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Abstract

A bike-sharing system is a service in which a fleet of bicycles is made available to the pub-
lic on a short-term basis through self-served docking stations. These stations are limited
in capacity and are often depleted or saturated with bikes due to sudden spikes in demand.
These spikes are hard to avoid and are both detrimental to the user experience and the
effectiveness of the system. Machine learning methods have been used to forecast demand
spikes at station level in similar systems successfully and would likely be a valuable tool
in proactively counteracting the effect of demand spikes in the Oslo bike-sharing system.

The goal of this thesis is to evaluate common machine learning methods for demand pre-
diction modeling at individual bike-sharing stations in Oslo.

To accomplish this, four machine learning methods which have successfully predicted
station-level demand in similar systems are evaluated through a set of experiments. The
methods are based on a random forest, gradient boosting tree and recurrent neural net-

works with either long short-term memory- or gated recurrent unit units.

Based on the experimental results, the recurrent neural network with the long short-term
memory unit is deemed to be the most suitable for the Oslo bike-sharing system, both due
to performance and future potential. However, all methods achieved good performance
and made accurate predictions.

The results pave the road for developing a full-scale prediction system in the Oslo bike-
sharing system, by highlighting the most promising prediction method.
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Sammendrag

Et bysyskkelsystem er en tjeneste hvor en flåte sykkeler er tilgjengeliggjort for offent-
ligheten på kort-tids basis, gjennom selvbetjente låse-stasjoner. Disse stasjonene er be-
grenset i kapasitet og ofte tomme eller fulle på grunn av sporadisk stor pågang. Dette
er vanskelig å unngå og pårvirker brukeropplevelsen og effektiviteten i systemet negativt.
Maskinlæringsmodeller har vist seg å være gode til å forutse etterspørsel på stasjonsnivå
i lignende bysykkelsystem, og kan derfor være et viktig hjelpemiddel i proaktivt arbeid
med å unngå effekten av plutselig stor etterspørsel i bysykkelsystemet i Oslo.

Målet med masteroppgaven er å finne ulike maskinlæringsmodeller som ofte er brukt for
å forutse etterspørsel i bysykkelsystemer og evaluere disse på bakgrunn av hvor godt de
forutser etterspørsel på stasjonsnivå i bysykkelsystemet i Oslo.

Fire maskinlæringsmetoder basert på recurrent neural networks med enten long short-term

memory- eller gated recurrent unit minneblokker, random forest og gradient boosting tree,
er implementert og evaluert gjennom tre eksperimenter.

Basert på resultatene er recurrent neural networks med long short-term memory den mest
passende metoden for Oslo bysykkelsystem, da denne har god ytelse og potensiale for
videre utvikling. Øvrige metoder viser også god ytelse.

Ved å utheve den mest lovende modellen for å forutse etterspørselen, legges et godt grunnlag
for videreutvikling metodene i et fullskala system i Oslo bysykkel.
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Chapter 1
Introduction

1.1 Motivation

The world is currently seeing an influx of shared transport services, aided by advances in
technology such as the Internet and the modern smartphone.

The concept of the bike-sharing system (BSS) was first introduced more than 50 years
ago in the Netherlands (Shaheen et al., 2010) and has recently seen a rapid rise in popular-
ity. Consequently, the amount of systems worldwide has risen from less than a handful in
1998 to more than 800 in 2015 (Fishman, 2016).

These services are becoming better and more accessible. Users expect to be able to
pick up a shared bike at any station at any time and return it whenever they want. However,
this is not always the case, sudden surges in demand may deplete or saturate stations com-
pletely, leaving users unable to travel as planned. Current solutions to this problem rely on
reactive measures and intuition, which can be inefficient and even counter-effective.

An essential element to solving this problem is detailed knowledge about usage pat-
terns. Recent research has shown that it is possible to achieve accurate predictions of
demand using a range of machine learning methods In this thesis, the aim is to evaluate
common machine learning methods for demand prediction at individual bike-sharing sta-
tions in Oslo through a set of experiments. The demand-patterns are highly dependent
on a lot of factors such as time of day, weather, season and the inventory of neighboring
stations, and sudden influxes in demand can happen seemingly at random.
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Chapter 1. Introduction

Forecasting these patterns is, therefore, a burgeoning topic (Fishman, 2016), as an
accurate prediction could have a significant impact on the quality of the system. Knowing
the size and timing of these influxes could be utilized to warn users that the station they
are biking to is filling up, and it would allow proactive effort in counteracting depletion
and saturation. It could also provide the system operators with valuable insight that would
allow them to modify the system to avoid these influxes entirely.

1.2 Problem formulation

The task of predicting future demand can be classified as a time series prediction prob-
lem. Time series prediction is the task of predicting the future given a series of historical
observations. The goal of this thesis is to use state-of-the-art research about time series
prediction and machine learning to evaluate machine learning methods for station-level
demand prediction in the Oslo BSS, with demand defined as the number of started trips at
a given station within a specific period.

Demand for a station spanning nine hours with a one hour sample interval and prediction-
span.

Figure 1.1: Example of station-level BSS demand

Figure 1.1 shows an example of demand for a single station. Historic data is colored
blue, and is used to train the machine learning methods. The goal is to predict the next
period which in the figure is colored orange.
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1.3 Approach

The Oslo BSS has a different amount of data and a topology that may present other
dynamics than those of related BSSs, which might favor other methods than those who
have performed well in related research.

Research Goal
The goal of this thesis is to evaluate the performance of common machine learning

methods for predicting station-level BSS demand in the Oslo BSS.

Research Question 1
Which commonly used machine learning methods are the best candidates for pre-

dicting station-level demand in the Oslo BSS?

A range of machine-learning methods has been successfully used to predict station-level
demand in other bike-sharing systems. These differ from the Oslo BSS in important as-
pects that influence demand and might alter the performance outcome. Therefore, it is
essential to find methods that have achieved good results on systems that closely resemble
the Oslo BSS.

Research Question 2
How accurate are these methods in predicting demand in the Oslo BSS?

The accuracy of the machine-learning methods determines how valuable they are to the
stakeholders in the BSS.

Research Question 3
How does the performance of these methods differ?

Differentiating the methods is important in order to determine what methods to utilize
given a criterion.

1.3 Approach

A three-step process is proposed to fulfill the research goal. First, the state-of-the-art in
BSS demand prediction and -analysis is examined to find the most promising methods
for the Oslo BSS data. Second, the most promising methods are run through a set of
experiments with the Oslo BSS data, designed to accentuate key performance aspects and
provide a reliable basis for evaluation. Third, the experiment results are evaluated with
emphasis on differences that are of importance to the stakeholders in the Oslo BSS.

3
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1.4 Contributions

This research contributes to the field of BSS by establishing the most suitable machine
learning model for station-level demand prediction in the Oslo BSS. It further shows that
all selected methods can be used to achieve good predictions on a 30- and 60-minute
prediction-span. Additionally, it shows that extrapolation as a method to account for miss-
ing data and censored demand distorts the demand patterns too much, and more careful
calculations are needed to successfully use this to predict estimated demand.

1.5 Overview

Chapter 1: Introduction
The introduction provides a brief overview of the contents of this thesis.

Chapter 2: Background
The background presents knowledge necessary to understand the context and theory
of the problem, in addition to an examination of related work and an analysis of the
available data.

Chapter 3: Theory
The theory gives an in-depth description of the machine learning methods utilized,
as well as an overview of relevant performance metrics and validation methods.

Chapter 4: Method
The method describes the research method, the tools used and the process of design-
ing and preparing the experiments.

Chapter 5: Experiments
The experiments provides a step-wise walk-through of the experiments.

Chapter 6: Results and discussion
The results and discussions chapter outlines the results, presents an in-depth evalua-
tion of the experiment results and describes how this resolve the research questions.

Chapter 7: Conclusion
The conclusion concludes this research and its limitations and presents thoughts on
essential directions for future work.
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Chapter 2
Background

2.1 Bike-sharing systems

A bike-sharing system is a service in which a fleet of shared bicycles is made available
to the public on a short-term basis through self-served docking stations. The bikes may
be rented and returned to any of the docking stations included in the system. The rental
duration is commonly kept in the 30-45 minute range, to maximize the number of rides per
bike. Often the goal of introducing these systems is to provide a sustainable and flexible
alternative to commuting in urban areas to reduce congestion and pollution caused by
private cars.

The shared bicycle programs are commonly divided into four generations, the first of
which, free bike systems, were free to use and consisted of a set of brightly colored bicycles
scattered throughout the cities in which they were deployed. They were plagued with theft,
and vandalism and most programs did not last long. The next generation, known as coin-

deposit systems saw its inception in Copenhagen in 1995 and introduced docking-stations
where a small deposit was required to release the bikes. There were no time limits on
rental and the deposit amount was small, so the bikes were often used for excessively long
periods or even not returned at all. The incorporation of docking-stations made the system
more dependable and resistant to theft but increased the cost of operation.

In 1998 the first third-generation system appeared in France with the distinguishing
feature of incorporating IT-systems for administration and tracking. This facilitated the
usage of smart-cards or credit-cards to rent bikes, and made it possible to study real-time
usage data of the system on a large scale.

5



Chapter 2. Background

Most bike-sharing systems today operate at the third generation, and the fourth as
proposed by Shaheen et al. (2010) is rolling out across the world.

Bike sharing systems have gained popularity as a new domain for machine learning due
to the massive amounts of data collected by the systems (Jia et al., 2017), in addition to
its ability to capture temporal movement patterns in cities. Much can be learned from this,
and bike-sharing programs often encourage research by offering the data free of charge.

2.2 Oslo bike-sharing system

The first BSS in Oslo was established in 2002 by Clear Channel and continued in oper-
ation until the end of 2015. Upon which Urban Infrastructure Partner (UIP) took over
management and revamped the service for launch in early 2016.

As of May 2018, the Oslo BSS consists of about 3000 bicycles and 205 stations. Bikes
can be rented from any station for up to 45 minutes at a time, after which a small fee is
charged for exceeding rental limits. The fee is charged unless one is close to a full station
and unable to return the bike. In this case, one is granted 15 additional minutes for free to
find an available spot at another station.

To rent a bike, one need to have purchased any of two rental plans, for either a sea-
son or a day with a price of 399 NOK and 49 NOK respectively. The users primarily
interact with the system through the Oslo bike sharing application in which one can check
the availability of locks and bikes at nearby stations, report broken bicycles, enable ex-
tended rental and unlock bikes. The latter can also be accomplished through a touchscreen
interface at each station.

