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Abstract

Local sensitivity information is obtained for KKT points of parametric NLPs that may exhibit active set
changes under parametric perturbations; under appropriate regularity conditions, computationally relevant
generalized derivatives of primal and dual variable solutions of parametric NLPs are calculated. Ralph and
Dempe obtained directional derivatives of solutions of parametric NLPs exhibiting active set changes from
the unique solution of an auxiliary quadratic program. This article uses lexicographic directional derivatives,
a newly developed tool in nonsmooth analysis, to generalize the classical NLP sensitivity analysis theory
of Ralph and Dempe. By viewing said auxiliary quadratic program as a parametric NLP, the results of
Ralph and Dempe are applied to furnish a sequence of coupled QPs, whose unique solutions yield generalized
derivative information for the NLP. A practically implementable algorithm is provided. The theory developed
here is motivated by widespread applications of nonlinear programming sensitivity analysis, such as in
dynamic control and optimization problems.

Keywords: Sensitivity analysis, Nonsmooth analysis, Generalized derivatives, B-subdifferential,
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1. Introduction

Consider the following parametric NLP:

min
x∈Dx

f(p,x),

s.t. gi(p,x) ≤ 0, ∀i ∈ G := {1, . . . , ng},
hi(p,x) = 0, ∀i ∈ H := {1, . . . , nh},

(1)

where p ∈ Dp is a problem parameter; f : Dp×Dx → R, g : Dp×Dx → Rng and h : Dp×Dx → Rnh are C2

on their respective domains; and the sets Dp ⊂ Rnp and Dx ⊂ Rnx are open. Given a reference parameter
value p0 ∈ Dp, the focus of this article is obtaining (generalized) derivative information of the primal and
dual variable solutions of (1), under parametric perturbations which may cause active set changes.

Since Fiacco and McCormick [1] established classical sensitivity analysis of parametric NLPs under reg-
ularity assumptions including the linear independence constraint qualification (LICQ) and strict comple-
mentarity (i.e. an absence of active set changes), a number of authors [2–5] have investigated sensitivity
analysis for parametric NLPs with active set changes; a broad and comprehensive sensitivity analysis theory
for mathematical programs is found in [6, 7]. This article focuses on generalizing the practical method by
Ralph and Dempe [8] for calculating directional derivatives of primal variable solution mappings using a
quadratic program with an auxiliary linear program embedded.
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The theory of Ralph and Dempe [8] assumes the Magnasarian-Fromovitz constraint qualification (MFCQ),
constant rank constraint qualification (CRCQ) and general strong second-order sufficient condition (GSSOSC).
Said theory was specialized by Scholtes [9] to the LICQ and strong second-order sufficient condition (SSOSC)
setting, using Kojima’s nonsmooth reformulation of the parametric NLP KKT system: Given a reference
parameter value p0 ∈ Dp, let (x0,µµµ0,λλλ0) ∈ Dx ×Rng

+ ×Rnh be a KKT point of (1). LICQ holds at (p0,x0)
if the set of vectors

{(Jxgi(p
0,x0))T : i ∈ A} ∪ {(Jxhi(p

0,x0))T : i ∈ H}
are linearly independent, where Jxgi(p

0,x0) ∈ R1×nx denotes the partial Jacobian matrix of gi with respect
to x evaluated at (p0,x0) (with the other partial Jacobians defined similarly), and where the active set of
(1) at (p0,x0) is denoted by

A := {i ∈ G : gi(p
0,x0) = 0}.

The strong second-order sufficient condition (SSOSC) holds at (p0,x0,µµµ0,λλλ0) if vT∇2
xxL(p0,x0,µµµ0,λλλ0)v > 0

for all v ∈ Rnx \ {0nx
} satisfying

Jxgi(p
0,x0)v = 0, ∀i ∈ A+,

Jxhi(p
0,x0)v = 0, ∀i ∈ H.

where L is the usual Lagrangian function associated with (1), ∇2
xxL(p0,x0,µµµ0,λλλ0) is the Hessian matrix of

L with respect to x evaluated at (p0,x0,µµµ0,λλλ0) and the strongly active, weakly active, and inactive sets of
g in (1) at (p0,x0,µµµ0) are defined as, respectively,

A+ := {i ∈ G : gi(p
0,x0) = 0 < µ0

i },
A0 := {i ∈ G : gi(p

0,x0) = 0 = µ0
i },

A− := {i ∈ G : gi(p
0,x0) < 0 = µ0

i }.

Given d ∈ Rnp , let QP(1)(d) denote the following quadratic program:

QP(1)(d) : min
z∈Rnx

0.5zT∇2
xxL(p0,x0,µµµ0,λλλ0)z + zT∇2

xpL(p0,x0,µµµ0,λλλ0)d,

s.t. Jxgi(p
0,x0)z + Jpgi(p

0,x0)d ≤ 0, ∀i ∈ A0, ← multipliers ηηη ∈ R|A
0|

+

Jxgi(p
0,x0)z + Jpgi(p

0,x0)d = 0, ∀i ∈ A+, ← multipliers γγγ ∈ R|A
+|

Jxhi(p
0,x0)z + Jphi(p

0,x0)d = 0, ∀i ∈ H, ← multipliers ρρρ ∈ Rnh

(2)
whose feasible set is the critical cone of (1) at (p0,x0) with respect to (µµµ0,λλλ0) in the direction d. To improve
readability, the notation chosen for the multipliers associated with the quadratic program’s constraints is
outlined above. Directional differentiability of (1) is obtained via QP(1)(d), under the regularity assumptions
outlined above, in the following adaptation of Theorem 5.2.1 and Proposition 5.2.1 in [9].

Theorem 1.1. Let (x0,µµµ0,λλλ0) ∈ Dx×R
ng

+ ×Rnh be a KKT point of (1) satisfying SSOSC and let LICQ hold

at (p0,x0). Then there exist a neighborhoodNp0 ⊂ Dp of p0 and PC1 mappings (x̃, µ̃µµ, λ̃λλ) : Np0 → Dx×R
ng

+ ×
Rnh such that, for each p ∈ Np0 , x̃(p) is an isolated strict local minimizer of (1) and (x̃(p), µ̃µµ(p), λ̃λλ(p)) is an
isolated KKT point of (1) in a neighborhood of (p0,x0,µµµ0,λλλ0). Moreover, for any d ∈ Rnp , the directional

derivatives of (x̃, µ̃µµ, λ̃λλ) at p0 in the direction d satisfy

x̃′(p0;d) = z(1)(d),

λ̃λλ
′
(p0;d) = ρρρ(1)(d),

µ̃µµ
′
i(p

0;d) =


η(1),i(d), if i ∈ A0,

γ(1),i(d), if i ∈ A+,

0, if i ∈ A−,

(3)

where z(1)(d) and (ηηη(1)(d), γγγ(1)(d), ρρρ(1)(d)) are the unique primal and dual solutions of QP(1)(d), respec-
tively, evaluated at d.

