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Abstract

Describing the directional dependence of the wave velocity, seismic anisotropy has
dramatically been gaining attention from both academic and industry, thanks to advances in
the wider offset and azimuthal coverage of 3D surveys in the last two decades. Seismic
anisotropy is a very useful and important physical property since it can provide the detailed
information regarding both kinematic and dynamic processes. In this thesis, we only discuss
the influence of anisotropy on the compressional (P) waves since they represent a majority of
data being acquired in oil and gas exploration. The kinematic properties of anisotropic media
can be defined in the phase and group domains. In the phase domain, these properties are
related to the curvatures of the slowness surface computed at the point where both horizontal
projections of the slowness vector are zero. In the group domain, the kinematic properties are
related to similar curvatures computed from the traveltime (or group velocity inverse) surface

at zero offsets.

The overall aim of this thesis is on the behavior of the seismic waves on an anisotropic model
and their applications for seismic data processing (e.g. velocity analysis, parameterization,
horizontal resolution, geometrical spreading and the imaging problem etc.). Thomsen type
parameters are used to represent the anisotropic model. The models tested in this thesis are
including: isotropic (ISO), elliptical isotropic (EIl), transverse isotropic model with a vertical
symmetry axis (VTI), factorized VTI and orthorhombic (ORT) models with an increase of
complexity. The acoustic anisotropy assumption is applied for simplification. For multi-
layered anisotropic models, the effective model parameters derived from the Dix-type

equations are used for computation.



The traveltime computation is an important tool in seismic data processing that can be applied
for velocity analysis, modeling and time migration. The non-hyperbolicity in moveout caused
by anisotropy needs to be taken into consideration, as it commonly exists and plays an
important role in seismic data processing and interpretation, especially for large offset. My
research is mostly about the derivations of traveltime approximation from the parametric
traveltime-offset equation computed through the dynamic ray tracing in VTl and ORT media.
The traveltime-offset equation can also be utilized to compute the radius of the Fresnel zone
through the perturbation-based approach for the study of the horizontal resolution. The
analytical form of the relative geometrical spreading can be expressed by the traveltime and
its derivatives. We propose the approximations for the relative geometrical spreading defined
in the generalized non-hyperbolic moveout (GMA) and anelliptic forms and show their
superiority of the accuracy compared with the conventional traveltime-based counterparts in
the numerical examples in both VTI and ORT models. The accuracy of these approximations
is tested in the numerical examples where the exact (standard) solutions are computed from

the parametric equations measured through the dynamic ray tracing.

With the help of seismic anisotropy, a high-quality image of the subsurface is obtained. For
the multiparameter stacking, the operator for common reflection surface (CRS) involving the
anisotropy parameters is derived for a circular reflector in a homogeneous VTl model. The
preserved traveltime smoothing (PTS) technique is extended to an ORT model that can be
used to smooth the velocity models for prestack depth migration. We develop the formulas for
diving waves in a factorized VT1 medium and analyze their behavior. The anisotropy
parameters are estimated by semblance analysis of the depth migrated data through the
imaging moveout formulation (residual moveout after imaging) to update the velocity model

that can be used to provide an initial velocity model for the full waveform inversion (FWI).
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Chapter 1 Introduction

This chapter provides a very brief insight about seismic anisotropy, its applications in seismic

data processing and the structure of this thesis.

1.1 Seismic anisotropy

Seismic anisotropy can be defined as the dependence of velocity on the direction or upon
propagation angle. If the medium’s elastic properties with respect to certain parameters
change with the direction of a measurement, it is anisotropic; if its properties do not change
with direction, it is isotropic. The isotropic assumption for the subsurface has been based on
for most history of seismic inversion and processing although a certain degree of anisotropy

commonly exists.

Anisotropy dates back to the 19" century following the theory of Elastic wave propagation.
The origin of seismic anisotropy is non-unique, a range of phenomena may cause Earth
materials to display seismic anisotropy. The anisotropy may be strongly dependent on
wavelength if it is due to the average properties of aligned or partially aligned heterogeneity.
The notions of heterogeneity and anisotropy are scale dependent and the same medium may
behave as heterogeneous for small wavelengths and as anisotropic for large wavelengths
(Helbig, 1994). The appreciation of anisotropy increased with the proposition of a new model
for the generation of anisotropy in an originally isotropic background and a new exploration
concept by Crampin (1987). These split phases propagate with different polarizations and
velocities. Crampin (1984) amongst others gives evidence that many rocks are anisotropic for
shear wave propagation. Although P wave velocity in anisotropic media can change greatly
with respect to the propagation angle, P waves do not split into two modes and their reflection

moveout typically is hyperbolic. Shear waves have been observed to split into two or more



fixed polarizations which can propagate in the particular ray direction when entering an

anisotropic medium.

The role of anisotropy has dramatically increased over the past two decades due to advances
in parameter estimation, the transition from poststack imaging to prestack depth migration,
the wider offset and azimuthal coverage of 3D surveys, and acquisition of high-quality
multicomponent data (Thomsen, 2001). The breakthrough for the study of seismic anisotropy
has taken place after identifying the key parameters in the parameterization of transversely
isotropic (T1) models (Thomsen, 1984) and the discovery of the P wave time processing

parameter » (Alkhalifah and Tsvankin, 1995) in anisotropic media that greatly simplified the

analytical description of seismic signatures, which can help to develop practical

methodologies for estimating anisotropy parameters from the seismic data.

In seismic data processing, orthorhombic (ORT) model introduced by Schoenberg and Helbig
(1997) is the most realistic anisotropic velocity model to describe fractured reservoirs and
explains well the azimuthal dependency in surface seismic data. Tsvankin (1997, 2012)
defined nine elastic model parameters for ORT model that can be reduced to six parameters in
an acoustic approximation (Alkhalifah, 2003). In group domain, we call the first order
curvatures the normal moveout (NMO) velocity ellipses (Grechka and Tsvankin, 1999a,
1999b) and the second order curvatures the anellipticities as they represent the anelliptic
behavior for slowness or traveltime surface. Recently, more research works have been done
for the parameterization of the acoustic ORT model (Vasconcelos and Tsvankin, 2006; Stovas,
2015; Xu and Stovas, 2017). For 2D cases, two main type of anisotropy are commonly used in
seismic data processing: transverse isotropy medium with a vertical axis (VTI) and transverse
isotropy medium with a horizontal axis (HT1), where VTI model is associated with layering

and shale; HTI model is associated with cracks and fractures.



1.2 Stiffness matrix

The wave equation for seismic wave’s propagation is based on two important laws: Newton’s

First Law of Motion and Hooke’s Law of Elasticity.
Newton’s First Law of Motion is written for a constant density medium by

62ui_afij 11
Pt T, L

]

where u; are the components of the displacement vector u, r; are the components of the
stress tensor 7, x; are the components of the coordinate position x, p is density and t is

time.

The Hooke’s Law is given by

7y = Cijaéu (1.2)

where &, are components of the strain tensor & and C,,, are components of the fourth-rank

ijki
elasticity tensor (stiffness tensor) C.

The wave equation is obtained by inserting equation (1.2) into (1.1) with the locally

homogeneous assumption

82ui _ Cijkl 62Uk
o’ p ox;ox

(1.3)

The stiffness tensor cC is responsible for the anisotropic properties of the medium.

Generally, the stiffness tensor has four indices, two corresponding to the indices of stress and
two to the indices of strain with 3x3x3x3 =81 components. Since both stress and strain are
symmetric, the number of independent elastic moduli can be reduced to 21 shown in equation

(1.4)



Cu Cp Gy Cp Cs Cgp
Co Cun Cp Gy Cy Gy
C— Co Cu Gy Gy Gy Gy (1.4)
Cu Cu Cy Cp Ci Cy
Cs Cis Ci Cp G Cy
C, Ct C, C, C, C

16 36 46 66

The medium with 21 independent stiffness coefficients is the most complicated case and
general kind of anisotropy (triclinic) for seismic wave propagation. However, it is almost
impossible to measure all of these coefficients in any geophysical field survey. Thanks to the
symmetric behaviors of the geological objects, we have a chance to describe the model with

simpler symmetries (less independent stiffness coefficients).

The simplest one is the isotropic (ISO) model that using only two independent stiffness

coefficients given by

M A A
A M A
A A M
C|so = ) (1.5)
U
)7

U
where M =A1+2u, 4 and g are Lamé parameters, the element in the matrix does not show

is zero.

If the elastic properties do not change in any direction perpendicular to an axis of symmetry,
the medium is transversely isotropic. There are special cases of transverse isotropy: the
transversely isotropic medium with the vertical axis (VTI) and horizontal axis (HTI). For VTI
model, the velocities do not vary from one lateral direction to another but vary from one

direction to another on a vertical plane that coincides with a given lateral direction. For HTI



model, known as azimuthal anisotropy, for which velocities vary from on lateral direction to

another.

The stiffness matrices for VTI and HT| media have five independent parameters given in

equation (1.6) and (1.7), respectively.
The stiffness matrix of VTI media is given by

C11 Cll - 2C66 C13
Cu - 2066 Cn C13

C C C
CVTI _ 13 13 33 ) (1.6)
C55
CSS
C66
The stiffness matrix of HT1 media is given by
Cll Cl3 C13
C13 C33 C33 - 2C44
C, C,-2C C
CHTI _| s 33 44 33 CM (L.7)
CSS
C55

Both VTI and HTI media can be treated as special cases of the more complex orthorhombic

(ORT) model.

Orthorhombic model is characterized by three mutually orthogonal symmetry planes. In the
coordinate system associated with the symmetry planes, orthorhombic media have nine

independent stiffness coefficients given by



I
CORT -

(1.8)

Orthorhombic anisotropy in sedimentary basins is a combination of parallel vertical fractures
with vertical transverse isotropy in the background medium. ORT symmetry can be caused by
two or three mutually orthogonal fracture systems or two identical systems of fractures
making an arbitrary angle with each other. Therefore, orthorhombic anisotropy can be treated
as the most realistic symmetry for many geophysical problems that can describe fractured

reservoirs and explains well the azimuthal dependency in surface seismic data.

1.3 Anisotropy parameters

Based on the propagation and polarization direction, three types of the wave mode are defined
for the body wave: P wave and S waves (SH and SV wave). We can compute the

corresponding phase velocities for a given medium by solving the Christoffel equation

(Gik _pvzéik)uk =0, (1.9
where G, =Cy,n;n, are elements of the Christoffel matrix, n; is the components of the
directional unit vector, v is the phase velocity, o, is the Kronecker’s deltaand U, is

amplitude for different wave modes.

In the isotropic case, two solutions in equation (1.9) are coupled; two waves P and S with

velocities are defined by



(1.10)

These velocities do not depend on the propagation direction.

In the case of the VTI medium, solving the Christoffel equation gives three different solutions.
For SH wave, which is always polarized orthogonal to the propagation plane, and for gP and
gSV waves (g for “quazi”), which are polarized orthogonal to each other and also orthogonal

to the SH wave polarization.

With the pioneering paper of Leon Thomsen (1986), anisotropy becomes a commonly

accepted tool for analyzing seismic data. Instead of using the stiffness coefficients (C; ), he

innovatively used the simpler and understandable parameters to represent the VTI model
referred as the Thomsen parameters.

The Thomsen parameters (Thomsen, 1986) are given by

VPO - %’
P
C
Vo = f’
c= @ (1.11)
2C,,

S= (C13 + C44)2 - (C33 _C44)2
2C33 (Caa - C44)
Css B 044

YZﬁl

where V,, and V,, are vertical P and S wave velocities, respectively, p is density, 5, ¢ and

y are the dimensionless anisotropic parameters.



For the ORT model, Tsvankin (1997) defined the similar type of the anisotropy parameters in
the model parameterization for three symmetry [X,Z], [Y,Z] and [X,Y] planes shown in the

slowness surface in Figure 1.1.

Figure 1.1. The anisotropy parameters defined in the ORT model.

Note that the definition in this thesis is slightly different with Tsvankin (1997) that we define
the anisotropy parameters ¢;, ¢ and y, in [X,Z] plane and J,, ¢, and 7, in [Y,Z] plane,

which is opposite with the definition in Tsvankin (1997).

The anisotropy parameters normalized by density in ORT model are given by



Voo =4/Cas
Vso = C:44 )
— C11 B Csa
to2c,
S = (C13 +C44)2 - (Css _C44)2
' 2C33 (C33 - C44) ,
C,.—-C
7, = egc 44 ’
. 42: (1.12)
£, = 22 V33 ’
2C,,
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’ 2C33 (Cas - C44)
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22,
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The inverse transformation can be given as

sz = (1+ 252 )\/sz'
C13 = \/(szo _Vs%X(l"' 251)‘/;320 -V, %)_VS%Y
Cp= \/((1+ 251)‘/;)20 - (1+ 272)‘/5%X(1+ 251)(1+ 253)‘/;)20 _(1+ 272)‘/5%))_(1*' 2y, s%)* (1.13)

C23: szo_ 1+27/2 sé (1"'252)‘/;)20_ 1+27/2 s%) - 1+2}/2 s%v
1+ 2y, 1+ 2y, 1+2y,

1.4 Acoustic anisotropy

Acoustic approximation for processing in VTI model is obtained by setting the vertical S

wave velocity into zero (Alkhalifah, 1998). The VTI model can be characterized by three

9



parameters: V,,, § and ¢. The complexity of the wave equation is reduced greatly. The

difference in P wave by using the acoustic assumption is negligible for most cases. The
acoustic equations are much simpler and more compact than the elastic ones and can be

expected to increase the efficiency of the processes when used in seismic processing.
We introduce a homogeneous VTI model with the parameters: (V,, =2km/s, § =0.1,
£=0.22 and y =0.1) and plot the relative error in the vertical slowness q ((q-q,)x100/q)

versus horizontal slowness p by using the acoustic approximation g, in Figure 1.2. One can

see from the plot that the relative error in the vertical slowness is very small.

01 02 03 04 05 p(s/km)

Figure 1.2. The relative error in the vertical slowness g ((q-q,)x100/q) for a VTI model

versus horizontal slowness p.
The parametric offset-traveltime equation in VTI model is computed from the derivative of

the vertical slowness given by

X = —za—q
op’ (1.14)
t= Q9 + Xp,

where z is the depth is the reflector.
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We show the relative error in traveltime versus offset using the acoustic assumption in the
introduced VTI model above in Figure 1.3. We can see from the plot that the error is
negligibly small.

%

0.30
0.25}

0.20}

0.00 . . . 2.'ux(km)

0.0 0.5 1.0 1.5

Figure 1.3. The relative error in the traveltime versus offset using the acoustic approximation
in the VT1 model with the parameters: V,, =2km/s, 5§ =0.1, £=0.22 and y =0.1,

A similar strategy is applied to ORT model (Alkhalifah, 2003) to compute the kinematic

properties of P wave. The model parameters used for characterizing the acoustic ORT model

are: Voo, Vinerr M Vamoz+ 11, and 7, (Vasconcelos and Tsvankin, 2006), where V., and
V.me2 are the normal moveout (NMO) velocities defined in [X,Z] and [Y,Z] planes,
respectively, given by
Vimot =Veon/1+20;,
nmol PO 1 (115)
Vimoz =Vpoy/1+25;.

Anisotropy parameters 7,, 77, and 7, are the anellipticity parameters defined in [X,Z], [V, Z]

and [X ,Y] planes, respectively, given by
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& — 0

1 2s,
_ & -0,
=125, (1.16)

&, —& — 0,1+ 2¢))
T 25,)(0+ 26,)

Stovas (2015) developed azimuthally dependent properties of the acoustic ORT model using

the parameters: Vyo, Vi, Vo, 71, 772 and 7, . The cross-term anellipticity parameter is

defined by

(1+ 2771)(1+ 2772) _1.

"t = (1 + 2773)

(1.17)

More details about the parameterization in acoustic ORT model can be found in Chapter 5.

1.5 Thesis structure

There are eight Chapters and two Appendices in this thesis. Six Chapters (From Chapter 2 to
7) and two Appendices can be treated as independent papers with their own structure and

presented exactly in the publication form.

In Chapter 2, the analytical expression for the common-reflection-surface (CRS) operator that
involving the anisotropy parameters for a circular reflector in the acoustic VTI model is
derived. We start with the isotropic CRS approximation, then we take anisotropy into
consideration, and finally, we evaluate the structural and anisotropic parameters. We propose
a new approach to investigate the effects of anisotropy and vertical heterogeneity on the P-
wave CRS attributes and their inversion into the model parameters. The proposed result can
be used for the multiparameter stacking to get a high-quality time image of the subsurface.
The results of this Chapter were presented at the Workshop Meeting Active and Passive
Seismic in Laterally Inhomogeneous Media (APSLIM), June, 2015, Prague, Czech Republic;

and the paper was published in Journal of Geophysics and Engineering in October 2015.
12



In Chapter 3, we use the analytical formulas to describe the behavior of diving waves in a
factorized anisotropic medium and approximate the imaging moveout formulation (residual
moveout after imaging) to update the velocity model when the wrong model parameters
(isotropic assumption) are used for imaging. We then utilize these analytical representations
of the image moveout to establish a semblance analysis framework to search for the optimal
anisotropic parameters. We have also discussed different parameterizations of the factorized
medium to find the one that gave the best accuracy in anisotropy parameters estimation. These
inverted models can provide an initial velocity model used for the update of the full waveform
inversion (FWI1). The results of this Chapter were presented at the 78"™ EAGE Conference and
Exhibition, June, 2016, Vienna, Austria and the paper was published in Geophysics in July

2016.

In Chapter 4, we extend the preserved traveltime smoothing (PTS) method (Vinje et al., 2012)
to an acoustic ORT model for two cases: with and without azimuthal variation between the
layers. In case of azimuthal variations in the symmetry axis between the layers, the least
squares approximation is adopted to estimate the effective anellipticity parameters from this
layered medium to preserve the complexity of the model when doing smoothing. The PTS
technique is proposed to address the drawback of the shifting problem in the conventional
smoothing in the prestack migration process. The results of this Chapter were presented at the
78™ EAGE Conference and Exhibition, June, 2016, Vienna, Austria and the paper was

published in Geophysical Prospecting in November 2016.

In Chapter 5, a group of new parameterizations for P wave in acoustic ORT media are defined.
The corresponding perturbation based approximations for traveltime in ORT model are
developed using the newly defined parameterizations. The sensitivity of the group velocity
inverse to anellipticity parameters is also analyzed for different parameterizations and

different range of offsets. Different parameterization results in different accuracy in the
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perturbation based traveltime approximation, which impacts the seismic data processing such
as velocity analysis, modeling, and time migration. The results of this Chapter were presented
at the 87" SEG Conference and Exhibition in September, 2017, Houston, USA and the paper

was published in Geophysics in October 2017.

In Chapter 6, we have developed an anelliptic approximation for the relative geometric
spreading of P-wave in a homogeneous VTI and an ORT medium under the acoustic
anisotropy assumption. The coefficients in our approximation are only defined within the
symmetry planes and computed from fitting with the exact parametric expression. Due to the
symmetric behavior in different symmetry planes by using the acoustic anisotropy assumption,
the computation for the coefficients in ORT model becomes easier by applying the
corresponding changes in the forms of the coefficients that are obtained in one symmetry
plane. The analytical form of the relative geometrical spreading can be used for the seismic
data processing methods that require true amplitude processing. The results of this Chapter
were presented at the 87" SEG Conference and Exhibition in September, 2017, Houston,

USA and the paper was published in Geophysics in November 2017.

In Chapter 7, we derive an analytic expression for the radius of the Fresnel zone in the time
domain in a homogeneous VTI and ORT models using the perturbation method from the
parametric offset-traveltime equation. We show that the size of the Fresnel zone is
proportional to the corresponding traveltime, depth and the frequency. From the numerical
examples, we can see that the Shanks transform approximations for Fresnel zone are very
accurate for both VT1 and ORT media. This perturbation based method for the Fresnel zone in
the anisotropic model can be extended for the model with a dipping reflector. The results of
this Chapter were presented at the 80" EAGE Conference and Exhibition in June, 2018,
Copenhagen, Denmark and the paper was published in Geophysical Journal International in

December 2017.
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In Appendix A, we propose a new set of moveout approximations based on a perturbation
series in terms of anellipticity parameters using the alternative elliptical background model
defined by vertical and horizontal velocities. The contents of this Appendix can be treated as a
special case shown in Chapter 5 (new parameterization for ORT model). The results of this
Appendix were presented at the 86™ SEG Conference and Exhibition in October, 2016, Dallas,
USA and the paper was published in Geophysical Prospecting in December 2016.

In Appendix B, we investigate another form of the approximation for the relative geometrical
spreading. Since the anelliptic form approximation is presented in Chapter 6, we place this 3D
GMA form approximation in the Appendix part. We develop a 3D GMA-type approximation
for the relative geometrical spreading in a homogeneous ORT medium. Two type of GMA
form approximations is defined by the different selection of reference rays: two reference rays
with finite offsets and two horizontal reference rays in two corresponding vertical symmetry
planes. One horizontal ray in between the vertical symmetry planes is selected to compute the
cross-term coefficient in the approximation. The result of this Appendix is published in

Geophysical Journal International in August 2017.
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Chapter 2 Curvature and anisotropy estimation
through the CRS approximation

Shibo Xu and Alexey Stovas

Norwegian University of Science and Technology, Trondheim, Norway

Abstract. Multiparameter stacking is a crucial tool to get the high-quality time image of the
subsurface, which can provide a basis for many important applications. We analyze the CRS
approximation for a circular reflector embedded into effective anisotropic media. In this case,
the CRS attributes depend on both reflector curvature and anisotropy parameters. We consider
the effective anisotropic model from two anisotropic cases: elliptical isotropic and
transversely isotropic with vertical symmetry axis and one vertically heterogeneous isotropic
case, i.e. two layer model. By performing the sensitivity analysis, we show how the estimates
depend on anisotropy parameters. We convert the CRS attributes into parameters for isotropic
model and analyze these estimates behavior along the seismic line. From this behavior, we

estimate both structure and anisotropy parameters.

Presented at the Workshop Meeting Active and Passive Seismic in Laterally Inhomogeneous
Media (APSLIM), June, 2015, Prague, Czech Republic; Published in Journal of Geophysics
and Engineering in October 2015.
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2.1 Introduction

Stacking plays an important role in seismic data processing, which is treated as one of the
fundamental operations in seismic data analysis (Yilmaz, 2000). The signal-to-noise ratio can
be improved considerably by adopt the multiparameter stacking operator as the information of
the same subsurface region are carried from the neighboring CMP gathers. A number of
multiparameter stacking operators have been proposed during the last years. The common-
reflection-surface (CRS) method is developed (Jager et al, 2001) as an extension of the
classical stacking operation, stacks data from multiple CMP locations. The traveltime surface
of CRS method can be described by a hyperbolic approximation from a Taylor series
expansion of the squared traveltime around a reference ray. By introducing the concepts of the
normal (N) and normal-incident-point (NIP) waves by Hubral (1983), the series coefficients
can be formulated in terms of three kinematic attributes (Jager et al, 2001, Tygel and Santos,
2007), these attributes have a clear physical interpretation that can be used for structural
interpretation, velocity model estimation for depth migration (Duveneck, 2004), and prestack
seismic data interpolation (Baykulov and Gajewski, 2009). The implicit expression for the
reflection traveltime on a spherical reflector derived by Taylor expansion with a fourth-order
expansion is presented in (Hocht et al, 1999). The multifocusing (MF), originally developed
by Gelchinsky et al (1999a,b), is a double square root based approximation parameterized
with the same attributes as the CRS operator in addition to the conventional stacking velocity.
The extended approach is modified by Landa et al (2010) to provide the analytical solution to
the spherical reflector problem and take heterogeneity into consideration. A non-hyperbolic
CRS (NCRS) approximation has been proposed to improve the accuracy at offset and
midpoint coordinates with the same set of parameters (Fomel and Kazinnik, 2013). A new
implicit CRS approach (i-CRS) by combining the high sensitivity to curvature of the MF with

the robustness of CRS with respect to inhomogeneity on circular interface is introduced by
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Schwarz et al (2014). The extend work for i-CRS by taking weak-anisotropy into account is

done by Vanelle et al (2012).

In this paper, we start with the isotropic CRS approximation then take anisotropy into
consideration, and evaluate the structural and anisotropic parameters in the end. We propose a
new approach to investigate the effect of anisotropy and vertical heterogeneity on the P-wave
CRS attributes and their inversion into the model parameters. In order to distinguish between
the reflector curvature, anisotropy and heterogeneity, we consider a simple circular
anisotropic and layered isotropic background models. To describe all these models in the
same framework of effective anisotropic medium, we use the generalized moveout
approximation (GMA) proposed by Fomel and Stovas (2010) to define the group velocity as a
function of group angle. In order to simplify our method, we assume that the difference

between incidence and reflection phase and group angles is negligibly small.

The comparison of CRS attributes and inverted model parameters exhibit different behaviour
depending on background model. Considering the estimated model parameters R and 2,
from different midpoint positions, we estimate the effective anisotropy parameters. The CRS
attributes being inverted into the model parameters under the isotropic model assumption
exhibit the dependence on position of the midpoint. From these dependences, we can evaluate

the parameters of reflector and anisotropy parameters.

2.2 CRS approximation for a circular reflector

In order to introduce the effect of reflector curvature, we start with the simplest (circular)
reflector embedded in a homogeneous isotropic medium with velocity Vv . In this case, the
traveltime surface can be described by the parametric relations (Hocht et al, 1999). The model
is shown in Figure 2.1 (left). The reflector is given by a circle with a radius R and the centre
located at the (0, z,). For isotropic model, the model parameters are R, v and z,. The source
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and receiver lateral coordinates are x, and x,, respectively. For a given x, and x,, the

reflection point is specified by the dip angle « and reflection angle ¢ (Figure 2.1, left).

2R
(0,0) X mgy % b3 10,0 mg x

Figure 2.1. (left) is the reflection from a circular reflector in a homogeneous medium, (right)

is the illustration of the three CRS attributes S, Ry, and R, where £ is the emergence
angle of the reflector, R, is the distance from the reflection point to the surface, and R, is

the distance from the centre of the reflector to the surface.

The coordinates x, and x, are given by the geometrical relations as

Xs = Rsina + (z, — Rcosa) tan(a — 9),

X, = Rsina + (z, — Rcos ) tan(a + 6). 1)
The midpoint, half-offset and the reflection traveltime function can be expressed as
m= X% :Rsinoe+(zo—Rcow)isznwcoéa2 :
2 cos“ a—sin“ @ 2.2)
o X=X ~ (2, ~Rcosa) sin@cos @ '
2 ° cos’a —sin? @’
_(z,—Rcosa) (z,-Rcosa) _(z,—Rcosa) cosacoséd 2.3)

" Vcos(@—-6)  Vceos(a+6) Vv cos’ o —sin% @’
The parametric equations (2.2)-(2.3) define the reflection traveltime surface T(m,h). We
select a certain midpoint position m, and expand the traveltime squared in series for

Am = m—m, and half offset h (Figure 2.2). By expanding the traveltime squared in Taylor
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series for am and h, we obtain the second order CRS approximation in a form (Jager et al,
2001),

TZs (Am,h) = A, + AAm + A,Am® + B,h?. (2.4)
The series coefficients A, A, A, and B, are computed for a given m, and depend on the

model parameters R, v and z,.

T(m.h)

m

Figure 2.2. Traveltime surface T (m,h) from a circular reflector and the reference point

(m=m,) for Taylor series expansion (equation 2.4).

2.3 Inversion of CRS attributes and estimated model parameters

The CRS operator in simulated zero-offset (ZO) section can be represented in terms of three

kinematic wavefield attributes. The parameters R,,, and R, are the radius of the normal
incidence and normal waves (Jager et al, 2001) and the emergence angle is denoted by £.

The meaning of the attributes is illustrated in Figure 2.1 (right). According to the concept of

Rue . Ryand g, the series coefficients in equation (2.4) can be expressed through these CRS

attributes.
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The CRS attributes can be represented in terms of the model parameters for isotropic model.
Rue =Zps€Cca, — R, Ry =z,s€ece,, B =«a,, (2.6)

where ¢, is the incidence angle for a given mj.

The CRS attributes can be, consequently, given in terms of Aj, A, A, and B,.

2

- A A
" JaAB, +AT " (4A0A2—Af)\/4AoBZ+Af’3mﬂ Jang,+ar D

and the isotropic model parameters can be defined as

5_ 2ACA +4AB, —4AA) o [ 16A . _ 16AB,/A,B,
(4AA, = ADVAAB, + A A +4AB," T (4AA - A)(AT +4AB,)

All the expressions above are derived for isotropic case. Therefore, in case of isotropic model,

(2.8)

the equations (2.8) result in exact values for the R, v and z,.

2.4 Application of the CRS method for effective anisotropic models

In order to compute the CRS attributes for a circular reflector embedded into effective
anisotropic medium, we use the GMA approximation (Fomel and Stovas, 2010) to define the
group velocity as a function of group angle. This velocity can lately be used in equation (2.3)

replacing the constant velocity v .

1 _cosz¢+sin2¢+ Asin® gtan’ ¢
Vg Vo oo Vg .,1 Btan’¢ [1 2Btan’¢ Ctan‘g, (2.9)
VN(72+ 2 o T a2 T 4 )
VO VN VO VOVN VN
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where V, is the vertical velocity, v,, is the NMO velocity, the parameters A, B and C are
model dependent, and ¢ is the ray propagation angle. The CRS operators related with

anisotropy can be obtained by adopting the GMA velocity in anisotropic media.

If the model above the reflector shown in Figure 2.1 (left) is anisotropic, the group velocities
for incoming ray and outcoming ray are different, and the incidence and reflection phase (or
group) angles are also different due to the Snell’s law. We show that the difference between
the incidence and reflection group angles is negligibly small see Appendix A, and the
geometrical equations (2.1) and (2.2) are still valid for further computation.

Therefore, by adopting the group velocity equation from equation (2.9), the traveltime
equation (2.3) takes the form

T (z, —Rcosa) 1 . (z, —Rcosa) 1 . (2.10)
cos(a—60) V(ae—-0) cos(a+6) V(a+06)

Equation (2.10) with velocity defined in equation (2.9) is more complicated comparing with
equation (2.3) defined for isotropic model. When using equation (2.9), we have additional

parameters (V,, A, B,C) that affect the solution. In order to compute the CRS series
coefficients Ay, A,A, and B, for effective anisotropic case in equation (2.4), we use

equations (2.9)-(2.10). We adopt new traveltime equation (2.10) using the anisotropic group
velocity defined by GMA equation (2.9) with the same geometry form given in equation (2.2).
The new CRS attributes are obtained by equating the coefficients with equation (2.4).

We introduce three velocity models: elliptical isotropic (El) case with Thomsen parameters
& =& (Thomsen, 1986), transversely isotropic case with vertical symmetry axis (VTI) and
two-layer isotropic model (2L1I).

For the El case, by setting A =0, the group velocity equation (2.9) takes the form

1 cos(g)? s sin(¢)?

Vi) Ve Vg (21D
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For the VTI case, the parameters A, B and C in equation (2.9) given in terms of anelliptic

parameter 77 = (¢ — 9)/(1+ 26) (Alkhalifah, 1998) take the form (Fomel and Stovas, 2010)

_1+877+8772 C 1

A=-4pn, B , C= x
1+2n @+ 2n)

(2.12)

For the 2LI case, we introduce two layers with velocities V, and V,. The first layer is
specified from the surface to the top of circular reflector. The second layer is beneath the first
one (Figure 2.3, top). The kinematical properties of this model depend on the depth for
reflection point. Therefore, for each reflection point, we define the parameters V,,V,, A, B
and c. It means that the velocity model given in equation (2.9) will be different for different

reflection point (Figure 2.3, bottom).

For 2L1 model, the GMA parameters take the form (see Appendix B for details):

A :Vlﬂ

(2.13)

o7 -+’
Y
21+ /1;/)2
C=0.

The parameters 4 and y are defined by the ratios, A = 2—2, y= Y/—Z and the parameter 2 is
Z1 1

related to the model parameters as

R(l-cosa)
2’ :77 .
R (2.14)
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which is controlled by the midpoint position m,. If the medium is not a homogeneous

isotropic one, equations (2.8) and (2.7) result in estimates represented by hats that are

dependent on the position m,, where the series coefficients A, A;, A, and B, are computed.
To illustrate the different velocity models introduced above, we show the group velocity from
El, VTI and two 2L1 models. In Figure 2.4, the group velocities are shown as the function of
group angle. The velocity model parameters are R =1km, z, =2km, V, =2km/s,

Vy =V,W1+26 , 5§ =0.1, 7= 0.2. For 2LI model, we select V, = 2 km/s, V, = 2.5km/s and
two m, positions: m; =2km and m, =4km, that give 4, =0.29, 1, =055 and

y =1.25.0ne can see that the 2L1 models result in significantly different behaviour of the

group velocity.

(0,0) My X
"
t’ 2
/’ V
2 L >
<0 o,
e
R
z
(0,0) My X
V], 21 = Zyp— R
D s \ ______________
0 V2 22
VA

Figure 2.3. Reflector in the layered isotropic medium (top) and two effective layers (bottom).
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Figure 2.4. The plot of GMA group velocity of different models versus group angle ¢. The
2LI (m, =2), 2LI (m, = 4), El and VTI cases are shown by solid, dotted, dashed and

dot-dashed lines, respectively.

2.5 Influence of effective anisotropy

In order to test our approach and investigate the effect of the anisotropy and inhomogeneity
on the CRS attributes and estimated model parameters, we select the circular reflector with
parameters R=1km, z, =2km and four velocity models. The first velocity model is
isotropic (ISO) with velocity V, = 2km/s. The ElI model has two parameters V, = 2 km/s

and s =0.1, the VTI model has the same parameters as EI model plus anisotropy parameter

n = 0.2 and the parameters for 2L1 model are V, = 2km/s and V, = 2.5km/s.
First, we compute the coefficients Ay, A, A, & B, for all the models mentioned above. Then,

we compute the CRS attributes (equation (2.7)) and the “isotropic” model parameters
(equation (2.8)). As stacking is not considered in this paper, the analytical expressions of CRS

coefficients A;, A, A, and B, in effective anisotropic media are not computed here.
In Figure 2.5, we show the series coefficients A,, A, A, and B, from equations (2.5) plotted
versus m, for all the models mentioned above (note that m, =0 is the circle centre position).

The tendency of coefficients A, and A are similar for all the models, but the behaviour of
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coefficients A, and B, for VTI model is quite different. For all m,, the largest and the
smallest values for series coefficients are obtained from ISO and VTI models, respectively.
The corresponding CRS attributes computed from equations (2.7) are plotted versus m, in
Figure 2.6. The tendency for ISO and EI case is very similar for all attributes, while, the VTI
and 2LI model result in different attributes behaviour.

The CRS attributes obtained from all the models are converted into the isotropic model
parameters by using equations (2.8). The results are shown in Figure 2.7. One can see that the
inversion from isotropic model produces the estimates that equal to model parameters and do
not depend on m,. All other models result in estimates that depend on m,. From the plots in
Figure 2.7, we can see the estimated reflector radius, in the presence of anisotropy, is
underestimated above the circle and overestimated when the midpoint is far away from lateral

position of the circle centre. In our computation, we use the limit m, — o . However, in

practice, one can use the value when estimate exhibits asymptotic behaviour. Z, is slightly

underestimated for small midpoint and overestimated for large m,. For 2LI model, R and Z,
are overestimated for all m,. The estimated velocity is larger than the model velocity for all

the models.

We also reconstruct the reflection surface by computing the position for each reflection point,
K =m, — Ry sin B and 7 =R, cos 3. The shape of the surface obtained from the estimates
computed from the different models is shown in Figure 2.8. To reconstruct all these surfaces,

we use the range of m, e (0, 5km). The most dramatic difference in the shape of reflector

comparing with the circle is obtained for the VTI case. The EI model results in a shape that is
very similar to the circle with another radius. The 2L1 model gives the shape which is very

similar to the circle but slightly deviates for larger emergence angles.
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The diffraction plays an important role in seismic processing and interpretation. In order to

investigate the effect of diffraction in our approach, we set R =0 (point diffractor) and

perform similar analysis as above (see Appendix C).
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Figure 2.5. The series coefficients in equations (2.4) plotted versus m,. The ISO, EI, VTl and

2L1 cases are shown by solid, dotted, dashed and dot-dashed lines, respectively.
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Figure 2.6. The CRS attributes given in
equations (2.7) and plotted versus m,. The
ISO, El, VTI and 2LI cases are shown by

solid, dotted, dashed and dot-dashed lines,
respectively.
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Figure 2.8. The reconstructed shape of reflector based on estimations of R,,, (m,) and

sin ,é(mo) for different models. The 1SO, El, VTI and 2L1I cases are shown by solid, dotted,

dashed and dot-dashed lines, respectively.
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2.6 Curvature and anisotropy estimation

For a VTI model, we can linearize the CRS attributes and estimated model parameters in

terms of anisotropy parameters s and 7. These results are shown in Appendix D.

