first principle describes how to think of what the price of a derivative should
be, but not how to calculate it. The second principle bridges the gap between theory
and practise, and describes how to represent prices as expectations. Expectations can
be evaluated by the Monte Carlo approach or other numerical methods. This is done by
modelling the dynamics of the underlying asset price not as it is observed in the real world,
but under a risk-adjusted probability measure. The third principle describes under which
conditions the first and second principle can and cannot be applied.

3.2 Mathematical Finance in Discrete Time
To develop the framework for risk-neutral pricing of derivatives, discrete time is assumed.
The notation and terminology used in the following model will be consistent with the ones
introduced in appendix A, outlining probability theory and stochastic processes as in [3].

The time horizon for the model is specified as T , and the filtration F = {Ft}Tt=0 con-
sisting of σ algebras F0 ∈ F1 ∈ ... ∈ FT , and the finite probability space (Ω,F ,P) is
used [3].

As a starting point, the market is assumed to contain d + 1 financial assets, often d risky
assets and one risk-free asset indexed at 0. The asset prices are assumed to be random
variables and at time t denoted S0(t, ), S1(t, ), Sd(t), or just S(t) as notation for the whole
vector of asset prices. At least one of the asset prices is assumed to follow a strictly positive
process.

Definition 3.2.1. A numeraire is a price process (X(t))Tt=0, (a sequence of random vari-
ables), which is strictly positive for all t ∈ {0, 1, ..., T}

By dicounting or deflating all other prices, a numeraire expresses all the other prices on a
relative basis. If for example S0(t) is chosen as numeraire, prices can now be represented
as S

′

i(t) = Si(t)/S0(t).

A trading strategy is defined by a d + 1 dimensional vector φ = (φ(t))Tt=1. φi(t) de-
notes the number of shares of asseet i which is held in the portfolio at time t. The investor
determines the portfolio after observing the prices S(t − 1), but before the announce-
ment of the prices S(t). The components φi(t) can take both positive and negative values,
meaning that short sale is permitted.

Definition 3.2.2. The value of the portfolio at time t, denoted Vφ(t), is then defined as

Vφ(t) = φ(t) · S(t) :=

d∑
i=0

φi(t)Si(t), (t = 0, 1, ..., T )) and Vφ(0) = φ(1)S(0).

8



3.3 Arbitrage

The process Vφ(t), is then called the value process of the trading strategy φ, with Vφ(0)
beeing the initial wealth.

Definition 3.2.3. The gains process Gφ of a trading strategy is given as the change in the
portfolio value from the portfolio weights φ is established at time t−1, and until the prices
is realised at time t, mathematically

Gφ(t) :=

t∑
τ=1

φ(τ) · (S(τ)− S(τ − 1)) for (t = 1, 2, ..., T ).

Definition 3.2.4. A trading strategy φ is said to be self-financing if

φ(t) · S(t) = φ(t+ 1) · S(t) for (t = 1, 2, ..., T − 1).

The intuition behind a self-financing strategy is that the investor adjust his portfolio be-
tween periods from φ(t) to φ(t+ 1), without bringing in or consuming any wealth.

3.3 Arbitrage
The absence of arbitrage means that there exist no investment strategies which makes an
instant profit without taking on risk. Using the model outlined in the previous section, the
following definitions and theorems relates arbitrage strategies and equivalent probability
measures [3].

Definition 3.3.1. Let Φ̃ ∈ Φ be a set of self-financing investment strategies. A strategy φ ∈
Φ̃ is called an arbitrage opportunity or arbitrage strategy with respect to Φ̃ if P{Vφ(0) =
0} = 1, and the terminal wealth of φ satisfies

P{Vφ(T ) ≥ 0} = 1 and P{Vφ(T ) > 0} > 0

An arbitrage opportunity means that there exists a self-financing strategies with zero initial
wealth with non-negative final value with probability one, and a positive probability of a
positive final value of the portfolio. The next definition is obtained by generalising this
concept to the whole security market.

Definition 3.3.2. A security marketM is arbitrage-free if there are no arbitrage opportu-
nities in the class Φ of trading strategies.

The final definition required relates equivalent martingales and measures.

Definition 3.3.3. A probability measure P∗ on (Ω,FT ) equivalent to P is called a martin-
gale measure for S̃ if the process S̃ follows a P∗ -martingale with respect to the filtration
F. We denote by P(S̃) the class of equivalent martingale measures.

Using the terminology introduced in definitions 3.3.2 and 3.3.3, the highly important no-
arbitrage theorem can now be stated.

Theorem 3.3.1. (No-arbitrage Theorem) The market M is arbitrage-free if and only
if there exists a probability measure P∗ equivalent to P under which the discounted d-
dimensional asset price process S̃ is a P∗-martingale.

9
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3.4 Risk-Neutral Pricing
A contingent claim is according to Bimhham and Kiesel [3] said to be attainable if there
exists a replicating strategy φ ∈ Φ such that

Vφ(T ) = X.

This means that the replicating strategy generates the same cash-flow at time T as X . It is
then possible to equate the discounted value of this contingent claim with the correspond-
ing gain from a trading strategy. Using β(T ) as discount factor, and notation introduced
in definitions 3.2.2 and 3.2.3 for the value and gains process, this equates to

β(T )X = Ṽφ(T ) = V (0) + G̃φ(T ).

The equation states that the discounted value of the contingent claim is simply the cost of
setting up the replicating strategy in addition to the gains from trading. In an arbitrage-free
marketM, any attainable contingent claim X can be uniquely replicated [3]. This is the
basic idea behind the arbitrage pricing theory and leads to the definition of an arbitrage
price process.

Definition 3.4.1. Suppose the market is arbitrage-free. LetX be any attainable contingent
claim with time T maturity. Then the arbitrage price process πX , 0 ≤ t ≤ T or simply
arbitrage price of X is given by the value process of any replicating strategy φ for X .

Observe that the pricing process do not rely on the individual preferences of the agents.
As long as the no-arbitrage condition holds, meaning agents or investors prefer more to
less, their tolerance of risk does not matter. An economy of risk-neutral investors would
therefore price the contingent claims in the same way as in an economy were all investors
were extremely risk-averse [8]. This insight simplifies the general pricing formula for a
contingent claim to the discounted payoff with respect to an equivalent martingale mea-
sure.

Definition 3.4.2. The arbitrage price process of any attainable contingent claim X is
given by the risk-neutral valuation formula

πX(t) = β(t)−1E∗(Xβ(T )|Ft) ∀ t = 0, 1, ..., T,

where E∗ is the expectation operator with respect to an equivalent martingale measure P∗.

This explicit formula shows how to price an attainable contingent claim using an equiva-
lent martingale measure. It is therefore important to know under which conditions a con-
tingent claim is attainable. This can be done by considering the definition of completeness,
before stating the completeness theorem.

Definition 3.4.3. A marketM is complete if every contingent claim is attainable, i.e. for
every FT -measurable random variable X , there exist a self-financing strategy φ ∈ Φ such
that Vφ(T ) = X

Theorem 3.4.1. (Completeness Theorem) An arbitrage-free marketM is complete if and
only if there exists a unique probability measure P∗ equivalent to P, under which dis-
counted asset prices are martingales.
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3.4 Risk-Neutral Pricing

Combining the no-arbitrage theorem 3.3.1 and the completeness theorem 3.4.1, the funda-
mental theorem of asset pricing is then stated.

Theorem 3.4.2. (Fundamental Theorem of Asset Pricing) In an arbitrage-free complete
marketM, there exists a unique equivalent martingale measure P∗.

Since it is the pricing of contingent claims which is the main concern, the equivalent mar-
tingale measure P∗ is of great importance. Actually, the original measure P is irrelevant
and one need only to know its null sets, so that the measures are equivalent. P∗ is often
called the risk-neutral measure, and all asset prices are martingales under this under this
measure. This is summarised in the risk-neutral pricing theorem.

Theorem 3.4.3. (Risk-neutral Pricing Theorem) In an arbitrage-free complete marketM,
the arbitrage prices of contingent claims are their discounted expected values under the
risk-neutral (equivalent martingale) measure P∗

Concluding this chapter, a short summary of how to apply the risk-neutral framework to
price a financial derivative using the Monte Carlo approach is provided: The goal is to
price a derivative security giving a payoff at time T as a function f of an underlying asset
S. To price the derivative, the dynamics of the underlying asset is modelled, but under the
risk-neutral approach. This means that a suitable numeraire is chosen to make the asset
price into a martingale when discounted with the risk-free interest rate r. In practise, this
often means that the real-world drift or growth-rate of the asset is substituted with the risk-
free interest rate. The initial price V (0) of the derivative is then given by the discounted
payoff

V (0) = E
[

exp{−rT}f(S(T ))
]
. (3.1)

This expectation can be evaluated by simulating the underlying risk-neutral process re-
peatedly before taking the average by Monte Carlo [14].
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Chapter 4
Interest Rates and Derivatives

The basic concept of interest rates is known to most people. If one deposits money in
the bank, the money is expected to grow at a certain rate. If one borrows money to buy
a house, one expects to pay an interest rate on the mortgage. Interest rates can therefore
intuitively be thought of as the price of money, and because they evolve unpredictably over
time they are often thought of as stochastic variables.

There exists many different types of interest rates. The magnitude of a particular rate
varies with several different factors like risk and maturity. Risky loans like credit-card
loans have higher interest rates than for example government loans because the chance of
repayment is much lower for the former. Longer dated loans like the interest rate on a 30
year government bond is also generally higher than the interest rate on a 3 month govern-
ment bill. This relationship between interest rates of differing maturities is very important
and will be discussed more in depth both in later theory parts as well as in the analysis.

The interest rates chosen to model and study in this thesis are Norwegian swap rates of
different maturities. A swap interest rate of a particular maturity is the fixed interest rate
payed on a swap contract of that same maturity. The swap contract is an integral part of
this thesis and is described later in this chapter. Swap rates are closely linked and derived
from NIBOR rates, which are the Norwegian Interbank Offered Rate. The NIBOR, al-
though slightly more risky than government bonds, is often assumed to be risk-free. A
risk-free interest rate means that there is no default risk and a 100% chance of repayment
of the loan or investment. The swap rates modelled in this thesis are also assumed to be
completely free of risk. More details on government bonds and the NIBOR can be found
at the home pages of Oslo Boers [5].

Although interest rates in this thesis are thought of and modelled as pure stochastic vari-
ables, some fundamental understanding of the market is still required. Some of the driving
forces behind changes in interest rates includes varying macroeconomic conditions, cen-
tral bank interventions via monetary policy, fiscal policy, market liquidity and the daily
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Chapter 4. Interest Rates and Derivatives

emotions of market participants. Some of these factors will be discussed with respect
to the results of this thesis, but for a more complete understanding of the subject a god
textbook like Giavazzi and Blanchard [22] is recommended.

4.1 Interest Rates and Discount Factors
Before defining and formalising key relations between discount factors and different kinds
of interest rates, some notes on the use of language and notation are required. In most text-
books and papers where risk-free interest rates are modelled, the focus is on government
interest rates. These rates are often derived from zero-coupon government bonds, and it
therefore makes sense to formulate interest rates in relation to prices and return of such
bonds. In this thesis, the focus is on swap rates, and it therefore does not make as much
sense to use bond prices and returns to derive relationships between for example spot rates
and forward rates. The term discount factor will therefore consistently be used instead
of the usual bond prices, and instead of rate of return on a bond with a given maturity,
simply the rate of return on investment until maturity will be used. The latter in practise
often meaning the risk-free interest rate on a loan between two banks with a given maturity.

Following definitions and the general notation from [6], the bank account is first defined.

Definition 4.1.1. (Bank account) Let B(t) be the value of a bank account at time t, and
assume B(0) = 1 is the normalised value at time t = 0. The bank account then evolves
according to

dB = rtB(t)dt,

with rt being a positive function of time. Solving this equation with the normalised initial
value B(0) = 1, the bank account value at time t is then

B(t) = exp
{∫ t

0

rsds
}
. (4.1)

The bank account grows exponentially with the instantaneous growth rate rt. The instan-
taneous rate is often referred to as the instantaneous spot rate, or briefly as the short rate
soon to be defined.

Discounting, or discount factors is an important concept. One dollar today is generally
not worth one dollar in a year, because one can earn a risk free interest rate. This relative
difference between the value of a dollar at different times is formalised using the bank
account from definition (4.1) into the discount factor.