2



Example 1.2. Consider the following parametric NLP, inspired by the example studied in [10]:

min
x∈R2

x21 + x22 + 2(p1x1 + p2x2) + x2,

s.t. − x1 + p1 ≤ 0,

2x21 + x2 − 10 ≤ 0,

− x2 + 0.5 + p2 ≤ 0.

(4)

With reference parameter value p0 = (0, 0), (x0,µµµ0) is a KKT point of (4) where x0 = (0, 0.5) and µµµ0 =
(0, 0, 2); see Figure 1 for an illustration.
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(a) Constraints (black lines), computed solution (red dot), and
objective function contours.
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Figure 1: Illustration of (4).

The quadratic program (2) associated with (4) at (p0,x0,µµµ0) for any d ∈ R2 is given by

QP(1)(d) : min
z∈R2

z21 + z22 + 2(d1z1 + d2z2),

s.t. − z1 + d1 ≤ 0,

− z2 + d2 = 0,

(5)

since A+ = {3}, A0 = {1} and A− = {2}. As a function of d ∈ R2, primal and dual variable solutions of
(5) are given by

z(1)(d) ≡ (|d1|, d2), η(1)(d) ≡ max (4d1, 0), γ(1)(d) ≡ 4d2.

As a function of p ∈ Np0 = (−1, 1), the isolated strict local minimum of (4) is given by

x̃(p) ≡ (|p1|, |p2 + 0.5|).

Moreover, for each p ∈ Np0 , (x̃(p), µ̃µµ(p)) is an isolated KKT point of (4) in a neighborhood of (p0,x0,µµµ0),
where

µ̃µµ(p) ≡ (max(4p1, 0), 0,max(4p2 + 2, 0)).

As expected, x̃′(p0;d) = z(1)(d) and µ̃µµ
′
(p0;d) = (η(1)(d), 0, γ(1)(d)).

Theorem 1.1 provides a method to calculate directional derivatives and allows for active index set changes
(i.e., strict complementarity is not required), but does not yield B-subdifferential elements. This article
approaches this parametric NLP sensitivity analysis problem by applying the theory of Scholtes [9] in com-
bination with the recently developed theory of lexicographical directional (LD-)derivatives [11]. Based on
lexicographic differentiation [12], LD-derivatives extend the classical directional derivative and always satisfy
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sharp calculus rules, unlike Clarke’s generalized derivative [13]. Tractable numerical methods [11] have been
developed to compute LD-derivatives in an automatable way. LD-derivatives can be used to furnish lexico-
graphic (L-)derivatives [12], by solving a linear equation system, which are elements of the Bouligand (B-
)subdifferential (and therefore Clarke’s generalized derivative), as well the Mordukhovich (M-)subdifferential
[14], when the participating functions are piecewise differentiable (PC1) in the sense of Scholtes [9]. Con-
sequently, L-derivatives are computationally relevant generalized derivative elements that can be supplied
to dedicated nonsmooth algorithms (e.g. nonsmooth Newton methods [15–18] and optimization methods
[19–23]).

This new approach yields a sequence of quadratic programs whose unique solutions are used to furnish
LD-derivatives of primal and dual variable solution mappings. Since said solution mappings are piecewise
differentiable on a neighborhood of a reference parameter, the L-derivatives obtained from this procedure
are computationally relevant generalized derivative elements. A recent work [24] provides the first compu-
tationally relevant theory to obtain generalized derivatives of parametric NLPs with active set changes, and
is therefore the only competing theory to the contributions made here. In [24], L-derivatives are obtained
by applying a nonsmooth implicit function theorem to a nonsmooth reformulation of the NLP KKT system,
generalizing Fiacco and McCormick’s [1] approach to allow for active set changes. Since the computational
costs of the aforementioned approach in [24] are currently unclear, the methods detailed in this article may
prove to be superior for evaluating generalized derivative elements. Moreover, since the present approach
only relies on the ability to furnish directional derivatives, it is hopeful that it can be applied to other types of
mathematical programs, such as complementarity problems, variational inequalities, mathematical programs
with equilibrium constraints, etc.

Establishing sensitivity analysis for NLPs and other types of mathematical programs has widespread
application. For example, a wide variety of process operation problems require dynamic optimization, often
posed as open loop optimal control problems and solved via sequential methods (e.g., multiple shooting)
or simultaneous methods (e.g., collocation on finite elements). Such an approach necessitates accurate and
efficient computation of NLP solutions and sensitivity information, which motivates the contributions made
in this article. Consequently, we are hopeful the theory in this article leads to improvements in optimal
control methods (e.g., nonlinear model predictive control [25–27]) and solving dynamic control applications
(e.g., temperature control in batch reactors, optimal catalyst mixing problems, bioreactor control, distillation
column problems see , including temperature control in batch reactors, catalyst mixing, stirred tank reactors,
bioreactor control, and distillation column problems [28, 29]).

2. Background: Generalized Derivatives

Generalized derivatives theory is reviewed before presenting lexicographic differentiation and the lex-
icographic directional derivative. (For a broader view of nonsmooth analysis, the reader is referred to
[7, 13, 30, 31].) Given a locally Lipschitz continuous function f : Z ⊂ Rn → Rm, Z open, it follows by
Rademacher’s Theorem that f is differentiable on Z \Sf , where Sf ⊂ Z is a zero (Lebesgue) measure subset.
The B-subdifferential of f at z0 ∈ Z is

∂Bf(z
0) :=

{
lim
j→∞

Jf(z(j)) : z(j) → z0, z(j) ∈ Z \ Sf

}
,

which is nonempty and compact. If f is C1 at z, then ∂Bf(z) = {Jf(z)}. Assume that f is PC1 at z for the
remainder of this section. Then

∂Bf(z
0) =

{
Jf(i)(z

0) : i ∈ {1, . . . , ness}
}
,

by [32], where {f(1), . . . , f(ness)} is a set of ness ∈ N essentially active C1 selection functions of f at z0.
Dedicated numerical nonsmooth algorithms nominally require an element of the Clarke (generalized)

Jacobian of f at z0 [13], which is the convex hull of the B-subdifferential; ∂f(z0) := conv ∂Bf(z
0). It is

difficult in general to evaluate said elements in an automatable way for the following reasons, among others
[13, 31]:

1. Clarke’s Jacobian satisfies calculus rules with inclusions; given g : Rm → Rq that is Lipschitz continuous
on a neighborhood of f(z0), then G ∈ ∂g(f(z0)) and F ∈ ∂f(z0) may satisfy GF /∈ ∂[g ◦ f ](z0). For
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example, consider the functions f(x) ≡ min(0, x) and g(x) ≡ max(0, x). Then 1 ∈ ∂f(0) = [0, 1] and
1 ∈ ∂g(f(0)) = [0, 1], but, noting that [g ◦ f ](x) ≡ 0, 1 /∈ ∂[g ◦ f ](0) = {0}.

