@NTNU

Norwegian University of
Science and Technology

Exploring Empirical Engineering
Approaches in Startup Companies: The
Trilateral Hardware Startup Model

Vebjgrn Berg
Jorgen Birkeland

Master of Science in Computer Science
Submission date: June 2018
Supervisor: Maria Letizia Jaccheri, IDI

Co-supervisor: llias Pappas, IDI
Anh Nguyen-Duc, Hggskolen i Sgrgst-Norge

Norwegian University of Science and Technology
Department of Computer Science

Acknowledgment

We would like to thank Professor Letizia Jaccheri for her supervision during the Master
thesis process. Also, we would like to thank Post Doctoral Fellow Ilias O. Pappas and
Associate Professor Anh Nguyen-Duc for their co-supervision. All have contributed with
their expertise within Software Engineering research. IDI and NTNU deserve a special
recognition for their brilliant services and facilitating a great learning experience.

Abstract

Technological advances, decreased component cost, small-batch manufacturing, social
connections, and rapid prototyping have lowered the barriers for launching hardware star-
tups. The rising hardware ecosystem has reduced environmental issues related to cost and
scalability. Although the obstacles to success are decreasing, hardware startups operate
in an environment posing challenges to traditional development and innovation methods.
More research should be provided to support engineering activities in the unique and spe-
cial context of hardware startups.

This Master thesis seeks to explore the work-practices in hardware startups by investigat-
ing the role of engineering activities, from idea conceptualization to a launched product.
In particular, it investigates factors influencing development speed and agility and explores
commonalities, challenges and, situational factors. The research direction was formulated
on the basis of “Software Startup Engineering: A Systematic Mapping Study” (Appendix
B). We state the following research questions:

RQ1 How do hardware startups achieve agility during product development?

RQI1.1 How do hardware startups develop their products?
RQ1.2 What kind of challenges are relevant in the hardware startup context?

RQ1.3 How do internal/external context factors impact the speed of product develop-
ment?

RQ2 How do hardware startups manage quality concerns of their products?

RQ2.1 How are hardware products tested?
RQ2.2 How is technical debt managed in hardware startups?

RQ3 How do hardware startups achieve balance between speed and quality?

We performed a multiple-case study investigating 13 hardware startups. Data were col-
lected through semi-structured interviews. Transcribed interviews were analyzed using a
thematic synthesis process to create a model of higher-order themes. The findings of this
study led to the following three themes third-party dependency, hardware-software inte-
gration, and two-folded product quality trade-off operating the hardware startup context.
Thus, the study contributes to the area of startup engineering as it draws from the Green-
field Startup Model and extends it with the three unique themes leading to the creation of
the Trilateral Hardware Startup Model.

Our study presents initial research results on engineering activities in early-stage European
hardware startups. The results indicate that hardware startups achieve rapid prototyping
through evolutionary approaches, simple software side solutions, and opportunistic agile
practices. Quality assurance is an informal process where testing practices are entrusted
to each individual team member. As investing in hardware quality is essential for speed
and bringing products fast to market, more research should be provided describing how
hardware startups can manage the relationship between restricted resources and increased
quality demands.

iii

Sammendrag

Teknologiske fremskritt, reduserte komponent-kostnader, lav-skala produksjon, sosiale
nettverk og rask prototyping har senket barrierene for a lansere en hardware startup. Det
voksende hardware-gkosystemet har redusert problemer knyttet til kostnad og skalerbarhet.
Selv om hindrene for suksess er avtagende, opererer hardware startups i et miljg som stiller
utfordringer til tradisjonelle utviklings- og innovasjonsmetoder. Mer forskning bgr foretas
for a stgtte produktutviklingsaktiviteter i den unike og spesielle konteksten til hardware
startups.

Denne masteroppgaven tar sikte pa a utforske arbeidspraksiser i hardware startups ved
a undersgke rollen til produktutviklingsaktiviteter, fra idé-konseptualisering frem til et
lansert produkt. Spesielt undersgker den faktorer som pavirker utviklingshastighet og
smidighet, og utforsker fellestrekk, utfordringer og situasjonsavhengige faktorer. Prob-
lemstillingen er formulert pa bakgrunn av “Software Startup Engineering: A Systematic
Mapping Study” (Appendix B). Vi definerer fglgende forskningsspgrsmal:

RQ1 Hvordan oppnar hardware startups smidig produktutvikling?

RQI1.1 Hvordan utvikler hardware startups sine produkter?
RQ1.2 Hyvilke utfordringer er relevante i konteksten til hardware startups?

RQ1.3 Hvordan pavirker interne/eksterne faktorer produktutviklingshastigheten?
RQ2 Hvordan handterer hardware startups produktkvalitet?

RQ2.1 Hvordan testes hardware produkter?
RQ2.2 Hvordan handteres teknisk gjeld i hardware startups?

RQ3 Hvordan oppnar hardware startups balanse mellom fart og kvalitet?

Vi gjennomfgrte en multiple-case studie som undersgkte og analyserte 13 hardware
startups. Data ble innsamlet gjennom semi-strukturerte intervjuer. Transkriberte intervjuer
ble analysert ved bruk av en tematisk prosess for a skape en modell av overordnede temaer.
Resultatene ledet til fglgende tre tema for hardware startups tredjepartsavhengighet, in-
tegrering av hardware-software og to-foldet produktkvalitets trade-off. Studien bidrar til
omradet startup engineering da den viderefgrer kunnskap fra the Greenfield Startup Model
og utvider den med tre unike tema representert ved the Trilateral Hardware Startup Model.

Var undersgkelse presenterer initielle forskningsresultater for produktutviklingsaktiviteter
1 tidlig-fase europeiske hardware startups. Resultatene indikerer at hardware startups
oppnar rask produktutvikling gjennom evolusjonzre prototyper og enkle software-side
Igsninger. Kvalitetssikring er en uformell prosess hvor testing blir betrodd til hvert enkelt
lagmedlem. Ettersom investering i hardware-kvalitet er avgjgrende for hastighet og for &
bringe produkter raskt til markedet, bgr det forskes mer pa hvordan hardware startups kan
héandtere forholdet mellom begrensede ressurser og gkte kvalitetskrav.

iv

Preface

This thesis is submitted to the Norwegian University of Science and Technology (NTNU)
as part of the course TDT4900 Computer Science, Master’s Thesis. The thesis is to be
submitted to the Journal of Information and Software Technology (Elsevier).

The work has been performed at the Department of Computer Science, NTNU, Trond-
heim, under the supervision of Professor Letizia Jaccheri as the main supervisor, and Post
Doctoral Fellow Ilias O. Pappas and Associate Professor at the University of Southeast
Norway Anh Nguyen-Duc as co-supervisors.

The Master thesis builds on previous work from the course TDT4501 Computer Science,
Specialisation Project. The specialization project Software Startup Engineering: A Sys-
tematic Mapping Study has been submitted to the Journal of Systems and Software (Else-
vier), and may be found in Appendix B.

In addition, we have submitted the paper The Role of Data Analytics in Startup Com-
panies: Exploring Challenges and Barriers to the 17th IFIP Conference on e-Business,
e-Services, and e-Society, Challenges and Opportunities in the Digital Era (I3E 2018), and
may be found in Appendix C.

vi

Table of Contents

Acknowledgment i
Abstract iii
Sammendrag iv
Preface v
Table of Contents ix
List of Tables xi
List of Figures xiii
Abbreviations xiv

1 Introduction 1
1.1 Motivation e e e e 1
1.2 Research Questions 2
1.3 ResearchScope 3
1.4 ResearchProcess, 4
1.5 Outlineofthe Thesis 4

2 Background 5
2.1 StartupMovement. 5

2.2 Software Startups 6
2.2.1 Startup Lifecycle 7

2.3 Startup Development Methodology 7

23.1 LeanStartup 8
2.4 Software Startup Engineering 0oL 10
2.5 Theoretical Frameworks for Startups 11
2.5.1 The Greenfield StartupModel 11

vii

2.5.2 Relevant Frameworks 14

2.6 Hardware Startups e 16
2.7 Embedded Systems Development 16
Systematic Mapping Study 19
3.1 ResearchMethod 19
3.1.1 ResearchQuestions 20
3.1.2 Data Sources and Search Strategy 21
3.1.3 Study Selection 21
314 ManualSearch L L. 23
3.1.5 Quality Assessmentt 23
3.1.6 Data Extraction and Synthesis 24
3.1.7 Threatsto Validity 26
3.2 SynthesizedResults 26
3.2.1 RQI: How has software startup research changed over time in
terms of focused knowledge areas? 27
3.2.2 RQ2: What is the relative strength of the empirical evidences re-
ported? 28
3.2.3 RQ3: In what context has software startup research been conducted? 30
33 Conclusion 31
Research Method 35
4.1 Research Questions 36
4.2 Identification of Interview Questions 37
4.3 Case and Subjects Selection 39
4.4 Data Collection Procedure 40
4.5 AnalysisProcedure 41
45.1 InitialReading 42
452 CodingProcess 42
453 Translate Codes into Themes 43
4.5.4 Model of Higher-Order Themes 43
4.6 Validation Procedure 44
477 Validity Procedure oL o 44
47.1 Construct Validity 45
472 Internal Validity, 45
473 External Validity 45
474 Conclusion Validity 46
4.8 Intellectual Property Rights 46
Results 47
5.1 CaseDescriptions 47
5.2 RQI How do hardware startups achieve agility during product development? 54
5.2.1 RQLl.1 How do hardware startups develop their products? 54
5.2.2 RQI1.2 What kind of challenges are relevant in the hardware startup
CONteXt? e 57

viii

5.2.3 RQI.3 How do internal/external context factors impact the speed

of product development?, 62
5.3 RQ2 How do hardware startups manage quality concerns of their products? 65
5.3.1 RQ2.1 How are hardware products tested? 65
5.3.2 RQ2.2 How is technical debt managed in hardware startups? . . . 66
5.4 RQ3 How do hardware startups achieve balance between speed and quality? 69
6 The Trilateral Hardware Startup Model 73
6.1 Modeloverview 73
6.1.1 Restricted resources e 75
6.1.2 Team proactivity 76
6.1.3 Two-folded product quality trade-off 76
6.1.4 Third-party dependency, 76
6.1.5 Hardware-software integration 77
6.1.6 Evolutionary prototyping 77
6.1.7 Rapiddevelopment, 78
6.1.8 Incurred technicaldebt 78
6.1.9 Return effects of short-term benefits 78
6.2 Model Validation 79
7 Discussion 83
7.1 Agility in hardware startupso oL 83
7.2 Quality of high-techproducts 85
7.3 Balancing speed and quality of high-tech product development 87
7.4 Implications of the Trilateral Hardware Startup Model 88

7.5 Comparing the Trilateral Hardware Startup Model to the Greenfield Startup
Model e 89
8 Conclusion 93
Bibliography 95
Appendices 105
A Interview Protocol and Consent Form 105
A.1 Interview Protocol. 105
A.1.1 General Information 105
A.1.2 Business Background oL 105
A.1.3 Startup Development Methodologies 106
A.14 ProductDevelopment. 106
A.2 Pre-Interview Questionnaire 107
A3 ConsentForm 108
B Software Startup Engineering: A Systematic Mapping Study 111

C The Role of Data Analytics in Startup Companies: Exploring Challenges and
Barriers 161

List of Tables

3.1
32
33
34
35

4.1
4.2
4.3

5.1
52
53
54
55

6.1

7.1

The searched databases and number of retrievals 21
Quality Assessment Checklist 24
Classification Schema 25
Thematic Concepts, 1994-2017 30
Contextual Descriptions, 2013-2017 31
Startup Channels 39
CaseInterviews 41
Themes’ impact on core model elements 44
Case Descriptions o v v v it i 48
Challenges encountered by hardware startups 58
Situational factors influencing the speed of hardware startups 62
Balance of speed and quality in hardware startups 69
Summary ofresults 72
Mapping between themes and cases 81
Factors operating the context of hardware and software startups 89

Xi

Xii

List of Figures

2.1
22
23
24
2.5

3.1
32
33
34
3.5
3.6
3.7
3.8

4.1
42
43
4.4

5.1

6.1
6.2

The Build Measure Learn Feedback Loop 9
The Greenfield Startup Model 12
Effectuation vs. Causation, 14
The Behavioral Framework 15
Hardware-software co-design process 17
The Systematic Mapping Study Process 20
The Study Selection Process 22
Publication Frequency, 1994-2017 27
Knowledge areacoverage 28
Contribution types 28
Rigour of each covered knowledge area, 2013-2017 29
Rigour and researchtype 29
Rigour and contributiontype 30
Research Process 36
Relationship between research questions and theoretical models 37
Mapping between questions and metrics 38
Thematic Synthesis Process 42
Model of higher-order themes unique to hardware startups 71
The Trilateral Hardware StartupModel 75
Earlier version of the created model 80

Xiii

Abbreviations

CEO
CSO
CTO
COO
GQM
GSM
HR
IDI
IoT
MVP
NSD
NTNU
PCB
RC

SE
SME
SRRN
SWEBOK
THSM
UX
VSE

Chief Executive Officer

Chief Strategic Officer

Chief Technical Officer

Chief Operating Officer

Goal Question Metric

The Greenfield Startup Model

Human Resource

Department of Computer Science
Internet of Things

Minimum Viable Product

Norwegian Centre for Research Data
Norwegian University of Science and Technology
Printed Circuit Board

Radio Control

Software Engineering

Small and Medium Enterprises
Software Startup Research Network
Software Engineering Book of Knowledge
The Trilateral Hardware Startup Model
User Experience

Very Small Entity

Xiv

Chapter

Introduction

The barriers for starting a hardware company have never been lower, a result of the rising
hardware ecosystem. Technological advances, rapid prototyping, decreased component
costs, small-batch manufacturing, and fundraising platforms have renewed the interest for
hardware startups (DiResta et al., 2015; Wei, 2017). Even though the obstacles to success
are decreasing, the hardware startup context poses several challenges to traditional product
development and innovation methods (Ronkainen and Abrahamsson, 2003). Practitioners
need to handle the many dependencies posed by the complex nature of high-tech prod-
ucts like vendor, platform, and competence dependency (Nguyen-Duc et al., 2018). More
research should be provided to support engineering activities in the unique and special
context of hardware startups.

The objective of this Master thesis is to create a better understanding of work-practices in
hardware startups by investigating the role of engineering activities, from idea conceptual-
ization to a launched product. In particular, we will investigate factors influencing devel-
opment speed and agility, and explore commonalities, challenges and situational factors.
We present the findings from a multiple-case study investigating 13 hardware startups.
This implies several recommendations for future work, and the creation of The Trilateral
Hardware Startup Model (THSM) to present the overall engineering approach of hardware
startups.

The remainder of this chapter proceeds as follows: Section 1.1 presents the motivation
for this research. Section 1.2 presents the research questions. Section 1.3 defines the
boundaries of the research. Section 1.4 explains the chosen research method and research
process. Section 1.5 presents the outline of this thesis.

1.1 Motivation

Technology-based startups have long been an important driver for global economic growth
and competitiveness (Unterkalmsteiner et al., 2016). Startups, newly created companies

1

Chapter 1. Introduction

producing cutting-edge technology, have shown to be an important source of technology
innovation, and will be influential in what is referred to as the third technological revolu-
tion the Internet of Things (Jacobson et al., 2017). Despite stories of successful startups,
most of them fail, primarily due to self-destruction rather than competition (Marmer et al.,
2011; Crowne, 2002). The failures come from financial and market factors like insufficient
funding to operate startups activities, failure in finding product-market fit, and building an
entrepreneurial team (Giardino et al., 2015). There are also identified unique challenges
related to product development and innovation methods (Giardino et al., 2015). Startup
researchers have called for a further attention to engineering approaches to support startup
activities in all startup evolution stages (Unterkalmsteiner et al., 2016). Previously, most
of the research in the field of software engineering has been conducted in relation to the
needs and challenges of established companies, first identified by Sutton (Sutton Jr, 2000).

The project thesis (Software Startup Engineering: A Systematic Mapping Study) under-
taken in TDT4501 - Computer Science, Specialization Project serves as the foundation for
this Master thesis. It has been submitted to the Journal of System and Software (Elsevier)
and can be found in Appendix B. The systematic mapping study identifies a change in
focus of research area and contextual factors operating startup research. Directions for
future work are suggested, including startup evolution models and human aspects, and a
consolidation of the contextual factors of software startups. In addition, the study identifies
limited research and knowledge on hardware startups. Current literature on hardware star-
tups indicate that specific development practices are required (Nguyen-Duc et al., 2017a;
Stock and Seliger, 2016), one reason being their multifaceted architectures and abstraction
layers (Jacobson et al., 2017).

Hardware startups develop products with mixed hardware and software parts, including
connected devices, sensor devices and advanced robotics (DiResta et al., 2015; Jacobson
etal., 2017). This means that they not only work with hardware, but “may include a signif-
icant amount of software components at the system level and solution level” (Nguyen-Duc
et al., 2018). Hardware startups are distinct to software startups as they need to handle
hardware design and development, and manufacturing in addition to software develop-
ment. This implies both increased development time and cost compared to software prod-
ucts (Chen, 2015). Knowledge from development of embedded products in established
companies can be related to hardware startups product development, however the startup
context is unique and special (Nguyen-Duc et al., 2018; Ronkainen and Abrahamsson,
2003). As hardware startups are a popular phenomenon that are becoming increasingly
influential in development of new electronic products, more effort should be made looking
into practices and processes of hardware product development.

1.2 Research Questions

The technological lifecycle of companies delivering new innovative electronic products
is becoming shorter each year. High quality demands, accelerating adoption rates of cus-
tomers, and pressure for reduced time-to-market increase the uncertainty related to product
development processes of hardware startups. In such a context the combination of speed

2

1.3 Research Scope

and agility is essential for delivering innovative customer-driven products (Bosch, 2016).
Speed is fundamental for staying alive in highly competitive markets, where creativity
needs to be combined with agility to handle uncertainty, and introduce flexibility in the
process (Garbajosa et al., 2017). At the same time, speed needs to be managed with cau-
tion to avoid expensive rework and bringing the development process to a halt due to low
priority of product quality. We aim at exploring how agility, speed, and quality are engi-
neered by practitioners in hardware startups. This has motivated the following research
questions:

RQ1 How do hardware startups achieve agility during product development?

RQ1.1 How do hardware startups develop their products?
RQ1.2 What kind of challenges are relevant in the hardware startup context?

RQ1.3 How do internal/external context factors impact the speed of product develop-
ment?

RQ2 How do hardware startups manage quality concerns of their products?

RQ2.1 How are hardware products tested?

RQ2.2 How is technical debt managed in hardware startups?

RQ3 How do hardware startups achieve balance between speed and quality?

1.3 Research Scope

The units of analysis are people involved in product development in startup companies
who deliver products with mixed hardware and software parts. This multiple-case study is
constrained to the following list of inclusion criteria.

The startup develops products with both hardware and software parts.

The startup has been active for at least six months.

The startup has a first running prototype.

The startup’s ambition is to scale its business.

Interviewees from the relevant startups were eligible for participation if they had ex-
perience and/or knowledge about software and/or hardware development. If the candidate
met the criteria, he/she was regarded as qualified for contributing to answering the research
questions. Data were collected from in-depth semi-structured interviews, pre-interview
questionnaires, and relevant startup and incubator websites.

Eight of the participating startups are located in Trondheim, three are located in Oslo,
one is located in Italy, and one is located in the Netherlands. All startups have to a various
extent received funding from public institutions, private investors or established organiza-
tions. The transferability of results is restricted to early-stage European hardware startups,
hence the results may not be generalizable to startups located outside Europe.

Chapter 1. Introduction

1.4 Research Process

To address our research questions, we decided to conduct a multiple-case study of hard-
ware startups satisfying the inclusion criteria defined in the research scope. The case study
process fitted both the time-constraints and availability of participants and is considered
suitable for software engineering research (Pervan and Maimbo, 2005; Runeson and Host,
2009).

To collect data, we performed semi-structured interviews with 13 hardware startups. All
interviews were recorded and transcribed, and all participants signed consent forms. We
used the GQM method (Basili, 1992) to develop interview questions appropriate for an-
swering our research questions, enabling us to focus on pre-defined topics while at the
same time allowing for an exploratory approach. The interview protocol was designed in
accordance with the case and subjects selection criteria, and most interviews were con-
ducted face-to-face on-site for the collection of reliable data (Runeson and Host, 2009).

To analyze the data, we adapted the thematic synthesis process by Cruzes and Dyba (2011).
We used NVivo to code the transcribed interviews. A total of 48 codes were generated
from 734 references. An integrated approach was applied in combination with the de-
scriptive coding technique (Saldafia, 2015). The codes were translated into themes by
following an axial coding approach (Strauss and Corbin, 1998). These themes were fur-
ther related to each other using the four-step process for creating a model of higher-order
themes (Cruzes and Dyba, 2011). The higher-order themes were together with knowledge
from the Greenfield Startup Model (GSM) combined to create the THSM, describing the
engineering approach of hardware startups. Lastly, we discussed threats to the validity and
ethical considerations to ensure the trustworthiness of the study.

1.5 Outline of the Thesis

The rest of the thesis proceeds as follows. Section 2 introduces the background of the study
and relevant theoretical frameworks. The section presents both software and hardware star-
tups and their unique needs in terms of practices and processes. Section 3 presents the sys-
tematic mapping study undertaken in advance of the Master thesis, and its main findings.
Section 4 presents the research method undertaken, threats to the validity of the study,
and some ethical considerations when conducting empirical research. Section 5 reports
the results of the multiple-case study, including transcribed citations from the participants.
Section 6 presents the THSM, representing the engineering activities of hardware startups
to bring a product to market. Section 7 discusses the results in relation to the research
questions and compares product development in hardware and software startups. Section
8 concludes the paper by answering the research questions and proposes directions for
future work.

Chapter

Background

The theoretical foundation of this Master thesis builds on our systematic mapping study
of software startup engineering, and on literature within embedded systems development.
The chapter proceeds as follows: Section 2.1 explains the increasing impact of startups
in the global consumer and business market. Section 2.2 presents software startups and
characteristics of the startup context. Section 2.3 introduces some startup development
methodologies, including the widely employed entrepreneurial framework by Eric Ries,
The Lean Startup. Section 2.4 presents software development processes in startups and
how they have different needs from that of established companies. Section 2.5 presents The
Greenfield Startup Model and other relevant frameworks. Section 2.6 presents hardware
startups and how they are different from software startups. Finally, section 2.7 presents
embedded systems development and its relation to hardware startups.

2.1 Startup Movement

Technology is moving forward faster than ever before, changing how we work, relate,
communicate, and learn, affecting every industry. The world is full of disruptors that
challenge products, services, and business models for companies of all sizes. The life ex-
pectancy of the most valuable companies in the world has dropped to an average of 15
years (Gittleson, 2012). This makes focus on innovation a necessity, forcing new products
and services to market.

The decreased cost of launching new technology startups and the mobility of online con-
sumers imply that new markets can be reached at a rapid pace. It is easier than ever
to successfully start a new technology company (Blank, 2012; Chesbrough, 2006), illus-
trated by the high number of newly established startups globally each year (U.S., 2017).
Startups’ influence on consumers and the global business market has become significant
(Marmer et al., 2011), considerably contributing to the global industrial development (Un-
terkalmsteiner et al., 2016). These innovative new products and services not only disrupt
themselves, but often end up leading the way for the introduction of even more new and

5

Chapter 2. Background

disruptive innovations (Srinivasan et al., 2014). Startups generate new jobs, contributing
to the overall wealth and global economy (Unterkalmsteiner et al., 2016).

There exist several initiatives supporting startups with funding, marketing, advisory, and
other business-related issues. Venture capital has for a long time been a widely employed
business model, where venture capitalists invest in new business ventures (Chesbrough,
2006). The venture capital market is continuously evolving, where crowdsourcing-platform
Kickstarter has become the world’s largest funding platform for creative projects. Since
2009, 140 000 projects have been successfully funded by more than 14 million people,
contributing with $3.5 billion (Kickstarter, 2018).

Business incubators are becoming increasingly popular (Grimaldi and Grandi, 2005), re-
flected by the emergence of incubators in the Norwegian and European innovation commu-
nities, where FinTech F3 and Station F are examples of newly opened business incubators.
The latter one is a $265 million investment, housing more than 1000 startups (Agnew,
2017). Incubators help startups survive and grow during their early stages, and facilitate
collaboration between companies, investors, mentors, and other stakeholders to create in-
novations (Aernoudt, 2004). Startups are the heart of these innovative hubs, emphasizing
startups’ impact in today’s innovative business landscape.

Norway has experienced a startup boom over the last years, and the trend is expected
further growth. Oslo is one of the fastest growing tech scenes outside of the U.S., and is
now featured as one of the 25 top startup hubs in the world (Clark et al., 2017). With a
yearly growth in startup investments of 160%, Norway will potentially overtake Finland
as the primary tech scene in the Nordic. The high quality tech infrastructure, access to
data, adoption rate of digital technology, and high employment in technology sectors are
incentives for startups to base themselves in Norway (Clark et al., 2017).

2.2 Software Startups

Since the term software startup first was introduced by Carmel (1994), there have been
presented several definitions of software startups. Sutton Jr (2000) defined startups as “an
organization that is challenged by youth and immaturity, with extremely limited resources,
multiple influences, and dynamic technologies and markets”. Coleman and O’Connor
(2008b) described software startups as “unique companies that develop software through
various processes and without a prescriptive methodology”. Others have characterized
software startups as modern organizations with little or no operating history, aiming at de-
veloping high-tech and innovative products, and rapidly scale their business in extremely
dynamic markets (Giardino et al., 2014a).

Software startups distinguish themselves from established companies in many ways. Es-
tablished companies focus on optimizing an existing business model and don’t necessarily
focus on growing, while startups are temporary organizations seeking a scalable, sustain-
able, and profitable business model (Blank, 2012). With limited resources, startups often
seek funding from venture capitalists or investors (Nguyen-Duc and Abrahamsson, 2017),

6

2.3 Startup Development Methodology

and so the business model is often based on disruptive technology that can give an imme-
diate competitive advantage. As customers and products often are unknown, the success
of startups depends on how fast they can prototype to test business ideas (Nguyen-Duc
et al., 2017b; Sutton Jr, 2000). In contrast, established companies are more mature and
experienced, with greater resources, and already command a mature market where cus-
tomers and products are known (Unterkalmsteiner et al., 2016). Most startups fail within
the first two years (Giardino et al., 2016; Marmer et al., 2011), one reason being the lack
of supportive engineering practices (Kajko-Mattsson and Nikitina, 2008; Klotins et al.,
2015; Paternoster et al., 2014). Comprehensive descriptions of investigated startups are
important in an applied field as software engineering to be able to transfer results from one
environment to another (Klotins et al., 2015).

2.2.1 Startup Lifecycle

There are several frameworks describing the evolution of startups (Crowne, 2002; Reynolds
and White, 1997; Ries, 2011). Common is that they divide the startup lifecycle into 3-5
stages, from the stage of an idea to a launched product. Crowne (2002) presented the
following four-stage startup lifecycle:

Startup: The startup stage is defined as the time from idea conceptualization to the first
sale. A small executive team with necessary skills is required in order to build the
product.

Stabilization: The stabilization phase lasts until the product is stable enough to be com-
missioned to a new customer without causing any overhead on product development.

Growth: The growth phase begins with a stable product development process and lasts
until market size, share, and growth rate have been established.

Maturity: The last stage is when the startup has evolved into a mature organization. The
product development is robust and easy to predict, with proven processes for new
product inventions.

The lifecycle stages illustrate why early-stage startups are different from companies who
have passed the maturity stage. After entering more mature lifecycle stages, these compa-
nies are often referred to as small to medium sized enterprises (SMEs), operating in stable
environments where customers and products are known. In contrast, they have a settled
team, and have acquired some experience and operating history, hence research on SMEs
is only partially relevant for startups (Tripathi et al., 2016). As the different lifecycle stages
of startups pose their own set of challenges, specifying the state of the investigated startup
is important for transferring research results to new environments (Klotins et al., 2015).

2.3 Startup Development Methodology

The main objective of all startups is to find a sustainable business model through devel-
oping products that meet actual customer needs (Ries, 2011). This will eventually lead
to further business growth where product development is robust and easy to predict, with

7

Chapter 2. Background

proven processes for new product inventions (Crowne, 2002).

Software startups generally develop products in high-potential target markets without nec-
essarily knowing what the customers want (Blank, 2013b; Rafiq et al., 2017). Increasingly
more industries experience that new technologies become available to all players at the
same time, meaning the benefits of technology-driven innovations decrease. This has lead
companies to prioritize customer-driven development, which involves identifying new and
unknown customer needs as well as meeting known needs (Bosch, 2016). This relates
to market-driven software development, where specific requirement elicitation techniques
(e.g., prototyping) and time-to-market are key strategic objectives (Nguyen-Duc et al.,
2017b; Rafiq et al., 2017). In a market-driven context, requirements tend to be (1) in-
vented by the software company, (2) rarely documented (Karlsson et al., 2002), and (3)
validated only after the product is released in the market (Carmel, 1994; Dahlstedt, 2003;
Keil and Carmel, 1995; Rafiq et al., 2017). As to this, products that don’t meet customer
needs are common, resulting in failure of new product releases (Alves et al., 20006).

To manage the challenges posed by the startup context, software startups need system-
atic processes, both for their business development and their product development. There
exist several entrepreneurial theories and frameworks that can guide practitioners in their
pursuit to sustained business growth (e.g., Effectuation Theory (Sarasvathy, 2001) and Dis-
covery and Creation (Alvarez and Barney, 2007)). Blank (2013a) introduced the customer
development approach to entrepreneurship, identifying customer discovery and validation
as key strategic objectives to find a sustainable business model (i.e., processes concerned
with what product to develop rather than how to). The framework is the main inspiration
of the Lean Startup method proposed by Ries (2011). The Lean Startup has been criticized
by researchers for being based on personal experience and opinions rather than empirical
evidence, however, concepts from the Lean Startup have attracted considerable attention
among practitioners (Bosch et al., 2013; Blank, 2013b).

2.3.1 Lean Startup

Ries (2011) presented the Lean Startup method in 2008, based on lean principles first in-
troduced by Toyota (Womack et al., 1990). The method aims at creating and managing
startups, to deliver products or services to customers as fast as possible. The method pro-
vides principles for how to run a new business, where the main objective is to grow the
business with maximum acceleration. By iteratively turning ideas into products, measure
customers’ satisfiability, and learn from their feedback, startups can accelerate their busi-
ness. This process is referred to as the build-measure-learn (BML) feedback loop, which
is an iterative process, where the goal is to minimize total time through the loop.

8

2.3 Startup Development Methodology

Figure 2.1: The Build Measure Learn Feedback Loop (Ries, 2011)

Key to the BML feedback loop is to do continuous experimentations on customers to
test hypotheses. The hypotheses can be tested through building a minimum viable prod-
uct (MVP), which is the simplest form of an idea, product, or service that can answer the
hypotheses. Any feature, process, or effort not directly contributing to answering the hy-
potheses, is removed. The aim is to eliminate any waste throughout the process. Research
has found that MVPs can be used both to bridge knowledge gaps within organizations, and
to provide a mutual understanding between customer input and product design (Nguyen-
Duc and Abrahamsson, 2016).

When the MVP has been built and the hypotheses tested, the next step is to measure the
customer feedback and learn from it. This is referred to as validated learning, which is
about learning which efforts are value-creating and eliminate the efforts that aren’t neces-
sary for learning customer needs. The final step of the loop is whether to pivot or persevere.
A pivot is a structured course correction designed to test a new fundamental hypothesis
about the product, strategy, and engine of growth (Ries, 2011). Through an investigation
of 49 software startups, Bajwa et al. (2017) identified 10 pivot types and 14 triggering
factors, concluding that trying to solve the wrong problem for the customer is the most
common reason for pivoting (i.e., “customer need” pivot). If a pivot isn’t required, mean-
ing the MVP was found to be fit to market, the startup perseveres. The BML feedback
loop then continues, where new hypotheses are tested and measured.

The Lean Startup method is beneficial for business development and understanding what
product to develop, emphasizing the importance of getting the product to customers as
soon as possible. Startups tend to prefer time and cost over product quality (Yau and
Murphy, 2013), neglecting traditional process activities like formal project management,

9

Chapter 2. Background

documentation, and testing (Giardino et al., 2016). Shortcuts taken in product quality,
design, or infrastructure can eventually inhibit learning and customer satisfaction (Ries,
2011). Software startups need their own development practices to manage the challenges
posed by customer development methods such as Lean Startup.

2.4 Software Startup Engineering

The unique characteristics of the startup context pose several challenges related to the de-
velopment processes in software startups (Giardino et al., 2016). The traditional software
development methods of more established companies do not facilitate these constrained
conditions. However, software engineering in startups represents a segment that has mostly
been neglected in research studies (Paternoster et al., 2014; Unterkalmsteiner et al., 2016),
first identified by Sutton Jr (2000). The last few years the interest in research on soft-
ware startups have gained increased interest in the Software Engineering (SE) community,
highlighted by the increased publication frequency (Figure 3.3). Giardino et al. (2016)
proposed the new discipline software startup engineering to define a first set of concepts,
terms, and activities for the software startup phenomenon, defined as “the use of scientific,
engineering, managerial, and systematic approaches with the aim of successfully develop-
ing software systems in startup companies”.

Startups are creative and flexible by nature, and so strict release processes are often over-
shadowed by quick, inexpensive product releases, with focus on customer acquisition
(Wasserman, 2016). This can often result in ineffective software engineering practices
(Sutton Jr, 2000). Since startups have limited resources, focus is often directed towards
product development, rather than focusing on the establishment of rigid processes (Cole-
man and O’Connor, 2008b). In contrast to established companies who often have well-
defined processes for their business, startups usually have low-ceremony processes where
the amount of management overhead is low (Kuhrmann et al., 2016). Instead of utilizing
repeatable and controlled processes, startups take advantage of reactive and low-precision
engineering practices with focus on the productivity and freedom of their teams (Kakati,
2003; Tanabian and ZahirAzami, 2005). This is why product development in startups of-
ten is considered as a set of opportunistic activities, focusing on providing value under
constrained conditions (Nguyen-Duc and Abrahamsson, 2017).

The need for product development process in startups is dependent on the lifecycle stage
of the company, including aspects like system complexity, business risk, and the number
of people involved (Wasserman, 2016). Reactive, low-ceremony processes are powerful
in the early stages of software development since speed and learning are important (Ries,
2011). However, as startups enter new more mature lifecycle stages, an increased usage of
processes for addressing key customer needs, delivering functional code early and often,
and providing a good user experience is required (Kuhrmann et al., 2016). New business
issues like hiring, sales, and funding appear, and more users and complex code require
extended focus on robustness, scalability, performance, and power consumption (Wasser-
man, 2016).

10

2.5 Theoretical Frameworks for Startups

Inadequate use of software engineering practices might be a significant factor leading to
the high failure rates of software startups (Klotins et al., 2015). In software development,
agile methods (Cunningham et al., 2001) have proven to be a powerful tool when the goal
is to build a successful, profitable business model. When a company needs to quickly ad-
dress market and customer needs, agile processes have proven to be much more effective
than traditional high-ceremony processes (Wasserman, 2016). Research does not agree
on the usage of agile methods in software startups. Some studies suggest agile methods
are suitable for startups, as iterative development approaches are adaptive, with short lead
time (Pantiuchina et al., 2017; Paternoster et al., 2014). Other studies have found that star-
tups are either reluctant to introducing process (Coleman and O’Connor, 2008b), or that
they use their own mix of agile and ad-hoc methods (Giardino et al., 2014a). Small early-
stage software startups don’t experience the same challenges as larger, more experienced
companies, and the cost and time of implementing a rigorous agile methodology may not
provide big enough benefits (Yau and Murphy, 2013).

Most research within software startup engineering merely provides a partial depiction of
software engineering practices in startups. Current literature is not comprehensive enough
to establish an exhaustive understanding of how software engineering practices are ap-
plied in startups, emphasizing the need for the creation of a complete scientific body of
knowledge to support future software startups (Unterkalmsteiner et al., 2016).

2.5 Theoretical Frameworks for Startups

Entrepreneurial success is complex and depends on several interrelated factors. There ex-
ist a variety of theoretical frameworks that allow for positioning research results within
a broader context of related concepts (Swanson and Chermack, 2013). Each theoretical
framework has its own intention and motivation of use, and benefits startups differently.
The frameworks provide the basis for understanding the behavior and engineering ap-
proaches of startups, and can help place findings in the context of theory. Section 2.5.1
presents the Greenfield Startup Model, which explains how development strategies are
engineered and practices are utilized in software startups. Section 2.5.2 introduces other
frameworks relevant to the startup context.

2.5.1 The Greenfield Startup Model

The GSM captures the underlying phenomenon of software development in early-stage
startups. From 128 sub-categories clustered into 35 groups, the model consists of seven
main concepts at the highest abstraction level. Each of the seven concepts was mapped to
the primary papers in the systematic mapping study by Paternoster et al. (2014), to ensure
the validity of the model and the conformance to the software startup context. Figure
2.2 shows the causal relationships between the concepts. The model illustrates that quick
development is important due to a severe lack of resources, where low attention to quality
leads to the accumulation of technical debt. The initial growth hinders the performance
and future growth of the company. This section introduces each of the categories in more
detail.

11

Chapter 2. Background

(CAT4)
Team is the
catalyst of
development

A\

v v

(CAT7) (CAT1) (CAT5) (CAT®6)
Severe lack of Speed-up | Accumulated R Inlﬂianldger?swth
resources development | technical debt g
(Core category) performance
Y
(CAT3) (CAT2)
.| Product quality Evolutionary
"| has low priority approach
[

Figure 2.2: The Greenfield Startup Model (Giardino et al., 2016)

Severe lack of resources. Lack of resources in startups include time-shortage, limited
human resources, and limited access to expertise (Paternoster et al., 2014). Time pressure
is the most severe due to the need for quick product releases. Limited human resources
mean team members often are full stack engineers and employ multiple roles. Startups
utilize mentors and advisors to mitigate the limited access to internal expertise. In an
environment of strict limitations, development decisions are usually trade-off situations.

Team as the development catalyst. Team members hold multi-roles as they often have
to handle both software development and business-related issues like marketing and sales.
Small teams in co-located environments facilitate high team-coordination, where tacit
knowledge and informal discussions replace most of the documentation. Small teams
where members know each other is beneficial to achieve rapid evolvement. The back-
ground of the founders and CTO/CEO highly impacts the development approach.

Evolutionary approach. Startups prefer evolutionary prototyping, meaning that they
iteratively refine an initial prototype aiming at quickly validating the product/market fit.
Throwaway prototypes are mainly used for specification purposes and not as actual build-
ing blocks (Nguyen-Duc et al., 2017b). When the product is released, customer feedback
highlights new functionalities and improvements. Uncertain conditions mean long-term
planning is infeasible, and so flexibility and reactiveness are key priorities. To achieve
competitive advantage, startups utilize cutting-edge technologies and follow a customer-
driven approach. The main objective is to minimize waste throughout the process by
building MVPs that are valuable to customers, to avoid “over-engineering the system”
with complex, unvalidated functionalities.

Product quality has low priority. Startups prioritize a limited number of functionalities
rather than implementing non-functional requirements to allow for quick product releases.
Depending on the type of system being developed, startups focus on usability, UX, and

12

2.5 Theoretical Frameworks for Startups

smooth user-flow without interruptions. Startups tend to favor agile practices over quality-
related practices (Pantiuchina et al., 2017), creating MVPs which may lack in quality but
that are functional enough to pitch and show investors (Yau and Murphy, 2013). Other
factors influencing the product quality include the amount of outsourcing (Nguyen-Duc
and Abrahamsson, 2017) and the fault-tolerance of users.

Speed-up development. The primary objective of startups is to speed up the product de-
velopment in the early stages. Companies today must respond to new customer needs and
requests at exceptional speeds (Bosch, 2016). It is important both to speed up the learn-
ing processes (Nguyen-Duc et al., 2017b) and the decision and design processes (Yau and
Murphy, 2013). Speed is achieved through an evolutionary approach with a solid team
focusing on developing MVPs to minimize waste. Simple, informal workflows through
small self-organized teams allow for flexibility and reactiveness. Decisions are taken as
fast as possible through informal and frequent verbal discussions to deal with the unpre-
dictable startup context. The importance of speed also leads to startups neglecting the
implementation of development practices and systematic quality assurance activities like
efficiency. Startups make use of third-party solutions to deliver scalable products, how-
ever, such approaches often lead to interoperability issues. Proven standards and known
technologies are often utilized to reduce the need for formal architectural design. Key to
the speed of development is the members’ product-ownership feeling and their desire to
have the product used in the market.

Accumulated technical debt. To achieve speed, startups ignore documentation, soft-
ware architecture, and processes. Such shortcuts can lead to the accumulation of what is
called intentional technical debt (McConnell, 2007). Unintentional technical debt can hap-
pen when business model experimentation is leaved out. Not focusing on technical debt
will have consequences for the product quality, while constantly changing and improv-
ing the business model will be necessary to stay competitive (Yli-Huumo et al., 2015).
Requirements engineering processes are replaced by informal specifications of function-
alities (e.g., self-exploratory user-tasks on post-its). Traditional analysis and planning are
often replaced by an inaccurate feasibility study, however, this can have negative conse-
quences at later stages. Finding the correct balance between quality and speed is essential,
a problem also referred to as the developer’s dilemma (Terho et al., 2016). It emphasizes
the need for managers to communicate the learning goals of the product precisely so that
developers can adjust quality accordingly. Not finding the correct match between learning
goals and quality will often lead to technical debt, waste, or missed learning. The difficulty
of analyzing risks with disruptive technologies often makes it worth keeping the product
and processes simple to achieve agility and speed, and so practitioners often prefer using
their past experience from similar context when assessing the feasibility of the project.
Early decisions are often limited to achieve flexibility of the team, however, it can increase
the technical debt. High-level mockups and low-precision diagrams describing the inter-
actions with third-party solutions are prioritized over good architectural design. This will
eventually inhibit performance as the team grows and new developers are hired. Auto-
mated testing is often replaced by internal smoke tests, so defects are often detected by the
users. Rigid project management is replaced by short, informal milestones, low-precision

13

Chapter 2. Background

task assignment methods, and low-cost project metrics. Only a final release milestone is
viable to allow focus on short-term goals and to put new features in production.

Initial growth hinders performance. When startups enter more mature lifecycle stages,
the product becomes more complex, the number of users increases, and the company
grows. The chaos encountered in the early-stages forces the company to deal with the
accumulated technical debt instead of focusing on acquiring new customers and user re-
quests, hence initial growth hinders the performance. Users demand higher quality of
mature products, more funding is required, and new competitors emerge. The current
team is often not able to manage the increased demands, code complexity, and scalability
issues, while at the same time implementing new features. Informal communication and
lack of documentation eventually inhibit the progress, and the business concerns are di-
rected from product development towards business activities. Re-engineering the system
by standardizing the codebase with well-known frameworks are required to increase the
scalability of the product. Startups gradually introduce traceable systems and metrics for
measuring project progress. Startups often allow a drop down in performance at a later
stage than losing time in the initial phases of the project.

2.5.2 Relevant Frameworks

Effectuation Theory. The terms effectuation and causation were introduced by Saras-
vathy (2001), and are academic theories describing the reasoning behind entrepreneurial
actions. Effectual logic is used when the future is unpredictable, while causal logic is used
when the future is predictable. In entrepreneurship, effectual reasoning starts with a set
of resources, and in the process of using these, goals gradually emerge. On the contrary,
causation involves achieving a desired goal through a set of given resources. Effectuation
consists of five main principles for effectual entrepreneurs: (1) they start with a set of re-
sources without a given goal, (2) they focus on potential losses and how to minimize these,
(3) they cooperate with parties they can trust instead of analyzing competitors to limit po-
tential losses, (4) they try to avoid contingencies where surprises are seen as opportunities,
and (5) the future cannot be predicted, but entrepreneurs can control some factors that
affect the future.

Causal reasoning Effectual reasoning

M1

M2 :
Given Imagined |
goals Ends

M3 il

M4

Given means Given means

Figure 2.3: Effectuation vs. Causation (Sarasvathy, 2001)

14

2.5 Theoretical Frameworks for Startups

The Behavioral Framework. A behavioral framework identifying why early-stage soft-
ware startups fail have been introduced by Giardino et al. (2014b). They identified a lack
of scientific papers characterizing startup failures. In addition to performing a literature
review, they performed a multiple-case study illustrating how inconsistency between man-
agerial strategies and execution can lead to failure. The framework differs between the
actual stage (i.e., what startups should focus on) and the behavioral stage (i.e., what they
actually focus on, which often is inconsistent with what they planned). The framework
works over four dimensions including market, product, team, and business. They found
that startups lack problem/solution fit, that is, they focus on validating a product instead
of discovering and testing a problem space. Startups also tend to neglect the learning
process, meaning they focus on making their customer acquisition process more efficient
rather than testing the demand for a functional product. The framework is a first set of
concepts, terms, and activities explaining possible reasons for the failure of software star-
tups. More work is required to validate the framework to allow for generalization, as well
as providing guidelines for how to prevent a mismatch between business intentions and
development execution.

