
Low Power Floating-Point Unit for RISC-V

Torbjørn Viem Ness

Master of Science in Electronics

Supervisor: Per Gunnar Kjeldsberg, IES
Co-supervisor: Vemund Bakken, Nordic Semiconductor

Department of Electronic Systems

Submission date: July 2018

Norwegian University of Science and Technology

Low Power Floating-Point Unit for

RISC-V

RISC-V is an open source microprocessor platform that currently gains
popularity in many domains. Included among its modules a �oating-point
unit (FPU) can be found, intended for use in high-end microprocessors.

Nordic Semiconductor has a RISC-V implementation based on an existing
public domain platform. The platform consists of both a high-level Python
model and a hardware description language (HDL) implementation. The
overall goal of this assignment is to investigate how an FPU can be integrated
in the platform to achieve an energy e�cient solution, followed by a Register
Transfer Level (RTL) implementation.

During a project in the fall of 2017, the Python model has been extended
to include an FPU, and initial experiments were performed to evaluate energy
e�cient solutions. In this master thesis project, these evaluations shall be
continued and suggestions for improvement in the existing FPU related to
energy e�ciency shall be presented. A complete RTL implementation shall be
performed according to the �ndings. A mechanism for evaluation of the FPU
with the complete platform shall be developed. This will include simulation,
veri�cation, and further re�nement of the FPU and platform integration.
References:

� RISCV architecture : https://riscv.org/speci�cations/

� FPU from rocket (existing RISCV CPU) can be reused as starting point
https://github.com/ucb-bar/rocket

Supervisor: Professor:

Vemund Bakken, Nordic Semiconductor Per Gunnar Kjeldsberg, NTNU

Abstract

When working on a limited energy budget, wireless and battery powered
devices that monitor sensors need to do some degree of local computation
to save power on transmission. Therefore there is a need for �oating-point
capabilities in a lower power segment than what has traditionally been the
case. In modern technologies leakage power plays an increasingly important
role, and as such reducing the area can also have a positive impact on the
total energy consumption, with the added bene�t of lower manufacturing
cost.

This Thesis proposes modi�cations to the �oating-point unit from the
PULP platform that yield area reductions of approximately 13% by reusing
the fused multiply-add unit for regular add/sub and multiply operations.
Due to poor optimization the initial results are worse than expected, with
more than twice the energy/op for multiplication and addition compared
to the standard FMA-enabled PULP FPU, but with the appropriate power
optimizations this could still prove to be a reasonable compromise for area-
constrained implementations that still need high throughput and low power.
For operations other than add, subtract and multiply, the modi�ed FPU
yields up to 7% lower energy/op.

Low Power Floating-Point Unit for RISC-V

Preface

First I would like to thank my mentors and all the great people in the System
Architects Group at Nordic Semiconductor for their assistance, helpful advice
and interesting co�ee-machine conversations. It has been a truly inspiring
experience to work alongside such talented people and learn from the best!

Secondly I would like to thank my girlfriend who is patient and
understanding when I have to spend long evenings at the o�ce to make
tools compile and simulations run, and helps me relax and unwind when I
�nally go home for the day.

And last but not least, big thanks to my parents and family who have
always supported and encouraged me to follow my dreams and pursue an
engineering education. The inspiration from my engineer uncle and godfather
was what �rst made me interested in technology and taking things apart to
look inside, I would probably not be where I am today if it wasn't for that!

Initially the FPU implementation was going to be based on the Berkeley
Hardware Floating-Point Units module from the Rocket Chip Generator [12],
available on GitHub[19]. However that code is written in relatively advanced
CHISEL (Constructing Hardware In Scala Embedded Language), making
it somewhat di�cult to understand and modify without prior experience.
Therefore the much more accessible SystemVerilog FPU implementation[35]
from the PULP platform was selected instead. This also �t easily into the
existing tool �ow for synthesis and power estimation at Nordic, lowering the
entry barrier signi�cantly.

ii

Contents

Abstract . I

Preface . II

1 Introduction 1

1.1 Objectives and limitations . 2

1.2 Main contributions . 3

2 Background theory 5

2.1 Floating-point arithmetics . 5

2.1.1 Number representation 6

2.1.2 Arithmetic operations 8

2.1.3 Fused Multiply-Add 8

2.2 Energy consumption basics . 9

2.2.1 Energy and power . 9

2.2.2 Static and dynamic power 9

2.3 Architectural options . 11

2.3.1 Pipelining . 11

2.3.2 Timing . 12

2.3.3 Microcoding . 13

2.4 Synthesis and veri�cation . 13

2.4.1 RTL simulation . 13

2.4.2 High-level model . 14

2.4.3 Scoreboard . 14

3 Previous work 17

3.1 Rocket Chip Generator . 17

3.2 NanoRV32 . 18

3.3 Project thesis . 18

3.4 Berkeley Hard�oat . 19

3.5 PULP platform . 19

3.6 Reduced latency for addition with a FMA 20

III

CONTENTS

Low Power Floating-Point Unit for RISC-V
CONTENTS

4 Implementation 21

4.1 What to implement . 21
4.2 Veri�cation plan . 22
4.3 FPU register �le . 23
4.4 FPU interface . 23
4.5 Power optimizations . 24
4.6 FMA implementation . 25

4.6.1 PULP modi�cations 25
4.7 Test and measurement . 31

4.7.1 Stimuli generation . 31

5 Results 33

5.1 Area comparison . 33
5.1.1 Rocket chip . 33
5.1.2 PULP FPU . 34
5.1.3 PULP area vs. target frequency 34

5.2 Timing . 37
5.3 Power . 37

5.3.1 Single instructions . 37
5.3.2 OPUS codec . 39

6 Discussion and future work 43

6.1 Unum and posits . 43
6.2 Transprecision . 44
6.3 64-bit precision on 32-bit hardware 44
6.4 Hardware sharing and reuse 44

7 Conclusion 45

Appendices 53

A High-level Python model 55

A.1 common.py . 55
A.2 simple_model.py . 57
A.3 fpu_private_framework.py . 63
A.4 fpu_tiny_framework.py . 69
A.5 fpu_custom_framework.py 75
A.6 CoCoTB stimuli . 81
A.7 FPU_reg�le_cocotb_simple.py 85
A.8 Modi�ed FMAC pipeline . 90
A.9 Modi�ed FMA wrapper . 98

iv

CONTENTS

Low Power Floating-Point Unit for RISC-V
CONTENTS

A.10 Simpli�ed normalization and rounding unit 104
A.11 Stripped conversion core . 111
A.12 Modi�ed top-level FPU . 118
A.13 Simple FPU reg�le . 126
A.14 Mutliplication test . 129

B Other contributions 131

B.1 PULP FPU bug�x . 131

v

List of Figures

2.1 The binary representation of a IEEE 754 single precision
�oating-point number . 6

2.2 Power- versus area e�ciency a 90 nm single-precision FMA. . 12

3.1 Block diagram of the RI5CY core 20

4.1 The principle of an FMA . 26
4.2 FMA modi�cations for allowing multiplier bypass 27
4.3 Simpli�ed block diagram of the PULP FMAC pipeline, taken

from [35] . 29
4.4 Simpli�ed block diagram of the modi�ed PULP FMAC

pipeline, see Appendix A.8 . 30

5.1 Synthesized area vs. frequency plot, no retiming 36
5.2 Synthesized area vs. frequency plot, retiming enabled 36
5.3 Distribution of FPU instructions in OPUS benchmark run . . 40
5.4 Distribution of FPU instructions in OPUS benchmark run,

with better compiler optimization 41

VII

List of Tables

2.1 Parameters for single and double precision formats 6
2.2 Example of e�ects on static and dynamic power due to

technology scaling[40] . 10

5.1 Area consumption of the default Rocket SoC con�guration . . 33
5.2 Area consumption breakdown for the double-precision Rocket

FPU . 34
5.3 Area consumption of the small 32-bit SoC con�guration 34
5.4 Area consumption breakdown for the single-precision Rocket

FPU . 34
5.5 Area consumption breakdown for the single-precision PULP

FPU . 35
5.6 Area consumption breakdown for the customized single-

precision PULP FPU . 35
5.7 Power and energy consumed per FPU op for default PULP

con�g . 37
5.8 Power and energy consumed per FPU op for customized PULP

con�g . 38
5.9 Power and energy consumed per FPU op for small (no FMA)

PULP con�g . 38
5.10 Power and energy consumed per FPU op for improved small

(no FMA) PULP con�g . 39
5.11 Power and energy consumed for OPUS benchmark, grouped

by FPU op . 40
5.12 Power and energy consumed for OPUS benchmark with

improved FMADD detection and optimization, grouped by
FPU op . 41

IX

Chapter 1

Introduction

In a modern society, monitoring and controlling the environment is becoming
increasingly important. The trend seems to be more and more sensors just
about everywhere; everything should be measured and reported, and with
the advent of the so-called Internet of Things this seems to have exploded in
popularity - now everything should have a sensor.

These sensors should also be independent of wires, so running on batteries
or energy harvested from the environment is a given. This creates a huge
demand for devices capable of reading and transmitting the sensor readings
while using as little power as possible.

Analog signals like audio and other sensor inputs typically vary in
intensity, and it is usually desirable to be able to capture and process the
data in a way that preserves the most information detail possible.For this
purpose �oating-point numbers (as described in Section 2.1) are suitable, as
they can represent a very wide range of values in a very high precision.

These numbers are somewhat more complex to work with than �xed
point, and therefore take longer to compute in software. Floating-point
units contain dedicated hardware modules for performing operations on
such numbers, and will therefore dramatically speed up �oating-point
computations when used[34].

RISC-V is a relatively new CPU architecture which started as a research
project in the Computer Science Division of the Electrical Engineering
and Computer Sciences Department at UC Berkeley. It began in 2010 as
a Master's thesis and was later completed in 2016 as a PhD project[45]
by Andrew Waterman1, and its Instruction Set Architecture (ISA) is now
maintained by the RISC-V Foundation[15].

The architecture is designed to be a modern, open source alternative

1With major contributions from Yunsup Lee

1

1.1. OBJECTIVES AND LIMITATIONS

Low Power Floating-Point Unit for RISC-V

to commercial architectures like MIPS and the ones from ARM. This was
done in order to have one easily accessible and �exible platform that allows
developers to focus their e�orts on developing good software and tools,
while providing educators with an architecture that is suitable for use in
teaching[45].

There are existing �oating-point units for RISC-V today, but these are
mostly limited to the more powerful 64-bit solutions. This project aims to
investigate whether it is possible and worthwhile to include hardware �oating-
point support for smaller 32-bit microcontroller-scale systems, and what can
be done to make it more energy-friendly.

This thesis is a continuation of the work done in [30], and investigates
various techniques for reducing the area and power overhead of adding
hardware �oating-point support to a low-power system. The strategy has
been to take an existing design as a starting point, identify hotspots and
bottlenecks in typical applications, and explore various possible optimizations
that may impact performance and power consumption in an embedded
environment.

Details of the optimizations explored can be found in Chapter 4. These
implementations consist mainly of various techniques discussed in [30], but
also include new ideas discovered while exploring the design space.

As discussed in Chapter 3 having a dedicated FPU in microcontrollers
that are on the lower end of the power spectrum is not very common. One
question this project aims to address is how much energy can be saved by
including a dedicated �oating-point unit in small, ultra-low-power chips.

Chapter 2 will introduce some of the related background theory used
later in the report. In Chapter 3 some previous solutions will be brie�y
discussed before describing this implementation in Chapter 4. Results are
then presented in Chapter 5 followed by a brief discussion and conclusion in
Chapters 6 and 7.

1.1 Objectives and limitations

The main target for this implementation is a single issue in-order RISC-V
CPU with a shallow pipeline (typically 2-3 stages) and primary focus on low
power. A typical use case will be 32-bit microcontrollers in the performance
range between the Zero-riscy [36] and RI5CY [37]. Due to this focus the
described optimizations and resulting implementation may not be suited for
use in high-performance processors. Some of the outlined optimizations also
assume that all resources will be available at any time, limiting the viability
for out of order implementations.

2

CHAPTER 1. INTRODUCTION

Low Power Floating-Point Unit for RISC-V

1.2 Main contributions

The main contributions in this thesis are related to bug�xes and optimiza-
tions on the PULP FPU, in addition to several contributions to the PULP
and other projects:

� Implemented power optimizations to the FMA of the PULP FPU,
including multiply-stage pipeline bypass.

� Estimated power consumption and area impact of reusing the FMA
pipeline for multiplication and addition.

� Improved tool compatibility for the PULP FPU, now works with
QuestaSim and Synopsys tools. My contribution was merged into the
central PULP project repository[32].

� Fixed a bug in the PULP FPU and got my code merged into the central
project repository[31] - see Appendix B.1

3

Chapter 2

Background theory

This chapter will give an introduction to the topics discussed later, and
explain some of the terms used. First about �oating-point number
representations and arithmetics, before going into basics about energy
consumption, various architectural optimizations and veri�cation topics.

2.1 Floating-point arithmetics

Floating-point is the name of a formulaic representation for real numbers
that can be used to achieve a good trade-o� between dynamic range and
precision. Working with �oating-point numbers is somewhat di�erent than
working with integers, and the following sections will try to explain why.

An alternative to using �oating-point when working with fractional
numbers is to de�ne a set precision and use integers. This is called �xed-
point arithmetics [42], and although much simpler and faster to work with it
is a lot more limited than �oating-point in several ways. Much like one uses
cents to describe fractions of a larger monetary value, one can de�ne a scope
where integer numbers represent smaller fractions - for example 0.01. One
example of a limitation is dynamic range - while a (signed) 32-bit integer can
represent numbers between −2147483648 and +2147483647, the binary 32-
bit IEEE-754 �oating point format can represent the entire range between
±340282346638528859811704183484516925440 (or 3.4028235 ∗ 1038), with a
decreasing degree of precision as the magnitude increases1.

5

2.1. FLOATING-POINT ARITHMETICS

Low Power Floating-Point Unit for RISC-V

Figure 2.1: The binary representation of a IEEE 754 single precision �oating-
point number

By Codekaizen (Own work) [CC BY 3.0 (http://creativecommons.org/licenses/by/3.0)], via Wikimedia Commons

Single Double
Sign bits 1 1

Exponent bits 8 11
Fraction bits3 23 52

Exp. bias 127 1023
Total 32 64

Table 2.1: Parameters for single and double precision formats

2.1.1 Number representation

According to the IEEE-754 standard[1], �oating-point numbers in compliant
implementations have a binary representation as seen in Figure 2.1, which
consists of a sign bit, an exponent and a fraction. The value of a �oating-point
number can be calculated as described in Equation (2.1).

Bfloat = (−1)sign ∗ radix(exponent−bias) ∗ fraction (2.1)

The radix is normally 2 (binary) or 10 (decimal), with the value
of exponent determining the magnitude of the number and the fraction
representing the numerical value. For decimal (base-10) �oating-point
representation, 3 decimal digits are usually packed into 10 bits using the so-
called densely-packed decimal format (for more information, see [1, Section
3.5]). However this format is not commonly used2, so in this project the focus
will be on binary �oating-point arithmetic with single (32-bit) and double
(64-bit) precision. For an overview of these two binary formats and their
di�erences, see Table 2.1.

Not included in the fraction is an implicit leading bit, which is used in

1Highest precision around zero: 1.401298∗10−45 and lowest near in�nity: 2.028241∗1031
2Although the RISC-V ISA intends to supports it in the future, with the L standard

extension[46, Ch. 11]
3The e�ective precision is increased by one bit due to the implicit leading bit

6

CHAPTER 2. BACKGROUND THEORY

Low Power Floating-Point Unit for RISC-V

order to get one more bit of precision while keeping the data width identical.
This extra bit is set to '1' for every exponent except the minimum value (in
which case the number is subnormal and the leading bit is '0'). This is valid
because �oating-point numbers are normalized (aligned such that it always
starts with a '1', as long as the exponent is greater than zero) before being
stored[1, 3.4].

The bias is used for representing a wide dynamic range without needing
to use 2's complement to represent negative exponent values - the bias for a
given precision can be calculated using the formula 2k−1 − 1, where k is the
number of bits in the exponent.

The example shown in Figure 2.1 is computed like this, using Equation
2.1 with exponent 011111002 = 12410 and bias from Table 2.1:

B = (−1)0 ∗ 2124−127 ∗ (1 + 2−2) = 0.15625 (2.2)

The result of computations will in many cases end up being a value that
can not be exactly represented in the binary format4 due to only being able
to combine powers of two. When this happens the number must be rounded
to a value that can be represented in the given format and precision before
it can be stored. How rounding should be applied is given as a con�guration
parameter to each operation; for details about the di�erent modes available,
see [1, 4.3].

In addition to representing regular positive and negative numbers, the
standard has special representations for ±∞ and NaN (Not a Number, used
to represent the result of various illegal operations, such as 0

0
and ∞∞). Such

results can be especially useful when troubleshooting, as the fraction �eld of
a NaN may contain more information about what led to the error.

When it comes to NaNs there are two di�erent types - signaling and quiet,
each with speci�c rules for handling in di�erent operations[1, 6.2]. Quiet
NaNs (qNaN) are generally used when computations yield invalid results
(such as the square root of a negative number), and it should be the result
whenever an invalid operation exception is signaled (for more details about
invalid operations see [1, 7.2]). Operations on qNaNs should preserve as
much diagnostic information as possible, in order to help developers �nd out
what went wrong. Signaling NaNs (sNaN) are reserved operands that when
used trigger the invalid operation exception for every general computational
instruction. This is typically used to represent uninitialized variables, for
example when debugging, to see whether a variable has been set before use.

4For example 1.1 will be rounded to 1.10000002384185791015625 in single precision

7

2.1. FLOATING-POINT ARITHMETICS

Low Power Floating-Point Unit for RISC-V

2.1.2 Arithmetic operations

The most important operations that a �oating-point unit accelerates are
multiplication and addition. Therefore it also becomes an important target
for optimization, both for area and performance.

For many applications there are both multiplications and additions to be
performed that involve the same operands. In terms of implementation there
are currently two main approaches commonly used - Fused Multiply-and-
Add (FMA) and Cascaded Multiply-and-Add (CMA). While the cascaded
approach is simple and consists of performing multiplication and addition
in sequence, the fused approach yields higher throughput but at the cost
of slightly higher latency. Each approach has its own set of drawbacks and
advantages, so the choice of which one to use really depends on the estimated
workload. Therefore it has become increasingly common to choose the FMA
approach, as long as there is room for it in a design. However the cascaded
approach is more common for simpler and smaller designs, which can be
bene�cial when area is at a premium and performance isn't paramount.
In the case of RISC-V the FMA operations are a mandatory part of the
�oating-point extensions[46, Ext. 'F', 'D'], and for implementations without
hardware FMA these instructions would have to be implemented inmicrocode
(as described in Section 2.3.3) or a similar way.

2.1.3 Fused Multiply-Add

This method allows great throughput by combining two operations that
would otherwise be separate and put them into the same pipeline, producing
one result every clock cycle instead of having to store the �nal multiplication
result before using it in an addition. The computation performed can be as
described by Equation (2.3).

Result = A ∗B + C (2.3)

Although a bit more complicated than a setup of simple multipliers and
adders, these fused units can perform all operations involving addition and
multiplication by simply setting the correct operand to 1 or 0 - addition is
done by setting A or B to 1, and multiplication by setting C to 0.

Aside from achieving higher throughput in suited applications, combining
the two operations will usually also reduce the rounding error. This is a
result of the multiplication product being fed directly into the adder without
rounding the intermediate result �rst.

One obvious cost of the FMA compared to using the simpler CMA
architecture is increased complexity and area; the data path needs to be

8

CHAPTER 2. BACKGROUND THEORY

Low Power Floating-Point Unit for RISC-V

signi�cantly wider for FMA - 72 bits for single-precision compared to 48 for
a CMA implementation[16]. For double-precision it is even more - 161 bits
according to Scwarz[41]. An FMA needs to align the multiplication product
before performing the addition, and this could in the worst case scenario
require shifting it all the way from one end to the other. A more thorough
introduction to FMAs including some hints on how to optimize the design
can be found in a paper by Eric M. Schwarz[41].

2.2 Energy consumption basics

In order to fully understand low power optimizations, some background
knowledge is required about what consumes power in a digital CMOS circuit.

2.2.1 Energy and power

Power is the rate of energy consumption at a given time, while energy is the
power consumption accumulated over a time period[39] (see Equation 2.4).

E =

∫
p(t)dt (2.4)

If the power is constant or one uses the average power, it can be simpli�ed
to Equation 2.5:

E = Pavg ∗ t (2.5)

Due to this the answer may not always be obvious when it comes to
deciding between very low power or a faster circuit with a higher power
draw. If the processor can complete the calculations quickly before returning
to a low-power sleep state (commonly referred to as Race to Halt), then the
ever-improving sleep modes and low power states of modern microprocessors
enable signi�cant system power savings[10].

2.2.2 Static and dynamic power

In CMOS circuits, power consumption is mainly divided in two categories:
static and dynamic power[7].

Static power is the consumption that is constant regardless of what the
circuit is doing, which mainly consists of leakage currents from supply to
ground via the transistors. This phenomenon is due to the fact that a
transistor is not ideal and in the real world it will not act entirely like the
on/o� switch that it is often simpli�ed to. Instead there will always be some

9

2.2. ENERGY CONSUMPTION BASICS

Low Power Floating-Point Unit for RISC-V

Tech. VDD Static [mW] Dyn. [mW] Static [%] Dyn. [%] Tot. [mW]
45nm 1.1 0.2250 1.8230 ≈ 11 ≈ 89 2.0480
15nm 0.8 0.1134 0.5206 ≈ 18 ≈ 82 0.6340
Di�. 0.727x 0.5040x 0.2856x (relative di�erence) 0.3096

Table 2.2: Example of e�ects on static and dynamic power due to technology
scaling[40]

current running in the channel (subthreshold leakage) or through the gate
insulation layer[7].

Some decades ago it would not be very prominent compared to the active
power consumption, but this e�ect scales adversely with the ever-decreasing
feature sizes and threshold voltages that comes along with new manufacturing
techniques[7]. In modern technologies such as 22, 14 and even 10 nm, leakage
can in many cases becomes the major contributing factor to device power
consumption. See table 2.2 for an example of this scaling. Due to this it
becomes increasingly important to optimize technology libraries and designs
for low leakage, for example by utilizing techniques such as power gating and
selecting low-leakage transistors5.

