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Abstract 

Describing the directional dependence of the wave velocity, seismic anisotropy has 

dramatically been gaining attention from both academic and industry, thanks to advances in 

the wider offset and azimuthal coverage of 3D surveys in the last two decades. Seismic 

anisotropy is a very useful and important physical property since it can provide the detailed 

information regarding both kinematic and dynamic processes. In this thesis, we only discuss 

the influence of anisotropy on the compressional (P) waves since they represent a majority of 

data being acquired in oil and gas exploration. The kinematic properties of anisotropic media 

can be defined in the phase and group domains. In the phase domain, these properties are 

related to the curvatures of the slowness surface computed at the point where both horizontal 

projections of the slowness vector are zero. In the group domain, the kinematic properties are 

related to similar curvatures computed from the traveltime (or group velocity inverse) surface 

at zero offsets.  

The overall aim of this thesis is on the behavior of the seismic waves on an anisotropic model 

and their applications for seismic data processing (e.g. velocity analysis, parameterization, 

horizontal resolution, geometrical spreading and the imaging problem etc.). Thomsen type 

parameters are used to represent the anisotropic model. The models tested in this thesis are 

including: isotropic (ISO), elliptical isotropic (EI), transverse isotropic model with a vertical 

symmetry axis (VTI), factorized VTI and orthorhombic (ORT) models with an increase of 

complexity. The acoustic anisotropy assumption is applied for simplification. For multi-

layered anisotropic models, the effective model parameters derived from the Dix-type 

equations are used for computation. 
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The traveltime computation is an important tool in seismic data processing that can be applied 

for velocity analysis, modeling and time migration. The non-hyperbolicity in moveout caused 

by anisotropy needs to be taken into consideration, as it commonly exists and plays an 

important role in seismic data processing and interpretation, especially for large offset. My 

research is mostly about the derivations of traveltime approximation from the parametric 

traveltime-offset equation computed through the dynamic ray tracing in VTI and ORT media. 

The traveltime-offset equation can also be utilized to compute the radius of the Fresnel zone 

through the perturbation-based approach for the study of the horizontal resolution. The 

analytical form of the relative geometrical spreading can be expressed by the traveltime and 

its derivatives. We propose the approximations for the relative geometrical spreading defined 

in the generalized non-hyperbolic moveout (GMA) and anelliptic forms and show their 

superiority of the accuracy compared with the conventional traveltime-based counterparts in 

the numerical examples in both VTI and ORT models. The accuracy of these approximations 

is tested in the numerical examples where the exact (standard) solutions are computed from 

the parametric equations measured through the dynamic ray tracing. 

With the help of seismic anisotropy, a high-quality image of the subsurface is obtained. For 

the multiparameter stacking, the operator for common reflection surface (CRS) involving the 

anisotropy parameters is derived for a circular reflector in a homogeneous VTI model. The 

preserved traveltime smoothing (PTS) technique is extended to an ORT model that can be 

used to smooth the velocity models for prestack depth migration. We develop the formulas for 

diving waves in a factorized VTI medium and analyze their behavior. The anisotropy 

parameters are estimated by semblance analysis of the depth migrated data through the 

imaging moveout formulation (residual moveout after imaging) to update the velocity model 

that can be used to provide an initial velocity model for the full waveform inversion (FWI).  
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Chapter 1 Introduction 

This chapter provides a very brief insight about seismic anisotropy, its applications in seismic 

data processing and the structure of this thesis. 

1.1 Seismic anisotropy 

Seismic anisotropy can be defined as the dependence of velocity on the direction or upon 

propagation angle. If the medium’s elastic properties with respect to certain parameters 

change with the direction of a measurement, it is anisotropic; if its properties do not change 

with direction, it is isotropic. The isotropic assumption for the subsurface has been based on 

for most history of seismic inversion and processing although a certain degree of anisotropy 

commonly exists.  

Anisotropy dates back to the 19th century following the theory of Elastic wave propagation. 

The origin of seismic anisotropy is non-unique, a range of phenomena may cause Earth 

materials to display seismic anisotropy. The anisotropy may be strongly dependent on 

wavelength if it is due to the average properties of aligned or partially aligned heterogeneity. 

The notions of heterogeneity and anisotropy are scale dependent and the same medium may 

behave as heterogeneous for small wavelengths and as anisotropic for large wavelengths 

(Helbig, 1994). The appreciation of anisotropy increased with the proposition of a new model 

for the generation of anisotropy in an originally isotropic background and a new exploration 

concept by Crampin (1987). These split phases propagate with different polarizations and 

velocities. Crampin (1984) amongst others gives evidence that many rocks are anisotropic for 

shear wave propagation. Although P wave velocity in anisotropic media can change greatly 

with respect to the propagation angle, P waves do not split into two modes and their reflection 

moveout typically is hyperbolic. Shear waves have been observed to split into two or more 
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fixed polarizations which can propagate in the particular ray direction when entering an 

anisotropic medium.  

The role of anisotropy has dramatically increased over the past two decades due to advances 

in parameter estimation, the transition from poststack imaging to prestack depth migration, 

the wider offset and azimuthal coverage of 3D surveys, and acquisition of high-quality 

multicomponent data (Thomsen, 2001). The breakthrough for the study of seismic anisotropy 

has taken place after identifying the key parameters in the parameterization of transversely 

isotropic (TI) models (Thomsen, 1984) and the discovery of the P wave time processing 

parameter η  (Alkhalifah and Tsvankin, 1995) in anisotropic media that greatly simplified the 

analytical description of seismic signatures, which can help to develop practical 

methodologies for estimating anisotropy parameters from the seismic data.  

In seismic data processing, orthorhombic (ORT) model introduced by Schoenberg and Helbig 

(1997) is the most realistic anisotropic velocity model to describe fractured reservoirs and 

explains well the azimuthal dependency in surface seismic data. Tsvankin (1997, 2012) 

defined nine elastic model parameters for ORT model that can be reduced to six parameters in 

an acoustic approximation (Alkhalifah, 2003). In group domain, we call the first order 

curvatures the normal moveout (NMO) velocity ellipses (Grechka and Tsvankin, 1999a, 

1999b) and the second order curvatures the anellipticities as they represent the anelliptic 

behavior for slowness or traveltime surface. Recently, more research works have been done 

for the parameterization of the acoustic ORT model (Vasconcelos and Tsvankin, 2006; Stovas, 

2015; Xu and Stovas, 2017). For 2D cases, two main type of anisotropy are commonly used in 

seismic data processing: transverse isotropy medium with a vertical axis (VTI) and transverse 

isotropy medium with a horizontal axis (HTI), where VTI model is associated with layering 

and shale; HTI model is associated with cracks and fractures.  
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1.2 Stiffness matrix 

The wave equation for seismic wave’s propagation is based on two important laws: Newton’s 

First Law of Motion and Hooke’s Law of Elasticity.  

Newton’s First Law of Motion is written for a constant density medium by 

,2

2

j

iji

xt
u

∂

∂
=

∂
∂ t

ρ  (1.1) 

where iu  are the components of the displacement vector u , ijτ  are the components of the 

stress tensor τ , jx  are the components of the coordinate position x , ρ  is density and t  is 

time. 

The Hooke’s Law is given by 

,klijklij C ετ =  (1.2) 

where ijε  are components of the strain tensor ε  and ijklC  are components of the fourth-rank 

elasticity tensor (stiffness tensor) C .  

The wave equation is obtained by inserting equation (1.2) into (1.1) with the locally 

homogeneous assumption  

,
2

2

2

lj

kijkli

xx
uC

t
u

∂∂
∂

=
∂
∂

ρ
 (1.3) 

The stiffness tensor C  is responsible for the anisotropic properties of the medium. 

Generally, the stiffness tensor has four indices, two corresponding to the indices of stress and 

two to the indices of strain with 813333 =×××  components. Since both stress and strain are 

symmetric, the number of independent elastic moduli can be reduced to 21 shown in equation 

(1.4) 
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11 12 13 14 15 16

12 22 23 24 25 26

13 23 33 34 35 36

14 24 34 44 45 46

15 25 35 45 55 56

16 26 36 46 56 66

.

C C C C C C
C C C C C C
C C C C C C

C
C C C C C C
C C C C C C
C C C C C C

 
 
 
 

=  
 
 
  
 

 (1.4) 

The medium with 21 independent stiffness coefficients is the most complicated case and 

general kind of anisotropy (triclinic) for seismic wave propagation. However, it is almost 

impossible to measure all of these coefficients in any geophysical field survey. Thanks to the 

symmetric behaviors of the geological objects, we have a chance to describe the model with 

simpler symmetries (less independent stiffness coefficients). 

The simplest one is the isotropic (ISO) model that using only two independent stiffness 

coefficients given by 

,



























=

µ
µ

µ
λλ

λλ
λλ

M
M

M

CISO  (1.5) 

where µλ 2+=M , λ  and µ  are Lamé parameters, the element in the matrix does not show 

is zero.  

If the elastic properties do not change in any direction perpendicular to an axis of symmetry, 

the medium is transversely isotropic. There are special cases of transverse isotropy: the 

transversely isotropic medium with the vertical axis (VTI) and horizontal axis (HTI). For VTI 

model, the velocities do not vary from one lateral direction to another but vary from one 

direction to another on a vertical plane that coincides with a given lateral direction. For HTI 
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model, known as azimuthal anisotropy, for which velocities vary from on lateral direction to 

another.  

The stiffness matrices for VTI and HTI media have five independent parameters given in 

equation (1.6) and (1.7), respectively. 

The stiffness matrix of VTI media is given by 

11 11 66 13

11 66 11 13

13 13 33

55

55

66

2
2

.VTI

C C C C
C C C C

C C C
C

C
C

C

− 
 − 
 

=  
 
 
  
 

 (1.6) 

The stiffness matrix of HTI media is given by 

11 13 13

13 33 33 44

13 33 44 33

44

55

55

2
2

.HTI

C C C
C C C C
C C C C

C
C

C
C

 
 − 
 −

=  
 
 
  
 

 (1.7) 

Both VTI and HTI media can be treated as special cases of the more complex orthorhombic 

(ORT) model. 

Orthorhombic model is characterized by three mutually orthogonal symmetry planes. In the 

coordinate system associated with the symmetry planes, orthorhombic media have nine 

independent stiffness coefficients given by  
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11 12 13

12 22 23

13 23 33

44

55

66

.ORT

C C C
C C C
C C C

C
C

C
C

 
 
 
 

=  
 
 
  
 

 (1.8) 

Orthorhombic anisotropy in sedimentary basins is a combination of parallel vertical fractures 

with vertical transverse isotropy in the background medium. ORT symmetry can be caused by 

two or three mutually orthogonal fracture systems or two identical systems of fractures 

making an arbitrary angle with each other. Therefore, orthorhombic anisotropy can be treated 

as the most realistic symmetry for many geophysical problems that can describe fractured 

reservoirs and explains well the azimuthal dependency in surface seismic data. 

1.3 Anisotropy parameters 

Based on the propagation and polarization direction, three types of the wave mode are defined 

for the body wave: P wave and S waves (SH and SV wave). We can compute the 

corresponding phase velocities for a given medium by solving the Christoffel equation  

( )2 0,ik ik kG V Uρ δ− =  (1.9) 

where ljijklik nnCG =  are elements of the Christoffel matrix, jn  is the components of the 

directional unit vector, V  is the phase velocity, ikδ  is the Kronecker’s delta and kU  is 

amplitude for different wave modes. 

In the isotropic case, two solutions in equation (1.9) are coupled; two waves P and S with 

velocities are defined by 
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.

,2

ρ
µ

ρ
µλ

=

+
=

S

P

V

V
 (1.10) 

These velocities do not depend on the propagation direction. 

In the case of the VTI medium, solving the Christoffel equation gives three different solutions. 

For SH wave, which is always polarized orthogonal to the propagation plane, and for qP and 

qSV waves (q for “quazi”), which are polarized orthogonal to each other and also orthogonal 

to the SH wave polarization.  

With the pioneering paper of Leon Thomsen (1986), anisotropy becomes a commonly 

accepted tool for analyzing seismic data. Instead of using the stiffness coefficients ( ijC ), he 

innovatively used the simpler and understandable parameters to represent the VTI model 

referred as the Thomsen parameters.  

The Thomsen parameters (Thomsen, 1986) are given by 

,
2

,
)(2

)()(

,
2

,

,

44

4466

443333

2
4433

2
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33

3311

44
0

33
0

C
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CCC
CCCC

C
CC

CV

CV

S

P

−
=

−
−−+

=

−
=

=

=

γ

δ

ε

ρ

ρ

 (1.11) 

where 0PV  and 0SV  are vertical P and S wave velocities, respectively, ρ  is density, δ , ε  and 

γ  are the dimensionless anisotropic parameters. 
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For the ORT model, Tsvankin (1997) defined the similar type of the anisotropy parameters in 

the model parameterization for three symmetry [ ]ZX , , [ ]ZY ,  and [ ]YX ,  planes shown in the 

slowness surface in Figure 1.1.  

 

Figure 1.1. The anisotropy parameters defined in the ORT model. 

Note that the definition in this thesis is slightly different with Tsvankin (1997) that we define 

the anisotropy parameters 1δ , 1ε  and 1γ  in [ ]ZX ,  plane and 2δ , 2ε  and 2γ  in [ ]ZY ,  plane, 

which is opposite with the definition in Tsvankin (1997). 

The anisotropy parameters normalized by density in ORT model are given by 
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The inverse transformation can be given as  
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1.4 Acoustic anisotropy 

Acoustic approximation for processing in VTI model is obtained by setting the vertical S 

wave velocity into zero (Alkhalifah, 1998). The VTI model can be characterized by three 
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parameters: 0PV , δ  and ε . The complexity of the wave equation is reduced greatly. The 

difference in P wave by using the acoustic assumption is negligible for most cases. The 

acoustic equations are much simpler and more compact than the elastic ones and can be 

expected to increase the efficiency of the processes when used in seismic processing.  

We introduce a homogeneous VTI model with the parameters: ( skmVP /20 = , 1.0=δ , 

22.0=ε  and 1.0=γ ) and plot the relative error in the vertical slowness q  ( qqq /100)( 0 ×− ) 

versus horizontal slowness p  by using the acoustic approximation 0q  in Figure 1.2. One can 

see from the plot that the relative error in the vertical slowness is very small. 

 

Figure 1.2. The relative error in the vertical slowness q  ( qqq /100)( 0 ×− ) for a VTI model 

versus horizontal slowness p .  

The parametric offset-traveltime equation in VTI model is computed from the derivative of 

the vertical slowness given by  

,

,

xpzqt
p
qzx

+=
∂
∂

−=
 (1.14) 

where z  is the depth is the reflector.  
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We show the relative error in traveltime versus offset using the acoustic assumption in the 

introduced VTI model above in Figure 1.3. We can see from the plot that the error is 

negligibly small. 

 

Figure 1.3. The relative error in the traveltime versus offset using the acoustic approximation 

in the VTI model with the parameters: skmVP /20 = , 1.0=δ , 22.0=ε  and 1.0=γ . 

A similar strategy is applied to ORT model (Alkhalifah, 2003) to compute the kinematic 

properties of P wave. The model parameters used for characterizing the acoustic ORT model 

are: 0PV , 1nmoV , 1η , 2nmoV , 2η  and 3η  (Vasconcelos and Tsvankin, 2006), where 1nmoV  and 

2nmoV  are the normal moveout (NMO) velocities defined in [ ]ZX ,  and [ ]ZY ,  planes, 

respectively, given by 

.21
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+=
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VV
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 (1.15) 

Anisotropy parameters 1η , 2η  and 3η  are the anellipticity parameters defined in [ ]ZX , , [ ]ZY ,  

and [ ]YX ,  planes, respectively, given by 
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Stovas (2015) developed azimuthally dependent properties of the acoustic ORT model using 

the parameters: 0PV , 1nV , 2nV , 1η , 2η  and xyη . The cross-term anellipticity parameter is 

defined by  

 ( )( )
( ) .1

21
2121

3

21 −
+

++
=

η
ηηηxy  (1.17) 

More details about the parameterization in acoustic ORT model can be found in Chapter 5. 

1.5 Thesis structure  

There are eight Chapters and two Appendices in this thesis. Six Chapters (From Chapter 2 to 

7) and two Appendices can be treated as independent papers with their own structure and 

presented exactly in the publication form. 

In Chapter 2, the analytical expression for the common-reflection-surface (CRS) operator that 

involving the anisotropy parameters for a circular reflector in the acoustic VTI model is 

derived. We start with the isotropic CRS approximation, then we take anisotropy into 

consideration, and finally, we evaluate the structural and anisotropic parameters. We propose 

a new approach to investigate the effects of anisotropy and vertical heterogeneity on the P-

wave CRS attributes and their inversion into the model parameters. The proposed result can 

be used for the multiparameter stacking to get a high-quality time image of the subsurface. 

The results of this Chapter were presented at the Workshop Meeting Active and Passive 

Seismic in Laterally Inhomogeneous Media (APSLIM), June, 2015, Prague, Czech Republic; 

and the paper was published in Journal of Geophysics and Engineering in October 2015. 
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In Chapter 3, we use the analytical formulas to describe the behavior of diving waves in a 

factorized anisotropic medium and approximate the imaging moveout formulation (residual 

moveout after imaging) to update the velocity model when the wrong model parameters 

(isotropic assumption) are used for imaging. We then utilize these analytical representations 

of the image moveout to establish a semblance analysis framework to search for the optimal 

anisotropic parameters. We have also discussed different parameterizations of the factorized 

medium to find the one that gave the best accuracy in anisotropy parameters estimation. These 

inverted models can provide an initial velocity model used for the update of the full waveform 

inversion (FWI). The results of this Chapter were presented at the 78th EAGE Conference and 

Exhibition, June, 2016, Vienna, Austria and the paper was published in Geophysics in July 

2016. 

In Chapter 4, we extend the preserved traveltime smoothing (PTS) method (Vinje et al., 2012) 

to an acoustic ORT model for two cases: with and without azimuthal variation between the 

layers. In case of azimuthal variations in the symmetry axis between the layers, the least 

squares approximation is adopted to estimate the effective anellipticity parameters from this 

layered medium to preserve the complexity of the model when doing smoothing. The PTS 

technique is proposed to address the drawback of the shifting problem in the conventional 

smoothing in the prestack migration process. The results of this Chapter were presented at the 

78th EAGE Conference and Exhibition, June, 2016, Vienna, Austria and the paper was 

published in Geophysical Prospecting in November 2016. 

In Chapter 5, a group of new parameterizations for P wave in acoustic ORT media are defined. 

