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Abstract

I develop and present a non-parametric and empirical method for

pricing derivative securities. The method involves estimating an ar-

tificial neural network. The estimation is based on a time series of

the underlying asset price and relies on the no-arbitrage argument. I

focus on the pricing of European call options. To assess the feasibility

of the method I first apply it on a simulated data set, satisfying the

assumptions of the Black-Scholes model. The results show that the

method is able to accurately estimate both the option price and its

derivatives, based on a two-year sample of the price of the underly-

ing asset. Further, I apply the method on the S&P500 index, with

data from 2014 to 2016. I compare the out-of-sample performance of

my method to two rival models, the Black-Scholes model and a tra-

ditional non-parametric method. The models are evaluated on both

pricing and delta-hedging. My method outperforms the Black-Scholes

model in this analysis, but is mostly outperformed by the other non-

parametric method.

Oppsummering

Jeg utvikler og presenterer en ikke-parametrisk empirisk metode

for prising av finansielle derivater. Metoden involverer estimeringen

av et kunstig nevralt nettverk basert p̊a en tidsserie av det under-

liggende aktivum og arbitrasje-argumentet. Jeg fokuserer p̊a prising

av europeiske kjøpsopsjoner. Jeg undersøker om metoden er levedyk-

tig ved å anvende den p̊a et simulert datasett, som oppfyller forutset-

ningene til Black-Scholes-modellen. Resultatene viser at metoden kan

predikere b̊ade opsjonsprisen og dens deriverte med høy nøyaktighet,

basert p̊a to år med daglige observasjoner av prisen til det under-

liggende aktivum. Videre anvender jeg metoden p̊a S&P500 indek-

sen, med data fra 2014 til og med 2016. Jeg sammenlikner metodens
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egenskaper med to konkurrerende modeller, Black-Scholes-modellen

og en tradisjonell ikke-parametrisk metode. I analysen gir min metode

bedre resultater b̊ade i prising og delta-hedging av opsjoner enn Black-

Scholes-modellen. Sammenliknet med den andre ikke-parametrisk meto-

den, oppn̊ar min metode svakere resultater i de fleste tilfeller.
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1 Introduction

Financial derivatives, particularly options, are of interest both because they

are popular financial products that trade in high volumes, and also because

of their application in pricing other assets, e.g. corporate debt, and risk

forecasting and analysis, e.g. the VIX-index. Therefore, a new approach

to pricing them, with some clear advantages over established methods, is of

interest to researchers and practitioners alike.

In this Master’s thesis I develop and present a novel method for pricing

financial derivatives. Though the method can be applied to price a wide

range of derivative securities, I have chosen to focus mainly on European call

options.

A European call option is characterized by the underlying asset on which

it is written, the time until its expiration date, T , and the strike price, K. It

gives its holder the right, but not the obligation, to purchase the underlying

asset for the strike price, on and only on, the expiration date. The value of the

European call option is therefore quite easy to determine on its expiration

date. If the price of the underlying asset, S, exceeds the strike price, the

option is exercised for a profit of S −K. If the price of the underlying asset

does not exceed the strike price, it is not beneficial to exercise the option, so

the value is 0. The value of a European call option on its expiration day is

therefore max{S − K, 0}. A much more difficult problem, and the subject

of this paper, is determining its value before expiration.

Black and Scholes (1973) showed that if the price of an asset follows a

particular stochastic process, geometric Brownian motion, a European option

on it can be priced exactly, using a no-arbitrage argument. This is a good

approximation, but real world stock prices are not generated by geometric

Brownian motion. Several empirical studies show that the Black-Scholes
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prices of options deviate in systematic ways from real world observed prices

[(MacBeth and Merville 1979), (MacBeth and Merville 1980), (Rubinstein

1985), (Black and Scholes 1973)].

Since the publication of the Black-Scholes model, several other parametric

models have been proposed for different underlying processes. Merton (1976)

proposed a model where the price of the underlying asset is generated by the

sum of a diffusion process, geometric Brownian motion, and a (discontinuous)

jump process. Cox, Ross, and Rubinstein (1979) propose a discrete binomial

model, where the price of the underlying asset moves up or down by a factor

at a fixed frequency. Heston (1993) finds a closed form solution for the

option price on an asset following geometric Brownian motion with stochastic

volatility.

By using a non-parametric model, the issue of identifying and modeling

the stochastic process of the asset can be completely sidestepped. Hutchin-

son, Lo, and Poggio (1994) used several non-parametric models, an artificial

neural network (ANN) among them, to price options. These models were

estimated by minimizing the mean squared error of the model predictions

compared to market prices. Meaning that instead of using a no-arbitrage

argument like earlier works, they assume that historical market prices were

correct. There are downsides to this approach. First, to estimate a good

model a large amount of data is required. This makes the method only

useful for assets/markets where there is a history of an active/liquid option

market. Second, if the historical market prices have biases, the model is

likely to learn them as well.

This paper attempts to solve issues associated with both the parametric

no-arbitrage models, like Black and Scholes (1973), and the non-parametric

models, like Hutchinson, Lo, and Poggio (1994), by developing a non-parametric
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model estimated using a no-arbitrage argument. This is implemented using

an artificial neural network, trained only on the historic price of the under-

lying asset, not the historical prices of the associated options. This way, the

model will not be relying on a (mis)specified stochastic process, or limited

historical options price data. For reasons that will become clear later, I will

call this model the reinforcement ANN. The question I attempt to illuminate

in this text is, can the reinforcement ANN improve upon established methods

for pricing options? If so, under what circumstances is it most useful?

The remaining sections of this paper are organized as follows; in section

2, I build the theoretic foundation for the reinforcement ANN and discuss

established models. Section 3 presents the reinforcement ANN and how it is

estimated. In section 4, I test the model in a controlled environment using

simulated data. Next, in section 5, I apply the model on real market data and

compare its performance to established models. Summary and discussion are

in section 6.
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2 Theory and Previous Literature

In this section I lay the theoretical foundation for my new model, which will

be introduced in section 3. This is includes the basic financial reasoning, the

hedging or replicating portfolio, and the regression model of choice, artificial

neural networks.

I also review previous literature and present the models I will use for

comparison in section 5.

2.1 Hedging and the No-Arbitrage Argument

There are many reasons for buying or selling options. An investor may buy

a put option on her portfolio as insurance against declines, a speculator may

buy a call option on a stock as a bet on the stock increasing in value, or sell

both put and call options as a bet against volatility. These are all examples

of market actors buying or selling options as part of an investment strategy.

They all hope to make money from capital gains or other investment income

(e.g. dividends, interest, or coupon payments).

The goal of the market maker is fundamentally different. A market maker

buys at the bid price, and sells at the ask price. It is in this spread that

they find their profit. As they are not investing, market makers attempt to

neutralize their exposure to market risk. This is done through hedging.

