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Problem Description
When increasing the integration of wind power, both the steady-state and the dynamic behaviour
of the system are affected. Since wind power facilities often are located in areas with weak
networks (low short circuit capacity), disconnection of generators leading to power outage might
occur at small disturbances. New requirements are therefore introduced, demanding that the
facilities are not disconnected at a defined type of disturbance with specified time duration (fault-
ride-through).

The main objective is the focus on how different types of wind power facilities affect a network’s
dynamic stability when exposed to small disturbances. This implies dynamic simulations for
typical wind series and systematically use of linear analysis (eigenvalues, sensitivities, etc) in
order to identify critical variables.

Analyses shall be carried out for wind power facilities based on both constant speed wind turbines
and variable speed wind turbines. Dynamic models of SVC and traditional condenser batteries can
be used if found necessary.

The following activities shall be included:

• Describe the current models for wind power turbines and demonstrate an understanding
of the different models and how these interact.
• Identify crucial parameter values and evaluate the  optimal placement of critical
eigenvalues.
• Demonstrate how the linear analysing technique can be used to find the interaction
between components in a dynamic system and by that contribute to optimal system behaviour.
• Analysis of a small-scale network with a combination of different production sources.
Obtain results which are illustrative.

The analyses shall in general be based on the simulation software SIMPOW. MATLAB can also be
used to evaluate the results.

The Master Thesis is a continuance of a project during the fall of 2007.

Assignment given: 17. January 2008
Supervisor: Olav B Fosso, ELKRAFT





Abstract

In this master thesis the theory and practical use of modal analysis is explained, giving an
introduction to the possibilities of modal analysis. The master thesis starts with a look
at wind power and the design of a modern wind turbine. Two models, one for constant
wind speed wind turbines and one for variable speed wind turbines, are presented. An
example shows how modal analysis can be utilized to evaluate a network's dynamic
stability. Simulations are performed on a two-area network where di�erent wind power
models are tested and compared.

A two-mass model is used to model a constant wind turbine. The model consists of an
asynchronous generator, a turbine, and a low speed shaft with a tensional sti�ness. The
model representing the variable speed wind turbine is based on a DFIG model included
in the simulation software.

The two-area network consists of two areas connected together through a long line be-
tween Bus 5 and Bus 6. Area 1 has two production sources, one placed in Bus 1 and one
placed in Bus 2. The second area represents a large network modelled as a very large
synchronous generator with a high inertia.

The calculations have showed how modal analysis can be used to evaluate a system
by using linearized di�erential equations and how the systems robustness against small
disturbances can be altered by changing the systems parameters.

Simulations have veri�ed that a two-mass model must be used when modelling a constant
speed wind turbine. The inertia of the turbine will greatly in�uence the model's behaviour
and must therefore be included in the model. Eigenvalues analysis performed during
di�erent wind speeds have documented that wind power will not become less stable
towards small disturbances when operated at low wind speed conditions.
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Chapter 1

Introduction

1.1 Motivation

Norway has with its long coastline and good wind conditions the possibility to extend
its current wind utilization greatly. Several wind farms are therefore planned which will
considerably increase the amount of wind power in the Norwegian power system.

Since wind power must be placed along the coast or at other locations where the wind
conditions are good, most wind farms will be located far away from the load centres and
in relatively weak networks with low short circuit power.

Wind power is an �uctuating power source where the amount of produced power varies
with the wind speed power. Combined with the fact that wind power technology dif-
fers from the technology used in the synchronous water power plants dominating the
Norwegian power systems today, leads to new and demanding challenges.

1.2 Background

The recent years' considerable growth of installed wind power has led to considerable
research concerning the performance of wind turbines towards power system dynamics,
transient stability and their response to short circuits. Small small signal stability on the
other hand has so far received much less attention. Small signal stability is as described in
chapter 4 the systems ability to reach a steady state condition after a small disturbance.
This is mainly a problem due to insu�cient damping of electromechanical modes, which
are related to power oscillations occurring in the rotor of electrical machines [13].

1.3 Research Objective

The scope of this master thesis is to see how di�erent types of wind power facilities
a�ect a network's dynamic stability when exposed to small disturbances. This includes
dynamic simulations for typical wind series and a systematically use of linear analysis
(eigenvalues, sensitivities, etc) in order to identify critical variables.

Description of the currents models for wind power models shall be presented and a
demonstration on how linear analysing techniques can be used to �nd the interaction
between components in a dynamic system and by that contribute to optimal system
behaviour are to be carried out.

1



2 CHAPTER 1. INTRODUCTION

A small SMIB network and a network with an su�cient degree of freedom are to be used
to simulate and evaluate the di�erent wind farm representations.

1.4 Content of the Thesis

The master thesis can in general be divided into three main parts:

Chapter 2-5. These chapters contains the theory part of the thesis. Chapter 2 present
wind power in a historical perspective and explains the design of a modern wind
turbine, while chapter 3 looks closer into a general wind turbine model and presents
the models used in the simulations. The theory behind small signal stability and
the mathematical expressions are presented in chapter 4-5.

Chapter 6. This chapter uses a small network with an synchronous generator to demon-
strate how linear analysis can be applied on a power system.

Chapter 7. Two SMIB systems, one with a constant speed wind turbine and one with
a variable speed wind turbine is simulated and several models are tested on a two
area network.



Chapter 2

Wind Power

This chapter gives a brief introduction to the history and development of wind power.

The design of a modern wind turbine is explained and a market overview for Europe is

presented.

2.1 Historical Perspective

Wind power have been used to pump water, grind corn and cross oceans for thousands
of years, and early examples of wind powered machines were used in Persia as early as
200 BC. The �rst known practical windmills were probably built in Sistan, Afghanistan
around the seventh century. These windmills were vertical axles with rectangle shaped
blades and were used to grind corn and pump water. Windmills for grinding corns were
also used in a large scale in Europe and by the late nineteenth century more than 100.000
"Dutch" windmills were in use [1].

Figure 2.1: Traditional "Dutch" windmill [1]

In 1887 the �rst known electrical wind turbine was built in Scotland and there were in
1908 around 70 wind-driven electric generators ranging from 5 kW to 25 kW. Some larger
mills were built later on, but due to large scale grid electri�cation projects all interest
for windmills halted in the late 1930's [14].
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4 CHAPTER 2. WIND POWER

2.2 Modern Wind Turbines

A wind turbine is by de�nition a machine that converts wind power into electrical power.
Most turbines in use today are of a fairly large size, ranging from 500 Kw and up 4 MW.
Most new turbines are also, in order to better utilize the space, constructed in clusters,
more commonly known as wind farms.

Modern wind turbines uses the aerodynamic force of lift and converts it into a mechanical
torque on a rotating shaft which is transformed into electricity by a generator. The
amount of power from a wind turbine highly depends on the wind speed and since
the wind is always changing, wind turbines must be treated as �uctuating and non-
dispatchable energy sources. Power systems with installed wind power generation must
therefore be designed with this factor taken into consideration.

Formula 2.1 shows the produced power as a function of wind speed, wind density and
the area covered by the blades. The formula indicate that the produced power increases
with the cubic of the wind speed.

Pwind =
1
2
CpρairArotorv

3
wind (2.1)

When the wind speed is low there is very little energy in the wind. A wind turbine will
therefore not start to produce power until the wind reaches a prede�ned cut-in speed,
normally around 3-5 m/s. As the speed increases and reaches nominal speed, around
12-15 m/s, the power taken out from the wind must be reduced or the wind turbine can
be exposed to large forces that eventually will damage the wind turbine.

All commercially available wind turbines today are based on the horizontal axis design
and aligned with the wind. The principal subsystem of a modern wind turbine is shown
in �gure 2.2:

Figure 2.2: Components of a wind turbine
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An in-depth explanation of the various components in a wind turbine can be found in
the book "Wind energy Explained, Theory, Design and application" [15]

2.3 Wind Resources

Small changes in wind will drastically change the amount of power produced from a wind
turbine. It is therefore vital to investigate the wind resources in a area before planning
of building a wind farm.

Figure 2.3: European wind map [2]

Figure 2.3 shows the onshore European wind resources at a height of 50 metres. Darker
colour indicates stronger wind and it is clear that the United Kingdom and especially
the coast of Norway have an exceptional potential for wind power.

2.4 Market overview

Figure 2.4 shows the amount of installed wind power in Europe. Around two-thirds of
all the installed capacity is located in Germany and Spain, countries that according to
the wind atlas experiences small amounts of wind, while Norway with its huge potential
only have 0.005 percentage of the installed capacity in Europe. This implicates that
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even though a large amount of wind parks are planned to be erected in Norway, giving
an considerable increased installed capacity, there is still potential for much more wind
power in the years to come [16].

Figure 2.4: Installed wind power in Europe [3]



Chapter 3

Wind Turbine Modelling

This chapter explains the importance of using a model intended for the required appli-

cation. A general model is explained and models for constant speed wind turbines and

variable speed wind turbines are presented

3.1 Introduction

A typical power system consists of many components such as overhead lines, underground
cables, transformers, generators and loads. Since most components can be described
by di�erential equations, a large system would need several thousands of di�erential
equations to describe the system. It is therefore necessary to take into account a model's
intended application and ensure that the model gives reliable results while not being too
complex.

Since the scope of this project is to look into linear stability, it is only necessary to study
phenomena occurring in the frequency range of 0.1 Hz and up to 10 Hz. Phenomena
with a frequency above or below this range can therefore be neglected because they most
likely do not a�ect the investigated phenomena [5].

3.2 General Model

Figure 3.1: General model of a wind turbine [4]

The basic working principle of all wind turbines is, as described in chapter 2, basically
the same. It is therefore possible to use a general model of a wind turbine in order to
visualize the working principle. The model in �gure 3.1 is one example on how such

7
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a model could look like. The wind speed model simulates the wind passing the wind
turbine, while the aerodynamic model translates this wind into mechanical power which
goes trough the shaft and other mechanical components and into the generator. A more
detailed description of the di�erent parts are given in the specialisation project [17]

It is how ever not always su�cient to use a general model to describe all wind turbines
and it is often common to divide di�erent wind turbine technologies into two di�erent
types:

• Constant speed wind turbines

• Variable speed wind turbines

The constant speed turbine uses a generator directly coupled to the network. This means
that the speed of the generator will follow the system frequency and the speed variations
will due to the slip in the generator only be around 1 or 2 percents. A variable speed
turbine's frequency is on the other hand decoupled from the electrical grid. This allows for
variable speed operations since the electrical stator and rotor frequency can be matched
independently of the mechanical rotor speed [5]. This di�erences in working principles
necessitate the use of two di�erent model when simulating wind power.

3.3 Constant Speed Wind Turbines

Figure 3.2: Constant speed wind turbine with squirrel cage induction generator [5]

Most constant-speed wind turbines in use today are based on the squirrel-cage induction
generator, hereby referred to as SCIG. The Generator is directly coupled to the grid and
since the slip and the rotor speed variations are so small the SCIG is described as �xed
speed.

SCIG wind turbines normally uses stall control to limit the power from the wind. This
means that the blades are constructed in such a way that they start stalling when the
wind reaches a prede�ned value, thereby reducing the lift.
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Figure 3.3: General SCIG model [5]

3.3.1 Constant Speed Wind Turbine Modelling

Figure 3.3 shows the general structure of a SCIG wind turbine as presented by [5]. This
model includes all the parts necessary to perform a complete analysis of the turbine,
including the power system model.

Since the main objective of this thesis is to perform small signal stability studies, which
must be performed when the system is at steady state, it is not critical to include the
"Wind speed" block. This block is therefore not included in the simulated model. The
"Rotor model" is modelled using a turbine where an arbitrary time function f(t) is
multiplied with the initial value of the mechanical torque Tm0 [7]. Since the time function
is given as a table it is also possible in a simpli�ed way to simulate wind speeds by
changing the amount of torque during the simulation.

Figure 3.4: Two mass model [6]

Figure 3.4 shows the drive train of a wind turbine. Since the resonance frequency of
the high speed shaft and the gearbox are much higher than the bandwidth of interest,
only the spring constant of the low speed shaft needs to be modelled [5]. The drive train
can therefore be modelled using a two-mass model where the rotor is modelled with an
inertia Jwtr and generator inertia Jgen is implemented in the generator. The torsional
spring constant of of the low speed shaft is modelled by the sti�ness constant ks.

The squirrel cage induction generator is modeled according to the parameters used in
[4]. They represent the values of a single wind turbine in the wind farm Hagesholm in
Eastern Denmark. These values are changed into PU values and aggregated in order to
simulate a large wind farm.

A full list of all the wind turbine parameters, calculations for implementation into SIM-
POW and the SIMPOW simulation �les can be found in appendix B.2
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3.4 Variable Speed Wind Turbines

(a) DFIG (b) DDSG

Figure 3.5: Variable speed wind turbines. From left: doubly fed induction generator and direct
drive synchronous generator [5]

Figure 3.5 illustrates the two main types of variable speed wind turbines on the mar-
ket. They both use power electronics to decouple the mechanical rotor speed from the
electrical frequency, enabling them to change the rotor speed independently of the grid
frequency. The DFIG uses a back-to-back converter feeding the three phase rotor wind-
ing, while the DDSG uses a full scale converter completely decoupling the generator from
the grid [5].

Both solutions have a several advantages and drawbacks. In the DFIG only 30 % of the
power passes through the converter while the converter in the DDSG must be of full scale.
The DDSG does on the other hand not need a gear box but must use a large, heavy and
complex ring generator. A more in-depth explanation on the di�erences between DFIG
and DDSG can be found in [15].

3.4.1 Variable Speed Wind Turbine Modelling

Figure 3.6: General variable speed wind turbine model [5]

A general model for a variable speed wind turbine as presented in [5] is shown in �gure
3.6. Simulations performed on both DFIG and DDSG in [5] revealed that there is a
high degree of similarity in the simulation results for these technologies. This occurs
since only the rotor speed controller and the pitch angle controller governs the frequency
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bandwidth of interest. Since these controllers often are similar in both the DFIG and
the DDSG, it can be concluded that both types can be represented by the same model
in power system dynamics simulations [5].

SIMPOW includes a model of a DFIG wind turbine designed for system analysis of power
�ow and electromechanical transients. This models have all the components necessary
to perform a full analysis of a variable wind turbine and has therefore been used in this
thesis to simulate a variable speed wind turbine.

The model in SIMPOW consists of six modules as shown in �gure 3.7. The explanations
on this model is mainly from [7] and [18].

Figure 3.7: Block diagram of DFIG model [7]

The asynchronous machine model consists of a wound rotor induction generator. The
rotor uses slip rings for the external rotor circuit where an simpli�ed loss-less frequency
converter modelled as a voltage source is placed. The frequency converter transfers during
negative slip, real power from the rotor to the grid and real power from the grid to rotor
during positive slip.

The inertia of the DFIG wind turbine is modelled as one rotating mass placed in the
generator. This can be done since the controllers of the turbine will minimize the e�ects
of the turbine shaft and it is therefore not necessary to use a two mass model [5].