2. Taking directional derivatives in the unit coordinate directions e(i) does not necessarily yield an element
of the B-subdifferential; supposing f is PC1 at z0 and i1, . . . , in ∈ {1, . . . , ness},

F =
[
f ′(z0; e(1)) f ′(z0; e(2)) . . . f ′(z0; e(n))

]
=
[
Jf(i1)(z

0)e(1) Jf(i2)(z
0)e(2) . . . Jf(in)(z

0)e(n)
]
,

may satisfy F /∈ ∂Bf(z0). For example, consider the function f(x) ≡ |x1 − x2|. Observe that

∂Bf(02) = {[1 − 1], [−1 1]}, ∂f(02) = {[1− λ − 1 + λ] : 0 ≤ λ ≤ 2},

but [
f ′(02; (1, 0)) f ′(02; (0, 1))

]
= [1 1] /∈ ∂Bf(02).

3. The Cartesian product of componentwise Clarke gradients may be a strict superset of the Clarke
Jacobian; F =

∏m
i=1 ∂fi(z

0) may satisfy F /∈ ∂f(z0). For example, the function f(x) ≡ (x1 + |x2|, x1 −
|x2|) satisfies

∂f(02) =

{[
1 2λ− 1
1 1− 2λ

]
: 0 ≤ λ ≤ 1

}
⊂ ∂f1(02)× ∂f2(02) =

{[
1 2λ1 − 1
1 2λ2 − 1

]
: (λ1, λ2) ∈ [0, 1]2

}
,

where the inclusion is strict.

The lexicographic derivative [12] is an element of the B-subdifferential in the PC1 setting [11], and
can be computed more easily thanks to its strict calculus rules; for any k ∈ N and full row rank M =
[m(1) · · · m(k)] ∈ Rn×k, the lexicographic (L-)derivative of f at z0 in the directions M is given as

JLf(z
0;M) := Jf

(k)
z0,M(0n) ∈ Rm×n,

where the directional derivative mappings are

f
(0)
z0,M : Rn → Rm : d 7→ f ′(z0;d),

f
(j)
z0,M : Rn → Rm : d 7→ [f

(j−1)
z0,M ]′(m(j);d), ∀j ∈ {1, . . . , k}.

(6)

(M being full row rank guarantees linearity of the mapping f
(k)
z0,M.) The lexicographic (L-)subdifferential of

f at z0 is the set of all L-derivatives;

∂Lf(z
0) := {JLf(z

0;M) : k ∈ N, M ∈ Rn×k is full row rank}.

The L-subdifferential is defined for the class of lexicographically (L-)smooth functions, which are functions
that are locally Lipschitz continuous and have well-defined directional derivative mappings in (6) for any
matrix M. All C1, PC1 and convex functions, as well as compositions of L-smooth functions are L-smooth.
The computational relevancy of L-derivatives of PC1 functions is captured in the following relation [11, 12,
33]:

∂Lf(z
0) = ∂B[f ′(z0; ·)](0n) ⊂ ∂Bf(z0) ⊂ ∂f(z0). (7)

The lexicographic directional (LD-)derivative [11] of f at z0 in the directions M (not necessarily full row
rank) is defined as

f ′(z0;M) :=
[
f
(0)
z0,M(m(1)) f

(1)
z0,M(m(2)) · · · f

(k−1)
z0,M (m(k))

]
.

Mirroring the relationship between the Jacobian matrix and directional derivatives in the smooth case,

f ′(z0;M) = JLf(z
0;M)M, (8)
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if M is square and nonsingular (f ′(z0;M) = Jf(z0)M if f is differentiable at z0). Moreover, the LD-derivative
obeys sharp calculus rules; the composition q ◦ f is L-smooth at z0 and satisfies

[q ◦ f ]′(z0;M) = q′(f(z0); f ′(z0;M)), (9)

given that f is L-smooth at z0, and q : Y ⊂ Rm → Rq, Y open, is L-smooth at f(z0) [11]. These observations
motivate a general procedure for evaluating computationally relevant generalized derivative elements of an
L-smooth function as follows:

1. Choose a nonsingular M.

2. Compute an LD-derivative f ′(z0;M) by taking advantage of its sharp calculus rules.

3. Solve the linear equation system (8) for the L-derivative JLf(z
0;M).

Example 2.1. The mapping x̃ in Example 1.2 is PC1 at p0; the essentially active selection functions at p0

are {x(1),x(2)}, where
x(1)(p) ≡ (p1, p2 + 0.5), x(2)(p) ≡ (−p1, p2 + 0.5).

Hence, the B-subdifferential of x̃ at p0 is given by

∂Bx̃(p0) =
{
Jx(i)(p

0) : i = 1, 2
}

=

{[
1 0
0 1

]
,

[
−1 0
0 1

]}
.

Given

P =
[
p(1) p(2)

]
=

[
P11 P12

P21 P22

]
∈ R2×2,

the LD-derivative of x̃ at p0 in the directions P is calculated as follows: for any d ∈ R2,

x̃
(0)
p0,P(d) = x̃′(p0;d) = (|d1|, d2),

x̃
(1)
p0,P(d) =

{
(d1, d2), if P11 > 0 or P11 = 0, d1 ≥ 0,

(−d1, d2), if P11 < 0 or P11 = 0, d1 < 0.

Thus,

x̃′(p0;P) =
[
x̃
(0)
p0,P(p(1)) x̃

(1)
p0,P(p(2))

]
=

[
fsign(P11, P12)P11 fsign(P11, P12)P12

P21 P22

]
,

where the first-sign function fsign [34] returns the sign of the first nonzero element in its argument (or zero
if the argument is the zero vector). If P is nonsingular, then

JLx̃(p0;P) = x̃′(p0;P)P−1 =

[
fsign(P11, P12) 0

0 1

]
,

and JLx̃(p0;P) ∈ ∂Lx̃(p0) ⊂ ∂Bx̃(p0) since fsign(P11, P12) 6= 0 by nonsingularity of P.

