
IoT-Based pervasive game framework
A proof of concept case study

Petter Bakkan Johansen

Master of Science in Computer Science

Supervisor: Dag Svanæs, IDI

Department of Computer Science

Submission date: May 2018

Norwegian University of Science and Technology

i

Executive Summary

With the Internet of Things (IoT) playing a key role in the Fourth Industrial Revolution

it is clear that it will become a larger part of our day to day life. IoT offers unique ca-

pabilities for having tiny sensors and embedded systems take part in the Internet and

expand the way we use the Internet today. Researchers are currently researching the

benefits of utilizing playful digital technology to encourage health promoting activities

for both children, adolescents, and elderly, and pervasive games have shown promis-

ing signs both for reducing sedentary behavior and as tool for rehabilitation for elderly

stroke victims. The combination of pervasive games and IoT is at the time of writing

a fairly unexplored field of research and the research done in this paper seeks to help

establish the state of the art and provide a framework that could help drive the research

forward.

In this master thesis, a framework for prototyping and developing pervasive games

that utilize Internet of Things was developed and evaluated in a proof-of-concept man-

ner. The evaluation was done with a proposed technology stack that included a Rasp-

berry Pi Zero W, several RFduinos, the Bluetooth Low Energy and Wi-Fi protocols, the

MQTT protocol, and the Unity game engine. The chosen technologies were based on

a list of requirements that were proposed as suited features for supporting prototyp-

ing and development of IoT-based pervasive games. The list of requirements were es-

tablished based on a state of the art presentation on IoT, Cloud technology, pervasive

games, and exergames.

The proof-of-concept evaluation was based around a case study with the game

”Follow the Red Dot”, a simple pervasive game where a ”dot” is transfered between

different devices when players interact with the device that is currently in control of

the dot. ”Follow the Red Dot” was chosen as the case as its structure allows for imple-

mentations in both local and distributed settings, in addition to supporting a virtual

mirroring of the active game devices. The case study was split into three different cases

to provide insights into different attributes of the technologies that were evaluated.

The results showed that the technology stack satisfied all the requirements that

were initially set for technologies. The framework developed also provided the in-

tended functionality when integrated with the suggested stack. There were however

some issues experienced with the RFduinos and the discussion suggests that there

likely exists better alternatives that would provide the same functionality, but in more

reliable fashion. The results also brings forth that developing a stack that is suited

for every type of IoT-based pervasive games isn’t really feasible as the pervasive game

genre includes so many different sub-genres that vary in architecture, interaction, and

potential IoT usage. The research finally proposes that wider and more specific re-

search should be performed on the different technologies that exists within each of the

layers, as the limitations of this thesis restricted the amount of research done on the

different technologies.

ii

Sammendrag

Med tingenes internetts (IoT) sentrale rolle i "Den fjerde industrielle revolusjonen" er

det klart at det vil utgjøre en større del av vårt daglige liv. Tingenes internett tilbyr

unike evner for å knytte små sensorer og integrerte systemer opp mot internettet og

utvide måten vi benytter internettet i dag. Forskere undersøker for tiden fordelene

med å benytte lekne digitale teknologier for å stimulere til helsefremmende aktiviteter

for både barn, ungdom, og eldre, og pervasive spill har vist lovende tegn både for å

redusere stillesittende aktivitet og som verktøy for rehabilitering av eldre slagrammede.

Kombinasjonen av pervasive spill og tingenes internett er i skrivende stund et relativt

uutforsket forskningsfelt, og forskningen som er gjort i denne avhandlingen skal bidra

til å skape et bilde av eksisterende forskning på temaet og utvikle et rammeverk som

skal bidra til å drive forskningen fremover.

I denne masteroppgaven ble et rammeverk for prototyping og utvikling av perva-

sive spill som benytter seg av tingenes internett utviklet og evaluert som et proof of

concept. Evalueringen ble gjort basert på en foreslått teknologi-stack som inkluderte

en Raspberry Pi Zero W, flere RFduinoer, Bluetooth Low Energy og Wi-Fi protokollene,

MQTT protokollen, og spillmotoren Unity. Teknologiene ble valgt ut basert på en liste

med kriterier som var foreslått som passende egenskaper for å støtte prototyping og

utvikling av pervasive spill som benytter seg tingenes internett. Kravlisten ble etablert

på bakgrunn av eksisterende forskning på tingenes internett, sky-teknologi, pervasive

spill, og exergames.

Evalueringen av proof of conceptet var basert på en casestudie med spillet ”Fol-

low the Red Dot”, et enkelt pervasivt spill der en ”dott” blir sendt mellom ulike en-

heter når spillere samhandler med den enheten som er i besittelse av dotten. ”Follow

the Red Dot” ble valgt som case på grunn av at strukturen dens støtter både lokale og

distribuerte implementasjoner i tillegg til at den støtter virtuell speiling av de aktive

spillenhetene. Casestudiet var delt inn i tre forskjellige caser for å kunne gi innsikt i de

forskjellige egenskapene til teknologiene som ble evaluert.

Resultatene viste at teknologi-stacken tilfredsstiller alle kravene som i utgangspunk-

tet ble satt for teknologiene. Rammeverket som ble utviklet støttet også den tiltenkte

funksjonaliteten når det ble integrert sammen med den foreslåtte stacken. Det ble også

opplevd noen problemer med RFduinoene og diskusjonen rundt resultatene foreslår

at det høyst sannsynlig eksisterer bedre alternativer som vil gi samme funksjonalitet,

men på et mer pålitelig vis. Resultatene viser også til at det å velge en stack som passer

for alle typer IoT-baserte pervasive spill ikke er gjennomførbart på grunn av at den

pervasive spillsjangeren inneholder så mange forskjellige undersjangerer som varierer

i arkitektur, interaksjon og potensiell bruk av tingenes internett. Til slutt så foreslår

forskningen at bredere og mer spesifikt forskning på de ulike teknologiene som ek-

sisterer i de ulike lagene bør utføres, siden begrensningene på denne avhandlingen

begrenset mengden forskning som ble gjort på de ulike teknologiene.

iii

Acknowledgment

I would like to thank my supervisor professor Dag Svanæs for great assistance and feed-

back throughout the entire project. This project would not have been realized without

your help. It has been truly amazing to get to work with someone as exited and affec-

tionate about the research as you.

I would also like to thank everyone who offered to babysit and helped take care of

my daughter throughout the project, giving me the opportunity to commit the needed

amount of time and resources towards the research.

Petter Bakkan Johansen

Trondheim, 10. mai 2018

iv

Contents

Executive Summary . i

Acknowledgment . iii

1 Introduction 1

1.1 Motivation . 1

1.2 Related work . 2

1.3 Objectives . 3

1.4 Contribution . 3

1.5 Limitations . 4

1.6 Outline . 4

2 Background 7

2.1 Internet of Things . 7

2.2 Cloud . 9

2.3 Pervasive Games . 10

2.4 Exergaming . 15

3 Research Methods 19

3.1 Strategy . 20

3.2 Data collection . 21

3.3 Data Analysis . 21

4 Case description 23

5 Evaluation Criteria 27

6 IoT Technology 29

6.1 Objects layer . 30

6.2 Object Abstraction layer . 32

6.3 Service Management layer . 34

6.4 Application layer . 37

6.5 Proposed technology stack . 38

v

vi CONTENTS

7 Design and creation 41

7.1 Initial concept designs . 41

7.2 Implementation . 56

8 Results and Evaluation 65

8.1 RQ1 . 65

8.2 RQ2 . 67

8.3 RQ3 . 67

8.4 RQ4 . 69

9 Discussion 71

9.1 RQ1 . 71

9.2 RQ2 . 72

9.3 RQ3 . 72

9.4 RQ4 . 73

9.5 Research Methods . 74

9.6 Limitations of the research . 75

10 Conclusion 77

11 Recommendations for Further Work 79

A Code 81

A.1 Case 1: Follow the Red Dot code . 81

A.2 Case 2: Follow the Red Dot code . 84

A.3 Case 3: Follow the Red Dot code . 90

A.4 MQTT JSON objects . 110

B Search terms 113

B.1 Search Engines and libraries . 113

B.2 Search terms . 113

Bibliography 115

Chapter 1

Introduction

Bluetooth LE (Bluetooth Smart) and ANT+ System on Chip (SoC), e.g. from Nordic

Semiconductor in Trondheim, enables wireless communication between a high amount

of cheap, small programmable devices. This is often refereed to as the Internet of

Things (IoT). IoT opens up for a wide array of exiting applications, e.g. within sports

and games. This research project aims to develop a proof-of-concept of a software

framework used for IoT in pervasive games. The general idea is to create a frame-

work that is able to support digital mirroring of physical devices, often known as Digital

Twins, and digital manipulation of the device state through a game engine, e.g. Unity

Engine. The framework should be usable for prototyping and developing pervasive

games that make use of IoT technology.

1.1 Motivation

Being included as key part of what is deemed the Fourth Industrial Revolution, the

Internet of Things offers exciting possibilities for applications that target anything from

watering your plant while you are gone on holiday to major sensor networks that are

used to predict when the tail of airplane needs maintenance. IoT has in recent years

moved being a buzzword used by tech enthusiasts to offering smart house applications

for anyone interesting in creating a smart home.

1

2 CHAPTER 1. INTRODUCTION

Figure 1.1: The pervasive piano stairs.

At the same time there has been an increasing amount of research done on how we

can utilize technology as health promoting tool, e.g. to mitigate the increasing seden-

tary behavior of children, adolescents, and adults, or as a rehabilitation tool for elderly

stroke or fall victims. A part of that research has focused on how playful digital tech-

nology help encourage the use of technology as a health promoting tool and pervasive

games have been proven to have positive implications both for children and elderly

users. A relevant example is the piano stairs, shown in figure 1.1, that appeared in

cities like Stockholm, Milan, and Auckland, that encouraged people to take the stairs

instead of the escalators by playing notes when walking up the stairs.

The motivation behind this research is to provide insights into how pervasive games

can utilize IoT technology in order to take advantage of the unique features and the in-

creased availability that IoT offers. The research project aims to develop and evaluate

a proof of concept of a framework, built on suitable technologies, that eases the proto-

typing and development of IoT-based pervasive games. This framework will offer other

developers the ability to speed up prototyping and development of pervasive games

that make use of IoT technology, allowing for more focus on the potential positive ef-

fects of pervasive games.

1.2 Related work

As there, to the best of my knowledge, exists very little research on IoT-based perva-

sive games, a lot of the relevant work relates to IoT and pervasive games as separate

themes. Atzori et al. (2010) gives a thorough description of IoT and presents useful

insights into how IoT is perceived by presenting the different orientations of the def-

initions of IoT. Grieves and Vickers (2017) presents the Digital Twin concept, and its

history and current applications. With pervasive games being a big collection of differ-

ent game genres with diverse and inconsistent definitions, Jegers (2009) offers a useful

introduction into the topic of pervasive games and presents background information

1.4. CONTRIBUTION 3

that relates to why it is so difficult to define pervasive games as a genre. MacDowell

and Endler (2015) presents the article that relates the most to the topic of this research

as it presents a suggestion for interaction models that would support the development

of IoT-based pervasive games. Finally Brauner et al. (2013) and Gao and Chen (2014)

presents insights into exergames ability to be used as a health promoting tool. Chapter

2 presents a detailed state of the art on the relevant topics.

1.3 Objectives

The main objective of this paper is to develop a proof of concept of a framework for

prototyping and developing pervasive games that utilize IoT technology. As a part of

the research the paper presents the state of the art of IoT-based pervasive games and

relevant technologies that are suited to support the developed framework. The tech-

nologies and framework is evaluated in a proof-of-concept evaluation. The research is

guided by the four research questions presented in the following section.

Research Questions

RQ1 What existing pervasive games, documented in the scientific lit-

erature, utilize IoT technology?

RQ2 What are the requirements for IoT technology that makes it easy

to prototype pervasive games?

RQ3 What are the available tech stacks to realize such a prototyping

environment and what is a promising stack for doing proof-of-

concept evaluation?

RQ4 How suited is the selected stack for creating such a prototyping

environment?

1.4 Contribution

This paper seeks to contribute to the research done on pervasive games that utilize IoT

technology by presenting the state of the art of the topic and researching technologies

that are available to support the development of IoT-based pervasive games. The pa-

per also develops a proof of concept of a framework that is meant to ease prototyping

and development of IoT-based pervasive games for other researchers in order to assist

the research on the topic. The paper also brings forth some examples of how perva-

sive games is and could be utilized as a health promoting tool to mitigate increased

sedentary behavior and help with rehabilitation of the elderly.

4 CHAPTER 1. INTRODUCTION

1.5 Limitations

This research project performs a proof of concept evaluation on the framework that

was developed and only seeks to display the frameworks features and ability to sup-

port the requirements set in the evaluation criteria. The research does not include

a fully implemented framework. The scope of the paper limits the research done on

technologies that could be suitable for the proposed technology stack that is used to

support the developed framework. A more thorough research into these technologies

could bring forth aspects and features of the individual technologies that could affect

the outcome of the research. The limitations of the research also affects the supported

features of the framework as with more time the framework could have been expanded

with additional functionality and a better standard for the API offered by the frame-

work.

1.6 Outline

Chapter 2 establishes a theoretical background on the topics of Internet of Things

(IoT), Cloud technology, pervasive games, and exergames. The background informa-

tion is used to present existing IoT-based pervasive games and help establish evalua-

tion criteria for IoT technology and the framework.

Chapter 3 presents the research methodology used to perform this research and an-

swer the research questions established.

Chapter 4 gives a description of the three cases used in the evaluation of the differ-

ent technologies and the prototyping framework, in addition to presenting ”Follow the

Red Dot”, which is the pervasive game that each of the three cases are built around.

Chapter 5 establishes the evaluation criteria that are based on the background infor-

mation and are used for evaluating the proposed stack, associated technology, and the

prototyping framework related to research questions 2-4.

Chapter 6 presents the proposed stack for supporting a proof-of-concept evaluation

of the prototyping framework. It also presents background information on different

technologies that exists within the different layers of the stack, and finally presents the

set of technologies chosen to perform the proof-of-concept evaluation.

Chapter 7 presents the design and creation process, including initial concept designs

and the iterative implementation of each of the three cases.

1.6. OUTLINE 5

Chapter 8 and 9 presents and discusses the results of the research. The proposed tech-

nology stack is also evaluated in a before and after implementation relation in order to

display the experienced features of the stack compared to the theoretical features.

Chapter 10 and 11 concludes the research and presents recommendations for further

work based on the research done.

6 CHAPTER 1. INTRODUCTION

Chapter 2

Background

2.1 Internet of Things

Claiming to have coined the phrase "Internet of Things" back at a presentation for

Procter & Gamble in 1999, Kevin Ashton (Ashton (2009)) introduced the world to a

phrase that almost 20 years later has gained a lot of momentum and attention. Even

though the Internet of Things Global Standards Initiative (IoT-GSI) in 2012 presented a

recommended definition of IoT (Union (2012)), research literature still presents a wide

array of different definitions (Union (2012); Atzori et al. (2010)). The wide range of def-

initions may be an indicator of the strong interest that IoT has received and the lively

debates around the topic. Another reason is the syntactic structure of the phrase it-

self. Being built up of the terms ’Internet’ and ’Things’ leads to definitions that either

has an "Internet oriented" or a "Things oriented" focus, which in turn creates substan-

tial differences in the definitions (Atzori et al. (2010)). Together the terms produces

the semantical meaning of "a world-wide network of interconnected objects uniquely

addressable, based on standard communication protocols" (epo (2008)).

The ’Things oriented’ perspective of IoT ranges from a focus on very simple Things,

i.e. Radio-Frequency IDentification (RFID) tags, to the augmentation of the Things’

intelligence to make it sustainable, enhanceable, and uniquely identifiable (Sterling

(2005)). A common vision within the Things oriented perspective is the ability to pro-

vide object visibility, that is the ability to trace an object and be aware of its status, cur-

rent location, etc. There are different visions of how this visibility should be achieved.

Sakamura (Sakamura (2006)) presents the middleware based Ubiquitous ID (uID) which

assigns an unique identifier, called ucode, and locations to objects in order to differen-

tiate unique objects. Meanwhile RFID is being widely adopted in commercial environ-

ments mainly due to its maturity and low cost, but it will remain as one part of the big

IoT puzzle that will also contain Near Field Communications (NFC), Wireless Sensor

and Actuator Networks (WSAN), as well as many other communication protocols that

incorporate more advanced Things into the IoT.

In the ’Internet Oriented’ perspective the focus lies on promoting the use of the

7

8 CHAPTER 2. BACKGROUND

Internet Protocol (IP) as the network technology that should help move from the Inter-

net of Devices to the Internet of Things. One proposed approach is Internet-0 (Zero)

which gives everyday objects the ability to connect to a data network without having

to develop new and elaborate protocols (Gershenfeld et al. (2004)). Another approach

is presented from the IP for Smart Objects (IPSO) Alliance, it is an simplification of

the Internet Protocol that makes it usable on micro-controllers and low-power wire-

less links without being too resource-intensive, as was the initial assumption of many

of the vendors that embraced proprietary protocols (Culler and Chakrabarti (2009)).

Atzori et al. (2010) further introduces the "Semantic orientation", which relates to

representing, storing, interconnecting, searching, and organizing information gener-

ated by IoT devices. This orientation looks at how different semantic technologies can

be utilized to address the issues that might occur when the number of IoT devices sky-

rockets within the near future1. Some of the key challenges that the semantic orienta-

tion address’ is how to interconnect and organize the information that is generated by

the IoT, and how the data best should be stored (Toma et al. (2009)).

The Digital Twin concept

One of the key emerging concepts within the Internet of Things over the last decade

is the concept of the Digital Twin. The Digital Twin model, previously referred to as

the Mirrored Space Model or the Information Mirroring Model (Grieves and Vickers

(2017)), consists of two systems, one physical and one virtual, where the virtual system

contains information about the physical system. The two systems exists in a way that

allows the two to share information with each other and any alterations on either of the

two should be mirrored on the counter part. While the virtual system in many cases

serves as a detailed description of the physical system, the virtual system could also

be used to predict future behavior and actions of the physical product, meaning that

events or actions that could be threating to the lifecycle of the physical system could

be predicted and avoided by the virtual system.

For large industrial companies that produce components where product lifecycle

management is imperative, like NASA (Glaessgen and Stargel (2012)) and aircraft pro-

ducers (Tuegel et al. (2011)), the Digital Twin is already a key part of their development.

The Digital Twin concept allows companies gather data that could be used to predict

component failures, detect anomalies, and evaluate development processes by having

the data be processed and simulated by high-performance computers.

1According to a Juniper Research study released in March 2017, the amount of IoT devices in the retail
environment, including RFID and BLE beacons, will number 12.5 billions within 2021 (RFID Journal).

2.2. CLOUD 9

2.2 Cloud

A key aspect of the IoT vision is making it ubiquitous, reliable, efficient, and scalable,

all of which are attributes that Cloud computing posses (Biswas and Giaffreda (2014)).

As the IoT vision is being realized more and more of the larger companies, like Mi-

crosoft, Google, Amazon, etc., and even local national companies like Telenor here in

Norway, are providing Cloud services for IoT. Cloud Computing can be characterized

as a ”business model to empower omnipresent, on-demand network access to a collec-

tion of configurable computing resources such as storage, services, networks, servers,

and applications that can be quickly provided and released with minimal management

effort or service provider interaction” (Babu et al. (2015)). There are two approaches to

the merging of IoT and Cloud computing, one being a Cloud-based IoT and the other

being IoT-Centric Cloud.

2.2.1 Cloud-based IoT

The Cloud-based IoT approach seeks to bring IoT functionality into the Cloud, rather

than bringing the Cloud functionality to IoT. In this approach the sensed data collected

from IoT devices gets stored and processed in the Cloud and makes use of the Clouds

boundless processing and storage capabilities. This in turn leads to the possibility to

enhance the functionality of the Cloud through the use of IoT data with services like

SaaS (Sensing as a Service) (Rao et al. (2012); Zaslavsky et al. (2013); Dash et al. (2010)),

SAaaS (Sensing and Actuation as a Service) (Rao et al. (2012)), SEaaS (Sensor Event as a

Service) (Rao et al. (2012); Dash et al. (2010)), DaaS (Data as a Service) (Zaslavsky et al.

(2013)), and many more (Babu et al. (2015)).

2.2.2 IoT-Centric Cloud

The IoT-Centric Cloud paradigm extends Cloud computing and services to the edge of

the network with the objective of reducing latency and high traffic, and to support mo-

bile computing and data streaming (Biswas and Giaffreda (2014)). By moving the Cloud

functionality closer to the user and/or sensors it creates a dense geographical distribu-

tion allowing for data processing and service execution locally, which also increases

the security. A similar model to the IoT-Centric Cloud is the Fog. Fog computing is

”a highly virtualized platform that provides compute, storage, and networking services

between end devices and traditional Cloud Computing Data centers” (Bonomi et al.

(2012)). Instead of moving and distributing the Cloud itself closer to the edge of the

network, the fog extends the cloud with fog nodes that can be deployed anywhere with

a network connection (Cisco (2015)). These nodes have the capability to perform real-

time computations and store data generated at the edge, and send aggregated data to

the Cloud, minimizing latency for computational tasks, offloading network traffic, and

10 CHAPTER 2. BACKGROUND

providing another level of security for sensitive data before it is sent into the Cloud.

2.3 Pervasive Games

Pervasive games has been a widely researched topic over the last decade and is still

a hot topic as the utilization of pervasive or ubiquitous computing becomes more

widespread. Unlike the ubiquitous computing vision, which the idea of pervasive games

sprung from, the definitions of pervasive games are diverse and inconsistent. One of

the main reasons for this is the fact that the term ’pervasive games’ is used to denote a

wide collective of different sub-genres of computer games, some of them being alter-

nate reality games, augmented reality games, cross media games, and location based

games (Jegers (2009)).

Although diverse, the definitions and descriptions of pervasive games have some

commonalities which together represents an understandable description of what per-

vasive games are. The use of ubiquitous computing makes up a large part of what can

be used to describe pervasive games. Through the use of non-invasive computational

devices pervasive games seeks to bring digital gaming experiences into the real physi-

cal world (Benford et al. (2005)) and by doing so they expand in the social, temporal and

spatial dimensions of the Magic Circle (Montola (2005)). To clarify, the concept of the

Magic Circle was introduced by Johan Huizinga in Homo Ludens (Huitzinga (1944)),

a book where he studied the play-element in culture. The Magic Circle sets the social,

temporal and spatial dimensions of a game by establishing rules for who are allowed to

join, when it is played, and where it is played. Even though traditional games also have

the ability the extend its set dimensions, i.e. by creating custom rules, pervasive games

have the ability to extend these dimensions to a much larger degree, and in some cases

even removing the restrictions on one or more dimensions. This is what distinguishes

the pervasive game genre from other game genres, and this is why pervasive games so

often are quoted as "games that can be played anywhere at anytime"(Kasapakis and

Gavalas (2015); Jegers (2009)).

2.3.1 The Development of Pervasive Games

The technology used in the genre of pervasive games has been evolving continuously

since the early days when custom equipment, wearable computers, PDAs, and feature

phones made up the most common player equipment (Kasapakis and Gavalas (2015)).

With the introduction of smartphones developers quickly started exploiting its key fea-

tures and in the period between 2009 and 2014 it was the most commonly used equip-

ment for pervasive games. In recent years developers have identified the advantages

of integrating wearable technology together with the use of smartphones as it provides

the ability to gather additional sensor data that can be utilized within the pervasive

2.3. PERVASIVE GAMES 11

games. Also the use of IoT in pervasive games is currently being researched as these

tiny sensing devices coupled with modern wireless communication technology can be

used to create a whole new generation of pervasive games that aren’t restricted to the

technology within smartphones and wearables.