Figure 3.8: The speed control [7]

The speed control is used to control the rotational speed and generated real power. A
speed reference (Wref ) is found by using the real power generation in the formula:
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Wref = A2P
2
eg +A1Peg +A0 (3.1)

Where A0, A1 and A2 are coe�cients de�ned in such a way that optimal wind power is
captured (see appendix B.1).

When the optimal speed reference is obtained, the di�erence between the reference and
real speed is calculated and sent through a PI-controller and multiplied with the real
speed. This gives the Power order Pord, which is sent trough a �lter and back to the
generator. The power order now ensures that the generator's rotational speed is optimal
compared to the wind speed. The control range of the speed is about +/−0.25−0.30pu.

Figure 3.9: The pitch control [7]

All variable wind turbines uses a form of pitch control in order to reduce the force of
power obtained from the wind. This ensures that the wind turbine can be safely operated
even though the wind speed exceeds the wind needed to obtain rated generator power.
Figure 7.5 in section 7.1.2 shows how the wind turbine starts to pitch the blades as the
wind speed increases in order to keep the power output constant.

The pitch control uses the power order (Pord) obtained from the speed control and com-
pares it with the speed deviation (∆W ) which is also from the speed control. The sum
of these outputs gives the optimum blade angle for the turbine. The blade angle (β) is
then �ltered to ensure that it does not exceed the maximum or minimum blade angle of
the wind turbine.

If a fault appears on the line resulting in a large voltage change on the wind turbine
terminals, it is vital that the frequency converter is quickly disconnected to prevent it
from failure. If such a fault should appear the Crow-bar resistor control will measure
the node voltage and if the voltage is found to be outside the boundaries, the frequency
converter will be disconnected and the external rotor circuit will be connected to a crow-
bar resistor.

When the DFIG is set to control the voltage at the node, this is ensured by changing
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Figure 3.10: The crow-bar resistor control [7]

Figure 3.11: The AC bus control [7]

the amount of reactive power produced or consumed by the generator. The AC voltage
control regulator does this by measuring the node voltage and comparing it with a refer-
ence voltage (Vac,ref = 1.0pu). If the measured voltage is below or above the reference,
a reactive power order (Qord) is sent to the generator, making it produce or consume
reactive power

SIMPOW uses as default a DFIG with a rated size of Sn = 2.05MVA. The model used
in the simulation is much larger and it is important to ensure that the ratio between
nominal power, blade length and turbine speed remains the same. The aggregation of
the DFIG wind turbine and the complete SIMPOW �les can be found in appendix B.1.





Chapter 4

Power Oscillations

This chapter explains the nature of power oscillations, why they occur, and how they can

be mitigated. A quick look at wind power versus power system oscillations is presented.

4.1 Introduction

Power systems contain many modes of oscillation due to a variety of interactions among
components. Most of these oscillations originate from generators swinging relative to
one another. The modes involving these masses most often occur in the frequency range
of 0.1 to 2 Hz [19] and can cause the oscillation of other power system variables (bus,
voltages, bus frequency, transmission lines, active and reactive power, etc).

Oscillations in the 1 to 2 Hz range are most often a result of a single generator or a
group of generators oscillating against the rest of the system. These oscillations are most
often referred to as "local-area oscillations" . Oscillations occuring in the 0.1 to 0.5 Hz
range are referred to as "inter-area oscillations", and involve groups of generators in one
area oscillating against generators in another area. These oscillations are particularly
troublesome and can in some cases constrain system operation.

Power system oscillations can be stimulated trough a number of mechanisms. Oscillations
may be triggered trough a disturbance on the power system, or by crossing some steady-
state stability boundaries. Undamped oscillations can, once started, grow in magnitude
over a few seconds and lead to the loss of synchronism, loss of part or losses of all
electrical network. Network outage can also occur if the oscillations are strong and
persistent enough to cause uncoordinated automatic disconnection of key generators or
loads.

The two most common reasons for instability is:

• Steady increase in generator rotor angle due to lack of synchronizing torque.

• Rotor oscillations of increasing amplitude due to lack of su�cient damping torque.

Small signal stability or steady state stability is the systems ability to maintain synchro-
nism during small disturbances, or as given by IEEE [20]:

A power system is steady-state stable for a particular steady-state operating

condition if, following any small disturbance, it reaches a steady-state oper-

ating condition which is identical or close to the pre-disturbance operating

condition. This is also known as Small Disturbance Stability of a Power Sys-

tem

15
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The disturbances must be so small that the equations describing the dynamics of the
power system can be linearized for the purpose of analysis. This is further explained in
chapter 5.

4.2 Historical perspective

Oscillations between generators have appeared since the �rst ac-generators where oper-
ated in parallel. These oscillations where expected due to synchronous generators power
vs. phase-angle curve gradient, forming an equivalent mass and spring system. Varying
load of the generators would therefore continually trigger the oscillations.

Power system oscillations were for a long time not regarded as a problem and most an-
alytical tools seemed to ignore damping entirely. This changed rather suddenly in the
1960's when an increasing number of networks, were interconnected, and more negative
damping was introduced by the increasing use of high responsive generator voltage regu-
lators. The increasing complexity of the power systems and tie-lines of limited capacity
led to the reappearance of power system oscillations.

4.3 Types of Power System Oscillations

Power system oscillations can in general be divided into four types:

• Local plant mode oscillations

• Inter-area mode oscillations

• Torsional mode oscillations

• Control mode oscillations

Local plant mode oscillations are the most common oscillations and are associated
with the swinging of units at a generating station against the rest of the power
system. These oscillations normally occur in the range of 1 to 2 Hz.

Inter-area mode oscillations are associated with the swinging of a group of machines
in one part of the system against groups of machines in other parts of the system.
They are caused by two or more groups of machines being interconnected by weak
tie-lines. These oscillations normally occur in the range of 0.1 to 1 Hz and are
normally the oscillations which present the greatest challenge.

Torsional mode oscillations comes from the turbine-generator rotational components
and can lead to instability due to interactions with the generating units and prime
mover control.

Control mode oscillations are associated with the control of generating units and
other equipment and are normally caused by poorly tuned controls of excitation
systems, prime movers, static var compensators and HVDC converters.

Figure 4.1 shows an inter-area oscillations between two areas. The generators in each
area are in phase with each other and in anti-phase with the generators in the another
area.
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Figure 4.1: Inter-area oscillation [8]

(a) Inter-area (b) Local-area

Figure 4.2: Inter-area and local-area oscillations [8]

The left picture �gure in 4.2 shows the same inter-area oscillation as in �gure 4.1. The
picture in the right side show a local-area oscillation where the two generators in area 1
are oscillating against each other

4.4 Reasons for Power System Oscillations

Power system oscillations are as previous mentioned, normally a result of the power vs.
phase-angle characteristic in synchronous generators, but the damping can be improved
or worsen by many di�erent factors. When only a few generators are paralleled in a
closely connected system, oscillations are damped by the generators damper windings
and only small variations in system voltage can occur. The generators voltage regulators
will therefore not participate in the activity, and increasing the regulators' response will
not decrease the system damping, but only improve the transient stability.

If this system is now connected to a similar system by a tie-line with only a fraction of
the system capacity, this would due to the tie-line's high impedance, greatly reduce the
damper positive damping. The generators' terminal voltage will become more responsive
to angular swings and cause the regulators to react, thereby producing negative damping.
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Tie-line oscillations are likely to occur, which can lead to transfer restriction on the tie-
line.

4.5 Wind Power and Power System Oscillations

Since the mechanical parts of a synchronous machine have low damping of low oscillations
the damping must come from other sources, such as the damper windings, the machine's
controllers and other parts of the power system. But the very low frequency of the
power system oscillations are hardly damped by the damper windings, thus leaving the
controllers and the rest of the system as the main contributors to the damping of the rotor
speed oscillations. Most wind turbines however, including the models used in this thesis,
uses an asynchronous generator which in contrast to the synchronous generator does not
show oscillatory behaviour since the generator have a correlation between rotor slip and
electrical torque. The mechanical part is therefore of �rst order and does not oscillate.
The generator used in variable speed wind turbines such as the DFIG, is decoupled from
the power system by power electronic converters. The generator does therefore not react
to any oscillations in the power system as they are not transferred trough the converter
[5].



Chapter 5

Modal Analysis

Modal analysis is a powerful and helpful tool in order to locate and mitigate power system

oscillations. Modal analysis assumes a linearized model of the system in a state space

form. This chapter explains the linearization of a system and presents the modal analysis

methods used by most simulations software.

5.1 Introduction

Analyzing power system oscillations require a combination of analytical tools. Oscilla-
tions are often observed in transient non-linear simulations and a complete understanding
of the system will therefore require programs both for linear analysis and for non-linear
analysis.

Programs capable of analyzing power system oscillations have historically been, due to the
mathematical nature of the techniques required, restricted to fairly small networks. The
recent years development of mathematical tools for analyzing the oscillatory behaviour
of power systems have led to a large number of commercially available tools, capable of
both linear and non-linear simulations.

5.2 Modal Analysis

Modal analysis is used to �nd the nature of the oscillations and it is a very useful tool
to determine the characteristic modes of a system linearized around a speci�c operating
point. By applying modal analysing to a power system it is possible to locate the devices
participating in the oscillations and use this information to do the required action in
order to solve the problem.

Models of power systems uses non-linear algebraic di�erential equations to represent the
components. When using modal analysis, these equations are linearized about an operat-
ing point by the use of Taylor series expansion. This sections describes the mathematical
methods used in power system modal analysis.

5.2.1 State-Space Model

A state-space model is in many ways just a de�ned way to write a system's di�erential
equations. The variables used in the state-space model amount to the system's state
variables. The state variables of the dynamic system can be physical quantities such as

19
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angle, speed or di�erential equations describing the dynamics of the system. Together
with the inputs to the system, the state variables give a complete description of the
system behaviour.

Figure 5.1: Dynamic system [9]

Figure 5.1 shows a dynamic system with its input vector u, output vector y and the state
vector x, containing the state variables of the dynamic system.

When given a non-linear continuous time dynamic system, one equation is used to de-
termine the state of the system and another equation to determine the output of the
system.

The equation describing the state of the system will then have the form [21]:

.
x = f(x, u) (5.1)

x =


x1

x2
...
xn

u =


u1

u2
...
un

 f =


f1

f2
...
fn

 (5.2)

The equation describing the system's output will have the form:

y = g(x, u) (5.3)

y =


y1

y2
...
ym

 g =


g1
g2
...
gm

 (5.4)

5.2.2 Linearization

Linearization is a useful tool when studying a systems behaviour around an operating
point. Linear equations can be used to describe the new system, assuming that all
deviations are small. The non-linear system can then be made into a linear system, since
linear equations are su�cient to describe the system.

Linearization methods can generally be classi�ed into three groups [22]:

• System identi�cation
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• Numerical linearization

• Analytical linearization

System identi�cation measures or simulates the response of non-linear systems to
change of inputs. A suitable model is selected and parameter identi�cation tech-
niques are used to obtain parameters for the linear system. System identi�cation
methods are rarely used for linearization of power system components models.

Numerical linearization measures the response of the system by calculating deviation
of state derivatives after a small change has been applied to the inputs and the
states. This enables the calculation of the states space matrices by the use of
di�erence equations:

Aij =
∆fi
∆xj

=
fi(xδu0)− fi(x0, u0)

xδ,j − x0,j
(5.5)

where subscript δ is used for vector with changed jth and subscript δ, j is used for
the value of that speci�c component.

This method is widely used in power systems, such as PSS/E. It is quick and
simple, but can only provide an approximation of the precise analytical solution.
It is also necessary to repeat the linearization procedure each time the operating
point changes.

Analytical linearization is based on analytical computation of system Jacobians. An-
alytical linearization is very precise and when the operation point changes, new
matrices are easily obtained by substituting the new operating points in the Jaco-
bians.

The simulation software used in this thesis, SIMPOW, uses analytical linearization
where all di�erential equations are linearized by their analytical expressions [23].
The eigenvalues of matrix A is then solved using the QR-method, which is further
explained in section 5.3.1.

5.2.3 Principles of Linearization

By applying a small disturbance in both the state vector and the input vector the new
state of the system presented in section 5.2.1 can be written as:

.
x =

.
x0 + ∆

.
x = f [(x0 + ∆x), (u0 + ∆u)] (5.6)

Formula 5.1 can now, by using Taylor series expansion, and neglecting second and higher
order terms, be written in linearized form, also known as the state space equation:

∆
.
x = A∆x+B∆u (5.7)
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A =

 ∂f1
∂x1

. . . ∂f1
∂xn

. . . . . . . . .
∂fn

∂x1
. . . ∂fn

∂xn

B =

 ∂f1
∂u1

. . . ∂f1
∂ur

. . . . . . . . .
∂fn

∂u1
. . . ∂fn

∂ur

 (5.8)

Matrix A is the system matrix, and relates to how the current state a�ects the state
change. Matrix B is the control matrix, and determines how the system input a�ects the
state change [10].

The linearized form of the output equation 5.3 is written as:

∆y = C∆x+D∆u (5.9)

C =

 ∂g1
∂x1

. . . ∂g1
∂xn

. . . . . . . . .
∂gm

∂x1
. . . ∂gm

∂xn

D =

 ∂g1
∂u1

. . . ∂g1
∂ur

. . . . . . . . .
∂gm

∂u1
. . . ∂gm

∂ur

 (5.10)

Matrix C is the output matrix, and determines the relationship between the system state
and the system output. Matrix D is the feed-forward matrix, and allows for the system
input to a�ect the system output directly [10].

A more comprehensive deduction of the linearization process can be found in [24] and
[17].

5.2.4 Eigenvalues

A power systems eigenvalues are important for determining the systems response. Each
eigenvalue describe one special dynamic behavior of the system called a mode. This
mode is calculated based on the A matrix.

The eigenvalues of the system determines the relationship between the individual system
state variables, the response of the system to inputs, and the stability of the system.
Eigenvalues consist of a real and an imaginary part. The real part tells about the swing
of the mode and the imaginary part tells about the oscillating frequency of the mode
[25].

Eigenvalues with no imaginary part i.e. real eigenvalues, indicate modes which are aperi-
odic. Eigenvalues with an imaginary part i.e. complex eigenvalues, indicate modes which
are oscillatory.

A power system is stable if the real parts of all the eigenvalues are negative. If any one of
the eigenvalues has a positive real part, a small disturbance would lead to exponentially
increase of a modes oscillations. The power system is then said to be unstable.

The eigenvalues of the A matrix are given by the values of the scalar parameter λ as
written in the non-trivial solution:

det(A− λI) = 0 (5.11)
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A complex pair of eigenvalues can then be written as:

λ = σ ± jω (5.12)

Where σ represents the real component of the eigenvalue, giving the damping of the
oscillation. A negative σ indicates a damped oscillation while a positive σ indicates
an oscillation with increasing amplitude. The real component tells how much time it
takes before the amplitude of the oscillation reaches 37%. The imaginary part, ω, is the
oscillation's frequency where the real frequency is given by the formula [24]:

f =
ω

2π
(5.13)

A complete deduction of the eigenvalue calculation can be found in the specialisation
project [17].