A comparison between 45 and 15nm was done in [40], where the same
single-precision FPU was synthesized in the two di�erent process technologies
(keeping architecture and synthesis parameters constant) using Synopsys
Design Compiler [21]. In that study it was found that the cell leakage power
roughly halved6, while the total power was reduced by almost a factor of 4.
This means that the ratio of static/dynamic power nearly doubled, as shown
in Table 2.2. If one takes into account the fact that this was simulated
as running without any special power saving features, it becomes clear that
switching o� power to unused parts of the circuit (power gating) is a technique
that will become increasingly important; as sub-threshold leakage can already
constitute about 20% of the power consumption when actively computing,
one can only imagine how much of the total system power will be leakage
once low-power sleep modes and clock gating is included.

In terms of mitigating this e�ect there are a few options we can utilize
(e.g. adjusting transistor threshold voltages or power gating parts of the
design when not in use), but the most e�ective way is probably to keep the
area to a minimum. If we have fewer transistors leaking power the total
leakage will naturally also be lower, and then there will be the added bene�t

5One way to lower the leakage in a transistor is to increase the threshold voltage, others
may include using di�erent gate insulation materials[33]

6Although area was reduced by approximately a factor of 3 due to scaling

10

CHAPTER 2. BACKGROUND THEORY

Low Power Floating-Point Unit for RISC-V

of lower manufacturing cost.
Dynamic power is the power consumed by a transistor when it is

switching. This power consumption mainly comes from charging the
capacitive loads connected to the transistor (i.e. gates of other transistors,
parasitic capacitances due to wires etc.). There is also some dynamic power
consumed in the brief period of time when both the high and low side
transistors are (partially) open, which leads to a direct path from supply
to ground[7]. However due to the fast switching times in modern CMOS,
this consumption is relatively small compared to the capacitance charging so
it is often neglected.

Based on the above, one can express the total power consumption of a
circuit as:

Ptot = Pstatic + Pdynamic = (Vsupp ∗ Ileakage) + (α ∗ C ∗ V 2
supp ∗ f) (2.6)

where Vsupp is the supply voltage, Ileakage is the total leakage current, α is the
activity factor7, C is the driven capacitance and f is the operating frequency
of the circuit[9].

From this we can see that the most e�ective ways of keeping the power
consumption down by design are:

� Lower the operating voltage (if possible)

� Eliminate unnecessary toggling (especially for larger nets)

� Keep wires short (i.e. group related functions close together)

� Enable power gating of entire modules when not in use

2.3 Architectural options

This section gives a brief overview of some implementation options available
to a system architect and how they can a�ect performance and energy
consumption.

2.3.1 Pipelining

When optimizing for energy consumption, a pipelined architecture can
be bene�cial as it can help reduce the size because of less complex and
duplicated logic required to meet a certain performance target.This in turn

7A number between 0 and 1 describing on average how large a portion of the transistors
or logic gates that toggle from '0' to '1' on every clock period

11

2.3. ARCHITECTURAL OPTIONS

Low Power Floating-Point Unit for RISC-V

reduces the leakage power[16, p.916], which is one of the major sources
of energy consumption in today's modern CMOS processes and low power
architectures, as discussed in Section 2.2.2 It is however important to �nd a
balance, as more stages incur extra latency and require more power and area
for the pipeline registers.

Figure 2.2: Power- versus area e�ciency a 90 nm single-precision FMA.
Using supply voltage, threshold voltage, area and pipeline depth as

parameters for optimization[16]

In Figure 2.2 this relationship is shown for a particular fused multiply-
add (FMA) implementation, and in terms of performance per watt the sweet
spot appears to be a 6-stage pipeline. It is important to note that this result
may not hold true for all other implementations, as the target process will
be di�erent and other factors like leakage come into play.

2.3.2 Timing

One important parameter that a�ects how fast a design can run is the critical
path - the longest path a signal must travel between two endpoints before the
deadline (typically the next clock edge). The maximum speed is determined
by how much slack the system has:

tslack = trequired − tarrived (2.7)

If the slack is positive that means all signals will arrive on time, and if
necessary the clock frequency can be improved. However if the slack is

12

CHAPTER 2. BACKGROUND THEORY

Low Power Floating-Point Unit for RISC-V

negative the circuit has a timing issue and will not function properly at
the given clock frequency. In that case the designer must either �nd ways
to reduce the critical path, or accept that the circuit becomes slower than
desired.

There are several ways to reduce the critical path and improve max speed.
One solution that most tools can apply automatically is register retiming ;
that involves moving internal registers along the data path in either direction
to shorten the critical path. This is described more detailed in this paper[28].

Another commonly used technique is pipelining (as described in Section
2.3.1), but that requires some manual work from the designer..

2.3.3 Microcoding

Microcode is a type of very low-level software that can be used to implement
sequences of operations as if they were one instruction. It is typically stored
in a read-only memory space that is not accessible from programs[48], often
hardwired in a ROM (Read-Only Memory). By using microcode, instructions
that are not directly supported in hardware can still be executed as if they
were - transparently to the user program For example, fused mutliply-add
instructions can be coded as a regular multiplication followed by an addition
and executed without the hardware overhead of a FMA unit.

In typical desktop processors it is usually possible to load new microcode
upon boot, but these changes are not persistent and will be lost at the next
power cycle[26].

2.4 Synthesis and veri�cation

Synthesis is the process of converting a functional system description into
a lower-level implementation. It is performed by specialized tools; both
commercial ones from vendors like Synopsys, Cadence and Mentor but some
free alternatives also exist - most notably Yosys [49] and ABC [11].

2.4.1 RTL simulation

Simulation on the Register Transfer Level (RTL) is useful because it models
the system behavior with a fairly high degree of accuracy, and can be used
to spot bugs in functionality before running more time-consuming netlist
simulations or sending the design to manufacturing.With suitable tools like
Spyglass Power from Synopsys[21] or Mentor PowerPro[8] it is even possible

13

2.4. SYNTHESIS AND VERIFICATION

Low Power Floating-Point Unit for RISC-V

to get an estimate on how much power a design will consume just from
running simulations on the RTL code.

2.4.2 High-level model

It is common practice when designing digital systems and circuits to �rst
create a simpli�ed model that implements the desired behavior of the system.
When deciding on architectural issues, such a high-level model is very useful
as it allows the designer to explore several di�erent options without having
to wait for hours or even days for a cycle-accurate simulation to complete.
It is also (typically) much easier to modify than a full RTL implementation.

The model is especially useful for functional validation, as one can run
the same test on both the model and the RTL implementation and compare
output. Debugging high-level code is generally much easier than �nding
functional errors in a hardware description, and if the results are identical
then the functionality should also be the same.

There are several options for implementing such a model - for instance
high-level languages like Python and Matlab are commonly used as they
are both relatively simple to use for getting a quick data �ow/algorithmic
model of the problem, and they complete relatively quickly on modern
hardware when compared to cycle-accurate RTL or netlist simulations. Some
drawbacks of making models in those languages are that they place the
designer relatively far away from how it will actually work on the silicon level,
and "bare-metal" operations on raw bytes and bits become unnecessarily
complicated and di�cult.

In contrast, something like SystemC[22] (based on C++) would be a bit
closer to reality, as C/C++ allows direct access to the memory via pointers
and gives the programmer full freedom to manipulate it without having to
go through many layers of wrapping and abstraction. As an alternative to
SystemC there is also SpecC[18] (based on C), but it is not in very active
development at the moment; the latest release is currently 10 years old.

2.4.3 Scoreboard

The term scoreboard comes from the board commonly used in sports stadiums
to display information like the time left and number of points each team
has. In a veri�cation context this term has been adopted to describe a
system that keeps track of the tests that have been run on a design, and how
many of them passed or failed. The scoreboard also an important part of
the popular Universal Veri�cation Methodology (UVM)[2], where it collects

14

CHAPTER 2. BACKGROUND THEORY

Low Power Floating-Point Unit for RISC-V

various stimuli and compares output from the Design Under Test (DUT)
with the output of a high-level model.

15

Chapter 3

Previous work

A �oating-point unit is not by any means something new - already in
1980 Intel released their 8087 math coprocessor, but when it comes to low
power embedded systems, hardware �oating-point support is usually reserved
for models in the higher performance end of the spectrum like tablet and
smartphone SoCs. For example SiFive (the company driving the commercial
part of RISC-V) only include a FPU in their top-tier 64-bit quad-core SoC
solution (the U54-MC application processor), while the single-core and 32-bit
alternatives have no such support. One notable example of a small, low-cost
FPU is the MIPS R4200 [50], which achieved exceptionally low hardware
overhead by sharing the ALU logic for addition and multiplication with the
integer part of the CPU. ARM on the other hand only o�ers FPUs as an
option for their Cortex-M33 processor and above. The goal of this project
is to �nd an e�cient way to implement a power-optimized FPU that can be
used to accelerate tasks such as signal processing and precise sensor readings
for low-power IoT devices.

This section will brie�y discuss some previous work done in the �eld.

3.1 Rocket Chip Generator

The Rocket Chip Generator [13] is an open-sourced System-on-Chip (SoC)
design generator for RISC-V. It is created by the same team that developed
the ISA speci�cation[46], and allows the designer to specify a high-level
con�guration for a SoC using CHISEL1. All the code involved in the original
Rocket Chip Generator from UC Berkeley is freely available on the project's
GitHub page[12].

1Constructing Hardware In Scala Embedded Language[4]

17

3.2. NANORV32

Low Power Floating-Point Unit for RISC-V

A library of various tiles containing logic modules and interconnect is
also published there, and custom logic modules may be written in the same
speci�cation language to add new functionality. Among the available tiles
is a hardware �oating-point unit[19] library, with both single and double
precision support.

After describing the desired module con�guration the SoC design
speci�cation can be compiled into various target languages, including C for
high-speed simulation and synthesizable RTL for implementation in FPGA2

or ASIC3 designs. As of April 2016, cores built using Rocket Chip had been
taped out eleven times, and yielded functional silicon prototypes fully capable
of running Linux.[13].

3.2 NanoRV32

The NanoRV32 [5] is a small 32-bit implementation of the RISC-V
architecture, and a research project by Ronan Barzic. Among other things
it includes a Python high-level model which can be used for functional
veri�cation of HDL implementations by comparing register contents.

The Python simulator emulates data �ow in the system and stores the
computed results after each instruction in a Python array representing the
CPU register �le. Code to be executed is �rst converted from RISC-V
compiled binary code into a text-based hexadecimal byte representation.
This hex bytecode is then interpreted by an instruction decoder and
dispatched to the correct Python function for computation.

Currently this implementation supports the RV32IM ISA, which includes
basic integer arithmetics and a hardware multiply and divide unit. It also
supports interrupts and a compressed instruction format - RVC, which allows
static and dynamic code size reductions4 by representing the most commonly
used instructions with a shortened 16-bit format instead of the full 32-bit
word.

3.3 Project thesis

The project report that was the precursor to this thesis work[30] started
out with the NanoRV32 (Section 3.2) and extended its high-level model to

2Field-Programmable Gate Array
3Application Speci�c Integrated Circuit
4On average, the use of RVC is estimated to replace somewhere around 50-60 % of the

instructions in a program, leading to a 25-30 % reduction in code size[46, Ch.12]

18

CHAPTER 3. PREVIOUS WORK

Low Power Floating-Point Unit for RISC-V

support single-precision IEEE-754 �oating-point arithmetics. This model can
be used to verify the functionality of a HDL implementation with �oating-
point support similarly to how the NanoRV32 model veri�es implementations
without �oating-point support.

3.4 Berkeley Hard�oat

The Berkeley Hard�oat is a library of components to use for constructing
�oating-point units. It is the one used by the Rocket Chip Generator (Section
3.1) and it is written in CHISEL. The components from this library have
been proven to work in silicon[27] and as such it could be used as a reference
implementation. All source code is freely available on GitHub[19].

3.5 PULP platform

The Parallel Ultra Low Power (PULP) platform is a collection of RISC-V
based processor implementations, with the goal of running several ultra low
power cores in a cluster to achieve high energy e�ciency and performance
for parallelized jobs.

In the process several individual chips have been made, like the
PULPino[17] (taped out in February 2016) and the PULPissimo (among
others taped out as part of a chip in 2017[38]).

The PULP platform also includes a collection of modules for a low power
FPU, all written in SystemVerilog and used several times as part of the
RI5CY core[37] which is the current processor in PULP and PULPino.
According to the ETH Zürich wiki [14] these FPU modules have been taped
out in at least 6 di�erent chips at the time of writing. These �oating-point
modules are also open source and available on GitHub[35], and will be used
as a basis for the RTL implementation in this project. A block diagram of
the RI5CY core can be seen in Figure 3.1.

In addition to supporting the standard RISC-V ISA the PULP project
has also made some custom extensions in order to accelerate certain tasks;
e.g. a hardware looping instruction and various DSP instructions, including
support for non-standard �oating-point precisions like 8-bit for increased
performance when lower accuracy is required - see [43] and [29].

19

3.6. REDUCED LATENCY FOR ADDITION WITH A FMA

Low Power Floating-Point Unit for RISC-V

Figure 3.1: Block diagram of the RI5CY core

3.6 Reduced latency for addition with a FMA

In a paper by Bruguera and Lang[6] an implementation was proposed that
allows bypassing the multiplication stage in a fused multiply-add unit (FMA)
in order to reduce the latency to be comparable with a separate adder when
using the FMA only for add operations. This allows for area reductions
by eliminating the need for separate add and multiply units alongside the
FMA, while avoiding the latency penalty of the FMA unit compared to a
simpler adder module. In the case of a 3-stage FMA pipeline, skipping the
multiplication stage could result in only a 2 cycle latency, and for a 5-stage
it could be reduced to 3 cycles by following this approach.

These improvements are, according to the paper, achieved by moving
the alignment shift operation to happen after the multiplication instead of
in parallel, and combining addition with rounding into a single operation.
Additionally in order to avoid increasing the critical path, normalization is
performed before addition and in a separate datapath from the alignment
operation.

The idea of reusing the FMA for regular add and multiply operations will
also be investigated in this project.

20

Chapter 4

Implementation

In order to save time and reuse previous work done by others this
implementation is mostly based on an FPU from the PULP platform (Section
3.5), along with custom low-power optimizations which are detailed in the
following sections.

This chapter starts with an overview of the modules necessary to make
a �oating-point unit in Section 4.1, before describing the overall veri�cation
strategy in Section 4.2. Then a description of the FPU register �le and main
module interface follows in Sections 4.3 and 4.4, before introducing the power
optimization strategy followed in Section 4.5 and detailing the chosen Fused
Multiply-Adder (FMA) implementation in Section 4.6.

4.1 What to implement

As the standard[46] is relatively modular in its design, a compliant
implementation is not strictly required to implement all functions in
hardware; speci�cally the toolchain[47] allows con�guring parameters as to
enable/disable things like hardware division and sqrt.

Therefore, here is a list of things that need to be implemented for a
functional RISC-V FPU (in order of importance):

1. Load/store unit, this is necessary for moving data between the FPU
and memory without having to go through the main CPU registers,
wasting both bandwidth and time. It can be implemented by extending
the existing integer load/store unit to allow using the FPU registers as
source and destination. However it is an implementation-speci�c detail
that does not a�ect the optimizations outlined here, and for that reason
has been placed outside of the scope for this thesis.

21

4.2. VERIFICATION PLAN

Low Power Floating-Point Unit for RISC-V

2. FP computational pipeline, used for performing multiplication and
addition. This can either be implemented as separate multiplier and
adder units, an integrated FMA pipeline or both. However it must
be capable of performing FMADD/FMSUB/FNMADD/FNMSUB
operations, either natively or as microcoded operation sequences, as
those operations are a mandatory part of the ISA speci�cation[46].

3. Comparison unit, performs less-than (FLT), less-or-equal (FLE)
and equal (FEQ) operations, could possibly be combined with a
FMIN/FMAX unit with a mode selection signal

4. Sign manipulation unit, for the FSGN.* instructions

5. Floating-point number classi�er, for determining which class of
numbers the input belongs to1

6. FSQRT unit, performs division and square root operations2

4.2 Veri�cation plan

The veri�cation strategy is to do a bottom-up approach; �rst validate the
smallest components before moving up to subsystems and then simulating
the entire system. This is a common industry practice, as it is much easier
to validate and debug a full system when knowing that the individual parts
are working as intended.

For the actual veri�cation there are several options, but the two most
likely candidates in this case are to use SystemVerilog and Coroutine Co-
simulation Test Bench (CoCoTB)[44] One advantage of the latter alternative
is that writing testbenches is just a matter of creating a Python script
and giving it the HDL �les, while SystemVerilog is a more industry-tested
language with broad support and integration with formal veri�cation tools
like OneSpin 360. However when it comes to larger and more complex
circuits, the cost of formal veri�cation in terms of time and computing
resources grows exponentially and becomes impractical to use.

For this project test benches for the various modules have been
implemented using CoCoTB, and once they have been found to work as
intended the entire FPU is tested as a module with all available instructions.

1Normal positive/negative number, subnormal positive/negative number (Section
2.1.1), positive/negative ∞ or NaN

2This is the lowest priority because this operation takes a long time to perform even
with acceleration, and single-precision FSQRT instructions are not even emitted by the
GNU toolchain[47] with default settings[30, 5.2.1]

22

CHAPTER 4. IMPLEMENTATION

Low Power Floating-Point Unit for RISC-V

One part of the functional veri�cation test bench is a high-level model (as
described in Section 2.4.2) written in Python (see Appendix A.2). This is
a simpli�ed version of the model created in [30] which returns computation
results that can be used to verify that a module computes the correct result.
Results computed by the high-level model are then compared with the results
from simulation and statistics like number of tests passed and failed are
displayed in a scoreboard (Section 2.4.3) once the testing is complete, along
with state information about the cases that failed.

For ease of reuse across various test cases and alternative implementa-
tions, the test bench code (Appendix A.3, A.5 and A.4) is written in a mod-
ular fashion; one �le contains the simpli�ed FPU model that performs the
calculations (Appendix A.2), another contains common functions for clock
and reset generation, logging and data conversion (Appendix A.1) while an-
other set of �les (Appendix A.6) contain the stimuli for di�erent test cases
that should be run. In that way, bugs only have to be �xed once and it is
easy to run various tests on many di�erent con�gurations.

4.3 FPU register �le

The register �le for the FPU (Appendix A.13) is a fairly standard
implementation with 1 write port and 3 read ports. This was done because
it is not targeting a high-performance out-of-order architecture, but rather a
low-power in-order model that should be as simple as possible.Therefore the
register �le does not need any more ports than what's required to serve one
operation at a time; the most variable-intensive instruction supported by the
RISC-V FPU is FMADD3, which require 3 input operands and results in one
output.

In order to avoid duplicating logic the FPU registers can be added to the
existing register �le of the main CPU, with one important exception; only
the FPU-speci�c registers are connected to the third read port as it is only
used by the FMA.

4.4 FPU interface

The FPU interface is implemented as a set of control signals along with a
data bus between the FPU, CPU and memory.Having only one 32-bit data
bus to the FPU was selected because in this low-power implementation there

3Floating-point Multiply-and-ADD

23

4.5. POWER OPTIMIZATIONS

Low Power Floating-Point Unit for RISC-V

should be only one data movement transaction taking place at any given
time:

� FPU read from memory

� FPU write to memory

� FPU to CPU register transfer

� CPU to FPU register transfer

Because of this it's not strictly necessary with separate data buses for all
di�erent transaction types, and we reduce the number of data lines required
by 75%; with a 32-bit wide architecture this translates into 32 lines instead
of 128, and if the bus lines are long then the capacitance they incur can be
a signi�cant driver of active power consumption.

The control signals will mainly come from the existing instruction decoder
in the NanoRV32[5] CPU, while some signals (like the rounding mode) will
be extracted from the instruction word or the FPU CSR4 (as determined by
the instruction).

4.5 Power optimizations

The power optimization base strategy is to

1. Avoid unnecessary toggling (active power)

2. Minimize the consumed area (static power)

and therefore the optimization will largely consist of methods to approach
those two targets.

One speci�c strategy that has been investigated is to implement a Fused
Multiply-Adder with the option to bypass any one of the two stages using
control signals. Something similar has already been done and demonstrated
in [6] where the multiplication stage could be bypassed to perform only
additions, yielding approximately 40% reduced delay compared to a similar
multiply-add implementation without this bypass option. In a practical
pipelined approach, this translates into skipping one stage and thereby
reducing the latency.

The FMA approach in itself is mainly for increasing performance,
but when using sleep modes and a Race to Halt strategy the increased

4Control and Status Register

24

CHAPTER 4. IMPLEMENTATION

Low Power Floating-Point Unit for RISC-V

performance can also translate into total energy savings.Bypassing a stage
in the FMA pipeline will e�ectively make the latency similar to that of
separate multiply and add units while maintaining the improved throughput
and precision of the FMA in workloads that utilize it.

To avoid unnecessary toggling, inputs to all combinational circuits could
also be latched with an enable signal for that speci�c circuit; this would for
example prevent toggling the logic for computing the product of two numbers
when all one wanted to do was �nd the largest one.

4.6 FMA implementation

The FMA implementation presented here is based on the one from PULP [35],
with some modi�cations to include optimizations like the multiplier-bypass
for reduced latency. Based on the work done by Bruguera and Lang[6] (see
Section 3.6), the FMA from PULP was modi�ed to allow bypassing the
multiply stage when only an addition is required. See Figure 4.2, and code
in Appenices A.8 and A.9. This reduces the latency from 3 to 2 cycles when
only addition is performed, and makes it feasible to have only the FMA and
save area compared to having both regular adders and multipliers alongside
the FMA.

These modi�cations required some changes to the existing FMA
architecture, and can be seen in Appendix A.8.

4.6.1 PULP modi�cations

In order to support the FMA multiplier-bypass optimization for reduced
latency, some modi�cations had to be made. First the addend, which is
operand B in an add/sub operation, needs to be redirected into input C
of the FMA5. Then it must be aligned with the leftmost bit such that it
becomes equal to the result of a multiplication by 1, before being routed into
the next stage of the pipeline for adding.See Figure 4.4 for the modi�cations
compared to the original (Figure 4.3).