The approach to developing pervasive games has followed one of two different

strategies, the first one being to take an traditional, real-world game and augment it

with computing functionality, while the other is taking a computer game and mapping

it onto real-world settings (Guo et al. (2012)). BotFighters (Olli (2002)), Treasure (Guo

et al. (2012)) and Capture the Flag (Sreekumar et al. (2006)) are examples where tra-

ditional outdoor games have been augmented in a way that expands the dimensions

of the original magic circle of the game. In Capture the Flag the traditional outdoor

game has been augmented with smartphones and simple Linux-based Bluetooth de-

vice that allows for the creation of a virtual representation of the playing field which

remote players can interact with while physical players interact within the real-world

playing field. In this case the spatial and social dimensions of the magic circle have

been expanded from the traditional game, allowing for players the join the game with-

out having to be within the physical playing field.

Human Pacman (Cheok et al. (2004)) and Pokèmon GO are examples of computer

games that have been augmented and blended into a real-world setting. Much like

many of the traditional augmented outdoor games these focus on utilizing the physical

world as a playground or a map where the game itself is played out. The use of location-

aware technology brings out the possibility for players to move around in1 the virtual

worlds by moving around in the physical world, mixing the two worlds into one big

augmented playground.

2.3.2 IoT in Pervasive Games

With the increased interest and accessibility of IoT and the benefits it brings there is no

doubt that making use of IoT in pervasive games would open new and interesting ways

of designing and constructing pervasive games. Since the increased accessibility of IoT

has happened fairly recently and is still progressing the use of IoT in pervasive game is

still in its early research days without having any larger scaled products being produced

as of yet. The research focuses on how IoT best can be utilized to create innovative and

enhancing experiences for the players. So far the approach of utilizing IoT in pervasive

games has been done in one of two ways, using environmental sensor data from Things

to affect and enhance different aspects of a game, or using Things as interactive game

objects, which is the approach taken by the framework thats presented in this paper.

An example of utilizing environmental sensor data is from the game UKKO, a novel

persuasive game to encourage walking to school and engagement with local data (Dick-

inson et al. (2015)). In this game air quality data is captured by a sensor and is used to

encourage kinds walking to school to chose routes that are less exposed to poor air

12 CHAPTER 2. BACKGROUND

quality. Treasure (Guo et al. (2012)) on the other hand, utilizes IoT technology in form

of ultrasonic 3D tags and MOTE sensors to create real-world interactive game objects.

In MacDowell and Endler (2015) a set of base interaction models for designing per-

vasive games that use Things as interactive game objects is introduced. Table 2.1 and

2.2 displays the information given in MacDowell and Endler (2015) about the different

interaction models, including examples of games they could be used in, whether the

Thing is fixed or movable, and the general idea behind the interaction model. All of

these interaction models are general enough in order for developers to create different

game concepts by utilizing the same interaction models. These interaction models are

used as a basis for some of the requirements set for the framework in Chapter 5.

2.3. PERVASIVE GAMES 13

Table 2.1: Base interaction models for IoT Pervasive Games (MacDowell and Endler
(2015))

Interaction Example Games Tokens Main Idea

Find the Thing Mobile Geo-

caching Game

Fixed or mov-

able

Users search for smart tokens. When

a certain token is found, this action

is registered on the user’s smart de-

vice and/or a cloud service (if the

game is multiplayer). A user can

also pick up a token and bring it

somewhere else or do a certain ac-

tion with it. If the token is being

moved, its coordinates could be up-

dated to the cloud service by the

user’s smart device’s own GPS. The

user’s interaction with the token di-

rectly influences the type of game-

play a game with this base interac-

tion might have.

Guess where

Things will be

Radar Tag Game Movable Tokens are always on the move.

Tokens could be owned by cer-

tain users or be entirely indepen-

dent. Players might need to guess

a pattern of movement or discern

the tokens next position/destina-

tion. Players could interact with the

tokens when around them in a way

to facilitate this movement predic-

tion.

Bring lonely

Things together

Smart Tag Game Movable Tokens are owned by certain users.

In certain moments of the game,

some users might be required to

match their tokens with another to-

ken, which might be in possession

of another player. This other player

might be required to match his to-

ken with this same user, or the con-

trary, he could have to avoid this

user for a certain period of time.

These play mechanics will of course

vary depending of the real proposi-

tion of the game.

14 CHAPTER 2. BACKGROUND

Table 2.2: Base interaction models for IoT Pervasive Games (MacDowell and Endler
(2015))

Interaction Example Games Tokens Main Idea

Things that

color other

Things

Zombie Infec-

tion or Area

Control Game

Fixed or Mov-

able

Tokens are emitters of a certain type

of frequency/data. When a player

with a smart device and/or a mov-

able token enters the actuation di-

ameter of said emitter, the player

is then “colored” or “infected” and

is now visible to the game as a

player of a certain type/color. The

player could now act as a movable

emitter to other players or fixed to-

kens. This type of interaction could

lead to interesting tag/area Internet

of Things Based Multiplayer Perva-

sive Games 127 control games, deal-

ing with other gameplay mechanics

such as map/area strategy on an ur-

ban area and teamwork.

Change the

Thing

- Fixed or Mov-

able

When the player interacts with the

token, it writes certain data on

it. From then on, the token may

behave differently than before, or

start broadcasting a different type of

data.

2.3.3 Known issues

Much like any genre of video games there exists issues that affect the design, devel-

opment and gameplay of pervasive games and some of them are more common than

others. There exists both technical and non-technical issues that exists partially be-

cause of lack of research (Wiberg and Jegers (2006)), but also because the technology

hasn’t developed enough yet (Broll and Benford (2005)). The most prominent issue is

the extensive use of GPS and other positioning technology in location-based perva-

sive games. The reliance on technology that comes with built-in deviations (Broll and

Benford (2005)) produces issues that create frustrations for both players and develop-

ers. The most common issue with positioning technology is the fact that there exists

no system that preforms well both indoors and outdoors, forcing developers to work

around the issues that these technological restrictions set on pervasive game design.

As for the non-technical issues Wiberg and Jegers (2006) identifies two issues re-

2.4. EXERGAMING 15

lated to the context where pervasive games are played. Surprisingly the "anywhere,

anytime" feature of pervasive games proved to create issues that might be hard to fore-

see for developers. Some players decided to play during work hours, sometimes dis-

turbing the social context set by the workplace. This also separates pervasive games

from traditional games, where its usually played during recreational time and not dur-

ing work. Another issue of the "anywhere, anytime" feature is that being able to play

anywhere, at anytime, often resulted in "sofa gaming", meaning that instead of being

outdoors playing the game wherever they want, players instead stay at home on their

couch. This in turn reduces both the social and the spacial aspects of pervasive games

that were built with the intention of having players go outside and explore the game

world and socialize with other players.

2.4 Exergaming

A sub-genre within serious and pervasive games that has received a lot of attention

from the research community is exergames or Exercise-games, also referenced as in-

teractive video game (DiRico et al. (2009); Epstein et al. (2007); Warburton et al. (2007)),

activity promoting game (Lanningham-Foster et al. (2006); Graves et al. (2007); Bara-

nowski et al. (2008)), motion-based games (Alankus et al. (2011)), and active video

game (Paw et al. (2008); Brown et al. (2008); de Vries et al. (2008)). Both health re-

lated and non-health related researchers have over the past decade devoted a lot of

attention2 to the topic which seeks to combine exercise and playing video games in or-

der to help solve multiple health related issues that are arising in the modern western

society. Two of the most prominent issues that researchers are addressing is the con-

cerns related to the ongoing demographical change with the aging population requir-

ing increasing amounts of health care, as well as the increase in obesity in the youngest

demographic of the population. These concerns will be further addressed under the

general use of exergames later in this section.

The terms exergames and exergaming has been described in various ways and with

various definitions due to its interest spanning across multiple research collectives.

Oh and Yang preforms a review on existing literature at the time and proposes a defini-

tion of exergames focusing on the combination of exertion and video games including

strength training, balance, and flexibility activities (Oh and Yang (2010)). As most of

the pre-existing definitions used the word ”exercise” in different settings, often with-

out defining what they consider exercise to be, comparing the different studies proves

difficult, especially from a health perspective. While some researchers follow standard-

ized measures for monitoring physical activity levels, others simply accept any activity

that is more than sedentary activity as a form of exercise. This in turn brings Oh and

Yang to the following definitions of exergames and exergaming, which will be the defi-

2> 6000 results on the phrase ”exergames” on Google Scholar at the time of writing

16 CHAPTER 2. BACKGROUND

nitions this paper will adhere to:

Exergame A video game that promotes (either via using or requiring) play-
ers’ physical movements (exertion) that is generally more than
sedentary and includes strength, balance, and flexibility activi-
ties.

Exergaming An experiential activity where playing exergames, video-games,
or computer-based games is used to promote physical activity
that is more than sedentary activities and also includes strength,
balance, and flexibility activities.

Exergaming as a health promoting tool

As previously mentioned, Exergame research have found several positive ways that ex-

ergames can be used to address current and future health related issues such as the in-

creased pressure on hospitals and other public health services due to the aging popula-

tion (Brauner et al. (2013); Uzor and Baillie (2014)), and curbing physical inactivity and

childhood obesity (Gao and Chen (2014)). In addition to this research also indicated

the possibility that physical activity may have positive effects on children’s mental abil-

ities, school behavior, and academic achievement (Tomporowski et al. (2011); Lee et al.

(2017)) provides promising prospects for the use of Exergame interventions in schools.

This range of aspects that the use of exergames is able to address is the major reason

for the amount of attention the topic has received from the research community over

the last decade, with the interest, both in research and commercial settings, still rising.

As an example of the potential benefits of using exergames for rehabilitation, Uzor

and Baillie (2014) performs a long-term study on the use of exergames as a tool in falls

rehabilitation. They find that participants who used exergames followed their recom-

mended exercise better than those who used standard care, and that the potential use

of exergames as a tool for rehabilitation is great. Brauner et al. (2013) takes a closer look

at the usefulness of exergames as a tool to potentially increase physical activity and de-

crease the level of physical strain for elderly users. The motivation behind the study is

the predicted decreasing ratio of jobholders supporting one elderly in the future and

the need for preventive actions in order to keep the health and welfare systems from

overflowing. Brauner et al. (2013) argue that by increasing physical fitness and aware-

ness of health issues will help elderly to live independently for longer and thus reduce

the demands and costs of the health care system. Their research, along with others

(Lee et al. (2017)), find that exergames show promising signs as a tool for promoting

physical fitness and activity.

The rise in childhood obesity and kids general attractiveness towards video games

has led to research focusing on the potential use of exergames to combat the increasing

health related issues for children and adolescents that stem from increasing amounts

2.4. EXERGAMING 17

of sedentary behavior. Research suggests exergaming to be a promising addition to

promote physical activity and health among children, but due to the light-to-moderate

physical activity that exergaming generates it should not be considered as an replace-

ment for traditional physical activity and sports but rather as a replacement for seden-

tary activities like video games, Internet browsing, and watching television (Gao and

Chen (2014)). Lwin and Malik (2012) backs up these indications and finds that incor-

porating exergaming into physical education classes leads to positive beliefs and be-

haviors towards physical activity, subjective norm, intention, and strenuous exercise

behavior, particularly among younger children.

Finally, research show that exergaming may provide psychosocial and cognitive im-

pacts, including increased self-esteem, social interaction, motivation, attention, and

visual-spatial skills (Staiano and Calvert (2011)). Utilizing exergames in classroom con-

texts with third- and fourth-graders have proved to reduce absenteeism, improve so-

cial skills, leadership skills, self-esteem, and academic performance of highly "at-risk"

pupils (Chamberlin and Gallagher (2008)). An important factor to the positive psy-

chological effects is the social interaction between players in multi-player modes that

enables players to collaborate or compete with other players (Lee et al. (2017)). Lee

et al. (2017) also finds that in comparison with other physical activities or sedentary

video games exergames showed significantly greater perceived enjoyment.

Exergames development

The research on using exergames as a tool for promoting physical activity and health

awareness has not been strictly positive as the previous section might suggest. Several

studies found that the interest in exergames seemed to decline rapidly over time, only

providing an initial positive effect () and that several considerations have to be made

when designing, developing and implementing exergames.

As mentioned in the previous subsection, Lee et al. (2017) found that exergames

supporting multi-player gameplay, either in the form of collaboration or competition,

increased the perceived enjoyment of exergames. By supporting multi-player game-

play, either in a local or remote setting, it enhances the social interaction component

of exergames that has been found to have a significant impact on positive psycholog-

ical effects. For exergame developers a key consideration when incorporating multi-

player modes is the spatial requirements of the game and the context that it is meant

to be used. When designing a remote multi-player exergame developers also have to

address latency as high network latency often results in a poor game experience, par-

ticularly when cellular networks are being used (Park et al. (2012)).

Sinclair et al. (2007) introduces the dual flow model, an extension of the standard

flow model introduced by Csikszentmihalyi (1975), designed to model the attractive-

ness and effectiveness of an exergame. With the dual model Sinclair et al. (2007) incor-

porates the dimension of effectiveness which addressed the balance between intensity

18 CHAPTER 2. BACKGROUND

Figure 2.1: Dual Flow Model (Sinclair et al. (2007))

and fitness, and how having an imbalance between the two or lack of both leads to a

less enjoyable game experience. The effectiveness dimension is represented with the

same four quadrant layout as the standard model, as shown in figure 2.1, where each

of the quadrants represents the different states that users can end up in, depending on

the balance between intensity and fitness. Both of these dimensions are important to

consider when developing exergames, as well as the need for customizations in order

to meet the different users fitness and skill levels, allowing for different user groups to

have an enjoyable experience when exergaming.

DiRico et al. (2009) argues that in order to assess the real effectiveness of exergames

in training rehabilitation programs exergames needs to be implemented according to

scientific paradigms on motor control and motor learning. So far most researchers

have utilized pre-existing commercial exergames (i.e. Dance Dance Revolution, Wii

Sports, etc) to research the effects of exergaming as an tool for rehabilitation and train-

ing. By considering these paradigms when designing exergames and the natural user

interfaces (NUIs) used for exergames the scientific results of the research could be eas-

ier comparable with other research and provide a higher scientific accuracy

Chapter 3

Research Methods

This chapter looks at the research methods chosen for this research project and the

overall process of the project. Building upon a preliminary study performed on the

topic of prototyping pervasive games with IoT, this research project seeks to further

that research and follows much of the same approach as that of the preliminary study.

Figure 3.1 is an adaptation from (Oates, 2005, Ch. 3) and shows the chosen model of

the research process.

Figure 3.1: Adapted figure from (Oates, 2005, Ch. 3) displaying the possible and chosen
elements of the research process.

A conceptual framework was initially developed based on the findings in the liter-

ature review and the experiences from the preliminary study. In order to explore and

evaluate the framework a set of research questions, presented in section 1.3, were cre-

ated and these will provide guidance and set the limitations of the research project.

19

20 CHAPTER 3. RESEARCH METHODS

Design and creation has been chosen as the strategy for the research project as the

main focus of this research is to develop and evaluate software and the design and

creation research strategy provides a suitable process for this kind of research. The

design and creation strategy is backed up by a case study that establishes the differ-

ent cases used in the evaluation. Finally the data collection and analysis will be based

on a document-based research focusing on exploring the state of the art in a qualita-

tive manner in addition to gathering data from product documents related to relevant

technology used in the research. Each of the following sections within this chapter will

go into greater detail of the research methods chosen.

3.1 Strategy

In this thesis the overall end goal is to evaluate a proof of concept for the proposed

framework that will be used to prototype and develop IoT-based pervasive games. In

addition the suitability of the selected technologies in the proposed technology stack

will be evaluated. At the core of the thesis are the three cases that are used to perform

the evaluation. For each of these cases an instantiation will be developed to display

how the proposed framework could be implemented and to aid the evaluation of the

selected technologies. Based on the preliminary study and the literature review done

in this study there were, to our knowledge, no existing development methodologies

for IoT-based pervasive games, so in order to fulfill this approach a design and cre-

ation research strategy has been selected. This strategy provides a suitable procedure

that helps present the academic qualities as well as the the technical qualities of the

research by following a ”leaning via making” strategy.

The design and creation process is an iterative process made up of the five steps

(Vaishnavi and Kuechler (2004)): awareness, suggestion, development, evaluation, and

conclusion, as shown in figure 3.2. In the two first steps a proposed solution with a ten-

tative design is produced by trying to recognize the problem and suggesting a possible

solution to the problem. In the development step the artefact is developed based on

the proposed solution and in some cases the researchers may become aware of re-

straints which causes deviations from the proposed solution. These kinds of discov-

eries in themselves provide a knowledge contribution to the research and bring about

new awareness of the problem which restarts the cycle as alterations are made to the

initially proposed solution. In the case where the artefact has been created in accor-

dance with the suggested solution it is evaluated in order to discover possible devia-

tions and if the artefact solves the problem being researched. In the final step the find-

ings from the cycle is consolidated and a final assessment of the knowledge gained is

presented. This knowledge may in turn be used to propose further research in order to

address issues that were identified throughout the solution or serve as a contribution

3.2. DATA COLLECTION 21

Figure 3.2: Design Science Process Model (DSR Cycle), Vaishnavi and Kuechler (2004)

to solving the overall research problem.

3.2 Data collection

With the research being of an exploratory nature it is natural to look into existing re-

search and previously documented experiences within the topic. A document-based

research done within the topics of IoT, Cloud technology, pervasive games, and ex-

ergames will provide data which can be used to set the initial requirements for the pro-

posed framework and discover proposed directions for the research. The document-

based research will mainly follow the approach of a literature review in addition to

gathering data from product documents for IoT-devices and other technology used in

the research.

Since most of the documents will be made up of academic literature the search

terms and the digital libraries containing the literature will be listed in Appendix B.

3.3 Data Analysis

The gathered documents will be treated as vessels that hold content which will un-

dergo a theme analysis in order to provide qualitative data on the topics. Based on the

research done in the preliminary study it is clear that there exists little research on the

* Circumscription is discovery of constraint knowledge about theories gained through detection and
analysis of contradictions when things do not work according to theory (McCarthy (1980))

22 CHAPTER 3. RESEARCH METHODS

topic of IoT-based pervasive exergames and the data needed to perform a quantitative

analysis does not exist at the time of writing this paper, and therefore the research will

mainly focus on qualitative data.

Chapter 4

Case description

As presented in the previous chapter, this research follows a design and creation re-

search strategy. One of the steps in the strategy is the evaluation of the developed

artefact against the proposed evaluation criteria, and in order to be able to perform

the evaluation three cases have been designed. These cases will be used in a proof of

concept where each of the three cases seek to provide the ability to evaluate the arte-

fact against the different requirements introduced in chapter 7. This chapter presents

a high level description of the cases used in the evaluation and provides useful insights

into the differences between each of the cases and why they were designed in the first

place.

Figure 4.1: Illustration of how the Red Dot moves on to another device after interaction.

Case 1: Local gameplay with the devices placed within the area of a small apart-

ment.

Case 2: Distributed gameplay with the devices placed anywhere in the world

where the exists a Wi-Fi Internet connection.

Case 3: Distributed gameplay with the devices placed anywhere in the world

where the exists a Wi-Fi Internet connection, and the game is managed from a

central devices, i.e. a smartphone.

Each of the cases is an implementation of the game "Follow the Red Dot", a sim-

plistic interactive game that provides loads of opportunities for customization while

23

24 CHAPTER 4. CASE DESCRIPTION

still being easy to play and implement. The game is played by having two or more in-

teractive objects that have the opportunity to both display that it is in possession of

the Red Dot and a way to recognize human interaction. The main game mechanic is

the interaction between the player and the object that is in possession of the Red Dot.

Figure 4.1 displays how once the player interacts with the object it looses possession of

the Red Dot and the dot is passed on to another object.

All of the three cases are developed so that the devices that the player interacts

with behave in the same way and should provide the same experience from a gameplay

perspective. The distinctive features of the cases lies in the implementation and should

not affect the players ability to play the game. Locality and game management are the

attributes that are altered between the three cases.

Figure 4.2: Illustration of the use of a playground within an apartment.

In Case 1 "Follow the Red Dot" is implemented on simple embedded devices in

a local playground equal to the size an apartment. Figure 4.2 illustrates an example

playground where different devices are spread out within an apartment, while another

example could be a tabletop playground similar to the setup shown in Figure 4.1.

25

Figure 4.3: With the pervasive version of Follow the Red Dot game objects can be placed
anywhere in the world.

Case 2 takes our local version of "Follow the Red Dot" and connects it onto the In-

ternet, allowing for a global, distributed playground. Figure 4.3 illustrates how game

moves from a local setting with limitations on the playground area to a global setting

where game objects can be placed virtually anywhere in the world, or even in space,

as long as there is an Internet connection available. This could prompt an interesting

event where developers around the world could connect their own IoT devices to the

game and create a global community built around this instance of the game. However,

the purpose of this case is not to create the biggest playground possible, but to illus-

trate how IoT technology and pervasive computing is able to provide limitless possi-

bilities for pervasive game developers when it comes to creating interactive pervasive

games and giving players the "anywhere, anytime" aspect that is the unique feature of

pervasive games.

The third and final case remain in the realm of the Internet and from a gameplay

perspective there is no change from Case 2, but from a developers perspective there

are some alterations. Case 3 seeks to introduce a version of Digital Twins, introduced

in chapter 2, which will allow developers to display and interact with a virtual represen-

tations of the physical game objects. The virtual part of the Digital Twins should mirror

the behavior of the physical device, and vice versa, meaning that developers could ma-

nipulate the state of the virtual device and have the state changes be mirrored on the

digital device. An illustration of how the Digital Twin could be presented within the

game engine is displayed in figure 4.4.

26 CHAPTER 4. CASE DESCRIPTION

Figure 4.4: Illustration of the Digital Twin setup with the virtual twin in Unity.

In addition to creating the support for Digital Twins the game logic is also moved

out of the IoT devices giving the IoT devices a clearer role as an game object that de-

velopers can use to build their pervasive games with. Moving the game logic to a game

engine like Unity also means that developers are able to build game applications that

could be run on computers, smart phones, consoles, and more, with custom visual

representations and interpretations of the Digital Twins.

Chapter 5

Evaluation Criteria

This chapter presents the evaluation criteria that are used to evaluate Internet of Things

technology, the proposed technology stack, and the framework developed for proto-

typing IoT-based pervasive games. The criteria are based on findings in existing liter-

ature as well as experiences from the preliminary study. The research questions intro-

duced in Chapter 1 are used to group the different evaluation criteria as they relate to

the different research questions. Within each group the criteria are ranged from most

to least important, with the most important one being listed first. Some of the criteria

overlap between the different research questions as these are requirements that are key

evaluation features for both the technology used and the suggested framework.

The overall goal of this research is to reduce the cost of prototyping pervasive ex-

ergames by developing an intuitive framework built on a technology stack that offers

time saving functionality for developers and supports IoT technology that is easy to

grasp for both novice and experienced developers. This overall goal is represented in

table 5.1 and serves as a guiding principle for the rest of the evaluation criteria.

Table 5.1: Overall criteria for the framework and IoT technology used for prototyping
pervasive exergames.

Criteria Description

C1.0 - Reduce implementation cost The framework and the technology used should reduce

the overall cost of prototyping pervasive exergames.

Table 5.2 presents the requirements tied to RQ2. The requirements are based on ba-

sic principles of ubiquitous computing, the IoT vision, and the interaction models pre-

sented in chapter 2. In table 5.3 the evaluation criteria for RQ3 and RQ4 are presented.