To better visualize an eigenvalue, it is often useful to place it in the complex plane . A
damped eigenvalue with σ < 0 will then be located in the open left half of the complex
plane. Eigenvalues in the left-half plane are called stable eigenvalues.

Figure 5.2: An Eigenvalue in the complex plane and the time plane [9]

The left side in Figure 5.2 shows an stable eigenvalue in the complex plane. The eigen-
value is non-real-valued meaning that it has both damping and oscillation. The right
side shows the eigenvalue in the time plane. The frequency of the oscillation is ω1 and
the period of the oscillation is T1.

5.2.5 Damping Ratio

Since oscillatory modes can have a wide range of frequencies it is often more appropriate
to use the damping ratio in order to express the degree of damping.

For an oscillatory mode with a complex eigenvalue λ = σ ± jω, the damping ratio is
given by :
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ζ =
−σ√

(σ)2 + (ω)2
(5.14)

The minimum acceptable damping ratio is system dependent and must be based on
operation experience and sensitivity analysis. Experiences at the Ontario's Hydro power
plant however, has shown that a damping ratio of less than 3% must be accepted with
caution [19]

(a) Complex plane (b) Damping ratio

Figure 5.3: Eigenvalues in complex plane and with damping ratio

Figure 5.3 shows an example of how eigenvalues can be presented. Both pictures are
taken from the same simulation where a wind turbine's productions is increased from 0
MW up to 100 MW. This leads to a change in the oscillatory modes of the power system.
The left �gure illustrates this by plotting the eigenvalues in the complex plane and the
right picture plots the same eigenvalues by using the damping ratio.

5.2.6 Eigenvectors

Eigenvectors are a special set of vectors associated with a linear system of equations.
Determining the eigenvectors is important in physics and engineering in order to analyze
small oscillations in vibrating systems or stability analysis. Each eigenvector is paired
with its corresponding eigenvalue and there are two types of eigenvectors, right eigen-
vector and left eigenvector [26]. The right eigenvector de�ne the relative distribution of
the mode throughout the system's dynamic states. It measures the activity of the state
variables to an eigenvalue. The left eigenvector weights the contribution of the activity
of the state variable to an eigenvalue. It gives the distribution of the states within a
mode. It is for most problems su�cient to only consider the right eigenvector. The term
"eigenvector" used without quali�cation in such applications can therefore be understood
to refer to the right eigenvector [24].

The right eigenvector XR has the form:
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XR =


XR1

XR2
...

XRn

 (5.15)

The left eigenvector XL has the form:

XL =
(
XL1 XL2 . . . XLn

)
(5.16)

The eigenvectors can be normalized so that the product of the them are:

XRXL = 1 (5.17)

While the product of eigenvectors belonging to di�erent eigenvalues will always be 0.

XRiXLi = 0 (5.18)

5.2.7 Participation Factors

Using right and left eigenvectors to identify the relationship between a state and a mode
can be a problem since the elements of the eigenvectors are dependent on units and scaling
associated with the state variables. To solve this problem a matrix called the participation
matrix which combines the right and the left eigenvectors, can be used to measure the
association between the state variables and the nodes [24]. The participation matrix
indicates better than the eigenvectors the e�ect of a physical component in a system to
a mode. Participation factors can by looking at generators speed participations, indicate
which generators in the power system that is most suitable for power system stabilizer
placement.

Pi =


P1i

P2i
...
Pni

 =


XR1iXRi1

XR2iXRi2
...

XRniXRin

 (5.19)

or written in general form:

Pki = XRkiXLik (5.20)

This formula shows how one state variable contributes to one eigenvalue. This can further
be used in small signal stability analysis in order to locate the source of a poorly damped
eigenvalue.
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5.2.8 Block Diagram Representation

By laplace transforming equation 5.7 and 5.9 the following equations are obtained in the
frequency domain [24]:

s∆x(s)−∆x(0) = A∆x(s) +B∆u(s) (5.21)

s∆y(s) = C∆x(s) +D∆u(s) (5.22)

It is now based on the equations in the frequency domain possible to draw a power
systems linearized block diagram, this is shown in �gure 5.4

Figure 5.4: Block diagram representation [10]

5.2.9 Transfer Function

Transfer function representation are in contrast to the state-space representation only
concerned with the input/output behaviour of the system. It is therefore possible to
randomly choose state variables when a system is only speci�ed with a transfer function
and the spate-space representation is therefore in many ways a more complete description
of the system.

Eigenvalue analysis of the state matrix (matrix A) is normally the best way to perform
eigenvalue analysis. But since modal analysis is often done in order to construct better
control designs, it is often useful to see how the open-loop transfer function is related to
the state matrix and the eigenvalues.

The transfer function has the general form:

G(s) = K
N(s)
D(s)

(5.23)

By applying the method used in [24] it can be shown that G(s) may be written as.

G(s) =
n∑
i=1

Ri
s− λi

(5.24)

where
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Ri = cXRiXLib (5.25)

Equation 5.24 now shows that the poles of G(s) is given by the eigenvalues of matrix A.

5.3 Methods for Modal Analysis

Since an adequate model for small signal stability must include detailed information
about the power system, it is not uncommon to have power system of an order of several
thousands states. The eigenvalue analysis presented in the previous section would there-
fore require an enormous amount of computer power and such calculations are therefore
limited to small-sized power system. In order to enable modal analysis of larger systems
several methods have been developed [27]. This methods are further explained in this
section.

5.3.1 Analysis of Small Size Power Systems

The QR-method is a widely used method to determine the eigenvalues of a matrix. This is
done by applying a set of transformations to the A matrix in order to construct another
matrix, say Q. Real eigenvalues will appear as diagonal elements in Q and complex
eigenvalues will appear as a block diagonal 2x2 elements. When the eigenvectors of the
Q matrix are found, the eigenvectors of the original matrix can be found by reversing
the transformations or by inverse iteration .

Most power system analysis program's are due to computer limitations restricted to about
800 modes when using the QR method. This means that only around 80 generators can
be modelled. But using the QR-method will reveal all the systems eigenvalues and
eigenvectors, and it is therefore the preferred method to use if the system falls within the
limitations [19].

5.3.2 Analysis of Large Size Power Systems

When a power system is to large to be analyzed using a full modal analysis, it is necessary
to use partial modal analysis. Partial modal analysis virtually removes the size limita-
tions for modal analysis of power systems. The only remaining limits are the programs
capabilities and the availability of data.

The �rst algorithm using this technique was the AESOPS [19]. This algorithm used the
quasi-Newton method iteration to �nd system eigenvalues close to the de�ned starting
value and was capable of handling up to about 2000 states. The algorithm has now been
replaced by other more e�cient methods such as:

• Inverse iteration and generalized Rayleigh Quotient iteration

• Modi�ed Arnoldi

• Simultaneous inverse iteration
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All this methods are quite similar and they all uses repetitive multiplication of a vector
by the state matrix A.

Selective modal analysis on the other hand is a complete di�erent method that only
focuses on the relevant eigenvalues in a speci�c area. The method avoids having to deal
with the large system matrix and can therefore greatly reduce storage and computer
requirements [27].



Chapter 6

Practical use of Modal Analysis

This chapter evaluates the modal analysis technique by linearization a small power sys-

tem with a synchronous generator. A MATLAB program capable of testing the systems

eigenvalues, damping factors and participation factors when the network parameters are

altered is presented.

6.1 Linearization of a Synchronous Generator

A synchronous generator connected to an in�nite bus through a line is used to illustrate
the possibilities of small-signal stability studies.

Figure 6.1: SMIB system [11]

Figure 6.1 shows the single machine in�nite bus system. Since the system is simple, it
allows linearization of formulas to be performed in an understandable way.

Figure 6.2: Equivalent circuit in the sub-transient state

29
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The equivalent circuit of �gure 6.1 is shown in �gure 6.2. The generator is modelled as
a constant voltage source behind a reactance (Xd) and the line is modelled as a pure
reactance.

The real power produced by a generator with a salient-pole rotor (xd 6= xq) calculated
with pu units is as given by [12]:

Te = Pe =
Eq Vs
xd

sin δ +
V 2
s

2
xd − xq
xqxd

sin 2δ (6.1)

When the generator uses a round rotor (xd = xq) or a classic presentation is used, formula
6.1 can be simpli�ed to:

Te = Pe =
Eq Vs
xd

sin δ (6.2)

where xd = Xd +Xl and xq = Xq +Xl

Most of a generators damping e�ect comes from the damper windings . If the rotor speed
is di�erent from the system frequency an emf and a current will be induced. This will
produce a damping torque which will try to restore the synchronous speed of the rotor.
The e�ect of the damper winding must therefore be included in stability analysis [12].

Figure 6.3 shows an equivalent circuit of a synchronous machine where the damping
windings are given as XD

Figure 6.3: Equivalent circuit of synchronous generator [12]

The damping power can be calculated as described in [12], by using the power angle
during steady state operation and the generators values for transient and sub-transient
reactance and time constants. The following formula will then describe the damping
power of the generator when saliency is disregarded:

KD = V 2
s

X ,
d −X

,,
d

(X +X ,
d)

2

X ,
d

X ,,
d

T ,,d ∆ω
1 + (T ,,d ∆ω)2

(6.3)

By taking saliency into account and replacing the voltage Vs in d and q by applying,
Vd = −Vs ∗ sinδ and Vq = −Vs ∗ cosδ, a similar formula can be derived [12]:



6.1. LINEARIZATION OF A SYNCHRONOUS GENERATOR 31

KD = V 2
s

(
X ,
d −X

,,
d

(X +X ,
d)

2

X ,
d

X ,,
d

T ,,d ∆ω
1 + (T ,,d ∆ω)2

∗ sin2(δ) +
X ,
q −X ,,

q

(X +X ,
q)2

X ,
q

X ,,
q

T ,,q ∆ω
1 + (T ,,q ∆ω)2

∗ cos2(δ)
)
∗ωs

(6.4)

During large speed deviations the damping power is a non-linear function of the speed
deviation while it is proportional to the speed deviation when the deviation is small. A
small deviation such as s = ∆ω/ωs � 1, would therefore allow the term (T ,,d ∆ω)2 in the
denominator of formula 6.4 to be neglected. The formula can then be simpli�ed to:

KD = V 2
s

(
X ,
d −X

,,
d

(X +X ,
d)

2

X ,
d

X ,,
d

T ,,d ∗ sin2(δ) +
X ,
q −X ,,

q

(X +X ,
q)2

X ,
q

X ,,
q
T ,,q ∗ cos2(δ)

)
∗ ωs (6.5)

By calculating the close loop and open loop time constants, the relationship will be:

T ,,d = T ,,do
Xd, ,

X ,
d

T ,,q = T ,,qo
Xq, ,

X ,
q

(6.6)

By applying this to formula 6.5 and since x,d = X + X ,
d and x

,
q = X + X ,

q, the formula
can be simpli�ed to:

KD = V 2
s

(
X ,
d −X

,,
d

(x,d)
2

T ,,do ∗ sin2(δ) +
X ,
q −X ,,

q

(x,q)2
T ,,q ∗ cos2(δ)

)
∗ ωs (6.7)

The damping KD can now be calculated and used in order to �nd the systems stability

6.1.1 Swing Equation

The angle between the rotor axis and the magnetic �eld in a synchronous machine is
known as the power angle or torque angle. When a perturbation occurs the rotor will ac-
celerate or decelerate and a relative motion begins. The equation describing this relative
motion is known as the swing equation [28].

A change from steady state due to a perturbation will result in a positive or negative
torque causing acceleration or deceleration:

Ta = Tm − Te (6.8)

when including the moment of inertia , J , and neglecting frictional damping the equation
becomes:

J
dωm
dt

= Ta = Tm − Te (6.9)

This equation can be expanded to include the per unit inertia constant H, which is further
explained in appendix B.2:
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J =
2H
w2

0m

V Abase (6.10)

and the damping factor KD in pu torque/pu speed deviation, such that [24]:

2H
ωo

d2δ

dt2
= Tm − Te −KD∆ωr (6.11)

Formula 6.11 is now the swing equation of a synchronous machine and it represents the
swings in rotor angle (δ) during disturbances.

Since the state-space representation requires a set of �rst order di�erential equations ,
formula 6.11 must be expressed as two �rst order di�erential equations, which can be
written in per unit as:

d∆ωr
dt

=
1

2H
(Tm − Te −KD∆ωr) (6.12)

dδ

dt
= ωo∆ωr (6.13)

6.1.2 Linearization

The swing equations 6.12 and 6.13 are nonlinear functions of the power angle. It is
however possible to assume that they may be linearized, with little loss of accuracy, for
small disturbances:

By linearizing formula 6.1 around an initial operating point where δ = δ0, the formula
can be written in linearized form as:

∆Te =
∂Te
∂δ

∆ =

(
E

′
Vs
xd

cos δ ∗∆δ + E2
B

xd − xq
xqxd

cos(2δ)

)
∗ ∆δ = Ks ∗∆δ (6.14)

and for formula 6.2:

∆Te =
∂Te
∂δ

∆ =
E

′
Vs
xd

cos δ ∗∆δ = Ks ∗∆δ (6.15)

Ks in formula 6.14 and 6.15 is referred to as the steady state synchronising power coef-
�cient and describes the generator's pull-out power.

Equation 6.12 and 6.12 can now be linearized to:

f1(δ, ω) =
d∆ωr
dt

=
d2δ

dt2
=

1
2H

(Tm −Ks∆δ −KD∆ωr) (6.16)

f2(δ, ω) =
d∆δ
dt

= ωo∆ωr (6.17)
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Using formula 5.8 it is ossible to �nd the elements in the A and B matrix . Applying the
formula to Element A11 in the A matrix yields:

∂1

∂x1
=

δ

∆ωr
=

=
1

2H
(Tm −Ks∆δ −KD∆ωr)

=
1

2H
(0− 0−KD)

= −KD

2H

(6.18)

And using the same method for the rest of the elements the complete A and B matrix
will be:

A =

(
∂f1
∂x1

∂f1
∂x2

∂f2
∂x1

∂f2
∂x1

)
=
(
−KD

2H −KS
2H

ω0 0

)
(6.19)

B =

(
∂f1
∂u1
∂f2
∂u1

)
=
(

1
2H
0

)
(6.20)

Which gives the following state space equation 5.7:

( .
∆ωr
.