Actual stage Behavioral stage
" 2" 2 i
i | Dimensions . o !
i /Stages Explaration stage Validation stage i
! 1
| Market Problem/solution fit Product/market fit i
1 1
i Improve UX and |
E Product MVP incremental functionalities i
! 1
| Team Entrepreneurs Growing team i
1 1
i] Business model and |
i Business Funnel strategy sales/marketing roadmap i
H 1

Figure 2.4: The Behavioral Framework (Giardino et al., 2014b)

In addition to the theoretical frameworks mentioned above, there exist a wide range of
relevant frameworks, both from entrepreneurial and engineering perspectives. The GSM
was compared with similar theories by Coleman and O’Connor (2008a,b); Baskerville
et al. (2003); Brooks and Kugler (1987). A similar model to GSM, the Academic Startup
Model, illustrates how software startups structure and execute their engineering activities
(Souza et al., 2017). The Lean Startup methodology builds on several established en-
trepreneurial theories with many similarities like The New Business Road Test (Mullins John,
2003), Crossing the Chasm (Moore, 2002), and its direct ancestor, from which Eric Ries
was inspired and influenced, The Four Steps to the Epiphany (Blank, 2013a).

15

Chapter 2. Background

2.6 Hardware Startups

Hardware startups can be defined as those startups that develop products with mixed
hardware and software parts, including embedded systems, sensor devices, and advanced
robotics (DiResta et al., 2015; Jacobson et al., 2017). Hardware startups are distinct
from pure software startups as they need to handle hardware design and development,
and manufacturing in addition to software development. They also have to deal with pro-
duction and logistics issues like packaging, shipping, and customs (DiResta et al., 2015).
Hardware startups need teams with boundary-spanning knowledge, including capabilities
within software development, mechanical and electronics engineering, product design, and
specific industry knowledge (e.g., experience from working with third-parties) (Nguyen-
Duc et al., 2018). This implies higher initial financial and human investments required for
hardware startups (Wei, 2017).

Before the dot-com bubble, many startups focused on developing hardware systems (Wei,
2017). However, due to lower investments, return on investment, and risk diversification of
software and web-based startups, most venture capitalists’ investments were directed away
from hardware. The process of designing and developing hardware products takes more
time and imply increased costs than that of software products (Chen, 2015), hence most
innovations targeted the mechanical part of products as software development merely was
limited to mechanical development. Today we have seen a shift in this trend. Increased
availability of new technologies such as cloud infrastructure, sensors, microelectrome-
chanical systems (MEMS), and open source software imply that hardware startups have
greater access to resources (Wei, 2017). The shifting nature of product innovation, where
innovations are increasingly more customer-driven rather than technology-driven (Bosch,
2016), has been reflected by the emergence of startups developing hardware technologies
like IoT, cyber-physical systems, and advanced robots. GoPro, Fitbit, DJI, and Xiaomi
are all examples of successful hardware startups characterized as “unicorns”, valued at
more than $1 billion. By 2020, hardware technology is estimated to be in 95 percent of
new electronic products (Gartner, 2017). The number of connected devices in the global
market was approximately 15 billion in 2015, a number expected to grow to 75 billion by
2025 (Lucero et al., 2016).

2.7 Embedded Systems Development

The term “hardware” only covers one part of development activities in hardware startups
and can be somewhat misleading since hardware startups deliver products with mixed
hardware and software parts. Embedded systems are application-specific computing de-
vices consisting of hardware and software components (Ronkainen et al., 2002). Current
development methodologies for startups mainly cover specific needs for software startups,
only partially applicable to hardware startups as embedded systems development is consid-
erably more complex than software development (Stock and Seliger, 2016). Research on
development processes in hardware startups is rare, where exploration of state-of-practice
is limited to a few studies (Nguyen-Duc et al., 2018). In this section we introduce research
on embedded systems development and initial studies on agile adoption in hardware star-

16

2.7 Embedded Systems Development

tups.

In the embedded domain, hardware sets strict requirements for the software. Development
of embedded systems require simultaneous development of hardware and software that
directly accesses the hardware (i.e., hardware-related software) (Ronkainen et al., 2002).
Since software allows for frequent updates and releases, both before and after products are
delivered to customers, the system architecture often seeks to separate the hardware from
the software to allow for two largely independent release processes (Bosch, 2016). This
is illustrated in figure 2.5 where hardware and related software development are distinct
processes requiring constant communication and interconnected testing and verification.

HW & Related SW Development

HW Development D Q Interconnected

testing and
o/
I
==
|
\

| |

I
Ol
[]

verification
SW Development ‘:l

0

iy

Syst
—>| System Integration H System Ready

Figure 2.5: Hardware-software co-design process (Ronkainen et al., 2002)

Ronkainen et al. (2002) found four main characteristics of hardware and related soft-
ware development, including (1) hard real-time requirements, (2) experimental work, (3)
documentation requirements, and (4) testing.

1. Real-time requirements include, among other things, factors such as data throughput
rates, cycle counts, or function call latency. Hard real-time requirements mean that
if software doesn’t meet requirements, further system operation may be at risk. To
deal with this, hardware simulations can help determine the precise operation of
hardware without producing an expensive prototype, and even enable testing of the
hardware-software co-operation. Hardware simulations often depend on experts as
they are time-consuming to set up and maintain, and because of the many complex
hardware-software interactions.

2. Hardware-oriented software development is experimental by nature, and developers
need to understand the whole system to deal with all uncertainties related to changes
in hardware and how software affects the whole system. Every requirement cannot
be known and every decision cannot be made before writing software. Develop-
ers should utilize an iterative development approach to deal with all ambiguities of
hardware-related software development.

3. The communication among hardware and software developers must work to imple-
ment the hardware-software interface efficiently. Information has to be explicit and
relies heavily on exact documentation. The iterative approach depends on accurate

17

Chapter 2. Background

documentation to minimize information loss between iterations. However, due to
the vast amount of experimental work, too much documentation is not feasible in
early stages of product development.

4. Testing is an essential activity in embedded systems development, both due to re-
liability and device autonomy requirements, and regression tests to ensure parallel
development doesn’t drift. In addition to independent software and hardware tests,
checking the right interaction between hardware and software (i.e., co-verification)
is important to ensure the system works as intended.

Instead of applying plan-driven development, Ronkainen et al. (2002) suggested using an
iterative approach to deal with the experimental nature of embedded systems development.
Kaisti et al. (2013) performed a mapping study identifying agile methods in embedded
systems development. They found a general lack of hardware-related agile studies, only
customized methods for specific needs (e.g., agile methods scaled and adapted to the needs
of large organizations). One paper found that agile methods did not suit the specific needs
of the embedded domain, highlighting that new agile methods should focus on meeting
the hard real-time requirements. Up-front design and architecture require a certain amount
of documentation and specification, also to ease communication and coordination among
developers and stakeholders (Ronkainen and Abrahamsson, 2003).

Albuquerque et al. (2012) conducted an investigation into agile methods in embedded
systems development, including their benefits, challenges, and limitations. They found
that although agile methods and practices had a positive impact on embedded systems
development, their use was not widespread. Among the primary papers, many reported
experiences regarding the use of a single or a set of agile practices, but not the implemen-
tation of complete agile methods. The most widely researched methods were Scrum and
XP, however, adoption of such was tailored to individual needs. The benefits of utiliz-
ing agile methods were found to be decreased development time, improved productivity,
and reduced error rates (i.e., improved system quality). Agile methods also present good
outcomes when dealing with changes and uncertainty in environments where developers
avoid rigorous processes. The paper identified a need for a coherent understanding of how
agile methodologies best fit to embedded systems development, and how such practices
can reduce costs and efforts in different phases of the development process (i.e., require-
ment management, design, and architecture).

Nguyen-Duc et al. (2018) investigated how hardware startups develop their prototypes, and
to what extent agile is adopted in hardware startups. As software startups utilize mockup
tools to quickly represent product ideas, hardware prototypes are not only used for busi-
ness experimentation, but are as much a feasibility check. The co-design of hardware and
software components, and integration at system level lead to longer Sprint duration. Also
the many dependencies with hardware development affect the prototype duration (e.g.,
vendor dependency and competence dependency). The nature of hardware development
affects the adoption of agile practices. Agile methodologies may need to be adapted to
fit the complexities of hardware development, and overcome the perceived reluctance to
introducing rigid processes in startups. Flexible Sprint duration might be important to
handle the many dependencies of hardware development.

18

Chapter

Systematic Mapping Study

Prior to the Master thesis, we conducted a systematic mapping study (Appendix B) to
provide an updated view of software startup research in order to identify research gaps.
Different from previous mapping studies (Klotins et al., 2015; Paternoster et al., 2014), we
aimed at synthesizing startup descriptions in research and observe how software startup
research has evolved and possibly matured in some Software Engineering knowledge ar-
eas (Bourque and Fairley, 2014). The study provides a mapping of 74 primary papers (in
which 27 papers are newly selected) from 1994 to 2017, by expanding previous literature.
We discovered that most research has been conducted within the SWEBOK knowledge
areas software engineering process, management, construction, design, and requirements,
with the shift of focus toward process and management areas. Future work can focus on
certain research themes, such as startup evolution models and human aspects, and con-
solidate the thematic concepts describing software startups. This chapter summarizes our
paper “Software Startup Engineering: A Systematic Mapping Study”, and proceeds as fol-
lows: Section 3.1 explains the research process. Section 3.2 presents the main findings of
the mapping, and directions for future work.

3.1 Research Method

Systematic mapping studies can be used in research areas with few relevant primary stud-
ies of high quality, as they provide a coarse-grained overview of the publications within
the topic area (Petersen et al., 2008). This systematic mapping study covers 74 primary pa-
pers, extending the two previous mapping studies (Paternoster et al., 2014; Klotins et al.,
2015). As these studies only cover three papers from 2013, the search strategy of this
systematic mapping study included papers from 2013 up to October 2017. This approach
allowed for merging and comparing the primary literature within the research field for the
period 1994-2017.

The main steps of our process are illustrated in figure 3.1, and include the search and
study selection strategies, manual search, data extraction, quality assessment, and the data

19

Chapter 3. Systematic Mapping Study

synthesis method. The process led to a total number of 27 new primary papers found in
table 3.3.

Process Sleps
Definition of Keywaording using Data Extraction and
ch - Conduct Search Screening of Papers ADSIE Mapping P
. Classification -
Review Scope All Papers Relevant Papers Scheme Bystematic Map
Outcomes

Figure 3.1: The Systematic Mapping Study Process (Petersen et al., 2008)

3.1.1 Research Questions

Since 2015, we observed an increased focus on software startup research (i.e., the orga-
nization of three International software startup workshops (ISSW) in 2016 and 2017, and
software startups tracks at PROFES 2017 and XP 2017 conferences). The previous sys-
tematic review has rapidly gained a large amount of citations (Paternoster et al., 2014).
While this implies the further growth in software startup research, a revisit on the area
can identify how engineering activities in software startups have changed over time. The
objective of this mapping study is to provide an updated view of software startup research
in order to identify research gaps. The research objective leads to the following research
questions:

RQ1: How has software startup research changed over time in terms of focused knowledge
areas?

RQ2: What is the relative strength of the empirical evidence reported?

RQ3: In what context has software startup research been conducted?

The paper presents results from software startup research between 1994-2017. We
expand previous literature (Paternoster et al., 2014; Klotins et al., 2015) with the focus
on papers published from 2013-2017. We found 27 relevant articles during the last five
years. The results were merged and compared to the previous mapping studies. To address
RQI, the papers were structured according to the knowledge areas identified in SWEBOK
(Bourque and Fairley, 2014). With RQ2, we evaluated the papers’ rigor to compare the
quality of papers published before and after 2013. Finally, with RQ3, we examined to
what extent the retrieved papers provided sufficient startup descriptions, and if there were
similarities in the use of terms describing the startup context between the papers. Our
meta-analysis on Software Engineering knowledge area and startup case context reveals
important areas for investigation. We also come up with a classification of future research
on software startups.

20

3.1 Research Method

3.1.2 Data Sources and Search Strategy

The systematic search strategy consisted of searches in three online bibliographic databases.
The databases were selected from their ability to handle complex search strings, and their
general use in similar literature reviews in the software engineering community (Pater-
noster et al., 2014; Tripathi et al., 2016), and the fact that they index the research articles
from other databases. In addition, to ensure the best possible coverage of the literature, we
performed complementary searches and forward snowballing (section 3.1.4). Following
guidelines from Wohlin (2014), systematic literature studies should use a combination of
approaches for identifying relevant literature, where forward snowballing is found partic-
ularly useful. Forward snowballing can reduce systematic errors related to the selection
of databases and construction of the search string (Wohlin, 2014). To obtain high quality
data, the following databases were used:

Database Papers
Scopus 451
IST Web of Science 121
Engineering Village Compendex 875
Total 1447

Table 3.1: The searched databases and number of retrievals

Initial searches in the databases were conducted to identify keywords related to soft-
ware engineering and startups, targeting title, abstract, and keywords. The most frequently
used keywords for “startup” were chosen and combined in the search string (Paternoster
et al., 2014). The final search string consisted of several search terms combined using the
Boolean operator “OR”:

“(startups OR start-up OR startup) AND software engineering OR (startups
OR start-up OR startup) AND software development OR (startups OR start-up
OR startup) AND software AND agile OR (startups OR start-up OR startup)
AND software process OR (startups OR start-up OR startup) AND software
tools”.

3.1.3 Study Selection

The study selection process is illustrated in figure 3.2, along with the number of papers at
each stage. Searching the databases Scopus, ISI Web of Science, and Engineering Village
using the search string returned 1447 papers, resulting in 1012 unduplicated studies. The
searches targeted the document types: book chapters, journal article, conference article,
conference proceedings, dissertation, and report chapters.

21

Chapter 3. Systematic Mapping Study

Search in databases » n=1012
v
Exclusion based on titles, - P
publication year - B
b4
Exclusion based on - _
abstracts ' n=28
v
Mumber of studies after N =20
revision by both authors 7 -
v
Mumber of studies after N =27
additional manual search “ B
v
Aggregation with o
. 3 . . n=7d
previous mapping studies

Figure 3.2: The Study Selection Process

Papers were relevant for inclusion in the study if they met the following criteria: (1)
investigate concepts/problems/solutions of engineering in software startups, (2) present
contributions in the form of lessons learned, framework, guidelines, theory, tool, model,
or advice as applied in Paternoster et al. (2014), (3) are not included in any of the previous
mapping studies, and (4) studies are written in English. The papers that were selected are
scientific peer-reviewed articles, which is independent of the role of authors. We did not
find experience reports from entrepreneurs, which might make the sample of papers lean
towards the researcher community. To decrease the number of papers into a manageable
amount, workshops, and papers based on expert opinion were excluded from the review
process.

As common for systematic mapping studies (Petersen et al., 2008), the study focuses on
synthesizing empirical research. Empirical studies are important for evidence-based soft-
ware engineering research and practice, and for generating a knowledge base leading to
accepted and well-formed theories (Kitchenham, 2004; Shull et al., 2007). The study pro-
vides an overview of empirical research on software startup engineering to date, and how
research has evolved and possibly matured over the time period.

The retrieved papers were examined by the first and second author, where each author
separately reviewed the papers based on titles and abstracts. Disagreements were resolved
by discussion of the full text of the relevant papers. This was necessary as some of the

22

3.1 Research Method

abstracts were incomplete or poor. At this stage another 8 papers were excluded, making
the total of newly selected papers 20, before performing the additional manual search.

3.1.4 Manual Search

A manual search was conducted using the forward snowballing technique (Wohlin, 2014),
to identify additional papers not discovered by the search string. Google Scholar was used
to examine the citations to the paper being examined. The publication lists of frequently
appearing authors were also searched. This resulted in several papers as candidates for
inclusion. After assessing title, abstract, and finally the full text, 7 more papers were
included as primary studies (Nguyen-Duc et al., 2017b; Nguyen-Duc and Abrahamsson,
2016; Bajwa et al., 2017, 2016; Nguyen-Duc et al., 2016; Nguyen-Duc and Abrahamsson,
2017; Nguven-Duc et al., 2017). Among the papers, 21 were conference papers, five were
journal papers, and one was a book chapter.

3.1.5 Quality Assessment

To build on previous work, a quality assessment of the new primary papers providing em-
pirical evidence was performed. The total number of eligible papers was 22 (table 3.3).
Although systematic mapping studies usually don’t evaluate the quality of each paper in
such depth as systematic literature reviews, the quality assessment process was undertaken
to assess how results were presented in the primary studies. No paper was excluded based
on the quality assessment.

To assess the rigour, credibility, and relevance of the papers, we adopted the quality assess-
ment scheme from Nguyen-Duc et al. (2015a). Quality assessment has been identified as
important for performing empirical research in software engineering (Kitchenham, 2004;
Runeson and Host, 2009). Table 3.2 illustrates 10 quality evaluation criteria. For each cri-
teria the papers met, they got a score of 1, and otherwise 0. This means that the maximum
score a paper could get was 10. A score of 0-3 was regarded as low rigour, 4-6 medium
rigour, and 7-10 high rigour.

23

Chapter 3. Systematic Mapping Study

Problem Statement
QL. Is research objective sufficiently explained and well-motivated?

Research Design
Q2. Is the context of study clearly stated?
Q3. Is the research design prepared sufficiently?

Data collection

Q4. Are the data collection & measures adequately described?
Q5. Are the measures and constructs used in the study the most
relevant for answering the research question?

Data analysis

Q6. Is the data analysis used in the study adequately described?

Q7a. Qualitative study: Are the interpretation of evidences clearly described?
Q7b. Quantitative study: Are the effect size reported with assessed statistical
significance?

Q8. Are potential alternative explanations considered and discussed in the
analysis?

Conclusion
Q9. Are the findings of study clearly stated and supported by the results?
Q10. Does the paper discuss limitations or validity?

Table 3.2: Quality Assessment Checklist (Nguyen-Duc et al., 2015a)

3.1.6 Data Extraction and Synthesis

After the quality assessment, we defined the classification schema (table 3.3). Data from
each of the 27 newly selected primary studies were then systematically extracted into the
classification schema, according to the predetermined attributes: (1) SWEBOK knowledge
area, (2) Research method, (3) Contribution type, (4) Pertinence, (5) Term for “startup”,
(6) Incubator context, (7) Publisher. The chosen attributes were inspired by previous map-
ping studies (Paternoster et al., 2014; Klotins et al., 2015; Tripathi et al., 2016), and from
the process of finding keywords in the abstracts of the retrieved papers (Petersen et al.,
2008). Organizing the findings into tabular form enabled for easy comparisons across
studies and time periods. In addition to classifying the papers, each paper was scanned for
thematic concepts to identify researchers’ descriptions of investigated startups. The the-
matic concepts were adopted from the recurring themes found in Paternoster et al. (2014).
This made it possible to assess the agreement in the community to the definition of startups.

The software engineering book of knowledge (SWEBOK) was created to provide a con-
sistent view of software engineering, and to set the boundary of software engineering with
respect to other disciplines (Bourque and Fairley, 2014). SWEBOK contains 15 knowl-
edge areas that characterize the practice of software engineering. The focal point of the
paper is to propose research directions based on the knowledge areas following the work
done by existing literature. Since the two major mapping studies in the area follow dif-
ferent approaches, that is SWEBOK (Klotins et al., 2015) and focus facets (Paternoster
et al., 2014), in the present study we focus on KAs, as this can allow the reader to better
comprehend how the two different approaches are connected, thus offering a more holis-
tic understanding of the current status in software startup engineering research. Assigning

24

3.1 Research Method

each paper into the specific knowledge areas was done by the first and second author. Both
authors read the titles, keywords, abstracts, and the body of each paper, before evaluating
the papers’ conformance with each specific knowledge area’s description or subareas.

D Research Contribution Knowledge Pertinence Term for Incubator Publisher
Method Type Area startup context
(Yau and Murphy, 2013) Case study :;ZS;(:: Process Full Startup No Ecnr;:ers'i iy
Professional
. Lessons Practice, .
(Laporte et al., 2014) Experiment learned Management, Partial Start-up No QUATIC
Quality
(Eloranta, 2014) Framework Profe_sslonal Full Start-up No ACM
Practice
(Laporte et al., 2015) Experiment ~ Guidelines Process Full Start-up No ENASE
Process,
(Yli-Huumo et al., 2015) Case study Theory Management, Partial Startup No Springer
Quality
(Edison et al., 2015) Survey Tool Construction Full Startup No Springer
(Nguyen-Duc et al., 2015b) Case study ~ Model ;ll-isz‘sgsc,mcm Full Startup No ACM
(Sénchez-Gordén and O’Connor, 2016) Case study Lessons Process Full Very Small No Springer
learned Company
(Wasserman, 2016) Guidelines Process Partial Startup No Springer
Process,
Managefmem.)
(Unterkalmsteiner et al., 2016) Advice PrOfCSSlO[:l‘dl Practice, Full Startup No EISEJ
Construction,
Requirements,
Quality, Testing
(Terho et al., 2016) Advice 821ilslltr>:l,cli0n Full Startup No Springer
N Lessons Process, . Very Small
(Laporte and O’Connor, 2016) Case study learned Management Partial Enterprise o IEEE
(Giardino et al., 2016) ?fgﬁ:ﬂ““d Model X.gd:/:ztho " Full Startup No IEEE
. Lessons Management, .
(Bajwa et al., 2016) Case study learned Requirements Full Startup No Springer
S Management,
(Nguyen-Duc and Abrahamsson, 2016) Case study :;::::]b Design, Full Startup No Springer
Construction
Methods
(Nguyen-Duc et al., 2016) Case study ~ Model and Models, Full Startup No 1IEEE
Management
(Nguyen-Duc and Abrahamsson, 2017) Case study ~ Advice xi‘c‘:‘f:“e" Full Startup No EASE
. Lessons Management, .
(Bajwa et al., 2017) Case study learned Testing Full Startup No Springer
(Nguven-Duc et al., 2017) Case study Theory gfll-(a;:ziement, Full Startup No Springer
Lessons Management, .
(Nguyen-Duc et al., 2017b) Case study learned Design Full Startup No Springer
Lessons Process. KSI
(Pompermaier et al., 2017) Case study oo B Full Startup Yes Graduate
learned Testing School
(Pantiuchina et al., 2017) Surve; Lessons Professional Full Startu, No Springer
” Y learned Practice P pring
Lessons .
(Rafiq et al., 2017) Case study learned Requirements Full Startup No IEEE
(Souza et al., 2017) Casestudy Model g:;’:iscse‘""al Full Startup Yes IEEE
(Chicote, 2017) Framework Quality Full Startup No IEEE
(Chanin et al., 2017) Case study :;Ziig: Requirements Full Startup No IEEE
(Marks et al., 2017) Case study ~ Advice Process Full Start-up No Springer

Table 3.3: Classification Schema

25

Chapter 3. Systematic Mapping Study

3.1.7 Threats to Validity

There are several threats to the validity of systematic mapping studies (Zhou et al., 2016).
One threat is related to the data extraction from each paper, where results can be biased
from researchers personal judgement. To mitigate this threat, and ensure correct classifica-
tion of each paper into the SWEBOK knowledge areas, this process was performed jointly
by the authors at one computer, resolving any conflicts and regulating individual bias.

Threats to the retrieval of relevant papers must also be considered. The inconsistent use
of terms for “startup” made it difficult to cover all used terms in the search string. Hence,
it appeared terms not considered when constructing the search string. Some of these were
“founder teams”, ““very small enterprise”, “very small entity”, and “very small company”,
which all were used in relation to the startup context. Relevant papers might therefore

have been overlooked.

The use of only three bibliographic databases might have affected the number of relevant
papers retrieved. Compared to the number of databases used in similar studies, this seems
to be at the low-end. The chosen databases are however among the most used ones in the
field of software engineering, and the databases that contributed with the most retrieved
papers in other studies (Paternoster et al., 2014). The risk of missing papers published the
last five years was mitigated by the use of forward snowballing which lead to the retrieval
of seven more papers.

To make sure the study selection was not biased from personal opinions, paper selec-
tion involved both authors, which allowed a collaborative resolution of conflicted views,
following guidelines from Kitchenham Kitchenham (2004). We defined clear inclusion
and exclusion criteria, and a quality assessment checklist to assess each paper’s quality.
Disagreement to quality assessment was discussed between the authors until consensus
was reached. This decreased the risk of miss-classifying any relevant papers.

For the quality assessment, we only used two points to collect answers, as the authors
were unfamiliar with the research field. The papers got a score of 1 if they met the crite-
ria, and otherwise 0. Prior studies have used a more fine-grained classification of quality
criteria, and even used different criteria in some occasions. It is more likely that the pa-
pers in our study obtained higher rigour than they would have received if another more
fine-grained assessment method had been used.

3.2 Synthesized Results

This section presents a summary of the results section from the systematic mapping study
and is divided into the research questions defined in section 3.1.1.

26

3.2 Synthesized Results

3.2.1 RQ1: How has software startup research changed over time in
terms of focused knowledge areas?

Figure 3.3 shows the number of studies published in relation to software startup engineer-
ing between 1994-2017, constituting a total of 74 published papers. We observe that the
publication frequency of papers between 2013-2017 is higher than for any period before
2013. From 1994-2013, the highest number of primary papers within a single year was 7
(2008). In comparison, 2016 and 2017 constituted 9 and 11 papers respectively.

CE
Q = M

(= R)

54' 55' 98" 97 98 59 00 O01' 02 03 04 05 06 07 08 09 10 11' 12' 13' 14 15 16" 17

Figure 3.3: Publication Frequency, 1994-2017

The SWEBOK knowledge areas make up 15 categories developed by the software
community as a baseline for the body of knowledge within software engineering (Bourque
and Fairley, 2014). Figure 3.4 shows the number of papers covering the different knowl-
edge areas from the specified time period. The change of research direction is illustrated
by the shift from research focused on software design and software requirements, between
1994-2013, towards more research within software engineering management and software
engineering process, between 2013-2017.

27

Chapter 3. Systematic Mapping Study

IS

~

8
6

Process Quality Professional Testing Construction Management Models and Requirements Design Configuration Maintenance
Practice Methods Management

M (Klotins et al., 2015) M Our study

Figure 3.4: Knowledge area coverage

Paternoster et al. (2014) classified studies into contribution types, originally suggested
by Shaw (2003) as a best practice for classifying software research. Figure 3.5 shows
that the most frequent contribution types are advice, lessons learned, and models. Tools,

guidelines, and frameworks have received little attention in research.

18

16

14

12

10

8

6

4

z i B

) L

Lessons learned Framework Guidelines Theory Tool Model Advice

M (Paternoster et al., 2014) m Our study

Figure 3.5: Contribution types

3.2.2 RQ2: What is the relative strength of the empirical evidences

reported?

Figure 3.6 shows the degree of rigour within each knowledge area between 2013-2017.
The x-axis represents the knowledge areas, while the y-axis represents the rigour. Only
one paper received low rigour score (Edison et al., 2015), as it didn’t provide enough
details about the data analysis and included no assessment of the validity of the results.
However, as only the papers providing empirical evidence were assessed, it is possible
that more papers would receive low rigour as well. In general, the papers received high

rigour score, indicating that the quality of research was high.

28

3.2 Synthesized Results

High
rigour

Medium .
rigour

Low .
rigour

Professional " . Models
> Testin Construction Management
Practice 9 9 and

Methods

Process Quality Requirements Design

Figure 3.6: Rigour of each covered knowledge area, 2013-2017

Figure 3.7 shows the rigour of the primary studies from Klotins et al. (Klotins et al.,
2015), and which research type each constituted. The paper did not specify how they
calculated the rigour of each paper. The x-axis represents the research types, and the y-
axis represents the rigour. From 14 primary papers, only one provided a contribution of
high rigour. Most of the papers (86 percent) obtained low rigour. As to this, the paper
concludes that the low rigour of the papers, due to poor contextual descriptions, makes it
hard to transfer results from one environment to another.

High
rigour
Medium
rigour
Low
rigour

Experience Evaluation Philosophical
Model
Report Research Paper

Figure 3.7: Rigour and research type (Klotins et al., 2015)

Figure 3.8 illustrates the rigour of the contribution types provided by each of the pri-
mary papers in Paternoster et al. Paternoster et al. (2014). The x-axis represent the con-
tribution types, and the y-axis represents the rigour. The division of rigour score is based
on table 7 in the study. Papers that got a total score above 7 received high rigour, between
4 and 7 received medium rigour, while less than 4 received low rigour. 70 percent of the
papers in figure 3.8 received a medium score, while 21 got a high score.

29

Chapter 3. Systematic Mapping Study

High
rigour

Medium
rigour

B
rigour

Lessons

Framework Guidelines Theory Tool Model Advice
learned

Figure 3.8: Rigour and contribution type (Paternoster et al., 2014)

3.2.3 RQ3: In what context has software startup research been con-
ducted?

Table 3.4 presents a complete usage of thematic concepts operating startup research be-
tween 1994-2017. We observe that the characterizations have changed over time (e.g., the
most frequently used concept before 2013 was only the fourth most used one after 2013).
The differences are significant since it is only four years between the studies. The use of
concepts between 2013-2017 is highly inconsistent. There is no single concept that all
the 22 empirical papers use for the startups they investigate. The low frequencies of the
thematic concepts also illustrate that many of the papers provide poor startup descriptions.

Thematic Concepts Frequency 13’-17" (#27) Frequency 94’-13" (#47)
Innovation/Innovative 15 19
Uncertainty 14 15
Small team 11 12
Lack of resources 9 21
Little working/operating history 9 3
Time-pressure 7 17
Rapidly evolving 5 16
New company 5 8
Highly reactive 3 19
Highly risky 3 8
Third party dependency 2 12
One product 2 9
Not self-sustained 1 3
Low-experienced team 0 9
Flat organisation 0 5

Table 3.4: Thematic Concepts, 1994-2017

The primary studies from 2013-2017 that have provided empirical evidence and suffi-
cient contextual descriptions are presented in table 3.5. The relevant context information

30

3.3 Conclusion

includes the attributes: (1) number of startups under investigation, (2) size of the com-
pany/team, (3) the product orientation of the startups, and (4) other relevant contextual
descriptions beyond these three (e.g., lifecycle stage, age/year of establishment, location,
software development methodology).

1D Nr of startups ~ Company size Product orientation Other relevant info
Social network Roles: Designer, 1 web/iOS/android
(Yau and Murphy, 2013) 1 startup 5 members applicati dev. each, CEO
application Approach: Lean Startup/Agile
4 members Health Canada, mobile app, concept stage
(Rafiq et al., 2017) 3 startups 6 members E-commerce Italy, mobile and web app, func.stage
25 members E-commerce Brazil, web app, mature stage
12 members 3yrs old
10 members Academic lyrs old
(Souza etal., 2017) 4 startups 8 members business domain Lyrs old (still incubated)
10 members 4months old (still incubated)
(Marks et al., 2017) 1 startup Not specified Dl? pcrtorman‘ct? I_-h,gh potc?ntlal growth ﬁrm,
& interoperability spin-out from a university
2 founders Video service Working prototype (14°)
. 3 founders SaaS Func. product, limited users (15°)
(Bajwaetal, 2016) 4 startups 2 founders Event ticketing system Func. product, high growth (11°)
2 founders Game-based learning Mature product (06”)
6 members Online photo marketplace Italy (lean startup/agile,12’,impl.phase)
3 members Marketplace for food hub Norway (ad-hoc,15’ concept.phase)
(Nguyen-Duc and Abrahamsson, 2016) 5 startups 4 members Collab.platform construction Norway (Scrum, 11’ ,commercial.phase)
18 members Sale visualization Norway (agile,11’ ,commercial.phase)
3 members Under-water camera Finland (ad-hoc,11”,impl.phase)
20 members Learning game, B2C 2006, scaling phase
18 members Real-time sale management, B2B 2011, scaling phase
(Nguyen-Duc et al., 2016) 5 startups 1 member Photo marketplace, B2C 2012, startup
3 members Social platform,B2C 2015, pre-startup
1 member Collab.platform construction, B2B 2011, startup
6 members Hyper-local news platform, P2P Norway (agile,2015,bootstrap)
9 members Collab.platform construction, B2B Norway (scrum,2012,bootstrap)
3 members Ticket event system, B2B Norway (agile,2012,bootstrap)
(Nguyen-Duc and Abrahamsson, 2017) 6 startups 5 members Shipping platform, P2P UK (agile,2013,early investor)
12 members Game learning tool, P2P UK (dist.agile,2013,bootstrap)
5 members Fish farm management, B2B Vietnam (ad-hoc,2016,bootstrap)
4 members . Peru (2012, VSE/start-up term)
(Laporte et al., 2015) 2 startups 2 members Not specified Canada P
4 members Photo market place, P2P 2011,paying customers
(Nguyen-Duc et al., 2015b) 3 startups 5 members Under-water camera, B2B 2009, paying customers
12 members Ticketing system, B2P 2011,paying customers
17 members Enterprise 18yrs active (int.customers)
(Sanchez-Gordén and O’Connor, 2016) 3 VSEs 10 members Financial services 9yrs active (int.customers)
7 members Enterprise 4.5yrs active (int.customers)

(Giardino et al., 2016)

13 startups

3-20 members
2-6 founders

Not specified

Time-to-market:
1-12months

Incubator-context

(Pompermaier et al., 2017) 8 startups Not specified ~ Not specified 62 % used pseudo-agile for reqs.
100 % not documenting many regs.
Food-waste knowledge app
(Chanin et al., 2017) 3 startups Not specified ~ Online debt platform Not specified

Online investment platform

3.3 Conclusion

Table 3.5: Contextual Descriptions, 2013-2017

We have applied a systematic mapping method to analyze the literature related to software
startup engineering. A total number of 74 primary papers (in which 27 papers are newly
selected) were extracted and synthesized. Our study, along with the previous mapping
studies, constitute a merging of the primary literature within the field for the period 1994-
2017, including the focus and relative strength of research, and the effort that’s been made

to characterize the software startup context.

31

Chapter 3. Systematic Mapping Study

The contribution of the mapping study is two-fold. Firstly, the study provides a compre-
hensive view of software startups for Software Engineering researchers. Possible research
gaps are derived for future studies. Secondly, the study provides a map of the contextual
setting of investigated startups, inferring the applicability area of empirical findings. This
can help to compare and to generalize future research in software startups.

Regards to RQ1, most found software startup research between 2013-2017, are conducted
within software engineering management and software engineering process, while soft-
ware design and software requirements have received most attention between 1994-2013.
For the period 2013-2017, software design received far less contributions compared to that
in 1994-2013, illustrating a change of research direction. The knowledge areas software
engineering models and methods, software quality, and software testing have received lit-
tle attention from the research community during the period 1994-2017. Apart from these
findings, we emphasize the need for more research within all knowledge areas. For the pe-
riod 2013-2017 software configuration management and software maintenance were not
covered at all. As to this, it seems that some of the knowledge areas aren’t directly relevant
to the startup context. Future mappings should instead use the newly established research
themes of Unterkalmsteiner et al. (2016).

Regards to RQ2, we found an increased rigour of primary studies after 2013 in compari-
son with studies found in 1994-2013. While it is still not clear about the transformation
of research results to startup practitioners, startup researchers seem to increase the focus
on conducting high-quality research. The increased importance of startups has been an
important factor to highlight the need for more research. As startups generally use ad-hoc
or opportunistic development methods, practices of startups can be different, meaning that
more evidence is needed to generalize work practices to all startups.

Regards to RQ3, we identify a coherent set of concepts that represent the startup context,
(1) Innovation/innovative, (2) Lack of resources, (3) Uncertainty, (4) Time-pressure, (5)
Small team, (6) Highly reactive, (7) Rapidly evolving. Additionally, aspects like (1) team
size, (2) product orientation, (3) number of active years/life cycle stage, (4) number of
investigated startups, (5) location, and (6) development method are important to describe
sufficiently to be able to transfer results from one environment to another. As only 14 of
the primary papers between 2013-2017 provided adequate descriptions, and all primary
papers showed an overall inconsistent use of describing thematic concepts, we see a need
for a more comprehensive endeavor to describe the engineering context of startups.

Several threats to validity were considered, including the selection of papers, the use of
few online bibliographic databases, the selection of keywords, and the coarse-grained clas-
sification used for the quality assessment. To ensure the selection process was unbiased,
the selection criteria were developed in advance, also the first, second and third author
were involved in the selection process. Both the use of few online bibliographic databases,
and the identified keywords and search terms might have lead to relevant papers being
omitted. This risk was mitigated by performing an additional manual search. For the qual-

32

3.3 Conclusion

ity assessment it is likely that the use of only two points have caused the papers to obtain
a higher rigour than they would have if a more fine-grained assessment method had been
used.

Future work can focus on certain research themes, such as startup evolution models and
human aspects, and consolidate the contextual factors of software startups. More work
should be conducted for specific business contexts, such as startups that are part of in-
cubators and bigger business ecosystems. As a next step, we seek to address engineering
practices in startups who deliver both hardware and software, as no prior studies have been
entirely dedicated towards their specific challenges and demands.

33

Chapter 3. Systematic Mapping Study

34

Chapter

Research Method

Software engineering research is to a great extent concerned with investigating the devel-
opment, operation, and maintenance of software products. The objective of this study is to
create a better understanding of work-practices in hardware startups by investigating the
role of engineering activities, from idea conceptualization to a launched product. In par-
ticular, we will investigate factors influencing development speed and agility, and explore
commonalities, challenges and situational factors. We propose a model visualizing the
overall engineering approach of hardware startups, serving as a fundament for researchers
and practitioners to further explore the hardware startup context. The case study process
is considered suitable for such multidisciplinary areas where existing theory may be inad-
equate (Runeson and Host, 2009), and so we have designed a case study protocol inspired
by Pervan and Maimbo (2005) to guide the collection and analysis of data. The study is of
exploratory nature as we seek to create knowledge by investigating events and actions of
those who experience them (Oates, 2005).

Several data generation methods were considered (Oates, 2005). Surveys allow for gen-
eralization of results, however, the large number of participants required, and the time
constraints of this project made surveys an infeasible option. Observations were consid-
ered too time-consuming to undertake. Semi-structured interviews of selected participants
fitted both the time-constraints and availability of hardware startups and is considered
suitable for qualitative data analysis (Oates, 2005). Interviews allowed for a discoverable
approach, as interviewees could express themselves more freely and provide their own
perspectives on personal experiences related to the research topics.

The rest of this chapter introduces the case study protocol, and proceeds as follows: Sec-
tion 4.1 introduces and justifies the research questions of the empirical research. Section
4.2 explains how we developed interview questions based on the research questions. Sec-
tion 4.3 presents the case and subject selections. Section 4.4 explains how the interviews
were conducted. Section 4.5 describes the qualitative data analysis process. Section 4.6
presents the steps taken to validate our research. Section 4.7 discusses validity threats to

35

Chapter 4. Research Method

the research design. Finally, section 4.8 explains how we managed ethical considerations.
Figure 4.1 illustrates all steps of the research process.

Interview Protocol Design Section 4.4 Data Collection
Section 4.3
Case and s_unjec‘ls I _
Chapter 3 Section 4.1 selaction II

Systematic Research Research Section 4.2 Identification of Interview Questions
Objective

mapping Questions ‘ -
nterview
II

study
Execution and
improvements of case study
A

e
Case
study

database

Section 4.7

. . \—|No
Validiy Section 4.5 Analysis Procedure |
procedure Chapter §

Trilateral Madel of p
Hardware («— | higher-order II Yoo An;vaeslgng II I ré:'g;‘ I
Section 6.2 Startup Model themes ! 9
Model
validation

Figure 4.1: Research Process

4.1 Research Questions

From the systematic mapping study, we identified several gaps in the literature on software
startup engineering, one of them being the rare knowledge on development processes in
hardware startups. Among publications the last five years, several of them investigated
startups developing products with mixed software and hardware parts, however, there was
a lack of validated knowledge focusing on their specific challenges or practices. The
context of hardware development poses many constraints and dependencies that affect
practices and processes (Ronkainen and Abrahamsson, 2003). Hardware development is
considerably more complex than software development, and so there is a need for method-
ologies and practices that cover the specific concepts for hardware startups (Stock and
Seliger, 2016).

The technological lifecycle of companies delivering new innovative electronic products
is becoming shorter each year. The high demands and accelerating adoption rates of cus-
tomers, and the pressure for reduced time-to-market increase the uncertainty related to the
product development processes of hardware startups. In such a context the combination of
speed and agility is essential for delivering innovative customer-driven products (Bosch,
2016). Speed is fundamental for staying alive in highly competitive markets, where cre-
ativity needs to be combined with agility to handle uncertainty, and introduce flexibility in
the process (Garbajosa et al., 2017). At the same time, speed needs to be managed with
caution to avoid expensive rework and bringing the development process to a halt. We aim
at exploring how agility, speed, and quality are engineered by practitioners in hardware
startups. This has motivated the following research questions:

RQ1 How do hardware startups achieve agility during product development?

RQI1.1 How do hardware startups develop their products?

36

4.2 Identification of Interview Questions

RQ1.2 What kind of challenges are relevant in the hardware startup context?

RQ1.3 How do internal/external context factors impact the speed of product develop-
ment?

RQ2 How do hardware startups manage quality concerns of their products?

RQ2.1 How are hardware products tested?

RQ2.2 How is technical debt managed in hardware startups?

RQ3 How do hardware startups achieve balance between speed and quality?

From the empirical data obtained from the multiple-case study and knowledge from the
Greenfield Startup Model, we will develop a model describing the engineering approach
of hardware startups. The resulting model will explain the priorities of hardware startups,
and why introducing process and specific methodologies is hard. The model will be the
results of an early investigation of how hardware startups operate and point out opportuni-
ties for future research.

Figure 4.2 illustrates the relationships of the formulated research questions, and how they
together with the Greenfield Startup Model contribute to the creation of the Trilateral Hard-
ware Startup Model.

Themes {RQ1)

* Thematic map (AQ3)

»| Trilateral Hardware
Themes {RQE2) Startup Model
[nardware starlups)

h 4

Greenfleld Startup Model
{software stertups)

Figure 4.2: Relationship between research questions and theoretical models

4.2 Identification of Interview Questions

To create a mapping between the research questions and the metrics used to address the
questions, we have used the Goal Question Metric (GQM) paradigm (Basili, 1992). Even
if the original purpose of the GQM approach was to “define and evaluate goals for a project
in a particular environment” (Basili, 1992), the concepts are generic and its use has been
expanded to other measurement settings. The paradigm defines a measurement model that
can be divided into three main steps: (1) conceptual level where an overall objective is
defined, (2) operational level where a set of questions are defined to achieve a specific
objective, and (3) quantitative level where a set of metrics are associated with every ques-
tion for answering it in a measurable way. Further steps include (4) define data collection

37

Chapter 4. Research Method

mechanisms, and (5) collect, validate, and analyze the data in real-time to ensure con-
formance to the goals and make recommendations for future improvements. This section
covers the three first steps of the GQM process in light of our study (i.e., how the research
questions of the empirical research are mapped to the interview questions (Appendix A.1)).

The overall objective of this study is to create a better understanding of work-practices
in hardware startups by investigating the role of engineering activities, from idea concep-
tualization to a launched product. To address this research objective, we have defined
three research questions with several sub-questions (section 4.1). The next step of the
GQM process is to define appropriate measures for the research questions. As this study
is a qualitative case study through semi-structured interviews, the interview questions will
be the metrics.

Figure 4.3 presents the mapping between the research questions and the associated in-
terview questions. Each interview question is only represented once, with its related code
as found in Appendix A.1. The figure illustrates that most interview questions participate
in answering several research questions, emphasizing their correlation.

Figure 4.3: Mapping between questions and metrics

38

4.3 Case and Subjects Selection

4.3 Case and Subjects Selection

The units of analysis are people involved in product development in startup companies that
deliver products with mixed hardware and software parts. We defined selection criteria as
suggested by Runeson and Host (2009). Startups were relevant for inclusion in the study
if they met the following criteria:

e The startup develops both hardware and software parts.
e The startup has been active for at least six months.

e The startup has a first running prototype.

e The startup’s ambition is to scale its business.

People from the relevant startups were eligible for participation if they had experience
and/or knowledge about software and/or hardware development. If the candidate met the
criteria, he/she was regarded as qualified for contributing to the research study.

We used five different channels to find relevant startups: (1) Innovation Center Glgshaugen,
(2) NTNU Accel and FAKTRY, (3) our supervisors’ professional networks, (4) OsloTech
and StartupLab, and (5) The Hub. Table 4.1 provides an overview of the different commu-
nication channels and can help other researchers to find and contact startups.

Channel Description Link
The center is located at campus Gloshaugen, and
Innovation Center Gloshaugen houses various early-stage high-tech startups, mainly www.ntnu.no/ig

to support innovative students.