The behaviour of estimated parameters R,V and Z, is controlled by anisotropy parameters
& and n. Shown in Figure 2.9, the estimated radius and depth for El and VTI model approach
to an asymptotic value when m, goes to infinity. When m, equals zero, these values are the

same since the anelliptic parameter » does not affect the vertical wave propagation. It allows
us to estimate R and Z, along with the anisotropy parameters.

The results of R and 7, in zero and infinite limit are specified by R® = R(m, =0),
R™) = R(m, — ), 2 = 7,(m, =0) and 2{” = 7,(m, — ).

For EI model, in the weak-anisotropy approximation (small &), the estimated R is varying

from R(1—¢) at m,=0 to R(1+20) at m, — oo. Therefore, the anisotropy parameter s and
radius R can be evaluated from the variation of R with m,. The expressions of R© and

R are given by

RO — lim R = R 2RI=229) 1255 < RA- &), (2.15)
my—0 ZO +2R6

) ) 2.16

B _ fim B = pL+40 (2.16)

~ R(1+20).
my—o 1+26 ( )

The estimation for curvature and anisotropy parameter can be obtained from the inversion of

equation (2.15) and (2.16).

Fi(w) _ FAQ(O)

0RO RO

(2.17)

For VTl case, the results of R and Z, in zero and infinite limit are given as follows
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RO _ lim R = R(ZeT 2RO 220y 1755 < RA-0), (2.18)

mo—0 Z, +2R

1 (2.19)

R™ = lim R=R(2- )~ R(L+ 26 + 4n),

my >0 L+ 26)1+27)°

, 2128

= ~7,(1+0)-2R0, 2.20
m0 % 7. +2RS o(L+9) (2.20)

200 = lim 2, = 2,v1+ 25(1+2n) = 2,(1+ 8 + 27)). (2.21)

The anisotropy parameters &, », radius, and depth can be inversed from equation (2.18) to
(2.21).
For the real data, we do not have measurements taken at infinite midpoint position. Instead of

it, we are going to use the data from m, = 5km. From the estimates, we obtained from a VTI
model, R =0.896 km, R™ =1.348km, 2” =1.992km and 7{* =2.417 km. Using these
estimates in equations (2.18)-(2.21) results in R =0.941km, z, =1.987km, s = 0.048 and

1 =0.084 (see comparison in Table 2.1). The circular reflector parameters are estimated very

well, but the anisotropy parameters are underestimated. The reason for that is the original
anisotropy parameters are very large for using weak-anisotropy approximation equations
(2.18)-(2.21). For real data, one can use the optimization searching for the CRS attributes by
fitting the operators, then using this inversion method to estimate geophysical information

(curvature, depth and anisotropy parameters).

R (km) z,(km) s n
VTI model parameters 1.0 2.0 0.1 0.2
Estimates 0.941 1.987 0.048 0.084

Table 2.1. The comparison of structural and anisotropy parameters made between VT model

parameters and the estimates.

31




L L L
2 10 20 30 40

R(km) 2o(km)

[ 10 0 30 40

2 g (km) 2, mo(km)

Figure 2.9. The plot of the estimated radius (left) and depth for the centre of a circular
reflector (right) plotted versus m,. The El and VTI cases are shown by solid, dotted lines,

respectively.

2.7 Conclusions

Based on the CRS approximation, we propose a new method to evaluate the anisotropy
parameters and the circular reflector parameters from the behaviour of estimates with the

midpoint position m, for a circular reflector. We consider two anisotropic models and a two

layered isotropic model, which we treat in the same framework of effective anisotropic media

by using the GMA for group velocity.

In the presence of anisotropy, the estimated reflector curvature is overestimated from the
midpoints just above the circle and underestimated when midpoints are far away from the
circle. The estimated depth for the centre of the circular reflector is underestimated above the
reflector and overestimated for far away midpoints. Both of the estimated depth and radius are
overestimated for 2LI model. By analysing the variations in estimated model parameters
computed for anisotropic media versus midpoint positon, we can evaluate both structural and
anisotropic parameters. Despite of we do not know the lateral position of the circular object,

we can estimate and plot the estimated attributes (computed in vicinity of each m,) as a

function of m,. From these functions, the lateral position of the object can be clearly seen.
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2.9 Appendix A. Incidence and reflection group angle

In the case of a circular reflector in a homogeneous anisotropic velocity model (Figure 2.10),
the velocity varies with the wave propagation direction. For El case (s = ¢ ), the phase

velocity for P-wave is given by (Alkhalifah and Tsvankin, 1995)

Vo (0)=VpoV1+2dsin? 6, (2.A.1)

where V,, is the vertical velocity, ¢ is the phase angle, s is the Thomsen (1986) anisotropy

parameter. The expression for group velocity is

1 cos’g sin’g
Ve(#) Ve Vy

) (2.A2)
¢ is the ray/group angle, V,, is the NMO velocity being V, =V ,v/1+26 .

The Snell’s law is derived from the plane wave propagation and valid in the phase domain.

The form for Snell’s law is the following,

sind,  Vy(6,)
sind,  V.(6,)’

(2.A3)

with 6, and 6, being the incidence and reflection phase angle.

The relation for incidence and reflection group angle in EI model can be obtained after a

tedious computation from equation (2.A.1) - (2.A.3) and takes the form
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tang, = tan ¢, (1+ 258)(6 cos2a — 6 —1) (2.A4)
2 265%c0s2a +2tan ¢,5sin 2a + 5cos 2a — 252 —35 -1’ o

where ¢, is the incidence group angle, ¢, is the reflection group angle, « is the dip angle.

From equation (2.A.4), one can see that the behaviour of difference group angle A¢ is

controlled by ¢,, « and &.

10,0) ¥ X

Anisotropic medium

Figure 2.10. The reflection from a circular reflector in a homogeneous anisotropic medium.
The difference between reflection and incidence group angles Ag = ¢, — ¢, is shown versus
incidence group angle ¢, and reflector dip angle « in Figure 2.11 for 5=0.1 (top) and 5 =0.2

(bottom). One can see that for moderate incidence angles, the difference is small, and we

neglect that in our derivations.

2.10 Appendix B. CRS approximation in 2L 1 model

In order to analyse the effect of heterogeneity, we introduce a two layer model, with the first
layer being adjusted to the top of circular reflector (Figure 2.3, top). We introduce an effective
artificial layer with the thickness from the reflection point to the top of the circular reflector.

The offset and moveout of 2LI model can be represented in terms of horizontal slowness,
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2z, pV, 22,pV,
+ )
\/1_ p2V12 Jl_ p2V22

x(p) =

(2.B.1)

2z, 2z,

t(p) = + : 2.B.2
Vy1-pdV2  V, 1- p¥V;} ( )

From equations (2.B.1) and (2.B.2), we can compute all the parameters of GMA

approximation in equation (2.9).
If is convenient to express the GMA parameters in terms of the thickness and velocity ratios

for A= %2 and Y= Va as follows
Zl Vl

2 12
V0:V11+1'VN _v, Ly, My 1)2_
1.4 1.4 2y(L+ Ay) (2.B.3)
Y Y

The other parameters are defined from a horizontal ray in layer one. It gives

o2 -+
/4

g L@=Vipl) A

-T2 1-Vipl  20+4y)® (2.B.4)
to(1-Vyip?)

C: 0 N Moo 2:0.
( to -T2 )

6

nt b
2
Ad(degrees) ‘ 2 ] P
E AT Ad(degrees) ST
0 7T g

g,
A L
! " '..".'.“ w afdegrees) 5

x iy
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Figure 2.11. The difference between reflection and incidence group angle in EI model plotted

versus ¢, and « (5 =0.1top, 5 =0.2 bottom), ¢, +a < %
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2.11 Appendix C. Diffraction case

The diffraction case can be considered as a special case of the circular reflector by setting

R =0 (Figure 2.12). In terms of CRS attributes, it gives Ry = Ry .

By setting R = 0 in equation (2.2) and (2.3), we obtain the double square root (DSR) equation,

T :ViJz§+(m+h)2 +4J22 +(m—h)Z. 2.C.1)

If the point diffractor is embedded into anisotropic model, the equation (C.1) becomes

T:\/zo+(m—h) +\/zo+(m+h) |

2.C.2
V. v, 2.C2)

V,=V(gp=tan (M)) and V, =V (g =tan™ (M)) , where V (¢) is defined in
z z

0 0

equation (2.9).

When applying the inversion equation (2.8) for anisotropic velocity models, we observe that

R =0 regardless to anisotropic parameters. It means that the presence of anisotropy does not

result in smearing of the point diffractor.

The CRS attributes computed from equation (2.C.2) are shown in Figure 2.13. The plot for
sin 3 is very similar for all three cases. The estimated R, (R,) in VTI case is larger than the

one estimated from other cases.

In Figure 2.14, we show the estimated model parameters V and Z,, for the point diffractor
plotted versus m,. The value for estimated velocity and depth in EI case does not depend on

m,. For a VTI case, the estimated velocity and depth exhibit strong variation with m,.
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The estimated Z,, for point diffractor in a VTI model is varying from z,+/1+25 at m, =0 to
z,~1+26 (1 +277) at my — oo. This variation can be used as an indicator for anelliptic

parameter 7.

0.0 X5 Mo X 2

Zo

Figure 2.12. The point diffractor in a homogeneous medium.

Ry /Ry (km) sin 3

. Lop
0.8F ___.p""" =
06F <
04f
0.1k

. , o0 . . . . .
0 1 2 3 3 3 mo(km) ] 1 2 3 P 3 o(lkm)

Figure 2.13. The CRS attributes for a point diffractor plotted versus m,. The ISO, El and

VTI cases are shown by solid, dotted and dashed lines, respectively.
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Figure 2.14. The estimated model parameters for a point diffractor plotted versus m,. The

ISO, El and VTI cases are shown by solid, dotted and dashed lines, respectively.
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2.12 Appendix D. Sensitivity analysis

In the case of a circular reflector embedded into anisotropic velocity model, the CRS

attributes and estimated model parameters depend on anisotropy parameters.

In order to perform the sensitivity analysis, we linearize R, Ry, sin4 and R,V , 7, in

terms of anisotropy parameters s and 7.

The expressions for the CRS attributes take the form,

~ 2 2 2,2 2 3 2
RN|P=(\/m_R)(1+ %o o+ Mg Zo (Mg + 20)77),

Wz @)

« 22 (\JmZ +22 -2R)+2m;R
Ry =i vzd 1 Tt 2o “ZREAMR o,

(3 +23)"

252052 2 2 4052 2 2
6myz,(2; —2Rymy +25)+2mg (25 +2Rymy +25)

(mg +25)°

Z5(ymg +25 _ZR)6+

2 2\3/2
(mg +2,)

A m
sin 8 = . (1
ymé +z2
2mZzZ(z; —m?Z +2Rym? + zj)n)

2 233
(mg +2,)

For estimated model parameters, the analytical expressions are given in the form

2mZ - z2 N 2mZ (2mg —3m}zZ —3z7)
2 2

R=R(+
( m; + 2 (mg +22)°

),

m¢(my +3mZzi +6z;)

2 2\3
(Mg +2,)

2 22 2 2 2
(mZ +22)* —2z2Rym +2
0 0 0 0 05+

2 2y2
(Mg +2,)

2mZ(mg +3z7 —6RzZ\/m? +22) )
n).

2 233
(mg +2,)

V=V,(1+5+ 1),

Z,=7,(1+
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The sensitivity coefficients for anisotropy parameters s and » computed for the CRS
attributes and estimated model parameters are plotted versus m, in Figure 2.15 and 2.16,

respectively.

From Figure 2.15, we can see that the effect of parameter s is predominant over the effect of
parameter 5 for R, and R, when m, is small (the lateral CMP position is closed to
position of the centre of a circular reflector). The presence of anisotropy results in

overestimating of CRS parameters R,,, and R, . The parameter s results in underestimation

of sin 2 for moderate values of m,.

From Figure 2.16, we can see that for small m,, R is underestimated due to presence of

anisotropy, while V is overestimated. The contribution of parameter 5 into V does not

depend on m, see equation (2.D.5). For large m,, the presence of anisotropy results in
overestimation of Z,. For all estimations, the effect of anellipticity parameter 7 is very small

for small value of m,.
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Figure 2.15. The sensitivity coefficients for anisotropy parameters s and 7, shown by solid,
dotted lines, respectively, and plotted versus m,. The corresponding CRS attributes are ﬁN,P

(top), R, (middle) and sin 3 (bottom).
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Figure 2.16. The sensitivity coefficients for anisotropy parameters 5 and 7, shown by solid,

dotted lines, respectively, and plotted versus m,. The corresponding estimates for isotropic

model parameters are R (top), V (middle) and 2, (bottom).
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Chapter 3 Estimation of the anisotropy parameters
from imaging moveout of diving wave in a factorized
VTI medium

Shibo Xu*, Alexey Stovas' and Tariq Alkhalifah’
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Arabia.

Abstract. The importance of diving waves is being realized since they provide long
wavelength model information, which can be utilized to help invert for the reflection
information in full waveform inversion (FWI). The factorized model is defined here as a
combination of vertical heterogeneity and constant anisotropy and it admits closed form
description of the traveltime. We use these resulting analytical formulas to describe the
behavior of diving waves in a factorized anisotropic medium and utilize an approximate
imaging moveout formulation (residual moveout after imaging) to update the velocity model
when the wrong model parameters (isotropic assumption) are used for imaging. We then use
these analytical representations of the image moveout to establish a semblance analysis
framework to search for the optimal anisotropic parameters. We also discuss different
parameterizations of the factorized medium to find the one that gives the best accuracy in

anisotropy parameters estimation.
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Published in Geophysics in July 2016.

43



3.1 Introduction

Recently, direct arrivals and specifically diving waves are experiencing a new lease on life as
they can work as one of the major sources of the information for the long wavelength
component of the velocity model (Virieux and Operto, 2009). These inverted models, which
are based on diving waves, can provide an initial velocity model that is sufficiently close to
the true model within the full waveform inversion (FWI) requirements. In a general FWI, we
update the velocity model by using the information from both reflected and diving waves.
Recently, many have suggested that we focus initially on the diving (transmission) waves and
try to isolate them (Tang et al, 2013) since they provide long wavelength update for updating
the velocity model (Sirgue and Pratt, 2004). A sensitivity analysis to assess the contribution of
refracted, reflected and diving waves for the reconstructed velocity perturbation is studied by
Kazei et al (2013). The moveout behavior and the focusing of the imaging process for
reflected waves have been studied for years, and we have obtained considerable analytical
insights of such behavior. Compared with the reflected waves, the imaging of diving waves
has lagged behind and studies in this matter are rare. With the emergence of FWI, the
importance of diving waves is now being realized. In fact, the acquisition of large offsets
capable of acquiring diving waves is becoming highly desirable because they penetrate at
large depths. One of the earliest analysis of the diving waves acquisition and traveltime can be
found in Levin (1996). An approach to measure the defocusing in imaging of diving waves in
the subsurface due to velocity errors was analyzed by Shen (2013). In this paper, the update
kernel is essentially similar to that experienced for FWI1 of diving waves. Therefore, this
defocusing (residual image moveout) can be utilized to update the velocity model. Stovas and
Alkhalifah (2014) proposed to use analytical approximations of image moveout of diving
waves in a constant-gradient isotropic velocity model to gain better understanding of the role

of diving waves and the update of the velocity model from the defocusing in imaging. We
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extend this approach to factorized anisotropic models. The factorized model, assuming
vertical heterogeneity and a constant anisotropy parameters, is useful in seismic data
processing and modeling (Alkhalifah, 1995, Sarkar and Tsvankin, 2003). Ray-tracing problem
in factorized models with elliptic anisotropy is discussed extensively in Rogister and
Slawinski (2005). The equations for offset, traveltime and relative geometrical spreading for
an analytically described factorized model that combines vertical inhomogeneity with a
constant transversely isotropic model with vertical symmetry axis (VTI) are derived by Stovas
(2010). In this paper, we develop such formulas for diving waves in a factorized VTI medium
and analyze their behavior. We define the imaging moveout formulation resulting from using
the wrong velocity (isotropic assumption). The explicit equations for imaging moveout are
obtained by considering various approximations. We test the accuracy of these
approximations for different values of velocity gradients. Synthetic seismic data are used to
illustrate this approach. We evaluate the anisotropy parameters by semblance analysis of the
depth migrated data. The parameterization is very important for multi-parameter FWI
(Alkhalifah and Plessix, 2014). Finally, we discuss the estimation results by adopting different

parameterizations.

3.2 Diving waves in a factorized VTI medium

The factorized model (Stovas 2010, Sarkar and Tsvankin, 2003) involves both anisotropy and
vertical heterogeneity. In our case, the factorized medium is defined as a transversely
isotropic model with a vertical symmetry axis (VTI) under the acoustic approximation
(Alkhalifah, 1998). The vertical P-wave velocity is linearly changing with depth while the
anisotropy parameters (Thomsen, 1986) remain constant. The vertical velocity in this

factorized model is given by
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V, =V, +Gz, (3.1)

Where V, is the P wave vertical velocity on the surface and G is the gradient of velocity.

For this model, we focus on the diving wave propagation. The fact that the diving wave
propagates mostly horizontally points us to a specific choice of parameters to represent the
VTI medium. Specifically, we would like to preserve the horizontal wave propagation
properties rather than vertical. Therefore, we parameterize the VTI part of the model with the

parameters V,, ¢, and 7. In the following, we analyze other parameterizations and their

effect on the anisotropy parameters estimation.

Based on the parameterization introduced above, the VTI slowness surface can be given by

1—(1+2¢)p2V?

q(|0)=i

v, (3.2)

1- 21 (14 25)p?V?
1+2n

where g and p are vertical and horizontal slownesses, respectively.

Because of the anisotropy, the ray trajectory of the diving wave in a factorized VTI medium is
different from the isotropic case and is shown in Figure 3.1. The shape of the ray is given by

an arc of quasi-ellipse. The ray trajectories are affected by V,, G and the anisotropy
parameters. The changes in ray trajectory due to the changes in V,, G, ¢ and # are shown in
Figure 3.2. The model parameters are V, = 2km/s, G =05s", ¢=0.2 and n =0.2 with
considered perturbations: AV, = +02km/s, 4G =+01s™, As =+0.1and A =+0.1.

Compared with the change in the anisotropy parameter 7, the influence of a change in the

anisotropy ¢ is much more pronounced on the ray geometry. The position of the turning point
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(X,,2,) (Figure 3.3) in a factorized VTI medium can be obtained by setting the vertical

slowness to zero, and defined as

1 |R;
X =— [,
o(P) Gp\R, 03
2 (p) 1-+1+2¢pV, '
° V1+2:Gp
where
R, =1-(1+2¢)p?V7,
3.4
R, =1-—21_(1425)pV2. (34)
1+2n
The traveltime from the source position (0,0) to the turning point (x,,z,) takes the form
(Stovas, 2010)
1
To(p)=6(A1+Az+A3), 3.5)
where A, and A, are given by
71
. K (3.6)
3.6
=In(y1+2n r r
V1+2¢ pV
and the expression for A, depends on the sign of 7,
% /1;2’7 I+ 47R, — 227+ 27)RR,),  1>0,
n
o 1 [1+2 2./-2n(+2n7)R,R 37)
~ |7 aretan( TET Ty n<0.
2\ -2n 1+4Ry
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depth(km)
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Figure 3.1. Ray trajectory of diving wave in a factorized VTI medium.
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Figure 3.2. Change in ray trajectory due to perturbations in V,, G, ¢ and 7, respectively.
The model parameters are V, = 2km/s, G=05s", ==0.2 and n = 0.2 with perturbations
of AV, =+02km/s, 4G =+01s™, Az =+0.1and Ay =+0.1.

48



offset

____________

Figure 3.3. Diving-wave imaging moveout. (imaging point shift from the turning point). The
ray trajectories in factorized VTI and isotropic media are shown by solid and dashed lines,

respectively.

3.3 Diving wave imaging moveout

The definition of diving wave imaging moveout is illustrated in Figure 3.3. The imaging point
of the diving wave, when using the accurate velocity model, will be focused in the turning
point position with the coordinates given in equation (3.3) after applying the imaging
condition (Shen, 2013). If the parameters in the velocity model are not accurate, this point
will shift and is given by a different ray trajectory defined by the same traveltime and
horizontal slowness. This image point dispersal (residual image moveout) can be used to

extract information to update the velocity model.

The behavior of diving waves for a constant-gradient velocity model in an isotropic medium
has been described analytically by Stovas and Alkhalifah (2014). The traveltime from source

(0,0) toapoint (x,,z,) is defined by the relation

1. Vo+Gz,  1+1-p?/
tp =alog( v 2 2 )l (38)
o 1+1-p°(V,+Gz,)

where z is the corresponding depth of the focusing point with wrong velocity model

(isotropic assumption).
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We can get the expression of the depth z, by solving the equation t, =T, from equations

(3.5) and (3.8),

V(b +b,e%™ + b, +h,e% 1)
P G(b, —b,e®" —b,e*®")
b, = pVy,
b, = 2(1-y1- p*Vy), (3.9)
b, =2(p?VZ - 2),
b, = 2(1+ 41— p?V2),

b, =—p?V,.

where T, is defined in equation (3.5)-(3.7). The relation between x; and z, in an isotropic

medium with a linearly increasing velocity is given in Stovas and Alkhalifah (2014)

Xy :G:;Lp(\/l_ Py _\/1_ P’ (Vo +Gzp)2)' (3.10)

We can get a similar approximate expression for VT media by substituting equation (3.9)
into equation (3.10).

The difference in the lateral position of the imaging point, Ax, =X, — X, where X, is defined
in equations (3.3) and (3.4), can be represented as a function of the vertical depth z, which is
the so called diving wave imaging moveout. Both Ax and z, are parametric equations

represented in terms of the horizontal slowness p.

As it is shown in Figure 3.4, one can see the exact imaging moveout with the perturbations in

V, , G, ¢ and 5 with the parameters: V, = 2km/s, G=05s™", #=0.3 and n=0.15, and
the perturbations: AV, =+05km/s, 4G =+02s™, 4¢ =401 and Ay =+01. We can see

from the plots that Ax,, increases with vertical velocity V, and anisotropy parameter ¢, while
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decreases with gradient G and anisotropy parameter 7. From the plots in Figure 3.4, we

observe that the imaging moveout is very insensitive to the changes in anisotropy parameter

r under the parameterization:V,, ¢, 5.
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Figure 3.4. Exact imaging moveout with the perturbations in V, and G and anisotropy
parameters ¢ and 5. The parameters are V, = 2km/s, G =05s™, £ =0.3 and = 0.15, and
with the perturbations are A4V, = +05km/s, 4G =+02s™, 4e =101 and Ay =+01.

3.4 Imaging moveout approximations

In order to choose the best approximation for the imaging moveout, we analyze three types of

approximations for Ax,(z ) : the fourth order Taylor series, the Padé approximation and the

rational approximation.

First, we obtain the analytical Taylor series expansion in depth z,, which takes the form (see

Appendix A)
_ 2 3 4
AX, =z, +a,z, +8,Z, +a,Z,,

(3.11)

with the series coefficients
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2 =3\,
206
P NPNEYA
_ (L+2&)(-n+&(3+4n))G® (3.12)
- 6\/553/2\/02 (+2n)
a — (L+2&)(A-2n7 -16°(L+n) + &(2+47))G?
‘o 324265 N2 (1+ 2n) '

The first two coefficients in equation (3.12) do not depend on the anisotropy parameter . It

confirms our observation on the weak dependency of the imaging moveout on this parameter.

In order to provide an accurate approximation, the Padé approximation is adopted to stabilize
the series in equation (3.11). We define a Padé approximation P[i, j] to be the rational

function given by

2 i
O Mi(zy)  omz +emyzp+eemz,

Pli, j]

= = —, 3.13
N;(z,) 1+nz,+n,z5+---n;z} (3.13)

The series coefficients in the Padé approximation are associated with the Taylor series in

4
equation (3.11) for A(z) = Ax, = Za. 2z, and the series coefficients in equation (3.13) can

i=p?
i=1
be calculated by A(z) - P[i, j]=0(z"1). If i+ j > 4 the corresponding coefficient of z*i in

the Taylor series will be zero, a™*! =0 (Baker et al., 1961).

We analyze three types of Padé approximations i.e. P[2,2], P[2,3], and P[33] for the diving

wave imaging moveout Ax,(z,).

To define a more stable and accurate approximation, we compute the infinite depth limit,

a, = lim (ﬂ). (3.14)

7,50
P Zp

Then, we define two types of rational approximation in the following forms
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R _ plzp + pZZf)

3.15
! 1+,2, (3.15)

Pz, +P,z2 + Pz} (3.16)

2
1+Q,z, +Q,z,

, =

where the coefficients p,, p,,q,,R,P,,P;,Q, and Q, are represented in terms of the Taylor

series coefficients in equation (3.12) and the infinite limit term a_ (Appendix B).

3.5 Numerical examples

To test the accuracy of different approximations, we choose a factorized model with the

parameters: V, = 2km/s, G =15s™, £=0.22 and 7 =0.1.

First, we test the accuracy of Taylor series approximation with different terms and their errors
S in Figure 3.5. The error function is the difference between exact imaging moveout

AXeaet (2,) and the approximation one Ax,, (z,) with S = AX,,.(z,) — AX,,, (z,) . From the

plots in Figure 3.5, we can see that in the presence of anisotropy, the third-order Taylor series

approximation has a higher accuracy.
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Figure 3.5. The limited Taylor series approximations from equation (3.11) (left) and their
errors (right). The one-, two-, three- and four-term approximations are shown by large dashed,
tiny dashed, dotted and dash-dotted lines, respectively. The exact imaging moveout curve is

shown by solid line. The parameters are V, = 2km/s, G =15s™, £=0.22 and n=0.1. The
error in imaging moveout is S = AxX,,. (2,) = AX,,, (Z,) .

In Figure 3.6, we show three types of Padé approximation P[2,2], P[2,3], P[33] and their
error plots. From the plots in Figure 3.6, one can see that the Padé approximation P[2,2] is
more accurate than the other two, while P[2,3] is unstable (Figure 3.6) since the denominator

can vanish at a certain depth.
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Figure 3.6. The imaging moveout of three types of Padé approximation P[2,2], P[2,3],
P[3,3] (left) and their errors (right) are shown by dashed, dotted and dash-dotted lines,

respectively. The exact imaging moveout curve is shown by solid line.

The imaging moveout of two rational approximations in equations (3.15) and (3.16) are

shown in Figure 3.7. From the error plots in Figure 3.7, one can see that the rational
approximation R, is very accurate. It is almost as accurate as the exact solution up to a depth

of 0.6 km. We select the rational approximation R, as our approximation for the upcoming

examples.
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Figure 3.7. The imaging moveout of two rational approximations in equations (3.15) and
(3.16) and their errors are shown in dashed and dotted lines, respectively. The exact imaging

moveout curve is shown by solid line.

3.6 Semblance analysis

First, we test the accuracy on two common-shot synthetic gathers corresponding to different
values of the gradient (Figure 3.8) G, =15s™ (model a) and G, =2s™ (model b). The
remaining parameters are V, = 2km/s, £ =0.22 and n = 0.1. The source is located at the
surface at lateral position 4 km, with receivers spanning the whole surface. Imaging the shot
gather using reverse time migration (RTM) with a space lag imaging condition allows us to
obtain the common image gathers. Figure 3.9 shows the common image gathers from
applying the RTM with the accurate parameters. There is no residual imaging moveout when
the exact velocity model is used. In Figure 3.10, we show the residual imaging moveout when
applying RTM under the isotropic assumption on the data shown in Figure 3.8. For the

isotropic model, we keep the same V, and gradients as that of the anisotropic models and set
¢ and n to zero. The use of wrong anisotropy parameters cause the residual imaging
moveout we see in Figure 3.10. We overlay the numerically computed imaging moveout with

the curves corresponding to our analytical second-order rational approximation R, given in
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equation (3.16). We represent the numerically computed imaging moveout in Figure 3.10 with
a yellow color. Although this equation is approximate, it can accurately predict the residual
curve of the imaging moveout for both models. For a larger gradient, the matching between

the analytical approximation and RTM is not as accurate with increasing difference at large

depths (Figure 3.10 (b)). As the typical velocity gradients lie between 0.5-1.0s™", so our

results are acceptable.

Figure 3.8. (a) The common shot gather for the diving wave from the synthetic data with the
parameters V, = 2km/s, G, =15s™, £=0.22 and n = 0.1. (b) The common shot gather for
the diving wave from the synthetic data with the parameters V, = 2km/s, G, =2s™,
£=0.22 and n=0.1.
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Figure 3.10. (a) The common image gather when using the isotropic RTM with parameters

V, =2km/s, G, =15s", £=0.22 and  =0.1. (b) The common image gather when using
the isotropic RTM with parameters V, = 2km/s, G, =2s™, £=0.22 and n=0.1. We

overlay the residual curve predicted by the imaging moveout from rational approximation R,

in equation (3.16).
We apply the semblance analysis on the RTM result based on the analytical prediction
corresponding to the rational approximation R,. The equation for the semblance coherency

function is given by

nz )
ZAim,j
SB=—

i — (3.17)
(Z Ayi)*

where SB is the semblance value, A ; is the amplitude of the RTM data, i(j) is the
discretized representation of x_(z,) and j is the discretized representation of z, in the
rational approximation R, given by equation (3.16). In order to analyze the influence of VTI

medium parameterization, we test a range of anisotropy combinations and show the errors in

estimation of anisotropy parameters A¢ and An for gradient G, in Table 3.1 (see Appendix
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C). From this table, we can see that the estimates from all the examples are reasonably

accurate and the differences between them are very small. Then, we apply the same analysis
for the larger gradient G, and show the results in Table 3.2. The anisotropy estimates for this

model are less accurate because the approximation in equation (3.16) deviates from the RTM
result at larger depths as shown in Figure 3.10 (b). However, the results are still sufficiently
accurate for use as a potential initial model for FWI1. Based on the accuracy of estimation of

z and 77, we select the four best parameterizations: (V,,&,7), (Vy,&€,9), (V,,¢,V,,) and

Vy.&Vy,) for semblance plots.

In Figure 3.11, the semblance plots computed for the depth range of 0 —600m for these four

types of parameterizations, where V,,V,, and V, are the vertical, NMO and horizontal

velocities on the top for gradient G,, demonstrate the variations with different

parameterizations. The anisotropy parameters can be evaluated from the coordinates by

picking the maximal value of the semblance plots.

The semblance plots for a larger gradient G, are shown in Figure 3.12. Comparing with the

semblance plots in Figure 3.11, we observe that the semblance anomalies are more focused
while the estimation results are less accurate. The trade-off between anisotropy parameters

also decreases.
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Gl=15s"

One velocity + two anisotropy parameters

1 Vo &, Ag ~0.002 An =~ -0.004
2 Ve 8,17 Ag ~0.0015 An ~-0.0055
3 Vo, 0, € Ag ~0.002 An ~-0.0035
4 Vi &1 Ag ~0.0025 An =-0.005
5 Vi, 6.1 Ag ~0.002 An ~0.008

6 Vy, 0, ¢ Ag ~0.0025 An ~-0.0045
7 Vi, e Ag ~0.002 An ~—0.0045
8 Vi, o.1 Ag ~0.0015 An ~-0.006
9 V,,0,¢ Ae =~ 0.002 An = -0.0045

Two velocities + one anisotropy parameter

10 V,, &V, Ag ~0.002 An ~—0.00355
11 VARAYA Ae ~0.0016 An ~-0.0045
12 V,, 8.V, Ae ~0.0018 An ~—0.0047
13 V,, 7.V, Ae ~0.0018 An ~—-0.005
14 Vy, 8.V, Ag ~0.002 An ~—-0.006
15 Vy, eV, Ae ~0.0025 An ~—0.005
16 Vi, 8.V, Ae ~0.0016 A ~—0.0044
17 V,,, &V, A ~0.002 An ~-0.0044
Three velocities
18 V,. VY, Ae ~0.0018 An ~—-0.0048

Table 3.1. The anisotropy estimation errors for gradient G, for all parameterizations. We fix
the first value of each parameterization and evaluate the other two through semblance analysis,
then convert them into the estimation for anisotropy parameters z and 7 .

60




G2=2s"

One velocity + two anisotropy parameters

1 Vo, &,17 Ag ~0.0075 An ~0.0385
2 Vo 6,11 Ae ~0.0080 A7 ~0.0385
3 Ve 6,6 Ag ~0.0075 An ~0.045

4 Vi ém Ag ~0.0045 An ~0.0370
5 V. 0.7 Ag ~0.0060 An ~0.0380
6 Vy.6,¢ Ag ~0.0045 An ~-0.0355
7 Vi, e Ae ~0.0080 A7 ~0.0385
8 Vy, 6,1 Ag ~0.0085 An ~0.0380
9 V,,0,¢ Ag ~0.0080 An ~-0.0215

Two velocities + one anisotropy parameter

10 V,, & Vy Ag ~0.0075 An ~0.0377
1 Vo.1,Vy, Ae ~0.0083 An ~0.0385
12 V,. 0,V Ag ~0.0072 An ~0.0367
13 Vo1 Vy Ag ~0.0072 An ~0.0375
14 Vy,0,Vy Ag ~0.0060 An ~0.0380
15 Vy, &V, A¢ ~0.0045 An ~0.0370
16 Vi, 0,Vy Ag ~0.0082855 An ~0.0377855
17 V,, &V, Ag ~0.0080 An ~0.0383862
Three velocities
18 Vo, V.V, Ae ~0.007218 An =~0.036906

Table 3.2. The anisotropy estimation errors for gradient G, for all parameterizations. We fix
the first value of each parameterization and evaluate the other two through semblance analysis,
then convert them into the estimation for anisotropy parameters z and 7 .
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Figure 3.11. The semblance plots for different parameterizations computed for factorized
model with G, =1.5s" (a) V,, -fixed, ¢,7; (b) V, -fixed, ¢,6; (c) V,-fixed, &,V,,; (d) V,, -
fixed, ¢,V,,. The anisotropy parameters can be evaluated from the coordinates of the maximal

value of the semblance plot.
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Figure 3.12. The semblance plots for different parameterizations computed for factorized
model with G, = 2s™ (a) V,, -fixed, &,7; (b) V, -fixed, ¢,8; (c) V,-fixed, 6,V,; (d) V, -
fixed, &,V,,. The anisotropy parameters can be evaluated from the coordinates of the maximal

value of the semblance plot.

3.7 Discussions

Despite the fact that the linear velocity model used for our analysis is an approximation to the
real case, it can be used as a part of a factorized model for many real situations. Like in the
moveout approximations for reflections where the medium is assumed to be homogeneous to
yield such approximations, for diving waves vertical increase of velocity is a necessary
ingredient for recording such waves. As a result, we develop the analytical approximations
based on a constant gradient assumption, which will allow for closed form solutions. In the

same way as Dix-type approximations are used to describe the reflection moveout in a V (z)
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medium, similar formulas can be derived for the diving wave moveout, where the gradient is

varying with depth. Such studies can be a topic of future investigations.

Despite that diving waves admit low frequency long wavelength energy over the whole
wavepath when imaging, it is stationary near the turning point, so the contributions from
many source and receivers at the end allows the turning point part to provide the major
contribution and at the high frequency asymptotic limit, we end up with the turning ray
contribution. We definitely do not get energy focused only at the turning point, as the classic
image for turning waves from a source to a receiver is has a banana shape. However, we are
focusing our analysis at the center which includes the turning point, as it represents the
deepest level in which a diving wave travels shown in Figure 3.13. Using different intervals,
we sum all sources and receivers that covering the surface, the turning point represents the
major stationary contribution to the image. The subsurface offset gathers from left and right
parts of the model are shown in Figures 3.14 (a) and (b), respectively, using the correct
velocity in migration. They need to be compared with Figure 3.9. We can see that they all
focused at the center of corresponding gather. The basic idea is that the increased focusing of
image in subsurface offset is induced by the increased degree of similarity between the
migration velocity and the true velocity. This is equivalent to what we see in extending the
image with an offset lag as we demonstrate in Figures 3.9 and 3.10 similar to Shen (2013). So
the image point dispersal is equivalent to the non-focusing to zero offset we obtain when we
look at extended images. In FWI for diving waves, such dispersal depending on the frequency
suggests to us the depth in which the gradient can be trusted, and thus, provides wrong

direction updates when the dispersal exceeds a half of the wavelength.

Using the rational approximation, we ended up with relatively small errors under the
assumptions made. However, as expected, we observe trade-off between the anisotropy

parameters in the estimation (Figures 3.11 and 3.12). The trade-off is an ongoing challenge in
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analyzing multi parameter problems like those in anisotropy. However, with analytical
formulas the computation of the Hessian becomes straightforward, which provides for another

opportunity to benefit from these approximations.