∆δ

)
=
(
−KD

2H −KS
2H

ω0 0

)(
∆ωr
∆δ

)
+
(

1
2H
0

)
∆Tm (6.21)

The eigenvalues for the system can now according to formula 5.12 be:

det(
(
−KD

2H −KS
2H

ω0 0

)
− λ

(
1 0
0 1

)
) = 0 (6.22)

det

(
−KD

2H − λ −KS
2H

ω0 0− λ

)
(6.23)

−KD

2H
− λ(0− λ) + (

−KS

2H
ω0) = 0 (6.24)

KD

2H
λ+ λ2 − −KS

2H
ω0 = 0 (6.25)

λ2 +
KD

2H
λ− −KS

2H
ω0 = 0 (6.26)

Since this is a second order equation the eigenvalues (λ) can be found by :



34 CHAPTER 6. PRACTICAL USE OF MODAL ANALYSIS

λ1,2 =
−KD

2H ±
√

(KD
2H )2 − 4 ∗ 1KS

2H ω0

2 ∗ 1
=

= −KD

4H
±
√

(
KD

4H
)2 − KS

2H
ω0

(6.27)

The general form of an eigenvalue is:

λ = σ ± jω (6.28)

The real component of the eigenvalue also known as the damping σ, and the oscillation
of the eigenvalue ω will be:

σ = −KD

4H
ω =

√
(
KD

4H
)2 − KS

2H
ω0 (6.29)

And the damping ratio will according to formula 5.14 be:

ζ =
−σ√

(σ)2 + (ω)2
(6.30)

The right eigenvectors are given by:

(A− λI)XR = 0 (6.31)

((
−KD

2H −KS
2H

ω0 0

)
− λ

(
1 0
0 1

))(
XR1i

XR2i

)
= 0 (6.32)

The left eigenvectors are given by:

XR = X−1
L =

adj(XL)
|XL|

(6.33)

The participation matrix can now be found by multiplying the right and left eigenvector
for each eigenvalue:

P =
(
P1i

P2i

)
=
(
XL11XR11 XL12XR21

XL21XR11 XL22XR22

)
=
(
P11 P12

P21 P22

)
(6.34)

The �rst column of the participation matrix shows how mode 1 involves each state
variable. The second column shows how mode 2 involves each state variable [11]

This matrix shows how a participation matrix can be understood:
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
λ1 λ2

∆ωr
... P11 P12

∆δ
... P21 P22

 (6.35)

For each mode λ1 and λ2, the participation matrix shows how each state variables, in
this case ωr and δ, is involved

6.2 Small System With Synchronous Generator

Network 1 in section 7.3 is simpli�ed by removing Bus 2 and Bus 4. The line from Bus
5 to Bus 6 is removed and the generator is modelled as a constant voltage behind the
transient reactance. The derived formulas in the previous section are used to construct a
MATLAB �le able to calculate all relevant values for small-signal analysis. The MATLAB
code can be found in appendix A.2 and the values for the system including the generator
can be found in appendix A.1.

Figure 6.4: Three bus example

6.2.1 Calculations with Initial Values

The values given for the network and the generator are used to calculate the properties
of the network. By using the derived formulas all relevant values for small-signal analysis
can now be calculated.

The �rst thing required to �nd is the Voltage at Bus 1.

The voltage at Bus 1 can be found by adding the voltage at Bus 3 and the line losses:

V1 = V3 + ∆Vline
= V3 + I ∗ (XT + Zline)

(6.36)

and the line can current be �nd with:

Il =
(P1 + JQ1)∗

V1
(6.37)
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Combining formula 6.36 and 6.37 and ignoring the line resistance (X = XT + Xline)
yields:

V1 = V3 +
(P1 + JQ1)∗

V1
∗X

= V 2
1 − V3 ∗ V1 − (P1 + JQ1)∗ ∗X

=
V3 ±

√
V 2

3 − (4 ∗ 1 ∗ −(P1 − JQ1) ∗X
2

(6.38)

And by using the prede�ned values found in appendix A.1:

V1 =
1.0±

√
1.02 + (4 ∗ 1 ∗ (0.5− J0.1) ∗ J0.35

2
= 1.0565 + J0.157
= 1.068 6 8.46

(6.39)

The current trough the line can now be found using formula 6.37:

Il =
(P1 + JQ1)∗

V1

=
(0.5 + j0.1)∗

1.0565 + J0.157
= 0.45− J0.161 = 0.477 6 − 19.76

(6.40)

and for the local load

Il =
P1

V1
=

0.5
1.068

= 0.467 (6.41)

The total current from the generator will then be

Itot = Iload + Iline

= 0.467 + 0.45− J0.161
= 0.918− J0.161 = 0.933 6 − 9.947

(6.42)

The transient voltage behind the transient reactance:

E,g = V1 + JX ,
d ∗ Itot

= 1.0565 + J0.157 + J0.3 ∗ (0.918− J0.161)
= 1.1050 + 0.4324i = 1.187 6 21.36

(6.43)

Since the generator is using a salient rotor (xd 6= xq) formula 6.14 must be used to �nd
the synchronizing torque coe�cient ,Ks:
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Ks =

(
E

′
Vs
xd

cos δ ∗∆δ + V 2
s

xd − xq
xqxd

cos(2δ)

)
=

1.1050 + 0.4324i ∗ 1.0 + 0i
0.65

∗ cos 21.37 + 1.02 0.65− 0.90
0.65 ∗ 0.90

∗ cos(2 ∗ 21.37)

= 1.3861

(6.44)

The same applies for the damping power, KD, where formula 6.7 must be used:

KD = V 2
s

(
X ,
d −X

,,
d

(x,d)
2

T ,,do ∗ sin2(δ) +
X ,
q −X ,,

q

(x,q)2
T ,,q ∗ cos2(δ)

)
∗ ωs =

= 1.02

(
0.3− 0.25

(0.652
0.03 ∗ sin2(21.37) +

0.55− 0.25
(0.9)2

0.05 ∗ cos2(21.37)
)
∗ ωs =

= 5.2
(6.45)

All values necessary to �nd the eigenvalues are now either given or calculated and it is
therefore possible to �nd the systems eigenvalues using the formulas from 6.18 and up
to 6.28. The eigenvalues in the general form will then be:

λ1,2 = −0.1997± J5.7842 rad/s
λ1, 2 = −0.1997± J0.92 hz

(6.46)

And the right and left eigenvectors according to formula 6.31 and 6.33:

XR =
(
−0.0006 + J0.0184 −0.0006 + J0.0184

1 1

)
XL =

(
0.0000− J27.1612 0.5001− J0.0173
−0.0000 + J27.1612 0.5001 + J0.0173

) (6.47)

Combining the right and left eigenvector by using formula 6.34 gives the participation
matrix:

P =
(

0.5000 + J0.0173 0.5000− J0.0173
0.5000− J0.0173 0.5000 + J0.0173

)
=
(

0.50036 1.9777 0.5003 6 − 1.9777
0.50036 − 1.9777 0.50036 1.9777

)

=


λ1 λ2

∆ωr
... 0.50096 1.9777 0.50096 − 1.9777

∆δ
... 0.50096 − 1.9777 0.50096 1.9777


(6.48)

This shows that each state variable has the same amount of contribution to the eigen-
values.
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6.2.2 Data Scanning

The main advantage of using modal analysis is that it makes it possible to predict the
systems behaviour. While planning a new power system or testing a system already in
use, it is possible to use modal analysis to see how a change in a parameter can change
the robustness against oscillations, see where the source of the problem is, and where it
most e�ectively can be improved.

Formula 6.29, here repeated for convenience, shows how the eigenvalue in the SMIB
system can be altered:

σ = −KD

4H
ω =

√
(
KD

4H
)2 − KS

2H
ω0 (6.49)

The formula clearly shows that the inertia constant H have an in�uence on both the
damping of the oscillation and the frequency. This constant, which is more thoroughly
explained in appendix B.2, is mainly decided my the mass of the generators moving part,
hence the rotor.

Figure 6.5: Di�erent inertia values

Figure 6.5 display the results obtained from the MATLAB program, when the inertia
of the generator is changed from H = 1 to H = 10. The damping is as predicted, by
looking at formula 6.29, decreased when the inertia is increased. A generator with a high
inertia would therefore have a more negative impact on the system's ability to withstand
small-signal stability than a generator with a low inertia.

The connection between a production source or a group of connections sources and the
rest of the power system will often greatly impact the systems small-signal stability.
Increasing the line impedance will, by looking at the formulas, a�ect the voltage at Bus
1, reduce the synchronizing torque coe�cient, the damping power , and due to this reduce
the damping of the system.

This is tested by changing the line reactance from Xline = 0.2 and up to Xline = 2.0.
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Table 6.1: Di�erent line reactance values

Load Flow Eigenvalues

Xline V1 Eg Ks Kd 1/s Hz DR [%]

0.2 1.068 6 8.46 1.187 6 21.37 1.70 5.19 -0.20 0.92 3.45

0.4 1.122 6 11.82 1.251 6 23.00 1.36 3.40 -0.13 0.85 2.46

0.6 1.178 6 14.39 1.312 6 24.16 1.14 2.39 -0.09 0.79 1.86

0.8 1.233 6 16.39 1.369 6 25.04 0.99 1.77 -0.07 0.75 1.46

1.0 1.286 6 18.00 1.423 6 25.74 0.88 1.36 -0.05 0.71 1.18

1.2 1.338 6 19.33 1.473 6 26.32 0.80 1.08 -0.04 0.68 0.98

1.4 1.387 6 20.44 1.521 6 26.81 0.73 0.88 -0.03 0.65 0.82

1.6 1.435 6 21.39 1.568 6 27.24 0.68 0.73 -0.03 0.63 0.71

1.8 1.481 6 22.21 1.610 6 27.62 0.63 0.61 -0.02 0.61 0.61

2.0 1.525 6 22.93 1.654 6 27.96 0.60 0.52 -0.02 0.59 0.53

Since the voltage is set to be 1.0 pu at Bus 3, the voltage at Bus1 must be increased
when the line losses increases. The internal generator voltage will also increase and the
angle between the generator and the sti� network increases. This factors combined with
the reduced Ks and Kd leads to a damping ratio dropping from a low but acceptable
3.45 % down to a very low 0.53 %.

Figure 6.6: Di�erent line reactance values

The graphical representation of the changes in eigenvalues is as shown in �gure 6.6 also
showing that the increased line reactance greatly reduces the system's damping.





Chapter 7

Simulations

The models presented in chapter 3 are evaluated and tested using a single machine in�nite

bus network (SMIB).A two area network is used to compare how di�erent wind models

a�ect the system's small signal stability

7.1 Variable Speed Wind Turbine

Figure 7.1: 2 Bus system, DFIG and in�nite bus

The DFIG is connected to a sti� network through a transformer. This is done in order to
simplify the system as much as possible, thereby allowing a more in-depth analysis of the
DFIG. Small systems like this are often referred to as SMIB , Single-Machine-In�nite-Bus.

Modelling of the DFIG is done as described in chapter 3.4. The aggregated values and
the calculated power coe�cients are also used in order to make the system as realistic
as possible. Simulations at a de�ned constant power and simulations where the wind
speed is varied are performed. The model is tested with the voltage controller module
connected, this allows the DFIG to adjust the production of reactive power, keeping the
Bus voltage at Vpu = 1.0, see more in section 3.4.1.

The full Simpow �les and calculations can be found in appendix B.1.

7.1.1 DFIG at Constant Power

The generator is operated at constant power, P = 100. This ensures that the produced
power from the DFIG remain the same in the dynamic part as the static part. The same
values are also used in section 7.3, where the DFIG is compared to other wind turbines
models.

Table 7.1 shows the oscillatory eigenvalues of the system without iterative improvement
and with iterative improvement. The improvement failed with eigenvalue no. 1, 3, 6, 9
and 10, indicating that the results must be handled with caution. Especially eigenvalue

41
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Table 7.1: Eigenvalues for DFIG

Not Improved Improved

Number 1/s Hz Dr [%] 1/s Hz Dr [%]

2 -0.34 7.59 0.70 -9.98 0 100

3 -0.34 -7.59 0.70 -0.34 7.59 0.70

4 -30.01 3.06 84.18 -30.01 3.06 84.18

5 -30.01 -3.06 84.18 -30.01 -3.06 84.18

2 and 3 are strange since Simpow is only able to improve one of them with the result
being a large change. The full list of eigenvalues can be found in appendix C.1

Table 7.2: Sensitivity overview eigenvalue 4

Sensitivity overview

Component Sensitivity

Voltage Control 20.112

Asynchronous Machine 20.025

Transformer 0,03873

Pitch Controller 2,54E-15

By running a sensitivity analysis it is possible to see which components in the system that
contributes most to the selected eigenvalue. The parameters in table 7.2 indicate how
much each component in�uence the selected eigenvalue and it reveals that the voltage
controller is the component which to a largest degree in�uence the selected eigenvalue.

Figure 7.2: The AC bus control [7]

The voltage controller is as described in section 3.4.1, controlling the voltage at the node.
When the voltage is below a pre-set reference value, a reactive power order is sent to the
generator which increases the reactive power production. The most relevant changeable
parameters in the voltage controller are the gain factor, KA, in the controller and the
gain factor in the proportional part, KP .

Figure 7.3 shows how eigenvalue 4,5 changes when altering the gain factors in the voltage
controller. Increasing either theKP or theKA gives a steady decrease in damping factor.
Reducing the gain factors should therefore according to the simulations lead to a better
damped system. A full list of the eigenvalues can be found in appendix C.1

Figure 7.3 shows the eigenvalues after changing the KP from KP = 10 to KP = 5 and
KA from KA = 4 to KA = 2. The new gain factors have led to a non-oscillatory system,
although eigenvalue 2,3 still have the same values as before. This is as mentioned most
likely due to a problem in the DFIG model.
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Figure 7.3: Change of eigenvalue 4,5

Table 7.3: Eigenvalues

Improved Eigenvalues

Number 1/s Hz DR [%]

2 -9.98 0 100

3 -0.34 7.59 0.70

4 -44.42 0 100

If eigenvalue 2 and 3 are disregarded, the system appears to be very well damped with
little or non oscillatory behaviour. This is tested by adding a three phase short circuit
to Bus 1. The fault was connected to earth through a small reactance for two seconds.

Figure 7.4: Three phase fault at Bus 1

The voltage as Bus 1 drops from 1 pu to 0.4 pu at the moment the fault is connected.
This lead to an increase of generator speed. As soon as the fault is removed the speed of
the generator goes back to pre-fault state. No oscillatory behaviour is seen but Simpow
is reporting that the frequency converter is at maximum current. The �ow of current is
therefore restricted by the converter and the severity of the fault is smaller than what it
realistically should be.
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Figure 7.5: Correlation between wind speed, blade angle and produced power

7.1.2 DFIG at Di�erent Wind Speeds

Figure 7.5 shows how the power production increases when wind speed increases. The
blades starts pitching when the wind turbine reaches rated power and keeps power pro-
duction constant.

Since the generator operates at a di�erent slip at di�erent wind speeds, a comparison
between the eigenvalues is done by testing three di�erent wind speeds.

Figure 7.6: Power curves for di�erent wind speeds

As shown in �gure 7.5 the blades will start pitching at around 12−14m/s. The produced
power will therefore remain constant during winds above these values. The wind speeds
8m/s, 10m/s and 28m/s was therefore chosen as relevant values. KA and KP was set
back to default value.