In order to investigate the preliminary multiplier output and verify that
the bypass was implemented correctly, a small test bench for the Booth
encoding and Wallace tree was created (see Appendix A.14). Then this
test bench was driven with random data on one input and a bit pattern
corresponding to that of a IEEE-754 1.0 on the other to verify that these
modules indeed were the ones performing multiplication. This helped make

5The operation performed is A * B + C

25

4.6. FMA IMPLEMENTATION

Low Power Floating-Point Unit for RISC-V

C[n− 1 : 0]

MULTIPLIER

ADDER

OUT [n− 1 : 0]

A[n− 1 : 0] B[n− 1 : 0]

Figure 4.1: The principle of an FMA

26

CHAPTER 4. IMPLEMENTATION

Low Power Floating-Point Unit for RISC-V

C[n− 1 : 0]

MULTIPLIER

ADDER

OUT [n− 1 : 0]

0 1mul_bypass

B[n− 1 : 0]A[n− 1 : 0]

Figure 4.2: FMA modi�cations for allowing multiplier bypass

27

4.6. FMA IMPLEMENTATION

Low Power Floating-Point Unit for RISC-V

sure that the addend was directed to the correct part of the pipeline and that
the preprocessing was right.

The existing FMA pipeline

28

CHAPTER 4. IMPLEMENTATION

Low Power Floating-Point Unit for RISC-V

Figure 4.3: Simpli�ed block diagram of the PULP FMAC pipeline, taken
from [35]

29

4.6. FMA IMPLEMENTATION

Low Power Floating-Point Unit for RISC-V

Figure 4.4: Simpli�ed block diagram of the modi�ed PULP FMAC pipeline,
see Appendix A.8

30

CHAPTER 4. IMPLEMENTATION

Low Power Floating-Point Unit for RISC-V

4.7 Test and measurement

As a base comparison between the original FPU and the one presented
here, each available operation was executed and measured in terms of power
consumption and time. This then yielded results that could be extrapolated
into approximations of real-world application benchmarks, as the FPU was
not yet integrated with a CPU capable of running user code. However when
looking at the sequence of instructions executed, using the full CPU Python
model implemented in [30], it is possible to make a fairly good estimate which
combined with the average power and energy per operation is good enough
as a basis for comparison.

4.7.1 Stimuli generation

For each operation, a loop of 1000 iterations with random input data was
executed in order to minimize the e�ect of unrelated operations like reset and
initialization on the results. To keep consistency across designs, the random
number generator was initialized with the same seed for all runs. Average
power was then estimated using Spyglass Power from Synopsys[21], and a
rough estimate of energy per operation was calculated by multiplying average
power with the time required for one iteration.

31

Chapter 5

Results

5.1 Area comparison

To get a rough estimate of how much area a FPU would consume on chip,
the Rocket Chip Generator[12] (see Section 3.1) was used to generate a full
Verilog implementation of the default con�guration1. This implementation
was then synthesized in a 55nm-process from TSMC using Synopsys Design
Compiler 2016[21], and a breakdown of the results can be seen in Tables 5.1
and 5.2. The target voltage used for synthesis is 1V and the frequency is
100MHz unless speci�ed otherwise.

5.1.1 Rocket chip

Here are the synthesized area results from various con�gurations of the
Rocket Chip Generator.

Module Area [GE]2 Area [%]
Integer core 43729 2.0
FPU core 73582 3.4

Caches (I&D) 1972361 92.4
Other 44750 2.2

Table 5.1: Area consumption of the default Rocket SoC con�guration

164-bit single-core SoC with a double-precision hardware �oating-point unit
2Gate Equivalents - the area of a 2-input NAND[23]
3Relative to the total FPU area only

33

5.1. AREA COMPARISON

Low Power Floating-Point Unit for RISC-V

Module Area [GE]2 Area [%]3

MulAdd 31410 42.69
DivSqrt 5178 7.04
Other4 36994 50.27

Table 5.2: Area consumption breakdown for the double-precision Rocket
FPU

For comparison a smaller 32-bit version with a single-precision FPU was
also synthesized, the results can be seen in Tables 5.3 and 5.4.

Module Area [GE]2 Area [%]
Integer core 24632 2.0
FPU core 26568 2.2

Caches (I&D) 1156981 95.2
Other 7774 0.6

Table 5.3: Area consumption of the small 32-bit SoC con�guration

Module Area [GE]2 Area [%]3

MulAdd 7823 29.45
DivSqrt 1783 6.71
Other4 16962 63.84

Table 5.4: Area consumption breakdown for the single-precision Rocket FPU

5.1.2 PULP FPU

These are the area results of the synthesized FPU from the PULP
platform (see Section 3.5)

5.1.3 PULP area vs. target frequency

Shown here is how the di�erent PULP designs scale in terms of area as the
target frequency increases. Figure 5.1 shows how the FPU area scales without
enabling register retiming. The maximum frequencies are relatively similar,
at 110MHz for the stock PULP FPU and 109MHz for the customized
version.

4Conversion-, comparison-, decoding- and clock gating logic
5Conversion, normalization, exception detection and clock gating logic

34

CHAPTER 5. RESULTS

Low Power Floating-Point Unit for RISC-V

Module Area [GE]2 Area [%]3

MulAdd 15843 56.6
DivSqrt 4988 17.8
Adder 943 3.4

Multiplier 3012 10.8
Other5 3198 11.4

Total 27984

Table 5.5: Area consumption breakdown for the single-precision PULP FPU

Module Area [GE]2 Area [%]3

MulAdd 16723 67.8
DivSqrt 4984 20.2
Other5 2964 12.0

Total 24671

Table 5.6: Area consumption breakdown for the customized single-precision
PULP FPU

Figure 5.2 shows the results with retiming enabled, and here the
maximum frequencies have increased to 140MHz for the standard PULP
FPU and 119 for the customized version.

35

5.1. AREA COMPARISON

Low Power Floating-Point Unit for RISC-V

40 60 80 100 120

1.8

2

2.2

2.4

2.6

2.8

3

3.2

·104

Frequency [MHz]

A
re
a
[G
E
]2

Synthesized area vs. target frequency

Standard PULP
Custom PULP

Figure 5.1: Synthesized area vs. frequency plot, no retiming

0 50 100 150 200

1.6

1.8

2

2.2

2.4

2.6

2.8

3

·104

Frequency [MHz]

A
re
a
[G
E
]2

Synthesized area vs. target frequency

Standard PULP
Custom PULP

Figure 5.2: Synthesized area vs. frequency plot, retiming enabled

36

CHAPTER 5. RESULTS

Low Power Floating-Point Unit for RISC-V

5.2 Timing

When synthesizing for target freq. 100MHz, the di�erence in slack between
standard and modi�ed PULP was approximately 5ps, so the modi�cations
a�ected the critical path somewhat. However, 5ps is less than 0.05% of the
clock period so it should not make any practical di�erence in this frequency
range.

5.3 Power

This Section contains power estimations based on RTL simulation using the
Spyglass Power suite from Synopsys[21]. It compares the power consumption
of the di�erent implementations using activity data from various benchmarks
- both single instructions and more varied workloads. Here as in the previous
sections, the results are taken from running the at a target frequency of
100MHz unless speci�ed otherwise. Note that these results do not include
production calibration data, and as such may not necessarily be absolutely
correct. However they do give a relatively accurate comparison.

5.3.1 Single instructions

In order to have a baseline and be able to give rough estimates on the energy
consumption of di�erent tasks, each FPU con�guration has been measured
(using Synopsys Spyglass) while performing all supported instructions. The
results can be seen in Tables 5.7, 5.8 and 5.9

6From the input is applied until the result is ready at the output
7Includes a mix of all 4 FMAC ops: FMADD, FMSUB, FNMADD, FNMSUB

Operation Avg. power[µW] Energy/op[pJ] Cycles6

Add/sub 497.195 4.972 1
Mul 834.259 8.343 1
Div 545.621 43.650 8
Sqrt 534.034 42.723 8

FMAC7 822.807 16.456 2
F2I 387.524 3.875 1
I2F 424.180 4.242 1

Idle/Noop 333.976 3.340 1

Table 5.7: Power and energy consumed per FPU op for default PULP con�g

37

5.3. POWER

Low Power Floating-Point Unit for RISC-V

Operation Avg. power[µW] Energy/op[pJ] Cycles6

Add/sub 718.445 14.369 2
Mul 782.559 15.651 2
Div 507.574 40.606 8
Sqrt 500.093 40.007 8

FMAC7 825.959 16.519 2
F2I 384.179 3.842 1
I2F 417.666 4.177 1

Idle/Noop 312.249 3.122 1

Table 5.8: Power and energy consumed per FPU op for customized PULP
con�g

Operation Avg. power[µW] Energy/op[pJ] Cycles6

Add/sub 157.754 3.155 2
Mul 524.081 10.482 2
Div N/A N/A N/A
Sqrt N/A N/A N/A

FMAC7 N/A N/A N/A
F2I 98.337 1.967 2
I2F 118.331 2.367 2

Idle/Noop 84.416 0.844 1

Table 5.9: Power and energy consumed per FPU op for small (no FMA)
PULP con�g

38

CHAPTER 5. RESULTS

Low Power Floating-Point Unit for RISC-V

Operation Avg. power[µW] Energy/op[pJ] Cycles6

Add/sub 157.754 1.578 1
Mul 524.081 5.241 1
Div N/A N/A N/A
Sqrt N/A N/A N/A

FMAC7 N/A N/A N/A
F2I 98.337 0.983 1
I2F 118.331 1.183 1

Idle/Noop 84.416 0.844 1

Table 5.10: Power and energy consumed per FPU op for improved small (no
FMA) PULP con�g

Note that the small FPU con�guration, riscv_fpu from the PULP FPU
GitHub repository[35] uses two cycles for each operation because it is
con�gured to do so, therefore its performance and energy/op �gures can
be improved by using the same ready-signal as in the other PULP FPU
con�gurations. See Table 5.10 for improved results.

5.3.2 OPUS codec

Using the power estimated for each instruction in the previous Section, a
rough estimate of the energy bene�ts on the OPUS benchmark is given below
for each FPU con�guration. Figure 5.3 shows the breakdown in number of
instructions required to complete the benchmark, and Figure 5.4 show how it
would have been if the compiler was better at converting operation sequences
to FMA operations where possible.

39

5.3. POWER

Low Power Floating-Point Unit for RISC-V

fm
ad
d

fm
su
b

fn
m
su
b

fn
m
ad
d
fa
dd fsu

b
fm
ul

fd
iv

fsq
rt f2

i
i2
f

0

0.2

0.4

0.6

0.8

1

1.2

1.4

·104
C
ou
n
t

Figure 5.3: Distribution of FPU instructions in OPUS benchmark run

Operation Standard[pJ] Custom[pJ]
Add/sub 66126.94 191106.37

Mul 108261.79 203105.36
Div 2662.63 2476.96
Sqrt 0.00 0.00

FMAC7 0.00 0.00
F2I 77.50 76.84
I2F 2761.41 2719.01

Idle/Noop 1534596.34 1434762.30
Total 1714486.61 1834246.83

Table 5.11: Power and energy consumed for OPUS benchmark, grouped by
FPU op

40

CHAPTER 5. RESULTS

Low Power Floating-Point Unit for RISC-V

fm
ad
d

fm
su
b

fn
m
su
b

fn
m
ad
d
fa
dd fsu

b
fm
ul

fd
iv

fsq
rt f2

i
i2
f

0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

8,000

9,000

C
ou
n
t

Figure 5.4: Distribution of FPU instructions in OPUS benchmark run, with
better compiler optimization

Operation Standard[pJ] Custom[pJ]
Add/sub 44792.30 129449.42

Mul 72463.74 135946.15
Div 2662.63 2476.96
Sqrt 0.00 0.00

FMAC7 70613.30 70883.80
F2I 77.50 76.84
I2F 2761.41 2719.01

Idle/Noop 1534596.34 1434762.30
Total 1727967.22 1776314.47

Table 5.12: Power and energy consumed for OPUS benchmark with improved
FMADD detection and optimization, grouped by FPU op

41

Chapter 6

Discussion and future work

The energy consumption results in Section 5.3.2 showed some surprising
�ndings; if the compiler had optimized sequences of multiplications
and additions into fused-multiply-and-add operations, the actual energy
consumed for the Opus benchmark would have increased even though it
would have completed marginally faster.

When looking at the average power and energy for each operation in
Section 5.3.1, the most notable di�erence is the add/sub, with an increase in
average power of almost 45%. This is due to lack of optimization; according
to the simulation reports, approximately 157µW were consumed by toggling
of the unused multiplier logic in the FMA pipeline. With input latches in
place the resulting power consumption would have been closer to 560µW
- approximately 13% higher than the original PULP FPU. The issue with
add/sub taking 2 clock cycles is simply due to poor pipelining, and should
be easily �xable with some manual register placement. With that resolved
the energy/op would come closer to the same �gures as the original PULP.

The results in Figure 5.2 clearly shows that there is much optimization
left to be done on the customized FMA with regards to pipelining and timing.
With a massive drop in maximum frequency from 140MHz to 119MHz we
can see evidence that the changes have restricted the options available to the
retiming algorithm.

6.1 Unum and posits

Unum and posits[3] are part of a new proposal for �oating-point number
representation proposed in 2013 by John L. Gustafson, and elaborated in his
book The End of Error [20]. It is not very di�erent from the IEEE 754 format,
apart from simplifying things like removing in�nity and instead capping

43

6.2. TRANSPRECISION

Low Power Floating-Point Unit for RISC-V

values at the min-/maximum representable value. Therefore, it should be
feasible to modify an IEEE 754-compliant FPU to implement support for it.

6.2 Transprecision

As the complexity, and therefore also the area, power and time increases with
the number of bits needed to compute a result, reducing the precision can be a
great way of saving power when the application allows[29]. There is currently
ongoing research in the topic of transprecision �oating-point at ETH Zürich
and University of Bologna, where they have proposed two additional �oating-
point formats at 8 and 16 bits[43], along with hardware to work with the
formats.

There has also been research into variable-precision FMA units that track
the need for accuracy and compute results at reduced power consumption
when the full precision is not required[24].

6.3 64-bit precision on 32-bit hardware

For small, low power designs a double-precision 64-bit FPU is usually
considered too costly to implement in an otherwise 32-bit system. In one
paper[25] from 2002 a design was proposed that enabled execution of double-
precision operations on a single-precision FPU with very low hardware
overhead. This was achieved by splitting the 64-bit operands into two
32-bit and computing the exponent and alignment �rst, before performing
computation on the 53-bit fraction in multiple following cycles.

6.4 Hardware sharing and reuse

Because of the limitation speci�ed in Section 1.1 that the scope is a single-
issue in-order pipeline, it should be feasible to avoid any concurrent activity
in the integer and �oating-point ALUs. That should in turn allow a 32-
bit integer ALU to be reused for computing the fraction in single-precision
�oating-point operations.By doing this it could be possible to greatly reduce
the overhead of adding �oating-point support to an otherwise small system.

This method has previously been employed for commercial processors like
the MIPS R4200 [50].

44

Chapter 7

Conclusion

Surprisingly enough, it would seem like the optimizations performed on the
PULP FPU to reuse the fused multiply-adder for regular multiplication
and addition operations ended up making the overall energy consumption
signi�cantly worse. This may however be due to lack of optimization,
and the results could have been better if more time had been invested in
improvements.

However the area savings were not insigni�cant at around 12%, and when
scaling down to newer process nodes where leakage becomes increasingly
dominant, this di�erence could prove bene�cial. In conclusion this does not
seem to be a tradeo� that is worth it for now, at least not in 55nm, unless
area is at an extreme premium or the applications make extensive use of
fused multiply-add operations. With better optimization it could have some
potential, and coupled with some of the improvements suggested in Section
6.4 it could become worthwile.

It seems that for small, low-power implementations there would in most
cases be more e�cient to choose a small FPU without FMA and then
implement the FMADD instructions in microcode (as described in Section
2.3.3).

45

Bibliography

[1] IEEE Standard for Floating-Point Arithmetic. IEEE Std 754-2008,
pages 1�70, Aug 2008.

[2] Jacob Andersen, Kevin Se�ensen, and Peter Jensen. A
Generic UVM Scoreboard. https://verificationacademy.com/

verification-horizons/november-2015-volume-11-issue-3/

a-generic-uvm-scoreboard, November 2015. Online, accessed
2018-07-04.

[3] Next Generation Arithmetic. Unum and Posit - about. https://

posithub.org/about. Online, accessed 2018-06-15.

[4] Jonathan Bachrach, Huy Vo, Brian Richards, Yunsup Lee, Andrew
Waterman, Rimas Aviºienis, John Wawrzynek, and Krste Asanovi¢.
Chisel: constructing hardware in a scala embedded language. In
Proceedings of the 49th Annual Design Automation Conference, pages
1216�1225. ACM, 2012.

[5] Ronan Barzic and Jean-Baptiste Brelot. NanoRV32 - GitHub repository.
https://github.com/rbarzic/nanorv32, 2016. Online, accessed 2017-
11-15.

[6] J. D. Bruguera and T. Lang. Floating-point fused multiply-add:
reduced latency for �oating-point addition. In 17th IEEE Symposium
on Computer Arithmetic (ARITH'05), pages 42�51, June 2005.

[7] Anantha P Chandrakasan, Samuel Sheng, and Robert W Brodersen.
Low-power cmos digital design. IEICE Transactions on Electronics,
75(4):371�382, 1992.

[8] Mentor Graphics Corporation. PowerPro Power Estimation.
https://www.mentor.com/hls-lp/powerpro-rtl-low-power/

power-estimation. Online, accessed 2018-07-04.

47

https://verificationacademy.com/verification-horizons/november-2015-volume-11-issue-3/a-generic-uvm-scoreboard
https://verificationacademy.com/verification-horizons/november-2015-volume-11-issue-3/a-generic-uvm-scoreboard
https://verificationacademy.com/verification-horizons/november-2015-volume-11-issue-3/a-generic-uvm-scoreboard
https://posithub.org/about
https://posithub.org/about
https://github.com/rbarzic/nanorv32
https://www.mentor.com/hls-lp/powerpro-rtl-low-power/power-estimation
https://www.mentor.com/hls-lp/powerpro-rtl-low-power/power-estimation

BIBLIOGRAPHY

Low Power Floating-Point Unit for RISC-V

[9] B. Davari, R. H. Dennard, and G. G. Shahidi. Cmos scaling for high
performance and low power-the next ten years. Proceedings of the IEEE,
83(4):595�606, Apr 1995.

[10] Gaurav Dhiman, Kishore Kumar Pusukuri, and Tajana Rosing. Analysis
of dynamic voltage scaling for system level energy management.
USENIX HotPower, 8, 2008.

[11] Alan Mischenko et al. ABC: A System for Sequential Synthesis and Veri-
�cation. https://people.eecs.berkeley.edu/~alanmi/abc/. Online,
accessed 2018-06-15.

[12] Krste Asanovi¢ et al. Rocket Chip Generator - GitHub repository.
https://github.com/freechipsproject/rocket-chip, 2016. Online,
accessed 2017-09-01.

[13] Krste Asanovi¢ et al. The Rocket Chip Generator. Technical Report
UCB/EECS-2016-17, EECS Department, University of California,
Berkeley, Apr 2016.

[14] Michael Scha�ner et. al. PULP - iis-projects wiki. http://

iis-projects.ee.ethz.ch/index.php/PULP. Online, accessed 2018-
07-04.

[15] RISC-V Foundation. RISC-V Foundation - about. http://riscv.org/
riscv-foundation. Online, accessed 2017-11-24.

[16] S. Galal and M. Horowitz. Energy-E�cient Floating-Point Unit Design.
IEEE Transactions on Computers, 60(7):913�922, July 2011.

[17] Michael Gautschi, Andreas Traber, and Florian Zaruba. Imperio, the
�rst PULPino tapeout. http://asic.ethz.ch/2015/Imperio.html,
2015.

[18] Andreas Gerstlauer. SpecC homepage. http://www.cecs.uci.edu/

~specc/. Online, accessed 2017-11-17.

[19] UC Berkeley Architecture Research group. Berkeley Hardware Floating-
Point Units - GitHub repository. https://github.com/ucb-bar/

berkeley-hardfloat, 2017. Online, accessed 2017-12-11.

[20] John L Gustafson. The End of Error: Unum Computing. Chapman and
Hall/CRC, 2015.

48

https://people.eecs.berkeley.edu/~alanmi/abc/
https://github.com/freechipsproject/rocket-chip
http://iis-projects.ee.ethz.ch/index.php/PULP
http://iis-projects.ee.ethz.ch/index.php/PULP
http://riscv.org/riscv-foundation
http://riscv.org/riscv-foundation
http://asic.ethz.ch/2015/Imperio.html
http://www.cecs.uci.edu/~specc/
http://www.cecs.uci.edu/~specc/
https://github.com/ucb-bar/berkeley-hardfloat
https://github.com/ucb-bar/berkeley-hardfloat

BIBLIOGRAPHY

Low Power Floating-Point Unit for RISC-V

[21] Synopsys Inc. Synopsys home page. http://www.synopsys.com/.
Online, accessed 2017-11-15.

[22] Accelera Systems Initiative. SystemC homepage. http://www.

accellera.org/downloads/standards/systemc. Online, accessed
2017-11-17.

[23] JEDEC. Gate Equivalents - dictionary de�nition. https:

//www.jedec.org/standards-documents/dictionary/terms/

gate-equivalent-1-cmos. Online, accessed 2018-07-04.

[24] H. Kaul, M. Anders, S. Mathew, S. Hsu, A. Agarwal, F. Sheikh,
R. Krishnamurthy, and S. Borkar. A 1.45ghz 52-to-162g�ops/w variable-
precision �oating-point fused multiply-add unit with certainty tracking
in 32nm cmos. In 2012 IEEE International Solid-State Circuits
Conference, pages 182�184, Feb 2012.

[25] Seungchul Kim, Yongjoo Lee, Wookyeong Jeong, and Yongsurk Lee.
Low cost �oating point arithmetic unit design. In Proceedings. IEEE
Asia-Paci�c Conference on ASIC,, pages 217�220, 2002.

[26] Philipp Koppe, Benjamin Kollenda, Marc Fyrbiak, Christian Kison,
Robert Gawlik, Christof Paar, and Thorsten Holz. Reverse engineering
x86 processor microcode.