The corresponding perturbation based approximations for traveltime in ORT model are 

developed using the newly defined parameterizations. The sensitivity of the group velocity 

inverse to anellipticity parameters is also analyzed for different parameterizations and 

different range of offsets. Different parameterization results in different accuracy in the 
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perturbation based traveltime approximation, which impacts the seismic data processing such 

as velocity analysis, modeling, and time migration. The results of this Chapter were presented 

at the 87th SEG Conference and Exhibition in September, 2017, Houston, USA and the paper 

was published in Geophysics in October 2017. 

In Chapter 6, we have developed an anelliptic approximation for the relative geometric 

spreading of P-wave in a homogeneous VTI and an ORT medium under the acoustic 

anisotropy assumption. The coefficients in our approximation are only defined within the 

symmetry planes and computed from fitting with the exact parametric expression. Due to the 

symmetric behavior in different symmetry planes by using the acoustic anisotropy assumption, 

the computation for the coefficients in ORT model becomes easier by applying the 

corresponding changes in the forms of the coefficients that are obtained in one symmetry 

plane. The analytical form of the relative geometrical spreading can be used for the seismic 

data processing methods that require true amplitude processing. The results of this Chapter 

were presented at the 87th SEG Conference and Exhibition in September, 2017, Houston, 

USA and the paper was published in Geophysics in November 2017. 

In Chapter 7, we derive an analytic expression for the radius of the Fresnel zone in the time 

domain in a homogeneous VTI and ORT models using the perturbation method from the 

parametric offset-traveltime equation. We show that the size of the Fresnel zone is 

proportional to the corresponding traveltime, depth and the frequency. From the numerical 

examples, we can see that the Shanks transform approximations for Fresnel zone are very 

accurate for both VTI and ORT media. This perturbation based method for the Fresnel zone in 

the anisotropic model can be extended for the model with a dipping reflector. The results of 

this Chapter were presented at the 80th EAGE Conference and Exhibition in June, 2018, 

Copenhagen, Denmark and the paper was published in Geophysical Journal International in 

December 2017. 
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In Appendix A, we propose a new set of moveout approximations based on a perturbation 

series in terms of anellipticity parameters using the alternative elliptical background model 

defined by vertical and horizontal velocities. The contents of this Appendix can be treated as a 

special case shown in Chapter 5 (new parameterization for ORT model). The results of this 

Appendix were presented at the 86th SEG Conference and Exhibition in October, 2016, Dallas, 

USA and the paper was published in Geophysical Prospecting in December 2016.  

In Appendix B, we investigate another form of the approximation for the relative geometrical 

spreading. Since the anelliptic form approximation is presented in Chapter 6, we place this 3D 

GMA form approximation in the Appendix part. We develop a 3D GMA-type approximation 

for the relative geometrical spreading in a homogeneous ORT medium. Two type of GMA 

form approximations is defined by the different selection of reference rays: two reference rays 

with finite offsets and two horizontal reference rays in two corresponding vertical symmetry 

planes. One horizontal ray in between the vertical symmetry planes is selected to compute the 

cross-term coefficient in the approximation. The result of this Appendix is published in 

Geophysical Journal International in August 2017. 
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Chapter 2 Curvature and anisotropy estimation 

through the CRS approximation 

Shibo Xu and Alexey Stovas 

Norwegian University of Science and Technology, Trondheim, Norway 

Abstract. Multiparameter stacking is a crucial tool to get the high-quality time image of the 

subsurface, which can provide a basis for many important applications. We analyze the CRS 

approximation for a circular reflector embedded into effective anisotropic media. In this case, 

the CRS attributes depend on both reflector curvature and anisotropy parameters. We consider 

the effective anisotropic model from two anisotropic cases: elliptical isotropic and 

transversely isotropic with vertical symmetry axis and one vertically heterogeneous isotropic 

case, i.e. two layer model. By performing the sensitivity analysis, we show how the estimates 

depend on anisotropy parameters. We convert the CRS attributes into parameters for isotropic 

model and analyze these estimates behavior along the seismic line. From this behavior, we 

estimate both structure and anisotropy parameters. 

Presented at the Workshop Meeting Active and Passive Seismic in Laterally Inhomogeneous 
Media (APSLIM), June, 2015, Prague, Czech Republic; Published in Journal of Geophysics 
and Engineering in October 2015.  
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2.1 Introduction  

Stacking plays an important role in seismic data processing, which is treated as one of the 

fundamental operations in seismic data analysis (Yilmaz, 2000). The signal-to-noise ratio can 

be improved considerably by adopt the multiparameter stacking operator as the information of 

the same subsurface region are carried from the neighboring CMP gathers. A number of 

multiparameter stacking operators have been proposed during the last years. The common-

reflection-surface (CRS) method is developed (Jäger et al, 2001) as an extension of the 

classical stacking operation, stacks data from multiple CMP locations. The traveltime surface 

of CRS method can be described by a hyperbolic approximation from a Taylor series 

expansion of the squared traveltime around a reference ray. By introducing the concepts of the 

normal (N) and normal-incident-point (NIP) waves by Hubral (1983), the series coefficients 

can be formulated in terms of three kinematic attributes (Jäger et al, 2001, Tygel and Santos, 

2007), these attributes have a clear physical interpretation that can be used for structural 

interpretation, velocity model estimation for depth migration (Duveneck, 2004), and prestack 

seismic data interpolation (Baykulov and Gajewski, 2009). The implicit expression for the 

reflection traveltime on a spherical reflector derived by Taylor expansion with a fourth-order 

expansion is presented in (Hȍcht et al, 1999). The multifocusing (MF), originally developed 

by Gelchinsky et al (1999a,b), is a double square root based approximation parameterized 

with the same attributes as the CRS operator in addition to the conventional stacking velocity. 

The extended approach is modified by Landa et al (2010) to provide the analytical solution to 

the spherical reflector problem and take heterogeneity into consideration. A non-hyperbolic 

CRS (NCRS) approximation has been proposed to improve the accuracy at offset and 

midpoint coordinates with the same set of parameters (Fomel and Kazinnik, 2013). A new 

implicit CRS approach (i-CRS) by combining the high sensitivity to curvature of the MF with 

the robustness of CRS with respect to inhomogeneity on circular interface is introduced by 
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Schwarz et al (2014). The extend work for i-CRS by taking weak-anisotropy into account is 

done by Vanelle et al (2012). 

In this paper, we start with the isotropic CRS approximation then take anisotropy into 

consideration, and evaluate the structural and anisotropic parameters in the end. We propose a 

new approach to investigate the effect of anisotropy and vertical heterogeneity on the P-wave 

CRS attributes and their inversion into the model parameters. In order to distinguish between 

the reflector curvature, anisotropy and heterogeneity, we consider a simple circular 

anisotropic and layered isotropic background models. To describe all these models in the 

same framework of effective anisotropic medium, we use the generalized moveout 

approximation (GMA) proposed by Fomel and Stovas (2010) to define the group velocity as a 

function of group angle. In order to simplify our method, we assume that the difference 

between incidence and reflection phase and group angles is negligibly small. 

The comparison of CRS attributes and inverted model parameters exhibit different behaviour 

depending on background model. Considering the estimated model parameters R̂  and 0ẑ  

from different midpoint positions, we estimate the effective anisotropy parameters. The CRS 

attributes being inverted into the model parameters under the isotropic model assumption 

exhibit the dependence on position of the midpoint. From these dependences, we can evaluate 

the parameters of reflector and anisotropy parameters. 

2.2 CRS approximation for a circular reflector  

In order to introduce the effect of reflector curvature, we start with the simplest (circular) 

reflector embedded in a homogeneous isotropic medium with velocity V . In this case, the 

traveltime surface can be described by the parametric relations (Hȍcht et al, 1999). The model 

is shown in Figure 2.1 (left). The reflector is given by a circle with a radius R  and the centre 

located at the (0, 0z ). For isotropic model, the model parameters are R , V  and 0z . The source 
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and receiver lateral coordinates are sx  and rx , respectively. For a given sx  and rx , the 

reflection point is specified by the dip angle α  and reflection angle θ  (Figure 2.1, left). 

 

Figure 2.1. (left) is the reflection from a circular reflector in a homogeneous medium, (right) 

is the illustration of the three CRS attributes β , NIPR  and NR , where β  is the emergence 

angle of the reflector, NIPR  is the distance from the reflection point to the surface, and NR  is 

the distance from the centre of the reflector to the surface. 

The coordinates sx  and rx  are given by the geometrical relations as 
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The midpoint, half-offset and the reflection traveltime function can be expressed as 
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The parametric equations (2.2)-(2.3) define the reflection traveltime surface ),( hmT . We 

select a certain midpoint position 0m  and expand the traveltime squared in series for 

0mmm −=∆  and half offset h  (Figure 2.2). By expanding the traveltime squared in Taylor 
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series for m∆  and h , we obtain the second order CRS approximation in a form (Jäger et al, 

2001), 

 .),( 2
2

2
210

2 hBmAmAAhmTCRS +∆+∆+=∆  (2.4) 

The series coefficients 210 ,, AAA  and 2B  are computed for a given 0m  and depend on the 

model parameters R , V  and 0z .

 

Figure 2.2. Traveltime surface ),( hmT  from a circular reflector and the reference point 

( 0mm = ) for Taylor series expansion (equation 2.4). 

2.3 Inversion of CRS attributes and estimated model parameters 

The CRS operator in simulated zero-offset (ZO) section can be represented in terms of three 

kinematic wavefield attributes. The parameters NIPR  and NR  are the radius of the normal 

incidence and normal waves (Jäger et al, 2001) and the emergence angle is denoted by β . 

The meaning of the attributes is illustrated in Figure 2.1 (right). According to the concept of 

NIPR , NR and β , the series coefficients in equation (2.4) can be expressed through these CRS 

attributes.  
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The CRS attributes can be represented in terms of the model parameters for isotropic model. 

,,sec,sec 00000 αβαα =  =  −= zRRzR NNIP  (2.6) 

where 0α  is the incidence angle for a given 0m .  

The CRS attributes can be, consequently, given in terms of 210 ,, AAA  and 2B . 
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and the isotropic model parameters can be defined as 
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All the expressions above are derived for isotropic case. Therefore, in case of isotropic model, 

the equations (2.8) result in exact values for the R , V  and 0z . 

2.4 Application of the CRS method for effective anisotropic models 

In order to compute the CRS attributes for a circular reflector embedded into effective 

anisotropic medium, we use the GMA approximation (Fomel and Stovas, 2010) to define the 

group velocity as a function of group angle. This velocity can lately be used in equation (2.3) 

replacing the constant velocity V . 
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where 0V  is the vertical velocity, NV  is the NMO velocity, the parameters A , B  and C  are 

model dependent, and φ  is the ray propagation angle. The CRS operators related with 

anisotropy can be obtained by adopting the GMA velocity in anisotropic media. 

If the model above the reflector shown in Figure 2.1 (left) is anisotropic, the group velocities 

for incoming ray and outcoming ray are different, and the incidence and reflection phase (or 

group) angles are also different due to the Snell’s law. We show that the difference between 

the incidence and reflection group angles is negligibly small see Appendix A, and the 

geometrical equations (2.1) and (2.2) are still valid for further computation. 

Therefore, by adopting the group velocity equation from equation (2.9), the traveltime 

equation (2.3) takes the form 
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Equation (2.10) with velocity defined in equation (2.9) is more complicated comparing with 

equation (2.3) defined for isotropic model. When using equation (2.9), we have additional 

parameters ( CBAVN    ,,, ) that affect the solution. In order to compute the CRS series 

coefficients 210 ,, AAA  and 2B  for effective anisotropic case in equation (2.4), we use 

equations (2.9)-(2.10). We adopt new traveltime equation (2.10) using the anisotropic group 

velocity defined by GMA equation (2.9) with the same geometry form given in equation (2.2). 

The new CRS attributes are obtained by equating the coefficients with equation (2.4).  

We introduce three velocity models: elliptical isotropic (EI) case with Thomsen parameters

εδ =  (Thomsen, 1986), transversely isotropic case with vertical symmetry axis (VTI) and 

two-layer isotropic model (2LI). 

For the EI case, by setting 0=A , the group velocity equation (2.9) takes the form  
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For the VTI case, the parameters A , B  and C  in equation (2.9) given in terms of anelliptic 

parameter )21/()( δδεη +−=  (Alkhalifah, 1998) take the form (Fomel and Stovas, 2010) 
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For the 2LI case, we introduce two layers with velocities 1V  and 2V . The first layer is 

specified from the surface to the top of circular reflector. The second layer is beneath the first 

one (Figure 2.3, top). The kinematical properties of this model depend on the depth for 

reflection point. Therefore, for each reflection point, we define the parameters BAVV N  ,,,0  

and C . It means that the velocity model given in equation (2.9) will be different for different 

reflection point (Figure 2.3, bottom). 

For 2LI model, the GMA parameters take the form (see Appendix B for details): 
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The parameters λ  and γ  are defined by the ratios, 
1

2

z
z

=λ , 
1

2
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=γ , and the parameter λ  is 

related to the model parameters as 
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which is controlled by the midpoint position 0m . If the medium is not a homogeneous 

isotropic one, equations (2.8) and (2.7) result in estimates represented by hats that are 

dependent on the position 0m , where the series coefficients 210 ,, AAA  and 2B  are computed. 

To illustrate the different velocity models introduced above, we show the group velocity from 

EI, VTI and two 2LI models. In Figure 2.4, the group velocities are shown as the function of 

group angle. The velocity model parameters are km1 =R , km20  =z , km/s20  =V , 

δ210 += VVN , 1.0=δ , 2.0=η . For 2LI model, we select km/s21  =V , km/s5.22  =V  and 

two 0m  positions: km20  =m  and km40  =m , that give 29.01 ≈λ , 5502 .≈λ  and 

25.1=γ .One can see that the 2LI models result in significantly different behaviour of the 

group velocity. 

 

 

Figure 2.3. Reflector in the layered isotropic medium (top) and two effective layers (bottom). 
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Figure 2.4. The plot of GMA group velocity of different models versus group angle φ . The 

2LI ( 20 =m ), 2LI ( 40 =m ), EI and VTI cases are shown by solid, dotted, dashed and 

dot-dashed lines, respectively.  

2.5 Influence of effective anisotropy 

In order to test our approach and investigate the effect of the anisotropy and inhomogeneity 

on the CRS attributes and estimated model parameters, we select the circular reflector with 

parameters km1 =R , km20  =z  and four velocity models. The first velocity model is 

isotropic (ISO) with velocity km/s20  =V . The EI model has two parameters km/s20  =V  

and 1.0=δ , the VTI model has the same parameters as EI model plus anisotropy parameter 

2.0=η  and the parameters for 2LI model are km/s21  =V  and km/s5.22  =V . 

First, we compute the coefficients 2210 &,, BAAA  for all the models mentioned above. Then, 

we compute the CRS attributes (equation (2.7)) and the “isotropic” model parameters 

(equation (2.8)). As stacking is not considered in this paper, the analytical expressions of CRS 

coefficients 210 ,, AAA  and 2B  in effective anisotropic media are not computed here. 

In Figure 2.5, we show the series coefficients 210 ,, AAA  and 2B  from equations (2.5) plotted 

versus 0m  for all the models mentioned above (note that 00 =m  is the circle centre position). 

The tendency of coefficients 0A  and 1A  are similar for all the models, but the behaviour of 
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coefficients 2A  and 2B  for VTI model is quite different. For all 0m , the largest and the 

smallest values for series coefficients are obtained from ISO and VTI models, respectively. 

The corresponding CRS attributes computed from equations (2.7) are plotted versus 0m  in 

Figure 2.6. The tendency for ISO and EI case is very similar for all attributes, while, the VTI 

and 2LI model result in different attributes behaviour. 

The CRS attributes obtained from all the models are converted into the isotropic model 

parameters by using equations (2.8). The results are shown in Figure 2.7. One can see that the 

inversion from isotropic model produces the estimates that equal to model parameters and do 

not depend on 0m . All other models result in estimates that depend on 0m . From the plots in 

Figure 2.7, we can see the estimated reflector radius, in the presence of anisotropy, is 

underestimated above the circle and overestimated when the midpoint is far away from lateral 

position of the circle centre. In our computation, we use the limit ∞→0m . However, in 

practice, one can use the value when estimate exhibits asymptotic behaviour. 0ẑ  is slightly 

underestimated for small midpoint and overestimated for large 0m . For 2LI model, R̂  and 0ẑ  

are overestimated for all 0m . The estimated velocity is larger than the model velocity for all 

the models. 

We also reconstruct the reflection surface by computing the position for each reflection point, 

β̂sinˆˆ 0 NIPRmx −=  and β̂cosˆˆ NIPRz = . The shape of the surface obtained from the estimates 

computed from the different models is shown in Figure 2.8. To reconstruct all these surfaces, 

we use the range of )5,0(0 kmm    ∈ . The most dramatic difference in the shape of reflector 

comparing with the circle is obtained for the VTI case. The EI model results in a shape that is 

very similar to the circle with another radius. The 2LI model gives the shape which is very 

similar to the circle but slightly deviates for larger emergence angles. 
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The diffraction plays an important role in seismic processing and interpretation. In order to 

investigate the effect of diffraction in our approach, we set 0=R  (point diffractor) and 

perform similar analysis as above (see Appendix C). 

  

  

Figure 2.5. The series coefficients in equations (2.4) plotted versus 0m . The ISO, EI, VTI and 

2LI cases are shown by solid, dotted, dashed and dot-dashed lines, respectively.  

  

 

Figure 2.6. The CRS attributes given in 

equations (2.7) and plotted versus 0m . The 

ISO, EI, VTI and 2LI cases are shown by 

solid, dotted, dashed and dot-dashed lines, 

respectively. 
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Figure 2.7. The estimates in isotropic model 

parameters in equations (2.8) plotted versus 0m . 

The ISO, EI, VTI and 2LI cases are shown by 

solid, dotted, dashed and dot-dashed lines, 

respectively. 

 

 

 

 

 

Figure 2.8. The reconstructed shape of reflector based on estimations of )(ˆ
0mRNIP  and 

)(ˆsin 0mβ  for different models. The ISO, EI, VTI and 2LI cases are shown by solid, dotted, 

dashed and dot-dashed lines, respectively. 
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2.6 Curvature and anisotropy estimation  

For a VTI model, we can linearize the CRS attributes and estimated model parameters in 

terms of anisotropy parameters δ  and η . These results are shown in Appendix D. 

The behaviour of estimated parameters R̂ , V̂  and 0ẑ  is controlled by anisotropy parameters 

δ  and η . Shown in Figure 2.9, the estimated radius and depth for EI and VTI model approach 

to an asymptotic value when 0m  goes to infinity. When 0m  equals zero, these values are the 

same since the anelliptic parameter η  does not affect the vertical wave propagation. It allows 

us to estimate R̂  and 0ẑ  along with the anisotropy parameters. 