The same eigenvalue problem as in 7.1.1 occurs and eigenvalue 2 and 3 are most likely not
correct. The rest of the eigenvalues are quite similar, indicating that the working point
of the asynchronous generator have little or non in�uence on the DFIGs small signal
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stability. The eigenvalues found when operating at three di�erent wind speeds are listed
in appendix C.1.2.

A three phase fault was connected in the same way as the previous section but revealed no
oscillatory behaviour as generator speed went back to previous values without oscillating.

7.2 Constant Speed Wind Turbine

Figure 7.7: 2 Bus system, SCIG and in�nite bus

The SCIG modelled in section 3.3 is connected to a sti� network through a transformer.
All parameters are modelled as in appendix B.2.

7.2.1 SCIG at Constant Power

The SCIGs power production is set by using a power controller in Optpow. Power
production is set to P = 100 and no reactive compensation is provided.

Table 7.4: Eigenvalues with constant power

Eigenvalues

Number 1/s Hz DR [%]

3,4 -5.64 ± 3.86 22.65

6,7 -2.70 ± 0.61 57.62

Linear analysis found a total of 7 eigenvalues. Two pairs have oscillatory modes but
the damping factor is high for both pairs. The full list of eigenvalues can be found in
appendix C.2.1.

The sensitivity analysis in �gure 7.8 revealed that although the generator contributes
most to the eigenvalue, the turbine with inertia, representing the shaft and the wind

Sensitivity overview

Component Sensitivity

Generator 13.167

Inertia 1.57

Transformer 0.62

(a) 3,4

Sensitivity overview

Component Sensitivity

Generator 7.69

Inertia 3.14

Transformer 0.25

(b) 6,7

Figure 7.8: Sensitivity overview for eigenvalue 3,4 and 6,7
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turbine rotor, is also a large contributor. This is due to the inertia of the prime mover
combined with the torsional sti�ness of the shaft connecting it to the generator.

Figure 7.9: Change of Torsional sti�ness, eigenvalue 3,4 and 6,7

Changing the inertia of the prime mover did not a�ect any of the eigenvalues, but chang-
ing the torsional sti�ness of the shaft between the prime mover and the generators will
as �gure 7.9 shows, have a large in�uence on the damping. The torsional sti�ness is as
explained in section 3.3.1, and calculated in formula B.16, a representation of the shaft
connecting the rotor of the wind turbine and the rotor of the generator. Increasing the
torsional sti�ness of the shaft can be interpreted as equivalent to using a thicker shaft
or a shaft made of a more sti� material. Since the damping of eigenvalue 3,4 decreases
when the inertia constant is increased, while the damping of eigenvalue 6,7 increases, it is
di�cult to say what an optimal torsional sti�ness would be. But given the low frequency
eigenvalue 6,7 it is most critical for the system to have a high damping of this mode.
Increasing the torsional sti�ness should therefore have the most positive impact on the
overall system stability.

Figure 7.10: Oscillations after fault

A three phase fault is connected at Bus 1 and disconnected after 0.2 seconds. The
generator's speed variations are measured with three di�erent torsional constants for the
shaft between the turbine rotor and the generator.

Figure 7.10 shows the large in�uence the shaft sti�ness have for the stability of the
system. When the sti�ness is at its lowest, K = 0.1, the oscillations never die out. When
the torsional sti�ness is at its highest, K = 1.0 they extinguish after only 1.5 seconds.
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7.2.2 SCIG at Di�erent Wind Speeds

Unlike the DFIG there is no possibility to include wind speed in the SCIG model. But it
is possible to simulate wind by adding a torque table to the turbine. Increasing the torque
with time can therefore in many ways replace the missing wind speed. The limitation is
however that a real SCIG wind turbine uses stalling to reduce the power output when
the wind speed get to high. This is not included in the SCIG model and wind speeds
(i.e. torque) above nominal power is therefore not possible.

Figure 7.11: Speed increase when torque is increased

Figure 7.11 shows how the generator speed increases when the torque delivered from the
turbine increases. Since this is an asynchronous generator directly connected to the sti�
network, the speed will follow the frequency of the network. There will only be a small
speed deviation as the slip increases when production increases. The slip of the generator
changes as shown in the �gure, from 0.3% and up to 2.1%.

Table 7.5: Eigenvalues with changed torque

Torque Eigenvalue 3,4 Eigenvalue 6,7

MT 1/s Hz DR [%] 1/s Hz DR [%]

0.2 -3.60 ± 4.64 12.36 -2.34 ± 0.78 43.12

0.5 -3.70 ± 4.60 12.68 -2.56 ± 0.77 46.82

0.8 -2.92 ± 4.50 13.73 -3.29 ± 0.73 57.79

1.1 -4.46 ± 4.29 16.27 -5.86 ± 1.00 68.30

The eigenvalues of the system changes to a certain degree when the torque from the
turbine is changed from MT = 0.2 and up to MT = 1.1. Since the SCIG unlike the
DFIG is directly coupled to the network, changes will in the generator will to a larger
degree in�uence the rest of the system. The full list of eigenvalues can be found in
appendix C.5
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7.3 Two Area Network

Figure 7.12: Two area network

The network consists of two areas connected together through a tie-line between Bus 5
and Bus 6. Area 1 has two production sources, one placed in Bus 1 and one placed in
Bus 2. A local load of 50 MW is located at Bus 1 and Bus 2. The second area represents
a large network modelled as a very large synchronous generator with a high inertia. This
makes it very sti� but still able to oscillate against area 1.

A synchronous generator (G1) is placed in Bus 2 and produces 100 MWwhile maintaining
a voltage level of pu=1.0 by producing reactive power. The production source in Bus 1
is changed in order to too see if it is su�cient to represent a wind turbine using simpler
models.

Five di�erent production sources are tested:

A: Synchronous Generator. The generator is identical to the generator placed in Bus
2. Data for this generator can be found in appendix B.3.

B: Asynchronous Generator. An asynchronous generator connected to a sti� turbine
is used. Data can be found in appendix B.4.

C: Static Production. Modelled by using a negative load and will therefore be static
without any oscillatory behaviour.

D: DFIG Wind Turbine. The doubly fed induction generator wind turbine included
in Simpow is used. The DFIG is further explained in section 3.4 and in appendix
B.1.

E: SCIG Wind Turbine. An asynchronous generator connected to a turbine with in-
ertia. The model is explained in section 3.3 and appendix B.2.

In addition to testing di�erent production sources, di�erent types of voltage regulation
on Bus 1 are also tested. This types are:

1: VC, Voltage Control. When possible the production sources' ability to control the
node voltage is used to ensure node voltage of 1.0 pu.

2: SVC, Static Var Compensation. Static production of reactive power with a reg-
ulator connected to ensure correct node voltage.
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3: SCRC, Static Constant Reactive Compensation. A negative load producing a
�xed amount of reactive power.

Table 7.6: Con�gurations on Bus 1 (NA=not available)

Production source Voltage regulation

Nr 1 2 3

A Synchronous generator
√ √ √

B Asynchronous generator NA
√ √

C Static Production NA
√ √

D DFIG
√ √ √

E SCIG NA
√ √

Since some of the production sources are not equipped with regulators they are not able to
control the bus voltage. This apply to the asynchronous generator, the static production
and the SCIG. The total number of con�gurations is therefore as shown in table 7.6,
twelve di�erent combinations. All productions sources are set to produce P = 100 while
the reactive power is regulated or pre-de�ned to ensure a bus voltage as close to pu=1.0
as possible. Apart from the di�erences in the types of systems and the voltage regulation,
all con�gurations are kept as equal as possible.

There is one inter-area mode in all the con�gurations, this mode is for each production
source compared to the di�erent voltage control systems (VC, SVC, SCRC). The contri-
bution factors for the inter-area modes are tested for the most relevant con�gurations,
A1, B2, C2, D1 and E2. Non-linear time simulations are performed when possible and
the generators' speed deviations are compared.

Section C.3 in the appendix includes all the network data, OPTPOW and DYNPOW
�le, and all the recorded eigenvalues.

7.3.1 A : Synchronous Generator

The synchronous generator is modelled in Simpow as a Type 4 generator. This means that
it includes one �eld winding, one damper winding in d-axis, and two damper windings
in q-axis [7]. The parameters for the synchronous generator are taken from [24], but
altered slightly to �t the network. It is identical to the synchronous generator at Bus 2.
This con�guration will therefore consist of two identical generators in two di�erent buses,
producing the same amount of power. The modelling of the synchronous generator can
be found in appendix B.3.

A1 : Synchronous Generator with VC

The Synchronous generator's voltage regulator measures the voltage at the node and
regulates the production of synchronous power in order to maintain a bus voltage of 1.0
pu.

A total number of 26 eigenvalues where found, the oscillatory eigenvalues are listed in
table 7.7. Eigenvalue 15,16 is an inter-area oscillation, while 11,12 is a local oscillation.
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Table 7.7: Eigenvalues, A1 : Synchronous generator with VC

Number Real part [1/s] Imaginary part [Hz] Damping ratio [%]

7,8 -19.60 ±2.39 79.41

9,10 -19,47 ±0.77 97.05

11,12 -2.15 ±1.00 32.39

15,16 -0.49 ±0.57 13.53

The two other pairs of eigenvalues have a very high damping factor and are not of high
importance.

A2 : Synchronous Generator and SVC

The voltage regulator is disconnected and the generator will only produce active power.
An SVC is connected at the same bus and produces reactive power to control the bus
voltage.

Table 7.8: Eigenvalues, A2 : Synchronous generator and SVC

Number Real part [1/s] Imaginary part [Hz] Damping ratio [%]

7,8 -19.64 ±1.65 88.39

9,10 -1.19 ±0.92 20.10

11,12 -10.39 ±0.05 99.65

15,16 -0.32 ±0.56 9.08

The eigenvalues are slightly di�erent from the ones in con�guration A1, but there is still
one inter-area oscillation (15,16) and one local-area oscillation (9,10) of interest.

A3 : Synchronous Generator and SCRC

The voltage controller at the synchronous generators is still disconnected and an accept-
able bus voltage is now ensured by a static negative load. Since there is no regulation
the negative load is prede�ned to produce the amount of reactive power needed to get as
close to 1.0 pu as possible.

Table 7.9: Eigenvalues, A3 : Synchronous generator and SCRC

Number Real part [1/s] Imaginary part [Hz] Damping ratio [%]

3,4 -19.38 ±1.81 86.00

8,9 -1.11 ±0.91 18.99

13,14 -0.56 ±0.56 8.79

The negative reactive load is not oscillating. But since the synchronous generators are
still oscillation against each other, there is still a local-area eigenvalue.
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Summary of A1,A2 and A3

All the di�erent con�gurations appeared to have both an inter-area eigenvalue of interest
and a local-area eigenvalue. The eigenvalues are compared in table 7.10.

Table 7.10: Inter-area and local-area eigenvalues

Local-area Inter-area

Case 1/s Hz DR [%] 1/s Hz DR [%]

A1 -2.15 ± 1.00 32.39 -0.49 ± 0.57 13.53

A2 -1.19 ± 0.92 20.10 -0.32 ± 0.56 9.08

A3 -1.11 ± 0.91 18.99 -0.56 ± 0.56 8.79

The inter-area eigenvalue remains quite unchanged for the di�erent oscillations but the
local-area eigenvalue changes quite signi�cant when the voltage regulator is removed and
the damping is reduced.

Figure 7.13: Mode shape for inter-area mode

Looking more closely at the mode shape for the inter-area mode it is clear as seen in
�gure 7.13, that G1 and G2 oscillates against the sti� network in Area 2. When the
regulator in G2 is disconnected and replaced with an SVC or SCRC, the contribution
from G2 is reduced and the contribution from G1 is increased.

Figure 7.14, showing the participation factors for the inter-area mode indicates that the
mode can be best controlled at both G1 and G2. But since the generators have little or
non possibility to be altered it is most likely best to use the generators' controllers to
improve the inter-area mode.

Figure 7.11 displays the results from the speed deviations that occurred when a three
phase fault was connected at Bus 5 and removed after 0.1 seconds. G1 and G2 are
in phase and the eigenvalue of the oscillation is found to be λ = −0.33 ± J0.57 hz,
close to the inter-area oscillation. An example on how to calculate the eigenvalue from a
non-linear time simulation can be found in appendix C.3.4.
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Figure 7.14: Dominant participation factors for inter-area mode

Figure 7.15: Speed response for con�guration A1

7.3.2 B : Asynchronous Generator

The asynchronous generator is apart from the lack of a low speed shaft and a turbine with
inertia, identical to the SCIG modelled in section 3.3.1. The generator is not equipped
with any form of regulation and will consume reactive power.

B2 : Asynchronous Generator and SVC

Around 70 Mvar is required to ensure an acceptable bus voltage. Most of this reactive
power is consumed by the asynchronous generator. Using this generator as a production
source without any compensation of reactive power would therefore in most cases lead
to a voltage collapse.

Table 7.11: Eigenvalues, B2 : Asynchronous generator and SVC

Number Real part [1/s] Imaginary part [Hz] Damping ratio [%]

7,8 -19.59 ±1.64 88.48

9,10 -2.19 ±1.06 31.2

14,15 -0.58 ±0.61 14.98

Looking at the frequency of the eigenvalues it can be observed that eigenvalue 9,10 is a
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local-area mode while 14,15 is an inter-area mode. The damping is relatively high.

B3 : Asynchronous Generator and SCRC

The SVC used in the previous con�guration is replaced with a negative reactive load,
denoted as SCRC. The amount of reactive power produced is set to the same amount as
found by the SVC.

Table 7.12: Eigenvalues, B3 : Asynchronous generator and SCRC

Number Real part [1/s] Imaginary part [Hz] Damping ratio [%]

6,7 -19.46 ±1.77 86.85

9,10 -2.71 ±1.03 38.57

12,13 -0.63 ±0.60 16.44

14,15 -2.67 ±0.06 98.99

One more highly damped, but very low frequency eigenvalue has appeared since the
previous con�guration. The other eigenvalues are quite similar to before with only small
deviations.

Summary of B2 and B3

Table 7.13: Inter-area and local-area eigenvalues

Local-area Inter-area

Case 1/s Hz DR [%] 1/s Hz DR [%]

B2 -2.19 ±1.06 31.20 -0.58 ± 0.61 14.98

B3 -2.71 ± 1.03 38.57 -0.63 ± 0.60 16.44

Only small deviations occurred when the SVC was replaced with an SCRC. This is not
unexpected since both the SCRC is set to produce the same amount of power as the SVC
and since an SVC is an stable, almost non-oscillatory construction.

Figure 7.16: Mode shape for inter-area mode
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The asynchronous generator and G1 in area 1 oscillates against the sti� network in area
2. When the SVC is replaced with an SCRC the contribution from the asynchronous
generator is reduced, thereby increasing the contribution from G1.

Figure 7.17: Dominant participation factors for inter-area mode

The best place to control the inter-area mode is according to �gure 7.17 at Bus 2 where
the synchronous generator is located. This is as expected due to the power-angle charac-
teristic for a synchronous generator. But altering the asynchronous generator's properties
would also lead to a considerable change of the inter-area mode, which is not expected
since the asynchronous generator have as described in section 4.5, a correlation between
rotor slip and electrical torque .