3. Main Results

Viewing QP(1)(d) in (2) as a parametric NLP (with problem parameter d), a repeated application of
Theorem 1.1 yields LD-derivatives of the primal and dual variable solutions of the NLP (1), and thus L-
derivatives for a square and nonsingular directions matrix. First, some notational conventions are introduced:
for each j ∈ {1, . . . , k}, where k ∈ N, and any d ∈ Rnp , let QP(j)(d) denote the following quadratic program:

QP(j)(d) : min
z∈Rnx

0.5zT∇2
xxL(p0,x0,µµµ0,λλλ0)z + zT∇2

xpL(p0,x0,µµµ0,λλλ0)d,

s.t. Jxgi(p
0,x0)z + Jpgi(p

0,x0)d ≤ 0, ∀i ∈ A0
(j−1), ← multipliers ηηη(j) ∈ R

|A0
(j−1)|

+

Jxgi(p
0,x0)z + Jpgi(p

0,x0)d = 0, ∀i ∈ A+
(j−1), ← multipliers γγγ(j) ∈ R|A

+
(j−1)

|

Jxhi(p
0,x0)z + Jphi(p

0,x0)d = 0, ∀i ∈ H, ← multipliers ρρρ(j) ∈ Rnh

(10)
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Optimization Problem Primal and Dual Solutions Number of Constraints

NLP x0 = x̃(p0) & (µµµ0,λλλ0) = (µ̃µµ(p0), λ̃λλ(p0)) ng + nh
↘

↪→ QP(1)(d) z(1)(d) & (ηηη(1)(d), γγγ(1)(d), ρρρ(1)(d)) |A0|+ |A+|+ nh
↘

↪→ QP(2)(d) z(2)(d) & (ηηη(2)(d), γγγ(2)(d), ρρρ(2)(d)) |A0
(1)|+ |A

+
(1)|+ nh

...
...

...
↘

↪→ QP(k)(d) z(k)(d) & (ηηη(k)(d), γγγ(k)(d), ρρρ(k)(d)) |A0
(k−1)|+ |A

+
(k−1)|+ nh

Table 1: Summary of relations between optimization problems. Each quadratic program is obtained by
linearizing the constraints of its predecessor and quadratically approximating the Lagrangian associated
with its predecessor. The number of constraints of each optimization problem is derived from the active sets
associated with the predecessor optimization problem in the hierarchy.

where (ηηη(j), γγγ(j), ρρρ(j)) are dual variables associated with the jth weakly active set, jth strongly active
set, and index set H, respectively, where, assuming that (z0(j−1), ηηη

0
(j−1), γγγ

0
(j−1), ρρρ

0
(j−1)) is a KKT point of

QP(j−1)(d
0
(j−1)),

A0
(j) := {i ∈ A0

(j−1) : Jxgi(p
0,x0)z0(j) + Jpgi(p

0,x0)d0
(j) = 0 = η0(j),i},

A+
(j) := A+

(j−1) ∪ {i ∈ A
0
(j−1) : Jxgi(p

0,x0)z0(j) + Jpgi(p
0,x0)d0

(j) = 0 < η0(j),i},

A−(j) := A−(j−1) ∪ {i ∈ A
0
(j−1) : Jxgi(p

0,x0)z0(j) + Jpgi(p
0,x0)d0

(j) < 0 = η0(j),i},
(11)

and A+
(0) := A+ , A0

(0) := A0, A−(0) := A−. The hierarchy of the optimization problems is illustrated in Table

1. Before giving the main result, the following notation convention is adopted: given a matrix H ∈ Rm×n,
HI,j denotes the components of the jth column of H, indexed by the set I ≡ {i1, . . . , is} ⊂ {1, . . . ,m}:

HI,j ≡


hi1,j
hi2,j

...
his,j

 ∈ Rs×1.

Theorem 3.1. Let (x0,µµµ0,λλλ0) ∈ Dx×R
ng

+ ×Rnh be a KKT point of (1) satisfying SSOSC and let LICQ hold

at (p0,x0). Let (x̃, µ̃µµ, λ̃λλ) satisfy the conclusions of Theorem 1.1. Then, for any k ∈ N and P = [p(1) · · ·p(k)] ∈
Rnp×k, the LD-derivatives of (x̃, µ̃µµ, λ̃λλ) at p0 in the directions P, denoted (X,U,W), are given by

X =
[
z(1)(p(1)) z(2)(p(2)) · · · z(k)(p(k))

]
,

W =
[
ρρρ(1)(p(1)) ρρρ(2)(p(2)) · · · ρρρ(k)(p(k))

]
,

and for each j ∈ {1, . . . , k},
UA0

(j)
,j = ηηη(j)(p(j)),

UA+
(j)
,j = γγγ(j)(p(j)),

UA−
(j)
,j = 0|A−

(j)
|,

(12)

where z(j)(p(j)) and (ηηη(j)(p(j)), γγγ(j)(p(j)), ρρρ(j)(p(j))) are the unique primal and dual solutions of QP(j)(p(j)),
respectively, evaluated at p(j).
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Proof. Suppose, without loss of generality, that A0,A+,A− 6= ∅. It will be shown by induction that, for
each j ∈ {1, . . . , k − 1}, there exist PC1 mappings

z(j) : Rnp → Rnx

and

(ηηη(j), γγγ(j), ρρρ(j)) : Rnp → R
|A0

(j−1)|
+ × R|A

+
(j−1)

| × Rnh

such that
(z(j)(p(j)), ηηη(j)(p(j)), γγγ(j)(p(j)), ρρρ(j)(p(j)))

is a KKT point of QP(j)(p(j)) satisfying SSOSC, with LICQ holding at (p(j), z(j)(p(j))). Moreover, for any
d ∈ Rnp , the directional derivatives of (z(j), ηηη(j), γγγ(j), ρρρ(j)) at p(j) in the direction d satisfy

z′(j)(p(j);d) = z(j+1)(d),

γγγ′(j)(p(j);d) = γγγ(j+1)(d),

ρρρ′(j)(p(j);d) = ρρρ(j+1)(d),

η′(j),i(p(j);d) =


η(j+1),i(d), if i ∈ A0

(j),

γ(j+1),i(d), if i ∈ A+
(j),

0, if i ∈ A−(j),

(13)

where z(j+1)(d) and (ηηη(j+1)(d), γγγ(j+1)(d), ρρρ(j+1)(d)) are the unique primal and dual solutions of QP(j+1)(d),
respectively.

Theorem 1.1 implies that, for any d ∈ Rnp , x̃′(p0;d) = z(1)(d). Since x̃ is a PC1 mapping at p0, the
mapping z(1) is piecewise linear (and therefore PC1) on Rnp [9]. From Equation (3), similar arguments
can be made to conclude that (ηηη(1), γγγ(1), ρρρ(1)) are PC1 mappings on Rnp . Rewrite the quadratic program
QP(1)(d) as follows:

min
z∈Rnx

f(1)(d, z),

s.t. g(1)(d, z) ≤ 0|A0|,

h(1)(d, z) = 0|A+|+nh
,

(14)

where

f(1)(d, z) ≡ 0.5zT∇2
xxL(p0,x0,µµµ0,λλλ0)z + zT∇2

xpL(p0,x0,µµµ0,λλλ0)d,

g(1)(d, z) ≡ JxgA0(p0,x0)z + JpgA0(p0,x0)d,

h(1)(d, z) ≡
[
JxgA+(p0,x0)z + JpgA+(p0,x0)d

Jxh(p0,x0)z + Jph(p0,x0)d

]
.