The criteria overlap between these two research questions as the same requirements

are relevant when looking at different technology stacks and for evaluating the selected

stack used in this research. The following section ties the requirements to the three dif-

ferent implementation cases and presents a more detailed description of each relevant

requirement and why they are relevant for the case.

27

28 CHAPTER 5. EVALUATION CRITERIA

Table 5.2: Evaluation criteria related to RQ2.

Criteria Description

C2.1 - IoT Flexibility IoT technology should support for different I/O

modules to allow developers to customize the

game objects to their game design.

C2.2 - Addressability IoT technology should provide the ability to

uniquely identify and address the device.

C2.3 - Device-to-Device communication IoT technology should support the ability to trans-

fer and receive data from different IoT devices.

C2.4 - Power management IoT technology should support the ability for de-

velopers to handle power consumption.

C2.5 - Distributed vs Local use IoT technology should support both local and dis-

tributed applications.

C2.6 - Scalability The IoT technology should support the ability to

be used in pervasive games with different amounts

of devices.

Table 5.3: Evaluation criteria related to RQ3 and RQ4.

Criteria Description

C3.1 - Addressability The framework should support communication protocols

that allows for unique addressability for each device con-

nected to the framework.

C3.2 - Interoperability The framework and the technology used should support

communication between various IoT devices without know-

ing the specifications of each device.

C3.3 - Connecting new devices The framework should provide intuitive handling of connect-

ing new devices both during development and runtime.

C3.4 - Distributed vs Local use The technology used should support going from a local to a

distributed implementation

C3.5 - IoT Flexibility The framework should allow developers to create custom in-

teraction and visualization of different virtual I/O compo-

nents that mirror traditional physical I/O modules.

C3.6 - Game logic centralized The framework should support running the game logic out-

side of the IoT devices.

C3.7 - Scalability The framework should support scalability, allowing for in-

creased amounts of devices to be utilized in the prototyped

games.

Chapter 6

IoT Technology

This chapter will present information about different technologies that could make up

the proposed technology stack for prototyping IoT-based pervasive games. The stack

that is proposed for building a prototyping framework is based on four different layers

and this chapter will present some of the suitable technologies that exists within each

layer. The four layers chosen are based of the four first layers of the five layer model pre-

sented in Al-Fuqaha et al. (2015). These four layers are shown in figure 6.1 and include

the Objects, Object Abstraction, Service Management, and Application layer. Each of

these layers and associated technologies will be presented in the following sections

and the information about the technologies will be used to provide a comparison that

will derive a proposed stack of technologies that will be used to develop the prototyp-

ing framework for IoT-based pervasive games. It is important to note that there exists a

lot more technologies within each layer than what is presented in this paper and there

could be technologies that are better suited than the ones presented here, but due to

the limitations of the paper the ones shown here are the most common technologies

used in IoT development.

Figure 6.1: Four layered stack.

29

30 CHAPTER 6. IOT TECHNOLOGY

6.1 Objects layer

Arduino

Figure 6.2: Arduino Uno R3

Arduino is an open-source electronics platform that offers easy-to-use Arduino boards

and the Arduino programming language. Originally developed as a prototyping tool

for students without experiences in electronics and programming, the platform is to-

day one of the most used prototyping platforms for IoT as it offers a simple and acces-

sible user experience for new developers in addition to the entire platform being open

source, meaning experienced developers gain a high degree of customizability when

developing devices for particular needs. The Arduino boards comes in wide array of

different specifications with different pricing (from $10 to $40) and with the option to

attach different interfacing shields that are equally user friendly to the platform itself.

The common feature of the boards is the standard form factor that allows the Arduino

to expose the functionality of the microcontroller in a intuitive and accessible package.

Raspberry Pi

Figure 6.3: Raspberry Pi Zero W

The Raspberry Pi is a series of small sized computers that was originally developed

as an educational tool for improving programming and hardware knowledge of pre-

6.1. OBJECTS LAYER 31

university children. The small computers are able to interface with standard I/O prod-

ucts similar to a traditional computer in the form of screens, keyboards, and mice, in

addition to running a fully fledged Linux distribution that supports programming in

languages like Python and JavaScript. The Raspberry Pi comes at a cheap price (from

$10 to $35) which makes it suitable for developers seeking a more complex device than

the basic microcontrollers commonly used for prototyping. Most of the newer Rasp-

berry Pi boards comes with built in Wi-Fi (802.11b/g/n) and Bluetooth support making

them suitable to be used as gateways for the IoT for devices that doesn’t have the ability

to connect directly to the IoT.

ESP8266

Figure 6.4: ESP8266

ESP8266 is a Wi-Fi microchip with full TCP/IP stack that has become very popular due

to its low price (less than $7) and its ability to be programmed from the Arduino IDE.

The ESP comes in a series of configurations from different manufacturers with different

hardware configurations in regards of active pins, pitch, antenna, and physical dimen-

sions. In addition the ESP8266 supports a wide range of different SDKs, i.e. NodeMCU,

Arduino, Espruino, and MicroPython, meaning that developers are free to chose the

SDK of their liking to make use of the Wi-Fi capabilities of the ESP8266. By offering

built-in Wi-Fi capabilities at a low price the ESP8266 chip has gained a lot of market

attention as the most commonly used boards for IoT either required external Wi-Fi

modules or a Wi-Fi gateway in order to be connected to the IoT, which would bring the

price of the device even higher.

32 CHAPTER 6. IOT TECHNOLOGY

6.2 Object Abstraction layer

ANT

ANT is a proprietary ultra-low power wireless protocol commonly used in monitoring

applications where low power consumption over longer periods are vital. The protocol

operates on the 2.4GHz spectrum and supports multiple virtual channels existing on

the same frequency. The network structure of the ANT protocol supports peer-to-peer,

star, broadcast, shared, cluster, and mesh topologies. In order to distinguish each of

the ANT networks the networks needs to possess a unique identifier that is used by the

nodes to connect to the same networks. In addition to the unique network identifier,

nodes that wants to communicate with each other needs to have the same frequency,

message period, device type and transmission type (Mehmood and Culmone, 2015).

For each channel there exists three different ways to use the channel: independent,

where the channel only has one master and one slave; shared, where a single master

node receives data from many slave nodes; continuous scan, where the master node

receives full-time, allowing it to receive from multiple transmitting masters at the same

time (Dynastream Innovations Inc).

ANT provides a management of physical, data link, network, and transport layers

of the Open Systems Interconnection (OSI) stack. ANT+ is an extension to ANT that

adds functionality for interoperability and defines the data structure, channel parame-

ters, and the network keys that enable ANT+ products to communicate with each other

(Khssibi et al., 2013). These configurations are usually made by vendors and define the

session, presentation, and application layers.

BLE

Bluetooth Low Energy (BLE), or Bluetooth Smart, is part of the Bluetooth v4.0 specifica-

tion and developed as a low-powered wireless PAN protocol for control and monitoring

applications. Similar to other Bluetooth technology BLE is based on teh IEEE 802.15.1

standard for short-range wireless communication. The BLE protocol stack is made up

of two main parts, the controller and the host. The controller is composed of the phys-

ical and the link layer, while the host is made up of upper layer functionality like the

Attribute Protocol (ATT), the Generic Attribute Profile (GATT), and the Security Man-

ager Protocol (SMP). BLE operates on the 2.4 GHz band, similar to ANT, and defines

40 Radio Frequency (RF) channels with two different types of channels: advertising,

which is used for device discovery, connection establishment and broadcast transmis-

sion; data, which is used for bidirectional communication between connected devices

(Gomez et al., 2012).

Within the link layer the protocol defines the master and the slave role, where the

master is able to manage multiple simultaneous connections with different slaves,

6.2. OBJECT ABSTRACTION LAYER 33

forming what is called a piconet. The piconet is structured in a star topology with the

master being the center node. In order to provide energy saving functionality the slaves

support a sleep mode where they wake up periodically to listen for possible packet re-

ceptions from the master. By using a Time Division Multiple Access (TDMA) schema,

the master determines when the slaves should listen in addition to providing informa-

tion about the frequency hopping algorithm.

Wi-Fi

Wi-Fi technology is based on the IEEE 802.11 standards for wireless local area networks

(WLAN). Wi-Fi is commonly used to connect users to the Internet, but it also has it use

for IoT as it can be used for monitoring and managing lights, power outlets, door locks,

etc.. Building on the 802.11 standard Wi-Fi support operation on both the 2.4GHz and

5GHz bands, with the 802.11b/g/n operating on 2.4GHz bands and the 802.11a/n/ac

operating on the 5GHz band (Reiter, 2014). In comparison with the other protocols

presented in this section, Wi-Fi offers an enormous bandwidth with speeds over 100

Mbps and a range of up to 100 meters. This however implies that the protocol requires

a higher level of power usage, but advanced sleep techniques are being developed to

add better support for Wi-Fi integration in battery driver microcontrollers. Wi-Fi is

also the most commonly used wireless communication protocol and has existing in-

frastructure deployed in most homes, offices, and public areas within cities, offering

developers the ability to deploy their Wi-Fi supported IoT applications almost any-

where.

ZigBee

ZigBee is an open source standard for low-powered, low-rate wireless communication

commonly used in residential control and monitoring applications. The protocol is

based on the IEEE 802.15.4 link layer standard and operates in the 2.4GHz, 868MHz,

and 915MHz bands. ZigBee is as mentioned a low-rate protocol, but supports speeds

up to 250KBps. Some of the functionalities that are key for ZigBee to support low-

powered devices is that it has the capability to maintain very long sleep intervals and

low operation duty cycles to be powered by coin cell batteries for years (Reiter, 2014).

The protocol supports two different device types that can participate in the com-

munication:; the full-function device (FFD), that has three different modes of opera-

tion; and the reduced-function device (RFD), that is intended for simple applications,

like light switches and passive sensors (Lee et al., 2007). The RFD is only able to com-

municate with one FFD, while the FFDs are able to communicate with other FFDs and

multiple RFDs. The FFDs act as coordinators and are used to set up wireless networks

that follow a star topology. Other ZigBee devices are then able to connect to the net-

work by using a specified network identifier that is unique within the deployed network

34 CHAPTER 6. IOT TECHNOLOGY

space.

There exists three different stacks within ZigBee: ZigBee, ZigBee PRO, and ZigBee

IP. ZigBee IP supports IP-connectivity for low-powered devices and offers a IPv6-based

wireless connection that is built as extension to the IEEE 802.15.4 standard by adding

network and security layers. ZigBee PRO is quite similar to regular ZigBee, but is opti-

mized for larger networks of up to thousands of devices compared the the hundreds of

devices supported by regular ZigBee.

Z-Wave

Z-wave is a proprietary, interoperable wireless communication protocol used for con-

trol and monitoring applications, similar to ZigBee. The protocol provides operates

on sub-1GHz bands designed for low-bandwidth data communications, with the pro-

tocol running on 868.42MHz in Europe and 908.42MHz in the United States (Fouladi

and Ghanoun, 2013). The Z-Wave protocol uses a four layered architecture including

the physical, transport, routing, and application layers. The physical layer is made

up of an RF transceiver used to transfer data at a rate of either 9.6Kb/s, 40Kb/s, and

100Kb/s. The transport layer is responsible for handling package retransmissions, ac-

knowledgements, waking up low power network nodes, and packet origin authenti-

cation. In the network layer the Z-wave protocol uses the controller and up to 232

nodes to form a mesh network with routing capabilities between nodes even between

nodes that doesn’t have a direct radio connection. The final layer is the application

layer where the Z-wave commands are used to forward and decode payloads in order

to allow them to be used by the host application.

6.3 Service Management layer

DDS

Data Distribution Service (DDS) is a Real-Time Publish/Subscribe (RTPS) protocol de-

veloped by Object Management Group (OMG) for Machine-to-Machine (M2M) com-

munications (Al-Fuqaha et al., 2015). DDS doesn’t use the common broker architec-

ture, found in other IoT publish/subscribe protocols like AMQP and MQTT, in order

to realize its publish/subscribe functionality, in stead it realizes a high level of relia-

bility and Quality of Service (QoS) by using multicasting. By removing the broker the

protocols strengthens its ability to address the real-time constraints of IoT and M2M

communications.

The protocol is made up two different layers, the Data-centric Publish-Subscribe

(DCPS) layer and the Data-Local Reconstruction Layer (DLRL), with DCPS being in

charge of transferring data to the correct recipients and DLRL being an optional layer

6.3. SERVICE MANAGEMENT LAYER 35

that serves as a object-model interface that allows distributed data to be shared bu dis-

tributed objects as if the data were local (Esposito et al., 2008). In the DCPS layer there

are five entities that make up the data flow of the protocol: Publisher, DataWriter, Sub-

scriber, DataReader, and Topic. The Publisher disseminates the data received from

a sending application and the DataWriter communicates to the Publisher the exis-

tence and value of data of a set type. The Subscriber is the receiver of published data

and forwards it to the receiving application and the DataReader is used by the Sub-

scriber to access the received data. Finally the Topic that connects a DataWriter with a

DataReader is the combination of a data type and a name.

DDS supports 23 different QoS policies that allows developers to tailor the protocol

to their application requirements related to reliability, security, robustness, etc (Espos-

ito et al., 2008).

CoAP

The Constrained Application Protocol (CoAP) is an application layer protocol devel-

oped by the IETF Constrained RESTful Environments (CoRE) working group for IoT

applications (Al-Fuqaha et al., 2015). CoAP is based of REpresentional State Transfer

(REST) that runs on top of HTTP functionality. CoAP is designed to enable small de-

vices with low power, computation, and communication capabilities to utilize the pow-

erful RESTful interactions. Instead of using TCP CoAP uses UDP in combination with

a message layer that handles retransmission in order to reduce the complexity of tradi-

tional HTTP. The four message types defined in the message layer are: confirmable,

non-confirmable, reset, and acknowledgement. CoAP also supports the HTTP get,

post, put, and delete methods and is able to work together with HTTP by utilizing prox-

ies that are able to act as intermediaries that speak CoAP on one side and HTTP on the

other, meaning that CoAP applications can make use of existing architecture without

making major modifications to the intermediaries.

CoAP is able to run on top of Datagram Transport Layer Security (DTLS) or in com-

bination with TLS in order to provide certain levels of security (Bormann et al., 2012).

AMQP

The open standard protocol Advanced Message Queuing Protocol (AMQP) is devel-

oped for message-oriented IoT environments and is employed in the application layer.

The protocol supports reliable communication via message delivery guarantee primi-

tives including at-most-one, at-least-once, and exactly once delivery (Al-Fuqaha et al.,

2015). AMQP is made up of both a network protocol and a protocol model, where the

network protocol specifies the entities that interoperate with each other and the proto-

col model specifies the messages and commands used by the communicating entities

(Luzuriaga et al., 2015).

36 CHAPTER 6. IOT TECHNOLOGY

Additional key features are that the messages data is opaque and immutable, and

there is no size limitations to the message. These features allows AMQP support secu-

rity, reliability, and performance.

MQTT

MQTT is an open Client Server publish/subscribe messaging protocol built to be used

for Machine-to-Machine (M2M) communication and the Internet of Things. Its main

feature is the lightweight and simple implementation that is designed for devices with

tight constraints related to network bandwidth, latency, and connection reliability. The

protocol provides Quality of Service (QoS) data delivery with three different levels in

order to provide reliability for developers even when their software is deployed in sce-

narios where the underlying transport is unreliable. The different levels also allows the

developers to choose a level that is suited for the application and the reliability of the

network the application will be used on.

The MQTT protocol has two actor types, the broker and the client, where the broker

is the center of the communication protocol. The broker is responsible for handling all

messages transfered by receiving, filtering, and forwarding messages, as well as keep-

ing track of all subscribed clients and persistent messages. The client is a subscriber,

a publisher, or in some cases both, which is connected to a broker. The clients could

be implemented on any device that is able to support the MQTT library, meaning that

anything from small IoT devices to massive supercomputers could be clients that pub-

lish and subscribe to different topics on a broker.

The topics are used to provide subject-based filtering, which is the chosen filter-

ing option used in MQTT. By specifying which topics a client would like to publish or

subscribe to developers are able to filter different messages to the correct receivers and

have easily implement state machines that act based on messages received on different

topics. The structure of the topics are level based, meaning that a topic consists of one

or more levels, where each level is separated by a forward slash. The levels are made

up of strings, but MQTT also supports two different wildcards that are used when sub-

scribing to topics. An example to illustrate this could be a set of sensors setup within a

house with which gives the following topics:

House/Livingroom/Temperature

House/Livingroom/Humidity

House/Kitchen/Temperature

House/Kitchen/Humidity

House/Garage/Temperature

6.4. APPLICATION LAYER 37

If the client wants to receive all messages related to temperature the client could

subscribe to the following topic by using the single level wildcard instead of having to

subscribe to three different topics:

House/+/Temperature

Similarly if the client wanted to gather all sensor data within the house the client

could use the multi level wildcard in the following way:

House/#

XMPP

Extensible Messaging and Presence Protocol (XMPP) is an instant messaging standard

used for multi-party chatting, voice, and video calling and telepresence (Al-Fuqaha

et al., 2015). The protocol is developed as an open source project by the Jabber open

source community. XMPP offers the ability for developers to have authentication, ac-

cess control, privacy measurement, hop-by-hop and end-to-end encryption, as well as

compatibility with other protocols. In comparison with CoAP, XMPP doesn’t follow the

REST architectural style, but rather the Availability for Concurrent Transactions (ACT)

architectural style. This style is built on persistent XML streams that send XML stanzas,

which are relatively small pieces of structured data. The architecture involves ubiqui-

tous knowledge of network availability and a conceptually unlimited number of con-

current information transactions in the context of a given client-to-server or server-

to-server session. The key features of the ACT architectural style are: the use of unique

global addresses based on Domain Name System (DNS); the ability for XMPP entities to

advertise their availability (or presence) through the presence stanza which facilitates

real-time interactions between entities; persistent XML streams over TCP connections

that allow for immediate routing or delivery of XML stanzas in client-to-server and

server-to-server streams; the XML stanza which is a structured set of data contain-

ing routing information and a payload; a distributed ubiquitous network of clients and

servers that allows for peer-to-peer communication through a series of client-to-server

and server-to-server communications (Saint-Andre, 2011).

6.4 Application layer

Unity Engine

Unity Engine is a game engine developed by Unity Technologies that supports both 2D

and 3D development for up to 27 different platforms, including mobile devices, con-

soles, and traditional computers. Games developed in Unity is commonly developed

in C#, but the engine also supports JavaScript even though its deprecation process has

38 CHAPTER 6. IOT TECHNOLOGY

been started with the release of Unity 2017. Unity is being used by developers and

game studios both in the indie community and in professional AAA companies due to

its intuitive interface and cross-platform integration capabilities. The engine also has

great support for bringing in third party assets from applications like Maya, 3ds Max,

Photoshop, and Blender, as the engine itself lacks support for detailed modeling. Ad-

ditionally the engine has an enormous asset library where developers share and their

custom assets that can be used to boost the developing process and reduce the time to

market.

Unreal Engine 4

Unreal Engine 4 was developed by Epic Games and is one of the most popular game

engines that are publicly available. Unreal Engine 4 is the fourth installment of the

Unreal Engine and supports development for 15 different platforms with the major

focus being on the latest consoles, virtual reality, and mobile platforms. The engine

offers an industry leading visual performance in addition to providing a user friendly

and intuitive interface for developers. Games developed in the engine are built on C++

and are able to use Blueprint visual scripting, which offers the ability for developers

to rapidly prototype and design gameplay mechanics without having to write code,

making it more accessible for developers without previous programming experience.

CryEngine

CryEngine is developed by the development company Crytek and is an powerful en-

gine designed to create games for the available high-end platforms, including PC plat-

forms and newer consoles like the Xbox One and PS4. Compared to the two previously

described engines CryEngine is designed more for experienced game developers with

previous experience from game development in game engines. However, its power

grants amazing graphical and performance capabilities that can hardly be matched by

any other publicly available game engine. CryEngine supports several different script-

ing languages, including C++, C# and Lua, and offers a built in Sandbox programming

experience that is well suited for rapid testing of new game mechanics.

6.5 Proposed technology stack

Based on the three cases presented in Chapter 4 and the different technologies pre-

sented in this chapter a proposed stack for doing a proof-of-concept evaluation of the

framework developed for prototyping IoT-based pervasive games is shown in figure 6.5.

The stack a set of proposed technologies with suitable features that make up the entire

four layered stack, with some layers using multiple technologies to create a stack that

fulfills the requirements presented in Chapter 5 in the best possible way. It is important

6.5. PROPOSED TECHNOLOGY STACK 39

to note that with all of the available technologies within each layer it is possible to build

several different stacks that could provide functionality that could be more suitable for

specific implementations.

Figure 6.5: Proposed technology stack.

In the objects layer it is proposed to utilize both Arduino and Raspberry Pi technol-

ogy. The reason for combining these two technologies is that the simplicity of devel-

oping prototyping code on the Arduino makes it suitable for deployment in local area

networks (LAN) when paired with suitable technologies from the Object Abstraction

and Service Management layers. The Raspberry Pi is selected to offer a gateway for the

Arduino LAN in order to connect it to the IoT for Case 2 and 3. More specifically for

this implementation a Raspberry Pi Zero W is used as the gateway and the RFduino is

used to make the local area network. The RFduinos are tiny Arduino boards that comes

with built in BLE and low-power configuration support. Another approach to realizing

this layer could be to go with the ESP8266 board and remove the need to use a gate-

way for the IoT, but the RFduino and Raspberry Pi setup was chosen because of the

lower-powered capabilities that the RFduino board offers making them highly suitable

as game objects in pervasive games.

For the Object Abstraction layer Bluetooth Low Energy and Wi-Fi was chosen to

make up the technologies used in the layer. The Wi-Fi is used to connect the Rasp-

berry Pi to the Internet as it offers the ability to create a more movable gateway that isn’t

restricted to a wired ethernet connection. Choosing BLE over any of the other WLAN

protocols comes down to availability and cost of products supporting the different pro-

tocols in addition to the range support of the different protocols. Ant is restricted to a

range of about 30 meters while ZigBee, BLE, and Z-wave offer up to 100 meter ranges.

Z-Wave boards or shields are relatively expensive (from $50) compared to boards sup-

porting the other protocols. ZigBee is equally usable compared to BLE and in the long

term with ZigBee increasing its market share it could be the way to go, however, for this

research BLE will be used and evaluated.

40 CHAPTER 6. IOT TECHNOLOGY

MQTT has been chosen as the protocol to fulfill the Service Management layer. Its

lightweight and simple implementation makes it highly suitable for a prototyping en-

vironment as it easy to use for new developers and offers a high level of device abstrac-

tion through its publish/subscribe architecture. The freedom to have messages bodies

of any type relieve developers of the need to follow intricate message structures, and

the low latency and QoS support makes for reliable message delivery which is key for

real time game interactions.

The final technology chosen to fulfill the stack is Unity Engine. Both Unity and Un-

real Engine 4 offers developers an intuitive user experience and has a low entry bar for

new developers that wishes to get into game development. The reason for choosing

Unity over Unreal is its excellent support for cross-platform deployment and mobile

support. Having pervasive games supported by and managed on mobile devices al-

lows developers to deploy their games easier in any setting and helps maintain the

pervasiveness of these types of games.

Chapter 7

Design and creation

Within this chapter the design and creation process will be presented. Every stage of

the process, from the determination of requirements for the framework to the final it-

erative cycle of the implementation, will be addressed in detail. The first section intro-

duces the requirements set for the framework to be deemed successful. These require-

ments are based on information found in existing literature and experiences from the

preliminary study. The second section presents the high level logic of the three cases

used to evaluate different aspects of the framework and technology stack. Each of the

cases explore different attributes of the framework in order to display the usability of

the framework in different settings that should be supported in an IoT-based perva-

sive game framework. The final section presents the implementation process and how

keeping with the iterative approach provided useful insights to the framework through-

out the entire development phase. The final evaluation is outside the scope of this

chapter and will be presented in chapter 8.