Hedging means offsetting the risk of one position with another. For ex-

ample, if a market maker sold a call option on a stock, their position will

fall in value as stock increases in value. This risk can be offset by buying

shares in the stock. That way, if the value of the stock should rise (fall) the

loss (gain) in the call option position will be offset by the gain (loss) in the

stock position. This raises the question, how many shares of stock should
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the market maker buy to best offset the risk exposure on the call option?

Let C(S,K, T ) denote the value of the option, then the change in value

of the option for a small change in the stock price is ∂C(S,K,T )
∂S

. ∂C
∂S

is often

denoted ∆1. Holding ∆ shares of stock would perfectly offset changes in

the value of the option caused by small movements in the stock price. This

is called delta-hedging. The stock portfolio can be viewed as a first-order

Taylor series approximation of the option with respect to the asset price. To

see this, let T (S) be the first order Taylor series expansion of C(S,K, T )

around the point (a, b, c). Then

T (S) = C(a, b, c) + (S − a)∆ (1)

The change in value of the option from time t to t+ h is

C(St+h, K, T − h)− C(St, K, T ) (2)

where St denotes price of the underlying asset at time t. The first order

Taylor approximation of (2) is

T (St+h)− T (St) = (St+h − St)∆ (3)

As will be clear later, this forms the basis for the ANN model introduced in

section 3. However, there are some shortcomings to this simplified approach.

Firstly, as time goes by, the price of the underlying asset is not the only

thing that is changing. The time until expiration is also decreasing, and this

is not taken into account in this simplified approach. Secondly, if the price

of the underlying asset is driven by a Brownian motion, a very small change

in time, even infinitesimal (dt), does not imply that the move in asset price

1The partial derivatives of derivative securities, e.g. options, have a Greek symbol

associated with it. Therefore, they are often called the ”Greeks” collectively.
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is very small. If driven by a Brownian motion, or something like it, the asset

price will be so volatile, that the price can and will move finite amounts over

infinitesimally small time intervals (the quadratic variation is nonzero). For

instance, let Z(t) be a standard Brownian motion, then

Z(t+ h)− Z(t) ∼ N(0, h) (4)

Equation (4) implies that the standard deviation of a change in the process

Z(t) over an interval h is
√
h. As the time interval h decreases, the stan-

dard deviation
√
h decreases more slowly, meaning that as limh→0 h = dt the

standard deviation will not be infinitesimally small. This is a problem as

the Taylor series approximation will only be accurate for very small changes,

if the function being approximated is non-linear. Therefore, even over in-

finitesimally small time intervals, a first order Taylor series approximation

with respect to asset price is not sufficient.

This leads us to the Black-Scholes model.

2.2 Parametric Models

Black and Scholes (1973) make the assumptions that the price of the underly-

ing asset follows geometric Brownian motion (5),that trading is continuous,

and that assets can be bought or sold (short) at the same price, without

transaction costs.

dS = αSdt+ σSdZ, (5)

where α is the continuous expected return, σ is the volatility of the return,

and Z(t) is a standard Brownian motion.

Let us consider the portfolio of the market maker under these conditions.

The value of the portfolio is given by:

V = ∆S − C (6)
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Where the arguments of the functions are suppressed for simplicity. Using

Itô’s formula:

dV = ∆dS − (CSdS + Ctdt+
1

2
CSS(dS)2) (7)

Partial derivatives are denoted by subscript, e.g. ∂C
∂S

= CS. The time until ex-

piration decreases at the same rate that time passes , therefore Ct = CT
dT
dt

=

−CT . Substituting for ∆ = CS and (dS)2 = (αSdt+ σSdZ)2 = σ2S2dt:

dV = −Ctdt−
1

2
σ2S2CSSdt (8)

dV in (8) does not depend on dS or any stochastic process, it is therefore

a risk-free position and should yield the risk-free rate r. If this were not the

case, it would present an arbitrage opportunity. An arbitrage is often defined

as an investment that requires no capital, has a positive probability of profit,

and zero probability of loss (Shreve 2004). If the return on the portfolio, dV ,

was higher (lower) than the risk-free rate, an arbitrage could be made by

borrowing (lending) at the risk-free rate and buying (selling) the portfolio.

Unlike the simpler approximation, (8) accounts for time decay by including a

time term, and larger movements in stock price by including a second order

term with respect to asset price.

dV = −Ctdt−
1

2
σ2S2CSSdt = rV dt (9)

substituting for (6) and dividing by dt:

Ct +
1

2
σ2S2CSS = r(C − CsS) (10)

Equation (10) is the Black-Scholes equation. The Black-Scholes equation

can be written on the following form, by a change of variable (Black and

Scholes 1973):
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ut = c2uxx (11)

Equation (11) is often called the heat equation (Kreyszig 2010)2. That

is because it can be used to model how heat spreads throughout an object,

where u(t, x) is the heat at the point x at time t. The heat equation can be

solved analytically, but this requires some additional conditions. First, the

initial distribution of heat in the object, called the initial condition. In this

case, that is really the terminal condition, and gives the value of the option

at expiration, eq. (12). Second, we need to to know the dynamics of the

temperature at the ends of the object. This is analogous to the value of the

option at the extremes of underlying asset price. The price of the underlying

asset cannot be smaller than 0, but can grow infinitely large. The boundary

conditions are given by eq. (13).

Initial condition:

C(S,K, 0) = max{S −K, 0} (12)

Boundary conditions:

C(0, K, T ) = 0 (13a)

lim
S→∞

C(S,K, T )→ S (13b)

When the underlying asset price is 0 it cannot change according to (5),

and so the call option is also worthless. In the case where the underlying

asset is a stock, it means that the company is bankrupt. Eq. (13a) follows.

As the price of the underlying asset goes to infinity, the probability that

the option will be exercised goes to 1, and the price of exercising, K, becomes

2It is also called the diffusion equation, hence why Black-Scholes is called a diffusion

model.
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negligible. Therefore, the price of the option will go towards the price of the

asset. Eq. (13b) follows. Solving the Black-Scholes equation (10) subject to

the conditions (12) and (13) gives the famous Black-Scholes formula (14).

C(S,K, T, r, σ) = SN(d1) +Ke−rTN(d2), (14)

where N() is the cumulative probability density function of the standard

normal distribution and

d1 =
ln( S

Ke−rT ) + 1
2
σ2T

σ
√
T

,

d2 = d1 − σ
√
T

2.3 Neural Networks

An artificial neural network is a non-linear regression method loosely based

on its biological counterpart. They are often visualized as in Figure 1. Con-

tinuing the biological analogy, the circles represent ”neurons” and the lines

represent ”synapses”, the connections between neurons. The brain learns by

strengthening or weakening these connections. In the artificial neural net-

work these connections are represented by weights, which can be increased

or decreased in order for the output of the network to approach the desired

value. Depending on the strength of the input signals, the neurons are ac-

tivated to varying degrees, which in turn will affect the activation of the

neurons in the following layer. In the artificial neural networks this is rep-

resented by applying some non-linear function to the weighted inputs of the

neuron. The so-called ”activation function” is often a sigmoid-shape, like the

logistic or hyperbolic tangent functions (Fig. 2).
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Figure 1: Artificial Neural Network Architecture, Z = f(XW 1) and y =

ZW 2

Linear regression models are more familiar to many, and can also be

visualized as an artificial neural network (see Fig.3).