The system is closed throughout the winter as the weather conditions become unsuit-
able for biking. In 2016 and 2017 the system opened in early April and closed around
early December. Additionally, the system is also closed at night between midnight and six
in the morning. The current generation of bikes and stations are specially built for shared
bicycle systems, with vandal-proofing and optimization for low maintenance. The system
is growing continuously and has increased considerably in extent between 2016 and 2018.

6



2.3 Problem variations

2.3 Problem variations

2.3.1 Demand granularity

BSS demand forecasting is commonly divided into three types, where each presents a
different difficulty and value. With the demands defined as the number of started or ended
trips within a specific period, the problem is split into the following categories.

System-level demand
The total demand of all stations combined.

Clustered demand
The demand in a cluster of stations. Where the clustering is based on factors such
as similarities in demand profile or physical distance.

Station-level demand
The demand at an individual station.

2.3.2 Demand types

BSS demand can additionally be split by the following aspects of demand, which, however,
typically share characteristics in the system.

Started trips
The number of started trips at a station within a specific period.

Ended trips
The number of ended trips at a station within a specific period.

Net trips
The difference in the number of started and ended trips at a station within a specific
period.

7



Chapter 2. Background

2.4 Related work in bike-sharing system demand

The topic of bike-sharing is burgeoning with research on many aspects in addition to de-
mand prediction, such as usage and user preferences, history and growth, re-balancing,
barriers to bike-sharing and future directions (Fishman, 2016). In the following sections,
five successful works in demand modeling and prediction are presented and compared in
depth. Other work that to some degree has inspired and directed this work is listed with a
short annotation of their contents.

The papers that are examined represent state-of-the-art within their aspects of bike
sharing research and are selected based on likeness to the Oslo BSS regarding the data
available. Rudloff and Lackner (2014) aimed to improve redistribution efficiency by at-
taining better station-level demand predictions using more features than previous efforts.
The research was combined with a feature study using a set of count models. Chen et al.
(2017) believed that an efficient recurrent neural network (RNN) based method could out-
perform traditional methods such as random forest (RF) and gradient boosted tree (GBT)
on station-level and system-level demand prediction. They make predictions for started
and ended trips at all stations as well as system and station-level demand in a combined
model.

Froehlich et al. (2009) examined a multitude of different aspects of the BSS, including
inferring cultural and geographical features of the host city, demand forecasting at station-
level and predictions of station-level inventory. Tran et al. (2015) modeled bike-sharing
demand at station-level using linear regression to examine the effect of environmental
variables on demand. Yin et al. (2012) compared several machine learning techniques on
a simplified problem to predict system-level demand.

2.4.1 Datasets

The datasets used in these studies originate from different BSSs around the world. Rudloff
and Lackner (2014) used a dataset sourced from the BSS Vienna City Bike in Austria,
containing trip records collected over a 2-year period spanning from 2010 to 2012. The
dataset was supplemented with station inventory status sampled every 15 minutes and
weather data for every station.
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2.4 Related work in bike-sharing system demand

Chen et al. (2017) performed their experiments using trip data recorded in 2014 in
the New York Citi Bike BSS, with more than 8 million trips. Froehlich et al. (2009)
attained their data by sampling it from the website of Bicing Barcelona every two minutes
to accumulate 26 million individual data points, however, this data only covered a span
of 13 weeks in 2008 from the August to December and was prone to errors due to the
collection method.

Tran et al. (2015) collected 6 million trips conducted in 2011 from the BSS of Lyon in
France. Yin et al. (2012) used the smallest dataset of the five, containing 17 thousand data
points of system status for the Capital Bikeshare BSS in 2011 and 2012. Both Rudloff and
Lackner (2014) and Chen et al. (2017) noted a seasonal change in demand where usage
peaks in the late summer and is reduced during the winter.

2.4.2 Method

Numerous methods of predicting demand can be employed and these works display a
specter of the most successful. All papers concerned with predictions, model individual
stations, aside from Yin et al. (2012) who modeled the total demand at system-level.

Rudloff and Lackner (2014) found that predictions of stations modeled individually
yields good predictions, and Chen et al. (2017) noted that this would be more useful to
stakeholders. Chen et al. (2017) bench-marked their proposed recurrent neural network

(RNN) with a few variations against ordinary least-square regression, random forest and
a feed-forward neural network (FNN).

Yin et al. (2012) developed models using ridge regression, support vector regression,
random forest and gradient boosting tree (GBT). Wherein the last two achieved the best
predictions. Froehlich et al. (2009) employed a much simpler approach, using simple
predictive methods such as last value, historic mean, historical trends and a Bayesian

network to create the forecasts.

2.4.3 Features

In addition to the variety of methods that can be applied, there can be a considerable dif-
ference among BSSs in what features determine demand. The variety can depend on any-
thing from work schedules to topography, however, most found the weather to be among
the most important.
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Specifically, Rudloff and Lackner (2014) and Chen et al. (2017) both found that there
exists a strong positive correlation between ridership and temperature and a weaker neg-
ative correlation with precipitation. Yin et al. (2012) ranked weather as the most crucial
variable after hour, working day, season, and year.

Tran et al. (2015) found that public transport and more specifically train arrivals was
a significant instigator of demand. Furthermore, they found that variables such as station
altitude, population numbers, proximity to leisure locations and the density of the BSS
also affect the demand profile. Lastly, the inventory status of neighboring stations was
noted as a significant feature in determining demand by Rudloff and Lackner (2014).

2.4.4 Prediction-span

Despite examining multiple aspects and utilizing different methods, all the studies found
that predicting and modeling BSS demand at 60-minute intervals made the most sense
and provided the best results. Froehlich et al. (2009) examined the entire span from 10
minutes to 120 minutes as this seemed to correspond best with the usage patterns. Rudloff
and Lackner (2014) argued that a 60-minute period would be enough to provide reasonable
value while avoiding prolonged periods of zero demand which would be detrimental to the
results.

2.4.5 Results

All the studies referenced in this section achieved excellent results in their respective tasks.
Rudloff and Lackner (2014) noted that introducing new stations close to existing ones had
a noticeable effect on the demand and should be accounted for when forecasting. The
RNN model developed by Chen et al. (2017) outclassed the benchmark algorithms both
globally and locally.

Froehlich et al. (2009) managed to create good predictive models using only a few
weeks worth of data. Additionally, it was found that stations with higher activity proved
more difficult to predict and that prediction quality was a function of the size of the
prediction-span.

Tran et al. (2015) found a big difference in the demand patterns caused by long-time
and short-time subscribers. Finally, RF and GBT achieved the best performance on global
system demand in the study conducted by Yin et al. (2012).
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2.4 Related work in bike-sharing system demand

2.4.6 Other research

2.4.6.1 Reviews

• Bike-Sharing System: A Big-Data Perspective. Jia et al. (2017). Literature com-
parison and analysis of Big-Data papers concerned with BSS planning, pattern anal-
ysis, demand or trip prediction and re-positioning.

• A Review of Recent Literature. Fishman (2016).
Review of BSS literature conducted since 2013 concerned with general aspects such
as history, growth, usage patterns, user preferences and demographics.

• A Synthesis of the Literature. Fishman et al. (2013).
An evaluation of the global state of BSS as of 2013.

2.4.6.2 Prediction

• Predicting Bike Usage for New York City’s Bike Sharing System. Singhvi et al.
(2015). Pairwise trip-demand prediction using regression methods at neighbourhood-
level in New York City’s Citi Bike system. Covariates include taxi usage and
weather.

• Bicycle sharing systems demand. Frade and Ribeiro (2013). Relating BSS de-
mand to external factors that affect usage, in order to estimate demand in locations
without an existing BSS.

• Bicycle-Sharing System Analysis and Trip Prediction. Zhang et al. (2016).
Bike-Sharing trip prediction with geographical data in addition to customer features
in order to provide input for better re-balancing.

2.4.6.3 Other BSS challenges

• Understanding Bike-Sharing Systems using Data Mining: Exploring Activity
Patterns. Vogel and Mattfeld (2011). Data mining used to gain insight into BSS
activity patterns in order to attain a better understanding of the system structure.

• Urban cycles and mobility patterns: Exploring and predicting trends in a bicycle-
based public transport system. Kaltenbrunner et al. (2010). A spatio-temporal
pattern analysis of the Bicing BSS in Barcelona using data sampled from the system
website, to provide predict system-level availability in a short time span.
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• Station Site Optimization in Bike Sharing Systems. Liu et al. (2015). An arti-
ficial neural network model is built to predict station demand and balance, and is
used as input to a station site optimization algorithm that aims to improve system
balance.

2.4.6.4 Other domains

• DeepSD: Supply-Demand Prediction for Online Car-hailing Services using Deep
Neural Networks. Wang et al. (2017). Development of a deep residual neural net-

work that outperform previous efforts in demand-supply prediction with car-hailing
services.

• A new Evolutionary Neural Network for forecasting net flow of a car sharing
system. Xu and Lim (2007). An evolutionary neural network optimized with a
mixed genetic algorithm and back-propagation was utilized to predict the net flow
of cars in a car sharing system in Singapore.

2.4.7 Summary of related work

These works contain numerous exciting aspects that influence this work. Though the qual-
ity and quantity of the datasets were varying, one year of data seemed to be enough to
achieve good predictions, and even a few weeks can be sufficient. The most commonly
used machine learning methods, in no particular order, are the following:

• Feed Forward Neural Network (FNN)

• Recurrent Neural Network (RNN)

• Evolutionary Neural Network

• Residual Neural Network

• Random Forest (RF)

• Gradient Boosting Tree (GBT)

• Super Vector Regression

• Ridge Regression
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The weather was decidedly the most critical variable in all studies where it was in-
cluded, wherein temperature and precipitation correlated the most. Station- and neighbor
station inventory also proved valuable. A 60-minute prediction-span was found to pro-
vide the most value without compromising prediction quality. These studies show that
though there are many factors influencing prediction quality such as activity level and
changes to system architecture, good results can be achieved in predicting BSS demand
using relatively sparse data and few features. The most promising methods for the Oslo
BSS regarding demand prediction is the RNN, RF, and GBT, as these achieved excellent
results using data that is similar to what is available for this problem.

2.5 Datasets

The following datasets are utilized in this research. The trip records and station details
are provided by UIP, and the historical weather data is downloaded from the Norwegian
Meteorological Institutes data-portal (eKlima) 1.

• Trip records (UIP)

– Censored demand

– Estimated demand

• Station details (UIP)

• Historical weather (The Norwegian Meteorological Institute)

2.5.1 Trip records dataset

The trip records dataset contains records of trips conducted during 2016 and 2017, with
detailed information about every trip conducted within the BSS. Each record lists which
station the bike was rented from and to which it was returned, the duration of the start and
a timestamp for when the trip started and ended. It further includes subscription id, bike
id, and other contextual data.