Definition 4.1.2. (Discounting) A discount factor D(t, T ) between times t and T is the
amount at time t which is equivalent to one unit of currency at time T , given by

D(t, T ) =
B(t)

B(T )
= exp

{
−
∫ T

t

rsds
}

(4.2)

It is important to note that both the bank account and the discount factors can be consid-
ered deterministic or stochastic, depending on how the interest rate is modelled. In this
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4.1 Interest Rates and Discount Factors

thesis, one of the central goals is to model the interest rate as a stochastic variable, and all
discount factors are therefore assumed to be stochastic.

Using the discount factor D(t, T ) between times t and T , this section continues with
central definitions of some important interest rates.

Definition 4.1.3. (Continuously-compounded spot interest rate) The Continuously-compounded
spot interest rate, or just the spot rate at time t for maturity T denoted as R(t, T ), is the
constant annual rate which a safe investment, for example a safe loan, grows with until
maturity. Mathematically defined as

R(t, T ) = − ln(D(t, T ))

T − t
. (4.3)

A curve showing R(0, T ) for a set of different maturities T is called the term structure
of interest rates or the yield curve, and is often used as an illustration of the market’s
expectations of future interest rates.

Definition 4.1.4. (The instantaneous spot rate) The instantaneous spot rate, often called
the short rate is denoted r(t) and is the continuously compounded spot interest rate
R(t, T ), when T → t.

It is usual market practice to set the short rate as the 3 month spot rate R(t, t+ 3months),
which is then used as rs in the discount factor defined in equation 4.2 [1].

Definition 4.1.5. (Forward interest rates) A forward interest rate F (t, T1, T2), with t ≤
T1 ≤ T2 is the interest rate between T1 and T2, contracted at time t. The continuously
forward interest rate is given by

F (t, T1, T2) = − logD(t, T2)− logD(t, T1)

T2 − T1
. (4.4)

The following proof is provided to show how this interest rate between two future dates
T1 and T2 with certainty can be determined at an earlier date t: Assuming absence of
arbitrage, which is explained in chapter 3, two risk-free investment strategies is set up
at time t. Since both strategies are risk-free, they should yield the same rate of return.
Strategy 1 is buying 1 unit of a safe investment in the form of a loan with maturity at T2,
yielding a rate of return equivalent to the spot rate R(t, T2). By holding the investment to
maturity and compounding continuously, this should yield a total return of

eR(t,T2)[T2−t] = e−logD(t,T2) =
1

D(t, T2)
, (4.5)

by using the relationship between discount factors and and spot rate from equation (4.3).
Strategy 2 is to buy 1 unit of a safe investment maturing at T1 yielding a safe rate of return
equal to R(t, T1), while simultaneously agreeing to invest the proceeds at time T1 at the
forward rate F (t, T1, T2). This gives the total return on investment as

eR(t,T1)[T1−t]+F (t,T1,T2)[T2−T1] =
1

D(t, T1)
eF (t,T1,T2)[T2−T1]. (4.6)

Equating (4.5) to (4.6), and solving for the forward rate F (t, T1, T2) gives (4.4).
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Definition 4.1.6. (Instantaneous forward interest rate) The Instantaneous forward interest
rate, denoted f(t, T ) for T > t is the continuously compounded interest rate contracted
at time t for borrowing at time T. It is derived from the general forward interest rate as

f(t, T ) := lim
S→T

F (t, T, S) = − ∂

∂T

(
logD(t, T )

)
,

were f(t, t) = r(t) is simply the short rate.

This section is concluded by stating the discount factor equivalent to 4.2, but as a function
of the instantaneous forward rate f(t, T ) as

D(t, T ) = e−
∫ T
t
f(t,τ)dτ , (4.7)

and as the inverse of equation 4.3,

D(t, T ) = e−R(t,T )[T−t]. (4.8)

4.2 Market Price of Risk and the Expectation Hypothesis
An important question when modelling the real path of interest rates is the following: What
is the relation between a forward rate f(t, T1, T2), and the expected equivalent future spot
rate E[R(T1, T2)] at time t? Starting by using the relationship between the instantaneous
forward rate and current spot rates, 4.7 and 4.8 can be combined into∫ tn

t0

f(τ, tn)dτ = R(t0, tn)[tn − t0]. (4.9)

One theory described as the pure expectation hypothesis suggests forward and expected
spot rates are equal, and by equation (4.9) is often stated as

R(t0, tn)[tn − t0] =

n−1∑
i=0

E[R(ti, ti+1)][ti+1 − ti]. (4.10)

Here, the total return on a safe investment between times t0 and tn, exp{R(t0, tn)[tn−t0]},
is assumed to equal the expected total rolling return on investments with shorter maturi-
ties [20]. Unfortunately, the pure expectation hypothesis has been rejected by empirical
studies of past market data [18]. A more accepted and modified version, often called the
traditional expectation hypothesis, is mathematically described as

R(t0, tn)[tn − t0] =

n−1∑
i=0

E[R(ti, ti+1)][ti+1 − ti]− λn. (4.11)

This version has an extra term, the constant λn, known as the market price of risk [25].
On this form of the equation, the market price of risk is usually estimated to be nega-
tive, meaning realised future spot rates are on average lower than the equivalent forward
rates. The market price of risk is also assumed to be dependent on maturity, with largest
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4.2 Market Price of Risk and the Expectation Hypothesis

magnitude for short maturities. Observing a typical upward sloping forward instantaneous
interest rate curve f(0, t) for 0 ≤ t ≤ 10, this means that the difference between the 1 year
forward rate f(0, 1) and the short rate f(0, 0) is usually larger than the difference between
the 10-year f(0, 10) and the 9-year f(0, 9) forward rates [25].

There are several explanations for the existence of the market prize of risk, with the per-
haps most recognised called the liquidity preference theory. The theory states that investors
on average demands a premium for tying up capital for longer periods compared with short
term investments. The theory was first stated by the late great economist John Maynard
Keynes in his his famous The General Theory of Employment, Interest and Money [17].
Figure 4.1 illustrates this important point that on average, the forward rates f(t, T1, T2)
are higher than the expected equivalent spot rates R(T1, T2). The market price of risk can
be visualised as the space between expected spot and forward rates. The realised spot rates
are itself stochastic and highly variable.

Figure 4.1: An example of the expected spot rate, compared with the equivalent forward rate and
realised path of the spot rate. The figure is a modified illustration from [25].

One of the main challenges when modelling the real path of interest rates is therefore
to accurately estimate the market price of risk. The problem, as for example shown by
Willmott in [25], is that the market price of risk is itself highly variable and can sometimes
even be positive. This apparent unpredictable, non-constant relationship between forward
rates and expected spot rates means that also the traditional form of the expectation hy-
pothesis in equation (4.11) is rejected. This often means that some idealised assumptions
needs to be made when modelling the real path of interest rates [18] [15].
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4.3 Interest Rate Derivatives
As in definition 3.1.1, a financial derivative is a security with a value that is dependent
upon or derived from one or more underlying assets. This thesis focuses on interest rate
derivatives, a class of derivatives dependent on present or future levels of some type of in-
terest rate. The derivatives modelled in this thesis is assumed to be traded over-the-counter
(OTC), as opposed to through an exchange. OTC derivatives are often agreements directly
between counterparties and can be very flexible regarding the contract details [25]. As
mentioned in the introduction, interest rate instruments make up the majority of all OTC
derivatives and are of particular importance to banks and other large corporations who
needs to hedge out risk associated with future interest payments on loans and cash-flows.

As defined in the previous section, there are many different types of interest rates like
spot rates and forward rates of differing maturities. Since an interest rate derivative can
depend on one or a combination of several different rates, the possible number of interest
rate derivatives are almost infinite. This thesis focuses on the most simple and widely used
interest rate derivatives, all with value derived from the short interest rate. Notation and
definitions are as in Wilmott [25].

Cap

An interest rate cap, often just called a cap, is a contract which consist of several possible
payoffs called caplets. The different caplets, each maturing at time ti, gives a payoff Vc of

Vc(ti, rli , rc) = Nαmax(rli − rc, 0). (4.12)

rli is a floating interest rate, often derived from the short rate, rc is a fixed or capped rate,
N is the notional value of the contract, and α is the day count fraction corresponding to the
period which the rate rl is set. From the payoff it is clear that an interest rate cap is a bullish
bet on the interest rate, with increasing payoffs as the interest rate rises. Corporations and
individuals with floating rate loans can therefore use an interest rate cap to hedge out the
risk associated with rising interest rates.

Floor

An interest rate floor is similar to the cap, consisting of different floorlets with payoffs
equal to

Vf (ti, rli , rc) = Nαmax(rc − rli , 0). (4.13)

The floor is a bearish bet on the interest rate, profiting when the interest rate falls below
the capped rate. Interest rate floors can therefore be used by for example pension funds
who invests in short dated interest-bearing securities to hedge out the risk associated with
falling interest rates.

Swap

The last interest rate derivative considered in this thesis is the most important and widely
used, namely the interest rate swap. A swap consists of swaplets and is a contract where
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two counterparties agrees to exchange payments based on two different interest rates, often
a fixed for a floating rate. By studying the payoffs from the caplets and floorlets, it can be
seen that this is equivalent to buying a cap and selling a floor which gives payoffs in each
period equivalent to

Vs(ti, rli , rc) = Vc − Vf
= Nα

(
max(rli − rc, 0)−max(rc − rli , 0)

)
= Nα(rli − rc).

(4.14)

The swap contract exchanging fixed for floating interest rate is a very common contract
between a financial institution and another non-financial corporation. If the corporation
has a floating interest rate loan, it could enter into a swap agreement with a bank, agreeing
to pay the bank a fixed rate, while receiving a floating one. The party paying the fixed
rate is said to have the payer position on the contract, receiving the cash-flow in equation
(4.14) every payment date. The corporation then uses the floating rate received to pay off
the interest rate on the loan. This way the the corporation has hedged its loan expenses
by transferring the interest rate risk to the bank. The swap contract can therefore bee seen
as an insurance policy against movement in interest rates issued by banks and financial
institutions. Corporations wants to buy this insurance, often at a premium, to be able
to focus on their core business without having to worry about interest rates movements
affecting their results.

Pricing

To put the described derivatives and payoffs into perspective, one can return to chapter
3 and in particular the risk-neutral pricing equation 3.1. The earlier generalised function
f(S) is now specified through the desired payoff functions in 4.12, 4.13 and 4.14. The
remaining challenge in pricing these derivative is to simulated the underlying interest rate
in the risk-neutral measure. This will be the main topic of the next chapter.
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Chapter 5
Interest Rate Modelling

5.1 Stochastic Interest Rates Modelling

There exists many models which attempts to describe possible movements in future inter-
est rates. One class of models is called 1-factor models, and describes the development of
one particular interest rate, often the risk-free short rate r(t). A general 1-factor interest
rate model is often described by a stochastic difference equation on the form.

dr = u(r, t)dt+ w(r, t)dX. (5.1)

dr represents the next increment in the interest rate over a period dt. dX is a normally
distributed stochastic variable described by the Brownian motion in appendix B.1, with
variance dt and represents the stochastic nature of the interest rate [14]. The function
w(r, t) represents the volatility and the term u(r, t) is the underlying drift of the interest
rate. The functions w(r, t) and u(r, t) depend on the particular model and may be depen-
dent on both time and the current level of the interest rate as indicated by the notation. The
form of the drift is also dependent on the measure which the model is implemented under.
For a real-world measure, the market price of risk is often estimated and a term λ(t) is
therefore included.

Another class of interest rate models is called multi-factor interest rate models. A multi-
factor model uses more than one source of randomness to describe the development of
several different variables at the same time. This is often interest rates of differing maturi-
ties in an attempt to describe more than one point on the yield curve to better capture the
dynamics of future interest rates. Such models can also be described by equation (5.1),
with dr, w(r, t), dX and u(r, t) now being vectors.
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5.2 Heath, Jarrow and Morton Model
In this thesis the multi-factor Heath, Jarrow and Morton model is explained and imple-
mented as described by Glasserman in [14], with the only difference in notation being the
continued use of the more general discount factors instead of bond prices. The more com-
plete and original derivation by Heath, Jarrow and Morton can be found in [10]. The model
is implemented in both the risk-neutral measure for pricing and in a simplified real-world
measure for generation of real future interest rates. Important theorems and other mathe-
matical tools used in the derivations can be found in appendix B, and will be referenced
when needed.