The parameters (weights) of the artificial neural network are chosen to

optimize the value of some objective function. Often there are some values y,

that one wants the outputs of the neural network ŷ to match. This is called

supervised learning because it requires supervising the learning process of

the ANN by showing it the values y it should map the inputs to. A popular

objective function in this case is the mean square error (MSE), 1
n

∑
(y− ŷ)2.

In some cases the ideal output values are unknown. In such cases, another

way of evaluating the neural networks output can be used as the objective

function. For example, if you are training an artificial neural network to play

a video game, you don’t necessarily know the ideal ”move” in each situation.

But better moves will improve the game score more than bad moves. In this

case the network could learn by maximizing the game score. This approach

is called reinforcement learning.
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Figure 2: The Hyperbolic Tangent Function

Artificial neural networks are well suited for estimating option price func-

tions because they excel at approximating non-linear functions. Even a neu-

ral network with a single hidden layer can approximate a continuous function

arbitrarily closely given enough neurons (Hornik, Stinchcombe, and White

1989). This is also true of the derivatives of the function (Hornik, Stinch-

combe, and White 1990). Which is particularly useful for option pricing

given the importance of the derivatives (the so-called ”Greeks”) to hedging

strategies.

2.4 Earlier Option Pricing Neural Networks

Pricing options using artificial neural networks is not a novel endeavor.

Hutchinson, Lo, and Poggio (1994) is the seminal paper on the subject, and

an article using a similar approach was published even earlier (Malliaris and

Salchenberger 1993). Some even use other regression models like ordinary
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Figure 3: Linear Regression Architecture, y = XW 1

least squares (Hutchinson, Lo, and Poggio 1994) or support vector machines

(Liang et al. 2009). Many of the non-parametric models perform well, often

outperforming parametric methods. Park, Kim, and Lee (2014) provide an

overview of this literature.

The established non-parametric models all have one thing in common,

they are fitted using supervised learning. As many studies have shown, this

can work very well, but there are some disadvantages to this approach. First,

to estimate a good model, a large amount of data is required. This makes

the method only useful for assets/markets where there is a history of an
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active/liquid option market. Second, if the historical market prices have

biases, the model is likely to learn them as well.

In section 5, I will compare the performance of the Black-Scholes model

and an ANN trained using supervised learning, with my new method, an

ANN trained using reinforcement learning.
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3 The Model

In this section I present the reinforcement ANN.

3.1 Architecture and Functional Form

An artificial neural network is capable of learning complex non-linear func-

tions, but as the functions become more complex more data is required to

learn. Therefore, if there is an opportunity to reduce the dimensionality of

the function without losing information it should be seized.

The goal of the model is estimating an option pricing function C(S,K, T ).

Merton (1973) showed under very weak assumptions that C is homogeneous

of degree one in S and K. Meaning that C( S
K
, 1, T ) = C(S,K,T )

K
. S

K
is a

measure of the options moneyness, and using this as an input feature instead

of S and K is often called the ”homogeneity hint” (Bennell and Sutcliffe

2004). The neural network will therefore be using S
K

and T as input features

and will output Ĉ
K

3. Ĉ can, of course, be easily recovered by multiplying the

output by K.

Merton (1973) also conjectures that the two arguments interest rate, r,

and exercise price, K, can be replaced with a single argument, the present

value of exercise price, PV (K) = e−rTK. This is certainly the case with

the Black-Scholes formula (14). In this case, the interest r does not affect

the stochastic process generating the underlying asset price. Using this, the

interest rate can be set to r = 0, and ignored during model training. When

the model is used later the present value of the exercise price , e−rTK, is

used instead of K.

3Let a parameter with a hat, ,̂ denote the estimate of that parameter.
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Figure 4: Price for call option with K = 100 and T = 90 as calculated by

ANN and BS during training, see Fig. 6 for finished training

3.2 Training

The main contribution of this text is the method of training the model.

The non-parametric models presented in previous works are all taught us-

ing supervised learning. The models are shown the correct option price

corresponding to the inputs, over and over, until they learn the relation-

ship [(Hutchinson, Lo, and Poggio 1994), (Anders, Korn, and Schmitt 1998),

(Galindo-Flores 2000), (Amilon 2003), (Bennell and Sutcliffe 2004), (Hamid

and Habib 2005), (Park, Kim, and Lee 2014), (Montesdeoca and Niranjan

2016)]. My model, on the other hand, is not given information about the

correct option price. It must teach itself, using only fundamental properties

of derivative securities. Namely, the relationship between the price of the

derivative security and the underlying asset. As you will see in this section,

the training process is closely related to Black and Scholes (1973) derivation

of their formula. In their derivation, Black and Scholes solve the Black-

Scholes equation subject to some additional conditions. In the reinforcement

ANN method, an objective function, analogous to the Black-Scholes equa-
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tion, is minimized subject to the same initial condition as used by Black and

Scholes.

The objective function needs to evaluate the performance of the model’s

pricing, without knowing the correct option prices. To do this I will view the

model from a delta-hedging market maker’s perspective. By buying ∆ = ∂C
∂S

of the underlying asset the market makers’ positions should be hedged. If

this is done at time t, the change in value of the portfolio at time t + h

is ∆(St+h − St) − (Ct+h − Ct). The parameters of the ANN are therefore

chosen to minimize the objective function (15), where Ĉt, Ĉt+h, and ∆̂ are

all calculated by the artificial neural network. In other words the neural

network is trained to minimize the squared tracking error of the hedging

portfolio, (or the volatility of the market maker’s portfolio). At first the

reinforcement ANN’s estimates Ĉt, Ĉt+h, and ∆̂ will be completely incorrect,

and determined by the random parameter initialization, but they will improve

gradually during training (see Fig. 4).

[∆̂(St+h − St)− (Ĉt+h − Ĉt)]2, (15)

where ∆̂ = ∂Ĉ
∂S

. By itself, the loss function (15) ”incentivizes” the model to

predict Ĉ as a constant. That way the first term of (15) will be zero because

∆̂ = ∂Ĉ
∂S

= 0 and the second term will be zero because Ĉt+h = Ĉt = constant.

This can be solved by imposing an initial condition, as discussed in section

2.2. At its expiration date the option is worth C(S,K, 0) = max(S −K, 0).

This condition is enforced on the model by bypassing the ANN, and returning

max(S−K, 0) if T = 0. The condition does not directly affect the predicted

option prices at T > 0, but does so indirectly through the loss function.