Bikes that have been moved manually by the system operators are not recorded in this
dataset, but it does, however, include some test data such as trips conducted during the
night and trips including internal stations. This data is filtered during preprocessing.

In this thesis, the demand is split into the two measures estimated- and censored de-

mand. This is done to account for situations where the stations are depleted, and no trips
can be initiated from the station.

1www.eklima.met.no
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The demand is considered to be censored when a station is depleted and no trips are
recorded, despite there possibly being a demand for bikes. Estimated demand is an extrap-
olation of the censored demand for bikes for the time in which it is censored.

Table 2.1 shows the most relevant columns of the trip records dataset, and table 2.2
shows the columns in the estimated demand dataset.

Attribute Data type

Bike ID Integer

Started timestamp Timestamp

Ended timestamp Timestamp

Station ID for start station Integer

Station ID for end station Integer

Status String

Ended method String

Table 2.1: Censored demand dataset overview

Attribute Data type

Timestamp Timestamp

Demand bikes Float

Demand locks Float

Net demand Float

Table 2.2: Estimated demand dataset overview

2.5.2 Station details dataset

The station details dataset contains information about every station in the Oslo BSS. This
includes the id and name of the station, textual placement description, coordinates, eleva-
tion above sea-level and the number of bike slots. Figure 2.3 shows the format of each
column.
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Attribute Data type

Station ID Integer

Station title String

Latitude Float

Longitude Float

Elevation Integer

Slot count Integer

Table 2.3: Station details dataset overview

2.5.3 Weather dataset

The weather dataset contains hourly weather data recorded at Blindern in Oslo, composed
of the four attributes, precipitation, duration of sunshine, wind speed and temperature. Ta-
ble 2.4 shows the format of each attribute. The weather data should ideally be recorded
as close to each station as possible. However, to avoid the increased complexity of col-
lecting and matching weather data for every station, this dataset is used for all stations.
The weather data is still be relevant for all stations as it represents the overall conditions
in Oslo.

Attribute Data type

Timestamp Timestamp

Millimeter of rain last hour Float

Minutes of sun last hour Float

Average wind speed last hour Float

Average temperature last hour Float

Table 2.4: Historical weather dataset overview
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2.6 Data analysis

Data analysis is a crucial step in creating time series forecasting methods. The goal is to
identify features in the dataset and determine which can affect the predicted value as well
as the significance of these.

The Oslo BSS shares many features with the datasets used in the papers examined in
section 2.4 such as seasonality, size, detail, and correlations.

The Oslo BSS under the management of UIP opened at the beginning of April 2016
and has operated for two seasons with a halt in the winter of 2016-17. The BSS opens for
the season around the beginning of April and closes in November and has amassed around
4.8 million trips since the launch.

The annotated major public holidays show that the ride volume drops significantly during
these periods, and is an indication that ride-volume is closely linked with work schedules.

Figure 2.1: System-level ride volume with public holidays annotated
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2.6 Data analysis

Figure 2.1 show that usage in both seasons, increases towards the end of the year, with
a peak in August and September, and a sharp decrease in November as the winter sets in
and the system closes. This trend is also observed by Chen et al. (2017) and Froehlich
et al. (2009) in their research. A decrease in volume is observed during public holidays,
which can indicate that a large part of the user base is commuters that use shared bikes to
get to work.

The 2017 season saw an increased ride-volume up half a million from 2.1 million trips
in 2016 to 2.6 million which in part can be attributed to the increased system capacity due
to a continuous extension with more bikes and stations. This is shown in figure 2.1.

Figure 2.2 show that weekdays follow a familiar pattern with a sharp peak in the morn-
ing between 6:00 and 7:00 and another sharp peak in the afternoon between 15:00 and
16:00. There is no morning peak on weekends, and the afternoon peak is smaller, happens
one hour sooner and is not as sharp as the weekday peaks. The Sunday peak is also smaller
than the Saturday peak.

Censored demand aggregated by hour and day of week. Weekdays follow a common
pattern with a sharp morning spike followed by a larger and longer spike in the afternoon.

There is a generally lower demand and no morning peak on weekends.

Figure 2.2: System-level aggregated censored demand
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This pattern further strengthens the hypothesis that commuters make up a big part of
the users, as the weekday peaks correspond with normal Norwegian work hours and the
fact that the morning peak is absent on weekends. Froehlich et al. (2009), Rudloff and
Lackner (2014) and Chen et al. (2017) found similar patterns in the BSSs they studied.

Figure 2.3 show that the traffic volume follows the seasonal change in temperature
indicating that it may have a strong correlation with ridership.

System-level ride volume corresponds with the seasonal changes in temperature which
indicates that temperature is an important determinant for demand in the Oslo BSS.

Figure 2.3: Comparison of censored demand and average temperature

Figure 2.4 shows that there is a positive correlation between the temperature and the
number of initiated trips, and figure 2.5 shows that there exists a weak linear relationship.
The number of minutes with sun also correlates positively with the number of rides. Wind
speed has a deficient correlation factor, and figure 2.5 show that a moderate breeze is only
slightly deferred ridership. Rain displays a weak negative non-linear correlation that is
weaker than what is found in related work (Yin et al., 2012; Rudloff and Lackner, 2014).
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2.6 Data analysis

The variables ranked by correlation with the amount of started trips, from highest
positive- to highest negative correlation is as follows; temperature, minutes of sun,

windspeed and then rain.

Figure 2.4: Correlation matrix of average weather and aggregated censored demand

The amount of sun shows zero correlation. Temperature displays a weak positive linear
correlation. Rain shows a non-linear negative correlation, and the wind speed shows little

or no visible correlation with rideship.

Figure 2.5: Scatter plot of average weather and aggregated censored demand
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2.6.1 Estimated demand

The profile of the estimated demand is much more erratic and noisy than the censored
demand. The way it is calculated makes it sensitive to situations where a set of bikes are
rented within a short interval, causing sudden depletion, leading to false spikes.

An example of this can be seen in figure 2.6. On Wednesday, June 14, the estimation
indicates that there would have been a secondary spike in the afternoon, twice as big as the
one before it. The secondary spike is a highly unlikely scenario and indeed an anomaly
considering the regular patterns. This problem has been somewhat remedied by limiting
the upper bounds of the demand, but cannot be removed entirely as it still might be a result
of real demand.

Station inventory level, censored- and estimated demand for station 279 between June 12.
and June 17. 2017. The estimated demand is denoted demand bikes and is observed to
constantly rises above the censored demand, denoted started trips, just as the station is
depleted of bikes. An example of what is probably a false spike is visible on June 14.

Figure 2.6: Comparison of estimated- and censored demand

Figure 2.7 show the demand aggregated by the hour and day of week. Here the demand
consistently exceeds the number of started trips on the weekdays, but follow on weekends.
This concurs with the fact that the weekend spikes happen over a more extended period
and does not deplete the station as rapidly, which indicates that the weekend demand is
rarely censored.
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2.6 Data analysis

Comparing the hourly aggregated censored demand to the estimated demand for station
279 show that what is observed in figure 2.6 is present through this dataset. The estimated
demand constantly exceeds the number of started trips on weekdays, indicating that the

demand is censored and that the real demand commonly is higher. On weekends
estimated demand follows the censored demand, and the station inventory is generally

high throughout the day. This indicates that demand is rarely censored.

Figure 2.7: Comparison of aggregated estimated- and censored demand

The small secondary afternoon surge observed on Tuesday, Wednesday and Thursday
indicate that the demand in this period often is censored and that the number of started
trips in this period would have been more substantial had the station not been depleted. It
might also be a result of the anomalies of the type described earlier.

2.6.2 Station variations

There are many differences between the 198 stations in the Oslo BSS. They vary in bike
lock capacity from six to sixty. The amount of data measured in the number of trips per
station, ranges from just a couple at Trelastgata to over a hundred thousand at Alexan-

der Kiellands Plass. They also differ in the duration of operation, Trelastgata opened
in November 2017 and has rarely been used, while Alexander Kiellands Plass has been
operational since the system launch in 2016.
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Additionally, there is also a difference in usage patterns. Figure 2.8 show the distri-
bution of the difference in the number of started and ended trips per station in total. A
pronounced imbalance in the number of arrivals and departures can be observed for most
stations. An example of this are the stations Bankplassen and St. Hanshaugen park vest,
the first can be classified as an arrival-station as it has about half as many departures as
arrivals, whereas the latter can be classified as a departure-station as it has twice as many
departures as arrivals.

The difference in percentages shows that the difference between the amount of started-
and ended trips on a station spans a large range.

Figure 2.8: Distribution of station departure and arrival difference

2.7 Research value for partners

The outcome of this research provides UIP, with information that opens up a range of
interesting possibilities for solutions that benefit all stakeholders in the Oslo BSS and
other systems UIP operate.

The most beneficial in the short term is probably the possibility to preemptively coun-
teract depletion of stations, by extending the most promising of the evaluated methods. As
these situations are disruptive and have a substantial negative impact on user experience,
better handling would help improve overall user satisfaction. On a longer horizon, this
helps scale and improve the system structure to counteract these situations permanently.
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2.7 Research value for partners

The project could be further utilized to build a system that warns users when nearby
stations are expecting a significant surge, and thus even out the demand by letting them
select less crowded stations in advance. This has the added benefit of allowing users to
more easily learn the demand-patterns of the system and better plan their future usage.

The predictive models are developed with UIPs system architecture in mind which
allows for natural extension and implementation with many of their existing applications.
Building on Google Cloud Platform facilitates extension by allowing the experimental
models to be set up for continuous learning and be used in real time. The models are also
fairly general and can be adapted to provide predictions for any of the systems UIP operate
provided that there exist a sufficient data basis.
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Chapter 3
Theory

3.1 Time series analysis

The urge to know what happens in the future has driven research on predictions for years.
Recently this has accelerated due to increased access to data. Smart watches, refrigerators,
cars, and BSSs like this one records vast amounts of data every day, which enable us to
predict the future by learning from the past.

Time series analysis is the science of examining a sequence of data points, often col-
lected successively at a set interval to extract information. It can be divided into the three
sub-goals; prediction, modeling, and characterization.

The goal of prediction is to forecast the short-term evolution in a system. For modeling,
the goal is to find features that describe the long-term behavior, while characterization
is the task of determining properties in the system such as the amount of randomness
(Weigend, 1994).

A common problem that occurs in time series prediction is naı̈ve forecasting. This
occurs when the most robust pattern learned by a prediction model is that the target value
follows the last known value. Naı̈ve forecasting is a major pitfall when making predictions
using time series data, as it may look like the model has learned the data, while it only relies
on the previous value. Figure 3.1 shows a prediction graph with good performance metrics,
but a noticeable naive forecast. This shows the importance of evaluation when analyzing
time series predictions. A naive forecast is recognized by the prediction graph it produces,
which are discovered through a visual inspection of graphs during the optimization step is
necessary.
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A naı̈ve prediction is characterized by a prediction graph that is offset by the
prediction-span from the actual data.