7.1 Initial concept designs

In order to evaluate the proposed conceptual framework against the requirements es-

tablished in the previous section a proof by demonstration approach was chosen. For

the proof by demonstration three cases has been developed in order to address the dif-

ferent requirements. Each of the cases is an implementation of the game ”Follow the

red dot”, introduced in chapter 4. The reason for choosing this game is that the game

mechanics are easy to implement and the interaction with and between the different

devices requires features that are mirrored in the evaluation criteria. The game itself is

also quite customizable allowing for custom game types with local and/or distributed

play, single- or multi-player, and the ability to monitor different statistics like reaction

time, which in turn offers multiple ways to evaluate the framework against the require-

ments.

Each of the three cases evolve in complexity in regards to the implementation and

overall game logic. The first case is the most basic and is made up of an local imple-

41

42 CHAPTER 7. DESIGN AND CREATION

Table 7.1: Properties of the three cases.

Case IoT Device(s) Playground Possible # devices Game logic

1 RFduino Local, BLE range <=9 One RFduino Host
2 RFduino + RPI ZW Distributed >2 All RFduino Hosts
3 RFduino + RPI ZW Distributed >2 Unity Engine

mentation running only on the RFduinos supporting up to eight devices to be used as

interactive game objects. The second case expands the first case to also use the Rasp-

berry PI Zero W which offers the ability to create a distributed system communicating

through the use of the MQTT messaging protocol. This offers the ability to support

more than eight devices in addition to widening the play area from a local BLE range to

anywhere with an Internet connection. The game logic on both of these cases is han-

dled on the RFduino Hosts. In the third case the global playground from the second

case is maintained, but the game logic is now moved out of the RFduino Hosts and

onto a game made in the Unity Engine. The communication still happens through the

MQTT messaging protocol and the Unity game acts as another MQTT Client along with

the Raspberry PIs. The subsequent sub-sections presents in detail the conceptual idea

behind each case along with the requirements that are suitable for evaluation within

each of the cases.

7.1.1 Case 1: Local - RFduino

The first case seeks to present the ability to take a closer look at the functionality of the

RFduino and provide the ability to evaluate the RFduino against some of the proposed

requirements for an IoT device that would be used in IoT-based pervasive exergames.

At the core of this implementation is the Gazell Link Layer (GZLL) which is used for

communication between the RFduino devices. The GZLL is a wireless link between

one Host and up to eight Devices where the communication is based on a star topol-

ogy as shown in figure 7.1. Since the GZLL utilizes the same radio antenna as the one

used for Bluetooth Low Energy communication the range is restricted to a maximum of

100 meters in an outdoor setting without any obstacles (Nordic Semiconductor), and

considerably less in an indoor multi-room setting.

7.1. INITIAL CONCEPT DESIGNS 43

Figure 7.1: Star Topology of the GZLL

Due to the nature of the GZLL it is natural to implement the game logic on the Host

as all communication has to pass through this device. In addition to being responsible

for running the game logic, the Host can also be customized to act as an interactive

device in the same way as the RFduinos running as Devices, which provides a poten-

tial total of nine interactive devices to be used in play. An option to running with a

single GZLL network with nine RFduinos is to expand the network into multiple GZLL

networks by connecting several Hosts together either through wired serial communi-

cation or the Inter-Integrated Circuit (I2C or I2C) bus. Although this provides for the

option to have more devices, it does not provide much expansion in the playground

area as the wired connections limits the maximum possible range between a pair of

Hosts.

With the game logic running on the Host there is only need for two types of mes-

sages when running with a single GZLL network as done in this case. One message

going from the RFduino Host to the RFduino Device indicating that the device is now

in possession of the red dot, which should trigger the RFduino Device to display some

sort of indication that it is in possession of the red dot and is now listening to some

sort of input from the player. The second message is the one going from the Device

to the Host indicating that player has interacted with the device when in possession of

the red dot and that the Host now should pass the red dot onto another device. The

determination of the next device that should get the red dot could either implemented

in a way that follows an exact pattern or a random selection based on random number

generation (RNG). Since neither of the solutions involves any advanced complexity in

regards to implementation the RNG version was used for all the cases in this project.

This case provides the ability to evaluate five of the requirements proposed in Chap-

44 CHAPTER 7. DESIGN AND CREATION

ter 5, even though it doesn’t utilize the framework in any way, this first case utilizes non-

invasive computational devices to bring a digital game into the real physical world,

which is the core of pervasive games (Benford et al. (2005)). The requirements be-

ing evaluated here are focused towards the IoT-device and the proposed properties it

should possess in order to be suitable in IoT-based pervasive games. Some of the re-

quirements will overlap between the different cases as the cases may provide different

aspects to the evaluation of the requirement. The five requirements evaluated in this

case are:

C1.0 - Reduce implementation cost

C2.1 - IoT Flexibility

C2.2 - Addressability

C2.4 - Power management

C2.6 - Scalability

Reduce implementation cost

The RFduino runs Arduino code with some additional features at its top level. The Ar-

duino code is designed to be featured on prototyping boards like the RFduino and the

technical skills required to get started is minimal. These types of micro-controllers are

designed to be used for prototyping and to remove the need to build custom circuitry

before testing your application, meaning that developers easily can start prototyping

their applications without having to invest a lot of time into both building custom cir-

cuitry and achieving a high degree of technical skill.

IoT Flexibility

Being able to provide developers with a high degree of customizability in regards to

how to handle input and output on the physical side is an important part of realizing

the five base interaction models for designing pervasive games presented in section

2.3. With the ”Follow the red dot” game there is a need for at least two different input

and output modules, one for the player to interact with when the device is in control

of the dot and one to indicate that the device is currently in control of the dot. For

this research project an LED and a pushbutton has been used as the I/O modules, and

altering either of the modules is possible without breaking the game. One example of

an alteration would be to use a photocell for input and an audio source for output,

neither causing any significant changes to the code or game logic.

7.1. INITIAL CONCEPT DESIGNS 45

Addressability

Having the ability to have uniquely addressable objects is a key property of the IoT

vision (epo (2008) and pervasive computing. Even though the RFduinos used in this

case aren’t connected directly to the Internet, the importance of being able to address

the correct device when communicating is still present. The GZLL messaging proto-

col defines nine different roles with associated identifiers, these being the Host and

Device0-8. Each of these roles have a corresponding address within the GZLL network

where each of the addresses are made up of an unique byte long prefix address in ad-

dition to a 2-4 byte long ”base address” (Semiconductor (2017)). Since the RFduinos

operate on the same base address by default it is possible to have multiple devices run-

ning on the same role with the same address within a GZLL network. This will lead to

message loss due to the star topology message handling used in the GZLL protocol, as

every message sent from the Host to an Device will only be received by the first Device

that polls for a message on the Host. However the GZLL protocol allows for altering

of the 2-4 byte ”base address” both for the Host and the Devices, allowing for multiple

GZLL networks in the same proximity without having message loss occurring.

Power management

Multiple interaction models proposed in section 2.3 are easily fulfilled by having a wire-

less IoT device. Being able to run of batteries provides the ability for the RFduino to be

completely wireless and have a high level of mobility, but it also creates the need to

assess the power consumption on the device. The RFduino offers the option to go into

sleep mode, a low powered passive mode, when it isn’t performing any tasks. This can

be controlled by setting the amount of sleep time for the device upon the function call,

which in this case the devices that aren’t in control of the red dot could be set to sleep

mode in order to reduce power consumption. The structure of the GZLL protocol sup-

ports this ability well by being designed to have the RFduino Host be unable to send

direct messages to the RFduino Devices, but rather have the Devices pull queued mes-

sages from the Host. This means that by having the Devices pull messages whenever

they leave sleep mode there won’t be cases where the Host sends a package to a sleep-

ing Device that could potentially result in a package loss.

On the Host however, finding occasions where it can enter sleep mode is a bit more

difficult as it has to be awake to handle message pull requests and other messages from

the Devices. Also by having the game logic based on the Host means that it at all times

have to be ready to delegate the next host for the red dot. One way of solving this is

to have the Host be the only RFduino connected to an infinite power source and have

it stay as a stationary unit, reducing the number of mobile units by one, which in this

case won’t have any game breaking implications.

46 CHAPTER 7. DESIGN AND CREATION

Scalability

Being able to support scalability is a key feature of pervasive computing and is also an

important feature for the IoT technology being used in pervasive games. With the GZLL

protocol having a limited support of only nine different devices, one Host and eight

Devices, the scale of the pervasive games built with these devices is limited. The GZLL

protocol is ,as mentioned in the previous subsection, designed to minimize power con-

sumption by having the RFduino Devices pull messages from the RFduino Host in or-

der to receive data. This in turn means that the Devices have to occasionally have to

send pull requests in order to see if there are messages queued up on the Host, as the

Host has no way to indicate to the Devices that there currently resides a message in the

TX pipe that is ready to be sent. The way this is solved is usually through having the

RFduino Device send a NULL message to the Host at a certain frequency, and when

the Host receives a NULL message it checks the TX FIFO of the Device for a message

and piggybacks the message onto the ACK payload that is sent back to the Device. Ac-

cording to the product documentation (Semiconductor (2017)) for the nRF5 chip used

on the RFduino, the RFduino Host is designed to have two FIFOs, one RX and one TX,

for each device, giving a total of 16 FIFOs which are able to store three packets each.

This capacity should be able to support the limited amount of messages sent between

the RFduinos in the implementation of ”Follow the Red Dot” when running with the

maximum amount of devices supported by the GZLL protocol.

7.1.2 Case 2: Distributed - IoT

In the second case the goal is to take the local GZLL implementation of ”Follow the

Red Dot” from Case 1 and expand it into a distributed, pervasive implementation that

could support game play from anywhere with an Internet connection. In order to con-

nect the GZLL networks to the Internet and allow for pervasive communication the

network has to be connection to a device that supports Internet connectivity. Due to

the diverse connection opportunities supported by the RFduino (Bluetooth LE, wired

serial communication, I2C, etc) this can be done in several ways and for this particular

case a Raspberry PI Zero W will be connected to the RFduino Host of an GZLL network

through the use of serial communication through the USB ports. The support of Wi-Fi

communication and the MQTT messaging protocol, which was introduced in chapter

2, on the Zero W allows it to run as both a MQTT Subscriber Client and a MQTT Pub-

lisher Client communicating with other MQTT Clients connected to the same MQTT

Broker. The MQTT Broker used for this research project is running on a remote server

located at the Norwegian University of Science and Technology.

7.1. INITIAL CONCEPT DESIGNS 47

Figure 7.2: General communication setup for Case 2

Figure 7.2 illustrates the general communication setup used for Case 2. The setup

utilizes three different communication protocols and is a prime example of the flexi-

bility in communication protocols for IoT devices and how this flexibility can be used

to connect virtually any electronic device to the Internet of Things. The pervasiveness

is in this case achieved in the MQTT layer, where the MQTT Client could be placed any-

where in the world where there is an Internet connection available. Be it in the same

room as another MQTT Client in the network or across the globe, the MQTT protocol

allows the ”Follow the Red Dot” game to be played anywhere.

Similarly to Case 1 the idea is to have the RFduino Host to be in charge of delegat-

ing the red dot to the RFduino Devices, however in this case there are multiple RFduino

Hosts and additional game logic has to be implemented in order to handle the delega-

tion between the multiple hosts. For the particular implementation used in the testing

two RFduino Hosts, with an equal amount of RFduino devices in their network, were

used and a virtual beacon indicating which of the two was in charge of the red dot

delegation was added. For each time the button was pressed on the RFduino Device

with the red dot a random number generator on the Host with the beacon was used to

determine if the Host currently holding the beacon should keep it or pass it on to the

other Host. As long as a Host doesn’t have possession of the beacon it remains passive,

waiting for the reception of the beacon.

With the addition of serial communication between the RFduino Host and the Rasp-

berry Pi and the MQTT communication between multiple Raspberry Pis comes the

need to support additional messages. The messages within the RFduino GZLL net-

work used in Case 1 remains unchanged, while messages used to handle the transfer

of the beacon is added. The message used to handle handle the beacon is a simple ID,

48 CHAPTER 7. DESIGN AND CREATION

i.e. A or B, indicating the ID of the Host that should receive the beacon. The same type

of message has to be passed between the RFduino Host and the Raspberry Pi through

the serial communication. More details about how these messages are implemented

are presented in section 7.2.

In Case 2 seven of the set requirements from Chapter 5 will be evaluated with a fo-

cus on the pervasive aspect introduced in this case. Some of the criteria overlap with

some of those tested in Case 1, but as Case 2 expands on the functionality of Case 1 it

offers different aspects to the requirements which should be evaluated. The upcoming

subsections seeks to present the reasoning behind why these requirements are rele-

vant to the case and how the implementation is used to evaluate each of the different

requirements. The evaluation itself and the associated findings are presented in chap-

ter 8 and 9. The five requirements evaluated in Case 2 are:

C2.2 and C3.1 - Addressability

C2.3 - Device-to-device communication

C2.6 - Scalability

C3.2 - Interoperability

C3.3 - Connecting new devices

C3.4 - Distributed vs Local use

Addressability

The MQTT messaging protocol allows clients to publish to topics that multiple other

clients are subscribed to without the knowledge of who or how many are currently sub-

scribed. In the case of the ”Follow the Red Dot” implementation a need to handle the

addressability of these MQTT messages arises as the MQTT layer is used to transfer the

host beacon between hosts and it is crucial that the correct host receives the beacon

when it is sent from one host to another. The addressability issue could easily be han-

dled by utilizing either the message topics of the MQTT protocol or by adding a sort of

identification to the message body which is associated with an unique identifier set in

the code running on the Raspberry Pis. For this particular implementation, running

with only two Raspberry Pis and two RFduino Hosts, either of the two implementa-

tions would provide the necessary addressability. Table 7.4 displays examples of how

the MQTT messages and topics could be structured for each of the two implementa-

tions.

Regarding the messaging between the Raspberry Pi and the RFduino Host there is

no need to handle the addressability as the serial communication goes directly through

the USB-ports on each of the devices and none of them have any other form of wired

serial connections.

7.1. INITIAL CONCEPT DESIGNS 49

Table 7.4: Examples of handling addressability for MQTT messages

Identification location MQTT Topic MQTT Message

Topic Master/FtRD/RPI1 "Beacon"
Message Master/FtRD "RPI1:Beacon"

Device-to-device communication

As mentioned in the previous section, handling the addressing of the data being trans-

fered is easily handled, however the reliability of the messaging needs to be addressed

when two additional layers are added to the messaging stack. In Case 1 the concur-

rency and addressability of the Gazell Link Layer protocol is presented and this remains

unchanged for Case 2. The MQTT messaging protocol also offers a high degree of re-

liability through three different Quality of Service (QoS) levels, as presented in section

6.3, where the developer choses the level based on the constraints of the application.

The final communication layer is the serial communication between the Raspberry

Pi and the RFduino Host. The serial communication is a bare boned service that doesn’t

provide any form of error detection or error correction, but by utilizing the USB ports

on each of the devices instead of the pins the implementation is at least provided with

error detection and a retry function. By adding a cycle redundancy check (CRC) any

data corruption that occurs during the serial transfer should be detected and used to

trigger an error handling function, i.e. in the form of a package retransmission.

Scalability

Even in a prototyping setting is important to have support for scalability in an IoT

based application as the ability to support more devices gives a higher degree of free-

dom for the developers when designing pervasive games. By connecting the RFduino

local network to a Raspberry Pi gateway that supports MQTT communication the de-

velopers gain the opportunity to have the potential of thousands of IoT devices com-

municating simultaneously (Scalagent), which should enough for most prototyping

cases. However, with the increased scale comes the issue of handling the beacon dis-

tribution as each of the devices needs to be aware of all the other connected devices.

Interoperability

The use of the MQTT messaging protocol provides the option to utilize other IoT de-

vices in the same role as combination of the Raspberry Pi and the RFduino networks, as

it is built on the publish/subscribe paradigm. The protocol allows for any device sup-

porting MQTT to subscribe and publish to the topics used in the application, meaning

that the developers could use other types of IoT devices as game objects without having

to alter the message structure used for the Raspberry Pis.

50 CHAPTER 7. DESIGN AND CREATION

Connecting new devices

The level of abstraction in the MQTT messaging protocol makes the task of connect-

ing new devices to a network as easy as can be, especially outside runtime. Since the

overall code is quite simple, adding additional devices, either of the same type with

the Raspberry Pi and RFduino setup or other types of IoT devices with MQTT support,

requires very little customization and the implementation overhead is small. How-

ever, if we were to have the ability to add additional devices during runtime the code

would quickly become more complex, as the game logic runs on several different units,

meaning that all of them need exact knowledge of all the units that are connected dur-

ing runtime. The overhead here is quite severe, mainly due to the fact that all devices

needs to be identified and the ability to provide information about themselves. Take

for example a case where an Raspberry Pi with an RFduino network consisting of one

Host and four Devices were to connect during runtime. The RFduino Host would need

to provide information about how many Devices it has connected and receive infor-

mation about all of the units that are already running in the game before being able to

engage in the gameplay. It is far from an impossible task to complete, but compared to

the relatively simple and straightforward code that would be needed if the amount of

active devices were predetermined, it is clear that it would provide a lot of extra work,

especially in a prototyping setting.

Distributed vs Local use

The core feature of this case is the ability for the game to be played in a distributed

fashion, meaning that the game no longer is restricted to the range of the radio unit

on the RFduinos. In theory the game could be played from anywhere in the world

with an available Wi-Fi connection and multiple players could collaborate across a ge-

ographically distributed playground. With the added functionality also comes added

complexity, compared to the simple implementation in Case 1 the two additional mes-

saging layers adds a higher degree of complexity. While the MQTT messaging between

the two Raspberry Pis is reliable, fast, and easy to implement, the serial communica-

tion between the Raspberry Pi and the RFduino Host requires quite a bit of error han-

dling and error recovery as most forms of serial communication is prone to errors due

to multiple factors.

7.1.3 Case 3: Distributed - Digital Twin

In the third and final case the pervasive implementation created in Case 2 is expanded,

as illustrated in figure 7.3, in order to utilize the proposed framework for prototyping

pervasive exergames. The overall goal of this case is to move the game logic outside

of the IoT devices in order to provide a higher degree of customizability for develop-

ers when it comes to code implementation and the use of a wider array of IoT devices.

7.1. INITIAL CONCEPT DESIGNS 51

Moving the game logic to the game engine gives the IoT devices the role of being purely

interactive game objects, removing the need to have complex game logic running on

these devices. This eliminates the need to develop extensive code for each type of IoT

device as they only need to support ways to interact with and record the state infor-

mation of their components and have them mirrored in the engine. By providing a

communication standard for the IoT devices through the use of custom messages and

MQTT message topics it should allow for novice developers to connect their device and

take part in pervasive games from virtually anywhere in the world.

Figure 7.3: General communication setup for Case 3

In order to move the game logic outside of the IoT devices themselves the core of

the framework is implemented within the Unity Engine in C# code. By running as an

MQTT Client the game engine communicates with the IoT devices in the same way as

the IoT devices communicated with each other in Case 2, through publishing and sub-

scribing to a set of predetermined MQTT topics. The communication structure returns

to a star topology, similar to the one presented case 1, but with the game engine as the

center of the topology. Figure 7.4 illustrates how all the communication now goes back

and forth between the IoT devices and the game engine. Even though MQTT offers the

option to have direct communication between the devices, similar to the implemen-

tation in Case 2, the framework is designed to have the IoT devices not consider the

52 CHAPTER 7. DESIGN AND CREATION

existence of other devices. The IoT devices should only have to support communica-

tion that allows the framework to have real-time mirroring between the physical and

virtual twin representations of the IoT devices.

Figure 7.4: Star topology communication setup of Case 3.

Having a framework support numerous different IoT devices with various I/O com-

ponents means that the framework needs to have a standardized way for developers to

identify components and their ways of interacting with the framework. An example is

shown in figure 7.5 where there’s two RFduinos with different I/O’s. The one on the left

detects user interaction through the use of an ultrasonic sensor while the one on the

right uses a regular push button. Given that the game developer wants to have both

of the devices be valid game objects the framework needs to provide a level of abstrac-

tion for the different I/O components in order to have the game act in the same way

when input is detected from an ultrasonic sensor, a push button, or any other type of

input component. The same goes for output. This relieves the developer of the need to

have specific handling for each type of input device, reducing the implementation time

which is critical to the prototyping process. A more detailed description of how this is

handled and implemented through the use of dedicated MQTT topics and component

classes is presented in section 7.2.

7.1. INITIAL CONCEPT DESIGNS 53

Figure 7.5: Two RFduinos setup with different input components.

Since Case 3 utilizes most of the same setup and functionality of case 2 a lot of

the requirements evaluated in Case 2 overlaps with Case 3 and won’t be reevaluated

for this case. Case 3 will focus on the evaluation of the features that the prototyping

framework introduces and how they effect the overall prototyping process. Four of the

requirements from Chapter 5 will be evaluated in this case and the upcoming subsec-

tions presents why these requirements are relevant to this case and how the implemen-

tation is utilized to perform the evaluation. The requirements evaluated for Case 3 are:

C1.0 - Reduce implementation cost

C3.3 - Connecting new devices

C3.5 - IoT Flexibility

C3.6 - Game logic centralized

C3.7 - Scalability

Reduce implementation cost

Being able to reduce the implementation cost of prototyping pervasive games is the

overall goal of the entire framework. Every feature implemented is added to reduce

54 CHAPTER 7. DESIGN AND CREATION

the development time for developers in the prototyping stage, making it easier for de-

velopers to have their products come to fruition. The most critical features that are

implemented to achieve this is the ability to have abstract I/O components for the IoT

devices, the support of any IoT device that is able to support MQTT, and having the

game logic moved out of the IoT devices and into the Unity game engine. By abstract-

ing the different I/O components that the IoT devices can support into a component

with standardized functionality, the need to have individual handling for each compo-

nent within the game engine is removed, meaning developers could utilize existing IoT

devices which they may have at their disposal at the prototyping stage without having

to make alterations on the hardware side. Also, by running all the communication with

the game engine through MQTT means that almost any IoT device with the ability to

connect to the Internet could be used as a game object, as MQTT is now supported by

most major programming languages.

In addition to implementing key features that remove implementation overhead

for the developers, it is important that the framework is intuitive and requires little ef-

fort for the developers to familiarize themselves with. By providing well a documented

open source API developers will be able to integrate and expand on the framework to

prototype pervasive games in a more efficient way compared to developing the func-

tionality from the ground up by themselves. Outside of the API the framework code

should also be well commented to provide useful insights for the more curious devel-

opers that seek to understand the underlying mechanisms of the framework.

Connecting new devices

In Case 2 the issue with connecting new devices in runtime when the game logic run

on several different devices was addressed, but by having the game logic run only in

the game engine the task of connecting new devices during runtime becomes much

easier. Since the code on the game engine is the only code that needs to be aware of

how many IoT devices are connected as game objects the overhead of writing code

specific to handle new connection in runtime is reduced severely. With the implemen-

tation of ”Follow the Red Dot” in this case there hasn’t been added any specific code to

connect devices during runtime, but with the framework’s support for setting up new

Digital Twins and including them as active game objects the task that remains for the

developers is to add functionality for scaling their game when new objects are added.

IoT Flexibility

As mentioned previously, one of the key features of the framework is the ability for

developers to utilize the IoT devices of their choice with associated I/O components.