The model returns

Ĉ as predicted by the ANN, T > 0

max(S −K, 0), T = 0

(16)
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Before the training procedures are initiated, the parameters of the model

are randomly initialized. The training procedures for the model work as

follows: a day from the sample is picked randomly, along with a random strike

price K and time to maturity T . This can be thought of as the characteristics

of an invented theoretical option. The model then estimates the value of the

specified option on that day, Ĉt, and on the folowing trading day, Ĉt+h, along

with the delta of the model on the first day, ∆̂. This is sufficient information

to estimate the change in value of the hedging portfolio, and option position.

This is done on a batch of 10, 000 options at a time. The objective function

(15) is calculated for all the theoretical options, and the mean is taken. The

derivatives of the loss function is calculated, and the parameters are updated

to minimize the loss function using backpropagation (Rumelhart, Hinton,

and Williams 1986). This procedure is repeated until the loss function is no

longer decreasing. In this case, that takes around 500, 000 iterations. This

means that during training, the value of roughly 5 trillion theoretical options

are calculated at two separate points in time.

3.3 Applications

The focus in this text is on European call option pricing with a neural net-

work, but the training procedure is not limited to that special case. The

same training procedure could be applied with other types of non-linear re-

gression models, e.g. linear regression with higher order terms or a support

vector machine. ANNs are just a good choice because of their scalability.

Using backpropagation, a neural network with hundreds of thousands of pa-

rameters can be estimated fairly quickly and easily on a home computer.

More interestingly, the reinforcement ANN method is not limited to Eu-

ropean call options. By changing the initial condition (12), the method can
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be used to price any contingent claim that is not path dependent, and has a

fixed expiration or maturity date. Examples of this include European puts,

digital options (all-or-nothing), gap options, a derivative that pays the square

of the underlying asset price on exercise, and so on. Section 4.3 provides an

example of this, by pricing a cash-or-nothing put option.

3.4 Limitations and Assumptions

Assumptions

The basis for the reinforcement ANN and the Black-Scholes model are the

same, the no-arbitrage argument. Therefore the necessary assumptions for

both models are also similar. Following Merton (1973), I will go through

the assumptions of the Black-Scholes model and discuss the differences and

commonalities.

1. Frictionless markets. There are no transaction costs, buying

and selling is done at the same price. This also applies to

the credit market, meaning equal lending and borrowing rate.

Trading occurs continuously.

The first part applies to the reinforcement ANN as well as the Black-

Scholes model. Continuous trading only occurs in the Black-Scholes

model. I will return to the implications of this below.

2. Stock price dynamics. The price of the underlying asset is

generated by geometric Brownian motion.

Relaxing this assumption is one of the main benefits of the reinforce-

ment ANN. The equivalent assumption for the reinforcement ANN,

is that the generating process in the training sample must be repre-

sentative of the generating process going forward. This means that if
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there is a regime shift, e.g. significantly increased volatility, after the

training, the model will need to be re-estimated. This assumption may

be relaxed further by including parameter(s) describing the changing

aspects of the price dynamics, e.g. volatility.

3. Investor preferences and expectations. No assumption on

investor preferences are required by the Black-Scholes model,

the market actors only need to agree on σ in the geometric

Brownian motion (eq. 5).

This is not strictly the case for the reinforcement ANN. The Black-

Scholes model is independent of investor preferences because a delta-

hedged position is completely risk free. This is possible because the

price generating process of the underlying asset is continuous (assump-

tion 2) and the portfolio can be rebalanced continuously (assumption

1). This is not the case for the reinforcement ANN. A delta hedged

market maker assumes some risk between opportunities to rebalance

their portfolio. This is similar to the jump-diffusion model proposed

by Merton (1976). The market maker assumes risk, but Merton (1976)

argues that this is non-systemic risk, and can be diversified away. Thus

Merton avoids the issue of investor preferences. In the reinforcement

ANN, investor preferences are reflected in the loss function.

Why is the loss function squared? Does this choice assume that larger

deviations are more important to market makers? Using the square of the

errors, effectively give greater weight to larger deviations. In this case the

reasoning behind the choice is more practical than theoretical. As opposed

to other choices, like absolute deviation, the derivatives of the function are

continuous. This is particularly important, given the techniques used for
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parameter estimation. The square errors are also quick and simple to cal-

culate. Perhaps for these very reasons, squared errors are almost considered

the default option for model estimation.

First Order Approximation

The basis for the loss function (15) is that the change in the hedging portfolio

∆̂(St+h − St) should be as close as possible to the change in the estimated

option value Ĉt+h− Ĉt over a given time interval. As discussed in section 2.1,

this is a simplification. The hedging portfolio will only change in value when

the underlying asset price changes, while the option price also changes as a

result of time passing. Another problem is that the option price is not a linear

function of underlying asset price. The proportional change in option value

depends on the direction and magnitude of the price change in the underlying

asset. Not accounting for these effects introduces a bias in the model. In

the Black-Scholes model, these issues are accounted for by including a time

term, and a second order term for the underlying asset price. Could this be

done for the reinforcement ANN as well? The loss function could be:[(
∆̂(St+h − St) +

1

2
Γ̂(St+h − St)2 + Θ̂h

)
− (Ĉt+h − Ĉt)

]2
, (17)

where Γ̂ = ∂2Ĉ
∂S2 and Θ̂ = ∂Ĉ

∂T
.

This is not as simple to implement as it might seem. The problem is that

by adding two more unknowns, Γ and Θ, without introducing more informa-

tion, the system becomes underdetermined. There are fewer equations than

unknowns. The neural network is unable to work out what accounts for the

change in option value over a time interval. Is it time-decay or a change

in the underlying asset price? The Black-Scholes model solves this issue by

imposing the two boundary conditions, (13). However, that is not straight
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forward to do in an empirical model, such as the reinforcement ANN. The

underlying asset price will not usually reach its boundaries in the training

sample, so how can these conditions be imposed? Finding answers to these

questions could likely greatly improve the performance of the reinforcement

ANN. Sadly, they will not be resolved in this text.
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4 Testing on Synthetic Data

In this section I apply the model on simulated data. This provides a good

proof-of-concept before I apply it on real market data. I attempt to showcase

the flexibility of the method by pricing both a standard European call option,

and a more exotic cash-or-nothing put option.

The models are implemented in Python, using a number of scientific li-

braries; including TensorFlow, numpy, pandas, and matplotlib4. A simplified

version of the code for the reinforcement ANN is included in Appendix A.

4.1 Simulating Black-Scholes Data

Before applying the model on real market data, it is useful to test it in an

environment where the correct option prices are known. This can be accom-

plished by training the model on data simulated according to the assumptions

made by the Black-Scholes model. This way, the Black-Scholes formula will

give the correct price.

The Black-Scholes model assumes that the underlying asset price follows

geometric Brownian motion as in (18).

dS(t) = αS(t)dt+ σS(t)dZ(t) (18)

where α is the continuous expected return, σ is the volatility of the return,

and Z(t) is a standard Brownian motion.