Figure 7.18: Speed response for con�guration B2

The synchronous generator's (G1) Y-axis is on the left side in �gure 7.18 and the asyn-
chronous generator is on the right side. The speed deviations are much smaller for the
asynchronous generator and its contribution to the inter-area oscillation is also smaller.

7.3.3 C : Static Production

All the other production sources are rotating machines that will, due to their construction,
have some form of oscillatory behaviour. A static production source is therefore tested
to see how much di�erent a non-oscillatory production source representation would give.
The power is produced by a load, set to produce instead of consuming active power
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C2 : Static Production and SVC

Since there is no reactive power consumer, the SVC will only have to produce enough
reactive power to compensate for the losses in the line. Two di�erent types of regulators
have been tested, but since no signi�cant di�erences where found, all simulations are
done with the same type.

Table 7.14: Eigenvalues, C2 : Static production and SVC

Number Real part [1/s] Imaginary part [Hz] Damping ratio [%]

5,6 -20.14 ±1.68 88.58

8,9 -0,80 ±0.69 18.09

When looking at the oscillatory eigenvalues in �gure 7.14 it is interesting, and not sur-
prising to see that since G2 does not have any local oscillatory production source to
oscillate against there is not a local-area swing mode.

C3 : Static Production and SCRC

The negative load producing the active power is now also used to produce a prede�ned
amount of reactive power.

Table 7.15: Eigenvalues, C3 : Static production and SCRC

Number Real part [1/s] Imaginary part [Hz] Damping ratio [%]

4,5 -19.67 ±2.03 83.86

7,8 -0.65 ±0.69 14.88

The eigenvalues have only shown small changes compared to the con�guration with an
SVC. This as previous explained not unexpected.

Summary of C2 and C3

Table 7.16: Inter-area and local-area eigenvalues

Local-area Inter-area

Case 1/s Hz DR [%] 1/s Hz DR [%]

C2 � � � -0.80 ± 0.69 18.09

C3 � � � -0.65 ± 0.69 14.88

The non-oscillatory productions source in Bus 1 will as mentioned mean that there are
not any local-area eigenvalues in any of the con�gurations. The di�erences in the inter-
area mode between con�guration B2 and B3 might be due to a slightly altered load
�ow.

As the mode shape for the inter-area mode in �gure 7.19 shows, there is no contribution
from the static load to the eigenvalue. The di�erences in the inter-area eigenvalue in case
B2 and B3 is therefore most likely due to some load �ow di�erences occurring when the
SVC is replaced with the SCRC.
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Figure 7.19: Mode shape for inter-area mode

Figure 7.20: Dominant participation factors for inter-area mode

Only the generator and the generator's controllers and turbine will as shown in �gure
7.20 be able to in�uence the inter-area oscillation.

Non-linear time simulations with a three phase fault is not performed since the static load
can not supply the system with any reactive power and voltage collapse will therefore
occur.

7.3.4 D : DFIG

The same DFIG as used in the simulations in section 7.1 and modelled in section 3.4.1
is placed in Bus 1 and set to produce 100 MW.

Some strange eigenvalues are still occurring and iterative improvement gives roughly the
same results as when it was placed in the SMIB network in section 7.1.

D1 : DFIG with VC

As explained in section 3.4.1 and shown in �gure 3.11, the AC voltage control block can
be used to control the bus voltage by regulating the amount of produced power. This is
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possible since the DFIG uses a frequency converter to supply the rotor slip rings of the
generator, enabling it to adjust the generators power factor.

Table 7.17: Eigenvalues, D1 : DFIG with VC

Number Real part [1/s] Imaginary part [Hz] Damping ratio [%]

1,2 -28.27 ±18.95 23.1

5,6 +3.21 ±7.05 -7.22

8,9 -19.50 ±1.31 92.11

14,15 -1.13 ±0.75 23.28

22,23 -0.04 ±0.02 24.17

A total of �ve pairs with oscillatory eigenvalues where found. Eigenvalue 5,6 have a
positive damping but attempts to improve it only works occasionally. Eigenvalues 8,9
represent a local-area eigenvalue and 14,15 is an inter-area eigenvalue.

D2 : DFIG and SVC

The AC voltage control module in the DFIG is disconnected and replaced with an SVC
at the same bus.

Table 7.18: Eigenvalues, D2 : DFIG and SVC

Number Real part [1/s] Imaginary part [Hz] Damping ratio [%]

4,5 +3.79 ±6.72 -8.95

8,9 -19.37 ±1.36 91.54

13,14 -1.32 ±0.77 26.33

17,18 -1.40 ±0.18 77.96

22,23 -0.001 ±0.027 4.53

24,25 -0.09 ±0.01 89.67

The same problem as previous section and iterative improvement does not work on most
of the eigenvalues.

D3 : DFIG and SCRC

The AC voltage control module is still disconnected and reactive power is produced by
a static negative load.

Table 7.19: Eigenvalues, D3 : DFIG and SCRC

Number Real part [1/s] Imaginary part [Hz] Damping ratio [%]

3,4 +3.73 ±6.76 -8.75

7,8 -18.22 ±1.92 83.37

11,12 -1.32 ±0.81 25.05

16,17 -2.56 ±0.01 99.96

21,22 -0.051 ±0.035 22.61
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Eigenvalue analysis shows, as seen in table 7.19, almost the same eigenvalues as with
con�guration D2. There is still one positive eigenvalue and improvement is not possible
to perform.

Summary of D1 ,D2 and D3

Table 7.20: Inter-area and local-area eigenvalues

Local-area Inter-area

Case 1/s Hz DR [%] 1/s Hz DR [%]

D1 � � � -1.13 ± 0.75 23.28

D2 � � � -1.32 ± 0.77 26.23

D3 � � � -1.32 ± 0.81 25.05

Only one eigenvalue was found to be oscillation against the other area. As seen in table
7.20, this eigenvalue remains almost constant when the voltage control con�gurations are
changed. No clear local-area oscillations where found in the system.

Figure 7.21: Mode shape for inter-area mode

Replacing the voltage controller in the DFIG with other types of voltage control will not
give the wind turbine any contribution to the inter-area eigenvalue. The only di�erence
is a slightly increased contribution from G1 when the SCRC is used which might be due
to changed load �ows.

Calculating the participation matrix did not work and the participation factors are there-
fore not included for the DFIG.

7.3.5 E : SCIG

A constant wind turbine is simulated using an asynchronous generator connected to a
turbine with inertia. The asynchronous generator is modelled as in section 3.3.1. Since
there is no voltage regulator included in the model, all reactive power must be produced
by an external source.
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E2: SCIG and SVC

The SVC produces the reactive power consumed by the SCIG and the power line.

Table 7.21: Eigenvalues, E2: SCIG and SVC

Number Real part [1/s] Imaginary part [Hz] Damping ratio [%]

7,8 -20.00 ±1.71 88.06

9,10 -2.01 ±3.04 10.46

13,14 -1.57 ±0.68 34.27

16,17 -0.70 ±0.39 27.09

In addition to the local-area and inter-area eigenvalues that have been observed in all
con�gurations so far, there is also an eigenvalue with higher frequency (3.04 Hz) and
quite low damping (10.46 %). This eigenvalue is further analysed in the summary 7.3.5.

E3 : SCIG and SCRC

A SCRC is set to produce the same amount of power as the SVC produced.

Table 7.22: Eigenvalues, E3 : SCIG and SCRC

Number Real part [1/s] Imaginary part [Hz] Damping ratio [%]

6,7 -19.50 ±1.87 86.60

8,9 -3.21 ±2.91 17.29

11,12 -2.81 ±0.99 41.24

14,15 -0.40 ±0.54 11.86

One inter-area eigenvalue, one local-area eigenvalue and eigenvalue 8,9 which was also
commented in con�guration E2, but now with a slightly higher damping.

Summary of E2 and E3

Table 7.23: Inter-area and local-area eigenvalues

Local-area Inter-area

Case 1/s Hz DR [%] 1/s Hz DR [%]

E2 -1.57 ±0.68 34.27 -0.70 ± 0.39 27.09

E3 -2.81 ± 0.99 41.24 -0.40 ± 0.54 16.44

Looking at table 7.23 it can be observed that the damping of the local-area eigenvalue
increases when the reactive power production is changed from SVC to SCRC while the
inter-area eigenvalue reacts in the opposite way.

The constant speed wind turbine (SCIG) contributes more when used with an SVC
compared to when it us used with the SCRC. This explains the weakened inter-area
eigenvalue since an asynchronous generator is a more stable construction when it comes
to oscillations. The results coincide to a large degree to the results obtained when using
only a asynchronous generator.
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Figure 7.22: Mode shape for inter-area mode

Figure 7.23: Dominant participation factors for inter-area mode

Looking at the participation factors in �gure 7.23 it is clear that a two-mass model is
required when modelling a constant speed wind turbine. Altering the properties of the
inertia group (sti�ness of shaft or inertia of the turbine) would the largest change in the
inter-area mode.

Table 7.24: Eigenvalue 8,9

Local-area

Case 1/s Hz DR [%]

E2 -2.01 ±3.04 10.46

E3 -3.21 ±2.91 17.29

The damping of eigenvalue 8,9 increases when the reactive compensation is changed from
SVC to SCRC. As �gure 7.22 show the contribution from the SCIG to the inter-area mode
is also reduced at the same time so it can be expected that eigenvalue 8,9 can be best
controlled by the SCIG.

Eigenvalue 8,9 is as shown in �gure 7.24 a local-area oscillation where the SCIG in Bus
1 oscillates against the synchronous generator in Bus 2. Area 2 is only to a very small
degree contributing to the oscillations.
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Figure 7.24: Mode shape for local-area mode

Figure 7.25: Dominant participation factors for inter-area mode 8,9

Altering the local-area eigenvalue 8,9 can best be done at the SCIG but also the inertia
block is a good place to investigate in order to improve the damping of this eigenvalue.
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Figure 7.26: Speed response for con�guration E2

The synchronous generator's (G1) Y-axis is on the left side and the asynchronous genera-
tor is on the right side. Compared to the time simulation on con�guration B1 (�gure 7.18)
the asynchronous generator is now in more anti-phase with the synchronous generator
and the oscillations have a higher frequency.
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7.3.6 Comparison of Results and Comments

Figure 7.27: Mode shapes inter-area mode, all main con�gurations

Figure 7.27 shows the mode shapes for the inter-area eigenvalue for con�gurations A1,
B2, C2, D1 and E2. These di�erent con�gurations are considered to be the most relevant
ones since they utilize the production sources' voltage controllers or uses an SVC. The
group of bars on the top right side illustrate how observable the oscillations are in area
2. The two groups on the left side show respectively, Bus 1 with the di�erent production
sources and Bus 2 with G1.

When using a static production source (C2) or when using the DFIG (D1), the oscillations
are as the middle group of bars show, not visible in Bus 1 . For the static production
source this is expected since it does not oscillate. The DFIG uses an converter, acting
as bu�er between the grid and the asynchronous generator, and oscillations are therefore
not expected since the converter will decouple the generator from the network.

The two types of asynchronous generators tested, B2 and the SCIG (E2) show the same
degree of observability, but as the participation �gures 7.17 and 7.23 showed, there is
a signi�cant di�erence in where it is most e�ective to control the swing mode. For the
asynchronous generator without inertia (B) this was most e�ective at G1, while for the
asynchronous generators with inertia, i.e the two mass model, it was most e�ective to
change the inertia.

Figure 7.28 shows how the synchronous generator responds to a three phase fault at
Bus 5 that is disconnected after 0.01 seconds. The yellow curve shows the response for
con�guration A1, when the same generator is used in both buses. The curve named
B2 is when an asynchronous generator is used in Bus 1 and the curve E2 is when the
SCIG is used in Bus 1. The synchronous generator's oscillations extinguish faster when
a asynchronous generator is used in Bus 1. This can also be seen in the eigenvalues
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Figure 7.28: G1 Speed response for con�guration A1, B2 and E2

analysis where the damping is much lower for con�guration A1 compared to B2 and E2.

Figure 7.29: Speed response for Synchronous generator and SCIG

Figure 7.29 illustrate the di�erences in response between the asynchronous generators
and the SCIG when the same three phase fault is connected at Bus 5. The right Y-curve
is for the asynchronous generator and the left Y-curve is for the SCIG. The SCIG will
oscillate at a much higher frequency than the asynchronous generator but the oscillations
extinguish at almost the same time. This coincide with the frequency of the eigenvalues
presented in table 7.13 for con�guration B2 and table 7.23 for con�guration E2 where
both the local-area and the inter-area eigenvalues for con�guration E2 shows a lower
frequency than con�guration B2.
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Conclusion

The aim of this master thesis has been to utilize the possibilities of modal analysis too
see how it can be used as tool to better understand the dynamic behaviour of a power
system. A small system with a synchronous generator has been linearized to show how
this is done mathematically. Two models, one for variable speed wind turbines, and one
for constant speed wind turbines (hereby denoted as DFIG and SCIG) have been tested
using both linear analysis and non-linear analysis. The models, and other more simple
models, have also been tested in a two-area network in the vicinity of a synchronous
generator.

Previous simulations in the specialisation project [17] showed that wind power in general
will improve a system's small signal stability due the better damping of the asynchronous
generator versus the synchronous generator. The simulations performed in both the wind
power models in this thesis also showed that it is for the DFIG immaterial what working
point the asynchronous generator is operating at, i.e. how strong the wind speed is. The
eigenvalues and thereby the small signal stability will remain the same. This is due to
the converter placed between the asynchronous generator and the network, decoupling
the asynchronous generator from the network. Some changes in the eigenvalues where
found when performing the same analysis on the SCIG, but the damping ratio remained
quite unchanged. Since the SCIG is operating at a constant speed this is as expected
and the small variations only occur due to the small changes of generator slip.

The eigenvalue analysis performed on the DFIG model, included in SIMPOW, in section
7.1 revealed some problems regarding the iterative improvements. Performing such im-
provements should normally only lead to minor improvements and, not as experienced
with the DFIG, large changes. When testing the DFIG in the two-area network some
positive eigenvalues also appeared but none of the simulations revealed that the system
was small signal unstable. The same problem also occurred in the specialisation project
but due to the non-linear simulations in this thesis and simulations undertaken in other
master thesis [18], it can be assumed that the problem is limited to linear analysis. The
DFIG model in SIMPOW can therefore be used for system analysis but care must be
taken when performing linear analysis.

When testing the SCIG using a two-mass model, the modal analysis revealed that the
torsional sti�ness of the low speed shaft was the most important contributor to the
eigenvalues. Performing a data scanning clearly showed how much the eigenvalues could
be improved or aggravated by changing the torsional sti�ness of the shaft. Non-linear
simulations, with three di�erent torsional sti�ness constants, substantiated these mea-
surements.