The reason for this is the same as in Case 1, as the more IoT devices and I/O com-

ponents that are supported the framework gets closer to realizing the five interaction

7.1. INITIAL CONCEPT DESIGNS 55

models that were presented in section 2.3. Distinctive from the first case is the need

to support different devices. The only restriction set by the framework that the device

needs to be able to act as an MQTT Client, either directly or through another device

that is able communicate on behalf of the device, similar to the setup used with the

Arduino and the RFduinos. In order to be able to support different devices and com-

ponents several standard for identification is proposed for the initial implementation

of the framework. The goal of these standards is to provide developers with a simple,

comprehensible way of connecting their custom IoT devices without creating a large

overhead in the prototyping process. More details about these standards are presented

in section 7.2.

Game logic outside

Moving the game logic from the IoT devices to a game engine like Unity means that the

need to write extensive code for the IoT devices themselves is reduced. Even though

newer IoT devices are powerful enough to run complex code, not every device supports

the same programming languages, meaning that if developers want to have an as wide

as possible support for different IoT devices they would need to develop the game logic

for several different programming languages. This could be a fairly time consuming ac-

tivity compared to developing the game logic in only one language. Although moving

the game code to an game engine would reduce the amount of code produced for spe-

cific IoT devices, it still doesn’t keep the developers from writing some code for each

of the devices as the devices have to act according to the actions initiated by the game,

i.e. turning on an LED or reading the current temperature in the room. But these kinds

of I/O interactions are usually well documented for most IoT devices and the level of

development skill required to implement this type of code is quite low, meaning most

developers with basic programming knowledge should be able to write the implemen-

tations without too much effort.

Another perk of moving the game logic to a game engine is the ability to build game

clients that could be run on almost any platform. Whether it be a smart phone or

a game console, this gives the developers the option to build complete applications

that are able to be run outside the game engine, while keeping all the development

within the engine. This type of flexibility eases the step from prototype, which might

be run from the engine itself, to a commercial product that could be distributed across

different platforms.

Scalability

The introduction of a centralized game logic removes the need for the IoT devices to

have any knowledge about the existence of other devices that are connected to the

game. Having the game engine or game application be the only device that needs to

56 CHAPTER 7. DESIGN AND CREATION

keep track of the connected devices means that the support for scaling the application

is far better as the traffic caused by transferring device information between every de-

vice is removed. This is a crucial feature in cases where the developers want to develop

large scale games as the amount of data that needs to be handled by the MQTT broker

is greatly reduced.

7.2 Implementation

In order to design and implement the software used for the three cases the Design

Science Process Model (DSR Cycle), introduced in chapter 3, was used in order to fol-

low the iterative approach of the design and creation process. The development was

done through several cycles as the earliest cycles within each case identified issues

with the initial proposals that needed to be addressed. All of the cases were developed

in turn, from Case 1 to Case 3, and were treated as separate cases, however any useful

knowledge that would benefit the later cases was taken into consideration through-

out the development. The following subsections will present the implementation part

of the research, where the initial design proposals presented previously were realized

through three separate artifacts.

Case 1

As presented earlier in this chapter and in the case description in chapter 4 Case 1 is

built purely on the RFduino device with an LED and a push button as the chosen I/O

for the user to interface with. The initial proposal for the implementation was built

on the idea of having the main game logic be run of the RFduino Host and have the

RFduino Devices be used as the interactive game objects. This meant that the only

task that should be performed by the RFduino Devices were displaying whether or not

they are in possession of the red dot and registering user input. Figure 7.6 displays the

schematics for the hardware setup of the RFduino Devices with the LED and the push

button interface.

7.2. IMPLEMENTATION 57

Figure 7.6: Schematics for the RFduino Device

On the software side of the RFduino Devices the logic was built around a boolean

variable which was used to indicate if the device was in possession of the red dot or not.

When the device doesn’t possess the red dot the only action it performs is polling for

messages on RFduino Host by sending NULL messages every 100 millisecond. Upon

receiving the red dot from the Host the LED is turned on to indicate that it now has the

red dot and can be interacted with. While in possession of the red dot stops sending

polling messages to Host and waits for the player to press the push button. Once the

player presses the button the LED is turned of and a message indicating that the button

was pressed is sent to the Host, and the Device returns back to its initial state.

The RFduino Host is in charge of delegating the red dot to the Devices and does

so by utilizing a Random Number Generator (RNG) function based on the number of

Devices that are currently connected to the Host. This delegation is done upon game

start, which is controlled by pressing a push button attached to the Host, and upon

receiving a message indicating that the button has been pressed on the Device that had

the red dot. The only restriction on the delegation is that the dot should not be passed

on to the same Device two times in a row, which is handled by recursively calling the

RNG function until a Device that is not the last the Device to have the dot is selected.

During the evaluation step of the initial proposal it was quickly discovered that the

implementation was faulty and game breaking errors were experienced during game

play. What happened was that when the push button was pressed on a device that was

in possession of the red dot it would sometimes fail to reset the boolean value that in-

dicated the possession of the red dot, and also sometimes fail to turn its LED off. The

following code segment indicates the code that was run when a button is pressed on

the Device that is in possession of the red dot:

1 if (hasTheRedDot) {

2 if (button.pressed()){

3 hasTheRedDot = false;

58 CHAPTER 7. DESIGN AND CREATION

4 digitalWrite(ledPin, LOW);

5 RFduinoGZLL.sendToHost("#p");

6 }

7 }

In the code segment the Device is supposed to set its boolean value back to false

(line 3), indicating that it no longer has the red dot, turn off its LED (line 4), and finally

send a message back to the Host indicating that the button was pressed (line 5). During

testing there was no consistent pattern to indicate what made the code break. In ev-

ery attempt when the ”hasTheRedDot” variable was true the Device would send the

”#p” message to the Host and the Host would successfully receive it, however some-

times the boolean value wouldn’t be set to false or the LED would remain on, and even

in some cases neither of those lines would trigger. The code was tested on several dif-

ferent RFduino devices with different alterations made to the code as well, but this

approach remained too inconsistent to do any proper testing.

The inconsistency observed in the first iteration lead to a rework of the initial idea

of the implementation and the proposal of developing the code on the RFduino Host

and Device to be closer to how it was envisioned to be in when used with the final

framework. This meant that instead of having the Devices act based on if they had

the red dot or not, they would now act on instructions sent by the Host, and only the

Host would be aware of which Device had the dot or not. The code on the Devices

was built to provide interaction with its I/O, both for the players and the developers,

meaning that the only thing the Device would do is to turn on and off its LED based

on messages from the Host, and send notification to the Host about its button being

pressed. On the Host the code was structured to have all the tracking and handling of

the red dot based on the interactions with the Devices.

Overall this approach isn’t any more complex than the one in the initial proposal

and if anything it is closer to the approach sought for in the final case. The RFduinos

now send three different messages through the GZLL messaging protocol, in addition

to the NULL message used for polling, two being from the Host to the Device and one

being from the Device to the Host. Table 7.6 displays the different messages and their

functionality.

Table 7.6: Messages used for Case 1

Message Sent from Sent to Functionality

"#LED:ON" Host Device Enables the LED on the Device
"#LED:OFF" Host Device Disables the LED on the Device
"#BUTTON:P" Device Host Indicates that the button has been pressed

7.2. IMPLEMENTATION 59

Case 2

Case 2 introduces new hardware and moves the application from a local to a global

playground. Based on observations made in the development of Case 1 some changes

to the initial design of case 2, presented in section 7.1, were made. Instead of having

the RFduino Hosts delegate the red dot in the same manner as initially implemented

in Case 1, the logic used in the final implementation of Case 1 is used for this case. This

means that code for the Devices remains unchanged, while the code for the RFduino

Host receives alterations in order to address the added functionality of the beacon and

the serial communication with the Raspberry Pi.

The addition of another Host to interact with leads to the inclusion of a beacon,

which is used to indicate which of the two Hosts should be delegating the red dot to its

Devices. This beacon is simply represented by an ID character which is sent between

the two Hosts. If a Host receives a beacon matching its pre-set ID it proceeds to dele-

gate the red dot to one of its devices in the same manner as done in Case 1. In order

to determine if the beacon should be passed on to the other Host a RNG function is

used, and since the dot cannot be passed back to the same Device two times in a row

and both the Hosts have a similar amount of Devices connected to them, the chance is

always higher for it to be passed back. In the implementation six RFduinos, meaning

that each of the Hosts have two Devices each connected to them.

By adding the Raspberry Pis for global communication there is also added some

code in order to support serial communication between the RFduino Hosts and the

Raspberry Pis. In the initial design the messages that were transfered were simple one

character messages, which during testing proved to cause minor issues in regards to

reliability as serial communication is known to be prone to errors caused by static.

This meant that the serial messaging had to be reiterated and the messages were made

longer, and less-than (<) and greater-than (>) symbols were added to the beginning

and end of the message to ease message parsing on both ends.

Table 7.7: Topics and messages used for Case 2

Topic : Message Functionality

"FtRD/RPI1":"<#BEACON>" Indicates that the Host connected to the Raspberry Pi
with ID 1 now has the beacon.

"FtRD/RPI2":"<#BEACON>" Indicates that the Host connected to the Raspberry Pi
with ID 2 now has the beacon.

Support for MQTT and serial messaging on the Raspberry Pi was implemented in

Python 3.5 and runs of a single script. Given that the pool of messages being trans-

fered to and from the Raspberry Pi was very limited the MQTT Clients only published

and subscribed to a single topic as this is sufficient. The Raspberry Pi’s role is simply

to be a communication tool, which means that it will publish received serial messages

60 CHAPTER 7. DESIGN AND CREATION

to the MQTT topic and send any received message on the subscribed MQTT topic to

its connected Host through the serial communication. Table 7.7 displays how the com-

bination of topics and messages was used to handle the beacon between the two Hosts.

In regards to the hardware setup the RFduino Devices were setup identical to Case

1, while the RFduino Host now is connected to the Raspberry Pi through the use of a

USB shield and the USB port on the Pi, as shown in figure 7.7. Several tries were made

on using the connection between the digital pins on the Raspberry Pi and the RFduino

Host to support the serial communication, but it proved to be prone to errors as the

communication link was sensitive to static in the environment and the USB ports pro-

vided a more stable environment with less errors as it supports built in error detection

and retry functionality.

Figure 7.7: Hardware setup of the Raspberry Pi Zero W and the RFduino Host.

Case 3

In addition to an implementation of ”Follow the Red Dot”, Case 3 also includes the im-

plementation of the proposed framework for prototyping IoT-based pervasive games.

The framework itself is supposed to support features that reduces the overall imple-

mentation cost, including time usage and other monetary costs, of prototyping IoT-

based pervasive games. The main features are the ability to support Digital Twins, hav-

ing the game logic centered at one location, and support any IoT device that is able to

support MQTT communication. This is done by implementing features that support

7.2. IMPLEMENTATION 61

an intuitive API allows the developers to engage in the prototyping process quicker,

removing the overhead of developing code to connect, track, and communicate with

the IoT devices. More details about the implementation of the framework will be pre-

sented in the next subsections before the implementation of the instance of ”Follow

the Red Dot” is presented.

The framework

The framework code is based around two main object types, the MQTT handler and

the IoT Device. The MQTT handler is responsible for handling any communication

happening through the MQTT Client, which includes publishing and subscribing to a

preset of MQTT topics, message parsing, and message distribution. The IoT Device

is the virtual representation of the Digital Twin which contains the information about

the IoT Device and provides ways for developers to interact with the virtual device.

Any interaction that happens on the virtual side is mirrored on the physical side by

transferring information about state changes to the physical device.

The MQTT handler is implemented as a singleton and hides most of its functional-

ity for the developers as most of it involves message handling, parsing, and distribution

which the developer shouldn’t necessary need to deal with. The only functionality that

the MQTT handler exposes to the developer is related to the connection of new devices

and how the developer wants it to be handled. The handler has the option to connect

new devices automatically, which leads to the handler adding the virtual part of the

Digital Twin making a connection request, or having the developer implement custom

handling of connection request by subscribing to the OnConnectRequest delegate

function.

The underlying functionality of the MQTTHandler is built on eight different MQTT

message types that are used to communicate with the physical IoT devices. Each of

these types have a specific purpose and is used to communicate different actions and

attributes which in turn is used to handle the connection of new devices and mirroring

the Digital Twins. Table 7.8 shows the different message types, the structure of the

message being transfered, and the associated sender and receiver. The structure of the

JSON-objects sent on the State and Interface topics are presented in Appendix

A.4. Table 7.9 describes the purpose of each of the topic types.

Since most of the messages being sent from the Unity MQTT Client contains infor-

mation specific for only one physical IoT device there is a need to add a way to have the

information reach that specific device as the underlying publish and subscribe struc-

ture of the MQTT message protocol allows any MQTT client to subscribe to any spe-

cific topic. The way this is done in the framework is by adding additional levels to each

topic in order to be able to specify the receiver of a message. Table 7.10 shows the ba-

sic structure of the MQTT topics used and examples from the implementation used in

”Follow the Red Dot”. By using such a structure it adds the support to send messages

62 CHAPTER 7. DESIGN AND CREATION

Table 7.8: MQTT topic types and message structure standards for the framework.

Topic Message structure Sender Receiver

Event "LED:OFF" Unity MQTT Client Physical IoT Device
Action "BUTTON:P" Physical IoT Device Unity MQTT Client
StateReq "REQ" Unity MQTT Client Physical IoT Device
State JSON object Physical IoT Device Unity MQTT Client
InterfaceReq "REQ" Unity MQTT Client Physical IoT Device
Interface JSON object Physical IoT Device Unity MQTT Client
ConnectReq "REQ" Physical IoT Device Unity MQTT Client
Connect boolean Unity MQTT Client Physical IoT Device

Table 7.9: MQTT topic type description.

Topic Description

Event Sends a message indicating that a component of the virtual twin has
changed state, and it should be mirrored on the physical twin.

Action Sends a message indicating that a component of the physical twin has
changed state, and it should be mirrored on the virtual twin.

StateReq Sends a request to the physical twin asking the device to send the state
information of its I/O components.

State Sends a JSON object containing state information for each of the I/O com-
ponents connected to the device.

InterfaceReq Sends a request to the physical twin asking the device to send information
about which I/O components are connected and the different states they
support.

Interface Sends a JSON object containing information about all the I/O components
currently connected to the device

ConnectReq Sends a connection request requesting permission to connect to the game.
Connect Sends a boolean value indicating whether or not the device is permitted to

connect and take part in the game.

to one specific device, i.e. the DEVICE4 RFduino connected to the Raspberry Pi with

id 2 in the first example, or a subset of devices, i.e. all of the devices within the House

environment in the second example.

The additional layers, Environment, IoTDevice, and Child, is matched with

variables set on the IoT devices and the combination of all three effectively acts their

identifier. For each of the layers it is vital that values of the subsequent layer are unique,

i.e. within the House environment there shouldn’t exist any IoTDevicewith match-

ing IDs, but there could exist a device with the same ID in the Apartment environ-

ment. The topic layer structure used in the framework could be altered by the develop-

ers to better suit their device structure, however this would lead to a bit of extra work

as the identification of the IoT devices would need to be altered to match the new topic

layer structure.

The second major object type that the framework is built around is the IoT Device

which is the virtual representation of the Digital Twin. The IoT Device is represented as

7.2. IMPLEMENTATION 63

Table 7.10: MQTT topic structure with an example topic from ”Follow the Red Dot”.

Type/Environment/IoTDevice/Child/

Action/House/RPI2/Dev4
Action/House/#
Action/House/+/Dev1

a game object and has separate IoT components that can be attached to the device to

mirror the I/O modules on the physical device. These components adds the ability for

the developers to add virtual interactions that can be triggered from the game engine

and be mirrored on the physical twin. The IoT Device object doesn’t offer any ways

to interact with the physical device, but serves as a hub for storing information about

the device itself, i.e. ID, children, and attached components, and mirroring incoming

information from the physical twin. All of the IoT Devices are managed by a Device

handler which offers functionality for keeping track of each of the connected devices,

adding new ones, and removing already connected devices from the game.

By having the interaction based around the IoT components rather than the IoT

device means that developers can add game logic for custom components, i.e. an ul-

trasonic sensor, that would work for any type of IoT device that has that component

attached rather than having to write specific code for each different combination of I/O

modules on the different IoT devices. The framework offers the baseIoTComponent.cs

class that can be used to create customized sub-classes that match the developer’s in-

tended use and potentially support all of the interaction models presented in Chapter

2. Additionally with all of the information about the state of each the components

attached to the device the developers are free to add custom rendering scripts to rep-

resent the virtual devices on screen and add ways to players to interact with the virtual

device, i.e. through keyboard shortcuts, mouse interaction, or even speech input. The

framework only comes with a simple render that displays the device information tex-

tually on screen and has a single mouse click interaction that can be attached to the

interaction function of any component attached to the IoT device.

Follow the Red Dot

Implementing the instance of ”Follow the Red Dot” that was built using the framework

had major implications on the development of the framework itself as the need to add,

remove, or modify the functionality of the framework emerged throughout the devel-

opment. The core of the framwork was initially developed in the first iterative cycle

and additional functionality was added in the second iteration. The main issue with

the first iteration was that it was too focused to fit the development of ”Follow the Red

Dot” and left out key features that would be useful for other types of pervasive games,

i.e. the ability to add custom rendering and ways to interact with each components. In

64 CHAPTER 7. DESIGN AND CREATION

the first iteration the interaction functionality was performed on the IoT device, rather

than on the components, leading to limitations when adding custom components with

custom interactions. During the second iteration changes were made to the framework

to match the functionality presented in the previous section and the implementation

of ”Follow the Red Dot” was altered to match the new changes in the framework.

For the ”Follow the Red Dot” instance there was created two custom IoT compo-

nents, one for the push button and one for the LED on the RFduino Devices. Since

there is only one input component the interaction on the virtual twin is done through

a simple mouse click on the base textual representation of the device. The output com-

ponent is enabled and disabled based on the game logic presented earlier. Functional-

ity for handling the connection of new devices during runtime was also implemented.

Figure 7.8 shows the base visual representation of the virtual twin in Unity.

Figure 7.8: The base visual representation of the IoT devices.

There was also a need to add additional functionality on the RFduino Host and

the Raspberry, as they needed to have functionality that supported the different topics

and messages used in the MQTT messaging. In the code used for Case 2 the message

sent between the Raspberry Pi and the RFduino was on the format "<#Beacon>" as

the MQTT messages were transfered two different topics between the two Raspberry

Pis. With the addition of several different topics in Case 3, there was a need to add

the topic to the serial string message in order for the Raspberry Pi to identify which

topic to publish to, and for the RFduino Host to trigger the correct functionality to

match the incoming message. This produced the following base message structure:

<"topic:message">, where the format in the message varies and is parsed based

on the topic. The only code that wasn’t altered was the code on the RFduino Devices

as the software and hardware used in the previous cases suited the implementation in

Case 3.

Chapter 8

Results and Evaluation

This chapter presents the results related to each of the four research questions estab-

lished in Chapter 1. The results for RQ1 are based on a literature review and presents

a small set of pervasive games that utilize IoT technology in their implementation. For

RQ2 a quick summarization of the results is presented as the main results are presented

in Chapter 5 and used for as a tool for answering the remaining research questions. The

results for RQ3 are presented in detail in Chapter 6 and are summarized in this chap-

ter. Finally a evaluation related to RQ4 is presented. All of the results presented in this

chapter are discussed in the next chapter.

8.1 RQ1

Even though the topic of IoT and ubiquitous computing isn’t a new one in terms of

research, both are still fairly new in terms of the commercial aspects and the use for

these technologies are still being explored. This also relates to the use of IoT in per-

vasive games as it is a topic that has gained some interest only within the last decade.

For this reason there exists fairly few pervasive games that utilize IoT technology and

they are almost exclusively used for research purposes. Even though its a fairly new

approach to pervasive games there is little doubt that the increasing accessibility and

deployment of IoT technology will provide for exiting ways for developers to create new

and unique pervasive games. In this section three of the most cited pervasive games

that utilize IoT technology are presented and a description of their research purpose

and how they utilize different IoT technology is provided.

8.1.1 Treasure

Treasure (Guo et al. (2012)) is a pervasive treasure hunt game built in order to analyze

the concept of "Design-in-play" introduced in the same paper. Like any treasure hunt

game the goal of the game is to locate some sort of treasure, but this instance utilizes

IoT technology to bring pervasive elements to an in-house treasure hunting game. The

65

66 CHAPTER 8. RESULTS AND EVALUATION

game is divided into to stages, one game authoring stage where one group of game

authors reconfigure the settings of the game to fit their preferences, and one game play

stage where a group of players play out the game set by the game authors with the

goal of locating the treasure hidden by the game authors. The game supports a co-

location mode, where the game authors and players are within the same room, and a

networking mode, where the users are playing from different locations.

By utilizing a projection device called Prot which is a combination of a projector,

an ultrasonic speaker, a webcam, and a 3-DOFs rotating base. In combination with

ultrasonic 3D tags placed on the hidden objects the Prot reveals information about the

objects and clues for where to find the treasure in the form of animations or images

projected on the wall that the player is currently facing. The game also uses MOTE

sensors to monitor the orientation and environmental changes around objects placed

by the game authors. Both the location information gathered by the ultrasonic 3D tags

and the MOTE sensors is used by the players both in co-location mode and in network-

ing mode as the data can also be displayed to the remote users.

8.1.2 Area Control Game

MacDowell and Endler (2015) introduces an Area Control Game based on the analog

playground game know as capture the flag, much like the pervasive game CTF intro-

duced in Sreekumar et al. (2006). The Area Control Game is played out by a certain

number of people in a specific area, time, and duration. The players utilize smart de-

vices supporting Bluetooth Smart technology that has the ability to interact with mo-

bile sensor objects (IoT devices such as the Texas Instruments Sensor Tag) that acts as

the flags. The game was developed as a part of a case study for an architectural analysis

of Pervasive IoT games and is played out by to or three teams, each with at least one

flag of their own. When the game starts the flags are placed within areas belonging to

each team and then the goal of the game is to capture the other teams flags by bringing

them into your own zone. Players are only allowed to take unguarded flags or steam

them from other players carrying them. If players from opposite teams meet they will

engage in a battle and where the victor will have the ability to steal a flag from the op-

posing player or avoid loosing the that he is carrying. The game is won when one team

has captured all the enemies flag into their own zone.

8.1.3 Barbarossa

Barbarossa (Kasapakis et al. (2013, 2015)) is another example of a pervasive game that

utilizes IoT technology. The game classifies itself as a two-phase trans-reality role play-

ing game, where the first phase was available world wide through the application "The

Conqueror" and the second phase was restricted to invited higher rank players. The

game was initially created to display how and open and portable game design archi-

8.2. RQ2 67

tecture could be used for developing pervasive games. Later it was used to explore

how the use of a preparatory game phase could be used to discover the most appropri-

ate evaluators for a pervasive game compared other more common ways of gathering

evaluators during the development phase, like e-mail invitations, personal contacts, or

recruitment of colleagues/organization employees.

In the first phase of the game players try to free the conquered city of Mytilene

which has been captured by the Barbarossa pirate brothers. The game is played out

through a custom Android application that utilizes the location-aware technology within

Android smartphones. During the second phase three players utilize custom Android

applications in order to solve assigned missions that will lead them to the location of

a locked chest which can be opened by two lock combinations that is also discovered

through the missions. For these missions the developers have made use of a wide ar-

ray of technology, including the use of IoT sensor devices (SunSPOTs), that provide

data used to solve the missions.

8.2 RQ2

Table 5.2 in Chapter 5 presents the six different requirements for IoT technology that

makes it easy to prototype pervasive games. These requirements are listed from most

to least important, with the most important requirement listed first. The requirements

are based on the basic principles of ubiquitous computing, the IoT vision, and the base

interaction models introduced by MacDowell and Endler (2015) in Chapter 2.