By taking the integral on both sides we get:

S(t) = S(0) + α

∫ t

0

S(u)du+ σ

∫ t

0

S(u)dZ(u) (19)

4All figures in this text were generated by matplotlib.
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where
∫ t
0
S(u)du is a Lebesgue integral and

∫ t
0
S(u)dZ(u) is an Itô integral.

A solution is

S(t) = S(0)e(α−
1
2
σ)t+σZ(t) (20)

This can be easily verified by applying Itô’s formula. Using f(t, x) =

S(0)e(α−
1
2
σ)t+σx we have

dS(t) = df(t, Z(t)) = ft(t, Z(t))dt+ fx(t, Z(t))dZ(t) +
1

2
fxx(t, Z(t))dt

dS(t) = (α− 1

2
σ2)S(t)dt+ σS(t)dZ(t) +

1

2
σ2S(t)dt

dS(t) = αS(t)dt+ σS(t)dZ(t)

which is the same geometric Brownian motion as in (18).

This process can therefore be simulated at the discrete points t0, ..., tN by

(21).

Stn = St0e
(α− 1

2
σ2)(tn−t0)+σ

∑n
i=1(
√

(ti−ti−1)Zi), (21)

where Z1, ..., ZN
iid∼ N(0, 1).

Using this method, I simulate two years of daily prices, assuming 250

trading days per year (Fig. 5). I use S0 = 100, α = 0.05, and σ = 0.15 as

parameters for the simulation.

The model is then trained on the data as described in section 3.2.

4.2 Results

Figure 6 and 7 show the call option price and delta, respectively, 90 days be-

fore expiration as calculated by the neural network and Black-Scholes model.
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Figure 5: Asset price over 500 trading days

Figure 9a and 9b show the same, 10 days before expiration. As can be seen

in the figures, the reinforcement ANN was able to teach itself the value of the

options to a high degree of accuracy. Figure 8 show that even the ”Greeks”

Γ and Θ, the second order derivative with respect to asset price and the

derivative with respect to time respectively, are also estimated accurately.

As one would expect, the results are not affected by reasonable choices of

α. Different choices of σ also affects the results as on would expect, in line

with the Black-Scholes model.

The results are good, but not perfect. As can be seen in figure 7, the

reinforcement ANN estimates higher ∆ out-of-the-money, and lower ∆ in-

the-money than is correct. This leads to a slight overvaluation of the option

close to the money, as is evident in figure 6. This is not a result of imperfect

approximation by the ANN, but bias associated with not accounting for time-
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Figure 6: Plot of ANN and BS values for call option with K = 100 and

T = 90

decay and higher order changes in underlying asset price. In this particular

setting with Black-Scholes data, I can actually account for these effects in

the loss function. Because I know the Black-Scholes formula to be correct in

this setting, I can use the Black-Scholes estimates of Θ and Γ in the modified

loss function:[(
∆̂(St+h − St) +

1

2
Γ̂BS(St+h − St)2 + Θ̂BSh

)
− (Ĉt+h − Ĉt)

]2
(22)

When using this loss function, the bias disappears from the model. Figure

10 shows the price and delta plots of the reinforcement ANN estimated with

modified loss function. Of course, in other contexts, using the Black-Scholes

estimates of Θ and Γ is inappropriate. Relying on Black-Scholes estimates

for estimating the reinforcement ANN also defeats the purpose of the model.

Even with the bias, this test of the model in a controlled environment

provides a great proof-of-concept. In section 5 the model is applied on real

market data of the S&P 500 index.
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Figure 7: Plot of ANN and BS delta values for call option with K = 100 and

T = 90

4.3 Pricing a Cash-or-Nothing Put Option

In this short aside, I apply the reinforcement ANN method on a cash-or-

nothing put option, using the same synthetic data as above. The experiment

highlights the flexibility of the reinforcement learning method. By chang-

ing one line in the code, the initial condition, an entirely different type of

derivative security can be priced effectively.

A cash-or-nothing put option is a financial derivative that pays $1 if the

underlying asset price S is lower than the strike price K. That is if S < K.

Solving the Black-Scholes equation for this security shows that its value is

given by (23) (McDonald, Cassano, and Fahlenbrach 2006).

e−rTN(−d2) (23)

Figure 11 shows the results. The possible applications of the reinforce-

ment ANN is far from limited to European call options.
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Figure 8: Derivatives of option price with K = 100 and T = 90 as calculated

by ANN and BS
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Figure 9: Price and delta for call option with K = 100 and T = 10 as

calculated by ANN and BS
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Figure 10: Price and delta for call option with K = 100 and T = 90 as

calculated by ANN with modified loss function, and BS
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Figure 11: Price and delta for cash-or-nothing put option with K = 100 and

T = 60 as calculated by ANN and BS
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5 Applied on the S&P500 Index

In this section, I apply the model on real market data, and compare its

out-of-sample performance to two rival models. The rival models are the

Black-Scholes model and an artificial neural network trained using supervised

learning.

5.1 The Data

I have chosen to use call options on the Standard and Poor’s 500 (S&P500)

index traded on the Chicago Board Options Exchange (CBOE). There are

a few reasons for this. First, the S&P500 is the most widely used stock

market index, and so options on it is thickly traded. Second, the options are

European style (Chicago Board Options Exchange 2018). Third, the index

does not pay dividends, simplifying the analysis.

I use three years of daily data, from 2014 up to and including 2016. There

are a total of 456, 936 observations on call options with non-zero daily trading

volume in this period. The dataset was purchased from www.discountoptiondata.com,

but originates from the Options Price Reporting Authority (Discount Option-

Data 2018). I use the 3-month treasury bill rate (DTB3) as interest rate.

A time series with daily observations is obtained from the Federal Reserve

Economic Data (FRED 2018).

One challenge with this dateset is that it does not track when the last

option trade was made. This means that LastPrice, the closing price of the

option, may be from a different point in the day than the recorded closing

price of the index, UnderlyingPrice. If the index price moved significantly

since the latest transaction of a particular option was traded, the recorded

option price may no longer be current. To combat this I drop all observations
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DataDate Expiration AskPrice BidPrice LastPrice StrikePrice Volume UnderlyingPrice

2015-06-05 2015-06-26 4.70 4.30 4.40 2140.0 2279 2093.29

2015-07-01 2015-07-31 13.60 12.90 13.00 2115.0 233 2076.74

2016-08-12 2018-12-21 206.70 199.30 204.00 2175.0 600 2183.97

2015-03-03 2017-12-15 1.60 1.10 1.15 3500.0 1 2107.78

2015-02-12 2015-03-27 1.35 0.85 1.05 2215.0 10 2088.48

Table 1: Selected columns from www.discountoptiondata.com dataset sample

of options where less than 100 contracts where traded, this is 67% of the

original data set. I also drop all observations where the closing price is larger

than the ask price or smaller than the bid price, this is 50% of the original

data set.