Let the active index set of QP(1)(p(1)) at (p(1), z(1)(p(1))) be denoted by

A(1) := {i ∈ A0 : Jxgi(p
0,x0)z(1)(p(1)) + Jpgi(p

0,x0)p(1) = 0}.

Noting that, for any (d, z),
Jzg(1)(d, z) = JxgA0(p0,x0),

Jzh(1)(d, z) =

[
JxgA+(p0,x0)
Jxh(p0,x0)

]
,

(15)

it follows that LICQ holds at (p(1), z(1)(p(1))) with respect to QP(1)(p(1)) since

{(Jxgi(p
0,x0))T : i ∈ A(1) ∪ A+} ∪ {(Jxhi(p

0,x0))T : i ∈ H}
⊂ {(Jxgi(p

0,x0))T : i ∈ A} ∪ {(Jxhi(p
0,x0))T : i ∈ H},

and LICQ holds at (p0,x0) with respect to the NLP (1).
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Letting L(1) denote the Lagrangian associated with (14), it follows that

∇2
zzL(1)(d, z, ηηη,γγγ,ρρρ) = ∇2

xxL(p0,x0,µµµ0,λλλ0),

∇2
zdL(1)(d, z, ηηη,γγγ,ρρρ) = ∇2

xpL(p0,x0,µµµ0,λλλ0),
(16)

for any (d, z, ηηη,γγγ,ρρρ). Since SSOSC holds at (p0,x0,µµµ0,λλλ0) with respect to the NLP (1),

v∇2
xxL(p0,x0,µµµ0,λλλ0)v > 0, ∀v ∈ K := {v ∈ Rnx \{0nx

} : JxgA+(p0,x0)v = 0|A+|, Jxh(p0,x0)v = 0nh
}.

Letting A+
(1) be defined as in Equation (11), observe that

K(1) := {v ∈ Rnx \ {0nx} : Jzg(1),A+
(1)

(d, z(1)(d))v = 0|A+
(1)
|, Jzh(1)(d, z(1)(d))v = 0|A+|+nh

},

= {v ∈ Rnx \ {0nx
} : JxgA+

(1)
∪A+(p0,x0)v = 0|A+

(1)
|+|A+|, Jxh(p0,x0)v = 0nh

},

⊂ {v ∈ Rnx \ {0nx
} : JxgA+(p0,x0)v = 0|A+|, Jxh(p0,x0)v = 0nh

},
= K.

Hence,

vT∇2
zzL(1)(p(1), z(1)(p(1)), ηηη(1)(p(1)), γγγ(1)(p(1)), ρρρ(1)(p(1)))v = vT∇2

xxL(p0,x0,µµµ0,λλλ0)v > 0

for all v ∈ K(1) ⊂ K, from which it follows that (p(1), z(1)(p(1)), ηηη(1)(p(1)), γγγ(1)(p(1)), ρρρ(1)(p(1))) satisfies
SSOSC with respect to QP(1)(p(1)).

The conditions of Theorem 1.1 are satisfied by (14) at (p(1), z(1)(p(1)), ηηη(1)(p(1)), γγγ(1)(p(1)), ρρρ(1)(p(1))).
Moreover, it follows from the observations above (namely, (15) and (16)) that the auxiliary quadratic program
(i.e., (2)) associated with (14) at (p(1), z(1)(p(1)), ηηη(1)(p(1)), γγγ(1)(p(1)), ρρρ(1)(p(1))) is given by QP(2)(d). Thus,
for any d ∈ Rnp , the directional derivatives of (z(1), ηηη(1), γγγ(1), ρρρ(1)) at p(1) in the direction d satisfy

z′(1)(p(1);d) = z(2)(d),

γγγ′(1)(p(1);d) = γγγ(2)(d),

ρρρ′(1)(p(1);d) = ρρρ(2)(d),

η′(1),i(p(1);d) =


η(2),i(d), if i ∈ A0

(1),

γ(2),i(d), if i ∈ A+
(1),

0, if i ∈ A−(1),

(17)

where z(2)(d) and (ηηη(2)(d), γγγ(2)(d), ρρρ(2)(d)) are the unique primal and dual solutions of QP(2)(d), respec-
tively. Thus, the base case is proved.

Assume the claim holds for j∗ ∈ {2, . . . , k − 2}. That is, there exist PC1 mappings

z(j∗) : Rnp → Rnx

and

(ηηη(j∗), γγγ(j∗), ρρρ(j∗)) : Rnp → R
|A0

(j∗−1)|
+ × R|A

+
(j∗−1)

| × Rnh

such that
(z(j∗)(p(j∗)), ηηη(j∗)(p(j∗)), γγγ(j∗)(p(j∗)), ρρρ(j∗)(p(j∗)))

is a KKT point of QP(j∗)(p(j∗)) satisfying SSOSC, with LICQ holding at (p(j∗), z(j∗)(p(j∗))). Moreover, for
any d ∈ Rnp , the directional derivatives of (z(j∗), ηηη(j∗), γγγ(j∗), ρρρ(j∗)) at p(j∗) in the direction d satisfy

z′(j∗)(p(j∗);d) = z(j∗+1)(d),

γγγ′(j∗)(p(j∗);d) = γγγ(j∗+1)(d),

ρρρ′(j∗)(p(j∗);d) = ρρρ(j∗+1)(d),

η′(j∗),i(p(j∗);d) =


η(j∗+1),i(d), if i ∈ A0

(j∗),

γ(j∗+1),i(d), if i ∈ A+
(j∗),

0, if i ∈ A−(j∗),

(18)
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where z(j∗+1)(d) and (ηηη(j∗+1)(d), γγγ(j∗+1)(d), ρρρ(j∗+1)(d)) are the unique primal and dual solutions ofQP(j∗+1)(d),
respectively, evaluated at d.

Rewrite QP(j∗+1)(d) as

min
z∈Rnx

f(j∗+1)(d, z),

s.t. g(j∗+1)(d, z) ≤ 0|A0
(j∗)
|,

h(j∗+1)(d, z) = 0|A+
(j∗)
|+nh

,

(19)

where

f(j∗+1)(d, z) ≡ 0.5zT∇2
xxL(p0,x0,µµµ0,λλλ0)z + zT∇2

xpL(p0,x0,µµµ0,λλλ0)d,

g(j∗+1)(d, z) ≡ JxgA0
(j∗)

(p0,x0)z + JpgA0
(j∗)

(p0,x0)d,

h(j∗+1)(d, z) ≡

[
JxgA+

(j∗)
(p0,x0)z + JpgA+

(j∗)
(p0,x0)d

Jxh(p0,x0)z + Jph(p0,x0)d

]
.