The semblance analysis exercise was mainly meant to analyze the role of parameterization in
reducing the tradeoff, but it also provides a valid tool for extracting effective anisotropic
parameters corresponding to the depth covered by the diving waves. These effective values

can serve as potential initial values for tomographic inversion or FWI.

2000 4000 x(m)

GOIW 8000

200

600—

z(m)

Figure 3.13. The ray trajectory of the diving waves.
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Figure 3.14. Subsurface image gathers in offset pulled from left (a) (4400m) and right (b)

(4600m) of the model migrated with the correct velocity.

3.8 Conclusions

We develop a method to estimate the anisotropy parameters from the residual moveout of
diving waves in a factorized velocity model. We analyze different approximations for the
imaging moveout, and find that the second order rational approximation R, is the most
accurate one. By testing it with different anisotropy parameterizations, we select (V,,¢,7),
Vy,&,0), (Vy,eV,) and (V,,¢&,V,) as potentially the best combinations for this problem as
they provide the best results even for large values of velocity gradients. We estimate the
anisotropy parameters from the semblance analysis on residual moveout in the RTM image
gathers. From the semblance plots, we observe that an increase in velocity gradient results in a
decrease in the trade-off between anisotropy parameters. However, for the larger gradient the
accuracy of our moveout equation reduces. Nevertheless, the anisotropy estimation using
semblance analysis for all parameterizations is reasonably accurate even for large values of

velocity gradients.
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3.10 Appendix A

Taylor series for residual imaging moveout

In order to simplify the expression, we substitute the horizontal slowness by the following

variable s using,

1-5s

p= Volﬁ (3.A1)

Then the parametric expressions of z (s) and Ax,(s) can be expanded in a series,

z,(5)=n/s +n,5+n,s¥2 +n,s% + -

AX, (5) = mya/s +m,s +m;s*2 +m,s? +---, (3.42)
where n;,m;, j=1,...,4 are the series coefficients.
From series (3.A2), we define the series for Ax,(z,) in the form,
AX,(z,)=a,2, +a,2; +a,2; +8,7;. (3.A3)

The coefficients in series (3.A3) are given in terms of coefficients in series (3.A2) and (3.A3)

as follows
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m
a, =—,

n
m,n, —m,n
a, = 21 12

n ’

3.A4
o= m,n? +2m,nZ —m,n,n, —2n,n,m, (3A%4)
3 n15 '

a, =

7

3 2 2 3 2 2
m,n; —3m,n; n, +5m,n,n, —5mn; —2m,n; n, +5mn,n,n, —mn;’n,
n

1

Finally, these coefficients take the form,

a, =2/,
_ 1+26)G
o22yey,

_(A+2e)(=n +&(3+4n))G 2
a3 = 312\ 2
62632V 2 (1+ 27)

(3.A5)

X = (1+28)1-217 1662 (L+7n) + (2 + 47))G?
) 32426V 3 (1L+ 27) '

Note that the lower order coefficients a, and a, do not depend on the anisotropy parameter
I] .

3.11 Appendix B

Rational approximation
We define two types of rational approximations with the following forms

pnen
' 1+q,z,
. (3.B1)
R - Plzp+Pzzp+P32p
2 1+Qz, +Qz2

where p,, p,,q;,P,,P,, P, Q, and Q, are the series coefficients. In order to compute these

coefficients, we define the infinite depth limit,
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X,
a, = lem (Z—). (3.B2)
p4)00 p

The coefficients in the rational approximation R, can be represented by

P =4y,
p — azaoo

2 =% —a, (3.B3)
“a

where the coefficients a; are given in equation (3.A5).

The coefficients in rational approximation R, can be given by

P=a,
p, - as — 2a1a2a32+ a’a, +a,a,a, —a,a,a, ,
al -aa, +a.a,
_ (ag _a2a4)am
' al-aa; +aa,’ (3.B4)
aa, —a,8; —a,a,
Q= al-aa,+aa,
2 3 3% 0
Q, = 8,8, — a§

—
aa; —a, —a,a,

where the coefficients a; are given in equation (3.A5).

3.12 Appendix C
Different parameterizations

In order to analyse the impact of the different parameterizations on our analysis, we use three
types of parameterizations: one velocity plus two anisotropy parameters, two velocities plus
one anisotropy parameter, and three velocities. Different anisotropy parameters can be

transferred by the following relations
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_&-0
T 1v2s
V, =V, /17 25, (3.C1)

Vy =Vov1+ 2641+ 27,

where V, is the P wave vertical velocity on the surface, V, is the NMO velocity on the
surface, V|, is the horizontal velocity on the surface. The value of the anisotropy parameters

aresetto V, =2km/s, G, =1.5s", £=0.22 and 1 =0.1.

Type one: One velocity + two anisotropy parameters

The parameterizations given by type one are (V,, £,77), (V,,9,77), (V,,0,¢), (Vy,&,17),
(Vy,6,1m), (Vy,6,¢), (Vy. &), (Vy,0,n)and (V,, 0, €). We fix the first value of the

velocity and evaluate the other two-anisotropy parameters through semblance analysis. Then

we convert the estimation errors into the same form AZ and Az to analyze the accuracy of

different parameterizations by the relation AZ ~ AS + A7 .
Type two: Two velocities + one anisotropy parameter

The parameterizations in type two are (V,, &,Vy ), (V,, 17,V ), (V,, 0.V ), (V. 7,Vy),
(Vy,0.Vy), (Vy, e Vy), (Vy,0Vy), and (V,, €,V ). We fix the first parameter of the
velocity and evaluate the velocity and the anisotropy parameter through semblance analysis.
Then we convert the estimation errors into the same form Az and A7 to analyze the

accuracy of different parameterizations using the following relations
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Type three: Three velocities

Moy -1

=Yoo
2 ’
()7 -1
F=to
2 1
Ciyeo1 oy
_ VTN,
2 2
AE =~ AS +A7.

(3.C2)

’

The parameterization in type three is (V,,V,,V,, ). We fix the first value of the velocity and

evaluate the other two velocities through semblance analysis. Then we again convert the

estimation errors into the same form Az and A7 to analyze the accuracy of different

parameterizations by the relations shown in equation (3.C2).

The errors in anisotropy estimations AZ and A7 for eighteen parameterizations are shown

in Table 3.1. From this table, one can see that the estimations from all parameterizations are

reasonably accurate and the differences between them are very small.
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Chapter 4 Preserved traveltime smoothing in
orthorhombic media
Shibo Xu and Alexey Stovas

Norwegian University of Science and Technology, Trondheim, Norway

Abstract. Certain degree of smoothness of velocity model is required for most ray based
migration and tomography. Applying the conventional smoothing in model parameters results
in the offset-dependent traveltime errors for reflected events, which can be large even for
small contrasts in model parameters between the layers. This causes the shift in both the depth
and residual moveout (RMO) of the migrated images. To overcome this problem in
transversely isotropic medium with a vertical symmetry axis (VTI), the preserved traveltime
smoothing (PTS) method was proposed earlier. We extend this method for orthorhombic
media with and without azimuthal variation between the layers. We illustrate this method for
a single interface between two orthorhombic layers and show that the smoothing driven errors

in traveltime are very small for practical application.

Presented at the 78" EAGE Conference and Exhibition, June, 2016, Vienna, Austria;

Published in Geophysical Prospecting in November 2016.
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4.1 Introduction

The velocity models for prestack depth migration (PSDM) are commonly built by layer-
stripping with velocity discontinuities across the horizons. The ray tracing (Cerveny, 2001)
used in Kirchhoff or beam migration requires certain smoothness of the depth velocity model.
Current industrial practice for smoothing is to perform a bell-shaped filter (Gonzalez and
Woods, 2008) to the step of model parameters. The drawback of the conventional smoothing
is that the migrated events will shift to higher velocity layer at the discontinuities compared
with results from the unsmoothed model. The shift is offset-dependent, and the errors in depth
and the residual moveout (RMO) for the migrated images are induced by the smoothing
process, which will cause errors in velocity analysis. Several approaches are proposed for this
problem like adding the horizons in the ray-tracing process (Vinje et al, 1996) and combing
the unsmoothed and smoothed models (Baina et al, 2006). The Preserved traveltime
smoothing (PTS) (Vinje et al, 2012) is proposed to solve this problem based on the
kinematically equivalent media (Stovas, 2008) and the traveltime filter. It is designed to
smooth the depth models accompanied by preserving the traveltime parameters at the velocity

discontinuities.

The orthorhombic (ORT) medium is introduced by Schoenborg and Helbig (1997) to describe
the fractured earth and has become a new standard to define model parameters to cover the
azimuthal dependence of the traveltime surface. Tsvankin (1997, 2012) defines the elastic
ORT model with nine parameters that can be reduced to six parameters in an acoustic
approximation (Alkhalifah, 2003). These parameters are: vertical velocity V,, two local NMO
velocities defined in vertical symmetry planes and three local anelliptic parameters. The
anelliptic parameters can be defined in all symmetry planes (Grechka and Tsvankin, 1999) or

can be defined in terms of azimuthally dependent anellipticity (Stovas, 2015). In addition to
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that, we might have one extra parameter responsible for azimuthal orientation of the

symmetry planes.

In this paper, we extend the Preserved traveltime smoothing (PTS) method to ORT model
based on the azimuthal dependence of kinematic properties defined for an acoustic ORT
medium (Stovas, 2015) to preserve the traveltime parameters for smoothed ORT model. In
case of azimuthal variations in the symmetry axis between the layers, the least-squares
approximation is adopted to estimate the effective anellipticity parameters from this layered
medium to preserve the complexity of the model when doing smoothing (ORT both input and
output). The traveltime parameters are preserved for the azimuthally dependent ORT model,
and the resulting error in traveltime is sufficiently small from the numerical examples. In our
paper, we focus on defining the composite parameters only and use very simple Gaussian

filter instead of the complicated smoothing operator as proposed in Vinje et al (2012).

4.2 Velocity moments and composite parameters for VT1 media

In order to preserve traveltime when smoothing the velocity model, Vinje et al. (2012) defines
the depth dependent composite parameterization of a transversely istropic model with a
vertical symmetry axis (VTI) medium under the acoustic approximation (Alkhalifah, 1998)

represented by kinematic parameters (Stovas, 2008),

1
V(&)
Vi (€)
Ve(§)
Voo (£)2+87(S))
Vo (&)

ml(éz):

m, (&)= (4.1)

m3(§):
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where m;, m, and m, are the unsmoothed composite parameters, V, is the vertical P-wave

velocity, V, is the normal moveout velocity defined by V.., =Vov1+25 ,

nmo

n=(e-9)/(1+25),where 5 and & are the anisotropy parameters (Thomsen, 1986).

The composite parameters m,, m, and m, are smoothed by Gaussian filter so that the velocity

moments are preserved at the velocity discontinuities. It means that the integral for composite

parameter m; (before and after smoothing) remains the same,

[[my (s = [, (£)de, =123 (42)
The model is studied in 1 D (vertical direction), therefore, the smoothing for the composite

parameters is also computed in 1D, consequently.

The smoothed composite parameter m; can be obtained by using a conventional Gaussian

filter,

[ wem, (e

72-A7/2

J-z+Az/2W(§)dé:

-Az/2

m;(2) = (4.3)

where m; and m; are smoothed and unsmoothed composite parameter, respectively, and w is
the Gaussian function and Az is the length of the filter. Vinje et al. (2012) designed the
special filter used for smoothing, but, in this paper, we use the simple Gaussian filter for
simplicity.

The smoothed composite parameter m, is shown in Figure 4.1 (left). In order to preserve the

traveltime parameters, compensation function needs to be added before and after the step

(Figure 4.1, right).
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Figure 4.1. The unsmoothed and smoothed composite parameters (left). The same composite
parameter with compensation functions (right). The unsmoothed and smoothed parameters are
shown by solid and dashed lines, respectively.

The smoothed composite parameters m,, m, and m, can be converted into the model

parameters by following equations (Vinje et al, 2012),

1
m, ()’
\7an (f) = :;Z ((g)) ’
GG

1(£) "5 R D).

V(&) =

(4.4)

To illustrate the smoothing procedure and the accuracy of the method, we select a two-layer

VTI model. The parameters of upper layer are: V, =1.5km/s, V,,, =2 km/s, n=0.1 and
parameters of lower layer are: Vo = 2.5km/s, V,,, =3.2km/s, 7 =0.12 and the thickness for
both layers is 3 km. Unsmoothed and smoothed composite parameters m; (j =1..3) computed
for model specified above are shown in Figure 4.2. One can see that the smoothing operator in

equation (4.3) performs very similarly for all composite parameters.

The corresponding smoothed model parameters computed in equations (4.4) are shown in
Figure 4.3. From these plots, one can see that the shape of the smoothed anellipticity

parameter  is very different from other kinematic parameters at the interface.
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If the unsmoothed velocity model is isotropic (5 =& =0), the PTS results in the smoothing

induced anisotropy illustrated in Figure 4.4. The behavior of the smoothed V,,, is similar to
behavior of the smoothed V, (Figure 4.3). However, the smoothing induced anellipticity

parameter is different from the one obtained for VTI model. We can decompose kinematic
parameters shown in Figure 4.4 into anisotropic parameters s and & (Figure 4.5). The
smoothed anisotropic parameters s and ¢ have similar shape. The induced anellipticity from
elliptic isotropic (El) and isotropic (ISO) cases are shown in Figure 4.6. From this plot, one
can see that the induced anellipticity from ISO model is larger than the one obtained from EI

model.

In order to illustrate the accuracy of the proposed method, we compute the depth dependent

offset-traveltime by the integrals (Fomel and Stovas, 2010),

2 2
X(p):JO — pVNl\g})(g) — df,

Vo(&)A-207() pWV o (£)) 21 L+ 207(E)) pWV o (€) s)
()= [ =20 P Vo )’ +20()PViiwo @) 4, |

0 3

VolE)L-20(8) PPV (£) 2= @+ 20(@) P Vo (@)
where X (p) and T(p) are the parametric offset and traveltime that represented by horizontal
slowness p. The relative traveltime error between unsmoothed and smoothed VTI, El and

ISO models with parameters mentioned above is shown in Figure 4.7. From the plot, one can
see that the travletime error increases with offset, and the error is very small even for large
offset. Notice that the PTS method applied for VTI and EI models results in smaller

traveltime error comparing with 1ISO model.
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Figure 4.2. The composite parameters m, (top), m, (middle) and m, (bottom) before and

after smoothing for VTI model. The unsmoothed and smoothed parameters are shown by

solid and dashed lines, respectively.
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4.3 Preserved traveltime smoothing in orthorhombic media without

azimuth variation between the layers

The kinematic properties in ORT model without azimuth variation can be defined following

Stovas (2015). The limited series for vertical slowness in ORT medium is given by
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Q(ppy= L - PV PVomaz _ (Q+8) PV
x1 My V0 2\/0 2\/0 8\/0
(4.6)
_ @+ 8772) p;lvninuz _ @+ 477xy) pf inanMVnzmoz .

8v, AV

where ¢, p, and p, denote the vertical and two horizontal projections of the slowness vector.

The ORT medium parameters are vertical P wave velocity V,, the NMO velocities V, and

nmol’

V..., are defined in the [x,z] and [y,z] symmetry planes, respectively. The cross-term

parameter ,, is defined in Stovas (2015),

/(1+ 2n,)(1+21,)
= |/ 7RI q
Ty 1+ 27, , 4.7

where 7,, 7, and 5, are the anellipticity parameters defined in symmetry planes [x,z], [y, z],

and [x,y], respectively.

For ORT model with no azimuthal variation between the layers, we define the depth

dependent composite parameters nj(j =1..6) are based on series coefficients in equation (4.6),

_ 1 _ Vn?nol (5)

O Ve
V(@) VA L(E)A+87,(2))

YO ve MO e (48)
VAL (E)A+87,() V2NV ()4, ()

ns(*’:)— Vo(f) ) ne(f)— Vo(f) .

Three parameters in equations (4.8) are low-order (two coefficients related to slowness
squared and one constant term) while three others are high-order (related to slowness to

power four).

The first five composite parameters in equations (4.8) are similar to the ones defined for a

VTI model, and only parameter n, is different. To illustrate the smoothing, we define a two-
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layer ORT model. The parameters for upper layer are V, =1.5km/s, V., = 2km/s,

nmol

Vimoz =1.8km/s, 7, =0.1, 7, =0.15 and n,, =0.22, and for lower layer are V, = 2.5km/s,

Vimor =3.2km/s, Vinop =2.8km/s, 7, =0.12, 77, =0.2 and 7,, =0.2. The thickness for

both layers is 3 km. We show the smoothed composite parameters from equations (4.8) in
Figure 4.8. From these plots, we can see that smoothing curves for composite parameters are

very similar with the ones obtained in VTI case.

We convert the smoothed composite parameters into the model parameters by

U= 2t V@ = (2D, 0, () (2O

=~ — ﬁ4(§)ﬁ1(§)_ﬁ22(§) ~ — ﬁ5(§)ﬁ1(§)_ﬁ32(§) 4.9
UA) 87 () NG 87 (2) : (4.9)
~ (NG (£) -1, (£)N;(S)
T NI R

The smoothed anellipicity parameter 7, can be obtained from equation (4.7) by

_(L27)(14 27,) - (L4 7,)’
: 201+7,,)° '

(4.10)

We show the smoothing for three effective velocities V,, V,.,, and V,,, in Figure 4.9. From

nmo. nmo2

the plots, we can see that the smoothing curves are quite similar for these three effective
velocities V,, V..., and V. _,. The smoothing for anellipticity parameters including effective

parameter computed from equation (4.10) is illustrated in Figure 4.10. One can see that the

smoothing curves are very similar for parameters 7,, 7, and 7,,, while slightly different for

15
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Figure 4.8. The composite parameters before and after smoothing for ORT model. The
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4.4 Preserved traveltime smoothing in orthorhombic media with azimuth

variation between the layers

In case of azimuthal variation between ORT layers, we have to apply the rotation operator in

cos¢ sing

X-Y plane by (—sinqﬁ cosg

j to equation (4.6) to specify the clockwise rotation azimuth.

The effective kinematic properties of the ORT model with the azimuth variation between

layers can be found in Stovas (2015). The series

87

for vertical slowness takes the form

z{km)
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- ﬁ [(L+812Vpng; €08 @ = (L+817 WV i’ § = (L+ 417 Vi Vo, €05 26]sin 26 pyp,
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X

-ﬁ[s(usm)v4 , SiN? 20+ 3(1+81p Vo SIN” 26+ (L+ 417, Wi o Vo

nmo nmo nmol” nmo2
0

(L+3cos4)Iplp;

1 . .
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_w[(1+8q1)vn‘;mlsm“¢+(1+8772)Vn‘:mz cos"¢+§(1+ 411 Voo Voo SIN° 2615+,

nmol” nmo2
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where ¢ is specified as the azimuthal orientation of the vertical symmetry plane [x, z] with

respect to the global coordinate system.

In order to get the effective model parameters in this case, we smooth the composite
parameters that are the series coefficients in equation (4.11). To convert the smoothed

composite parameters into the models, we use two steps.

The equations for first four composite parameters from equation (4.11) are

kl =3 I(2 :i(vn?nol C052¢+Vn2moZ Sin2¢)1
VO VO
(4.12)

k3 = i(\/n?nol Sin2 ¢ +Vn?7102 COSZ ¢)1 k4 = i(\/n?nol _VnszZ)Sin 2¢1
VO VO

These k;(j=1..4) are smoothed into £ (;j=1..4) and can be converted into three smoothed

velocities and effective azimuth @ by following equations

\70: 1 N \/k2+k3+w/(k2—k3)2+kf

PR 2K,

nmol
g :\/Eﬁg_,/&i_@u@z o Lonio e

(4.13)

, @ ==tan™*(
2k, 2 K, —k,

),
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where V, is the effective P-wave vertical velocity, V., and V,

nmo2

are the effective NMO

nmol
velocities in symmetry planes. A similar technique is discussed by Grechka and Tsvankin

(19993, 1999h). @ stands for the effective azimuthal orientation.
To illustrate the first step, we define an azimuth dependent ORT model ORT, by using the

same two layer ORT model as above with zero azimuth ¢ =0 in upper layer and ¢ =30° in
lower layer. The composite parameters k; (j =1,4) before and after smoothing are shown in

Figure 4.11. We can see that the curves are very similar with the ones before. The effective

velocities V,, V..., V..., @nd azimuth & are shown in Figure 4.12. From comparison of

nmol !

Figures 4.9 and 4.12, one can see that the presence of azimuth variation between the layers

does not significantly affect the smoothed NMO velocities V, ., and V.

nmo2 *

However, there is

nmol

adifferencein V., and V., between two cases of about 20 m/s with and without the

nmo2

azimuth variation between the layers. This difference for V., and V,,., has opposite sign.

nmo2

In the second step, we solve the overdetermined system of the linear equations when

estimating the effective anellipticity parameters. We apply the least-squares method (Stovas

2015) to evaluate the effective parameters 7,, 7, and 7,,. First, we define the effective
anellipticity vector N =(77,,7,,7,,)" . The linear system of equations can be written in matrix
form,

UN=DsS, (4.14)
where the effective NMO slowness vector is defined as

11 1
Vi VN2

nmol nmo2 nmol ™ nmo2

S=(

) (4.15)

and the azimuthal matrix U(®) is given by



2cos* @ 2sin* @ 2sin? @ cos® @
2sin2dcos’ ®@ —2sin2dsin*®  —cos2dsin 20

U =|6sin’2d 6sin’ 20 1+3cos4® . (4.16)
2sin2dsin?® —2sin2dcos’d  cos2dsin 2P
2sin* @ 2cos* @ 2sin? ® cos? @

Note that the effective smoothed NMO velocities V, ., and V., and the effective azimuth @
are precomputed in equations (4.13).
The least squares method gives the solution of equation (14) as follows
N =GS,
G=FD, (4.17)
F=(UTU)U,
where F is 3x5 matrix and D=(d, ) is 5x3 matrix. The elements of matrix D are defined in
Appendix A.
If there is no azimuth variation between the layers (¢ =0°) or there is 90° azimuth variation
(¢ = x12), matrix F has only three nonzero elements. The solution for effective anellipticity
vector N reduced to the one defined in equations (4.9).

In order to smooth the parameters in this case, we need to define the matrix elements d,,

(i=1.5; j=1..3) (Appendix A) and smooth each of these parameters by using the PTS
method described above. The effective velocities and effective azimuth are substituted from
the computation in step one. The smoothed effective anellipticity parameters are computed

from equations (4.17).
The effective anellipticity parameters in ORT, model are shown in Figure 4.13. Being

compared with the results from ORT model, the smoothing curves for parameters 7,, 7, and
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ﬁxy in ORT, model are similar but with different amplitudes, larger for 7, and ﬁxy, but

smaller for 77,. The smoothed parameter 7, is very different for models ORT and ORT,.

Note that the application of PTS method in ORT and ORT, models results in smoothing

induced anellipticity. We illustrate that by using two models with (7, =7, =7,, =0) without

(El) and with (El,) azimuth variations. The smoothing induced anelliptic parameters for El

and EI, models are shown in Figure 4.14. We can see that the magnitude anelliptic

parameters 7, and 7, is different for these models, while for parameter r,, is very similar.

The biggest anomaly for smoothing induced anelliptic parameters is always located at the

interface depth.
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Figure 4.11. The composite parameters before and after smoothing for ORT, model. The

unsmoothed and smoothed parameters are shown by solid and dashed lines, respectively.
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4.5 The accuracy in traveltime

To illustrate the accuracy by the PTS method for ORT model, we use the parametric offset-

traveltime equations (Stovas, 2015):
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Vnmol

X(p,» py) = pXLWdegn
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where x and v are corresponding offset projections, and

F1(&) = (P22t ()@ (©) - 1y (D) -1

F2(8) = (22102 (O)@12(8) -y () -1 |

f1(€) =1 (L+ 20(£)) PLVimon (€) = (L+ 2075 (£)) PP Vo2 (£) (4.19)
+ ((L+ 271 (E)+ 272 () = (L+ 7 (€)) P P§Vitmor €V o2 (€,

f2(€) = 1= 201(€) PRV mnon () = 272 PV im0z (€) + (41 ()12 (€) = 15 (£)) P PV imot (EVpmo2 (€):

We compute the relative traveltime error due to smoothing for ORT and EI (Figure 4.15) and

ORT, and EI, (Figure 4.16) models. From comparison of the error plots, one can see that the
error for ORT, and EI, models are similar with the one from ORT and EI models. The
traveltime error for El is larger than the error for ORT model, and the error for EI, model is
also larger than the one for ORT, model. For all the models, the maximal traveltime error is

very small.

In order to make a comparison, we also plot the traveltime errors by using the conventional
smoothing for ORT and EI (Figure 4.17) models and ORT, and El, (Figure 4.18) models.
Different from the PTS, the model parameters (1/Vy,d1, 0, , &1, €, and J;) are smoothed
directly in conventional smoothing using the same smoothing operator in equation (4.3), J;
and ¢; (i =1,2) are the Thomsen parameters in the corresponding symmetry planes. J; is the

anisotropy parameter defined by Vasconcelos and Tsvankin (2006),
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5y = &2 —51—773_231773_

(L+2¢; NL+273) (4.20)

Compared with the errors in PTS, the conventional smoothing results in larger error for long

offset for all these four models.

Figure 4.16. The traveltime error surface for ORT, model (top) and EI, model (bottom).
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Figure 4.17. The traveltime error surface using conventional smoothing for ORT model (top)
and El model (bottom).

Figure 4.18. The traveltime error surface using conventional smoothing for ORT, model (top)

and El, model (bottom).

4.6 Conclusions

We develop the preserved traveltime smoothing method (PTS) for ORT velocity model
without and with azimuthal variation between the layers. Smoothing is performed for

composite parameters that are different for ORT and ORT, models. In computation of
anelliptic parameters for ORT, model, the least squares method is used. We show that PTS
results in smoothing induced anellipticity and illustrate that for EI and EI, models. The

traveltime errors due to smoothing are sufficiently small for all the models.
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4.8 Appendix A

In order to smooth the model parameters by PTS method, we need to define the elements of

matrix D, which represent the composite parameters for ORT, model (Stovas, 2015)
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dy = (1+87,(§))Vomen (£) cOS” 4,

Vo (é)

d, = (1+8n, (f))vnmoz (&)sin’ ¢,

Vo (cf)
d13 =

VO (é:) (1+ 477Xy (é))vnmol (é)vnmoz (é) sin 2 ¢ COS2 ¢,

d21 = (1+ 8771 (é))vnmol ((:g) COSZ ¢Sin 2¢l

Vo (5)

d22 Y/ (é,e) (1+8772 (g))vnmoz (é)SinZ ¢Sin 29,

d23

VO (5) (1 + 477><y (é))vnmol (g)vnmoz (5) cos 2¢Sin 2¢1

dy = (1+8n, ({:))Vnmol(é)smz 2¢,

Vo (5)
d32 =

v, ( B (L4817, (5)V o2 () siN* 26, (4.A1)

d33 =

Vo (5) (1 * 477Xy (é:))V”mOl (§)Vnmoz (5)(1 +3c0s 4¢),

da =y, (5) o QB (E)V gy (£)siN® fsin 29,

d42 = V (é:) (1+ 8772 ((:K))Vnmoz (6) Cosz ¢S|n 2¢'

d = v (5) ——(1+ 477><y (té,l:))vnmo1 (f)Vnm02 (&) cos 2¢sin 24,

s = ( 75 L IOV (©)sin' s

d52 V (é) (1 + 8772 (5))Vnm02 (5) 0054 ¢|

d53

V0 (5) (1+ 4T7>‘y (é))vnmol (g)vnmoz (é) sin 2 ¢COS2 ¢,

where V, is the P-wave vertical velocity, the NMO velocities V,,,, and V,,, are defined in

nmol’ nmo2

the [x, z]and [y,z]symmetry planes, respectively. The cross-term parameter 7, is defined in

equation (4.7). Azimuth angle ¢ is specified as the azimuthal orientation of the vertical

symmetry plane [x, z] with respect to the global coordinate system.

We smooth the composite parameters shown in equation (4.Al) and substitute the results into

the elements of matrix D as follows,
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LG,
D, = Vo, -V,
Dy =2 Vol
D,, :% Vol
D,, f%(—\'iod'zz
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j(vo n-
o = Vol —
o =3 Vol
i(vo e
D.. —%(— 7od
1
Ly,
D, :%(\70551
D, =5 (Vodss -V,
Ds; :%(\Zjdm

where the effective velocities V V2
computed in equation (4.13).

nmol?

1 COS* D),
4 ,sin* @),
—V.2 V2  sin?dcos? d),
—V  cos? dsin 2d),
+V.2 ,sin? dsin2d),
+V.2 V2  cos2dsin 2d),
V2 sin? 2d),
V. o sin? 2d),
—V2 V2  (1+3cos4d)),
nmolsm Dsin 20),

+V.A  cos? dsin 2d),

—V2 V2

nmolY nmo2

€cos2dsin 2d),
anl Sln ®)
cos’ @),

nm02

—V2 \?2

nmol " nmo2

sin? ® cos® @).

V.., and the effective azimuth @ are already
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Chapter 5 A new parameterization for acoustic
orthorhombic media
Shibo Xu and Alexey Stovas

Norwegian University of Science and Technology, Trondheim, Norway

Abstract. We define a group of new parameterizations for P-wave in acoustic orthorhombic
(ORT) media with three cross-term normal moveout (NMO) velocities and three cross-term
anellipticity parameters. The corresponding perturbation-based approximations for traveltime
in ORT model are developed using the new parameterizations. The perturbation coefficients
are computed by solving the eikonal equation in corresponding parameterization. Eight types
of parameterization are defined based on different elliptical background model and selection
of anellipticity parameters. As the traveltime can be converted from the group velocity inverse,
the sensitivity of the group velocity inverse to anellipticity parameters is analyzed for
different parameterizations and different range of offsets. To stabilize the perturbation series
and improve the accuracy, the Shanks transform is applied. From the comparison of
traveltime after the Shanks transform using different parameterizations, we conclude that the
parameterization with vertical, two horizontal velocities, and three cross-term anellipticity
parameters results in the best accuracy of traveltime function for P-wave in acoustic ORT

medium.
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Published in Geophysics in October 2017.
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5.1 Introduction

The traveltime approximations are commonly used in seismic data processing such as velocity
analysis, modeling and time migration (Yilmaz, 2001; Cerveny, 2001). The estimation for
model parameters in velocity analysis depends on the accuracy of the traveltime
approximation. For time domain migration, the accuracy of the result is also depend on the
traveltime approximation used in modeling part. In homogeneous isotropic or elliptical
isotropic media, the moveout function has a hyperbolic form. We need to take non-
hyperbolicity (driven by anellipticity parameters) into consideration, as it commonly exists
and plays an important role in seismic data processing and interpretation, especially for large
offsets. The moveout function has a non-hyperbolic form in anisotropic media. Non-
hyperbolic (long-spread) moveout is often used in velocity analysis of P-waves in transversely
isotropic media with a vertical symmetry axis (VTI). The P-wave time domain signature in
VTI model depends on two interval parameters: normal moveout (NMO) velocity from a
horizontal reflector and the anellipticity coefficient » (Alkhalifah and Tsvankin, 1995;
Tsvankin, 2005). Different nonhyperbolic moveout approximations for a homogeneous VTI
are listed and discussed in Fowler (2003), Fomel (2004) and Golikov and Stovas (2012).
Fomel and Stovas (2010) derived a generalized nonhyperbolic moveout approximation (GMA)
for the traveltime approximation defined from zero-offset and one nonzero-offset ray
computation. Alkhalifah (2011) proposed the traveltime expression with series in terms of
anelliptic parameter 7 by solving the eikonal equation for acoustic VTI medium and by
applying the Shanks transform to obtain the higher accuracy.

The orthorhombic (ORT) model is introduced by Schoenberg and Helbig (1997) to describe
fractured reservoirs and explains well the azimuthal dependency in surface seismic data.
Tsvankin (1997, 2012) defined nine elastic model parameters for ORT model that can be

reduced to six parameters in an acoustic approximation (Alkhalifah, 2003). The first order
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curvatures are defined by the normal moveout (NMO) velocity ellipse (Grechka and Tsvankin,
19993, 1999b), and the second order curvatures are defined by the azimuth-dependent
anellipticity. Vasconcelos and Tsvankin (2006) derived the nonhyperbolic moveout of P-wave

in orthorhombic media using the NMO velocities V,;; and V,,, defined in vertical symmetry
planes, and the anellipticity parameters 7;, 7, and 73 defined in all three symmetry planes.
Note that 7; are 77, the anellipticity parameters (Tsvankin, 1997) defined in [XOZ] and

[YOZ] symmetry planes, 75 is the anellipticity parameter defined in [XOY] plane

(Vasconcelos and Tsvankin, 2006). Stovas (2015) derived the azimuthally dependent
kinematic properties of the orthorhombic media and introduced new anellipticity parameter

1y - Sripanich and Fomel (2015) modified the anelliptic functional form of Fomel (2004) and

extended it to ORT model to approximate P-wave phase and group velocities. Alkhalifah
(2013) and Masmoudi and Alkhalifah (2014) develop this concept to approximate traveltime
in horizontal transversely isotropic (HTI) media with arbitrary symmetry-axis azimuth ¢ and
estimate the anisotropy parameter » and the azimuthal angle ¢ . The perturbation based

moveout approximation with a traditional elliptic background for ORT media is discussed by
Stovas et al (2016). The traveltime approximation for the orthorhombic model using
perturbation theory by other anellipticity parameters in inhomogeneous background medium
is developed by Masmoudi and Alkhalifah (2016). Xu et al. (2016) proposed a new set of
moveout approximations based on the perturbation series in anellipticity parameter using the
alternative elliptical background model defined by vertical and horizontal velocities in a
homogeneous ORT media. A horizontally layered ORT medium with parameters compouted
for the fourth-order moveout is studies in (Ravve and Koren, 2017; Koren and Ravve, 2017).
Different parameterization impacts the accuracy of the traveltime approximation due to
different proportion in perturbation parameters (anellipticity parameters) and the anisotropy

estimation in velocity analysis depends on the accuracy of the traveltime approximation. The
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subsurface parameterization also plays an important role in sensitivity and trade-off analysis
for full waveform inversion (FWI) in acoustic anisotropic medium (Alkhalifah and Plessix,

2014) and (Gholami et al, 2013).

In this paper, we define new parameterizations for acoustic ORT medium with different
combinations of elliptical background and anellipticity coefficients. The list of
parameterization including eight different ones is split into symmetric and non-symmetric
groups. The sensitivity analysis to anellipticity parameters at near-, mid- and far-offset is
performed for the group velocity inverse. The parameterization with vertical and two
horizontal velocities and three cross-term anellipticity parameters results in the most accurate

approximation based on Shanks transform as it shown in the numerical example.

5.2 A new parameterization for an acoustic ORT model

The symmetry behavior of the orthorhombic (ORT) model is commonly used to describe the
fractured formation. ORT media have three mutually orthogonal symmetry planes: two
vertical and one horizontal. Six model parameters are defined for acoustic ORT model

(Alkhalifah, 2003). Vasconcelos and Tsvankin (2006) represent the ORT model by the

vertical velocity Vy, two NMO velocities V,;; and V,, that defined in corresponding [XOZ]
and [YOZ] symmetry planes and three anellipticity parameters 7, 17, and 5, defined in
[x0Z], [YOZ] and [XOY] symmetry planes, respectively. Stovas (2015) developed

azimuthally dependent properties of the acoustic ORT model using the parameters Vg, V,;,

Vn27 T, M2 and Txy -

In this paper, we define three cross-term anellipticity parameters 7, , 7y, and 7, (Figure 5.1,

left) by
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(1+ 2 )1+ 217,) _1
(1+2n3)

l + 2771 1 + 2773
_ /7( X )_ 1 .
Mxz (1 + 2772) (5.1)

N (527 TS I
P ez

My =

Note that the cross term 7, is defined by Stovas (2015). Each cross-term anellipticity

parameter is represented by all three anellipticity parameters (7, 77, and 73) from

corresponding symmetry plane. The inverse transformations of anellipticity parameters
are given by

(1+’7xyxl+’7xz)_l

m= 2 )

”e (1+;7Xy)(12+77yz)—1’ 52)
N (1+77xz)(1+77yz)_1

e B

The NMO velocities in ORT model (Figure 5.1, right) are defined by the curvatures in

corresponding symmetry planes

2 2 2
2 Vit 2~ Ve o2 - Vg
1Vn02 — »Vnl0 —

1+2 1 1+27]2 l+2771, (5 3)
n 1+2773 o 1+ 2772 ronat 1+ 2?73

Note that here Vg =V and V9o =V, . We define new NMO velocities by the geometrical

averaging of corresponding NMO velocities from equation 5.3,
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ViVho

L+ 2m L+ 2n,)
VoVho

S 20000+ 205) G4

VoV

J@+2n, )+ 2n5)

The definition of the indices is slightly different for NMO velocities. For the NMO velocities

2
V12 =VnOanOZ =
V2=V Voo =
13 = Vnl0Vnl2 —

2
V23 =Vn20Vn21 =

Vyij, i and j are corresponding to the axis since we use V, for vertical velocity, V; and V,
for two horizontal velocities, respectively. The indices for cross-term NMO velocity Vj; is
defined corresponding to the symmetry plane, where 1,2 and 3 represent for [XOZ], [YOZ]

and [XOY] symmetry planes, respectively.