Figure 3.1: Example of naı̈ve prediction

Time series data can be classified according to behavior, and the models are split by
linearity (Weigend, 1994).

3.1.1 Linear models

Linear time series models are commonly employed to discover covariance structures, they
are easy to implement and can give a good understanding of behavior. The linear models
are predominantly divided into moving average (MA) and autoregressive (AR) models,
but combinations of these models such as ARMA and ARIMA also exist (Weigend, 1994).
However, time series may exhibit more complex patterns, and linear models are often not
enough to capture the more intricate relationships between the covariates.

3.1.2 Nonlinear models

The differentiating feature of nonlinear models is their ability to capture non-linear co-
variate behavior which allows them to be applied to a broader set of problems. However,
this also has the downside of potentially modeling extraneous noise (Weigend, 1994) and
makes problem specific tuning and adjustment a more complicated task. This thesis em-
ploys the non-linear machine learning models; artificial neural networks, random forests,
and gradient boosting trees.
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3.2 Machine learning

3.2 Machine learning

Machine learning is a branch of artificial intelligence, where a central part of the research
is conducted on the ability to automatically learn complex patterns and perform intelligent
decisions based on data.

Businesses in a wide range of industries are embracing artificial intelligence and ma-
chine learning. It is being used to automate tasks and solve complicated problems pre-
viously only a highly educated person could solve. A lot of everyday items are being
enhanced with artificial intelligence which now powers autonomous cars, online news-
papers, and social networks. We are even seeing the adoption of smart, learning, virtual
assistants.

Machine learning employs problem-solving agents that can be simple reflex-, model-
based-, goal-based-, utility-based- or learning agents. Learning agents are often used to
solve classification, clustering and regression problems and are what is utilized in this the-
sis. Learning agents have the advantage of being able to operate in unknown environments
and become more competent than initial knowledge might allow (Norvig and Russell,
2009).

Reinforcement-, unsupervised- and supervised learning are learning methods that ma-
chine learning models can implement. Using reinforcement learning the agent expands its
knowledge based on reward and punishment. In unsupervised learning the agent attempts
to find patterns in the data without any feedback from the environment, while in supervised
learning the agent learns by comparing its output with the ground truth.

In unsupervised learning, the agent is not provided with target values, which means
that it has to determine how to weigh each of the input features based on the given criteria.
The primary applications of unsupervised learning are classification tasks where the goal
is to describe hidden structures in data without a label. Therefore, there is also no way to
evaluate the accuracy of this model (Norvig and Russell, 2009).

In supervised learning, backpropagation is used to train the model. The network output
is compared to the target value creating an error, which is propagated backward throughout
the network to adjust the internal weights. The error is created for every input and target
value pair in the training-set until the data function has been learned (Norvig and Russell,
2009). Tasks such as BSS demand prediction are often solved using supervised learning
methods, as time series easily can be transformed into input-output pairs due to the ground
truth simply being a following value.
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Machine learning methods use loss functions to minimize the error between the pre-
dicted value and the target value while learning. It produces a real numbered error rep-
resenting the inconsistency between these values, where a decrease in loss indicates an
increase in accuracy. The type of loss function to use depends on many factors such as
the type of problem and the method employed. For regression problems three of the most
commonly used functions are Mean Absolute Error (MAE), Mean Squared Error (MSE)
and Least Squares (L2).

The specific loss function to use is selected through the optimization process, where
each function is evaluated to find the most suitable for a given problem. MAE measures
the average accuracy for two continuous variables without considering the direction by
using the absolute value. MSE and L2 measure the average accuracy by quadratic errors.
MAE is more stable for outliers than MSE and L2. Outliers are data points far from the
center data mass in a dataset.

MAE =
1

n

n∑
i=1

|yi − ŷi| (3.1)

MSE =
1

n

n∑
i=1

(yi − ŷi)2 (3.2)

L2 =

n∑
i=0

(yi − h(xi))2 (3.3)

3.3 Ensemble learning methods

Ensemble learning is a set of machine learning methods that are characterized by em-
ploying multiple learning algorithms to achieve better predictions than with a stand-alone
method. They are known to be one of the most successful approaches to prediction tasks,
one of the reasons for this is the diversity that is curated among the ensemble members
(Allende and Valle, 2017).

An ensemble learning method runs a baseline algorithm several times to form a vote
based on the hypothesis. The most accurate way to do this is to construct each of the
hypothesis independently if possible. The second way to construct an ensemble method is
to build a connected hypothesis with weighted votes (Dietterich, 2002).
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Both RF and GBT are typically used with Classification and Regression Trees (CARTs)
as seen in figure 3.2. CARTs are decision trees used for classification and regression tasks.
A decision tree is a tree-structure where each non-leafs in the tree tests some attribute, and
the branches from this non-leafs represent outcomes of this test. The CARTs have differ-
ent characteristics based on the method implementing them. RF uses bootstrap aggregated
CARTs, while GBT uses boosted CARTs (Breiman, 2017).

The model is split into n decision trees that each vote for their proposed outcome.

Figure 3.2: Example of ensemble-learning model architecture

A machine learning model is trained until the generalization error converges. The
generalization error is the prediction accuracy of machine learning models (Norvig and
Russell, 2009). How well the generalization error converges is based on the number of
trees, the individual tree strength and the correlation between them. Generally, many trees
gives a robust forest with good prediction capabilities (Breiman, 2001).

3.3.1 Random forests

Random forests is an ensemble learning method for classification and regression, and it
is built up like a forest of bootstrap aggregated CARTs where each tree depends on the
values of a random vector which is sampled independently and distributed equally for all
trees. A key meta-algorithm in this ensemble learning method is bagging. Bagging is
used to achieve models with good fit and low variance by averaging noisy and unbiased
data (Breiman, 2001). RFs are fast to train but can be slow making predictions on more
extensive problems.
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3.3.2 Gradient Boosting Tree

Gradient Boosting Tree (GBT) is an ensemble learning method for classification and re-
gression. The model is built step by step and optimized by loss functions Friedman (1999).
Like RF, GBT is implemented using CARTs. In this implementation type, the tree depth
and type of tree differs the two methods.

GB is built up by boosted trees that in this case are shallow trees and RF is built up by
bootstrap aggregated full-grown CARTs. Weak learners have high bias and low variance
which means low correlation with the actual classification. Boosting is the meta-algorithm
used by GB that reduces this bias. RF has the advantage of handling overfitting, while
GBT has the potential to overfit.

3.4 Artificial neural networks

An Artificial Neural Network (ANN) is a set of computing systems loosely based on the
neural networks that make up a biological brain (Gurney, 1997). In the brain, a neuron is
connected to thousands of other neurons and communicate using electrical signals. When
a neuron receives a signal that exceeds some threshold, it “fires” and generates a voltage
pulse to relay the electrical signal.

In an ANN each neuron is represented by a node in a layered structure, with an input
vector and an output vector that act as dendrites and axons. The connections between the
nodes simulate synapses and the strength of the connection between them is represented
by a real numbered weight (Gurney, 1997) as shown in figure 3.3.

Figure 3.3: Artificial Neural Network neuron architecture
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Figure 3.4 show a Feed-forward Neural Network (FNN) which is the simplest form of
ANN. The output from each neuron is passed as an input to another neuron in the next
layer. These one-way connections create a directed acyclic graph and have no internal
state.

Figure 3.4: Example of Feed-Forward Neural Network model architecture

Learning with a multi-layer FNN occurs through backpropagation. For each iteration
of the learning process, the observed error from the output layer is propagated back through
the hidden layers. The observed error is used to calculate gradient values, which are used
to update the weights between the current and previous layers. The process is repeated
until all layers are updated (Norvig and Russell, 2009).

ANNs have been used to successfully solve many complex tasks, including speech
recognition, machine translation, medical diagnosis and computer vision. Time series
prediction is another task ANNs are commonly employed to solve. Typically, a multilayer
perceptron trained with backpropagation Ortiz-Rodriguez et al. (2013) has been utilized.
However, it has been shown that Recurrent Neural Networks (RNN) are as good or better
at time series prediction due to its inherent memory mechanism.

3.4.1 Recurrent Neural Networks

Recurrent Neural Networks are a type of ANN where the output of each neuron is used
as an input for the same neuron in the following step, in addition to feeding it to the next
neuron in the network. This feedback-loop allows the network to keep an internal state
and mimic memory (Norvig and Russell, 2009).
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RNNs can model dynamic temporal behavior for a time sequence by using the internal
memory, and gives it an edge by allowing an output to influence the following one. Figure
3.5 illustrates how the recurrent neural network unfolds into a complete sequence. The
figure also shows how the input Xt is fed back into the network.

Figure 3.5: Recurrent Neural Network model architecture

3.4.1.1 Long-Short Term Memory

Long-Short Term Memory (LSTM) are memory blocks for layers in an RNN, developed
by Hochreiter and Schmidhuber (1997) to deal with the long-term dependency problem,
which occurs when the network fails to learn long-term connections due to another issue
called the vanishing gradient problem. This is when the gradient values used to update the
internal weights, vanish as they are propagated backward in the network. The vanishing
gradient causes the weights in the later layers to converge before the weights in the earlier
layers such that some remain largely unchanged, even though the later weights are properly
fitted.

Figure 3.6 shows the architecture of the LSTM memory block and how the data flows
through the gates. Information in each LSTM block is regulated through the input gate,
output gate and the forget gate (Hochreiter and Schmidhuber, 1997). These are all con-
trolled by sigmoid layers which output a value between zero and one depending on the
learned function. The first gate the data is passed through is the forget gate. Data from
the previously hidden state ht−1 and input data Xt is passed to the sigmoid layer which
controls the amount of data to be thrown away. If the sigmoid layer outputs one, nothing
is thrown away from the cell state. This output is kept in ft to adjust the forget grade later.
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Figure 3.6: Long Short-Term Memory cell architecture

To decide what information to store in the cell state, the input data is evaluated through
two different parts. The input gate which has a sigmoid layer decides which values to
update and store in it, and a tanh layer creates new candidate vectors, c̃t. The candidate
vectors are potentially new information to be stored in the cell state. A combination of the
two steps creates the final update to the cell state.

After deciding what to update, the old cell state is multiplied with the forget gate ft
and added to it, multiplied with the candidate vectors c̃t. The last gate is the output gate
which decides what values to output, ot. The cell state is passed through a tanh layer and
multiplied with the output ot.