There are relatively few observations that have more than 120 days until

expiration, are very deep in-the-money ( S
K
> 1.2), or very far out-of-the-

money ( S
K
< 0.8). The lack of data makes it difficult for the supervised ANN

to learn the price of such contracts. The reinforcement ANN and Black-

Scholes models are not affected by the lack of data, but I exclude observations

outside this range in an attempt to not disadvantage the supervised ANN.

This excludes 12% of the remaining data. In total, 74, 919 observations

remain for the three years. Table 2 shows a sample of the data set after

processing.

The dataset is split into three parts. Two years for training, two months

for validation, and 10 months for testing. The split is illustrated in figure 12.

The training data is used to estimate the model parameters. The validation

data is used for model selection. Finally, model performance is evaluated on

the test data.
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Date S K T C S T

2016-02-03 1911.08 2015.0 44.0 8.05 1915.64 43.0

2015-10-23 2075.70 2085.0 14.0 13.47 2071.17 11.0

2015-11-03 2109.53 2150.0 38.0 10.80 2099.67 37.0

2014-04-28 1869.43 1950.0 19.0 0.40 1878.33 18.0

2015-09-04 1927.97 2130.0 42.0 1.07 1968.96 38.0

Table 2: Selected columns from processed dataset sample

5.2 Model Selection

There are a number of consequential choices to be made when using artificial

neural networks. Number of layers, number of neurons in each layer, batch

size, learning rate, choice of activation function, input variables and so on.

These are often called hyperparameters. In a sense, the validation data is

used to estimate optimal hyperparameters. There are an infinite number

of permutations for the hyperparameters, so an exhaustive search is clearly

impossible.

Both the supervised and the reinforcement learning models will have the

same input and output variables. S
Ke−rT and T are the inputs, and C is

output. The reinforcement ANN will be trained as described in section 3.2,

using the daily closing price of the S&P 500 index. The supervised ANN is

estimated using the observed market option prices, minimizing the observed

MSE (25).

The search space can be limited by rules of thumb and existing literature

as guides. To further narrow down the selection, I have used a combination

of intuition guided experiments and stochastic grid search.

Using these methods, I find that a neural network with two hidden layers
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Figure 12: SPX Index and Split

of 50 neurons each is close to ideal for the supervised learning ANN. This

means that there are a total of 2, 752 parameters to be estimated in the

model.

For the reinforcement learning ANN, three hidden layers, also with 50

neurons each, performs best on the validation set. This equates to a total of

5, 302 estimated parameters.

Why is the ideal size of the reinforcement network greater than that of

the supervised network? This disparity highlights one of the main benefits of

the reinforcement learning approach. Generally, a neural networks ability to

accurately approximate a complex function increases with its size, but as the

size and number of parameters increase, the amount of data needed to fit the

parameters also increase. Too many parameters in relation to the amount of

data available will result in overfitting. The limited amount of market data
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limits the size of supervised network, while the reinforcement ANN can be

fitted using an infinite number of ’theoretical’ option contracts. Of course,

the ’theoretical’ option contracts are not completely independent of each

other. Similar ’theoretical’ options will provide similar returns over the same

time intervals. So the reinforcement ANN is also limited by the amount of

data, but much less so than the supervised ANN. This effect would be much

more pronounced in other more thinly traded markets. The amount of option

market data on the Norwegian stock market index OBX, for example, will

be orders of magnitude less than on the S&P 500 (Oslo Børs 2018).

5.3 Performance Measures

There are two main approaches for evaluating the performance of an option

pricing model. If the the true value of the option is known, the simplest ap-

proach is to use some function of the difference between the models predicted

price and the true option value. Arguably, the most popular example of this

is the mean squared error (MSE) or the squareroot of the MSE (RMSE). For

example Bennell and Sutcliffe (2004), Amilon (2003), Park, Kim, and Lee

(2014), and Galindo-Flores (2000) all use this measure. Other examples of

this type of measure include the squared correlation coefficient (R2) (used by

Hutchinson, Lo, and Poggio (1994) and Bennell and Sutcliffe (2004)), and

mean absolute deviation (MAD) (used by Bennell and Sutcliffe (2004)).

The second approach does not require knowing the correct option price.

The measure is based on some function of the difference between the evolution

of the option price and a replicating (hedging) portfolio based on the model.

Either the observed option price, or the model estimate of the option price

can be used in comparison to the replicating portfolio. Hutchinson, Lo,

and Poggio (1994) uses the observed option price, but Amilon (2003) argues
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that this cannot be good practice if there is doubt that the observed price

is the true value. Either way, this method requires a time series of the

underlying asset price. The objective function of the reinforcement ANN is

such a function, the MSE.

I will use two different measures from each approach, the mean square

error (MSE) and the mean absolute deviation (MAD).

The mean absolute deviation between the observed price C and the model

predicted price Ĉ.

Observed MAD =
1

n

n∑
i=1

|Ĉ − C| (24)

The mean square error between the observed price C and the model

predicted price Ĉ.

Observed MSE =
1

n

n∑
i=1

(Ĉ − C)2 (25)

The mean absolute deviation between the price change in the option

Ĉt+h − Ĉt) and the hedging portfolio ∆̂(St+h − St).

Hedging MAD =
1

n

n∑
i=1

|∆̂(St+h − St)− (Ĉt+h − Ĉt)| (26)

The mean square error between the price change in the option Ĉt+h− Ĉt)

and the hedging portfolio ∆̂(St+h − St).

Hedging MSE =
1

n

n∑
i=1

[
∆̂(St+h − St)− (Ĉt+h − Ĉt)

]2
(27)

5.4 Experimental Design

First the competing models are fitted on the training set. Because the

model parameters are randomly initialized, otherwise identical models will

be slightly different after training. To mitigate this, each model is trained ten
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times with different initial parameters. The one that performs best on the

validation sample is chosen for further analysis. Bennell and Sutcliffe (2004)

use a similar process. The choice depends on which performance measure is

used, I use hedging MAD. Table 3 shows the performance of the ten training

runs on the validation sample.

Model Hedging MSE Hedging MAD Observed MSE Observed MAD

Reinforcement ANN 0 2.22238 0.738734 20.9957 2.93025

Reinforcement ANN 1 2.10409 0.725239 23.7122 3.30179

Reinforcement ANN 2 2.14614 0.749549 20.355 2.69666

Reinforcement ANN 3 2.26206 0.724356 25.6384 3.0741

Reinforcement ANN 4 2.52527 0.79524 35.1993 3.97151

Reinforcement ANN 5 2.36396 0.738884 25.0172 3.02967

Reinforcement ANN 6 2.2757 0.747626 19.1331 2.67247

Reinforcement ANN 7 2.13811 0.725381 28.0196 3.31719

Reinforcement ANN 8 2.33193 0.744567 40.6807 5.52289

Reinforcement ANN 9 2.16678 0.754914 18.7411 2.76621

Black-Scholes 2.70696 0.856054 21.3 3.28285

Table 3: Performance of the reinforcement ANN on the validation set over

ten training runs

5.5 Results

In Table 4 we see that the reinforcement ANN outperforms the Black-Scholes

model on every single performance metric. The supervised ANN outperforms

both the reinforcement ANN and the Black-Scholes model on every metric

except Hedging MSE. The supervised ANN have the smallest hedging error

on average, but some of the errors are relatively large. Examining figure

13 and 14 can give an idea why. The three models make relatively close
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Figure 13: Price and delta for call option with K = 100 and T = 90 as

calculated by supervised ANN, reinforcement ANN, and BS

predictions, particularly for the short maturity options, until the options are

well in-the-money.