[27] Yunsup Lee, Andrew Waterman, Rimas Avizienis, Henry Cook, Chen
Sun, Vladimir Stojanovi¢, and Krste Asanovi¢. A 45nm 1.3 ghz 16.7
double-precision g�ops/w risc-v processor with vector accelerators. In
European Solid State Circuits Conference (ESSCIRC), ESSCIRC 2014-
40th, pages 199�202. IEEE, 2014.

[28] Charles E. Leiserson and James B. Saxe. Retiming synchronous circuitry.
Algorithmica, 6(1):5�35, Jun 1991.

[29] A. C. I. Malossi, M. Scha�ner, A. Molnos, L. Gammaitoni, G. Tagliavini,
A. Emerson, A. Tomás, D. S. Nikolopoulos, E. Flamand, and
N. Wehn. The transprecision computing paradigm: Concept, design, and
applications. In 2018 Design, Automation Test in Europe Conference
Exhibition (DATE), pages 1105�1110, March 2018.

[30] Torbjørn Viem Ness. Low Power Floating-Point Unit for RISC-V -
project report, 12 2017.

49

http://www.synopsys.com/
http://www.accellera.org/downloads/standards/systemc
http://www.accellera.org/downloads/standards/systemc
https://www.jedec.org/standards-documents/dictionary/terms/gate-equivalent-1-cmos
https://www.jedec.org/standards-documents/dictionary/terms/gate-equivalent-1-cmos
https://www.jedec.org/standards-documents/dictionary/terms/gate-equivalent-1-cmos

BIBLIOGRAPHY

Low Power Floating-Point Unit for RISC-V

[31] Torbjørn Viem Ness. Contribution to GitHub repository pulp-
platform/fpu - multiplication bug. https://github.com/

pulp-platform/fpu/pull/7, May 2018.

[32] Torbjørn Viem Ness. Contribution to GitHub repository
pulp-platform/fpu - tool compatibility. https://github.com/

pulp-platform/fpu/pull/9, May 2018.

[33] H. J. Osten, J. P. Liu, P. Gaworzewski, E. Bugiel, and P. Zaumseil. High-
k gate dielectrics with ultra-low leakage current based on praseodymium
oxide. In International Electron Devices Meeting 2000. Technical Digest.
IEDM (Cat. No.00CH37138), pages 653�656, Dec 2000.

[34] R. Peesapati, K. K. Anumandla, and S. L. Sabat. Performance
evaluation of �oating point di�erential evolution hardware accelerator
on fpga. In 2016 IEEE Region 10 Conference (TENCON), pages 3173�
3178, Nov 2016.

[35] PULP project. PULP platform FPU - GitHub repository. https:

//github.com/pulp-platform/fpu, 2018. Online, accessed 2018-02-
26.

[36] PULP project. RI5CY: RISC-V Core - GitHub repository. https:

//github.com/pulp-platform/zero-riscy, 2018. Online, accessed
2018-07-04.

[37] PULP project. RI5CY: RISC-V Core - GitHub repository. https:

//github.com/pulp-platform/riscv, 2018. Online, accessed 2018-07-
04.

[38] Antonio Pullini and Davide Rossi. Imperio, the �rst PULPino tapeout.
http://asic.ethz.ch/2017/Mr.Wolf.html, 2017.

[39] Robert Resnick, Jearl Walker, and D Halliday. Fundamentals of physics,
volume 1. John Wiley, 1988.

[40] Soheil Salehi and Ronald F DeMara. Energy and area analysis of a
�oating-point unit in 15nm CMOS process technology. In SoutheastCon
2015, pages 1�5. IEEE, 2015.

[41] Eric M. Schwarz. Binary Floating-Point Unit Design, pages 189�208.
Springer US, Boston, MA, 2006.

50

https://github.com/pulp-platform/fpu/pull/7
https://github.com/pulp-platform/fpu/pull/7
https://github.com/pulp-platform/fpu/pull/9
https://github.com/pulp-platform/fpu/pull/9
https://github.com/pulp-platform/fpu
https://github.com/pulp-platform/fpu
https://github.com/pulp-platform/zero-riscy
https://github.com/pulp-platform/zero-riscy
https://github.com/pulp-platform/riscv
https://github.com/pulp-platform/riscv
http://asic.ethz.ch/2017/Mr.Wolf.html

BIBLIOGRAPHY

Low Power Floating-Point Unit for RISC-V

[42] Hayden So. Introduction to Fixed Point Number Representa-
tion. http://www-inst.eecs.berkeley.edu/~cs61c/sp06/handout/

fixedpt.html, 2006. Online, accessed 2018-06-15.

[43] G. Tagliavini, S. Mach, D. Rossi, A. Marongiu, and L. Benin. A
transprecision �oating-point platform for ultra-low power computing.
In 2018 Design, Automation Test in Europe Conference Exhibition
(DATE), pages 1051�1056, March 2018.

[44] Potential Ventures. CoCoTB - GitHub repository. https://github.

com/potentialventures/cocotb, 2018. Online, accessed 2018-02-26.

[45] Andrew Waterman. Design of the RISC-V Instruction Set Architecture.
PhD thesis, EECS Department, University of California, Berkeley, Jan
2016.

[46] Andrew Waterman and Krste Asanovi¢. The RISC-V Instruction Set
Manual, Volume I: User-Level ISA, Document Version 2.2, May 2017.

[47] Andrew Waterman and contributors. RISCV GNU Compiler
Toolchain - GitHub repository. https://github.com/riscv/

riscv-gnu-toolchain, 2017. Online, accessed 2017-10-11.

[48] Martin H. Weik. microcode, pages 1012�1012. Springer US, Boston,
MA, 2001.

[49] Cli�ord Wolf. Yosys Open SYnthesis Suite. http://www.clifford.at/
yosys/. Online, accessed 2018-06-15.

[50] B. Zivkov, B. Ferguson, and M. Gupta. R4200: a high-performance mips
microprocessor for portables. In Compcon Spring '94, Digest of Papers.,
pages 18�25, Feb 1994.

51

http://www-inst.eecs.berkeley.edu/~cs61c/sp06/handout/fixedpt.html
http://www-inst.eecs.berkeley.edu/~cs61c/sp06/handout/fixedpt.html
https://github.com/potentialventures/cocotb
https://github.com/potentialventures/cocotb
https://github.com/riscv/riscv-gnu-toolchain
https://github.com/riscv/riscv-gnu-toolchain
http://www.clifford.at/yosys/
http://www.clifford.at/yosys/

Appendices

53

Appendix A

High-level Python model

The following appendices contain the Python �les used in the simulation test
bench.

A.1 common.py

This �le contains the common functions and de�nitions used across the
Python testbench infrastructure.

import cocotb

from cocotb.decorators import coroutine

from cocotb.triggers import Timer

from simple_model import *

Set the default clock period, 10_000ps = 100MHz

DEFAULT_CKPER = 10000

@cocotb.coroutine

def reset_gen(reset_n, duration=20000):

"""Generator for resetting at the beginning of the test"""

reset_n <= 0

yield Timer(duration)

reset_n <= 1

reset_n._log.info("Reset done")

def data_gen():

"""Generator for random 32-bit input"""

while True:

55

A.1. COMMON.PY

Low Power Floating-Point Unit for RISC-V

yield random.randint(0,0xFFFFFFFF)

@cocotb.coroutine

def clock_gen(signal, period=DEFAULT_CKPER):

"""Generate the clock signal"""

while True:

signal <= 0

yield Timer(period>>1)

signal <= 1

yield Timer(period>>1)

56

APPENDIX A. HIGH-LEVEL PYTHON MODEL

Low Power Floating-Point Unit for RISC-V

A.2 simple_model.py

This is the simpli�ed high-level model used for verifying correctness of the
FPU simulation results.

import ctypes as ct, math, random

INT32_MAXVAL = 0x7FFFFFFF

INT32_MINVAL = 0x80000000

UINT32_MAXVAL = 0xFFFFFFFF

C_FLEN = 32

RV32F_NAN_CANONICAL = 0x7fc00000 # The default (quiet) NaN

result to return unless something else is specified↪→

RV32F_NAN_INF_MASK = 0x7f800000 # The mask of a signalling

NaN or inf - NaN or inf is determined by whether or not the

entire significand is 0

↪→

↪→

RV32F_SIGNIFICAND_MASK = 0x007fffff

RV32D_NAN_CANONICAL = 0x7ff8000000000000 # The default

(quiet) NaN result to return unless something else is

specified

↪→

↪→

RV32D_NAN_INF_MASK = 0x7ff0000000000000 # The mask of a

signalling NaN or inf - NaN or inf is determined by whether

or not the entire significand is 0

↪→

↪→

RV32D_SIGNIFICAND_MASK = 0x000fffffffffffff

RV32D_SINGLE_MASK = 0xFFFFFFFF00000000 # The upper 32

bits of narrower (single-precision) numbers should be set

to '1' (secion 9.2 in RISCV-spec v2.2)

↪→

↪→

C_FPU_ADD_CMD = 0x0;

C_FPU_SUB_CMD = 0x1;

C_FPU_MUL_CMD = 0x2;

C_FPU_DIV_CMD = 0x3;

C_FPU_I2F_CMD = 0x4;

C_FPU_F2I_CMD = 0x5;

C_FPU_SQRT_CMD = 0x6;

C_FPU_NOP_CMD = 0x7;

C_FPU_FMADD_CMD = 0x8;

C_FPU_FMSUB_CMD = 0x9;

C_FPU_FNMADD_CMD = 0xA;

C_FPU_FNMSUB_CMD = 0xB;

57

A.2. SIMPLE_MODEL.PY

Low Power Floating-Point Unit for RISC-V

C_RM_NEAREST = 0x0;

C_RM_TRUNC = 0x1;

C_RM_PLUSINF = 0x3;

C_RM_MINUSINF = 0x2;

C_RM_NEAREST_MAX = 0x4;

For prettier logging

op_names = ["add", "sub", "mul", "div", "i2f", "f2i", "sqrt",

"nop", "fmadd", "fmsub", "fnmadd", "fnmsub"]↪→

Interprets the submitted data as raw bytes and returns a

floating-point number↪→

def int2float(i):

return ct.c_float.from_buffer(ct.c_uint32(i)).value

Returns the data of the supplied float untouched but as an

int, to allow use of python's number printing functions↪→

def float2int(f):

return ct.c_uint.from_buffer(ct.c_float(f)).value

Check that an alleged single-precision number is legally

NaN-boxed (see section 9.2 of RISC-V ISA spec)↪→

def isNanBoxed(num):

#print("isNanBoxed called with num=0x{:08x} ".format(num))

if C_FLEN == 32 or ((num & RV32D_SINGLE_MASK) ==

RV32D_SINGLE_MASK):↪→

If double precision is not used, just return True to

signal everything is OK↪→

#print("\tTrue")

return True

#print("\tFalse")

return False

def isNaN(num, precision='s'):

if type(num) is float:

if precision is 'd':

tmp = double2long(num)

else:

tmp = float2int(num)

else:

58

APPENDIX A. HIGH-LEVEL PYTHON MODEL

Low Power Floating-Point Unit for RISC-V

tmp = num

if precision is 'd':

if (tmp & RV32D_NAN_CANONICAL) == RV32D_NAN_CANONICAL

or isSigNaN(num, precision):↪→

return True

else:

if (not isNanBoxed(tmp)) or (tmp & RV32F_NAN_CANONICAL)

== RV32F_NAN_CANONICAL or isSigNaN(num, precision):↪→

return True

return False

NOTE: When using python float, signalling NaN is NOT

supported - as soon as a number is cast or converted by

python, it is automatically forced into quiet NaN -

0x7fcPPPPP ('P'=payload bytes)

↪→

↪→

↪→

def isSigNaN(num, precision='s'):

if type(num) is float:

if precision is 'd':

tmp = double2long(num)

else:

tmp = float2int(num)

else:

tmp = num

if precision is 'd':

if (tmp & RV32D_NAN_CANONICAL) == RV32D_NAN_INF_MASK

and (tmp & RV32D_SIGNIFICAND_MASK) != 0:↪→

return True

else:

if (tmp & RV32F_NAN_CANONICAL) == RV32F_NAN_INF_MASK

and (tmp & RV32F_SIGNIFICAND_MASK) != 0:↪→

return True

return False

def simple_model(operation, operand_a, operand_b, operand_c,

rounding_mode=0):↪→

if operand_a is not None:

f_operand_a = int2float(operand_a)

if operand_b is not None:

f_operand_b = int2float(operand_b)

if operand_c is not None:

f_operand_c = int2float(operand_c)

59

A.2. SIMPLE_MODEL.PY

Low Power Floating-Point Unit for RISC-V

The sign of the result is important in some cases as

IEEE-754 has two representations of 0↪→

res_sign = 0

if operation == C_FPU_ADD_CMD:

f_res = f_operand_a + f_operand_b

elif operation == C_FPU_SUB_CMD:

f_res = f_operand_a - f_operand_b

elif operation == C_FPU_MUL_CMD:

f_res = f_operand_a * f_operand_b

res_sign = (operand_a & (1 << 31)) ^ (operand_b & (1 <<

31))↪→

elif operation == C_FPU_DIV_CMD:

if (f_operand_b == 0):

print("Invalid operation: divide by zero")

res_sign = (operand_a & (1 << 31)) ^ (operand_b &

(1 << 31))↪→

Return an inf value with the correct sign

return (RV32F_NAN_INF_MASK | res_sign)

f_res = f_operand_a / f_operand_b

elif operation == C_FPU_I2F_CMD:

f_res = ct.c_float(ct.c_int32(operand_a).value).value

elif operation == C_FPU_F2I_CMD:

if isNaN(operand_a):

return RV32F_NAN_CANONICAL

if (f_operand_a > INT32_MAXVAL):

return INT32_MAXVAL

elif (f_operand_a < -INT32_MINVAL):

return INT32_MINVAL

TODO: handle rounding mode

return ct.c_uint(int(f_operand_a)).value

elif operation == C_FPU_SQRT_CMD:

if (f_operand_a < 0):

print("Invalid operation: sqrt of a negative

number: {0:f}".format(f_operand_a))↪→

return RV32F_NAN_CANONICAL

f_res = math.sqrt(f_operand_a)

elif operation == C_FPU_NOP_CMD:

return 0 # TODO: is there a better value to return

here? Don't really care↪→

60

APPENDIX A. HIGH-LEVEL PYTHON MODEL

Low Power Floating-Point Unit for RISC-V

elif operation == C_FPU_FMADD_CMD:

f_res = (f_operand_a * f_operand_b) + f_operand_c

res_sign = (operand_a & (1 << 31)) ^ (operand_b & (1 <<

31))↪→

print("res_sign: {0:08x}".format(res_sign))

elif operation == C_FPU_FMSUB_CMD:

f_res = (f_operand_a * f_operand_b) - f_operand_c

res_sign = (operand_a & (1 << 31)) ^ (operand_b & (1 <<

31))↪→

print("res_sign: {0:08x}".format(res_sign))

elif operation == C_FPU_FNMADD_CMD:

f_res = -((f_operand_a * f_operand_b) + f_operand_c)

res_sign = ~((operand_a & (1 << 31)) ^ (operand_b & (1

<< 31))) & (1 << 31)↪→

print("res_sign: {0:08x}".format(res_sign))

elif operation == C_FPU_FNMSUB_CMD:

f_res = -((f_operand_a * f_operand_b) - f_operand_c)

res_sign = ~((operand_a & (1 << 31)) ^ (operand_b & (1

<< 31))) & (1 << 31)↪→

print("res_sign: {0:08x}".format(res_sign))

else:

print("Illegal operation: " + operation)

Handle NaN

if (# 2-operand computation

(operation == C_FPU_ADD_CMD

or operation == C_FPU_SUB_CMD

or operation == C_FPU_MUL_CMD

or operation == C_FPU_DIV_CMD

) and (

(isNaN(operand_a) or isNaN(operand_b))

)

) or (# 3-operand computation

(operation == C_FPU_FMADD_CMD

or operation == C_FPU_FMSUB_CMD

or operation == C_FPU_FNMADD_CMD

or operation == C_FPU_FNMSUB_CMD

) and (

(isNaN(operand_a) or isNaN(operand_b) or

isNaN(operand_c))↪→

)

61

A.2. SIMPLE_MODEL.PY

Low Power Floating-Point Unit for RISC-V

) or (# 1-operand operations

(operation == C_FPU_F2I_CMD

or operation == C_FPU_SQRT_CMD

) and (

isNaN(operand_a)

)

):

return RV32F_NAN_CANONICAL

TODO: care about rounding mode

rounded_res = ct.c_float(f_res).value

if (rounded_res != f_res):

print("Inexact result")

i_res = float2int(rounded_res)

if (i_res & 0x7FFFFFFF == 0):

Make sure the sign bit is correct if the result is

-0.0, as Python doesn't care about such trivial but

important details

↪→

↪→

i_res = (i_res & 0x7FFFFFFF) | res_sign

return abs(i_res)

62

APPENDIX A. HIGH-LEVEL PYTHON MODEL

Low Power Floating-Point Unit for RISC-V

A.3 fpu_private_framework.py

This is a part of the Python test harness speci�c to the standard PULP FPU
design.

import random, ctypes as ct, math, os

import cocotb, logging

from cocotb.decorators import coroutine

from cocotb.triggers import Timer, RisingEdge, FallingEdge,

ReadOnly↪→

from cocotb.result import TestFailure, TestSuccess, TestError

from cocotb.regression import TestFactory

from common import *

@cocotb.coroutine

def run_test(dut, operation=0, operand_a=0, operand_b=0,

operand_c=0, rounding_mode=0, repetitions=1):↪→

"""Setup testbench and run a test

module fpu_private

(

//Clock and reset

input logic clk_i,

input logic rst_ni,

// enable

input logic fpu_en_i,

// inputs

input logic [C_OP-1:0] operand_a_i,

input logic [C_OP-1:0] operand_b_i,

input logic [C_OP-1:0] operand_c_i,

input logic [C_RM-1:0] rm_i,

input logic [C_CMD-1:0] fpu_op_i,

input logic [C_PC-1:0] prec_i,

// outputs

output logic [C_OP-1:0] result_o,

output logic valid_o,

output logic [C_FFLAG-1:0] flags_o,

output logic divsqrt_busy_o

63

A.3. FPU_PRIVATE_FRAMEWORK.PY

Low Power Floating-Point Unit for RISC-V

);

"""

dut.log.setLevel(logging.DEBUG)

if (repetitions < 1):

raise TestFailure("Repetitions must be a positive

number")↪→

try:

ckper = int(os.environ.get('CKPER', DEFAULT_CKPER))

except:

ckper = DEFAULT_CKPER

if operand_a is None:

random_a = True

else:

random_a = False

if operand_b is None:

random_b = True

else:

random_b = False

if operand_c is None:

random_c = True

else:

random_c = False

dut._log.info("Testing op:

{0:s}".format(op_names[operation]))↪→

dut.fpu_en_i <= 0

cocotb.fork(clock_gen(dut.clk_i, ckper))

yield reset_gen(dut.rst_ni)

clkedge = RisingEdge(dut.clk_i)

negedge = FallingEdge(dut.clk_i)

dut.prec_i <= 0 # Number of bits precision in the division

result↪→

yield clkedge

for i in range(repetitions):

if random_a:

operand_a = data_gen().next()

64

APPENDIX A. HIGH-LEVEL PYTHON MODEL

Low Power Floating-Point Unit for RISC-V

if random_b:

operand_b = data_gen().next()

if random_c:

operand_c = data_gen().next()

dut._log.info("\nTesting round {3} of {4}: a={0:f},

b={1:f}, c={2:f}".format(int2float(operand_a),↪→

int2float(operand_b),

int2float(operand_c),

i+1,

repetitions))

↪→

↪→

↪→

↪→

dut.fpu_en_i <= 1

dut.operand_a_i <= operand_a

dut.operand_b_i <= operand_b

dut.operand_c_i <= operand_c

dut.rm_i <= rounding_mode

dut.fpu_op_i <= operation

yield clkedge

dut._log.debug("valid_o = {0}, divsqrt_busy_o = {1},

result_o = {2}, flags_o = {3}"↪→

.format(dut.valid_o.value,

dut.divsqrt_busy_o.value,↪→

dut.result_o.value,

dut.flags_o.value))↪→

dut.fpu_en_i <= 0

cycles_spent = 0

yield ReadOnly()

while operation != C_FPU_NOP_CMD and

dut.valid_o.value.integer == 0:↪→

#print("valid_o = {0}, divsqrt_busy_o = {1},

result_o = {2}, flags_o = {3}"↪→

.format(dut.valid_o.value,

dut.divsqrt_busy_o.value,↪→

dut.result_o.value,

dut.flags_o.value))↪→

if cycles_spent >= 10:

65

A.3. FPU_PRIVATE_FRAMEWORK.PY

Low Power Floating-Point Unit for RISC-V

#raise TestError("Timed out waiting for

result")↪→

dut._log.error("Timed out waiting for result")

break

yield clkedge

yield ReadOnly()

cycles_spent = cycles_spent + 1

dut.result_o._log.info(dut.result_o.value)

dut.valid_o._log.info(dut.valid_o.value)

dut.flags_o._log.info(dut.flags_o.value)

dut.result_o._log.info("Result:

{0:f}".format(int2float(int(dut.result_o.value))))↪→

computed = int(dut.result_o.value)

expected = simple_model(operation, operand_a,

operand_b, operand_c, rounding_mode)↪→

if computed != expected:

#raise TestError("Computed result 0x{0:08x} differs

from expected: 0x{1:08x}".format(computed,

expected))

↪→

↪→

dut._log.error("Computed result 0x{0:08x} differs

from expected: 0x{1:08x}".format(computed,

expected))

↪→

↪→

End simulation at a negative edge to get some time to

see the result on waveforms↪→

yield negedge

Make�le

Makefile for use with CoCoTB, based on DFF example Makefile

- Torbjørn Viem Ness (NTNU), spring 2018

CWD=$(shell pwd | sed 's/:/\\:/')