NTNU Accel is a uni-based accelerator for promising
NTNU Accel and FAKTRY startups. FAKTRY is an incubator which is part of Accel,
and houses various hardware startups.

www.ntnuaccel.no,
www.faktry.no

Letizia Jaccheri: Italian companies (S13)
Supervisors’ professional networks ~ Anh Nguyen-Duc: European and Asian startups
Javier Escribano: Spanish and Dutch companies (S11)

OsloTech manage Oslo Science Park, including
OsloTech and StartupLab incubator StartupLab which has supported more
than 200 startups since 2012.

www.oslotech.no
www.startuplab.no

The Hub is a community platform which gives
an overview of Norwegian and Nordic startups.
Via the platform, startups can get assistance with
recruitment and connection with investors.

The Hub www.hub.no

Table 4.1: Startup Channels

We have provided comprehensive contextual descriptions of each case, identified as
important to ensure that results are of high rigor and possible to transfer between similar
environments (Cruzes and Dyba, 2011). This will allow practitioners to judge the general-
izability of the results, and researchers to assess its validity. A textual description of each
case can be found in section 5.

39

Chapter 4. Research Method

4.4 Data Collection Procedure

Our chosen data generation method was interviews, identified as an efficient method for
answering research questions in case studies (Oates, 2005). The semi-structured approach
enabled discovery of unforeseen information as interviewees could express themselves
more freely, and fitted both the time constraints of the project and the availability of startup
companies.

The researchers were in direct contact with the subjects, hence the data collection process
can be regarded as a first degree data collection technique. First degree data collection re-
quires a significant effort, but allowed both researchers to control what data was collected,
ensuring that all pre-defined interview questions were answered sufficiently and exploring
new directions by asking follow-up questions (Runeson and Host, 2009). Both authors
attended all interviews to avoid one single interpretation of the respondent’s perspective
and insight on topics, as qualitative data often can be rich and broad, but less precise.

The interviews were undertaken in the language preferred by the interviewee (English
or Norwegian). Several of the interviews were therefore undertaken in Norwegian as this
made the interviewees more comfortable. This allowed them to express themselves more
freely, and give more in-depth explanations. Because of this, it was necessary to translate
some of the interviews when transcribing. As there often doesn’t exist a one-to-one rela-
tionship between language and meaning (Temple and Young, 2004), the translation of the
transcribed interviews was ensured to “express all aspects of the meaning in a manner that
is understandable” (Larson, 1991). This implies that not all parts of the interviews were
directly translated word-for-word.

All interviews followed the interview guideline (Appendix A.1), which is structured into
four main parts. The question were categorized into (1) general information, (2) business
background, (3) startup development methodologies, and (4) product development. Each
category has several associated questions to ensure sufficient coverage of all topics. All
interviews were recorded. Participants signed consent forms (Appendix A.3) before par-
ticipation. The selection criteria were reviewed by our supervisors to ensure the quality of
the study design. All interviews were performed between February and April 2018.

Before the interviews, we looked into the cases’ business background, either through their
company websites or other relevant incubator or accelerator websites. Additionally, most
participants answered a simple questionnaire (Appendix A.2) prior to interviews where
they filled out basic information about themselves and the company. These measures al-
lowed for more efficient interviews as the interviewers had more knowledge about the case
and could use less time on initial formalities. Since each startup only was interviewed
once, it was crucial to perform initial company analysis to get a holistic understanding of
each case and to provide stronger evidence for the conclusions drawn from the interviews.

Table 4.2 presents the details of the interviews. All interviews were transcribed shortly
after they were conducted. In addition, both authors made initial reflections. These were
made to take note of the most important topics from the interview, and for making im-

40

4.5 Analysis Procedure

provements to the interview questions before the next interview.

Case Type of Interview Interview Subject Duration
Cable cam system Face to face, not on-site CTO 40 min
Unmanned aircraft system On-site Hardware developer 55 min
Smart gloves Face to face, not on-site CEO 35 min
Medtech biosensor On-site CEO & 55 min

software developer

Physical exercise game On-site CTO 40 min
LPG management system On-site CEO 40 min
Advanced noise cancellation On-site Hardware developer 40 min
Medtech hydration monitoring On-site CSO 25 min
Collaborative camera On-site Hardware developer 35 min
Digital piggy bank On-site CEO 40 min
Interactive children’s toy Skype CFO 35 min
3D-printer control board On-site CEO 25 min
Sensors for IoT Face to face, not on-site Hardware developer 25 min

Table 4.2: Case Interviews

4.5 Analysis Procedure

Thematic analysis can be defined as “a method for identifying, analyzing, and reporting
patterns (themes) within data” (Braun and Clarke, 2006). We applied the thematic synthe-
sis process which is a codes-to-theory model for qualitative research (Cruzes and Dyba,
2011). The objective of our thematic synthesis process is to both answer the research
questions and come up with a new model describing development strategies in hardware
startups, focusing on aspects that are unique from software startups. The main steps of
the process are illustrated in figure 4.4. The rest of this section explains our data analysis
procedure.

41

Chapter 4. Research Method

Initial Identify and Madel of
reading label Ci%?{?s higher.
segments
] themes order
themes
61 pages 734
of text references, 10 themes 3 themes

48 codes

Figure 4.4: Thematic Synthesis Process (Cruzes and Dyba, 2011)

4.5.1 Initial Reading

The first step of the analysis process was to read through the transcribed interviews to gen-
erate initial ideas and identify possible patterns in the data. All interviews were transcribed
shortly after they were conducted to ensure the actual meaning of interviewees’ answers.
Both authors discussed the interviews, creating a mind map of central concepts relevant to
hardware startups. We also assessed the categories and themes of the GSM to understand
the differences to the software context.

The mapping between research questions and interview questions quickly allowed us to ad-
dress whether interviews provided relevant answers for best addressing the research ques-
tions. This facilitated an early and efficient analysis, as we could connect respondents’
answers directly to our research objective. This was necessary for making incremental
improvements to the interview protocol.

4.5.2 Coding Process

Coding can be seen as the first step of data analysis (Seaman, 1999). To generate initial
codes, we applied a descriptive coding technique (Saldafia, 2015). This technique is about
summarizing in a word or short phrase the basic topic of the data, to identify interesting
concepts, categories, or other findings in a systematic way across the data set. Descrip-
tive coding is useful for inexperienced qualitative researchers and helped us organize and
group similar data into categories, which is the first step towards the creation of themes.

The coding process followed an integrated approach (Saldafia, 2015), which is a mix of the
inductive and deductive approaches. In inductive coding, data is reviewed line by line and
as concepts appear, a code is assigned. In deductive coding, you have a start list of codes
based on theories or other key concepts in which you categorize data into. Our approach
was slightly more inductive than deductive; we had some clear ideas and thoughts of what
we expected to find from the data, however, we created the codes as concepts appeared in
the data. This approach allowed us to avoid coding data out of context, while at the same
time identifying what the text was saying rather than what we wanted to see.

42

4.5 Analysis Procedure

To help organize and keep an overview of data, we used NVivo, which is a software tool
for qualitative data analysis. NVivo can allow for a better understanding and exploration of
unstructured data by facilitating quick discovery of key topics and themes. Having in mind
that both researchers were new to qualitative data analysis, and the limited time-frame of
the research, NVivo was decisive in effectively creating valid and defensible outcomes.

We applied an iterative coding process, to allow for simultaneous data collection and anal-
ysis (Runeson and Host, 2009). The first iteration involved coding the data from the four
first interviews. A total of 29 codes were generated from 416 references. The codes were
examined by both researchers and one supervisor. Lessons from the evaluation were im-
plemented in the next interviews to generate relevant codes. For the second iteration, we
classified text into the codes from the first iteration, while at the same time generating new
codes in an inductive manner. The second iteration resulted in a total of 48 codes and 734
references from 13 interviews.

4.5.3 Translate Codes into Themes

A theme can be seen as a way of grouping initial codes into a smaller number of sets, to
create a meaningful whole of unstructured codes (Cruzes and Dyba, 2011). The process
reaches an end when no new themes emerge from the data, at the point of saturation. We
divided related codes into categories and concepts (Strauss and Corbin, 1998). All cases
were analyzed separately in relation to their respective case descriptions (section 5.1), to
ensure that themes were in line with the associated context. NVivo facilitated independent
coding of each case, while at the same time allowing us to classify data from each case
into similar codes from other cases.

Hardware startups include a significant amount of software components and face simi-
lar business and organizational challenges as software startups. Because of this, we could
expect that several of the themes appearing in the data would be matching those created
in the GSM. This is a threat to validity, as we expected to find certain things instead of
them appearing in the data. Since we are creating a new model describing the engineering
approach of hardware startups we mainly focused on creating themes describing aspects
that are unique to hardware startups. Some of the themes of the GSM were found to be
more significant and even having a different implication for hardware startups. The total
number of themes unique to hardware startups ended up being 10.

4.5.4 Model of Higher-Order Themes

The generated themes were further explored and interpreted to create a model of higher-
order themes (Figure 5.1). We focused on data and themes unique to hardware startups.
The higher-order themes were third-party dependency, hardware-software integration, and
two-folded product quality trade-off. In addition, we identified patterns more general to
the startup context. These were similar to several of the categories found in the GSM.
Although the names refer to the same concepts, we named them differently from the GSM
to avoid any misunderstandings for the reader.

43

Chapter 4. Research Method

The higher-order themes were in combination with knowledge from the Greenfield Startup
Model consolidated to form a conceptual representation named the Trilateral Hardware
Startup Model. To create the model we identified connections to quality, speed, and
resources, operating as core elements of the model. Depending on the objective of the
project, quality, speed, and resources are all elements that will affect product develop-
ment. To ensure the correctness of the model, the magnitude of the impact was ranked to
be either (1) weak, (2) medium, or (3) strong. Table 4.3 presents the strength of the rela-
tionships. Chapter 6 introduces the Trilateral Hardware Startup Model in further detail.

Restricted Team Two-folded . Third-party ~ Hardware-software ~ Evolutionary ~ Rapid Incurred Rme effects
resources roactivit; product quality dependency integration rototypin, development technical debt of short-term
i s P Y trade-off P Y € P yping P benefits
Quality 1 1 2 1 1 1 1 3 2
Speed 1 2 2 2 2 3 3 1 2
Resources 3 2 1 2 2 1 1 1 1

Table 4.3: Themes’ impact on core model elements

4.6 Validation Procedure

To validate our model’s compliance with the hardware startup context, we performed two
separate validation activities. The validation and it’s results are described in further detail
in section 6.2. Firstly, we attended the fortnightly meeting of the Software Startup Re-
search Network, a global network of scientists within software startup research. In this
meeting we held a 30-minute presentation, presenting the main findings of the Master the-
sis and our model describing the engineering approach of hardware startups. Secondly, we
contacted all of the investigated cases to assess their conformance with the model. All of
the participating startups received the model with the corresponding description. The star-
tups were asked to explain to what extent they found the model useful, and how the model
contributed to describing the hardware startup context. Their answers were used to create
a mapping between the developed factors and cases (table 6.1), valuable for generalization
of the model.

4.7 Validity Procedure

The validity must be addressed for all phases of the case study, to enable replication of
our research (Runeson and Host, 2009), and to ensure the trustworthiness of our findings
(Cruzes and Dyba, 2011). The study is classified into four categories of validity concerns
used for controlled empirical experiments in a software engineering context (Wohlin et al.,
2003). The categories are (1) construct validity, (2) internal validity, (3) external validity,
(4) conclusion validity.

44

4.7 Validity Procedure

4.7.1 Construct Validity

Construct validity relates to our research design, and whether it correctly measures engi-
neering practices in hardware startups. To ensure that the interview questions were suitable
for answering our research questions, we defined interview questions through a top-down
approach using the Goal Question Metric method. Additionally, we identified topics of
interest in hardware startups based on primary papers (e.g., research questions or research
directions) from our Systematic Mapping Study on software startups (Chapter 3). The in-
terview questions were revised by our supervisors to ensure that they were appropriate for
addressing our research questions. It can be difficult to know beforehand what to focus on
and how to perform interviews since relevant information might appear as you start ana-
lyzing interviews. To deal with this, we performed interviews in an iterative manner. We
transcribed and analyzed the first four interviews before moving on with the nine remain-
ing interviews. This allowed us to make improvements and adjustments to the interview
protocol. To minimize deviating results, we conducted interviews in the startups’ environ-
ments. In cases of restricted office space, we booked private group rooms at the university
to reduce noise and disruptions.

4.7.2 Internal Validity

Internal validity is the extent to which bias is minimized and the conclusions are credible.
We focused on interviewing software and hardware developers and other people close to
the development processes. Some of the interviewees were CEOs, and although they have
broad business perspectives, they might have limited expertise and insights into specific
development practices. To decrease the risk of biased interpretations, both researchers
attended all interviews. We discussed and analyzed answers straight afterward to catch
any underlying meanings. We also compared findings to related literature (Giardino et al.,
2016; Nguyen-Duc et al., 2018; Ronkainen and Abrahamsson, 2003), examining simi-
larities, contrasts, and explanations. Such comparisons have proven to enhance internal
validity and the quality of findings (Eisenhardt, 1989). To ensure that we have synthesized
data appropriately and drawn reliable conclusions, we have performed a validation of the
model of higher-order themes in section 6.2.

4.7.3 External Validity

External validity relates to our study’s generalizability to similar environments. We per-
formed interviews on a sample of hardware startups, based on selection criteria for par-
ticipation. Interviews were either performed with CEOs, CTOs, or engineers, preferably
associated with the companies from the start. The startups were mostly located in the same
area, mainly consisting of young, inexperienced entrepreneurs. The study might not apply
to all hardware startups. Generalization of the research results is therefore limited to cases
with similar characteristics (i.e., early-stage European hardware startups). Case descrip-
tions (section 5.1) allow for identification of key information about each startup and can
help guide researchers and practitioners in transferring results to other cases.

45

Chapter 4. Research Method

4.7.4 Conclusion Validity

Conclusion validity is to which extent our conclusions are reasonable (i.e., the reliability
of our study). Since some of the interviews were conducted in Norwegian, it was not
always possible to directly translate transcriptions word-for-word. The associated risk of
translating interviews is whether we were able to capture the actual meaning provided by
the interviewees. We handled this by writing transcripts straight after each interview, as
well as having both researchers participating in all interviews. It is difficult to understand
a startup and its dimensions within a time-span of 30 minutes. To enhance our understand-
ing of the investigated cases, we collected information about the startups through search
engines, company websites, social media, and pre-interview questionnaires. Preliminary
investigations enlarged our holistic understanding of the investigated cases. To enhance
the reliability of the study all participating startups were included in the process of writing
case descriptions to ensure its conformance with reality.

4.8 Intellectual Property Rights

Ethical issues are important to consider when planning and performing empirical research
(Oates, 2005; Runeson and Host, 2009; Singer and Vinson, 2002). Before conducting
the interviews, all participants were asked to explicitly agree to participate through an in-
formed consent. To ensure that our research is in line with Norwegian law, the template
followed The Norwegian Protection Officer for obtaining consent (Appendix A.3), to in-
form interviewees that participation in the study is voluntary and that they have every right
to withdraw from the study without further notice. The template is in line with the Policy
for the protection and management of intellectual property rights and physical material at
NTNU.

As NTNU has appointed NSD (Norwegian Centre for Research Data) as their Data Pro-
tection Official for Research, all NTNU students and researchers are obligated to notify
NSD about their project if they are going to process personal data. As our research project
won’t handle information related to individuals, and as we will only register anonymous
information, meaning that the data contains no information that may identify any individ-
ual, the project has not been notified to NSD. None of the startups or interviewees were
registered or stored by name, or other information that may be used to identify them.

46

https://innsida.ntnu.no/c/wiki/get_page_attachment?p_l_id=22780&nodeId=24647&title=Intellektuelle+rettigheter&fileName=Intellectual%20Properties%20-%20IPR%20.pdf
https://innsida.ntnu.no/c/wiki/get_page_attachment?p_l_id=22780&nodeId=24647&title=Intellektuelle+rettigheter&fileName=Intellectual%20Properties%20-%20IPR%20.pdf
https://innsida.ntnu.no/c/wiki/get_page_attachment?p_l_id=22780&nodeId=24647&title=Intellektuelle+rettigheter&fileName=Intellectual%20Properties%20-%20IPR%20.pdf

Chapter

Results

In this chapter, we present findings from the multiple-case study relevant for answering
our research questions. The chapter proceeds as follows: Section 5.1 presents basic infor-
mation about each of the 13 investigated startups. Section 5.2 seeks to address research
question 1 with corresponding sub-questions. Section 5.3 addresses research question 2
and its related sub-questions. The two sections use empirical data from the transcribed
interviews to present a meaningful whole from the cases and are based on the thematic
synthesis presented in the previous chapter. Section 5.4 uses the findings from the sections
5.2 and 5.3 to explain how hardware startups achieve balance between speed and quality to
address research question 3. Additionally, the section presents the model of higher-order
themes unique to hardware startups, and a table summarizing the main answers to each of
the three research questions.

5.1 Case Descriptions

The following sub-sections present the investigated startups, including product descrip-
tions, business models, and team compositions. Descriptions are made as accurate as
possible, without exposing the companies and other sensitive person-identifying informa-
tion. The case descriptions are made to allow for transferable results and for a better
understanding of why the startups operate the way they do (Klotins et al., 2015; Langley,
1999). Table 5.1 presents basic information about each case. The current stage in the table
is adopted from Crowne (2002), however the first stage startup is replaced by concept to
avoid misunderstandings.

47

Chapter 5. Results

Case Product Current Stage Founded Location # of employees
Startup 1 (S1) Smart gloves Concept 2016 Norway 18
Startup 2 (S2) Medtech biosensor Concept 2017 Norway 5
Startup 3 (S3) Physical exercise game Stabilization 2016 Norway 5
Startup 4 (S4) Unmanned aircraft system Concept 2016 Norway 7
Startup 5 (S5) Advanced noise cancellation Concept 2017 Norway 5
Startup 6 (S6) Medtech hydration monitoring Concept 2016 Norway 10
Startup 7 (S7) LPG management system Stabilization 2016 Norway 8
Startup 8 (S8) Cable cam system Stabilization 2016 Norway 10
Startup 9 (S9) Digital piggy bank Concept 2017 Norway 5
Startup 10 (S10) Collaborative camera Growth 2014 Norway 50
Startup 11 (S11) Interactive children’s toy Concept 2015 Netherlands 8
Startup 12 (S12) 3D-printer control board Growth 2009 Norway 1
Startup 13 (S13) Sensors for IoT Growth 2007 Italy 25

Table 5.1: Case Descriptions

S1 Smart Gloves. S1 is a company that develops a human-machine interaction smart
glove for intuitive control of machines, with steering drones as their primary target for
their MVP. Modern RC controllers are large, complicated, and not very intuitive, result-
ing in a large number of drone crashes and relatively poor security for low-experienced
drone-pilots. S1 replaces the traditional RC controller with a sensor-based glove, aiming
at reducing the number of drone crashes, increase security, and give people a more intu-
itive user experience.

The company was founded in 2016, is purely student-driven, and has received funding
from multiple Norwegian innovation initiatives and business angels. The administration
consists of CEO, COO, and an HR manager with backgrounds from industrial economy,
technology management, and design. The tech team consists of six students from electron-
ics and cybernetics. The business team consists of four students with industrial economy
background. Additionally, they have a tech team of five computer engineering students lo-
cated in the USA. They also collaborate with a local university in a tech-marketing course
where a team of five helps them with an extensive market analysis.

Considering that S1 is an early-stage startup, they have a very large team compared to
similar companies. This implies that communication is important, also since they have
two distributed tech teams. The team-organization allows the company to experiment
with different technological solutions, an approach similar to A/B-testing. Working with

48

5.1 Case Descriptions

multiple technical solutions can speed-up development, and facilitate for more customer
experimentation. The prototypes have mainly been developed in-house, except for some
components that’s been developed by an external company to increase the product quality.

S2 Medtech Biosensor. S2 is a medtech startup founded in 2017 that develops a sensor
for continuous monitoring of patients. The sensor can extract various data from humans,
and visualize this data on iPads and/or laptops. The sensor can replace tasks which today
are handled manually by hospital personnel. The original idea was to create sensors set
in consumer products, like AppleWatch, to monitor sick people. Through a collaboration
with a local hospital, they undertook a product pivot where they went over to creating the
sensor as a single unit.

Today the company consists of five part-time employees. The CEO is responsible for
business development and the electronics production. The other team members include a
software developer, a mechanical developer, a firmware developer, and a signal processing
engineer. Each employee has a great responsibility and holds broad expertise in both hard-
ware and software development. To organize the development, they have weekly meetings
to synchronize and document changes. This development approach can be seen as a sim-
plified version of Scrum. During its first year, they have had two main prototypes with
several versions of each.

The company has received funding from various partners and innovation initiatives, and
some members even do consultancy work on the side to generate money for the business.
They have invested in an advanced 3D-printer to keep as much development as possible
in-house to reduce dependencies and delivery times, and to facilitate for a tight customer
feedback-loop with many small, iterative changes. The company have partners in China
and USA to help with production and assembling of components, and also outsource parts
of their development to meet the strict regulations of the MedTech industry.

S3 Physical Exercise Game. S3 delivers a platform for exercising computer games, in
which they build the software side of. The hardware side consists of control-buttons and
sensors attached to a bicycle and an intelligent hub that sends data to a PC attached to the
handlebar. On the PC, they have a platform running different computer games. Originally
a research project, they have received soft funding coupled with a convertible note from
private investors. Having identified that their product clearly solves a problem, their main
focus is to find the right product/market fit going forward.

The startup was established in 2017 by three people. Currently, the team consists of five
full-time employees and two part-time employees. Among the full-time employees, two
work on the business side, two work on software development, and the last person does
both hardware and software development. Early on, they developed both the hardware and
the software in-house. Since hardware development has strict requirements for quality and
don’t promote flexibility and rapid changes to the same extent as software, the startup has
decided to outsource hardware design and development to a nearby consultancy company.

49

Chapter 5. Results

S4 Unmanned Aircraft System. S4 develops an autonomous drone system with a web
interface for customers. By putting together already-proven components, they want to de-
liver drones that are able to autonomously perform specific missions regardless of weather
and other external factors. The company was established in 2016 and have received vari-
ous funding, among others from Innovation Norway. They also partner with local industry
to find good solutions and aim at delivering a product that can be used for multiple pur-
poses.

The team consists of seven people, where six work full-time and one is a part-time Master
student. Three people have a background from cybernetics and are responsible for elec-
tronics and hardware development. Two people have computer science and Al background
and are responsible for the IT infrastructure. A mechanical engineer works with drawings
and visualizations which has been valuable in receiving funding. The last team member
works with business development. The company works closely with business partners and
customers to make sure they are building the right product. They try to keep development
and prototyping in-house, however, their need for special mechanical and hardware parts
require the use of external manufacturing partners.

S5 Advanced Noise Cancellation. S5 is a startup that develops new and advanced noise
cancellation technology to ensure that telephone conversations can be performed in pri-
vacy, without disturbing people nearby. The product consists of a regular headset fitted
with a microphone. It picks up the sound the person makes and generates counter-noise so
that the overall effect is that the one you talk to clearly hears you, but the sound you make
is reduced in the surrounding environment.

The company is currently at the prototyping stage. They are in constant dialogues with
potential customers and have identified a clear need for their product. The team consists
of five people, including one full-time employee working on the hardware development,
and one part-time employee. In addition, three owners work voluntarily. Originally, the
owners and a Master electronics student tried to develop the product, but the full-time em-
ployee was hired to help with the hardware development. None of the members have prior
industry knowledge.

S6 Medtech Hydration Monitoring. S6 is a startup that develops technology to mon-
itor a person’s hydration. The measurement data is sent wirelessly to a hub, and further
into the cloud where the data is analyzed. The patch consists of two main parts, one that
measures bio-impedance (body conductivity), and one acoustic part measuring the throat.
Dehydration causes several health complications and increases the complexity of a patient
treatment among elderly. Today hydration measurement is a slow, manual process. S6
has found a market need for a more efficient way of monitoring hydration, to take care of
patients and to reduce costs and allow health personnel to work more efficiently.

The company was established in 2016 by five students with technical and entrepreneurial
backgrounds. Today the company has 10 employees. Three people work with marketing
and funding and one person is a nurse performing tests on patients. The six last members

50

5.1 Case Descriptions

work on the technical solution, including two software developers and three hardware de-
velopers who engineer the mechanics and electronics of the product. By means of process,
the team tries to avoid strict systems and bureaucracy, but regulations and high quality stan-
dards in MedTech will eventually force the company to introduce more processes. They
are therefore in the process of introducing a process management tool to describe and cre-
ate processes.

Currently, their main priority is to develop a product that functions technically, before
optimizing it and make it ready for production. A total of three separate prototypes will be
collected into one prototype before the final production. Speed has not been a priority as
they rather define goals and sub-goals aiming at developing a product that actually works.
Since speed partly is a secondary priority, they have a great focus on protecting their in-
tellectual property. This allows them to spend longer time on developing a high-quality
solution without others being able to steal their product idea.

S7 LPG Management System. S7 is a startup who develops an IoT solution for gas
suppliers. The solution measures content in gas-bottles and sends the measures to suppli-
ers through a web portal. Their objective is to provide LPG suppliers with valuable insight
into customer consumption that will help increase profits while making customers happy.
Recently, the company has undergone a market pivot towards a more professional sector.
This has posed a significant change to their development approach as they no longer are
able to produce all prototypes themselves.

The company has a working prototype, and several business partners supporting their
work. The team consists of eight employees, including CEO, CTO, one on electronics
and IT, one system developer, one part-time employee working on circuit boards, one de-
signer, and one economist.

One of the most important features of their product is the lifetime of the sensor. They have
not implemented any specific agile processes or development methods due to the small de-
velopment team. From the start, they have focused on making prototypes in-house, using
molding and 3D-printing. A recent pivot towards a more professional market sector has
lead to stricter non-functional requirements and forced them to change product material.
This means they now have to outsource the production of some prototype components
rather than developing them in-house.

S8 Cable Cam System. S8 develops a camera accessory product used to record film with
new camera-angles. The main parts of the system include a wire, a motorized camera-
holder moving along the wire, and a remote control to steer it. The design of wire and
camera-holder enables access to narrow terrains where for example drones cannot ma-
neuver. The company was established in 2016 by four founders with technical and en-
trepreneurial backgrounds. Today the company consists of ten employees. In 2017 they
launched their product at a Kickstarter campaign, where they pre-sold more than 4000
units to a total sum of $1.1 million. They have also received funding from various innova-
tion initiatives.

51

Chapter 5. Results

The technical team consists of five people. The CTO has a background in mechanical
engineering, without similar working experience. The second person is a product de-
signer, with experience from several years working on similar projects. Another person
without industry experience works with mechanical analyses and simulations. A part-time
cybernetics student with experience from a similar project has recently joined the team.
They also have a person from abroad working with both low-level software and hardware
development, with many years of industry experience.

All prototypes have been physical, and each new prototype mostly consists of one new
feature. This means that several components is reused for each prototype. Initially, the
first prototype was developed by a consultancy company. This helped kick-start the busi-
ness, but the quality of the prototype did not meet the initial expectations. All hardware
and mechanical components are produced in China.

S9 Digital Piggy Bank. SO creates a digital saving device for children, similar to the
traditional “saving pig”. The device is connected to the owner’s bank account, and shows
balance, deposits, and saving tips. The development is currently in the prototyping stage.
The company collaborates with different banks to create a transparent solution which can
be used across various banking platforms. This will cause the product to be used by most
users without depending on a particular bank affiliation.

The company was founded in February 2017 by three people. They also have two de-
velopers working full-time in Serbia. In addition to having two developers in Serbia and
one internal employee with PCB circuit board knowledge, the company has used consul-
tants to help with production expertise and UX design. With little initial knowledge about
hardware development, the company has used knowledge and contacts of other startup
companies to find suitable manufacturers and components.

All prototypes have been physical, and they have used a lot of 3D printing to speed-up
development. The small team has not experienced a need to implement specific agile
methods or other processes. For communication, they use a Slack channel to connect
hardware designers, graphical designers, and other people associated with the develop-
ment process. Since the development team is not co-located, performing rigorous testing
activities can be a tedious process.

S10 Collaborative Camera. S10 offers an intelligent camera platform for online video
conversations. The camera is similar to a traditional web-camera, but the camera is bet-
ter suited for conference meetings. The camera provides HD video and fast data transfer
through a USB 3.0 port, it can auto-adjust to the surrounding lighting conditions, and the
lens has a 150-degree angle to capture a larger audience. The product also provides visual
noise filtering and digital pan and tilt functionality, as well as an intelligent auto-zoom that
can detect participants.

The development team consists of 35 people. Most of these work on the software side,

52

5.1 Case Descriptions

where three cross-functional teams work with both software and hardware development.
Additionally, they have people in-house working specifically on hardware and mechanics,
as well as industrial design and UX design. Instead of outsourcing parts of the develop-
ment, the company has deliberately hired consultants to allow for a more controlled and
flexible development process. Components are mainly produced in China, but the final
production takes place in Norway.

S11 Interactive Children’s Toy. S11 develops an interactive device for children to play
with, supporting active play and encourages children to interact and play together. They
deliver a device that seamlessly merges interactive technology with “old-school” games to
make sure that kids get up and move.

The company was officially established in March 2016 by two founders. In 2018, they
have increased the company with six part-time employees, including one product devel-
oper, one sales-person, one on communication, two programmers, and one game devel-
oper. Hardware development is outsourced, and the product developer is mainly respon-
sible for managing the communication with the external company to ensure a more con-
trolled and flexible process.

Hardware is developed by an external company, while S11 is responsible for develop-
ing the application layer. Outsourcing hardware development has been key to the process
so far. Except for some initial communication problems, the outsourcing relationship is
now an important feature of their development approach. Recently they have hired an ex-
tra person to take care of all communication towards the external partner. This allows S11
to focus on their core business.

S12 3D-printer Control Board. S12 is a small startup developing control systems for
3D-printers. The product consists of a card for controlling printers, and a screen to control
the card. The software side of the product is developed as an open source project, that is
the company develops hardware, while external developers implement the software func-
tionality.

The company consists of one employee who is responsible for designing the electron-
ics, programming software to fit with the hardware and marketing. The company has
used Kickstarter to receive funding and is currently in the “go to market” phase. With
one employee, the product development does not follow any specific process. Being an
open-source software project, other developers can contribute with software updates to the
project repository on GitHub. New hardware versions are sent to the developers who in
turn implement new functionality. The company has struggled with components of too
low quality, and components that have gone out of production.

S13 Sensors for IoT. S13 is an Italian company specializing in wireless technologies
like Wi-Fi and 4G, and IoT sensors for smart cities and various industries. They have
collaborated with several companies in research projects, aiming at creating a complete,
modular, and scalable offer for different markets and sectors.

53

Chapter 5. Results

The company has competence in design of hardware boards, controllers, basic boards with
wireless interfaces, design of firmware, design of small systems with wireless sensors, and
IoT. The employees are specialized in design of hardware parts and firmware. The tech-
nical team’s wide range of competencies is beneficial when delivering and developing IoT
solutions.

To manage processes, they have not implemented specific agile practices, rather focus-
ing on being a small team of skilled people, attributes enabling them to be flexible and
respond quickly to customer requirements. They focus on reusing components like micro-
controllers. To balance hardware and software development, they outsource the production
as they cannot build the hardware parts themselves. They have employees working with
both software and hardware development. Software development usually starts once the
hardware has been designed.

5.2 RQ1 How do hardware startups achieve agility dur-
ing product development?

5.2.1 RQ1.1 How do hardware startups develop their products?

Hardware startups’ products consist of mixed hardware and software parts. When compa-
nies are in the prototyping phase, the product is usually in the form of a MVP. The MVP
can be seen as the simplest way for a startup to demonstrate its value proposition. Prod-
uct development refers to the methods and processes hardware startups utilize to develop
prototypes and to deliver products to customers. In this section we present how the inves-
tigated startups developed their products. We focus on their use of development processes,
prototyping, and some of their testing and quality concerns during product development.

Development processes. As hardware and hardware-oriented software development in-
volve a lot of experimental work, developers are encouraged to follow an iterative devel-
opment approach (Ronkainen and Abrahamsson, 2003). Among the cases, five practiced
simplistic versions of Scrum, seven used ad-hoc agile practices, while one startup did not
follow a defined agile development process. In some startups there were not identified a
need to implement specific development methods, one reason being small team sizes. This
was especially the case in early stages when tech teams were co-located and introduction
of formal communication processes would inhibit the agility and freedom of the team.
In the startup where the development team only consisted of one person, the degree of
process was almost absent.

S5 - “Since the team is so small, communication is easy. We have not seen a
need to implement any specific agile methods or other lean practices.”

In other startups, the nature of hardware development made the use of agile principles an
intricate endeavour. Practices like regular refactoring and frequent release are not neces-

54

5.2 RQ1 How do hardware startups achieve agility during product development?

sarily suitable for hardware development. To maintain speed, hardware startups tried to
limit administrative overhead, similar to low-ceremony processes in the software context
(Wasserman, 2016). Most startups preferred a more ad-hoc approach customized to their
own needs.

S13 - “I don’t think agile practices are applicable to hardware development,
for example you cannot frequently re-design a port as it involves great costs.”

S8 - “In hardware, the variance of tasks and interrelated dependencies make
it more complex than what current Scrum tools like Gira are suited for.”

S4 - “Strict Scrum is probably easier to implement for pure software develop-
ment, so we use a simplified version of it.”

Due to different team sizes, product offerings, and other financial, managerial, and human
factors, agile practices were implemented differently among the hardware startups. Sprint
duration usually lasted between 1-2 weeks, and goals were defined in weekly meetings.
Since development of physical products usually takes longer time than implementation of
software, the startups focused on defining measurable sub-goals that were part of a long-
term plan.

S1 - “We work on a weekly basis where we define goals for each week. These
are part of a main goal of what we want to achieve during the semester.”

Startups that served professional business markets usually had longer Sprint duration.
They operated in more stable environments where customer demands were easier to pre-
dict, not requiring the same level of flexibility and experimentation.

S6 - “We follow three-month Sprints that are part of a long-term plan ending
in 2019.”

Most cases had the same Sprints for the respective hardware and software development.
One startup differentiated between hardware and software Sprints to better handle contin-
gencies of hardware and software development.

S10 - “Software development follows two-week Sprints while hardware Sprints
last 1-2 months.”

Prototyping. Almost all startups immediately built a physical prototype to elicit require-
ments and achieve rapid business experimentation. They usually followed an evolutionary
approach, performing incremental improvements on an early low-resolution prototype.
Rapid prototyping is important to obtain customer feedback, however it can be problem-
atic in the hardware context. Non-functional requirements are more important to hard-
ware startups than software startups because of the perceived customer satisfaction, per-
formance issues, and their ability to develop many prototypes. Third-party dependency is
another factor negatively influencing the speed of prototyping in hardware startups, both
due to delivery times and the increased cost of high-quality prototypes.

55

Chapter 5. Results

S10 - “We made a physical prototype immediately. It looks like today’s prod-
uct, but with many shortcuts and lower quality.”

S8 - “We can develop many low-resolution prototypes using our own equip-
ment, but if we want high-quality prototypes we might have to order 10 differ-
ent parts from 2-3 suppliers. If we spend more money on shipping, delivery
times become shorter.”

To deal with their inability to quickly develop prototypes, the startups tried to be flexible
on the software side of their products. Since software can be frequently updated and tested
by customers, they focused on developing a simple interface between hardware and the
software directly accessing the hardware. In this way they could achieve more parallel and
independent development of hardware and software. They mainly tried to reuse software,
as hardware components were easier to reuse with more refined prototypes.

S3 - “We have developed a simple interface between hardware and software
so that the development can happen individually.”

S2 - “We prefer making changes in the software or firmware. To facilitate
this, we have a clearly defined interface between software and hardware.”

Keeping hardware production close to their own business can help hardware startups to
achieve more rapid development speed. If they outsource to southeast Asia, communica-
tion becomes complicated and delivery of components takes longer time.

S11 - “We decided to keep hardware production close to ourselves... Keeping
production locally makes the whole process a lot easier.”

Another way they can speed-up development is to have multiple tech teams working on
different technological solutions. Multiple teams imply more administrative overhead,
posing stronger demands on management to maintain a flexible workflow across the com-
pany. Startups that are able to achieve this are better equipped to perform problem space
testing.

S1 - “The two tech teams work on different technological solutions to quickly
find the best solution fit.”

Testing and quality assurance. Testing activities were generally not performed in a
systematic way among the investigated startups. Even if the product quality often was
important to many of the startups, they did not have a formal procedure to improve product
quality. They usually took shortcuts and workarounds to achieve rapid development.

S4 - “It does happen that we take shortcuts to make things work. What we
make currently doesn’t exist in the market, so we might prioritize to make
these exist rather than achieving high quality.”

Not until startups had grown and served a more established customer base were testing
activities performed in a systematic manner. Until then it was usually the responsibility of
each developer to verify new functionality.

56

5.2 RQ1 How do hardware startups achieve agility during product development?

S8 “The person responsible for delivery is also responsible for testing the
feature to make sure it works.”

S1 - “Components are tested independently before they are put together into
a single product... We do not have a systematic testing process.”

When developing resource-intensive systems, the product quality is sometimes more im-
portant than the development time. Since startups generally want to achieve rapid devel-
opment speed, finding an optimal trade-off between quality and speed can be difficult for
hardware startups.

S5 “We do have periods where we spend a lot of time waiting on vendors.
Then we have time to improve and optimize both software and hardware.”

5.2.2 RQ1.2 What kind of challenges are relevant in the hardware
startup context?

There are several challenges associated with product development in hardware startups
that were uncovered during the interviews. Even though there still may exist challenges
that are central to hardware startups, we believe table 5.2 describes a bigger part of the
challenges today’s practitioners need to overcome. As each startup was encouraged to
come up with the three biggest challenges they had met so far, several of the challenges
might be relevant to more of the cases than what is presented in the table. In addition to
the challenges the startups identified themselves, we also included challenges uncovered
from other parts of the interview.

The challenges were grouped into four categories: financial, human resource, strategic
development and engineering. Financial challenges refer to problems or pressure related
to the startups’ financial resources. Human resource challenges involve any difficulties
experienced with or by the startups’ employees. These can be individual challenges, or-
ganizational challenges, or related to the startups’ environment. Strategic development
challenges are related to the business and process decisions of the startup. Engineering
challenges are related to the hardware and software development activities.

57

Chapter 5. Results

Category

Challenges

Case

Strategic Development

Production and shipping time of third-party vendors

S2, 54,87, S8, S9

S10, S11, S12
Strategic Development Delay due to manufacturing defects S4, S6, S10
Strategic Development Market specific regulations and restrictions S2, S6
Strategic Development ~ Avoiding end-of-life components S12
Strategic Development Delay due to design errors of hardware components S1, S4,S10
Strategic Development Balancing profitable hardware modules and quality S6, S9
Strategic Development Feature creeps S8, S9
Strategic Development Prototyping capacity S1,S3
Human Resource Internal and external communication S1, S8
Human Resource Inexperience of working with third-party vendors S2, S5, S8, S10
Human Resource Attracting talented people S6

Financial Insufficient funding S3, S84, S11, S12, S13
Financial Lack of prototyping equipment

Engineering Integration of ready-made or outsourced components ~ S1, S8

Engineering Underestimating implementation time S3, S8

Engineering Intricate product design S2, S84, 89, S11
Engineering Lack of reference system S2, S8

Engineering

Engineering

Complexity of electronic product development

Realistic test environment

S1,S2, S3, S4, S5
S7, 510

S2, 54

Table 5.2: Challenges encountered by hardware startups

Strategic Development.

In relation to strategic development there were several issues

appearing in the interviews that more or less were common to all cases. Several of the
identified challenges are interrelated and arise from the complex context of hardware star-
tups. Central is how startups can achieve speed when working with restricted resources
and external partners. As development of high-tech electronic products is extremely re-

58

5.2 RQ1 How do hardware startups achieve agility during product development?

source demanding, lack of resources can be even more severe for hardware startups than
software startups.

The most time consuming process of hardware prototyping is the long production and
shipping times, as production usually is located in China or other countries in southeast
Asia. This means that not only will the delivery time of necessary parts depend on the
vendor’s own schedule, but also the shipping method used. Several of the investigated
cases spent a significant amount of money on speeding up production and shipping time
of manufactured components.

S8 - “All parts of the prototypes must be ordered, mostly from China, with
long delivery times. We spend a lot of money making delivery times shorter.”

Among the investigated startups several experienced quality issues working with their
external partners. Manufacturing defects of crucial prototype components caused extra
delays, which is critical considering the valuable time already spent waiting for the com-
ponents. Cooperating with professional actors can decrease the risk of quality issues, and
enhance communication.

S4 - “We have outsourced production of mechanical parts and circuit boards.
Some of the components we have received from the manufacturer have been
in bad condition and with significant defects.”

As high-tech prototyping is a time demanding process, there might go several years from
the startup is founded before a finalized product is ready to be released to the market. This
implies that vendors’ dependability also is of importance. Choosing components that with
certainty will be available the entire prototyping stage is crucial.

S12 - “The first version of the screen went out of production. This was the
most important component and it took a lot of time to fix the problem.”

To achieve speed, product quality often gets low priority in startups. However, because of
the vendor dependency of hardware startups, hardware development should receive higher
focus on quality. Making shortcuts in hardware design, and not assuring that the design
is of sufficient quality before sending the specifications for production might be costly.
Findings suggest that hardware startups are investing more in quality of their hardware
components than their software components. Making improvements and changes to soft-
ware is usually easier, and can often be handled in a single day.

S1 - “We spent more than $500 on a single component we could not use. In
addition we had to spend more time redesigning the board, and wait for it to
be produced.”

A major difference to software startups is the ability hardware startups have to test their
product with a larger customer base. Testing is usually performed with few pilot customers
or by team members experienced with similar products. As each prototype is related to
individual development cost and time, the testing ability in hardware startups will rely on
the startups capacity to produce prototypes.

59

Chapter 5. Results

S3 - “There is a great number of people who want to test our product, however
we do not have the capacity to produce enough prototypes. The main reason
for this is hardware production, which happens in China, and the manual
assembly we do ourselves.”

Startups work with innovative products for different markets. Two of the investigated star-
tups work with MedTech, and technologies and solutions aimed at solving health issues.
Several markets may pose specific regulations and restrictions that affect process, test-
ing, documentation, etc. Customer testing becomes a tangled process usually involving
a significant amount of paperwork, and standards must be followed to handle quality and
process.

S2 - “As we want to test our product in a clinical context there is a lot of
paperwork. It is our biggest brake pad.”

S6 - “Since this is a medical company, there are very strong requirements for
ISO certification and standards. It must be possible to trace all our compo-
nents back to the manufacturer.”

Human Resource. Lack of experience can be critical when working with third-party
vendors. Startups often consist of students with little or no experience from working with
bigger production companies. Because of the pressured financial resources and the small
production batches it can be hard for startups to find manufacturers invested in the startups’
success. Working with vendors producing components of high quality at an affordable cost
will be an advantage. The big geographical distance, and the difference in language and
culture may also challenge the communication skills of the team, as effective communica-
tion is important to receive service as paid for.

S10 - “The first step is to find good suppliers that can help you. As a startup,
this is not always easy, low volume, and no financial security to show, mean
that you may not get the suppliers you really want. We have seen that as we
have grown, we have been able to work with better suppliers producing at
higher quality, which in turn has helped us prototype faster.”

S2 - “We are building on networks from previous startup experience. We
have worked with our partners in both China and Texas before... Previously,
we chose the cheapest suppliers, but then we also got components in bad
condition, there were communication problems, and it usually took more than
4 weeks to get the products. When we finally got the components, we had to
spend time fixing the production defects.”

To handle the unique context of startups and the many challenges it poses, hardware star-
tups need team members that are dedicated to all aspects of the development process. As
hardware startups have to deal with many factors besides software there are higher de-
mands to expertise and experience of team members. Team members of hardware startups
will preferably need knowledge about both application domain, systematic development,
software and hardware development, mechanical engineering, and experience of working
with third-party companies. Attracting knowledgeable people is hard as startups rarely can
provide good salaries.

60

5.2 RQ1 How do hardware startups achieve agility during product development?

S6 - “Finding talented people is hard. Since we are a startup we cannot give
very good salary. This is why we try to attract people who see that the product
may provide great value in the future.”

Financial. Doing what is possible to speed up prototyping is essential for hardware
startups as third-party dependency greatly affects development time. Having access to
prototyping equipment will be an important asset, reducing both development time and
prototyping cost. With 3D-printers startups can do a lot of the prototyping themselves,
and make rapid changes based on customer feedback. This enables faster problem space
testing.

S2 - “With a 3D-printer we can make products that look and feel real. This
is a huge advantage. We can literally do almost everything apart from the
electronics production ourselves and put it together almost for free.”

SO - “We have done a lot of 3D-printing. Without access to useful equipment
prototyping would have been very expensive and taken more time.”