The advantage of this architecture over a plain RNN is the ability to let the network
learn when to apply a broader context, and thus decide when to rely on long-term or short-
term memory, making it possible to learn more complex functions.

3.4.1.2 Gated Recurrent Unit

Gated Recurrent Units (GRU) are a simpler and more computationally efficient version of
the LSTM block (Cho et al., 2014). A GRU block contains only two gates; the input gate
and the forget gate which are merged into a single update gate. The reduction in gates is
what makes it more efficient than the LSTM (Cho et al., 2014). GRU take advantage of
the information in the hidden states rather than using memory units to store information.
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Figure 3.7: Gated Recurrent Unit cell architecture

The architecture and the two gates are shown in figure 3.7. The update gate uses a
sigmoid layer and has the same task as the forget gate in the LSTM unit, that is to store
information about how much previous information to keep. The information is stored in
zt as a vector. As there is no cell state in GRU, the only input is the previous hidden state
ht−1 and current input values xt.

The reset gate uses a sigmoid layer to determine how to combine the new input with
previously memory in the hidden state. This vector is stored in rt and will be used to
update the hidden state later.

The new memory in the hidden state h̃t is computed as a state-to-state transition with
the help of a tanh layer, in the same way, candidate vectors were computed in the LSTM.
The only difference is that previously hidden states are modulated through the reset gate,
rt. The output vector is computed as seen in the equation 3.4.

(1− zt) ∗ ht−1 + zt ∗ h̃t (3.4)

Cho et al. (2014) states that the GRU performance is comparable to that of the LSTM,
and recent research has shown that GRUs performs better than the LSTMs on station-level
demand (Chen et al., 2017).
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3.5 Performance metrics

Performance metrics is an essential aspect of machine learning and selecting the right ones
is crucial to being able to evaluate the results correctly. For time-series prediction problems
the performance is commonly measured as the accuracy of the prediction in comparison
to the real historical values.

Some of the most commonly used metrics for time-series prediction are the following:

• Root Mean Square Error (RMSE)

• Root Mean Square Logarithmic Error (RMSLE)

RMSE penalize under- and overestimates equally, while RMSLE penalizes under esti-
mates harder. RMSE is the standard deviation of the prediction errors, and RMSLE is the
square root of the squared difference between actual and predicted values, plus squared
standard error (Mickey and Greenland, 1989). The standard deviation in RMSE is how
many bikes the prediction error deviate from the actual demand. Both values are to be
minimized. Utilizing both performance metrics helps to evaluate the models in greater
depth, and provide a better basis for comparison.

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2 (3.5)

RMSLE =

√√√√ 1

n

n∑
i=1

(log(ai + 1)− log(bi + 1))2 (3.6)

3.6 Validation methods

Like performance metrics, correctly validating the models is one of the most important
steps in ensuring the results can be compared and evaluated. It is critical to ensure that
as much of the data as possible is used for testing while keeping as much as possible
for training. Probably the most important aspect when choosing validation method for a
time-series problem is to ensure that the model is validated using never-before-seen data.
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Some of most widely used validation methods for time-series prediction with machine
learning are the following:

• K-Fold Cross-Validation

• hv-Block Cross-Validation

• Walk-Forward Validation

• 70/30 Split Validation

Walk-forward validation splits the dataset D randomly into K mutually exclusive sub-
sets of the same size. In the first iteration, i0 the model is trained on subset K0 and
validated on K1. Next iteration, i1, the model is trained on K0 and K1 followed by a
validated on K3.

The validation process is finished when the validation set is the last subset of the
dataset. Walk-forward validation ensures that the model predicts on unseen data but may,
however, give inaccurate results as the training set increases in size for every iteration
which means that an additional error is added to the validation.

70/30 split is when the dataset divided into two parts where 70% is for training and
30% for validation. The problem with 70/30 split is that only a small portion of the dataset
is used for validation, which may give different results depending on which portion of the
data is used.

K-fold cross validation avoids the drawbacks of the aforementioned validation methods
by splitting the dataset such that all portions are used for validation, but can be biased by
selection of the validation set on time-series problems.

A similar approach called hv-block cross-validation ensures that all data is used, with-
out being biased by either the size or selection of the validation set. Using hv-block cross-

validation, the dataset D is sliced into K subsets with same criteria as walk-forward vali-
dation. For each split s the model is trained on dataset D̂ where Dt is removed as well as
v observations from either side of Dt, and validated on Dt (Racine, 2000).

Final prediction accuracy is the mean of all validation splits. hv-block cross-validation

ensures that the validation set is removed entirely as well as a gap of observations at either
side of the validation set, to prevent that the model predicts values that have been used for
training. Similar studies on the domain have shown that cross-validation results are more
accurate than 70/30 split results (Yin et al., 2012).
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3.6.1 Baseline algorithm

A baseline algorithm is a basic algorithm implemented to establish a baseline performance
that can be compared to the results achieved by the algorithms. If the machine learning
algorithms fail to achieve higher accuracy than the baseline, there is a reason to believe
that no significant patterns exist or that the models are randomly guessing.

The persistence algorithm is such an algorithm commonly employed as a baseline
for time series prediction. The baseline is established by simply guessing that the target
values stays the same as they were at the time the prediction was made. The results provide
a useful reference regarding actual prediction accuracy and validation.
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4.1 Research strategy and methodology

As the goal of this research is to evaluate machine learning methods for demand predic-
tion in the Oslo BSS, the research is conducted as a comparative analysis of prediction
algorithms. The algorithms are measured on accuracy using two measures and evaluated
on prediction quality, this is accomplished through three experiments that are developed to
test differences in performance and user value. The results are validated against a bench-
marking algorithm and historical data.

The choice of method is based on the state-of-the-art in commonly used machine learn-
ing methods for bike sharing demand prediction, as well as what methods have been iden-
tified to suit the Oslo BSS well based on performance on the same or similar tasks. The
methods that are tested are RNN LSTM, RNN GRU, RF, and GBT. The RNNs are the
most promising as they have shown great potential on related tasks, but require substan-
tially more parameter tuning than the RF and GBT algorithms, which may make it harder
to achieve a similar level of performance using the Oslo BSS data.

The models produced by these methods are validated using hv-block cross-validation

with ten splits, in addition to a persistence baseline algorithm and a visual inspection of
each prediction graph.
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4.2 Feature selection

The features utilized in the experiments are selected through a process of data analysis and
model optimization. Features that show promise in related work are examined to determine
if they are applicable in the Oslo BSS. They are analyzed to determine correlations and
tested in the models to reveal if they yield accuracy improvements. The selected features
are listed in section 5.3.1.

4.3 Station selection

A selection of stations is used to reduce the complexity of the experiments and implemen-
tation while maintaining a dataset that represents the variations in the BSS.

Each experiment is run with a set of stations that are selected based on the dominance
of the demand, the traffic volume and the duration of the operation. The goal is to select a
set of stations representing the most significant variations, ensuring that the data gathered
for these stations represent the whole BSS.

The type of dominance a station exhibit is determined by the ratio between departures
and arrivals. A station with many more departures may be more frequently empty than a
station with an approximately equal traffic volume. When a station is empty, it interrupts
the demand pattern, making it inconsistent and harder to predict. Stations with either
20% more arrivals than departures, or 20% more departures than arrivals are classified as
dominant.

The volume of traffic varies significantly between stations and can result in very dif-
ferent demand profiles. To account for the variety, the selected stations have all been
operational since the opening in 2016 and spans a large part of the range in traffic volume.

1. Departure dominant > 20% departures

2. Neutral ∼ 0% difference between arrivals and departures

3. Arrival dominant > 20% arrivals

The selected stations are listed in section 5.3.2.
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4.4 Data preparation

Data preparation is an essential and often overlooked part of predictive modeling. Properly
prepared data can make the difference between achieving excellent results and achieving
no results and can have a significant impact on learning time and end performance. (Yu
et al., 2006). Although the data utilized in this thesis is of good quality, it must be trans-
formed, cleaned and scaled to enable the algorithms to learn the hidden patterns properly.
The methods employed are not necessarily specific to RNNs or ensemble methods, and
can be applied to many kinds of algorithmic data analysis. Table 4.1 shows an example of
raw data fully prepared for each method.

Raw data RNN Ensemble learning methods

Started trips 21 0.75 21

Ended trips 3 0.1 3

Hour 8 One-hot-encoded 8

Temperature 14.0 0.6 14.0

Rain 0.0 0.0 0.0

Available bikes 4 0.1 4

Weekday Monday 1 1

Sun minutes 60.0 1.0 60.0

Wind speed 4.3 0.8 4.3

Minutes 60 x x

Table 4.1: Dataset pre-processing example

Data variable selection is the first step in the process of preparing data for prediction.
As the datasets are stored on the GCP BigQuery service, data for each station can easily
be extracted using standard SQL queries. Preliminary filtering using SQL is done to avoid
superfluous loading data such as ids and other columns that can not be used for training.
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The trips table is filtered to remove erroneous or invalid trips by discarding trips that
have a duration of under 60 seconds and that are not registered as delivered or cancelled.
These entries do not represent the normal usage-patterns of the system and must be re-
moved to reduce noise. Timestamps that are stored in Coordinated Universal Time are
converted to Central European Time such that the data can be merged on the correct times-
tamp later in the process. The datasets are indexed on their respective timestamp. All
tables are re-sampled to a common period such that the models can be trained for specific
prediction spans.

4.4.1 Derived features

The demand estimates are derived from the trip records and provided as an estimate for the
real demand. It is calculated by taking the arrival and departure-rate of bikes within the
period there are bikes available in the station, and extrapolating this for when the demand
is censored due to depletion.

If the next period is empty, the departure-rate is assumed to remain unchanged and is
forward filled using the preceding rate. As this formula can result in unrealistic values, the
maximum demand is limited to three times the size of the station. This figure was estab-
lished in cooperation with the system operators, and was deemed to represent a reasonable
maximum demand for a station in the given period.

4.4.2 Algorithm specific preparation

The features vary widely in both format and scale and must be normalized such that the
RNNs can consider each feature equally, and to avoid large scaled values overshadowing
others(Norvig and Russell, 2009). This is accomplished by scaling each variable to a
value between one and zero based on the minimum and maximum value observed in each
column.

For the algorithms to be able to utilize timestamps, they must be decomposed into
specific features representing interesting aspects of the timestamp, such as the month, hour,
and day of the week. This is sufficient for RF and GBT, but for the RNNs to take advantage
of this, they must be further decomposed. Here, one-hot encoding has been utilized. One-
hot encoding separates continuous values into several features for each possible value. The
value of these features are either one or zero to indicate if the value is present, an example
of this is shown in table 4.2 where the values indicate the month of May.
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Month 5 Month 6 Month 7 Month 8 Month 9 Month 10 Month 11

1 0 0 0 0 0 0

Table 4.2: One-hot encoding example

To use the datasets for supervised learning with RF and GBT the target feature is
shifted one period backward so that the input for time t appears with the target value
for time t + 1. A major benefit of the RNN is to utilize several periods of data in one
prediction easily. To prepare the data for this, the variables are shifted backward one
period. In addition, sets of variables from the n preceding periods are appended. This
makes it possible to predict time t using features from t− 1 to t− n.