The results of R̂  and 0ẑ  in zero and infinite limit are specified by )0(ˆˆ
0

)0( == mRR , 

)(ˆˆ
0

)( ∞→=∞ mRR , )0(ˆˆ 00
)0(

0 == mzz  and )(ˆˆ 00
)(

0 ∞→=∞ mzz . 

For EI model, in the weak-anisotropy approximation (small δ ), the estimated R̂  is varying 

from )1( δ−R  at 0m =0 to )21( δ+R  at ∞→0m . Therefore, the anisotropy parameter δ  and 

radius R  can be evaluated from the variation of R̂  with 0m . The expressions of )0(R̂  and 

)(ˆ ∞R are given by 
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The estimation for curvature and anisotropy parameter can be obtained from the inversion of 

equation (2.15) and (2.16). 
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For VTI case, the results of R̂  and 0ẑ  in zero and infinite limit are given as follows 
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The anisotropy parameters δ , η , radius, and depth can be inversed from equation (2.18) to 

(2.21). 

For the real data, we do not have measurements taken at infinite midpoint position. Instead of 

it, we are going to use the data from km50  =m . From the estimates, we obtained from a VTI 

model, km896.0ˆ )0(  =R , km348.1ˆ )(  =∞R , km992.1ˆ )0(
0  =z  and km417.2ˆ )(

0  =∞z . Using these 

estimates in equations (2.18)-(2.21) results in km941.0  =R , km987.10  =z , 048.0=δ  and 

084.0=η  (see comparison in Table 2.1). The circular reflector parameters are estimated very 

well, but the anisotropy parameters are underestimated. The reason for that is the original 

anisotropy parameters are very large for using weak-anisotropy approximation equations 

(2.18)-(2.21). For real data, one can use the optimization searching for the CRS attributes by 

fitting the operators, then using this inversion method to estimate geophysical information 

(curvature, depth and anisotropy parameters). 

 R (km) 0z (km) δ  η  

VTI model parameters 1.0  2.0 0.1 0.2 

Estimates  0.941  1.987 0.048 0.084 

Table 2.1. The comparison of structural and anisotropy parameters made between VTI model 

parameters and the estimates. 
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Figure 2.9. The plot of the estimated radius (left) and depth for the centre of a circular 

reflector (right) plotted versus 0m . The EI and VTI cases are shown by solid, dotted lines, 

respectively. 

2.7 Conclusions 

Based on the CRS approximation, we propose a new method to evaluate the anisotropy 

parameters and the circular reflector parameters from the behaviour of estimates with the 

midpoint position 0m  for a circular reflector. We consider two anisotropic models and a two 

layered isotropic model, which we treat in the same framework of effective anisotropic media 

by using the GMA for group velocity. 

In the presence of anisotropy, the estimated reflector curvature is overestimated from the 

midpoints just above the circle and underestimated when midpoints are far away from the 

circle. The estimated depth for the centre of the circular reflector is underestimated above the 

reflector and overestimated for far away midpoints. Both of the estimated depth and radius are 

overestimated for 2LI model. By analysing the variations in estimated model parameters 

computed for anisotropic media versus midpoint positon, we can evaluate both structural and 

anisotropic parameters. Despite of we do not know the lateral position of the circular object, 

we can estimate and plot the estimated attributes (computed in vicinity of each 0m ) as a 

function of 0m . From these functions, the lateral position of the object can be clearly seen. 
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2.9 Appendix A. Incidence and reflection group angle 

In the case of a circular reflector in a homogeneous anisotropic velocity model (Figure 2.10), 

the velocity varies with the wave propagation direction. For EI case ( εδ = ), the phase 

velocity for P-wave is given by (Alkhalifah and Tsvankin, 1995) 

 ( ) ,sin21 2
0 θδVV PP +=θ  (2.A.1) 

where 0PV  is the vertical velocity, θ  is the phase angle, δ  is the Thomsen (1986) anisotropy 

parameter. The expression for group velocity is 

 
,sincos

)(
1

2

2

2
0

2

2
NPP VVV

φφ
φ
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φ  is the ray/group angle, NV  is the NMO velocity being δ210 += PN VV . 

The Snell’s law is derived from the plane wave propagation and valid in the phase domain. 

The form for Snell’s law is the following, 

 
,

)(
)(

sin
sin

2

1

2

1

θ
θ

θ
θ

P

P

V
V

=  (2.A.3) 

with 1θ  and 2θ  being the incidence and reflection phase angle. 

The relation for incidence and reflection group angle in EI model can be obtained after a 

tedious computation from equation (2.A.1) - (2.A.3) and takes the form 
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where 1φ  is the incidence group angle, 2φ  is the reflection group angle, α  is the dip angle. 

From equation (2.A.4), one can see that the behaviour of difference group angle φ∆  is 

controlled by 1φ , α  and δ . 

 

Figure 2.10. The reflection from a circular reflector in a homogeneous anisotropic medium. 

The difference between reflection and incidence group angles 12 φφφ −=∆  is shown versus 

incidence group angle 1φ  and reflector dip angle α  in Figure 2.11 for δ =0.1 (top) and δ =0.2 

(bottom). One can see that for moderate incidence angles, the difference is small, and we 

neglect that in our derivations. 

2.10 Appendix B. CRS approximation in 2LI model 

In order to analyse the effect of heterogeneity, we introduce a two layer model, with the first 

layer being adjusted to the top of circular reflector (Figure 2.3, top). We introduce an effective 

artificial layer with the thickness from the reflection point to the top of the circular reflector. 

The offset and moveout of 2LI model can be represented in terms of horizontal slowness, 
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From equations (2.B.1) and (2.B.2), we can compute all the parameters of GMA 

approximation in equation (2.9). 

If is convenient to express the GMA parameters in terms of the thickness and velocity ratios 

for 
1

2

z
z

=λ  and 
1

2

V
V

=γ  as follows 
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The other parameters are defined from a horizontal ray in layer one. It gives  
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Figure 2.11. The difference between reflection and incidence group angle in EI model plotted 

versus 1φ  and α  ( 1.0=δ  top, 2.0=δ  bottom), 
21
παφ ≤+ . 

 



36 
 

2.11 Appendix C. Diffraction case 

The diffraction case can be considered as a special case of the circular reflector by setting 

0=R  (Figure 2.12). In terms of CRS attributes, it gives NIPN RR = . 

By setting 0=R  in equation (2.2) and (2.3), we obtain the double square root (DSR) equation,  
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If the point diffractor is embedded into anisotropic model, the equation (C.1) becomes 
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== −φ  and ))(tan(

0

01
2 z

hm
VV

+
== −φ , where )(φV  is defined in 

equation (2.9).  

When applying the inversion equation (2.8) for anisotropic velocity models, we observe that 

0ˆ =R  regardless to anisotropic parameters. It means that the presence of anisotropy does not 

result in smearing of the point diffractor. 

The CRS attributes computed from equation (2.C.2) are shown in Figure 2.13. The plot for 

β̂sin  is very similar for all three cases. The estimated )ˆ(ˆ
NIPN RR  in VTI case is larger than the 

one estimated from other cases. 

In Figure 2.14, we show the estimated model parameters V̂  and 0ẑ  for the point diffractor 

plotted versus 0m . The value for estimated velocity and depth in EI case does not depend on 

0m . For a VTI case, the estimated velocity and depth exhibit strong variation with 0m . 
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The estimated 0ẑ  for point diffractor in a VTI model is varying from δ210 +z  at 00 =m  to 

)21(210 ηδ ++z  at ∞→0m . This variation can be used as an indicator for anelliptic 

parameter η . 

 

Figure 2.12. The point diffractor in a homogeneous medium. 

  

Figure 2.13. The CRS attributes for a point diffractor plotted versus 0m . The ISO, EI and 

VTI cases are shown by solid, dotted and dashed lines, respectively. 

  

Figure 2.14. The estimated model parameters for a point diffractor plotted versus 0m . The 

ISO, EI and VTI cases are shown by solid, dotted and dashed lines, respectively. 
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2.12 Appendix D. Sensitivity analysis 

In the case of a circular reflector embedded into anisotropic velocity model, the CRS 

attributes and estimated model parameters depend on anisotropy parameters. 

In order to perform the sensitivity analysis, we linearize NIPR̂ , NR̂ , β̂sin  and R̂ , V̂ , 0ẑ  in 

terms of anisotropy parameters δ  and η .  

The expressions for the CRS attributes take the form, 
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For estimated model parameters, the analytical expressions are given in the form 

 
),

)(
)332(22

1(ˆ
32

0
2
0

4
0

2
0

2
0

4
0

2
0

2
0

2
0

2
0

2
0 ηδ

zm
zzmmm

zm
zm

RR
+

−−
+

+
−

+=  (2.D.4) 

 
),

)(
)63(

1(ˆ
32

0
2
0

4
0

2
0

2
0

4
0

2
0

0 ηδ
zm

zzmmm
VV

+
++

++=  (2.D.5) 

 

).
)(

)63(2

)(
2)(

1(ˆ

32
0

2
0

2
0

2
0

2
0

4
0

4
0

2
0

22
0

2
0

2
0

2
0

2
0

22
0

2
0

00

η

δ

zm
zmRzzmm

zm
zmRzzm

zz

+

+−+
       

+
+

+−+
+=

 (2.D.6) 



39 
 

The sensitivity coefficients for anisotropy parameters δ  and η  computed for the CRS 

attributes and estimated model parameters are plotted versus 0m  in Figure 2.15 and 2.16, 

respectively. 

From Figure 2.15, we can see that the effect of parameter δ  is predominant over the effect of 

parameter η  for NIPR̂  and NR̂  when 0m  is small (the lateral CMP position is closed to 

position of the centre of a circular reflector). The presence of anisotropy results in 

overestimating of CRS parameters NIPR̂  and NR̂ . The parameter δ  results in underestimation 

of β̂sin  for moderate values of 0m . 

From Figure 2.16, we can see that for small 0m , R̂  is underestimated due to presence of 

anisotropy, while V̂  is overestimated. The contribution of parameter δ  into V̂  does not 

depend on 0m  see equation (2.D.5). For large 0m , the presence of anisotropy results in 

overestimation of 0ẑ . For all estimations, the effect of anellipticity parameter η  is very small 

for small value of 0m . 
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Figure 2.15. The sensitivity coefficients for anisotropy parameters δ  and η , shown by solid, 

dotted lines, respectively, and plotted versus 0m . The corresponding CRS attributes are NIPR̂  

(top), NR̂  (middle) and β̂sin  (bottom). 
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Figure 2.16. The sensitivity coefficients for anisotropy parameters δ  and η , shown by solid, 

dotted lines, respectively, and plotted versus 0m . The corresponding estimates for isotropic 

model parameters are R̂  (top), V̂  (middle) and 0ẑ  (bottom). 
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Chapter 3 Estimation of the anisotropy parameters 
from imaging moveout of diving wave in a factorized 
VTI medium 
Shibo Xu1, Alexey Stovas1 and Tariq Alkhalifah2 

1Norwegian University of Science and Technology, Trondheim, Norway 

2King Abdullah University of Science and Technology, Thuwal, Saudi 

Arabia. 

Abstract. The importance of diving waves is being realized since they provide long 

wavelength model information, which can be utilized to help invert for the reflection 

information in full waveform inversion (FWI). The factorized model is defined here as a 

combination of vertical heterogeneity and constant anisotropy and it admits closed form 

description of the traveltime. We use these resulting analytical formulas to describe the 

behavior of diving waves in a factorized anisotropic medium and utilize an approximate 

imaging moveout formulation (residual moveout after imaging) to update the velocity model 

when the wrong model parameters (isotropic assumption) are used for imaging. We then use 

these analytical representations of the image moveout to establish a semblance analysis 

framework to search for the optimal anisotropic parameters. We also discuss different 

parameterizations of the factorized medium to find the one that gives the best accuracy in 

anisotropy parameters estimation. 

Presented at the 78th EAGE Conference and Exhibition, June, 2016, Vienna, Austria; 

Published in Geophysics in July 2016. 
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3.1 Introduction  

Recently, direct arrivals and specifically diving waves are experiencing a new lease on life as 

they can work as one of the major sources of the information for the long wavelength 

component of the velocity model (Virieux and Operto, 2009). These inverted models, which 

are based on diving waves, can provide an initial velocity model that is sufficiently close to 

the true model within the full waveform inversion (FWI) requirements. In a general FWI, we 

update the velocity model by using the information from both reflected and diving waves. 

Recently, many have suggested that we focus initially on the diving (transmission) waves and 

try to isolate them (Tang et al, 2013) since they provide long wavelength update for updating 

the velocity model (Sirgue and Pratt, 2004). A sensitivity analysis to assess the contribution of 

refracted, reflected and diving waves for the reconstructed velocity perturbation is studied by 

Kazei et al (2013). The moveout behavior and the focusing of the imaging process for 

reflected waves have been studied for years, and we have obtained considerable analytical 

insights of such behavior. Compared with the reflected waves, the imaging of diving waves 

has lagged behind and studies in this matter are rare. With the emergence of FWI, the 

importance of diving waves is now being realized. In fact, the acquisition of large offsets 

capable of acquiring diving waves is becoming highly desirable because they penetrate at 

large depths. One of the earliest analysis of the diving waves acquisition and traveltime can be 

found in Levin (1996). An approach to measure the defocusing in imaging of diving waves in 

the subsurface due to velocity errors was analyzed by Shen (2013). In this paper, the update 

kernel is essentially similar to that experienced for FWI of diving waves. Therefore, this 

defocusing (residual image moveout) can be utilized to update the velocity model. Stovas and 

Alkhalifah (2014) proposed to use analytical approximations of image moveout of diving 

waves in a constant-gradient isotropic velocity model to gain better understanding of the role 

of diving waves and the update of the velocity model from the defocusing in imaging. We 
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extend this approach to factorized anisotropic models. The factorized model, assuming 

vertical heterogeneity and a constant anisotropy parameters, is useful in seismic data 

processing and modeling (Alkhalifah, 1995, Sarkar and Tsvankin, 2003). Ray-tracing problem 

in factorized models with elliptic anisotropy is discussed extensively in Rogister and 

Slawinski (2005). The equations for offset, traveltime and relative geometrical spreading for 

an analytically described factorized model that combines vertical inhomogeneity with a 

constant transversely isotropic model with vertical symmetry axis (VTI) are derived by Stovas 

(2010). In this paper, we develop such formulas for diving waves in a factorized VTI medium 

and analyze their behavior. We define the imaging moveout formulation resulting from using 

the wrong velocity (isotropic assumption). The explicit equations for imaging moveout are 

obtained by considering various approximations. We test the accuracy of these 

approximations for different values of velocity gradients. Synthetic seismic data are used to 

illustrate this approach. We evaluate the anisotropy parameters by semblance analysis of the 

depth migrated data. The parameterization is very important for multi-parameter FWI 

(Alkhalifah and Plessix, 2014). Finally, we discuss the estimation results by adopting different 

parameterizations. 

3.2 Diving waves in a factorized VTI medium 

The factorized model (Stovas 2010, Sarkar and Tsvankin, 2003) involves both anisotropy and 

vertical heterogeneity. In our case, the factorized medium is defined as a transversely 

isotropic model with a vertical symmetry axis (VTI) under the acoustic approximation 

(Alkhalifah, 1998). The vertical P-wave velocity is linearly changing with depth while the 

anisotropy parameters (Thomsen, 1986) remain constant. The vertical velocity in this 

factorized model is given by 
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 ,0 GzVVz +=  (3.1) 

Where 0V  is the P wave vertical velocity on the surface and G  is the gradient of velocity. 

For this model, we focus on the diving wave propagation. The fact that the diving wave 

propagates mostly horizontally points us to a specific choice of parameters to represent the 

VTI medium. Specifically, we would like to preserve the horizontal wave propagation 

properties rather than vertical. Therefore, we parameterize the VTI part of the model with the 

parameters 0V , ε , and η . In the following, we analyze other parameterizations and their 

effect on the anisotropy parameters estimation. 

Based on the parameterization introduced above, the VTI slowness surface can be given by 
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where q  and p  are vertical and horizontal slownesses, respectively.  

Because of the anisotropy, the ray trajectory of the diving wave in a factorized VTI medium is 

different from the isotropic case and is shown in Figure 3.1. The shape of the ray is given by 

an arc of quasi-ellipse. The ray trajectories are affected by 0V , G  and the anisotropy 

parameters. The changes in ray trajectory due to the changes in 0V , G , ε  and η  are shown in 

Figure 3.2. The model parameters are km/sV  = 20 , 150 -s.G  = , 2.0= ε  and 2.0=η  with 

considered perturbations: km/s.ΔV  ±= 200 , 110 -s.ΔG  ±= , 1.0±=∆ε and 1.0±=∆η . 

Compared with the change in the anisotropy parameter η , the influence of a change in the 

anisotropy ε  is much more pronounced on the ray geometry. The position of the turning point 
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),( 00 zx  (Figure 3.3) in a factorized VTI medium can be obtained by setting the vertical 

slowness to zero, and defined as 
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where  
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The traveltime from the source position )0,0(  to the turning point ),( 00 zx  takes the form 
(Stovas, 2010) 
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where 1A  and 2A  are given by 
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and the expression for 3A  depends on the sign of η , 
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Figure 3.1. Ray trajectory of diving wave in a factorized VTI medium. 

 

Figure 3.2. Change in ray trajectory due to perturbations in 0V , G , ε  and η , respectively. 

The model parameters are km/sV  = 20 , 150 -s.G  = , 2.0= ε  and 2.0=η  with perturbations 

of km/s.ΔV  ±= 200 , 110 -s.ΔG  ±= , 1.0±=∆ε and 1.0±=∆η .  
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Figure 3.3. Diving-wave imaging moveout. (imaging point shift from the turning point). The 

ray trajectories in factorized VTI and isotropic media are shown by solid and dashed lines, 

respectively. 

3.3 Diving wave imaging moveout  

The definition of diving wave imaging moveout is illustrated in Figure 3.3. The imaging point 

of the diving wave, when using the accurate velocity model, will be focused in the turning 

point position with the coordinates given in equation (3.3) after applying the imaging 

condition (Shen, 2013). If the parameters in the velocity model are not accurate, this point 

will shift and is given by a different ray trajectory defined by the same traveltime and 

horizontal slowness. This image point dispersal (residual image moveout) can be used to 

extract information to update the velocity model. 

The behavior of diving waves for a constant-gradient velocity model in an isotropic medium 

has been described analytically by Stovas and Alkhalifah (2014). The traveltime from source 

)0,0(  to a point ),( pp zx  is defined by the relation 
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where pz  is the corresponding depth of the focusing point with wrong velocity model 

(isotropic assumption). 
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We can get the expression of the depth pz  by solving the equation 0Tt p =  from equations 

(3.5) and (3.8), 
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(3.9) 

where 0T  is defined in equation (3.5)-(3.7). The relation between px  and pz  in an isotropic 

medium with a linearly increasing velocity is given in Stovas and Alkhalifah (2014) 
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(3.10) 

We can get a similar approximate expression for VTI media by substituting equation (3.9) 

into equation (3.10). 