Engineering. Hardware startups generally work with off-the-shelf components from
suppliers in addition to the components they develop themselves. Today’s access to com-
ponents at a low cost means startups can choose between a wide variety of components.
Finding the best component to suit their specific needs might be difficult. Making the
wrong decision can lead to later struggles and increased development time. With compo-
nents of various types, the complexity increases fast.

S8 - “We are struggling to control the engine component. The choice of engine
was done almost two years ago, and we do not yet have a well-functioning
engine that works the way we want it to.”

Hardware startups often develop products with intricate designs. This implies unique re-
quirements to the shapes of components which needs to be tailored to fit inside the product.
Developing components of unusual types, and making them fit into the product shape af-
fect development speed.

S11 - “We have made several trade-offs affecting development. Our product
has a very specific form-factor.”

Testing is central to hardware startups. High quality in hardware development is impor-
tant both because of the cost associated with mistakes from production, but also as quality
greatly affects the perceived functionality of the product. As hardware startups rarely have
the capacity to produce many prototypes for testing, optimizing valuable learning from
each prototype is important. In contrast to software products, it is challenging to imple-
ment changes and make improvements to the quality after the product has been produced
and assembled. As a consequence, focus on non-functional attributes at the prototyping
stage is essential.

Several startups faced the challenge of testing their product in realistic environments be-
cause of legal restrictions related to privacy and public safety. Simulations and dummy-
data can be alternatives to early testing.

61

Chapter 5. Results

S4 - “Setting up a foundation for doing robust tests is a challenge. When de-
veloping drones it is not easy to perform testing, it requires specific experience
and knowledge.”

5.2.3 RQ1.3 How do internal/external context factors impact the speed
of product development?

Hardware startups’ context is distinct from pure software startups as they need to handle
hardware design, development, and manufacturing in addition to software development.
Working with several technology domains and third-party vendors increase the complex-
ity and lengthen the prototyping stage. The unique context poses high demands for team
knowledge, skills, and capabilities for creating innovative products.

We have used the reference framework of situational factors developed by Clarke and
O’Connor (2012) to analyze the context of hardware startups, identifying relevant contex-
tual factors affecting speed. The framework is intended for researchers and practitioners to
design software process to development setting. As hardware startups include a significant
amount of software, the framework will cover a major part of influential context factors.
In table 5.3 the sub-factors are adapted to the relevant situation in hardware startups.

Classification Factor Sub-factor
Turnover Probability of team members quitting due to long prototyping stage
Team size Limited access to personnel
Culture Efficient communication among team members
Personnel Experience Ability to handle unforeseen events
Skill Business, programming, and testing capabilities
Productivity Minimize activities not adding value
Commitment Team members working towards a common goal
Performance Real-time requirements is critical to the product’s perceived functionality
A Complexity Diverse interconnected components
Application .
Reuse Evolutionary approach
Quality Flexible architecture and system design
Technology Knowledge Experience with hardware and software technology
Organization Facilities Workspace arrangement
Business External dependency Third-party components and hardware/mechanics production

Table 5.3: Situational factors influencing the speed of hardware startups (Clarke and O’Connor,
2012)

Personnel. Documentation is rarely a formal process in early-stage startups. Knowledge
is usually in the form of tacit knowledge. As the prototyping stage of hardware startups
often is significantly longer than that of software startups, due to the co-design of hardware
and software components, and integration at the system level, hardware startups deal with
a higher risk of people quitting before introducing their product to the market. Losing
important personnel may hamper the prototyping stage and greatly affect the development
speed.

S4 - “Sometimes it becomes challenging to keep the knowledge of people who
quit, the knowledge often accompanies that person. This leads to extra costs
and effort.”

62

5.2 RQ1 How do hardware startups achieve agility during product development?

Communication skills are important to increase efficiency, reach goals, and avoid conflicts
from misunderstandings. Team diversity and production partners introduce culture and
language differences. Overcoming communication barriers is important for maintaining
product development speed.

S8 - “We have a diverse team. One team member is from Iran, so we speak
English. We have a production partner from China, who speaks quite poor
English. Communication is important to the process so that everyone fully
understands the purpose of what we are doing, and the decisions we make to
achieve what we want.”

Application. Embedded systems have strict requirements to performance. Meeting the
hard real-time requirements of hardware-related software development is essential as it
greatly will affect the perceived functionality of the product. If the product fails to meet
timing and performance requirements the entire system operation can be jeopardized. This
can be critical for certain products as it may be potentially dangerous and present hazard to
consumers. Meeting the hard real-time requirements is also important as later refactoring
of embedded software can be challenging (Ronkainen and Abrahamsson, 2003). As hard-
ware startups seem to follow an evolutionary approach, pre-development system design is
necessary to facilitate for rapid changes at a later stage.

S4 - “Performance requirements are important as failures can cause addi-
tional work and costs, and at worst present safety issues.”

Development time can be significantly reduced by reusing components. Prototyping in
hardware startups follows an evolutionary approach, meaning that there are made incre-
mental improvements for each prototype where several components are reused if possi-
ble. Among the investigated startups there was a more extensive reuse of software than
hardware. Hardware and mechanical components were easier to reuse with more refined
prototypes than early low-resolution prototypes. By only working with evolutionary pro-
totypes feature creep might become a problem. Almost every startup started out building
a physical prototype, as prototyping is as much a feasibility test as a way of testing out
business hypotheses and eliciting customer requirements. The cases made little use of
mock-up tools, and so throwaway prototypes seem to take little part of the prototyping
stage of hardware startups.

S2 - “All the prototypes have been physical. We try to reuse as much as pos-
sible from each prototype. We divide the code into different modules, so that
if we replace any hardware component we only need to change that specific
part of the code.”

S10 - “We made a physical prototype immediately. It looks like today’s prod-
uct, but with many shortcuts and lower quality.”

S7 - “We tried to reuse the electronics, but it was harder than expected. So
there are mostly new components every time... The software is mostly the same

from prototype to prototype.”

63

Chapter 5. Results

S9 - “Every prototype we have made have been physical... At first we had
too much functionality and had to remove some to obtain a more reasonably
priced product.”

Time to market is central to describing the startup context. Being able to prototype fast for
testing new ideas and product features is crucial to learn faster than competitors. Facili-
tating for changes to be made on the software side will positively influence development
time, as changes can be done in a few days. Keeping software development in-house, with
a clearly defined interface between software and hardware is beneficial.

S3 - “When we outsourced software development changes took a lot of time.
Things that should have taken a few days took a few weeks. In software we
need to make changes weekly. In hardware it is okay that things take a bit
more time.”

S2 - “Our biggest strength is that all development happens in-house without
consultants... We prefer making changes in the software or firmware; the
dream is to make as little hardware as possible. To facilitate this, we have a
clearly defined interface between software and hardware.”

Technology. Hardware startups need knowledge about a wide range of different tech-
nologies. In the early stages of the startup, having few employees implies that team mem-
bers must spend time learning specific hardware or software technologies necessary for
developing the product. This causes additional overhead and underlines the importance of
having a team with boundary-spanning knowledge.

S1 - “When I started I did not have much knowledge about PCB design. I had
to spend six weeks learning circuit board design to make it work.”

Organization. Common to the investigated startups is that they share working facilities
with several other startups. Being able to cooperate with other startups that have faced
similar challenges and situations was named as a big advantage. In the huge number of
vendors for production of hardware and plastic components, finding a good partner can be
one of many challenges. Asking more experienced entrepreneurs and startups for help can
prevent struggles in the early stages of the startup.

Business. The major factor increasing development time in hardware startups is exter-
nal dependencies. Relying on third-party vendors in production causes a significant in-
crease in development time. Making use of local vendors can be an advantage to handle
the communication issues and delivery times of unfamiliar, far-away vendors. The local
closeness might lead to a more productive cooperation as both companies have interest in
each other’s success.

S11 - “We decided to keep hardware production close to ourselves. We can
immediately check if things work as intended, and they can respond very
quickly to any changes we might need... Keeping production locally makes
the whole process a lot easier.”

64

5.3 RQ2 How do hardware startups manage quality concerns of their products?

Planning ahead when working with vendors is important. Time is a limited resource for
every startup, and being kept idle waiting for parts is not desirable. As the goal of star-
tups should be to minimize total time through the build-measure-learn feedback loop to
accelerate the business as fast as possible, time should be spent on value-adding activi-
ties. Testing problem space and learning customer needs should be of higher priority than
making incremental quality improvements.

S5 - “We do have periods where we spend a lot of time waiting on vendors.
Then we have time to improve and optimize both software and hardware.”

5.3 RQ2 How do hardware startups manage quality con-
cerns of their products?

To achieve speed, product quality gets low priority as thorough documentation and testing
practices are neglected. Software startups utilize ad-hoc testing methods (Giardino et al.,
2014a), and replace strict product development processes with a set of opportunistic activ-
ities, focusing on providing value under constrained conditions. This section presents our
findings in terms of how hardware startups manage quality concerns of their products.

5.3.1 RQ2.1 How are hardware products tested?

Most interviews were performed with CEO’s, and so their answers were biased towards
managerial aspects of testing and quality assurance practices. This section presents initial
findings of testing practices and strategies from the cases.

To achieve quick development speed in early stages, testing activities generally receive
little focus in hardware startups. Before a feature is guaranteed to be part of the final prod-
uct, it is more important to verify that the feature adds value to the customers. Until then,
the time spent on testing activities is minimized. This is also evident in software startups,
where developers avoid wasting time on improvements of not-validated functionalities
(Giardino et al., 2016).

S2 - “We prefer to work fast, as writing tests can double the development
time... If parts are to be replaced, then we think there’s no point in spending
time on testing.”

The hardware startups relied on each individual developer to test features as they were
implemented. In that way the person responsible for the code was also responsible for
its quality and functioning with the rest of the system. A frequently used testing activity
among the cases was manual smoke tests (i.e., ensuring that major functionalities work
before undertaking more formal testing procedures). Prototypes were manually tested by
internal employees to identify the most prominent defects before testing prototypes with
early adopters or customers.

S8 - “We test the subsystems ourselves, but do not have a structured system
for testing... The person responsible for delivery is also responsible for testing
the feature to make sure it works.”

65

Chapter 5. Results

S1 - “People inside the startup who have experience with similar solutions
test the product before it is tested with pilot customers.”

An alternative method to testing used by hardware startups was simulations. Hardware
simulations can help determine the precise operation of hardware without producing an
expensive prototype, and enable testing of the hardware-software co-operation (Ronkainen
et al., 2002). Several startups found it challenging to test their product in realistic envi-
ronments, both due to memory and performance constraints and because of privacy and
public safety issues. Since planning is difficult in the startup context, test plans were often
changed, hence these were often neglected. Simulations helped testing the product and
code base before production, postponing the split between hardware and software func-
tionality.

S4 - “At an early stage, things don’t always go as planned. Other things than
what you test for fail, so test and project plans often change a lot... In addition
to performing many simulations, we use basic tuning of attitude control to
avoid simple mathematical errors.”

Among the investigated startups we found that startups in later lifecycle stages imple-
mented more systematic testing activities. As they got more customers, quality and testing
activities became more important. Established customers have stricter demands than pilot
customers. To deal with increased quality requirements, the startups implemented formal
processes for testing.

S10 - “In software we have a great focus on testing. When software is modi-
fied, we run automatic tests to ensure that everything works... In hardware we
test that the product functions in different climates, and perform various me-
chanical tests... We have also outsourced much manual testing to a company
to check more parts of the product.”

5.3.2 RQ2.2 How is technical debt managed in hardware startups?

Technical debt has been illustrated by Brown et al. (2010), stating that “developers some-
times accept compromises in a system in one dimension (e.g., modularity) to meet an
urgent demand in some other dimension (e.g., a deadline), and that such compromises in-
cur a ‘debt’ on which ‘interest’ has to be paid and which the ‘principal’ should be repaid
at some point for the long-term health of the project”. The development of minimum vi-
able products and releasing the product as fast as possible often require the development
team to take shortcuts and workarounds. Shortcuts can lead to the accumulation of what is
called intentional technical debt (McConnell, 2007). Unintentional technical debt can hap-
pen when business model experimentation is leaved out. No matter how good the idea may
seem, not validating it with customers can lead to the development of unnecessary features.

Not focusing on technical debt will have consequences for the product quality, while con-
stantly changing and improving the business model will be necessary to stay competitive
(Yli-Huumo et al., 2015). Finding the correct balance between learning goals and quality
is therefore important in order to minimize waste and to manage technical debt (Terho

66

5.3 RQ2 How do hardware startups manage quality concerns of their products?

et al., 2016). This section presents how hardware startups manage technical debt of their
products.

Intentional technical debt. By accepting that time to market is more important than
product quality, hardware startups incur intentional technical debt. Business experimen-
tation to build new features is performed in small iterative cycles with minimal effort on
product quality to receive fast customer feedback. This is especially the case for the soft-
ware components of the product. Since software can be changed quickly, shortcuts and
workarounds are more easily taken on the software side than on the hardware side of the
product. Implementing new functionality receives more focus than the quality of the code.
Hence, the temporary low-quality solutions will eventually lead to accumulation of tech-
nical debt.

S2 - “Software changes all the time... To make things work straight away,
we’d rather take a shortcut and fix it later. We know we’re building up tech-
nical debt, but it’s on purpose to be able to test the product on customers as
quickly as possible.”

Documentation. On the software side of the product, the common perception is that
since the developers work on the code-base every day, documentation activities lead to
additional overhead. Tacit knowledge seem to be a common practice in hardware startups.

S3 - “We spend less time on documentation to speed things up, development
is our main focus. It is also because software development is in-house. We
work on it daily and understand the code.”

High-tech products include a lot of different sub-systems and technologies, and so product
complexity increases fast. This implies that documentation of components should receive
a bigger attention in hardware startups. In worst case, lack of quality and documentation
can put all development on hold.

S2 - “Instead of updating documentation and quality, we did things as fast as
possible, which eventually led to a lot of extra work.”

The prototyping stage in hardware development is often significantly longer than that of
software development. Since it might take years before hardware startups have a func-
tioning product ready for the market, there’s a great probability of people quitting the
project before it is finished. As to this there should be increased focus on documentation
in hardware startups, since knowledge often accompanies the person quitting.

S4 - “Sometimes it becomes challenging to keep the knowledge of people who
quit, the knowledge often accompanies that person. This leads to extra costs
and effort.”

The choice of outsourcing companies can greatly impact the amount of documentation.
Good partners usually provide well-documented solutions and components, which can
help manage technical debt.

67

Chapter 5. Results

S3 - “We received an 80-page user manual from the consultants who devel-
oped the hardware.”

For some startups, market regulations imply that they must follow strict processes. Com-
panies operating in the market will need to document all parts of their product and meet the
high standards of quality required. Hence, market segment will greatly affect the severity
of technical debt.

S6 - “We are weak on processes and document management, it is very ad-
hoc. Soon we will introduce a process tool and a document management tool.
This is necessary if we are to meet the ISO standard requirements and get it
approved as a medical product.”

S13 - “The documentation is part of the development process... We have an
ISO certification that says we are certified according to that quality process.
They have strict requirements on how documentation should be kept, includ-
ing the flow of the documentation and what kind of documentation to write.”

To help startups perform documentation, there exist multiple tools lowering the barriers
for writing documentation. Examples of tools include Wikis, Google Spreadsheets, and
Confluence. Utilizing tools can help decrease the amount of rework in the long run. Also
thorough documentation can allow for more efficient integration of new employees in the
development process.

S2 - “Previously we have spent a lot of extra time due to a lack of documenta-
tion. Instead of stopping, we did things as fast as possible without performing
documentation. This eventually lead to a lot of extra work.”

S4 - “We have a wiki for internal documentation. It is quite low effort to write
something on it.”

Unintentional technical debt. The reasons for unintentional technical debt are often
out of control and can be difficult to be aware of. The main reason is the lack of business
experimentation. Hardware startups often have a clear conception of how their products
should be, including design and functionality, and focus on validating their initial business
idea. The evolutionary approach helps demonstrate problem/solution fit through discover-
ing the needs of early customers, enhancing the effectiveness of the product and prevent
exhaustion of resources. However, the perceived difficulty of testing problem space can
lead hardware startups to implement unnecessary features, too expensive products, or low-
quality prototypes.

One reason for the perceived difficulties of testing problem space in hardware startups
is their ability to produce prototypes. Physical prototypes are resource-intensive to de-
velop, and in contrast to pure software products, one cannot necessarily deliver a new
digital software update to customers. Lack of financial resources and long delivery times
make it challenging to test the product on a broader specter of customers. The investigated
cases relied on a small unit of pilot customers for feedback.

68

5.4 RQ3 How do hardware startups achieve balance between speed and quality?

S9 - “At first we had too much functionality and had to remove some to obtain
a more reasonably priced product... Now we focus more on creating a good
user experience instead of implementing features that customers and investors
don’t want.”

S8 - “We can develop many low-resolution prototypes, but not more than 4-5
high-resolution prototypes.”

5.4 RQ3 How do hardware startups achieve balance be-
tween speed and quality?

Hardware startups operate in a competitive environment, where time-to-market is critical
to the startups’ success. Speed is essential to avoid being outperformed by startups with
similar business ideas. At the same time, our findings indicate that hardware quality is
essential to maximize valuable learning from the build-measure-learn feedback loop and
prevent expensive rework. Meeting hard real-time requirements requires pre-development
system design, and sets the stage for later flexibility and rapid changes. In this section, we
have synthesized our findings from the previous sections to present how hardware startups
balance speed and quality in the prototyping stage.

Hardware Software

Component reuse
Development shortcuts
Tacit knowledge

Off-the-shelf components

Speed Local manufacturing

Up-front system design

ualit : .
Quality Hard real-time requirements

Table 5.4: Balance of speed and quality in hardware startups

Speed. Hardware startups can take advantage of using ready-made components to speed
up prototyping. As the value proposition from the products delivered by hardware startups
most often is provided by its unique software, hardware startups should look to off-the-
shelf hardware components when possible. Hardware development is a time consuming
process, and so minimizing necessary work for experimenting business ideas is essential.

Manufacturing of hardware and mechanical parts is the most time-consuming process of
prototyping in hardware startups. Communication, delivery time, and the risk of receiving
bad-quality components are common issues. In addition, the highly experimental nature
of hardware startups and the uncertainty of customer requirements at the prototyping stage
imply that product features and design might change after components have been sent
for manufacturing, or during production. For the outsourcing partnership to become a
success, startups need committed partners who understand the dynamic startup context.
Making use of local vendors can be a feasible option, contributing to prototyping speed.

69

Chapter 5. Results

Evolutionary approaches with extensive reuse of components are the most suitable for
software development (Giardino et al., 2016). Our findings indicate that this also is the
case for hardware startups. Hardware startups have bigger tendency to reuse software due
to the nature of hardware components. Evolutionary prototyping promotes flexibility and
reactiveness and allows hardware startups to move quickly forward while making rapid
changes.

Hardware startups intentionally take technical debt on the software side of the product.
Software for prototypes is developed as fast as possible with minimal amount of code
and focus on quality. Allowing for shortcuts and workarounds at the prototyping stage
increases the speed of the customer feedback cycle. As there are higher risks associated
with technical debt in hardware development, hardware startups seem to be less willing to
prioritize speed over quality for hardware components.

Software documentation relies on tacit knowledge instead of formal documentation. Proto-
typing is characterized by rapid changes, and so documentation would need to be updated
every time the source code is changed. As hardware startups try to implement most fea-
ture changes in software, effort and time can be spared relying on the knowledge of team
members.

Quality. Up-front system design is unavoidable when working with hardware. As hardware-
related code is complex and sensitive to changes (Ronkainen and Abrahamsson, 2003),
preliminary architecture design is necessary to facilitate iterative development, and flexi-
bility to handle rapid changes. As hardware startups intentionally try to force changes on
the software side, neglecting up-front design may cause bugs that are not easily detected.
Investing in architecture quality may eventually lead to speed in business experimentation.

Several hardware startups develop products where attention to non-functional require-
ments is inevitable. Some products might cause dangerous situations if they fail, or bad
performance might affect perceived functionality and feedback from customers. Meeting
the hard real-time requirements will affect prototyping time.

Thematic map. The compromise between speed and quality in hardware startups is
strongly related to how hardware startups develop products and manage quality. Findings
indicate that hardware quality demands make a difficult setting for prototyping speed. The
higher-order themes arising from the data contribute to answering why balancing speed
and quality can be problematic.

70

5.4 RQ3 How do hardware startups achieve balance between speed and quality?

Gulture
Experience
Documentation

Professionalism/

Gompanent

quality

Office/\ab Locatian

Quality demand Howark

Financial Delivery

resources 1limes
Access 10 Protatyping

equipment capacity

Experience

Industry
expertise

Gommunication

Third-party
dependency

Project/process
management

Analysis/advice

Time-estimation

d
Quality importance Long-ierm refation
CDDDE'BHDH Degree of dependencies
Product Hardware-software Two-folded product
complexity integration quality trade-off
Team capabilities
Informal
communication,
cocumentation
Interactian paints Flexible Parallel Software Hardware
Ad-hoc process interface development quality quality
Madifiability Independent Shortcuts han-
davelopment software tunctional
In-house SW . requirements
development Multiple Infarmal
solutiens documentation Fie-factoring
Snorcuts challenging
software Distributed Taci
team knowledoe Extemal
HReusa partners
Intentional
Fapid technical debt Long
changes prototyping
Increase stage
capacity
Standards,
Feature restrictions
Creeps
Parceived
functonality

Figure 5.1: Model of higher-order themes unique to hardware startups

Testing
strategies

Fault-toclerant
users

Simulations
Smoke tests

Developer
responsibiity

Testing
environment

71

Chapter 5. Results

Summary. Table 5.5 presents the findings (i.e., current status from the investigated star-
tups) based on our research questions: (RQ1) How do hardware startups achieve agility
during product development? (RQ2) How do hardware startups manage quality concerns
of their products? (RQ3) How do hardware startups achieve balance between speed and
quality?

Research Question Findings

Hardware startups implement opportunistic agile practices. Rapid prototyping
RQI1 is achieved through evolutionary approaches, simple software side solutions,
cooperation with local partners, and facilitation for parallel work on multiple solutions.

Hardware startups utilize simulations and informal quality assurance practices
to deal with intricate testing environments. Testing is an unsystematic process entrusted

RQ2 to each individual team member. They incur technical debt through shortcuts on flexible
software side and because problem space testing is a difficult process.
RQ3 The competitive environment of hardware startups makes speed inevitable.

Investing in hardware quality is necessary for bringing products fast to market.

Table 5.5: Summary of results

72

Chapter

The Trilateral Hardware Startup
Model

Based on the thematic synthesis, we have created a model describing the context and
overall engineering approach of hardware startups. The interview base of 61 pages of text
allowed us to identify a total of three higher-order themes unique to hardware startups,
before compiling the Trilateral Hardware Startup Model constituting a total of nine higher-
order themes as illustrated in Figure 6.1. The rest of this chapter proceeds as follows:
Section 6.1 presents the model notation, the three elements, and each of the nine higher-
order themes (factors), constituting an overview of the most prominent findings from the
case study. Section 6.2 presents a validation of the model. Implications of the model are
discussed in section 7.4, and includes contribution and recommendations for future work.
A comparison of our model to the Greenfield Startup Model can be found in section 7.5.

6.1 Model overview
Notation. This paragraph will explain the notation and structure of the model.

e Elements are represented as circles and are essential to the priorities and restrictions
of product development in hardware startups.

e Factors are represented as rectangles and describe activities and context factors con-
tributing to achieving important objectives (e.g., rapid development under restricted
resources) in hardware startups. Depending on the type of project or product, each
factor may significantly impact one or more of the elements resources, speed, and
quality.

e Arrows indicate that there exists a relationship between elements and/or factors.
There are several arrows in the model:

73

Chapter 6. The Trilateral Hardware Startup Model

— Arrows between elements indicate that the elements have a direct influence on
each other. An example is that restricted resources (e.g., initial capital) may
directly slow down development speed in hardware startups (e.g., they won’t
be able to recruit required expertise due to salaries).

— An arrow from a factor to an element implies that the factor directly affects
the element. An example is the arrow from restricted resources to resources.
Hardware startups do not have access to unlimited financial and human re-
sources, hence resources in hardware startups are restricted.

— An arrow from one factor to an arrow between two elements means that the
factor has an effect on the relationship between the elements. An example is
the arrow from team proactivity to the arrow between resources and speed.
Due to restricted resources, hardware startups depend on the proactivity of
their teams to drive development forward, hence teams are highly affecting
speed (positively or negatively) in hardware startups.

The three elements. Based on our collected data, we identified connections to quality,
speed, and resources, operating as core elements of the Trilateral Hardware Startup Model.
Depending on the objective of a project, quality, speed, and resources are factors influenc-
ing product development. There may exist other elements that can contribute to describing
the engineering activities in hardware startups (i.e., scope of work), however we found
resources, quality, and speed to be the most prominent to the startup context.

Resources is the major element affecting hardware startups’ ability to both achieve rapid
development and high product quality. Experienced by most startups is that resources
are restricted in most areas of the business, be it time, money, team capabilities etc. For
software startups, lack of resources is the most significant factor operating their context
(Paternoster et al., 2014). Limited access to resources sets strict restrictions and bound-
aries to product development in both software and hardware startups.

Operating in competitive business environments characterized by extreme uncertainty,
hardware startups must strive to obtain speed. Through evolutionary prototyping, rapid
development, and simplified solutions, they continuously experiment to identify markets
and customers. The importance of speed in startups has been emphasized by The Lean
Startup method where the main objective is to grow the business with maximum accelera-
tion (Ries, 2011).

In pursuing development speed, product quality tends to be less prioritized. In the model,
speed and quality are connected by a two-way arrow, illustrating a trade-off. Hardware
startups are to a larger extent dependent on the quality of their products. Speed is achieved
through simplified solutions on the software side while spending more time on the quality
of hardware.

The nine higher-order themes can be seen as factors operating the hardware startup con-
text. They impact each of the three elements or relations between them in various ways
and extent. The following sub-sections will introduce each of the factors in greater detail.

74

6.1 Model overview

Two-folded Aeturn effects
product guality of short-term
trade-off benefits
Evolutionary
prototyping
Incurred Rapid
technical degt development

Hardware-software
ntegration

Team

roactivit
Resources P ¥

T hirgd-party
depencency

Hestrictad
resources

Figure 6.1: The Trilateral Hardware Startup Model

6.1.1 Restricted resources

Lack of resources is the major contextual factor affecting not only hardware startups, but
practically every startup company. Software startups have a general lack of human, phys-
ical, and economical resources (Paternoster et al., 2014). These factors imply several
constraints both as to how they manage and aim to grow their business and how they de-
velop their products in extremely uncertain and dynamic market conditions (Coleman and
O’Connor, 2008b). Hardware startups experience similar restricted resources, evermore
severe and harmful than software startups. Since they rarely have the capacity to develop
prototypes themselves, they greatly depend on third-parties to deliver ready-made or cus-
tomized components in time. The resource-intensity and complexity of embedded systems
development leave immense demands to the capability of development teams, however,
there’s restricted access to dedicated people with both technical and entrepreneurial skills.
Poor economic conditions make recruitment challenging to perform. The severe lack of re-
sources leads decision-making into a series of trade-offs balancing the various dimensions
and needs of product and business development.

75

Chapter 6. The Trilateral Hardware Startup Model

6.1.2 Team proactivity

The proactivity of the team significantly affects speed in a context of restricted resources.
Anticipatory, change-oriented, and self-initiated team members are a necessity in the fast-
changing, high-risk environment of startups. Hardware startups need team members ded-
icated to all aspects of the development process, including knowledge within the appli-
cation domain, systematic development, software and hardware development, mechanical
engineering, and experience of working with third-party companies. Working with sev-
eral technology domains and external partners increase the complexity and lengthen the
prototyping stage, and leave higher demands to skillful teams and entrepreneurial capabil-
ities. Members should have experience from working with bigger product companies as
stringent financial resources and small production batches make it hard for startups to find
manufacturers invested in the startups’ success. Attracting experienced and knowledge-
able people is hard as startups rarely can provide good salaries, hence startups often consist
of students with little or no experience from high-tech product development. Distributed
development across big geographical distances and different cultures and languages can
challenge the communication capabilities of the team. Communication is important to
increase efficiency, reach goals, and avoid conflicts from misunderstandings. Since for-
mal documentation practices imply documentation must be updated every time software
is changed, documentation extensively relies on tacit knowledge to increasingly facilitate
for rapid prototyping and implementation of new features. Effort and time can be spared
when relying on the knowledge of team members.

6.1.3 Two-folded product quality trade-off

Being able to prototype fast for testing new ideas and product features is crucial to learn
faster than competitors. Business experimentation to build new features is performed in
small iterative cycles with minimal effort on product quality to achieve speed. Since soft-
ware can be changed and modified quickly, shortcuts and workarounds are more easily
taken on the software side of hardware startups’ products. Software testing is not system-
atically performed, rather the responsibility of each developer. While pursuing speed for
the software development of the prototype, the nature of hardware development inhibits
hardware startups in achieving rapid prototyping. The importance of non-functional re-
quirements and the dependability to third-parties are factors greatly affecting their ability
to perform frequent release. It is challenging to implement changes and make improve-
ments to hardware after the product has been produced and assembled. Product complexity
and strict non-functional requirements will eventually make refactoring a complicated un-
dertaking. The influence of product quality is a two-folded trade-off between hardware
and software. Investing in hardware quality is necessary for realizing speed in software
development.

6.1.4 Third-party dependency

Without industry knowledge and ability to mass-produce prototypes, hardware startups
need external competence. Hardware startups depend on third-parties for hardware pro-
duction and physical components. Third-party dependency is the most prominent factor in-

76

6.1 Model overview

fluencing product development in hardware startups. Long production and shipping times,
manufacturing defects, end-of-life components, cost of rework, communication, and cul-
ture differences are some central issues affecting hardware startups’ ability to perform
rapid prototyping and business experimentation. Because of limited financial resources
and small production batches, it can be difficult to find manufacturers invested in the
startups’ success. Working with local vendors producing components of high quality at
an affordable cost is advantageous. Long-term relationships with professional actors can
enhance product quality and reduce the degree of dependencies. Access to prototyping
equipment can reduce dependency to external partners, and have a positive effect on de-
velopment time and prototyping costs, enabling faster problem space testing. Hardware
development is a time-consuming process, and so minimizing necessary work for experi-
menting business ideas is essential.

6.1.5 Hardware-software integration

Hardware startups’ dependability on third-parties for components and manufacturing in-
hibits both their flexible development approach and their ability to quickly develop pro-
totypes. To achieve rapid prototyping for testing new ideas and product features, they fa-
cilitate for changes in software. Software can be modified quickly according to changing
customer demands, allowing for frequent releases. A flexible interface between hardware
and software can enable more parallel and independent development of hardware and soft-
ware, and promote work on multiple solution methods. Another important asset provided
by a flexible interface is the increased ability to handle product complexity, by allow-
ing for parallel work and informal work-flow. Documentation is to a large extent based
on informal communication among the team members. The complex nature of hardware
development and the numerous interaction points require information exchange to be ex-
plicit, however, too much documentation is not feasible in early development stages. For-
mal meetings consolidating efforts in hardware and software development is unavoidable,
synchronizing and prioritizing new tasks.

6.1.6 Evolutionary prototyping

Hardware startups usually start building a physical prototype to elicit requirements and
achieve fast business experimentation. They extensively try to reuse software components,
as physical components are easier to reuse with more refined prototypes. This is simi-
lar to an evolutionary approach, as they perform incremental improvements on an early
low-resolution prototype. The approach can help them demonstrate problem/solution fit
through discovering the needs of early customers, enhancing the effectiveness of the prod-
uct and prevent exhaustion of their severely limited resources. Evolutionary prototyping
promotes flexibility and reactiveness, however, hardware and hardware-related code is
sensitive to frequent changes and refactoring due to the hard real-time requirements and
third-party dependencies. Frequent changes might unconsciously change system behav-
ior, and so rapid prototyping depends on pre-development system design and planning
activities beyond the purpose of the evolutionary approach.

77

Chapter 6. The Trilateral Hardware Startup Model

6.1.7 Rapid development

The most important priority of hardware startups is to achieve quick development speed.
Testing and quality assurance practices are usually inferior to speed-related activities. The
importance of testing new ideas and features on customers is crucial to learn faster than
competitors, but achieving this in environments of severely restricted resources and third-
party dependencies can be somewhat of a challenge. Hardware startups generally mini-
mize any degree of process, preferring ad-hoc development approaches customized to their
own needs. They seek to utilize a small, flexible team without any bureaucracy, capable
of responding quickly to changes. Informal communication and workflows are favored to
formal documentation practices. Having a skilled, boundary-spanning team often counter-
balances the lack of process. The same relates to testing practices which highly depend
on individual efforts, manual smoke tests, and simulations in early phases. By following
an evolutionary prototyping approach, hardware startups aim to test an initial prototype
to elicit requirements. Problem space testing is a resource-intensive activity since each
prototype involves individual production costs, emphasizing the importance of maximiz-
ing valuable learning from each. Having a professional local vendor can help decrease
delivery times and manufacturing defects. Access to prototyping equipment can decrease
development time and costs as third-party dependencies are reduced, further enhancing the
ability to perform problem space testing. A flexible hardware-software interface increases
the level of parallel and independent development and can help hardware startups better
manage quality concerns in later stages. Since improvements and changes to software are
quicker and easier, hardware startups should keep software development in-house.

6.1.8 Incurred technical debt

As hardware startups accept that time to market is a more important objective than product
quality, development teams take shortcuts and workarounds. New features are imple-
mented in small, iterative cycles to perform rapid business experimentation, with minimal
effort on quality assurance and documentation practices. Software features are imple-
mented with a minimal amount of functionality. As the documentation would need to be
updated for every change made to the code base, developers rely on their own knowledge
instead of updating formal documentation. Since hardware startups rarely have the capac-
ity to produce many prototypes, problem space testing becomes a challenging endeavor.
The evolutionary approach increases the chance of feature creeps. Restricted resources
and need for rapid development speed lead to the accumulation of technical debt.

6.1.9 Return effects of short-term benefits

With business growth as the main objective in early phases, hardware startups will even-
tually have to slow down development to meet the ever-increasing needs of established
customers. The evolutionary approach promoting reuse of components will lead to com-
ponents holding too low quality or features not contributing to the core-delivered value of
the product. The numerous interaction points between software and hardware components
are vulnerable to later changes. Updating or removing code base can potentially change
the entire system behavior, as failing to meet timing and performance constraints can jeop-

78

6.2 Model Validation

ardize the system operation. This means refactoring quickly becomes an immensely com-
plex endeavour. Hardware startups favor informal communication and simple work flows.
Shortcuts can speed-up development in early phases, but might cause a severe amount of
rework in the long run. In the worst case, lack of documentation and quality can put all de-
velopment on hold. When scaling the business to a larger customer base, new employees
are needed. Tacit knowledge makes it hard to integrate new people and can inhibit further
growth. The introduction of more rigorous processes is necessary in the long run, but will
forcibly deny the initial speed and flexibility of hardware startups.

6.2 Model Validation

Evaluation with the Software Startup Research Network. SSRN is a global network
of scientists within software startup research, many of which have made scientific contri-
butions to our study. Two of the authors of the GSM are part of the network, implying that
they have in-depth knowledge about the research area and relevant research method. Dur-
ing the closing stages of our research project we attended a meeting with 17 people from
the network where we held a 30 minute presentation, presenting and discussing the results
of our research. The network provided useful feedback for making the final improvements
to the model and the Master thesis. The presentation was valuable for placing findings and
results within theory, and confirming its novelty and contribution to the research commu-
nity.

Figure 6.2 illustrates an earlier version of the created model presented at the meeting with
SSRN. The feedback from the network, along with our response to each comment, can be
summarized as follows:

(1) “Where does the triangle come from? In project management one can basically only
choose two points.”

Following this comment, we included an explanation of each of the three elements in sec-
tion 6.1. The model should not be confused with traditional project management models
where practitioners must choose between two out of three elements. Rather, the model
illustrates the three main elements affecting engineering approaches of hardware startups.

(2) “How is the work connected to, or builds on the Greenfield Startup Model?”

The empirical investigation combined with knowledge from the GSM lead to the creation
of the THSM. The two models illustrate engineering approaches of software and hardware
startups respectively. Through a comparison of the models (section 7.5), we identify simi-
larities and differences, exploring how they are connected and inter-related while operating
under similar constraints (i.e., the startup context).

(3) “What does the dotted line indicate ?”
In response to this comment, the dotted lines between elements were replaced with arrows
to reflect and clarify the direction of the respective relationships.

(4) “What is the usefulness of the model?”

79

Chapter 6. The Trilateral Hardware Startup Model

To address this comment we have improved the conclusion to emphasize the usefulness for
practitioners and researchers. The model provides practitioners with a better understand-
ing and awareness of their own context by giving a simple illustration of the hardware
startup context and the associated engineering approach. For researchers the model pro-
vides a first step towards understanding hardware startups, outlining directions for future

work.
Aoourmulabod

Initial grawth
hinders
performance

Two-falded
praduct quality
trada-aff

Zpeod up
dewaloprnent

Ewalutianary
approach

Resources

fardwarn-safrwar
nicgration

o of
@ dewalopment

Figure 6.2: Earlier version of the created model

Category representation in investigated cases. In the final stages of the Master thesis
all 13 startups participating in the study received the newly developed model along with
the corresponding description. From the obtained feedback we performed a mapping of
the model’s factors to each of the investigated cases. Table 6.1 provides an overview of the
mapping. Empty columns indicate that the startup did not respond before the deadline for
delivering the Master thesis. The mapping indicates the possible generalization of THSM
to early-stage European hardware startups.

Among the startups responding to the evaluation of the model only one startup related
to the factor return effects of short-term benefits. The low representation might be a result
of the lifecycle stage of the investigated startups. Since nine of the startups participating
in the study are between one and two years old, most of them are still in a lifecycle stage
were speed and business experimentation are the main priorities. Future research can in-
vestigate the consequences of incurred debt in hardware startups, and how it influences
future growth. The model should also be verified by exploring engineering activities of

80

6.2 Model Validation

hardware startups at different lifecycle stages.

Seven of the nine startups responded that rapid development is central to their develop-
ment approach. This implies that similarly to software startups, speed is the main priority
of hardware startups. Hardware startups utilize an evolutionary approach, however they
need to overcome challenges posed by third-parties. Based on the low release frequency
of hardware startups, future work should explore options to speed-up the development
process. The potential of throwaway prototyping in hardware startups can be investigated
further, as none of the participating startups utilized such approaches for business experi-
mentation.

The nature of hardware development requires increased attention to hardware quality. Four
startups responded that quality assurance was two-folded, with stricter demands to hard-
ware. Early-stage startups may not realize the long-term consequences of not investing
in hardware quality. With larger production volumes, hardware defects can considerably
slow down development and harm product integrity. Future work should provide startups
with quality assurance practices consistent with restricted resources.

S4 - “Hardware errors can be catastrophic, especially if the production vol-
ume is large.”

As the startups only received a brief description of the model and related factors, partici-
pants’ understanding of the model should be considered. In addition, poor understanding
of their own context could prevent them from responding correct. As the response varied
between two and seven factors, this can be one reason for the inconsistency. However, the
current validation provides an indication to the generalizability of the model.

SI S2 S3 sS4 S5 S6 S7 S8 S9 S10 SII SI12 S13

Restricted resources X X X X X X X
Team proactivity X X X X X X X X
Two-folded product quality trade-off X X X X
Third-party dependency X X X X X X
Hardware-software integration X X X X X X
Evolutionary prototyping X X X X X X X
Rapid development X X X X X X X
Incurred technical debt X X X X

Return effects of short-term benefits X

Table 6.1: Mapping between themes and cases (X indicate match between startup and factor)

81

Chapter 6. The Trilateral Hardware Startup Model

82

Chapter

Discussion

In this chapter we discuss the findings from the cases presented in chapter 5 and the model
introduced in chapter 6. Section 7.1 introduces the use of agile practices in hardware
startups. Section 7.2 presents how hardware startups manage the quality of their products.
Section 7.3 introduces how hardware startups balance development speed and product
quality. Section 7.4 presents implications of the THSM. Finally, section 7.5 provides a
comparison of the THSM to the GSM to highlight how the hardware startup context is
different from that experienced by software startups.

7.1 Agility in hardware startups

Our study presents the characteristics of high-tech product development in hardware star-
tups. In this fast-changing and high-risk environment iterative and incremental devel-
opment approaches is a necessity, which is what agile intend to provide (Ronkainen and
Abrahamsson, 2003). However, not all agile practices are suited for hardware and hardware-
related software development. The investigated cases give an overview of current opera-
tionalization of agile practices in hardware startups.

Hardware startups use agile planning in their product development. Short-term planning
is important for responding to changes in an environment of high uncertainty. Among the
startups practicing agile seven planned their product development pipelines one or two
weeks ahead. As hardware development usually requires more time than software devel-
opment one might argue that Sprint duration of one or two weeks are too short for any
progress to be made. However, the startups managed to divide the work into small tasks
possible to execute in a single week. Startups operating with longer time frames expe-
rienced less chaotic environments as they cooperated closely with professional business
partners and customers.

Even though short-term planning is adaptable to hardware development, frequent release is
not implemented to the same extent. As non-functional attributes need to be assured at the

83

Chapter 7. Discussion

prototyping stage (Nguyen-Duc et al., 2018), and hardware startups deal with third-party
dependency, release frequency is low compared to software startups. Most of the investi-
gated startups practiced release frequency of six months or more. This is disadvantageous
as continuous experimentation is important for startups to grow (Fagerholm et al., 2014).

Refactoring is about improving the non-functional attributes of a component. Our re-
search indicate that regular refactoring is not practiced in hardware startups, either for
software or hardware development. Prototyping consists to a large degree of shortcuts
and workarounds, especially for the software components. The nature of hardware devel-
opment is not compatible with regular refactoring, as frequently redesigning components
involves significant costs. This relates to software startups as well. Research state that
refactoring rarely is implemented in the early stages of the startup, but as the startup grows,
returning the accumulated technical debt is needed to meet more quality-demanding cus-
tomers and scalability issues (Giardino et al., 2016).

Testing is central to embedded system development, as hardware startups need to assure
non-functional attributes at an early stage. Testing must ensure conformance between
hardware and hardware-related software. However, the test-first approach is problem-
atic because of the severe memory and performance constraints of embedded systems
(Ronkainen and Abrahamsson, 2003), in addition to the restricted resources of hardware
startups. Hence, test-first may not be applicable to product development in hardware star-
tups. Among the investigated startups testing procedures were to a large degree a responsi-
bility of each individual developer. Only the more mature startups implemented systematic
formal testing processes.

Our findings argue that daily standup meeting is not used in hardware startups. The small
team sizes implies that formal processes to aid communication between developers are
not necessary as informal communication happens frequently. Several of the startups had
however implemented weekly meetings to synchronize hardware and software develop-
ment, similar to retrospective and review meetings. The co-design of embedded system
development implies that development usually is distributed, hence communication be-
tween teams is a central aspect of the hardware and software integration efforts necessary
in hardware startups.

The use of agile practices in hardware startups is highly opportunistic. The combina-
tion of speed-up development and small team sizes affect what practices are implemented.
Even if some startups related to agile methods in the form of simplistic versions of Scrum,
current implementation of agile practices are found to be ad-hoc. Hardware startups follow
an iterative and incremental approach, with short-term planning to allow for flexibility. As
in software startups, speed is preferred over quality-related practices. For agile methods
to be successfully practiced in hardware startups, methods must be adapted to the strin-
gent constraints of both embedded development and the startup context. The conflicting
requirements for quality and speed mean development methods will need to balance strict
process for hardware development, while allowing for speed and flexibility in software
development. Preliminary architecture and up-front design to meet real-time requirements

84

7.2 Quality of high-tech products

are activities not in line with current agile guidelines (Kaisti et al., 2013).

In addition to agile process, the investigated hardware startups achieved agility by facilitat-
ing for simultaneous work on multiple possible solutions. Implementation of ready-made
or outsourced components can be a significant struggle as hardware startups rarely de-
velop all components themselves. System design and architectural decisions are made in
advance of development, and may greatly affect later system integration of components.
As development in hardware startups can be considered a test of feasibility, development
methods should facilitate for experimentation of multiple solution methods.

The nature of hardware development makes embedded systems sensitive to rapid changes
in hardware or hardware-related software. The smallest changes may impact important
quality attributes or behavior that can be difficult to detect (Ronkainen and Abrahamsson,
2003). However, several of the investigated startups invested heavily in the design and
architecture of the interface between hardware and hardware-related software to facilitate
for flexibility and quick changes on the software side of their product. As software can be
changed multiple times a day, this is essential to the speed of prototyping.

7.2 Quality of high-tech products

Our research presents knowledge on testing and quality assurance practices in hardware
startups. Hardware startups’ need for development speed is often at the expense of prod-
uct quality. Instead of applying best practice engineering principles, we found that de-
velopment teams prefer simple solutions to achieve rapid business growth. Speed-related
activities lead to accumulation of technical debt, which eventually inhibit further busi-
ness growth. Literature on software startups state that shortcuts in quality, design, and
infrastructure will lead to long-term quality problems, eventually inhibiting learning and
customer satisfaction (Giardino et al., 2016).