5.2.1 Outline
The HJM interest rate model is used to describe the dynamics of the instantaneous forward
interest rate curve, denoted {f(t, T ), 0 ≤ t ≤ T ≤ T ∗}, where T ∗ is some ultimate
maturity. f(t, T ) represent the instantaneous forward interest rate at time t for maturity T
as defined in 4.1.6, and can be thought of as the continuously compounded interest rate at
time t for risk-free borrowing at time T . This important relation between instantaneous
forward rates and discount factors is restated as a starting point for the derivation of the
model

f(t, T ) = − ∂

∂T

(
logD(t, T )

)
. (5.2)

It should again be noted that the forward rate f(t, t) is simply the realised short rate r(t)
at time t. The evolution of the forward interest rate curve is described by a stochastic
difference equation of the similar form to (5.1). Using the same notation as in [14], the
development of the forward curve is governed by

df(t, T ) = µ(t, T )dt+ σ(t, T )>dW (t). (5.3)

It is important to remember that the change in forward interest rates, denoted df , is with
respect to time t and not maturity T . dW (t) is a standard Wiener process defined in
appendix B.1, but inM dimensions, which is the number of factors in the model. The drift
and volatility coefficients µ and σ are M dimensional scalars, and can be both stochastic
or deterministic.

5.2.2 Risk-Neutral Measure
Realising from (5.2) that df(t, T ) = dD(t,T )

D(T ) , the evolution of discount factors in the risk
neutral world is given by

dD(t, T )

D(t, T )
= r(t)dt+ ν(t, T )>dW (t) 0 ≤ t ≤ T ≤ T ∗,

were ν is the discount factor volatility. Applying Itô’s formula from equation (B.1) as
formulated in [23] to (5.3), resulting in

d(logD(t, T )) =
[
r(t)− 1

2
ν(t, T )>ν(t, T )

]
dt+ ν(t, T )>dW (t).
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5.2 Heath, Jarrow and Morton Model

Following [14], differentiation with respect to T before interchanging the order of dif-
ferentiation between t and T from equation (5.2), the risk neutral formula for df(t, T ) is
obtained as

df(t, T ) = − ∂

∂T
logD(t, T )

= − ∂

∂T

[
r(t)− 1

2
ν(t, T )>ν(t, T )

]
dt− ∂

∂T
ν(t, T )>dW (t).

(5.4)

Comparing (5.3) and (5.4), and realising that r(t) is independent of T , leads to the follow-
ing expressions for the risk neutral drift and volatility:

σ(t, T ) = − ∂

∂T
ν(t, T )

µ(t, T ) = σ(t, T )>
∫ T

t

σ(t, u)du.

(5.5)

Substituting (5.5) into (5.3) the development of the forward rate is then given by

df(t, T ) =

(
σ(t, T )>

∫ T

t

σ(t, u)du

)
dt+ σ(t, T )>dW (t), (5.6)

which is the centrepiece of the HJM framework, showing that the drift under the risk-
neutral measure is fully determined by the volatility structure [14]. To investigate the
risk-neutral volatility structure further, the change of measure from the real-world to the
risk-neutral world via the Radon-Nikodym derivative described in appendix B.3 is useful.
By applying this change of measure to Girasanov’s theorem described in B.4, it is shown
that the volatility in the risk-neutral HJM model described by (5.6) actually is equivalent to
the volatility in the real-world measure. The volatility in (5.6) can therefore be estimated
from historical data [14].

5.2.3 Real-World Measure
Having the risk-neutral measure to price the derivatives, a model to simulate real-world
scenarios of interest rates is also needed. Generating realistic real paths of interest rates
is actually more difficult than to price the derivatives. The volatility is as showed by Gr-
ishanov’s therorem in appendix B.4.1 equal in the risk-neutral and the real world, but the
drift of the interest rate is not. From the HJM model outlined in the previous section, the
model uses observed forward rates as input to generate future spot rates. As discussed in
section 4.2, the relation between forward rates and spot rates are complicated and often
involves the market price of risk to adjust the drift. This market price of risk is itself highly
variable and very difficult to accurately estimate. An example of an attempt at a real-world
HJM framework estimating the market price of risk can be found in [26].

So how can real-world interest rates be generated while avoiding to estimate the mar-
ket price of risk? One option is to use the risk-neutral implementation, and assume that
the interest rate generated is an accurate enough representation of real-world interest rates.
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Studying equation (5.6), the drift term in the risk-neutral implementation is actually pos-
itive, leading to realised spot rates being higher than indicated by forward rates. In prac-
tise this means that using the risk-neutral approach to simulate real-world interest rates
is equivalent to assuming a positive market price of risk. This contradicts the generally
accepted notion that the market price of risk is negative.

The approach chosen in this thesis is simple and pragmatic. By assuming the purest form
of the expectation hypothesis, given by equation (4.10) holds true, the drift in the model
is set to zero. This means the model will produce expected short rates E(r(t)) = f(0, t)
equal to the equivalent forward rates at initialisation for all times. The consequence of this
simplification will be a central part of the discussion of the results

5.2.4 Discretization and Simulation

Simulation of the continuous model described in equation (5.6) in the previous section
is impossible except for very special choices of σ [14]. To simulate from the general
framework in (5.6) without restricting the form of the volatility, a discrete approximation
is therefore needed. Let f̂(ti, tj) represent the discrete forward rate for t = tj at time ti.
Both ti and tj are discretized, and for convenience the same grid 0 = t0 < t1 < ... <
tM = T ∗ is used for both variables. By this approximation, the disocunt factor equation
from (4.7) is written into discrete form

D̂(ti, tj) = exp
{ j−i∑
l=i

f̂(ti, tl)
[
tl+1 − tl

]}
. (5.7)

To avoid a larger than necessary discretization error, the continuous discount factors from
(4.7) is set equal to the discrete discount factors from (5.7) at time ti = 0. This gives the
condition ∫ tj

0

f(0, u)du =

j−i∑
l=0

f̂(0, tl)
[
tl+1 − tl

]
,

or equivalently

f̂(0, tl) =
1

tl+1 − tl

∫ tl+1

tl

f(0, u)

=
1

tl+1 − tl
log

D(0, tl)

D(0, tl+1)
for all l = 1, 2, ...,M − 1,

(5.8)

were the discount factors D(0, t) is calculated the usual way from observed market inter-
est rates as in equation (4.8). The discrete version of (5.6), with M factors can now be
formulated as

f̂(ti, tj) = f̂(ti−1, tj) + µ̂(ti−1, tj)[ti − ti−1] +

M∑
k=1

σ̂k(ti−1, tj)
√
ti − ti−1Wik, (5.9)
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for all i = 1, ..,M and j = i, ..,M [14]. The Wi’s are independent vectors of length M
of random standard normal distributed variables. The drift terms in the risk-neutral imple-
mentation, µ̂(ti−1, tj) are approximated by discretization of the expression for µ(t, T ) in
(5.5) and given by

µ̂(ti−1, tj)[tj+1 − tj ] =

M∑
k=1

µ̂k(ti−1, tj),

were µ̂k(ti−1, tj) is given by

µ̂k(ti−1, tj)[tj+1−tj ] =
1

2

(
j∑
l=i

σ̂k(ti−1, tl)[tl+1−tl]

)2

−1

2

(
j−1∑
l=i

σ̂k(ti−1, tl)[tl+1−tl]

)2

.

In the simplified real-world model, all drift terms µ are set to zero.

To simulate from the discrete algorithm given by (5.9), only an initial forward curve f̂(0, t)
for 0 < t < T ∗ and the volatility parameters σ̂k are needed. The initial forward curve is
calculated from observed market prices combining equations (5.8) and (4.8), with time
steps ∆t to transform the spot rates into forward rates as

f̂(0, t) =
1

∆t

(
R(0, t+ ∆t) · (1 + ∆t)−R(0, t) · t

)
. (5.10)

The volatility structure used in the implementation of the model will be discussed in the
next chapter.

5.2.5 Pricing Derivatives with HJM

Returning yet again to chapter 3 and equation 3.1, all components needed for evaluating
prices are now in place. Using the payoff functions for the derivatives presented in chapter
4, and the risk-neutral implementation of the underlying interest rates presented in the
current chapter, fair prices of derivatives is obtained. The final part of this chapter outlines
explicitly how the output of the risk-neutral HJM implementation is used to evaluate prices.

Discount factors

The risk-neutral implementation of the HJM algorithm is automatically fitted to marked
data by its initialisation from equation (5.8) [14]. This means that expected simulated dis-
count factors will be equal to the observed discount factors in the market at initialisation,
calculated from (4.8). As will be explained in chapter 7, counterparty credit risk concerns
both expected prices and the distribution of future prices. Simulation and study of the
distribution of discount factors is therefore still important.

The calculation of discount factors is done by using the simulated short rates r(t) =

f̂(t, t). By continuously discounting the present values with the short rate at all inter-
vals, relevant discount factors are found. The simulated discount factors, now denoted
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Ds(t0, tj) to avoid confusion with the observed discount factors D(0, t) in the market, are
for each period tj , starting at t = t0 given as

Ds(t0, tj) = exp
( j−1∑
l=0

f̂(tl, tl)[tl+1 − tl]
)
. (5.11)

Floor, Cap and Swap Pricing

An interest rate floor is priced using the HJM algorithm by summing the discounted value
of all floorlets over the floor’s maturity. The discount factor for each floorlet is given as
the discount factor for the period from initiation t0 to cash-flow ti denoted Ds(t0, ti) as in
(5.11). rc is the strike rate on the contract. For each floorlet, with value at maturity ti as
in (4.13), the floating rate rl needs to be determined. rl is often called the reference rate,
and is usually set constant over each time interval as the discreetly compounded rate over
this interval and is estimated by

r̂d(ti) =
1

ti+1 − ti

(
exp{f̂(ti, ti)[ti+1 − ti]} − 1

)
. (5.12)

Replacing the interest rate rl with the estimated discrete reference rate r̂d from (5.12) into
(4.13) and discounting, the following formula gives the present value of a floor Pf with n
floorlets with discounted value Vi with maturity at time ti:

Pf =

n∑
i=1

Vi =

n∑
i=1

(
Nαimax(0, rc − r̂d(ti)) · exp

{ i−1∑
l=0

f̂(tl, tl)[tl+1 − tl]
})

(5.13)

Having a formula to price interest rate floors using the output from the HJM algorithm,
pricing an interest rate cap and a swap is trivial. Substituting the payoff from equation
(4.12) instead of (4.13) the following cap price Pc as a sum of n caplets is obtained as

Pc =

n∑
i=1

(
Nαimax(0, r̂d(ti)− rc) ·Ds(t0, ti)

)
. (5.14)

Similarly using equation (4.14), a swap is priced using the output of the algorithm as

Ps =

n∑
i=1

(
Nαi(r̂d(ti)− rc) ·Ds(t0, ti)

)
. (5.15)
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Chapter 6
Volatility

Volatility is one of the most important concepts in financial modelling, and therefore also
very important in this thesis. The HJM algorithm described in the previous chapter does
not explicitly specify the form of the volatility, giving a wide range of choices to the
implementer. This chapter will start off by describing volatility in general terms, followed
by a discussion of some of the options to chose from. The choice of volatility-structure
in the HJM model is then justified. Independent of the final choice, it is important to bear
in mind that volatility is a highly unpredictable quantity and no method or approach of
measuring it will be perfect.

6.1 Definitions and Different Formulations
Definitions and Metrics

Volatility is loosely defined as the standard deviation σ of the increments, measured with
some frequency on some interval, in the price of a financial instrument. Fixing both a fre-
quency and an interval, and defining a time series of an asset prices asA = {a1, a2, ... , an},
the increments can be measured in two different ways before taking the standard deviation.
Assuming the increments are independent on the current level of asset price, the natural
choice for the differenced time series is d1 = {a2−a1, a3−a2, ... , an−an−1}. Assuming
dependence on current level, which is often done for stocks and other assets with an ex-
pected underlying growth rate, the natural choice is d2 =

{
a2−a1
a1

, a3−a2a2
, ... , an−an−1

an

}
.