The comparisons between a normal asynchronous generator and the SCIG showed that
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they play an important contribution role to the oscillations in the system, but the partic-
ipation matrix for the network revealed that the inertia, including the torsional sti�ness
of the low-speed shaft, had a much more in�uence of systems small signal stability com-
pared to the normal asynchronous generator. Non-linear analysis also showed that the
two di�erent models have a signi�cant di�erent speed response after faults. It can there-
fore be concluded that it is vital to use a two-mass model when simulating a constant
speed wind turbine.

8.1 Further Work

The MATLAB program designed to perform modal analysis of the example network is
capable of computing a wide range of parameter but is, as today, limited to only the tested
network. A natural extension would be to use a more comprehensive representation of
the synchronous generator. The model should also include the regulators normally used
on a synchronous generator and take advantage of the possibilities given in MATLAB
regarding transfer functions and controller functions.

Simulations veri�ed that the two-mass model is required when modelling a constant
speed wind turbine but the model used in this thesis did include an aerodynamic model,
representing the blades. A normal extension to this model would therefore be to include
an aerodynamic model capable of representing the stall e�ect of the turbine blades.

Using a larger network would in a more comprehensive way demonstrate the possibilities
of modal analysis. The network could be a part of the Norwegian power system or
another realistic model. More detailed models of wind turbines could also be used which
would, most likely, provide more precise answers.
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Appendix A

Practical use of Linear Analysis

A.1 Linearization Of a Synchronous Generator

Figure A.1: Three bus example

Parameters for the Synchronous generator used in the example:

Table A.1: Parameters for Synchronous Generator

Synchronous Generator

Symbol Simpow Value Unit

Sn SN 100 MVA

Vn UN 0.69 kV

H H 6.5 MWs/MVA

Xd XD 1.8 pu

X ,
d XDP 0.3 pu

X ,,
d XDB 0.25 pu

Xq XQ 1.7 pu

X ,
q XQP 0.55 pu

X ,,
q XQB 0.25 pu

T ,d0 TD0P 8.0 pu

T ,,d0 TD0B 0.03 pu

T ,q0 TQ0P 0.4 pu

T ,,q0 TQ0B 0.05 pu

Kd D 0 torque/pu

The generator data is taken from Kundur's two are system [24]. The Damping, D, is
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modelled in Kundur as D = 0 but is calculated to the real value in the linearization
example.

Values in Bold are known prede�ned values, the other values are calculated:

Table A.2: Prede�ned and calculated values

Power Flow

BUS Type V [Pu] Angle [δ] Pprod [Pu] Qprod [Pu] Pload [Pu] Qload [Pu]

1 PQ 1.068 8.46 1.0 0.1 0.5 0

2 � 0 0 0 0

3 Swing 1.0 0 0

Table A.3: Line data

From Bus To Bus Resistance [Pu] Reactance [Pu]

G1 1 0 0.3

1 2 0 0.15

2 3 0.02 0.2
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A.2 MATLAB Program

All the formulas have entered into a MATLAB program for veri�cation but also since this
a good way to perform more in-depth analysis of the network. The MATLAB program in
capable of calculating the change in, eigenvalues, eigenvectors and participation matrix,
when changing several of the network's parameters.

(a) Window 1 (b) Window 2

Figure A.2: The MATLAB program

When started the program prompts the user to choose between "Initial values" and "Data
scanning". "Initial values" will calculate all the values found in section 6.2 and display
them. "Data Scanning" will open a window which allow the user to perform a data scan
of a wide variety of parameters. The program will then display the results in a graph as
shown in �gure 6.6.

clear all

K = menu('Choose initial values or data scanning ','Initial Values',...

'Data scanning'); %

%%%%%%%%%%%%%%%%%%Network parameters%%%%%%%%%%%%%%%%%

P1=1.0; P1_load=0.5; Q1=0.1i;

U3=1.0+0i; %U3_angle=0;

f=50;

W0=2 *pi* f;

%%%%%%%%%%%%%%%%Generator initial Parameters%%%%%%%%

Xt=0.15;

Xd=1.8; Xdp=0.3; Xdb=0.25;

Xqp=0.55; Xqb=0.25;

Xl=0.2; Rl=0.02; %
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TD0B=0.03; TQ0B=0.05;

H=6.5; f=50; %Values from Kundur, frequency changed to 50Hz

%%%%%%%%%%%%%%%Data scanning%%%%%%%%%%%%%%%%%5

P1_2=(P1*ones(10,1)); P1_load_2=(P1_load*ones(10,1)); Q1_2=0.1i;

U3_2=1.0+0i;

Xt_2=(Xt*ones(10,1)); Xl_2=(Xl*ones(10,1));

Xdp_2=(Xdp*ones(10,1)); Xqp_2=(Xqp*ones(10,1));

Xdb_2=0.25; Xqb_2=0.25;

H_2=(H*ones(10,1)); %Change of inertia

if K==2

X = menu('Choose the parameter for data scanning ','Production at Bus 1 in pu',...

'Load at Bus 1','Generator Inertia','Transformator reactance',...

'Line Reactance','Transient reactance direct axis',...

'Transient reactance quadrature axis');

M = input('Input Start value [Default=1]: '); % Start value for data scanning

if isempty(M)

M = [1];;

end

P = input('Input Stop value [Default=1]: '); % End value for data scanning

if isempty(P)

P = [1];;

end

step=(P-M)/9;

S= [M;M+step;M+2*step;M+3*step;M+4*step;M+5*step;M+6*step;M+7*step;M+8*step;M+9*step];;

%Makes 10 values from start value to end value

if X==1

P1_2=S;

end

if X==2

P1_load_2=S;

end

if X==3

H_2=S;

end

if X==4

Xt_2=S;

end

if X==5

Xl_2=S;

end

if X==6

Xdp_2=S;

end

if X==7

Xqp_2=S;

end

end

%%%%%%%%%%%%%%%%%%Calculactions %%%%%%%%%%%%%%%%%%%%%%%%%

for a=1:10
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P1_line_2(a,1)=P1_2(a)-P1_load_2(a); %Power from Bus1 and through the line

Xtot_2(a,1)=Xt_2(a)+Xl_2(a);

xd_2(a,1)=Xdp_2(a)+Xtot_2(a); %Total reactance direct axis

xq_2(a,1)=Xqp_2(a)+Xtot_2(a); %Total reactance q axis

U1_mat_2(:,:,a)=[1 -U3_2 (-conj(P1_line_2(a,1)+Q1_2)*Xtot_2(a,1)*i)];

U1_2(:,:,a) = roots(U1_mat_2(:,:,a));

I_line_2(a,1)=conj(P1_line_2(a,1)+Q1_2)/U1_2(1,1,a);

%calculates the current through the line

Itot_2(a,1)=I_line_2(a,1) + (P1_load_2(a)/abs(U1_2(1,1,a))); %total current

Eg_2(a,1)=U1_2(1,1,a)+Xdp_2(a)*i*Itot_2(a,1);

%Calulates transient voltage behind generator reactance

Eg_angle_deg_2(a,1)=((angle(Eg_2(a,1)))*360)/(2*pi); %from radians to degrees

Eg_abs_2(a,1)=abs(Eg_2(a,1)); %E in absolute value

Eg_angle_rad_2(a,1)=((Eg_angle_deg_2(a,1))/360)*2*pi; % Angle in rad

Ks_2(a,1)=((Eg_abs_2(a,1)*abs(U3_2))/xd_2(a,1))*cos (Eg_angle_rad_2(a,1));

% Synchronizing torque coefficient

Ks2_2(a,1)=(((Eg_abs_2(a,1)*abs(U3_2))/xd_2(a,1))*cos (Eg_angle_rad_2(a,1)))+...

((abs(U3_2))^2*((xd_2(a,1)-xq_2(a,1))/(xd_2(a,1)*xq_2(a,1)))...

*cos(2*Eg_angle_rad_2(a,1)));

%Synchronoizing torque coefficient, salient pole

Kd_2(a,1)=(U3_2*(((Xdp_2(a)-Xdb_2)/(xd_2(a,1))^2)*TD0B*...

(sin(Eg_angle_rad_2(a,1)))^2+((Xqp_2(a)-Xqb_2)/(xq_2(a)^2)...

*TQ0B*(cos(Eg_angle_rad_2(a,1)))^2)))*W0;

%calculates the damping coefficient

A_2(:,:,a)=[(-(Kd_2(a,1)/(2*H_2(a)))) (-(Ks2_2(a,1)/(2*H_2(a))));W0 0];

%constructs ten different A matrixes

[V_2(:,:,a),D_2(:,:,a)] = eig(A_2(:,:,a)); % D=Eigenvalues V=Right Eigenvectors

U_2(:,:,a)=V_2(:,:,a)^-1; % U= Left eigenvectors

P_cart_2(:,:,a)=[(V_2(1,1,a)*U_2(1,1,a)) (V_2(1,2,a)*U_2(2,1,a));

(V_2(2,1,a)*U_2(1,2,a)) (V_2(2,2,a)*U_2(2,2,a))];

%Constructs the Participation matrix

D_real_2(a,1)=real(D_2(1,1,a)); %1X10 matrix with real eigenvalues

D_imag_2(a,1)=imag(D_2(1,1,a)); %1X10 matrix with imag eigenvalues in rad

D_hz_2(a,1)=(D_imag_2(a,1))/(2* pi); %1X10 matrix with imag eigenvalues in Hz

DR_2(a,1)=(-D_real_2(a,1))/(sqrt((-D_real_2(a,1))^2+(D_imag_2(a,1))^2))*100;

end

if K==1

disp('----------Calculated Values----------')

disp('----Synchronizing torque efficient and Damping power----------')
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Ks2_2(1,1)

Kd_2(1,1)

disp('----Eigenvalue and Damping ratio----------')

D_2(:,:,1)

DR_2(1,1)

disp('----Left and Right Eigenvectors----------')

U_2(:,:,1)

V_2(:,:,1)

disp('----Participation matrix----------')

P_cart_2(:,:,1)

end

if K==2

figure(1), subplot(2,1,1), plot(D_real_2, D_hz_2, '--rs','LineWidth',2,...

'MarkerEdgeColor','k',...

'MarkerFaceColor','g',...

'MarkerSize',8) , grid %plot the eigenvalues

xlabel('real \sigma, 1/s '), ylabel('Imag, Hz')

%subplot(2,1,2), plot(t,f), grid

%xlabel('t, sec'), ylabel('f, Hz')

figure(1), subplot(2,1,2), plot(S, DR_2, '--rs','LineWidth',2,...

'MarkerEdgeColor','k',...

'MarkerFaceColor','g',...

'MarkerSize',8) , grid %plot the damping ratio

xlabel('Inertia, H '), ylabel('Damping ratio (%)')

end

A.3 SIMPOW

The example is tested in SIMPOW to verify that the calculated values are correct, the
system in SIMPOW is modelled as close to the example as possible:

The eigenvalues found by SIMPOW is identical to the values found by the MATLAB
program. Figure A.4 shows the change in eigenvalues when performing a data scan of
the generator inertia from H = 1 to H = 10
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Figure A.3: Load �ow from SIMPOW

Figure A.4: Eigenvalues in SIMPOW when changing inertia from 1 to 10

A.3.1 SIMPOW OPTPOW �le

Example in OPTPOW

**

GENERAL

SN=100

LBASE=100

END

NODES

BUS1 UB=0.69 AREA=1

BUS2 UB=20.2 AREA=1

BUS3 UB=20.2 AREA=1

END

LINES

BUS2 BUS3 TYPE=11 R=0.001 X=0.01 L=20 !L=20

!BUS3 BUS4 TYPE=11 R=0.001 X=0.01 L=50

END

TRANSFORMERS

BUS1 BUS2 SN=100 UN1=0.69 UN2=20 ER12=0 EX12=0.15

END

LOADS
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BUS1 P=50 Q=0 MP=0 MQ=0

END

POWER CONTROL

BUS1 TYPE=NODE RTYP=PQ Q=10 P=100 NAME=G1

BUS3 TYPE=NODE RTYP=SW U=20.0 FI=0 NAME=INFBUS

END

END

A.3.2 SIMPOW DYNPOW �le

Example in DYNPOW

**

CONTROL DATA

TEND=10

END

GENERAL

FN=50

END

NODES

BUS3 TYPE=1

END

SYNCHRONOUS MACHINE

G1 BUS1 TYPE=4 UN=0.69 SN=100 XD=1.8 XQ=1.7 XDP=0.3

H=1.3861 D=5.1933

END

END



Appendix B

Models

All models used in the simulations are modeled in SIMPOW. The aggregations, calcula-
tions and SIMPOW �les can be found in this chapter.

B.1 DFIG Model

B.1.1 DFIG Aggregation

The aggregation of the DFIG wind turbine ensures that the ratio between nominal power,
blade length and turbines speed remains the same. The theory for the aggregation is
from [18].

Equation 2.1 in section 2.2 describing the power produced from the wind is here repeated
for convenience:

Pwind =
1
2
CpρairArotorv

3
wind (B.1)

This can be written as:

Pwind =
1
2
Cp(Λ, β)ρairπR2

bladev
3
wind (B.2)

Where the power coe�cient Cp is a function of the tip speed ratio ,λ, and the blade
angle, β. The air density and the wind speed can be assumed to be the same for the
aggregated wind turbine.

The value of the tip speed ratio must remain constant in order to get the right power
coe�cient. The value of the tip speed ratio is given by:

Λ =
Ω ∗Rblade
vwind

(B.3)

This yields the following formula for blade length:

Pagg
Pstd

=
0.5Cp(Λ, β)ρairπR2

aggv
3
wind

0.5Cp(Λ, β)ρairπR2
orgv

3
wind

Ragg =

√
R2
org

Pagg
Pstd

(B.4)

80
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And for Rotational speed:

Λ =
Ωstd ∗Rstd

v
=

Ωagg ∗Ragg
v

Ωagg =
ΩstdRstd
Ragg

(B.5)

The aggregated values for the DFIG wind turbine can now be calculated:

Table B.1: Original -and aggregated values for DFIG

Symbol Standard Aggregated Units

SN 2.05 140 MVA
Ω 18.0 2.18 rpm
R 36.0 297.5 m

B.1.2 Calculation of wref

The speed measured by the speed control is changed into an optimal rotational speed
and compared with the actual rotational speed. This is done by using the Cp/Λ to obtain
the coe�cients used in the calculation.