The complexities and uniqueness of hardware development imply that hardware startups
need to prioritize product quality differently from software startups in order to speed-up
development. The investigated startups tried to facilitate for changes in the software side
of their products while keeping the amount of hardware rework to a minimum as it was
challenging and time-consuming to implement changes and improvements in hardware
parts after the product was produced and assembled. Hardware quality is often neces-
sary to meet real-time performance requirements of embedded systems (Ronkainen and
Abrahamsson, 2003). Enabling the hardware-software co-operation is an intricate process
due to the complex control and testing support required over hardware, and the fast time-
to-market cycles require simultaneous software and hardware design (Ronkainen et al.,
2002). The hardware startups invested in a simple interface combined with a skilled team
to increase the amount of parallel development, facilitating for two largely independent
development processes of hardware and software.

While forcing rapid changes on the flexible software side, the hardware startups incurred
intentional technical debt. Since the software developers constantly worked with the code

85

Chapter 7. Discussion

base, they relied on tacit knowledge instead of formal documentation. Hardware docu-
mentation seemed to be of higher importance due to the many stakeholders involved in
hardware development. Intentional technical debt is a frequent problem in software star-
tups, but can be even more harmful for hardware startups due to the change-sensitivity
of the numerous complex hardware-software interactions (Ronkainen and Abrahamsson,
2003). Refactoring of code base can cause changes in system behaviour or even jeopar-
dize system operation. Even if software shortcuts make sense in the short-run, our findings
indicate that the complex nature of high-tech products may cause a severe amount of re-
work in the long-run. Hardware startups should invest in documentation tools to lower the
barriers for formal documentation. Adoption of agile methods has proven to be efficient in
reducing error rates (Albuquerque et al., 2012), however current usage of such is restricted
to a subset of agile practices customized the individual needs of hardware startups.

The investigated hardware startups incurred unintentional technical debt due to the dif-
ficulty of testing problem space. They performed usability and acceptance tests on a small
group of pilot customers, as a lack of financial resources and third-party dependencies
(e.g., delivery times) made it challenging to test the product on a broader spectre of cus-
tomers. By immediately building a physical prototype, the startups focused on validating
a product instead of discovering a problem space. This is similar to the failure reasons of
software startups described in the Behavioral Framework (Giardino et al., 2014b), as they
focus on making their customer acquisition processes more efficient rather than testing
the demand for a functional product. The hardware startups’ inability to produce many
prototypes inhibited business experimentation and lead to feature creeps. Feature creeps
in hardware startups may similarly to software startups be harmful to the production and
maintenance of core functionality (Nguyen-Duc et al., 2017b).

We found that testing practices were implemented to various extent among the hardware
startups, among other things, because the testing environment was different from the de-
velopment environment. Memory and performance constraints can also affect hardware
startups’ testing ability (Ronkainen and Abrahamsson, 2003). The investigated startups
relied on individual developers’ efforts to ensure quality of new functionality. Manual
smoke tests and simulations were favored to professional engineering activities. Findings
indicate that rigorous testing practices were not implemented before later lifecycle stages.
Specific testing approaches are required for hardware startups to deal with quality con-
straints of complex high-tech products under restricted resources. In addition to ordinary
software tests, we argue that hardware startups need to apply tests focusing on the func-
tionality of hardware and the related software. Automatic tests is one measure hardware
startups can use to identify failures in early stages for avoiding starvation of resources.

This study is only an initial investigation into quality assurance practices in hardware star-
tups. However, the study highlights the compromise hardware startups makes between
quality and speed. Quality is of higher significance, and more research should be provided
identifying valuable activities and approaches for hardware startups dealing with restricted
resources. We encourage researchers to explore the long-term effects of technical debt, as
our results are based on a small sample of early-stage hardware startups. Hardware star-

86

7.3 Balancing speed and quality of high-tech product development

tups need specific guidelines for performing problem space testing, and research should
verify the consequences of its absence. In addition, future research should investigate how
hardware startups can ensure safety and security standards when developing highly safe
systems, following standards like IEC61508 (Japan, 2012). The results are partly based
on managerial viewpoints, hence missing important links to everyday testing activities
performed by engineers and developers.

7.3 Balancing speed and quality of high-tech product de-
velopment

Balancing speed and quality in the hardware startup context is somewhat of an intricate
endeavour. Agile practices related to speed are commonly used by both software star-
tups and established software companies alike, whereas the associated dependencies (i.e.,
third-parties and hardware-software integration) and non-functional requirements of hard-
ware development pose restrictions to agile’s applicability in hardware startups. From an
engineering perspective, we see a need for specific guidelines for how hardware startups
can improve their current speed-adding activities and practices.

We have seen that hardware startups’ overall strategy is to spend more time on quality-
adding activities in hardware, while speeding up software development. We argue that
a considerable challenge for agile in hardware startups is to provide more sophisticated
methods for recognizing the required amount of documentation at any given time, rather
than sticking to the general idea from the software startup context that working software is
sufficient. Information exchange in hardware startups cannot solely consist of face-to-face
communication with source code as the only documentation (Ronkainen et al., 2002). De-
velopers in hardware startups need knowledge of how to balance quality demands and the
need for rapid experimentation, which is similar to the developer’s dilemma in software
startups (Terho et al., 2016). Not only must agile methods facilitate for the independent
needs and co-design of hardware and software, they also have to offer more refined docu-
mentation and testing activities while maintaining the informal workflow of the team. The
need for explicit information exchange implies that hardware startups need customized
solutions (e.g., documentation tools or testing frameworks) to meet the ever-increasing
quality demands of their products. A method adjusted to the demands of hardware and
software can allow for distributed development teams simultaneously working on multiple
solutions and technologies.

One of the most resource-intensive aspects related to hardware and embedded systems de-
velopment is the number of third-party dependencies. Hardware startups need processes
fitted to their relationships with external partners. Important objectives are to minimize the
amount of idle time and optimize the amount of value-adding activities during production
lead times. As all hardware startups (to various extent) are dependent on external partners
for components or production of prototypes, processes must assist in managing these rela-
tionships (e.g., balancing and prioritizing different stakeholder needs both in the short and
long run). External partners have their own customer deadlines and time schedules, and

87

Chapter 7. Discussion

production and delivery times may vary accordingly. Hardware startups need flexibility to-
wards third-parties and methods to maintain product development effectiveness. External
pressure and expectations are majorly affecting business operation, leaving great demands
on processes and project management activities to be suited the diverse needs posed by the
ever-growing crowd of hardware startups.

The unique requirements to product quality and external stakeholders are extensively af-
fecting hardware startups’ ability to frequently release new products and features, inhibit-
ing their ability to perform problem space testing. Evolutionary prototyping is widely
employed among hardware startups, but as they have different needs than what the method
currently supports (e.g., pre-architecture planning), hardware startups should consider
alternative problem space testing methods. Lack of human and financial resources are
severely affecting them since physical prototypes are associated with high individual de-
velopment cost and time. As the early stages of startups not only should be about failing
fast, but failing cheap (i.e., eliminating waste), hardware startups should extensively make
use of throw-away prototypes. Throw-away prototypes can help startups visualize and
present business ideas at an early stage, and reduce costs and time. The potential of throw-
away prototyping in hardware startups should be further explored.

7.4 Implications of the Trilateral Hardware Startup Model

The THSM explains the priorities of hardware startups in their engineering approach and
provides a simple illustration of the hardware startup context. The model presents the
specific needs for process in managing the relationship between quality and speed under
restricted resources. It can help practitioners obtain a better understanding and awareness
of their own context. This is useful for hardware startups in understanding the underly-
ing motivation for introducing specific practices and activities, and why some practices
may counteract the overall objective of startups. The improved understanding will help
practitioners in making technical and business-related decisions of sustainable character.
With the THSM we aim to contribute to the research community by providing a first step
towards understanding the context and engineering activities in hardware startups, and out-
line potential areas for future research. Researchers can use the model to draw parallels
to other contexts (e.g., software startups), enabling transfer of research results between
the contexts. Since the model includes aspects applicable to software startup as well, it
presents new insights from a different viewpoint than what is provided by current litera-
ture.

Even if the model is based on a small sample of early-stage European hardware startups, it
is possible to draw initial conclusions and directions for future work. Currently, most re-
search has focused on how to speed-up development with restricted resources, whereas lit-
tle work has been done to improve quality under similar constraints. As hardware startups
need more attention to hardware quality to allow for evolutionary prototyping and speed,
there should be engineering approaches describing how hardware startups can manage the
relationship between restricted resources and increased quality demands.

88

7.5 Comparing the Trilateral Hardware Startup Model to the Greenfield Startup Model

The increased demand for quality in the prototyping stage also implies the support needed
for hardware startups developing highly safe systems. Hardware startups develop a wide
range of products, including systems that may cause critical situations if system operation
fails. Testing these products require a certain level of quality and safety assurance. More
work should be provided hardware startups for developing embedded systems that can be
used safely.

Future work should verify the model with other startup companies to find its applicability
in other environments (e.g., lifecycle stages, countries etc.), enabling generalization to a
larger startup audience. More investigations should be undertaken to understand the role
of scope in the engineering activities of hardware startups, and how it can be included in
the model. Discovering the right scope can greatly improve development speed, by iden-
tifying the necessary features and effort. Similar findings from the systematic mapping
study suggest customer collaboration processes as a potential area for future research, al-
lowing startups to test the problem before releasing the product to market. Seeing this
research as an initial step towards understanding engineering approaches in hardware star-
tups, more work should be undertaken to explore the specific factors of hardware startups
(i.e., hardware-software integration, third-party dependency, and trade-off between hard-
ware and software quality).

7.5 Comparing the Trilateral Hardware Startup Model
to the Greenfield Startup Model

With the Greenfield Startup Model serving as the basis for the Trilateral Hardware Startup
Model, we provide a comparison of the two models. A comparison of main similarities
and differences will allow for a better understanding of the respective contexts. Table 7.1
illustrates factors operating the two contexts. The Trilateral Hardware Startup Model col-
umn shows the main characteristics of the hardware startup context, while the Greenfield
Startup Model column shows the characteristics of the software startup context. The rest
of this section introduces the factors.

Factors Trilateral Hardware Startup Model Greenfield Startup Model
Restricted resources Yes Yes

.. Full-stack software, hardware, mechanics, .
Team proactivity . . Full-stack software engineers

and electronics engineers

Two-folded product quality trade-off Is_lsfrs}v\);jzelg\l)vg};g:gtr;y Software low priority
Third-party dependency Yes To some extent
Hardware-software integration Yes No
Evolutionary prototyping Yes Yes
Rapid development Yes, but not at all costs Yes
Incurred technical debt Yes Yes
Return effects of short-term benefits | Yes Yes

Table 7.1: Factors operating the context of hardware and software startups

89

Chapter 7. Discussion

Restricted resources. Limited access to resources is a commonality among all startups
and the main reason for the uncertainty of development strategies both in hardware and
software startups. Similar to software startups, hardware startups struggle with time-
shortage, limited human resources, limited access to expertise, and limited financial re-
sources. Lack of financial resources can be more severe for hardware startups as they
require more initial capital due to the costs associated with rapid prototyping of hardware.
This includes material costs and manufacturing fees, as compared to software development
which mainly is associated with labor costs (Wei, 2017). Access to prototyping equipment
can help hardware startups perform more rapid prototyping, however, their lack of capital
and facilities (e.g., labs or proper testing environments) hamper their prototyping capacity.

Team proactivity. Similar to hardware and software startups is that developers have
great responsibilities and employ multiple-roles. Software startups favor generalists and
full-stack engineers who are able to quickly learn new technologies and rapidly move
among multiple tasks. Skilled developers in small co-located teams with informal work-
flows are essential for high-speed development. Hardware and embedded systems devel-
opment demand team members possessing a wider range of expertise than that of software
development, as development depends on knowledge within hardware, mechanics, and
electronics in addition to software. As to this, hardware startups demand more boundary-
spanning capabilities of their team members than what is required for software startups.
Another commonality of hardware and software startups is that they cannot afford to offer
good salaries. Therefore their teams often consist mainly of students or graduates with
little or no industry knowledge. For hardware startups especially, lack of third-party expe-
rience can largely slow down the development process.

Two-folded product quality trade-off. Whereas product quality has low priority in soft-
ware startups, product quality in hardware startups can be seen as a two-folded trade-off
between the quality of software and hardware. Hardware quality is often necessary to meet
non-functional requirements and dependency towards third-parties. Although the software
and hardware contexts share many of the same characteristics, the specific hardware tasks
and dependencies imply that speed sometimes is achieved through quality-adding activi-
ties. Shortcuts are mainly taken on the flexible software side. Hardware changes are kept
to a minimum, hence requiring greater quality focus in early stages.

Third-party dependency and hardware-software integration. Represented as two sep-
arate themes in the Trilateral Hardware Startup Model, they pose the main distinction
points between hardware and software startups. Software startups often depend on third-
party solutions (e.g., cloud computing) to achieve speed, but the extent of the dependency
is significantly different from what hardware startups experience. While software startups
choose to use third-party solutions to speed-up development, hardware startups are gen-
uinely dependent on third-parties, a dependency slowing down development in hardware
startups. Hardware-software integration is an activity not evident in software startups.
Software startups develop products or services usually consisting only of software com-
ponents, whereas hardware startups have to balance between hardware and software com-
ponents and development. A well-functioning hardware-software integration can decrease

90

7.5 Comparing the Trilateral Hardware Startup Model to the Greenfield Startup Model

the degree of third-party dependency and help hardware startups deal with the increasing
product and development complexity.

Evolutionary prototyping. To enable quick customer verification, both software and
hardware startups follow an evolutionary approach where small iterations are performed on
an initial low-resolution prototype. Software startups favor this approach to avoid “over-
engineering the system” by building complex not-validated functionalities. The nature of
hardware development requires hardware startups to invest more in pre-development of
system design, which is necessary to achieve rapid speed at later stages. Hardware rework
is a costly and time-consuming activity since each prototype is associated with individual
development cost and time. Designing an architecture facilitating changes in software can
enhance their ability to perform problem space testing.

Rapid development. The most important priority in early startup stages is to speed up
development. Hardware and software startups generally minimize the effort spent on intro-
ducing processes to maintain the flexibility of their small co-located teams. Even if agile
practices are suited for software development, software startups ignore them to accommo-
date the flexibility of their teams. The complex dependencies of hardware development
are not compatible with the current scope of agile practices like Scrum, resulting in them
utilizing customized methods. Although hardware and software startups aim for speed,
different contextual factors affect its achievement in the respective contexts. Third-party
dependency, unique product quality demands, team capabilities, and hardware-software
integration are factors implying that hardware startups sometimes have to prioritize qual-
ity over speed.

Return technical debt. Both hardware and software startups incur technical debt, which
eventually will hinder further performance and business growth. As both take shortcuts on
software, spending little time on communication and documentation activities, they incur
intentional debt. Increased customer base leaves stricter requirements for performance and
maintainability, which require refactoring of the code base. Refactoring is a challenge in
software startups due to the fear of changing a working product. This relates to hardware
startups as well, but also as hard real-time requirements and numerous complex interac-
tions between hardware and software components can be challenging. Both hardware and
software startups may struggle with unintentional technical debt if business experimenta-
tion is leaved out. Hardware startups’ inability to produce numerous prototypes affects
their opportunity for problem space testing, leading to the implementation of unnecessary
features. For software startups, feature creeps are easier to handle since they don’t have
the same dependencies, including reduced need for initial system architecture. Even if
both software and hardware startups incur technical debt, the long-term effects of it can be
more harmful to hardware startups.

91

Chapter 7. Discussion

92

Chapter

Conclusion

Hardware startups develop physical products with mixed hardware and software com-
ponents, requiring expertise within a broad range of technological fields. In addition to
software development hardware startups deal with production and logistics issues, factors
implying higher initial financial and human investments than what is experienced by soft-
ware startups. From a multiple-case study investigating 13 hardware startups, this Master
thesis presents the role of engineering activities from idea conceptualization to a launched
product, and factors influencing development speed and agility. The findings of this study
led to the following three themes third-party dependency, hardware-software integration,
and rwo-folded product quality trade-off operating the hardware startup context. Thus, the
study contributes to the area of startup engineering as it draws from the Greenfield Startup
Model and extends it with the three unique themes leading to the creation of the Trilateral
Hardware Startup Model.

Our research results indicate that hardware startups achieve rapid prototyping through
evolutionary approaches, simple software side solutions, and opportunistic agile practices.
Hardware startups incur technical debt, both due to informal testing and quality assurance
activities, and because prototyping capability and intricate testing environments inhibit
their ability of testing problem space (i.e., leading to feature creeps). Testing is an un-
systematic process mainly entrusted to each individual team member. The competitive
environment of hardware startups makes speed inevitable, where investing in hardware
quality will be necessary for bringing products fast to market.

With the THSM, this study explains the priorities of hardware startups in their engineering
approach, providing a simple illustration of the hardware startup context. It presents the
specific needs for process in managing the relationship between quality and speed under
restricted resources, providing practitioners with a better understanding and awareness of
their own context. The improved understanding will help practitioners in making technical
and business-related decisions of sustainable character.

93

Chapter 8. Conclusion

For researchers, the THSM provides a first step towards understanding the context and
engineering activities in hardware startups, outlining potential areas for future research.
Future work should verify the model with other startup companies to find its applicability
in other environments, enabling generalization to a larger startup audience. More investi-
gations should be undertaken to understand the role of scope in the engineering activities
of hardware startups, and how it can be included in the model. In addition, the three spe-
cific factors should be further explored in later studies. As hardware startups need more
attention to hardware quality to allow for evolutionary prototyping and speed, there should
be engineering approaches describing how hardware startups can manage the relationship
between restricted resources and increased quality demands.

There are identified several limitations to this study. Having based our study on quali-
tative measures, results and implications are subject to bias. To mitigate the risk of misun-
derstandings or wrong interpretations, both researchers attended all interviews. Whenever
possible, interviews were performed face-to-face on-site. Recordings were transcribed and
translated shortly after each interview to ensure respondents’ meanings were preserved.
Another limitation is the insufficient knowledge on technical decisions and product devel-
opment challenges provided by some interviewees (i.e., knowledge of business executives
is often based on managerial viewpoints). The results would benefit from a greater amount
of participants providing insights into every-day engineering activities of hardware star-
tups.

Another shortcoming to the study is the diversity of the investigated startups, as the se-
lection constituted early-stage European hardware startups. The study would profit from
a wider collection of data, both to discover more relevant themes and to ensure credible
conclusions (i.e., generalizability of the results). The model might not necessarily be ap-
plicable to the global population of hardware startups. Further investigations of hardware
startups operating in different markets, lifecycle stages, and various geographical locations
can improve the reliability of the research results.

94

Bibliography

Aernoudt, R., 2004. Incubators: tool for entrepreneurship? Small Business Economics
23 (2), 127-135.

Agnew, H., 2017. Emmanuel macron thinks big in vision for french tech unicorns. Access
date: 2017-10-26.
URL https://tinyurl.com/yaw8btmv

Albuquerque, C. O., Antonino, P. O., Nakagawa, E. Y., 2012. An investigation into agile
methods in embedded systems development. In: International Conference on Computa-
tional Science and Its Applications. Springer, pp. 576-591.

Alvarez, S. A., Barney, J. B., 2007. Discovery and creation: Alternative theories of en-
trepreneurial action. Strategic entrepreneurship journal 1 (1-2), 11-26.

Alves, C., Pereira, S., Castro, J., 2006. A study in market-driven requirements engineering.

Bajwa, S. S., Wang, X., Duc, A. N., Abrahamsson, P., 2016. How do software startups
pivot? empirical results from a multiple case study. In: International Conference of
Software Business. Springer, pp. 169-176.

Bajwa, S. S., Wang, X., Duc, A. N., Abrahamsson, P., 2017. “failures” to be celebrated:
an analysis of major pivots of software startups. Empirical Software Engineering 22 (5),
2373-2408.

Basili, V. R., 1992. Software modeling and measurement: the goal/question/metric
paradigm. Tech. rep.

Baskerville, R., Ramesh, B., Levine, L., Pries-Heje, J., Slaughter, S., 2003. Is” internet-
speed” software development different? IEEE software 20 (6), 70-77.

Blank, S., 2012. The startup owner’s manual: The step-by-step guide for building a great
company. BookBaby.

Blank, S., 2013a. The four steps to the epiphany: successful strategies for products that
win. BookBaby.

95

https://tinyurl.com/yaw8btmv

Blank, S., 2013b. Why the lean start-up changes everything. Harvard business review
91 (5), 63-72.

Bosch, J., 2016. Speed, data, and ecosystems: The future of software engineering. IEEE
Software 33 (1), 82—88.
URL http://ieeexplore.ieee.org/stamp/stamp. jsp?tp=
&arnumber=7368022

Bosch, J., Olsson, H. H., Bjork, J., Ljungblad, J., 2013. The early stage software startup
development model: a framework for operationalizing lean principles in software star-
tups. In: Lean Enterprise Software and Systems. Springer, pp. 1-15.

Bourque, P., Fairley, R. E., 2014. Guide to the software engineering body of knowledge
(SWEBOK (R)): Version 3.0. IEEE Computer Society Press.

Braun, V., Clarke, V., 2006. Using thematic analysis in psychology. Qualitative research
in psychology 3 (2), 77-101.

Brooks, F., Kugler, H., 1987. No silver bullet. April.

Brown, N., Cai, Y., Guo, Y., Kazman, R., Kim, M., Kruchten, P., Lim, E., MacCormack,
A., Nord, R., Ozkaya, I., 2010. Managing technical debt in software-reliant systems.
In: Proceedings of the FSE/SDP workshop on Future of software engineering research.
ACM, pp. 47-52.

Carmel, E., 1994. Time-to-completion in software package startups. In: 1994 Proceedings
of the Twenty-Seventh Hawaii International Conference on System Sciences.

Chanin, R., Pompermaier, L., Fraga, K., Sales, A., Prikladnicki, R., 2017. Applying cus-
tomer development for software requirements in a startup development program. In:
Proceedings of the 1st International Workshop on Software Engineering for Startups.
IEEE Press, pp. 2-5.

Chen, E., 2015. Bringing a Hardware Product to Market: Navigating the Wild Ride from
Concept to Mass Production. CreateSpace Independent Publishing Platform.

Chesbrough, H. W., 2006. Open innovation: The new imperative for creating and profiting
from technology. Harvard Business Press.

Chicote, M., 2017. Startups and technical debt: Managing technical debt with visual think-
ing. In: 2017 IEEE/ACM 1st International Workshop on Software Engineering for Star-
tups (SoftStart), 21 May 2017. 2017 IEEE/ACM 1st International Workshop on Soft-
ware Engineering for Startups (SoftStart). Proceedings. IEEE Computer Society, pp.
10-11.

URL http://dx.doi.org/10.1109/SoftStart.2017.6

Clark, G., Couturier, J., Moonen, T., 2017. Oslo: State of the city. Report, access date:
2018-03-01.
URL https://issuu.com/0slo2015/docs/oslostateofthecity_
2017/1?2ff=true&e=16401528/47513404

96

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7368022
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7368022
http://dx.doi.org/10.1109/SoftStart.2017.6
https://issuu.com/oslo2015/docs/oslostateofthecity_2017/1?ff=true&e=16401528/47513404
https://issuu.com/oslo2015/docs/oslostateofthecity_2017/1?ff=true&e=16401528/47513404

Clarke, P., O’Connor, R. V., 2012. The situational factors that affect the software devel-

opment process: Towards a comprehensive reference framework. Information and Soft-
ware Technology 54 (5), 433-447.

Coleman, G., O’Connor, R., 2008a. Investigating software process in practice: A grounded
theory perspective. Journal of Systems and Software 81 (5), 772-784.

Coleman, G., O’Connor, R. V., 2008b. An investigation into software development
process formation in software start-ups. Journal of Enterprise Information Management
21 (6), 633-648.

URL https://www.scopus.com/inward/record.uri?eid=2-s2.
0-55349133834&doi=10.1108%2£17410390810911221&partnerID=
40&md5=9%9a7aca62e6f24c6416£fd3034dbb66b0a

Crowne, M., 2002. Why software product startups fail and what to do about it. evolution
of software product development in startup companies. In: Engineering Management
Conference, 2002. IEMC’02. 2002 IEEE International. Vol. 1. IEEE, pp. 338-343.

Cruzes, D. S., Dyba, T., 2011. Recommended steps for thematic synthesis in software
engineering. In: Empirical Software Engineering and Measurement (ESEM), 2011 In-
ternational Symposium on. IEEE, pp. 275-284.

Cunningham et al., W., 2001. The agile manifesto. Access date: 2017-11-12.
URL http://www.agilemanifesto.org

Dahlstedt, A., 2003. Study of current practices in market-driven requirements engineering.
In: Third Conference for the Promotion of Research in IT at New Universities and
University Colleges in Sweden.

DiResta, R., Forrest, B., Vinyard, R., 2015. The Hardware Startup: Building Your Product,
Business, and Brand. ” O’Reilly Media, Inc.”.

Edison, H., Khanna, D., Bajwa, S. S., Brancaleoni, V., Bellettati, L. U., 2015. Towards
a software tool portal to support startup process. In: 16th International Conference on
Product-Focused Software Process Improvement, PROFES 2015, December 2, 2015 -
December 4, 2015. Vol. 9459 of Lecture Notes in Computer Science (including sub-
series Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics).
Springer Verlag, pp. 577-583.

URL http://dx.doi.org/10.1007/978-3-319-26844-6_43

Eisenhardt, K. M., 1989. Building theories from case study research. Academy of man-
agement review 14 (4), 532-550.

Eloranta, V.-P., 2014. Towards a pattern language for software start-ups. In: 19th European
Conference on Pattern Languages of Programs, EuroPLoP 2014, July 9, 2014 - July
13, 2014. Vol. 09-13-July-2014 of ACM International Conference Proceeding Series.
Association for Computing Machinery.

URL http://dx.doi.org/10.1145/2721956.2721965

97

https://www.scopus.com/inward/record.uri?eid=2-s2.0-55349133834&doi=10.1108%2f17410390810911221&partnerID=40&md5=9a7aca62e6f24c6416fd3034dbb66b0a
https://www.scopus.com/inward/record.uri?eid=2-s2.0-55349133834&doi=10.1108%2f17410390810911221&partnerID=40&md5=9a7aca62e6f24c6416fd3034dbb66b0a
https://www.scopus.com/inward/record.uri?eid=2-s2.0-55349133834&doi=10.1108%2f17410390810911221&partnerID=40&md5=9a7aca62e6f24c6416fd3034dbb66b0a
http://www.agilemanifesto.org
http://dx.doi.org/10.1007/978-3-319-26844-6_43
http://dx.doi.org/10.1145/2721956.2721965

Fagerholm, F., Guinea, A. S., Mienpad, H., Miinch, J., 2014. Building blocks for con-
tinuous experimentation. In: Proceedings of the 1st international workshop on rapid
continuous software engineering. ACM, pp. 26-35.

Garbajosa, J., Magnusson, M., Wang, X., 2017. Generating innovations for the internet of
things: agility and speed. In: Proceedings of the XP2017 Scientific Workshops. ACM,
p. 10.

Gartner, 2017. Gartner top strategic predictions for 2018 and beyond. Access date:
2018-02-15.
URL https://www.gartner.com/smarterwithgartner/
gartner—-top-strategic—-predictions—for-2018-and-beyond/

Giardino, C., Bajwa, S. S., Wang, X., Abrahamsson, P., 2015. Key challenges in early-
stage software startups. In: International Conference on Agile Software Development.
Springer, pp. 52-63.

Giardino, C., Paternoster, N., Unterkalmsteiner, M., Gorschek, T., Abrahamsson, P., 2016.
Software development in startup companies: The greenfield startup model. IEEE Trans-
actions on Software Engineering 42 (6), 585-604.

URL http://dx.doi.org/10.1109/TSE.2015.2509970

Giardino, C., Unterkalmsteiner, M., Paternoster, N., Gorschek, T., Abrahamsson, P.,
2014a. What do we know about software development in startups? IEEE Software
31 (5), 28-32.

URL http://dx.doi.org/10.1109/MS.2014.129

Giardino, C., Wang, X., Abrahamsson, P., 2014b. Why early-stage software startups fail:
a behavioral framework. In: International Conference of Software Business. Springer,
pp- 27-41.

Gittleson, K., 2012. Can a company live forever? Access date: 2017-11-07.
URL http://www.bbc.com/news/business—16611040

Grimaldi, R., Grandi, A., 2005. Business incubators and new venture creation: an assess-
ment of incubating models. Technovation 25 (2), 111-121.

Jacobson, L., Spence, 1., Ng, P.-W., 2017. Is there a single method for the internet of things?
ACM Queue 15 (3), 20.

Japan, 1., 2012. Embedded System development Process Reference guide. Information-
technology Promotion Agency, Japan.
URL http://www.ipa.go.jp/english/sec/

Kaisti, M., Rantala, V., Mujunen, T., Hyrynsalmi, S., Kénnold, K., Mikild, T., Lehtonen,
T., 2013. Agile methods for embedded systems development-a literature review and a
mapping study. EURASIP Journal on Embedded Systems 2013 (1), 15.

98

https://www.gartner.com/smarterwithgartner/gartner-top-strategic-predictions-for-2018-and-beyond/
https://www.gartner.com/smarterwithgartner/gartner-top-strategic-predictions-for-2018-and-beyond/
http://dx.doi.org/10.1109/TSE.2015.2509970
http://dx.doi.org/10.1109/MS.2014.129
http://www.bbc.com/news/business-16611040
http://www.ipa.go.jp/english/sec/

Kajko-Mattsson, M., Nikitina, N., 2008. From knowing nothing to knowing a little: Ex-
periences gained from process improvement in a start-up company. In: International
Conference on Computer Science and Software Engineering, CSSE 2008, December
12, 2008 - December 14, 2008. Vol. 2 of Proceedings - International Conference on
Computer Science and Software Engineering, CSSE 2008. IEEE Computer Society, pp.
617-621.

URL http://dx.doi.org/10.1109/CSSE.2008.1370

Kakati, M., 2003. Success criteria in high-tech new ventures. Technovation 23 (5), 447—
457.

Karlsson, L., Dahlstedt, A., och Dag, J. N., Regnell, B., Persson, A., 2002. Challenges in
market-driven requirements engineering-an industrial interview study. In: Eighth Inter-
national Workshop on Requirements Engineering: Foundation for Software Quality.

Keil, M., Carmel, E., 1995. Customer-developer links in software development. Commu-
nications of the ACM 38 (5), 33-44.

Kickstarter, 2018. Kickstarter stats. Access date: 2018-03-01.
URL https://www.kickstarter.com/help/stats

Kitchenham, B., 2004. Procedures for performing systematic reviews. Keele, UK, Keele
University 33 (2004), 1-26.

Klotins, E., Unterkalmsteiner, M., Gorschek, T., 2015. Software Engineering Knowledge
Areas in Startup Companies: A Mapping Study. Vol. 210 of Lecture Notes in Business
Information Processing. pp. 245-257.

URL <GotoISI>://W0S:000365180900024

Kuhrmann, M., Miinch, J., Richardson, I., Rausch, A., Zhang, H., 2016. Managing
Software Process Evolution: Traditional, Agile and Beyond—How to Handle Process
Change. Springer.

Langley, A., 1999. Strategies for theorizing from process data. Academy of Management
review 24 (4), 691-710.

Laporte, C. Y., O’Connor, R. V., 2016. Implementing process improvement in very small
enterprises with iso/iec 29110: A multiple case study analysis. In: Quality of Informa-
tion and Communications Technology (QUATIC), 2016 10th International Conference
on the. IEEE, pp. 125-130.

Laporte, C. Y., O’Connor, R. V., Teee, 2014. Systems and software engineering standards
for very small entities: Implementation and initial results. 2014 9th International Con-
ference on the Quality of Information and Communications Technology (QUATIC),
38-47.

URL <GotoISI>://WO0S:000364237700005

Laporte, C. Y., O’Connor, R. V., Paucar, L. H. G., 2015. Software engineering standards
and guides for very small entities: Implementation in two start-ups. pp. 5—-15.

99

http://dx.doi.org/10.1109/CSSE.2008.1370
https://www.kickstarter.com/help/stats
<Go to ISI>://WOS:000365180900024
<Go to ISI>://WOS:000364237700005

URL https://www.scopus.com/inward/record.
uri?eid=2-s2.0-84933558276&partnerID=40&md5=
02b5£237bb268c0133caa7cocbl7adda

Larson, M. L., 1991. Translation: theory and practice, tension and interdependence. John
Benjamins Publishing.

Lucero, S., et al., 2016. Iot platforms: enabling the internet of things. IHS Technology
white paper.

Marks, G., O’Connor, R. V., Clarke, P. M., 2017. The impact of situational context on the
software development process — a case study of a highly innovative start-up organiza-
tion. Vol. 770. pp. 455-466.

Marmer, M., Herrmann, B. L., Dogrultan, E., Berman, R., Eesley, C., Blank, S., 2011.
Startup genome report extra: Premature scaling. Startup Genome 10.

McConnell, S., 2007. Technical debt-10x software development — construx.
Moore, G. A., 2002. Crossing the chasm.
Mullins John, W., 2003. The new business road test.

Nguven-Duc, A., Dahle, Y., Steinert, M., Abrahamsson, P., 2017. Towards understanding
startup product development as effectual entrepreneurial behaviors. In: International
Conference on Product-Focused Software Process Improvement. Springer, pp. 265-279.

Nguyen-Duc, A., Abrahamsson, P., 2016. Minimum viable product or multiple facet prod-
uct? the role of mvp in software startups. In: International Conference on Agile Soft-
ware Development. Springer, pp. 118-130.

Nguyen-Duc, A., Abrahamsson, P., 2017. Exploring the outsourcing relationship in soft-
ware startups: A multiple case study. In: Proceedings of the 21st International Confer-
ence on Evaluation and Assessment in Software Engineering. ACM, pp. 134-143.

Nguyen-Duc, A., Cruzes, D. S., Conradi, R., 2015a. The impact of global dispersion on
coordination, team performance and software quality—a systematic literature review. In-
formation and Software Technology 57, 277-294.

Nguyen-Duc, A., Jabangwe, R., Paul, P., Abrahamsson, P., 2017a. Security challenges in
iot development: a software engineering perspective. In: Proceedings of the XP2017
Scientific Workshops. ACM, p. 11.

Nguyen-Duc, A., Khan, K., Lgnnestad, T., Bajwa, S. S., Wang, X., 2018. Product devel-
opment in hardware startups - a software engineering perspective.

Nguyen-Duc, A., Seppanen, P., Abrahamsson, P., 2015b. Hunter-gatherer cycle: A con-
ceptual model of the evolution of software startups. In: International Conference on
Software and Systems Process, ICSSP 2015, August 24, 2015 - August 26, 2015. Vol.
24-26-August-2015 of ACM International Conference Proceeding Series. Association
for Computing Machinery, pp. 199-203.

URL http://dx.doi.org/10.1145/2785592.2795368

100

https://www.scopus.com/inward/record.uri?eid=2-s2.0-84933558276&partnerID=40&md5=02b5f237bb268c0133caa7c6cb17a44a
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84933558276&partnerID=40&md5=02b5f237bb268c0133caa7c6cb17a44a
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84933558276&partnerID=40&md5=02b5f237bb268c0133caa7c6cb17a44a
http://dx.doi.org/10.1145/2785592.2795368

Nguyen-Duc, A., Shah, S. M. A., Ambrahamsson, P., 2016. Towards an early stage soft-
ware startups evolution model. In: Software Engineering and Advanced Applications
(SEAA), 2016 42th Euromicro Conference on. IEEE, pp. 120-127.

Nguyen-Duc, A., Wang, X., Abrahamsson, P., 2017b. What influences the speed of pro-
totyping? an empirical investigation of twenty software startups. In: International Con-
ference on Agile Software Development. Springer, pp. 20-36.

Oates, B. J., 2005. Researching information systems and computing. Sage.

Pantiuchina, J., Mondini, M., Khanna, D., Wang, X., Abrahamsson, P., 2017. Are software
startups applying agile practices? the state of the practice from a large survey. In: 18th
International Conference on Agile Software Development, XP 2017, May 22, 2017 -
May 26, 2017. Vol. 283 of Lecture Notes in Business Information Processing. Springer
Verlag, pp. 167-183.

URL http://dx.doi.org/10.1007/978-3-319-57633-6_11

Paternoster, N., Giardino, C., Unterkalmsteiner, M., Gorschek, T., Abrahamsson, P., 2014.
Software development in startup companies: A systematic mapping study. Information
and Software Technology 56 (10), 1200-18.

URL http://dx.doi.org/10.1016/3.infsof.2014.04.014

Pervan, G., Maimbo, M., 2005. Designing a case study protocol for application in is re-
search. In: Proceedings of the Ninth Pacific Asia Conference on Information Systems.
PACIS, pp. 1281-1292.

Petersen, K., Feldt, R., Mujtaba, S., Mattsson, M., 2008. Systematic mapping studies in
software engineering. In: EASE. Vol. 8. pp. 68-77.

Pompermaier, L., Chanin, R., Sales, A., Fraga, K., Prikladnicki, R., 2017. An empirical
study on software engineering and software startups: Findings from cases in an in-
novation ecosystem. In: 29th International Conference on Software Engineering and
Knowledge Engineering, SEKE 2017, July 5, 2017 - July 7, 2017. Proceedings of the
International Conference on Software Engineering and Knowledge Engineering, SEKE.
Knowledge Systems Institute Graduate School, pp. 48-51.

URL http://dx.doi.org/10.18293/SEKE2017-115

Rafig, U., Bajwa, S. S., Xiaofeng, W., Lunesu, 1., 2017. Requirements elicitation tech-
niques applied in software startups. In: 2017 43rd Euromicro Conference on Software
Engineering and Advanced Applications (SEAA), 30 Aug.-1 Sept. 2017. 2017 43rd
Euromicro Conference on Software Engineering and Advanced Applications (SEAA).
IEEE Computer Society, pp. 141-4.

URL http://dx.doi.org/10.1109/SEAA.2017.73

Reynolds, P. D., White, S. B., 1997. The entrepreneurial process: Economic growth, men,
women, and minorities. Praeger Pub Text.

Ries, E., 2011. The lean startup: How today’s entrepreneurs use contstant innovation to
create radically successful businesses. Crown Books.

101

http://dx.doi.org/10.1007/978-3-319-57633-6_11
http://dx.doi.org/10.1016/j.infsof.2014.04.014
http://dx.doi.org/10.18293/SEKE2017-115
http://dx.doi.org/10.1109/SEAA.2017.73

Ronkainen, J., Abrahamsson, P., 2003. Software development under stringent hardware
constraints: Do agile methods have a chance? In: International Conference on Extreme
Programming and Agile Processes in Software Engineering. Springer, pp. 73-79.

Ronkainen, J., Taramaa, J., Savuoja, A., 2002. Characteristics of process improvement of
hardware-related sw. In: International Conference on Product Focused Software Process
Improvement. Springer, pp. 247-257.

Runeson, P., Host, M., 2009. Guidelines for conducting and reporting case study research
in software engineering. Empirical software engineering 14 (2), 131.

Saldafia, J., 2015. The coding manual for qualitative researchers. Sage.

Sarasvathy, S. D., 2001. Causation and effectuation: Toward a theoretical shift from eco-
nomic inevitability to entrepreneurial contingency. Academy of management Review
26 (2), 243-263.

Seaman, C. B., 1999. Qualitative methods in empirical studies of software engineering.
IEEE Transactions on software engineering 25 (4), 557-572.

Shaw, M., 2003. Writing good software engineering research papers. In: Software Engi-
neering, 2003. Proceedings. 25th International Conference on. IEEE, pp. 726-736.

Shull, F., Singer, J., Sjgberg, D. 1., 2007. Guide to advanced empirical software engineer-
ing. Springer.

Singer, J., Vinson, N. G., 2002. Ethical issues in empirical studies of software engineering.
IEEE Transactions on Software Engineering 28 (12), 1171-1180.

Souza, R., Malta, K., Almeida, E. S. D., 2017. Software engineering in startups: A single
embedded case study. In: 1st [IEEE/ACM International Workshop on Software Engi-
neering for Startups, SoftStart 2017, May 21, 2017. Proceedings - 2017 IEEE/ACM st
International Workshop on Software Engineering for Startups, SoftStart 2017. Institute
of Electrical and Electronics Engineers Inc., pp. 17-23.

URL http://dx.doi.org/10.1109/SoftStart.2017.2

Srinivasan, S., Barchas, 1., Gorenberg, M., Simoudis, E., 2014. Venture capital: Fueling
the innovation economy. Computer 47 (8), 40-47.

Stock, T., Seliger, G., 2016. Methodology for the development of hardware startups. Ad-
vanced Materials Research 1140.

Strauss, A., Corbin, J., 1998. Basics of qualitative research: Procedures and techniques for
developing grounded theory.

Sutton Jr, S. M., 2000. Role of process in a software start-up. IEEE Software 17 (4), 33—
39.
URL http://dx.doi.org/10.1109/52.854066

Swanson, R. A., Chermack, T. J., 2013. Theory building in applied disciplines. Berrett-
Koehler Publishers.

102

http://dx.doi.org/10.1109/SoftStart.2017.2
http://dx.doi.org/10.1109/52.854066

Sanchez-Gordén, M.-L., O’Connor, R. V., 2016. Understanding the gap between software
process practices and actual practice in very small companies. Software Quality Journal
24 (3), 549-570.

Tanabian, M., ZahirAzami, B., 2005. Building high-performance team through effective
job design for an early stage software start-up. In: Engineering Management Confer-
ence, 2005. Proceedings. 2005 IEEE International. Vol. 2. IEEE, pp. 789-792.

Temple, B., Young, A., 2004. Qualitative research and translation dilemmas. Qualitative
research 4 (2), 161-178.

Terho, H., Suonsyrja, S., Systa, K., 2016. The developers dilemma: Perfect product de-
velopment or fast business validation? In: 17th International Conference on Product-
Focused Software Process Improvement, PROFES 2016, November 24, 2016 - Novem-
ber 26, 2016. Vol. 10027 LNCS of Lecture Notes in Computer Science (including sub-
series Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics).
Springer Verlag, pp. 571-579.

URL http://dx.doi.org/10.1007/978-3-319-49094-6_42

Tripathi, N., Annanpera, E., Oivo, M., Liukkunen, K., 2016. Exploring Processes in Small
Software Companies: A Systematic Review. Vol. 609 of Communications in Computer
and Information Science. pp. 150-165.

URL <GotoISI>://WOS:000382651100012

Unterkalmsteiner, M., Abrahamsson, P, Wang, X. F., Anh, N. D., Shah, S., Bajwa, S. S.,
Baltes, G. H., Conboy, K., Cullina, E., Dennehy, D., Edison, H., Fernandez-Sanchez,
C., Garbajosa, J., Gorschek, T., Klotins, E., Hokkanen, L., Kon, F., Lunesu, 1., March-
esi, M., Morgan, L., Oivo, M., Selig, C., Seppanen, P., Sweetman, R., Tyrvainen, P.,
Ungerer, C., Yague, A., 2016. Software startups - a research agenda. E-Informatica
Software Engineering Journal 10 (1), 89-123.

URL <GotoISI>://WO0S:000387014900006

US., S. B. A., 2017. Frequently asked questions about small businessAccess date:
2018-02-27.
URL https://www.sba.gov/sites/default/files/advocacy/
SB-FAQ-2017-WEB.pdf

Wasserman, A. 1., 2016. Low ceremony processes for short lifecycle projects. In: Manag-
ing Software Process Evolution. Springer, pp. 1-13.

Wei, J., 2017. State of the hardware incubators and accelerators in the united states [society
news]. Ieee Consumer Electronics Magazine 6 (1), 22-23.

Wohlin, C., 2014. Guidelines for snowballing in systematic literature studies and a repli-
cation in software engineering. In: Proceedings of the 18th international conference on
evaluation and assessment in software engineering. ACM, p. 38.

Wohlin, C., Host, M., Henningsson, K., 2003. Empirical research methods in software
engineering. In: Empirical methods and studies in software engineering. Springer, pp.
7-23.

103

http://dx.doi.org/10.1007/978-3-319-49094-6_42
<Go to ISI>://WOS:000382651100012
<Go to ISI>://WOS:000387014900006
https://www.sba.gov/sites/default/files/advocacy/SB-FAQ-2017-WEB.pdf
https://www.sba.gov/sites/default/files/advocacy/SB-FAQ-2017-WEB.pdf

Womack, J. P, Jones, D. T., Roos, D., 1990. Machine that changed the world. Simon and
Schuster.

Yau, A., Murphy, C., 2013. Is a rigorous agile methodology the best development strategy
for small scale tech startups?