COCOTB?=/home/tone/cocotb

TODO: specifying TOPLEVEL_LANG may not be needed

TOPLEVEL_LANG ?=verilog

66

APPENDIX A. HIGH-LEVEL PYTHON MODEL

Low Power Floating-Point Unit for RISC-V

VERILOG_SOURCES

=$(CWD)/../../../../../pulp-fpu/hdl/fpu_v0.1/fpu_defs.sv↪→

VERILOG_SOURCES

+=$(CWD)/../../../../../pulp-fpu/hdl/fpu_v0.1/defines_fpu.sv↪→

VERILOG_SOURCES

+=$(CWD)/../../../../../pulp-fpu/hdl/fpu_fmac/fpu_defs_fmac.sv↪→

VERILOG_SOURCES

+=$(CWD)/../../../../../pulp-fpu/hdl/fpu_div_sqrt_tp_nlp/fpu_defs_div_sqrt_tp.sv↪→

VERILOG_SOURCES

+=$(CWD)/../../../../../pulp-fpu/hdl/fpu_v0.1/fpu_private.sv↪→

VERILOG_SOURCES

+=$(CWD)/../../../../../pulp-fpu/hdl/fpu_v0.1/fpu_mult.sv↪→

VERILOG_SOURCES

+=$(CWD)/../../../../../pulp-fpu/hdl/fpu_v0.1/fpu_add.sv↪→

VERILOG_SOURCES

+=$(CWD)/../../../../../pulp-fpu/hdl/fpu_v0.1/fpu_itof.sv↪→

VERILOG_SOURCES

+=$(CWD)/../../../../../pulp-fpu/hdl/fpu_v0.1/fpu_ftoi.sv↪→

VERILOG_SOURCES

+=$(CWD)/../../../../../pulp-fpu/hdl/fpu_v0.1/fpu_norm.sv↪→

VERILOG_SOURCES

+=$(CWD)/../../../../../pulp-fpu/hdl/fpu_v0.1/fpu_core.sv↪→

VERILOG_SOURCES

+=$(CWD)/../../../../../pulp-fpu/hdl/fpu_v0.1/fp_fma_wrapper.sv↪→

VERILOG_SOURCES

+=$(CWD)/../../../../../pulp-fpu/hdl/fpu_v0.1/fpexc.sv↪→

VERILOG_SOURCES +=$(wildcard

$(CWD)/../../../../../pulp-fpu/hdl/fpu_fmac/*.sv)↪→

VERILOG_SOURCES +=$(wildcard

$(CWD)/../../../../../pulp-fpu/hdl/fpu_div_sqrt_tp_nlp/*.sv)↪→

#EXTRA_ARGS=-s fpu_private

ifeq ($(SIM),questa)

EXTRA_ARGS=-sfcu

else

Default is Icarus

EXTRA_ARGS=-g2012

endif

TOPLEVEL=fpu_private

MODULE=$(TOPLEVEL)_cocotb

67

A.3. FPU_PRIVATE_FRAMEWORK.PY

Low Power Floating-Point Unit for RISC-V

CUSTOM_SIM_DEPS=$(CWD)/Makefile

VSIM_ARGS=-t 1ps

ifeq ($(WAVES),1)

VSIM_ARGS +=-pli novas_fli.so

endif

include $(COCOTB)/makefiles/Makefile.inc

include $(COCOTB)/makefiles/Makefile.sim

list all required Python files here

sim: $(MODULE).py

68

APPENDIX A. HIGH-LEVEL PYTHON MODEL

Low Power Floating-Point Unit for RISC-V

A.4 fpu_tiny_framework.py

This is a part of the Python test harness speci�c to the small PULP FPU
design.

import random, ctypes as ct, math, os

import cocotb, logging

from cocotb.decorators import coroutine

from cocotb.triggers import Timer, RisingEdge, FallingEdge,

ReadOnly↪→

from cocotb.result import TestFailure, TestSuccess, TestError

from cocotb.regression import TestFactory

from common import *

@cocotb.coroutine

def run_test(dut, operation=0, operand_a=0, operand_b=0,

operand_c=0, rounding_mode=0, repetitions=1):↪→

"""Setup testbench and run a test

module riscv_fpu

(

//Clock and reset

input logic clk,

input logic rst_n,

//Input Operands

input logic [C_OP-1:0] operand_a_i,

input logic [C_OP-1:0] operand_b_i,

input logic [C_RM-1:0] rounding_mode_i, //Rounding

Mode↪→

input logic [C_CMD-1:0] operator_i,

input logic enable_i,

input logic stall_i,

output logic [C_OP-1:0] result_o,

//Output-Flags

output logic fpu_ready_o, // high if fpu is

ready↪→

69

A.4. FPU_TINY_FRAMEWORK.PY

Low Power Floating-Point Unit for RISC-V

output logic result_valid_o // result is

valid↪→

);

"""

dut.log.setLevel(logging.DEBUG)

if (repetitions < 1):

raise TestFailure("Repetitions must be a positive

number")↪→

try:

ckper = int(os.environ.get('CKPER', DEFAULT_CKPER))

except:

ckper = DEFAULT_CKPER

if operand_a is None:

random_a = True

else:

random_a = False

if operand_b is None:

random_b = True

else:

random_b = False

if operand_c is None:

random_c = True

else:

random_c = False

dut._log.info("Testing op:

{0:s}".format(op_names[operation]))↪→

dut.enable_i <= 0

dut.stall_i <= 0

cocotb.fork(clock_gen(dut.clk, ckper))

yield reset_gen(dut.rst_n)

clkedge = RisingEdge(dut.clk)

negedge = FallingEdge(dut.clk)

yield clkedge

for i in range(repetitions):

if random_a:

70

APPENDIX A. HIGH-LEVEL PYTHON MODEL

Low Power Floating-Point Unit for RISC-V

operand_a = data_gen().next()

if random_b:

operand_b = data_gen().next()

if random_c:

operand_c = data_gen().next()

dut._log.info("\nTesting round {3} of {4}: a={0:f},

b={1:f}, c={2:f}".format(int2float(operand_a),↪→

int2float(operand_b),

int2float(operand_c),

i+1,

repetitions))

↪→

↪→

↪→

↪→

dut.enable_i <= 1

dut.operand_a_i <= operand_a

dut.operand_b_i <= operand_b

dut.rounding_mode_i <= rounding_mode

dut.operator_i <= operation

yield clkedge

exceptions = "{0}0{1}{2}{3}".format(dut.fpcore.IV_SO,

dut.fpcore.OF_SO.value, dut.fpcore.UF_SO,

dut.fpcore.IX_SO)

↪→

↪→

dut._log.debug("result_valid_o = {0}, result_o = {1},

flags_o = {2}"↪→

.format(dut.result_valid_o.value,

dut.result_o.value,

exceptions))

↪→

↪→

cycles_spent = 0

yield ReadOnly()

while operation != C_FPU_NOP_CMD and

dut.result_valid_o.value.integer == 0:↪→

#print("result_valid_o = {0}, divsqrt_busy_o = {1},

result_o = {2}, flags_o = {3}"↪→

.format(dut.result_valid_o.value,

dut.divsqrt_busy_o.value,↪→

dut.result_o.value,

dut.flags_o.value))↪→

if cycles_spent >= 10:

71

A.4. FPU_TINY_FRAMEWORK.PY

Low Power Floating-Point Unit for RISC-V

#raise TestError("Timed out waiting for

result")↪→

dut._log.error("Timed out waiting for result")

break

yield clkedge

yield ReadOnly()

cycles_spent = cycles_spent + 1

exceptions = "{0}0{1}{2}{3}".format(dut.fpcore.IV_SO,

dut.fpcore.OF_SO.value, dut.fpcore.UF_SO,

dut.fpcore.IX_SO)

↪→

↪→

dut.result_o._log.info(dut.result_o.value)

dut.result_valid_o._log.info(dut.result_valid_o.value)

dut.fpcore._log.info(exceptions)

dut.result_o._log.info("Result:

{0:f}".format(int2float(int(dut.result_o.value))))↪→

computed = int(dut.result_o.value)

expected = simple_model(operation, operand_a,

operand_b, operand_c, rounding_mode)↪→

if computed != expected:

#raise TestError("Computed result 0x{0:08x} differs

from expected: 0x{1:08x}".format(computed,

expected))

↪→

↪→

dut._log.error("Computed result 0x{0:08x} differs

from expected: 0x{1:08x}".format(computed,

expected))

↪→

↪→

End simulation at a negative edge to get some time to

see the result on waveforms↪→

yield negedge

Make�le

Makefile for use with CoCoTB, based on DFF example Makefile

- Torbjørn Viem Ness (NTNU), spring 2018

CWD=$(shell pwd | sed 's/:/\\:/')

COCOTB?=/home/tone/cocotb

TODO: specifying TOPLEVEL_LANG may not be needed

72

APPENDIX A. HIGH-LEVEL PYTHON MODEL

Low Power Floating-Point Unit for RISC-V

TOPLEVEL_LANG ?=verilog

VERILOG_SOURCES

=$(CWD)/../../../../../pulp-fpu/hdl/fpu_v0.1/fpu_defs.sv↪→

VERILOG_SOURCES

+=$(CWD)/../../../../../pulp-fpu/hdl/fpu_v0.1/defines_fpu.sv↪→

VERILOG_SOURCES

+=$(CWD)/../../../../../pulp-fpu/hdl/fpu_utils/fpu_ff.sv↪→

VERILOG_SOURCES +=$(CWD)/../../../../../riscv_fpu.sv

#VERILOG_SOURCES

+=$(CWD)/../../../../../pulp-fpu/hdl/fpu_v0.1/riscv_fpu.sv↪→

VERILOG_SOURCES

+=$(CWD)/../../../../../pulp-fpu/hdl/fpu_v0.1/fpu_mult.sv↪→

VERILOG_SOURCES

+=$(CWD)/../../../../../pulp-fpu/hdl/fpu_v0.1/fpu_add.sv↪→

VERILOG_SOURCES

+=$(CWD)/../../../../../pulp-fpu/hdl/fpu_v0.1/fpu_itof.sv↪→

VERILOG_SOURCES

+=$(CWD)/../../../../../pulp-fpu/hdl/fpu_v0.1/fpu_ftoi.sv↪→

VERILOG_SOURCES

+=$(CWD)/../../../../../pulp-fpu/hdl/fpu_v0.1/fpu_norm.sv↪→

VERILOG_SOURCES

+=$(CWD)/../../../../../pulp-fpu/hdl/fpu_v0.1/fpu_core.sv↪→

VERILOG_SOURCES

+=$(CWD)/../../../../../pulp-fpu/hdl/fpu_v0.1/fpexc.sv↪→

#EXTRA_ARGS=-s fpu_private

ifeq ($(SIM),questa)

EXTRA_ARGS=-sfcu

else

Default is Icarus

EXTRA_ARGS=-g2012

endif

TOPLEVEL=riscv_fpu

MODULE=$(TOPLEVEL)_cocotb

CUSTOM_SIM_DEPS=$(CWD)/Makefile

VSIM_ARGS=-t 1ps

ifeq ($(WAVES),1)

73

A.4. FPU_TINY_FRAMEWORK.PY

Low Power Floating-Point Unit for RISC-V

VSIM_ARGS +=-pli novas_fli.so

endif

include $(COCOTB)/makefiles/Makefile.inc

include $(COCOTB)/makefiles/Makefile.sim

list all required Python files here

sim: $(MODULE).py

74

APPENDIX A. HIGH-LEVEL PYTHON MODEL

Low Power Floating-Point Unit for RISC-V

A.5 fpu_custom_framework.py

This is a part of the Python test harness speci�c to the customized PULP
FPU design.

import random, ctypes as ct, math, os

import cocotb, logging

from cocotb.decorators import coroutine

from cocotb.triggers import Timer, RisingEdge, FallingEdge,

ReadOnly↪→

from cocotb.result import TestFailure, TestSuccess, TestError

from cocotb.regression import TestFactory

from common import *

@cocotb.coroutine

def run_test(dut, operation=0, operand_a=0, operand_b=0,

operand_c=0, rounding_mode=0, repetitions=1):↪→

"""Setup testbench and run a test

module pulp_custom_fpu #(parameter FLEN = 32)

(

input clk,

input reset_n,

// Control input signals

input enable,

input [2:0] rm,

input [3:0] operation,

// Data input signals

input [FLEN-1:0] operand_a,

input [FLEN-1:0] operand_b,

input [FLEN-1:0] operand_c,

// Output signals

output [FLEN-1:0] result,

output result_valid,↪→

output [4:0] exceptions,

output divsqrt_busy

);

"""

75

A.5. FPU_CUSTOM_FRAMEWORK.PY

Low Power Floating-Point Unit for RISC-V

dut.log.setLevel(logging.DEBUG)

if (repetitions < 1):

raise TestFailure("Repetitions must be a positive

number")↪→

try:

ckper = int(os.environ.get('CKPER', DEFAULT_CKPER))

except:

ckper = DEFAULT_CKPER

if operand_a is None:

random_a = True

else:

random_a = False

if operand_b is None:

random_b = True

else:

random_b = False

if operand_c is None:

random_c = True

else:

random_c = False

dut._log.info("Testing op:

{0:s}".format(op_names[operation]))↪→

dut.enable <= 0

cocotb.fork(clock_gen(dut.clk, ckper))

yield reset_gen(dut.reset_n)

clkedge = RisingEdge(dut.clk)

negedge = FallingEdge(dut.clk)

yield clkedge

for i in range(repetitions):

if random_a:

operand_a = data_gen().next()

if random_b:

operand_b = data_gen().next()

if random_c:

operand_c = data_gen().next()

76

APPENDIX A. HIGH-LEVEL PYTHON MODEL

Low Power Floating-Point Unit for RISC-V

dut._log.info("\nTesting round {3} of {4}: a={0:f},

b={1:f}, c={2:f}".format(int2float(operand_a),↪→

int2float(operand_b),

int2float(operand_c),

i+1,

repetitions))

↪→

↪→

↪→

↪→

dut.enable <= 1

dut.operand_a <= operand_a

dut.operand_b <= operand_b

dut.operand_c <= operand_c

dut.rm <= rounding_mode

dut.operation <= operation

yield clkedge

dut._log.debug("result_valid = {0}, divsqrt_busy = {1},

result = {2}, exceptions = {3}"↪→

.format(dut.result_valid.value,

dut.divsqrt_busy.value,↪→

dut.result.value,

dut.exceptions.value))↪→

dut.enable <= 0

cycles_spent = 0

yield ReadOnly()

while operation != C_FPU_NOP_CMD and

dut.result_valid.value.integer == 0:↪→

#print("result_valid = {0}, divsqrt_busy = {1},

result = {2}, exceptions = {3}"↪→

.format(dut.result_valid.value,

dut.divsqrt_busy.value,↪→

dut.result.value,

dut.exceptions.value))↪→

if cycles_spent >= 10:

#raise TestError("Timed out waiting for

result")↪→

dut._log.error("Timed out waiting for result")

break

yield clkedge

yield ReadOnly()

77

A.5. FPU_CUSTOM_FRAMEWORK.PY

Low Power Floating-Point Unit for RISC-V

cycles_spent = cycles_spent + 1

dut.result._log.info(dut.result.value)

dut.result_valid._log.info(dut.result_valid.value)

dut.exceptions._log.info(dut.exceptions.value)

dut.result._log.info("Result:

{0:f}".format(int2float(int(dut.result.value))))↪→

computed = int(dut.result.value)

expected = simple_model(operation, operand_a,

operand_b, operand_c, rounding_mode)↪→

if computed != expected:

#raise TestError("Computed result 0x{0:08x} differs

from expected: 0x{1:08x}".format(computed,

expected))

↪→

↪→

dut._log.error("Computed result 0x{0:08x} differs

from expected: 0x{1:08x}".format(computed,

expected))

↪→

↪→

End simulation at a negative edge to get some time to

see the result on waveforms↪→

yield negedge

Make�le

Makefile for use with CoCoTB, based on DFF example Makefile

- Torbjørn Viem Ness (NTNU), spring 2018

CWD=$(shell pwd | sed 's/:/\\:/')

COCOTB?=/home/tone/cocotb

TODO: specifying TOPLEVEL_LANG may not be needed

TOPLEVEL_LANG ?=verilog

VERILOG_SOURCES

=$(CWD)/../../../../../pulp-fpu/hdl/fpu_v0.1/fpu_defs.sv↪→

VERILOG_SOURCES

+=$(CWD)/../../../../../pulp-fpu/hdl/fpu_v0.1/defines_fpu.sv↪→

VERILOG_SOURCES

+=$(CWD)/../../../../../pulp-fpu/hdl/fpu_fmac/fpu_defs_fmac.sv↪→

78

APPENDIX A. HIGH-LEVEL PYTHON MODEL

Low Power Floating-Point Unit for RISC-V

VERILOG_SOURCES

+=$(CWD)/../../../../../pulp-fpu/hdl/fpu_div_sqrt_tp_nlp/fpu_defs_div_sqrt_tp.sv↪→

VERILOG_SOURCES +=$(CWD)/../../../../../pulp_customized.v

VERILOG_SOURCES +=$(CWD)/../../../../../conversion_core.v

VERILOG_SOURCES

+=$(CWD)/../../../../../pulp-fpu/hdl/fpu_v0.1/fpu_mult.sv↪→

VERILOG_SOURCES

+=$(CWD)/../../../../../pulp-fpu/hdl/fpu_v0.1/fpu_add.sv↪→

VERILOG_SOURCES

+=$(CWD)/../../../../../pulp-fpu/hdl/fpu_v0.1/fpu_itof.sv↪→

VERILOG_SOURCES

+=$(CWD)/../../../../../pulp-fpu/hdl/fpu_v0.1/fpu_ftoi.sv↪→

VERILOG_SOURCES

+=$(CWD)/../../../../../pulp-fpu/hdl/fpu_v0.1/fpu_norm.sv↪→

VERILOG_SOURCES

+=$(CWD)/../../../../../pulp-fpu/hdl/fpu_v0.1/fpu_core.sv↪→

VERILOG_SOURCES +=$(CWD)/../../../../../fma_wrapper_custom.sv

VERILOG_SOURCES +=$(CWD)/../../../../../fmac_customized.sv

VERILOG_SOURCES

+=$(CWD)/../../../../../pulp-fpu/hdl/fpu_v0.1/fpexc.sv↪→

VERILOG_SOURCES +=$(wildcard

$(CWD)/../../../../../pulp-fpu/hdl/fpu_fmac/*.sv)↪→

VERILOG_SOURCES +=$(wildcard

$(CWD)/../../../../../pulp-fpu/hdl/fpu_div_sqrt_tp_nlp/*.sv)↪→

#EXTRA_ARGS=-s fpu_private

ifeq ($(SIM),questa)

EXTRA_ARGS=-sfcu

else

Default is Icarus

EXTRA_ARGS=-g2012 -u

-I$(CWD)/../../../../../pulp-fpu/hdl/fpu_v0.1/

-I$(CWD)/../../../../../pulp-fpu/hdl/fpu_fmac/

-I$(CWD)/../../../../../pulp-fpu/hdl/fpu_div_sqrt_tp_nlp/

↪→

↪→

↪→

endif

TOPLEVEL=pulp_custom_fpu

MODULE=$(TOPLEVEL)_cocotb

CUSTOM_SIM_DEPS=$(CWD)/Makefile

79

A.5. FPU_CUSTOM_FRAMEWORK.PY

Low Power Floating-Point Unit for RISC-V

VSIM_ARGS=-t 1ps

ifeq ($(WAVES),1)

VSIM_ARGS +=-pli novas_fli.so

endif

include $(COCOTB)/makefiles/Makefile.inc

include $(COCOTB)/makefiles/Makefile.sim

list all required Python files here

sim: $(MODULE).py

80

APPENDIX A. HIGH-LEVEL PYTHON MODEL

Low Power Floating-Point Unit for RISC-V

A.6 CoCoTB stimuli

The following Python �les are used together with the testbench framework
(comprising of common.py, simple_model.py and the setup �les for each
design variant) for specifying input stimuli and running the tests:

all.py

from fpu_test_framework import *

factory = TestFactory(run_test)

factory.add_option("operation", [C_FPU_ADD_CMD, C_FPU_SUB_CMD,

C_FPU_MUL_CMD, C_FPU_DIV_CMD,↪→

C_FPU_I2F_CMD, C_FPU_F2I_CMD,

C_FPU_SQRT_CMD,

C_FPU_NOP_CMD,

↪→

↪→

C_FPU_FMADD_CMD,

C_FPU_FMSUB_CMD,

C_FPU_FNMADD_CMD,

C_FPU_FNMSUB_CMD])

↪→

↪→

↪→

factory.add_option("operand_a", [0, 0x3f800000, 0xbf800000,

0x40800000]) # 1.0, -1.0, 4.0↪→

factory.add_option("operand_b", [0x3fc00000, 0x00000000]) #

1.5, 0.0↪→

factory.add_option("operand_c", [0x40000000, 0]) # 2.0

factory.add_option("rounding_mode", [0])#[0,1,2,3])

factory.generate_tests()

fadd.py

from fpu_test_framework import *

factory = TestFactory(run_test)

factory.add_option("operation", [C_FPU_ADD_CMD])

factory.add_option("operand_a", [None]) # 1.0, -1.0, 4.0

factory.add_option("operand_b", [None]) # 1.5, 0.0

factory.add_option("operand_c", [0]) # 2.0

factory.add_option("rounding_mode", [0])#[0,1,2,3])

factory.add_option("repetitions", [1000])

factory.generate_tests()

81

A.6. COCOTB STIMULI

Low Power Floating-Point Unit for RISC-V

fmul.py

from fpu_test_framework import *

factory = TestFactory(run_test)

factory.add_option("operation", [C_FPU_MUL_CMD])

factory.add_option("operand_a", [None]) # 1.0, -1.0, 4.0

factory.add_option("operand_b", [None]) # 1.5, 0.0

factory.add_option("operand_c", [0]) # 2.0

factory.add_option("rounding_mode", [0])#[0,1,2,3])

factory.add_option("repetitions", [1000])

factory.generate_tests()

fdiv.py

from fpu_test_framework import *

factory = TestFactory(run_test)

factory.add_option("operation", [C_FPU_DIV_CMD])

factory.add_option("operand_a", [None]) # 1.0, -1.0, 4.0

factory.add_option("operand_b", [None]) # 1.5, 0.0

factory.add_option("operand_c", [0]) # 2.0

factory.add_option("rounding_mode", [0])#[0,1,2,3])

factory.add_option("repetitions", [1000])

factory.generate_tests()

fsqrt.py

from fpu_test_framework import *

factory = TestFactory(run_test)

factory.add_option("operation", [C_FPU_SQRT_CMD])

factory.add_option("operand_a", [None]) # 1.0, -1.0, 4.0

factory.add_option("operand_b", [0]) # 1.5, 0.0

factory.add_option("operand_c", [0]) # 2.0

factory.add_option("rounding_mode", [0])#[0,1,2,3])

factory.add_option("repetitions", [1000])

factory.generate_tests()