Figure 15 show that there is less observations with long maturities and

moneyness far from unity. This can explain why the supervised ANN, that

depends on large amounts of data to learn, performs worse on these options.

The Black-Scholes model and the reinforcement ANN on the other hand, are

not reliant on this data and perform more consistently.

Model Hedging MSE Hedging MAD Observed MSE Observed MAD

Reinforcement ANN (mine) 2.65657 0.858184 54.9678 6.25654

Supervised ANN 3.57705 0.775563 19.3856 3.12608

Black-Scholes 3.40099 1.139 220.997 12.0978

Table 4: Performance of the three models on the test set

Splitting the test sample by month reveals the same pattern, see table 5.

The reinforcement ANN outperform the Black-Scholes model on every metric

every month. And almost every month, the supervised ANN outperform the
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Figure 14: Price and delta for call option with K = 100 and T = 10 as

calculated by supervised ANN, reinforcement ANN, and BS
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& P 500 index options
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Month Model Hedging MAE Hedging MSE Observed MAE Observed MSE

Mar-2016 Black-Scholes 121.904182 1.942933 8.764583 0.895147

Reinforcement ANN 27.639412 1.890050 4.380633 0.700358

Supervised ANN 22.454878 3.099291 3.481279 0.636125

Apr-2016 Black-Scholes 167.847626 2.001734 10.659591 0.976048

Reinforcement ANN 43.667641 1.760359 5.662245 0.805555

Supervised ANN 12.191474 2.481467 2.442907 0.704860

May-2016 Black-Scholes 149.477371 2.548478 10.241510 0.946158

Reinforcement ANN 40.115330 1.832577 5.529256 0.731027

Supervised ANN 10.822154 1.727955 2.462537 0.596977

Jun-2016 Black-Scholes 118.036026 6.013115 8.305344 1.180875

Reinforcement ANN 33.083168 5.082230 4.633369 1.051576

Supervised ANN 29.696371 6.373221 3.936042 1.092728

Jul-2016 Black-Scholes 248.456375 2.800205 13.038374 1.168717

Reinforcement ANN 72.138412 2.093725 7.328163 0.870965

Supervised ANN 18.358173 2.950025 2.738436 0.726481

Aug-2016 Black-Scholes 285.189514 3.333716 14.298230 1.261132

Reinforcement ANN 96.343925 2.549990 8.693088 0.904770

Supervised ANN 17.648865 2.923735 3.313208 0.671951

Sep-2016 Black-Scholes 218.458923 4.170218 12.102951 1.196445

Reinforcement ANN 63.544788 3.300921 6.744524 0.941828

Supervised ANN 14.441139 3.846450 2.824541 0.884574

Oct-2016 Black-Scholes 187.673462 2.733971 11.673301 1.077606

Reinforcement ANN 54.719086 2.083249 6.588595 0.752417

Supervised ANN 21.655910 2.049526 2.528810 0.541491

Nov-2016 Black-Scholes 184.832001 2.933357 10.840181 1.093040

Reinforcement ANN 55.737530 2.874570 6.307992 0.891128

Supervised ANN 25.222687 3.783088 3.445950 0.805178

Dec-2016 Black-Scholes 247.691193 2.592708 12.789544 1.073321

Reinforcement ANN 68.852280 2.297923 7.114644 0.881539

Supervised ANN 22.338226 7.192957 2.924213 0.871336

Table 5: Performance of the three models on the test set by month

reinforcement ANN on all metrics except Hedging MSE.

Table 6 divides the dataset by moneyness. The same pattern holds for

out-of-the-money options as well as for at-the-money options, but the Black-

Scholes model outperforms both ANN based models on every metric for in-
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Moneyness Model Hedging MAE Hedging MSE Observed MAE Observed MSE

OTM, S
K
< 0.97 Black-Scholes 200.156403 0.588415 11.307669 0.551204

Reinforcement ANN 55.318222 0.260011 6.267632 0.345770

Supervised ANN 7.251135 0.378938 2.225297 0.317774

ATM, 0.97 < S
K
< 1.03 Black-Scholes 191.135056 4.934059 11.412901 1.457267

Reinforcement ANN 55.504204 4.096605 6.312860 1.168480

Supervised ANN 19.572832 4.410431 3.189572 0.953541

ITM, 1.03 < S
K

Black-Scholes 39.767418 0.334403 4.537481 0.380637

Reinforcement ANN 39.650070 3.135508 4.968401 0.911614

Supervised ANN 181.914169 26.621176 10.268289 2.227875

Table 6: Performance of the three models on the test set by moneyness

the-money options. The supervised ANN performs by far the worst on this

category.
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6 Summary and Discussion

In this Master’s thesis I develop and present a new method for pricing finan-

cial derivatives. The economic reasoning behind the method is very similar

to that of Black and Scholes (1973) seminal paper on option pricing. The

biggest difference is that Black and Scholes solve the problem analytically,

while I do it numerically with the help of a non-linear regression model (an

artificial neural network). The main benefit of this approach is that it does

not rely on a parametric specification of the stochastic process that generates

the price of the underlying asset, like Black and Scholes assumes geometric

Brownian motion. Instead I use a time series of the realized price of the un-

derlying asset. Though the method can be applied to price a wide range of

derivative securities, I have chosen to focus mainly on European call options.

The results in section 5.5 show that, for the most part, the supervised

ANN model outperforms the reinforcement learning approach by most met-

rics. Still, I would not discard the reinforcement ANN for option pricing just

yet (though I may be biased). The data set used in section 5 is in many ways

the best case scenario for the data hungry supervised ANN. Almost any other

underlying asset will have a less active options market than the S&P500 in-

dex. This will dramatically reduce the efficacy of a supervised ANN, but

would not affect the performance of the reinforcement ANN as long as there

is sufficient data on the underlying asset. As shown in section 4.3, the rein-

forcement ANN is also flexible in the kind of derivative securities it prices.