Yli-Huumo, J., Rissanen, T., Maglyas, A., Smolander, K., Sainio, L.-M., 2015. The rela-
tionship between business model experimentation and technical debt. In: 6th Interna-
tional Conference on Software Business, ICSOB 2015, June 10, 2015 - June 12, 2015.
Vol. 210 of Lecture Notes in Business Information Processing. Springer Verlag, pp. 17—
29.

URL http://dx.doi.org/10.1007/978-3-319-19593-3_2

Zhou, X., Jin, Y., Zhang, H., Li, S., Huang, X., 2016. A map of threats to validity of sys-
tematic literature reviews in software engineering. In: Software Engineering Conference
(APSEC), 2016 23rd Asia-Pacific. IEEE, pp. 153-160.

104

http://dx.doi.org/10.1007/978-3-319-19593-3_2

Appendix

A.1 Interview Protocol

A.1.1 General Information

A.1.1.1 Practicalities

1.

2.

Interview Id:

When:

. Where:

. Duration:

. Interviewers:

A.1.1.2 Interviewee

1.

2.

Interviewee Id:

Company Id:

. Position in company:

Years at company:

. Educational background:

A.1.2 Business Background

1. Describe the technical competence of the team i.e. how is your team organized?

2. Please name the three largest challenges encountered during the startup phase.

105

A.1.3 Startup Development Methodologies

1.

2.

How do you make sure that you are building the right product?

How do you manage customer feedback?

A.1.4 Product Development

A.1.4.1 Engineering Practices

1.

Do you implement agile practices, i.e. refactoring, test-first, sprint planning, fre-
quent releases, and/or daily stand up meetings?

. How do external dependencies/factors influence product development e.g. speed?

. How do you balance hardware and software development?

Have you outsourced development i.e. prototyping, conceptualization, design, mar-
keting, testing?

. Have any technical/business decisions slowed you down or affected the overall qual-

ity of the product?

A.1.4.2 Requirements

1.

How do you elicit requirements i.e. prototyping, mock-ups, interviews, analysis of
similar products, brainstorming?

A.1.4.3 Software Structure and Architecture

1.
2.

How do you manage documentation?

How do you handle quality, i.e. technical debt, security, and privacy?

. How often do you refactor the code? How much rework has been done after the

prototyping?

. To what extent do you reuse components of earlier prototypes?

. How has tacit knowledge affected you?

A.14.4 Testing

1.
2.

How do you perform hardware and software testing?

When do you start writing tests?

106

A.2 Pre-Interview Questionnaire

The following list contains the pre-interview questions all participants had to fill out before
the actual interviews.

1. Briefly describe your product.
2. Briefly explain your role and responsibilities in the company.
3. Briefly describe your company i.e. history and current headcount.

4. Have you received any funding?

107

A.3 Consent Form

Inquiry about participation in research project
”Software Engineering in Startups Delivering Both Hardware and
Software Parts”

Purpose of the study

Empirical analysis, through a multiple case-study, of product development methods in
startup companies who deliver products with both hardware and software parts. This is
part of a Master Thesis at the Department of Computer Science, NTNU, Trondheim, un-
der the supervision of Professor Letizia Jaccheri. The purpose of the study is to create a
better understanding of decision-making and problem-solving in technology startups who
deliver both hardware and software parts.

The research questions that will be analyzed are:

RQ1 How do hardware startups achieve agility during product development?
RQ2 How do hardware startup manage quality concerns of their product?
RQ3 How do hardware startups achieve balance between speed and quality?

Selection
Candidates are eligible for participation if they meet the following criteria:

e They have experience and/or knowledge about software or hardware development.

e They work or have worked in a technology startup who have made an initial pro-
totype of their product, or delivered a product with hardware and software parts to
paying customers.

If the candidate meets the criteria, he/she is regarded as qualified for contributing to an-
swering the research questions.

What does participation in the study involve?

Participation in the study involves being an interviewee in one or more interviews. Inter-
views will last for a maximum of 60 minutes. If more data is needed, it is desirable to
extend the interview time, or perform additional interviews.

The interviews will be recorded, and then transcribed. This is part of a thematic analy-
sis that will be conducted by the researchers. Participants do not need to provide sensitive
information like name or person-number, as this is irrelevant for answering the research
questions. Sensitive person-data will not be gathered from other sources like journals or
registers. The questions will mainly deal with the interviewee’s role in the company, the
company’s evolvement from inception till today, work methods and cooperation, and char-
acteristics of the startup environment. All participants are allowed to read the thesis before
it is published.

108

What happens with the information about you?

All sensitive person information will be stored confidentially. The project group and the
supervisor are the only persons with access to this information. To ensure confidentiality,
recordings will be stored on the students’ local computer in a separate folder.

The interviewees’ role in the company is relevant for the study, and will therefore be
described in the thesis. If this information makes it possible to recognize the person, we
will perform the necessary measures to ensure complete confidentiality. Company name
will not be used in the thesis, however descriptions of how the company operate and what
product they deliver will be necessary to build generalizable conclusions.

The final date of the project is 10.06.18. All data material will be made anonymous at
this date.

Voluntary participation
It is voluntary to participate in the study. Participants can withdraw at any given time, and

all information about the person will then be made anonymous.

If you want to participate in the study or have further questions, please contact Jorgen
Birkeland (+47 90676597) or Vebjgrn Berg (+47 48268999).

Consent to participation in the study

I have received information about the study, and I am willing to participate

(Signed by the participant, date)

109

110

Appendix B

111

Software Startup Engineering: A Systematic Mapping
Study

Vebjorn Berg, Jorgen Birkeland, Anh Nguyen-Duc, Ilias Pappas, Letizia
Jaccheri*

IT-bygget, Sem Salands vei 9, 7084 Trondheim, Norway

Abstract

[Context] Software startups have long been a significant driver in economic
growth and innovation. The on-going failure of the major number of startups
calls for a better understanding of state-of-the-practice of startup activities.
[Objective] With a focus on engineering perspective, this study aims at iden-
tifying the change in focus of research area and thematic concepts operating
startup research. [Method] A systemic mapping study on 74 primary papers
(in which 27 papers are newly selected) from 1994 to 2017 was conducted with
a comparison with findings from previous mapping studies. A classification
schema was developed, and the primary studies were ranked according to their
rigour. [Results] We discovered that most research has been conducted within
the SWEBOK knowledge areas software engineering process, management, con-
struction, design, and requirements, with the shift of focus towards process
and management areas. We also provide an alternative classification for future
startup research. We find that the rigour of the primary papers was assessed
to be higher between 2013-2017 than that of 1994-2013. We also find an in-
consistency of characterizing startups. [Conclusions] Future work can focus on
certain research themes, such as startup evolution models and human aspects,
and consolidate the thematic concepts describing software startups.

Keywords: Software development, Systematic mapping study, Startup,
Software startup, Software engineering

1. Introduction

Technology-based startups have long been an important driver for global
economic growth and competitiveness [1]. Software startups, newly created
companies producing cutting-edge software technology, have shown to be an
important source of software innovation. Despite stories of successful startups,

*Corresponding author. Tel: +4748268999; Tel: +4790676597.
Email address: vebjorbe@stud.ntnu.no, jorgebi@stud.ntnu.no (Vebjgrn Berg, Jorgen
Birkeland, Anh Nguyen-Duc, Ilias Pappas, Letizia Jaccheri)

Preprint submitted to Journal of BTEX Templates June 7, 2018

30

40

45

90 percent of them fail, primarily due to self-destruction rather than competition
[2, 3]. The failures come from financial and market factors, for example, insuf-
ficient funding to operate startups activities, failure in finding product-market
fit, and building an entrepreneurial team [4]. However, there are also identified
unique challenges related to software development and innovation methods [4].
Software startup engineering can be defined as ”the use of scientific, engineering,
managerial, and systematic approaches with the aim of successfully developing
software systems in startup companies” [5]. Startup researchers have called for
a further attention to engineering approaches to support startup activities in
all startup evolution stages [1]. Previously, most of the research in the field of
software engineering has been conducted in relation to the needs and challenges
of established companies, first identified by Sutton [6].

Startups are at the forefront of applying new technologies in practice. From
an engineering perspective, developing technology products is challenging as the
startup context presents a dynamic and fast-changed environment, making it
difficult to adopt prescriptive engineering practices [5]. Despite the rapid growth
of the population of startups, the research on software engineering in startups
is still at an early stage [1].

One of the most extensive literature reviews in the field is the systematic
mapping study of Paternoster et al. [7], reviewing a total of 43 primary studies
from 1994 until 2013. This review shows a lack of high quality studies in the
field. While a large amount of Software Engineering practices were extracted
from startups, the practices were chosen randomly and adopted under the con-
straints imposed by the startup context. Thus, an updated systematic mapping
is required as it will identify the current status in the area and pave the way for
more empirical studies examining startups.

Since 2015, we observed an increased focus on software startup research (i.e.,
the organization of three International software startup workshops (ISSW) in
2016 and 2017, and software startups tracks at PROFES 2017 and XP 2017 con-
ferences). The previous systematic review has rapidly gained a large amount
of citations [7]. While this implies the further growth in software startup re-
search, a revisit on the area can identify how engineering activities in software
startups have changed over time. The objective of this mapping study is to pro-
vide an updated view on software startup research in order to identify research
gaps. Different from the previous mapping studies [7, 8], we aim at synthe-
sizing startup descriptions in research and its associated software engineering
knowledge areas. Beside market factors and financial factors, knowledge about
engineering factors and how they affect the startup initiatives and development
would be helpful for entrepreneurs in understanding their startups’ challenges.

We assume that startups perform various types of software engineering ac-
tivities, as described in SWEBOK [9]. We would like to observe how software
startup research has evolved and possibly matured in some Software Engineer-
ing knowledge areas. SWEBOK is previously used in Klotins et al. [8], which
allow for easy comparisons and make it possible to identify changes in terms of
research direction for the last five years.

The research objective leads to the following research questions:

60

65

80

90

1. RQ1: How has software startup research changed over time in terms of
focused knowledge areas?

2. RQ2: What is the relative strength of the empirical evidence reported?

3. RQ3: In what context has software startup research been conducted?

In this article, we present results from systematic mapping studies of software
startup research from 1994 to 2017. To do so, we expand previous literature
[7, 8] with the focus on papers published from 2013-2017. We found 27 relevant
articles during the last five years. The results were merged and compared to
the previous mapping studies. To address RQ1, the papers were structured
according to the knowledge areas identified in SWEBOK [9]. With RQ2, we
evaluated the papers’ rigour to compare the quality of papers published before
and after 2013. Finally, with RQ3, we examined to what extent the retrieved
papers provided sufficient startup descriptions, and if there were similarities
in the use of terms describing the startup context between the papers. Our
meta-analysis on Software Engineering knowledge area and startup case context
reveals important areas for investigation. We also come up with a classification
of future research on software startups.

The contribution of this mapping study is two-fold. Firstly, the study pro-
vides a comprehensive view of software startup for Software Engineering re-
searchers. Possible research gap is derived for future study. Secondly, the study
provides a map of the contextual setting of investigated startups. Contextual
map infers the applicability area of empirical findings from the startups. This
would help to compare and to generalize future research in software startups.

The paper proceeds as follows: Section 2 introduces the background of the
study and the related mapping studies. Section 3 presents the research method
undertaken and threats to the validity of the mapping study. Section 4 reports
the results and visualizes both our findings and the findings of the previous
mapping studies. Section 5 discusses the results in relation to the research
questions. Section 6 concludes the paper by answering the research questions
and presents implications and future work.

2. Background

2.1. Software startups

A startup can be defined as “an organization that is challenged by youth and
immaturity, with extremely limited resources, multiple influences, and dynamic
technologies and markets” [6]. More specifically, Coleman and O’Connor [10]
describe software startups as “unique companies that develop software through
various processes and without a prescriptive methodology”. Others have char-
acterized software startups as modern organizations with little or no operating
history, aiming at developing high-tech and innovative products, and rapidly
scale their business in extremely dynamic markets [11].

Software startups develop innovative software products in environments of
time-pressure and a lack of resources, constantly searching for sustainable and
scalable business models. This is in contrast to established companies, that

95

100

110

125

130

have more resources and already command a mature market [1]. While estab-
lished companies focus on optimizing an existing business model, startups focus
on finding one, which requires experimentation of various products in differ-
ent markets [12]. Instead of developing software for a specific client, software
startups develop systems which have market-driven requirements, meaning they
have no specific customers before their product is released [13, 14].

There exist many processes to manage product development (i.e., processes
concerned with how to develop a product), like agile and waterfall methods.
(e.g., agile and waterfall). However, these processes do not focus on addressing
what product to develop, which is essential in the startup context where both
problems and solutions tend to be poorly understood [15]. The high failure
rates of software startups are often caused by a lack of customers rather than
product development issues [2, 13].

2.2. Startup Development Methodology

Software startups generally develop products in high-potential target mar-
kets [16], without necessarily knowing what the customers want [14]. This re-
lates to market-driven software development, which emphasizes the importance
of specific requirement elicitation techniques (e.g., prototyping), and time-to-
market as key strategic objectives [14, 17]. In a market-driven context, re-
quirements tend to be (1) invented by the software company, (2) rarely docu-
mented [18], and (3) validated only after the product is released in the mar-
ket [14, 19, 20, 21]. As to this, products that don’t meet customer needs are
common, resulting in failure of new product releases [22]. Entrepreneurial and
customer focused development approaches like [23, 24, 25, 26] have received
attention from the research community. The customer development process in-
troduced by Blank [23] can be divided into four phases: (1) customer discovery,
(2) customer validation, (3) customer creation, and (4) company building. A fre-
quently applied entrepreneurship theory among entrepreneurs is Lean Startup,
which builds on the principles from Blank. The method has been criticized by
researchers for being based on personal experience and opinions rather than
empirical evidence, however, concepts from the Lean Startup have attracted
considerable attention among practitioners [15, 16].

2.2.1. Lean Startup

Ries [12] presented the Lean Startup method in 2008, based on lean principles
first introduced by Toyota [27]. The method aims at creating and managing
startups, to deliver products or services to customers as fast as possible. The
method provides principles for how to run a new business, where the goal is
to grow the business with maximum acceleration. By iteratively turning ideas
into products, measure customers’ satisfiability, and learn from their feedback,
startups can accelerate their business. This process is referred to as the build-
measure-learn (BML) feedback loop, which is an iterative process, where the
goal is to minimize the total time through the loop.

Key to the BML feedback loop is to do continuous experimentation on cus-
tomers to test hypotheses. The hypotheses can be tested by building a minimum

140

145

150

155

160

170

180

viable product (MVP), which is the simplest form of an idea, product, or ser-
vice that can answer the hypotheses. Any feature, process, or effort not directly
contributing to answering the hypotheses, is removed. The aim is to eliminate
any waste throughout the process. Empirical research has found three main
types of MVP usage, including (1) MVP as a design artifact, (2) MVP as a
boundary-spanning object, and (3) MVP as a reusable artifact [28]. MVPs can
be used to bridge knowledge gaps within organizations or to provide a mutual
understanding between customer input and product design.

When the MVP has been built and the hypotheses tested, the next step
is to measure the customer feedback and learn from it. This is referred to as
validated learning, which is about learning which efforts are value-creating and
eliminate the efforts that aren’t necessary for learning customer needs. The final
step of the loop is whether to pivot or persevere. A pivot is a structured course
correction designed to test a new fundamental hypothesis about the product,
strategy, and engine of growth [12]. Bajwa et al. [29] identified 10 pivot types
and 14 triggering factors, concluding that trying to solve the wrong problem
for the customer is the most common reason for pivoting (i.e., customer need
pivot). If a pivot isn’t required, meaning the MVP was found to be fit to
market, the startup perseveres. The BML feedback loop then continues, where
new hypotheses are tested and measured.

The Lean Startup method is beneficial for business development and under-
standing what product to develop, emphasizing the importance of getting the
product to customers as soon as possible. Startups tend to prefer time and
cost over product quality [30], neglecting traditional process activities like for-
mal project management, documentation, and testing [5]. Shortcuts taken in
product quality, design, or infrastructure can eventually inhibit learning and
customer satisfaction [12]. Software startups need their own development prac-
tices to manage the challenges posed by customer development methods such
as Lean Startup.

2.3. Software Engineering in Startups

Software startup engineering can be defined as “the use of scientific, engi-
neering, managerial, and systematic approaches with the aim of successfully
developing software systems in startup companies” [5]. The degree of process in
software development is dependent on system complexity, business risk, and the
number of people involved [31]. The impact of the inadequate use of software
engineering practices might be a significant factor leading to the high failure
rates [8]. As time and resources are extremely scarce in environments of high
market and technology uncertainty, software startups need effective practices to
face those unique challenges [11]. The need for process depends on the lifecycle
stage of the company, divided into four stages [3].

e Stage 1: The startup stage is defined as the time from idea conceptual-
ization to the first sale. A small executive team with necessary skills is
required in order to build the product.

185

190

200

210

215

220

e Stage 2: The stabilization phase lasts until the product is stable enough
to be commissioned to a new customer without causing any overhead on
product development.

e Stage 3: The growth phase begins with a stable product development
process and lasts until market size, share, and growth rate have been
established.

e Stage 4: The last stage is when the startup has evolved into a mature
organization. The product development is robust and easy to predict,
with proven processes for new product inventions.

Startups are creative and flexible by nature, and so strict release processes
are often overshadowed by quick, inexpensive product releases, with focus on
customer acquisition [31]. This can often result in ineffective software engi-
neering practices [6]. Since startups have limited resources, the focus is often
directed towards product development, rather than focusing on the establish-
ment of rigid processes [10].

It is important to notice that in terms of communication and cooperation
dynamics, startups and established companies have different software engineer-
ing experiences and needs [30]. While established companies have well-defined
processes for their business, startups usually have low-ceremony processes [32],
which means that the amount of management overhead is low. Instead of uti-
lizing repeatable and controlled processes, startups take advantage of reactive
and low-precision engineering practices with a focus on the productivity and
freedom of their teams [33, 34, 35].

Reactive, low-ceremony processes are powerful in the early stages of software
development since speed and learning are important [12]. However, as startups
enter new lifecycle stages, an increased usage of processes for addressing key
customer needs, delivering functional code early and often, and providing a
good user experience is required [32]. New business issues like hiring, sales, and
funding appear, and more users and complex code require an extended focus
on robustness, scalability, performance, and power consumption [31]. The use
of methods like the Lean Startup is one of the reasons why software startups
need and sometimes apply their own software engineering practices, which pose
challenges when it comes to software engineering. Lean Startup is beneficial for
business and product development, but when it comes to software development,
a more hybrid approach of agile and lean may provide the most benefits in terms
of cost, time, quality, and scope [30].

2.4. FEzisting literature reviews

Since the gap in research specific to software engineering in startups first
was identified [6], there have only been undertaken two mapping studies entirely
dedicated to the research area |7, 8]. There also exist relevant work related to
SMEs (small and medium-sized enterprises) [36], and VSEs (very small entities),
which become more relevant as startups enter more mature lifecycle stages,

225

230

235

240

245

250

255

however, the early stages of startups pose some specific challenges and needs
(e.g., little working/operating history).

The first systematic mapping by Paternoster et al. [7] covered studies up
to December 2013, aiming at structuring and analyzing state-of-the-art on soft-
ware startup research. The conclusion of the paper is that there existed few
high-quality studies contributing to the body of knowledge and that there is
a need for more studies supporting startups for all lifecycle stages. From a
total of 43 primary studies, only 4 papers [10, 37, 38, 39] were considered as
strong contributions and entirely dedicated to software engineering activities in
startups. The results showed that startups choose their software engineering
practices opportunistically, and adapt them to their own context.

Klotins et al. [8] conducted a mapping study published in 2015, classifying
14 primary studies on software startup engineering into 11 of 15 SWEBOK
knowledge areas. The paper concludes as Paternoster et al. [7], that research
did not provide support for any challenges or engineering practices in startups,
and that available research results were hard to transfer between startups due
to low rigour. This was explained by the lack of contextual information in the
studies, and how the studies were performed.

3. Research Methodology

A systematic mapping study was undertaken to provide an overview of the
research available in the field of software engineering specific to startups, fol-
lowing guidelines from Kitchenham [40] and several steps of the standardized
process for systematic mapping studies, as illustrated in figure 1 [41].

Systematic mapping studies can be used in research areas with few relevant
primary studies of high quality, as they provide a coarse-grained overview of the
publications within the topic area [41]. This systematic mapping study covers
74 primary papers, extending the two previous mapping studies [7, 8]. As these
studies only cover three papers from 2013, the search strategy of this systematic
mapping study included papers from 2013 up to October 2017. This approach
allowed for merging and comparing the primary literature within the research
field for the period 1994-2017.

The main steps of our process are illustrated in figure 1, and include the
search and study selection strategies, manual search, data extraction, quality
assessment, and the data synthesis method. The process led to a total number
of 27 new primary papers found in table A.7.

260

265

270

275

280

285

Process Steps

Definition of . Keywording using Data Extraction and
Research Quesiton Conduct Search Screening of Papers Abstracts Mapping Process
. Classification 3
Review Scope All Papers Relevant Papers Scheme Systematic Map

Outcomes

Figure 1: The Systematic Mapping Study Process [41]

3.1. Mapping Procedure

Step 1: Pilot search. Pilot searches were performed in online databases to find
an optimal search string and the most suitable databases. The searches helped
to define the criteria for inclusion and quality assessment and the classification
schema.

Step 2: Search strategy and study selection. Based on the search string, a total
number of 1012 unduplicated papers were retrieved. This was further limited to
74 (titles), 28 (abstracts), and finally, 20 papers after a collaborate effort from
the first and second author was conducted. The full-text of the remaining 20
papers was read.

Step 3: Additional manual search. A manual search was performed to find more
relevant papers. The publication lists of relevant authors were scanned, and
the forward snowballing technique was used [42]. For the forward snowballing,
Google Scholar was used to examining the citations of the papers retrieved.
This resulted in seven more relevant papers. These were either not published in
the databases, or were overlooked in step 2.

Step 4: Quality assessment. To identify the rigour of the remaining papers, a
quality assessment was performed on the papers that provided empirical evi-
dence. The complete assessment can be found in table B.10.

Step 5: Data extraction and synthesis. From the primary papers, relevant data
and information were extracted into a classification schema. A multi-step syn-
thesis was performed to answer the research questions.

3.2. Data Sources and Search Strategy

The systematic search strategy consisted of searches in three online bibli-
ographic databases. The databases were selected from their ability to handle
complex search strings, their general use in similar literature reviews in the soft-
ware engineering community [7, 36], and the fact that they index the research
articles from other databases. In addition, to ensure the best possible coverage
of the literature, we performed complementary searches and forward snowballing
(section 3.4 Manual Search). Following guidelines from Wohlin [42], systematic

290

295

300

305

310

literature studies should use a combination of approaches for identifying rele-
vant literature, where forward snowballing is found particularly useful. Forward
snowballing can reduce systematic errors related to the selection of databases
and construction of the search string [42]. To obtain high-quality data, the
following databases were used:

Database Papers
Scopus 451
ISI Web of Science 121
Engineering Village Compendex 875
Total 1447

Table 1: The searched databases and number of retrievals

Initial searches in the databases were conducted to identify keywords related
to software engineering and startups, targeting title, abstract, and keywords.
The most frequently used keywords for “startup” were chosen and combined in
the search string [7]. The final search string consisted of several search terms
combined using the Boolean operator “OR”:

“(startups OR start-up OR startup) AND software engineering OR
(startups OR start-up OR startup) AND software development OR
(startups OR start-up OR startup) AND software AND agile OR
(startups OR start-up OR startup) AND software process OR (star-
tups OR start-up OR startup) AND software tools”.

3.3. Study Selection

The study selection process is illustrated in figure 2, along with the number
of papers at each stage. Searching the databases Scopus, IST Web of Science,
and Engineering Village using the search string returned 1447 papers, resulting
in 1012 unduplicated studies. The searches targeted the document types: book
chapters, journal article, conference article, conference proceedings, dissertation,
and report chapters.

315

320

325

330

‘ Search in databases }—b{ n=1012 ‘

h
Exclusion based on titles, n=74
publication year B

¥

A,
Exclusion based on
‘ abstracts n=28 ‘

h
Mumber of studies after n=20
revision by both authors B
h
Mumber of studies after n=27
additional manual search B
h
Aggregation with n=T74
previous mapping studies B

Figure 2: The Study Selection Process

Papers were relevant for inclusion in the study if they met the following
criteria: (1) investigate concepts/problems/solutions of engineering in software
startups, (2) present contributions in the form of lessons learned, framework,
guidelines, theory, tool, model, or advice as applied in Paternoster et al. [7],
(3) are not included in any of the previous mapping studies, and (4) studies are
written in English. The papers that were selected are scientific peer-reviewed
articles, which is independent of the role of authors. We did not find experience
reports from entrepreneurs, which might make the sample of papers lean towards
the researcher community. To decrease the number of papers into a manageable
amount, workshops, and papers based on expert opinion were excluded from
the review process.

As common for systematic mapping studies [41], this study focuses on syn-
thesizing empirical research. Empirical studies are important for evidence-based
software engineering research and practice, and for generating a knowledge base
leading to accepted and well-formed theories [40, 43]. This study provides an
overview of empirical research on software startup engineering to date, and how
research has evolved and possibly matured over the time period.

The retrieved papers were examined by the first and second author, where
each author separately reviewed the papers based on titles and abstracts. Dis-
agreements were resolved by discussing the full text of the relevant papers. This
was necessary as some of the abstracts were incomplete or poor. At this stage

10

335

340

345

350

355

another 8 papers were excluded, making the total of newly selected papers 20,
before performing the additional manual search.

3.4. Manual Search

A manual search was conducted with the participation of the third author,
using the forward snowballing technique [42], to identify additional papers not
discovered by the search string. Google Scholar was used to examine the cita-
tions to the paper being examined. The publication lists of frequently appearing
authors were also searched. This resulted in several papers as candidates for
inclusion. After assessing title, abstract, and finally the full text, 7 more papers
were included as primary studies [17, 28, 29, 44, 45, 46, 47]. Among the papers,
21 were conference papers, five were journal papers, and one was a book chapter.

3.5. Quality Assessment

To build on previous work, a quality assessment of the new primary papers
providing empirical evidence was performed. The total number of eligible papers
was 22 (table A.7). Although systematic mapping studies usually don’t evaluate
the quality of each paper in such depth as systematic literature reviews, the
quality assessment process was undertaken to assess how results were presented
in the primary studies. No paper was excluded based on the quality assessment.

To assess the rigour, credibility, and relevance of the papers, we adopted the
quality assessment scheme from Nguyen-Duc et al. [48]. Quality assessment
has been identified as important for performing empirical research in software
engineering [40, 49]. Table 2 illustrates 10 quality evaluation criteria. For each
criterion the papers met, they got a score of 1, and otherwise 0. This means
that the maximum score a paper could get was 10. A score of 0-3 was regarded
as low rigour, 4-6 medium rigour, and 7-10 high rigour. The complete quality
assessment can be found in table B.10.

11

360

365

370

375

Problem Statement
Q1. Is research objective sufficiently explained and well-motivated?

Research Design
Q2. Is the context of study clearly stated?
Q3. Is the research design prepared sufficiently?

Data collection

Q4. Are the data collection & measures adequately described?
Q5. Are the measures and constructs used in the study the most
relevant for answering the research question?

Data analysis

Q6. Is the data analysis used in the study adequately described?

Q7a. Qualitative study: Are the interpretation of evidences clearly described?
Q7b. Quantitative study: Are the effect size reported with assessed statistical
significance?

Q8. Are potential alternative explanations considered and discussed in the
analysis?

Conclusion
Q9. Are the findings of study clearly stated and supported by the results?
Q10. Does the paper discuss limitations or validity?

Table 2: Quality Assessment Checklist [48]

3.6. Data Eztraction and Synthesis

After the quality assessment, we defined the classification schema (table A.7).
Data from each of the 27 newly selected primary studies were then systemat-
ically extracted into the classification schema, according to the predetermined
attributes: (1) SWEBOK knowledge area, (2) Research method, (3) Contribu-
tion type, (4) Pertinence, (5) Term for “startup”, (6) Incubator context, (7)
Publisher. The chosen attributes were inspired by previous mapping studies
[7, 8, 36], and from the process of finding keywords in the abstracts of the
retrieved papers [41]. Organizing the findings into tabular form enabled for
easy comparisons across studies and time periods. In addition to classifying the
papers, each paper was scanned for thematic concepts to identify researchers’
descriptions of investigated startups. The thematic concepts were adopted from
the recurring themes found in Paternoster et al. [7]. This made it possible to
assess the agreement in the community to the definition of startups.

The software engineering book of knowledge (SWEBOK) was created to
provide a consistent view of software engineering, and to set the boundary of
software engineering with respect to other disciplines [9]. SWEBOK contains
15 knowledge areas that characterize the practice of software engineering. The
focal point of the paper is to propose research directions based on the knowl-
edge areas following the work done by existing literature. Since the two major
mapping studies in the area follow different approaches, that is SWEBOK [8§]
and focus facets [7], in the present study we focus on KAs, as this can allow the

12

380

390

395

400

415

420

reader to better comprehend how the two different approaches are connected,
thus offering a more holistic understanding of the current status in software
startup engineering research. Assigning each paper into the specific knowledge
areas was done by the first and second author. Two researchers read the titles,
keywords, abstracts, and the body of each paper, before evaluating the papers’
conformance with each specific knowledge area’s description or subareas.

8.7. Threats to Validity

There are several threats to the validity of systematic mapping studies [50].
One threat is related to the data extraction from each paper, where results
can be biased from researchers personal judgment. To mitigate this threat,
and ensure correct classification of each paper into the SWEBOK knowledge
areas, this process was performed jointly by the first and second author at one
computer, resolving any conflicts and regulating individual bias.

Threats to the retrieval of relevant papers must also be considered. The
inconsistent use of terms for “startup” made it difficult to cover all used terms
in the search string. Hence, it appeared terms not considered when constructing
the search string. Some of these were “founder teams”, “very small enterprise”,
“very small entity”, and “very small company”, which all were used in relation
to the startup context. Relevant papers might therefore have been overlooked.

The use of only three bibliographic databases might have affected the number
of relevant papers retrieved. Compared to the number of databases used in
similar studies, this seems to be at the low-end. The chosen databases are
however among the most used ones in the field of software engineering, and the
databases that contributed to the most retrieved papers in other studies [7].
The risk of missing papers published the last five years was mitigated by the
use of forward snowballing which lead to the retrieval of seven more papers.

To make sure the study selection was not biased from personal opinions,
paper selection involved the first, second, and third author of the paper, which
allowed a collaborative resolution of conflicting views, following guidelines from
Kitchenham [40]. We defined clear inclusion and exclusion criteria, and a quality
assessment checklist to assess each paper’s quality. Disagreement to quality as-
sessment was discussed between author one and two until consensus was reached.
This decreased the risk of miss-classifying any relevant papers.

For the quality assessment, we only used two points to collect answers, as the
first and second author were unfamiliar with the research field. The papers got
a score of 1 if they met the criteria, and otherwise 0. Prior studies have used a
more fine-grained classification of quality criteria and even used different criteria
in some occasions. It is more likely that the papers in our study obtained higher
rigour than they would have received if another more fine-grained assessment
method had been used.

4. Results

This section presents the extracted data of the primary studies. The section
is divided into the three research questions to allow for better visualization and

13

425

430

435

440

presentation of the most relevant findings. The final number of primary papers
ended up being 74, adding the 27 new papers to the existing 44.

4.1. RQ1: How has software startup research changed over time in terms of
focused knowledge areas?

This section is divided into two sub-sections. Section 4.1.1 presents the pub-
lication frequency of primary studies from 1994-2017. Section 4.1.2 presents the
SWEBOK knowledge areas, contribution types, and empirical evidence between
1994-2017.

4.1.1. Publication Frequency

Figure 3 shows the number of studies published in relation to software
startup engineering between 1994-2017, constituting a total of 74 published pa-
pers. We observe that the publication frequency of papers between 2013-2017
is higher than for any period before 2013. From 1994-2013, the highest number
of primary papers within a single year was 7 (2008). In comparison, 2016 and
2017 constituted 9 and 11 papers respectively. The pertinence of the papers
published between 2013-2017 was generally higher than what was found for the
period 1994-2013. 85 percent of the papers from 2013-2017 had high pertinence,
meaning that they were entirely dedicated to software engineering activities in
startups. The remaining four papers were focusing on activities of small soft-
ware companies, and so set to partial pertinence (table A.7). Although their
focus was not entirely dedicated to startups, some of them [51] performed em-
pirical studies on startups, referring to them as “very small entities” or “small
software companies”. In the period 1994-2013, 57 percent of the papers had
high pertinence, while 20 percent had partial pertinence.

Klotins et al. [8] only includes 4 unique primary papers [52, 53, 54, 55|, as the
remaining 10 papers were included among the 43 primary papers in Paternoster
et al. [7]. The 4 papers are from 1994, 2000, 2008, and 2013.

9
8
7
6
5
rs
3
: I
. HH I
: (- i I
11" 12' 13" 14 15

94' 95' 96 97 98 99 00 01' 02 03 04 05 06 07 08 09 10 16" 17

Figure 3: Publication Frequency, 1994-2017

14

450

460

465

470

4.1.2. Knowledge Areas

The 27 new primary studies were classified into the knowledge areas of SWE-
BOK [9]. The categories were developed by the software community as a baseline
for the body of knowledge within software engineering. Figure 4 illustrates what
knowledge areas that have received most attention the last five years, and to
what extent empirical studies have been undertaken. The figure shows which
research methods that have been used to address each of the knowledge areas.
Only the papers providing empirical evidence (22 papers) were included in the
figure, covering a total of 9 knowledge areas. Some of the papers covered one
or more knowledge areas (e.g., Nguyen-Duc et al. [56]).

The assessed research methods followed guidelines from Oates [57], and in-
clude (1) survey, (2) design and creation, (3) experiment, (4) case study, (5)
action research, and (6) ethnography (table A.8). Case study was the most fre-
quently used empirical research method (81 percent), followed by experiments
(10 percent), surveys (6 percent), and design and creation (3 percent). Ac-
tion research and ethnography were not used as research methods in any of the
primary studies.

10

S | BN | B I 1P 11

Process Quality Professional Testing Construction ~ Management ~ Modelsand Requirements Design
Practice Methods

WCase MExperiment MSurvey M Designand creation

Figure 4: Empirical Evidence, 2013-2017

Figure 5 illustrates contribution types (as applied in Paternoster et al. [7],
originally suggested by Shaw [58]) within each each knowledge area between
2013-2017. The 9 different knowledge areas are represented a total of 49 times
through 7 different contribution types. These include (1) model, (2) theory, (3)
framework, (4) guidelines, (5) lessons learned, (6) advice, and (7) tools (table
A.9). Lessons learned is the most frequently used contribution type (43 per-
cent), followed by advice (25 percent), model (12 percent), theory (10 percent),
framework (5 percent), guidelines (5 percent), and tools (3 percent).

15

2
0

Process Quality Professional Testing Construction Management Models and Requirements Design
Practice Methods

M Lessons Learned M Framework M Guidelines MTheory MTool M Model M Advice

Figure 5: Contribution Types, 2013-2017

ats Figure 6 presents the number of papers that cover the different knowledge
areas in our study (red columns) and Klotins et al. [8] (blue columns). The
total number of primary papers in Klotins et al. [8] was 14. Both mapping
studies include papers that cover more than one knowledge area.
The newly selected primary papers from 2013-2017 cover 9 of 15 knowledge
w0 areas. The ones missing are (1) software configuration management, (2) software
engineering economics, (3) software maintenance, (4) computing foundations,
(5) mathematical foundations, and (6) engineering foundations.

16

8
s
.
o |

Process Quality Professional Testing Construction Management Models and Requirements Design Configuration Maintenance
Practice Methods Management

M (Klotins et al., 2015) M Our study

Figure 6: Knowledge Area Coverage, 1994-2017
From figure 6, we see that there is a significant change in the research direc-

tion for the last five years. Between 1994-2013 “software design” and “software
s requirements” are the most represented knowledge areas, whereas “software

16

490

495

500

505

510

engineering process” and “software management” have received significant at-
tention from the community between 2013-2017. “Software configuration man-
agement” and “software maintenance” are only covered between 1994-2013.
Paternoster et al. [7] did not present any results in relation to the SWE-
BOK knowledge areas. However, they provided the contribution type of each
primary study. Figure 7 shows the contribution types of primary papers between
1994-2017, separating the periods before and after 2013. The most frequently
provided contribution types between 1994-2013 were advice and model, while
lessons learned was most represented between 2013-2017. The least frequently
used ones combined from both studies were framework, guidelines, and tools.

22
20

18

16

14

12

10

8

6

4

z i B

. [|

Lessons learned ~ Framework Guidelines Theory Tool Model Advice

M (Paternoster et al., 2014) ® Our study

Figure 7: Contribution Types 1994-2017

4.2. RQ2: What is the relative strength of the empirical evidence reported?

To address this research question, we have made a bubble chart of each
knowledge area with the corresponding rigour-rating. Among the 27 new pri-
mary papers, only the papers that provided empirical evidence were evaluated
(22 of 27). The quality assessment will be compared to both of the previous
mapping studies.

4.2.1. Rigour of Primary Studies 2013-2017

Publication venue can be interpreted as an initial indicator as to whether the
papers provide scientific quality. Among the newly selected primary studies, 21
were conference papers, 5 were journal papers, and 1 paper was a book chapter.
However, it is necessary to perform a more comprehensive quality assessment
process in order to compare results across different studies.

Figure 8 shows the degree of rigour within each knowledge area between
2013-2017. The figure is based on the quality assessment (table B.10). The
x-axis represents the knowledge areas, while the y-axis represents the rigour.

17

520

525

Only one paper received low rigour score [59], as it didn’t provide enough details
about the data analysis and included no assessment of the validity of the results.
However, as only the papers providing empirical evidence were assessed, it is
possible that more papers would receive low rigour as well. In general, the
papers received high rigour score, indicating that the quality of research was
high.

High
rigour

Medium
rigour

®
rigour

Quality Professional Models

Process " Testing Construction Management Requirements Design
Practice 9 9 and 9 9

Methods

Figure 8: Rigour of each covered knowledge area, 2013-2017

4.2.2. Rigour of Primary Studies 1994-2013

Figure 9 shows the rigour of the primary studies from Klotins et al. [8],
and which research type each constituted. The paper did not specify how they
calculated the rigour of each paper. The x-axis represents the research types,
and the y-axis represents the rigour. From 14 primary papers, only one provided
a contribution of high rigour. Most of the papers (86 percent) obtained low
rigour. As to this, the paper concludes that the low rigour of the papers,
due to poor contextual descriptions, makes it hard to transfer results from one
environment to another.

18

High
rigour
Medium
rigour
Low
rigour

Experience Model Evaluation Philosophical
Report Research Paper

Figure 9: Rigour and Research Type [8]

Figure 10 illustrates the rigour of the contribution types provided by each
of the primary papers in Paternoster et al. [7]. The x-axis represents the
contribution types, and the y-axis represents the rigour. The division of rigour
score is based on table 7 in the study. Papers that got a total score above 7

s received high rigour, between 4 and 7 received medium rigour, while less than
4 received low rigour. 70 percent of the papers in figure 10 received a medium
score, while 21 got a high score.

High
o ® ® ®

Medium
= @ e e e ‘
Low
rigour ' ‘

Lessons

Framework Guidelines Theory Tool Model Advice
learned

Figure 10: Rigour and Contribution Type [7]

Comparing the tables it becomes evident that the rigour of primary pa-
pers has increased from the period 1994-2013 to 2013-2017. Recently software
sis process and management have received a significant amount of high-quality re-

19

540

550

555

560

565

570

search. The other knowledge areas have received little attention, however of
high-quality. The quality assessments are subject to bias from several reasons:
(1) different quality assessment criteria, (2) different rating systems, (3) differ-
ent researchers providing various experience and knowledge to the assessment
process, (4) contributions from multiple authors from different time periods. To
mitigate systematic errors, we defined clear inclusion criteria, and author one
and two collaboratively assessed the newly selected primary papers.

4.3. RQ3: In what context has software startup research been conducted?

This section is divided into three sub-sections identifying the contextual de-
scriptions provided in the period 1994-2017. Section 4.3.1 shows how papers
characterize the startup context, and how they use the term for “startup com-
pany” differently. Section 4.3.2 shows whether the papers from 2013-2017 focus
on startups in the context of incubators. Section 4.3.3 presents in detail the
contextual descriptions provided by papers between 2013-2017.

4.8.1. Thematic Concepts and Term Frequency

To illustrate how researchers use different definitions and thematic concepts
in their characterizations of startups, we extracted the thematic concepts (i.e.,
referred to as recurring themes in Paternoster et al. [7]) between 1994-2017. Pa-
ternoster et al. [7] extracted 15 themes from 43 papers (explained in table B.11).
As to this, it is possible that other selections of papers would have provided a
different set. The thematic concepts constitute a solid base for characterizing
startups, presenting what are the most common perceived characteristics when
talking about startups among research. A coherent use of thematic concepts to
characterize software engineering can help researchers and practitioners judge
whether research results can be generalized and transferred to other startup
engineering contexts. To extract the frequency between 2013-2017, the first and
second author read the full text of the primary papers. In addition, searches
were performed in the pdf-version of each paper to find the frequency of thematic
concepts.

Table 3 presents a complete usage of thematic concepts operating startup re-
search between 1994-2017. We observe that the characterizations have changed
over time (e.g., the most frequently used concept before 2013 was only the fourth
most used one after 2013). The differences are significant since it is only four
years between the studies. The use of concepts between 2013-2017 is highly
inconsistent. There is no single concept that all the 22 empirical papers use for
the startups they investigate. The low frequencies of the thematic concepts also
illustrate that many of the papers provide poor startup descriptions.

20

585

590

Thematic Concepts Frequency 13’-17 (#27) Frequency 94’-13" (#47)

Innovation/Innovative 15 19
Uncertainty 14 15
Small team 11 12
Lack of resources 9 21
Little working/operating history 9 3
Time-pressure 7 17
Rapidly evolving 5 16
New company 5 8
Highly reactive 3 19
Highly risky 3 8
Third party dependency 2 12
One product 2 9
Not self-sustained 1 3
Low-experienced team 0 9
Flat organisation 0 5

Table 3: Thematic Concepts, 1994-2017

Table 4 shows the number of primary papers from 1994-2017 using the spec-
ified terms for “startup company”. In situations where the title did not use any
of the terms, the abstract was revised. Several papers [60, 61, 62, 63, 64] did
not use any of the terms or was not found. From the table, it can be observed
that the use of terms for startup companies has changed. The most significant
finding is that the term “startup” is more frequently used now than before. 75
percent of the studies from 2013-2017 used the term “startup”, compared to
48 percent in 1994-2013. 15 percent used the term “start-up” in the period
2013-2017, while 48 percent used the term “start-up” between 1994-2013. The
inconsistent use of terms is one of the main challenges for developing a coherent
body of knowledge within software startup engineering. Even though 40 studies
used the term “startup”, the context for which they were used was not the same,
or the study context was poorly described.

Term Frequency 13’-17" (#27) Frequency 94’-13’ (#42)
Startup 20 20

Start-up 4 20

Very small entity 1 0

Very small company 1 1

Very small enterprise 1 1

Table 4: Term Frequencies, 1994-2017

4.3.2. Incubated Companies

Figure 11 shows the percentage of the newly selected empirical papers that
have performed research in the context of incubators. That is, mentioning
incubators or presenting research on startups that are part of incubator envi-
ronments. As illustrated, 91 percent of the papers focused on startups outside

21

595

600

605

610

of incubator context or did not mention this in their description. Two papers
focused on incubated startups [65, 66].

Incubated ® Not incubated

Figure 11: Percentage of Incubated Companies, 2013-2017

4.3.8. Contextual Descriptions

The primary studies from 2013-2017 that have provided empirical evidence
and sufficient contextual descriptions are presented in table 5. The relevant con-
text information includes the attributes: (1) number of startups under investiga-
tion, (2) size of the company/team, (3) the product orientation of the startups,
and (4) other relevant contextual descriptions beyond these three (e.g., lifecycle
stage, age/year of establishment, location, software development methodology).

As illustrated in the figure, 14 of the 22 studies showed a sufficient amount
of contextual description. The contextual descriptions in the remaining eight
papers were either absent or not sufficiently explained. The papers not providing
empirical evidence were not evaluated. The two last papers in the table are
subject to omission, as both have two fields of "not specified”.

The following list presents some of the descriptions of companies that have
participated in empirical research on startups, and explanation of non-trivial
information.

e The number of startups under investigation is in the range from 1-20
startups. The most frequently used number of startups was found to be
3-5.

e The number of employees is usually in the range of 2-25, depending on the
lifecycle stage of the company. At early stages, the number of employees
tends to be equal to the number of founders, which seems to be in the
range of 2-6. At later stages, more employees are needed. For the scaling
phase, most companies have 10-20 employees.

e It is usual that researchers specify the product orientation of the startups
(e.g., B2B/B2C).

22

620

625

630

The age of the investigated companies is usually in the range 1 month to
3 years. Some papers investigated VSEs, one of them 18 years active [67].
Companies beyond three years of age tend to be past the scaling phase.