Again, by the same arguments as in the base case, z(j∗+1) and (ηηη(j∗), γγγ(j∗), ρρρ(j∗)) are piecewise linear (and
thus PC1) mappings on Rnp , with LICQ holding at (p(j∗+1), z(j∗+1)(p(j∗+1))) and SSOSC holding at the
KKT point

(z(j∗+1)(p(j∗+1)), ηηη(j∗+1)(p(j∗+1)), γγγ(j∗+1)(p(j∗+1)), ρρρ(j∗+1)(p(j∗+1)))

with respect to QP(j∗+1)(p(j∗+1)). Moreover, it follows similarly as in the base case that the auxiliary
quadratic program (i.e., (2)) associated with (19) at

(p(j∗+1), z(j∗+1)(p(j∗+1)), ηηη(j∗+1)(p(j∗+1)), γγγ(j∗+1)(p(j∗+1)), ρρρ(j∗+1)(p(j∗+1)))

is given by QP(j∗+2)(d). Thus, Theorem 1.1 may be applied to yield

z′(j∗+1)(p(j∗+1);d) = z(j∗+2)(d),

γγγ′(j∗+1)(p(j∗+1);d) = γγγ(j∗+2)(d),

ρρρ′(j∗+1)(p(j∗+1);d) = ρρρ(j∗+2)(d),

η′(j∗+1),i(p(j∗+1);d) =


η(j∗+2),i(d), if i ∈ A0

(j∗+1),

γ(j∗+2),i(d), if i ∈ A+
(j∗+1),

0, if i ∈ A−(j∗+1),

(20)

where z(j∗+2)(d) and (ηηη(j∗+2)(d), γγγ(j∗+2)(d), ρρρ(j∗+2)(d)) are the unique primal and dual solutions ofQP(j∗+2)(d),
respectively, evaluated at d, and the claim is proved.

Recalling that x̃
(0)
p0,P(p(1)) = x̃′(p0;p(1)) = z(1)(p(1)) from Theorem 1.1, it has been shown that

x̃
(j)
p0,P(p(j+1)) = z(j+1)(p(j+1)), ∀j ∈ {0, . . . , k − 1}.

The result then follows by definition of LD-derivative;

x̃′(p0;P) =
[
x̃
(0)
p0,P(p(1)) x̃

(1)
p0,P(p(2)) · · · x̃

(k−1)
p0,P (p(k))

]
,

=
[
z(1)(p(1)) z(2)(p(2)) · · · z(k)(p(k))

]
,

with λ̃λλ
′
(p0;P) and µ̃µµ

′
(p0;P) following similarly.

Example 3.2. Consider again Example 1.2 and let

P = [p(1) p(2)] =

[
P11 P12

P21 P22

]
∈ R2×2.
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Viewing the quadratic program QP(1) in (5) as a parametric nonlinear program, its auxiliary quadratic
program QP(2) depends on the choice of p(1) since

A0
(1) =

{
{1}, if P11 = 0,

∅, if P11 6= 0,

A+
(1) =

{
{1, 3}, if P11 > 0,

{3}, if P11 ≤ 0,

A−(1) =

{
{1, 2}, if P11 < 0,

{2}, if P11 ≥ 0.

If P11 = 0 then the quadratic program QP(2) in (10) associated with (5) is given by

Q(2)(d) : min
z∈R2

z21 + z22 + 2(d1z1 + d2z2),

s.t. − z1 + d1 ≤ 0,

− z2 + d2 = 0,

(i.e., the same quadratic program as (5)), which admits primal and dual variable solutions, for any d ∈ R2,

z(2)(d) ≡ (|d1|, d2), η(2)(d) ≡ max (4d1, 0), γ(2)(d) ≡ 4d2.

If P11 > 0 then the quadratic program QP(2) in (10) associated with (5) is given by

Q(2)(d) : min
z∈R2

z21 + z22 + 2(d1z1 + d2z2),

s.t. − z1 + d1 = 0,

− z2 + d2 = 0,

which admits primal and dual variable solutions, for any d ∈ R2,

z(2)(d) ≡ (d1, d2), γγγ(2)(d) ≡ (4d1, 4d2).

If P11 < 0 then the quadratic program QP(2) in (10) associated with (5) is given by

Q(2)(d) : min
z∈R2

z21 + z22 + 2(d1z1 + d2z2),

s.t. − z2 + d2 = 0,

which admits primal and dual variable solutions, for any d ∈ R2,

z(2)(d) ≡ (−d1, d2), γ(2)(d) ≡ 4d2.

According to Theorem 3.1, the parametric sensitivities of the primal and dual variables of the original
nonlinear program (i.e., (4)) are constructed as follows:

x̃′(p0;P) =
[
z(1)(p(1)) z(2)(p(2))

]
=



[
0 |P12|
P21 P22

]
, if P11 = 0,[

P11 P12

P21 P22

]
, if P11 > 0,[

−P11 −P12

P21 P22

]
, if P11 < 0,
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and

µ̃µµ
′
(p0;P) =



η(1)(p(1)) η(2)(p(2))

0 0

γ(1)(p(1)) γ(2)(p(2))

 =

 0 max(4P12, 0)

0 0

4P21 4P22

 , if P11 = 0,

η(1)(p(1)) γ(2),1(p(2))

0 0

γ(1)(p(1)) γ(2),2(p(2))

 =

4P11 4P12

0 0

4P21 4P22

 , if P11 > 0,

=

η(1)(p(1)) 0

0 0

γ(1)(p(1)) γ(2)(p(2))

 =

 0 0

0 0

4P21 4P22

 , if P11 < 0.

The LD-derivatives furnished in Theorem 3.1 can be used to compute L-derivatives using a nonsingular
directions matrix and solving the linear equation system (8). See Algorithm 1 for a practically implementable
method for computing such L-derivatives: the sequence of QPs are solved in Line 3, which requires, for
example, an interior-point method or active-set method (see [35, 36]). The active sets are updated in the
loop beginning on Line 5, possibly resulting in inequality constraints being removed or becoming equalities
in the next QP solve. Line 19 furnishes an L-derivative, from the linear equation system (8).