The fact that it drastically outperforms the Black-Scholes model shows that

it would be a good choice in any situation when the data from derivatives

market is not substantial enough for the supervised learning approach. This

could be the case for other underlying assets or other less traded derivative

securities.
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As discussed in section 3.4, there is also much room for improvement in

the reinforcement ANN. Possible improvements include expanding from one

dimensional first order approximation to multidimensional higher order ap-

proximation of the hedging portfolio. This requires solving some challenges,

but is likely possible. Another possible improvement is to include more in-

put variables. The most obvious choice is a measure of volatility. This could

be based on a historic moving average, a GARCH-model estimate, or even

implied volatility from options market data. More than one of these options

could be used concurrently. For instance Amilon (2003) uses both 30-day and

10-day trailing volatility as input variables, theoretically enabling the neural

network to learn the significance of both medium and short term volatil-

ity trends. Montesdeoca and Niranjan (2016) experiment with other input

variables, such as trading volume.

Another possible use for the reinforcement ANN is as part of an ensemble

model. An ensemble model aggregates the predictions of a set of models.

The aggregate prediction is often better than that of the best single model

in the set (Géron 2017). The aggregation can be done in multiple ways. A

naive way would be to take an average of the various model’s predictions.

The set of models could also be used as inputs for an aggregating learning

algorithm, that can learn the relative strengths and weaknesses of the input

models, and weight them accordingly. Anders, Korn, and Schmitt (1998)

found that including the Black-Scholes estimated option price as an input

variable in a supervised ANN improved its predictions. As the reinforcement

ANN outperformed the Black-Scholes model in almost all situations in section

5.5, it is likely that including it could improve performance even further.
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A Simplified Example Code

Importing required libraries.

import numpy as np

import pandas as pd

from matplotlib import pyplot as plt

import tensorflow as tf

directory = 'C:/Users/Haakon'

Defining the neural network.

#network for synthetic data

activation = tf.tanh #activation function

hidden_layer = [50,50,50] #number neurons in each hidden layer

n_outputs = 1

learning_rate = .001

tf.reset_default_graph()

with tf.name_scope('inputs_processing'):

X_input = tf.placeholder(tf.float32, shape = (None, 3), name =

'X_input') #S, K, T↪→

X_input_ = tf.placeholder(tf.float32, shape = (None, 2), name =

'X_input_') #S_, T_↪→

r = tf.fill([tf.shape(X_input)[0],1], 0., name = 'r') #interest rate

if applicable↪→

#S, K, and T denote the underlying asset price, strike (exercise)

price, time until expiration (exercise date)↪→

#The training requires the value of S and T at both times t and (t+h),

the latter is denoted by a an underscore "_" at the end↪→

S = tf.slice(X_input, (0,0), (-1,1))

K = tf.slice(X_input, (0,1), (-1,1))

T = tf.slice(X_input, (0,2), (-1,1))

X = tf.concat([S/(K*tf.exp(-r*T)), T], 1)#input matrix for ANN
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S_ = tf.slice(X_input_, (0,0), (-1,1))

T_ = tf.slice(X_input_, (0,1), (-1,1))

X_ = tf.concat([S_/(K*tf.exp(-r*T_)), T_], 1)#input matrix for ANN_

with tf.name_scope('ann'):

#defines the nerual network architecture, inputs are S/K and T, output

is C/K↪→

def ann(x, hidden_layer, n_outputs, activation, reuse = False):

Z = tf.layers.dense(x, hidden_layer[0], activation = activation,

name = 'hidden1', reuse = reuse)↪→

for i in range(1, len(hidden_layer)):

Z = tf.layers.dense(Z, hidden_layer[i], activation =

activation, name = 'hidden' + str(i+1), reuse = reuse)↪→

return tf.layers.dense(Z, n_outputs, name = 'out', reuse = reuse)

out = ann(X, hidden_layer, n_outputs, activation) #out is ANN estimate

of C/K↪→

out = tf.where(tf.greater(T, 1e-3), out, tf.maximum(S/K - 1, 0)) #if

T<0.001 (basically if T==0), then max(S/K-1,0) is returned

instead of ANN estimate

↪→

↪→

out = K*out # multiply (C/K) by K to obtain C

#derivatives of option price is computed

delta = tf.gradients(out, S)[0]

theta = tf.gradients(out, T)[0]

gamma = tf.gradients(delta, S)[0]

#same as above, but for option price at (t+h)

out_ = ann(X_, hidden_layer, n_outputs, activation, reuse = True)

out_ = K*tf.where(tf.greater(T_, 1e-3), out_, tf.maximum(S_/K - 1, 0))

with tf.name_scope('loss'):

hedging_mse = tf.losses.mean_squared_error(labels = delta*(S_-S),

predictions = (out_-out)) #this is the loss (objective) function,↪→

with tf.name_scope('training'):

optimizer = tf.train.AdamOptimizer(learning_rate) #ADAM optimization

is used↪→

training_op = optimizer.minimize(hedging_mse)
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with tf.name_scope('init_and_saver'):

init = tf.global_variables_initializer()

saver = tf.train.Saver()

Code for simulating geometric Brownian motion, and feeding data to the

artificial neural network.

def stock_sim_path(S, alpha, delta, sigma, T, N, n):

"""Simulates geometric Brownian motion."""

h = T/n

mean = (alpha - delta - .5*sigma**2)*h

vol = sigma * h**.5

return S*np.exp((mean + vol*np.random.randn(n,N)).cumsum(axis = 0))

def get_batch2(stock_path,n, moneyness_range = (.5,2)):

"""Constructs theoretical options based on the time series

stock_path"""↪→

picks = np.random.randint(0, len(stock_path)-1, n)

T = np.random.randint(1, 150, (n,1))

S = stock_path[picks]

S_ = stock_path[picks+1]

K = np.random.uniform(*moneyness_range, (n,1))*S

X = np.hstack([S, K, T/250])

X_ = np.hstack([S_, (T-1)/250])

return X, X_

Training procedure.

#model training

n_epochs = 500 #number of training epochs

n_batches = 1000 #number of batches per epoch

batch_size = 10000 #number of theoretical options in each batch

T = 2 #years of training data

days = int(250*T)
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stock_path = stock_sim_path(100, .05, 0, .15, T, 1, days) #simulate stock

path↪→

stock_path_test = stock_sim_path(100, .05, 0, .15, T, 1, days) #simulate

stock path for cross-validation↪→

#plot stock paths

plt.plot(stock_path, label = 'Training')

plt.plot(stock_path_test, label = 'Test')

plt.legend()

plt.show()

X_test, X_test_ = get_batch2(stock_path_test, batch_size) #get test-set

with tf.Session() as sess: #start tensorflow session

init.run() #initialize variables

for epoch in range(n_epochs):

for batch in range(n_batches):

X_train, X_train_ = get_batch2(stock_path, batch_size) #get

batch of theoretical options↪→

sess.run([training_op], feed_dict = {X_input: X_train,

X_input_: X_train_}) #training operation↪→

epoch_loss = hedging_mse.eval({X_input: X_test, X_input_:

X_test_})↪→

print('Epoch:', epoch, 'Loss:', epoch_loss, 'BS Loss:',

bs_hedging_mse.eval({X_input: X_test, X_input_: X_test_}))↪→

save_path = saver.save(sess, directory + '/ann_save.ckpt') #save model

parameters↪→
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