Figure 5.1. Sketch for cross-term anellipticity parameters: 7, , 7,, and n,, (left) and cross-

term NMO velocities: V;,, Vi3 and Vg (right) in ORT model.

The inverse transformations for vertical velocity V, and horizontal velocities V,; and V,,, are

given by
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v.2y2 VAV 2
Vi = 553@+2%): iisa+””mﬁn”)

VZVZ VZVZ
Vh21: L (1+2772): Lz (1+77xyxl+77yz)r (5.5)

VEAVA: VEAVA:
Vh22 =28 (1+2771)= 1213 (1+'7xyxl+77xz)'

Eight types of parameterization for acoustic ORT model based on different elliptical
background model and anellipticity parameters are listed in Table 5.1. Based on the
symmetric behavior, these parameterizations are divided into two groups: symmetrical (Cases
A-D) and non-symmetrical (Cases E-H). We illustrate two groups of parameterization in
Figure 5.2 and 5.3, respectively. In order to perform the sensitivity analysis, we select the

parameterization with Vo, Vi, Viy, 7, 77, and 5, (Case H) as an example for the

following analysis.

Parameterization Elliptical background Anellipticity parameters

Non-symmetric parameterizations

Case A Vo, Vi, V2 Mi12:713

Case B Vo,V V2 T 1725 My
Case C V0.V Vi My MTxz Myz
Case D Vo,V Vha 72, T1xy

Symmetric parameterizations

Case E Vi2,V13,Vo3 T 12,13
Case F Vi2.,Vi3,Vo3 My 1 1Txz+Myz
Case G V0.Vt V2 T12:13
Case H Vo,V Vha My 1 1Txz+Myz

Table 5.1. Eight types of parameterizations with different background model and different set

of anellipticity parameters.
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Case D

19 y

Figure 5.2. Sketch for non—syrﬁmetric parameterizations for acoustic ORT model defined by
Cases A-D.

Case G

Case H

Figure 5.3. Sketch for symmetric parameterizations for acoustic ORT model defined by
Cases E-H.
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5.3 Perturbation-based traveltime approximation using a new

parameterization

The perturbation series for traveltime (Stovas et al., 2016) in terms of new cross-term

anellipticity parameters is defined up to the second order by
r=10+ X a + 3, by, (1, =123) (5.6)
i (]

where the index 1= Xy, 2 = xz and 3= yz. The elliptical background model is given by

2 2
2 X y
| Vi Vi

where t, is the vertical traveltime with t, = z/V,.

The ORT eikonal equation (Alkhalifah, 2003) with the new parameterization takes the form
or 61 1"‘ n X1+ My )—1 or\ (ot
% [ 3 ) Vm[ Vh2 Y <) Vo ( ) [ )
z OX [+ My I+ Nye) OX
(1+77xyxl+77yz) [ j l+77xz)(1+77yz) 1 [6Tj g (5 8)
(1+77xyxl+77yz) h2 0 1+77xz (1+’7yz) hl " .

N 77xz’7yz+77xy((1+77xz)(1+77yz)_1) V vV (61‘] ﬁ (ﬁj -1
Lt 7y St 7 L4y, ) M0 ax ) Loy ) Laz)

Solving the eikonal equation 5.8 with the corresponding perturbation series in equation 5.6,

we obtain the series coefficients a and b, (i ( v =1,2,3) that are given in Appendix A.

In order to obtain a higher accuracy, the Shanks transform (Bender and Orszag, 1978) is

applied by the form

1'3 = 2'0 + y (59)
7172
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where 7, is defined in equation 5.7, 7, = > ayn; and 7, = > bymn; are the first- and
i i

second- order terms in equation 5.6.

In order to test the sensitivity of the perturbation coefficients a; and by, we select the ORT
model with the parameters: V, =2km/s, V,; =2.4km/s, V|, = 2.6km/s, r, =0.15,

1, =0.18 and 1, = 0.1. The perturbation coefficients a and b, , (i, j =1,2,3) from our
proposed parameterization (Vo, Vi, Via, 74+ 7y, @nd 7y, Case H) are plotted in Figure 5.4,
5.5 and 5.6, respectively, One can see that the shape of the first-order coefficients a, and a,
is very similar and the magnitude of them is larger than the coefficient a,. For quadratic
coefficients, similarly, the coefficient b,, and bs; is larger than by; in magnitude. Note that

the magnitude of first- and second-order coefficients a; and b;; are changing dramatically at

near offsets. The magnitude of three cross-term coefficients is quite similar while the shape of

cross-term bog is very complicated.

Figure 5.4. The first order perturbation coefficients a; (Case H). Coefficients a;, a, and ag

are shown in left, middle and right, respectively.
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Figure 5.5. The quadratic perturbation coefficients b;; (Case H). Coefficients by;, by, and

bs; are shown in left, middle and right, respectively.

Figure 5.6. The cross-term perturbation coefficients by;, (i = j) (Case H). Coefficients b5,

b3 and by, are shown in left, middle and right, respectively.

5.4 The sensitivity of traveltime to anellipticity parameters

In order to analyze the sensitivity of traveltime to anellipticity parameters, we define the

group velocity inverse related coefficients a; and Eij by

1 1 _ ~
W:VO(9,¢)+Zai(Q'¢)ﬂi +;bij @ ¢nin;., (5.10)

where
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1 % cosé?(
Vo(6.4)
5,(0,9)= 2259

x=ztan@dcosg,y =ztandsin qﬁ),

X =ztandcosg,y = ztan fsin 4), (5.11)

~ bjj cos& .
bj; (6.¢)= f(x =ztanfcosg, y = ztan fsin @),

where 7, is defined in equation 5.7, coefficients a; and by are given in Appendix A, 0 isthe
dip angle to the vertical and the azimuth ¢ is the azimuth defined from the x axis. To
analyze the sensitivity at different offset range, we compute the integral from coefficients 3

and Ei]- with respect to different range of dip angle 8 (8 < (0,30°),(30°,60°) and (60°,90°))

that corresponding to near-, mid- and far-offset,
4,(9)=——["& (0.1,
6,—-6,"

bij (¢) = ﬁjﬁ 6ij (9, Vﬁi 0.

(5.12)

The polar plots for the sensitivity coefficients &; and Bij versus azimuth ¢ for model with
parameterization (Case H) for near- (left), mid- (middle) and far (right) offset are shown in
Figures 5.7, 5.8 and 5.9, respectively. One can see that the first and quadratic order
coefficients have similar sensitivity plots. The sensitivity in anellipticity parameter 7, has an
elliptic shape in [XOY] plane regardless of the range of offsets. The sensitivities to
anellipticity parameters 7,, and »,, reach the maximum values for 0 and /2 azimuth

angle, respectively. This is valid for near- and mid-offset. The reason for that is that the

impact of anellipticity parameter 75 is not dominating for near- and mid-offset range. For
large offset, the effect of 75 starts to dominate in both &, and 4, resulting in pronounced

anomaly at about 45° azimuth angle. The azimuthal behavior of cross-term coefficients

bjj, (i = j) is more complicated (Figure 5.9). One can see that coefficient 612 and 613 are
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symmetric, while the magnitude of b,, increases with increase in offset. There is almost no
impact from 623 (174217, ) @t near offset since the cross-talk between 7,, and 7, is very
small. With increase in offset, the cross-talk is getting more pronounced, and the magnitude of
coefficient 623 increasing at far offset. The cross-term coefficients by, (17%y71x,) @nd 613
(m1%y1y, ) become equal at about 45° azimuth at any offset range while mostly focused along

the x and y axes, respectively.

Figure 5.7. The first order sensitivity coefficients &; in Case H for short offset (left)

(0 <(0,30%)), intermediate offset (middle) (&  (30°,60°)), and far offset (right)
(6 €(60°,90%)). The coefficients a;, a, and a5 are shown by blue, red and black colors,

respectively.
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bjjy bjiy

bijy bijy biy

— b — by — b

— b — bz — bz

— bu — b — b
biix bjix bjjx

Figure 5.8. The quadratic sensitivity coefficients 6" in Case H for short offset (left)
(0 <(0,30%)), intermediate offset (middle) (&  (30°,60°)), and far offset (right)
(0 €(60°,90°)). The coefficients by;, by, and bg; are shown by blue, red and black colors,

respectively.

— ba

23 — bn

bigx bix byx

Figure 5.9. The cross-term sensitivity coefficients by, (i = j) in Case H for short offset (left)

(6 €(0,30%)), intermediate offset (middle) (6  (30°,60°)), and far offset (right)
(0 €(60°,90%)). The coefficients by,, b;53 and b, are shown by blue, red and black colors,

respectively.

The overall sensitivity coefficients A1 and éij can be computed in a similar way as the ones

given in equations 5.12 but with double integrals over the entire angle range,

A 4 xi2czl2~
A== L "ai(6.4 ey,
”4 12 ¢zl2 (513
- 212 enl2~
BU.::ZO . bj(0.9xcdg.
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The overall sensitivities are illustrated in Figure 5.10. One can see that A, > A, > A, and

By > By, > Bgs. The inequalities for the first-order A; and quadratic B;; coefficients are
controlled by the semi-axes for elliptical background model. For this parameterization (Case
H), we have 1/V¢ >1/V;2 >1/V/%, and this inequality explains the behavior of sensitivity

coefficients. Similar analysis can be performed for other background models used in our tests.

In order to see the difference in the overall sensitivities between different parameterizations,

Figures 5.11 and 5.12 show second order coefficients éij computed from all

parameterizations listed in Table 5.1. One can see that the tendency is By; > By, > By for all
the Cases except for Cases E and F. This behavior can also be explained by the corresponding
slownesses, 1/V4 >1/V;5 >1/V;5. Note that the magnitude of éij computed for

parameterization Case H is the smallest among all parameterizations. Note that using term

group velocity inverse (1/V,_ ) instead of traveltime for the sensitivity analysis is because

group
the traveltime can be converted from it and since there is no asymptotic behavior for
traveltime at infinite offset, taking the integral along the offset up to infinite for traveltime is

impossible to get the overall sensitivity in anellipticity parameters.

1 i 0o
0.010

0.024 0.008
0.007

0.003
0.002

Figure 5.10. The overall sensitivity coefficients: first order (left) and second order (right)
using parameterization Case H. The coefficients A, A, and A3 are shown from left to right.
The second order coefficients are composed in matrix form with indices
1=1nyy.2=0,.3=1y,-
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! 2 = Case A L z 4 Case B

015 0.2
011
1 1 013 1 1
0.41 ]
o.g8 007
= = ] E 0.08
0.07
00 0.0
003
3 2 L)
002
. . . . . .
1 2 E 1 2 2
1 2 3 1 2 3
2 2 Case C Case D
0.072 0.037
1 1 1 1
0.056 0.020
0.022
2 2 0039 2 bd
0014
0023
3 3 2 3
. .

1 B B 1 3

Figure 5.11. The second order overall sensitivity coefficients éij using non-symmetric

parameterizations Cases A-D. The second order coefficients are composed in matrix form

with indices 1=1,,2 =17,,3=1n; for Case A, 1=7,,2=17,,3=1,, for Cases B and D,

1=1yy.2=1y,,3=n,, for CaseC.

! 2 S Case E 1 2 A Case F
0.47 015
1 1 1 1 0.13
0,39 e
42
0.31 0.10
2 2 2 2 0.08
0z
0.08
0.15
" . 4 " 0.04
0.03
i i ’ . :
3 2 3 1 2 3
1 2 3 1 2 3
Case G Z 3 Case H
0024
0011
1 1 1 1
- o018
0.008
0.018
0.007
2 2 0.013 z E:
0.005
0.009
0.003
- r 0.005 0.002
L L e

1 2 B 1 2 3

Figure 5.12. The second order overall sensitivity coefficients éij using symmetric
parameterizations Cases E-H. The second order coefficients are composed in matrix form
with indices 1=17,,2=17,,3=1; for CasesE and G, 1=7,,,2 =7,,,3=7,, for Cases F and

H.
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5.5 Numerical examples

Using the ORT model from Table 5.2, the relative error in traveltime using the
parameterization Case H computed from perturbation series in equation 5.6 and the Shanks
transform in equation 5.9 are shown in Figure 5.13 (left and right, respectively). One can see

that the Shanks transform significantly improves the accuracy of approximation.

Error % Error %

0.04 | 0.015

' 0.03 |
| 0.010
0.02

0.005
0.01

0

0 2 4
X/z X/
Figure 5.13. The relative error of perturbation series (left) and the Shanks transform (right)

for traveltime with parameterization Case H.

Our set of parameterization is based on three types of background model and three types of
anellipticity coefficients. In order to compare the accuracy of the Shanks transform using
different parameterizations from Table 5.1 and analyze their impact, the relative error in
traveltime using three different elliptical background models: (Vy, Vi, Viz ) (Vor Vit Viz)
and (Vy5, Vi3, V,3) is shown in Figure 5.14. One can see that the elliptical background model
using vertical and two horizontal velocities is the most accurate one, while the one using the

cross-term NMO velocities results in the worst accuracy even for short offset.

The relative error in traveltime from Shanks transform in equation 5.9 using the ORT model
(Table 5.2) for all non-symmetric and symmetric parameterizations (Table 5.1) is shown in
Figure 5.15 and 5.16, respectively. Note that all the accuracy plots are computed from the

same ORT model but using different parameterizations. For parameterization Cases A, B, D
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and G, the perturbation series coefficients for traveltime approximation are discussed in Xu et

al (2016). The perturbation series coefficients a; and by; for Cases C, E and F are given in

Appendices B, C and D, respectively. From comparison of plots in Figure 5.15 and 5.16, one
can see that the accuracy is mostly driven by selection of background model. The
parameterization with the vertical and two horizontal velocities is generally more accurate,
while the parameterization with the cross-term NMO velocity is generally less accurate. The
selection of the set of anellipticity coefficients as the perturbation coefficients also affects the
accuracy. For the parameterizations using vertical and two horizontal velocities as the
background (Cases D, G and H), the one using three cross-term anellipticity parameters (Case
H) is the most accurate one while the parameterization specified as Case G is the worst. One
can say, the more cross-term anellipticity parameters we use, the more accurate result we

obtain. From the overall sensitivity plots (Figure 5.11 and 5.12) and the accuracy plots (Figure

5.15 and 5.16), one can see the less magnitude of coefficient éij the more accurate result we

obtain for traveltime approximation based on the Shanks transform. Above all, the
approximation with symmetric parameterization (Case H) using vertical and two horizontal
velocities as the background model, and three cross-term anellipticity parameters as the

perturbation parameters results in the most accurate traveltime function.

i Error %
15
10

y/z

2
5
0

0

0 4
x/z

2

Figure 5.14. The relative error in traveltime using the hyperboloid approximation with
vertical and two NMO velocities (left), vertical and two horizontal velocities (middle) and

three cross-term NMO velocities (right).
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Case A 3 Case B

Error % Error %
0.06 0.06
3
0.04 ¥/L ‘ 0.04
2
0.02 0.02
18
0 0
0
0 1 2 3 4 5
X/z
Case C Case D
Error % Error 5%
0.05 0.025
0.04 0.020
0.03 0.015
0.02 0.010
0.01 0.005
0 (]
X/z X/z

Figure 5.15. The relative error in traveltime of the Shanks transform for parameterizations

from Cases A-D.

CaseE Case F
Error % Error %
0125
0.06
0.100
0.075 0.04
0.050
0.02
0.025
0 0
X/z
Case G Case H
Error % Error %
0.025
0.015
| 0.020
0.015 0.010
0.010
0.005
0.005
0 0
X/z X/z

Figure 5.16. The relative error in traveltime of the Shanks transform for parameterizations
from Cases E-H.
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Velocities Vo Vht Vh2 Vit Vh2 Vio Viz Vas

(kmis) 2 2.4 2.6 2.1 2.23 217 | 2.04 1.94
Anellipticity m 7, 3 Mxy Mxz Myz
parameters 0.15 0.18 0.1 0.214 0.07 0.12

Table 5.2. The ORT model parameters.

5.6 Discussions

In our proposed perturbation method for traveltime approximation, different parameterization
selection impacts the accuracy of the traveltime approximation due to the selection of the
elliptical background and different proportion in perturbation parameters (anellipticity
parameters) from the selected parameterization. This difference in traveltime error is caused
by the perturbation method that is fixing the elliptical (ellipsoidal) background and fitting
with the perturbation coefficients (anellipticity parameters). For the parameterization using
the NMO velocities as the background model, the better accuracy is obtained at short offset.
Note that we using offset-depth ratio up to 5 (long offset) in the numerical examples that
explains the more accurate result for those using the horizontal velocities as the background.
Different parameterization causes the sensitivity difference in anellipticity parameters. More
accurate result is obtained from the less sensitivity in perturbation parameters. While, the
background model selection contributes most for the accuracy of the traveltime approximation
using the perturbation method.

The NMO velocity might not be preserved for traveltime approximation given by the Shanks
transform (equation 5.9) with arbitrary parameterization. Obviously, if NMO velocities are
explicitly stay in the parameterization list (Cases A-C), they are preserved regardless to

approximation. If NMO velocities are not in the parameterization list, they might be preserved
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(Cases D and G) or might not be preserved (Cases E, F and H). For example, in Case H, the

exact expressions for NMO velocities are

2 2
v Vi v l1 Myy +11x 3(’7xy 1y ) MyyMxz
n= V| L + + '
;é(l"'nxy i1+77xz) 2 8 4
) ) (5.14)
Vi Ny + 1y 3(77xy +77yz) MxyMyz
Vnz = thz 1— + + y
Nlﬂ]xy i1+77yzi 2 8 4
However, the Shanks transform approximation gives inaccurate NMO velocities,
ik +n%)
Myy (77xz _1)+ Mxz Myy Tz 3 My T1xz ] Txyllxe
an :Vhl 2 2 thl 1- 5 + 8 + 4 s
Mxy Y xy T 11xz Flxyllxz T 71
) ) (5.15)
Mxy (77yz _1)"' My My +1yz 3(77><y + nyz) MxyMyz
Vnz :th 2 2 thz l— 2 + 8 + 4 .
My txy T Myz +1xyMlyz t1yz

The expressions in equations 5.14 and 5.15 are equivalent in case of weak-anellipticity.

The proposed approximation can be extended to the multilayered by using the effective model
parameters from the Dix-type equations (Stovas, 2015). When there is the azimuthal variation
between the multilayered ORT model, the effective parameters with different azimuthal

orientation of the layers is listed in Ravve and Koren (2017) and Koren and Ravve (2017).

However, some parameterizations defined by the horizontal velocities might not that accurate
as they are in the homogeneous case since the form of the approximation is derived from the
homogeneous case, while the ray-tracing for horizontal velocities (infinite offset) is

impossible for multilayered ORT model.

5.7 Conclusions
We defined a group of new parameterizations by using three cross-term anellipticity
parameters (7, , 77y, and n,,) and three cross-term NMO velocities (V,,, Vi3 and V,3) for a

homogeneous ORT model. The perturbation-based traveltime approximations are proposed in
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ORT media using the corresponding new parameterizations. Based on the symmetric behavior,
we divide eight parameterizations into two groups and test their accuracy in traveltime in the
numerical examples. The sensitivity analysis performed for perturbation coefficients at near-,
mid- and far-offset range illustrates different effect for a selected set of anellipticity
parameters. The overall sensitivity performed for the full range of offset shows that the
corresponding coefficients are proportional to the slowness squared from given background
velocity model. By comparison of eight different parameterizations, we show that the one

with Vo, Vi, Vha, 774+ 715, @nd 7y, (Case H) results in the most accurate traveltime

approximation based on the Shanks transform.
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5.9 Appendix A

The perturbation series for traveltime in ORT model using the parameterization Case H

(Vo Vies iz, My Mxz and 77yz)
The perturbation series for traveltime in ORT model is defined by (Stovas et al, 2016)
T=Tg +Zai77i+Zbij7]i77j,(i,j:1,2,3). (5A1)
i ij

For parameterization Case H with: Vg, Vi, Via, 74y, 715, and 7, , the index 1=Xy, 2=xz

and 3= Yz for the perturbation series in equation 5.A.1. The elliptical background model is

given by
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TO = to +72+72, (5A2)

The perturbation coefficients in equation 5.A.1 are computed by solving the corresponding

eikonal equation in equation 5.6 shown by

2(_2 2 2 (+2 2 2 (2 2
_IO(ThX +‘[hy) _ThX(tO +Thy) _Thy(to +Thx)
3 = 3 8 = 3 183 = 3 J
2'[0 ZTO 2T0
4(_2 2
bl 3 9t0 (Thx + Thy)z
1= 7
8rg
4 (2 2
B gThX (to + Thy )Z
22 =~ )
8rg
9 (’[2 +178 )2
_ 97y ltg iy (5.A.3)
33 — 7 ’
82'0
2.2 4 4 2 2 4 2 2 2
- to Thx (Zto + ZThX + ThXThy - Thy +t0 (— SThX + Thy ))
473
2.2 4 4 2 2 4 2 2 2
i- tO Thy (Zto + thy + ThxThy ~ Thx + to (— 5‘l'hy +Thy ))
473
2 b orh + 2et, +teh ~th 42 (-5 + )
b23 = 7 .
47.'0

where 7y =X/Vpy and 7,y = y/Vp,.

5.10 Appendix B

The perturbation series for traveltime in ORT model using the parameterization Case C

(Vo, Vi1, Va2, My Mxz and 77yz)

For parameterization Case C with: Vg, Vi, Voa, 715, 715, @nd 7y, , the index 1=Xy, 2=xz

and 3= Yz for the perturbation series in equation 5.A.1. The elliptical background model is

given by
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(5.B.1)

Solving the corresponding eikonal equation with the perturbation series in 5.A.1, we obtain

the series coefficients a; and b, , (i, j =1,2,3) given by

2, 2 ) 4
(Tnx + Tny) Tox Tny
a1:_73,a2 =—- 3,a3 = -
22'0 21'0 2'[0
3
e+ flotg +c2+22))
1= ,
813
3c8(ut2 + 22+ 402
bzz = 7 [
8T0
Lol var +cd)
33 = )
8z] (5.B.2)
4(( 2 2 ¥ 2(2 | 2 4
fnx((rnx + rny) +8t) (rnx +Tpy )— 2t )
b, = ,
415
2
T:y((fnzx vod f a2l 4 e )- Ztgj
b3 = ,
4rg
4 4
b = Ny Ty
23 =~ .
415

where 7, =X/Vpy and 7z, = y/Vp,.

5.11 Appendix C

The perturbation series for traveltime in ORT model using the parameterization Case E

(V12, Vig, Vg, m, 11, and 13)

For parameterization Case E with: Vy,, Vi3, V,3, my, 11 and 73, the elliptical background

model is given by
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2 2 2
X z
Via Vi Vko

Where VkO :V13V23 /VlZ’ Vkl :V12V23 /V13 and sz = V12V13 /V23, Where VIJ are deflned |n

equations 5.4.

Solving the corresponding eikonal equation with the perturbation series in 5.A.1, we obtain

the series coefficients g and b; given by

2 2 2 2 (.2 2
a = Thx (_ Tky + Tz )_ Tky (Tky + 7Ty )
) =

22'3
2 2 2 2.2 2
a = Tky (_ Tkx + Tkz )_ Tkx (Tkx + 7Ty )
2~ y
2‘['8
2 2 2 2(.2 2
= Tix (_ Ty +Tky )_ Tz (Tky + 7T )
3= )
ng

1 (62 4@4 2 2 4)22(2 2X2 2)
bll = 72 7 (4Terky + Ty 1Tky +15Tky7kz _gsz +5Tkx‘['ky Tky +Tiy 2Tky +32’kz
7o

2
+ rfy (rfy + rfz) (31%, + 4Tk22 )j,

1
by, = —2 7 (4z'fyrfx + rﬁ'y (llrfx +15rfxz'fz - 91';'2 )+ Sforfy (rfx + sz XZT&X + 31%2 )

70
2(2 2)2(32 42)
T \Tkx + 7k ) OTkx 474z ) ) (5.C.2)
1(62 4(4 2 2 4)22(2 zXz 2)
b33 272 7 4TkXTkZ + Ty 1171(2 +15Tky‘l'kz—9‘l'ky +5[kXTkZ Tky +Tkz ZTKZ +3Tky
70
2(2 2 2 2
+TkZ(Tky+TkZ)2(3TkZ+4Tky))’
16(22)44 224)26 4 2 2 4 56
b12 :77(Tk>< _Tky + Ty, _TkX(ZTky +27kkaZ + 7Ty, _TkX(Tky +2TkkaZ +157kkaZ +27k2)
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where 7, = X/Vyq, 7y = y/Vyp and 7y, =2/Vyg.

5.12 Appendix D
The perturbation series for traveltime in ORT model using the parameterization Case F

(V12 Vi3, Va3, My Mxz and 77yz)

For parameterization Case F with: Vi, Vi3, Va3, 7y, 77, and 7, , the index 1=xy, 2=xz

and 3= Yz for the perturbation series in equation 5.A.1. The elliptical background model is

given by

(5.D.1)

equations 5.4.

Solving the corresponding eikonal equation with the perturbation series in 5.A.1, we obtain

the series coefficients g and b; given by
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33 8 7 )
70
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where 7, = X/Vyq, 7y = y/Vyp and 7y, =2/Vyg.
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Chapter 6 An anelliptic approximation for
geometrical spreading in transversely isotropic and
orthorhombic media

Shibo Xu*, Alexey Stovas' and Yanadet Sripanich?

"Norwegian University of Science and Technology, Trondheim, Norway,

University of Texas at Austin, Austin, USA

Abstract The relative geometrical spreading along the ray-path contributes to the amplitude
decay of the seismic wave propagation that needs to be considered for amplitude versus offset
(AVO) or other seismic data processing methods that require the true amplitude processing.
Expressing the P-wave geometrical spreading factor in terms of the offset-traveltime based
parameters is a more practical and convenient way since these parameters can be estimated
from the nonhyperbolic velocity analysis. We propose an anelliptic approximation for the
relative geometrical spreading of P-wave in a homogeneous transversely isotropic medium
with vertical symmetry axis (VTI) and an orthorhombic medium (ORT) under the acoustic
anisotropy assumption. The coefficients in the proposed approximation are only defined
within the symmetry planes and computed from fitting with the exact parametric expression.
For ORT model, due to the symmetric behavior in different symmetry planes, the other
coefficients in the approximation can be easily obtained by corresponding changes in indices
from the computed the coefficients in one symmetry plane. From the numerical examples, we
show that for a homogeneous VTI model, the anelliptic approximation is more accurate than
the generalized nonhyperbolic moveout approximation (GMA) form for larger offset. For a
homogeneous ORT model, the proposed anelliptic approximation is more accurate than the

traveltime-based counterparts. Using the Dix-type equations for the effective parameters, the
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proposal anelliptic form approximation is extended to a multilayered VTI and ORT models

and show its highly accurate results in both models.

Presented at the 87" SEG Conference and Exhibition, September, 2017, Houston, USA;

Published in Geophysics in November 2017.
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6.1 Introduction

Geometrical spreading describes the amplitude decay of propagating waves and is one of the
most fundamental subjects in seismic data processing. It is important for prestack Kirchhoff
migration, amplitude versus offset (AVO) analysis and other seismic data processing methods
that require the true amplitude processing. The amplitude distribution along the wavefront of
the reflected wave is changed greatly if the velocity model is anisotropic. Seismic data must
be compensated for geometrical spreading before AVO or amplitude versus angle (AVA)
analysis in order to study reflection coefficients as a function of offset or incidence angle.
Although geometrical spreading is a dynamic quantity, it is governed by the kinematic
parameters of seismic waves. When the velocity model is available, the relative geometrical
spreading can be computed by performing dynamic ray tracing. However, accurate
information about the anisotropic velocity model for the whole overburden is seldom
available for practice. To avoid the use of numerical ray tracing, expressing the geometrical
spreading through traveltime of the reflection events recorded at the surface using ray theory
(Cerveny 2001) is a more practical method for seismic time processing. Therefore, it is
convenient to express the geometrical spreading in terms of the offset-traveltime parameters

that can be estimated from the nonhyperbolic velocity analysis.

Ursin (1990) proposed a geometrical spreading approximation represented by traveltime
parameters for a layered isotropic medium. One of the practical contributions from the
paraxial ray theory is an expression for geometrical spreading in terms of the traveltime
functions at the source and receivers locations (Cerveny, 2001). Zhou and McMechan (2000)
derived an analytical formula for the geometrical spreading of P-waves in a layered
transversely isotropic medium with vertical symmetry axis (VTI) with the source and
receivers in the same layer. Ursin and Hokstad (2003) extended the method of Ursin (1990)

for multiple reflected and converted P- and SV-waves in a layered VTI medium with the
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source and receivers in different layers. For pure reflection modes (P or SV) in layered
anisotropic media, the geometrical spreading as a function of traveltime derivatives was
obtained by Xu et al. (2005). The geometrical spreading correction for an azimuthally
anisotropic medium was later derived by Xu and Tsvankin (2006), and was extended for
converted waves in a VTl medium (Xu and Tsvankin, 2008). A practical application of
anisotropic geometrical spreading for AVO analysis was made by Xu and Tsvakin (2007)
with the wide-azimuthal data acquired at the Rulison field, Colorado. The traveltime-based
geometrical spreading approximation in TTI media was derived by Golikov and Stovas
(2013). All these approximations are approximating the traveltime and use it and its
derivatives for the computation of the geometrical spreading approximation, we refer it as the
traveltime-based approximation or indirect approximation. Different nonhyperbolic moveout
approximations for a homogeneous VT model are listed in Fowler (2003) and Golikov and
Stovas (2012). Although the geometrical spreading factor is controlled by first- and second-
order traveltime derivatives, there is no guarantee that the most accurate traveltime
approximation being used in equations for geometrical spreading results in the most accurate
geometrical spreading equation. Different from the indirect type approximation, which is
approximating the traveltime for geometrical spreading approximation, the direct type
approximation is computed by approximating the geometrical spreading term directly from
the exact parametric equations obtained from the dynamic ray-tracing. The first example of
this comparison between indirect and direct type approximation is done by Stovas and Ursin
(2009) who developed the rational type of approximation in direct form. They showed that the
direct rational approximation is simpler and more accurate than the indirect counterpart for a
homogeneous and multilayered VTI model. Xu and Stovas (2017) proposed a direct type
approximation with the generalized nonhyperbolic form for the relative geometrical spreading

for a VTI medium and compared them with the indirect ones.
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The orthorhombic (ORT) model is introduced by Schoenberg and Helbig (1997) and has
gained more attention due to the need to characterize the fractured earth. They have become a
new standard to define model parameters to cover the azimuthal dependence of the traveltime
surface. Tsvankin (1997, 2012) defined nine elastic model parameters for ORT model that can
be reduced to six parameters in an acoustic approximation (Alkhalifah, 2003). In the group
domain, we refer to the first order curvature as the normal moveout (NMO) velocity ellipses
(Grechka and Tsvankin, 1999a, 1999b) and the second order curvature as the anellipticities
because they represent the anelliptic behaviour for slowness and traveltime surface. Stovas
(2015) derived azimuthally dependent kinematic properties of the orthorhombic media and
defined the effective ORT parameters in the Dix-type in layered ORT media that derived from
the Dix inversion (Dix, 1955). Sripanich and Fomel (2015) modified the anelliptic functional
form of Fomel (2004) and extended it to ORT model to approximate P-wave phase and group

velocities.

In this paper, we propose an anelliptic approximation in reminiscent of the functional form
studied by Sripanich and Fomel (2015) for direct type relative geometrical spreading in VTI
and ORT media. The coefficients in the approximation are defined within the symmetry plane
and obtained from fitting with the exact relative geometrical spreading in the symmetry planes.
Due to the symmetric behavior in different symmetry planes by using the acoustic anisotropy
assumption (Alkhalifah, 1998), the computation for the coefficients in ORT model becomes
easier by applying corresponding changes in the forms of the coefficients that obtained in one
symmetry plane. Subsequently, we extend our method for layered VTI and ORT models by
using the effective model parameters computed from the Dix-type equation (Stovas, 2015).
Using numerical examples, we show that the results from the proposed approximation are

highly accurate for both homogeneous and layered VTI and ORT cases.
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6.2 Relative geometrical spreading in a VTI model

The relative geometrical spreading is given in Cerveny (2001) as

c0s s cos
L= |28 PR
| |detMm| (6.1)

where 6, and 6, are the angles between the ray and the normal to the surface measured at the

source and receiver, respectively. Measured from the dynamic ray-tracing, 6, and 6, are all

group angle. M is the second order derivatives matrix given by

0T o°T
OXgOXg  OX5OYR

o°T o°T
YsOXg  OYsOYR

, (6.2)

where (x,,Ys) and (XR, yR) are the lateral coordinates of source and receiver, respectively.

The relative geometrical spreading in a VT model is given by (Ursin and Hokstad, 2003)

I Q(ldtjllz[dzt]m, 6.3)

X dx dx?
where Q is the radiation pattern given by Q =,/cos@s cosdy . In our paper, we neglect the

radiation pattern and focus only on the term £ that is given as

Lt d2t)
Ly =|=—— . 6.4
N [de dxz] ( )
The relative geometrical spreading term L given in equation 6.4 can also be written as a

function of horizontal slowness p in the case of flat layer as follows (Stovas and Ursin, 2009)
1/2
1y - [dej . (6.5)
pdp
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For a homogeneous VTI model, the offset under an acoustic approximation can be given in

terms of horizontal slowness Alkhalifah (1998),

ptOVn2

x(p) = ( (6.6)

- 2222 2m)p2v 2
where t; is the vertical one way traveltime, V,, is the normal moveout (NMO) velocity and 7

is the anellipticity parameter (Alkhalifah, 1998).

Substituting equation 6.6 into equation 6.5 gives (Stovas and Ursin, 2009)

Ly = tOVnZ \/1+ 4np 2Vn2 —6n(L+ 277)F34Vn4 .
(1_ 2np 2Vn2 )2 (1_ (1+ zﬂ)pzvnz)

(6.7)

Equations 6.6 and 6.7 give an exact parametric equation for relative geometrical spreading

Ly interms of the horizontal slowness that can be measured from dynamic ray-tracing.

6.3 Anelliptic form approximation for the relative geometrical spreading in

a VTI model

In VTI medium, we define the approximation for the relative geometrical spreading in an

anelliptic resembling that of Sripanich and Fomel (2015) by

o 2
Ly :h(1—§)+§\/h2 +w, (6.8)

where the hyperbolic term h=h(x) denotes the elliptic part of the relative geometrical

spreading given by

h=wx2 +ws, (6.9)

with
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lelimL—N !

X—© X2 toq 1+ 27] l (610)

W3 = I|m ‘£N =t0Vn2.
x—0
The functions §=§(x) and §=3(x) are defined by

2
O Wy X“ + G3W3
h
2
SIW X + SgWs
h

G=

(6.11)
§=

where ¢, g3, & and s; are the coefficients computed from the fitting process with the exact
geometrical spreading form. Note that Wy and wy in equation 6.9 have different units. If we

define the hyperbolic term by h =w;x? +wytdVZ, where Vj is the vertical velocity, they will

have the same units. The reason why we don’t use this form is that we do not have vertical

velocity in our list of parameters.

The offset and the depth is shown by the relation x = ztan(8) , where z is the depth and 4 is
the dip group angle from the vertical axis. We define a function r =r(¢) that relates to the

relative geometrical spreading as

- cos(6)* £, (x = ztan(9))

ZZ

(6.12)

The coefficients gy, g3, $; and s; in equation 6.8 can be computed by fitting with the exact
equation for Ly (see equation A-3) through the second (62r/602) and forth order derivatives

0*r106* at =0 and 90° as noted by the index 1 and 3 for the horizontal and vertical

axes, respectively (Figure 6.1). The equations for ¢;, g5, $ and s; are given in Appendix A.

The coefficients 0y, g3, $; and s, are plotted versus anellipticity parameter 7 in Figure 6.2.

The coefficients g, and g5 are gradually increasing with 7, while s; and s; are almost
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independent on 7. When setting 77 =0 corresponding to elliptical anisotropy, they become

equivalent to each other with g; =g; =1 and s; =s3 =9/13.