As for interest rates which are the concern in this thesis, the choice of metric is far from
obvious, and the different formulations can have large consequences on the resulting be-
haviour of the model. In [25], Willmott summarises both how volatility is formulated in
some of the popular interest rate models, in addition to some empirical research on the
subject. Unfortunately, no conclusion can be reached with certainty. Although most of
the research indicates that d2 is a more accurate description of the behaviour of interest
rates, a lot of this research was done when interest rates were much higher than today. By
estimating volatility as a fraction of the underlying asset, a decline in the asset lowers the
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absolute volatility. If the assets tends towards zero, as interest rates have done in recent
years, volatility also tends to zero. In reality, interest rates have a larger chance of going
from 0.5% to 0.55% than from 5% to 5.5% over the same time interval, implying incon-
sistency with the d2 metric. Measuring volatility using d1 captures the behaviour of low
interest rates better, but can naturally overestimate volatility when interest rates rises. It is
still probably a more robust estimator in today’s low interest rate environment.

Regarding the choice of frequency with which the asset is measured, it is common prac-
tise to use daily measurements of the closing price. In most models, including HJM, the
underlying interest rate is assumed to follow a random walk. From the definition of Brow-
nian motion in the appendix B.1, this means volatility in addition to being constant can be
scaled by

√
t when t is the number of days into the preferred time horizon [14]. By scaling

with t = 252, approximating the number of trading days in a year, the volatility is said to
be annualised.

Historical, Implied and other Methods

In addition to how to measure volatility, a central question is over what time horizon to
measure it, whether it is forward or backward looking. Since the instant volatility at a
given time is impossible to measure, some amount of data is needed. Historical volatility
is therefore a popular way of estimating the volatility in a model. By using the standard de-
viation of past observed prices over a specified time horizon, an estimate of the volatility is
easy to obtain. The challenge with this approach is to choose an appropriate time horizon
for measurement. This can often be a problem because one implicitly assumes historical
data reflects the future. As will be shown in chapter 9 where the data is analysed, market
conditions often changes and historical data is seldom capable of predicting the future in
an accurate way.

Another way of estimating volatility is to use the implied volatility. Using the market
prices of financial derivatives, for example a stock option or an interest rate derivative,
it is possible to use analytic formulas and calculate backwards to obtain an estimate of
what the market thinks the volatility will be over a future period. An advantage with using
implied volatility is that all pricing done by the model is consistent with the market. A
downside with this method is that the analytic formulas relating volatility and prices of
derivatives do not exist for most multi-factor interest rate models. Another downside of
using this approach is that it assumes the market knows the future volatility. In practise this
is highly unlikely, because as with historical volatility the market’s expectations changes
all the time.

Given the challenge of modelling the volatility to a satisfactory extent, other approaches
are also sometimes used. A common denominator for such methods is that they model the
volatility as a stochastic or time dependent variable. This includes both Autoregressive
Conditional Heteroskedasticity models (ARCH) and Generalized Auto Regressive Condi-
tional Heteroskedasticity (GARCH) models. These models has had some success, but are
often to complicated to be feasible alternatives to the more traditional methods described
above. More information on volatility and the different ways of modelling it can be found
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in [25].

Volatility in HJM

Based on the previous discussion, the choices made when implementing the HJM model
are the following: Because of its assumed robustness when interest rates are low, the
volatility is measured on an absolute basis, using metric d1. Historical volatility is chosen
over implied, because there exist no simple analytic formulas to calculate the implied
volatility from in the multi-factor HJM model. The time horizon used for estimation will
be discussed after analysing the data in section 9, and the method used for estimation is
called principal component analyis and is presented in the next section.

6.2 Principal Component Analysis
Principal component analysis (PCA) is described as a statistical procedure that uses an
orthogonal transformation to convert a set of observed correlated variables into a set of
values of linearly uncorrelated variables called the principal components. The procedure is
often used in cases where strong correlations between the observed variables exists. Since
forward interest rates for different maturities are very correlated, PCA is an important tool
when implementing and using historical volatility in multi-factor interest rate models [25].

The procedure starts by calculating the covariance matrix Σ, a M × M matrix for the
M -factor model based on the observed data. After this is done, Σ is decomposed into

Σ = V ΛV −1,

were Λ is a diagonal matrix with the eigenvalues of Σ, λi on its diagonal. V contains the
eigenvectors of Σ, namely Vi. The volatility factors are then defined as

σ̂j(ti−1, tj) =
√
λj ∗ 252Vij (6.1)

were j = 1...M represents the different maturities [25]. The factor
√

252 is included to
scale the volatility from days into years which are the metric used for t in the implemented
HJM model. The principal components can then be visualised by plotting the components
σ̂j(ti−1, tj) as a function of the maturity j. Applying PCA on yield curve data or spot
rates, the economic interpretation of the first 3 components are clear. The first, and most
significant component represents a parallel shift, the second one represents a twist, and the
third component represents the bend. By transforming spot rates into forward rates, the
interpretation when applying PCA is less intuitive.

To determine how many of the principal components to include in the model, the dif-
ferent components’ total contribution to the variance in percent is measured by TCi and
given by

TCi =
λi∑M
i=1 λi

100%. (6.2)
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The components to be included is chosen in descending size, usually with a criterion for
how much of the variability in the data the chosen components should explain. There will
always be a trade-off between accuracy and noise, and there are many different ways to
determine the number of factors to include in the model as underlined in [16]. Measuring
in percent as in equation (6.2), anything from 70% to 90% is generally considered as a
rule of thumb, but sometimes a higher limit is needed. To be on the safe side, the criterion
used in this thesis is set to include components until at least 95% of the variability in the
data is explained.

A practical simplification of the expression for the volatility, which is used in this the-
sis, is obtained using the Musiela parametrization. The volatility in this parametrization
is assumed to only be a function of time to maturity, and can therefore be simplified into
σ̂j(ti, tj) = σ̂j(tj − ti) [25].
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Chapter 7
Counterparty Credit Risk

Counterparty credit risk (CCR) is the term used for the risk associated with a counterparty
not living up to its contracted obligations. Counterparty credit risk is often divided into
the following 3 parts.

Definition 7.0.1 (Probability of default). Probability of default is the probability that the
counterparty defaults, and will not be able no meet its contractual obligations.

Definition 7.0.2 (Loss given default). Loss given default is defined as the percentage
amount of its obligations the counterparty is expected to not be able to pay back in case of
a default.

Definition 7.0.3 (Counterparty credit exposure). Counterparty credit exposure is the amount
a company could potentially lose in the event of one of its counterparties defaulting.

A complete framework for credit risk modelling naturally incorporates all three compo-
nents, which is outlined in [7]. The concern of this thesis is exclusively the modelling
and simulation of counterparty credit exposure, but it will still be useful to keep the other
components in mind when discussing the results. The main source used in this chapter is
Cesari et. al [11].

7.1 Counterparty Credit Exposure

7.1.1 Main idea
The starting point of the modelling is a situation where company A, say a financial insti-
tution has a portfolio of derivatives with a counterparty, say company B. The portfolio can
consist of anything from interest rate swaps, to currency swaps and other more compli-
cated derivatives. The value of the portfolio is denoted Vt for the time horizon 0 ≤ t ≤ T ,
where all the derivatives in the portfolio is assumed to mature no later than t = T . De-
pending on the portfolio, Vt can assume both positive and negative values. An interest rate
swap can for example yield cash-flows in both directions, depending on the movement in
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the underlying interest rate. The goal is to simulate and gain understanding of the distri-
bution of Vt for future times 0 ≤ t ≤ T .

The value or the exposure Vt of the portfolio at each time step will depend on the price of
the derivatives, which again are dependent on the underlying risk-factors. In this thesis this
means the Norwegian short swap interest rates. The first step in simulating the distribution
of Vt is therefore to simulate the underlying risk-factors, before pricing the portfolio in the
different scenarios. The idea is illustrated in figure 7.1.

(a) Illustration of 2 possible paths of the real
short interest rate, each used to price the port-
folio at t = 3, using the risk-neutral simulated
short interest rates.

(b) Illustration of 2 possible portfolio values 3
years after contract initialisation.

Figure 7.1: 2 possible simulated paths of counterparty credit exposure.

The figures shows how the distribution of V3 can be obtained. Looking at figure 7.1a,
the real-world interest rate using the zero-drift implementation is simulated until t = 3.
Using the whole simulated real-world forward interest rate curve at t = 3 as input, the
risk-neutral implementation is then used to price the portfolio by simulating paths to ma-
turity and discounting payoffs as explained in chapter 5. Figure 7.1b shows the resulting
portfolio values given the simulated paths in figure 7.1a. By repeating this procedure many
times, the distribution of the exposure at various times is generated.

The precise relation between the figures is emphasised by the following example: At t = 0,
the short interest rate in figure 7.1a is around 1%. Assuming the forward interest rate curve
is flat, a portfolio of a simple payer swap with fixed rate of 1% will be valued around 0 at
initialisation. Following the upper path of interest rates in figure 7.1a, the simulated short
interest rate has risen to around 3% after 3 years. Still assuming a flat forward interest rate
curve, the holder of the payer swap now has a profit and the contract is positive valued
V3 > 0 represented by the upper red circle in figure 7.1b. The holder of the payer swap
still has to pay the 1% fixed rate, but expects a higher floating interest rate in return for the
remainder of the contract. If the counterparty, the holder of the receiver swap now defaults
at t = 3, the contract is suddenly worthless. The contract has to be replaced in the market
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at the price V3, incurring a potential loss for the holder of the payer swap.

7.1.2 Risk Measures
After simulating the portfolio values Vt, several statistical quantities is often used to de-
scribe the resulting counterparty credit exposure distributions. The Expected Positive Ex-
posure (EPE) is defined as

EPEt = E[max(Vt, 0)] = E[V +
t ],

were the expectation only is taken over positive portfolio values [11]. This is because
when the portfolio value is negative, there is no counterparty credit risk because a default
by the counterparty wont result in a loss.

The Potential Future Exposure (PFE) is defined as

PFEα,t = inf{x : P(Vt ≤ x) ≤ α},

where P is the simulated probability distribution of Vt and α is the significance level [11].
In this thesis the significance level is always 95%, which is also industry practise [1]. The
PFE can intuitively be thought of as a one-sided confidence bound on the distribution of
exposure Vt, and says how large the exposure is at minimum, in the worst (1−α) percent-
age of future outcomes. The 95% PFE is in practice calculated using the order statistics
defined in 2.2.1.

As an alternative measure to PFE, the Expected Shortfall (ES) is sometimes used, which
is defined as

ESα,t = E[Vt|Vt > PFEα,t].

The ES provides more information regarding the tail of the distribution, in form of the
average exposure in the (1 − α) worst percentage of the outcomes. The ES is therefore
always equal or bigger than the equivalent PFE. The focus in this thesis is on EPE and
PFE.

7.2 Risk Mitigation
Several methods can be used to mitigate some of the counterparty credit risks and expo-
sures which occurs when dealing in the OTC derivatives market. One such example is
netting agreements. An example of netting is if the portfolio between counterparty A and
B consist of n different products, each valued vti . Since at every time t

n∑
i=1

v+
ti ≥

n∑
i=1

vti ,

netting cash-flows in opposite directions with the same counterparty will reduce or keep
the exposure equal. The use of collateral is also an important tool in reducing the counter-
party exposure. Collateral can be posted as cash or other assets, and is used as protection
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against default of the counterparty. In case of a default, the loss is partially or completely
covered, and both potential exposures and losses becomes smaller than without collateral.

Another way of reducing exposure is by the use of regular, often daily, settlements. Even
though the interval between cash-flows in a contract can be a year, the contract itself is
typically valued on a day-to-day basis. By regularly netting out the contract value to zero,
the exposures at default will be much lower.

The final risk-reducing tool discussed is the use of a central counterparty, also known
as a clearinghouse. If company A and B are in a derivatives contract, the clearinghouse’s
role is to function as the counterparty for both A and B. This means that company A and B
still has the same contract and exposure as before, but they both have the clearinghouse as
counterparty. Companies A and B have thus no exposure to each other. The clearinghouse
has a net zero position in the contract, and is responsible for collecting and maintaining
collateral and settlements from the counterparties [1] [11].