The difference in the lateral position of the imaging point, pp xxx −=∆ 0 , where 0x  is defined 

in equations (3.3) and (3.4), can be represented as a function of the vertical depth pz , which is 

the so called diving wave imaging moveout. Both px∆  and pz  are parametric equations 

represented in terms of the horizontal slowness p . 

As it is shown in Figure 3.4, one can see the exact imaging moveout with the perturbations in 

0V  , G , ε  and η  with the parameters: km/sV  = 20 , 150 − = s.G , 3.0=ε  and 15.0=η , and 

the perturbations: km/s.ΔV  ±= 500 , 120 -s.ΔG  ±= , 10.Δε ±=  and 10.Δη ±= . We can see 

from the plots that px∆  increases with vertical velocity 0V  and anisotropy parameter ε , while 
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decreases with gradient G  and anisotropy parameter η . From the plots in Figure 3.4, we 

observe that the imaging moveout is very insensitive to the changes in anisotropy parameter 

η  under the parameterization: 0V , ε , η . 

 

Figure 3.4. Exact imaging moveout with the perturbations in 0V  and G  and anisotropy 

parameters ε  and η . The parameters are km/sV  = 20 , 150 − = s.G , 3.0=ε  and 15.0=η , and 

with the perturbations are km/s.ΔV  ±= 500 , 120 -s.ΔG  ±= , 10.Δε ±=  and 10.Δη ±= . 

3.4 Imaging moveout approximations 

In order to choose the best approximation for the imaging moveout, we analyze three types of 

approximations for )( pp zx∆ : the fourth order Taylor series, the Padé approximation and the 

rational approximation. 

First, we obtain the analytical Taylor series expansion in depth pz , which takes the form (see 

Appendix A) 

 ,4
4

3
3

2
21 ppppp zazazazax +++=∆  (3.11) 

with the series coefficients 
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(3.12) 

The first two coefficients in equation (3.12) do not depend on the anisotropy parameter η . It 

confirms our observation on the weak dependency of the imaging moveout on this parameter. 

In order to provide an accurate approximation, the Padé approximation is adopted to stabilize 

the series in equation (3.11). We define a Padé approximation [ ]jiP ,  to be the rational 

function given by 
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The series coefficients in the Padé approximation are associated with the Taylor series in 

equation (3.11) for ∑
=

=∆=
4

1
)(

j

j
pjp zaxzA , and the series coefficients in equation (3.13) can 

be calculated by [ ] )(,)( jizOjiPzA +=− . If 4>+ ji  the corresponding coefficient of jiz +  in 

the Taylor series will be zero, 0=+ jia  (Baker et al., 1961). 

We analyze three types of Padé approximations i.e. [ ]2,2P , [ ]3,2P , and [ ]3,3P  for the diving 

wave imaging moveout )( pp zx∆ . 

To define a more stable and accurate approximation, we compute the infinite depth limit, 
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Then, we define two types of rational approximation in the following forms 
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where the coefficients 1321121 ,,,,,, QPPPqpp  and 2Q  are represented in terms of the Taylor 

series coefficients in equation (3.12) and the infinite limit term ∞a  (Appendix B). 

3.5 Numerical examples 

To test the accuracy of different approximations, we choose a factorized model with the 

parameters: km/sV  = 20 , 151 -s.G  = , 22.0=ε  and 1.0=η .  

First, we test the accuracy of Taylor series approximation with different terms and their errors 

S  in Figure 3.5. The error function is the difference between exact imaging moveout 

)( pzxexact∆  and the approximation one )( pzxapp∆  with )()( pp zxzxS appexact ∆−∆= . From the 

plots in Figure 3.5, we can see that in the presence of anisotropy, the third-order Taylor series 

approximation has a higher accuracy. 
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Figure 3.5. The limited Taylor series approximations from equation (3.11) (left) and their 

errors (right). The one-, two-, three- and four-term approximations are shown by large dashed, 

tiny dashed, dotted and dash-dotted lines, respectively. The exact imaging moveout curve is 

shown by solid line. The parameters are km/sV  = 20 , 151 -s.G  = , 22.0=ε  and 1.0=η . The 

error in imaging moveout is )()( pp zxzxS appexact ∆−∆= . 

In Figure 3.6, we show three types of Padé approximation [ ]2,2P , [ ]3,2P , [ ]3,3P  and their 

error plots. From the plots in Figure 3.6, one can see that the Padé approximation [ ]2,2P  is 

more accurate than the other two, while [ ]3,2P  is unstable (Figure 3.6) since the denominator 

can vanish at a certain depth. 
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Figure 3.6. The imaging moveout of three types of Padé approximation [ ]2,2P , [ ]3,2P , 

[ ]3,3P  (left) and their errors (right) are shown by dashed, dotted and dash-dotted lines, 

respectively. The exact imaging moveout curve is shown by solid line. 

The imaging moveout of two rational approximations in equations (3.15) and (3.16) are 

shown in Figure 3.7. From the error plots in Figure 3.7, one can see that the rational 

approximation 2R  is very accurate. It is almost as accurate as the exact solution up to a depth 

of 0.6 km. We select the rational approximation 2R  as our approximation for the upcoming 

examples. 
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Figure 3.7. The imaging moveout of two rational approximations in equations (3.15) and 

(3.16) and their errors are shown in dashed and dotted lines, respectively. The exact imaging 

moveout curve is shown by solid line. 

3.6 Semblance analysis 

First, we test the accuracy on two common-shot synthetic gathers corresponding to different 

values of the gradient (Figure 3.8) 1
1 51 -s.G  =  (model a) and 1

2 2 -sG  =  (model b). The 

remaining parameters are km/sV  = 20 , 22.0=ε  and 1.0=η . The source is located at the 

surface at lateral position 4 km, with receivers spanning the whole surface. Imaging the shot 

gather using reverse time migration (RTM) with a space lag imaging condition allows us to 

obtain the common image gathers. Figure 3.9 shows the common image gathers from 

applying the RTM with the accurate parameters. There is no residual imaging moveout when 

the exact velocity model is used. In Figure 3.10, we show the residual imaging moveout when 

applying RTM under the isotropic assumption on the data shown in Figure 3.8. For the 

isotropic model, we keep the same 0V  and gradients as that of the anisotropic models and set 

ε  and η  to zero. The use of wrong anisotropy parameters cause the residual imaging 

moveout we see in Figure 3.10. We overlay the numerically computed imaging moveout with 

the curves corresponding to our analytical second-order rational approximation 2R  given in 
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equation (3.16). We represent the numerically computed imaging moveout in Figure 3.10 with 

a yellow color. Although this equation is approximate, it can accurately predict the residual 

curve of the imaging moveout for both models. For a larger gradient, the matching between 

the analytical approximation and RTM is not as accurate with increasing difference at large 

depths (Figure 3.10 (b)). As the typical velocity gradients lie between 10.15.0 − − s , so our 

results are acceptable. 

 

Figure 3.8. (a) The common shot gather for the diving wave from the synthetic data with the 
parameters km/sV  = 20 , 1

1 51 -s.G  = , 22.0=ε  and 1.0=η . (b) The common shot gather for 

the diving wave from the synthetic data with the parameters km/sV  = 20 , 1
2 2 -sG  = , 

22.0=ε  and 1.0=η .  

 

Figure 3.9. The common image gather for 

the diving wave when applying the 

anisotropic RTM with the accurate 

parameters. 
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Figure 3.10. (a) The common image gather when using the isotropic RTM with parameters 

km/sV  = 20 , 1
1 51 -s.G  = , 22.0=ε  and 1.0=η . (b) The common image gather when using 

the isotropic RTM with parameters km/sV  = 20 , 1
2 2 -sG  = , 22.0=ε  and 1.0=η . We 

overlay the residual curve predicted by the imaging moveout from rational approximation 2R  

in equation (3.16). 

We apply the semblance analysis on the RTM result based on the analytical prediction 

corresponding to the rational approximation 2R . The equation for the semblance coherency 

function is given by 
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where SB  is the semblance value, jiA ,  is the amplitude of the RTM data, )( ji  is the 

discretized representation of )( pp zx  and j  is the discretized representation of pz  in the 

rational approximation 2R  given by equation (3.16). In order to analyze the influence of VTI 

medium parameterization, we test a range of anisotropy combinations and show the errors in 

estimation of anisotropy parameters ε∆  and η∆  for gradient 1G  in Table 3.1 (see Appendix 
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C). From this table, we can see that the estimates from all the examples are reasonably 

accurate and the differences between them are very small. Then, we apply the same analysis 

for the larger gradient 2G  and show the results in Table 3.2. The anisotropy estimates for this 

model are less accurate because the approximation in equation (3.16) deviates from the RTM 

result at larger depths as shown in Figure 3.10 (b). However, the results are still sufficiently 

accurate for use as a potential initial model for FWI. Based on the accuracy of estimation of 

ε~  and η~ , we select the four best parameterizations: ),,( ηεNV , ),,( δεNV , ),,( 0 HVV ε  and 

),,( HN VV ε  for semblance plots. 

In Figure 3.11, the semblance plots computed for the depth range of m − 6000  for these four 

types of parameterizations, where NVV  ,0  and HV  are the vertical, NMO and horizontal 

velocities on the top for gradient 1G , demonstrate the variations with different 

parameterizations. The anisotropy parameters can be evaluated from the coordinates by 

picking the maximal value of the semblance plots. 

The semblance plots for a larger gradient 2G  are shown in Figure 3.12. Comparing with the 

semblance plots in Figure 3.11, we observe that the semblance anomalies are more focused 

while the estimation results are less accurate. The trade-off between anisotropy parameters 

also decreases. 
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Table 3.1. The anisotropy estimation errors for gradient 1G  for all parameterizations. We fix 
the first value of each parameterization and evaluate the other two through semblance analysis, 
then convert them into the estimation for anisotropy parameters ε~  and η~ .  

G1=1.5s-1 

One velocity + two anisotropy parameters 

1 ηε   ,,0V  002.0≈∆ε  004.0−≈∆η  

2 ηδ   ,,0V  0015.0≈∆ε  0055.0−≈∆η  

3 εδ   ,,0V  002.0≈∆ε  0035.0−≈∆η  

4 ηε   ,,NV  0025.0≈∆ε  005.0−≈∆η  

5 ηδ   ,,NV  002.0≈∆ε  008.0≈∆η  

6 εδ   ,,NV  0025.0≈∆ε  0045.0−≈∆η  

7 ηε   ,,HV  002.0≈∆ε  0045.0−≈∆η  

8 ηδ   ,,HV  0015.0≈∆ε  006.0−≈∆η  

9 εδ   ,,HV  002.0≈∆ε  0045.0−≈∆η  

Two velocities + one anisotropy parameter 

10 
NVV ,,0 ε  002.0≈∆ε  00355.0−≈∆η  

11 
NVV ,,0 η  0016.0≈∆ε  0045.0−≈∆η  

12 
HVV ,,0 δ  0018.0≈∆ε  0047.0−≈∆η  

13 
HVV ,,0 η  0018.0≈∆ε  005.0−≈∆η  

14 
HN VV ,, δ  002.0≈∆ε  006.0−≈∆η  

15 
HN VV ,, ε  0025.0≈∆ε  005.0−≈∆η  

16 
NH VV ,,δ  0016.0≈∆ε  0044.0−≈∆η  

17 
NH VV ,, ε  002.0≈∆ε  0044.0−≈∆η  

Three velocities 

18 HN VVV ,,0   0018.0≈∆ε  0048.0−≈∆η  
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Table 3.2. The anisotropy estimation errors for gradient 2G  for all parameterizations. We fix 
the first value of each parameterization and evaluate the other two through semblance analysis, 
then convert them into the estimation for anisotropy parameters ε~  and η~ .  

G2=2s-1 

One velocity + two anisotropy parameters 

1 ηε   ,,0V  0075.0≈∆ε  0385.0≈∆η  

2 ηδ   ,,0V  0080.0≈∆ε  0385.0≈∆η  

3 εδ   ,,0V  0075.0≈∆ε  045.0≈∆η  

4 ηε   ,,NV  0045.0≈∆ε  0370.0≈∆η  

5 ηδ   ,,NV  0060.0≈∆ε  0380.0≈∆η  

6 εδ   ,,NV  0045.0≈∆ε  0355.0−≈∆η  

7 ηε   ,,HV  0080.0≈∆ε  0385.0≈∆η  

8 ηδ   ,,HV  0085.0≈∆ε  0380.0≈∆η  

9 εδ   ,,HV  0080.0≈∆ε  0215.0−≈∆η  

Two velocities + one anisotropy parameter 

10 NVV ,,0 ε  0075.0≈∆ε  0377.0≈∆η  

11 NVV ,,0 η  0083.0≈∆ε  0385.0≈∆η  

12 HVV ,,0 δ  0072.0≈∆ε  0367.0≈∆η  

13 HVV ,,0 η  0072.0≈∆ε  0375.0≈∆η  

14 HN VV ,, δ  0060.0≈∆ε  0380.0≈∆η  

15 HN VV ,, ε  0045.0≈∆ε  0370.0≈∆η  

16 NH VV ,,δ  0082855.0≈∆ε  0377855.0≈∆η  

17 NH VV ,, ε  0080.0≈∆ε  0383862.0≈∆η  

Three velocities 

18 HN VVV ,,0   007218.0≈∆ε  036906.0≈∆η  



62 
 

 

 

Figure 3.11. The semblance plots for different parameterizations computed for factorized 

model with 1
1 5.1 −= sG  (a) NV -fixed, ηε , ; (b) NV -fixed, δε , ; (c) 0V -fixed, HV,δ ; (d) NV -

fixed, HV,ε . The anisotropy parameters can be evaluated from the coordinates of the maximal 

value of the semblance plot. 
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Figure 3.12. The semblance plots for different parameterizations computed for factorized 

model with 1
1 2 −= sG  (a) NV -fixed, ηε , ; (b) NV -fixed, δε , ; (c) 0V -fixed, HV,δ ; (d) NV -

fixed, HV,ε . The anisotropy parameters can be evaluated from the coordinates of the maximal 

value of the semblance plot. 

3.7 Discussions  

Despite the fact that the linear velocity model used for our analysis is an approximation to the 

real case, it can be used as a part of a factorized model for many real situations. Like in the 

moveout approximations for reflections where the medium is assumed to be homogeneous to 

yield such approximations, for diving waves vertical increase of velocity is a necessary 

ingredient for recording such waves. As a result, we develop the analytical approximations 

based on a constant gradient assumption, which will allow for closed form solutions. In the 

same way as Dix-type approximations are used to describe the reflection moveout in a )(zV  
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medium, similar formulas can be derived for the diving wave moveout, where the gradient is 

varying with depth. Such studies can be a topic of future investigations. 

Despite that diving waves admit low frequency long wavelength energy over the whole 

wavepath when imaging, it is stationary near the turning point, so the contributions from 

many source and receivers at the end allows the turning point part to provide the major 

contribution and at the high frequency asymptotic limit, we end up with the turning ray 

contribution. We definitely do not get energy focused only at the turning point, as the classic 

image for turning waves from a source to a receiver is has a banana shape. However, we are 

focusing our analysis at the center which includes the turning point, as it represents the 

deepest level in which a diving wave travels shown in Figure 3.13. Using different intervals, 

we sum all sources and receivers that covering the surface, the turning point represents the 

major stationary contribution to the image. The subsurface offset gathers from left and right 

parts of the model are shown in Figures 3.14 (a) and (b), respectively, using the correct 

velocity in migration. They need to be compared with Figure 3.9. We can see that they all 

focused at the center of corresponding gather. The basic idea is that the increased focusing of 

image in subsurface offset is induced by the increased degree of similarity between the 

migration velocity and the true velocity. This is equivalent to what we see in extending the 

image with an offset lag as we demonstrate in Figures 3.9 and 3.10 similar to Shen (2013). So 

the image point dispersal is equivalent to the non-focusing to zero offset we obtain when we 

look at extended images. In FWI for diving waves, such dispersal depending on the frequency 

suggests to us the depth in which the gradient can be trusted, and thus, provides wrong 

direction updates when the dispersal exceeds a half of the wavelength. 

Using the rational approximation, we ended up with relatively small errors under the 

assumptions made. However, as expected, we observe trade-off between the anisotropy 

parameters in the estimation (Figures 3.11 and 3.12). The trade-off is an ongoing challenge in 
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analyzing multi parameter problems like those in anisotropy. However, with analytical 

formulas the computation of the Hessian becomes straightforward, which provides for another 

opportunity to benefit from these approximations.  

The semblance analysis exercise was mainly meant to analyze the role of parameterization in 

reducing the tradeoff, but it also provides a valid tool for extracting effective anisotropic 

parameters corresponding to the depth covered by the diving waves. These effective values 

can serve as potential initial values for tomographic inversion or FWI. 

 

Figure 3.13. The ray trajectory of the diving waves. 
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Figure 3.14. Subsurface image gathers in offset pulled from left (a) (4400m) and right (b) 

(4600m) of the model migrated with the correct velocity. 

3.8 Conclusions 

We develop a method to estimate the anisotropy parameters from the residual moveout of 

diving waves in a factorized velocity model. We analyze different approximations for the 

imaging moveout, and find that the second order rational approximation 2R  is the most 

accurate one. By testing it with different anisotropy parameterizations, we select ),,( ηεNV , 

),,( δεNV , ),,( 0 HVV ε  and ),,( HN VV ε  as potentially the best combinations for this problem as 

they provide the best results even for large values of velocity gradients. We estimate the 

anisotropy parameters from the semblance analysis on residual moveout in the RTM image 

gathers. From the semblance plots, we observe that an increase in velocity gradient results in a 

decrease in the trade-off between anisotropy parameters. However, for the larger gradient the 

accuracy of our moveout equation reduces. Nevertheless, the anisotropy estimation using 

semblance analysis for all parameterizations is reasonably accurate even for large values of 

velocity gradients. 



67 
 

3.9 Acknowledgments 

We would like to thank Wiktor Weibull for providing the modeling and RTM codes and 

Chenlong Wang from Tongji University for his useful discussions. We also acknowledge the 

China Scholarship Council (CSC) and the ROSE project for financial support. We also thank 

KAUST for its support. 

3.10 Appendix A  

Taylor series for residual imaging moveout 

In order to simplify the expression, we substitute the horizontal slowness by the following 

variable s  using, 
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Then the parametric expressions of )(sz p  and )(sx p∆  can be expanded in a series, 
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where 4,,1,,  = jmn jj  are the series coefficients. 