Figure 6.1. The location of fitting indices ¢;, gz, $; and s3 in a homogeneous VTI model.
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Figure 6.2. The sensitivity of coefficients q;, gz, $; and s, versus anellipticity 7 .
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In order to test the accuracy of the anelliptic approximation, we use a homogeneous VTI

model with parameters: t, =1s, V,, =2km/s and r =0.2. We show the relative error in

relative geometrical spreading versus normalized offset computed from our proposed method
and the approximation in GMA form approximation computed from infinite offset limit (Xu
and Stovas, 2016) in Figure 6.3. Note that the approximations are compared with the exact
parametric expression shown in equations 6.6 and 6.7 that are computed from dynamic ray-
tracing. One can see that comparing with GMA form approximation in a homogeneous VTI
model, the anelliptic approximation is less accurate at short offset while when approaching to
a larger offset it becomes more accurate as the fixing elliptical background it used.
Subsequently, we introduce a multi-layered VVTI model using the parameters in Table 6.1 and
show the relative error versus offset-depth ratio in Figure 6.4. The effective model parameters
are computed from Dix-type equations shown in Appendix B. One can see that the errors are

all increasing with 7 and the error from the anelliptic approximation is always smaller than

the GMA form approximation.

Relative error (%)
026

020

1 2 I 3 4
Normalized offset X

Figure 6.3. The relative error for anelliptic (solid) and GMA form (dashed) approximation for

the relative geometrical spreading in a homogeneous VTI medium.
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Figure 6.4. The relative error for anelliptic (solid) and GMA form (dashed) approximation for

the relative geometrical spreading in a multi-layered VTI medium.

Layer thickness Vertical velocity NMO velocity Anellipicity
Layer
(km) (km/s) (km/s) parameter
1 0.3 1.5 18 0.1
2 0.7 1.8 2 0.15
3 1 2 2.2 0.18
Table 6.1. The model parameters in a multilayered VTI model.
6.4 Relative geometrical spreading in a homogeneous ORT model
For a homogeneous ORT model, we introduce two lateral offset projections
X= XR - XS y
6.13
Y=Yr Vs (©13)

The matrix M in equation 6.2 takes the form
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4T 8T

ox?  oxoy
M = , .
02T & (6.14)
ayox  oy?
In phase domain, the relative geometrical spreading £y can be given by Stovas (2017)
1/2
Ly = ox oy oy ox | (6.15)
oy Opy Py Opy
To compute the geometrical spreading for a homogeneous ORT model, we use exact
parametric offset equations (Stovas, 2015):
Vit
X(va Py)= Px F22 fl+1fo3/2’
t? (6.16)
( ) 2 Vnalo
Y{Px Py )= PyFy (12¢302"
1 2
X(px, py)and y(py, py) are corresponding offset projections, and
F=1- p)%Vnzl(an —Txy );
Fo =1- pVia(2n; — 1y )
ilera ) (6.17)

fy=1- (1+ Zﬂl)pfvnzl - (1+ 2n, )p§Vn22 + ((1+ 2771)(1"' 2’72)_ (1+ Mxy )Z)pf pivnzlanZv
fo=1-2m pfvnzl —2m, p§Vn22 + (4771772 - 77>%y )pg p§Vn21Vn22 )

where V,, and V,,, are corresponding NMO velocities defined in [X ,Z] and [Y,Z] planes,
respectively. Anellipticity parameters 7, and 7, are defined in corresponding two vertical

symmetry [X,Z] and [Y,Z] planes, respectively. Note that the definition of indices is
different with the one defined in standard Tsvankin (1997) indices. The cross-term

anellipticity parameter 7, is defined as (Stovas, 2015)
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(L+2n,)1+21,)
— 1 .
1+ 2n, (6.18)

xy

where anellipticity parameter 75 is defined in [X ,Y] plane (Vasconcelos and Tsvankin, 2006).

The relative geometrical spreading for ORT medium is given by Stovas (2017)

F.F
Ly =tViVn2 %\/ﬂr (6.19)
21

where

fop =1+ 43 pEVig + 41 P;Z/Vnzz 61731+ 217 ) PVt — 6172 L+ 27, )p;‘;\/n42
+ 28y, - Myy 8+ My )p? pyViiViz
61+ 2 Vdmm, 3 o D2V ~6(1+ 20, o, —nd o2 pEVAVS
wol(Le 2 Yk 2m) - (5 7y P N, — 2, o2 DV AV

(6.20)

6.5 Anelliptic approximation for the relative geometrical spreading in an

ORT model

In ORT medium, we define the approximation for relative geometrical spreading in an

anelliptic form similar to Sripanich and Fomel (2015)

Lyiorry =H@-S)+SYH? +F, (6.21)

with

FoF(xy) = 2((@1 —1)/V2W3y2 +(@z _§1 W;x° +((§3 -1 1W2)’ (6.22)

where the hyperbolic term H = H(X,y) denotes the elliptic part of the relative geometrical

spreading given by

H =W, x2 +W,y? +Wj, (6.23)

with
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EN(ORT) _ (1+ My )/nZ

= X2 toli+2m )%V,

W, = lim Ly (orm) _ (1+77xy)‘/n1 ’ (6.24)
xo0y0 y? toL+ 20,2V,

W3 = Ilm ‘EN (ORT) =t0Vn1Vn2.
x—0,y—0

The functions Q; = Q; (x, y), (i =1,2,3) are defined as

QW y? +QaW;

Qxy) = -
W,y +Wj;
. W2 + QqpW.
Q(xy)= w (6.25)
Wi x* +Wjy
6% y) = QuaWyx* +QaaWoy? .
W1x2 +W2y2
The functions S = §(x, y) is given by
- s 2 , s
§(x, y) = Sq(X, Y)Wix“ + Sz(XvHY)Wzy +S3(X, y)Ws ’ (6.26)
where
8,00 y) = S13Woy° +S1W;
Wyy? + Wy
2
S2(x,Y) =M. (6.27)
Wix© +W,
&, y) = SapWix? + SgW,y? .
’ Wlx2 +W2y2
Similar to VTI case, we define a relative geometrical spreading related function by
2 _ _ .
R C08(0)" Ly (x = ztan()cos(¢), y = ztan(6)sin(g)) (6.29)

Z2

and define the dip angle € and the azimuth ¢ in Figure 6.5, with the relations
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2 2
0= arctan[x:y}
(6.29)

o= arctan(yj.
X

Twelve coefficients Q;; (i#j=123) and Sij ,(i # =1,2,3) in equations 6.25 and 6.27,

respectively, are computed by fitting with the exact relative geometrical spreading (see
equation 6.C.2) through the second and forth order derivatives with respect to the dip and

azimuth angles by

ﬂ%:_o")(g =0",90° ):> (Q32. Q12 ): %ﬁ:—oo)

(0:0°,90°):>(s32,512),

00
ﬂ:ﬁ;ﬂ(ﬁ =0° ,900):> (Qa1, Q1) ﬂl&’aq:‘_%"%(e =0 '900): (S31,521). (6.30)
ﬂ:é;_w)(qj =0° ,90"): (Qu3.Q23); ﬂR;;i)(vﬁ =07,90° )3 (S13:523)

6.6 The symmetry of the anelliptic approximation

In order to calculate twelve coefficients Qjj ,(i # ] :1,2,3) and Sij ,(i | =1,2,3) required for
Q. (x,y) and S, (x,y) given in equations 6.25 and 6.27, respectively, we focus on each

individual symmetry plane separately. When we compute the coefficients in one symmetry
plane, the similar coefficients for other two symmetry planes can be easily computed by

corresponding changes in indices.

In [X , Z] symmetry plane, when setting y =0, the anelliptic approximation in equation 6.21
is similar to the one computed for VTI model. In this symmetry plane, we need to define four
coefficients: Qs,, Q1», S3, and Sy, . By taking the second and forth order derivatives of

R(¢=0") with respect to the dip angle € at 0° and 90°, the coefficients Qs,, Qpo, S3, and

Sy, are computed as it is shown in Appendix C.
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The advantage of anelliptic approximation is its symmetric behavior in different symmetry

planes. All required coefficients are computed within one plane and simple lead to

corresponding expressions in the others. The notations for indices in coefficients Q;; and Sj;
are shown in Figure 6.5, and changing of indices can be obtained by clockwise rotation of the
symmetry frame as shown in Figure 6.6.

When we have calculated the coefficients in [X,Z ] symmetry plane, the coefficients in [Y,Z]
and [X ,Y] symmetry planes can be easily computed using the transformation rule shown in
Table 6.2. Note that the cross-term anellipticity parameter Ug’l) defined in [Y,Z] symmetry

plane is the same as ;{2 defined in [X,Z] symmetry plane.

Figure 6.5. The location of fitting indices Q;,(i= j=123) and Sy,(i=j=123) in a

homogeneous ORT model.
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Figure 6.6. Rotation from [X,Z] symmetry plane to [X ,Y] symmetry plane.

Vertical Anellipticity
Plane NMO velocity Cross-term anellipticity parameter
velocity parameter

, 1+ 27, N1+ 21,)
xz] | Vo Vo n nsy”{dlizng“

1+ 2n, |1+ 21
\ V, v 23) _ 2 ) 4,
[v.z] 0 n2 2 Ty 1+ 275

Vo y1+21; @3) (L+ 2 )1+ 2173)
/ n2y- T U2 3) _| (LT EnAETA3) 4
[X ,Y] Vi/1+2m <2, 173 Mxy 1+ 277,

Table 6.2. The corresponding transformation for the model parameters. The anellipticity

(L+2m; Y1+ 2772)_1J _
(1+’7xy)2

1
parameter 773 can be computed from 7, 7, and 7, as 73 =3

6.7 Numerical examples

In order to illustrate the accuracy of proposed anelliptic approximation, we select an
homogeneous ORT model with the parameters: t, =1s, V; =2km/s, V,, =2.2km/s,

m =0.1, n, =0.12 and ,, = 0.2. We show the relative error from the approximation in Xu

et al. (2005) (Figure 6.7, top), indirect rational type approximation (Appendix D) (Figure 6.7,
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middle) and our proposed anellipic approximation (Figure 6.7, bottom). The form used in Xu
et al (2005) is from the traveltime derivation based on the rational form moveout
approximation (Tsvankin and Thomsen, 1994). One can tell from the comparison that our

proposed approximation performs better accuracy, especially along x and y axes, and

reaches the maximal error of 0.7% around 45° azimuth at the normalized offset X = § ~1.

We define a multi-layered ORT model with the parameters shown in Table 6.3 and show the
relative error from the approximation in Xu et al. (2005) (Figure 6.8, top), indirect rational
type approximation (Appendix D) (Figure 6.8, middle) and our proposed anellipic
approximation (Figure 6.8, bottom). The effective model properties for the multilayered ORT
model are computed form Dix-type equations shown in Appendix C. The error surface of the
approximation from Xu et al. (2005) and the indirect rational form approximation are more
complicated and their maximal error is larger than our proposed anelliptic approximation.
Note that the value of anisotropy parameters in our paper is much larger the ones obtained
from the field data in order to make the error from the approximation more visible. In practice,
the result from our approximation is more accurate as the anisotropy in practical applicability

is weaker.
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Figutre 6.7. The relative error of the relative geometrical spreading for a homegeneous ORT
model by using the traveltime based approximation Xu et al (2005) (top), indierct rational

approximaiton (middle) and anelliptic approximation (bottom).
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Figutre 6.8. The relative error of the relative geometrical spreading for a multi-layered ORT

model by using the traveltime based approximation Xu et al (2005) (top), indierct rational

approximaiton (middle) and anelliptic approximation (bottom).
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Layer | z(km) Vo (km/s) Vi (km/s) Vo (km/s) m M My

1 0.25 15 1.65 1.8 0.05 0.08 0.2
2 0.75 1.8 2 2.2 0.1 0.1 0.18
3 1 2 2.2 2.15 0.08 0.12 0.22

Table 6.3. The model parameters in a multilayered ORT model.

6.8 Discussions

For multilayered case, the expressions for relative geometrical spreading approximation we
use are computed from the homogeneous model with the effective model parameters
computed from Dix-type equations (Stovas, 2015). Selecting horizontal ray for calculation is
impossible for ray-tracing, which means the assumption for infinite offset limit is not availed
anymore, while we still using the expression computed from the homogeneous derived from
the infinite offset assumption that explains the less accuracy compared with homogeneous
case. When there is the azimuthal variation between the multilayered ORT model, the
effective parameters with different azimuthal orientation of the layers is listed in Ravve and

Koren (2017) and Koren and Ravve (2017).

Our anelliptic form resembling equations in (Sripanich and Fomel, 2015) are defined for the
group velocity inverse for VT1 and ORT model. The difference is that they define the
anelliptic form for group velocity inverse first, computing the coefficients from fitting, then
convert it to the traveltime approximation, while our proposed anelliptic form approximation
is defined for relative geometrical spreading, then using the converted relation to obtain the
coefficients. The converted relation is needed for both the anelliptic form traveltime and
geometrical spreading approximation since there is no asymptotic behavior for traveltime or

geometrical spreading at infinite offset that can be used for fitting.
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The tricky part of our approximation is that we use the relative geometrical spreading related
functions r (VTI) and R (ORT) to derive the coefficients used in approximation. This
function has no physical meaning but used for a fitting technique. There is a simple relation

between the function r (or R) and corresponding term £, . The form of this function is

similar to the group velocity inverse in VTI and ORT models.

For example, in VTI case, function r is very similar to 1/v(6)?, where v is the group

velocity and ¢ is the group angle. The traveltime and offset are given as

t=—
V (6) cos() (6.31)
X =ztan(9),

The converted relation applied for traveltime and relative geometrical spreading are shown by

1 _cos(@)2 2
NEIRR t*(x = ztan(9))

group (6.32)

2
r= Cos(f) Ly (x=ztan(9)),
z

where z represents the depth. We do not have the value for depth as the offset x in the
geometrical spreading approximation Ly is represent by X = ztan(&), which cancels the depth

factor z in the denominator, keeping only the variable ¢ used for fitting.

The relative geometrical spreading £y is shown by the form of traveltime derivative with

respect to the offset in equation 6.4. Substituting the traveltime from in equation 6.31 and take

the derivative with respect to the offset x gives

V22 v
s cos(9)° \/ (Vv -V’ cot(@)v 2 +V{v -v") (6.33)

The function r can be represented in the group velocity and its derivatives with respect to the
group angle
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_ Lycos(9)® Vv? Vv
T Ty \/(v ~V'cot(9)\v 2 +v (v -v")) (6349

For anelliptic form traveltime approximation (Sripanich and Fomel, 2015), 1/V 2(9) is the

one used for fitting process at & =0° and @ =90°. However, for our proposed anellipitc form
geometrical spreading, the function r (combination of group velocity and its derivatives)

given in equation 6.34 is the one using for fitting process, which is much more completed

compared with the traveltime case (1/V 2(9)).

The beauty of the anelliptic approximation is that we use the properties only on the three
symmetry planes, therefore, the behavior in three planes are all symmetric. It is convenient to
get the coefficients in other planes by properly rotation on the index after obtaining the

coefficients in one symmetry plane.

For anelliptic traveltime approximation for ORT model (Sripanich and Fomel, 2015), when
we focus on one symmetry plane, the approximation converges to the one defined for VTI
model. For anelliptic relative geometrical spreading approximation, the situation is different,
and approximation does not converge to the VTI counterpart (Appendix A) or any of
symmetry planes due to different number of parameters. This happens due to the mixed
derivatives entering the equation for geometrical spreading (equation 6.4). Both NMO

velocities V1, V,,, and cross-term anellipticity parameters are presented in all equations

defined either in [X,Z] or [Y,Z] symmetry planes.

To reduce the relative geometrical spreading from ORT to VTI cases, the following reduction

in parameters is required.
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Viz =V =V,
M =T =1,
Myy =27,

13 =0.

(6.35)

6.9 Conclusions

We propose an anelliptic form approximation for the relative geometrical spreading in a
homogeneous VTI and ORT media under the acoustic anisotropy assumption. All the
coefficients in the approximation are calculated by fitting with the exact parametric solution
within the symmetry planes. Compared with the GMA form approximation, our proposed
anelliptic approximation is more accurate for larger offset in a homogeneous VTI model. Due
to symmetric behavior, the coefficients of the approximation in ORT model can be easily
obtained after computing the coefficients in one symmetry plane and applying the required
rotation for the other. The form of the anelliptic approximation is simpler while the
traveltime-based counterparts are algebraically complicated. In the numerical examples, one
can see that compared with the traveltime-based approximations, our anelliptic form

approximation is more accurate for both homogeneous and multi-layered ORT models.
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6.11 Appendix A

The coefficients ¢;, g3, S and s; of the anelliptic approximation for a transversely

isotropic medium with a vertical symmetry axis
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The function r in VTI model is defined in equation 6.12, the derivatives of r with respect to

the group angle ¢ at zero offset are

orr  as toV,

007 (o) tolr2g 2% AL
o%r 253((1+277)t V- L+ 2paatdV 222 + 31+ 2 (—q1—2q3)z4)—3(q3—1)zz4 GAD
M(&o) 6(1+ 277)S3t0Vn z .

The derivatives of r with respect to the group angle ¢ at infinite offset are

o1ty

00% (o-r12)  tol+2n 22

o' _—3(1+2n)3/2t3Vn4(1+Qf—2(1+q3)sl—2q1(1—2s1)) 21+ 275,V 222 +ZMS12 (6A2)
00" -srd) 6(L+27)s1to2*

By fitting with the exact form the coefficients q;, g5, S; and s; are given by

g; =41+ 277(1+877 +12772)
05 =1+ 21 (L+81),
(1+7(9 + 4n(15+ 27(23 + 37(11+6))))) - 1+ 277 (L + 27 )1+ 677)
= ; : (6.A.3)
(1+ 977(1+ 277) (1+ 477))— A1+ 277(l+ 877(l+ 377))
3 (1+9?7+487]2 +64773)—«/1+277(1+877)
1+ 9 + 5457 + 720% )~ i+ 251+ 8y -1297)

In elliptical case (7 =0, ¢; =q3 =1 and s; =3 =9/13), the function r becomes

_ cos(@)’toV? _ sin(6)’ (6.A.4)

72 to

6. 12 Appendix B

The effective model parameters for the multilayered transversely isotropic and

orthorhombic media

The effective model parameters from the multilayered model are computed from traveltime

parameters (high-frequency) and from upscaling (low-frequency). The computation in our
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paper is computed from dynamic ray-tracing, so the traveltime parameters are used. The Dix
type equation is derived from the Dix inversion (Dix, 1955) that is estimating the individual
layer parameters from the recorded reflections on seismic seismogram for the horizontally
layered medium.

In order to apply approximation in equation 6.8 computed from the homogeneous model for a
multilayered VTI medium, the effective parameters by using the Dix-type equations are

shown by:

(6.B.1)

The exact form of relative geometrical spreading in multilayered VVTI case is computed from

the summation as shown below

m ptOjVan
)= 2, 2,2 P2 22
J=1(1—2qu vnj)3 1- {1+ 25, )2V 652)
B.

itV JL+4n; V2 —6n; L+ 29, Jp*v,d

_ =1..3.
= 20073 f - (e 20 oV ) '

It is computed by summing for each individual layers (equation 6.B.2) that explains why the

relative error doesn’t go to zero for large offset-depth ratio.

Similar to the multilayered VTI case, the effective properties used in multilayered

orthorhombic (ORT) model are computed from Dix-type equations (Stovas, 2015):
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m
Z(1+8771j)‘/n41jt0j
JEN Y (6.8.3)

=
Vit

1
771:§

g:(1+8772j)‘/n42jt0j

i | ,

1
8 Vialo

M=

m 2\,2
1 _Zl(l+477xyj )‘/nleantOj
~ J=
Nyxy = —= -1|,m=1..,3.
Y4 ViVia iy

The exact relative geometrical spreading in multilayered ORT is computed by summation for

individual layers by parametric equations 6.15 and 6.17 as shown below

m V2 ity
12 nlj*0j
X(px Py )= PsFs 2,302
i f{=f;
2
& 2 Vnzjloj (6.B.4)

y(pwpy): PyF1 172 ez
=1 fl fz

i
m Fro .
Ly =2 t0jVmjVn2j f,lez,\/ fo,m=1..3,
=1 2

where
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’ 22
F=1- prnlj(2771j ~xyj )'

F

fy

f2

fm

=1 p2VG; @12) 1)
=1 {0+ 2y JoRvi L+ 2mg oV + ((1+ 2 o+ 2 )~ 0+ g f )Pf PVii Vi,
=1- 2, PRVA; — 22 PV + (4771j772j -ng )Pf PV Vi),

=1+4m,; prnzlj +41,; p§Vn22j —6my; (1+ 2y )p:(lvnlllj =67y (1+ 213 )p§Vn42j

+ 2081725 ~ 12558+ 51,91 0 PV Vi

- 6(1+ 2y X4771j772j - 77x2yj )pf p32/Vn41jVn22j - 6(1+ 2y X4771j772j - ﬂfyj )pf p§Vn21jVn42j

+ 9((1+ 2 JL+ 22 )~ L+ 1 P X“"hj oy~ 1 PSPV Vi

(6.B.5)

6.13 Appendix C
The coefficients of the anelliptic approximation for orthorhombic model in [X , Z] plane

The coefficients of the anelliptic approximation defined in on symmetry plane of the
orthorhombic model are not the same as those computed for the VTI case (Appendix A). Due
to presence of mixed derivatives in equation 6.14 or equation 6.15, all ORT model parameters

are entering the equations defined in any of symmetry planes. However, with the use of corss-

term anelliptic parameter 7, , the number of parameters can be reduced to five. For [X , Z]

symmetry plane, these parameters are Vo, Vi, Voo, 71 and 7, .

In order to calculate the coefficients in anelliptic form approximation in [X , Z] plane, we set
y =0 in approximation given in equation 6.21. Only the [X,Z] plane coefficients: Qs;5, Qo

S3, and Sy, remains in the approximation.

We introduce the relative geometrical spreading related function R (R = cos(6)% £y /22), where

0 is the dip group angle to the vertical axis and z is the depth, we get the second and forth

order derivatives of R with respect to @ as following
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527R Vi (1+ My bsz ~ VAatg
002 (900) Vmto | @+29, )% 22
'R Vi,

%(9 0) i 6(L+ 27, ) 2S5tV 3 2? (_3 1+2771(l+’7><y)2(Q32 -7z +2532((1+2’71)7/2tgvn41
- 1) etV

- (1 + 2771 )2 (1 + 77xy bSZthnle 2 + 3\/@(1 + 77xy )2 (1 + le - 2Q32 )24 ))
azi - V2 Vnzlthlz _ L+ (6.C.1)
00% (9-z12) Vmto| 22 (+2p)*? )
a*R v
vy = 7/22 2 (‘ 31+ 2n, (1 +Qf — 21+ Q3 )81, +2Qp (251, - 1))3Vn41
00 (9:72'/2) 6(l+ 27]1) SlztOanz

201+ 2 )" (1+ My blzsutgvnzﬂ2 + 2(1+ My )2 Sp2°* ))

By fitting with the exact form, the coefficients: Q;», Qs5, S3, and Sy, are given as

Qp2 :M(1+8771 +677177xy)v
1+ 20, 2L+ 6y + 17,y
1+my
5, -8t J1+2n.e, (6.C.2)

e +1+2me,
Sy = f1+\/1+72771f2.
fy+ 41+ 27 T4

32 =

where

&y =L+ 1,y N1+ 71 (9 + 617y + 21 (4 + 37, |6+ 871 + 3y + 61177, )

ey =L+ 1y JL+ 7, (8+ 61, )

ey =1+ anX1+9771(1+ 6, + 872 JL+ nxy)z)

€4 =—L—11yy + 21 (~ 4+ 67y — 1, (13+ 61, )

fy =144n5 + (L4 myy P + 3+, JB+ 1y )+ 2807 12+ 21, ) (6.C.3)
+ 657210+ 1 (B4 17,y ))+ 475 (46 + 7, (2047, )

f = (L4 20 YL+ 1y L+ 63 + 1y )

fo =97y (L+ 2 L+ dipy ) + (L P,

fy= —(1+ Ny X1+ My + 2771(4 +12n, - My (5 + 37]xy )))
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By setting 77, =7 and 7, =27, the coefficients defined in equations 6.C.2 become
equivalent to those defined in equations 6.A.3 for VTI model, Q;, =0y, Q32 =03, S;p =51
and Ss, =s3.

Due to the symmetric behavior in the symmetry plane in ORT model, the other coefficients in

the approximation can be easily obtained by corresponding changes in indices from the

computed the coefficients in one symmetry plane (see transformation form in Table 6.2). The

coefficients (Q,;, Q,,, S,, and S,,) defined in [Y,Z] plane and the coefficients (Q,;, Q,,,
S,; and S,,) defined in [X,Y] plane are obtained from [X,Z] plane coefficients (Qz,, Q.

S3 and Syy) by setting (17, —=1,) and (17, — 77,7, — 175, ), respectively. Note that

_ o122
ﬂxy =’7xy _nxy'

6.14 Appendix D

The indirect rational form approximation for relative geometrical spreading in an ORT

model.

A rational form similar to (Vasconcelos and Tsvankin, 2006) approximation for the traveltime

in ORT model is defined by

A40X4 + Azzxzy2 + A04y4

T2 =A, +A X2+ 24
RA AOO 20 AOZy 1+(820X2 n Bozyz)

(6.D.1)

where the coefficients Ay, Ay, Aps Ay,s Ay, and Ay, are computed from the Taylor series at

zero offset are given by
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1
v
1
S
_ (6.D.2)
o =y
_ 2772
T
2n,,
P = vz

The remaining coefficients B,, and B, are computed by the infinite offset limit shown as

_ 1+ 2771
20 =7 2,0 !
1oVt (6.0.3)
_ 1+ 2772 o
02 =" 2,2 °
toVn2

The indirect (traveltime-based) rational form approximation for relative geometrical spreading
is given by the derivatives of traveltime approximation in equation 6.D.1 with respect to the

offsets given by

2 2 2 2 -2
I OTga 0 Tga | [0Toa 0°Tia . (6.0.4)
N ox? oyl X0y Oyox
Note that the indirect rational form approximation in equation 6.D.4 is algebraically

complicated due to the second order derivatives.
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Chapter 7 Fresnel zone in vertical transversely
isotropic and orthorhombic media
Shibo Xu and Alexey Stovas

Norwegian University of Science and Technology, Trondheim, Norway

Abstract. The reflecting zone in the subsurface insonified by the first quarter of a wavelength
and the portion of the reflecting surface involved in these reflections is called the Fresnel zone
or first Fresnel zone. The horizontal resolution is controlled by acquisition factors and the size
of the Fresnel zone. We derive an analytic expression for the radius of the Fresnel zone in
time domain in transversely isotropic medium with a vertical symmetry axis (VTI) using the
perturbation method from the parametric offset-traveltime equation. The acoustic assumption
is used for simplification. The Shanks transform is applied to stabilize the convergence of
approximation and to improve the accuracy. The similar strategy is applied for the azimuth-
dependent radius of the Fresnel zone in orthorhombic (ORT) model for a horizontal layer.
Different with the VTI case, the Fresnel zone in ORT model has a quasi-elliptic shape. We
show that the size of the Fresnel zone is proportional to the corresponding traveltime, depth
and the frequency. From the numerical examples, we can see that the Shanks transform

approximations for Fresnel zone are very accurate for both VTI and ORT media.
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7.1 Introduction

The most common question in the reflection seismology is the resolution of the seismic image.
We can consider both vertical and horizontal resolution. The horizontal resolution is
controlled by acquisition factors and the size of the Fresnel zone. The Fresnel zone is, named
for physicist Augustin-Jean Fresnel, used to compute the radio waves propagating between a
transmitter and a receiver in antenna system (Hristov, 2000). The Fresnel zone or first Fresnel
zone in geophysics indicates the portion of a reflector from which the energy of a reflection
can reach a detector where the wave propagates within a ¥ wavelength. The second Fresnel
zone is defined from the energy that arrives delayed one-half to one cycle, adding
destructively to the energy from the first zone. Similarly, there is a third zone and so on. The
adjective “first” is often dropped away because when the contributions of all zones are added
together, only the first Fresnel zone remains while the effects of all subsequent zones cancel
each other. Borrowed from classical physical optics, Seismic interpreters often use the
Fresnel-zone concept to estimate the lateral resolution of unmigrated, stacked P-wave data.

(Sheriff, 1996, Lindsey, 1989).

The Fresnel zone can be defined as the region of constructive interference enclosing the ray-
theoretical reflection or mode-conversion point (Sheriff, 1980). Fresnel zones and volumes
can be computed very efficiently by forwarding dynamic ray tracing in a known velocity
model (Cerveny and Soares, 1992). Eaton et al (1991) extended the Fresnel-zone concept to
include mode-converted (P-SV) reflections for both surface and VSP geometries. The
equation that describes the size of a Fresnel zone in a constant-velocity medium for a zero
offset can be found in (Sheriff, 1996). How actual Fresnel zones are computed for 3-D zero-
offset reflections by forwarding modeling in a known medium is described in Hubral et al.

(1993).
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The projected Fresnel zone of a zero-offset reflection onto the subsurface reflector using a
standard 3D CMP traveltime analysis, without knowing the overburden was developed in
(Hubral et al, 1993; Schleicher et al, 1997). The calculation for the Fresnel zone radius was

done in the time domain by Trorey (1970).

Since the Fresnel zone width is a measure of lateral resolution, usually, seismic waves cannot
detect the subsurface features smaller than the size of Fresnel zone. More attention has been
made to the awareness of three-dimensional effect within the frame of seismic resolution.
Aspects of the seismic resolution which can be achieved in a seismic survey and the physical
factors that limit this resolution have been treated by Sheriff (1980) and Lindsey (1989). The
Fresnel zone determines the spatial resolving power for unmigrated seismic data with which
important lithological changes along a seismic profile direction may be observed (Sheriff
1980). Additionally, it also largely contributes to the reflected and transmitted wavefields, and
more specifically to their amplitudes (Spetzler and Snieder, 2004; Favretto-Cristini et al,
2007a, 2007b). Hagedoorn (1954) pointed out that the reflections area of the interface, and
therefore vertical resolution can also be thought of as a Fresnel-zone problem. While the
vertical resolution is mostly linked to the seismic wavelength (see, for instance, Widess,
1982), the lateral resolution depends on Fresnel zone considerations (Lindsey, 1989) and its
difference in pre- and post-migrated data. Cerveny (2001) suggests two methods to include
the Fresnel zone parameter calculations into the ray tracing procedure in complex 2D and 3D
structures. Using a derivation that is based on mostly geometric considerations, Monk (2010)
examined the shape of the Fresnel zone for the nonzero offset for a model with constant
velocity gradient. The implications for seismic acquisition for adequate imaging were made

by Monk (2009) when the Fresnel zone is properly sampled.

Few papers have been devoted to anisotropic media. For instance, Okoye and Uren (2000)

calculate the Fresnel zone radius for zero-offset configurations for P- and SH-waves in Tl
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media and isotropic media and for dipping plane reflectors. They conclude that the Fresnel
zone radius is predominantly dependent on the curvatures and wavelength of the wavefront as
well as the dip angle of the reflector. The Thomsen anisotropy parameters s, ¢ and »
(Thomsen, 1986) also affect the Fresnel zone radius. Moser and Cerveny (2007) show how
the Fresnel region can be calculated by conventional dynamic ray tracing in Cartesian
coordinates, for isotropic and anisotropic inhomogeneous layered media. Fresnel volume and
interface Fresnel zone for reflected and transmitted waves from a curved interface in

anisotropic media were analyzed by Ursin et al (2014).

In this paper, an analytic expression for the Fresnel zone radius is derived using the traveltime
for VTI model by using the perturbation method. In order to do that, the parametric offset-
traveltime equations under the acoustic approximation are used. We apply the Shanks
transform to stabilize the approximation and improve the accuracy. The similar perturbation
strategy is applied for the analytic expression of Fresnel zone radius in orthorhombic (ORT)
model. The accuracy of proposed approximation for Fresnel zone is illustrated for both VTI

and ORT models.

7.2 Fresnel zone using the traveltime

The seismic wave sent out from the source propagates in space and spread out over a larger
area. The horizontal resolution is controlled by the Fresnel zone, the part of a reflector
covered by the seismic signal at a certain depth where the wave propagates within %
wavelength after it first touches the reflector. The Fresnel zone (or first Fresnel zone) radius

for a homogeneous horizontal layer is defined in Figure 7.1 (top). It is convenient to express

the Fresnel zone using the traveltime parameters. The Fresnel zone radius Xy can be treated

as the wave propagates in lateral direction with certain traveltime t. and the Fresnel zone
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radius using the traveltime is calculated by using the Pythagorean theorem (Figure 7.1,

bottom),
X2+22 =Wt P, (7.)
where t. is the corresponding traveltime when the wave propagates by % wavelength after

arriving the reflector with t. =t, + At, where At :%, f is the frequency, t, is the vertical

traveltime with t, = v Z is the reflector depth, V, is the P-wave vertical velocity, V,, is the
0

corresponding group velocity computed for group angle ¢ defined from the vertical axis.

For a horizontal layer in a homogeneous isotropic (ISO) medium (V,, =V, =V'), the Fresnel

radius using the traveltime is computed as following
Xp =VqJt2 —t. (7.2)
. 1 . .
By using tg =1, +E' the radius of Fresnel zone X can be computed from simple

geometrical considerations (Figure 7.1, top),

1 2
X,§+ZZ=(t0V+4j , (7.3)

where A is the wavelength with 4 :VT’ v is the constant velocity. Solving equation (7.3) for

XE gives

2
Vv )
Xp=.|zZ+—| -z2. 7.4

F ( 4fJ (74

As the wave propagates in three dimensions, the Fresnel zone for the isotropic model above is

a circle with the radius computed from equation (7.4) shown in Figure 7.2.
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7.3 The Fresnel zone in a VTI medium

In an anisotropic medium, the velocity of the seismic wave varies with the propagation angle.
For a homogeneous VTI model, there are two additional anisotropic parameters s and &
(Thomsen, 1986). The shape of the P-wave wavefront in VTI model is a quasi-ellipse instead

of a circle as it is shown in Figure 3.

Based on the concept of the Fresnel zone, which indicates the area in the vicinity of a ray that
can be expressed in terms of the traveltime (t.) (Figure 7.1, bottom) and the change in this

traveltime with one-fourth of the wavelength (At). Computed from the dynamic ray tracing,

the parametric equations for traveltime and offset are given by (Alkahlifah, 1998)

2
X(p) = | PloVs

/2 !
1- 277p2Vn2)3 J1-(1+27)pav?

t°(2’7p i+ -2 2Vnz)zj "

t(p) = T3 :
- 22 - a 20)p?e
where V, is the NMO velocity with V, =V, ,v1+ 26, = 15 _255 is the anellipticity parameter
+

(Alkhalifah and Tsvankin, 1995), and p is the ray parameter (horizontal slowness). For the
Fresnel zone in VTI model, the radius is computed from the corresponding offset when the
ray travels from the source to the edge of the Fresnel zone with certain traveltime t-. The

geometry for calculating the radius of Fresnel zone in a homogeneous ISO and VTI model is
shown in Figure 7.3.
In order to obtain an analytic expression in VTI model, we define the perturbation series for

Fresnel radius squared up to third order by

XE =Mg+My+Mon?+Mgp®, (7.6)

For the elliptical case (77 = 0), the traveltime and offset squared are shown by
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PEtSVn

X2(P)yoo = G0,
- pRve .
2 t§ w0
T P=0 =55
(p)7 0 1— p,2:Vn2

where the slowness for the elliptical assumption is given by

2 2
_VtF (7.8)

Pr =
teV,

The zero order coefficient M, is computed by

2:2/4
p2tdv

Mo =X (9),-o = P50 < gl 7.9
— MFVn

The other coefficients (see Appendix A) in equation (7.6) are given by

2(t§ —t()’-)zvn2

M]_: ,
tf
3
422 —t2v>?
M, = e 60) n (7.10)
te
4
24t2(t2 12 )'v2
tE

In order to stabilize the approximation and improve the accuracy, two types of Shanks
transform (Bender and Orszag, 1978) are defined on the perturbation series in equation (7.6)
given by
x2 —_XoXp— x{
ST X0+ Xy —2X,

X1X3—X22
X1+ Xg—-2X,'

(7.11)

2 _
s2 =
, & :
where Xg =Y M 1-77‘, k =0,1,2,3. The perturbation coefficients M (j=01,2,3) are given
j=0

in equations (7.9) and (7.10).
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Figure 7.3. The radius of Fresnel zone for P-wave in a homogeneous 1SO and VTI medium.