7.3 Regulatory Requirements
Financial institutions must control risk and exposures for two reasons. The first reason
is to minimise losses and maximise profits for its shareholders, and the second reason is
for regulatory purposes. Regulatory requirements are imposed on financial institutions
because the industry is so large and intertwined with the rest of the economy. Sector spe-
cific events such as a banking crisis can therefore have large spillover-effects into the real
economy as seen in the great financial crisis in 2008-2009. Below is a short summary of
some of the Norwegian Finanstilsynets regulatory rules which financial institutions has to
comply with regarding the transactions of derivatives and counterparty credit risk. Many
of the regulatory requirements are based on the Basel committee’s standards.

The European Market infrastructure regulation (EMIR), is a set of rules implemented
in the EU after the financial crisis to better control the risk in the OTC derivatives mar-
ket. The rules determines that clearinghouses are to be used if the derivative contracts are
between two financial institutions, or when the notional value of a contract with a par-
ticular counterparty rises above a certain threshold, which is 3 billion NOK for interest
rate derivatives. Daily settlements of contract values are also mandatory between financial
institutions.

The capital requirement regulations concerns business’ reserve capital, risk management,
public information and the maximal exposure against a single counterparty. The relevant
part of the capital requirement regulation regarding this thesis is naturally the part concern-
ing counterparty credit risk. The regulations says how potential credit exposure is used as
an important component in determining how much reserve capital a financial institution
needs to hold. Financial institutions are allowed to use their own models for estimating
this exposure if they are approved by Finanstilsynet. Proving the validity of the internal
models for exposure calculations is therefore an important task for any financial institu-
tion. More details on rules and regulations can be found on Finanstilsynet website [12], or
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the website of the Basel committee [2].
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Chapter 8
Methodology

Chapter 7 outlined and described how to simulate counterparty credit exposure using the
models implemented in chapter 5. The next objective in this thesis is to develop a frame-
work to test this model’s accuracy. A common way of testing a models predictive prop-
erties is by running different kinds of backtests. A backtests often consists of running
the implemented model over multiple historical periods. Using actual historical data, the
results from the simulations and the real world can be compared, and the validity of the
model can be assessed. Backtests are mandatory for a bank’s internal risk model to show
regulators that the model have performed well under previous, often stressed market con-
ditions.

This chapter continues with a description of the portfolios used in the simulations, be-
fore the technical details of the backtests are described.

8.1 Portfolios
The portfolios selected for simulation needs to be relatively simple for efficiency purposes,
but also realistic to produce applicable results. According to the Norwegian bank DNB,
the interest rate swap derivative outlined in section 4, consisting of annual swaplets with
cash-flows according to equation (4.14) is very common amoung their customers [1]. A
bank often enters in to a short position in this contract, or in the position as the receiver of
the fixed rate, to help corporations hedge out their interest rate risk associated with floating
interest rate loans. In the contract, the bank is exposed to interest rate fluctuations. The
contract value and the counterparty credit exposure increases if interest rates are falling
unexpectedly, and decreases if rates are rising unexpectedly. It is assumed that the no-
tional contract value is below 3 billion NOK, and that the counterparty is not a financial
insitution. The contract is therefore not concerned with any of the regulatory requirements
described in chapter 7, and it is also assumed to be no collateral or netting between coun-
terparties in the further analysis.
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Maturities on the swaps usually ranges from 3 to 10 years, sometimes even longer [1].
The contract maturities in the backtests are set to the lower end of this range, at 5 years.
The strike rate, or the fixed rate on the contract is set so that the contract value at initiation
is roughly equal to zero. This is done by a simple optimisation procedure, were the strike
price is set so that the price of the swap is zero at roughly 3 significant digits at t = 0. The
notional values of the contracts are normalised to 1 for simplicity.

8.2 Backtesting Procedure
The implemented framework for simulating counterparty credit exposure will be back-
tested two different ways. The first test, called a risk-factor backtest, is designed to test
the underlying interest rates generated by the real-world implemented HJM model. The
test compares the underlying risk factors generated by the model, in particular the short
interest rate, with the realised interest rate over the same historical periods. The simulated
distribution of interest rates can then be compared with the realised interest rate by looking
at the difference between volatility and expected paths. The time horizon for the individual
risk-factor tests are set equivalent to the maturity of the swaps, at 5 years.

The second and most important backtest is the portfolio backtest. This test simulates the
exposure of a typical derivative portfolio, in this thesis the swap described in the previous
section, over historical periods. The same portfolio is then evaluated, using the realised
risk factors over the same periods to calculate actual exposures. The procedure of cal-
culating actual exposure is equivalent to the method used for generating the theoretical
exposures outlined in chapter 7, except that the historical realised interest rates are used
instead of the interest rates generated by the real-world algorithm. The risk-neutral model
is in both cases used to price the portfolio at every time step. A comparison between the
theoretical simulated potential future exposure (PFE) and the expected positive exposure
(EPE) with the actual exposure (AE) over the same periods will then be carried out.

All tests will be done out-of-sample, meaning that the historical volatility parameters are
estimated over a period of time leading up to the start of every simulation. As will be
justified in the data analysis in the next section, the length of each estimation period is set
to 2 years. This length is chosen to avoid estimating short term noise while simultaneously
trying to capture long term trends in the behaviour of the volatility. The tests will overlap
by running a new simulation from every 2 years. The reason for this is that the typical
potential exposure is largest, and therefore most interesting to study after approximately
2 years in the 5-years swap contracts. Even if there are some overlap between periods,
the 2-year exposures will be independent, and running tests every 2 years will therefore
maximise the number of independent samples of the 2-year exposures.
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Chapter 9
Data Analysis and Parameter
Estimation

9.1 Preliminary Data Analysis
The data-set used in this thesis is provided by DNB and consists of swap rates of differ-
ing maturities. The relevant rates are the 3-month rate used as the risk-free short rate, and
other swap rates with maturities of up to 6 years which is the time horizon for the backtests
in this thesis. The 6-year swap rate is needed in addition to the 5-year swap rate to calcu-
late the 5-year forward swap rate according to (4.9). The data contains interest rates from
1.1.1995 until 1.1.2018, or 23 years worth of data. Table 9.1 shows descriptive statistics
for the whole data-set. The standard deviation or volatility is calculated as the standard
deviation of the absolute increments in daily interest rates, and measured in percentage
points.

Table 9.1: Table of initial spot interest rate data.

Maturity Mean yield (%) Volatility (%-points)
3M/short rate 3.55 0.0590
1Y 3.78 0.0559
2Y 4.05 0.0535
3Y 4.19 0.0517
4Y 4.32 0.0515
5Y 4.44 0.0511
6Y 4.56 0.0469

Looking at the average yield for different maturities it can be seen that the interest rate
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increases slightly with maturity, from 3.55% to 4.56% yield. This is consistent with the
theory, predicting a negative market price of risk as discussed in chapter 4. The standard
deviation of the daily changes is slightly decreasing as a function of maturity ranging from
around 0.59 to 0.47 percentage points. This indicates that longer interest rates are on av-
erage slightly less volatile than shorter rates.

Continuing the initial data analysis, the short rate is investigated further. It should be
noted that the short rate and the forward rates are highly correlated, so similar conclusions
can be drawn for all of the interest rates. Figure 9.1 shows the historical weekly short rate
between 1.1.1995 and 1.1.2018. Figure 9.2 shows the historical 30-day volatility of the
short rate, meaning the standard deviation is measured over the previous 30 days, which
is an often used metric for the current volatility. Figure 9.3 shows the historical 2-year
volatility of the short rate, which is naturally a smoother curve and more useful for the
time horizon used in this thesis. Both measures of volatility are annualized by scaling the
daily volatility by a factor of

√
252, were 252 is the average number of trading days per

year.

Figure 9.1: Historical Norwegian 3m swap rate.

As can be seen from figure 9.1, the interest rate varies greatly with no apparent mean-
reverting level. Rates were generally higher before 2003, with interest rates of magnitudes
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Figure 9.2: Historical 30-day volatility of Norwegian 3m swap rate.

Figure 9.3: Historical 2-year volatility of Norwegian 3m swap rate.

around 5% to 7% being the norm. After a sharp decline in 2003 were rates dropped be-
low 2%, interest rates climbed during the next few years before another sharp drop in the
aftermath of the great financial crisis in 2008 - 2009. In the later years there have been a
steady trend of lower interest rates, with rates even below 1%.

By looking at figure 9.2, two large spikes in volatility are observed. In both cases did

41



Chapter 9. Data Analysis and Parameter Estimation

the volatility increase almost 10-fold over a short period of time. The first spike corre-
sponds to the emerging markets and Russian debt crisis at the end of the 1990’s, while the
second spike corresponds to the financial crisis and its aftermath in 2008− 2010. The pe-
riod 2001−2003, following the bursting of the dot.com bubble in the U.S is also a notable
period with a generally elevated level of volatility. These periods with high volatility is
often called stressed market conditions and are of special importance. This is because a
financial model is most likely to break down during such stressed conditions, and testing
a model against historically volatile periods is therefore an important step in any model
testing procedure.

Figure 9.3 shows the same patterns as figure 9.2. It should be noted that even when the
volatility is smoothed over a 2 -year period, it still varies greatly. The highly variable na-
ture of the volatility will have a large impact on the results when modelling using historical
volatility as input. As an example of the variability of the volatility, the annualised 2-year
volatility has since 2014 consistently been under 0.4%-points. This is less than a fourth of
the volatility during both the emerging markets and Russian crisis, and the financial crisis
on a 2-year rolling basis. The volatility seems to exhibit both short term mean reversion,
and some longer term persistent trends. The choice of a 2-year horizon when estimating
volatility as described in section 8.2 therefore seems justified.

9.2 Transforming Data and Discretization
As outlined in chapter 5, the HJM framework simulates instantaneous forward rates, not
spot rates. The data therefore have to be transformed. This is done by applying the whole
data set to equation (5.10). Table C.1 in appendix C lists the transformed instantaneous
forward rate curves at the start of each year in the data set. The data in the table are both
used as initial conditions in the different simulations, and in the calculations of the actual
exposures in the different periods. Different types of forward curves representing different
market conditions are observed through the period. A typical upward sloping curve in
1.1.1995 indicated a fast growing economy and rising future short rates. A flat forward
curve in 1.1.2003 curve indicated that the market expected rates to stay at the current level
because of a relative stable economy. The downward sloping or inverted curve in 1.1.2009
meant market participants expected rates to fall further as the central bank was expected
to cut interest rates, before rates would increase when the growth would pick up after the
recession [19].

The time-steps chosen in the implementation of the algorithm is ∆t = 1, implying an-
nual steps. The relatively large time-steps is taken both for efficiency reasons, and because
the derivatives priced and time intervals relevant for this thesis is of the same magnitude.

9.3 Volatility Estimation
The volatility is estimated following the principal component analysis procedure from the
last section in chapter 6 on the transformed data. After using the whole data set to calculate
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the initial principal components, the eigenvalues are used to calculate explained variability
as in equation (6.2). The results are shown in table 9.2.

Table 9.2: Table of eigenvalues and explained variability.

Eigenvalue Value Explained cumulative variability
λ1 2.25e-06 0.383
λ2 1.39e-06 0.620
λ3 8.65e-07 0.768
λ4 5.94e-07 0.868
λ5 4.74e-07 0.949
λ6 3.03e-07 1.000

Although the forward rates are correlated, there are only 6 different variables to consider.
To include over 95% of the variability in the data set all the component will have to be
used. The HJM model implemented will therefore be implemented as a 6-factor model.

Having decided to use all the components, the principal components or parameters to be
used in the individual backtesting periods are calculated. To estimate the historical 2-year
volatility leading up to every testing period, the data set is divided into 2 year periods from
1.1.1995 - 1.1.1997, to 1.1.2011 and 1.1.2013. The resulting 9 sets of volatility estimates
is then used as input in the algorithm for the different testing periods.

9.4 Convergence of Algorithm
To get satisfying results for the exposure distributions, one wishes to simulate as many
scenarios of the underlying risk factors as possible, while pricing each scenario as pre-
cisely as possible. The challenge is that both scenario generation and pricing is based on
simulation, and the run-time of the algorithm therefore quickly grows as a function of both
scenarios and pricing accuracy. Before conducting the backtests it is therefore essential to
find out how many iterations the pricing algorithm needs to run to price the interest rate
derivatives with satisfying accuracy. This is done by simply running the pricing algorithm
on a simple swap, while plotting the price as a function of iterations to see were the algo-
rithm converges. The swap is initiated at 1.1.2018, has a maturity of 5 years, the swap rate
is 0.017, and the volatility is estimated using the whole data set.