82

APPENDIX A. HIGH-LEVEL PYTHON MODEL

Low Power Floating-Point Unit for RISC-V

fmadd.py

from fpu_test_framework import *

factory = TestFactory(run_test)

factory.add_option("operation", [C_FPU_FMADD_CMD,

C_FPU_FMSUB_CMD, C_FPU_FNMADD_CMD, C_FPU_FNMSUB_CMD])↪→

factory.add_option("operand_a", [None]) # 1.0, -1.0, 4.0

factory.add_option("operand_b", [None]) # 1.5, 0.0

factory.add_option("operand_c", [None]) # 2.0

factory.add_option("rounding_mode", [0])#[0,1,2,3])

factory.add_option("repetitions", [250])

factory.generate_tests()

ftoi.py

from fpu_test_framework import *

factory = TestFactory(run_test)

factory.add_option("operation", [C_FPU_F2I_CMD])

factory.add_option("operand_a", [None]) # 1.0, -1.0, 4.0

factory.add_option("operand_b", [0]) # 1.5, 0.0

factory.add_option("operand_c", [0]) # 2.0

factory.add_option("rounding_mode", [0])#[0,1,2,3])

factory.add_option("repetitions", [1000])

factory.generate_tests()

itof.py

from fpu_test_framework import *

factory = TestFactory(run_test)

factory.add_option("operation", [C_FPU_I2F_CMD])

factory.add_option("operand_a", [None]) # 1.0, -1.0, 4.0

factory.add_option("operand_b", [0]) # 1.5, 0.0

factory.add_option("operand_c", [0]) # 2.0

factory.add_option("rounding_mode", [0])#[0,1,2,3])

factory.add_option("repetitions", [1000])

factory.generate_tests()

83

A.6. COCOTB STIMULI

Low Power Floating-Point Unit for RISC-V

nop.py

from fpu_test_framework import *

factory = TestFactory(run_test)

factory.add_option("operation", [C_FPU_NOP_CMD])

factory.add_option("operand_a", [None]) # 1.0, -1.0, 4.0

factory.add_option("operand_b", [None]) # 1.5, 0.0

factory.add_option("operand_c", [None]) # 2.0

factory.add_option("rounding_mode", [0])#[0,1,2,3])

factory.add_option("repetitions", [1000])

factory.generate_tests()

84

APPENDIX A. HIGH-LEVEL PYTHON MODEL

Low Power Floating-Point Unit for RISC-V

A.7 FPU_reg�le_cocotb_simple.py

This is the testbench used for verifying correctness of the simple FPU reg�le
implementation.

import random

import cocotb

from cocotb.decorators import coroutine

from cocotb.triggers import Timer, RisingEdge, FallingEdge,

ReadOnly↪→

#from cocotb.monitors import Monitor

#from cocotb.drivers import BitDriver

#from cocotb.binary import BinaryValue

from cocotb.regression import TestFactory

#from cocotb.scoreboard import Scoreboard

from cocotb.result import TestFailure, TestError, TestSuccess

==

@cocotb.coroutine

def reset_gen(reset_n, duration=10000):

"""Generator for resetting the register file at the

beginning of the test"""↪→

reset_n <= 0

yield Timer(duration)

reset_n <= 1

print("Reset done")

reset_n._log.info("Reset done")

==

def seq_addr_gen():

"""Generator for generating 5-bit addresses for the

register testing, wraps to 0"""↪→

addr = 0

while True:

yield addr

addr = addr + 1

if addr > 31:

addr = 0

def rand_addr_gen():

85

A.7. FPU_REGFILE_COCOTB_SIMPLE.PY

Low Power Floating-Point Unit for RISC-V

"""Generator for generating random 5-bit addresses"""

while True:

yield random.randint(0,0x1F)

==

def data_gen():

"""Generator for making random input data, returns a random

32-bit number"""↪→

while True:

yield random.randint(0,0xFFFFFFFF)

==

@cocotb.coroutine

def clock_gen(signal, period=5000):

"""Generate the clock signal."""

while True:

signal <= 0

yield Timer(period) # ps

signal <= 1

yield Timer(period) # ps

==

NOTE: both these annotations can be used, however the

@cocotb.coroutine allows for initializing the test with

different parameters

#@cocotb.test()

@cocotb.coroutine

def run_test(dut):

"""Setup testbench and run a test.

dut interface:

input clk,

input reset_n,

input in_data_valid,

input [4:0] wb_port_addr,

input [FLEN-1:0] wb_port_data,

input [4:0] read_port_a_addr,

output [FLEN-1:0] read_port_a_data,

input [4:0] read_port_b_addr,

output [FLEN-1:0] read_port_b_data,

input [4:0] read_port_c_addr,

output [FLEN-1:0] read_port_c_data

86

APPENDIX A. HIGH-LEVEL PYTHON MODEL

Low Power Floating-Point Unit for RISC-V

"""

cocotb.fork(clock_gen(dut.clk))

yield reset_gen(dut.reset_n)

clkedge = RisingEdge(dut.clk)

Data to be clocked on the next cycle is set on the

falling edge to avoid delta-cycle issues in the TB↪→

negedge = FallingEdge(dut.clk)

write_addr_gen = seq_addr_gen()

write_data_gen = data_gen()

read_addr_gen = rand_addr_gen()

ref_data = [0] * 32

yield clkedge;

dut.in_data_valid <= 1

TODO: also run some tests with in_data_valid deasserted

to make sure it doesn't catch data it isn't supposed

to

↪→

↪→

for i in range(32):

write_addr = write_addr_gen.next()

write_data = write_data_gen.next()

dut.wb_port_addr <= write_addr

dut.wb_port_addr <= i

dut.read_port_a_addr <= i

dut.wb_port_data <= write_data

Store data for comparison

ref_data[i] = write_data

if not dut.reset_n:

ref_data[i] = 0

dut.wb_port_addr._log.info("Write 0x{:08x} to reg.

{:d}".format(int(write_data), i))↪→

Wait for clock

yield clkedge

yield ReadOnly()

read_data = int(dut.read_port_a_data)

if read_data != ref_data[i]:

87

A.7. FPU_REGFILE_COCOTB_SIMPLE.PY

Low Power Floating-Point Unit for RISC-V

raise TestError("Content of regfile address {}

(0x{:08x}) differs from expected value:

0x{:08x}".format(i, read_data, ref_data[i]))

↪→

↪→

#print("Content of regfile address {} (0x{:08x})

differs from expected value:

0x{:08x}".format(i, read_data, ref_data[i]))

↪→

↪→

TODO: CoCoTB should be able to wait for delta cycles

(propagation delay), this is a workaround in the

meantime

↪→

↪→

yield negedge;

dut.in_data_valid <= 0

TODO: implement test for trying to write without

in_data_valid asserted↪→

Test random reads for 100 clock cycle.

for i in range(100):

read_addr_a = read_addr_gen.next()

read_addr_b = read_addr_gen.next()

read_addr_c = read_addr_gen.next()

dut.read_port_a_addr <= read_addr_a

dut.read_port_b_addr <= read_addr_b

dut.read_port_c_addr <= read_addr_c

Wait for clock

yield clkedge

dut.read_port_a_data._log.info("Read data 0x{:08x} from

reg. {:d}".format(int(dut.read_port_a_data),

read_addr_a))

↪→

↪→

dut.read_port_b_data._log.info("Read data 0x{:08x} from

reg. {:d}".format(int(dut.read_port_b_data),

read_addr_b))

↪→

↪→

dut.read_port_b_data._log.info("Read data 0x{:08x} from

reg. {:d}".format(int(dut.read_port_c_data),

read_addr_c))

↪→

↪→

dut._log.info("Testing reset clear")

yield reset_gen(dut.reset_n);

yield negedge;

88

APPENDIX A. HIGH-LEVEL PYTHON MODEL

Low Power Floating-Point Unit for RISC-V

for i in range(32):

dut.read_port_a_addr <= i

yield clkedge

read_data = int(dut.read_port_a_data)

dut.read_port_a_data._log.info("Read data 0x{:08x} from

reg. {:d}".format(int(dut.read_port_a_data), i))↪→

if read_data != 0:

raise TestError("Content of regfile address {}

(0x{:08x}) is not 0 after reset".format(i,

read_data))

↪→

↪→

yield clkedge

NOTE: this is not needed when annotating the main test

function as @cocotb.test() instead of @cocotb.coroutine↪→

factory = TestFactory(run_test)

factory.generate_tests()

89

A.8. MODIFIED FMAC PIPELINE

Low Power Floating-Point Unit for RISC-V

A.8 Modi�ed FMAC pipeline

This is the modi�ed FMAC pipeline that was implemented for this thesis.

// Copyright 2017, 2018 ETH Zurich and University of Bologna.

// Copyright and related rights are licensed under the

Solderpad Hardware↪→

// License, Version 0.51 (the �License�); you may not use this

file except in↪→

// compliance with the License. You may obtain a copy of the

License at↪→

// http://solderpad.org/licenses/SHL-0.51. Unless required by

applicable law↪→

// or agreed to in writing, software, hardware and materials

distributed under↪→

// this License is distributed on an �AS IS� BASIS, WITHOUT

WARRANTIES OR↪→

// CONDITIONS OF ANY KIND, either express or implied. See the

License for the↪→

// specific language governing permissions and limitations

under the License.↪→

//

// Company: IIS @ ETHZ - Federal Institute of Technology

//↪→

//

//↪→

// Engineers: Lei Li -- lile@iis.ee.ethz.ch

//↪→

//

//↪→

// Additional contributions by:

//↪→

// Torbjørn Viem Ness, NTNU --

torbjovn@stud.ntnu.no //↪→

//

//↪→

//

//↪→

// Create Date: 01/06/2017

//↪→

// Design Name: fmac

//↪→

90

APPENDIX A. HIGH-LEVEL PYTHON MODEL

Low Power Floating-Point Unit for RISC-V

// Module Name: fmac.sv

//↪→

// Project Name: Private FPU

//↪→

// Language: SystemVerilog

//↪→

//

//↪→

// Description: The top module of fmac

//↪→

// function:

Result_DO=Operand_a_DI+Operand_b_DI*Operand_c_DI

//

↪→

↪→

//

//↪→

// Revision: 07/07/2017

//↪→

// Revision: 04/09/2017

//↪→

// No_one_S was added by Lei Li

//↪→

// Revision: 03/04/2018

//↪→

// Fixed Torbjørn Viem Ness bugs and Sticky

bit //↪→

// Revision: NEXT

//↪→

// Modified FMAC to allow multiplier bypass to

cut latency //↪→

//

import fpu_defs_fmac::*;

module fmac_customized

(

//Inputs

input logic [C_OP-1:0] Operand_a_DI,

input logic [C_OP-1:0] Operand_b_DI,

input logic [C_OP-1:0] Operand_c_DI,

input logic [C_RM-1:0] RM_SI, //Rounding Mode

input logic mul_bypass,

91

A.8. MODIFIED FMAC PIPELINE

Low Power Floating-Point Unit for RISC-V

//Output-result

output logic [31:0] Result_DO,

//Output-Flags

output logic Exp_OF_SO,

output logic Exp_UF_SO,

output logic Flag_NX_SO,

output logic Flag_IV_SO

);

logic [C_MANT-1:0] Mant_res_DO;

logic [C_EXP-1:0] Exp_res_DO;

logic Sign_res_DO;

logic DeN_a_S, Sub_S, Sign_postalig_D,

Sign_amt_D, Sft_stop_S, Sign_out_D;↪→

assign Result_DO = {Sign_res_DO,Exp_res_DO, Mant_res_DO};

logic Sign_a_D;

logic Sign_b_D;

logic Sign_c_D;

logic [C_EXP-1:0] Exp_a_D;

logic [C_EXP-1:0] Exp_b_D;

logic [C_EXP-1:0] Exp_c_D;

logic [C_MANT:0] Mant_a_D;

logic [C_MANT:0] Mant_b_D;

logic [C_MANT:0] Mant_c_D;

logic Inf_a_S;

logic Inf_b_S;

logic Inf_c_S;

logic NaN_a_S;

logic NaN_b_S;

logic NaN_c_S;

preprocess_fmac precess_U0

(

.Operand_a_DI (Operand_a_DI),

.Operand_b_DI (Operand_b_DI),

.Operand_c_DI (Operand_c_DI),

.Exp_a_DO (Exp_a_D),

.Mant_a_DO (Mant_a_D),

92

APPENDIX A. HIGH-LEVEL PYTHON MODEL

Low Power Floating-Point Unit for RISC-V

.Sign_a_DO (Sign_a_D),

.Exp_b_DO (Exp_b_D),

.Mant_b_DO (Mant_b_D),

.Sign_b_DO (Sign_b_D),

.Exp_c_DO (Exp_c_D),

.Mant_c_DO (Mant_c_D),

.Sign_c_DO (Sign_c_D),

.DeN_a_SO (DeN_a_S),

.Inf_a_SO (Inf_a_S),

.Inf_b_SO (Inf_b_S),

.Inf_c_SO (Inf_c_S),

.Zero_a_SO (Zero_a_S),

.Zero_b_SO (Zero_b_S),

.Zero_c_SO (Zero_c_S),

.NaN_a_SO (NaN_a_S),

.NaN_b_SO (NaN_b_S),

.NaN_c_SO (NaN_c_S)

);

// Generate partial products for multiplication

logic [12:0] [2*C_MANT+2:0] Pp_index_D;

pp_generation pp_gneration_U0

(

.Mant_a_DI (Mant_b_D),

.Mant_b_DI (Mant_c_D),

.Pp_index_DO (Pp_index_D)

);

logic [2*C_MANT+2:0] Pp_sum_D;

logic [2*C_MANT+2:0] Pp_carry_D;

logic MSB_cor_D;

wallace wallace_U0

(

.Pp_index_DI (Pp_index_D),

.Pp_sum_DO (Pp_sum_D),

.Pp_carry_DO (Pp_carry_D),

.MSB_cor_DO (MSB_cor_D)

);

// "Multiplication section" ends here?

// Operand alignment for the mantissa of the addend

93

A.8. MODIFIED FMAC PIPELINE

Low Power Floating-Point Unit for RISC-V

logic [74:0] Mant_postalig_a_D;

logic signed [C_EXP+1:0] Exp_postalig_D;

logic [2*C_MANT+2:0] Pp_sum_postcal_D;

logic [2*C_MANT+2:0] Pp_carry_postcal_D;

logic [C_EXP+1:0] Minus_sft_amt_D;

logic

Mant_sticky_sft_out_S;↪→

logic Sign_change_S;

aligner aligner_U0

(

.Exp_a_DI (Exp_a_D),

.Exp_b_DI (Exp_b_D),

.Mant_a_DI (Mant_a_D),

.Exp_c_DI (Exp_c_D),

.Sign_a_DI (Sign_a_D),

.Sign_b_DI (Sign_b_D),

.Sign_c_DI (Sign_c_D),

.Pp_sum_DI (Pp_sum_D),

.Pp_carry_DI (Pp_carry_D),

.Sign_change_SI (Sign_change_S),

.Sub_SO (Sub_S),

.Mant_postalig_a_DO (Mant_postalig_a_D),

.Exp_postalig_DO (Exp_postalig_D),

.Sign_postalig_DO (Sign_postalig_D),

.Sign_amt_DO (Sign_amt_D),

.Sft_stop_SO (Sft_stop_S),

.Pp_sum_postcal_DO (Pp_sum_postcal_D),

.Pp_carry_postcal_DO (Pp_carry_postcal_D),

.Minus_sft_amt_DO (Minus_sft_amt_D),

.Mant_sticky_sft_out_SO (Mant_sticky_sft_out_S)

);

// 48-bit CSA. In fact the bit width is 49 bits including sign

bit. After this CSA, EDCA is used to produce the correct

sum and the carry out bit.

↪→

↪→

logic [2*C_MANT+1:0] Csa_sum_D;

logic [2*C_MANT+1:0] Csa_carry_D;

// EXPERIMENTAL: multiplier bypass

logic [2*C_MANT+1:0] Csa_in_B;

logic [2*C_MANT+1:0] Csa_in_C;

94

APPENDIX A. HIGH-LEVEL PYTHON MODEL

Low Power Floating-Point Unit for RISC-V

assign Csa_in_B = (mul_bypass ? {'0} :

{Pp_sum_postcal_D[2*C_MANT+1:0]});↪→

assign Csa_in_C = (mul_bypass ? {Mant_c_D, {(C_MANT){1'b0}}}

: {Pp_carry_postcal_D[2*C_MANT:0],1'b0});↪→

// end of EXPERIMENTAL

CSA #(2*C_MANT+2) CSA_U0

(

.A_DI (Mant_postalig_a_D[2*C_MANT+1:0]),

.B_DI (Csa_in_B), //

({Pp_sum_postcal_D[2*C_MANT+1:0]}),↪→

.C_DI (Csa_in_C), //

({Pp_carry_postcal_D[2*C_MANT:0],1'b0}),↪→

.Sum_DO (Csa_sum_D),

.Carry_DO (Csa_carry_D)

);

// The correction based sign extension is included in adders.

logic [73:0] Sum_pos_D;

logic [3*C_MANT+4:0] A_LZA_D;

logic [3*C_MANT+4:0] B_LZA_D;

logic Minus_sticky_bit_S;

adders adders_U0

(

.AL_DI (Csa_sum_D),

.BL_DI (Csa_carry_D),

.Sub_SI (Sub_S),

.Sign_cor_SI ({MSB_cor_D,

Pp_carry_postcal_D[2*C_MANT+2],{Pp_sum_postcal_D[2*C_MANT+2]

&& Pp_carry_postcal_D[2*C_MANT+1]}}),

↪→

↪→

.Sign_amt_DI (Sign_amt_D),

.Sft_stop_SI (Sft_stop_S),

.BH_DI

(Mant_postalig_a_D[3*C_MANT+5:2*C_MANT+2]),↪→

.Sign_postalig_DI (Sign_postalig_D),

.Inf_b_SI (Inf_b_S),

.Inf_c_SI (Inf_c_S),

.Zero_b_SI (Zero_b_S),

.Zero_c_SI (Zero_c_S),

.NaN_b_SI (NaN_b_S),

.NaN_c_SI (NaN_c_S),

95

A.8. MODIFIED FMAC PIPELINE

Low Power Floating-Point Unit for RISC-V

.Minus_sft_amt_DI (Minus_sft_amt_D),

.Sum_pos_DO (Sum_pos_D),

.Sign_out_DO (Sign_out_D),

.A_LZA_DO (A_LZA_D),

.B_LZA_DO (B_LZA_D),

.Minus_sticky_bit_SO (Minus_sticky_bit_S),

.Sign_change_SO (Sign_change_S)

);

logic [C_LEADONE_WIDTH-1:0] Leading_one_D;

logic No_one_S;

LZA #(3*C_MANT+5) LZA_U0

(

.A_DI (A_LZA_D),

.B_DI (B_LZA_D),

.Leading_one_DO (Leading_one_D),

.No_one_SO (No_one_S)

);

fpu_norm_fmac fpu_norm_U0

(

.Mant_in_DI (Sum_pos_D),

.Exp_in_DI (Exp_postalig_D),

.Sign_in_DI (Sign_out_D),

.Leading_one_DI (Leading_one_D),

.No_one_SI (No_one_S),

.Sign_amt_DI (Sign_amt_D),

.Sub_SI (Sub_S),

.Exp_a_DI (Operand_a_DI[C_OP-2:C_MANT]),

//exponent↪→

.Mant_a_DI (Mant_a_D),

.Sign_a_DI (Sign_a_D),

.DeN_a_SI (DeN_a_S),

.RM_SI (RM_SI), //Rounding

Mode↪→

.Inf_a_SI (Inf_a_S),

.Inf_b_SI (Inf_b_S),

.Inf_c_SI (Inf_c_S),

96

APPENDIX A. HIGH-LEVEL PYTHON MODEL

Low Power Floating-Point Unit for RISC-V

.Zero_a_SI (Zero_a_S),

.Zero_b_SI (Zero_b_S),

.Zero_c_SI (Zero_c_S),

.NaN_a_SI (NaN_a_S),

.NaN_b_SI (NaN_b_S),

.NaN_c_SI (NaN_c_S),

.Mant_sticky_sft_out_SI (Mant_sticky_sft_out_S),

.Minus_sticky_bit_SI (Minus_sticky_bit_S),

.Mant_res_DO (Mant_res_DO),

.Exp_res_DO (Exp_res_DO),

.Sign_res_DO (Sign_res_DO),

.Exp_OF_SO (Exp_OF_SO),

.Exp_UF_SO (Exp_UF_SO),

.Flag_Inexact_SO (Flag_NX_SO),

.Flag_Invalid_SO (Flag_IV_SO)

);

endmodule

97

A.9. MODIFIED FMA WRAPPER

Low Power Floating-Point Unit for RISC-V

A.9 Modi�ed FMA wrapper

This is the modi�ed FMAC wrapper that was implemented to support the
FMAC listed in Appendix A.8.

// Copyright 2017, 2018 ETH Zurich and University of Bologna.

// Copyright and related rights are licensed under the

Solderpad Hardware↪→

// License, Version 0.51 (the "License"); you may not use this

file except in↪→

// compliance with the License. You may obtain a copy of the

License at↪→

// http://solderpad.org/licenses/SHL-0.51. Unless required by

applicable law↪→

// or agreed to in writing, software, hardware and materials

distributed under↪→

// this License is distributed on an "AS IS" BASIS, WITHOUT

WARRANTIES OR↪→

// CONDITIONS OF ANY KIND, either express or implied. See the

License for the↪→

// specific language governing permissions and limitations

under the License.↪→

//

// Copyright (C) 2017 ETH Zurich, University of Bologna

//↪→

// All rights reserved.