4.4.3 Cleaning and data removal

The final step in the data-preparation process is cleaning and data removal. Illogical and
missing values can have a detrimental effect on the learning ability of the system as these
deviate from the underlying patterns in the data. The easiest way to remedy this is merely
to remove the erroneous rows. Data that is logged while the system is closed at night or
for the winter is also considered to be invalid and thus deleted.

4.5 Architecture

The general support architecture, described in figure 4.1, shows the complete process from
raw data to final prediction.

Figure 4.1: General machine learning support architecture

4.5.1 RNN structure

Figure 4.2 shows the architecture of the two RNN versions. Both are based on Keras-
models implemented in Python. The first layer consists of neurons where each represents
an input feature. The hidden layer consists of 100 memory blocks. The third layer is a
dropout layer with a dropout probability of 10%.
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Figure 4.2: Implemented architecture for RNNs

Of the two RNNs, one implement LSTM blocks, and the other implement GRU blocks.
Each of these consists of several cells where each cell represents a memory for a specific
time-step in the time-series data. All the cells in one block are called a window. The size
of the window is tuned for each problem.

4.5.2 RF and GBT structure

The RF and the GBT are built up by 50 estimators and a prediction class as shown in figure
4.3. The class makes a prediction based on votes from each tree in the forest, weighted by
their probability estimates. The class with the highest mean probability estimate across the
trees dispose of the final prediction. RF and the GBT were implemented in Python using
the Scikit-learn library.
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Figure 4.3: Implemented architecture for ensemble learning models

4.6 Tools

The following are tools needed for the implementation.

Google Cloud Platform

Google Cloud Platform (GCP) 1 is a cloud-based platform for storing data, hosting and
building applications, machine learning, and management. GCP uses the same scalable
infrastructure Google use for products like Google search and YouTube.

UIPs systems are mainly based on GCP, so compatibility is an important aspect that
was considered when selecting tools. Using tools that are compatible makes it easier to ex-
tend the models such that they can be implemented and used in production environments.
An introduction to GCP was provided by Google at their office in Oslo to kick-start the
development process.

Google BigQuery

BigQuery 2 is an SQL database service optimized for big data analysis and handling. Pro-
cessing large datasets can be a bottleneck in machine learning. This is mitigated by utiliz-
ing this service to run queries on Google servers with the amount of CPU’s necessary, in
order to resolve long queries in a matter of seconds. The processing power helps maintain
a stable and fast data-flow and ensures that data can be updated and modified easily.

1https://www.cloud.google.com/
2https://www.cloud.google.com/bigquery/

45



Chapter 4. Method

TensorFlow

TensorFlow 3 is an open-source python library for numerical computation, developed for
machine intelligence research. This library works perfect for building models in Google
Machine Learning Engine (ML-engine) and is also used in internal Google products like
Photos and Cloud Speech. Like BigQuery, this library works with large data and data
of any type. Tensorflow was chosen based on compatibility with ML-engine and a good
graphical user interface called Tensorboard. This provided good analysis tools to observe
training and tune parameters of each model.

Keras

Keras 4 is an open-source neural network library that can be accessed as a high-level inter-
face. It is written in Python and is therefore capable of running on top of TensorFlow. It
was chosen because it enables easy experimentation with different neural network models
and comparison of performance without spending excessive time on implementation.

Scikit-learn

Scikit-learn 5 is a machine learning library written in Python used for classification, re-
gression and clustering problems. Scikit-learn was used to implement RF and GBT.

Pandas

Pandas 6 is an open source python library used for data structures and data analysis. This
library provided every model with a Two-dimensional size-mutable data structure called
DataFrame. Pandas were chosen based on high performance and the many available data
manipulation methods.

3https://www.tensorflow.org/
4https://www.keras.io/
5http://www.scikit-learn.org/
6https://www.pandas.pydata.org/
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5.1 Approach

The process of training is slightly different for the individual methods. For each exper-
iment, the RNN and GBT are trained until the loss converges. The RF is built using
the entire training set. The models are validated using hv-block cross-validation with ten
splits, in which the models are trained using 85% of the full dataset and validated using
the remaining 10%. 5% is left out to avoid overlaps. The resulting accuracy is the mean
of these 10-splits.

5.2 Design

5.2.0.1 Experiment overview

The three experiments shown in table 5.1, are designed to resolve the second and third
research questions. These are crafted to test performance in a wide range of configurations
and provide a solid basis for comparing the algorithms. The first compares a 30-minute
prediction-span to a 60-minute span. The second examines the difference in training with
a full versus half dataset, and the last is designed to find the difference in performance
between estimated demand and censored demand.
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ID RQ Description

E1 RQ2/RQ3 Compare performance of 30min and 60min timeframe

E2 RQ2/RQ3 Compare performance of complete and limited dataset

E3 RQ2/RQ3 Compare performance of censored demand and estimated demand dataset

Table 5.1: Experiment matrix

The training time for machine learning methods is often an essential aspect of evalu-
ation, as this affects the practicality and viability of the models. In this case, the models
are planned to be deployed to google cloud platform, which provides scalable computing
power, to enable the training to be completed almost as fast as wanted. In addition, the
system is closed during the night so that any model updates can be completed during this
period. Due to this the training time aspect of performance is not tested.

5.2.1 E1: Prediction-span size

The prediction-span is the range in time forward for which the target value is aggregated.
In this problem, the target value is the number of started trips from each station within
the specified interval. For the estimated demand dataset this also includes the number of
people who would have biked from it had it not been empty.

The prediction-span is a vital parameter to examine, as the target values fluctuate sig-
nificantly and a change in the length of the prediction-span significantly alters the pre-
dictability and slope of the demand curve. Changing the size of the prediction-span can
also yield different values. A too short outlook may be more accurate but might not allow
the users to react to it, while a larger value may provide inadequate detail.

In this experiment all models are trained on two datasets, one sampled to 60 minutes,
predicting 60 minutes forward, and one sampled to 30 minutes, predicting 30 minutes
forward. These values are selected because they have proven to yield good results in
similar experiments (Yin et al., 2012; Chen et al., 2017) and provides the most value to
the stakeholders in the BSS. This shows if any of the methods may be more suitable for
either prediction-span and if the more detailed 30-minute data yield a better result than the
60-minute data.
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5.2.2 E2: Dataset size

One of the most crucial aspects of machine learning is the amount of data available. Often
more data yield better results, but more data can also decrease quality if the patterns in the
data changed. In this case, the data spans two consecutive seasons, in which the system
has been continuously expanded with more bikes and more stations, and the number of
trips within the system has increased by more than half a million. This expansion also
means that there exist numerous stations that have less than a year of recorded data. All of
this makes experiment two important to find out which algorithm performs best on stations
with a limited dataset, and which can best take advantage of the full dataset.

To accomplish this, only stations that have been available since April 2016 have been
selected for testing across all experiments. All models are first trained on the complete
dataset spanning both 2016 and 2017, and then only in 2017. This eliminates inconsisten-
cies between stations and shows what difference can be found between these two datasets.
The estimated demand dataset, however, only includes data for 2017, so to yield similar
results this dataset is approximately cut in half such that the models first are trained us-
ing data for the whole of 2017 and then from mid-summer until the end of the season in
November.

5.2.3 E3: Estimated demand

This experiment provides the basis for comparing the accuracy between estimated demand
and the censored demand datasets. Even though the estimated demand dataset is based on
the censored demand dataset, there may be pattern differences that the algorithms handle
differently.

Predicting the estimated demand is interesting as this allows the system operators to
know not only the number of people who rent a bike, but also who would like to but are
unable to due to depletion. The predictions can help the operators adjust the number of
bikes and slots at each station as well as rebalance the stations with an optimal number of
bikes.

The estimated demand data is not validated. Reviewing the data reveal values that
with high probability can be classified as incorrect, so there is a reason to believe that this
affects the results.
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5.3 Setup

The baseline settings for each algorithm is based on previous research, common knowl-
edge about machine learning architecture as well as trial and error optimization. Each
algorithm was tested with a different number of hidden layers, estimators, blocks, and
cells within a frame that is reasonable for the size and type of problem. The parameters
are kept constant across all station to ensure that a common model that fits all stations is
produced.

5.3.1 Features

The following features are utilized in the prediction models with a few variations listed in
parentheses.

Started trips
The number of trips started from the current station during the current period

Ended trips
The number of ended trips at the current station during the current period

Available bikes
The number of available bikes at the end of the period

Minute (30 min prediction only)
The minute of the hour

Hour
The hour of day

Weekday
The day of the week

Rain
Hourly amount of precipitation in millimeters

Temperature
Hourly average temperature in Celsius

Sun minutes (GBT and RF only)
Minutes of sun during the current period

Wind speed (GBT and RF only)
Hourly average wind speed
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5.3.2 Stations

Table 5.2 show the selected stations. The absolute difference is the difference in the total
amount of started and ended trips spanning the entire duration the station has been open,
and is what determines the station profiles.

Station ID Station profile Name Trip count Absolute difference

279 Arrival Bankplassen 24 488 22 884

234 Arrival Spikersuppa Vest 37 639 33 866

204 Arrival Paléhaven 55 133 24 832

277 Arrival Helga Helgesens plass 81 098 10 416

253 Arrival Aker Brygge 99 541 35 442

291 Departure St. Hanshaugen park nord 30 101 18 184

183 Departure Storo Storsenter 32 159 19 162

161 Departure St. Hanshaugen park vest 39 775 21 124

233 Departure Alexander Kiellands Plass 131 173 17 293

267 Departure Bislett Stadion 116 229 21 870

190 Neutral Parkveien 55 466 10

245 Neutral Kværnerbyen 30 073 135

210 Neutral Birkelunden 33 885 263

251 Neutral Hallénparken 70 874 582

191 Neutral Jacob kirke 80 769 513

Table 5.2: Experiment stations overview

5.3.3 RF setup

The number of estimators is a critical element of tuning the RF. For the Oslo BSS, 50 esti-
mators were found to produce the best predictions. The estimators are unpruned meaning
that the trees are uncapped and variance is reduced. When using the datasets provided for
this research, there are no issues with memory consumption and complexity. MSE is used
as a split quality measure for training the RF.