The results for 500 independent runs are shown in figure 9.4a, while figure 9.4b shows
the standard deviation for the same 500 samples, both as function of the number of itera-
tions. The convergence of the Monte Carlo method is as described in the theory of order
O(n−

1
2 ). The standard deviation in figure 9.4b is therefore decreasing by a factor of

√
2

for every doubling of the number of iterations. Seeing from figure 9.4a that the algorithm
in fact converges towards a price, a tolerance for the error needs to be set to determine how
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many iterations to run. From some trial and error, the normalised swap for different strike
prices is priced roughly in 10−1 order of magnitude. The tolerance is then set so that the
simulated standard deviation S must be smaller than 10−3. This criteria is satisfied after
around 5000 iterations, with S = 0.994∗10−3 for the simulated sample. 5000 is therefore
chosen as the number of iterations in the risk-neutral algorithm when pricing the swaps.

(a) Simulated price of 500 5-year swap prices
as a function of number of iterations in log
scale.

(b) Simulated standard deviation of 500 5-
years swap prices as a function of number of
iterations in log scale.

Figure 9.4: Convergence and standard deviation of swap pricing algorithm.
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Chapter 10
Analysis

10.1 Results

After estimating parameters and implementing the methods and models outlined in the
previous chapters, the risk-factor backtest and the portfolio backtest are completed for
all 9 overlapping periods. The risk-factor backtests are generated by simulating 100000
scenarios of the 3-month swap rate, while the portfolio backtests are generated by 5000
scenarios, each prised 5000 times.

Descriptive tables and figures for all periods and for both backtests can be found in ap-
pendix C. Appendix C.2 describes complete results for the risk-factor backtest with table
C.2 showing descriptive statistics and figure C.1 and C.2 showing plots of the test for all
periods. The simulated 5 and 95-percentiles are used to show the volatility of the simulated
short interest rates in the risk-factor test. These percentiles will be called 90% bounds in
the further analysis, and are calculated using the order statistics from definition 2.2.1.

Appendix C.3 outlines the portfolio backtests, with table C.3 showing descriptive statistics
of the simulated expected positive exposure (EPE) and potential future exposure (PFE),
and the calulated actual exposure (AE). Figures C.3 and C.4 shows the exposures over the
whole periods, while figures C.5 and C.6 shows the distributions of exposures at year 2. A
normal density line is also plotted over the portfolio backtests to highlight the shape of the
distributed exposures more clearly.

The main focus in the analysis will be on 4 key periods in the data set. All the chosen
periods includes either stressed market conditions or other interesting features. The cho-
sen periods are presented in chronological order, starting with the first period in the data
set, which is from 1.1.1997 to 1.1.2002.
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1997-2002

The first backtesting period chosen to present is the 1997 to 2002 period, with figure 10.1
showing the relevant results for both the risk-factor backtest and the portfolio backtest.
The period is characterised by increasing interest rates and high volatility, especially in
late 1998 to 1999 due to the emerging markets and Russiand debt crisis.

(a) Risk-factor backtest with expected path,
simulated 90% bounds, and realised short
rate.

(b) Portfolio backtest, exposure for all years
with 95% PFE, EPE and AE.

(c) Portfolio backtest, exposure at t = 2 with
95% PFE, EPE and AE.

Figure 10.1: Backtests of the 1997 - 2002 period.

Starting with the risk-factor backtest in figure 10.1a, the realised short interest rate looks to
be following its expected path indicated by the rising forward interest rate curve at initial-
isation. Except for the first month or so, the realised interest rates are well within the 90%
bounds of the simulated distribution. The bounds predicts a fairly volatile period. with a
90% probability of short interest rates between 1% and 14% at the end of the simulation
in 2002.
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From the portfolio backtest in figure 10.1b, it is observed that the AE is close to zero
during the whole period. The AE is therefore lower than the EPE, and also much lower
than the 95% PFE for all years. Looking more closely at year 2, shown in figure 10.1c, it
is seen that the EPE is around 0.01. This means an exposure of 1% of notional contract
value 2 years after contract initiation. The 95% PFE is slightly below 0.05, predicting that
in the worst 5% of the cases, the exposure is at least 5% of the notional contract value.
The AE at year 2 is only 0.3%, indicating an insignificant exposure at that time.

(a) Risk-factor backtest with expected path,
simulated 90% bounds, and realised short
rate.

(b) Portfolio backtest, exposure for all years
with 95% PFE, EPE and AE.

(c) Portfolio backtest, exposure at t = 2 with
95% PFE, EPE and AE.

Figure 10.2: Backtests of the 2001 - 2006 period.

2001-2006

Figure 10.2 shows the results from the risk-factor and portfolio backtest for the period
2001 - 2006. The period contain the lead up to, and the bursting of the dot.com bubble.
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This resulted in falling interest rates and a generally elevated level of volatility during the
period.

Again starting by considering the risk-factor test in figure 10.2a, the model predicts a
highly volatile period for interest rates. The 90% bounds predict short interest rates either
above 19% or below −6% with a 10% probability at the end of 2005. The forward rate
curve at the start of the period indicates a more or less flat future path of the short rate,
diverging from the realised path two years into the simulation when the realised short rates
fell roughly 5%-points from 7% to just 2%. The realised interest rate are still well within
the 90% bounds of the model for all times.

The full exposure profile for the portfolio backtest in figure 10.2b shows that the AE is
positive and of the same magnitude as the EPE for the first 2 years, while rising in years 3
and 4 as a result of falling interest rates. The AE is still well below the 95% PFE for the
whole period. Taking a closer look at year 2 in figure 10.2c, the model predicts an EPE
of 0.027 and a PFE of 0.10. This indicates an EPE of under 3% with a 5% chance for an
exposure of 10% or more of the notional value of the contract at year 2. The AE at the
same time was only 0.015, or around 1.5% of notional contract value.

2009-2014

The next period of interest is the period between 2009 and 2014, with figure 10.3 show-
ing the results. This period contains the end and aftermath of the financial crisis, where
interest rates fell significantly at the start of the period. Volatility was also initially high in
2009, but decreased as markets stabilised after the crisis.

Figure 10.3a shows that the model assumes this period to be much less volatile than pre-
vious ones. Starting in 2009, the model predicts short interest rates in 2014 to be between
1% and 9% with 90% probability. The forward curve indicates at the start of the period
that interest rates will fall a couple of percentage points within a year, before starting to
drift slowly upwards again. The realised short interest rates over the same period dropped
much more than predicted, dropping below the 90% bounds for a short period, and going
from 6% to under 2% in only 9 months. In the last 4 years of the period, realised rates
have been drifting lower and ending the period well below 2% which is very close to the
lower 90% bound.

The portfolio backtest in figure 10.3b shows that with the exception of year 1, the AE
is equivalent to or higher than the 95% PFE and of course also much higher than the EPE.
The high AE is a result from several unexpected negative shifts in the whole forward curve
during this period. Figure 10.3c shows that at year 2, the EPE is predicted to be 0.005 and
the 95% PFE is 0.0273. The AE for year 2 of this period is 0.0285. This means that the
AE is 2.85% of notional contract value, which is slightly larger than the predicted 95%
PFE at 2.73%.
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(a) Risk-factor backtest with expected path,
simulated 90% bounds, and realised short
rate.

(b) Portfolio backtest, exposure for all years
with 95% PFE, EPE and AE.

(c) Portfolio backtest, exposure at t = 2 with
95% PFE, EPE and AE.

Figure 10.3: Backtests of the 2009 - 2014 period.
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2013-2018

The final period studied in detail is the most recent period, starting in 2013 and ending at
the start of 2018. Figure 10.4 outlines the results. The period is characterised with both
extremely low levels of volatility and interest rates.

(a) Risk-factor backtest with expected path,
simulated 90% bounds, and realised short
rate.

(b) Portfolio backtest, exposure for all years
with 95% PFE, EPE and AE.

(c) Portfolio backtest, exposure at t = 2 with
95% PFE, EPE and AE.

Figure 10.4: Backtests of the 2013 - 2018 period.

Based on the simulated risk-factors in figure 10.4a, the model predicts even lower volatility
in interest rates than in the 2009 - 2014 period. At initialisation, the 90% bounds predicts
short interest rates between 0.5% and 6.5% 5 years later. The interest rate forward curve
indicates that interest rates are expected to rise through the whole period from their initial
low level of below 2%. In reality, interest rates continued to drift steadily lower, ending
the period with rates below 1%, and very close to the lower 90% bound.
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Figure 10.4b shows that the AE is within the 95% PFE in year 1, but much bigger in
the other years. A continually lower drifting forward curve during the whole period makes
the AE large compared to the model predictions. Again, looking especially at year 2 in the
distribution in figure 10.4c, the EPE is 0.001 and the 95% PFE is 0.009. The AE is much
larger at 0.0359, indicating an exposure around 3.6% of notional contract value. Calcu-
lating the mean of the distribution at year 2 in figure 10.4c to −0.01, and the standard
deviation to 0.01, the AE is according to the model a 4.6 standard deviation event. Such
an event has roughly a 1-in-500000 chance of happening given that the AE is from the
simulated distribution of exposures at year 2.

Summary

Before moving on to a more general discussion regarding the results, a short summary of
the main results for all periods is provided. Table C.2 and figures C.1 and C.2 in appendix
C.2 shows the results from the risk-factor backtest. The realised short interest rates are
withing the simulated 90% bounds at every discrete, annual time step of the model in all
periods. Another common denominator between all periods is that the realised short rate
is below the expected path assumed by forward rates at the end of each period. By taking
the 5-year instantaneous forward rate at initiation and subtracting the realised short rate 5
years later, the average difference is found to be 0.0263. The realised short interest rates 5
years after initialisation is therefore approximately 2.6% lower on average than predicted
by the model.

The portfolio backtest, with results in table C.3 and figures C.3, C.4, C.5 and C.6 in
appendix C.3 shows that 4 out of 9 periods has AE which is higher than the 95% PFE
estimated by the model at least one time during the 5 years in each testing period. These
periods are the 2003 - 2008 and 2011 - 2016 periods, in addition to the 2009 - 2014, and
2013 - 2018 periods already discussed. The same 4 out of 9 periods has an AE higher than
the 95% PFE in year 2, and the 2003 - 2008 period has the highest measured AE with over
8% of notional contract value for year 2 and 3.
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10.2 Discussion
After presenting the main results in the previous section, it is now time to discuss the
model with respect to its central assumptions and practical use. Possible adjustments and
improvements of the model will also be considered.

As seen from the results, in particular for the portfolio backtests, there are in some cases a
big difference between model output and actual historical data. The model tends to under-
estimate future exposure as highlighted by the 4.6 standard deviation event of the portfolio
backtest in the second year of the 2013 - 2018 period, and the fact that 4 out of 9 periods
have larger AE than the 95% PFE.

It is still important to emphasize that underestimated exposure to a counterparty in it-
self do not automatically lead to losses. Losses are caused by the combination of hedged
exposure and default by the counterparty. Remember that positive exposure on a contract
is actually a gain seen from the banks viewpoint. This gain only turns into a loss if the
counterparty defaults, and the bank has hedged this exposure with a now losing position
to another counterparty. Underestimating exposures in periods of elevated default risks
therefore increases the probability of large losses. It is therefore interesting to return and
take a deeper look at the result for the 2013 to 2018 period seen in figure 10.4. In addition
to the model underestimating the exposure, this period also contain some highly interest-
ing macroeconomic events worth taking a closer look at.

At the start of 2013, the model predicted low volatility of interest rates. The swaps
contracted in 2013 were therefore assumed to have little risk in the form of low future
exposures compared with earlier periods. A typical Norwegian bank is and was heavily
exposed to the oil and oil-service sectors. It is therefore reasonable to assume that around
2013, Norwegian banks had swap contracts with many corporations in this sector. The
following collapse in oil prices from 115 USD per barrel in the summer of 2014 to below
30 USD in early 2016 led to defaults on both loans and derivative contracts in the men-
tioned industry sectors [1]. These defaults came at the worst possible time for the swaps
contracted in 2013. In 2015 and 2016, corresponding to year 2 and 3 in the contracts, the
realised actual exposure had risen to 3 − 4 times the simulated 95% PFE on these swaps.
This combination of much bigger than anticipated exposures and increased default rates
would have led to large losses in the Norwegian banking sector if the banks had used the
model implemented in this thesis.