From series (3.A2), we define the series for )( pp zx∆  in the form,  

 .)( 4
4

3
3

2
21 pppppp zazazazazx +++=∆  (3.A3) 

The coefficients in series (3.A3) are given in terms of coefficients in series (3.A2) and (3.A3) 

as follows 
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(3.A4) 

Finally, these coefficients take the form, 
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(3.A5) 

Note that the lower order coefficients 1a  and 2a  do not depend on the anisotropy parameter 

η . 

3.11 Appendix B 

Rational approximation 

We define two types of rational approximations with the following forms 
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where 1321121 ,,,,,, QPPPqpp  and 2Q  are the series coefficients. In order to compute these 

coefficients, we define the infinite depth limit, 
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The coefficients in the rational approximation 1R  can be represented by 
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where the coefficients ja  are given in equation (3.A5). 

The coefficients in rational approximation 2R  can be given by 
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(3.B4) 

where the coefficients ja  are given in equation (3.A5). 

3.12 Appendix C 

Different parameterizations 

In order to analyse the impact of the different parameterizations on our analysis, we use three 

types of parameterizations: one velocity plus two anisotropy parameters, two velocities plus 

one anisotropy parameter, and three velocities. Different anisotropy parameters can be 

transferred by the following relations 
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(3.C1) 

where 0V  is the P wave vertical velocity on the surface, NV  is the NMO velocity on the 

surface, HV  is the horizontal velocity on the surface. The value of the anisotropy parameters 

are set to km/sV  = 20 , -1
1 s = 5.1G , 22.0=ε  and 1.0=η . 

Type one: One velocity + two anisotropy parameters 

The parameterizations given by type one are ( ηε   ,,0V ), ( ηδ   ,,0V ), ( εδ   ,,0V ), ( ηε   ,,NV ), 

( ηδ   ,,NV ), ( εδ   ,,NV ), ( ηε   ,,HV ), ( ηδ   ,,HV ) and ( εδ   ,,HV ). We fix the first value of the 

velocity and evaluate the other two-anisotropy parameters through semblance analysis. Then 

we convert the estimation errors into the same form  ∆ε~  and η~∆  to analyze the accuracy of 

different parameterizations by the relation ηδε ~~~ ∆+∆≈∆ . 

Type two: Two velocities + one anisotropy parameter 

The parameterizations in type two are ( NVV ,,0 ε ), ( NVV ,,0 η ), ( HVV ,,0 δ ), ( HVV ,,0 η ), 

( HN VV ,, δ ), ( HN VV ,, ε ), ( NH VV ,,δ ), and ( NH VV ,, ε ). We fix the first parameter of the 

velocity and evaluate the velocity and the anisotropy parameter through semblance analysis. 

Then we convert the estimation errors into the same form  ∆ε~  and η~∆  to analyze the 

accuracy of different parameterizations using the following relations 
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(3.C2) 

Type three: Three velocities 

The parameterization in type three is ( HN VVV ,,0  ). We fix the first value of the velocity and 

evaluate the other two velocities through semblance analysis. Then we again convert the 

estimation errors into the same form  ∆ε~  and η~∆  to analyze the accuracy of different 

parameterizations by the relations shown in equation (3.C2). 

The errors in anisotropy estimations  ∆ε~  and η~∆  for eighteen parameterizations are shown 

in Table 3.1. From this table, one can see that the estimations from all parameterizations are 

reasonably accurate and the differences between them are very small. 
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Chapter 4 Preserved traveltime smoothing in 
orthorhombic media 
Shibo Xu and Alexey Stovas  

Norwegian University of Science and Technology, Trondheim, Norway 

Abstract. Certain degree of smoothness of velocity model is required for most ray based 

migration and tomography. Applying the conventional smoothing in model parameters results 

in the offset-dependent traveltime errors for reflected events, which can be large even for 

small contrasts in model parameters between the layers. This causes the shift in both the depth 

and residual moveout (RMO) of the migrated images. To overcome this problem in 

transversely isotropic medium with a vertical symmetry axis (VTI), the preserved traveltime 

smoothing (PTS) method was proposed earlier. We extend this method for orthorhombic 

media with and without azimuthal variation between the layers. We illustrate this method for 

a single interface between two orthorhombic layers and show that the smoothing driven errors 

in traveltime are very small for practical application. 

Presented at the 78th EAGE Conference and Exhibition, June, 2016, Vienna, Austria; 

Published in Geophysical Prospecting in November 2016. 
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4.1 Introduction 

The velocity models for prestack depth migration (PSDM) are commonly built by layer-

stripping with velocity discontinuities across the horizons. The ray tracing (Červený, 2001) 

used in Kirchhoff or beam migration requires certain smoothness of the depth velocity model. 

Current industrial practice for smoothing is to perform a bell-shaped filter (Gonzalez and 

Woods, 2008) to the step of model parameters. The drawback of the conventional smoothing 

is that the migrated events will shift to higher velocity layer at the discontinuities compared 

with results from the unsmoothed model. The shift is offset-dependent, and the errors in depth 

and the residual moveout (RMO) for the migrated images are induced by the smoothing 

process, which will cause errors in velocity analysis. Several approaches are proposed for this 

problem like adding the horizons in the ray-tracing process (Vinje et al, 1996) and combing 

the unsmoothed and smoothed models (Baina et al, 2006). The Preserved traveltime 

smoothing (PTS) (Vinje et al, 2012) is proposed to solve this problem based on the 

kinematically equivalent media (Stovas, 2008) and the traveltime filter. It is designed to 

smooth the depth models accompanied by preserving the traveltime parameters at the velocity 

discontinuities. 

The orthorhombic (ORT) medium is introduced by Schoenborg and Helbig (1997) to describe 

the fractured earth and has become a new standard to define model parameters to cover the 

azimuthal dependence of the traveltime surface. Tsvankin (1997, 2012) defines the elastic 

ORT model with nine parameters that can be reduced to six parameters in an acoustic 

approximation (Alkhalifah, 2003). These parameters are: vertical velocity 0V , two local NMO 

velocities defined in vertical symmetry planes and three local anelliptic parameters. The 

anelliptic parameters can be defined in all symmetry planes (Grechka and Tsvankin, 1999) or 

can be defined in terms of azimuthally dependent anellipticity (Stovas, 2015). In addition to 
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that, we might have one extra parameter responsible for azimuthal orientation of the 

symmetry planes.  

In this paper, we extend the Preserved traveltime smoothing (PTS) method to ORT model 

based on the azimuthal dependence of kinematic properties defined for an acoustic ORT 

medium (Stovas, 2015) to preserve the traveltime parameters for smoothed ORT model. In 

case of azimuthal variations in the symmetry axis between the layers, the least-squares 

approximation is adopted to estimate the effective anellipticity parameters from this layered 

medium to preserve the complexity of the model when doing smoothing (ORT both input and 

output). The traveltime parameters are preserved for the azimuthally dependent ORT model, 

and the resulting error in traveltime is sufficiently small from the numerical examples. In our 

paper, we focus on defining the composite parameters only and use very simple Gaussian 

filter instead of the complicated smoothing operator as proposed in Vinje et al (2012). 

4.2 Velocity moments and composite parameters for VTI media 

In order to preserve traveltime when smoothing the velocity model, Vinje et al. (2012) defines 

the depth dependent composite parameterization of a transversely istropic model with a 

vertical symmetry axis (VTI) medium under the acoustic approximation (Alkhalifah, 1998) 

represented by kinematic parameters (Stovas, 2008), 
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where 1m , 2m  and 3m  are the unsmoothed composite parameters, 0V  is the vertical P-wave 

velocity, nmoV  is the normal moveout velocity defined by δ210 += VVnmo , 

)21/()( δδεη +−= , where δ  and ε  are the anisotropy parameters (Thomsen, 1986). 

The composite parameters 1m , 2m  and 3m  are smoothed by Gaussian filter so that the velocity 

moments are preserved at the velocity discontinuities. It means that the integral for composite 

parameter jm  (before and after smoothing) remains the same, 

 .3,2,1,)(~)(
00

= = ∫∫ jdmdm
z

j

z

j ξξξξ  (4.2) 

The model is studied in 1 D (vertical direction), therefore, the smoothing for the composite 

parameters is also computed in 1D, consequently. 

The smoothed composite parameter jm~  can be obtained by using a conventional Gaussian 

filter, 
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where jm~  and jm  are smoothed and unsmoothed composite parameter, respectively, and w  is 

the Gaussian function and z∆  is the length of the filter. Vinje et al. (2012) designed the 

special filter used for smoothing, but, in this paper, we use the simple Gaussian filter for 

simplicity.  

The smoothed composite parameter jm~  is shown in Figure 4.1 (left). In order to preserve the 

traveltime parameters, compensation function needs to be added before and after the step 

(Figure 4.1, right).  
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Figure 4.1. The unsmoothed and smoothed composite parameters (left). The same composite 

parameter with compensation functions (right). The unsmoothed and smoothed parameters are 

shown by solid and dashed lines, respectively. 

The smoothed composite parameters 1
~m , 2

~m  and 3
~m  can be converted into the model 

parameters by following equations (Vinje et al, 2012), 
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To illustrate the smoothing procedure and the accuracy of the method, we select a two-layer 

VTI model. The parameters of upper layer are: km/s5.10  =V , km/s2 =nmoV , 1.0=η  and 

parameters of lower layer are: km/s5.20  =V , km/s2.3  =nmoV , 12.0=η  and the thickness for 

both layers is 3 km. Unsmoothed and smoothed composite parameters )3..1( =jm j  computed 

for model specified above are shown in Figure 4.2. One can see that the smoothing operator in 

equation (4.3) performs very similarly for all composite parameters. 

The corresponding smoothed model parameters computed in equations (4.4) are shown in 

Figure 4.3. From these plots, one can see that the shape of the smoothed anellipticity 

parameter η  is very different from other kinematic parameters at the interface. 
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If the unsmoothed velocity model is isotropic ( 0== εδ ), the PTS results in the smoothing 

induced anisotropy illustrated in Figure 4.4. The behavior of the smoothed nmoV  is similar to 

behavior of the smoothed 0V  (Figure 4.3). However, the smoothing induced anellipticity 

parameter is different from the one obtained for VTI model. We can decompose kinematic 

parameters shown in Figure 4.4 into anisotropic parameters δ  and ε  (Figure 4.5). The 

smoothed anisotropic parameters δ  and ε  have similar shape. The induced anellipticity from 

elliptic isotropic (EI) and isotropic (ISO) cases are shown in Figure 4.6. From this plot, one 

can see that the induced anellipticity from ISO model is larger than the one obtained from EI 

model. 

In order to illustrate the accuracy of the proposed method, we compute the depth dependent 

offset-traveltime by the integrals (Fomel and Stovas, 2010), 
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where )( pX  and )( pT  are the parametric offset and traveltime that represented by horizontal 

slowness p . The relative traveltime error between unsmoothed and smoothed VTI, EI and 

ISO models with parameters mentioned above is shown in Figure 4.7. From the plot, one can 

see that the travletime error increases with offset, and the error is very small even for large 

offset. Notice that the PTS method applied for VTI and EI models results in smaller 

traveltime error comparing with ISO model. 
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Figure 4.2. The composite parameters 1m  (top), 2m  (middle) and 3m  (bottom) before and 

after smoothing for VTI model. The unsmoothed and smoothed parameters are shown by 

solid and dashed lines, respectively. 
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Figure 4.3. The model parameters 0V  (top), nmoV  (middle) and η  (bottom) before and after 

smoothing for VTI model. The unsmoothed and smoothed parameters are shown by solid and 

dashed lines, respectively. 
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Figure 4.4. The kinematic parameters nmoV  (top) and η  (bottom) computed for isotropic 

model. 

 

 

Figure 4.5. The smoothing induced anisotropy parameters δ  (top) and ε  (bottom) computed 

for isotropic model. 
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Figure 4.6. The induced anellipticity from EI (solid line) and ISO (dashed line) models.  

 

Figure 4.7. The traveltime error between two models-smoothed and unsmoothed for VTI, 

elliptical isotropic (EI) and the isotropic (ISO) cases shown by solid, dashed and dotted lines, 

respectively.  

4.3 Preserved traveltime smoothing in orthorhombic media without 

azimuth variation between the layers 

The kinematic properties in ORT model without azimuth variation can be defined following 

Stovas (2015). The limited series for vertical slowness in ORT medium is given by 
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where q , xp  and yp denote the vertical and two horizontal projections of the slowness vector. 

The ORT medium parameters are vertical P wave velocity 0V , the NMO velocities 1nmoV , and 

2nmoV  are defined in the [ ]zx, and [ ]zy, symmetry planes, respectively. The cross-term 

parameter xyη  is defined in Stovas (2015), 
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where 1η , 2η  and 3η  are the anellipticity parameters defined in symmetry planes [ ]zx, , [ ]zy, , 

and [ ]yx, , respectively.  

For ORT model with no azimuthal variation between the layers, we define the depth 

dependent composite parameters  are based on series coefficients in equation (4.6), 
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Three parameters in equations (4.8) are low-order (two coefficients related to slowness 

squared and one constant term) while three others are high-order (related to slowness to 

power four). 

The first five composite parameters in equations (4.8) are similar to the ones defined for a 

VTI model, and only parameter 6n  is different. To illustrate the smoothing, we define a two-
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layer ORT model. The parameters for upper layer are skmV /5.10 = , skmVnmo /21 = , 

skmVnmo /8.12 = , 1.01 =η , 15.02 =η  and 22.0=xyη , and for lower layer are skmV /5.20 = , 

skmVnmo /2.31 = , skmVnmo /8.22 = , 12.01 =η , 2.02 =η  and 2.0=xyη . The thickness for 

both layers is 3 km. We show the smoothed composite parameters from equations (4.8) in 

Figure 4.8. From these plots, we can see that smoothing curves for composite parameters are 

very similar with the ones obtained in VTI case. 

We convert the smoothed composite parameters into the model parameters by 
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 (4.9) 

The smoothed anellipicity parameter 3
~η  can be obtained from equation (4.7) by  
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We show the smoothing for three effective velocities 0V , 1nmoV  and 2nmoV  in Figure 4.9. From 

the plots, we can see that the smoothing curves are quite similar for these three effective 

velocities 0
~V , 1

~
nmoV  and 2

~
nmoV . The smoothing for anellipticity parameters including effective 

parameter computed from equation (4.10) is illustrated in Figure 4.10. One can see that the 

smoothing curves are very similar for parameters 1
~η , 2

~η  and xyη~ , while slightly different for 

3
~η . 
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Figure 4.8. The composite parameters before and after smoothing for ORT model. The 

unsmoothed and smoothed parameters are shown by solid and dashed lines, respectively. 
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Figure 4.9. The model parameters 0V  (top), 1nmoV  (middle) and 2nmoV  (bottom) before and 

after smoothing for ORT model. The unsmoothed and smoothed parameters are shown by 

solid and dashed lines, respectively. 
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Figure 4.10. Four anellipticity parameters before and after smoothing for ORT model. The 

unsmoothed and smoothed parameters are shown by solid and dashed lines, respectively. 

4.4 Preserved traveltime smoothing in orthorhombic media with azimuth 

variation between the layers 

In case of azimuthal variation between ORT layers, we have to apply the rotation operator in 

X-Y plane by 







   −

     
φφ
φφ

cossin
sincos

 to equation (4.6) to specify the clockwise rotation azimuth. 

The effective kinematic properties of the ORT model with the azimuth variation between 

layers can be found in Stovas (2015). The series for vertical slowness takes the form 
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(4.11) 

where φ  is specified as the azimuthal orientation of the vertical symmetry plane [ ]zx,  with 

respect to the global coordinate system.  

 In order to get the effective model parameters in this case, we smooth the composite 

parameters that are the series coefficients in equation (4.11). To convert the smoothed 

composite parameters into the models, we use two steps. 

The equations for first four composite parameters from equation (4.11) are 
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These  are smoothed into  and can be converted into three smoothed 

velocities and effective azimuth Φ  by following equations 
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where 0
~V  is the effective P-wave vertical velocity, 1

~
nmoV  and 2

~
nmoV  are the effective NMO 

velocities in symmetry planes. A similar technique is discussed by Grechka and Tsvankin 

(1999a, 1999b). Φ  stands for the effective azimuthal orientation.  

To illustrate the first step, we define an azimuth dependent ORT model φORT  by using the 

same two layer ORT model as above with zero azimuth 0=φ  in upper layer and 30=φ  in 

lower layer. The composite parameters )4,1( =jk j  before and after smoothing are shown in 

Figure 4.11. We can see that the curves are very similar with the ones before. The effective 

velocities 0
~V , 1

~
nmoV , 2

~
nmoV  and azimuth Φ  are shown in Figure 4.12. From comparison of 

Figures 4.9 and 4.12, one can see that the presence of azimuth variation between the layers 

does not significantly affect the smoothed NMO velocities 1
~

nmoV  and 2
~

nmoV . However, there is 

a difference in 1nmoV  and 2nmoV  between two cases of about 20 m/s with and without the 

azimuth variation between the layers. This difference for 1nmoV  and 2nmoV  has opposite sign.  

In the second step, we solve the overdetermined system of the linear equations when 

estimating the effective anellipticity parameters. We apply the least-squares method (Stovas 

2015) to evaluate the effective parameters 1
~η , 2

~η  and xyη~ . First, we define the effective 

anellipticity vector T
xy )~,~,~(N 21 ηηη= . The linear system of equations can be written in matrix 

form, 

 DS,UN =  (4.14) 

where the effective NMO slowness vector is defined as  

 ,)~~,~,~(S T

nmonmonmonmo VVVV 2
2

2
1

4
2

4
1

111
=  (4.15) 

and the azimuthal matrix )U(Φ  is given by 
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Note that the effective smoothed NMO velocities 1
~

nmoV  and 2
~

nmoV  and the effective azimuth Φ  

are precomputed in equations (4.13). 

The least squares method gives the solution of equation (14) as follows  

 

,UU)(UF
FD,G
GS,N

TT 1−=

=
=

 (4.17) 

where F is 53×  matrix and D=( ijd ) is 35×  matrix. The elements of matrix D are defined in 

Appendix A. 

If there is no azimuth variation between the layers )0( =φ  or there is 90  azimuth variation 

)2/( πφ = , matrix F has only three nonzero elements. The solution for effective anellipticity 

vector N  reduced to the one defined in equations (4.9). 

In order to smooth the parameters in this case, we need to define the matrix elements ijd , 

 (Appendix A) and smooth each of these parameters by using the PTS 

method described above. The effective velocities and effective azimuth are substituted from 

the computation in step one. The smoothed effective anellipticity parameters are computed 

from equations (4.17). 