In order to test the accuracy of the approximations above, we introduce a VT model with the

parameters: V, = 2km/s, V, = 2.2km/s and 77 = 0.2, and plot the relative error in Fresnel

radius versus corresponding traveltime (t), depth and frequency by using the approximations
from second and third perturbation series and the Shanks transforms in Figure 7.4. Note that
the Fresnel zone varies with depth at frequency f =30Hz and the Fresnel zone varies with
frequency at depth z = 2km. One can see that the accuracy from third order perturbation
series is higher than second order and the Shanks transform improves the accuracy greatly for
both second and third order series. The second order Shanks transform approximation X,
results in the most accurate result and even as accurate as the exact one. We plot the Fresnel
zone radius approximation X, versus anisotropic parameters 5 (with 7=0.2) and 7 (with
0 =0.1) in Figure 7.5. One can see that the Fresnel radius is increasing both with s and 7,

and it is more sensitive with . The radius of Fresnel zone using the approximation X, in

ISO and VTI models versus traveltime t., depth and frequency are shown in Figure 7.6. The
tendency for the Fresnel zone radius with respect to traveltime, depth and frequency for ISO
and VTI model is very similar. We plot the shape of Fresnel zone for ISO (v = 2km/s,

f =30Hz and z = 2km) and VTI (V, = 2km/s, V, =2.2km/s, n=0.2, f =30Hz and

z = 2km) models in Figure 7.7. One can see that, similar to 1ISO case, the Fresnel zone in VTI

model is also a circle but with a larger radius as the velocity in VTI model is independent with
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the azimuth. Note that the exact numerical results or the reference results are obtained from
performing the dynamic ray tracing on the parametric offset-traveltime on equations (7.5).

Similar to the moveout approximation t(x), the Fresnel zone radius using the traveltime

parameters can be treated as X(t) . The exact results can be computed from the parametric

offset-traveltime equation shown in equations (7.5).

Relative error% Relative error% Relative error%
035 05 firiils

2nd order 2nd order
..... 3rd order ===~ 3rd order o ooz
2nd_Shanks 2nd_Shanks

----- 3rd_Shanks 0001ft ===~ 3rd_Shanks

——— 2nd arder
----- 3rd arder
——— 2nd_Shanks
oooooi| \\ = ===-- 3rd_Shanks

0.000 2losmsaoniiliziies e +a
s S 3 18

0z o 06 08 18 12 14 20 0 60 80 100

Traveltime 7 (s) Depth(km) Frequency(hz)

Figure 7.4. The relative error in Fresnel radius versus the corresponding traveltime (left),
depth (middle) and frequency (right) using four types of approximation in VTI model. (Note
that the Fresnel zone varies with depth at frequency f =30Hzand the Fresnel zone varies

with frequency at depth z = 2km).
Fresnel radius(km) Fresnel radius(km)

0.3075|

0.3065

0.3080

5 7
Figure 7.5. The Fresnel radius using second order Shanks transform approximation X,

versus anisotropy parameters s (with 7=0.2) and  (with § =0.1).
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Figure 7.6. The radius of Fresnel zone in ISO and VTI models versus traveltime (left), depth
(middle) and Frequency (right). The Fresnel radius computed from ISO and VTI model is

shown by black and blue colors, respectively. (Note that the Fresnel zone varies with depth at

frequency f =30Hz; The Fresnel zone varies with frequency at depth z = 2km).

Y (km)

- X (km)

Figure 7.7. The Fresnel zone in ISO and VTI model. The Fresnel zone computed from 1SO

and VTI model is shown by black and blue colors, respectively.
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7.4 The Fresnel zone in an ORT medium

To compute the azimuth-dependent radius of the Fresnel zone for a homogeneous ORT
model, we use exact parametric offset and traveltime equations (Stovas, 2015):

VAt
X(px' py): p<F7 %’
fiof;

V5t
2 240
V(P py )= pyFi W (7.12)

)_ ty (F12 p§Vn22 +FIpVE+ Ty fz)

t(px, Py f11/2 f23/2 !

where xand y are the corresponding offset projections, and

Fy =1 pAVA(en; )

Fp=1- p§Vn22(2772 — My )

fy =1 (1 2 )PV — L+ 20, P2V, + (L4 2, Xt 2) - Bv myy P 02 P2VAVES,
fp =1-2m PV — 2, PV G + (4771’72 -n% )pf PVAVS,

(7,13)

with Vg, V1, Vo being the vertical and NMO velocities. NMO velocities V,,; and V,, are
defined in [X,Z] and [Y,Z] planes, respectively. Anellipticity parameters 7, and 7, are

defined in corresponding two vertical symmetry [X,Z] and [Y,Z] planes. The cross-term

anellipticity parameter 7, is defined as (Stovas, 2015)

1+2n, \1+ 27,
= 71313 -1 .
My 1+ 27, (7.14)

where anellipticity parameter 75 is defined in the [X ,Y] plane (Vasconcelos and Tsvankin,

2006).

Similar to VTI case, by setting the traveltime t equal to tg, we relate the Fresnel zone
R(X ,Yg ) with the depth of reflector. We introduce a homogeneous ORT model with
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parameters: V, = 2km/s, Vi =2.2km/s, Vy, =2.4km/s, p =0.2, , =0.15, n,, =0.2,
f =30Hz and the depth of the horizontal reflector is z = 2km and show the exact Fresnel

zone R(X E.YE ) for ORT model with a quasi-elliptic shape in Figure 7.8. Note that similar
to the VTI case, the exact solution is computed from performing the dynamic ray tracing in
the parametric offsets-traveltime equaiton through the ray parameters (two horizontal

slownesses) shown in equations (7.12).

k) |

y(km)

x(l“(;n)

Figure 7.8. The Fresnel zone computed for a homogeneous ORT model. The model

parameters are: V, =2km/s, V,; =2.2km/s, V,, =2.4km/s, 1, =02, n, =0.15,
1y = 0.2 and f =30Hz. The depth of the horizontal reflector is z = 2km. The Fresnel zone

in ORT model has a quasi-elliptical shape.

In order to get the analytic expression of the azimuth-dependent radius for the Fresnel zone in

ORT model, we define the perturbation series up to the second order by

RE=xZ+YE=No+ D N+ D Ny, (7.15)

j=1,2,3 i,j=1,2,3
where 3= xy, the perturbation coefficients N ; and Nj; are given by the model parameters:
Vo Vt, Vi, M1, 12, 14y, the frequency f and the group azimuth @ . To compute the

perturbation coefficients, we format the parametric offset and traveltime squared from two

projections into the radial offset and the azimuth given by Koren and Ravve (2014)
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2(pr!¢): Xz(prl¢)+ yz(pr,¢),

2(pr.¢)=t*(pr.4), (7.16)

=

with the relations

Px = Py c0s(4),

. 7.17
Py = Pr sin(g). (7.17)
Angle ¢ in equations (7.16) is the phase azimuth. The group azimuth @ can be computed

from the following transform in the ellipsoidal assumption (Stovas, 2015),

tan(®) = \\%2 tan(g). (7.18)

n
Note that this equation is correct not only for the ellipsoidal assumption, but also as zero-
order approximation for any non-elliptic VTI media with arbitrarily large intrinsic
anellipticity #», but for infinitesimal (actually, close to zero) offset or horizontal slowness.
Otherwise, the transform between the acquisition azimuth and the phase azimuth will include,
in addition to this zero-order term, also other terms with (even) powers of offset or horizontal
slowness.

The analytic expression for Fresnel zone in ORT model in equation (7.15) is derived by

equating the exact equations (7.12) by setting the traveltime into tg with the perturbation

series defined in equation (7.15).

The coefficient N is computed by setting all anellipticity parameters into zero given by

No =t -t 2 (@), (7.19)

where V,, (®) is the NMO ellipse (Grechka and Tsvankin, 1999) with
1 _cos(@)? . sin(®)?
Vn2 ((D) Vn21 Vn22 .

(7.20)
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The coefficient N provides the radius squared of Fresnel zone in the ellipsoidal isotropic
medium. The other perturbation coefficients N ; and Nj; are computed by equating the exact

expressions with the perturbation series shown in Appendix B.

Using the ORT model above, we show the polar plots of sensitivity computed from first order
(left), quadratic (middle) and cross-term (right) coefficients in the perturbation series versus

the group azimuth in Figure 7.9, respectively. One can see from the plots that for first and
quadratic order coefficients, the sensitivity in anellipticity parameters 7, and 5, have the

similar shapes and reach the maximal values for 0 and = /2 azimuth angle, respectively. The

sensitivity in cross-term anellipticity parameter 7, reaches its maximal value at = /4

azimuth angle for first order coefficient. For quadratic order coefficient, the sensitivity to

cross-term anellipticity parameter is very small. For cross-term coefficients, the sensitivity to
anellipticity parameters 7,77, reaches the maximal value at /4 azimuth angle. For the

sensitivity to anellipticity parameters 7,7, and 7,,,,, they obtain their maximal values at

around /6 and /3 azimuth angle, respectively.

—
s
— Ny 0 2000

005 0 s:‘:sNin

o= Nix s oo‘ceNﬂX 00!

Flgure 79The sensmvny computed fromflrstorder(left) quadratic (mlddle) andcrossterm
coefficients in equation (7.15) in the perturbation series for Fresnel zone versus the group

azimuth. The depth of the horizontal reflector is z = 2km.
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Similar to the approximations in VTI case, the Shanks transform can also be applied to the

perturbation series in ORT model (equation (7.15)) and results in

Rg = Ng +——+—, (7.21)
where Ny is defined in equation (7.19), Ry =Y Nijm; and R, =3 Nyjmin; (i, j =12,xy) are
i j

the first- and second- order term coefficients are given in Appendix B ( equations (7.B10),

(7.B12) and (7.B14)).

7.5 Numerical examples

In order to test the accuracy of the Fresnel zone approximation in ORT model, we use the

ORT model introduced above with the parameters:V, = 2km/s, V,; = 2.2km/s,
Vo =2.4km/s, m =0.2, 7, =0.15 and 7,, =0.2. Note that for the computation versus

traveltime t, =1s, the computation versus depth f =30Hz and the computation versus

frequency z = 2km . The relative error in Fresnel zone with two approximations (perturbation
series and the Shanks transform) using the ORT model above versus corresponding (travetime,

group azimuth) and (depth, group azimuth) is shown in Figure 7.10, respectively. One can see
that for the error plotted with traveltime tg, the maximal error is obtained at about 40°

azimuth for traveltime t =1.5s, for the plots versus depth, the maximal error is obtained at

zero depth around 35° azimuth for two approximations and the accuracy from these two
approximations is almost the same. The Shanks transform does not help a lot in improving the
accuracy on the perturbation series for the Fresnel zone radius approximation, the reason for
this is that the sensitivity in perturbation coefficients is very small (shown in Figure 7.9), the

effect by using the Shanks transform is not obvious. We show another numerical example

with higher anellipticity parameters with 7; =0.4, 17, =0.3 and 7,, = 0.4, while keeping the
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remaining model parameters the same in Figure 7.11. Compared with the plots in Figure 7.10,
the error for the ORT model with higher anellipticity parameters is larger and the effect from
the Shanks transform is more significate. One more numerical example, with all negative
anellipticity parameters: 7, =—0.2, 1, =—0.15 and 7%y =—0.2, while keeping the same
remaining model parameters, is shown in Figure 7.12. One can tell that comparing with the
plots in Figure 7.10 the error from negative anellipticity parameters is larger. Similar to the

plots in Figure 7.10, the effect from the Shanks transform is not obvious.
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tD((leg;reezm ‘ 015 ®(degr eE)
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Figure 7.10. The contour plot of error in Rg from two approximations for ORT model

plotted versus corresponding traveltime and the group azimuth (top) and depth and the group
azimuth (bottom). The perturbation series approximation and Shanks transform are shown in

left and right, respectively. The model parameters are given in caption for Figure 7.8.
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Figure 7.11. The contour plot of error in Rg from two approximations for ORT model

plotted versus corresponding traveltime and the group azimuth (top) and depth and the group
azimuth (bottom). The perturbation series approximation and Shanks transform are shown in

left and right, respectively. The ORT model parameters are defined with the velocities

specified in the caption for Figure 7.8 and the higher anellipticity parameters: 77; =0.4,

1, =0.3 and n,, =0.4.

178



Error %

Error %
60 1.5 60 1.5
<l>((leg'ee2m 10 dD(deg‘eezm 1.0

‘ 0.5 . 0.5

13 14 15 . 1 13 14 15

11 12 112
Traveltilme tg(s) Traveltime tg(s)

30 Error % 30 Error %
0.5 0.5
60 0.4 60 0.4
D(degree) 0.3 ¢(degree
Y (degt )4nv o3
0.2 1 0.2
20 |
0.1 20 0.1
0 0 0 0
1 2 3 1 2 3
Depth(km) Depth(kin)

Figure 7.12. The contour plot of error in Rg from two approximations for ORT model

plotted versus corresponding traveltime and the group azimuth (top) and depth and the group
azimuth (bottom). The perturbation series approximation and Shanks transform are shown in

left and right, respectively. The ORT model parameters are defined with the velocities

specified in the caption for Figure 7.8 and the negative anellipticity parameters: 7, =-0.2,

1, =-0.15 and n,, =-0.2.
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Using the Shanks transform approximation in equation (7.21), we show the radius of the
Fresnel zone versus different traveltime, depth and frequency in Figure 7.13. One can see
from the plots that the radius increases with traveltime and depth while decreases with

frequency.

X(km)

Figure 7.13. The Fresnel zone computed for ORT model for different traveltime (left), depth
(middle) and frequency (right) using the ORT model with parameters given in the caption for

Figure 7.8.

Selecting a horizontal reflector with the depth z = 2km, we show the shape of the Fresnel
zone using the Shanks transform approximation (shown in equation (7.21)) for ORT, elliptical
isotropic (El), and ISO model in Figure 7.14, respectively. Note that for EI model, all

anellipticity parameters are zero (7, =1, =15 =0), for ISO model, there is one velocity with
V =V =V,; =V, =2km/s. One can see from the plots that the Fresnel zones for ORT and

El model almost coincide that indicates that less sensitivity of the Fresnel zone in anellipticity
parameters, which is also explained by the polar plots in Figure 7.9. For 1SO case, the Fresnel

zone is just a circle with the radius smaller than the ones in ORT and EI model.
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Figure 7.14. The shape of the Fresnel zone computed for ISO, El and ORT model. The depth

of the horizontal reflector is z = 2km.

Note that the advantage of this paper is an attempt of a direct offset-traveltime approximation,
perturbing the anellipticity of VTI, or the three anellipticities of ORT medium. The Fresnel
zone calculation is a particular case for this method, when the time is the Fresnel zone
traveltime, and the offset is its radius. Similarly, the moveout approximation can also be

derived from the same strategy.

7.6 Discussions

The reason why we derive the approximation for the Fresnel zone using the traveltime is to
avoid the complexity in dealing with the phase domain velocities. By the definition, the

Fresnel zone radius is defined by the lateral projection when the seismic wave propagates for

Y4 wavelength after arriving the reflector with 4 :VTQ, V, is the wavefront velocity (phase

velocity) with the phase angle ¢. Shown in Figure 7.15, if the model is isotropic, the phase
angle @, measured at wavefront (t =ty) is equal to 6, measured at wavefront (t =ty + At).
However, for the anisotropic model, two wavefronts are not parallel (6, # 6,), to compute the
Fresnel zone radius X, the change in the phase angle needs to be taken into consideration,

which makes the computation much more complicated. Using the traveltime parameters, what
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we are interested in is the ray traveling from the source to the reflector with the certain

traveltime tgp =ty + At (Figure 7.1, bottom) that makes the derivation much simpler for

anisotropic media.

source

wavefront t=to

reflector

k wavefront t=to+At

%

Figure 7.15. The diagram showing the Fresnel zone in an anisotropic medium. Angle &, and
6, are phase angles measured in corresponding points at wave-fronts t =t; and t =ty + At,

respectively.

In order to singularize the anomaly of error plot in ORT model, we apply one more numerical
example from the perturbation series (equation (7.15)) and the Shanks transform

approximation (equation (7.21)) in Figure 7.16, (left and right, respectively) with a smaller t,
(to =0.6s) and frequency ( f =10Hz). One can see that for the error plot versus traveltime

and group azimuth, the shape of the anomaly is more obvious and maximal error is obtained

at the center of the anomaly. For the error plot versus depth and group azimuth, the maximal

error is obtained at about 40° azimuth when the depth is zero.
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Figure 7.16. The contour plot of error in Rg from two approximations for ORT model
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plotted versus corresponding traveltime and the group azimuth (top) and depth and the group
azimuth (bottom). The perturbation series approximation and Shanks transform are shown in

left and right, respectively. The ORT model parameters are: (Top) ty = 0.6s, V; =2.2km/s,
Vo =2.4km/s, m =0.2, 7, =0.15 and 7,, =0.2; (Bottom): V, = 2km/s, Vp; = 2.2km/s,

Vny =2.4km/s, m =02, 7, =0.15, 17,, =0.2 and f =10Hz.

This perturbation based method for the Fresnel zone in the anisotropic model can be extended

for the model with a dip reflector. Shown in Figure 7.17, the Fresnel zone for a dip reflector
with the dip angle « in a homogenous VTI model is consist of two parts (r; and ,), which is

the corresponding distance in two directions along the dip reflector when the seismic wave

propagates within ¥ wavelength after it first touches the dip reflector. We assume the value of

the dip angle « and the depth of the first touching point z; are known. The Fresnel zones (1,

and r,) are calculated by

X5 — Xq X5 — X¢
R=""C_"TLp,="2_"0 (7.22)
cosa cosa
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where x; is the offset for the first touching point, X and x, are the corresponding offsets for
the Fresnel zone boundary point with the corresponding depth z; and z,. The corresponding
offsets x; and x; are computed by the Shanks transform approximation shown in equations

7.10 with the certain traveltime tg =ty + At

Xt =121.te Vo, Vo1, ),

7.23
X:'ZZ{Z'Z’tF’VOvVn’ﬂva}’ ( )

where the two corresponding depth z; and z, are obtained from the Pythagorean theorem

’

ZO ’ [ 2 ’
+(xp —x[z]) =z tana = 7,
tazn,“ (7.24)
0 _ ’ 1o v Y= o ’
o—— (x5[25]- %) = 25 tan e = 2.

Note that on contrary to the horizontal reflector case, the Fresnel zone is not symmetric for

dip reflector case (I, #1;).

wavefront t=to
’ Lt F
source Xj Xo X2
T

reflector

wavefront t=to+At

ri

Figure 7.17. The sketch showing the Fresnel zone for a dip reflector in a homogeneous VTI
model.

7.7 Conclusions

We derive the form of Fresnel zone radius using the traveltime parameter and use it to obtain

the analytic expressions in an acoustic VTI and ORT models from the exact offset-traveltime
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parametric equation using the perturbation method. The analysis of the Fresnel zone radius is
applied versus corresponding traveltime, depth and the frequency. One can tell that the
Fresnel zone radius in anisotropic media (VTI and ORT) increases with traveltime and depth,
while decreases with frequency. The Shanks transform is applied to stabilize the
approximation and improve the accuracy for both two models. Shown from the numerical
examples that for VTI model, the second order Shanks transform is the most accurate
approximation that is almost as accurate as the exact one. For ORT model, the quasi-elliptical
shape is obtained for the Fresnel zone. The perturbation series and the Shanks transform
approximation are all very accurate and almost the same accuracy for the Fresnel zone

calculation due to the small sensitivity in perturbation coefficients.
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7.9 Appendix A
The analytic expression for Fresnel zone in a homogeneous VTI model using the

perturbation method

In order to obtain an analytic expression for Fresnel radius squared in VTI model, we define

the perturbation series up to third order by

X2 =Mg+M+M,n%+Mgy®, (7.A1)
For elliptical case (77 =0), the traveltime and offset squared are obtained from the parametric
equations (7.5) by
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PEtSVn

X2(P)yoo = -0,
CaEP IV 2 Ao
, 2 (7.A2)
T(Py0o="—"5—75"
e l_plzivnz
t2 —t3

where pg = for the elliptical assumption. The zero order coefficient M, is

FVn

computed by

2.2,4
PrtoVn 2 .2),2
Mo =X 2(p)77=0 = =\t —to Mn (7.A3)
1- pavy
The first order coefficient is obtained by
2 2 2 2 20,2
M, - OX (p)_aMo(tF -t ) :2(tF tzo)ZVn (7.A4)

Subsequently, we compute the second and third order coefficients given by

" _{szz(p) oM, 2 12 82M0(té—>t2)}_4t§(t;2:—t§)avn2
2= - - = 6 '
te

on? on on?
M. = 83X2(p)_8M2(t,§—>t2)_62M1(t,§—>t2)_63M0(t;2:—>t2) (7.A5)
s on® on on? on® '
242 —12) V72
- o ,

Note that these perturbations coefficients M;, (i =0,...,3) are all  independent since tr isan
argument in the approximation. The parameters for the approximation in VTI model are: tg,
t, and V,. The effect for the anellipticity is hidden in parameter t. t2 —t* means t¢ here

should use the function form shown in the parametric equation (equations (7.5)) for derivation

after that the elliptical assumption is applied to get the expression for the coefficients (M,

M, and Mj).
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7.10 Appendix B

The analytic expression for Fresnel zone in a homogeneous ORT model using the

perturbation method

To compute the perturbation coefficients in equation (7.15), we format the parametric offset
and traveltime squared from two projections into the radius offset and the phase azimuth

given by

z(prr¢): Xz(pr,¢)+ yz(prl¢)'

R
7.B1
T2(pr.d) = (pr. ) (781

with the relations as below

Px = Pr COS(¢)1

b, = P sin(®). (7.82)

We represent the parametric equations in terms of slowness p, and the phase azimuth ¢ for

the elliptical assumption

p,toﬁl cos(¢)? +V,5 sm(¢))
1- pr( nlCOS(¢)2 +Vn2 sm(¢) )

Rz(pr’¢)7l =0~

2 (7.B3)
(pf n=0 = 02 2 < 2\
1- p? (Vi cos(g)? +Vi% sin(g)? )
That gives
(2 .2
£ (7.B4)

te V2 cos(9)? +Vi3sin(p)?
First the coefficient N for the ellipsoidal case is computed by setting all anellipticity

parameters into zero given by
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(tlzi _tg Xvnﬂ'l COS(¢)2 +Vn42 Sin(¢)2)

Ng = -
Vi sin(g)? +V5 cos(g)

(7.B5)

Note that the azimuth ¢ in equations above is the phase azimuth. We need to convert the
azimuth from phase to group domain by the relation in the elliptic assumption

Vn22
tan(®) = —Ztan(¢). (7.B6)
Vi

The coefficient N for the ellipsoidal case is term of group azimuth is given by

No = 2 ~t2 V2 (@). (7.B7)

where V, (®) is the NMO ellipse (Grechka and Tsvankin, 1999) with

1 cos(®)? .\ sin(®)?
Vn2 ((D) Vn21 Vn22

(7.88)

Similar to VTI case, using the perturbation method, we compute the first order coefficients as

following

N, -| RE_MNo
Ylon om Y
m2="nxy=0

M 00 Ny =0

N - ORE Ny
Y ony On .
y Y Im=p=0

The first order coefficients N;, N, and N xy in term of group azimuth are given by

, (7.B9)
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~ 2cos(<1>)4(t§ -2 )ZVn21Vn42 (\/nzz cos(®)? +(4Vn21 -3v5 )sin((l))z)
) t,:( 2 sin(@)% +V,2 cos (I))z)3 ’
N, < Zsin(d>)4(t,2: 2 )Zvnlvn2 2 sin(@)? + (4vn2 —3Vn21)cos(d>) )
te (\/nlsln(d)) +V,5 cos(®) )3
Ny - 2sin(®)?2 cos(d) (t,: —to) anvnz( A, sin(@)2 -VaVS + v cos((D)z).
6/ lsm((D) +V, zcos( ) )3

(7.B10)

Subsequently, the quadratic coefficients Nq;, N,, and N,y are computed as following

2p2 2
2\ on; on;. O n2=nxy=0
Ny, = 1[62REJ—{62N° Mo J (7.B11)
2 67722 6772 6772 m:UXyZO .

N |t 0°RE | | 9°Ng , Ny
Xyxy — | 5 '
2 aﬂ)%y a77xy aUXV =10

and shown in terms of group azimuth by

N 4cos(q>)6(t,% —tgfvnﬁvnﬁz (
1=
td (\/nzlsin(@)2 +V.5 cos(®)?
522 sin(@)* Vi - 2v2 )
. asin(@)°(i2 -2 v
2 (\/2 sin(®)? +V,5 cos(d)?
F\Ynl n2
+5t2V,2 cos(®)*(v,2 - 2v 2 ))
N sin(cI))2 cos((l))z(té - 2)3\/”1\/”2
xyxy =
tp @nlsm((l)) +Vnz cos(®)?

+AVAVES (B2 + 482 Jsin(@)2 cos(@)? - (12 cos(@)? + {1612 + 2112 V.25 cos(@)* + 62V cos(@)?)

cos(CD) + ((Sto +tF ((7t0 +6tF)>/n2)/n2 sin(®)2 cos(d)?

f (i) + (66 2 o - (76 + 62 2 WiZsinr? cos(oy? (7.812)

(GtZVHlsm( 0)° -vflvnzz(té sin(®)? + (16t0+21tF)cos( o) )sm(cb)

The remaining cross-term coefficients Ny, Ny, and N, are computed as following
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Ny, = 0°R2 _[6N0 Ny 0Ny +8N2j
omony \Om 0np Onp Om )|

Niyy = aZRE — %aNO n 0Ny +8ny

o =

Y a771677><y om 677xy anxy om =0
Ny O°RE [Ny aNg LN, +6ny

o= o

Y 0ma0nyy |\ 0n2 Ottyy Oty Omp m=0

and shown in terms of group azimuth by

8sin(®)* cos(®)* (t% -t )3vn‘§vn42
="

. 3
B 4sin(®)? cos(d))“(t,% —té) VAV,

-VAvE cos((l))z((lotg +13t2 )sin((l))2 + (2t§ +t2 )cos(CD)2)+ YA (Zté +3t2 )cos((l))“)
3
4sin(@)* cos(CD)Z(IE -15) Vavh

VAV sin(@)?(10t2 +13t2 Jeos(@)? + 212 +12 sin(@)? )+ 2vE 212 + 3t jsin(@)*

Note that when taking the derivatives for the coefficients N; and Nj;,

in the coefficients into T shown in equations (7.B1) for computation.
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Chapter 8 Conclusions

In this research work, we derive the P-wave traveltime approximations, relative geometrical
spreading and the radius of Fresnel zone in a homogeneous VTI and ORT medium from the
parametric traveltime-offset equations through the fitting process and the perturbation-based
approach. The acoustic assumption is used to reduce the model parameters for simplification.
The Shanks transform is applied to stabilize the convergence of approximation and to improve
the accuracy. The accuracy of these approximations is tested in the numerical examples where
the exact (standard) solutions are computed from the parametric equations measured through
the dynamic ray tracing. In order to apply these approximations to the multilayered case, the
Dix-type equation is utilized to compute the effective model parameters. For multilayered
ORT model, in case of azimuthal variations in the symmetry axis between the layers, the
least-squares approximation is adopted to estimate the effective anellipticity parameters from

this layered medium.

For the moveout approximation in anisotropic media, we define a group of parameterization
for acoustic ORT model and test the accuracy in traveltime by using a different
parameterization of the perturbation-based approximation. Shown in the numerical examples,
we conclude that the accuracy of the traveltime approximation is mostly driven by the
selection of the elliptical background model and the parameterization with vertical and
horizontal velocities is generally more accurate. The selection of the anellipticity parameters
also affects the perturbation-based traveltime approximation. A more accurate result is

obtained from less sensitivity in the anellipticity perturbation parameters.

The relative geometrical spreading term can be written as a function of the horizontal
slowness, which allows us to derive the approximation directly from the parametric equation.
We derive the analytic expressions for the relative geometrical spreading in the GMA and
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anelliptic forms for a homogeneous VTI and ORT model and extend the approximations to
the multilayered cases. Using the numerical examples, we show that our approximations are
highly accurate than the conventional traveltime based traveltime-based counterparts in for

homogeneous and multi-layered VTI and ORT models.

For anisotropy estimation, we develop an analytical formula for the residual moveout of
diving waves in a factorized velocity model and estimate the anisotropy parameters from the
semblance analysis on residual moveout in the RTM image gathers. These inverted models,
which are based on diving waves, can provide an initial velocity model that is sufficiently
close to the true model within the FWI requirements. We also propose a new method to
evaluate the anisotropy parameters and the circular reflector parameters from the behavior of
estimates with the midpoint position for a circular reflector based on the anisotropic CRS

approximation.

Seismic anisotropy impacts the data processing methods like smoothing and resolution studies.
For the studies of the horizontal resolution, we derive the approximation for the radius of the
Fresnel zone in the time domain in VT model using the perturbation method and apply this
strategy for the azimuth-dependent radius of the Fresnel zone in ORT model for a horizontal
layer. From the numerical examples, we can see that the Shanks transform approximations for
Fresnel zone are very accurate for both VTI and ORT media. A certain degree of smoothness
of velocity models is required for most ray-based migration and tomography. We extend the
PTS method to ORT model with and without the azimuthal variation between the layers and

show that the smoothing driven errors in traveltime are very small for the practical application.
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Appendix A Perturbation-based moveout
approximations in anisotropic media
Shibo Xu, Alexey Stovas and Qi Hao

Norwegian University of Science and Technology, Trondheim, Norway

Abstract. The moveout approximations play an important role in seismic data processing.
The standard hyperbolic moveout approximation is based on an elliptical background model
with two velocities, vertical and normal moveout ones. We propose a new set of moveout
approximations based on the perturbation series in anellipticity parameter using the alternative
elliptical background model defined by vertical and horizontal velocities. We start with
transversely isotropic medium with a vertical symmetry axis (VTI). Then, we extend this
approach to a homogeneous orthorhombic (ORT) medium. To define the perturbation
coefficients for a new background, we solve the eikonal equation with horizontal velocities in
VTl and ORT media. In order to stabilize the perturbation series and improve the accuracy,
the Shanks transform is applied for all the cases. We select different parameterizations for
both velocities and anellipticity parameters for ORT model. From the comparison in
traveltime error, the new moveout approximations result in better accuracy comparing with

the standard perturbation based methods and other approximations.

Presented at the 86" SEG Conference and Exhibition, October, 2016, Dallas, USA; Published

in Geophysical Prospecting in December 2016.
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A.1l Introduction

The moveout approximations are commonly used in seismic data processing such as velocity
analysis, modeling and time migration. In isotropic or elliptical isotropic media, the moveout
function has a hyperbolic form. We need to take non-hyperbolicity (driven by anellipticity)
into consideration, as it is commonly exists and plays an important role in seismic data
processing and interpretation, especially for large offsets. The moveout function has a non-
hyperbolic form in anisotropic media. Different nonhyperbolic moveout approximations for a
homogeneous transversely isotropic medium with vertical symmetry axis (VTI) are listed and
discussed in Fowler (2003), Fomel (2004) and Golikov and Stovas (2012). Fomel and Stovas
(2010) proposed the generalized nonhyperbolic moveout approximation (GMA) based on
parameters computed from the zero-offset ray and one additional nonzero-offset ray. This
approximation is very accurate and can be converted into other well-known approximations
by the appropriate choice of the parameters. Alkhalifah (2011) proposed the traveltime

expression with series in terms of anelliptic parameter ; by solving the eikonal equation for

acoustic VTI medium and by applying the Shanks transform to obtain the higher accuracy.

The orthorhombic (ORT) model is introduced by Schoenberg and Helbig (1997) to describe
fractured reservoirs and explains well the azimuthal dependency in surface seismic data
Tsvankin (1997, 2012) defined nine elastic model parameters for ORT model that can be
reduced to six parameters in an acoustic approximation (Alkhalifah, 2003). In group domain,
we call the first order curvatures the normal moveout (NMO) velocity ellipses (Grechka and
Tsvankin, 1999a, 1999b) and the second order curvatures the anellipticities as they represent
the anelliptic behaviour for slowness or traveltime surface. Stovas (2015) derived the
azimuthally dependent kinematic properties of the orthorhombic media and defined the
effective ORT parameters in the Dix-type when there are azimuth variations between the

multilayers. Recently, Sripanich and Fomel (2015) proposed an anelliptic approximation for
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gP velocities in ORT media. A very accurate GMA approximation in ORT media for phase
and group velocities is developed by Hao and Stovas (2016). The perturbation based moveout
approximation with a traditional elliptic background for ORT media is discussed by Stovas,
Masmoudi and Alkhalifah (2016). The traveltime approximation for orthorhombic model
using perturbation theory by other anellipticity parameters in inhomogeneous background
media is developed by Masmoudi and Alkhalifah (2016).

We develop a new perturbation based moveout approximation based on an alternative
background model in VTI and ORT models, and apply the Shanks transform (Bender and
Orszag, 1978) to improve the accuracy. For a homogeneous ORT model, we select different

parameterizations for both velocity background and anelliptic parameters.

A.2 New moveout approximation in a VTI model

In order to define the nonhyperbolic traveltime approximation for a VT model, we select the
hyperbolic traveltime background and anellipticity parameter » (Alkhalifah, 1998), where
n=(e-0)I(1+26) with parameters s and ¢ being the Thomsen anisotropy parameters
(Thomsen, 1986). In the standard case, one can use the Taylor series in offset for traveltime
squared to obtain the moveout approximation. Alternatively, we can have more options to
represent the traveltime function when using the perturbation series in terms of small model
parameters. Alkhalifah (2011) proposed a moveout approximation based on the perturbation
series in anellipticity parameter », which is more accurate than the standard Taylor series in
offset. In our approach, we follow the same idea. For a VTl model, compared with the
orthorhombic model, there is only one parameter that can be considered as the small one,

namely, anellipticity parameter 7.
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To define the standard background model, we use two velocities: vertical velocity (or zero
offset traveltime) and normal moveout velocity. The classic moveout is given by hyperbolic

equation,

XZ

t? ~t? L (A1)

where t and t, are the traveltime and vertical traveltime, respectively, x is the offset and V,
is the normal moveout (NMO) velocity. For a VTI model, V, =V,v1+26 , V; is the vertical
velocity.

Alkhalifah (2011) proposed to expand the traveltime expression into series in anelliptic

parameter 7 by solving the eikonal equation (Alkhalifah, 2000)

or 2 or 2 or 2 or 2
V2(+2n) = | +V¢| = | —2v V¢ = | | =] =1 A2
n(+’7(ax)+o(azj TVn'Vo o) ez (A.2)

The perturbation series is defined by

T=a,+a+a,0’, (A3)
where the series coefficients aj(x) can be found in Appendix A. The Shanks transform

(Bender and Orszag, 1978) is applied to the approximation presented in equation (A.3) to

obtain a higher accuracy.

In this paper, we propose an alternative hyperbolic background model,

VEL (A.4)

where V, is the horizontal velocity with V, =V +/1+2¢ =V, 1+ 27 . Using the alternative
background model means instead of the vertical velocity V, and NMO velocity V, (the

curvature of slowness surface at zero horizontal slowness) we are using the vertical velocity
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V, (or the vertical slowness) and the horizontal velocity V, (or the horizontal slowness) to

represent the model as shown in Figure A.1.

Figure A.1. The slowness curve for VTl model. p and g are the horizontal and vertical

slowness, respectively. The exact one, the approximations by vertical velocity and NMO
velocity, and by vertical velocity and horizontal velocity are shown by solid, dashed and
dotted lines, respectively.

The comparison between the hyperbolic moveout approximations (A.1) and (A.4) is

illustrated in Figure A.2 for a VTI model with parameters: V, =2km/s, t, =0.5s, § =0.1
and 7 =0.1. One can see that the new approximation is slightly worse for intermediate offset

but much better for large offsets.

To define the perturbation coefficients for a new background, we solve the VTI eikonal

equation (Alkhalifah, 2000) defined with horizontal velocity,

2 2 2 2
V2 gt +V02(g) __ 2 thVoz(gj (ﬁj =1. (A.5)
oX oz 1+2n ox ) \ oz

Similar to equation (A.3), the new perturbation series up to the third order in 7 is defined as
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=1, +bn+b,n*+bn (A.6)

At(s)
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Figure A.2. The traveltime error from hyperbolic moveout approximations using two
background models in VTI media. The results using NMO and horizontal velocities are
shown by solid and dashed lines, respectively.

Solving eikonal equation (A.5) for a homogeneous VTI medium results in the following

coefficients (Appendix B),

X
7, = [t +—,
0 0 Vh2
2,2
bl = t(;\);z ]
ToVh
ot x* (A7)
__ "%
2 )
20V
b, — —8t§\/h4x4 + 65tg’\/h2 6 —8t{;x8
= .

21'[1)1\/,18
To improve the accuracy of perturbation series in equation (A.6), we can use the first- and

second-order Shanks transform (Bender and Orszag, 1978) that give

2
_ Tt T
Ts1 = '
T,+7, 21,
_ iz
Tsp = )
-2r
7, +7, )
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k .
where 7, =7,+ > b;p’, k=123.