In an attempt to compare the results from this thesis with relevant sources, the Norwe-
gian bank DNB was consulted [1]. DNB provided some useful qualitative information
of their internal market model, and how it performed in estimating exposure during the
interesting 2013 to 2018 period. Their main takeaway was that the exposures in the 2013
- 2018 period discussed above were much higher than they had expected, resulting from
rising forward rates and falling realised rates. The model used by the bank still seemed to
performed better than the model implemented in this thesis, and were more successful in
capturing the relative high exposure in this period. The reason for this, and one of the key
differences between the two models is that the bank’s model contains an estimated market
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price of risk. This means that the bank’s model estimates lower future expected interest
rates than the model in this thesis. The true losses due to defaults on derivative contracts
in this time period is therefore likely to have been lower for the bank than the model in
this thesis would indicate.

After discussing the consequences of using the implemented model in practise, it is clear
that some improvements are needed. The focus in the further analysis will be on the drift,
the volatility and the resulting distributions produced by the model. Understanding how
they affect the results is important to adjust and improve the model.

Distribution

Both the simulated risk-factors and the exposure distributions generated by the HJM model
are normally distributed [14]. Most empirical studies contradicts this and shows that most
asset and financial instruments have fat-tailed distributions, a concept discussed at length
by Taleb [24]. One therefore has to both expect and accept that unlikely events with large
consequences happen more often then predicted from a thin-tailed distribution like the
normal distribution. This certainly seems to be the case for the actual exposures calculated
in this thesis.

Normally distributed risk-factors also allows for the possibility of interest rates to go neg-
ative. This property of the HJM model used to be considered a drawback because general
macroeconomic theory suggest that interest rates cannot fall below zero because of the
liquidity trap [22]. Negative observed interest rates on for example short dated European
and Japanese government debt in later years have contradicted this theory and given the
normal distributed models more validity. Accepting that negative rates can occur, it is still
likely that the model is exaggerating both the probability and the magnitude of the neg-
ative rates. A good example of this is the 2001-2006 period discussed in the analysis in
figure 10.2a. The simulated distribution indicates that in 2001, there were a roughly 5%
chance of the short interest rate being below −6% in 2006. The simulated periods starting
in 1999, 2003 and 2005 also predicts negative interest rates of magnitudes around −1% to
−3% percent with a probability of around 5%. Comparing with realised rates, the lowest
observed short rate occurred in December of 2017, and was just below 1%. This supports
the belief that the left tails of the model distribution of risk-factors do not accurately reflect
reality.

A possible solution to the problem of negative interest rates of large magnitudes is to
implement a floor. By simply removing all simulated paths lower than a given threshold,
more realistic results can be obtained. By implementing a floor, the resulting simulated
exposures will be lower because negative interest rates contributes positively to the ex-
posure calculations. The effect of the floor is assumed to be small, particularly for short
maturities, but will naturally depend on the level of the implemented floor. Setting the
exact level is difficult, and must be done by a combination of common sense and empirical
investigation. A floor set around −1% to −3% seems like a reasonable level, but the exact
floor for the risk-free short interest rate is of course impossible to know [1].
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Drift

Discussing the model drift, one should be careful to distinguish between the risk-neutral
and real-world counterparts. The risk-neutral drift used to price the derivatives is of great
interest from a theoretical standpoint, but is not as important when discussing the practical
results. Since no comparison between theoretical and market prices are done, one just has
to assume the pricing is done consistent by the model.

Considering the real-world implementation, an important simplification is setting the drift
to zero. The implication of zero drift is that the average of future simulated short rates are
equal to the equivalent forward rates at initialisation. This is done because of the complex-
ity and uncertainty in estimating the market price of risk, especially with a multi-factor
model. The market price of risk is generally considered to be negative, which coincides
well with the results. The model overestimates future short interest rates by an average
of 2.6%-points during the 5-year simulations of the risk-factors. This supports the well
established theory of a liquidity premium in the interest rates market, and is definitely a
contributing factor to the realised exposures generally being more positively skewed than
predicted by the model.

Discussing the apparent large difference of 2.61%-points between average simulated and
observed interest rates over the 5 year periods, the size and specific content of the data set
needs to be considered. The data set contains two economic shocks or recessions, both
the dot.com bust in the early 2000’s and the financial crisis in 2008 - 2009. Interest rates
fell in both cases over 5%-points within a year or two, and in none of the instances did the
forward rate curve predict the fall in advance. The amount and size of these unexpected
drops in rates have big impact on the size of the difference between simulated and observed
interest rates. Another large contributor to the divergence between average observed and
simulated rates are from the periods from 2009 until present day seen in in figure C.2 in
appendix C.3. Even though forward rates during the last 9 years have continued to slope
upwards, realised rates have continued to drift lower to historical unprecedented levels.

The data set used in this thesis is relatively small, containing only 24 years of market
data. Considering the specific, and not necessary representative events in the data set, it
can therefore be argued that by implementing a real-world drift adjustment one is equally
likely to overstate the future market price of risk as understating it. Although the models
used in the industry have included the market price of risk estimated from historical data,
one should be careful in adopting this approach because the exact model and method of
estimation is unknown [1]. With today’s unusual low interest rates, implementing a model
with a large negative market price of risk as indicated from past data will make the aver-
age simulated future short rates drift well into negative territory. The market price of risk
estimates which produced the most accurate results in the past will therefore not necessary
produce accurate results in the future.

54



10.2 Discussion

Volatility

As for the real-world drift, drawing definite conclusions regarding the volatility in the
model is difficult because of the limited sample size. As one would expect when using
historical volatility, the model is better at capturing the variability in risk-factors and ex-
posures in periods were the realised volatility is either stable or falling. This is typical
for the 5 earliest periods in the data set, starting from 1997 and until the period starting
in 2005. The only exception amongst these periods where the actual exposures are bigger
than predicted, are in the 2003 - 2008 period where interest rates collapsed and volatility
exploded. The actual exposure after 2 years rose to over 8% in this period, which is high-
est in all the portfolio backtests. Based on the discussion of empirical heavy tails in the
distributions and the non-predictability of the volatility, one should not expect the model
to capture such extreme movements.

More alarming is therefore the tendency of the model to underestimate the exposure when
volatility is expected to be low, as is the case for the 3 last periods in the exposure tests.
One could initially think that this is caused by low volatility in the 2 year tuning periods
before initialisation. If the volatility then suddenly rises through the periods, the model
could potentially underestimate the exposure. By the plots of the volatility in figure 9.2
and 9.3, and the persistent underestimation of exposure in subsequent periods in figure
C.4, this seems an unlikely explanation. There should not be any apparent reason for the
model to continually underestimate the exposure when volatility is both constant and low.
The reason for poor model performance in these periods therefore have to be put on ele-
vated market price of risk and persistent trends, not on the volatility.

It is difficult to say with certainty what causes the wrongly simulated exposures, be it
volatility, market price of risk, trends, or fat tailed distributions. The easiest approach to
model improvement is still often to adjust the real-world implemented volatility. By sim-
ply scaling up the volatility, more of the extreme measurements of exposures are covered
by the model, no matter the initial causes of it. Although this is an artificial solution, it will
prevent the bank from being over-exposed in stressed market conditions. The downside to
scaling up the volatility is that the exposure on average will be overestimated, and that the
bank ends up taking to little risk and do not make as much money in times of normal mar-
ket conditions. This is the eternal trade-off between minimising risk and the probability of
going bankrupt, and the objective of maximising profit.
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Chapter 11
Conclusion

11.1 Concluding Remarks

In this thesis a framework for backtesting counterparty credit exposure is developed and
implemented. Using the Heath, Jarrow and Morton model for simulation of interest rates,
separate models are implemented for risk-neutral pricing of interest rate derivatives, and
for simulation of future real-world interest rates. The models are combined to simulate
distributions of future credit exposures for a simple swap contract between a financial in-
stitution and a typical counterparty.

The results obtained in this thesis shows a substantial difference between model output
and actual historical data. This is partly as expected, because the model relies on some
highly simplified assumptions including a zero market price of risk and constant volatility.
The actual historical exposures, in particular from recent time periods, are much bigger
than what the model predicts. The combination of underestimated exposures in periods
of elevated default risk is shown to have potentially large consequences. The model in its
current form is therefore not advised to be used uncritically for future counterparty expo-
sure calculations before improvements are done.

Regarding potential improvements of the model, several are discussed. Implementing an
interest rate floor, adjusting the drift to account for the market price of risk and scaling up
the volatility are all common industry practises [1]. Based on the the analysis of the results,
drift adjustments and scaling volatility will certainly improve the accuracy of the backtests.

It is worth noting that by making changes to the model parameters based on the results, the
testing goes from out-of-sample to in-sample. Also taking into account the small amount
of data tested, only 24 years and 9 correlated periods, the risk of data-mining leading to
an over-fitted model is therefore substantial. All adjustments of the model will therefore
have to be done with caution, realising that the past may not be an accurate reflection of
the future.
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With this in mind, one will seek to improve the model in a way that minimise its sensitiv-
ity to future changes and surprises. The most robust improvement, and the improvement
recommended in this thesis is therefore to just scale up the volatility. This is because the
potential harm caused by wrongfully scaling up the volatility, or not scaling it up enough,
is much smaller than the potential consequences of a large wrongly estimated market price
of risk.

11.2 Further work
As improvements to the model are discussed, a naturally theme for further work is to ac-
tually implement the discussed improvements. Another interesting topic of further work
would be to investigate more in depth the relationship between credit exposure, probability
of default and loss given default, to be able to see the results in a more realistic context.

A comparison between other models would also be interesting. Running two different
models with the same input and parameters would help gain insight into the difference
between specific model problems for HJM, and more general modelling problems. The
LIBOR market model described in [14] would be a good candidate for such a comparison.
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Appendix A
Probability and Stochastic
Processes

The following concepts and definitions from Bingham & Kiesel in [3] are used in the
derivation of the derivative pricing models presented in chapter 3.

A.1 Measure
Definition A.1.1 (Algebra). A collection A0 of subsets of a set Ω is called an algebra on
Ω if:

i. Ω ∈ A0,

ii. A ∈ A0 ⇒ Ac = Ω \A ∈ A0,

iii. A,B ∈ A0 ⇒ A ∪B ∈ A0

Definition A.1.2 (σ -Algebra). An algebra A of subsets of Ω is called a σ - algebra on Ω
if for any sequence An ∈ A, (n ∈ N), we have

∞⋃
n=1

An ∈ A.

Such a pair (Ω, A) is called a measurable space.

Definition A.1.3. Let (Ω,A) be a measurable space. A countable additive map

µ : A ⇒ [0,∞]

is called a measure on (Ω,A). The triple (Ω,A, µ) is called a measure space.
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Definition A.1.4. A measure P on a measurable space (Ω, A) is called a probability mea-
sure if

P(Ω) = 1

The triple(Ω, A,P) is called a probability space.

Definition A.1.5. Given two different measures, P and Q, defined on the same σ-algebra
F , we say that P is absolutely continuous with respect to Q, written P << Q if P(A) = 0,
whenever Q(A) = 0, A ∈ F . If P << Q and P >> Q, we call P and Q equivalent
measures.

A.2 Probability
To describe a random experiment mathematically, a sample space, which is the set of all
possible outcomes in Ω is defined. Each point, say ω ∈ Ω is then a sample point, and
represents a possible and random outcome of the experiment. For a subset A ⊆ Ω, of
some points ω, the probabilities P(A) is desired, and the following properties are defined.

1. P(∅) = 0, P(Ω) = 1,

2. P(A ≥ 0) for all A,

3. If A1, A2,...,A∞ are disjoint, P(∪∞i=1Ai) =
∑∞
i=1 P(Ai) (Countable additivity).

4. If B ⊆ A and P(A) = 0, then P(B) = 0 (completeness)

Definition A.2.1. A probability space. also called a Kolmogorov triple is a triple (Ω,F ,P),
with F being a σ-algebra and P defined on F according to definition A.1.4, satisfying the
Kolmogorov axioms 1, 2, 3, 4 above.