If the default Cp/Λ-curve and the aggregated values for the wind turbine is used while
assuming air density to be 1.2kg/m3 the coe�cients can be found by assuming the pitch
angle to be β = 0:

ωopt =
60 ∗ Λopt

2pi ∗R ∗ Ωnom
vw∗ = K1 ∗ vw

Peg,opt =
0.5CpoptρairπR

2

Sn
v3
w = K2 ∗ V 3

w = K2 ∗
w3
opt

K3
1

(B.6)

The default Cp/Λ-curve in [7] is used , this gives Cpopt = 0.504 at Λopt = 7.5. K1 and
K2 can now be calculated:

Ωopt =
60 ∗ 7.5

2pi ∗ 2.2 ∗ 297.5
vw∗ = 0.1094 ∗ vw ⇒ K1 = 0.1094

Peg,opt =
0.5 ∗ 0.504 ∗ 1.2 ∗ π ∗ 297.52

140 ∗ 106
v3
w = 6.01 ∗ 10−4 ∗ V 3

w = K2 ∗
w3
opt

K3
1

⇒ K2 = 6.01 ∗ 10−4

(B.7)

By assuming three di�erent wind speeds the following matrix system can be set up to
derive the three coe�cients:

K1 ∗

vw,1vw,2
vw,3

 =

K2
2 ∗ v6

m,1 K2 ∗ v3
m,1 1

K2
2 ∗ v6

m,2 K2 ∗ v3
m,2 1

K2
2 ∗ v6

m,3 K2 ∗ v3
m,2 1

 ∗
A2

A1

A0

 (B.8)
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A2

A1

A0

 =

K1 ∗ vw,1
K1 ∗ vw,2
K1 ∗ vw,3

 ∗
K2

2 ∗ v6
m,1 K2 ∗ v3

m,1 1
K2

2 ∗ v6
m,2 K2 ∗ v3

m,2 1
K2

2 ∗ v6
m,3 K2 ∗ v3

m,2 1

−1

(B.9)

And using wind speeds of 7, 9 and 11 m/s the coe�cients are:

A2

A1

A0

 =

 0.1094 ∗ 7
0.1094 ∗ 9
0.1094 ∗ 11

 ∗
 (6.01 ∗ 10−4)2 ∗ 76 6.01 ∗ 10−4 ∗ 73 1

(6.01 ∗ 10−4)2 ∗ 96 6.01 ∗ 10−4 ∗ 93 1
(6.01 ∗ 10−4)2 ∗ 116 6.01 ∗ 10−4 ∗ 113 1

−1

=

=

0.7658
0.9846
1.2034

 ∗
(0.0425 0.206 1

(0.192 0.438 1
(0.640 0.800 1

−1

=

=

0.7658
0.9846
1.2034

 ∗
 7.27 −11.92 4.66
−9.00 12.00 −3.00
2.54 −1.96 0.42

 =

−0.571
1.311
0.520


(B.10)

The speed calculation in the speed control block will then be:

Wref = −0.571P 2
eg + 1.311Peg + 0.520 (B.11)

B.1.3 OPTPOW File

ASYNCHRONOUS

WT1 BUS1 TYPE=DSLS/MACHOPT/ SN=140 UN=0.69 H=4.5

RS=0.00619 RR=0.02 XS=0.135952 XR=0.112143

XM=3.904762 PG=100 A2=-0.571 A1=1.311 A0=0.520

END

B.1.4 DYNPOW File

GLOBALS

MA1_PORD TYPE=REAL

MA1_QORD TYPE=REAL

MA1_DW TYPE=REAL

MA1_RCBIN TYPE=REAL

END

ASYNCHRONOUS MACHINES

WT1 TYPE=DSLS/MACHDYN/ H=4.0 TURB=5

R2=0.03 X2=0.25 MODE=1

PORD=MA1_PORD RCBIN=MA1_RCBIN QORD=MA1_QORD

END
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TURBINES

5 TYPE=DSLS/WINDTURB/ NOM_POWER=200 AIRDENS=1.22

NOM_TURBSPEED=2.18

BLADELENGTH=297.5 GOV=2 !WINDCURVE=22

2 TYPE=DSLS/PICON/ KPP=150 KPC=3 KIP=25

KIC=30 TP=0.3 BMAX=27 BMIN=0 DBTMAX=10 DBTMIN=-10

BLOCK=0 DW=MA1_DW PORD=MA1_PORD

END

MISCELLANEOUS

SPC1 TYPE=DSLS/SPCON/ KS=0.6 TPC=0.05 KP=3.0

PMIN=0.1 PMAX=1.0 DPMIN=-0.45 DPMAX=0.45

WMAX=1.50 WMIN=0.70 A2=-0.571 A1=1.311 A0=0.520

DW=MA1_DW PORD=MA1_PORD ASYN=WT1

CRC1 BUS1 TYPE=DSLS/CRCON/ N=1 UMIN=0.9

UMAX=1.05 INDELAY=0.0 BLOCK=0

RCBIN=MA1_RCBIN ASYN=WT1

VCC1 BUS1 TYPE=DSLS/VCCON/ N=1 KA=4 TA=0.02

KP=10 QMAX=0.3 QMIN=-0.3 BLOCK=1

QORD=MA1_QORD ASYN=WT1

END

B.2 SCIG

B.2.1 Parameters

Table B.2: Parameters for SCIG from [4] and [7]

Given parameters SIMPOW parameters

Symbol Value Unit Group Value Unit

Wind turbine generator

Sn 2.3 MVA SN MVA

Vn 0.96 kV UN 0.96 kV

No 1500 rpm

Rs 0.004 Ω R1 0.01 PU

Xs 0.05 Ω X1S 0.125 PU

Xm 1.6 Ω XM 4.0 PU

R
′
r 0.004 Ω � � �

X
′
r 0.05 Ω X2S 0.125 PU

Igen 93.22 kgm2 H 0.5 MWs/MVA

Mechanical System

Iwtr 4.18E+06 kgm2 H 3.5 MWs/MVA

kms 8.95E+07 Nm/rad K 0.477 pu/rad

f 80 ratio � � �

Values for the asynchronous machine are in SIMPOW given in local PU. Values are
therefore changed to PU values using the PU formulas:
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Zref,gen =
U2
n,gen

Sn,gen
(B.12)

Zpu,local =
Z

Zref,gen
(B.13)

The inertia constant in H is as given by [12]:

H =
0.5 ∗ Jω2

sm

Sn
(B.14)

With a rotational speed of 1500 rpm and a 1/80 ratio between the low speed shaft and
the high speed shaft we get:

Hgen =
0.5 ∗ 93.22kgm2(2 ∗Π1500

60 )2 ∗ 10−6

2.3MVA
= 0.5

MWs

MV A

Hwtr =
0.5 ∗ 4.176 ∗ 106kgm2(2 ∗Π 1500

60∗80)2 ∗ 10−6

2.3MVA
= 3.5

MWs

MV A

(B.15)

The torsional spring constant in pu will be:

Kmspu =
kms
Sn ∗ f

=
8.95 ∗ 106Nm/rad

2.3MVA ∗ 80
= 0.477Pu/rad (B.16)

Since the model used in the simulations have a rating of S = 140MVA all the above
values have been changed in order to �t the aggregated model:

B.2.2 OPTPOW File

ASYNCHRONOUS

WT1 BUS1 TYPE=1A SN=140 UN=0.960 H=0.5

R1=0.01 X1S=0.125 X2S=0.125

XM=4.00 RTAB=7 NCON= 0

END

TABLES

7 TYPE=2 F=-1 0.01

1 0.01

END

B.2.3 DYNPOW File

ASYNCHRONOUS MACHINES

WT1 TURB=3

END

TURBINES

3 TYPE=22 TAB=15 INER=11
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END

TABLES

15 TYPE=0 F 0.0 1

0.10 1

5.0 1

5.0 1

10.0 1

15.0 1

20.0 1

100 1

END

INERTIA

11 TYPE=0 INER=0 RATIO=1 H=3.500 K=0.477 DM=0.000 D=0.000

END

B.3 Synchronous Generator

The Simpow modeling of the synchronous generator is shown in appendix C.3.2 and C.3.3

B.4 Asynchronous Generator

Identical to the SCIG but without the Inertia.

B.5 SVC

B.5.1 OPTPOW File

POWER CONTROL

BUS1 TYPE=NODE RTYP=UP U=0.69 P=0.0 CNODE=BUS1 QMIN=-80 QMAX=80 NAME=SVC1

END

B.5.2 DYNPOW File

SVC

SVC1 BUS1 SN=100 REG=5 CNODE=BUS1 !SHUNT=BUS1

END

REGULATORS

5 TYPE=SVS BMAX=0.8 BMIN=-0.8 !QMAX=80 QMIN=-80

RTYP=3 KP=100 KA=15.0 TF=0.01 VPMIN=-1.2 VPMAX=1.2 T1=1.0 T2=10.0

END
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Simulations

C.1 Variable Speed Wind Turbine

C.1.1 DFIG at Constant Power

(a) No improvement (b) Improved

Figure C.1: All eigenvalues before and after improvement

Eigenvalues after changing the gain settings in the voltage controller:

Figure C.2: Eigenvalues with changed KP and KS

86
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C.1.2 DFIG at Di�erent Wind Speeds

(a) 28 m/s (b) 10 m/s

Figure C.3: Eigenvalues at di�erent wind speeds.

(c) 8 m/s

Figure C.3: Eigenvalues at di�erent wind speeds.

C.2 Constant Speed Wind Turbine

C.2.1 SCIG at Constant Power

Figure C.4: Eigenvalues, constant power
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C.2.2 SCIG at Variable Power

(a) 0.2 (b) 0.5

Figure C.5: Eigenvalues with di�erent torque

(c) 0.8 (d) 1.1

Figure C.5: Eigenvalues with di�erent torque
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C.3 Two Area Network

C.3.1 Network Data

Table C.1: Bus data

Power Flow

BUS Type V [Kv] Pprod [MW] Qprod [Mvar] Pload [MW] Qload [Mvar]

1 Synch 0.69 100 0 50 0

2 Synch 0.69 100 0 50 0

3 - 20 0 0 0 0

4 - 20 0 0 0 0

5 - 20 0 0 0 0

6 STIFF 20 - - - -

Table C.2: Line data

From Bus To Bus Resistance Reactance Charging Tap ratio

1 3 0 0 0 0

2 4 0 0 0 0

3 5 0.02 0.2 0 0

4 5 0.02 0.2 0 0

5 6 0.05 0.5 0 0

Table C.3: Transformer data

From Bus To Bus Sn VN1 VN2 ER12 EX12

1 3 200 0.69 20 0 0.15

2 4 200 0.69 20 0 0.15

C.3.2 Optpow File

Network 1, Six-bus network to test small-signal stability.

** network1.optpow **

GENERAL

SN=100

END

NODES

BUS1 UB=0.69 AREA=1

BUS2 UB=0.69 AREA=1

BUS3 UB=20 AREA=1

BUS4 UB=20 AREA=1

BUS5 UB=20 AREA=1

BUS6 UB=20 AREA=2

END
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TRANSFORMERS

BUS1 BUS3 SN=200 UN1=0.69 UN2=20 ER12=0 EX12=0.15

BUS2 BUS4 SN=200 UN1=0.69 UN2=20 ER12=0 EX12=0.15

END

LINES

BUS3 BUS5 TYPE=11 R=0.001 X=0.01 L=20

BUS4 BUS5 TYPE=11 R=0.001 X=0.01 L=20

BUS5 BUS6 TYPE=11 R=0.001 X=0.01 L=50

END

LOADS

BUS1 P=50 Q=0 MP=0 MQ=0

BUS2 P=50 Q=0 MP=0 MQ=0

END

POWER CONTROL

BUS1 TYPE=NODE RTYP=UP U=0.69 P=100 NAME=G2

BUS2 TYPE=NODE RTYP=UP U=0.69 P=100 NAME=G1

BUS6 TYPE=NODE RTYP=SW U=20.0 FI=0 NAME=INFBUS

END

END

C.3.3 Dynpow File

**

CONTROL DATA

TEND=50

END

GENERAL DATA

FN=50

END

NODES

BUS6 TYPE=1 NAME=INFBUS

END

SYNCHRONOUS MACHINE

G1 BUS2 TYPE=1 XD=1.8 XQ=1.7 XA=0.2 XDP=0.3 XQP=0.55

XDB=0.25 XQB=0.25 RA=0.0025 TD0P=8.0 TQ0P=0.4

TD0B=0.03 TQ0B=0.05 TAB=1 TURB=7

H=6.5 SN=200 UN=0.69 D=0 VREG=2

G2 BUS1 TYPE=1 XD=1.8 XQ=1.7 XA=0.2 XDP=0.3 XQP=0.55

XDB=0.25 XQB=0.25 RA=0.0025 TD0P=8.0 TQ0P=0.4

TD0B=0.03 TQ0B=0.05 TAB=1 TURB=7

H=6.5 SN=200 UN=0.69 D=0 VREG=2

END

REGULATORS

!!!! Regulators constructed with the DSL Code Generator:
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2 TYPE=DSL/EXC_HTG/ KA=200 TR=0.01 SWS=4

4 TYPE=DSL/STABILISER/ KSTAB=20 TW=10 T1=0.05 T2=0.02 T3=3 T4=5.4

END

DSL-TYPE

STABILISER(W,T4,T3,T2,T1,TW,KSTAB,VS,VS0)

EXC_HTG(VC,TR,KA,VS/0/,UF,UF0)

END

TURBINES

10 TYPE = SGC YMAX=1 YMIN = -1 K = 20 T1 = 0.1

7 TYPE = ST1 GOV=10 TC = 0.3 KH = 0.6 TR 7

END

LOADS

BUS1 MP=0 MQ=0

BUS2 MP=0 MQ=0

END

TABLES

1 TYPE=1 F 0.000 0.00 0.700 0.70

0.800 0.80 0.830 0.83

0.860 0.86 0.962 0.94

0.974 0.95 1.039 1.00

1.113 1.05 1.202 1.10

1.315 1.15 1.467 1.20

1.682 1.25 1.998 1.30

2.478 1.35

END

END
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C.3.4 A : Synchronous Generator

(a) A1 (b) A2

Figure C.6: Eigenvalues A : Synchronous generator.

(c) A3

Figure C.6: Eigenvalues A : Synchronous generator.

Example on how to calculate damping and frequency of an oscillation:

Values are taken from �gure 7.15

Tpeak−peak = 32.870571− 32.870571 = 1.762588S (C.1)

F = 1/1.762588 = 0.57Hz (C.2)
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Table C.4: Peak to Peak values

Amplitude

Peak Nr Time [s] Speed [pu]

1 31.107983 1.0004

2 32.870571 1.00017

Determining when the oscillations stops is always a bit di�cult so the number given here
are just an estimate:

Table C.5: Damping

Start [s] End [s]

30.02 45

1τ = (45− 30.02 = 14.98)/5 = 2.996 (C.3)

Damping = 1/2.996 = 0.33 (C.4)

And the properties of the oscillation written as an eigenvalue will be:

λ = −0.33 ± J0.57 hz (C.5)

C.3.5 B : Asynchronous Generator

(a) B1 (b) B3

Figure C.7: Eigenvalues, B : Asynchronous generator.
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C.3.6 C : Static Production

(a) C2 (b) C3

Figure C.8: Eigenvalues C : Static production.
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C.3.7 D : DFIG

(a) D1 (b) D2

Figure C.9: Eigenvalues D : DFIG.

(c) D3

Figure C.9: Eigenvalues D : DFIG.
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C.3.8 E : SCIG

(a) E2 (b) e3

Figure C.10: Eigenvalues E : SCIG.
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