C2.1, C2.2 and C2.4 is mainly based on the interactions models presented in Chap-

ter 2 as being able to uniquely address IoT devices that have the ability to be wireless

and support different I/O modules enables developers to easier prototype pervasive

games that make use of IoT technology. C2.2, C2.3, C2.5, and C2.6 are key features of

ubiquitous computing and realizing the IoT vision, and thus they are also key attributes

for IoT technology that will be used when prototyping pervasive games.

8.3 RQ3

Chapter 6 presents a set of available technology that can be used to realize a technology

stack used in a prototyping environment suited for pervasive games. The architecture

of the stack is based on the five-layer model presented by Al-Fuqaha et al. (2015) and

uses four of the five layers presented in the paper. The reason for not including the

Business layer is because this layer would be made up of the prototype created by the

prototyping developer which should be left up the developer itself. The four layers that

make up the stack are: Application layer, Service Management layer, Object Abstrac-

tion layer, and the Objects layer.

68 CHAPTER 8. RESULTS AND EVALUATION

In addition to presenting relevant technologies for each layer, Chapter 6 also presents

a promising stack for doing a proof-of-concept evaluation of the framework developed

for prototyping IoT-based pervasive games. The proposed stack is made up of a com-

bination of Arduino and Raspberry Pi technology in the Objects layer, BLE and Wi-Fi in

the Object Abstraction layer, MQTT in the Service Management layer, and finally Unity

Engine in the Application layer. There exists several different combinations of tech-

nologies across the different layers that would be able to make up a stack that could

be used for this proof-of-concept evaluation. The following section evaluates the pro-

posed stack in detail against the each of the evaluation criteria established in table 5.3

in Chapter 5. It is important to note that the evaluation in this section is done for the

proposed technologies for the stack based on the available documentation and their

advertised features, and not based on personal experiences with the technologies, this

will be done in section 8.4.

Evaluating the proposed stack

Being able to give the framework support for unique addressability is the most impor-

tant requirement for the technology stack. The proposed stack is able to realize this

through the chosen technology in the Object Abstraction layer where BLE and Wi-Fi

both support unique identification of each of the devices that are connected. Even

though MQTT is able to abstract the devices that publish and subscribe to the broker,

its topic architecture allows the topics to be used to address specific devices that are

connected to the broker. The abstraction of devices using the MQTT protocol also pro-

vides a high level of interoperability, as the need for devices to be aware of the existence

or configuration of other devices is removed.

The stack also offers great support for the framework to handle connecting new de-

vices. This can be done in two different ways, either by adding new RFduinos nodes to

the RFduino BLE networks, or by connecting new Raspberry Pi gateways with associ-

ated RFduino network. The stack even supports connecting other types of IoT devices

that support MQTT communication, meaning that the framework isn’t restricted to the

technologies chosen in the Objects layer. The usage of the Raspberry Pis as gateways

serves as a simple way to take the local area networks created by the RFudinos and

connect them to the IoT. By using the Unity Engine to build applications that handle

the game logic and deploying these applications to mobile platforms also adds support

for developers to deploy their game at any chosen location as long as the mobile device

has Internet connectivity.

With the RFduino being built on the Arduino platform and the code developed in

the Arduino IDE means that it comes with support for a wide array of different I/O

modules. These I/O modules are able to be reproduced, mirrored, and displayed vir-

tually within the Unity Engine by implementing the I/O modules as separate compo-

nents that can be attached to game objects representing IoT devices. With MQTT being

8.4. RQ4 69

supported in C# it is possible to connect the IoT devices to the Unity Engine or any ap-

plication made in the engine, which gives the developers the opportunity to develop

their game logic within the game engine and have the engine interact with and react to

the I/O modules on the IoT devices.

The final requirement is for the technology to support scalability and this is realized

by using the MQTT protocol in the Service Management layer and the combination

of the RFduino WLAN and the Raspberry Pi Wi-Fi gateway. Different MQTT broker

implementations are supported by load balancing and traffic distribution functionality

that is able to support several thousand devices communicating on a single broker.

One issue with scaling with the suggested stack is the cost, as there exists devices that

would be less expensive compared to the Raspberry Pi and RFduino setup.

8.4 RQ4

After having utilized the technologies from the proposed stack to develop the three

instances of ”Follow the Red Dot” and the prototyping framework the insights gained

from the iterative development has been used to provide a full evaluation of the stack.

The evaluation criteria defined in table 5.3 are also used in this evaluation to provide an

comparison of the advertised and experienced features. The evaluation is presented on

a layer basis in table 8.1 where each layer is evaluated either as passing the evaluation

criteria (+), passing the criteria with some remarks (+*), and failing the criteria (-). The

remarks are presented along with the discussion of the evaluation in the upcoming

chapter.

Table 8.1: Evaluation of the proposed stack. + : pass, +* : pass with remark, - : fail

Criteria/Layer Objects Object Abstraction Service Man. Application

C3.1 - Addressability +* + +* +

C3.2 - Interoperability + + + +

C3.3 - Connecting new devices +* + + +

C3.4 - Distributed vs Local use + + + +

C3.5 - IoT Flexibility + + + +

C3.6 - Game logic centralized + + + +

C3.7 - Scalability +* +* + +

70 CHAPTER 8. RESULTS AND EVALUATION

Chapter 9

Discussion

9.1 RQ1

In the previous chapter three different pervasive games were presented to display some

of the pervasive games that utilizing IoT technology. As mentioned in the introduction

of RQ1 the state of the research is in its infancy and there aren’t a lot of games out there

that utilize IoT technology yet and the ones that are doing so focus on having their

own, custom built Things that are created with the only purpose of being used in one

specific game. As the wave of IoT is sweeping throughout the world and the amount

of connected devices is predicted to increase in the near future there is very little re-

search aimed at how all of these new sensors could be used for pervasive games. The

most common uses are to create a tangible user interface (TUI) for pervasive games

that previously have utilized positioning technology in order to provide interaction be-

tween the virtual and the physical worlds, i.e. the Area Control Game (MacDowell and

Endler (2015)) and CTF (Sreekumar et al. (2006)).

Treasure (Guo et al. (2012)) does a good job of displaying how IoT technology can

be used to create intuitive TUIs that without breaking the immersion of real-world

play. Here the use of ultrasonic 3D tags and the MOTE sensors are applied to com-

mon household items which in turn is hidden, providing the same experience that one

would get by playing a traditional treasure hunt game without the pervasive element.

This displays how the traditional games can be augmented both spatially and immer-

sively by providing the option for remote users to play together and by giving the option

of displaying custom actions through the Prot projector. However, Treasure also illus-

trates some of the issues related to using IoT technology to create TUIs. The authors

in Kasapakis et al. (2015) addresses the issue of the orchestration required before the

games are played out when IoT technology has to be set up by some of the users or

game organizers beforehand. Both games try to make the orchestration a part of their

game by having dedicated phases of the game where the orchestration takes place.

This solution breaks down some of the frustrations that players feel when having to

spend time setting up a game before its played, but it restrains the temporal aspect of

71

72 CHAPTER 9. DISCUSSION

the pervasive games, as it could be difficult to join the game during play and in some

cases would force players to sit out until a new round is started.

9.2 RQ2

With pervasive games being such a broad game genre that includes so many different

sub-genres, being able to set a final set of requirements that would help ease the pro-

totyping process of these games could easily become a subject to subjective opinions.

As for this task, it easy to let the structure and simplicity of ”Follow the Red Dot” color

the results of the research and it is important to do a proper evaluation that makes use

of existing literature and implementations that make use of the same technology. In

addition to this it has been important to look at IoT itself as it is a technology that is

quickly evolving, and the best way to try and predict the future of IoT-based pervasive

games is to look at the prediction of how IoT will be evolving in the future and how that

could effect future IoT-based pervasive games.

The set of requirements should be used as a guideline rather than a list of strict re-

quirements for choosing the IoT technology that is suitable for pervasive games as the

architecture and functionality of pervasive games varies. For certain applications just

rearranging the importance of the requirements could lead to a more suitable set of

requirements for that specific application. It is also important to note that the require-

ments are suggested for prototyping IoT-based pervasive games rather than developing

the final implementation of a IoT-based pervasive game. It could be argued that secu-

rity should be a requirement as there could be applications that require authentication

and encryption to avoid users with malicious intents to tamper with the game. The

reason for not including this would be that prototypes in most cases are deployed in

controlled environments to better be observed by the developers, making the risk of

having attackers target the applications small enough to leave this requirement out of

the list.

9.3 RQ3

The enormous attention that IoT receives from the scientific community and from

commercial actors has lead the development of a massive amount of different tech-

nologies within each of the layers used in the proposed stack. This research presents

some of the available technologies that exists, but due to the limitations of the research

the amount of technologies presented only scratches the surface of what is available.

However, the technologies presented within each layer are among the most popular

and well documented technologies that could be found frequently used in prototyp-

ing, developing, and implementing IoT solutions and traditional pervasive games.

9.4. RQ4 73

The proposed stack consisting of Arduino, Raspberry Pi, BLE, Wi-Fi, MQTT, and

Unity makes up only one of several possible stacks that would satisfy the requirements

set for a stack that would support prototyping pervasive games. The stacks technolo-

gies are easily interchangeable, meaning that developers could chose a different set of

technologies within one layer and keep have the rest of the technologies within the

other layers. This gives developers the flexibility to utilize technologies that are better

suited for their specific solution. The proposed stack however, passes all the evaluation

criteria that is set for the stack and offers a low entry bar for inexperienced developer

by having well documented and easy to use technologies make up the stack.

A concern with the proposed stack is that it is strongly based in IoT-based pervasive

games that utilize IoT devices as interactive game objects and doesn’t address perva-

sive games that are more centered around utilizing sensor data, like weather data, to

add to their game experiences. This would introduce a different way to handle the

data flow, as the interactive game objects follow an event based approach, compared

to the continuous data flow of sensor data where different technologies could be more

suitable.

9.4 RQ4

The results presented in the previous chapter indicates that the stack passed every cri-

teria that was proposed for a technology stack to be used to create a prototyping en-

vironment for IoT-based pervasive games and that it performed well as a stack. There

were however a couple of remarks that are worth discussing.

Addressability is well supported by the stack as long as the developers are cautious

when implementing their code. MQTTs publish/subscribe protocol is well suited for

applications where object abstraction is usable, as devices are able to communicate

without knowledge of the existence or configurations of other connected devices, but

in order to support addressability MQTT requires developers to create topic structures

that can be used to provide unique addressing. The framework that was developed

supports a topic structure, presented in table 7.10, that delivers addressability to the

developers as long as the devices are identified properly according the topic structure.

In applications where addressability is a critical feature it could be argued for using

technologies that natively support addressability, but it is important to note that this

support often comes at the expense of other functionality, i.e. data rate, scalability, and

message size restrictions.

During testing of the GZLL protocol used in the RFduino networks some issues re-

lated to reliability were experienced. In cases where the GZLL network were made up

of more than four devices and a host the RFduinos experienced message loss and oc-

casionally crashed. There were also issues related to the implementations of the serial

communication between the RFduino host and the Raspberry Pis. Using serial com-

74 CHAPTER 9. DISCUSSION

munication is known to be subject to issues related to static interference and devel-

oping a solution that provided a high level of reliability proved to be time consuming.

These issues affected both the stacks ability to connect new devices and its scalabil-

ity. Limiting the amount of devices that the GZLL networks are able to support reli-

ably means that in order to scale up the application developers either have to accept

the possible unreliability or connect more RFduino gateways, which would come at a

higher cost.

The combination of the chosen technologies in the Objects layer and the use of a

BLE based protocol in the Object Abstraction layer stand out as the weakest points of

the stack and other combinations should be tested in future research. It is also possi-

ble that choosing a more reliable device instead of the RFduino could solve the issue,

as the RFduino seemed to be prone to errors throughout the development. Based on

the documentation of the RFduino and the technologies it supports it looked like a

promising piece of technology, but as the research went on a lack of documentation

and errors became apparent. On a positive note there exists a vast amount of differ-

ent development boards that support the same technologies as the RFduino, however

there are few that come at the size of the RFduino at the time of writing.

9.5 Research Methods

The literature review done for research question 1 revealed the limited amount of re-

search done on IoT-based pervasive games. It is an emerging genre of games, but to

this date there exists very few implementations that are documented in scientific liter-

ature.

In research question 2 the requirements presented were based heavily on features

that are important for IoT and pervasive games, as there exists very little research done

on the topic of IoT-based pervasive games. It would be useful to do a deeper research

into what requirements are relevant and perform a deeper evaluation of the require-

ments. The same is also applicable to research question 3, as the amount of technolo-

gies that exists and offer useful features for prototyping IoT-based pervasive games is

enormous. Performing a more detailed study and comparing the most relevant tech-

nologies would provide better knowledge on the topic and could provide additional in-

sights into which technologies offer specific features for pervasive game development.

In the evaluation of proposed stack it could also be useful to have other researchers

and developers test the stack in order to provide more feedback and give a more reli-

able evaluation of the stack. The same goes for the developed framework as doing a

proof-of-concept evaluation doesn’t necessarily provide a high enough level of validity

to the research done. The topic of pervasive games is also very big and developing a

stack and a framework that would be equally suitable for every type of IoT-based per-

vasive game is difficult as the genre contains so many different sub-genres. It could

9.6. LIMITATIONS OF THE RESEARCH 75

have been useful to go more specific into certain types of pervasive games to assess

what these types of pervasive games need it terms of supported features that would

ease the prototyping phase of the development.

9.6 Limitations of the research

Several of the issues that has been brought forth in this section indicates that doing a

more in-depth research related to RQ2 and RQ3 would be likely to provide useful in-

sights into the research done in this paper. The limitations of the paper means that the

findings of in the paper should be considered as initial proposals to the research ques-

tions asked and that the findings could serve as good incentives to do further research

on the topic in order to help other researchers and developers.

It is also worth mentioning that even though the issues with the RFduino was ob-

served during development, the time limitations on the research kept us from acquir-

ing other technologies that could fill the space of the RFduino and possibly remove

some of the issues related to the implementation.

76 CHAPTER 9. DISCUSSION

Chapter 10

Conclusion

1: What existing pervasive games, documented in the scientific literature, utilize IoT

technology?

Chapter 8 presents three of the most cited IoT-based pervasive games that are doc-

umented in the scientific literature as of now. These games are: Treasure, a pervasive

treasure hunt game that makes use of IoT technology to provide information about the

objects that are used in the game. Area Control Game, a pervasive outdoor game, based

on the traditional capture the flag playground game, which makes use of IoT technol-

ogy to provide interactive flags that provide additional virtual information on hand-

held smart devices used by the players. Finally the game Barbarossa, a two phased

game where players play out the story of the Barbarossa pirates and utilize IoT tech-

nology in order to uncover clues about the hidden treasure in the final phase. All of

these games provide useful insights in how IoT technology can be utilized to augment

pervasive games even further, while also displaying some of the aspects that needs

more research in order to improve the pervasive game experience.

2: What are the requirements for IoT technology that makes it easy to prototype per-

vasive games?

In table 5.2 a set of evaluation criteria are presented. These evaluation criteria re-

flect the requirements for IoT technology that makes it easy to prototype pervasive

games. The requirements relate to important features of IoT in general as well as pro-

posed features that make it easy to prototype pervasive games. The list of requirements

include flexibility related to I/O modules, addressability, device-to-device communi-

cation, power management, local and distributed use, and scalability. The wide collec-

tion genres within pervasive games suggests that different features might be required

for certain genres and that the list of requirements should be considered as more of a

guideline than a final set of requirements to consider when choosing IoT technology

to support pervasive games.

77

78 CHAPTER 10. CONCLUSION

RQ3: What are the available tech stacks to realize such a prototyping environment

and what is a promising stack for doing proof-of-concept evaluation?

Chapter 6 presents a suggested technology stack made up of the following four lay-

ers: Application, Service Management, Object Abstraction, and Objects. The same

chapter also presents different technologies that exists within each of the layers and

support features that are suitable for making up the technology stack used for pro-

totyping IoT-based pervasive games. Unity Engine, MQTT, BLE, Wi-Fi, Arduino, and

Raspberry Pi is suggested as promising technologies to make up the stack. The stack is

evaluated in Chapter 8 and showed to support promising features for supporting pro-

totyping IoT-based pervasive games. Chapter 9 discusses the need to perform a wider

study related to identifying features from the different technologies that exists today

that would be suitable for prototyping IoT-based pervasive games, as the limitations of

this research and lack of other research on the topic suggests that a wider study could

produce useful insights into the topic.

RQ4: How suited is the selected stack for creating such a prototyping environment?

The proposed stack from research question 3 was evaluated in Chapter 8 and proved

to be suitable for supporting the framework developed to ease prototyping IoT-based

pervasive games. The evaluation identified minor remarks related to the stacks sup-

port for addressability, connecting new devices, and scalability, however, none of these

issues caused major concerns that kept the technology from realizing the three imple-

mentations of ”Follow the Red Dot”. Issues related to the RFduino and its implemen-

tation of the GZLL protocol caused some unreliability, and the discussion in Chapter 9

suggests that replacing the RFduino with other Arduino-based technology would pro-

vide a stack with similar capabilities to the one suggested.

Chapter 11

Recommendations for Further Work

The results of this research indicates that there are many possibilities for future work

related to the topic of IoT-based pervasive games. In a short term perspective it could

be useful to do a study that went deeper into each of the four layers to identify and

bring forth technologies that are suitable for developing pervasive games that utilize

IoT technology. Being able to address each layer specifically and classify features that

the different technologies offer would make it easier for developers to chose technolo-

gies that best suit their genre of pervasive games, as it is difficult to argue that one

specific set of technologies would be the best fit all types of pervasive games.

In the long term it could be useful to look at the applications of IoT-based pervasive

games as a serious tool, i.e. for health promotion or rehabilitation. Research have al-

ready shown the positive outcomes of pervasive games as a serious tool and being able

to utilize the future expansion of IoT to easier deploy serious pervasive games could

increase the deployment rate and possibly help more users. It could also be interesting

to expand the framework to add Cloud support. The Cloud support could make it eas-

ier for researchers to gather research data and explore usage patters among its users.

With an expansion like this it is also necessary to address privacy concerns, what types

of data that would be relevant to collect, and how the framework could support that in

a best possible way.

79

80 CHAPTER 11. RECOMMENDATIONS FOR FURTHER WORK

Appendix A

Code

All of the code is available at: https://github.com/Bakkansen/MasterThesis

A.1 Case 1: Follow the Red Dot code

A.1.1 RFduino Host Code

1 #include <RFduinoGZLL.h>

2 #include "PLAB_PushButton.h"

3

4 device_t role = HOST;

5

6 const int ledPin = 6;

7 const int buttonPin = 2;

8

9 // Operation mode of the RFduino

10 int mode = 0; // 0 = Start, 1 = GameMode, 2 = Completed

11

12 // PushButton setup

13 PLab_PushButton button(buttonPin);

14

15 const int connectedDevices = 3; // identify the number

of devices that is connected to the game

16

17 // List of connected devices

18 device_t devList[8] = {DEVICE0, DEVICE1, DEVICE2,

DEVICE3, DEVICE4, DEVICE5, DEVICE6, DEVICE7};

19 device_t currentDotHolder = HOST;

20

21

81

82 APPENDIX A. CODE

22 void setup() {

23 // put your setup code here, to run once:

24 pinMode(ledPin, OUTPUT);

25 Serial.begin(115200);

26 RFduinoGZLL.begin(role);

27 }

28

29 void loop(){

30 button.update();

31 if (mode == 0) {

32 if (button.pressed()) {

33 mode = 1;

34 Serial.println("Starting game mode");

35 sendNewDot();

36 }

37 } else if (mode == 1) {

38 if (button.pressed()) {

39 resetGame();

40 }

41 }

42

43

44 }

45

46 void RFduinoGZLL_onReceive(device_t device, int rssi,

char *data, int len) {

47 if (device == currentDotHolder) {

48 String str = data;

49 if (str.startsWith("#BUTTON:P")) {

50 RFduinoGZLL.sendToDevice(currentDotHolder, "#LED:

OFF");

51 sendNewDot();

52 }

53 }

54 }

55

56 void resetGame() {

57 RFduinoGZLL.sendToDevice(currentDotHolder, "#LED:OFF")

;

58 currentDotHolder = HOST;

A.1. CASE 1: FOLLOW THE RED DOT CODE 83

59 Serial.println("Game Reset, reconnect devices...");

60 mode = 0;

61 }

62

63

64

65 void sendNewDot() {

66 long randNumber = random(connectedDevices);

67 if (devList[randNumber] == currentDotHolder) {

68 sendNewDot();

69 } else {

70 currentDotHolder = devList[randNumber];

71 RFduinoGZLL.sendToDevice(currentDotHolder, "#LED:ON"

);

72 Serial.print("Sent dot to: DEVICE");

73 Serial.println(randNumber);

74 }

75 }

A.1.2 RFduino Device code - used for all cases

1 #include <RFduinoGZLL.h>

2 #include "PLAB_PushButton.h"

3

4 device_t role = DEVICE2; // Set specific device ID here

5

6 const int ledPin = 6;

7 const int buttonPin = 2;

8

9 unsigned long pollTime = 0;

10

11 // PushButton setup

12 PLab_PushButton button(buttonPin);

13

14

15 boolean pollInterval(unsigned long &since, unsigned long

interval) {

16 unsigned long currentmillis = millis();

17 if (currentmillis - since >= interval) {

18 since = currentmillis;

19 return true;

84 APPENDIX A. CODE

20 }

21 return false;

22 }

23

24

25 void setup() {

26 // put your setup code here, to run once:

27 pinMode(ledPin, OUTPUT);

28 Serial.begin(9600);

29 RFduinoGZLL.begin(role);

30 }

31

32 void loop(){

33 button.update();

34 if (button.pressed()){

35 RFduinoGZLL.sendToHost("#BUTTON:P");

36 }

37 if (pollInterval(pollTime, 100)) {

38 RFduinoGZLL.sendToHost(NULL, 0);

39 }

40 }

41

42 void RFduinoGZLL_onReceive(device_t device, int rssi,

char *data, int len) {

43 String str = data;

44 if (str.startsWith("#LED:ON")) {

45 digitalWrite(ledPin, HIGH);

46 }

47 if (str.startsWith("#LED:OFF")) {

48 digitalWrite(ledPin, LOW);

49 }

50 }

A.2 Case 2: Follow the Red Dot code

RFduino Host Code

1 #include <RFduinoGZLL.h>

2

3 device_t role = HOST;

A.2. CASE 2: FOLLOW THE RED DOT CODE 85

4

5

6 // Serial parsing variables

7 const char startChar = ’<’;

8 const char stopChar = ’>’;

9

10 unsigned int index_pos = 0;

11

12 const unsigned int MAX_DEV_INPUT = 5;

13 const unsigned int MAX_MSG_INPUT = 30;

14

15 char msg[MAX_MSG_INPUT]; // Array to keep the

component name

16

17 enum state_t {

18 None,

19 Msg

20 };

21 extern state_t state = None;

22

23 // FtRD variables

24 const int connectedDevices = 3; // identify the number

of devices that is connected to the Host

25

26 int mode = 0; // 0 = Starter host (must receive button

press from DEV0 to start), 1 = Other hosts (all others

need to have set to 1)

27

28 device_t devList[8] = {DEVICE0, DEVICE1, DEVICE2,

DEVICE3, DEVICE4, DEVICE5, DEVICE6, DEVICE7};

29 device_t currentDotHolder = HOST;

30

31

32 void setup() {

33 state = None;