The effective anellipticity parameters in φORT  model are shown in Figure 4.13. Being 

compared with the results from ORT model, the smoothing curves for parameters 1
~η , 2

~η  and 
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xyη~  in φORT  model are similar but with different amplitudes, larger for 1
~η  and xyη~ , but 

smaller for 2
~η . The smoothed parameter 3

~η  is very different for models ORT and φORT . 

Note that the application of PTS method in ORT and φORT  models results in smoothing 

induced anellipticity. We illustrate that by using two models with )0( 21 === xyηηη  without 

(EI) and with ( φEI ) azimuth variations. The smoothing induced anelliptic parameters for EI 

and φEI  models are shown in Figure 4.14. We can see that the magnitude anelliptic 

parameters 1η  and 2η  is different for these models, while for parameter xyη  is very similar. 

The biggest anomaly for smoothing induced anelliptic parameters is always located at the 

interface depth.  

  

  

Figure 4.11. The composite parameters before and after smoothing for φORT model. The 

unsmoothed and smoothed parameters are shown by solid and dashed lines, respectively. 
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Figure 4.12. The effective velocities and effective azimuth before and after smoothing for 

φORT model. The unsmoothed and smoothed parameters are shown by solid and dashed lines, 

respectively. 

  

  

Figure 4. 13. Four anellipticity parameters before and after smoothing for φORT model. The 

unsmoothed and smoothed parameters are shown by solid and dashed lines, respectively. 
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Figure 4.14. The PTS results in smoothing induced anellipticity, 1η  (top), 2η  (middle) and xyη  

(bottom). The anellipticity from the ORT model and φORT model are shown in dashed and 

dotted lines, respectively. 

4.5 The accuracy in traveltime 

To illustrate the accuracy by the PTS method for ORT model, we use the parametric offset-

traveltime equations (Stovas, 2015): 
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where X and Y  are corresponding offset projections, and 
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 (4.19) 

We compute the relative traveltime error due to smoothing for ORT and EI (Figure 4.15) and 

φORT  and φEI  (Figure 4.16) models. From comparison of the error plots, one can see that the 

error for φORT  and φEI  models are similar with the one from ORT and EI models. The 

traveltime error for EI is larger than the error for ORT model, and the error for φEI  model is 

also larger than the one for φORT  model. For all the models, the maximal traveltime error is 

very small.  

In order to make a comparison, we also plot the traveltime errors by using the conventional 

smoothing for ORT and EI (Figure 4.17) models and φORT  and φEI  (Figure 4.18) models. 

Different from the PTS, the model parameters ( 0/1 V , 1δ , 2δ , 1ε , 2ε  and 3δ ) are smoothed 

directly in conventional smoothing using the same smoothing operator in equation (4.3), iδ  

and iε  ( 2,1=i ) are the Thomsen parameters in the corresponding symmetry planes. 3δ  is the 

anisotropy parameter defined by Vasconcelos and Tsvankin (2006), 
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Compared with the errors in PTS, the conventional smoothing results in larger error for long 

offset for all these four models. 

 

Figure 4.15. The traveltime error surface for ORT model (left) and EI model (right). 

 

Figure 4.16. The traveltime error surface for φORT model (top) and φEI  model (bottom). 
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Figure 4.17. The traveltime error surface using conventional smoothing for ORT model (top) 

and EI model (bottom). 

  

Figure 4.18. The traveltime error surface using conventional smoothing for φORT model (top) 

and φEI  model (bottom). 

4.6 Conclusions  

We develop the preserved traveltime smoothing method (PTS) for ORT velocity model 

without and with azimuthal variation between the layers. Smoothing is performed for 

composite parameters that are different for ORT and φORT  models. In computation of 

anelliptic parameters for φORT  model, the least squares method is used. We show that PTS 

results in smoothing induced anellipticity and illustrate that for EI and φEI  models. The 

traveltime errors due to smoothing are sufficiently small for all the models.  



97 
 

4.7 Acknowledgments  

We would like to acknowledge China Scholarship Council (CSC) and ROSE project for 

financial support. 

4.8 Appendix A 

In order to smooth the model parameters by PTS method, we need to define the elements of 

matrix D, which represent the composite parameters for φORT  model (Stovas, 2015) 
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(4.A1) 

where 0V  is the P-wave vertical velocity, the NMO velocities 1nmoV , and 2nmoV  are defined in 

the [ ]zx, and [ ]zy, symmetry planes, respectively. The cross-term parameter xyη  is defined in 

equation (4.7). Azimuth angle φ  is specified as the azimuthal orientation of the vertical 

symmetry plane [ ]zx,  with respect to the global coordinate system. 

We smooth the composite parameters shown in equation (4.A1) and substitute the results into 

the elements of matrix D  as follows, 
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(4.A2) 

where the effective velocities 0
~V , 1

~
nmoV , 2

~
nmoV  and the effective azimuth Φ  are already 

computed in equation (4.13). 
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Chapter 5 A new parameterization for acoustic 
orthorhombic media 
Shibo Xu and Alexey Stovas  

Norwegian University of Science and Technology, Trondheim, Norway 

Abstract. We define a group of new parameterizations for P-wave in acoustic orthorhombic 

(ORT) media with three cross-term normal moveout (NMO) velocities and three cross-term 

anellipticity parameters. The corresponding perturbation-based approximations for traveltime 

in ORT model are developed using the new parameterizations. The perturbation coefficients 

are computed by solving the eikonal equation in corresponding parameterization. Eight types 

of parameterization are defined based on different elliptical background model and selection 

of anellipticity parameters. As the traveltime can be converted from the group velocity inverse, 

the sensitivity of the group velocity inverse to anellipticity parameters is analyzed for 

different parameterizations and different range of offsets. To stabilize the perturbation series 

and improve the accuracy, the Shanks transform is applied. From the comparison of 

traveltime after the Shanks transform using different parameterizations, we conclude that the 

parameterization with vertical, two horizontal velocities, and three cross-term anellipticity 

parameters results in the best accuracy of traveltime function for P-wave in acoustic ORT 

medium. 

Presented at the 87th SEG Conference and Exhibition, September, 2017, Houston, USA; 

Published in Geophysics in October 2017. 
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5.1 Introduction 

The traveltime approximations are commonly used in seismic data processing such as velocity 

analysis, modeling and time migration (Yilmaz, 2001; Červený, 2001). The estimation for 

model parameters in velocity analysis depends on the accuracy of the traveltime 

approximation. For time domain migration, the accuracy of the result is also depend on the 

traveltime approximation used in modeling part. In homogeneous isotropic or elliptical 

isotropic media, the moveout function has a hyperbolic form. We need to take non-

hyperbolicity (driven by anellipticity parameters) into consideration, as it commonly exists 

and plays an important role in seismic data processing and interpretation, especially for large 

offsets. The moveout function has a non-hyperbolic form in anisotropic media. Non-

hyperbolic (long-spread) moveout is often used in velocity analysis of P-waves in transversely 

isotropic media with a vertical symmetry axis (VTI). The P-wave time domain signature in 

VTI model depends on two interval parameters: normal moveout (NMO) velocity from a 

horizontal reflector and the anellipticity coefficient η  (Alkhalifah and Tsvankin, 1995; 

Tsvankin, 2005). Different nonhyperbolic moveout approximations for a homogeneous VTI 

are listed and discussed in Fowler (2003), Fomel (2004) and Golikov and Stovas (2012). 

Fomel and Stovas (2010) derived a generalized nonhyperbolic moveout approximation (GMA) 

for the traveltime approximation defined from zero-offset and one nonzero-offset ray 

computation. Alkhalifah (2011) proposed the traveltime expression with series in terms of 

anelliptic parameter η  by solving the eikonal equation for acoustic VTI medium and by 

applying the Shanks transform to obtain the higher accuracy.  

The orthorhombic (ORT) model is introduced by Schoenberg and Helbig (1997) to describe 

fractured reservoirs and explains well the azimuthal dependency in surface seismic data. 

Tsvankin (1997, 2012) defined nine elastic model parameters for ORT model that can be 

reduced to six parameters in an acoustic approximation (Alkhalifah, 2003). The first order 
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curvatures are defined by the normal moveout (NMO) velocity ellipse (Grechka and Tsvankin, 

1999a, 1999b), and the second order curvatures are defined by the azimuth-dependent 

anellipticity. Vasconcelos and Tsvankin (2006) derived the nonhyperbolic moveout of P-wave 

in orthorhombic media using the NMO velocities 1nV  and 2nV  defined in vertical symmetry 

planes, and the anellipticity parameters 1η , 2η  and 3η  defined in all three symmetry planes. 

Note that 1η  are 2η  the anellipticity parameters (Tsvankin, 1997) defined in [ ]XOZ  and 

[ ]YOZ  symmetry planes, 3η  is the anellipticity parameter defined in [ ]XOY  plane 

(Vasconcelos and Tsvankin, 2006). Stovas (2015) derived the azimuthally dependent 

kinematic properties of the orthorhombic media and introduced new anellipticity parameter 

xyη . Sripanich and Fomel (2015) modified the anelliptic functional form of Fomel (2004) and 

extended it to ORT model to approximate P-wave phase and group velocities. Alkhalifah 

(2013) and Masmoudi and Alkhalifah (2014) develop this concept to approximate traveltime 

in horizontal transversely isotropic (HTI) media with arbitrary symmetry-axis azimuth φ  and 

estimate the anisotropy parameter η  and the azimuthal angle φ . The perturbation based 

moveout approximation with a traditional elliptic background for ORT media is discussed by 

Stovas et al (2016). The traveltime approximation for the orthorhombic model using 

perturbation theory by other anellipticity parameters in inhomogeneous background medium 

is developed by Masmoudi and Alkhalifah (2016). Xu et al. (2016) proposed a new set of 

moveout approximations based on the perturbation series in anellipticity parameter using the 

alternative elliptical background model defined by vertical and horizontal velocities in a 

homogeneous ORT media. A horizontally layered ORT medium with parameters compouted 

for the fourth-order moveout is studies in (Ravve and Koren, 2017; Koren and Ravve, 2017). 

Different parameterization impacts the accuracy of the traveltime approximation due to 

different proportion in perturbation parameters (anellipticity parameters) and the anisotropy 

estimation in velocity analysis depends on the accuracy of the traveltime approximation. The 
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subsurface parameterization also plays an important role in sensitivity and trade-off analysis 

for full waveform inversion (FWI) in acoustic anisotropic medium (Alkhalifah and Plessix, 

2014) and (Gholami et al, 2013). 

In this paper, we define new parameterizations for acoustic ORT medium with different 

combinations of elliptical background and anellipticity coefficients. The list of 

parameterization including eight different ones is split into symmetric and non-symmetric 

groups. The sensitivity analysis to anellipticity parameters at near-, mid- and far-offset is 

performed for the group velocity inverse. The parameterization with vertical and two 

horizontal velocities and three cross-term anellipticity parameters results in the most accurate 

approximation based on Shanks transform as it shown in the numerical example. 

5.2 A new parameterization for an acoustic ORT model 

The symmetry behavior of the orthorhombic (ORT) model is commonly used to describe the 

fractured formation. ORT media have three mutually orthogonal symmetry planes: two 

vertical and one horizontal. Six model parameters are defined for acoustic ORT model 

(Alkhalifah, 2003). Vasconcelos and Tsvankin (2006) represent the ORT model by the 

vertical velocity 0V , two NMO velocities 1nV  and 2nV  that defined in corresponding [ ]XOZ  

and [ ]YOZ  symmetry planes and three anellipticity parameters 1η , 2η  and 3η  defined in 

[ ]XOZ , [ ]YOZ  and [ ]XOY  symmetry planes, respectively. Stovas (2015) developed 

azimuthally dependent properties of the acoustic ORT model using the parameters 0V , 1nV , 

2nV , 1η , 2η  and xyη .  

In this paper, we define three cross-term anellipticity parameters xyη , xzη  and yzη  (Figure 5.1, 

left) by  
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Note that the cross term xyη  is defined by Stovas (2015). Each cross-term anellipticity 

parameter is represented by all three anellipticity parameters ( 1η , 2η  and 3η ) from 

corresponding symmetry plane. The inverse transformations of anellipticity parameters  

are given by 
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The NMO velocities in ORT model (Figure 5.1, right) are defined by the curvatures in 

corresponding symmetry planes 
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Note that here 101 nn VV =  and 202 nn VV = . We define new NMO velocities by the geometrical 

averaging of corresponding NMO velocities from equation 5.3, 
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The definition of the indices is slightly different for NMO velocities. For the NMO velocities 

nijV , i  and j  are corresponding to the axis since we use 0V  for vertical velocity, 1V  and 2V  

for two horizontal velocities, respectively. The indices for cross-term NMO velocity ijV  is 

defined corresponding to the symmetry plane, where 1, 2  and 3  represent for [ ]XOZ , [ ]YOZ  

and [ ]XOY  symmetry planes, respectively.  

  

Figure 5.1. Sketch for cross-term anellipticity parameters: xyη , xzη  and yzη  (left) and cross-

term NMO velocities: 12V , 13V  and 23V  (right) in ORT model. 

The inverse transformations for vertical velocity 0V  and horizontal velocities 1hV  and 2hV  are 

given by 
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 (5.5) 

Eight types of parameterization for acoustic ORT model based on different elliptical 

background model and anellipticity parameters are listed in Table 5.1. Based on the 

symmetric behavior, these parameterizations are divided into two groups: symmetrical (Cases 

A-D) and non-symmetrical (Cases E-H). We illustrate two groups of parameterization in 

Figure 5.2 and 5.3, respectively. In order to perform the sensitivity analysis, we select the 

parameterization with 0V , 1hV , 2hV , xyη , xzη  and yzη  (Case H) as an example for the 

following analysis. 

Parameterization Elliptical background Anellipticity parameters 

Non-symmetric parameterizations 

Case A 210 ,, nn VVV  321 ,, ηηη  

Case B 210 ,, nn VVV  xyηηη ,, 21  

Case C 210 ,, nn VVV  yzxzxy ηηη ,,  

Case D 210 ,, hh VVV  xyηηη ,, 21  

Symmetric parameterizations 

Case E 231312 ,, VVV  321 ,, ηηη  

Case F 231312 ,, VVV  yzxzxy ηηη ,,  

Case G 210 ,, hh VVV  321 ,, ηηη  

Case H 210 ,, hh VVV  yzxzxy ηηη ,,  

Table 5.1. Eight types of parameterizations with different background model and different set 

of anellipticity parameters. 
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Figure 5.2. Sketch for non-symmetric parameterizations for acoustic ORT model defined by 

Cases A-D. 

  

  

Figure 5.3. Sketch for symmetric parameterizations for acoustic ORT model defined by 

Cases E-H. 
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5.3 Perturbation-based traveltime approximation using a new 

parameterization 

The perturbation series for traveltime (Stovas et al., 2016) in terms of new cross-term 

anellipticity parameters is defined up to the second order by 

 ( ),3,2,1,,
,

0 =  ++= ∑∑ jiba j
ji

iij
i

ii ηηηττ  (5.6) 

where the index xy≡1 , xz≡2  and yz≡3 . The elliptical background model is given by 
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where 0t  is the vertical traveltime with 00 /Vzt = . 

The ORT eikonal equation (Alkhalifah, 2003) with the new parameterization takes the form 
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Solving the eikonal equation 5.8 with the corresponding perturbation series in equation 5.6, 

we obtain the series coefficients ia  and ijb , ( )3,2,1, =ji  that are given in Appendix A. 

In order to obtain a higher accuracy, the Shanks transform (Bender and Orszag, 1978) is 

applied by the form 

 
,

21

2
1

03 ττ
τττ
−

+=  (5.9) 
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where 0τ  is defined in equation 5.7, i
i

ia ητ ∑=1  and ∑=
ij

jiijb ηητ 2  are the first- and 

second- order terms in equation 5.6. 

In order to test the sensitivity of the perturbation coefficients ia  and ijb , we select the ORT 

model with the parameters: skmV /20 = , skmVh /4.21 = , skmVh /6.22 = , 15.01 =η , 

18.02 =η  and 1.03 =η . The perturbation coefficients ia  and ijb , ( )3,2,1, =ji  from our 

proposed parameterization ( 0V , 1hV , 2hV , xyη , xzη  and yzη , Case H) are plotted in Figure 5.4, 

5.5 and 5.6, respectively, One can see that the shape of the first-order coefficients 2a  and 3a  

is very similar and the magnitude of them is larger than the coefficient 1a . For quadratic 

coefficients, similarly, the coefficient 22b  and 33b  is larger than 11b  in magnitude. Note that 

the magnitude of first- and second-order coefficients 1a  and 11b  are changing dramatically at 

near offsets. The magnitude of three cross-term coefficients is quite similar while the shape of 

cross-term 23b  is very complicated. 

   

Figure 5.4. The first order perturbation coefficients ia  (Case H). Coefficients 1a , 2a  and 3a  

are shown in left, middle and right, respectively.  
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Figure 5.5. The quadratic perturbation coefficients iib  (Case H). Coefficients 11b , 22b  and 

33b  are shown in left, middle and right, respectively.  

   

Figure 5.6. The cross-term perturbation coefficients )(, jibij ≠  (Case H). Coefficients 12b , 

13b  and 23b  are shown in left, middle and right, respectively. 

5.4 The sensitivity of traveltime to anellipticity parameters 

In order to analyze the sensitivity of traveltime to anellipticity parameters, we define the 

group velocity inverse related coefficients ia~  and ijb~  by  

 
( ) ( )

( ) ( ) ,,~,~
,~

1
,

1
,0

ji
ji

ij
i

ii ba
VV

ηηφθηφθ
φθφθ ∑∑ ++=  (5.10) 

where 
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where 0τ  is defined in equation 5.7, coefficients ia  and ijb  are given in Appendix A, θ  is the 

dip angle to the vertical and the azimuth φ  is the azimuth defined from the x  axis. To 

analyze the sensitivity at different offset range, we compute the integral from coefficients ia~  

and ijb~  with respect to different range of dip angle θ  ( )30,0( ∈θ , )60,30(   and )90,60(  ) 

that corresponding to near-, mid- and far-offset, 
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The polar plots for the sensitivity coefficients iâ  and ijb̂  versus azimuth φ  for model with 

parameterization (Case H) for near- (left), mid- (middle) and far (right) offset are shown in 

Figures 5.7, 5.8 and 5.9, respectively. One can see that the first and quadratic order 

coefficients have similar sensitivity plots. The sensitivity in anellipticity parameter xyη  has an 

elliptic shape in [ ]XOY  plane regardless of the range of offsets. The sensitivities to 

anellipticity parameters xzη  and yzη  reach the maximum values for 0  and 2/π  azimuth 

angle, respectively. This is valid for near- and mid-offset. The reason for that is that the 

impact of anellipticity parameter 3η  is not dominating for near- and mid-offset range. For 

large offset, the effect of 3η  starts to dominate in both 2â  and 3â  resulting in pronounced 

anomaly at about 45  azimuth angle. The azimuthal behavior of cross-term coefficients 

)(, jibij ≠  is more complicated (Figure 5.9). One can see that coefficient 12b̂  and 13b̂  are 
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symmetric, while the magnitude of 23b̂  increases with increase in offset. There is almost no 

impact from 23b̂  ( yzxzηη ) at near offset since the cross-talk between xzη  and yzη  is very 

small. With increase in offset, the cross-talk is getting more pronounced, and the magnitude of 

coefficient 23b̂  increasing at far offset. The cross-term coefficients 12b̂  ( xzxyηη ) and 13b̂  

( yzxyηη ) become equal at about 45  azimuth at any offset range while mostly focused along 

the x  and y  axes, respectively. 