Startups use different software development methods. The most usual
methods found were agile, scrum, or ad-hoc.

No more than two papers mentioned whether the investigated companies
had received any funding, and if so what kind of funding they had received.

Even if some of the investigated startups develop products with mixed
software and hardware parts, no paper focused on their specific challenges
or practices.

A bootstrap startup is a company that started out without initial funding
and resources [46].

“VSEs” and “high growth firms” can in the related studies be regarded as
startup companies.

In relation to the startup stages presented in section 2.3: (1) Concept and
pre startup stage are similar to stage 1. (2) Implementation, functional,
and startup stages are similar to stage 2. Commercial and scaling stages
are similar to stage 3. (4) Mature stage can be either stage 3 or 4.

23

640

Nr of startups

Company size

Product orientation

Other relevant info

Social network

Roles: Designer, 1 web/iOS/android

[30] 1 startup 5 members licati dev. each, CEO
application Approach: Lean Startup/Agile
4 members Health Canada, mobile app, concept stage
[14] 3 startups 6 members E-commerce Ttaly, mobile and web app, func.stage
25 members E-commerce Brazil, web app, mature stage
12 members 3yrs old
(6] 4 startups 10 members Academic 1lyrs old
)) 8 members business domain Tyrs old (still incubated)
10 members 4months old (still incubated)
e Db performance High potential growth firm,
(68] 1 startup Not specified & irﬁeroperability spiz-olilt from abuniversity
2 founders Video service Working prototype (147)
[44] 4 startups 3 founders SaaS Func. product, limited users (15)
h) 2 founders Event ticketing system Func. product, high growth (11°)
2 founders Game-based learning Mature product (06)
6 members Online photo marketplace Ttaly (lean startup/agile,12’.impl.phase)
3 members Marketplace for food hub Norway (ad-hoc,15’,concept.phase)
[28] 5 startups 4 members Collab.platform construction Norway (Scrum,11’,commercial.phase)
18 members Sale visualization Norway (agile,11”,commercial.phase)
3 members Under-water camera Finland (ad-hoc,11”impl.phasc)
20 members Learning game, B2C 5
18 members Real-time sale management, B2B
[45] 5 startups 1 member Photo marketplace, B2C 2012, startup
3 members Social platform,B2C 2015, pre-startup
1 member Collab.platform construction, B2B 2011, startup
6 members Hyper-local news platform, P2P Norway (agile,2015,bootstrap)
9 members Collab.platform construction, B2B Norway (scrum,2012,bootstrap)
[46] 6 startups 3 members Ticket event system, B2B Norway (agile,2012,bootstrap)
5 members Shipping platform, P2P UK (agile,2013,early investor)
12 members Game learning tool, P2P UK (dist.agile,2013,bootstrap)
5 members Fish farm management, B2B Vietnam (ad-hoc,2016,bootstrap)
[69] 2 startups 4 members Not specified Peru (2012, VSE/start-up term)
2 members Canada
4 members Photo market place, P2P 2011,paying customers
[56] 3 startups 5 members Under-water camera, B2B 2009, paying customers
12 members Ticketing system, B2P 2011,paying customers
17 members Enterprise 18yrs active (int.customers)
[67] 3 VSEs 10 members Financial services 9yrs active (int.customers)
7 members Enterprise 4.5yrs active (int.customers)
[5] 13 startups g,éof;ﬁ?;g:m Not specified ’11111112];:; S::u et:
Incubator-context
[65] 8 startups Not specified ~ Not specified 62 % used pseudo-agile for regs.
100 % not documenting many regs.
Food-waste knowledge app
[13] 3 startups Not specified ~ Online debt platform Not specified

Online investment platform

Table 5: Contextual Descriptions, 2013-2017

Table 6 presents a summary of the main findings contributing to addressing

our research questions: (RQ1) How has software startup research changed over
time in terms of focused knowledge areas? (RQ2) What is the relative strength
of the empirical evidence reported? (RQ3) In what context has software startup
research been conducted?

24

645

650

665

Research Question Findings

Most research has been conducted within the knowledge areas software
process, management, construction, design, and requirements, with the

RQ1 shift of focus toward process and management areas. Researchers have
provided lessons learned and advice studies, paying less attention to
specific tools and frameworks.

The rigour of primary papers was higher between 2013-2017 than that
RQ2 of 1994-2013. Two reasons for this are increased importance of startups,
and increased focus on researchers providing high-quality research.

Thematic concepts representing the software startup context include
innovation, lack of resources, uncertainty, time-pressure, small team,
highly reactive, and rapidly evolving. Startup literature provides an
inconsistent use of thematic concepts describing startups.

RQ3

Table 6: Summary of results

5. Discussion

In this paper, we have applied a systematic mapping method to analyze
the 74 primary papers, to observe how software startup research has evolved
and possibly matured in some Software Engineering knowledge areas. This
makes it possible to identify changes in research direction for the last five years.
This section presents our discussion of the newly selected papers along with
the SWEBOK knowledge areas, identifying state-of-the-practice and pointing
out existing research gaps. From the extracted context features, we provide a
synthesized description of the startup context.

5.1. RQ1: How has software startup research changed over time in terms of
focused knowledge areas?

5.1.1. SWEBOK Knowledge Areas
Software Engineering Process. The need for the software development process
to be adapted to a project’s scope, magnitude, complexity, and changing re-
quirements is generally acknowledged, however, there exists a lack in guidance
on how software startups can adapt their process to their situational context
[68]. The situational context consists of a large number of concerns and factors,
as found in the “reference framework” [70], indicating why software engineer-
ing is so hard [68]. The situational factors in the reference framework explain
the need for startups’ own software development processes, and why strictly
following the agile methodology is often outside the scope of small startups
[30]. In early-stage software startups, research shows that systematic software
engineering processes often are replaced by light-weight ad-hoc processes [11].
Software startups need a model fitted to both the innovation, and engineering
processes in startups’ complex and chaotic situations. The Hunter-gatherer
cycle is one model proposed to help startups in all phases of the company,

25

670

675

680

690

700

705

710

from their evolution from innovative ideas to commercial products. The model
differentiates between the hunting cycle, and the gathering cycle, which covers
the innovation and engineering activities. The model is at a preliminary stage
and requires more empirical evidence in order to be generalized to all software
startups [56].

Software Engineering Professional Practice. Software engineers need to possess
the required knowledge, skills, training, and experience to practice professional
and responsible software engineering [9]. Standards like ISO are meant to ensure
high quality and reliability of software products [71], and can thus help devel-
opers to practice software engineering at a level in line with these objectives.
The paper by Laporte and O’Connor [51] presents results from early trials of the
ISO/IEC 29110 standard for very small entities and concludes that international
certifications can enhance small software companies’ chances for success.

Developers in software startups typically prioritize speed related agile prac-
tices rather than quality related ones [72]. Standards like ISO, tailored to the
startup context, can help software developers combine quality and speed, which
in turn can increase the chances for success. However, as the ISO/IEC 29110
standard mainly is intended for very small companies, it is only partially rele-
vant for startups. Future work should be undertaken to develop an ISO standard
tailored to the startup context, to support developers in practicing professional
software engineering. In general, there was a lack of research supporting pro-
fessional practice in software startups.

Engineering foundations is one of the 15 knowledge areas that was not cov-
ered in any paper. It is about the application of knowledge in the engineering
discipline, allowing engineers to develop and to maintain software more effi-
ciently and effectively, and help practitioners to adopt professional software
engineering principles. As to this, more work should be undertaken to identify
the engineering foundations of software developers in startups. Most prior re-
search has focused on the needs of established companies. A possible research
area could be to investigate which engineering practices graduates and other
engineers should possess if they are to work in a software startup, and how
universities and other educational institutions can facilitate learning and other
services to support the specific needs of practitioners that are to work in software
startups.

Software Engineering Management. Software engineering management concerns
about a wide range of different areas, including planning, measuring, coordinat-
ing, and reporting activities to support systematic software development and
maintenance [9]. For startups, software engineering management relates to,
among other things, business model experimentation and customer develop-
ment.

Three primary studies that have identified software engineering management
are [73, 56, 74]. However, these papers primarily focus on software engineering
processes [73, 56] and software quality [74]. Although the Hunter-gatherer cy-
cle presented by Nguyen-Duc et al. [56] presents how startups can handle the

26

715

720

730

735

740

750

dynamic evolution of product-market fit, which is part of both business experi-
mentation and customer development, it is primarily focused towards software
engineering processes in startups.

The managerial part of software engineering has been identified by Nguyen-
Duc and Abrahamsson [46], exploring the outsourcing relationship in software
startups. They concluded that outsourcing is a feasible option for early-stage
startups. The authors are underway to provide a guideline with best practices
for outsourcing in startups.

Other papers have focused on principles from Lean Startup, especially the
role of pivoting in software startups. This includes why startups pivot [29], and
which pivot types exist [44]. More work is required to address the consequences
and relationship among different pivot types, both from a business and technical
perspective. How pivoting should be performed at different lifecycle stages,
both in terms of system complexity and modifiability, may affect the pivoting
decision.

The research agenda [1] has addressed a need for more research to identify
how startups explicitly manage risks, and how startups can model and measure
risks. This further relates to which tools and techniques they should utilize to
preserve agility and speed in dynamic environments of high uncertainty. Lean
Startup offers entrepreneurs a method to handle such environments, but more
empirical evidence is needed to understand how software startups apply this the-
ory in practice so that researchers can develop tailored models and frameworks
to reduce business and technical risks.

Software Quality. A frequent issue in terms of software quality for startups is
technical debt. The development of minimum viable products, and releasing
the product as fast as possible, often require the development team to take
shortcuts and workarounds. Steve McConnell showed that technical debt can
be divided into intentional and unintentional debt [75]. Shortcuts can lead to
the accumulation of intentional technical debt, while unintentional technical
debt can happen when business model experimentation is leaved out [74]. No
matter how good the idea may seem, not validating the idea with customers
could lead to the development of unnecessary features.

Not focusing on technical debt will have consequences for the product quality,
while constantly changing and improving the business model will be necessary
to stay competitive [74]. Finding the correct balance is therefore essential. The
same problem is referred to as the developer’s dilemma [76]. The developer’s
dilemma also emphasizes the need for managers to communicate the learning
goals of the product precisely so that developers can adjust the quality accord-
ingly. Not finding the correct match between learning goals and quality will
often lead to technical debt, waste, or missed learning.

To help startups focus on technical debt, one estimation method is proposed
based on Visual Thinking [77]. The technique is based on “duck taping” each
part of the code that is developed or fixed in a messy way, to keep an overview of
what might cause quality issues in the future. Measuring technical debt is hard,
and as the author also concludes, the method needs more empirical evidence as

27

760

765

770

775

780

785

790

to whether it actually is capable of solving issues related to technical debt.

Software Construction. There exists a wide range of various software tools to
speed up the development processes in software startups. However, as Edison et
al. [59] suggest, there does not exist a clear understanding of how entrepreneurs
can use the different tools efficiently to meet their specific needs. As to this, the
paper describes the outline of a system that provides a software tool portal that
supports and recommends which tools to use in the construction of software
products and services. The portal can be directly connected to the research
agenda [1], which addresses a need for how software tools can be recommended
and used by entrepreneurs.

According to our findings, there is a general lack of research within the
field of software construction in startups. A software tool portal can indeed
be helpful to support software construction. However, such a portal is not
specifically addressing how to construct software. Software construction includes
the management and practicalities of construction and the use of technologies
and tools to develop software [9]. As to this, it can be feasible to address software
construction through sub-categories, like design, testing, and verification.

Software Engineering Methods and Models. The models and methods knowledge
area aims at making software processes more success-oriented through system-
atic and repeatable activities at different lifecycle stages [9]. Topics include
principles and properties of models, analysis of models, and various software
development methods.

Startups need software development methodologies and techniques tailored
to their specific contexts. These should be based on Lean Startup and agile
principles [7]. Researchers are encouraged to identify what engineering methods
and models that are used today, and whether they work in a startup context
[1].

The Greenfield Startup Model (GSM) aims at explaining how development
strategies and practices are engineered and utilized in startups [5]. A similar
model, the academic startup model, was created by Souza et al. [66], which illus-
trates how software startups structure and execute their engineering activities.
Both papers conclude that early-stage software startups do not adopt tradi-
tional development methodologies. Instead, rapid prototyping and continuous
experimentation are in focus, hence engineering practices are adapted to each
startup’s specific context. These models provide development objectives that
software engineers in startups can use, as well as guidelines for future research
alming at improving the current state-of-the-art.

We see an existing need to validate the software engineering models adapted
to the startup context. This includes areas like technical debt management for
particular contexts, and how new models from academia and industry can be
applied in the startup context [5].

Software Testing. Software validation and testing are essential parts of all soft-
ware engineering processes. Software testing is both costly and time-consuming,

28

800

805

810

815

820

830

and without sufficient knowledge about customers and users, it can be difficult
for startups to apply necessary testing practices in the development of high-
quality software products and services.

Pompermaier et al. [65] found that testing is critical to startups’ success.
However, in the construction phase of the first version of the system, technical
teams did not use any software testing techniques. This changed in the following
phases, where 75 percent of the technical teams used software testing techniques.
The most common testing techniques were unit tests (37 percent), pilot clients
(25 percent), functional tests (25 percent), and specialist testers (13 percent).

Due to the importance of testing, startups should apply testing techniques at
a more consistent and detailed level to enhance the quality and professionalism
of their development processes. Apart from the results presented by Pomper-
maier et al. [65], more research is required to identify and develop methods for
how startups can enhance their current testing processes, even in contexts of
scarce resources and time-pressure. Research should look at how startups can
learn from established companies’ systematic testing processes, even if they have
significantly different needs for, and usage of such methods. Finding an opti-
mal balance between cost/time spent on testing activities and how this evolves
over time in startups can help them in the introduction of good software testing
practices [1].

Software Requirements. Software requirements engineering activities include
elicitation, negotiation, analysis, specification, and validation of requirements
[9]. As startups lack knowledge about their customers and users, it becomes
difficult to identify and also verify all requirements. How much time should be
spent on requirements is challenging to estimate when you don’t know whether
the requirements actually will be implemented. This, in turn, makes it difficult
to estimate time and cost of software development. To deal with these ambigui-
ties, startups should apply techniques from the Lean Startup methodology [12].
Prototyping, continuous experimentation of minimum viable products, and piv-
oting are effective tools and methods startups can utilize in their requirements
engineering processes [1].

Rafiq et al. [14] found that there was a lack of studies investigating how
software startups perform requirements engineering processes. The study found
that requirements mainly were elicited through the founders’ assumptions and
interpretations of the market. These were based on several different require-
ments elicitation techniques, including prototyping, interviews, questionnaires,
feedback comments analyses, competitor analyses, similar product analyses, col-
laborative team discussions, and model users. Although elicitation techniques
were used, the startups did not define the requirements explicitly. This resulted
in a lack of formal documentation, both before and after the elicitation process.

Future research should investigate a larger number of software startups to
identify a greater amount of elicitation techniques and to provide stronger evi-
dence of the findings in Rafig et al. [14]. More research should be undertaken
to identify negotiation, specification, and validation techniques. In addition,
research is necessary to identify requirements engineering for different lifecy-

29

850

855

860

865

870

885

cle stages to help startups in specific situational contexts identify appropriate
requirements engineering techniques.

Software Design. The role of MVPs in software startups has been addressed
by Nguyen-Duc and Abrahamsson [28]. They suggest that MVPs are effective
tools for requirements elicitation, and for bridging knowledge gaps between en-
trepreneurs, investors, and software developers - emphasizing that MVPs can
serve as a multiple facet product. A research topic requiring more work is how
software prototype practices can be applied in an agile development context, and
how startups can benefit from adopting open source software in prototyping.
The speed of prototyping has been addressed by Nguyen-Duc et al. [17]. The
factors that influence the speed of prototyping can be grouped into artifacts,
team competence, collaboration, customer, and process dimensions. These fac-
tors, along with the uncertainties of the startup context make it important to
define practices and processes to support decision-making in prototyping. While
throw-away prototypes are used mainly for specification and experiments, evo-
lutionary prototypes provide a basis for complete systems, usually developed
with extensive reuse. Customer feedback is an essential part of business ex-
perimentation and is mainly done through prototyping. More work is required
to identify what kinds of learning different prototypes provide and to identify
effective prototyping and development patterns among software startups.

5.1.2. Startup Research 1994-2017

Matching the primary papers with the right knowledge area can be challeng-
ing, one reason being their relevance to the startup context. Another issue is
that different perceptions of knowledge areas can give different classifications.
Different authors’ biases in terms of knowledge and personal opinions will also
lead to different classifications.

Looking at the knowledge areas covered between 1994-2017, we see that soft-
ware maintenance and software configuration management have received few
contributions. As one of the most important objectives for startups is to grow
and scale their business, both maintenance and configuration management be-
comes more important at more mature lifecycle stages. No papers between
2013-2017 focused on these knowledge areas, illustrating their irrelevance to the
startup context.

Four knowledge areas were not covered at all (computing, mathematical, and
engineering foundations, and software engineering economics). They character-
ize the educational requirements of software engineering, hence not particularly
relevant for specific software startup research. However, we argue that more
research should be provided within engineering foundations, as it can serve as
a prerequisite for software practitioners in startups. Apart from these findings,
we observe that the areas models and methods, testing, and quality have re-
ceived few contributions. In contrast to the educational requirements, these are
of greater importance in all startup lifecycle stages, and should thus be given
more attention in future work.

30

890

895

900

915

920

925

930

Areas with numerous contributions include software engineering process,
software engineering management, software construction, software design, and
software requirements. Management was suggested by Klotins et al. [8] as a
potential area for future work. Recently, several papers have contributed to
important managerial aspects like pivoting, experimentation, and the role of
prototypes to define and assess business and development scope. It is clear that
the startup context requires fast and effective decision-making, both at a man-
agerial and technical level. Software requirements engineering is important to
manage in order to minimize time and costs and avoid feature creeps related to
prototyping and business experimentation.

Another area not sufficiently covered between 1994-2013 was software en-
gineering process. This is in contrast to the last five years, where process has
received most contributions. Klotins et al. [8] argue that software engineering
process becomes relevant for the maturity phase when product development is
more robust and processes more predictable. As to this, the software process
knowledge area is more relevant for SMEs. In our study, however, we have re-
garded process as relevant for early-stage development as well, illustrating the
different interpretation among researchers.

The publication frequency of primary papers between 1994-2017 indicates
that increasingly more papers are published. No other year is more represented
than 2017, which indicates that there is an increased focus on research within
the field. This can be seen as a direct response to the research agenda’s [1]
identified need for more research and the increased impact and importance of
startups in today’s technology innovation processes. The highly dynamic mar-
kets and ever-increasing customer demands lead to a high failure rate among
startup companies. Empirical studies have found that although startups try to
adopt Lean Startup principles and agile methods, they generally find it hard to
apply them [5, 66]. More research is thus required to support entrepreneurs and
software developers to enhance their chances of success. With the increased pub-
lication frequencies in mind, it seems that more work is undertaken to address
startups’ unique needs.

Software startups find it hard to apply theory in practice, a claim supported
by both empirical research and the high failure rates. Looking at the contribu-
tion types from 1994-2017, we observe that the most frequent ones are advice,
lessons learned, and models, while the least frequent ones are tools, guidelines,
and frameworks. Between 2013-2017, lessons learned has been the most pop-
ular contribution type, while previously advice was more popular. What we
can make from these numbers is that researchers mainly have focused on pro-
viding advice and learnings to the startup community. As to this, we suggest
that researchers should provide knowledge from state-of-the-practice to support
startups with specific tools and frameworks. This could allow for a broader
coverage of startups’ needs and unique requirements.

5.1.3. Identification of Research Gaps
By structuring literature within the field from 1994-2017, this study allows
for identifying whether research from the last five years has addressed research

31

935

940

950

960

965

970

975

gaps suggested by the previous mapping studies. In addition, this section will
point out directions for future research.

Paternoster et al. [7] expected more studies to contribute to the adoption of
agile practices in startups. In particular, they recommended the need for future
studies to provide techniques for aligning business goals of software startups
with the execution of specific development practices. Another area suggested
for future research was the development of customer collaboration processes
for requirement elicitation, allowing for testing the problem before releasing
the product to market. Lastly, they identified the need for improved verbal
communication with the introduction of new tools and techniques to enhance
knowledge transfer in startups. These research gaps have only partly been ad-
dressed the last five years. Towards agile methodologies and techniques tailored
to the startup context Pantiuchina et al. [72] provide a better understanding of
the current adoption of agile practices in software startups. The study indicates
that speed-related agile practices are more frequently used than quality-related
practices. Comparable findings have been presented by Yau and Murphy [30],
stating that a rigorous agile methodology intended for established companies
may not be applicable to the startup environment. In relation to customer
development Chanin et al. [13] present the results from applying a customer
development process to three startups, indicating that the process can improve
the requirements process. Others have also contributed to addressing customer
development and requirements elicitation [14, 28, 44]. We could not identify
research directly related to team communication, documentation, or knowledge
transfer.

Klotins et al. [8] stated that there is an insufficient understanding of qual-
ity requirements role in software startups, and that maintenance of product
integrity in startups is yet to be explored. This is especially relevant due to the
evolutionary approach and restricted resources of startups. Similar to Pater-
noster et al. [7], Klotins et al. [8] highlight the need for addressing the relation
between software technical decisions and organizational business goals, and a
better understanding for human capabilities in startups. Comparable to the
need for customer development processes presented by Paternoster et al. [7],
Klotins et al. [8] identified the need to further investigate the role of scope in
software startups. Discovering the right scope can greatly improve development
speed, by identifying the necessary features and effort. Since 2013 empirical re-
search has been undertaken to explore state-of-the-practice in testing activities
of software startups [65], and the accumulation of technical debt [74, 76, 77].

We suggest future work to compile a set of agile practices that provide enough
benefits to be adopted in the startup context, overcoming challenges related to
cost and time of implementing a process model without compensating the de-
mand for speed in early-stage startups. A development methodology should
include specific practices related to communication in the growing number of
stakeholders. We also emphasize future studies dedicated to the role of hu-
man capital in startups, investigating capabilities and engineering foundations
of startup practitioners. In addition, we highlight the need for studies explor-
ing challenges and engineering approaches of startups developing products with

32

980

990

995

1000

1005

1010

1015

1020

mixed hardware and software parts. Finally, more work is needed to cover the
partly filled research gaps identified by the previous mapping studies.

5.1.4. Future Classification

Unterkalmsteiner et al. [1] identified more than 70 research questions in
different areas supporting activities of software startups. The researchers con-
tributing to the paper are all part of a network (The Software Startup Research
Network) of researchers that have created eighteen research track descriptions
to ease the presentation and discussion of the research agenda. These eighteen
research tracks were grouped into six themes based on similarities.

Classifying the newly selected primary studies according to the SWEBOK
knowledge areas resulted in 9 out of 15 of the areas being addressed. This
indicates that some of the knowledge areas might not be related to startups,
while some are of big interest. The same pattern was discovered in Klotins et al.
(8], which used SWEBOK for lack of a better alternative. The low coverage is
most certainly because most of the research in the field of software engineering
is undertaken in relation to established companies, from which the SWEBOK
knowledge areas are developed.

For future mappings, it would be sensible to categorize the papers into the
newly established research themes [1]. These are better suited for startup re-
search and can help guide researchers in providing knowledge to the specific
areas that are most important for the challenges faced by startups. Do notice
that number 7 and 8 require more evidence as to whether they can be related to
software startup engineering: (1) Supporting startup engineering activities, (2)
Startup evolution models and patterns, (3) Human aspects in software startups,
(4) Applying startup concepts in non-startup environments, (5) Startup ecosys-
tem and innovation hubs, (6) Methodologies and theories for startup research,
(7) Marketing, (8) Economics and business development.

5.2. RQ2: What is the relative strength of the empirical evidence reported?

Paternoster et al. [7] provided a mapping of the research within software
development in startups for the period 1994-2013, including 43 primary studies.
Each study provided empirical evidence as this was a quality criterion of the
mapping. Overall, only 4 of these papers were found to be (1) contributions
entirely dedicated to engineering activities in startups, (2) providing a strong
contribution type, and (3) conducted through an evidence-based research ap-
proach [10, 37, 38, 39].

The mapping study Klotins et al. [8] found that (1) most of their primary
studies did not compare and analyze data from more than one case, and (2) most
studies had low rigour, making it difficult to compare results. As to this, they
emphasized the need for more empirical research to provide stronger evidence
and enable results to be generalized to all software startups. More specifically,
the paper identified a lack of studies related to requirements processes, the
“developer’s dilemma” (as discussed in section 5.1.1), software architecture, and
software engineering processes.

33

1025

1030

1035

1040

1045

1050

1055

1060

1065

Figure 4 shows the areas that have received most contributions in terms
of empirical research between 2013-2017. These are software engineering pro-
cess, software engineering management, and software engineering professional
practice. On the contrary, five knowledge areas received less than five scientific
contributions, arguing the need for more research, even within areas that have
gotten attention from the research community. This is also in line with the
research agenda’s addressed need for further empirical evidence [1].

Comparing the provided quality between papers published before and after
2013 we see that the quality of work is improving. As for the previous studies,
the reported rigour of the primary papers was at a generally lower level than
what was found in the newly selected papers, where only one paper obtained
low rigour. Possible explanations are the different quality assessment methods
used, and the increasing number of researchers contributing to the field. Another
reason may be the assessment bias of different researchers.

Several of the researchers who have contributed to the newly selected pri-
mary papers are members of The Software Startup Research Network, whose
aim is to provide entrepreneurs and the research community with novel research
findings within the area of software startups. Anh Nguyen-Duc, one of the mem-
bers of this network, has participated in six of the primary studies, in which
all received a high rigour score. Another researcher who has contributed to
three of the primary studies is Rory V. Connor, where all three papers received
a high rigour score. He participated in three primary studies in the previous
systematic mapping study as well, all of which obtained high rigour. As to this,
it seems that the quality of research is becoming increasingly high compared
to before, justifying the high rigour obtained by the quality assessment in this
mapping study. The quality of work was reported to be a problem area in both
of the previous mapping studies. However, as our findings suggest, there is an
increased focus on providing high-quality research with several researchers con-
tributing with multiple papers, as illustrated by specific initiatives that promote
scientific work.

5.8. RQ3: In what context has software startup research been conducted?

The most frequently used term for referring to startup companies is “startup”,
with 54 percent of the 74 primary papers using this term. Between 2013-2017,
the same percentage has increased to 75 percent. In order to create a coher-
ent definition for startups, ideally, only one term should be used. The research
community has moved towards a common use of “startup”, and this should
thus be used for future research when referring to companies in the startup con-
text. Inconsistent usage of the term, like “start-up”, “start up”, or “very small
entities” in startup context should be avoided, and makes it difficult for both
practitioners and researchers to adopt relevant results.

Primary papers showed an inconsistent use of thematic concepts when de-
scribing startup companies, with no single factor being used by all papers. As
stated in the results, this also relates to the poor contextual descriptions found
in several of the papers. We observe that the usage has changed significantly
between 1994-2017, where only “Time-pressure” was used to the same extent

34

1070

1075

1080

1085

1090

1095

1100

1105

before and after 2013. Interestingly, the least used concept between 1994-2013
is the fifth most used concept by the papers between 2013-2017. As to this, it
seems that some of the thematic concepts found in the previous mapping study
are no longer the ones used by the community.

The many different descriptions of startups make it challenging to develop
a coherent definition and body of knowledge for the startup context. Based
on the frequency of concepts found in the primary papers between 1994-2017,
we argue that at least the concepts occurring in more than 25 percent or more
of the studies should be part of a unique definition of startups. The following
thematic concepts were: (1) Innovation/innovative, (2) Lack of resources, (3)
Uncertainty, (4) Time-pressure, (5) Small team, (6) Highly reactive, (7) Rapidly
evolving. Thematic concepts that were not very relevant for startups include
not (1) self-sustained, (2) low-experienced team, (3) one product, and (4) flat
organization. These concepts should be avoided as the primary definition by
researchers in the community.

Many of the newly selected primary studies did not explain the startups un-
der investigation sufficiently. From the 22 papers providing empirical evidence,
only 14 of these provided a sufficient amount of descriptions (table 5). Inter-
estingly, only two papers mentioned incubators as part of the startup context.
Without a unique definition in literature, the importance of precise descriptions
becomes even bigger, especially for transferring results from one environment
to another [8].

“Team size” received little focus. A startup with 5 employees have different
needs and challenges from a startup with more than 150 employees (e.g., com-
munication needs) [78]. Even though team size will affect engineering practices
to a large degree, too few of the primary papers presented the team size of
the startups investigated. More research is needed to understand how software
engineering practices change according to team size, and to what extent team
size should be part of a unique definition of startups. We found that the usual
number of employees in investigated startups was 2-25. The number depends
on their respective lifecycle stage or the age of the company. A startup usually
starts with 2-6 founders, but as the business scales, more employees are required.
This will, in turn, affect the startup’s need for software processes. As to this,
we emphasize that researchers must be aware of which describing concepts that
are relevant for the startups they are investigating, and that they specify this
in their work. More consistent focus on the situational context is a vital step
towards a more coherent body of knowledge.

The research track of Unterkalmsteiner et al. [1] aims at developing a soft-
ware startup context model that would allow a coherent characterization of
software startups. Since there is no agreement on a standard definition, it is
challenging to provide coherent contributions to the research area.

6. Conclusion

In this study, we have applied a systematic mapping method to analyze the
literature related to software startup engineering. A total number of 74 primary

35

1110

1115

1120

1125

1130

1135

1140

1145

1150

1155

papers (in which 27 papers are newly selected) were extracted and synthesized.
Our study, along with the previous mapping studies, constitute a merging of the
primary literature within the field for the period 1994-2017, including the focus
and relative strength of research, and the effort that’s been made to characterize
the software startup context.

The contribution of this mapping study is two-fold. Firstly, the study pro-
vides a comprehensive view of software startups for Software Engineering re-
searchers. Possible research gaps are derived for future studies. Secondly, the
study provides a map of the contextual setting of investigated startups, inferring
the applicability area of empirical findings. This can help to compare and to
generalize future research in software startups.

Regards to RQ1, most found software startup research between 2013-2017,
are conducted within software engineering management and software engineer-
ing process, while software design and software requirements have received most
attention between 1994-2013. For the period 2013-2017, software design received
fewer contributions compared to that in 1994-2013, illustrating a change of re-
search direction. The knowledge areas software engineering models and meth-
ods, software quality, and software testing have received little attention from the
research community during the period 1994-2017. Apart from these findings,
we emphasize the need for more research within all knowledge areas. For the
period 2013-2017 software configuration management and software maintenance
were not covered at all. As to this, it seems that some of the knowledge areas
aren’t directly relevant to the startup context. Future mappings should instead
use the newly established research themes of Unterkalmsteiner et al. [1].

Regards to RQ2, we found an increased rigour of primary studies after 2013
in comparison with studies found in 1994-2013. While it is still not clear
about the transformation of research results to startup practitioners, startup
researchers seem to increase the focus on conducting high-quality research. The
increased importance of startups has been an important factor to highlight the
need for more research. As startups generally use ad-hoc or opportunistic de-
velopment methods, practices of startups can be different, meaning that more
evidence is needed to generalize work practices to all startups.

Regards to RQ3, we identify a coherent set of concepts that represent the
startup context, (1) Innovation/innovative, (2) Lack of resources, (3) Uncer-
tainty, (4) Time-pressure, (5) Small team, (6) Highly reactive, (7) Rapidly
evolving. Additionally, aspects like (1) team size, (2) product orientation, (3)
number of active years/life cycle stage, (4) number of investigated startups, (5)
location, and (6) development method are important to describe sufficiently to
be able to transfer results from one environment to another. As only 14 of the
primary papers between 2013-2017 provided adequate descriptions, and all pri-
mary papers showed an overall inconsistent use of describing thematic concepts,
we see a need for a more comprehensive endeavor to describe the engineering
context of startups.

Several threats to validity were considered, including the selection of papers,
the use of few online bibliographic databases, the selection of keywords, and
the coarse-grained classification used for the quality assessment. To ensure the

36

1160

1165

1170

selection process was unbiased, the selection criteria were developed in advance,
also the first, second and third author were involved in the selection process.
Both the use of few online bibliographic databases and the identified keywords
and search terms might have lead to relevant papers being omitted. This risk
was mitigated by performing an additional manual search. For the quality
assessment, it is likely that the use of only two points have caused the papers to
obtain a higher rigour than they would have if a more fine-grained assessment
method had been used.

Future work can focus on certain research themes, such as startup evolution
models and human aspects, and consolidate the contextual factors of software
startups. More work should be conducted for specific business contexts, such
as startups that are part of incubators and bigger business ecosystems. As a
next step, we seek to address engineering practices in startups who deliver both
hardware and software, as no prior studies have been entirely dedicated towards
their specific challenges and demands.

Appendix A.

Appendix A presents the classification schema (A.7), which includes the
classification of each primary paper. Table A.8 and table A.9 explain some of
the attributes of the classification schema in more detail.

37

Research Contribution Knowledge . Term for Incubator .
D Method Type Area Pertinence startup context Publisher
. e ~ Lessons e » Penn
[30] Case study learned Process Full Startup No University
Professional
[51] Experiment li:;:: {’f:ﬁi“:;nmm Partial Start-up No QUATIC
carne Management,
Qua}ity'
[79] Framework Proi(‘%sxonal Full Start-up No ACM
Practice
[69] Experiment Guidelines Process Full Start-up No ENASE
Process,
[74] Case study — Theory Management, Partial Startup No Springer
Quality
[59] Survey Tool Construction Full Startup No Springer
Process, \
[56] Case study Model Management Full Startup No ACM
Lessons Very Small .
[67] Case study learned Process Full Company o Springer
[31] Guidelines Process Partial Startup No Springer
Process,
Management,
. Professional Practice,
1] Advice c::::! i‘::t‘iin ractice, pun Startup No EISEJ
. . Quality,
[76] dvice Construction Full Startup No Springer
. e ~ Lessons Process, N Very Small
[73] Case study learned Management Partial Enterprise ° IEEE
Design and Models
Bl ot @0 Model) Mothods Full Startup No IEEE
Lessons Management
4] Case study 2 s art SN
[44] Case study learned Requirements Full Startup No Springer
Lessons Management,
[28] Case study lcarucd‘ Design, Full Startup No Springer
Construction
Methods
[45] Case study ~ Model and Models, Full Startup No IEEE
Management
g
Manage:]
[46] Case study Advice Plr(z::::ment Full Startup No EASE
Lessons Management, .
[29] Case study learned Testing Full Startup No Springer
[47] Case study ~ Theory ;{rzg;iifsmcnt, Full Startup No Springer
Lessons Management,
[17] Case study le(:b:‘:; D;?;(:emen Full Startup No Springer
KSI
Lessons s
[65] Case study ébonb Proc‘ebs, Full Startup Yes Graduate
learned Testing Sehool
Schoo!
Lessons Professional
[72] Survey learned Practice Full Startup No Springer
Lessons
[14] Case study 16::?:; Requirements Full Startup No IEEE
S
[66] Case study ~ Model ;I.OIQ§SlOUal Full Startup Yes IEEE
ractice
[77] Framework Quality’ Full Startup No IEEE
[13] Case study II;::(‘:; Requirements Full Startup No IEEE
[68] Case study Advice Process Full Start-up No Springer

Table A.7: Classification Schema

38

Research Methods

Research Method

Description

Survey

Obtain the same kinds of data from a large group
of people in a standardized, systematic way to find
patterns through statistics.

Design and creation

Development of new IT products or artifacts, or
even a model or method.

Experiment

Investigation of cause and effect relationships
through hypotheses-testing and proofs. Typically
"before” and ”after” measurements.

Case study

Focusing on one instance of the ”thing” being
investigated to obtain a rich, detailed insight into
the case and its complex relationships and processes.

Action research

Plan to do something in real life, do it, and reflect
on the outcome and learnings.

Ethnography

Focusing on understanding the ways of seeing a
specific group of people through field research.

Contribution Types

Table A.8: Research Methods [57]

Contribution Type

Description

Model

Representation of an observed reality by concepts
or related concepts after a conceptualization process

Construction of cause-effect relationships from

Theory determined results
Framework /methods Models related to constructing software or
managing development processes
- List of advices, synthesis of the obtained
Guidelines

research results

Lessons learned

Set of outcomes, directly analyzed from the
obtained research result

Advice/implications

Discursive, and generic recommendation,
deemed from personal opinions

Tool

Technology, program or application used to create,
debug, maintain or support development processes

Table A.9: Contribution Types [7]

39

Appendix B.

Q8 Q9 Q10 Score

Q3 Q4 Q5 Q6 Q7

Q2

Study Q1

10

10
10
10
10

Table B.10: Quality assessment 2013-2017, based on table 3 in Nguyen-Duc et al. [48]

40

1180

1185

Recurring Themes

Explanation

Lack of resources

Economical, human, and physical resources are
very scarce or limited.

Highly reactive

Startups can react very fast to changed market
conditions, technologies, or changed customer
demands.

The startups focus on innovative market segments,

I ti . .

nnovative most likely where they can disrupt markets.
The ecosystem in which the startups operate

Uncertainty within are very uncertain, wrt. customers,

competition, technologies.

Rapidly evolving

Startups’ objective is to grow and scale rapidly.

Time-pressure

The market and environment demands fast
product releases and constant pressure.

Third party dependency

Startups need to rely on external entities and
technologies in their lack of time and resources.

Small team

The startup consist of a small number of
individuals.

One product

The startup is only concerned with the development
of one product.

Low-experienced team

Maximum five years of experience or newly
graduated students.

Highly risky

The failure rate of startups is high.

New company

The company is newly established.

Flat organization

All individuals in the company have shared
responsibility, no high-management.

Not self-sustained

External funding is required, especially in the
early-stages.

Little working/operating history

There is a lack of organizational culture as
the startup is young.

Table B.11: Explanation of recurring themes, based on table 6 in Paternoster et al. [7]

References

[1] M. Unterkalmsteiner, P. Abrahamsson, X. F. Wang, N. D. Anh, S. Shah,
S. S. Bajwa, G. H. Baltes, K. Conboy, E. Cullina, D. Dennehy, H. Edison,
C. Fernandez-Sanchez, J. Garbajosa, T. Gorschek, E. Klotins, L. Hokkanen,
F. Kon, I. Lunesu, M. Marchesi, L. Morgan, M. Oivo, C. Selig, P. Seppanen,
R. Sweetman, P. Tyrvainen, C. Ungerer, A. Yague, Software startups - a
research agenda, E-Informatica Software Engineering Journal 10 (1) (2016)
89-123. d0i:10.5277/e-Inf160105.
URL <GotoISI>://W0S:000387014900006

2

M. Marmer, B. L. Herrmann, E. Dogrultan, R. Berman, C. Eesley, S. Blank,

Startup genome report extra: Premature scaling, Vol. 10, 2011.

41

1190

1195

1200

1205

1210

1215

1220

1225

8]

4

5

6

[7

8

=

(10]

(11]

(12]

M. Crowne, Why software product startups fail and what to do about it.
evolution of software product development in startup companies, in: Engi-
neering Management Conference, 2002. IEMC’02. 2002 IEEE International,
Vol. 1, IEEE, 2002, pp. 338-343.

C. Giardino, S. S. Bajwa, X. Wang, P. Abrahamsson, Key challenges in
early-stage software startups, in: International Conference on Agile Soft-
ware Development, Springer, 2015, pp. 52-63.

C. Giardino, N. Paternoster, M. Unterkalmsteiner, T. Gorschek, P. Abra-
hamsson, Software development in startup companies: The greenfield
startup model, IEEE Transactions on Software Engineering 42 (6) (2016)
585-604. doi:10.1109/TSE.2015.2509970.

URL http://dx.doi.org/10.1109/TSE. 20152509970

S. M. Sutton Jr, Role of process in a software start-up, IEEE Software
17 (4) (2000) 33-39. doi:10.1109/52.854066.
URL http://dx.doi.org/10.1109/52.854066

N. Paternoster, C. Giardino, M. Unterkalmsteiner, T. Gorschek, P. Abra-
hamsson, Software development in startup companies: A systematic map-
ping study, Information and Software Technology 56 (10) (2014) 1200-18.
doi:10.1016/j.infsof.2014.04.014.

URL http://dx.doi.org/10.1016/j.infsof .2014.04.014

E. Klotins, M. Unterkalmsteiner, T. Gorschek, Software Engineering
Knowledge Areas in Startup Companies: A Mapping Study, Vol. 210
of Lecture Notes in Business Information Processing, 2015, pp. 245-257.
d0i:10.1007/978-3-319-19593-3_22.

URL <GotoISI>://W0S:000365180900024

P. Bourque, R. E. Fairley, Guide to the software engineering body of knowl-
edge (SWEBOK (R)): Version 3.0, IEEE Computer Society Press, 2014.

G. Coleman, R. V. O’Connor, An investigation into software development
process formation in software start-ups, Journal of Enterprise Information
Management 21 (6) (2008) 633—648. doi:10.1108/17410390810911221.
URL https://www.scopus.com/inward/record.uri?eid=2-s2.
0-55349133834&d01=10.1108%2£17410390810911221&partnerID=40&
md5=9a7aca62e6£24c6416£d3034dbb66b0a

C. Giardino, M. Unterkalmsteiner, N. Paternoster, T. Gorschek, P. Abra-
hamsson, What do we know about software development in startups?, IEEE
Software 31 (5) (2014) 28-32. doi:10.1109/MS.2014.129.

URL http://dx.doi.org/10.1109/MS.2014.129

E. Ries, The lean startup: How today’s entrepreneurs use contstant inno-
vation to create radically successful businesses, Crown Books, 2011.

42

1230

1235

1240

1245

1250

1255

1260

13]

(14]

(15]

(16]

(17]

(18]

(19]

[20]

21]

(22]

23]

R. Chanin, L. Pompermaier, K. Fraga, A. Sales, R. Prikladnicki, Applying
customer development for software requirements in a startup development
program, in: Proceedings of the 1st International Workshop on Software
Engineering for Startups, IEEE Press, 2017, pp. 2-5.

U. Rafig, S. S. Bajwa, W. Xiaofeng, I. Lunesu, Requirements elicitation
techniques applied in software startups, in: 2017 43rd Euromicro Con-
ference on Software Engineering and Advanced Applications (SEAA), 30
Aug.-1 Sept. 2017, 2017 43rd Euromicro Conference on Software Engineer-
ing and Advanced Applications (SEAA), IEEE Computer Society, 2017,
pp. 141-4. doi:10.1109/SEAA.2017.73.

URL http://dx.doi.org/10.1109/SEAA.2017.73

J. Bosch, H. H. Olsson, J. Bjork, J. Ljungblad, The early stage software
startup development model: a framework for operationalizing lean prin-
ciples in software startups, in: Lean Enterprise Software and Systems,
Springer, 2013, pp. 1-15.

S. Blank, Why the lean start-up changes everything, Harvard business re-
view 91 (5) (2013) 63-72.

A. Nguyen-Duc, X. Wang, P. Abrahamsson, What influences the speed of
prototyping? an empirical investigation of twenty software startups, in:
International Conference on Agile Software Development, Springer, 2017,
pp. 20-36.

L. Karlsson, Dahlstedt, J. N. och Dag, B. Regnell, A. Persson, Challenges
in market-driven requirements engineering-an industrial interview study, in:
Eighth International Workshop on Requirements Engineering: Foundation
for Software Quality, 2002.

E. Carmel, Time-to-completion in software package startups, in: 1994 Pro-
ceedings of the Twenty-Seventh Hawaii International Conference on System
Sciences, 1994.

A. Dahlstedt, Study of current practices in market-driven requirements
engineering, in: Third Conference for the Promotion of Research in IT at
New Universities and University Colleges in Sweden, 2003.

M. Keil, E. Carmel, Customer-developer links in software development,
Communications of the ACM 38 (5) (1995) 33-44.

C. Alves, S. Pereira, J. Castro, A study in market-driven requirements
engineering.

S. Blank, The four steps to the epiphany: successful strategies for products
that win, BookBaby, 2013.

43

1265

1270

1275

1280

1285

1290

1295

1300

24]

[26]

27]

28]

29]

(30]

31]

32]

(33]

34]

(35]

(36]

S. A. Alvarez, J. B. Barney, Discovery and creation: Alternative theories
of entrepreneurial action, Strategic entrepreneurship journal 1 (1-2) (2007)
11-26.

S. D. Sarasvathy, Causation and effectuation: Toward a theoretical shift
from economic inevitability to entrepreneurial contingency, Academy of
management Review 26 (2) (2001) 243-263.

”

A. Maurya, Running lean: iterate from plan A to a plan that works,
O’Reilly Media, Inc.”, 2012.

J. P. Womack, D. T. Jones, D. Roos, Machine that changed the world,
Simon and Schuster, 1990.

A. Nguyen-Duc, P. Abrahamsson, Minimum viable product or multiple
facet product? the role of mvp in software startups, in: International
Conference on Agile Software Development, Springer, 2016, pp. 118-130.