34 Serial.begin(115200);

35 RFduinoGZLL.begin(role);

36 }

37

38 void RFduinoGZLL_onReceive(device_t device, int rssi,

86 APPENDIX A. CODE

char *data, int len) {

39 if (device == DEVICE0 && mode == 0) {

40 String str = data;

41 if (str.startsWith("#BUTTON:P")) {

42 mode = 1;

43 delegateBeacon();

44 }

45 } else if (device == currentDotHolder) {

46 String str = data;

47 if (str.startsWith("#BUTTON:P")) {

48 RFduinoGZLL.sendToDevice(currentDotHolder, "#LED:

OFF");

49 delegateBeacon();

50 }

51 }

52 }

53

54 void delegateBeacon() {

55 long randNumber = random(connectedDevices*2);

56 if (randNumber < connectedDevices || currentDotHolder

== HOST) {

57 sendNewDot();

58 } else {

59 currentDotHolder = HOST;

60 Serial.println("#Beacon");

61 }

62 }

63

64 void sendNewDot() {

65 long randNumber = random(connectedDevices);

66 if (devList[randNumber] == currentDotHolder) {

67 sendNewDot();

68 } else {

69 currentDotHolder = devList[randNumber];

70 RFduinoGZLL.sendToDevice(currentDotHolder, "#LED:ON"

);

71 }

72 }

73

74

A.2. CASE 2: FOLLOW THE RED DOT CODE 87

75 // Serial Reading Code

76

77

78 void handleIncomingData(const byte inByte) {

79 switch (state) {

80 case Msg:

81 if (index_pos < (MAX_MSG_INPUT - 1)) {

82 msg[index_pos++] = inByte;

83 }

84 break;

85 }

86 }

87

88 void handleStopCharReceived() {

89 String str = msg;

90 Serial.println(str);

91 if (str.startsWith("#Beacon") && currentDotHolder ==

HOST && mode == 1) {

92 sendNewDot();

93 }

94 state = None;

95 }

96

97 void processIncomingByte(const byte inByte) {

98

99 switch (inByte) {

100

101 case startChar:

102 state = Msg;

103 index_pos = 0;

104 break;

105

106 case stopChar:

107 handleStopCharReceived();

108 break;

109

110 default:

111 handleIncomingData(inByte);

112 break;

113 }

88 APPENDIX A. CODE

114 }

115

116 void loop() {

117 while (Serial.available() > 0) {

118 processIncomingByte(Serial.read());

119 }

120 }

Raspberry Pi Gateway Python Code

1 import paho.mqtt.client as mqtt

2 import paho.mqtt.publish as publish

3 import time

4 import serial

5

6 #RPI Information − Switch these for the other RPI
Gateway: RPIID = otherRPID and otehrRPID = RPIID

7 RPIID = "RPI1"

8 otherRPIID = "RPI2"

9

10 #MQTT Information

11 #Topic stucture: FtRD/RPIID

12 mqttBrokerAddress = "YOUR_BROKER_ADDRESS" # Add your

broker address here

13 subTopic = "FtRD/" + otherRPIID

14 pubTopic = "FtRD/" + RPIID

15

16

17 def on_connect(client, userdata, flags, rc):

18 print("Connected with result code " + str(rc))

19 client.subscribe(listenTopic)

20

21

22 def on_message(client, userdata, msg):

23 try:

24 print("Received data from " + msg.topic + ": " +

msg.payload)

25 HandleMQTTMessage(msg)

26 except (UnicodeDecodeError):

27 print("Received faulty msg")

28

A.2. CASE 2: FOLLOW THE RED DOT CODE 89

29

30 def HandleMQTTMessage(msg):

31 topicSplit = msg.topic.split(’/’)

32 if (len(topicSplit) > 1):

33 if (topicSplit[1] == otherRPIID):

34 text = msg.payload.rstrip()

35 if (text.startsWith("#Beacon")):

36 SendSerialMsg("#Beacon")

37

38

39 def HandleSerialMessage(msg):

40 msg.rstrip(’\r\n’)

41 if (msg.startsWith("#Beacon")):

42 PublishMQTTMsg("#Beacon");

43

44

45 def SendSerialMsg(serialMsg):

46 sendMsg = "<" + serialMsg + ">"

47 sendMsg = sendMsg.encode()

48 ser.write(sendMsg)

49 print("Sent serial message: [" + sendMsg + "]")

50

51

52 def PublishMQTTMsg(payload):

53 print("Published mqtt message: [" + pubTopic + "]: " +

"[" + payload + "]")

54 publish.single(pubTopic , payload, hostname=

mqttBrokerAddress)

55

56

57 def CleanUp():

58 print("Ending and cleaning up")

59 ser.close()

60 client.disconnect()

61

62

63 try:

64 #Serial Information

65 print("Connecting Serial port")

66 ser = serial.Serial(

90 APPENDIX A. CODE

67 port=’/dev/ttyUSB0’,

68 baudrate = 115200,

69 parity=serial.PARITY_NONE ,

70 stopbits=serial.STOPBITS_ONE ,

71 bytesize=serial.EIGHTBITS ,

72 timeout=1

73)

74

75 except:

76 print("Failed to connect serial")

77 raise SystemExit

78

79 try:

80 client = mqtt.Client()

81 client.on_connect = on_connect

82 client.on_message = on_message

83

84 client.connect(mqttBrokerAddress , 1883, 60)

85

86 client.loop_start()

87 print("MQTT client connected!")

88

89

90 while True:

91 read_serial = ser.readline()

92 HandleSerialMessage(read_serial.rstrip())

93

94 except (KeyboardInterrupt , SystemExit):

95 print("Interrupt received")

96 CleanUp()

97

98 except (RuntimeError):

99 print("Run−Time Error")
100 CleanUp()

A.3 Case 3: Follow the Red Dot code

RFDuino Host Code

A.3. CASE 3: FOLLOW THE RED DOT CODE 91

1 #include <RFduinoGZLL.h>

2

3 device_t role = HOST;

4

5 const char startChar = ’<’;

6 const char stopChar = ’>’;

7 const char delimiter = ’:’;

8

9 unsigned int index_pos = 0;

10

11 const unsigned int MAX_DEV_INPUT = 5;

12 const unsigned int MAX_MSG_INPUT = 30;

13

14 char dev[MAX_DEV_INPUT]; // Array to keep the

device info received

15 char msg[MAX_MSG_INPUT]; // Array to keep the

component name

16

17 enum state_t {

18 None,

19 Devi,

20 Msg

21 };

22 extern state_t state = None;

23

24 void setup() {

25 state = None;

26 Serial.begin(115200);

27 RFduinoGZLL.begin(role);

28 }

29

30 void RFduinoGZLL_onReceive(device_t device, int rssi,

char *data, int len) {

31 String str = data;

32 if (len > 1) {

33 String sender = "Action:" + getDeviceFromDevice_t(

device) + str;

34 Serial.println(sender);

35 }

36 }

92 APPENDIX A. CODE

37

38 void handleDelimiter() {

39 if (state == Devi) {

40 index_pos = 0;

41 state = Msg;

42 } else if (state == Msg) {

43 if (index_pos < (MAX_MSG_INPUT - 1)) {

44 msg[index_pos++] = ’:’;

45 }

46 }

47 }

48

49 void handleIncomingData(const byte inByte) {

50 switch (state) {

51 case Devi:

52 if (index_pos < (MAX_DEV_INPUT - 1)) {

53 dev[index_pos++] = inByte;

54 }

55 break;

56

57 case Msg:

58 if (index_pos < (MAX_MSG_INPUT - 1)) {

59 msg[index_pos++] = inByte;

60 }

61 break;

62

63 }

64 }

65

66 void handleStopCharReceived() {

67 device_t receiver = getDevice();

68

69 String m = msg;

70 if (m.startsWith("REQ")) {

71 String d = dev;

72 String sender = "State:" + d + "LED:OFF:BUTTON:

Lifted";

73 Serial.println(sender);

74 } else if (receiver != HOST) {

75 RFduinoGZLL.sendToDevice(receiver, msg);

A.3. CASE 3: FOLLOW THE RED DOT CODE 93

76 }

77 state = None;

78 }

79

80 device_t getDevice() {

81 device_t receiver = DEVICE0;

82 int deviceInt = -1;

83 if (isDigit(dev[3])) {

84 deviceInt = dev[3] - ’0’;

85 }

86

87 switch (deviceInt) {

88 case 0:

89 receiver = DEVICE0;

90 break;

91

92 case 1:

93 receiver = DEVICE1;

94 break;

95

96 case 2:

97 receiver = DEVICE2;

98 break;

99

100 case 3:

101 receiver = DEVICE3;

102 break;

103

104 case 4:

105 receiver = DEVICE4;

106 break;

107

108 case 5:

109 receiver = DEVICE5;

110 break;

111

112 case 6:

113 receiver = DEVICE6;

114 break;

115

94 APPENDIX A. CODE

116 case 7:

117 receiver = DEVICE7;

118 break;

119 }

120 return receiver;

121 }

122

123 String getDeviceFromDevice_t(device_t dev) {

124 String receiver = "DEV0";

125

126 switch (dev) {

127 case 0:

128 receiver = "DEV0";

129 break;

130

131 case 1:

132 receiver = "DEV1";

133 break;

134

135 case 2:

136 receiver = "DEV2";

137 break;

138

139 case 3:

140 receiver = "DEV3";

141 break;

142

143 case 4:

144 receiver = "DEV4";

145 break;

146

147 case 5:

148 receiver = "DEV5";

149 break;

150

151 case 6:

152 receiver = "DEV6";

153 break;

154

155 case 7:

A.3. CASE 3: FOLLOW THE RED DOT CODE 95

156 receiver = "DEV7";

157 break;

158 }

159 return receiver;

160 }

161

162

163 void processIncomingByte(const byte inByte) {

164

165 switch (inByte) {

166

167 case startChar:

168 state = Devi;

169 index_pos = 0;

170 break;

171

172 case stopChar:

173 handleStopCharReceived();

174 break;

175

176 case delimiter:

177 handleDelimiter();

178 break;

179

180 default:

181 handleIncomingData(inByte);

182 break;

183 }

184 }

185

186 void loop() {

187 while (Serial.available() > 0) {

188 processIncomingByte(Serial.read());

189 }

190 }

Raspberry Pi Gateway Python Code

1 import paho.mqtt.client as mqtt

2 import paho.mqtt.publish as publish

3 import time

96 APPENDIX A. CODE

4 import serial

5 import json

6

7

8 devList = { "DEV0": ["LED", "OFF", "BUTTON", "LIFTED"],

"DEV1": ["LED", "OFF", "BUTTON", "LIFTED"], "DEV2":

["LED", "OFF", "BUTTON", "LIFTED"]}

9

10 interfaceJSON = {

11 "components" : [

12 {"componentID":"LED", "componentType":"LED", "states

":["ON", "OFF", "DISABLED"]},

13 {"componentID":"BUTTON", "componentType":"BUTTON", "

states":["LIFTED", "PRESSED", "DISABLED"]}

14]

15 }

16

17 #MQTT Information

18 #Topic stucture: Pettjo/Type/Environment/RPI/Dev ex:

Pettjo/Action/House/RPI1/Dev0

19 mqttBrokerAddress = "YOUR_BROKER_ADDRESS" # Add your

broker address here

20 listenTopic = "FtRD/#"

21

22

23 #RPI Information

24 rpiID = "RPI1"

25 Environment = "House"

26

27

28 # MQTT handling

29

30 def on_connect(client, userdata, flags, rc):

31 print("Connected with result code " + str(rc))

32 client.subscribe(listenTopic)

33

34

35 def on_message(client, userdata, msg):

36 try:

A.3. CASE 3: FOLLOW THE RED DOT CODE 97

37 print("Received data from " + msg.topic + ": " +

msg.payload)

38 HandleMQTTMessage(msg)

39 except (UnicodeDecodeError):

40 print("Received faulty msg")

41

42

43 def HandleMQTTMessage(msg):

44 topicSplit = msg.topic.split(’/’)

45 msgType = "#"

46 msgEnvironment = "#"

47 msgRPI = "#"

48 msgDev = "#"

49 if (len(topicSplit) > 1):

50 msgType = topicSplit[1]

51 if (len(topicSplit) > 2):

52 msgEnvironment = topicSplit[2]

53 if (len(topicSplit) > 3):

54 msgRPI = topicSplit[3]

55 if (len(topicSplit) > 4):

56 msgDev = topicSplit[4].upper()

57

58 if (msgRPI != rpiID and msgRPI != "#"):

59 return

60

61 if (msgType == "Event"):

62 if (msgDev == "#"):

63 for dev in devList.keys():

64 EventMsgRcvd(dev, msg.payload.rstrip())

65 elif (msgDev in devList.keys()):

66 EventMsgRcvd(msgDev, msg.payload.rstrip())

67

68 elif (msgType == "StateReq"):

69 if (msgDev == "#"):

70 for dev in devList.keys():

71 StateReqMsgRcvd(dev, msg.payload.rstrip())

72 elif (msgDev in devList.keys()):

73 StateReqMsgRcvd(msgDev, msg.payload.rstrip())

74

75 elif (msgType == "InterfaceReq"):

98 APPENDIX A. CODE

76 if (msgDev == "#"):

77 for dev in devList.keys():

78 InterfaceReqMsgRcvd(dev, msg.payload.rstrip())

79 elif (msgDev in devList.keys()):

80 InterfaceReqMsgRcvd(msgDev, msg.payload.rstrip())

81

82

83 def EventMsgRcvd(dev, msg):

84 # MQTT msg format: "Comp:CompState"

85 print("Recvd MQTTmsg: [" + dev + "] : [" + msg + "]")

86 parsedMsg = msg.split(’:’)

87 # Checks if device has component

88 if (parsedMsg[0].upper() in devList[dev]):

89 sendString = dev + ":#" + parsedMsg[0] + ":" +

parsedMsg[1]

90 SendSerialMsg(sendString)

91

92 def StateReqMsgRcvd(dev, msg):

93 print("Recvd MQTTmsg: [" + dev + "] : [" + msg + "]")

94 if (msg == "REQ"):

95 sendString = dev + ":" + msg;

96 SendSerialMsg(sendString)

97

98

99 def InterfaceReqMsgRcvd(dev, msg):

100 print("Recvd MQTTmsg: [" + dev + "] : [" + msg + "]")

101 if (msg == "REQ"):

102 PublishMQTTMsg("InterFace", json.dumps(interfaceJSON

), dev)

103

104

105 # Serial handling

106

107 def ActionSerialRcvd(dev, payload):

108 sendString = payload[0] + ":" payload[1]

109 PublishMQTTMsg("Action", sendString , dev)

110

111 def StateSerialRcvd(dev, payload):

112 stateJSON = {

113 "connected":1,

A.3. CASE 3: FOLLOW THE RED DOT CODE 99

114 "components": [

115 {"componentID":payload[0], "currentState":

payload[1]},

116 {"componentID":payload[2], "currentState":

payload[3]}

117]

118 }

119 PublishMQTTMsg("State", json.dumps(stateJSON), dev)

120

121

122 def HandleSerialMessage(msg):

123 parsedMsg = msg.split(’:’)

124 if (len(parsedMsg) != 3):

125 return

126

127 print("Received Serial message: [" + msg + "]")

128 topic = parsedMsg[0]

129 dev = parsedMsg[1].upper()

130 payload = parsedMsg[2:]

131

132 if (topic == "Action"):

133 ActionSerialRcvd(dev, payload)

134

135 elif (topic == "State"):

136 StateSerialRcvd(dev, payload)

137

138

139 def SendSerialMsg(serialMsg):

140 #print("Sent serial message: [" + serialMsg + "]")

141 sendMsg = "<" + serialMsg + ">"

142 sendMsg = sendMsg.encode()

143 ser.write(sendMsg)

144 print("Sent serial message: [" + sendMsg + "]")

145

146

147 def PublishMQTTMsg(msgType, payload, dev):

148 if (dev in devList.keys()):

149 topic = "FtRD/" + msgType + "/" + Environment + "/"

+ rpiID + "/" + dev

100 APPENDIX A. CODE

150 print("Published mqtt message: [" + topic + "]: " +

"[" + payload + "]")

151 publish.single(topic, payload, hostname=

mqttBrokerAddress)

152

153

154

155

156 # System setup

157

158 def CleanUp():

159 print("Ending and cleaning up")

160 ser.close()

161 client.disconnect()

162

163 try:

164 #Serial Information

165 print("Connecting Serial port")

166 ser = serial.Serial(

167 port=’/dev/ttyUSB0’,

168 baudrate = 9600,

169 parity=serial.PARITY_NONE ,

170 stopbits=serial.STOPBITS_ONE ,

171 bytesize=serial.EIGHTBITS ,

172 timeout=1

173)

174

175 except:

176 print("Failed to connect serial")

177 raise SystemExit

178

179 try:

180 client = mqtt.Client()

181 client.on_connect = on_connect

182 client.on_message = on_message

183

184 client.connect(mqttBrokerAddress , 1883, 60)

185

186 client.loop_start()

187 print("MQTT client connected!")

A.3. CASE 3: FOLLOW THE RED DOT CODE 101

188

189

190 while True:

191 read_serial = ser.readline()

192 HandleSerialMessage(read_serial.rstrip(’\r\n’))

193

194 except (KeyboardInterrupt , SystemExit):

195 print("Interrupt received")

196 CleanUp()

197

198 except (RuntimeError):

199 print("Run−Time Error")
200 CleanUp()

Unity code: IoTDevice.cs

1 using IoTPlatform.IoTComponents;

2 using IoTPlatform.Events;

3 using System.Collections.Generic;

4 using UnityEngine;

5 using IoTPlatform.Master.Utility;

6

7 public class IoTDevice : MonoBehaviour

8 {

9

10

11 public string Environment;

12 public string RPI;

13 public string ID;

14 private List<IoTComponent> components = new List<IoTComponent>()

;

15

16 // Use this for initialization

17 void Start()

18 {

19 IoTComponent[] comps = GetComponents<IoTComponent>();

20 foreach (IoTComponent i in comps)

21 {

22 components.Add(i);

23 if (i.ComponentID == "LED")

24 {

25 i.SetCurrentState("OFF");

26 }

27 if (i.ComponentID == "BUTTON")

28 {

102 APPENDIX A. CODE

29 i.SetCurrentState("Lifted");

30 }

31 }

32 }

33

34 private void OnEnable()

35 {

36 IoTEventHandler.Instance.AddListener<ActionEvent>(

ActionEventReceived);

37 IoTEventHandler.Instance.AddListener<InterfaceEvent>(

InterfaceEventReceived);

38 IoTEventHandler.Instance.AddListener<StateEvent>(

StateEventRecieved);

39 }

40

41 private void OnDisable()

42 {

43 IoTEventHandler.Instance.RemoveListener<ActionEvent>(

ActionEventReceived);

44 IoTEventHandler.Instance.RemoveListener<InterfaceEvent>(

InterfaceEventReceived);

45 IoTEventHandler.Instance.RemoveListener<StateEvent>(

StateEventRecieved);

46 }

47

48 private void ActionEventReceived(ActionEvent e)

49 {

50 if (IsItMe(e.Environment, e.RPI, e.Device))

51 {

52 string[] msg = e.Msg.Split(’:’);

53 if (msg.Length != 2)

54 {

55 Debug.Log("Invalid msg format: [" + msg + "]");

56 return;

57 }

58 if (components.Count == 0)

59 {

60 Debug.Log("No compoents attached to Gameobject: [" +

gameObject.name + "]");

61 return;

62 }

63 foreach (IoTComponent comp in components)

64 {

65 if (comp.ComponentID == msg[0])

66 {

67 comp.SetCurrentState(msg[1]);

68 Debug.Log("Set state: [" + ID + "]" + ":" + msg

[1]);

A.3. CASE 3: FOLLOW THE RED DOT CODE 103

69 return;

70 }

71 }

72 }

73 }

74

75

76 private void StateEventRecieved(StateEvent e)

77 {

78 if (IsItMe(e.Environment, e.RPI, e.Device))

79 {

80 foreach (ComponentState c in e.components)

81 {

82 foreach (IoTComponent comp in components)

83 {

84 if (comp.ComponentID == c.componentID)

85 {

86 comp.SetCurrentState(c.currentState);

87 }

88 }

89 }

90 }

91 }

92

93

94 private void InterfaceEventReceived(InterfaceEvent e)

95 {

96 if (IsItMe(e.Environment, e.RPI, e.Device))

97 {

98 if (components.Count > 0)

99 {

100 foreach (IoTComponent c in components)

101 {

102 Destroy(c);

103 }

104 }

105 foreach (ComponentInterface c in e.components)

106 {

107 if (c.componentID == "LED")

108 {

109 gameObject.AddComponent<LED>();

110 }

111 if (c.componentID == "BUTTON")

112 {

113 gameObject.AddComponent<IoTPlatform.

IoTComponents.Button>();

114 }

115 }

104 APPENDIX A. CODE

116 MQTTHandler.Instance.MqttPublishMsg(MQTTHandler.

MQTTMsgType.State_Req, MQTTHandler.