   

Figure 5.7. The first order sensitivity coefficients iâ  in Case H for short offset (left) 

( )30,0( ∈θ ), intermediate offset (middle) ( )60,30( ∈θ ), and far offset (right) 

( )90,60( ∈θ ). The coefficients 1a , 2a  and 3a  are shown by blue, red and black colors, 

respectively. 
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Figure 5.8. The quadratic sensitivity coefficients iib̂  in Case H for short offset (left) 

( )30,0( ∈θ ), intermediate offset (middle) ( )60,30( ∈θ ), and far offset (right) 

( )90,60( ∈θ ). The coefficients 11b , 22b  and 33b  are shown by blue, red and black colors, 

respectively. 

   

Figure 5.9. The cross-term sensitivity coefficients )(, jibij ≠  in Case H for short offset (left) 

( )30,0( ∈θ ), intermediate offset (middle) ( )60,30( ∈θ ), and far offset (right) 

( )90,60( ∈θ ). The coefficients 12b , 13b  and 23b  are shown by blue, red and black colors, 

respectively. 

The overall sensitivity coefficients iÂ  and ijB̂  can be computed in a similar way as the ones 

given in equations 5.12 but with double integrals over the entire angle range, 
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The overall sensitivities are illustrated in Figure 5.10. One can see that 321
ˆˆˆ AAA >>  and 

332211
ˆˆˆ BBB >> . The inequalities for the first-order iÂ  and quadratic iiB̂  coefficients are 

controlled by the semi-axes for elliptical background model. For this parameterization (Case 

H), we have 2
2

2
1

2
0 /1/1/1 hh VVV >> , and this inequality explains the behavior of sensitivity 

coefficients. Similar analysis can be performed for other background models used in our tests. 

In order to see the difference in the overall sensitivities between different parameterizations, 

Figures 5.11 and 5.12 show second order coefficients ijB̂  computed from all 

parameterizations listed in Table 5.1. One can see that the tendency is 332211
ˆˆˆ BBB >>  for all 

the Cases except for Cases E and F. This behavior can also be explained by the corresponding 

slownesses, 2
12

2
13

2
23 /1/1/1 VVV >> . Note that the magnitude of ijB̂  computed for 

parameterization Case H is the smallest among all parameterizations. Note that using term 

group velocity inverse ( groupV/1 ) instead of traveltime for the sensitivity analysis is because 

the traveltime can be converted from it and since there is no asymptotic behavior for 

traveltime at infinite offset, taking the integral along the offset up to infinite for traveltime is 

impossible to get the overall sensitivity in anellipticity parameters. 

 

 
Figure 5.10. The overall sensitivity coefficients: first order (left) and second order (right) 

using parameterization Case H. The coefficients 1Â , 2Â  and 3Â  are shown from left to right. 

The second order coefficients are composed in matrix form with indices 

yzxzxy ηηη ≡≡≡ 3,2,1 .  
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Figure 5.11. The second order overall sensitivity coefficients ijB̂  using non-symmetric 

parameterizations Cases A-D. The second order coefficients are composed in matrix form 

with indices 321 3,2,1 ηηη ≡≡≡  for Case A, xyηηη ≡≡≡ 3,2,1 21  for Cases B and D, 

yzxzxy ηηη ≡≡≡ 3,2,1  for Case C.  

  

  
Figure 5.12. The second order overall sensitivity coefficients ijB̂  using symmetric 

parameterizations Cases E-H. The second order coefficients are composed in matrix form 

with indices 321 3,2,1 ηηη ≡≡≡  for Cases E and G, yzxzxy ηηη ≡≡≡ 3,2,1  for Cases F and 

H. 
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5.5 Numerical examples 

Using the ORT model from Table 5.2, the relative error in traveltime using the 

parameterization Case H computed from perturbation series in equation 5.6 and the Shanks 

transform in equation 5.9 are shown in Figure 5.13 (left and right, respectively). One can see 

that the Shanks transform significantly improves the accuracy of approximation. 

  
Figure 5.13. The relative error of perturbation series (left) and the Shanks transform (right) 

for traveltime with parameterization Case H. 

Our set of parameterization is based on three types of background model and three types of 

anellipticity coefficients. In order to compare the accuracy of the Shanks transform using 

different parameterizations from Table 5.1 and analyze their impact, the relative error in 

traveltime using three different elliptical background models: ( 0V , 1nV , 2nV ), ( 0V , 1hV , 2hV ) 

and ( 12V , 13V , 23V ) is shown in Figure 5.14. One can see that the elliptical background model 

using vertical and two horizontal velocities is the most accurate one, while the one using the 

cross-term NMO velocities results in the worst accuracy even for short offset. 

The relative error in traveltime from Shanks transform in equation 5.9 using the ORT model 

(Table 5.2) for all non-symmetric and symmetric parameterizations (Table 5.1) is shown in 

Figure 5.15 and 5.16, respectively. Note that all the accuracy plots are computed from the 

same ORT model but using different parameterizations. For parameterization Cases A, B, D 
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and G, the perturbation series coefficients for traveltime approximation are discussed in Xu et 

al (2016). The perturbation series coefficients ia  and ijb  for Cases C, E and F are given in 

Appendices B, C and D, respectively. From comparison of plots in Figure 5.15 and 5.16, one 

can see that the accuracy is mostly driven by selection of background model. The 

parameterization with the vertical and two horizontal velocities is generally more accurate, 

while the parameterization with the cross-term NMO velocity is generally less accurate. The 

selection of the set of anellipticity coefficients as the perturbation coefficients also affects the 

accuracy. For the parameterizations using vertical and two horizontal velocities as the 

background (Cases D, G and H), the one using three cross-term anellipticity parameters (Case 

H) is the most accurate one while the parameterization specified as Case G is the worst. One 

can say, the more cross-term anellipticity parameters we use, the more accurate result we 

obtain. From the overall sensitivity plots (Figure 5.11 and 5.12) and the accuracy plots (Figure 

5.15 and 5.16), one can see the less magnitude of coefficient ijB̂  the more accurate result we 

obtain for traveltime approximation based on the Shanks transform. Above all, the 

approximation with symmetric parameterization (Case H) using vertical and two horizontal 

velocities as the background model, and three cross-term anellipticity parameters as the 

perturbation parameters results in the most accurate traveltime function. 

   

Figure 5.14. The relative error in traveltime using the hyperboloid approximation with 

vertical and two NMO velocities (left), vertical and two horizontal velocities (middle) and 

three cross-term NMO velocities (right). 
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Figure 5.15. The relative error in traveltime of the Shanks transform for parameterizations 

from Cases A-D. 

  

  
Figure 5.16. The relative error in traveltime of the Shanks transform for parameterizations 

from Cases E-H. 
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Velocities 

(km/s) 

0V  1hV  2hV  1nV  2nV  12V  13V  23V  

2 2.4 2.6 2.1 2.23 2.17 2.04 1.94 

Anellipticity 

parameters 

1η  2η  3η  xyη  xzη  yzη  

0.15 0.18 0.1 0.214 0.07 0.12 

Table 5.2. The ORT model parameters. 

5.6 Discussions 

In our proposed perturbation method for traveltime approximation, different parameterization 

selection impacts the accuracy of the traveltime approximation due to the selection of the 

elliptical background and different proportion in perturbation parameters (anellipticity 

parameters) from the selected parameterization. This difference in traveltime error is caused 

by the perturbation method that is fixing the elliptical (ellipsoidal) background and fitting 

with the perturbation coefficients (anellipticity parameters). For the parameterization using 

the NMO velocities as the background model, the better accuracy is obtained at short offset. 

Note that we using offset-depth ratio up to 5 (long offset) in the numerical examples that 

explains the more accurate result for those using the horizontal velocities as the background. 

Different parameterization causes the sensitivity difference in anellipticity parameters. More 

accurate result is obtained from the less sensitivity in perturbation parameters. While, the 

background model selection contributes most for the accuracy of the traveltime approximation 

using the perturbation method.  

The NMO velocity might not be preserved for traveltime approximation given by the Shanks 

transform (equation 5.9) with arbitrary parameterization. Obviously, if NMO velocities are 

explicitly stay in the parameterization list (Cases A-C), they are preserved regardless to 

approximation. If NMO velocities are not in the parameterization list, they might be preserved 
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(Cases D and G) or might not be preserved (Cases E, F and H). For example, in Case H, the 

exact expressions for NMO velocities are 
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However, the Shanks transform approximation gives inaccurate NMO velocities,  
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The expressions in equations 5.14 and 5.15 are equivalent in case of weak-anellipticity. 

The proposed approximation can be extended to the multilayered by using the effective model 

parameters from the Dix-type equations (Stovas, 2015). When there is the azimuthal variation 

between the multilayered ORT model, the effective parameters with different azimuthal 

orientation of the layers is listed in Ravve and Koren (2017) and Koren and Ravve (2017). 

However, some parameterizations defined by the horizontal velocities might not that accurate 

as they are in the homogeneous case since the form of the approximation is derived from the 

homogeneous case, while the ray-tracing for horizontal velocities (infinite offset) is 

impossible for multilayered ORT model.  

5.7 Conclusions 

We defined a group of new parameterizations by using three cross-term anellipticity 

parameters ( xyη , xzη  and yzη ) and three cross-term NMO velocities ( 12V , 13V  and 23V ) for a 

homogeneous ORT model. The perturbation-based traveltime approximations are proposed in 
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ORT media using the corresponding new parameterizations. Based on the symmetric behavior, 

we divide eight parameterizations into two groups and test their accuracy in traveltime in the 

numerical examples. The sensitivity analysis performed for perturbation coefficients at near-, 

mid- and far-offset range illustrates different effect for a selected set of anellipticity 

parameters. The overall sensitivity performed for the full range of offset shows that the 

corresponding coefficients are proportional to the slowness squared from given background 

velocity model. By comparison of eight different parameterizations, we show that the one 

with 0V , 1hV , 2hV , xyη , xzη  and yzη  (Case H) results in the most accurate traveltime 

approximation based on the Shanks transform.  
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5.9 Appendix A  
The perturbation series for traveltime in ORT model using the parameterization Case H 

( 0V , 1hV , 2hV , xyη , xzη  and yzη ) 

The perturbation series for traveltime in ORT model is defined by (Stovas et al, 2016) 

 ( ).3,2,1,,
,

0 =  ++= ∑∑ jiba j
ji

iij
i

ii ηηηττ  (5.A.1) 

For parameterization Case H with: 0V , 1hV , 2hV , xyη , xzη  and yzη , the index xy≡1 , xz≡2  

and yz≡3  for the perturbation series in equation 5.A.1. The elliptical background model is 

given by 
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The perturbation coefficients in equation 5.A.1 are computed by solving the corresponding 

eikonal equation in equation 5.6 shown by 

where 1/ hhx Vx=τ  and 2/ hhy Vy=τ . 

5.10 Appendix B  

The perturbation series for traveltime in ORT model using the parameterization Case C 

( 0V , 1nV , 2nV , xyη , xzη  and yzη ) 

For parameterization Case C with: 0V , 1nV , 2nV , xyη , xzη  and yzη , the index xy≡1 , xz≡2  

and yz≡3  for the perturbation series in equation 5.A.1. The elliptical background model is 

given by 
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Solving the corresponding eikonal equation with the perturbation series in 5.A.1, we obtain 

the series coefficients ia  and ijb , ( )3,2,1, =ji  given by 

where 1/ nnx Vx=τ  and 2/ nny Vy=τ . 

5.11 Appendix C  

The perturbation series for traveltime in ORT model using the parameterization Case E 

( 12V , 13V , 23V , 1η , 2η  and 3η ) 

For parameterization Case E with: 12V , 13V , 23V , 1η , 2η  and 3η , the elliptical background 

model is given by 
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where 1223130 /VVVVk = , 1323121 /VVVVk =  and 2313122 /VVVVk = , where ijV  are defined in 

equations 5.4. 

Solving the corresponding eikonal equation with the perturbation series in 5.A.1, we obtain 

the series coefficients ia  and ijb  given by 
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where 1/ kkx Vx=τ , 2/ kky Vy=τ  and 0/ kkz Vz=τ . 

5.12 Appendix D  

The perturbation series for traveltime in ORT model using the parameterization Case F 

( 12V , 13V , 23V , xyη , xzη  and yzη ) 

For parameterization Case F with: 12V , 13V , 23V , xyη , xzη  and yzη , the index xy≡1 , xz≡2  

and yz≡3  for the perturbation series in equation 5.A.1. The elliptical background model is 

given by 

where 1223130 /VVVVk = , 1323121 /VVVVk =  and 2313122 /VVVVk = , where ijV  are defined in 

equations 5.4. 

Solving the corresponding eikonal equation with the perturbation series in 5.A.1, we obtain 

the series coefficients ia  and ijb  given by 
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where 1/ kkx Vx=τ , 2/ kky Vy=τ  and 0/ kkz Vz=τ . 

( ) ( ) ( )

( ) ( )

( ) ( )

( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )
.

4

64296

,
4

64296

,
4

64296

,
8

43

,
8

43

,
8

43

,
2

,
2

,
2

7
0

222442246242244

23

7
0

222442246242244

13

7
0

222442246242244

12

7
0

222322

33

7
0

222322

22

7
0

222322

11

3
0

222

33
0

222

23
0

222

1

τ

ττττττττττττττ

τ

ττττττττττττττ

τ

ττττττττττττττ

τ

τττττ

τ

τττττ

τ

τττττ

τ
ττ

τ

ττ

τ

ττ

kzkykzkzkykzkykzkxkykzkykzkx

kzkxkxkzkxkzkxkxkykzkzkxkxky

kzkykykzkykzkykykxkzkzkykykx

kykxkzkzkx

kykxkzkzky

kykxkzkykx

kzkxkzkykykx

b

b

b

b

b

b

aaa

++−−+−−
=

++−−+−−
=

++−−+−−
=

+++
=

+++
=

+++
=

+
−=

+
−=

+
−=

 

(5.D.2) 



128 
 

  



129 
 

Chapter 6 An anelliptic approximation for 
geometrical spreading in transversely isotropic and 
orthorhombic media 
Shibo Xu1, Alexey Stovas1 and Yanadet Sripanich2 

1Norwegian University of Science and Technology, Trondheim, Norway, 

2University of Texas at Austin, Austin, USA 

Abstract The relative geometrical spreading along the ray-path contributes to the amplitude 

decay of the seismic wave propagation that needs to be considered for amplitude versus offset 

(AVO) or other seismic data processing methods that require the true amplitude processing. 

Expressing the P-wave geometrical spreading factor in terms of the offset-traveltime based 

parameters is a more practical and convenient way since these parameters can be estimated 

from the nonhyperbolic velocity analysis. We propose an anelliptic approximation for the 

relative geometrical spreading of P-wave in a homogeneous transversely isotropic medium 

with vertical symmetry axis (VTI) and an orthorhombic medium (ORT) under the acoustic 

anisotropy assumption. The coefficients in the proposed approximation are only defined 

within the symmetry planes and computed from fitting with the exact parametric expression. 

For ORT model, due to the symmetric behavior in different symmetry planes, the other 

coefficients in the approximation can be easily obtained by corresponding changes in indices 

from the computed the coefficients in one symmetry plane. From the numerical examples, we 

show that for a homogeneous VTI model, the anelliptic approximation is more accurate than 

the generalized nonhyperbolic moveout approximation (GMA) form for larger offset. For a 

homogeneous ORT model, the proposed anelliptic approximation is more accurate than the 

traveltime-based counterparts. Using the Dix-type equations for the effective parameters, the 
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proposal anelliptic form approximation is extended to a multilayered VTI and ORT models 

and show its highly accurate results in both models. 

Presented at the 87th SEG Conference and Exhibition, September, 2017, Houston, USA; 

Published in Geophysics in November 2017. 

  



131 
 

6.1 Introduction 

Geometrical spreading describes the amplitude decay of propagating waves and is one of the 

most fundamental subjects in seismic data processing. It is important for prestack Kirchhoff 

migration, amplitude versus offset (AVO) analysis and other seismic data processing methods 

that require the true amplitude processing. The amplitude distribution along the wavefront of 

the reflected wave is changed greatly if the velocity model is anisotropic. Seismic data must 

be compensated for geometrical spreading before AVO or amplitude versus angle (AVA) 

analysis in order to study reflection coefficients as a function of offset or incidence angle. 

Although geometrical spreading is a dynamic quantity, it is governed by the kinematic 

parameters of seismic waves. When the velocity model is available, the relative geometrical 

spreading can be computed by performing dynamic ray tracing. However, accurate 

information about the anisotropic velocity model for the whole overburden is seldom 

available for practice. To avoid the use of numerical ray tracing, expressing the geometrical 

spreading through traveltime of the reflection events recorded at the surface using ray theory 

(Červený 2001) is a more practical method for seismic time processing. Therefore, it is 

convenient to express the geometrical spreading in terms of the offset-traveltime parameters 

that can be estimated from the nonhyperbolic velocity analysis. 