Having defined a probability space for the random experiment, it is possible to quantify
outcomes ω. Defining the real-valued functionX on Ω asX : Ω→ R. If such a function is
measurable it is called a random variable. The following properties of the random variable
X are then defined.

Definition A.2.2. The Expectation E of a random variable on (Ω,F ,P) is defined by

EX :=

∫
Ω

XdP,

while the variance is defined as

Var(X) := E
[
(X − E(X))2

]
= E(X)2 − (EX)2.

A.3 Information and Filtrations
The flow of information is an important concept in finance. As time passes, new informa-
tion becomes available and financial agents updates their beliefs and portfolios according
to this new information. A framework for modelling such dynamic situations is therefore

62



needed, and is given by the idea of filtration.

Modelling a situation involving randomness over time, it is assumed that information
is never lost. The information arrives in integer steps t = 0, 1, 2, ..., either to a final
maturity T , or with an infinite time horizon. As time progresses, more information is
accumulated. From definition A.1.2, σ-algebras can be represented as knowledge or in-
formation, and a sequence of σ-algebras is given by F = {Fn : n = 0, 1, 2, ...}. With
increasing amount of information, the sequenceFn ⊂ Fn+1 (n = 0, 1, 2, ...) models the
flow of information with Fn representing the information available at time n. The family
F = {Fn : n = 0, 1, 2, ...} is called a filtration, and a probability space endowed with a
filtration {Σ,F,F , P} is known as a stochastic basis or a filtered probability space.

A stochastic process is a family of stochastic variables on a common probability space,
defined as X = {Xn : n ∈ I}, were I is representing time. The process X = (Xn)∞n=0 is
defined to be adopted to the filtration F = (Fn)∞n=0 if

Xn is Fn - measurable for all n.

This means that if X is adapted, the knowledge of the value Xn is available at time n. In
addition, if

Fn = σ
(
X0, X1, ..., Xn

)
,

Fn is called the natural filtration of X . A process is therefore always adapted to its own
natural filtration.

A.4 Martingales
Definition A.4.1. A process X = (Xn) is called a martingale relative to ({Fn},P) if

i. X is adapted to {Fn},

ii. E |Xn| <∞ for all n,

iii. E[Xn|Fn−1] = Xn−1.

Most intuitive and important is perhaps property iii, which states that the expected value
of Xn, given what is already known of the process represented by the filtration Fn−1, is
simply Xn−1. A martingale can therefore be said to be constant on average, and is often
used as a term for a fair game.
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Appendix B
Important Theorems and Tools

B.1 Brownian Motion

A Brownian motion, also known as a Wiener process plays an important part in the fi-
nancial models presented in this thesis. Defined in for example [14], a stochastic process
Xt = {X(t)}∞t=0 is said to be a Wiener process if it satisfies

• X(0) = 0 almost surely,

• The increments of Xt is stationary and independent,

• Xt ∼ N(0, tσ2) .

B.2 Itô’s lemma

Itô’s lemma is used to relate a small change in a function of a random variable, to the
random variable itself. This is particularly useful in financial models, where prices are
quoted in discrete time intervals dt, but the mathematical models work in continuous time
as dt→ 0. Following the definition from [23], f is given as a twice differentiable function
of the random variable G, which again is described by the stochastic difference equation

dG = A(X, t)dX +B(G, t)dt.

If X is a random variable, then Itô’s lemma says that a small change df in the function
f(G) can be expressed as

df = A(X, t)
∂f

∂G
dX +

(
B(G, t)

∂f

∂G
+

1

2
(A(X, t))2 ∂

2f

∂G2

)
dt (B.1)
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B.3 Change of numariere and the The Radon-Nikodym
derivative

Using definition 3.2.1, a numeraire is a strictly positive process, often an asset like a stock
or an interest rate, which is used to discount other assets with. Considering two different
numeraires, p(t) and q(t), with different equivalent martingale measures P and Q. The
prices of a contigent claim X can then be equivalent stated as

p(t)EP
[X(T )

p(T )
|Ft
]

= q(t)EQ
[X(T )

q(T )
|Ft
]
. (B.2)

F is the usual filtration and the expectations is is under the respective measures. Stating
G(T ) = X(T )/p(T ), (B.2) is rewritten into

EP
[
G(T )|Ft

]
= EQ

[
G(T )

p(T )/p(t)

q(T )/q(t)
|Ft
]
.

The expectation of G under the measure P is equal to the expectation of G · p(T )/p(t)
q(T )/q(t)

under the measure Q. The random variable p(T )/p(t)
q(T )/q(t) denoted dP/dQ is known as the

Radon-Nikodym derivative which changes the measure P into Q [14].

B.4 Girasanov’s theorem
One of the most important results regarding stochastic calculus is Girasanov’s Theorem.
The theorem states the effect a change of measure has on the underlying stochastic process
[14]. There are several versions of the theorem, with the following being the most relevant
in this thesis:

Theorem B.4.1. (Girsanov’ss Theorem) For any stochastic process f(t) such that

P

(∫ t

0

f2(τ)dτ <∞

)
= 1,

consider the Radon-Nikodym derivative defined dP∗

dP = g(t)

g(t) = exp

{∫ t

0

f(τ)dW − 1

2

∫ t

0

f(τ)dτ

}
,

where W is a Brownian motion as previously defined in appendix B.1 under the measure
P . Under the measure P ∗ the process

W ∗(t) = W (t)−
∫ t

0

f(τ)dτ

is then a Brownian motion.
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Girsanov’s theorem describes how the drift is adjusted when moving from the real-world
dynamics of an asset price to the risk-neutral dynamics which is used for pricing. Another
important consequence is that the diffusion, or volatility of the process remains unchanged
through this change of measure. This means volatility can be estimated in the real-world,
and still be used as input in risk-neutral models.

67



68



Appendix C
Complete Results
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C.1 Results from Preliminary Analysis

Table C.1: Table of initial transformed instantaneous forward rates measured in %. The initial
forward rates are used as input for the backtests and for calculations of actual exposures.

Year Short rate 1Y 2Y 3Y 4Y 5Y
1.1.1995 5.98 8.20 8.64 9.34 8.62 9.56
1.1.1996 4.63 5.60 6.48 6.86 7.12 7.55
1.1.1997 3.83 5.36 6.02 6.64 7.04 7.38
1.1.1998 3.83 5.39 5.56 5.76 6.09 7.06
1.1.1999 6.19 5.87 5.45 5.65 5.82 5.90
1.1.2000 5.29 6.28 6.24 6.33 6.42 7.41
1.1.2001 6.83 7.32 6.76 6.70 6.83 6.81
1.1.2002 5.88 5.95 6.10 6.11 6.14 6.26
1.1.2003 6.22 6.48 6.46 6.57 6.51 6.55
1.1.2004 2.58 4.43 5.23 5.45 5.60 5.66
1.1.2005 1.90 3.13 3.91 4.48 4.82 5.01
1.1.2006 2.40 3.86 4.14 4.27 4.36 4.41
1.1.2007 3.50 4.66 4.69 4.69 4.65 4.65
1.1.2008 5.68 5.65 5.36 5.30 5.37 5.55
1.1.2009 6.35 4.18 4.06 4.56 4.80 5.07
1.1.2010 2.08 4.21 4.50 4.64 4.75 4.85
1.1.2011 2.49 3.25 3.51 3.90 4.23 4.45
1.1.2012 3.25 3.18 3.22 3.66 3.97 4.10
1.1.2013 1.94 2.38 2.43 2.80 3.18 3.47
1.1.2014 1.68 2.09 2.40 2.87 3.31 3.68
1.1.2015 1.59 1.30 1.40 1.62 1.89 2.11
1.1.2016 1.22 0.73 0.99 1.36 1.75 2.02
1.1.2017 1.19 1.16 1.38 1.64 1.89 2.08
1.1.2018 0.83 1.22 1.48 1.75 1.97 2.06

70



C.2 Risk-factor Backtest

Table C.2: Table of descriptive statistics for the simulated 3-month swap interest rate (in %) with
simulated 90% bounds for all periods. t = 0 is the observed short rate at initialisation. For t > 0
the 90% bounds are written as intervals centered around the expected rate.

Period t = 0 t = 1 t = 2 t = 3 t = 4 t = 5
1997-2002 3.83 5.36 ± 4.17 6.02 ± 5.32 6.64 ± 5.98 7.04 ± 6.49 7.38 ± 6.81
1999-2004 6.19 5.87 ± 4.06 5.45 ± 5.44 5.65 ± 6.15 5.82 ± 6.77 5.90 ± 7.29
2001-2006 6.83 7.32 ± 9.69 67.6 ± 11.22 6.70 ± 11.97 6.83 ± 12.42 6.81 ± 12.85
2003-2008 6.22 6.48 ± 7.51 6.46 ± 8.34 6.57 ± 8.87 6.51 ± 9.25 6.55 ± 9.51
2005-2010 1.90 3.13 ± 4.04 3.91 ± 4.72 4.48 ± 5.15 4.81 ± 5.42 5.00 ± 5.62
2007-2012 3.50 4.66 ± 2.34 4.69 ± 2.94 4.69 ± 3.04 4.65 ± 3.11 4.65 ± 3.12
2009-2014 6.35 4.18 ± 2.84 4.06 ± 3.53 4.56 ± 3.73 4.80 ± 3.86 5.07 ± 3.91
2011-2016 2.49 3.25 ± 2.79 3.51 ± 3.33 3.90 ± 3.58 4.23 ± 3.70 4.45 ± 3.80
2013-2018 1.94 2.38 ± 2.64 2.43 ± 2.85 2.80 ± 2.96 3.18 ± 3.05 3.47 ± 3.06
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Figure C.1: Risk-factor backtest with expected path, simulated 90% bounds, and realised short rate.
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Figure C.2: Risk-factor backtest with expected path, simulated 90% bounds, and realised short rate.
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C.3 Portfolio Backtest

Table C.3: Table of simulated EPE and 95% PFE in addition to realised actual exposures (AE) for
all periods including strike price for the swap contracts. Gross notional values of all contracts are
normalised to 1.

Period Exposure t = 1 t = 2 t = 3 t = 4 Strike (%)

1997-2002
EPE 0.0081 0.0091 0.0093 0.0093

6.79PFE 0.0411 0.0482 0.0483 0.0445
AE 0.0042 0.0029 -0.0099 -0.0140

1999-2004
EPE 0.0149 0.0170 0.0165 0.0145

6.05PFE 0.0579 0.0711 0.0689 0.0589
AE -0.0190 -0.0330 -0.0045 -0.0062

2001- 2006
EPE 0.0236 0.0267 0.0259 0.0219

7.70PFE 0.0879 0.1035 0.1027 0.0841
AE 0.0335 0.0152 0.0464 0.0422

2003 - 2008
EPE 0.0126 0.0152 0.0164 0.0140

7.00PFE 0.0526 0.0633 0.0676 0.0571
AE 0.0539 0.0801 0.0528 0.0210

2005 - 2010
EPE 0.0041 0.0051 0.0058 0.0062

4.40PFE 0.0248 0.0295 0.0326 0.0307
AE 0.0039 -0.0126 -0.0246 0.0012

2007 - 2012
EPE 0.0046 0.0054 0.0055 0.0051

4.80PFE 0.0199 0.0225 0.0220 0.0204
AE -0.0283 0.0115 0.0065 0.0148

2009 - 2014
EPE 0.0062 0.0051 0.0046 0.0044

4.65PFE 0.0293 0.0273 0.0251 0.0227
AE 0.0009 0.0285 0.0260 0.0216

2011 - 2016
EPE 0.0050 0.0044 0.0041 0.0040

3.95PFE 0.0254 0.0249 0.0237 0.0206
AE 0.0122 0.0389 0.0328 0.0259

2013 - 2018
EPE 0.0018 0.0013 0.0013 0.0015

2.29PFE 0.0103 0.0094 0.0094 0.0097
AE -0.0003 0.0359 0.0353 0.0155

74



Figure C.3: Portfolio backtest, exposures for all 5 years with 95% PFE, EPE and AE.
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Figure C.4: Portfolio backtest, exposures for all 5 years with 95% PFE, EPE and AE.
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Figure C.5: Portfolio backtest, exposure distribution at t = 2 with 95% PFE, EPE and AE.
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Figure C.6: Portfolio backtest, exposure distribution at t = 2 with 95% PFE, EPE and AE.
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