=

Using the VTI model parameters introduced above, we compare the accuracy of the proposed
approximations in equations (A.8) with other well-known approximations: GMA and
Alkhalifah (2011) (Appendix A). The results are shown in Figure A.3 with different values
for anellipticity parameter 7. The relative error in traveltime is plotted versus normalized
offset, X =x/(t,V,) . One can see that, regardless of the chosen values for 7, the second-order
Shanks transform from equations (A.8) gives the best accuracy, while the Alkhalifah (2011)’s

method is the worst one. The sensitivity analysis from the second-order Shanks transform zg,

with anellipticity parameter 7; is shown in Figure A.4. The error is very small with a small

value of 7.
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Figure A.3. The relative traveltime error from non-hyperblic approximations in VTI media
with 77 =0.1 (left) and 7 =0.2 (right). The results from the GMA, Alkhalifah (2011)

approximation, the first- and second-order Shanks transform (equations (A.8)) are shown by

dotted, dotdashed, dashed and solid lines, respectively. % is the normalized offset.
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Figure A.4. The relative traveltime error with offset and anellipticity parameter # using the

second-order Shanks transform zg, .

A.3 New moveout approximation in an ORT model

We can also select the perturbation series in anellipticity parameters for ORT case. Compared

with VTI model, different from the anellipticity parameters in Masmoudi and Alkhalifah
(2016), three anellipticity parameters in ORT model are , and 7, defined in two vertical
symmetry planes [X,Z] and [Y,Z], and 7, in horizontal plane [X,Y] (Vasconcelos and
Tsvankin, 2006) or anellipticity parameters 7, and 7, defined in two vertical symmetry
planes [X , Z] and [Y,Z], and one cross-term anelliptic parameter 7,, (Stovas, 2015). With
these parameterizations, we define different forms of the moveout approximation based on

selection of anellipticity parameters and elliptical background models shown in Table A.1.

The perturbation series in terms of anellipticity parameters is defined up to the second order

(Stovas et al. 2016),

r:r0+zaik,7i+Zbi'j‘77i77j, k=A,B,C,D. (A.9)
i ij
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First, we define case A for ORT medium by selecting the elliptical background model by V,,

V,, and V,, and the perturbation parameters 7,, 7, and 7,.

Parameterization Background Perturbation parameters
Case A V0.V, Va2 T M2,713
Case B V0. Vi1, Vha 12+ Mxy
Case C VO’Vhl’VhZ 77117721773
Case D V0. Vhi:Vha 12 Mxy

Table A.1. Four types of parameterizations based on different background models and the
perturbation parameters.

We solve the ORT eikonal equation (Alkhalifah, 2003) with NMO velocities,

or) ar) 81’2 arV(or)
VA== +(1+2 2= +(1+2 20| —2p VAR = | | =
0[52} ( 771)‘/n1[axj ( Uz)‘/nz(ayj TV O[GX) (62]
IPMVEVE or z(asz_ (14277, )1+ 27, )2n, zvz(asz arY

220 | 5 )\ 1427, w2 o ) oy (A.10)

2 2 2 2
+| 4n,m, — W—l 22y 2 or g [ﬂ] -1
Up 1+ 2, m¥n2Vo | o ) & ,

where V,, V,,, V,, are the vertical and the corresponding NMO velocities, respectively.

Anellipticity parameters 7,, 1, and 7, are defined in corresponding two vertical symmetry
planes and horizontal plane, respectively. For homogeneous ORT model, the series

coefficients a/* and b, (i, j =1,2,3) are given in Appendix C.

We also define case B by selecting the elliptical background model by V,, V,, and V,, and

the cross-term anelliptic parameter 7, defined by Stovas (2015)

[+ 2, 1+ 2175)

= [t el ],
Ty Lo, (A.11)

The eikonal equation in this case takes the form of

201



62’2 612 812 62’262’2
Voz(*j +(1+2n1)/n21(j +A+ 2N — —2771Vn21V02() (f]
oz OX oy

X 0z
or 2 or 2 or 2 or 2
—oapNAVEL = | =@+ 2 M+ 2, ) - [0+ sz(j = A.12
M2Vn2 o[ayj (62] (( ’71)( ’72) ( nxy)z)‘/nl n2| o o ( )
2 2 2
or\(or) (or
P 2v2v2H or (j 1
(771772 ny)‘/nl n2Vo ox oy pe

Solving the eikonal equation (A.12) with the corresponding perturbation series, we obtain the

series coefficients a® and b?, (i, j =1,2,xy) shown in Appendix C.

Similarly, we select another hyperbolic background model case with the horizontal velocities
and reparameterize the ORT eikonal equation and solve it by using the corresponding
perturbation series. The relation between horizontal and NMO velocities is given by

V,; =V,;4/1+2n,, j =12, and the relation between 5, and 7, is given in equation (A.11).

We define the case C by using V,, V,, and V,, as elliptical background model and the

perturbation parameters by 7,, 7, and n,. The eikonal equation is given by

2 2 2 2 2
R e e G B
fo4 X oy 1+2n, ox ) \ oz
217, 2.0 OT ? orY 2, o, 0T 2(or :
_1 2 thvo ~ A T Vh1Vh2 ~ || A
+217, oy )\oz) 1+2n, ox ) \ oy (A.13)
2
n _[ (1“'2771)(1“’2772) 1
112

142 _] 2000\ 0r
IR

(L+27, )1+ 27,) ox)\oy) \az

and the corresponding series coefficients a° and by, (i, j= 1,2,3) are shown in Appendix C.

For case D, we solve the ORT eikonal equation with horizontal velocities V,, and V,, and the

perturbation parameters 7,, 7, and 7,
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The corresponding series coefficients a° and bi;’ : (i, j=12, xy) are shown in Appendix C.

= (A.14)

To test the proposed method, we select case D as an example for ORT model with the

parameters: t, = 0.5s, V, = 2km/s, V,, =2.4km/s (V,, =2.191km/s), V,, = 2.6km/s

(V,, =2.28km/s), n, =0.1, , =0.15 and n, = 0.2(#,, = 0.0556). The coefficients

a’ ,bijD (i,k =1,2,xy) from equation (A.C8) are plotted in Figures A.5, A.6 and A.7. One can
see that the first order coefficients a” (Figure A.5) are of the same magnitude, while the

second order diagonal coefficients b, and b (Figure A.6) are slightly higher in magnitude

D

oy - The cross-term coefficients b3, b and by, are smaller

comparing with coefficient b 1y 23y

D
XyX

comparing with b}, by, and by, . Relatively large values of b,

5, and by - at azimuth of

+ /4 indicate the cross-talk between anelliptic parameters 7, and 7, 1, and 7, ,

respectively.

203



Figure A.5. The first order coefficients a,” (Top), a; (Middle) and a;, (Bottom) computed

from equations (A.C8) in ORT model.
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Figure A.6. The second order coefficients b} (Top), by (Middle) and b (Bottom)

Xyxy

computed from equations (A.C8) in ORT model.
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Figure A.7. The cross term coefficients b (Top), bfx’y (Middle) and b2, (Bottom) computed

2xy

from equations (A.C8) in ORT model.
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The anellipticity in terms of azimuth is given by Stovas (2015),

7, cos* @ T sin* @ My sin? dcos® ®

Vi Vi ViV
()= cos?d sin’d) ’ (A15)
V 2 + V 2
nl n2
where the group azimuth is defined by
tan® = % (A.16)

with x and y being the corresponding projections of radial offset.

The azimuth dependent anellipticity from equation (A.15) defined for ORT model described
above is shown in Figure A.8. We see that the anellipticity is very weak at the azimuth around

+ 7 /4 because the cross-term 7, in this model is very small, which can be observed from

coefficients b2 and b?

1y 2, Shown in Figure A.7.

Figure A.8. The azimuth-dependent anellipticity from equation (A.15) in ORT model.
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In order to obtain a higher accuracy, the Shanks transform (Bender and Orszag, 1978) is

applied for all these four cases defined in Table A.1 by the form given by

_ ToT T (A17)

3 1
T, +7,—27;

where 7, is defined in equation (A.C1) and 7, =7, + Y a/n, and r, =7, +b{n7;,
k=ADB,C,D.

To demonstrate equation (A.17), we select case D and use the ORT model with parameters
mentioned above. In Figure A.9 (Top), one can see the relative error in the estimation of
traveltime curves from the perturbation series approximation given in equation (A.C7). The
relative error in the estimation of traveltime from approximation with Shanks transform given
by equation (A.17) is shown in Figure A.9 (Bottom). One can see that the Shanks transform

results in one order improvement in traveltime accuracy.
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Figure A.9. The relative traveltime error for ORT model by using the perturbation series
approximation in equation (A.C7) (Top) and the one after Shanks transform in equation (A.17)

(Bottom).
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A.4 Numerical examples

To compute the traveltime for ORT model, we use exact parametric offset-traveltime

equations (Stovas 2015):

V2t
X(px’ py)= p«F, f1/21f03/2 '
1 12
V2t A8
y(px1 py): pyFl f1/22f03/2 ! ( )
1 2

t(px. y): to(Flp§Vn22 + Fz pfvni + f1 fz)

1/2 £ 3/2
fl f2

where xand y are the corresponding offset projections, p, and p, are the horizontal

slowness defined in two vertical symmetry planes, and

F, = (pvi2(2m —n,)-1f,

F, =(pavia(2n, - n,)-1f, (A.19)
fy =1 (L+ 20, )PV~ (L+ 27, ) pV3 + (1 27, Yo+ 27, )~ (Lo, F 22V 2V,

f, =120, DV ~ 27, D2V, + (4, — 2, )02 VAV,

Using the ORT model introduced above, the results of the Shanks transform applied for
perturbation series using these parameterizations are illustrated in Figure A.10. One can see
that the results obtained with the Shanks transform in case A are very similar with the results
obtained with the Shanks transform in case B, while the best results are obtained with the
Shanks transform in cases C and D (with horizontal velocities parameterization). The detailed

analysis indicates that the case D results in slightly better accuracy comparing with the case C.

In order to compare our results with other well-known moveout approximations, we select the
most accurate ones: from Sripanich and Fomel (2015) and Hao and Stovas (2016). The results
from these approximations are shown in Figure A.11. One can see that the Sripanich-Fomel
approximation is one order less accurate comparing with our best approximation, and the

Hao-Stovas approximation is slightly worse in accuracy.
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Figure A.10. The relative traveltime error for ORT model by using Shanks transform based
on different parameterizations (cases A, B, C and D correspond to the ones specified in the

main text).
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Figure A.11. The relative traveltime error for ORT model by using the approximations from
Sripanich and Fomel (2015) (Top) and Hao and Stovas (2016) (Bottom).

A.5 Conclusions

We developed a new moveout approximation based on the perturbation method with
alternative background model. We applied this approach for homogeneous VTI and ORT
media. We test our approach with different parameterizations both for velocities and anelliptic
parameters in ORT model. The comparison between the results from the standard moveout
approximations based on NMO velocities and two well-known moveout approximations
shows that the application of our proposed approach with horizontal velocities as a
background model results in a better traveltime accuracy. The parameterization with anelliptic
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parameters 7,,7,,7,, results in the best accuracy for traveltime estimation in ORT model.

The Shanks transform improves almost one order in trraveltime accuracy. This method is
applied for a homogeneous model but can be extended for a multi-layered medium.
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A.7 Appendix A

Fomel and Stovas (2010) proposed the generalized nonhyperbolic moveout approximation

(GMA) from the zero-offset ray and one additional nonzero-offset ray given by

t2 —t2[1+§<2 - 4’ j
¢! ,
1+ BX? ++4/1+2B%? + CX*
2
g 1t8n+8n° 182 25’7 (AAL)
cot -
(1+27)

where the parameters B and C are set for acoustic VTI medium, x is the normalized offset

defined by X = x/(t,V, ).

Alkhalifah (2011) proposed to expand the traveltime expression into series by anelliptic
parameter » (Alkhalifah, 1998) by solving the eikonal equation (Alkhalifah, 2000), where
n=(e-0)I(1+26) with parameters s and & being the Thomsen anisotropy parameters
(Thomsen, 1986).
2 2 2 2
2 or 2( 0T _, \2a2(07) (0T _ A_A2
v (1+2;7)(6X) +V°[azj ZUV"V"(ax] [82) 1. (A.A2)

The perturbation series is defined by
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T=ag+a+am?, (A.A3)

where the series coefficients are

aO =7 Vl+ )22
o4
alz—z'o V1+)22 X y
L+ 52f (AA4)

a, :TOW3£6‘4+ %2 ’
o+ s2f

Shanks transform is applied to the approximation presented in equation (A.A3) to obtain a

higher accuracy with the following form,

Aohy - AL

A HA -2A]
Ay =y, (A.A5)
A =ag +ay7,

A.8 Appendix B
In order to derive the perturbation series for traveltime, we solve the eikonal equation for VTI

media (Alkhalifah, 2000) with horizontal velocity,

2 2 2 2
vhz[alj +v02(ai] __ vhzvoz[alj [@j =1 (A.B1)
oX oz 1+27n ox) \ oz

A trial solution can be represented as a series expansion in parameter  from solving

equation (A.B1) by the perturbation method,

t=1,+by+bn® +b,n°. (A.B2)

where b;,j=13 are the coefficients of the expansion.
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The zero order term z,, can be obtained by solving equation (A.B1) with 7 =0,

(a;;) & +(667X0J V2 =1. (A.B3)

In succession, the first order coefficient b, can be obtained by solving the following equation

2
07 Oy 070 o (%%j VA, (A.B4)
0z oz OX OX OX 0z

The second order coefficient b, can be computed from the following equation,

{zpeLre )
2@

The third order coefficient b, is computed from,

(A.B5)

2 2
V 2 079 Obg V 2 079 Obg Vozvhz 9ny [ablj +28ﬂ% 28blab1+670[6b2_28b1]
OX OX 0z oz oz oX oX oz OX 0z 0z \ OX oX
L0 )| p0m0 00y (00 0m0 )| (ablab} (abl 0b,
ox oo oz oz o oz az )0 \ox ox

For a homogeneous VTI medium, these coefficients can be explicitly computed as

2
X
2
7, =.lt, +W’

Xt
b z'SVh2 ’
ot x*
AN
—tX4(Btév,! - 65t2V,2 %2 +8x* )
20VE '

(A.B6)

(A.B7)

, =—

b, =
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A.9 Appendix C
We can select different parameterizations for both velocities and anellipticity parameters. We

use the following parameterization cases shown in Table A.1: (V,,V,;,V,,,7:,1,,77,, case A),

(Vo.Var:Vaz 117705, 17, » €S€ B); (Vo Vi1, Vip,11,7,5, 75, €ase C) and (Vy,Vy,,Vy,,77,,77,.77,, » CaSE

D). In order to compute the perturbation coefficients, we have to reparameterize the ORT
eikonal equation and solve it by using the corresponding perturbation series shown in

equation (A.9).

Using the standard elliptical background model with vertical and NMO velocities and

anellipcitity parameters »,,7,,7,, the perturbation series for ORT model (Case A) is defined

by

r=1o+ Y aln + Y im0 j=123. (A.C1)
i [y

For a homogeneous ORT model, the coefficients a* and b;' are computed from equation
(A.10) and given by
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)T (rnx+r )
a, = 3 ,
To
T (Tz +7 )
A nx
a, = 3 y
To
2 2
A z-n><7'-ny
a; = T
To

2 (t4z'2y +(1§X +r§y )2 (BTSX +4r2 ) (122' +1772 72 oy +577 ))

bA_Tnx 0% n
11— '

2t}
b rnzy (tgr,fx + (ffx + z'fy )2 (31,3y + 42' ) (127 +171’nx oy +5r )) (A.C2)
2 22'0 '
bA 3rnx oy (t +37nxrny +1 (T,fx + T,fy ))
33 2‘['0 '
2
bA - z’nxrny (t + (rfx + rfy) - 7‘[5 (z'fx + z'nzy ))
12 — T; '
bA _ Tr?xfsy (tg + T:x nx ny ZT (7T:x + T:y ))
13 = 7 )
Ty
bA — T T ny(t4 +r nxrny 27 -t (7r§y +z':x))
23 T 7 1
Ty

where 7, =x/V,, and 7, = y/V,, .

Using the standard elliptical background model with vertical and NMO velocities and

anellipcitity parameters 7,,7, n,,, the perturbation series for ORT model (Case B) is defined

by

T= 70+Za 77,+Zb“77771, i, j=12,xy. (A.C3)

For a homogeneous ORT model, the coefficients a® and bijB are computed from equation
(A.12) and given by
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T
B nx
a’ =%,
Ty
4
ab = Ty
2 3
0
2 2
B TnxTny
Ay = 3
To
6 (452 2, 2
g 3Ty (4t0 +dr, + Tnx)
i = 7 .
2t
6 (452 2, 2
b = 3ty (4t0 +47, + 1ny) (A.CH)
2 = P .
To
2 24 2 2, 4 422, 2
bB _ 32-nxTny (Tnx Ty Tny + z-ny + tO (Tnx + Tny ))
xyxy ’
v 2t/
4 4
be - 97, Tny
12— 7
To
4 2 (g2 2 2
8 Ty <2t0 -7+ ZTny)
Ly — 7 !
To
4 2 (ng2 2 2
be _ 30, Tox (Zt0 —Tyt ZTHX)
2xy 7 .
To

Using the elliptical background model with vertical and horizontal velocities and anellipcitity

parameters n,,1,, 15, the perturbation series for ORT model (Case C) is defined by

T=1, +izaic77i +;bi§:ni77jv i,j=123. (A.C5)

For a homogeneous ORT model, the coefficients a° and b are computed from equation
(A.13) and given by
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Ty = ,[tg +rﬁx +T§y,

2.2
aC = l0%ix
1~ 3
%o
2.2
c_ to Thy
= 7
7o
22
¢ "nxThy
3 = 3 !
o
2.2 ( 2|2 2 2 2 2
blc _ 3t0 Thy (Thy (Thx + Thy )+ to (3Thx + Thy ))
1= 7 )
2‘[0
2.2 (.2 (.2 2 2 2 2
bc B 3t0 Thy (ThX (Thx + Thy )+ tO (3Thy + Thy )) (ACG)
22 — 7 7 )
21'0
2 2 (44 22 2(.2 2
bc _ SThXThy (to + 3ThXThy +t0 (ThX + Thy ))
33 = '
2‘[3
2.2 2 (2 2 2
c _ 3tOThXThy(ThX +Thy —Zto)
b5 = d ,
7o
2.2 2|2 2 2
c _ 3t0 Thxfhy (Thy - 2Thx +to )
bg = ] ,
o

2.2 _2(.2 2 2
3to ThXThy (Thx — ZThy +t0)

)
7

C
bgs =
where 7, =x/V,, and 7, = y/V,, .

Using the elliptical background model with vertical and horizontal velocities and anellipcitity

parameters 7, ,7, n,,the perturbation series for ORT model (Case D) is defined by

T=1o+ a7+ ) bimm, i j=12,xy. (A.C7)
i (Y]

For a homogeneous ORT model, the coefficients a” and bijD are computed from equation
(A.14) and given by
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2= 21'5 ’

3riz?
gxy = Zh%ghy(rﬁx + T,fy - forhzy +t§ (rﬁx + Tfy )),
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T T
D _ “hxhy 4 4 4 2.2 2(.2 2
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0
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Appendix B Three-dimensional generalized non-
hyperbolic approximation for relative geometrical
spreading

Shibo Xu and Alexey Stovas

Norwegian University of Science and Technology, Trondheim, Norway

Compensation for geometrical spreading along the ray-path is important in AVO (amplitude
versus offset) analysis since it contributes to the seismic amplitude preservation. The P-wave
geometrical spreading factor is expressed by the reflection traveltime described by a
nonhyperbolic moveout approximation using the traveltime parameters that can be estimated
in velocity analysis. The generalized nonhyperbolic moveout approximation (GMA) for
traveltime was proposed by Fomel and Stovas (2010) by using two reference rays. We
develop a 3D GMA type approximation for the relative geometrical spreading in a
homogeneous orthorhombic (ORT) medium using the same strategy. Two type of GMA form
approximations are defined by different selection of reference rays: two reference rays with
finite offsets and two horizontal reference rays in two corresponding vertical symmetry planes.
One horizontal ray in between the vertical symmetry planes is selected to compute the cross-
term coefficient in the approximation. In the numerical examples, we compare our proposed
GMA form approximations with other type of approximations in a homogeneous transversely
isotropic medium with a vertical symmetry axis (VTI), transversely isotropic medium with a
horizontal symmetry axis (HTI), ORT and multilayered ORT models and show that our GMA

type approximations are superior among all approximations.

Published in Geophysical Journal International in August 2017.
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B.1 Introduction

Geometrical spreading describes the amplitude decay of propagating waves and is one of the
most fundamental subjects in seismic data processing. It is important to prestack Kirchhoff
migration, amplitude versus offset (AVO) analysis and other seismic data processing methods
that require the true amplitude processing. If the velocity model is anisotropic, the amplitude
distribution along the wavefront of the reflected wave is changed significantly. Without an
accurate geometrical spreading correction, estimation of the reflection coefficient for targets
beneath anisotropic layers may be strongly distorted. In order to study reflection coefficients
as a function of offset or incidence angle, seismic date must be compensated for geometrical
spreading before AVO or amplitude versus angle (AVA) analysis. Although geometrical
spreading is a dynamic quantity, it is governed by the kinematic parameters of seismic waves.
The relative geometrical spreading can be computed by performing dynamic ray tracing when
the velocity model is available. Accurate information about the anisotropic velocity model for
the whole overburden is seldom available for practice. To avoid the use of numerical ray
tracing, expressing the geometrical spreading through traveltime of the reflection events
recorded at the surface using ray theory (Cerveny, 2001) is a more practical method for
seismic time processing. Therefore, it is convenient to express the geometrical spreading in
terms of the processing parameters that can be estimated from the nonhyperbolic velocity

analysis.

Ursin (1990) proposed a geometrical spreading approximation represented by traveltime
parameters for a layered isotropic medium. Cerveny (2001) developed an expression for
geometrical spreading in terms of the traveltime functions at the source and receivers
locations that is one of the practical contributions from the paraxial ray theory. Zhou and
McMechan (2000) derived an analytical formula for the geometrical spreading of P-waves in

a layered transversely isotropic medium with vertical symmetry axis (VTI) with the source
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and receivers in the same layer. Ursin and Hokstad (2003) extended the method of Ursin
(1990) for multiple reflected and converted P- and SV-waves in a layered VTI medium with
the source and receivers in different layers. The geometrical spreading of SV-waves in Tl
media was discussed by Tsvankin (1995, 2005). For azimuthally anisotropic media, the
geometrical spreading as a function of traveltime derivatives was derived by Xu et al. (2005)
who used the traveltime approximation from Tsvankin and Thomsen (1994).The geometrical
spreading correction for an azimuthally anisotropic medium was later derived by Xu and
Tsvankin (2006), and was extended for converted waves in a VTI medium (Xu and Tsvankin,
2008). The traveltime-based geometrical spreading approximation (based on the traveltime
approximation) in TTI media was derived by Golikov and Stovas (2013). The approximations
we mentioned above are using the traveltime approximation to compute the geometrical
spreading approximation, we refer these methods as the indirect type (traveltime-based)

approximations.

As the name indicates, the indirect type (traveltime-based) approximation for geometrical
spreading is defined from the traveltime approximation since the relative geometrical
spreading is expressed by traveltime and its derivatives. Instead of approximating the
geometrical spreading directly, these types of approximation are obtained by substituting the
traveltime approximation and its derivatives into the form of relative geometrical spreading.
Although the geometrical spreading factor is controlled by first- and second-order traveltime
derivatives, there is no guarantee that the most accurate traveltime approximation being used
in equations for geometrical spreading results in the most accurate geometrical spreading

approximation.

Different with the indirect type approximation, the direct type approximation is obtained by
approximating the geometrical spreading term directly. Using the horizontal slowness instead

of traveltime, the explicit form for relative geometrical spreading is derived from the exact
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parametric equation that obtained from dynamic ray tracing. In direct type approximation, the
accuracy of the approximation is decided directly by properly define the form of the
approximation. The first example of the direct type approximation for relative geometrical
spreading is done by Stovas and Ursin (2009) who developed the rational form approximation
directly. They showed that the direct rational approximation is simpler and more accurate than
the indirect counterpart for a homogeneous and multilayered VTI model. Xu and Stovas
(2017) proposed a direct approximation in GMA type for the relative geometrical spreading

for a VTI medium and compared them with the traveltime-based ones.

The orthorhombic (ORT) model is introduced by Schoenborg and Helbig (1997) and has
gained more attention due to the need to characterize the fractured earth and has become a
new standard to define model parameters to cover the azimuthal dependence of the traveltime
surface. Tsvankin (1997, 2012) defined nine elastic model parameters for ORT model that can
be reduced to six parameters in an acoustic approximation (Alkhalifah, 2003). The first order
curvatures are defined by the normal moveout (NMO) velocity ellipse (Grechka and Tsvankin,
1999a, 1999b), and the second order curvatures are defined by the azimuth-dependent
anellipticity. Stovas (2015) derived azimuthally dependent kinematic properties of the
orthorhombic media and defined the effective ORT parameters in the Dix-type formula in
layered ORT media. The VTI and HTI model can be considered as the special cases from the
ORT model by proper operating the ORT model parameters (Tsvankin, 1997; Stovas, 2015).
Sripanich and Fomel (2015) modified the anelliptic functional form of Fomel (2004) and
extended it to ORT model to approximate P-wave phase and group velocities. Xu et al (2017)
derived the perturbation-based traveltime approximations using the alternative elliptical
background model. Xu et al. (2017) developed an anelliptic approximation for the relative
geometrical spreading in a homogeneous ORT model with the coefficients defined within the

symmetry planes and showed its superior accuracy compared with the traveltime-based one.
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Fomel and Stovas (2010) derived a generalized nonhyperbolic moveout approximation (GMA)
for the traveltime approximation defined from zero-offset and one nonzero-offset ray
computation, which is very accurate even as good as exact for many practical implement such
as the model parameters estimation in velocity analysis. Sripanich et al. (2016) extend it to the
3D multi-azimuth case using zero-offset attributes and four additional far-offset rays.

In this paper, we revisit the direct type GMA form approximation for the relative geometrical
spreading in a VT1 model and propose a direct rational form approximation in a homogeneous
ORT model. We subsequently extend the 2D GMA approximation to 3D case in the
homogeneous ORT model by using different selected rays: two reference rays with finite
offsets and two horizontal reference rays in two vertical symmetry planes and one horizontal
reference ray in between the vertical symmetry planes. The acoustic approximation is used to
reduce the number of parameters that makes the forms of direct GMA relative geometrical
spreading approximation similar to the GMA traveltime approximation (Fomel and Stovas,
2010). Using the numerical tests in different models, we show that the proposed 3D GMA
type approximations perform several orders of magnitude more accurate than other form of

approximations in all tested models.

B.2 Relative geometrical spreading in a VT model

The geometrical spreading is given in Cerveny (2001) as

€0S s Cos b,
L= S R 1
| ldetm B

where 6, and 6 are the angles between the ray and the normal to the surface measured at the

source and receiver, respectively, and M is the second order derivatives matrix given by
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: (B.2)

where T is the traveltime, (x,,y,) and (XR,yR) are the lateral coordinates of source and

receiver, respectively. Note that equation (B.1) gives a general form for geometrical spreading.

The relative geometrical spreading in a VT model is given by (Ursin and Hokstad, 2003)

_ -1/2
E :Q[Eﬂj ”szt] , (B.3)

X dx dx?
where Q is the radiation pattern given by Q=/coség cosdy , t is the traveltime in VTI

model. In our paper, we focus only on the term £, we call it the relative geometrical

spreading factor that is given as

1dtd2)
L = 2ety B.4
N (de dxzj ( )

Note that £ =QL, . The relative geometrical spreading factor £y given in equation (B.4) can

also be written as a function of horizontal slowness p with p=ét/ox as follows (Stovas and

Ursin, 2009)

X dx 1/2
Ly () | (B.5)
pdp

For a homogeneous VTI model, the offset can also be given in terms of horizontal slowness,

2
®= Do

2 : (B.6)
1—277p2Vn2)3 J1-(1+27)p?V2
where t; is the vertical travel time, V,, is the normal moveout (NMO) velocity and 7 is the

anellipticity parameter (Alkhalifah, 1998). Substituting equation (B.6) into equation (B.5)

gives (Stovas and Ursin, 2009)
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§ (- 2np2v2 P l- @+ 27)p2v2)

(B.7)

Instead of using the traveltime derivative form approximation in equation (B.4), equations
(B.6) and (B.7) give a parametric equation for relative geometrical spreading £y in terms of

horizontal slowness.

B.3 GMA-type geometrical spreading approximations

The generalized nonhyperbolic moveout (GMA) approximation proposed by Fomel and
Stovas (2010) is based on parameters computed from the zero-offset ray and the reference ray.
The direct GMA type approximation of the relative geometrical spreading in VTI model is

given by the similar form (Xu and Stovas, 2017),

2A %4

o2
‘EN(GMA)ZI:O 1+A2X + ") = = |
1+CyX° +4/14+2C,X° +CyX

where % is the normalized offset defined by X =x/(tV,), Lo =t,V,2, Ay and A, are the

(B.8)

Taylor series coefficients computed in zero offset ray given as

A, =1+8n, Ay = -95(1+4n) (B.9)
To compute coefficients C, and C,, we use similar approach as for GMA traveltime
approximation (Fomel and Stovas, 2010). For a given reference ray, we define £, and
df, /dx . Being converted for normalized offset X , they result in two equations:
W, = Ly ()2: )Z) and W, =d L, /d% (>2= )Z) The coefficients C, and C, take the following

form
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2L AXK W,  20,AX°
200X —2W, X +W, X2 Lo =W, + LoA X2

2

- 2 (B.10)
o - (2L, X W, | L AL,
4 =7 " ~a
X220, - 20y +W, X Lo —Wy + LoA X ?
For a horizontal reference ray, the coefficients C, and C, take the form,

c 18741+ 25 (1+4n)

27 lvop@+sn)-1

(B.11)

[ \i+2np(+8p)-1
JL+2n -(+2n)(+6n))

Two types of the GMA form approximation are defined with reference limited offset GMA
at X =2.5 and the infinite offset limit GMA,,. The form of two GMA type approximations is
the same shown in equation (B.8). The difference is the computation for coefficients C, and
C, . Using the horizontal ray, the coefficients C, and C, are offset independent and
represent only in anellipticity parameter 7 explicitly. Using the reference ray, the information
about the geometrical spreading at certain normalized offset X are involved in the

approximation for relative geometrical spreading.

We show their relative error in a homogeneous VTI model (Figure B.1, left) with parameters
ty =1s, V, =2km/s and 77 =0.2 and a five-layer VT model (Figure B.1, right) with the
parameters in Table B.1. One can tell that the GMAy approximation results in better

accuracy comparing with GMA,, in both homogeneous and multi-layered VTI models.
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Layer Z (km) Vo (km/s) V,, (km/s) n
1 0.3 15 1.7 0.1
2 0.7 1.8 2 0.12
3 1 2 2.3 0.18
4 15 2.2 25 0.2
5 0.5 25 2.8 0.22

Table B.1. The model parameters in a multilayered VTI model.

L

1.0

1.0

15

20 25 00

Normalized offset (%)

0.4 08

08 1.0 1.2

Offset—Depth ratio (x/z)

Figure B.1. The relative error in relative geometrical spreading of two type of GMA

approximation in homogeneous (left) and multi-layered (right) VTI models. The result from

GMA,, and GMAy are computed from infinite and reference offset limit and shown by solid

and dashed lines, respectively. Note that normalized offset X = x/(toV,) .

B.4 Direct relative geometrical spreading in a homogeneous ORT model

For a homogeneous ORT model, we introduce two lateral offset projections

X=Xg — Xg,
Y=Yr—VYs-

The matrix M in equation (B.2) takes the form

229




s

ox? @
M= .
o o 51
ayox  py?
In phase domain, the relative geometrical spreading £y can be given by
1/2
Ly =| Xy Yy x| (B.14)
dpy Py py Py
To compute the geometrical spreading for a homogeneous ORT model, we use exact
parametric offset equations (Stovas, 2015):
Vit
X(px. py)= PxFE 0,
X Py X f11/2 f23/2 (B.15)

Vot
2 2'0

Wb py)=pyFi 220
1 2

xand y are corresponding offset projections, and
F=1- pfvnzl(zﬂl —Txy )v
F,=1- p5Vn22 (2’72 ~Txy )v (B.16)
fy=1- (1+ an)pivnzl - (1+ 2n, )p§Vn22 + ((1+ 2771)(1+ 2'72)— (1+ Ty )2 )pf P§Vn21Vn221

fo=1-2m ngnzl -2, P;Z/Vnzz + (4'71772 - U)%y )Pf p§Vn21Vn22 ,

where Vg, V1, Vp, are vertical and corresponding NMO velocities defined in [XOZ ] and
[YOZ] planes. Anellipticity parameters 7, and 77, are defined in symmetry planes [XOZ] and

[YOZ], respectively. The cross-term anellipticity parameter »,  is defined as (Stovas, 2015)

(l+ 2771)(1+ 2772)
= |[—= -1 .
Ty 1+ 27, (8.17)

where anellipticity parameter 75 is defined in [XOY] plane (Vasconcelos and Tsvankin,

2006).
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The relative geometrical spreading for ORT medium is given by Stovas (2017)

F,F
Ly =toVVn2 ﬁmv (B.18)
2 f

where

fn =1 A PRV, + 4175 p§Vn22 — 617y (L+ 271 )PVt — 615 L+ 20 )D 3V
+ 2(8'71772 ~Myy (3 +97yy ))pi p§Vn21Vn22
~6(L+ 2 )(4771’72 - 77>%y )pf p§Vn41Vnzz —~6(1+ 27, )(4771772 - U)%y )pf p§Vn21Vn42
0l 2 Y+ 20 ) Lo g I Jamun, ~n, o iV S

(B.19)

B.5 Direct type approximations for relative geometrical spreading in ORT

model

In ORT model, the limited Taylor series for relative geometrical spreading up to the forth

order in terms of two offset projections x and y, is shown as

B.20
Ly =ag +a20X2+a02y2+a40x4+a04y4+a22x2y2, ( )
where the series coefficients computed in zero offsets are given by
gy = LV Voo,
a :Vn2(1+6771+77xy)
“ tOan ,
a =an(1+6772+77xy)
” tOVnZ ’
B.21
a. —— 9771Vn2(1 + 4771) ( )
“ AR
a. —— 9’72Vn1(l+ 4772)
* tgvnsz '
a _ 9<_ 4771772 + Tlxy + 277177xy + 27]277xy + nfy)
22 — .

tg’\/nl\/nz
We first define the direct rational form approximation similar to (Vasconcelos and Tsvankin,

2006) for the relative geometrical spreading by
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a,oX' +ay Y’ +a,x"y’ (B.22)

LN:aoo+a20X2+aozy2+ 14b. %2 +b.v2 !
+0,0X" +D0g, Y

where the coefficients a,,, a,,, &g, a,, &, and a,, are given in equations (B.21), the
coefficients b, and by, are computed separately from asymptotic behavior of £, in [XOZ]

and [YOZ] symmetry planes, respectively (Appendix B).

We also develop the GMA form approximation for the relative geometrical spreading:

2A,(x,Y) (B.23)
1+ 52 (X, y)+ \/l+ 262 (X, y)+ 64 (%, y)

Ly =ay +'K‘2(X,Y)+

where

" 2 2

Az =8xX" +a,Y,

A, =a,x" +a,,x’y? +a,y*

y = Ay 2X"Y Y (B.24)
~ 2 2

Cz =CyuX +CrY ",

~ 4 2.2 4

Cy =CuoX" +CpX Y  +Co Y .

The coefficients a,,, a,,, ay,, a4, &, and a,, are given in equations (B.21). The
coefficients c,,, c,, and c,,, C,, are computed from two reference rays separately in [XOZ]

and [YOZ] symmetry planes, respectively (Appendix C). Note that the rational type

approximation can be easily converted from GMA type approximation by setting

— 2 — 2 —
Cao = Ca0s Coy =Cpp) Cpp = 2Czocoz'

Similarly to the VTI case, we define two types of GMA form approximation for ORT model

from two groups of reference rays: Lyguay) @nd Lycwma,, - FOr reference offsets case
(L (emay))» We Use two rays 1 and 2 with offsets (d,0) and (0, d) in two vertical symmetry
planes and ray 3 with offset (d, d). The coefficients c,,, ¢,y and ¢, c,, are computed from

the reference rays 1 and 2, respectively. The cross-term coefficient c,, is computed from ray
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3. Another infinite offsets case ( Ly ua,)) can be obtained by sending d to infinity for rays
1 and 2 (they become horizontal rays) and keeping finite d for ray 3. In order to see
difference of selecting different d along ray 3, we introduce a homogeneous ORT model with

the parameters: (To =1s, Viy =2km/s , V, =2.5km/s, 7 =0.2,. 7, =0.1 and 7,, =0.15)
and show the relative error of Ly s,y selecting different d by d =2 (top), d =4 (middle)

and d =10 (bottom) in Figure B.2. The error is small for short offsets for the case d =2, but
increasing greatly along the offsets especially for the diagonal direction. The maximal error is
increasing when we increase the value of d from the comparison between the cases d =4

and d =10.
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Figure B.2. The relative error in relative geometrical spreading Ly gua,) Using the constrain

pointat d =2 (top), 4 (middle) and 10 (bottom).