S. S. Bajwa, X. Wang, A. N. Duc, P. Abrahamsson, “failures” to be cele-
brated: an analysis of major pivots of software startups, Empirical Software
Engineering 22 (5) (2017) 2373-2408.

A. Yau, C. Murphy, Is a rigorous agile methodology the best development
strategy for small scale tech startups?

A. I. Wasserman, Low ceremony processes for short lifecycle projects, in:
Managing Software Process Evolution, Springer, 2016, pp. 1-13.

M. Kuhrmann, J. Miinch, I. Richardson, A. Rausch, H. Zhang, Managing
Software Process Evolution: Traditional, Agile and Beyond—How to Handle
Process Change, Springer, 2016.

M. Tanabian, B. ZahirAzami, Building high-performance team through ef-
fective job design for an early stage software start-up, in: Engineering Man-
agement Conference, 2005. Proceedings. 2005 IEEE International, Vol. 2,
IEEE, 2005, pp. 789-792.

S. Chorev, A. R. Anderson, Success in israeli high-tech start-ups; critical
factors and process, Technovation 26 (2) (2006) 162-174.

M. Kakati, Success criteria in high-tech new ventures, Technovation 23 (5)
(2003) 447-457.

N. Tripathi, E. Annanpera, M. Oivo, K. Liukkunen, Exploring Processes
in Small Software Companies: A Systematic Review, Vol. 609 of Com-
munications in Computer and Information Science, 2016, pp. 150-165.
doi:10.1007/978-3-319-38980-6_12.

URL <GotoISI>://W0S:000382651100012

44

1305

1310

1315

1320

1325

1330

1335

37]

(38]

39]

(40]

(41]

(42]

(43]

(44]

(45]

[46]

(47]

G. Coleman, R. O’Connor, Investigating software process in practice: A
grounded theory perspective, Journal of Systems and Software 81 (5) (2008)
T72-784.

G. Coleman, R. O’Connor, Using grounded theory to understand software
process improvement: A study of irish software product companies, Infor-
mation and Software Technology 49 (6) (2007) 654-667.

M. Kajko-Mattsson, N. Nikitina, From knowing nothing to knowing a little:
Experiences gained from process improvement in a start-up company, in:
International Conference on Computer Science and Software Engineering,
CSSE 2008, December 12, 2008 - December 14, 2008, Vol. 2 of Proceedings -
International Conference on Computer Science and Software Engineering,
CSSE 2008, IEEE Computer Society, 2008, pp. 617-621. doi:10.1109/
CSSE.2008.1370.

URL http://dx.doi.org/10.1109/CSSE. 2008. 1370

B. Kitchenham, Procedures for performing systematic reviews, Keele, UK,
Keele University 33 (2004) (2004) 1-26.

K. Petersen, R. Feldt, S. Mujtaba, M. Mattsson, Systematic mapping stud-
ies in software engineering, in: EASE, Vol. 8, 2008, pp. 68-77.

C. Wohlin, Guidelines for snowballing in systematic literature studies and
a replication in software engineering, in: Proceedings of the 18th inter-
national conference on evaluation and assessment in software engineering,
ACM, 2014, p. 38.

F. Shull, J. Singer, D. I. Sjgberg, Guide to advanced empirical software
engineering, Springer, 2007.

S. S. Bajwa, X. Wang, A. N. Duc, P. Abrahamsson, How do software star-
tups pivot? empirical results from a multiple case study, in: International
Conference of Software Business, Springer, 2016, pp. 169-176.

A. Nguyen-Duc, S. M. A. Shah, P. Ambrahamsson, Towards an early stage
software startups evolution model, in: Software Engineering and Advanced
Applications (SEAA), 2016 42th Euromicro Conference on, IEEE, 2016,
pp. 120-127.

A. N. Duc, P. Abrahamsson, Exploring the outsourcing relationship in soft-
ware startups: A multiple case study, in: Proceedings of the 21st Interna-
tional Conference on Evaluation and Assessment in Software Engineering,
ACM, 2017, pp. 134-143.

A. Nguven-Duc, Y. Dahle, M. Steinert, P. Abrahamsson, Towards under-
standing startup product development as effectual entrepreneurial behav-
iors, in: International Conference on Product-Focused Software Process
Improvement, Springer, 2017, pp. 265-279.

45

1340

1345

1350

1355

1360

1365

1370

1375

[48] A. Nguyen-Duc, D. S. Cruzes, R. Conradi, The impact of global disper-

sion on coordination, team performance and software quality—a systematic
literature review, Information and Software Technology 57 (2015) 277-294.

M. Ivarsson, T. Gorschek, A method for evaluating rigor and industrial
relevance of technology evaluations, Empirical Software Engineering 16 (3)
(2011) 365-395.

X. Zhou, Y. Jin, H. Zhang, S. Li, X. Huang, A map of threats to validity
of systematic literature reviews in software engineering, in: Software En-
gineering Conference (APSEC), 2016 23rd Asia-Pacific, IEEE, 2016, pp.
153-160.

C. Y. Laporte, R. V. O’Connor, Ieee, Systems and software engineering
standards for very small entities: Implementation and initial results, 2014
9th International Conference on the Quality of Information and Communi-
cations Technology (QUATIC) (2014) 38-47doi:10.1109/quatic.2014.
12.

URL <GotoISI>://W0S:000364237700005

E. Klotins, M. Unterkalmsteiner, T. Gorschek, Software engineering in
start-up companies: An analysis of 88 experience reports, Empirical Soft-
ware Engineering (2018) 1-35.

K. Kautz, Improvement in very small enterprisese: Does it pay off, Softw.
Process Improv. Pr 226 (1988) (2000) 209-226.

S. Jansen, S. Brinkkemper, I. Hunink, C. Demir, Pragmatic and oppor-
tunistic reuse in innovative start-up companies, IEEE software 25 (6).

S. Shakir, J. Ngrbjerg, It project management in very small software com-
panies: A case of pakistan, in: Americas Conference on Information Sys-
tems, 2013, pp. 1-8.

A. Nguyen-Duc, P. Seppanen, P. Abrahamsson, Hunter-gatherer cycle: A
conceptual model of the evolution of software startups, in: International
Conference on Software and Systems Process, ICSSP 2015, August 24, 2015
- August 26, 2015, Vol. 24-26-August-2015 of ACM International Confer-
ence Proceeding Series, Association for Computing Machinery, 2015, pp.
199-203. doi:10.1145/2785592.2795368.

URL http://dx.doi.org/10.1145/2785592.2795368

B. J. Oates, Researching information systems and computing, Sage, 2005.

M. Shaw, Writing good software engineering research papers, in: Software
Engineering, 2003. Proceedings. 25th International Conference on, IEEE,
2003, pp. 726-736.

46

1380

1385

1390

1395

1400

1405

1410

1415

[59]

(60]

(61]

(62]

(63]

[64]

(65]

(6]

(67]

H. Edison, D. Khanna, S. S. Bajwa, V. Brancaleoni, L. U. Bellettati, To-
wards a software tool portal to support startup process, in: 16th Inter-
national Conference on Product-Focused Software Process Improvement,
PROFES 2015, December 2, 2015 - December 4, 2015, Vol. 9459 of Lecture
Notes in Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics), Springer Verlag, 2015,
pp. 577-583. doi:10.1007/978-3-319-26844-6_43.

URL http://dx.doi.org/10.1007/978-3-319-26844-6_43

M. Hisel, T. Kollmann, N. Breugst, It competence in internet founder
teams, Business & Information Systems Engineering 2 (4) (2010) 209-217.

R. Stanfill, T. Astleford, Improving entrepreneurship team performance
through market feasibility analysis, early identification of technical require-
ments, and intellectual property support, in: Proceedings of the American
Society for Engineering Education Annual Conference & Exposition, 2007.

K. Kuvinka, Scrum and the single writer, Proceedings of Technical Com-
munication Summit (2011) 18-19.

S.-1. Lai, Chinese entrepreneurship in the internet age: Lessons from al-
ibaba. com, World Academy of Science, Engineering and Technology 72
(2010) 405-411.

D. B. Yoffie, M. A. Cusumano, Building a company on internet time:
Lessons from netscape, California Management Review 41 (3) (1999) 8-
28.

L. Pompermaier, R. Chanin, A. Sales, K. Fraga, R. Prikladnicki, An em-
pirical study on software engineering and software startups: Findings from
cases in an innovation ecosystem, in: 29th International Conference on Soft-
ware Engineering and Knowledge Engineering, SEKE 2017, July 5, 2017
- July 7, 2017, Proceedings of the International Conference on Software
Engineering and Knowledge Engineering, SEKE, Knowledge Systems In-
stitute Graduate School, 2017, pp. 48-51. doi:10.18293/SEKE2017-115.
URL http://dx.doi.org/10.18293/SEKE2017-115

R. Souza, K. Malta, E. S. D. Almeida, Software engineering in startups:
A single embedded case study, in: 1st IEEE/ACM International Work-
shop on Software Engineering for Startups, SoftStart 2017, May 21, 2017,
Proceedings - 2017 IEEE/ACM 1st International Workshop on Software
Engineering for Startups, SoftStart 2017, Institute of Electrical and Elec-
tronics Engineers Inc., 2017, pp. 17-23. doi:10.1109/SoftStart.2017.2.
URL http://dx.doi.org/10.1109/SoftStart.2017.2

M.-L. Sénchez-Gordén, R. V. O’Connor, Understanding the gap between
software process practices and actual practice in very small companies,
Software Quality Journal 24 (3) (2016) 549-570.

47

1420

1425

1430

1435

1440

1445

1450

1455

(68]

(69]

[70]

[71]

(72]

(73]

(74]

[75]
[76]

G. Marks, R. V. O’Connor, P. M. Clarke, The impact of situational con-
text on the software development process — a case study of a highly inno-
vative start-up organization, Vol. 770, 2017, pp. 455-466. doi:10.1007/
978-3-319-67383-7_33.

C. Y. Laporte, R. V. O’Connor, L. H. G. Paucar, Software engineering
standards and guides for very small entities: Implementation in two
start-ups, 2015, pp. 5-15.

URL https://www.scopus.com/inward/record.
uri?eid=2-s2.0-84933558276&partnerID=40&md5=
02b5£237bb268c0133caa7cbcbl7ad4a

P. Clarke, R. V. O’Connor, The situational factors that affect the soft-
ware development process: Towards a comprehensive reference framework,
Information and Software Technology 54 (5) (2012) 433-447.

ISO, https://www.iso.org/home.html, access date: 2017-11-12 (2017).
[link].
URL https://www.iso.org/home.html

J. Pantiuchina, M. Mondini, D. Khanna, X. Wang, P. Abrahamsson, Are
software startups applying agile practices? the state of the practice from
a large survey, in: 18th International Conference on Agile Software Devel-
opment, XP 2017, May 22, 2017 - May 26, 2017, Vol. 283 of Lecture Notes
in Business Information Processing, Springer Verlag, 2017, pp. 167-183.
doi:10.1007/978-3-319-57633-6_11.

URL http://dx.doi.org/10.1007/978-3-319-57633-6_11

C. Y. Laporte, R. V. O’Connor, Implementing process improvement in
very small enterprises with iso/iec 29110: A multiple case study analysis,
in: Quality of Information and Communications Technology (QUATIC),
2016 10th International Conference on the, IEEE, 2016, pp. 125-130.

J. Yli-Huumo, T. Rissanen, A. Maglyas, K. Smolander, L.-M. Sainio,
The relationship between business model experimentation and techni-
cal debt, in: 6th International Conference on Software Business, IC-
SOB 2015, June 10, 2015 - June 12, 2015, Vol. 210 of Lecture Notes
in Business Information Processing, Springer Verlag, 2015, pp. 17-29.
doi:10.1007/978-3-319-19593-3_2.

URL http://dx.doi.org/10.1007/978-3-319-19593-3_2

S. McConnell.

H. Terho, S. Suonsyrja, K. Systa, The developers dilemma: Perfect product
development or fast business validation?, in: 17th International Confer-
ence on Product-Focused Software Process Improvement, PROFES 2016,
November 24, 2016 - November 26, 2016, Vol. 10027 LNCS of Lecture Notes
in Computer Science (including subseries Lecture Notes in Artificial Intel-
ligence and Lecture Notes in Bioinformatics), Springer Verlag, 2016, pp.

48

1460

1465

1470

1475

[77]

(78]

(79]

571-579. doi:10.1007/978-3-319-49094-6_42.
URL http://dx.doi.org/10.1007/978-3-319-49094-6_42

M. Chicote, Startups and technical debt: Managing technical debt with
visual thinking, in: 2017 IEEE/ACM 1st International Workshop on Soft-
ware Engineering for Startups (SoftStart), 21 May 2017, 2017 IEEE/ACM
1st International Workshop on Software Engineering for Startups (Soft-
Start). Proceedings, IEEE Computer Society, 2017, pp. 10-11. doi:
10.1109/SoftStart.2017.6.

URL http://dx.doi.org/10.1109/SoftStart.2017.6

R. Deias, G. Mugheddu, O. Murru, Introducing xp in a start-up, in: Pro-
ceedings 3rd International Conference on eXtreme Programming and Agile
Processes in Software Engineering (XP), 2002, pp. 62-65.

V.-P. Eloranta, Towards a pattern language for software start-ups, in: 19th
European Conference on Pattern Languages of Programs, EuroPLoP 2014,
July 9, 2014 - July 13, 2014, Vol. 09-13-July-2014 of ACM International
Conference Proceeding Series, Association for Computing Machinery, 2014.
doi:10.1145/2721956.2721965.

URL http://dx.doi.org/10.1145/2721956.2721965

49

Appendix C

161

The Role of Data Analytics in Startup
Companies: Exploring Challenges and Barriers

Vebjorn Berg![0000-0001-5611-964X] ' j5ro0n Birkeland? [0000-0003—3444—4075]
Tlias O. Pappag![0000—0001-7528—3488] +1[0000—0002—5547—2270]

, and Letizia Jaccheri
Department of Computer Science, Norwegian University of Science and Technology,
Sem Seaelandsvei 9, 7491 Trondheim, Norway
postmottak@idi.ntnu.no

Abstract. The advancement in technology is transforming societies into
digital arenas and paves the way towards the achievement of digital trans-
formation. With every transaction in the digital world leading to the
generation of data, big data and their analytics have received major at-
tention in various fields and different contexts, examining how they may
benefit the different actors in the society. The present study aims to
identify how startups that create both software and hardware products
can generate value from data analytics and what challenges they face
towards this direction. To this end, we performed a multiple-case study
with early-stage startups and employed qualitative analysis on a dataset
from 13 startups. Through semi-structured interviews, we examine how
these companies use data analytics. The findings show that although the
benefits from data analytics are clear, multiple barriers and challenges
exist for the startups to be able to create value from them. The major
ones are about their resources, including human skills, economical re-
sources, as well as time management and privacy issues.

Keywords: Startups - Data analytics - Empirical research

1 Introduction

In the digital era of the 21st century information and knowledge becomes readily
available to more and more people every day. Societies generate vast amounts
of data every moment from multiple sources, transforming them into landscapes
mediated by different digital media platforms, digital services, and technologies,
leading to the creation of big data and business analytics ecosystems [1]. The
different actors of the society (i.e., industry, public and private organizations,
entrepreneurs, academia, civil society) are increasingly realizing the potential
of the generated data which can lead to value creation, business change, and
social change. To this end, many entrepreneurs and startups are actively trying
to harness the power of big data and create software and hardware with the
potential to increase value, gain a competitive advantage, and improve various
aspects of human life [2].

2 V. Berg et al.

Startups are newly created companies producing cutting-edge technology,
having a major impact on the global economy [9]. In a context of extreme uncer-
tainty and restricted economical, human, and physical resources, startups have
unique challenges related to product development and innovation methods [10].
This results in a high number of failures, primarily due to self-destruction rather
than competition [11][10]. Operating in fast-changing, competitive high-risk en-
vironments, continuous experimentation is essential for learning and bringing
products fast-to-market [12].

There is increasing literature on how big data analytics can generate value
towards business or societal transformation [3][4], however further work is needed
in order to identify and overcome existing barriers that will allow practitioners to
generate value from big data and analytics [5]. Digitization and big data analyt-
ics have disrupted business models and can be essential tools to reduce increasing
failure rates of established companies [6]. Innovative startups profit on reduced
barriers for entering markets with technologies disrupting current distribution
channels, customer demands, and customer relationships [7]. Big data analytics
plays a crucial role in complementing and even substituting labor for machines,
especially in the context of value-creating managerial decisions [8]. Even if the
barriers to entry are lowered, startups operate in a context of restricted resources
and a lack of technical and managerial skills [13]. However, startups have some
characteristics (e.g. ability to quickly change and scale business model) enabling
them to compete with mature companies. The role and widespread of data ana-
lytics in startups is yet to be explored, even if utilization of such can be a major
success factor in the ever-increasing competitive business landscapes [4].

This study focuses on how software and hardware startups can benefit from
big data and seeks to identify the challenges they face which will allow them to
make data-driven decisions and generate value from big data analytics. To this
end, this paper will offer insight into software and hardware startup companies
by answering the following research questions:

RQ1 How do startups create value from (big) data and analytics?

RQ2 What are the barriers for working with (big) data analytics in hardware
startups?

To address these questions this study performs a multiple-case study investi-
gating early-stage European startups that develop both hardware and software.
Findings indicate that most startups do not utilize data analytics for various rea-
sons. To this end, there are identified several challenges and barriers for working
with data analytics in such startups, including limited data variety and difficulty
of performing business experimentation.

The rest of this paper is organized as follows: Section 2 presents background
literature. Section 3 explains our research method, including case selections and
data analysis procedure. Section 4 presents the findings from the interviews.
Section 5 discusses the results, and highlights directions for future research.

The Role of Data Analytics in Startup Companies 3

2 Background

2.1 Product Development in Startups

The primary objective of startups is to speed up the product development in
the early-stages, streamlining the learning process [12]. Startups must respond
to fast-changing customer needs and requests [14], both by speeding up the
decision and design processes [15]. Startups typically do so by utilizing an evo-
lutionary prototyping approach, meaning that they iteratively refine an initial
prototype aiming at quickly validating the product/market fit. Customer feed-
back highlights new functionality and improvements. As long-term planning is
infeasible in the chaotic environment of startups, flexibility and reactiveness are
necessary.

Instead of utilizing repeatable and controlled processes, startups take advan-
tage of reactive, low-precision engineering practices with focus on the produc-
tivity and freedom of their teams [16]. Startups prefer ad-hoc development ap-
proaches customized to their own needs, limiting the administrative overhead.
In an experimental environment constantly compromising between speed and
quality, certain agile practices might not be beneficial (e.g. regular refactoring
and test-first), as excessive administrative overhead can inhibit business exper-
imentation [17]. To bring innovative products fast forward, startups depend on
team members and resources dedicated to all aspects of the development pro-
cess, and to be change-oriented and self-initiated. Startups capability to enter
new markets and disrupt current business models is largely associated with the
uniqueness of human capital and the different approaches they employ.

2.2 The Importance of Data Analytics

In the ever-increasing digital world, businesses need to develop and evolve their
(big) data analytics capabilities and competencies which are key to achieving
successful digital business [4][20]. The evolution of the digital economy and its
combination with (big) data analytics is challenging current business models
with many startups disrupting well-established companies [21]. Big data refers
to expansive collections of data (large volumes) that are updated quickly and
frequently (high velocity) and that exhibit a huge range of different formats
and content (wide variety) [22]. Yet, there is limited understanding of how en-
trepreneurs and startups need to change to embrace such technological innova-
tions and generate value in the digital economy. Indeed, they need to build upon
their main resources that include people, processes, and technology [23]. This is
very important, as it allows businesses and decision-makers to respond almost
instantaneously to market needs, thus increasing their operational agility. An it-
erative and incremental approach combined with frequent releases is essential for
startups ability to quickly accommodate frequent change, and adapt prototyping
to business strategy [18].

Startups and the individuals working there have the opportunity to take ad-
vantage of the available data and create new products transforming a market or

4 V. Berg et al.

an industry [3], and big data analytics may be viewed as resources in this process
that enable value creation and digital transformation. Many software startups
are using existing ecosystems (e.g., Apache Hadoop) to build value-added soft-
ware and solutions [24]. Nonetheless, since various challenges exist in improving
the value creation process, significant research is targeted on addressing these
challenges taking into account engineering issues related to specifications, design,
or requirements in software development [25]. However, a similar approach is not
that easy to be followed by startups that develop both hardware and software.
Availability of resources, as well as external and development dependencies, pose
restrictions to the implementation of hardware [19], thus influencing the ability
of these startups to utilize big data and analytics.

3 Research Method

To explore the research questions we performed semi-structured interviews on
13 early-stage European startups that develop hardware and software. Semi-
structured interviews are considered suitable for qualitative data analysis, and
allowed for a discoverable approach as interviewees could express themselves
more freely and provide their own perspectives on personal experiences related
to the research topics [26]. The rest of this chapter presents our research process,
including case selections and the collection and analysis of data.

3.1 Case and Subjects Selection

The units of analysis are people involved in product development in startup
companies that deliver products with mixed hardware and software parts. We
defined selection criteria as suggested by Runeson and Host [27]. Table 1 presents
basic information about each case. The current stage in the table is adopted from
[28], however the first stage startup is replaced by concept to avoid misunder-
standings.

Table 1. Case Descriptions

Case Product Current Stage|Founded|Location |# of employees
Startup 1 (S1) |Smart gloves Concept 2016 Norway 18
Startup 2 (S2) |Medtech biosensor Concept 2017 Norway 5
Startup 3 (S3) |Physical exercise game Stabilization |2016 Norway 5
Startup 4 (S4) |Unmanned aircraft system Concept 2016 Norway 7
Startup 5 (S5) |Advanced noise cancellation |Concept 2017 Norway 5
Startup 6 (S6) |Medtech hydration monitoring|Concept 2016 Norway 10
Startup 7 (S7) |LPG management system Stabilization |2016 Norway 8
Startup 8 (S8) |Cable cam system Stabilization 2016 Norway 10
Startup 9 (S9) |Digital piggy bank Concept 2017 Norway 4
Startup 10 (S10)|Collaborative camera Growth 2014 Norway 50
Startup 11 (S11)|Interactive children’s toy Concept 2015 Netherlands|8
Startup 12 (S12)|3D-printer control board Growth 2009 Norway 1
Startup 13 (S13)|Sensors for IoT Growth 2007 Ttaly 25

The Role of Data Analytics in Startup Companies 5

Fig. 1. Product illustration from the investigated startups

Startups were relevant for inclusion in the study if they met the following
criteria: (1) The startup develops both hardware and software parts. (2) The
startup has been active for at least six months. (3) The startup has a first running
prototype. (4) The startup’s ambition is to scale its business. People from the
relevant startups were eligible for participation if they had experience and/or
knowledge about software and/or hardware development. If the candidate met
the criteria, he/she was regarded as qualified for contributing to the research
study.

We used five different channels to find relevant startups: (1) Innovation Cen-
ter Glgshaugen, (2) NTNU Accel and FAKTRY, (3) our professional networks,
(4) OsloTech and StartupLab, and (5) The Hub. Figure 1 presents examples of
the products developed by the startups of this study.

3.2 Data Collection and Analysis Procedure

Data was collected using a semi-structured interview guideline between February
and April 2018. Author one and two attended all interviews to avoid one single
interpretation of the respondents’ perspectives and insights on topics. This first-
degree data collection approach allowed us to control what data was collected,
ensuring that all pre-defined interview questions were answered sufficiently, and
exploring new directions by asking follow-up questions [27]. All interviews were
recorded and transcribed shortly afterward. Before each interview, we looked
into the cases’ business background, either through their company websites or
other relevant incubator or accelerator websites. Additionally, participants were
encouraged to answer a simple questionnaire prior to interviews filling out basic
information about themselves and the company. The following list presents the
main topics and interview questions of the interview guideline:

— Business background
— Describe your product and team.
Name the three largest challenges you have encountered.
— Product development
What development process do you use?
— How are internal/external factors influencing product development?

6 V. Berg et al.

— Data analytics
— How do you collect customer data?
— Have you used data analytics for requirements elicitation?
— What are challenges related to data analytics?

The interviews were undertaken in the language preferred by the interviewee
(English or Norwegian). Several of the interviews were therefore undertaken in
Norwegian as this made the interviewees more comfortable. This allowed them to
express themselves more freely, and give more in-depth explanations. Because of
this, it was necessary to translate some of the interviews when transcribing. As
there often doesn’t exist a one-to-one relationship between language and meaning
[29], the translation of the transcribed interviews was ensured to ”express all
aspects of the meaning in a manner that is understandable” [30]. This implies
that not all parts of the interviews were directly translated word-for-word.

A total of 68 pages of interview transcripts were analyzed using thematic
coding analysis [31]. The transcripts were coded and analyzed using NVivo.
Firstly, all authors read through the transcribed interviews to generate initial
ideas. Secondly, descriptive coding was applied through an inductive coding ap-
proach to systematically identify concepts and topics of interest [33]. Related
codes were combined into themes to create patterns and a meaningful whole of
the unstructured codes [31]. Section 4 presents the findings from the analysis
process.

3.3 Validity Procedure

The validity must be addressed for all phases of the case study to enable repli-
cation of research [27] and to ensure findings are trustworthy [31]. To ensure
validity, we followed guidelines used in controlled empirical experiments in soft-
ware engineering [34].

Interviewees were either CEOs or engineers with insight into business- and
technical-related aspects. As the startups were mostly located in the same area,
mainly consisting of young, inexperienced entrepreneurs, generalization is lim-
ited to cases with similar characteristics (i.e. early-stage European startups).
To decrease the risk of biased interpretations, author one and two attended all
interviews. Some interviews were in Norwegian, hence transcripts were not al-
ways verbatim to preserve the actual meaning of respondents. Recordings were
transcribed shortly after each interview to mitigate bias. Since it is difficult to
understand a startup and its dimensions within a time-span of 30 minutes, we
collected data about the startups through incubator and company websites prior
to interviews.

4 Results

4.1 Utilization of data analytics

Among the investigated startups, the usage of data analytics methods was gen-
erally limited. Operating in early stages, they were often determined to rapidly

The Role of Data Analytics in Startup Companies 7

develop new features and perform customer validation. The startups in this study
mostly relied on qualitative measures (e.g., interviews and observations) to ob-
tain customer feedback. “We have not used data analytics, and do not collect
customer data.” When focusing on the short-term business goals, they minimized
any effort spent on data analytics, rather focusing on the core-delivered values
of their products to quickly release a minimum viable product to customers.
Improving data collection measures was considered as a rather time-consuming
activity. “Data analytics is not something we currently spend time on.”

Although the startups commonly spent little time on gathering or learning
from data analytics efforts, some had a clear perception of the possible business
opportunities and benefits from utilization of such. Even if so, data analytics was
usually outside their business scope. “We have looked at some future possibilities
of data analytics, but it is not something we currently focus on.” A brake-pad
in introducing greater focus towards data analytics was that the startups in this
study did not have large amounts of data at their disposal. The restricted access
to useful data inhibited potential value-adding activities from data analytics.
“It’s too early for us to get something valuable from data analytics.”

The capabilities of team members greatly influence the associated success of
startups. From the investigations, we saw an increased focus on data analytics
in startups with team members having experience or expertise within the field.
Despite for the general limited use of data analytics, possessing the required
knowledge and skills of such can have a positive impact on its widespread adop-
tion within a startup organization. “We work with data analytics and do most
of it ourselves [...] It requires that your company is able to get that expertise.”

Although some of the investigated startups were aware of opportunities and
benefits associated with utilizing data analytics for decision-making and require-
ments elicitation, they mainly focused on the core-delivered functionalities of
their products to speed-up development. The findings show, that value-adding
activities related to data analytics were considered as less important compared
to product development activities.

4.2 Barriers for obtaining deeper customer insight

Experimentation, testing, and assessment can be a challenge to startups de-
veloping products including both software and hardware components. Physical
prototypes are more resource-intensive to develop, in contrast to pure software
products, thus limiting startups’ ability to test products with a larger customer
base. The testing ability of these startups will largely depend on their capacity
(i.e., third-party dependency, financial and human resources) to produce proto-
types: “There is a great number of people who want to test our product, however,
we do not have the capacity to produce enough prototypes. The main reason for
this is hardware production, which happens in China, and the manual assembly
we do ourselves.”

Findings from the investigated startups indicate that the amount of collected
data in early stages is limited in terms of volume, velocity, and variety, as the
data are generated mainly from one prototype used by a couple of users, thus

8 V. Berg et al.

restricting data capture along with their ability to generate value from them.
This relates strongly to the early stages of a startup characterized by the ex-
istence of only a few customers, as well as to startups developing evolutionary
independent systems. Startups may be reluctant to invest in data analytics due
to the perceived limitations of the available data: “The data amount is still a
little too small to do any proper analysis of it, and we do not collect enough
personal info yet to perform the analysis.”

Acquiring people with the necessary knowledge and skills in data analytics is
one of the major challenges in generating value from (big) data. With startups
looking for team members with knowledge in a wide area of fields (boundary-
spanning knowledge), it is not easy to put a significant focus on data analytics
skills and knowledge. The investigated startups had limited expertise in per-
forming data analytics, and knowledge about available tools suited to address
startups’ concerns or requirements. The findings show that attracting knowl-
edgeable people is quite hard and with resources being severely restricted, hiring
specialized people only to work with data analytics is rarely an opportunity, not
to mention a priority of startups: “Finding talented people is hard. Since we are
a startup we cannot give very good salary [...] If we had more money we would
employ someone to analyze product and customer data [...] I see the value of it,
but for the time being, it is not a priority.”

The highly competitive environment of startups and severely limited re-
sources imply startups strict priorities. Data analytics efforts may exhaust the
already constrained financial and time resources. In addition, collecting the nec-
essary data may present an additional cost of components (e.g., sensors and IoT
technology) and human investments. This may be a priority startups are not
willing to take: “At the time this [data analytics] is not something we priori-
tize.”

Startups work with innovative technology and products for a wide area of
markets. Among the investigated startups some were developing medical prod-
ucts. Certain markets may pose specific restrictions and regulations for data
collection. This makes the customer testing an intricate process, involving a sig-
nificant amount of paperwork. Storing customer data for later analyses may be
illegal or too entangled, preventing the use of data analytics. Startups need guide-
lines for handling privacy (e.g., General Data Protection Regulation - GDPR)
and security issues to fully take advantage of the benefits of data analytics:
“When working with hospitals, data becomes more complicated due to privacy.”

The uncertain conditions and fast-changing environment of startups mean
long-term planning is not part of their business model, as this is not the way
they operate. Some of the investigated startups’ business managers lacked the
required knowledge to implement data analytics and the potential value in their
business plan: “I see data analyses as the next step for our business [...] Currently
we do not even know what our data can be used for.”

The Role of Data Analytics in Startup Companies 9

5 Discussion and Conclusions

This study examines how startups can generate value by employing data analyt-
ics methods. With the majority of the literature focusing on startups that create
software, here, we choose to investigate startups that develop both hardware and
software. This specific category of startups presents great interest due to specific
challenges that differentiate them from typical software startups. Indeed these
startups are more likely to face challenges such as limited availability of resources
or to be dependant on external factors linked with hardware development [19].
Such challenges are expected to affect their ability to use big data and analytics
in order to generate value.

The findings show that some of the startups are aware of the potential ben-
efits from using (big) data analytics, however, they face various barriers and
challenges which limit them from utilizing them in their business models and
business process. Table 2 presents the main barriers to working with (big) data
analytics as identified in this study. In detail, the startups face challenges related
with their prototyping capacity, as they are able to develop only limited amount
of hardware prototypes, thus limiting the number of users that can use them at
the same time. This is directly linked with the limited financial resources that
young startups have, as well as with the time-shortage that characterizes star-
tups, since they are forced to work on short deadlines and intensive processes.

The challenge with the limited prototyping capacity can indirectly affect data
availability. In detail, limited hardware and users lead to an impact to generated
data. However, such limitations could be overcome by better planning and more
focused testing of their products with their end-users. Furthermore, some of
the startups mention that they face specific security and privacy issues related
with the use of personal data, due to the nature of their business (e.g., medical
technology tested at hospitals). Nonetheless, such barriers can be overcome with
the collaboration of the different actors in the society (i.e., industry, government,
academia), and the recently directive from EU on data protection (i.e., GDPR)
is a step towards that direction. Finally, the startups indicate that generating
knowledge from data analytics is not a primary objective for them, thus it is
not included in their overall business strategies. This is also linked with the
other barriers, regarding prototyping capacity and resource availability, since
they believe that they are not able to achieve their short-term goals using data
analytics.

Some business managers mention that they possess limited knowledge on
what additional value data analytics could provide to their decision-making and
design process. Increasing business managers’ awareness around the potential
knowledge and presenting them with practical information and knowledge will
increase the potential of including data analytics in their business models. This
can be achieved by offering to startups validated learning, through the use of
cohort metrics (e.g., actionable, accessible, and auditable metrics) and analy-
sis. As startups are characterized by short-term planning and frequent releases,
utilizing big data analytics will allow startups to make data-driven decisions,

10 V. Berg et al.

Table 2. Barriers for working with (big) data analytics

Barrier Description

Physical prototypes are associated with individual

development costs and time (e.g., third-party dependency).

Data in early startup stages are characterized by low volume,
velocity, and variety.

Startups have high demands for skillful teams with entrepreneurial
Team capabilities capabilities. Experience using data analytics will positively impact
its widespread organizational adoption.

Hardware development includes production, manufacturing, and
logistics, which require more initial human and financial investments.
The uncertain high-risk environment forces startups to release
their products fast and to work under constant pressure.
Collecting customer and usage data for (big) data analytics

have associated privacy and security issues.

Data analytics activities are usually outside the

short-term business goals of startups.

Prototyping capacity

Limitations of data

Financial resources

Time-shortage

Security & privacy issues

Integration with business strategy

which can be faster and with increased quality, thus being consistent with the
agile environment that most startups operate.

As with all empirical studies, this study has some limitations. Qualitative
data collection measures imply that results and implications are subject to bias.
To mitigate the risk of wrong interpretations, author one and two attended all in-
terviews, preferably face-to-face on-site. Recordings were transcribed shortly af-
terward to preserve respondents’ actual meanings. Furthermore, the study would
profit from a wider collection of data, both to discover more challenges and to
ensure credible conclusions. Also, employing quantitative methods would allow
for data triangulation.

This study provides initial knowledge on data analytics in startups, however,
future work should investigate more startups both to identify other challenges
and barriers, and for generalization of results to a larger startup population
(e.g., operating in different markets and lifecycle stages, and various geographi-
cal locations). Seeing that the widespread of data analytics is limited, startups
need specific methods for utilizing analysis tools in early startup stages. Startup
managers need guidance to understand how their data can generate revenues,
and what knowledge is required for their organization to thrive from data ana-
lytics. Startups need directions for how to implement a data analytics strategy
to benefit the company in the long run.

Acknowledgments

We would like to thank the startups that participated in this study.

References

1. Pappas, Ilias., Jaccheri, Letizia., Mikalef, Patrick., and Giannakos, Michail: Social
Innovation And Social Entrepreneurship Through Big Data: Developing A Reseach
Agenda. (2017)

The Role of Data Analytics in Startup Companies 11

2. Otero, Carlos E., Peter, Adrian: Research directions for engineering big data ana-
lytics software. IEEE Intelligent Systems, vol. 30, pp.13-19. IEEE (2015)

3. George, Gerard., Haas, Martine R., Pentland, Alex: Big data and management.
Academy of management Journal, vol.57, pp.321-326. Academy of Management
(2014)

4. Mikalef, Patrick., Pappas, Ilias O., Krogstie, John., Giannakos, Michail: Big data an-
alytics capabilities: a systematic literature review and research agenda. Information
Systems and e-Business Management, pp.1-32. Springer (2017)

5. Vidgen, Richard., Shaw, Sarah., Grant, David B.: Management challenges in cre-
ating value from business analytics. European Journal of Operational Research,
vol.261, pp.626-639. Elsevier (2017)

6. Weill, Peter., Woerner, Stephanie L.: Thriving in an increasingly digital ecosystem.
MIT Sloan Management Review, vol.56, p.27. Massachusetts Institute of Technol-
ogy, Cambridge, MA (2015)

7. Lucas Jr, Henry C., Agarwal, Ritu., Clemons, Eric K., El Sawy, Omar A., We-
ber, Bruce: Impactful Research on Transformational Information Technology: An
Opportunity to Inform New Audiences. Mis Quarterly, vol.37 (2013)

8. Loebbecke, Claudia., Picot, Arnold: Reflections on societal and business model
transformation arising from digitization and big data analytics: A research agenda.
The Journal of Strategic Information Systems, vol.24, pp-149-157. Elsevier (2015)

9. Unterkalmsteiner, M., Abrahamsson, P., Wang, X. F., Anh, N. D., Shah, S., Bajwa,
S. S., Baltes, G. H., Conboy, K., Cullina, E., Dennehy, D., Edison, H., Fernandez-
Sanchez, C., Garbajosa, J., Gorschek, T., Klotins, E., Hokkanen, L., Kon, F.,
Lunesu, 1., Marchesi, M., Morgan, L., Oivo, M., Selig, C., Seppanen, P., Sweet-
man, R., Tyrvainen, P., Ungerer, C., Yague, A.: Software Startups - A Research
Agenda. E-Informatica Software Engineering Journal, vol.10, pp.89-123. (2016)

10. Giardino, Carmine., Bajwa, Sohaib Shahid., Wang, Xiaofeng., Abrahamsson,
Pekka: Key challenges in early-stage software startups. International Conference
on Agile Software Development, pp.52-63. Springer (2015)

11. Marmer, Max., Herrmann, Bjoern Lasse., Dogrultan, Ertan., Berman, Ron., Eesley,
C., Blank, S.: Startup genome report extra: Premature scaling. Startup Genome,
vol.10. (2011)

12. Nguyen-Duc, Anh., Wang, Xiaofeng., Abrahamsson, Pekka: What Influences the
Speed of Prototyping? An Empirical Investigation of Twenty Software Startups.
International Conference on Agile Software Development, pp.20-36. Springer (2017)

13. Paternoster, N., Giardino, C., Unterkalmsteiner, M., Gorschek, T., Abrahamsson,
P.: Software development in startup companies: A systematic mapping study. Infor-
mation and Software Technology, vol.56, pp.1200-18. (2014)

14. Bosch, Jan: Speed, Data, and Ecosystems: The Future of Software Engineering.
IEEE Software, vol.33, pp.82-88. (2016)

15. Yau, Alex., Murphy, Christian: Is a Rigorous Agile Methodology the Best Devel-
opment Strategy for Small Scale Tech Startups?. (2013)

16. Tanabian, MM., ZahirAzami, B.: Building high-performance team through effective
job design for an early stage software start-up. Engineering Management Conference,
Proceedings, vol.2, pp.789-792. IEEE (2005)

17. Pantiuchina, Jevgenija., Mondini, Marco., Khanna, Dron., Wang, Xiaofeng., Abra-
hamsson, Pekka: Are software startups applying agile practices? The state of the
practice from a large survey. 18th International Conference on Agile Software De-
velopment, XP 2017, vol.283, pp.167-183. Springer Verlag (2017)

12 V. Berg et al.

18. Coleman, G., O’Connor, R. V.: An investigation into software development process
formation in software start-ups. Journal of Enterprise Information Management,
vol.21, pp.633-648. (2008)

19. Ronkainen, Jussi., Abrahamsson, Pekka: Software development under stringent
hardware constraints: Do agile methods have a chance?. International Conference
on Extreme Programming and Agile Processes in Software Engineering, pp.73-79.
Springer (2003)

20. Pappas, Ilias O., Mikalef, Patrick., Giannakos, Michail N., Krogstie, John., Lekakos,
George: Social media and analytics for competitive performance: a conceptual
research framework. International Conference on Business Information Systems,
pp-209-2018. Springer (2016)

21. Chen, Hsinchun., Chiang, Roger HL., Storey, Veda C: Business intelligence and
analytics: from big data to big impact. MIS quarterly, pp.1165-1188. JSTOR (2012)

22. Davis, Charles K.: Beyond data and analysis. Communications of the ACM, vol.57,
pp-39-41. ACM (2014)

23. Carlsson, Christer: Decision analytics - Key to digitalisation. Information Sciences.
Elsevier (2017)

24. Tan, Wei., Blake, M Brian., Saleh, Iman., Dustdar, Schahram: Social-network-
sourced big data analytics. IEEE Internet Computing, vol.17, pp.62-69. IEEE (2013)

25. Otero, Carlos E., Peter, Adrian: Research directions for engineering big data ana-
lytics software. IEEE Intelligent Systems, vol.30, pp.13-19. IEEE (2015)

26. Oates, Briony J.: Researching information systems and computing. Sage (ISBN:
1446235440) (2005)

27. Runeson, Per., Host, Martin: Guidelines for conducting and reporting case study
research in software engineering. Journal: Empirical software engineering vol.14,
p.131. Springer (2009)

28. Crowne, Mark: Why software product startups fail and what to do about it. Evo-
lution of software product development in startup companies. In: Engineering Man-
agement Conference, 2002, pp.338-343. IEMC’02. IEEE

29. Temple, Bogusia., Young, Alys: Qualitative research and translation dilemmas.
Journal: Qualitative research, vol.4, pp.161-178. Sage Publications London, Thou-
sand Oaks, CA and New Delhi (2004)

30. Larson, Mildred: Translation: theory and practice, tension and interdependence.
John Benjamins Publishing (1991)

31. Cruzes, Daniela S., Dyba, Tore: Recommended steps for thematic synthesis in soft-
ware engineering. Book: Empirical Software Engineering and Measurement (ESEM),
2011 International Symposium on, pp.275-284. IEEE (2011)

32. Wohlin, Claes., Host, Martin., Henningsson, Kennet: Empirical research methods in
software engineering. Book: Empirical methods and studies in software engineering,
pp.7-23. Springer (2003)

33. Saldafia, Johnny: The coding manual for qualitative researchers. Sage (2015).

34. Stanfill, R., Astleford, Ted: Improving entrepreneurship team performance through
market feasibility analysis, early identification of technical requirements, and in-
tellectual property support. Proceedings of the American Society for Engineering
Education Annual Conference & Exposition (2007)

	Acknowledgment
	Abstract
	Sammendrag
	Preface
	Table of Contents
	List of Tables
	List of Figures
	Abbreviations
	Introduction
	Motivation
	Research Questions
	Research Scope
	Research Process
	Outline of the Thesis

	Background
	Startup Movement
	Software Startups
	Startup Lifecycle

	Startup Development Methodology
	Lean Startup

	Software Startup Engineering
	Theoretical Frameworks for Startups
	The Greenfield Startup Model
	Relevant Frameworks

	Hardware Startups
	Embedded Systems Development

	Systematic Mapping Study
	Research Method
	Research Questions
	Data Sources and Search Strategy
	Study Selection
	Manual Search
	Quality Assessment
	Data Extraction and Synthesis
	Threats to Validity

	Synthesized Results
	RQ1: How has software startup research changed over time in terms of focused knowledge areas?
	RQ2: What is the relative strength of the empirical evidences reported?
	RQ3: In what context has software startup research been conducted?

	Conclusion

	Research Method
	Research Questions
	Identification of Interview Questions
	Case and Subjects Selection
	Data Collection Procedure
	Analysis Procedure
	Initial Reading
	Coding Process
	Translate Codes into Themes
	Model of Higher-Order Themes

	Validation Procedure
	Validity Procedure
	Construct Validity
	Internal Validity
	External Validity
	Conclusion Validity

	Intellectual Property Rights

	Results
	Case Descriptions
	RQ1 How do hardware startups achieve agility during product development?
	RQ1.1 How do hardware startups develop their products?
	RQ1.2 What kind of challenges are relevant in the hardware startup context?
	RQ1.3 How do internal/external context factors impact the speed of product development?

	RQ2 How do hardware startups manage quality concerns of their products?
	RQ2.1 How are hardware products tested?
	RQ2.2 How is technical debt managed in hardware startups?

	RQ3 How do hardware startups achieve balance between speed and quality?

	The Trilateral Hardware Startup Model
	Model overview
	Restricted resources
	Team proactivity
	Two-folded product quality trade-off
	Third-party dependency
	Hardware-software integration
	Evolutionary prototyping
	Rapid development
	Incurred technical debt
	Return effects of short-term benefits

	Model Validation

	Discussion
	Agility in hardware startups
	Quality of high-tech products
	Balancing speed and quality of high-tech product development
	Implications of the Trilateral Hardware Startup Model
	Comparing the Trilateral Hardware Startup Model to the Greenfield Startup Model

	Conclusion
	Bibliography
	Appendices
	Interview Protocol and Consent Form
	Interview Protocol
	General Information
	Business Background
	Startup Development Methodologies
	Product Development

	Pre-Interview Questionnaire
	Consent Form

	Software Startup Engineering: A Systematic Mapping Study
	The Role of Data Analytics in Startup Companies: Exploring Challenges and Barriers