//↪→

//

//↪→

//

//↪→

// Engineer: Michael Gautschi - gautschi@iis.ee.ethz.ch

//↪→

// Create Date: 20/06/2017

//↪→

// Design Name: fp_mac_wrapper

//↪→

// Module Name: fpu_fma_wrapper.sv

//↪→

// Project Name: Shared APU

//↪→

98

APPENDIX A. HIGH-LEVEL PYTHON MODEL

Low Power Floating-Point Unit for RISC-V

// Language: SystemVerilog

//↪→

//

//↪→

// Description: Wraps the fp-mac unit

//↪→

//

//↪→

//

//↪→

// Revision:

//↪→

//

`ifndef SYNTHESIS

//`define FP_SIM_MODELS;

`endif

module fma_wrapper_custom

#(

parameter C_MAC_PIPE_REGS = 2,

parameter RND_WIDTH = 2,

parameter STAT_WIDTH = 5

)

(

// Clock and Reset

input logic clk_i,

input logic rst_ni,

input logic En_i,

input logic mul_bypass,

input logic [31:0] OpA_i,

input logic [31:0] OpB_i,

input logic [31:0] OpC_i,

input logic [1:0] Op_i,

input logic [RND_WIDTH-1:0] Rnd_i,

output logic [STAT_WIDTH-1:0] Status_o,

output logic [31:0] Res_o,

99

A.9. MODIFIED FMA WRAPPER

Low Power Floating-Point Unit for RISC-V

output logic Valid_o,

output logic Ready_o,

input logic Ack_i

);

// DISTRIBUTE PIPE REGS

parameter C_PRE_PIPE_REGS = C_MAC_PIPE_REGS - 1;

parameter C_POST_PIPE_REGS = 1;

// PRE PIPE REG SIGNALS

logic [31:0] OpA_DP [C_PRE_PIPE_REGS+1];

logic [31:0] OpB_DP [C_PRE_PIPE_REGS+1];

logic [31:0] OpC_DP [C_PRE_PIPE_REGS+1];

logic En_SP [C_PRE_PIPE_REGS+1];

logic mul_bypass_SP [C_PRE_PIPE_REGS+1];

logic [RND_WIDTH-1:0] Rnd_DP [C_PRE_PIPE_REGS+1];

// POST PIPE REG SIGNALS

logic EnPost_SP [C_POST_PIPE_REGS+1];

logic [31:0] Res_DP [C_POST_PIPE_REGS+1];

logic [STAT_WIDTH-1:0] Status_DP [C_POST_PIPE_REGS+1];

// Fflags of DW {PA/DV, HugeInt, NX, Huge, Tiny, IV,

Inf, Zero}↪→

logic [7:0] status;

// assign input. note: index [0] is not a register here!

assign OpA_DP[0] = En_i ? OpA_i :'0;

assign OpB_DP[0] = En_i ? {OpB_i[31] ^

Op_i[1],OpB_i[30:0]} :'0;↪→

assign OpC_DP[0] = En_i ? {OpC_i[31] ^

Op_i[0],OpC_i[30:0]} :'0;↪→

assign En_SP[0] = En_i;

assign mul_bypass_SP[0] = mul_bypass;

assign Rnd_DP[0] = Rnd_i;

// propagate states

assign EnPost_SP[0] = En_SP[C_PRE_PIPE_REGS];

// assign output

assign Res_o = Res_DP[C_POST_PIPE_REGS];

assign Valid_o = EnPost_SP[C_POST_PIPE_REGS];

100

APPENDIX A. HIGH-LEVEL PYTHON MODEL

Low Power Floating-Point Unit for RISC-V

assign Status_o = Status_DP[C_POST_PIPE_REGS];

assign Ready_o = 1'b1;

`ifndef VERILATOR

`ifdef FP_SIM_MODELS

shortreal a, b, c, res;

assign a = $bitstoshortreal(OpA_DP[C_PRE_PIPE_REGS]);

assign b = $bitstoshortreal(OpB_DP[C_PRE_PIPE_REGS]);

assign c = $bitstoshortreal(OpC_DP[C_PRE_PIPE_REGS]);

// rounding mode is ignored here

assign res = (a*b) + c;

// convert to logic again

assign Res_DP[0] = $shortrealtobits(res);

// not used in simulation model

assign Status_DP[0] = '0;

`else

//Fflags of RISC-V {NV, DZ, OF, UF,

NX }↪→

assign Status_DP[0] = {status[2], 1'b0, status[4],

status[3], status[5]};↪→

fmac_customized

fp_fma_i

//fmac assumes a + b*c, the fpu core assumes a*b + c

(

.Operand_a_DI (OpC_DP[C_PRE_PIPE_REGS]),

.Operand_b_DI (OpB_DP[C_PRE_PIPE_REGS]),

.Operand_c_DI (OpA_DP[C_PRE_PIPE_REGS]),

.RM_SI (Rnd_DP[C_PRE_PIPE_REGS]),

// .mul_bypass (mul_bypass),

// TODO: support pipelining the bypass signal as well↪→

.mul_bypass (mul_bypass_SP[C_PRE_PIPE_REGS]),

.Result_DO (Res_DP[0]),

.Exp_OF_SO (status[4]),

.Exp_UF_SO (status[3]),

.Flag_NX_SO (status[5]),

.Flag_IV_SO (status[2])

101

A.9. MODIFIED FMA WRAPPER

Low Power Floating-Point Unit for RISC-V

);

`endif

`endif

// PRE_PIPE_REGS

generate

genvar i;

for (i=1; i <= C_PRE_PIPE_REGS; i++) begin: g_pre_regs

always_ff @(posedge clk_i or negedge rst_ni) begin :

p_pre_regs↪→

if(~rst_ni) begin

En_SP[i] <= '0;

mul_bypass_SP[i] <= '0;

OpA_DP[i] <= '0;

OpB_DP[i] <= '0;

OpC_DP[i] <= '0;

Rnd_DP[i] <= '0;

end

else begin

// this one has to be always enabled...

En_SP[i] <= En_SP[i-1];

mul_bypass_SP[i] <= mul_bypass_SP[i-1]; // TODO:

stall pipeline if bypass is switched from

off to on?

↪→

↪→

// enabled regs

if(En_SP[i-1]) begin

OpA_DP[i] <= OpA_DP[i-1];

OpB_DP[i] <= OpB_DP[i-1];

OpC_DP[i] <= OpC_DP[i-1];

Rnd_DP[i] <= Rnd_DP[i-1];

end

end

end

end

endgenerate

// POST_PIPE_REGS

generate

genvar j;

102

APPENDIX A. HIGH-LEVEL PYTHON MODEL

Low Power Floating-Point Unit for RISC-V

for (j=1; j <= C_POST_PIPE_REGS; j++) begin: g_post_regs

always_ff @(posedge clk_i or negedge rst_ni) begin :

p_post_regs↪→

if(~rst_ni) begin

EnPost_SP[j] <= '0;

Res_DP[j] <= '0;

Status_DP[j] <= '0;

end

else begin

// this one has to be always enabled...

EnPost_SP[j] <= EnPost_SP[j-1];

// enabled regs

if(EnPost_SP[j-1]) begin

Res_DP[j] <= Res_DP[j-1];

Status_DP[j] <= Status_DP[j-1];

end

end

end

end

endgenerate

endmodule

103

A.10. SIMPLIFIED NORMALIZATION AND ROUNDING UNIT

Low Power Floating-Point Unit for RISC-V

A.10 Simpli�ed normalization and rounding

unit

This is a simpli�ed version of the fpu normalizer core from PULP, stripped
down to only normalize results of �oat-to-integer conversions.

// Copyright 2017, 2018 ETH Zurich and University of Bologna.

// Copyright and related rights are licensed under the

Solderpad Hardware↪→

// License, Version 0.51 (the "License"); you may not use this

file except in↪→

// compliance with the License. You may obtain a copy of the

License at↪→

// http://solderpad.org/licenses/SHL-0.51. Unless required by

applicable law↪→

// or agreed to in writing, software, hardware and materials

distributed under↪→

// this License is distributed on an "AS IS" BASIS, WITHOUT

WARRANTIES OR↪→

// CONDITIONS OF ANY KIND, either express or implied. See the

License for the↪→

// specific language governing permissions and limitations

under the License.↪→

//

// Company: IIS @ ETHZ - Federal Institute of Technology

//↪→

//

//↪→

// Engineers: Lukas Mueller -- lukasmue@student.ethz.ch

//↪→

//

//↪→

// Additional contributions by:

//↪→

// Torbjørn Viem Ness -- torbjovn@stud.ntnu.no

//↪→

//

//↪→

//

//↪→

104

APPENDIX A. HIGH-LEVEL PYTHON MODEL

Low Power Floating-Point Unit for RISC-V

// Create Date: 06/10/2014

//↪→

// Design Name: FPU

//↪→

// Module Name: fpu_norm.sv

//↪→

// Project Name: Private FPU

//↪→

// Language: SystemVerilog

//↪→

//

//↪→

// Description: Floating point Normalizer/Rounding unit

//↪→

//

//↪→

//

//↪→

//

//↪→

// Revision:

//↪→

// 15/05/2018

//↪→

// Pass package parameters as default args

instead of using //↪→

// them directly, improves compatibility with

tools like //↪→

// Synopsys Spyglass and DC (GitHub #7) -

Torbjørn Viem Ness //↪→

//

//↪→

//

import fpu_defs::*;

module fpu_itof_norm

#(

parameter C_MANT_PRENORM = fpu_defs::C_MANT_PRENORM,

parameter C_EXP_PRENORM = fpu_defs::C_EXP_PRENORM,

parameter C_MANT_PRENORM_IND = fpu_defs::C_MANT_PRENORM_IND,

105

A.10. SIMPLIFIED NORMALIZATION AND ROUNDING UNIT

Low Power Floating-Point Unit for RISC-V

parameter C_EXP_ZERO = fpu_defs::C_EXP_ZERO,

parameter C_EXP_INF = fpu_defs::C_EXP_INF,

parameter C_RM = fpu_defs::C_RM,

parameter C_CMD = fpu_defs::C_CMD,

parameter C_MANT = fpu_defs::C_MANT,

parameter C_EXP = fpu_defs::C_EXP,

parameter C_RM_NEAREST = fpu_defs::C_RM_NEAREST,

parameter C_RM_TRUNC = fpu_defs::C_RM_TRUNC,

parameter C_RM_PLUSINF = fpu_defs::C_RM_PLUSINF,

parameter C_RM_MINUSINF = fpu_defs::C_RM_MINUSINF

)

(

//Input Operands

input logic [C_MANT_PRENORM-1:0] Mant_in_DI,

input logic signed [C_EXP_PRENORM-1:0] Exp_in_DI,

input logic Sign_in_DI,

//Rounding Mode

input logic [C_RM-1:0] RM_SI,

input logic [C_CMD-1:0] OP_SI,

output logic [C_MANT:0] Mant_res_DO,

output logic [C_EXP-1:0] Exp_res_DO,

output logic Rounded_SO,

output logic Exp_OF_SO,

output logic Exp_UF_SO

);

///↪→

// Normalization

//↪→

///↪→

logic [C_MANT_PRENORM_IND-1:0] Mant_leadingOne_D;

logic Mant_zero_S;

logic [C_MANT+4:0] Mant_norm_D;

106

APPENDIX A. HIGH-LEVEL PYTHON MODEL

Low Power Floating-Point Unit for RISC-V

logic signed [C_EXP_PRENORM-1:0] Exp_norm_D;

//trying out stuff for denormals

logic signed [C_EXP_PRENORM-1:0] Mant_shAmt_D;

logic signed [C_EXP_PRENORM:0] Mant_shAmt2_D;

logic [C_EXP-1:0] Exp_final_D;

logic signed [C_EXP_PRENORM-1:0] Exp_rounded_D;

//sticky bit

logic Mant_sticky_D;

logic Denormal_S;

logic Mant_renorm_S;

//Detect leading one

fpu_ff

#(

.LEN(C_MANT_PRENORM))

LOD

(

.in_i (Mant_in_DI),

.first_one_o (Mant_leadingOne_D),

.no_ones_o (Mant_zero_S)

);

logic Denormals_shift_add_D;

assign Denormals_shift_add_D = ~Mant_zero_S & (Exp_in_DI ==

C_EXP_ZERO);↪→

assign Denormal_S =

((C_EXP_PRENORM)'(signed'(Mant_leadingOne_D)) >=

Exp_in_DI) || Mant_zero_S;

↪→

↪→

assign Mant_shAmt_D = Denormal_S ? Exp_in_DI +

Denormals_shift_add_D : Mant_leadingOne_D;↪→

assign Mant_shAmt2_D = {Mant_shAmt_D[$high(Mant_shAmt_D)],

Mant_shAmt_D} + (C_MANT+4+1);↪→

//Shift mantissa

always_comb

107

A.10. SIMPLIFIED NORMALIZATION AND ROUNDING UNIT

Low Power Floating-Point Unit for RISC-V

begin

logic [C_MANT_PRENORM+C_MANT+4:0] temp;

temp = ((C_MANT_PRENORM+C_MANT+4+1)'(Mant_in_DI) <<

(Mant_shAmt2_D));↪→

Mant_norm_D =

temp[C_MANT_PRENORM+C_MANT+4:C_MANT_PRENORM];↪→

end

always_comb

begin

Mant_sticky_D = 1'b0;

if (Mant_shAmt2_D <= 0)

Mant_sticky_D = | Mant_in_DI;

else if (Mant_shAmt2_D <= C_MANT_PRENORM)

Mant_sticky_D = | (Mant_in_DI << (Mant_shAmt2_D));

end

//adjust exponent

assign Exp_norm_D = Exp_in_DI -

(C_EXP_PRENORM)'(signed'(Mant_leadingOne_D)) + 1;↪→

//Explanation of the +1 since I'll probably forget:

//we get numbers in the format xx.x...

//but to make things easier we interpret them as

//x.xx... and adjust the exponent accordingly

assign Exp_rounded_D = Exp_norm_D + Mant_renorm_S;

assign Exp_final_D = Exp_rounded_D[C_EXP-1:0];

always_comb //detect exponent over/underflow

begin

Exp_OF_SO = 1'b0;

Exp_UF_SO = 1'b0;

if (Exp_rounded_D >= signed'({2'b0,C_EXP_INF}))

//overflow↪→

begin

Exp_OF_SO = 1'b1;

end

else if (Exp_rounded_D <= signed'({2'b0,C_EXP_ZERO}))

//underflow↪→

begin

108

APPENDIX A. HIGH-LEVEL PYTHON MODEL

Low Power Floating-Point Unit for RISC-V

Exp_UF_SO = 1'b1;

end

end

///↪→

// Rounding

//↪→

///↪→

logic [C_MANT:0] Mant_upper_D;

logic [3:0] Mant_lower_D;

logic [C_MANT+1:0] Mant_upperRounded_D;

logic Mant_roundUp_S;

logic Mant_rounded_S;

assign Mant_lower_D = Mant_norm_D[3:0];

assign Mant_upper_D = Mant_norm_D[C_MANT+4:4];

assign Mant_rounded_S = (|(Mant_lower_D)) | Mant_sticky_D;

always_comb //determine whether to round up or not

begin

Mant_roundUp_S = 1'b0;

case (RM_SI)

C_RM_NEAREST :

Mant_roundUp_S = Mant_lower_D[3] && (((|

Mant_lower_D[2:0]) | Mant_sticky_D) ||

Mant_upper_D[0]);

↪→

↪→

C_RM_TRUNC :

Mant_roundUp_S = 0;

C_RM_PLUSINF :

Mant_roundUp_S = Mant_rounded_S & ~Sign_in_DI;

C_RM_MINUSINF:

Mant_roundUp_S = Mant_rounded_S & Sign_in_DI;

default :

Mant_roundUp_S = 0;

endcase // case (RM_DI)

109

A.10. SIMPLIFIED NORMALIZATION AND ROUNDING UNIT

Low Power Floating-Point Unit for RISC-V

end // always_comb begin

assign Mant_upperRounded_D = Mant_upper_D + Mant_roundUp_S;

assign Mant_renorm_S = Mant_upperRounded_D[C_MANT+1];

///↪→

// Output Assignments

//↪→

///↪→

assign Mant_res_DO = Mant_upperRounded_D >> (Mant_renorm_S &

~Denormal_S);↪→

assign Exp_res_DO = Exp_final_D;

assign Rounded_SO = Mant_rounded_S;

endmodule // fpu_norm

110

APPENDIX A. HIGH-LEVEL PYTHON MODEL

Low Power Floating-Point Unit for RISC-V

A.11 Stripped conversion core

This is the minimal FPU core used to implement �oat-to-integer and integer-
to-�oat conversions.

/**

* TODO: license/copyright header

*

* Module description: Stripped down FPU core for conversion

between IEEE-754↪→

* binary floating-point numbers and

integers.↪→

*

* Author: Torbjørn Viem Ness, NTNU --

torbjovn@stud.ntnu.no↪→

* Date: 2018-04-23

*

* Acknowledgments: This module uses modules from the PULP

FPU project↪→

* (https://github.com/pulp-platform/fpu)

*/

// NOTE: this can be used to disable latching of inputs in

order to compare power consumption↪→

`ifndef NO_LATCH_INPUTS

`define LATCH_INPUTS

`endif

module conversion_core #(parameter FLEN = 32) // TODO: use

the FLEN parameter to support double precision in the

future

↪→

↪→

(

// Clock and reset

input clk,

input reset_n,

input enable_in,

// Operands

input [FLEN-1:0] data_in,

input [2:0] rm_in,

111

A.11. STRIPPED CONVERSION CORE

Low Power Floating-Point Unit for RISC-V

input [1:0] operation_in, // Mirrors the

RVF encoding - one bit for direction (F2I

vs I2F) and one for un-/signed

↪→

↪→

output [FLEN-1:0] result,

output result_valid,

output [4:0] flags

);

parameter C_MANT_WIDTH = 23;

parameter C_EXP_WIDTH = 8;

parameter C_EXP_PRENORM = C_EXP_WIDTH + 2;

parameter C_MANT_PRENORM = C_MANT_WIDTH*2+2;

reg enable;

reg [FLEN-1:0] operand;

reg [2:0] rm;

reg [1:0] operation;

wire unsigned_c = operation[1];

wire op_fromint = operation[0];

always @(posedge clk, negedge reset_n) begin

if (~reset_n) begin

enable = 'b0;

operand = 'b0;

rm = 'b0;

operation = 'b0;

end

else begin

enable = enable_in;

if (enable) begin

operand = data_in;

rm = rm_in;

operation = operation_in;

end

end

end

112

APPENDIX A. HIGH-LEVEL PYTHON MODEL

Low Power Floating-Point Unit for RISC-V

// Early detection whether the number is zero, in which

case the result is also zero↪→

// TODO: do we need to do this at the rising clock in order

to avoid glitches before setting the number_is_zero

signal?

↪→

↪→

reg number_is_zero;

always @(operand) begin

// Ignore the sign bit here if the input is a

floating-point number (because -0 also exists)↪→

if (op_fromint)

number_is_zero = ~(|operand[FLEN-1:0]);

else

number_is_zero = ~(|{1'b0,

operand[FLEN-2:0]});↪→

end

///

// Integer to floating point conversion

///↪→

wire Sign_prenorm_itof_D;

reg signed [C_EXP_PRENORM-1:0] Exp_prenorm_itof_D;

wire [C_MANT_PRENORM-1:0] Mant_prenorm_itof_D;

wire EnableITOF_S;

wire [FLEN-1:0] res_itof_D;

`ifdef LATCH_INPUTS

reg

[FLEN-1:0] operand_itof_D;↪→

assign EnableITOF_S = enable & op_fromint &

(~number_is_zero);↪→

// Latch input to prevent unnecessary toggles

always @(EnableITOF_S, operand, reset_n) begin

if (~reset_n)

operand_itof_D = 'b0;

else if (EnableITOF_S)

operand_itof_D = operand;

end

`else

113

A.11. STRIPPED CONVERSION CORE

Low Power Floating-Point Unit for RISC-V

wire

[FLEN-1:0] operand_itof_D;↪→

assign EnableITOF_S = enable & op_fromint;

assign operand_itof_D = (EnableITOF_S ? operand : 'b0);

`endif

fpu_itof int2fp

(

.Operand_a_DI (operand_itof_D),

.Sign_prenorm_DO (Sign_prenorm_itof_D),

.Exp_prenorm_DO (Exp_prenorm_itof_D),

.Mant_prenorm_DO (Mant_prenorm_itof_D)

);

wire [C_MANT_WIDTH:0] Mant_norm_D;

wire [C_EXP_WIDTH-1:0] Exp_norm_D;

wire Exp_OF_S, Exp_UF_S;

fpu_norm normalizer // TODO: implement a simplified

normalizer that only handles the cases required for i2f

conversion?

↪→

↪→

(

.Mant_in_DI (Mant_prenorm_itof_D),

.Exp_in_DI (Exp_prenorm_itof_D),

.Sign_in_DI (Sign_prenorm_itof_D),

.RM_SI (rm),

.OP_SI (4'h4), // = C_FPU_I2F_CMD

.Mant_res_DO (Mant_norm_D),

.Exp_res_DO (Exp_norm_D),

.Rounded_SO (Mant_rounded_S),

.Exp_OF_SO (Exp_OF_S),

.Exp_UF_SO (Exp_UF_S)

);

wire [C_MANT_WIDTH-1:0] Mant_res;

114

APPENDIX A. HIGH-LEVEL PYTHON MODEL

Low Power Floating-Point Unit for RISC-V

// NOTE: overflow cannot possibly occur with 32-bit

integer to single-precision float conversion,↪→

// as the max value (~3.4*10^34) is way beyond what is

possible to represent with 32 bits integers↪→

// TODO: revisit this if half-precision becomes

relevant to implement, as the max value is only

65504.