Key parameter: 50 estimators
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5.3.4 GBT setup

The baseline for training GBT is established with least squares as loss function and Fried-

man MSE function for split quality measure. A max tree depth of five was found to produce
the best quality predictions, with a learning rate of 0.1.

α = learning rate
δ = max tree depth

Key parameter: 50 estimators, α = 0.1, δ = 5

5.3.5 RNN setup

Both RNN models are initialized with Glorot uniform initializer which was found to bring
the model to convergence quickly (Glorot and Bengio, 2010).

One of most significant parameters for the RNN was the window size. The best was
found to be seven steps, which means the memory block utilized seven time-steps of pre-
vious data to produce prediction t.

Due to the difference in training data available in the estimated- and censored demand
datasets, more training was needed for convergence on the censored demand dataset. The
convergence was achieved by using a larger number of training epochs.

Varying the optimizer algorithm did not alter the performance significantly. Adam-,

Adadelta- and Adagrad optimizers had similar results in terms of learning, but Adagrad
was selected.

To not penalize the outliers in training, MAE was used as loss function. Both RNNs
were trained with batches of size 32.

α = learning rate
λ = loss function
γ = Activation function
ι = kernel initializer
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5.3.5.1 RNN - estimated demand dataset

Key parameters: 100 neurons, 50 epochs, α = 0.01, λ = mae, γ = adam, ι = glorot−
uniform

5.3.5.2 RNN - censored demand dataset

Key parameters: 100 neurons, 100 epochs, α = 0.01, λ = mae, γ = adam, ι =

glorot− uniform
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6.1 Experimental results

The complete results of experiment E1, E2 and E3 are shown in table 6.1 and figures
6.1, 6.2 and 6.3. These show the mean accuracy of the machine learning models across
all stations, measured with RMSE and RMSLE respectively. They are compared across
different prediction-spans, datasets, and dataset sizes. Tables 6.2, 6.4 and 6.6 highlight the
model with the highest accuracy on each set of variables within the specified dataset. The
results represent the predictive score of each model, achieved by training the RNNs, GBT,
and RF individually for each set of variables.

In general, all models achieved good prediction accuracy on the censored demand
dataset. The LSTM RNN model was found to outperform the other models generally and
is used to exemplify the difference in the experiments and the quality of the predictions.
Station 191, Jakob kirke, is used to exemplify the difference in prediction quality as it
represents the overall results well. It is a neutral station with a high traffic volume of 80
thousand trips, situated about midway between the center and the outskirts of the BSS.
A period of high traffic volume is selected to amplify features in the demand profiles and
provide a varied basis for comparison.
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60 Minutes 30 Minutes
Complete Limited Complete Limited

RNN LSTM 3.993 4.109 2.557 2.597
RNN GRU 4.139 4.151 2.622 2.637
RF 4.163 4.151 2.675 2.653
GBT 4.251 4.116 2.589 2.561
Baseline 5.618 5.810 3.359 3.461

(a) RMSE

60 Minutes 30 Minutes
Complete Limited Complete Limited

RNN LSTM 0.575 0.583 0.551 0.557
RNN GRU 0.597 0.595 0.564 0.568
RF 0.610 0.590 0.603 0.600
GBT 0.633 0.610 0.585 0.578
Baseline 0.774 0.788 0.714 0.728

(b) RMSLE

Table 6.1: Experiment results overview

The best score in each column is highlighted in bold

Figure 6.1: Experiment results censored demand (RMSE)
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6.1 Experimental results

Figure 6.2: Experiment results censored demand (RMSLE)

(a) RMSE (b) RMSLE

Figure 6.3: Experiment results estimated demand (RMSE and RMSLE)
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Chapter 6. Results and evaluation

6.1.1 E1: Prediction-span size

The purpose of E1 is to discover differences in how the models handle the two prediction-
span sizes. Table 6.2 shows that the LSTM RNN consistently outperform the other models
on both the 30- and 60-minute prediction-span, followed by the GRU RNN. Among the
ensemble models, the RMSLE shows the RF performs best with the 30-minute prediction-
span, while the GBT performs best with the 60-minute span. All models far exceed base-
line.

Mean RMSE Mean RMSLE
60 minutes 30 minutes 60 minutes 30 minutes

RNN LSTM 3.993 2.557 0.575 0.551
RNN GRU 4.139 2.622 0.597 0.564
RF 4.163 2.675 0.610 0.603
GBT 4.251 2.589 0.633 0.585
Baseline 5.618 3.359 0.774 0.714

(a) Complete dataset

Mean RMSE Mean RMSLE
60 minutes 30 minutes 60 minutes 30 minutes

RNN LSTM 4.109 2.597 0.583 0.557
RNN GRU 4.151 2.637 0.595 0.568
RF 4.151 2.653 0.590 0.600
GBT 4.116 2.561 0.610 0.578
Baseline 5.810 3.461 0.788 0.728

(b) Limited dataset

Table 6.2: Experiment 1 results

The best score in each column is highlighted in bold
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6.1 Experimental results

Comparing the accuracy with the 30- and 60-minute prediction-span yields surprising
results. Considering that an increased look-ahead generally increases uncertainty and that
the 30-minute dataset is double the size of the 60-minute dataset as a result of the higher
sample rate, one would expect the models using 30-minute prediction-span to far exceed
the accuracy achieved with the 60-minute prediction-span, which is not the case. With the
full dataset, the difference in RMSLE between the two spans for the RNN LSTM, RNN
GRU, and GBT is small, and there is no difference in accuracy for the RF. The baseline
improved the most as shown in table 6.3.

RMSE RMSLE
RNN LSTM 36% 4%
RNN GRU 37% 5%
RF 36% 0%
GBT 38% 6%
Baseline 40% 8%

Table 6.3: Overview of accuracy change E1

A likely cause of the negligible difference may be that an improvement in prediction
accuracy induced by the bigger dataset is negated by the increased volatility caused by a
higher sample rate. This increase in volatility is present in figure 6.4.

For all models the 30-minute prediction-span shows a mean improvement of 36%
RMSE, which can be expected as the reduction from 60- to 30-minute spans lowers the
mean of the dataset, reducing the scale of the RMSE. This also affects the RMSLE but to
a lesser degree. Examining figure 6.4 shows this reduction and a significant difference in
the size of the demand peaks.

The small difference in RMSLE indicates that the factor with which the prediction was
off is nearly the same. The fact that the baseline improved the most shows that the models
performed worse compared to the baseline on the 30-minute dataset.

Figure 6.4 also shows that the models trained on the 30-minute dataset seem to predict
the sharp morning peaks better, while the models trained on the 60-minute dataset is better
at predicting the afternoon spikes.
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Chapter 6. Results and evaluation

(a) 60 minutes station 191 LSTM complete

(b) 30 minutes station 191 LSTM complete
There are a number of important differences in the prediction graphs. The pattern of the
30 minute data (b) is more volatile than the 60 minute data (a). The scale of (a) is almost
twice that of (b). However, both graphs follows the same general pattern and generally

predict lower demand.

Figure 6.4: Comparison of prediction quality 30- and 60 minutes
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6.1 Experimental results

6.1.2 E2: Dataset size

The goal of E2 is to discover how the models handle different dataset sizes. The results are
shown in table 6.4 and shows that the LSTM RNN perform better than the other models
on both the complete and limited dataset. Comparing the mean across all models show no
significant difference concerning prediction accuracy. The GBT and RF achieve a slightly
better accuracy on the limited dataset, while the RNN LSTM perform slightly worse. The
RNN GRU did not change significantly. The results indicate that the LSTM RNN takes
advantage of the full dataset, while the ensemble methods become less accurate. All mod-
els far exceed baseline accuracy with both the complete and limited dataset. The trend is
the comparable for both the 30- and 60-minute prediction-spans.

Mean RMSE Mean RMSLE

Complete Limited Complete Limited

RNN LSTM 3.993 4.109 0.575 0.583

RNN GRU 4.139 4.151 0.597 0.595

RF 4.163 4.151 0.610 0.590

GBT 4.251 4.116 0.633 0.610

Baseline 5.618 5.810 0.774 0.788

(a) 60 minutes

Mean RMSE Mean RMSLE

Complete Limited Complete Limited

RNN LSTM 2.557 2.597 0.551 0.557

RNN GRU 2.622 2.637 0.564 0.568

RF 2.675 2.653 0.603 0.600

GBT 2.589 2.561 0.585 0.578

Baseline 3.359 3.461 0.714 0.728

(b) 30 minutes

Table 6.4: Experiment 2 results

The best score in each column is highlighted in bold
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Chapter 6. Results and evaluation

Figure 6.5 shows that the LSTM RNN is better at predicting the morning demand peaks
on the complete dataset compared to the limited dataset. The opposite is observed for the
ensemble models. This observation is supported by the change in accuracy seen in table
6.5.

RMSE RMSLE

RNN LSTM -2% -2%

RNN GRU 0% 0%

RF 1% 4%

GBT 2% 5%

Baseline -3% -4%

Table 6.5: Overview of accuracy change E2
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6.1 Experimental results

(a) Complete dataset station 191 LSTM 60 minutes

(b) Limited dataset station 191 LSTM 60 minutes
There are few visible differences in prediction quality among the complete and limited

dataset. Models trained with the complete dataset (a) are better at predicting the morning
spikes. This is visible when comparing Thursday 17. and Monday 28. where the

predictions for the morning peaks are absent in (b).

Figure 6.5: Comparison of prediction quality limited and complete dataset
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6.1.3 E3: Estimated demand

The purpose of E3 is to determine if the models are able to predict estimated demand, and
show the difference in how they perform. Table 6.6 shows that all models consistently
perform significantly better with the censored demand than with the estimated demand
data. For the estimated demand dataset the ensemble models performed best, with the
GBT achieving the best RMSE and the RF achieving the best RMSLE.

Mean RMSE Mean RMSLE
Estimated Censored Estimated Censored

RNN LSTM 7.590 3.993 0.743 0.575
RNN GRU 7.994 4.139 0.806 0.597
RF 7.373 4.163 0.731 0.610
GBT 7.266 4.251 0.743 0.633
Baseline 5.745 5.618 0.778 0.774

Table 6.6: Experiment 3 results

However, compared to the baseline prediction, all models achieved a considerably
worse RMSE and a slightly better RMSLE. Failing to beat the baseline prediction indicates
that the models are unable to learn any complex patterns or that there exists none in the
data.