Algorithm 1 Evaluate L-Derivatives of Primal and Dual Variable Solutions

Require: KKT point (x0,µµµ0,λλλ0); index sets A0, A+, A−; nonsingular P = [p(1) · · · p(np)] ∈ Rnp×np

1: procedure Calculate (JLx̃(p0;P),JLµ̃µµ(p0;P),JLλ̃λλ(p0;P))
2: for j = 1, . . . , p do
3: Solve QP(j)(p(j)) for unique primal and dual solutions z(j) and (ηηη(j), γγγ(j), ρρρ(j)), respectively.

4: Set A0
(j) ← A

0, A+
(j) ← A

+, A−(j) ← A
−.

5: for all i ∈ A0 do
6: if Jxgi(p

0,x0)z(j) + Jpgi(p
0,x0)p(j) < 0 then

7: Set A0
(j) ← A

0
(j) \ {i}, A

−
(j) ← A

−
(j) ∪ {i}

8: else if η(j),i > 0 then

9: Set A0
(j) ← A

0
(j) \ {i}, A

+
(j) ← A

+
(j) ∪ {i}

10: end if
11: end for
12: Set A0 ← A0

(j), A
+ ← A+

(j), A
− ← A−(j).

13: Set X←
[
X z(j)

]
14: Set W←

[
W ρρρ(j)

]
15: Set UA0,j ←

[
UA0,j ηηη(j)

]
16: Set UA+,j ←

[
UA+,j ρρρ(j)

]
17: Set UA−,j ←

[
UA−,j 0|A0|

]
18: end for
19: Solve the equation system X

U
W

 =

XL

UL

WL

P

20: for (XL,UL,WL) ∈ R(nx+ng+nh)×np .
21: return (XL,UL,WL).
22: end procedure

Example 3.3. Returning to the LD-derivatives found in Example 3.2, choosing P = I2 in Algorithm 1
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yields

XL =

[
1 0
0 1

] [
1 0
0 1

]−1
∈ ∂Bx̃(p0) =

{[
1 0
0 1

]
,

[
−1 0
0 1

]}
,

and

UL =

4 0
0 0
0 4

[1 0
0 1

]−1
=

4 0
0 0
0 4

 ∈ ∂Bµ̃µµ(p0) =


4 0

0 0
0 4

 ,
0 0

0 0
0 4

 .

If instead P = −I2 is chosen, then

XL =

[
1 0
0 −1

] [
−1 0
0 −1

]−1
=

[
−1 0
0 1

]
∈ ∂Bx̃(p0),

and

UL =

0 0
0 0
0 −4

[−1 0
0 −1

]−1
=

0 0
0 0
0 4

 ∈ ∂Bµ̃µµ(p0).

(Recall that H = ∅.)

Remark 3.4. Theorem 3.1 can be placed in the context of the findings in [24], where sensitivities of
parametric NLPs with active index set changes are calculated by instead applying a nonsmooth implicit
function theorem to a nonsmooth NLP KKT system reformulation. For these purposes, functions based on
lexicographical ordering are introduced: define the generalized inequalities ≺ and � for x,y ∈ Rn as

a ≺ b if and only if ∃j ∈ {1, . . . , n} s.t. ai = bi ∀i < j and aj < bj ,

a � b if and only if a = b or a ≺ b,

with � and � similarly defined. Define the lexicographic-minimum function by

Lmin : Rn × Rn → Rn : (a,b) 7→

{
a, if a � b,

b, if a � b,

and the lexicographic-matrix-minimum by

LMmin : Rm×n × Rm×n → Rm×n : (A,B) 7→


(Lmin(AT

1 ,B
T
1 ))T

(Lmin(AT
2 ,B

T
2 ))T

...
(Lmin(AT

m,B
T
m))T

 ,
where Ai and Bi denote the ith rows of A and B, respectively. LMmin compares two matrices lexicograph-

ically (by rows). Then, assuming the setting of Theorem 3.1, the LD-derivatives of (x̃, µ̃µµ, λ̃λλ) at p0 in the
directions P, denoted (X,U,W), are the unique solution of the following nonsmooth equation system:

∇2
xxL (JxgA+∪A0)T (Jxh)T

−JxgA+ 0|A+|×(|A+|+|A0|) 0|A+|×nh

−Jxh 0nh×(|A+|+|A0|) 0nh×nh




X

UA+∪A0,•

W


=

−∇2
xpL

JpgA+

Jph

P,

UA−,• = 0|A−|×k,

LMmin
(
−JpgA0P− JxgA0X,UA0,•

)
= 0|A0|×k,

(21)

where the arguments of the Hessians associated with L are (p0,x0,µµµ0,λλλ0) and Jacobians associated with g
and h are (p0,x0), and UJ ,• denotes the rows of U indexed by J ⊂ G.

13



Theorem 1.1 can be connected to Equation (21) as follows: the KKT system associated with the quadratic
program QP(j) in (10) is given by

[
∇2

xpL(p0,x0,µµµ0,λλλ0) ∇2
xxL(p0,x0,µµµ0,λλλ0)

] [d
z

]

+
[
(JxgA0

(j−1)
(p0,x0))T (JxgA+

(j−1)
(p0,x0))T (Jxh(p0,x0))T

]ηηηγγγ
ρρρ

 = 0nx
,

JxgA+
(j−1)

(p0,x0)z + JpgA+
(j−1)

(p0,x0)d = 0|A+
(j−1)

|,

Jxh(p0,x0)z + Jph(p0,x0)d = 0nh
,

minminmin(−JxgA0
(j−1)

(p0,x0)z− JpgA0
(j−1)

(p0,x0)d, ηηη) = 0|A0
(j−1)

|,

(22)

where minminmin is the componentwise minimum function. The nonsmooth and nonlinear equation system (22)
is identical to solving the jth column of the nonsmooth and nonlinear sensitivity system (21) by noting
that UA−,• = 0|A−|×k in (21) is not enforced in QP(j) but is instead enforced after the fact in (12). The
optimality conditions associated with the sequence of quadratic programs (10) are the columnwise nonsmooth
and nonlinear equation systems in (21).

Remark 3.5. Given a reference parameter value p0 ∈ Dp and denoting the set of all multipliers satisfying
the KKT conditions at (p0,x0) ∈ Dp ×Dx by

M(p0,x0) := {(µµµ,λλλ) ∈ Rng+nh : (x0,µµµ,λλλ) is a KKT point of (1)},

suppose that MFCQ holds at (p0,x0); the vectors in the set {(Jxhi(p
0,x0))T : i ∈ H} are linearly indepen-

dent and there exists v ∈ Rnx such that

Jxgi(p
0,x0)v < 0, ∀i ∈ A,

Jxhi(p
0,x0)v = 0, ∀i ∈ H.