MQTTMsgEnvironment.House, e.RPI, e.Device, "REQ");

117

118

119 }

120 }

121

122 private bool IsItMe(string environment, string rpi, string id)

123 {

124 return (this.Environment == environment && this.RPI == rpi

&& (this.ID == id || id == "#"));

125 }

126

127

128 }

Unity code: MQTTHandler.cs

1 using System.Collections;

2 using System.Net;

3 using UnityEngine;

4 using uPLibrary.Networking.M2Mqtt;

5 using uPLibrary.Networking.M2Mqtt.Messages;

6 using uPLibrary.Networking.M2Mqtt.Utility;

7 using uPLibrary.Networking.M2Mqtt.Exceptions;

8 using IoTPlatform.Events;

9 using IoTPlatform.Master.Utility;

10

11 using System;

12

13

14 public class MQTTHandler : MonoBehaviour

15 {

16

17 // Singleton

18 static MQTTHandler instanceInternal = null;

19 public static MQTTHandler Instance

20 {

21 get { return instanceInternal; }

22 }

23

24 public delegate void OnConnectRequest();

25

26 public OnConnectRequest onConnectRequest;

27

28

29 public bool AutoConnectNewDevices = true;

A.3. CASE 3: FOLLOW THE RED DOT CODE 105

30

31 private MqttClient client;

32 private string mqttBrokerAddress = "mqtt.idi.ntnu.no";

33 private int mqttBrokerPort = 1883;

34 private string eventSubTopic = "FtRD/Event/House/#";

35 private string actionSubTopic = "FtRD/Action/House/#";

36 private string stateReqSubTopic = "FtRD/State_Req/House/#";

37 private string stateSubTopic = "FtRD/State/House/#";

38 private string interfaceReqSubTopic = "FtRD/Interface_Req/House

/#";

39 private string interfaceSubTopic = "FtRD/Interface/House/#";

40 private string connectReqSubTopic = "FtRD/ConnectReq/House/#";

41 private string connectSubTopic = "FtRD/Connect/House/#";

42 private string AllTopicLabel = "#";

43 private string WildcardLabel = "+";

44

45 public enum MQTTMsgType { Event, Action, State_Req, State,

Interface_Req, Interface, ConnectReq, Connect, ALL };

46 public enum MQTTMsgEnvironment { House, ALL };

47

48

49 private void Awake()

50 {

51 if (instanceInternal != null && instanceInternal != this)

52 {

53 Destroy(gameObject);

54 }

55 instanceInternal = this;

56 DontDestroyOnLoad(gameObject);

57 }

58

59 void Start()

60 {

61 client = new MqttClient(mqttBrokerAddress, mqttBrokerPort,

false, null);

62

63 client.MqttMsgPublishReceived += MqttMsgPublishReceived;

64

65 string clientId = Guid.NewGuid().ToString();

66 client.Connect(clientId);

67

68 client.Subscribe(new string[] { actionSubTopic }, new byte[]

{ MqttMsgBase.QOS_LEVEL_EXACTLY_ONCE });

69 Debug.Log("Subscribed to: [" + actionSubTopic + "]");

70

71 client.Subscribe(new string[] { stateSubTopic }, new byte[]

{ MqttMsgBase.QOS_LEVEL_EXACTLY_ONCE });

72 Debug.Log("Subscribed to: [" + stateSubTopic + "]");

106 APPENDIX A. CODE

73

74 client.Subscribe(new string[] { interfaceSubTopic }, new

byte[] { MqttMsgBase.QOS_LEVEL_EXACTLY_ONCE });

75 Debug.Log("Subscribed to: [" + interfaceSubTopic + "]");

76

77 client.Subscribe(new string[] { connectReqSubTopic }, new

byte[] { MqttMsgBase.QOS_LEVEL_EXACTLY_ONCE });

78 Debug.Log("Subscribed to: [" + connectReqSubTopic + "]");

79

80 Debug.Log("Start Called " + client.ToString());

81 }

82

83 internal void MqttPublishMsg(MQTTMsgType action,

MQTTMsgEnvironment house, object rPI, object iD, string v)

84 {

85 throw new NotImplementedException();

86 }

87

88 void MqttMsgPublishReceived(object sender,

MqttMsgPublishEventArgs e)

89 {

90 string[] topics = e.Topic.Split(’/’);

91 if (!Enum.IsDefined(typeof(MQTTMsgType), topics[1]))

92 {

93 Debug.Log("Received message from different topic: " + e.

Topic);

94 return;

95 }

96

97 MQTTMsgType topic = (MQTTMsgType)Enum.Parse(typeof(

MQTTMsgType), topics[1]);

98 switch (topic)

99 {

100 case MQTTMsgType.Event:

101 ActionPerformed(e);

102 break;

103 case MQTTMsgType.Interface:

104 InterfaceReceived(e);

105 break;

106 case MQTTMsgType.State:

107 StateReceived(e);

108 break;

109 case MQTTMsgType.ConnectReq:

110 ConnectReqReceived(e);

111 break;

112 }

113

114

A.3. CASE 3: FOLLOW THE RED DOT CODE 107

115 }

116

117 private void ConnectReqReceived(MqttMsgPublishEventArgs e)

118 {

119 string[] topics = e.Topic.Split(’/’);

120 string env = "#";

121 string rpi = "#";

122 string dev = "#";

123 if (topics.Length > 2)

124 {

125 env = topics[2];

126 }

127 if (topics.Length > 3)

128 {

129 rpi = topics[3];

130 }

131 if (topics.Length > 4)

132 {

133 dev = topics[4];

134 }

135

136 if (AutoConnectNewDevices)

137 {

138 DevHandler.Instance.AddNewDevice(env, rpi, dev);

139 Debug.Log("Topic to publish to: " + interfaceReqSubTopic

+ " : [’REQ’]");

140 Byte[] bytes = System.Text.Encoding.UTF8.GetBytes("REQ")

;

141 client.Publish(interfaceReqSubTopic, bytes);

142 } else

143 {

144 onConnectRequest();

145 }

146 }

147

148 private void StateReceived(MqttMsgPublishEventArgs e)

149 {

150 string[] topics = e.Topic.Split(’/’);

151 string env = "#";

152 string rpi = "#";

153 string dev = "#";

154 if (topics.Length > 2)

155 {

156 env = topics[2];

157 }

158 if (topics.Length > 3)

159 {

160 rpi = topics[3];

108 APPENDIX A. CODE

161 }

162 if (topics.Length > 4)

163 {

164 dev = topics[4];

165 }

166

167 Debug.Log("[State]: " + env + "/" + rpi + "/" + dev);

168 IoTState iotState = JsonUtility.FromJson<IoTState>(System.

Text.Encoding.UTF8.GetString(e.Message));

169 IoTEventHandler.Instance.Raise(new StateEvent()

170 {

171 Device = dev,

172 RPI = rpi,

173 Environment = env,

174 isConnected = iotState.connected,

175 components = iotState.components

176 });

177 }

178

179 private void InterfaceReceived(MqttMsgPublishEventArgs e)

180 {

181 string[] topics = e.Topic.Split(’/’);

182 string env = "#";

183 string rpi = "#";

184 string dev = "#";

185 if (topics.Length > 2)

186 {

187 env = topics[2];

188 }

189 if (topics.Length > 3)

190 {

191 rpi = topics[3];

192 }

193 if (topics.Length > 4)

194 {

195 dev = topics[4];

196 }

197

198 Debug.Log("[Interface]: " + env + "/" + rpi + "/" + dev);

199 IoTInterface ioTInterface = JsonUtility.FromJson<

IoTInterface>(System.Text.Encoding.UTF8.GetString(e.

Message));

200 IoTEventHandler.Instance.Raise(new InterfaceEvent()

201 {

202 Device = dev,

203 RPI = rpi,

204 Environment = env,

205 components = ioTInterface.components

A.3. CASE 3: FOLLOW THE RED DOT CODE 109

206 });

207 }

208

209

210 private void ActionPerformed(MqttMsgPublishEventArgs e)

211 {

212 string[] topics = e.Topic.Split(’/’);

213 string env = "#";

214 string rpi = "#";

215 string dev = "#";

216 if (topics.Length > 2)

217 {

218 env = topics[2];

219 }

220 if (topics.Length > 3)

221 {

222 rpi = topics[3];

223 }

224 if (topics.Length > 4)

225 {

226 dev = topics[4];

227 }

228 Debug.Log("[Action] " + env + "/" + rpi + "/" + dev + ": " +

System.Text.Encoding.UTF8.GetString(e.Message));

229

230 IoTEventHandler.Instance.Raise(new ActionEvent

231 {

232 Environment = env,

233 RPI = rpi,

234 Device = dev,

235 Msg = System.Text.Encoding.UTF8.GetString(e.Message)

236 });

237 }

238

239 public void MqttPublishMsg(MQTTMsgType type, MQTTMsgEnvironment

area, string RPI, string device, string msg)

240 {

241 string topic = "FtRD/";

242 if (type == MQTTMsgType.ALL)

243 {

244 topic += "#";

245 } else

246 {

247 topic += type.ToString() + "/";

248

249 if (area == MQTTMsgEnvironment.ALL)

250 {

251 topic += "#";

110 APPENDIX A. CODE

252 } else

253 {

254 topic += area.ToString() + "/";

255

256 if (RPI == AllTopicLabel)

257 {

258 topic += AllTopicLabel;

259 } else

260 {

261 topic += RPI + "/";

262

263 if (device == AllTopicLabel)

264 {

265 topic += AllTopicLabel;

266 } else

267 {

268 topic += device;

269 }

270 }

271 }

272 }

273 Debug.Log("Topic to publish to: " + topic + " : [" + msg + "

]");

274 Byte[] bytes = System.Text.Encoding.UTF8.GetBytes(msg);

275 client.Publish(topic, bytes);

276 }

277

278 private void OnDestroy()

279 {

280 client.Disconnect();

281 }

282 }

A.4 MQTT JSON objects

1 { State: {

2 "connected" : boolean,

3 "components" : [

4 { "componentID" : "idA", "currentState" : "ON" },

5 { "componentID" : "idB", "currentState" : "LIFTED" }

6]

7 }}

1 { Interface: {

2 "components" : [

A.4. MQTT JSON OBJECTS 111

3 { "componentID" : "idA", "componentType" : "LED", "

states" : ["ON", "OFF", "DISABLED"] },

4 { "componentID" : "idB", "componentType" : "button",

"states" : ["LIFTED", "PRESSED", "DISABLED"] }

5]

6 }}

112 APPENDIX A. CODE

Appendix B

Search terms

B.1 Search Engines and libraries

The most commonly used search engines and libraries that were used to explore the

literature are included in the list below:

Google Scholar (https://scholar.google.no/)

ResearchGate (https://www.researchgate.net/)

ACM Digital Library (https://dl.acm.org/)

Oria (http://oria.no/)

Semantic Scholar (https://www.semanticscholar.org/)

B.2 Search terms

Some of the search terms that were used during the research is listed below. The terms

were also combined at times to create more specific searches. I have also used other

search terms, but these are among the ones that provided mos relevant results.

Games

Pervasive games

Serious games

Exergames

Pervasive game architecture

Ubiquitous computing

Internet of Things (IoT)

113

114 APPENDIX B. SEARCH TERMS

Cloud

IoT-based pervasive games

Game development

IoT Architecture

IoT Technology

Machine-to-machine communication

Activity promoting games

Active video game

Motion-based games

Bibliography

(2008). Internet of Things in 2020: Roadmap for the future, Version 1.1.

Al-Fuqaha, A., Guizani, M., Mohammadi, M., Aledhari, M., and Ayyash, M. (2015). In-

ternet of things: A survey on enabling technologies, protocols, and applications.

IEEE Communications Surveys & Tutorials, 17(4):2347–2376.

Alankus, G., Proffitt, R., Kelleher, C., and Engsberg, J. (2011). Stroke therapy through

motion-based games: a case study. ACM Transactions on Accessible Computing

(TACCESS), 4(1):3.

Ashton, K. (2009). That ’internet of things’ thing.

Atzori, L., Iera, A., and Morabito, G. (2010). The internet of things: A survey. Comput.

Netw., 54(15):2787–2805.

Babu, S. M., Lakshmi, A. J., and Rao, B. T. (2015). A study on cloud based internet of

things: Cloudiot. In Communication Technologies (GCCT), 2015 Global Conference

on, pages 60–65. IEEE.

Baranowski, T., Buday, R., Thompson, D. I., and Baranowski, J. (2008). Playing for real:

video games and stories for health-related behavior change. American journal of

preventive medicine, 34(1):74–82.

Benford, S., Magerkurth, C., and Ljungstrand, P. (2005). Bridging the physical and digi-

tal in pervasive gaming. Commun. ACM, 48(3):54–57.

Biswas, A. R. and Giaffreda, R. (2014). Iot and cloud convergence: Opportunities and

challenges. 2014 IEEE World Forum on Internet of Things (WF-IoT), pages 375–376.

Bonomi, F., Milito, R., Zhu, J., and Addepalli, S. (2012). Fog computing and its role in

the internet of things. In Proceedings of the First Edition of the MCC Workshop on

Mobile Cloud Computing, MCC ’12, pages 13–16, New York, NY, USA. ACM.

Bormann, C., Castellani, A. P., and Shelby, Z. (2012). Coap: An application protocol for

billions of tiny internet nodes. IEEE Internet Computing, 16(2):62–67.

115

116 BIBLIOGRAPHY

Brauner, P., Calero Valdez, A., Schroeder, U., and Ziefle, M. (2013). Increase physical fit-

ness and create health awareness through exergames and gamification. In Holzinger,

A., Ziefle, M., Hitz, M., and Debevc, M., editors, Human Factors in Computing and

Informatics, pages 349–362, Berlin, Heidelberg. Springer Berlin Heidelberg.

Broll, G. and Benford, S. (2005). Seamful Design for Location-Based Mobile Games,

pages 155–166. Springer Berlin Heidelberg, Berlin, Heidelberg.

Brown, G. A., Holoubeck, M., Nylander, B., Watanabe, N., Janulewicz, P., Costello, M.,

Heelan, K. A., and Abbey, B. (2008). Energy costs of physically active video gaming:

wii boxing, wii tennis, and dance dance revolution. Medicine & Science in Sports &

Exercise, 40(5):S460.

Chamberlin, B. and Gallagher, R. (2008). Using video games to promote physical activ-

ity.

Cheok, A. D., Goh, K. H., Liu, W., Farbiz, F., Fong, S. W., Teo, S. L., Li, Y., and Yang,

X. (2004). Human pacman: A mobile, wide-area entertainment system based on

physical, social, and ubiquitous computing. Personal Ubiquitous Comput., 8(2):71–

81.

Cisco (2015). Fog computing and the internet of things: Extend the cloud to where the

things are. Technical report.

Csikszentmihalyi, M. (1975). Beyond Boredom and Anxiety. The Jossey-Bass behavioral

science series. Jossey-Bass Publishers.

Culler, D. and Chakrabarti, S. (2009). 6lowpan: Incorporating ieee 802.15. 4 into the ip

architecture. IPSO Alliance, White paper.

Dash, S. K., Mohapatra, S., and Pattnaik, P. K. (2010). A survey on applications of wire-

less sensor network using cloud computing. International Journal of Computer sci-

ence & Engineering Technologies (E-ISSN: 2044-6004), 1(4):50–55.

de Vries, S. I., Simons, M., and Jongert, T. W. (2008). Energy expenditure of active

computer-games. Medicine & Science in Sports & Exercise, 40(5):S198.

Dickinson, A., Lochrie, M., and Egglestone, P. (2015). Ukko: Enriching persuasive loca-

tion based games with environmental sensor data. In Proceedings of the 2015 Annual

Symposium on Computer-Human Interaction in Play, CHI PLAY ’15, pages 493–498,

New York, NY, USA. ACM.

DiRico, E., Davis, K. A., Washington, C., Galvanin, E., Otto, R. M., and Wygand, J. W.

(2009). The metabolic cost of an interactive video game: 559. Medicine & Science in

Sports & Exercise, 41(5):11.

BIBLIOGRAPHY 117

Dynastream Innovations Inc. Ant message protocol and usage.

Epstein, L. H., Beecher, M. D., Graf, J. L., and Roemmich, J. N. (2007). Choice of inter-

active dance and bicycle games in overweight and nonoverweight youth. Annals of

Behavioral Medicine, 33(2):124–131.

Esposito, C., Russo, S., and Di Crescenzo, D. (2008). Performance assessment of omg

compliant data distribution middleware. In Parallel and Distributed Processing,

2008. IPDPS 2008. IEEE International Symposium On, pages 1–8. IEEE.

Fouladi, B. and Ghanoun, S. (2013). Security evaluation of the z-wave wireless protocol.

Black hat USA, 24:1–2.

Gao, Z. and Chen, S. (2014). Are field-based exergames useful in preventing childhood

obesity? a systematic review. Obesity reviews, 15(8):676–691.

Gershenfeld, N., Krikorian, R., and Cohen, D. (2004). The Internet of Things. Scientific

American, 291(4):76–81.

Glaessgen, E. and Stargel, D. (2012). The digital twin paradigm for future nasa and us air

force vehicles. In 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics

and Materials Conference 20th AIAA/ASME/AHS Adaptive Structures Conference 14th

AIAA, page 1818.

Gomez, C., Oller, J., and Paradells, J. (2012). Overview and evaluation of bluetooth low

energy: An emerging low-power wireless technology. Sensors, 12(9):11734–11753.

Graves, L., Stratton, G., Ridgers, N. D., and Cable, N. T. (2007). Comparison of energy

expenditure in adolescents when playing new generation and sedentary computer

games: cross sectional study. BMJ, 335(7633):1282–1284.

Grieves, M. and Vickers, J. (2017). Digital twin: Mitigating unpredictable, undesirable

emergent behavior in complex systems. In Transdisciplinary Perspectives on Com-

plex Systems, pages 85–113. Springer.

Guo, B., Fujimura, R., Zhang, D., and Imai, M. (2012). Design-in-play: improving the

variability of indoor pervasive games. Multimedia Tools and Applications, 59(1):259–

277.

Huitzinga, J. (1944). Homo Ludens: A study of the play element in culture. Routledge

and Kegan Paul.

Jegers, K. (2009). Pervasive GameFlow: Identifying and exploring the mechanisms of

player enjoyment in pervasive games. PhD thesis, Umeå Universitet, Inst för Infor-

matik.

118 BIBLIOGRAPHY

Kasapakis, V. and Gavalas, D. (2015). Pervasive gaming: Status, trends and design prin-

ciples. Journal of Network and Computer Applications, 55:213–236.

Kasapakis, V., Gavalas, D., and Bubaris, N. (2013). Addressing openness and portabil-

ity in outdoor pervasive role-playing games. In Communications and Information

Technology (ICCIT), 2013 Third International Conference on, pages 93–97. IEEE.

Kasapakis, V., Gavalas, D., and Chatzidimitris, T. (2015). Evaluation of Pervasive Games:

Recruitment of Qualified Participants Through Preparatory Game Phases, pages 118–

124. Springer International Publishing, Cham.

Khssibi, S., Idoudi, H., Van Den Bossche, A., Val, T., and Saidane, L. A. (2013). Pre-

sentation and analysis of a new technology for low-power wireless sensor network.

International Journal of Digital Information and Wireless Communications, 3(1):pp–

75.

Lanningham-Foster, L., Jensen, T. B., Foster, R. C., Redmond, A. B., Walker, B. A., Heinz,

D., and Levine, J. A. (2006). Energy expenditure of sedentary screen time compared

with active screen time for children. Pediatrics, 118(6):e1831–e1835.

Lee, J.-S., Su, Y.-W., and Shen, C.-C. (2007). A comparative study of wireless protocols:

Bluetooth, uwb, zigbee, and wi-fi. In Industrial Electronics Society, 2007. IECON 2007.

33rd Annual Conference of the IEEE, pages 46–51. Ieee.

Lee, S., Kim, W., Park, T., and Peng, W. (2017). The psychological effects of playing

exergames: A systematic review. Cyberpsychology, Behavior, and Social Networking,

20(9):513–532.

Luzuriaga, J. E., Perez, M., Boronat, P., Cano, J. C., Calafate, C., and Manzoni, P. (2015). A

comparative evaluation of amqp and mqtt protocols over unstable and mobile net-

works. In Consumer Communications and Networking Conference (CCNC), 2015 12th

Annual IEEE, pages 931–936. IEEE.

Lwin, M. O. and Malik, S. (2012). The efficacy of exergames-incorporated physical ed-

ucation lessons in influencing drivers of physical activity: a comparison of children

and pre-adolescents. Psychology of Sport and Exercise, 13(6):756–760.

MacDowell, A. and Endler, M. (2015). Internet of Things Based Multiplayer Pervasive

Games: An Architectural Analysis, pages 125–138. Springer International Publishing,

Cham.

McCarthy, J. (1980). Circumscription—a form of non-monotonic reasoning. Artificial

Intelligence, 13:27–39.

BIBLIOGRAPHY 119

Mehmood, N. Q. and Culmone, R. (2015). An ant+ protocol based health care sys-

tem. In Advanced Information Networking and Applications Workshops (WAINA),

2015 IEEE 29th International Conference on, pages 193–198. IEEE.

Montola, M. (2005). Exploring the edge of the magic circle: Defining pervasive games.

In CD-ROM Proceedings of Digital Arts and Culture. Copenhagen, pages 1–3.

Nordic Semiconductor. Things you should know about Bluetooth range. Accessed: 15.

May 2017.

Oates, B. J. (2005). Researching information systems and computing. Sage.

Oh, Y. and Yang, S. (2010). Defining exergames & exergaming. Proceedings of Meaning-

ful Play, pages 1–17.

Olli, S. (2002). All the world's a botfighter stage: Notes on location-based multi-

user gaming. In Computer Games and Digital Cultures Conference Proceedings. Tam-

pere University Press.

Park, T., Hwang, I., Lee, U., Lee, S. I., Yoo, C., Lee, Y., Jang, H., Choe, S. P., Park, S., and

Song, J. (2012). Exerlink: enabling pervasive social exergames with heterogeneous

exercise devices. In Proceedings of the 10th international conference on Mobile sys-

tems, applications, and services, pages 15–28. ACM.

Paw, M. J. C. A., Jacobs, W. M., Vaessen, E. P., Titze, S., and van Mechelen, W. (2008). The

motivation of children to play an active video game. Journal of Science and Medicine

in Sport, 11(2):163–166.

Rao, B. P., Saluia, P., Sharma, N., Mittal, A., and Sharma, S. V. (2012). Cloud computing

for internet of things & sensing based applications. In Sensing Technology (ICST),

2012 Sixth International Conference on, pages 374–380. IEEE.

Reiter, G. (2014). Wireless connectivity for the internet of things. Europe, 433:868MHz.

RFID Journal. Study Forecasts 350 Percent Rise in IoT in Retail by 2021. Accessed: 27.

May 2017.

Saint-Andre, P. (2011). Extensible messaging and presence protocol (xmpp): Core.

Sakamura, K. (2006). Challenges in the age of ubiquitous computing: A case study of

t-engine, an open development platform for embedded systems. In Proceedings of

the 28th International Conference on Software Engineering, ICSE ’06, pages 713–720,

New York, NY, USA. ACM.

Scalagent. Benchmark MQTT servers.

Semiconductor, N. (2017). Gazell link layer user guide.

120 BIBLIOGRAPHY

Sinclair, J., Hingston, P., and Masek, M. (2007). Considerations for the design of ex-

ergames. In Proceedings of the 5th international conference on Computer graphics

and interactive techniques in Australia and Southeast Asia, pages 289–295. ACM.

Sreekumar, A., Cheok, A. D., Thang, L. N., and Lei, C. (2006). Capture the flag: Mixed-

reality social gaming with smart phones. IEEE Pervasive Computing, 5:62–69.

Staiano, A. E. and Calvert, S. L. (2011). Exergames for physical education courses: Phys-

ical, social, and cognitive benefits. Child development perspectives, 5(2):93–98.

Sterling, B. (2005). Shaping Things. The MIT Press.

Toma, I., Simperl, E., and Hench, G. (2009). A joint roadmap for semantic technologies

and the internet of things.

Tomporowski, P. D., Lambourne, K., and Okumura, M. S. (2011). Physical activity inter-

ventions and children’s mental function: an introduction and overview. Preventive

medicine, 52:S3–S9.

Tuegel, E. J., Ingraffea, A. R., Eason, T. G., and Spottswood, S. M. (2011). Reengineer-

ing aircraft structural life prediction using a digital twin. International Journal of

Aerospace Engineering, 2011.

Union, I. T. (2012). Overview of the internet of things. ITU-T Y.2060.

Uzor, S. and Baillie, L. (2014). Investigating the long-term use of exergames in the home

with elderly fallers. In Proceedings of the 32Nd Annual ACM Conference on Human

Factors in Computing Systems, CHI ’14, pages 2813–2822, New York, NY, USA. ACM.

Vaishnavi, V. and Kuechler, W. (2004). Design research in information systems.

Warburton, D. E., Bredin, S. S., Horita, L. T., Zbogar, D., Scott, J. M., Esch, B. T., and

Rhodes, R. E. (2007). The health benefits of interactive video game exercise. Applied

Physiology, Nutrition, and Metabolism, 32(4):655–663.

Wiberg, M. and Jegers, K. (2006). Pervasive gaming in the everyday world. IEEE Perva-

sive Computing, 5:78–85.

Zaslavsky, A., Perera, C., and Georgakopoulos, D. (2013). Sensing as a service and big

data. arXiv preprint arXiv:1301.0159.

	Executive Summary
	Acknowledgment
	Introduction
	Motivation
	Related work
	Objectives
	Contribution
	Limitations
	Outline

	Background
	Internet of Things
	Cloud
	Pervasive Games
	Exergaming

	Research Methods
	Strategy
	Data collection
	Data Analysis

	Case description
	Evaluation Criteria
	IoT Technology
	Objects layer
	Object Abstraction layer
	Service Management layer
	Application layer
	Proposed technology stack

	Design and creation
	Initial concept designs
	Implementation

	Results and Evaluation
	RQ1
	RQ2
	RQ3
	RQ4

	Discussion
	RQ1
	RQ2
	RQ3
	RQ4
	Research Methods
	Limitations of the research

	Conclusion
	Recommendations for Further Work
	Code
	Case 1: Follow the Red Dot code
	Case 2: Follow the Red Dot code
	Case 3: Follow the Red Dot code
	MQTT JSON objects

	Search terms
	Search Engines and libraries
	Search terms

	Bibliography