↪→

↪→

// reg [C_EXP_WIDTH-1:0] Exp_res;

// always begin

// Exp_res = Exp_norm_D;

// if (Exp_toZero_S)

// Exp_res = {C_EXP_WIDTH{1'b0}};

// end

assign Mant_res = Mant_norm_D[C_MANT_WIDTH-1:0];

assign res_itof_D = {(unsigned_c ? 1'b0 :

Sign_prenorm_itof_D), Exp_norm_D, Mant_res};↪→

///↪→

// Floating point to integer conversion

///↪→

wire [FLEN-1:0] Result_ftoi_D;

wire UF_ftoi_S;

wire OF_ftoi_S;

wire Zero_ftoi_S;

wire IX_ftoi_S;

wire IV_ftoi_S;

wire Inf_ftoi_S;

wire EnableFTOI_S;

`ifdef LATCH_INPUTS

reg input_sign;

reg [C_EXP_WIDTH-1:0] input_exp;

reg [C_MANT_WIDTH:0] input_mant;

reg hidden_bit;

assign EnableFTOI_S = enable & (~op_fromint) &

(~number_is_zero);↪→

115

A.11. STRIPPED CONVERSION CORE

Low Power Floating-Point Unit for RISC-V

// Latch input data here as well

always @(EnableFTOI_S, operand, reset_n) begin

if (~reset_n) begin

input_exp = 0;

input_mant = 0;

hidden_bit = 0;

input_sign = 0;

end

else if (EnableFTOI_S) begin

input_exp =

operand[C_MANT_WIDTH+C_EXP_WIDTH-1:C_MANT_WIDTH];↪→

input_sign = (unsigned_c ? 1'b0 :

operand[FLEN-1]);↪→

hidden_bit = | input_exp;

input_mant = {hidden_bit,

operand[C_MANT_WIDTH-1:0]};↪→

end

end

`else

wire input_sign;

wire [C_EXP_WIDTH-1:0] input_exp;

wire [C_MANT_WIDTH:0] input_mant;

wire hidden_bit;

assign EnableFTOI_S = enable & (~op_fromint);

assign input_sign = (unsigned_c ? 1'b0 :

operand[FLEN-1]);↪→

assign input_exp =

operand[C_MANT_WIDTH+C_EXP_WIDTH-1:C_MANT_WIDTH];↪→

assign hidden_bit = | input_exp;

assign input_mant = {hidden_bit,

operand[C_MANT_WIDTH-1:0]};↪→

`endif

fpu_ftoi fp2int

(

.Sign_a_DI (input_sign),

.Exp_a_DI (input_exp),

.Mant_a_DI (input_mant),

.Result_DO (Result_ftoi_D),

116

APPENDIX A. HIGH-LEVEL PYTHON MODEL

Low Power Floating-Point Unit for RISC-V

.UF_SO (UF_ftoi_S),

.OF_SO (OF_ftoi_S),

.Zero_SO (Zero_ftoi_S),

.IX_SO (IX_ftoi_S),

.IV_SO (IV_ftoi_S),

.Inf_SO (Inf_ftoi_S)

);

assign result = (number_is_zero ? {FLEN{1'b0}} :

(op_fromint ? res_itof_D : Result_ftoi_D));↪→

assign flags = (op_fromint ? {IV_ftoi_S, 1'b0, OF_ftoi_S,

UF_ftoi_S, IX_ftoi_S} : {2'b0, Exp_OF_S, Exp_UF_S,

1'b0});

↪→

↪→

assign result_valid = enable;

endmodule

117

A.12. MODIFIED TOP-LEVEL FPU

Low Power Floating-Point Unit for RISC-V

A.12 Modi�ed top-level FPU

This is the modi�ed FPU top level that implements the changes outlined in
this thesis.

// TODO: add header with info and copylefts etc..

// TODO: import operation defs from instruction decoder?

`define FPU_OP_ADD_CMD 4'h0

`define FPU_OP_SUB_CMD 4'h1

`define FPU_OP_MUL_CMD 4'h2

`define FPU_OP_DIV_CMD 4'h3

`define FPU_OP_I2F_CMD 4'h4

`define FPU_OP_F2I_CMD 4'h5

`define FPU_OP_SQRT_CMD 4'h6

`define FPU_OP_NOP_CMD 4'h7

`define FPU_OP_FMADD_CMD 4'h8

`define FPU_OP_FMSUB_CMD 4'h9

`define FPU_OP_FNMADD_CMD 4'hA

`define FPU_OP_FNMSUB_CMD 4'hB

`ifdef DOUBLE

`define IEEE_VAL_1 64'h3ff0000000000000

`else

`define IEEE_VAL_1 32'h3f800000

`endif

module pulp_custom_fpu #(parameter FLEN = 32)

(

input clk,

input reset_n,

// Control input signals

input enable,

input [2:0] rm,

input [3:0] operation,

// Data input signals

input [FLEN-1:0] operand_a,

input [FLEN-1:0] operand_b,

input [FLEN-1:0] operand_c,

118

APPENDIX A. HIGH-LEVEL PYTHON MODEL

Low Power Floating-Point Unit for RISC-V

// Output signals

output [FLEN-1:0] result,

output result_valid,

output [4:0] exceptions,

output divsqrt_busy

);

wire divsqrt_enable, fpu_enable, fma_enable,

mul_bypass, mul_only;↪→

assign divsqrt_enable = enable &

((operation==`FPU_OP_DIV_CMD) |

(operation==`FPU_OP_SQRT_CMD));

↪→

↪→

assign fpu_enable = enable &

((operation==`FPU_OP_I2F_CMD) |

(operation==`FPU_OP_F2I_CMD));

↪→

↪→

assign fma_enable = enable &

((operation==`FPU_OP_FMADD_CMD) |

(operation==`FPU_OP_FMSUB_CMD) |

(operation==`FPU_OP_FNMADD_CMD) |

(operation==`FPU_OP_FNMSUB_CMD) |

(operation==`FPU_OP_ADD_CMD) |

(operation==`FPU_OP_SUB_CMD) |

(operation==`FPU_OP_MUL_CMD));

↪→

↪→

↪→

↪→

↪→

↪→

↪→

assign mul_bypass = (reset_n &&

((operation == `FPU_OP_ADD_CMD) | (operation ==

`FPU_OP_SUB_CMD)));

↪→

↪→

assign mul_only = (operation ==

`FPU_OP_MUL_CMD);↪→

reg [FLEN-1:0] fma_operand_a, fma_operand_b,

fma_operand_c, fma_result;↪→

reg [1:0] fma_op;

wire fma_valid;

wire [4:0] fma_flags;

wire divsqrt_valid;

wire [4:0] divsqrt_flags;

wire [FLEN-1:0] divsqrt_result;

119

A.12. MODIFIED TOP-LEVEL FPU

Low Power Floating-Point Unit for RISC-V

wire fpu_valid;

wire [4:0] fpu_flags;

wire [FLEN-1:0] fpu_result;

// Handle input routing

always @(operand_a, operand_b, operand_c, fma_enable,

mul_bypass, mul_only, reset_n) begin↪→

// Latch the various values with their

respective enable signals to prevent

unintended toggling

↪→

↪→

if (~reset_n) begin

fma_operand_a = 'b0;

fma_operand_b = 'b0;

fma_operand_c = 'b0;

end

else if (fma_enable) begin

fma_operand_a = operand_a;

fma_operand_b = operand_b;

fma_operand_c = operand_c;

if (mul_bypass) begin

// For add/sub the second

operand appears on input b,

but FMA input c is the one

fed directly to the adder

↪→

↪→

↪→

fma_operand_b = `IEEE_VAL_1;

fma_operand_c = operand_b;

end

else begin

if (mul_only) begin

fma_operand_c = 'b0;

end

end

end

end // always block

always @(operation) begin

fma_op = 2'b00;

case (operation)

// FMA operations

`FPU_OP_FMADD_CMD:

120

APPENDIX A. HIGH-LEVEL PYTHON MODEL

Low Power Floating-Point Unit for RISC-V

fma_op = 2'b00;

`FPU_OP_FMSUB_CMD:

fma_op = 2'b01;

`FPU_OP_FNMADD_CMD:

fma_op = 2'b11;

`FPU_OP_FNMSUB_CMD:

fma_op = 2'b10;

// Regular operations performed by FMA

- TODO: verify that these are the

correct opcodes

↪→

↪→

`FPU_OP_ADD_CMD: // = A*1+B

fma_op = 2'b00;

`FPU_OP_SUB_CMD: // = A*1-B

fma_op = 2'b01;

`FPU_OP_MUL_CMD: // = A*B+0

fma_op = 2'b00;

default:

fma_op = 2'b00;

endcase

end

// Instantiate FMA wrapper - TODO: replace this wrapper

altogether eventually?↪→

fma_wrapper_custom

#(

.C_MAC_PIPE_REGS(2),

.RND_WIDTH(2),

.STAT_WIDTH(5)

)

fp_fma_wrap_i

(

.clk_i (clk),

.rst_ni (reset_n),

.En_i (fma_enable),

.mul_bypass (mul_bypass),

.OpA_i (fma_operand_a),

.OpB_i (fma_operand_b),

.OpC_i (fma_operand_c),

.Op_i (fma_op),

.Rnd_i (rm[1:0]),

.Status_o (fma_flags),

.Res_o (fma_result),

121

A.12. MODIFIED TOP-LEVEL FPU

Low Power Floating-Point Unit for RISC-V

.Valid_o (fma_valid),

.Ready_o (),

.Ack_i (1'b1)

);

// Instantiate divsqrt unit

///

// Iterative DIV-Sqrt Unit //

///

// generate inputs for div/sqrt unit - TODO: support double

precision↪→

wire div_start, sqrt_start;

reg [FLEN-1:0] divsqrt_operand_a;

reg [FLEN-1:0] divsqrt_operand_b;

wire divsqrt_nv;

wire divsqrt_ix;

wire divsqrt_zero, divsqrt_of, divsqrt_uf; // TODO: why were

these not declared in the original PULP fpu_private?↪→

assign sqrt_start = divsqrt_enable & (operation ==

`FPU_OP_SQRT_CMD);↪→

assign div_start = divsqrt_enable & (operation ==

`FPU_OP_DIV_CMD);↪→

//assign divsqrt_operand_a = (div_start | sqrt_start) ?

operand_a : 0;↪→

//assign divsqrt_operand_b = (div_start) ?

operand_b : 0;↪→

// Latch the inputs to prevent useless toggling here as

well↪→

always @(div_start, sqrt_start, divsqrt_operand_a,

divsqrt_operand_b, reset_n) begin↪→

if (~reset_n) begin

divsqrt_operand_a = 'b0;

divsqrt_operand_b = 'b0;

end

else begin

if (sqrt_start) begin

122

APPENDIX A. HIGH-LEVEL PYTHON MODEL

Low Power Floating-Point Unit for RISC-V

divsqrt_operand_a =

operand_a;↪→

end

if (div_start) begin

divsqrt_operand_a =

operand_a;↪→

divsqrt_operand_b =

operand_b;↪→

end

end

end

div_sqrt_top_tp fpu_divsqrt_tp

(

.Clk_CI (clk),

.Rst_RBI (reset_n),

.Div_start_SI (div_start),

.Sqrt_start_SI (sqrt_start),

.Operand_a_DI (divsqrt_operand_a),

.Operand_b_DI (divsqrt_operand_b),

.RM_SI (rm[1:0]),

.Precision_ctl_SI (5'b0),

.Result_DO (divsqrt_result),

.Exp_OF_SO (divsqrt_of),

.Exp_UF_SO (divsqrt_uf),

.Div_zero_SO (divsqrt_zero),

.Ready_SO (divsqrt_busy),

.Done_SO (divsqrt_valid)

);

assign divsqrt_nv = 1'b0;

assign divsqrt_ix = 1'b0;

assign divsqrt_flags = {divsqrt_nv, divsqrt_zero,

divsqrt_of, divsqrt_uf, divsqrt_ix};↪→

// TODO: what happens when XLEN!=FLEN?

reg [FLEN-1:0] conversion_operand;

always @(fpu_enable, reset_n, operand_a) begin

if (~reset_n) begin

123

A.12. MODIFIED TOP-LEVEL FPU

Low Power Floating-Point Unit for RISC-V

conversion_operand = 'b0;

end

else begin

if (fpu_enable) begin

conversion_operand = operand_a;

end

end

end

reg [1:0] conversion_operation;

// Operation sel for conversion core

always @(operation) begin

case (operation) // TODO: this core also

supports unsigned, this is what bit 1 is

for

↪→

↪→

`FPU_OP_F2I_CMD:

conversion_operation = 2'b00;

`FPU_OP_I2F_CMD:

conversion_operation = 2'b01;

default:

conversion_operation = 2'b00;

endcase

end

// FP<->Int conversion unit

conversion_core fpu_conv_core

(

.clk (clk),

.reset_n (reset_n),

.enable_in (fpu_enable),

.data_in (conversion_operand),

.rm_in (rm),

.operation_in (conversion_operation),

.result (fpu_result),

.result_valid (fpu_valid),

.flags (fpu_flags)

);

assign result_valid = divsqrt_valid | fpu_valid

| fma_valid;↪→

124

APPENDIX A. HIGH-LEVEL PYTHON MODEL

Low Power Floating-Point Unit for RISC-V

assign result = divsqrt_valid ?

divsqrt_result : fpu_valid ? fpu_result : fma_valid

? fma_result : 0;

↪→

↪→

assign exceptions = divsqrt_valid ?

divsqrt_flags : fpu_valid ? fpu_flags : fma_valid

? fma_flags : 0;

↪→

↪→

endmodule

125

A.13. SIMPLE FPU REGFILE

Low Power Floating-Point Unit for RISC-V

A.13 Simple FPU reg�le

This is a simple register �le with 3 read ports and one write port, with
parameterizable data widths.

`ifdef DOUBLE

`define FLEN 64

`define BIT_SIGN 63:63

`define BITS_EXP 62:52

`define BITS_FRC 51:0

`define PRODUCT_W 106

`else

`define FLEN 32

`define BIT_SIGN 31:31

`define BITS_EXP 30:23

`define BITS_FRC 22:0

`define PRODUCT_W 48

`endif

`define XLEN 32

`define NUM_FPU_REGS 32

module FPU_regfile #(

parameter NUM_REGS = `NUM_FPU_REGS,

parameter WIDTH = `FLEN

) (

input clk,

input reset_n,

input in_data_valid,

input

[4:0] wb_port_addr,↪→

input [WIDTH-1:0] wb_port_data,

// TODO: parameterize the number of read ports?

input

[4:0] read_port_a_addr,↪→

output reg [WIDTH-1:0] read_port_a_data,

input

[4:0] read_port_b_addr,↪→

output reg [WIDTH-1:0] read_port_b_data,

126

APPENDIX A. HIGH-LEVEL PYTHON MODEL

Low Power Floating-Point Unit for RISC-V

input

[4:0] read_port_c_addr,↪→

output reg [WIDTH-1:0] read_port_c_data

// NOTE: this port can be skipped if opting for CMA

instead of FMA

↪→

↪→

);

reg [WIDTH-1:0] fpu_regfile[NUM_REGS-1:0];

/*

// TODO: this could be a possible alternative; latching

outputs to only drive connected nets when requested↪→

wire [WIDTH-1:0] read_port_a_data_next;

wire [WIDTH-1:0] read_port_b_data_next;

wire [WIDTH-1:0] read_port_c_data_next;

assign read_port_a_data_next =

fpu_regfile[read_port_a_addr];↪→

assign read_port_b_data_next =

fpu_regfile[read_port_b_addr];↪→

assign read_port_c_data_next =

fpu_regfile[read_port_c_addr];↪→

*/

/* // First version, not sure if works

always @(posedge clk) begin

if (in_data_valid) begin

// Load the input data to the

destination register↪→

fpu_regfile[wb_port_addr] <=

wb_port_data;↪→

end // in_data_valid

end // @posedge clk

*/

generate

genvar i;

for (i = 0; i < NUM_REGS; i = i + 1) begin

always @(posedge clk or negedge

reset_n) begin↪→

if (reset_n == 0) begin

fpu_regfile[i] <=

{WIDTH{1'b0}};↪→

end

127

A.13. SIMPLE FPU REGFILE

Low Power Floating-Point Unit for RISC-V

else if (in_data_valid &&

wb_port_addr == i) begin↪→

fpu_regfile[i] <=

wb_port_data;↪→

end // if

end // @negedge reset

end // for

endgenerate

always @(read_port_a_addr or

fpu_regfile[read_port_a_addr]) begin↪→

read_port_a_data <=

fpu_regfile[read_port_a_addr];↪→

end // @(read_port_a_addr)

// TODO: latch the read port outputs so they don't

change when their values are not going to be used?↪→

// Most relevant for read port C, but depending on the

workload it could also be useful for port B↪→

always @(read_port_b_addr or

fpu_regfile[read_port_b_addr]) begin↪→

read_port_b_data <=

fpu_regfile[read_port_b_addr];↪→

end // @(read_port_b_addr)

always @(read_port_c_addr or

fpu_regfile[read_port_c_addr]) begin↪→

read_port_c_data <=

fpu_regfile[read_port_c_addr];↪→

end // @(read_port_c_addr)

endmodule // FPU_regfile

128

APPENDIX A. HIGH-LEVEL PYTHON MODEL

Low Power Floating-Point Unit for RISC-V

A.14 Mutliplication test

This is a minimal multiplier implemented to verify where the multiplication
product could be found in the FMA pipeline.

import fpu_defs_fmac::*;

module mult_tb(

input logic [C_MANT:0] Mant_b_D,

input logic [C_MANT:0] Mant_c_D,

output logic [2*C_MANT+2:0] sum_D,

output logic [2*C_MANT+2:0] carry_D,

output logic MSB_cor_D

);

// Generate partial products for multiplication

logic [12:0] [2*C_MANT+2:0] Pp_index_D;

pp_generation pp_gneration_U0

(

.Mant_a_DI (Mant_b_D),

.Mant_b_DI (Mant_c_D),

.Pp_index_DO (Pp_index_D)

);

logic [2*C_MANT+2:0] Pp_sum_D;

logic [2*C_MANT+2:0] Pp_carry_D;

wallace wallace_U0

(

.Pp_index_DI (Pp_index_D),

.Pp_sum_DO (Pp_sum_D),

.Pp_carry_DO (Pp_carry_D),

.MSB_cor_DO (MSB_cor_D)

);

// "Multiplication section" ends here?

// 48-bit CSA. In fact the bit width is 49 bits including sign

bit. After this CSA, EDCA is used to produce the correct

sum and the carry out bit.

↪→

↪→

logic [2*C_MANT+1:0] Csa_sum_D;

logic [2*C_MANT+1:0] Csa_carry_D;

CSA #(2*C_MANT+2) CSA_U0

(

129

A.14. MUTLIPLICATION TEST

Low Power Floating-Point Unit for RISC-V

.A_DI ('0),

.B_DI ({Pp_sum_D[2*C_MANT+1:0]}),

.C_DI ({Pp_carry_D[2*C_MANT:0],1'b0}),

.Sum_DO (Csa_sum_D),

.Carry_DO (Csa_carry_D)

);

assign sum_D = Csa_sum_D;

assign carry_D = Csa_carry_D;

endmodule

130

Appendix B

Other contributions

This Appendix lists other contributions to open source projects made while
working with this Thesis.

B.1 PULP FPU bug�x

From: =?UTF-8?q?Torbj=C3=B8rn=20Viem=20Ness?= <tbness@gmail.com>

Date: Tue, 15 May 2018 10:22:26 +0200

Subject: [PATCH] Fixed bug with the sign being ignored in multiplications

when the magnitude of the result is zero

(https://github.com/pulp-platform/fpu/issues/5)

hdl/fpu_v0.1/fpu_core.sv | 10 +++++++---

1 file changed, 7 insertions(+), 3 deletions(-)

diff --git a/hdl/fpu_v0.1/fpu_core.sv b/hdl/fpu_v0.1/fpu_core.sv

index 37302d1..73161a6 100644

--- a/hdl/fpu_v0.1/fpu_core.sv

+++ b/hdl/fpu_v0.1/fpu_core.sv

@@ -12,10 +12,10 @@

// //

// Engineers: Lukas Mueller -- lukasmue@student.ethz.ch //

// Thomas Gautschi -- gauthoma@student.ethz.ch //

-// //

+// //

// Additional contributions by: //

// lile -- lile@iis.ee.ethz.ch //

-// //

+// Torbjørn Viem Ness -- torbjovn@stud.ntnu.no //

// //

// Create Date: 26/10/2014 //

// Design Name: FPU //

131

B.1. PULP FPU BUGFIX

Low Power Floating-Point Unit for RISC-V

@@ -30,6 +30,10 @@

// Revision: //

// 12/09/2017 //

// Updated the special cases by Lei Li //

+// Revision: //

+// 15/05/2018 //

+// Fixed bug with the sign being ignored in multiplications //

+// where the result is zero (GitHub #5) - Torbjørn Viem Ness //

//

import fpu_defs::*;

@@ -338,7 +342,7 @@ module fpu_core

// Output Assignments

///

- assign Sign_res_D = Zero_S ? 1'b0 : Sign_norm_D;

+ assign Sign_res_D = (Zero_S && (OP_SP != C_FPU_MUL_CMD)) ? 1'b0 :

Sign_norm_D;↪→

always_comb

begin

Exp_res_D = Exp_norm_D;

132

	Abstract
	Preface
	Introduction
	Objectives and limitations
	Main contributions

	Background theory
	Floating-point arithmetics
	Number representation
	Arithmetic operations
	Fused Multiply-Add

	Energy consumption basics
	Energy and power
	Static and dynamic power

	Architectural options
	Pipelining
	Timing
	Microcoding

	Synthesis and verification
	RTL simulation
	High-level model
	Scoreboard

	Previous work
	Rocket Chip Generator
	NanoRV32
	Project thesis
	Berkeley Hardfloat
	PULP platform
	Reduced latency for addition with a FMA

	Implementation
	What to implement
	Verification plan
	FPU register file
	FPU interface
	Power optimizations
	FMA implementation
	PULP modifications

	Test and measurement
	Stimuli generation

	Results
	Area comparison
	Rocket chip
	PULP FPU
	PULP area vs. target frequency

	Timing
	Power
	Single instructions
	OPUS codec

	Discussion and future work
	Unum and posits
	Transprecision
	64-bit precision on 32-bit hardware
	Hardware sharing and reuse

	Conclusion
	Appendices
	High-level Python model
	common.py
	simple_model.py
	fpu_private_framework.py
	fpu_tiny_framework.py
	fpu_custom_framework.py
	CoCoTB stimuli
	FPU_regfile_cocotb_simple.py
	Modified FMAC pipeline
	Modified FMA wrapper
	Simplified normalization and rounding unit
	Stripped conversion core
	Modified top-level FPU
	Simple FPU regfile
	Mutliplication test

	Other contributions
	PULP FPU bugfix