(If MFCQ holds at (p0,x0) then M(p0,x0) is a closed convex polytope [37].) Suppose that CRCQ holds at
(p0,x0) (see [2, 8] for details). (Note that if LICQ holds at (p0,x0) then M(p0,x0) is a singleton and MFCQ
and CRCQ hold at (p0,x0).) Lastly, suppose that GSSOSC holds at (p0,x0); SSOSC holds at (p0,x0,µµµ,λλλ)
for all multipliers (µµµ,λλλ) ∈M(p0,x0). Then directional derivatives of the primal variable solution of (1) are
obtained as follows [8]: for any d ∈ Rnp , x̃′(p0;d) is the unique solution z(1)(d) of QP(1)(µµµ,λλλ;d) if (µµµ,λλλ) is
an element of the solution set of LP(1)(d), where QP(1)(µµµ,λλλ;d) denotes the following quadratic program:

QP(1)(µµµ,λλλ;d) : min
z∈Rnx

0.5zT∇2
xxL(p0,x0,µµµ,λλλ)z + zT∇2

xpL(p0,x0,µµµ,λλλ)d,

s.t. Jxgi(p
0,x0)z + Jpgi(p

0,x0)d ≤ 0, ∀i ∈ A0,

Jxgi(p
0,x0)z + Jpgi(p

0,x0)d = 0, ∀i ∈ A+,

Jxhi(p
0,x0)z + Jphi(p

0,x0)d = 0, ∀i ∈ H,

(23)

and where LP(1)(d) denotes the following linear program:

LP(1)(d) : max
(µµµ,λλλ)∈Rng×Rnh

µµµTJpg(p0,x0)d + λλλTJph(p0,x0)d,

s.t. (µµµ,λλλ) ∈M(p0,x0).
(24)

In the same vein as the approach in Theorem 3.1 (which applies Theorem 1.1 iteratively), it seems fruitful
to apply the results of [8], as outlined above, iteratively to obtain generalized derivative information in the
setting of non-unique multipliers. That is, furnishing a sequence of quadratic programs QP (j)(µµµ,λλλ;d) and
a sequence of embedded linear programs LP(j)(d). However, the parametric quadratic program QP(j) need
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not inherit MFCQ at its solution from QP(j−1). For example, consider the NLP

min
x∈R2

0.5(x1 − p1)2 + 0.5(x2 − p2)2 + x1 + x2,

s.t. − x1 ≤ 0,

− x2 ≤ 0,

− x1 − x2 + p1 + p2 ≤ 0,

(25)

which is similar to the one studied in [4]. Let p0 = (0, 0) and x0 = (0, 0). Then A = {1, 2, 3} and
M(p0,x0) = {(u, u, 1 − u) : 0 ≤ u ≤ 1} and, for any such multiplier, (x0,µµµ) is a KKT point satisfying
MFCQ, GSSOSC and CRCQ.

Given d ∈ R2, the linear program in (24) takes the form

max
µµµ∈R3

µ3(d1 + d2),

s.t. µµµ ∈ {(u, u, 1− u) : u ∈ [0, 1]}.

from which the following observations can be made:

1. If d1 + d2 > 0, then the solution set of LP(1)(d) is {(0, 0, 1)};

2. If d1 + d2 < 0, then the solution set of LP(1)(d) is {(1, 1, 0)};

3. If d1 + d2 = 0, then the solution set of LP(1)(d) is M(p0,x0).

In attempting to construct the successors in the optimization problem heirarchy (i.e., LP(2) and QP(2)) in
the same manner as outlined above in the LICQ setting, suppose that (1, 1, 0) ∈M(p0,x0) and d = (1,−1)
are chosen. This results in the quadratic program

QP(1)(1, 1, 0; (1,−1)) : min
z∈R2

0.5(z21 + z22)− z1 + z2,

s.t. − z1 = 0,

− z2 = 0,

− z1 − z2 ≤ 0,

whose primal variable solution is z(1) = (0, 0) and dual variable solution set is {(−1−s, 1−s, s) : s ≥ 0} (i.e.,
an unbounded set). Consequently, for any d such that d1 + d2 > 0, LP(2)(d) has no solution. A repeated
application of Ralph and Dempe’s result is not possible since the regularity assumptions of the original NLP
(1) are not inherited by the auxiliary quadratic program. In particular, MFCQ is not inherited by QP(1) in
this example.

4. Conclusions

A new theory is provided in this article for computing generalized derivatives of parametric NLPs. The
results in this article require LICQ to hold at a KKT point of interest, which is more restrictive than
the results of Ralph and Dempe [8] (where MFCQ is assumed), but allows for computation of generalized
derivative elements of parametric NLPs with active index set changes. Moreover, as detailed in [24], it is
straightforward to use the theory in this article to evaluate a generalized gradient element of the parametric
NLP (1) objective-value function.

As discussed in Section 1, the computational costs associated with the competing theory (i.e., solving the
nonsmooth equation system (21)) are currently unclear, and there may be cases where the current approach
is more tractable. If LICQ and SSOSC hold in QP(1)(d

0) in (2), given some d0 ∈ Rnp , then

zT∇2
xxL(p0,x0,µµµ0,λλλ0)z ≥ 0,

for all z in its feasible set [8]. This property therefore holds when solving QP(j)(p(j)) in Line 3 of Algorithm 1.
This does not necessarily match the typical definition of a convex QP (i.e., ∇2

xxL(p0,x0,µµµ0,λλλ0) being positive
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semidefinite) [35, 36, 38], for which polynomial-time algorithms exist (e.g., interior-point algorithms [39]).
Moreover, since the sequence of QPs in the heirarchy are closely related to each other (the objective-value
functions are identical and the feasible set only differs in inequality constraints being removed or becoming
equalities), numerical methods which warm-start the QPs may be possible for improving computational time.

As mentioned in Section 1, the authors are hopeful that the theory presented here finds extension to
parametric mathematical programs which currently admit a sensitivity theory in the form of directional
derivatives (e.g., variational inequalities); if, under certain regularity assumptions, directional derivatives
can be computed from an auxiliary mathematical program, which itself inherits appropriate regularity as-
sumptions, LD-derivatives can be furnished by an approach similar to the theory in this article. Such
extensions would provide methods for use in practical dynamic optimization problems, such as optimizing
the startup of a binary batch distillation problem, involving mixed complementarity systems [40] and classes
of hybrid dynamic models using mathematical programs with equilibrium constraints formulations [41].

Lastly, an extension of the theory here to Ralph and Dempe’s [8] results in the MFCQ and CRCQ setting
is a current limitation to this approach and direction for future work; the NLP (25) is a counterexample
that shows the convex quadratic program need not inherit the MFCQ assumption. Possible remedies include
choosing a directions matrix to avoid this issue or a multiparametric programming approach. Advancing the
theory to other types of mathematical programs under analogous regularity conditions (i.e., those implying
non-unique multipliers) is also desirable.
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