Despite the baseline being nearly identical for both the censored- and the estimated
datasets, indicating that the variance is comparable, the estimated demand was found to
have a more noisy and erratic pattern than the censored demand during data analysis. The
fact that the RMSE is significantly worse while the RMSLE is slightly better indicates that
the spikes are more random in size and occurrence, and is likely part of what is causing
the difference in performance. This can be observed as sudden sharp spikes in figure 6.6a.
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6.1 Experimental results

(a) Estimated demand station 191 LSTM 60 minutes complete

(b) Censored demand station 191 LSTM 60 minutes complete
The graphs depict the same period for the same station. The spikes in the estimated
demand data (a) are generally much higher than in the censored demand data (b).
However, the patterns in both graphs are similar. Though, the estimated demand

predictions are punished harder, as they deviate much more from the target values, due to
the more random pattern.

Figure 6.6: Comparison of prediction quality estimated- and censored demand
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6.2 Prediction accuracy summary

Table 6.7 shows the highest accuracy achieved by each model in addition to which param-
eters this was accomplished with.

Best mean RMSLE Timeframe Dataset size
RNN LSTM 0.551 30 Minutes Complete
RNN GRU 0.564 30 Minutes Complete
RF 0.590 60 Minutes Limited
GBT 0.578 30 Minutes Limited

(a) RMSLE

Best mean RMSE Timeframe Dataset size
RNN LSTM 2.557 30 Minutes Complete
RNN GRU 2.622 30 Minutes Complete
RF 2.653 30 Minutes Limited
GBT 2.561 30 Minutes Limited

(b) RMSE

Table 6.7: Highest accuracy with corresponding parameters

6.3 Evaluation and analysis

The quality of predictions was found to vary depending on station and traffic volume.
Figure 6.7 shows this. The most likely reason for the variation is the predictability of the
patterns due to the profile of the stations. Figure 6.9 and 6.12 show that the models often
underestimate the demand peaks, which can be considered to be normal when the data
fluctuates the way the demand data does. It can be a result of a low mean target value in
the dataset, which makes predicting sudden spikes that deviate from the mean challenging.
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6.3 Evaluation and analysis

(a) Station 191 Censored demand RNN LSTM 60 minutes Complete

(b) Station 291 Censored demand RNN LSTM 60 minutes Complete
The difference in prediction quality spans a wide range. These stations have been trained

using the same model and parameters but has a very different prediction quality.

Figure 6.7: Comparison of station prediction quality
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Among the two variants of the RNNs, there are only slight differences in performance.
The LSTM RNN generally performed best of the two, with the GRU RNN following
closely on all experiments. The two blocks are closely related and should provide sim-
ilar results. The slight difference may be explained by the fact that the LSTM units are
theoretically better at handling more extended sequences (Hochreiter and Schmidhuber,
1997). The most significant difference was observed with the estimated demand dataset.
However, this can most likely be attributed to the general performance reduction induced
by increased volatility in this dataset.

Figure 6.8 shows the loss for the RNNs on the estimated and censored demand dataset.
All graphs show that the models converge and that they have been sufficiently trained. This
is evident as a set of graphs that slowly flatten out and meet in the end. At the start of both
graphs, the validation error is lower than training error. The RNNs includes a dropout layer
to prevent overfitting in training and ensure later convergence, which is why the validation
error is lower than the training error (Srivastava et al., 2014). This is because the validation
is run without dropout.

Figure 6.9 shows that the RNNs manages to predict the occurrence of demand spikes
relatively well, but struggle to predict the volume accurately. Predicting the size of these
spikes is a difficult task, as they can change depending on irregular factors such as manual
bike relocation and censoring. In the figure the size of the demand spikes at Wednesday
16/8 and Tuesday, 22/8 can likely be attributed to manual relocation. The LSTM is slightly
better than the GRU at estimating, but both generally underestimate the demand. The
LSTM is also better at predicting the occurrence of the morning demand peaks.
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6.3 Evaluation and analysis

(a) Censored demand 60 minutes (LSTM) (b) Estimated demand 60 minutes (LSTM)

(c) Censored demand 60 minute (GRU) (d) Estimated demand 60 minutes (GRU)
The slope of the validation and training loss graphs indicate that the models are properly

fitted.

Figure 6.8: Sample of training and validation loss for GRU
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Chapter 6. Results and evaluation

(a) LSTM Station 191 60 minutes Complete

(b) GRU Station 191 60 minutes Complete
The RNN LSTM (a) is generally better at predicting morning peaks than the RNN GRU
(b). This can be seen on Tuesday 15, Thursday 17, Sunday 20, Monday 21. and Monday

28. Both fail to predict the morning peak on Friday 25 and Tuesday 22.

Figure 6.9: Comparison of prediction quality RNN LSTM and RNN GRU
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6.3 Evaluation and analysis

The results show that the RF generally achieves better prediction accuracy than the
GBT. A further improvement of the GBT might be possible given more parameter tuning,
as the GBT has more tunable parameters than the RF, and might be able to be better
adjusted to the data. Figure 6.10 and 6.11 show the feature rank for both GBT and RF. The
figures shows how each model weighs its decisions based on the features.

(a) GBT station 191 60 minutes complete (b) RF station 191 60 minutes complete

Figure 6.10: Comparison of estimated demand feature rank RF and GBT

(a) GBT station 191 60 minutes complete (b) RF station 191 60 minutes complete

Figure 6.11: Comparison of censored demand feature rank RF and GBT
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The ranking shows a clear difference in how the two utilize the features. The GBT
mostly bases its decisions on the number of ended trips and the hour of the day, both for
censored and estimated demand. This corresponds with earlier findings as the hour of
the day was found to have a strong correlation with demand. The fact that the number
of ended trips is weighted almost equally with the hour is an indication that this station
often is empty, and that bikes that are parked here soon after are rented again. This theory
is strengthened by the fact that station 191 is neutral, and most bike movements thus are
made by users.

The RF show similar dependencies to the GBT but relies more on ended trips and less
on the hour of the day. This, in addition to the RF achieving the best accuracy of the two,
indicates that the number of ended trips is a better indication of future demand for this
station.

Figure 6.12 show that the ensemble models struggle on the same aspects of the pre-
diction as the RNNs. Both the RF and the GBT often underestimate the demand volume,
while predicting the general demand curve relatively well. The GBT struggles more than
the RF and often predicts lower than actual peaks, and higher than actual bottoms. The RF
is also better at predicting the morning peaks than the GBT.
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6.3 Evaluation and analysis

(a) RF station 191 60 minutes complete

(b) GBT station 191 60 minutes complete
The difference between the RF (a) and GBT (b) pronounced. The GBT is both worse at
predicting morning peaks and predicting the correct demand volume. The GBT predicts
less demand than the RF on Wednesday 16. Monday 28 and Saturday 26. The GBT fails

to predict the morning peak on Friday 25. and Monday 28.

Figure 6.12: Comparison of prediction quality RF and GBT
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Chapter 7
Conclusion

7.1 Conclusion

The goal of this thesis is to evaluate the performance of common machine learning meth-
ods for predicting station-level bike-sharing system (BSS) demand in the Oslo BSS. This
was achieved by comparing the performance metrics of several time-series prediction mod-
els through three experiments.

Research Question 1
Which commonly used machine learning methods are the best candidates for pre-

dicting station-level demand in the Oslo BSS?

Of the most common machine learning methods for this and similar domains, RNNs
and ensemble learning methods were found to be the best candidates for predicting station
level demand in the Oslo BSS. Related work presented good results with Recurrent Neu-
ral Networks using LSTM and GRU blocks on station-level demand with data of similar
type and quality to what is available in the Oslo BSS. Gradient Boosting Tree and Ran-
dom Forest were found to provide the best results on system-level demand using similar
features.
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Research Question 2
How accurate are these methods in predicting demand in the Oslo BSS?

All models achieved good prediction accuracy above baseline predictions on the cen-
sored demand dataset. The LSTM RNN model was found to generally outperform the
other models, considering only the results from E1 and E2. The best prediction accuracy
is achieved with a 30-minute prediction-span, on the complete and limited dataset.

The highest accuracy is achieved by the LSTM RNN model on the 30-minute time-
frame and complete dataset, with a mean accuracy of 0.551 RMSLE and 2.557 RMSE.
The worst accuracy across all models is produced with the estimated demand dataset,
where all models fail to learn any complex patterns due to noisiness.

Research Question 3
How does the performance of these methods differ?

There is a moderate difference in performance between the models. One of the most
important differences observed is that the RNNs performed best with both the complete
and limited dataset. The performance shows that they are able to generalize the patterns
for both seasons and utilize all available data to improve accuracy, while the accuracy of
the ensemble models worsened with more data. This also shows that the RNNs can learn
more from the limited dataset than the ensemble models could.

The difference in prediction quality is less evident, and all models make good predic-
tions and are able to foresee most spikes in demand. The RNN LSTM and RF models are
better at predicting the sharp morning spikes and estimate the size of both these and the
other spikes. The GBT and GRU models struggled with correctly predicting zero demand,
and often predicted slightly above zero.

Testing with different prediction spans revealed a change in prediction accuracy but no
change in the differences in performance among the models. All models performed better
with the 30-minute prediction-span. The RNN LSTM and RF better predict the morning
spikes with the 30-minute prediction-span, while all models struggled slightly more on the
afternoon spikes.

None of the models achieved good accuracy on the estimated demand dataset.
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7.2 Future work

7.2.1 Combined model

The architectures employed in this thesis uses a separate model for each station in the BSS
in order to simplify parameter tuning and to keep the complexity low. This architecture
can be cumbersome in a production environment, as a model has to be trained for each of
the stations individually. Chen et al. (2017) provided a solution where one model is used
to predict the rental and return demand for all stations in a BSS. This solution would likely
work well with the Oslo BSS data and is a logical next step to employ the predictions in
the BSS.

7.2.2 Effect of neighbor stations

The Oslo BSS is in constant change, and new stations are being introduced continuously
throughout the season. The constant change creates challenges for the models as new
stations changes the demand profile of existing nearby stations, making earlier data less
representative of the new profile. Incorporating this proved difficult as no good solution
was found to account for this change. However, related work has shown that the condition
of nearby stations is an important feature, and is something that would likely improve
predictions. This could be accomplished with a combined model (Rudloff and Lackner,
2014).

7.2.3 Separated demand by user group

The Oslo BSS provides day passes and season passes for rentals, which can have a po-
tentially very different usage pattern. Related research has shown that separating these
usage-groups can have a significant impact on prediction accuracy (Zhang et al., 2016),
and it is likely this applies for the Oslo BSS as well.
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Table 7.1: Part 1 of censored demand results
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Table 7.2: Part 2 of censored demand results
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Table 7.3: Part 3 of censored demand results
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Table 7.4: Part 4 of censored demand results
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Table 7.5: Part 5 of censored demand results
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Table 7.6: Part 1 of demand results
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Table 7.7: Part 2 of demand results
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Table 7.8: Part 3 of demand results
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Table 7.9: Part 4 of demand results
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Table 7.10: Part 5 of demand results
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