For GMA type approximation computed from the finite-offset rays ( Ly gwa, ) the selection

of the reference offsets depends on the acquisition part. When fixing the computation area, the
certain reference offsets (X and Y ) and the information at these offset are involved in the

computation of the relative geometrical spreading. Since the information about the certain

234



offsets is obtained in advance from the acquisition process, the approximation Ly guay)

using the certain reference offsets is more accurate and preferable.

B.6 Numerical examples

To test the accuracy of the proposed approximations, we compare our GMA type

approximations ( Ly gmay) and Lygma,)) With other approximations: traveltime based

approximation (TBA) (Xu et al. 2005), indirect rational approximation (IRA) (Appendix D),
direct rational form approximation (DRA) in equation (B.22) and anelliptic form
approximation (AFA) (Xu et al. 2017) shown in Table B.2 in a homogeneous VTI, HTI, ORT
and multilayered ORT models. Note that approximations TBA and IRA are all traveltime
based approximation, the difference between them is the form of the traveltime approximation.
We use the constrain point d =4 in ray 3 for both two GMA type approximations:

Ly eMmay ) 3N Ly gma,, for the following numerical examples in homogeneous VTI, HTI

and ORT models. The exact results for relative geometrical spreading used in the numerical
examples are obtained by dynamic ray tracing shown in parametric equations (B.14) and

(B.15).
Homogeneous VTI model

We first consider a homogeneous VTI model which can be treated as a special case from ORT
model with the parameters setting by: (To =1s, V3 =V, =V, =2km/s, n, =n, =n=0.1
and 7, =257 =0.2). The relative error from the approximations TBA, IRA, DRA and AFA
and two GMA type approximations Ly gmay ) @d Lygma,) are shown in Figure B.3. One

can see from the comparison that GMA type approximations are more accurate than other
approximations while the approximation from the direct rational form is the worst. Among

two GMA approximations, the one with reference offset £y gua, ) is more accurate.
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Homogeneous HTI model

The HTI model is obtained by using the model parameters: (V, =1.8km/s,z=1.8km,
Vg =2.2km/s , Vo, =V =18km/s, 7, =0.1, 7, =0 and 7, =0), where V; is the
vertical velocity and z is the depth associated with the vertical traveltime by Ty =z/V,. The

relative error from TBA, IRA, DRA, AFA and two types of GMA form approximations are
shown in Figure B.4. The GMA type approximations show several orders of magnitude more
accurate than other approximations while the traveltime-based approximation TBA (Xu et al.

2005) is the worst.
Homogeneous ORT model

We use the homogeneous ORT model introduced above and show the relative error of
geometrical spreading from TBA, IRA, DRA and AFA approximations and our proposed two

GMA type approximations Ly gmay) @d Lygma,) in Figure B.5. One can tell from the

comparison that the GMA type approximations are the most accurate ones, while the rational
form approximation (DRA) is the worst. Compared with accuracy in GMA type
approximation, anelliptic form approximation (AFA) is slightly less accurate. The

approximations Ly gmay y@Nd Lygma,) resultin almost the same accuracy.

Multi-layered ORT model

For the multilayered ORT model, we use a 3-layer ORT model with the parameters shown in
Table B.3. We apply all mentioned approximations from the homogeneous ORT case to
multilayered ORT model with the effective parameters computed from the Dix-type equations

(Stovas, 2015):
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m 4
) §1(1+8’711)/n11‘01
m=z| 1|, (B.25)
8 Vito
m 4
1 _Zl(l+8n2,-)/n2,-to,-
~ J:
Mm=gl" s~ -1)
8 Voot
m 2\,2
1 _21(1+ 4’7xyj )‘/nljvnzjtoj
~ J:
Ty =7 ENEE -1
4 VitVnalo

where the symbols with index j denote the individual layer parameters, the symbols with

tilde denote the effective parameters, m is the number of layers the wave passing through.
Note that the expressions for geometrical spreading approximation we use are computed from
homogeneous model with the effective model parameters computed from Dix-type equations.

To compute the error for multi-layered case, the model parameters in exact expression (tp,

Vo, Voa. 7, 712 and 77, ) become depth dependent (t[j], Viu[i], Via[il, mlil, 72[i] and
nxy[j]), and the exact geometrical spreading is computed from the integral for equations
(B.18) along the depth.

We show the relative error of these corresponding approximations above versus offset-depth
ratio in Figure B.6. One can see from the comparison that the GMA type approximations

perform better accuracy than the others while the direct rational form approximation (DRA) is
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the worst. The GMA type approximation computed from the reference normalized offset

(L omay ) Performs the most accurate result among all approximations.
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Figure B.3. The relat?ve error in relative geometrical spreading fro?n the traveltime based
approximation (TBA) (Xu et al. 2005) (top, left), indirect rational approximation (IRA) (top,
right), direct rational form approximation (DRA) (middle, left), anelliptic form approximation

(AFA) (Xu et al. 2017) (middle, right), GMA form approximation GMAy (bottom, left) and

GMA,, (bottom, right) computed for a homogeneous VTI model.
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Figure B.4. The relative error in relative geometrical spreading from the traveltime based
approximation (TBA) (Xu et al. 2005) (top, left), indirect rational approximation (IRA) (top,

right), direct rational form approximation (DRA) (middle, left), anelliptic form approximation

(AFA) (Xu et al. 2017) (middle, right), GMA form approximation GMAy (bottom, left) and

GMA,, (bottom, right) computed for a homogeneous HTI model.
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Figure B.5. The relative error in relative geometrical spreading from the traveltime based
approximation (TBA) (Xu et al. 2005) (top, left), indirect rational approximation (IRA) (top,
right), direct rational form approximation (DRA) (middle, left), anelliptic form approximation

(AFA) (Xu et al. 2017) (middle, right), GMA form approximation GMAy (bottom, left) and

GMA,, (bottom, right) computed for a homogeneous ORT model.
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Figure B.6. The relative error in relative geometrical spreading from the traveltime based

approximation (TBA) (Xu et al. 2005) (top, left), indirect rational approximation (IRA) (top,
right), direct rational form approximation (DRA) (middle, left), anelliptic form approximation

(AFA) (Xu et al. 2017) (middle, right), GMA form approximation GMAy (bottom, left) and

GMA,, (bottom, right) computed for a multilayered ORT model.
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Geometrical spreading

Type Form
approximation
-1/
’ _[[GZT 62T] [GZT 02T D e
i imati " o 7 )| oy avax
Traveltime based approximation Indirect ox* oy X3y Oyox
(TBA) The traveltime approximation T is shown in Tsvankin
and Thomsen (1994)
-1/2
B [[62T 62T] [62T o%T D
irect rati imat Vo o7 ) oxay avex
Indirect rational approximation Indirect x> oy X3y OyoX
(IRA) The rational traveltime approximation T is shown in
Appendix D.
Direct rational imati L —a +a.x’+a z_’_3-40)(44'3‘043’4"'azzxzy2
irect rational approximation Direct N =g 3y 2y Trbyx?byy?
(DRA) L . .
The coefficients are shown in equations (21) and (B4).
- o Ly =H(-S)+SVH? +F,
Anelliptic form approximation Direct
(AFA) The anelliptic form geometrical spreading approximation
is shown in Xu et al (2017).
GMA approximation with ' £y =gy + Ay (X, y) 4 —— 2A4(x~, y) _
reference offset Direct 14 Cy (X, y) + 41+ 2C5 (%, y) +C4 (X, Y)
(GMAY) The coefficients are shown in equations (21) and (C2).
GMA approximation with N x
e . . Ly =8, +A(X,y)+ 24, (x )
infinite offset Direct

(GMA)

1+62(x, y) +\/1+ Zéz(x, y) +64(x, y) l

The coefficients are shown in equations (21) and (C3).

Table B.2. Six approximations for the relative geometrical spreading computed in the

numerical examples.
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Layer | z(km) Vo(km/s) Vi (km/s) | Vy,(km/s) m 175 Ny

0.25 15 1.65 1.8 0.05 0.08 0.2
0.75 1.8 2 2.2 0.1 0.1 0.18
1 2 2.2 2.15 0.08 0.12 0.22

Table B.3. The model parameters in a multilayered ORT model.

B.7 Discussions

For multilayered case, the expressions for geometrical spreading approximation we use are
computed from homogeneous model with the effective model parameters computed from Dix-
type equations. Compared with the other cases, the GMA type approximation computed from

infinite offset limit ( Ly gua,)) @nd the anelliptic form approximation (AFA) are less accurate

for multilayered case. That is because the coefficients in the approximations are computed
from the horizontal ray (infinite offset), while, it is impossible to trace the horizontal rays for
multilayered ORT case, which means that the assumption for infinite offset limit is not
availed anymore. After using the Dix-type equations for effective model parameters, the
approximations used for multi-layered ORT case are become effective homogeneous, while
for the computation of the exact form, we still need to take the properties of each individual

layer (to[], Via[il. Vaalil, mli]. m2[i] and 7,,[i]) into considersion that is different with

the exact form calcualtion in homogeneous ORT case, which explains the difference in the

error plot in Figure B.5 and Figure B.6.

For GMA type approximation computed from reference offset (£ (GMAX)), the expression

computed from homogeneous ORT model is still applicable since the information at certain

reference offsets X and Y are needed for computation regardless the model is homogenous
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or not that explains the more accurate result from £y ya, , compared with the horizontal

rays case Ly gwva,) in multilayered ORT model in Figure B.6.

The application of GMA type approximation with the reference rays is not straight forward
because the coefficients Wy, Wy, and Wy, Wy, are not available in the practical use. In
order to compute them, the information about the traveltime function and its derivatives are

required. For example, the coefficients Wy and Wy, in [XOZ] symmetry plane can be

computed as follows. For Wy can be obtained from corresponding value of £y (X,0),

-1/2

0%T 0°T  0%T %1

Wy, = (_ | (8.26)
x=X,y=0

The coefficient Wy, can be obtained by taking corresponding derivative 0Ly (X,0)/0x,

+ J— J—
ox2oy Oyox  oyox? oxdy  ox® oy?  oylox ox?
3/2
[82T 2T o°T aZTJ

[a% 22T 8% 82T o%T o1 &% 62T]
Wy, = (8.27)

x=X,y=0

Note that computation in equations (B.26) and (B.27) requires information about traveltime

derivatives up to the third order taken at the reference offset.

The VTI and HTI model can be considered as the special cases from the ORT model by
resetting the model parameters: for VTI (Vjy, =V, =V, 1y =1 =1 and 7y, = 27 ); for HTI
(Vp2 =V, 7,=0 and Ny =0 ). For GMA type approximation with reference rays

Ly emay ) the contribution is equivalent for the reference rays at (d,O) and (0, d) in VTI

case and (0,0) and (0,d) in HTI case due to their equivalent properties, respectively.
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B.8 Conclusions

We develop the direct rational and GMA type approximations for the relative geometrical
spreading in a homogeneous ORT medium. The acoustic approximation is used to reduce the
number of medium parameters that makes the GMA form of direct relative geometrical
spreading approximation similar to the GMA traveltime approximation. Two types of GMA
form approximations are defined from the reference offsets and the infinite offsets assumption,
respectively. One horizontal ray in between the vertical symmetry planes is selected to
compute the cross-term coefficients in the approximation. We also apply our approximations
for a multilayered ORT model with the effective parameters computed from the Dix-type
equations. In the numerical examples, we test our proposed approximations with other direct
and indirect type (traveltime-based) approximations in a homogeneous VTI, HTI, ORT and
multilayered ORT models. We show from the comparison in the numerical examples that our

GMA type approximations perform the best regardless to the model.
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B.10 Appendix A
The GMA type approximations of the direct geometrical spreading in a VTI model.

The generalized nonhyperbolic moveout (GMA) approximation proposed by Fomel and
Stovas (2010) is based on parameters computed from the zero-offset ray and the reference ray.
The direct GMA type approximation of the relative geometrical spreading is defined by Xu
and Stovas (2017)
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2A,84

1+C,%2% +41+2C,%% +C,&*

where £, =t,V,2, A, and A, are the Taylor series coefficients computed from zero offset

£N =£O 1+ Aziz +

(B.A1)

limit given by

A, =1+8n, A, = 971+ 4n) (B.A2)
For a horizontal reference ray, we define two asymptotic terms of geometrical spreading in

GMA form at infinite offset,

. L
lim =N
R—00 )'{2

=m,,
(B.A3)

. A2 _
jlm(LN —m,X )_mo,
X—©

where mg and m, corresponds to the asymptotic intercept and asymptotic slope, respectively.
Computing these limits gives
L

1+2p (B.A4)
My = Lo (L+6n7)1+27)*'2.

m2=

:

To compute these asymptotic parameters from proposed approximation (B.Al), we take the

corresponding limits,

L) LA +AC, +4C)
( j_ c,+Jc,

M, = lim(L, -M,&2)= L, s LM

X—® \/a

By fitting m,with M, and m, with M, respectively, we obtain the coefficients C, and C,

(B.A5)
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c, o Loho—my  2LA,
P L-my LA -my

C, - LoAy —m, ?
Clnem )

(B.A6)

substitute m, and m, from equations (A4) results in

o 18n74/1+ 217 (1+ 47)
| = NEE AT )

J1+2p(+87)-1"

c—[ VL+2p(1+8p)-1 ]2
JL+ 2y -+ 2n) L+ 69) )

(B.A7)

B.11 Appendix B

The direct rational form approximation for relative geometrical spreading in ORT

model.
The rational approximation for geometrical spreading in a homogeneous ORT media is

defined by

X" +ag,y" +2,x7y’ (B.B1)
T+byx? +by,y®

2 2
Ly, =ay,+a,Xx +a,y +

where the series coefficients ay,, a,, a,,, 8,4, a5, and a,, are obtained from the

zero-offset expansion given in equations (B.25). Similar to the rational approximation in VTI

case, we calculate the coefficients b,y and by, separately from two VTI cases in two

symmetry [XOZ] and [YOZ] planes, respectively.

In [XOZ] plane, we calculate the asymptotic term at infinite offset limit by setting the

slowness p, into zero gives

(1+ My )‘/nz
m=———-, .
" (l+ 2n, )B/ZanTo (8.52)
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and the term in [YOZ] plane

(1+ nxy )‘/nl
m=—"%
! (l+ 27, )3/2Vn2T0 (B.83)

The coefficients b,y and by, are represented by the zero-offset coefficients and the infinite

terms given by

by = a Doz = : (B.B4)

B.12 Appendix C

The direct GMA form approximation for relative geometrical spreading in an ORT

model.

The GMA form approximation for the geometrical spreading given by

Ly =a,+ azox2 + aozy2
| 2(a40x4 +a,Xyt + a04y“) (B.C1)

2 2 2 2 4 2,,2 4
1+CuX° +CpY +\/1+2(czox +Cp Y )+c4ox +C, XY +Cy Y

Similar to the rational form approximation, the coefficients a,,, a,,, 8y, 84, 8y and a,,
are obtained from the zero-offset expansion given in equations (B.21), the coefficients c,, ,
Cyys Cag and cqy are computed separately from two VTI cases in two symmetry [XOZ] and

[YOZ] planes, respectively.

To compute the coefficients c,, and c,q, we use the similar approach as in the VTI case. For
the given reference rays in [XOZ | symmetry plane, we define £, (%,0) and d£y /d&(%,0) by
equations: W, = £, (X,0) and Wy, = dLy, /df (X 0). The coefficients c,, and ¢y, take the

following form
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B 2Lya,X -W,, B 2L,a,X 2
2L,K —2W, X +W,, X% L, W, +Loa, X2
~ 2
(2L,8,0X ~W,, | . 4La, |
)22(2£0—2\Nx1 +Wx2)2)2 L, _Wx1+£oazox2

(B.C2)

Cyp =

For [YOZ]symmetry plane, for a normalized Y , the coefficients c,, and c,, are computed

from similar equations: W,, = £, (O,\?) and Wy, =dZy /d§ (0,Y). They take the following

form
2= = = ~— =~
% 2L WY + Wy Y2 Ly Wy + LoagY 2
R (B.C3)
04 —

Y2(2£0 — Wy, +WY2V)2 Lo -Wyy + LoagyY
For two horizontal reference rays, the coefficients c,,, Cy,, C49 and cq, are computed from
the asymptotic terms within two corresponding symmetry planes, respectively. In [XOZ]

symmetry plane, we calculate the asymptotic behavior at the infinite offsets limit, the
asymptotic intercept and the slope are given by
£N ()210) (1+’7xy )‘/nz

S, :[im( — j:— .
RS A2, 1V, (B.C4)
Sw= Iiim(ﬁw ()A(lo)_sxzf(z):_ 1+2m, TV Vo, (1+772(8+6’7xy ))

The asymptotic intercept and the slope in [YOZ] plane are given by

(09 e,
SyZ =lim o2 - 3/2 '
. y (1+ 27, ) ToVas (B.C5)
Syo = y_@o(fw 0,9)- Sy2 92 ): —1+27,T VvV, (1+ 771(8+ 677xy ))

The series coefficients c,q, Cpy, C4g and Cp, are subsequently given by the forms:
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2 2
ayy — 2809849 *+ 28498 yg — 2850552 + Sy,

Cyo = )
2 (ago — Sxo Xaz0 — Sx2)
o aby — 2ap984 + 280480 — 280;Sys + Sy
2 (ago - Syo Jaoz - SyZ) l (B.C6)
- (a0 ~ Sx0)? .
40 — 2
(ago — Sxo)
B (aoz =Sy )2
R .-
00~ Syo

B.13 Appendix D

The indirect rational form approximation for relative geometrical spreading in an ORT

model.

To compute the indirect rational form approximation for relative geometrical spreading in an
ORT model, we first need to derive the traveltime approximation from the exact traveltime

equation (Stovas, 2015):

To (F12 PV +F PV + £y fz)

y ''n2

1/2 £3/2
fof

. (B.D1)

T(p. py) =
where the functions F,, F,, f, and f, are given in equations (B.16) in the main text.

A rational form similar to (Vasconcelos and Tsvankin, 2006) approximation for the traveltime

in ORT model is defined by

A40X4 + Azzxzy2 + Aoay4
1+(B,px? + By, y?)

TRZA = Aoo + Azox2 + Aoz yz + (B.D2)

where the coefficients Ay, Ay, Ay, Ay, Ay, and Ay, are computed from the Taylor series at

zero offset are given by
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1 1

= tz , =—F, =—,
A=t Ay =y A =
(B.D3)
- _ 2771 AO — _ 2772 A2 - _ 277xy .
" tgvni , ) t(?Vn42 7 ? tOZV nZanZZ

Two asymptotic terms in [XOZ] and [YOZ] symmetry planes are computed respectively by

infinite offsets limit given by

2
Ky = lim © (’;’0): L
X—0 X (1+ 2771an)
20.y) . (B.D4)
Ky = lim —— = .
yoo oy (1+ 2772Vn2)
The remaining coefficients B,, and B, are computed by
A
Bzo == AQ iOK
o (B.D5)
B _ A04
02 K
AOZ y

We show the relative error from rational form approximation in equation (B.D2) and the one
from Tsvankin and Thomsen (1994) using the homogeneous ORT model defined in the main
text in Figure B.7. We can see that the proposed rational form approximation is more accurate

than the one from Tsvankin and Thomsen (1994).

The indirect rational form approximation for relative geometrical spreading is given by the

derivatives of traveltime approximation in equation (B.D2) with respect to the offsets given

by

2 2 2 2 -z
Lo O Tea 0Tga | [0 Tga O Tia . (B.D6)
N ox?  oy? X0y Oyox
Note that the indirect rational form approximation in equation (B.D6) is algebraically

complicated due to the second order derivatives.
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Figure B.7. The relative error in traveltime from rational form approximation shown in
equation (B.D2) (left) and from Tsvankin and Thomsen (1994) (right) in a homogeneous ORT
model.
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(3.16) and their errors are shown in dashed and dotted lines, respectively. The exact imaging

moveout curve is shown by solid line.

Figure 3.8. (a) The common shot gather for the diving wave from the synthetic data with the
parameters V, = 2km/s, G, =15s™, £ =0.22 and 7 = 0.1. (b) The common shot gather for
the diving wave from the synthetic data with the parameters V, = 2km/s, G, =2s™,
£=0.22 and n=0.1.

Figure 3.9. The common image gather for the diving wave when applying the anisotropic

RTM with the accurate parameters.

Figure 3.10. (a) The common image gather when using the isotropic RTM with parameters
V, =2km/s, G, =15s", £=0.22 and n =0.1. (b) The common image gather when using
the isotropic RTM with parameters V, = 2km/s, G, =2s™, £=0.22 and n=0.1. We
overlay the residual curve predicted by the imaging moveout from rational approximation R,
in equation (3.16).

Figure 3.11. The semblance plots for different parameterizations computed for factorized
model with G, =1.5s™" (a) V,, -fixed, &,,; (b) V,, -fixed, ¢,5; (c) V,-fixed, 5,V ; (d) V, -
fixed, &,V,,. The anisotropy parameters can be evaluated from the coordinates of the maximal
value of the semblance plot.

Figure 3.12. The semblance plots for different parameterizations computed for factorized
model with G, = 2s™ (a) V,, -fixed, &,7; (b) V, -fixed, ¢,5; (c) V,-fixed, 8,V ; (d) V, -
fixed, &,V,,. The anisotropy parameters can be evaluated from the coordinates of the maximal

value of the semblance plot.
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Figure 3.13. The ray trajectory of the diving waves.

Figure 3.14. Subsurface image gathers in offset pulled from left (a) (4400m) and right (b)

(4600m) of the model migrated with the correct velocity.

Figure 4.1. The unsmoothed and smoothed composite parameters (left). The same composite
parameter with compensation functions (right). The unsmoothed and smoothed parameters are

shown by solid and dashed lines, respectively.

Figure 4.2. The composite parameters m, (top), m, (middle) and m, (bottom) before and

after smoothing for VTI model. The unsmoothed and smoothed parameters are shown by

solid and dashed lines, respectively.

Figure 4.3. The model parameters V, (top), V,,,, (middle) and ;, (bottom) before and after

smoothing for VTI model. The unsmoothed and smoothed parameters are shown by solid and

dashed lines, respectively.

Figure 4.4. The kinematic parameters V,  (top) and 5 (bottom) computed for isotropic

nmo
model.

Figure 4.5. The smoothing induced anisotropy parameters s (top) and & (bottom) computed
for isotropic model.

Figure 4.6. The induced anellipticity from EI (solid line) and ISO (dashed line) models.

Figure 4.7. The traveltime error between two models-smoothed and unsmoothed for VTI,
elliptical isotropic (EI) and the isotropic (ISO) cases shown by solid, dashed and dotted lines,

respectively.

Figure 4.8. The composite parameters before and after smoothing for ORT model. The

unsmoothed and smoothed parameters are shown by solid and dashed lines, respectively.

Figure 4.9. The model parameters V, (top), V,,,; (middle) and V,, (bottom) before and

after smoothing for ORT model. The unsmoothed and smoothed parameters are shown by

solid and dashed lines, respectively.

Figure 4.10. Four anellipticity parameters before and after smoothing for ORT model. The

unsmoothed and smoothed parameters are shown by solid and dashed lines, respectively.
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Figure 4.11. The composite parameters before and after smoothing for ORT, model. The

unsmoothed and smoothed parameters are shown by solid and dashed lines, respectively.

Figure 4.12. The effective velocities and effective azimuth before and after smoothing for

ORT, model. The unsmoothed and smoothed parameters are shown by solid and dashed lines,

respectively.

Figure 4. 13. Four anellipticity parameters before and after smoothing for ORT, model. The

unsmoothed and smoothed parameters are shown by solid and dashed lines, respectively.

Figure 4.14. The PTS results in smoothing induced anellipticity, », (top), », (middle) and 7,
(bottom). The anellipticity from the ORT model and ORT, model are shown in dashed and

dotted lines, respectively.
Figure 4.15. The traveltime error surface for ORT model (left) and EI model (right).

Figure 4.16. The traveltime error surface for ORT, model (top) and EI, model (bottom).

Figure 4.17. The traveltime error surface using conventional smoothing for ORT model (top)
and El model (bottom).
Figure 4.18. The traveltime error surface using conventional smoothing for ORT, model (top)

and EI, model (bottom).

Figure 5.1. Sketch for cross-term anellipticity parameters: 7, , 7,, and n,, (left) and cross-
term NMO velocities: V;,, Vi3 and Vo (right) in ORT model.

Figure 5.2. Sketch for non-symmetric parameterizations for acoustic ORT model defined by
Cases A-D.

Figure 5.3. Sketch for symmetric parameterizations for acoustic ORT model defined by
Cases E-H.

Figure 5.4. The first order perturbation coefficients a; (Case H). Coefficients a;, a, and as

are shown in left, middle and right, respectively.

Figure 5.5. The quadratic perturbation coefficients b; (Case H). Coefficients by, b,, and

bs; are shown in left, middle and right, respectively.
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Figure 5.6. The cross-term perturbation coefficients by, (i = j) (Case H). Coefficients by,

b3 and by, are shown in left, middle and right, respectively.

Figure 5.7. The first order sensitivity coefficients &; in Case H for short offset (left)
(6 €(0,30%)), intermediate offset (middle) (6 < (30°,60°)), and far offset (right)
(6 €(60°,90%)). The coefficients a;, a, and a5 are shown by blue, red and black colors,

respectively.

Figure 5.8. The quadratic sensitivity coefficients 6“ in Case H for short offset (left)
(6 €(0,30%)), intermediate offset (middle) (6 < (30°,60°)), and far offset (right)
(0 €(60°,90°)). The coefficients by;, by, and by are shown by blue, red and black colors,

respectively.

Figure 5.9. The cross-term sensitivity coefficients by, (i = j) in Case H for short offset (left)
(6 €(0,30%)), intermediate offset (middle) (8  (30°,60°) ), and far offset (right)

(0 €(60°,90°)). The coefficients by,, b;3 and b,; are shown by blue, red and black colors,
respectively.

Figure 5.10. The overall sensitivity coefficients: first order (left) and second order (right)
using parameterization Case H. The coefficients A,, A, and A, are shown from left to right.

The second order coefficients are composed in matrix form with indices

1=ny.2=0,.3=1y,.

Figure 5.11. The second order overall sensitivity coefficients éij using non-symmetric

parameterizations Cases A-D. The second order coefficients are composed in matrix form

with indices 1=17,,2=1,,3=1n; for Case A, 1=1,,2 =17,,3=17,, for Cases Band D,

1=7,,2=1y,,3=1y, for Case C.

Figure 5.12. The second order overall sensitivity coefficients éij using symmetric

parameterizations Cases E-H. The second order coefficients are composed in matrix form
with indices 1=17,,2=1,,3=1; for Cases Eand G, 1=17,,,2 =17,,,3=7,, for Cases F and
H.
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Figure 5.13. The relative error of perturbation series (left) and the Shanks transform (right)

for traveltime with parameterization Case H.

Figure 5.14. The relative error in traveltime using the hyperboloid approximation with
vertical and two NMO velocities (left), vertical and two horizontal velocities (middle) and
three cross-term NMO velocities (right).

Figure 5.15. The relative error in traveltime of the Shanks transform for parameterizations
from Cases A-D.

Figure 5.16. The relative error in traveltime of the Shanks transform for parameterizations

from Cases E-H.

Figure 6.1. The location of fitting indices ¢;, g3, $; and s3 in a homogeneous VTI model.

Figure 6.2. The sensitivity of coefficients q;, gz, $; and s, versus anellipticity 7 .

Figure 6.3. The relative error for anelliptic (solid) and GMA form (dashed) approximation for

the relative geometrical spreading in a homogeneous VTI medium.

Figure 6.4. The relative error for anelliptic (solid) and GMA form (dashed) approximation for

the relative geometrical spreading in a multi-layered VTI medium.
Figure 6.5. The location of fitting indices Q;,(i= j=123) and Sij,(i¢j=1,2,3) in a
homogeneous ORT model.

Figure 6.6. Rotation from [X,Z] symmetry plane to [X ,Y] symmetry plane.

Figutre 6.7. The relative error of the relative geometrical spreading for a homegeneous ORT
model by using the traveltime based approximation Xu et al (2005) (top), indierct rational

approximaiton (middle) and anelliptic approximation (bottom).

Figutre 6.8. The relative error of the relative geometrical spreading for a multi-layered ORT
model by using the traveltime based approximation Xu et al (2005) (top), indierct rational

approximaiton (middle) and anelliptic approximation (bottom).

Figure 7.1. The first Fresnel zone diagram in represented by the depth (top) and traveltime
(bottom).

Figure 7.2. The diagram showing the Fresnel zone in an isotropic medium.

Figure 7.3. The radius of Fresnel zone for P-wave in a homogeneous 1ISO and VTI medium.
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Figure 7.4. The relative error in Fresnel radius versus the corresponding traveltime (left),

depth (middle) and frequency (right) using four types of approximation in VTI model. (Note
that the Fresnel zone varies with depth at frequency f =30Hzand the Fresnel zone varies

with frequency at depth z = 2km).

Figure 7.5. The Fresnel radius using second order Shanks transform approximation X,

versus anisotropy parameters s (with 7=0.2) and  (with § =0.1).
Figure 7.6. The radius of Fresnel zone in 1ISO and VTI models versus traveltime (left), depth
(middle) and Frequency (right). The Fresnel radius computed from ISO and VTI model is

shown by black and blue colors, respectively. (Note that the Fresnel zone varies with depth at

frequency f =30Hz; The Fresnel zone varies with frequency at depth z = 2km).

Figure 7.7. The Fresnel zone in 1ISO and VTI model. The Fresnel zone computed from ISO

and VTI model is shown by black and blue colors, respectively.

Figure 7.8. The Fresnel zone computed for a homogeneous ORT model. The model

parameters are: V, = 2km/s, V,; =2.2km/s, V., =2.4km/s, 1, =0.2, , =0.15,
Ny = 0.2 and f =30Hz . The depth of the horizontal reflector is z = 2km. The Fresnel zone

in ORT model has a quasi-elliptical shape.

Figure 7.9. The sensitivity computed from first order (left), quadratic (middle) and cross-term
coefficients in equation (7.15) in the perturbation series for Fresnel zone versus the group

azimuth. The depth of the horizontal reflector is z = 2km.

Figure 7.10. The contour plot of error in Rg from two approximations for ORT model

plotted versus corresponding traveltime and the group azimuth (top) and depth and the group
azimuth (bottom). The perturbation series approximation and Shanks transform are shown in

left and right, respectively. The model parameters are given in caption for Figure 7.8.

Figure 7.11. The contour plot of error in Rg from two approximations for ORT model

plotted versus corresponding traveltime and the group azimuth (top) and depth and the group
azimuth (bottom). The perturbation series approximation and Shanks transform are shown in
left and right, respectively. The ORT model parameters are defined with the velocities

specified in the caption for Figure 7.8 and the higher anellipticity parameters: 7; =0.4,
1, =0.3 and 77, =0.4.
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Figure 7.12. The contour plot of error in Rg from two approximations for ORT model

plotted versus corresponding traveltime and the group azimuth (top) and depth and the group
azimuth (bottom). The perturbation series approximation and Shanks transform are shown in

left and right, respectively. The ORT model parameters are defined with the velocities

specified in the caption for Figure 7.8 and the negative anellipticity parameters: 7 =-0.2,

1, =-0.15 and 7, =-0.2.

Figure 7.13. The Fresnel zone computed for ORT model for different traveltime (left), depth
(middle) and frequency (right) using the ORT model with parameters given in the caption for
Figure 7.8.

Figure 7.14. The shape of the Fresnel zone computed for ISO, EI and ORT model. The depth

of the horizontal reflector is z = 2km,

Figure 7.15. The diagram showing the Fresnel zone in an anisotropic medium. Angle &; and
0, are phase angles measured in corresponding points at wave-fronts t =t; and t =ty + At,

respectively.

Figure 7.16. The contour plot of error in Rg from two approximations for ORT model

plotted versus corresponding traveltime and the group azimuth (top) and depth and the group

azimuth (bottom). The perturbation series approximation and Shanks transform are shown in

left and right, respectively. The ORT model parameters are: (Top) ty =0.6s, V,; =2.2km/s,
Vpp =2.4km/s, m =02, 7, =0.15 and n,, =0.2; (Bottom): Vy =2km/s, V;y =2.2km/s,

Vnp =2.4km/s, m =02, 1, =0.15, n,, =02 and f =10Hz.

Figure 7.17. The sketch showing the Fresnel zone for a dip reflector in a homogeneous VTI

model.

Figure A.1. The slowness curve for VTI model. p and q are the horizontal and vertical

slowness, respectively. The exact one, the approximations by vertical velocity and NMO
velocity, and by vertical velocity and horizontal velocity are shown by solid, dashed and

dotted lines, respectively.
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Figure A.2. The traveltime error from hyperbolic moveout approximations using two
background models in VTI media. The results using NMO and horizontal velocities are
shown by solid and dashed lines, respectively.

Figure A.3. The relative traveltime error from non-hyperblic approximations in VTI media
with 7 =0.1 (left) and 77 =0.2 (right). The results from the GMA, Alkhalifah (2011)
approximation, the first- and second-order Shanks transform (equations (A.8)) are shown by
dotted, dotdashed, dashed and solid lines, respectively. X is the normalized offset.

Figure A.4. The relative traveltime error with offset and anellipticity parameter 7 using the

second-order Shanks transform zg5.

Figure A.5. The first order coefficients a’ (Top), a; (Middle) and a,; (Bottom) computed

from equations (A.C8) in ORT model.

Figure A.6. The second order coefficients b} (Top), by, (Middle) and b2~ (Bottom)

Xyxy

computed from equations (A.C8) in ORT model.

Figure A.7. The cross term coefficients b (Top), b, (Middle) and by, (Bottom) computed

2xy

from equations (A.C8) in ORT model.
Figure A.8. The azimuth-dependent anellipticity from equation (A.15) in ORT model.
Figure A.9. The relative traveltime error for ORT model by using the perturbation series

approximation in equation (A.C7) (Top) and the one after Shanks transform in equation (A.17)
(Bottom).

Figure A.10. The relative traveltime error for ORT model by using Shanks transform based
on different parameterizations (cases A, B, C and D correspond to the ones specified in the
main text).

Figure A.11. The relative traveltime error for ORT model by using the approximations from
Sripanich and Fomel (2015) (Top) and Hao and Stovas (2016) (Bottom).

Figure B.1. The relative error in relative geometrical spreading of two type of GMA
approximation in homogeneous (left) and multi-layered (right) VTI models. The result from

GMA,, and GMAy are computed from infinite and reference offset limit and shown by solid

and dashed lines, respectively. Note that normalized offset X = x/(tyV,).
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Figure B.2. The relative error in relative geometrical spreading Ly ua,) Using the constrain

pointat d =2 (top), 4 (middle) and 10 (bottom).

Figure B.3. The relative error in relative geometrical spreading from the traveltime based
approximation (TBA) (Xu et al. 2005) (top, left), indirect rational approximation (IRA) (top,

right), direct rational form approximation (DRA) (middle, left), anelliptic form approximation

(AFA) (Xu et al. 2017) (middle, right), GMA form approximation GMAy (bottom, left) and

GMA,, (bottom, right) computed for a homogeneous VTI model.

Figure B.4. The relative error in relative geometrical spreading from the traveltime based
approximation (TBA) (Xu et al. 2005) (top, left), indirect rational approximation (IRA) (top,
right), direct rational form approximation (DRA) (middle, left), anelliptic form approximation

(AFA) (Xu et al. 2017) (middle, right), GMA form approximation GMAy (bottom, left) and

GMA,, (bottom, right) computed for a homogeneous HTI model.

Figure B.5. The relative error in relative geometrical spreading from the traveltime based
approximation (TBA) (Xu et al. 2005) (top, left), indirect rational approximation (IRA) (top,

right), direct rational form approximation (DRA) (middle, left), anelliptic form approximation

(AFA) (Xu et al. 2017) (middle, right), GMA form approximation GMAy (bottom, left) and

GMA,, (bottom, right) computed for a homogeneous ORT model.

Figure B.6. The relative error in relative geometrical spreading from the traveltime based
approximation (TBA) (Xu et al. 2005) (top, left), indirect rational approximation (IRA) (top,

right), direct rational form approximation (DRA) (middle, left), anelliptic form approximation

(AFA) (Xu et al. 2017) (middle, right), GMA form approximation GMAy (bottom, left) and

GMA,, (bottom, right) computed for a multilayered ORT model.

Figure B.7. The relative error in traveltime from rational form approximation shown in
equation (B.D2) (left) and from Tsvankin and Thomsen (1994) (right) in a homogeneous ORT
model.
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