Ursin (1990) proposed a geometrical spreading approximation represented by traveltime 

parameters for a layered isotropic medium. One of the practical contributions from the 

paraxial ray theory is an expression for geometrical spreading in terms of the traveltime 

functions at the source and receivers locations (Červený, 2001). Zhou and McMechan (2000) 

derived an analytical formula for the geometrical spreading of P-waves in a layered 

transversely isotropic medium with vertical symmetry axis (VTI) with the source and 

receivers in the same layer. Ursin and Hokstad (2003) extended the method of Ursin (1990) 

for multiple reflected and converted P- and SV-waves in a layered VTI medium with the 
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source and receivers in different layers. For pure reflection modes (P or SV) in layered 

anisotropic media, the geometrical spreading as a function of traveltime derivatives was 

obtained by Xu et al. (2005). The geometrical spreading correction for an azimuthally 

anisotropic medium was later derived by Xu and Tsvankin (2006), and was extended for 

converted waves in a VTI medium (Xu and Tsvankin, 2008). A practical application of 

anisotropic geometrical spreading for AVO analysis was made by Xu and Tsvakin (2007) 

with the wide-azimuthal data acquired at the Rulison field, Colorado. The traveltime-based 

geometrical spreading approximation in TTI media was derived by Golikov and Stovas 

(2013). All these approximations are approximating the traveltime and use it and its 

derivatives for the computation of the geometrical spreading approximation, we refer it as the 

traveltime-based approximation or indirect approximation. Different nonhyperbolic moveout 

approximations for a homogeneous VTI model are listed in Fowler (2003) and Golikov and 

Stovas (2012). Although the geometrical spreading factor is controlled by first- and second-

order traveltime derivatives, there is no guarantee that the most accurate traveltime 

approximation being used in equations for geometrical spreading results in the most accurate 

geometrical spreading equation. Different from the indirect type approximation, which is 

approximating the traveltime for geometrical spreading approximation, the direct type 

approximation is computed by approximating the geometrical spreading term directly from 

the exact parametric equations obtained from the dynamic ray-tracing. The first example of 

this comparison between indirect and direct type approximation is done by Stovas and Ursin 

(2009) who developed the rational type of approximation in direct form. They showed that the 

direct rational approximation is simpler and more accurate than the indirect counterpart for a 

homogeneous and multilayered VTI model. Xu and Stovas (2017) proposed a direct type 

approximation with the generalized nonhyperbolic form for the relative geometrical spreading 

for a VTI medium and compared them with the indirect ones. 
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The orthorhombic (ORT) model is introduced by Schoenberg and Helbig (1997) and has 

gained more attention due to the need to characterize the fractured earth. They have become a 

new standard to define model parameters to cover the azimuthal dependence of the traveltime 

surface. Tsvankin (1997, 2012) defined nine elastic model parameters for ORT model that can 

be reduced to six parameters in an acoustic approximation (Alkhalifah, 2003). In the group 

domain, we refer to the first order curvature as the normal moveout (NMO) velocity ellipses 

(Grechka and Tsvankin, 1999a, 1999b) and the second order curvature as the anellipticities 

because they represent the anelliptic behaviour for slowness and traveltime surface. Stovas 

(2015) derived azimuthally dependent kinematic properties of the orthorhombic media and 

defined the effective ORT parameters in the Dix-type in layered ORT media that derived from 

the Dix inversion (Dix, 1955). Sripanich and Fomel (2015) modified the anelliptic functional 

form of Fomel (2004) and extended it to ORT model to approximate P-wave phase and group 

velocities. 

In this paper, we propose an anelliptic approximation in reminiscent of the functional form 

studied by Sripanich and Fomel (2015) for direct type relative geometrical spreading in VTI 

and ORT media. The coefficients in the approximation are defined within the symmetry plane 

and obtained from fitting with the exact relative geometrical spreading in the symmetry planes. 

Due to the symmetric behavior in different symmetry planes by using the acoustic anisotropy 

assumption (Alkhalifah, 1998), the computation for the coefficients in ORT model becomes 

easier by applying corresponding changes in the forms of the coefficients that obtained in one 

symmetry plane. Subsequently, we extend our method for layered VTI and ORT models by 

using the effective model parameters computed from the Dix-type equation (Stovas, 2015). 

Using numerical examples, we show that the results from the proposed approximation are 

highly accurate for both homogeneous and layered VTI and ORT cases. 
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6.2 Relative geometrical spreading in a VTI model 

The relative geometrical spreading is given in Červený (2001) as 
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=L  (6.1) 

where Sθ  and Rθ  are the angles between the ray and the normal to the surface measured at the 

source and receiver, respectively. Measured from the dynamic ray-tracing, Sθ  and Rθ  are all 

group angle. M is the second order derivatives matrix given by 
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where ( )SS yx ,  and ( )RR yx ,  are the lateral coordinates of source and receiver, respectively. 

The relative geometrical spreading in a VTI model is given by (Ursin and Hokstad, 2003) 
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where Ω  is the radiation pattern given by RS θθ coscos=Ω . In our paper, we neglect the 

radiation pattern and focus only on the term NL  that is given as 
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The relative geometrical spreading term NL  given in equation 6.4 can also be written as a 

function of horizontal slowness p  in the case of flat layer as follows (Stovas and Ursin, 2009) 
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For a homogeneous VTI model, the offset under an acoustic approximation can be given in 

terms of horizontal slowness Alkhalifah (1998), 
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where 0t  is the vertical one way traveltime, nV  is the normal moveout (NMO) velocity and η  

is the anellipticity parameter (Alkhalifah, 1998).  

Substituting equation 6.6 into equation 6.5 gives (Stovas and Ursin, 2009) 
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Equations 6.6 and 6.7 give an exact parametric equation for relative geometrical spreading 

NL  in terms of the horizontal slowness that can be measured from dynamic ray-tracing. 

6.3 Anelliptic form approximation for the relative geometrical spreading in 

a VTI model 

In VTI medium, we define the approximation for the relative geometrical spreading in an 

anelliptic resembling that of Sripanich and Fomel (2015) by 
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where the hyperbolic term )(xhh =  denotes the elliptic part of the relative geometrical 

spreading given by  
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The functions )(ˆˆ xqq =  and )(ˆˆ xss =  are defined by  
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where 1q , 3q , 1s  and 3s  are the coefficients computed from the fitting process with the exact 

geometrical spreading form. Note that 1w  and 3w  in equation 6.9 have different units. If we 

define the hyperbolic term by ,2
0

2
03

2
1 Vtwxwh +=  where 0V  is the vertical velocity, they will 

have the same units. The reason why we don’t use this form is that we do not have vertical 

velocity in our list of parameters.  

The offset and the depth is shown by the relation )tan(θzx = , where z  is the depth and θ  is 

the dip group angle from the vertical axis. We define a function )(θrr =  that relates to the 

relative geometrical spreading as  

 ( )( ).tan)cos(
2

2

z
zxr N θθ =

=
L  (6.12) 

The coefficients 1q , 3q , 1s  and 3s  in equation 6.8 can be computed by fitting with the exact 

equation for NL  (see equation A-3) through the second ( 22 / θ∂∂ r ) and forth order derivatives 

44 / θ∂∂ r  at 0=θ  and 90  as noted by the index 1 and 3 for the horizontal and vertical 

axes, respectively (Figure 6.1). The equations for 1q , 3q , 1s  and 3s  are given in Appendix A.  

The coefficients 1q , 3q , 1s  and 3s  are plotted versus anellipticity parameter η  in Figure 6.2. 

The coefficients 1q  and 3q  are gradually increasing with η , while 1s  and 3s  are almost 
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independent on η . When setting 0=η  corresponding to elliptical anisotropy, they become 

equivalent to each other with 131 == qq  and .13/931 == ss  

 

Figure 6.1. The location of fitting indices 1q , 3q , 1s  and 3s  in a homogeneous VTI model. 

 

Figure 6.2. The sensitivity of coefficients 1q , 3q , 1s  and 3s  versus anellipticity η . 
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In order to test the accuracy of the anelliptic approximation, we use a homogeneous VTI 

model with parameters: st  10 = , skmVn /2=  and 2.0=η . We show the relative error in 

relative geometrical spreading versus normalized offset computed from our proposed method 

and the approximation in GMA form approximation computed from infinite offset limit (Xu 

and Stovas, 2016) in Figure 6.3. Note that the approximations are compared with the exact 

parametric expression shown in equations 6.6 and 6.7 that are computed from dynamic ray-

tracing. One can see that comparing with GMA form approximation in a homogeneous VTI 

model, the anelliptic approximation is less accurate at short offset while when approaching to 

a larger offset it becomes more accurate as the fixing elliptical background it used. 

Subsequently, we introduce a multi-layered VTI model using the parameters in Table 6.1 and 

show the relative error versus offset-depth ratio in Figure 6.4. The effective model parameters 

are computed from Dix-type equations shown in Appendix B. One can see that the errors are 

all increasing with η  and the error from the anelliptic approximation is always smaller than 

the GMA form approximation. 

 

Figure 6.3. The relative error for anelliptic (solid) and GMA form (dashed) approximation for 

the relative geometrical spreading in a homogeneous VTI medium. 
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Figure 6.4. The relative error for anelliptic (solid) and GMA form (dashed) approximation for 

the relative geometrical spreading in a multi-layered VTI medium. 

Layer 
Layer thickness 

(km) 

Vertical velocity 

(km/s) 

NMO velocity 

(km/s) 

Anellipicity 

parameter  

1 0.3 1.5 1.8 0.1 

2 0.7 1.8 2 0.15 

3 1 2 2.2 0.18 

Table 6.1. The model parameters in a multilayered VTI model. 

6.4 Relative geometrical spreading in a homogeneous ORT model 

For a homogeneous ORT model, we introduce two lateral offset projections 
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The matrix M in equation 6.2 takes the form 
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In phase domain, the relative geometrical spreading NL  can be given by Stovas (2017) 
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To compute the geometrical spreading for a homogeneous ORT model, we use exact 

parametric offset equations (Stovas, 2015): 
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),( yx ppx and ),( yx ppy  are corresponding offset projections, and 
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where 1nV  and 2nV  are corresponding NMO velocities defined in [ ]ZX ,  and [ ]ZY ,  planes, 

respectively. Anellipticity parameters 1η  and 2η  are defined in corresponding two vertical 

symmetry [ ]ZX ,  and [ ]ZY ,  planes, respectively. Note that the definition of indices is 

different with the one defined in standard Tsvankin (1997) indices. The cross-term 

anellipticity parameter xyη  is defined as (Stovas, 2015) 
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where anellipticity parameter 3η  is defined in [ ]YX ,  plane (Vasconcelos and Tsvankin, 2006).  

The relative geometrical spreading for ORT medium is given by Stovas (2017) 
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6.5 Anelliptic approximation for the relative geometrical spreading in an 

ORT model 

In ORT medium, we define the approximation for relative geometrical spreading in an 

anelliptic form similar to Sripanich and Fomel (2015) 
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where the hyperbolic term ),( yxHH =  denotes the elliptic part of the relative geometrical 

spreading given by 
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The functions )3,2,1(),,(ˆˆ == iyxQQ ii  are defined as  
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The functions ),(ˆˆ yxSS =  is given by  
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Similar to VTI case, we define a relative geometrical spreading related function by 
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and define the dip angle θ  and the azimuth φ  in Figure 6.5, with the relations 
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Twelve coefficients ( )3,2,1, =≠ jiQij  and ( )3,2,1, =≠ jiSij  in equations 6.25 and 6.27, 

respectively, are computed by fitting with the exact relative geometrical spreading (see 

equation 6.C.2) through the second and forth order derivatives with respect to the dip and 

azimuth angles by 
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6.6 The symmetry of the anelliptic approximation 

In order to calculate twelve coefficients ( )3,2,1, =≠ jiQij  and ( )3,2,1, =≠ jiSij  required for 

),(ˆ yxQk  and ),(ˆ yxSk  given in equations 6.25 and 6.27, respectively, we focus on each 

individual symmetry plane separately. When we compute the coefficients in one symmetry 

plane, the similar coefficients for other two symmetry planes can be easily computed by 

corresponding changes in indices. 

In [ ]ZX ,  symmetry plane, when setting 0=y , the anelliptic approximation in equation 6.21 

is similar to the one computed for VTI model. In this symmetry plane, we need to define four 

coefficients: 32Q , 12Q , 32S  and 12S . By taking the second and forth order derivatives of 

)0( =φR  with respect to the dip angle θ  at 0  and 90 , the coefficients 32Q , 12Q , 32S  and 

12S  are computed as it is shown in Appendix C. 
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The advantage of anelliptic approximation is its symmetric behavior in different symmetry 

planes. All required coefficients are computed within one plane and simple lead to 

corresponding expressions in the others. The notations for indices in coefficients ijQ  and ijS  

are shown in Figure 6.5, and changing of indices can be obtained by clockwise rotation of the 

symmetry frame as shown in Figure 6.6. 

When we have calculated the coefficients in [ ]ZX ,  symmetry plane, the coefficients in [ ]ZY ,  

and [ ]YX ,  symmetry planes can be easily computed using the transformation rule shown in 

Table 6.2. Note that the cross-term anellipticity parameter )1,2(
xyη  defined in [ ]ZY ,  symmetry 

plane is the same as )2,1(
xyη  defined in [ ]ZX ,  symmetry plane. 

 

Figure 6.5. The location of fitting indices ( )3,2,1, =≠ jiQij  and ( )3,2,1, =≠ jiSij  in a 

homogeneous ORT model. 
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Figure 6.6. Rotation from [ ]ZX ,  symmetry plane to [ ]YX ,  symmetry plane. 
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Table 6.2. The corresponding transformation for the model parameters. The anellipticity 

parameter 3η  can be computed from 1η , 2η  and xyη  as 
( )( )
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6.7 Numerical examples 

In order to illustrate the accuracy of proposed anelliptic approximation, we select an 

homogeneous ORT model with the parameters: st  10 = , skmVn /21 = , skmVn /2.22 = , 

1.01 =η , 12.02 =η  and 2.0=xyη . We show the relative error from the approximation in Xu 

et al. (2005) (Figure 6.7, top), indirect rational type approximation (Appendix D) (Figure 6.7, 
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middle) and our proposed anellipic approximation (Figure 6.7, bottom). The form used in Xu 

et al (2005) is from the traveltime derivation based on the rational form moveout 

approximation (Tsvankin and Thomsen, 1994). One can tell from the comparison that our 

proposed approximation performs better accuracy, especially along x  and y  axes, and 

reaches the maximal error of %7.0  around 45  azimuth at the normalized offset 1ˆˆ ≈= yx .  

We define a multi-layered ORT model with the parameters shown in Table 6.3 and show the 

relative error from the approximation in Xu et al. (2005) (Figure 6.8, top), indirect rational 

type approximation (Appendix D) (Figure 6.8, middle) and our proposed anellipic 

approximation (Figure 6.8, bottom). The effective model properties for the multilayered ORT 

model are computed form Dix-type equations shown in Appendix C. The error surface of the 

approximation from Xu et al. (2005) and the indirect rational form approximation are more 

complicated and their maximal error is larger than our proposed anelliptic approximation. 

Note that the value of anisotropy parameters in our paper is much larger the ones obtained 

from the field data in order to make the error from the approximation more visible. In practice, 

the result from our approximation is more accurate as the anisotropy in practical applicability 

is weaker. 
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Figutre 6.7. The relative error of the relative geometrical spreading for a homegeneous ORT 

model by using the traveltime based approximation Xu et al (2005) (top), indierct rational 

approximaiton (middle) and anelliptic approximation (bottom). 
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Figutre 6.8. The relative error of the relative geometrical spreading for a multi-layered ORT 

model by using the traveltime based approximation Xu et al (2005) (top), indierct rational 

approximaiton (middle) and anelliptic approximation (bottom). 

 



149 
 

Layer )(kmz  )/(0 skmV  )/(1 skmVn  )/(2 skmVn  1η  2η  xyη  

1 0.25 1.5 1.65 1.8 0.05 0.08 0.2 

2 0.75 1.8 2 2.2 0.1 0.1 0.18 

3 1 2 2.2 2.15 0.08 0.12 0.22 

Table 6.3. The model parameters in a multilayered ORT model. 

6.8 Discussions 

For multilayered case, the expressions for relative geometrical spreading approximation we 

use are computed from the homogeneous model with the effective model parameters 

computed from Dix-type equations (Stovas, 2015). Selecting horizontal ray for calculation is 

impossible for ray-tracing, which means the assumption for infinite offset limit is not availed 

anymore, while we still using the expression computed from the homogeneous derived from 

the infinite offset assumption that explains the less accuracy compared with homogeneous 

case. When there is the azimuthal variation between the multilayered ORT model, the 

effective parameters with different azimuthal orientation of the layers is listed in Ravve and 

Koren (2017) and Koren and Ravve (2017).  

Our anelliptic form resembling equations in (Sripanich and Fomel, 2015) are defined for the 

group velocity inverse for VTI and ORT model. The difference is that they define the 

anelliptic form for group velocity inverse first, computing the coefficients from fitting, then 

convert it to the traveltime approximation, while our proposed anelliptic form approximation 

is defined for relative geometrical spreading, then using the converted relation to obtain the 

coefficients. The converted relation is needed for both the anelliptic form traveltime and 

geometrical spreading approximation since there is no asymptotic behavior for traveltime or 

geometrical spreading at infinite offset that can be used for fitting. 



150 
 

The tricky part of our approximation is that we use the relative geometrical spreading related 

functions r  (VTI) and R  (ORT) to derive the coefficients used in approximation. This 

function has no physical meaning but used for a fitting technique. There is a simple relation 

between the function r  (or R ) and corresponding term NL . The form of this function is 

similar to the group velocity inverse in VTI and ORT models. 

For example, in VTI case, function r is very similar to ( )2/1 θV , where V  is the group 

velocity and θ  is the group angle. The traveltime and offset are given as 

 
( )

),tan(

,
cos)(
θ

θθ
zx

V
zt

=

=  (6.31) 

The converted relation applied for traveltime and relative geometrical spreading are shown by 
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where z  represents the depth. We do not have the value for depth as the offset x  in the 

geometrical spreading approximation NL  is represent by ( )θtanzx = , which cancels the depth 

factor z  in the denominator, keeping only the variable θ  used for fitting. 

The relative geometrical spreading NL  is shown by the form of traveltime derivative with 

respect to the offset in equation 6.4. Substituting the traveltime from in equation 6.31 and take 

the derivative with respect to the offset x  gives 

 
( )( ) ( )( ).2cot)cos( 22

2

VVVVVV
VzV

N ′′−+′′−
=

θθ
L  (6.33) 

The function r  can be represented in the group velocity and its derivatives with respect to the 

group angle  
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For anelliptic form traveltime approximation (Sripanich and Fomel, 2015), ( )θ2/1 V  is the 

one used for fitting process at 0=θ  and 90=θ . However, for our proposed anellipitc form 

geometrical spreading, the function r  (combination of group velocity and its derivatives) 

given in equation 6.34 is the one using for fitting process, which is much more completed 

compared with the traveltime case ( ( )θ2/1 V ).  

The beauty of the anelliptic approximation is that we use the properties only on the three 

symmetry planes, therefore, the behavior in three planes are all symmetric. It is convenient to 

get the coefficients in other planes by properly rotation on the index after obtaining the 

coefficients in one symmetry plane.  

For anelliptic traveltime approximation for ORT model (Sripanich and Fomel, 2015), when 

we focus on one symmetry plane, the approximation converges to the one defined for VTI 

model. For anelliptic relative geometrical spreading approximation, the situation is different, 

and approximation does not converge to the VTI counterpart (Appendix A) or any of 

symmetry planes due to different number of parameters. This happens due to the mixed 

derivatives entering the equation for geometrical spreading (equation 6.4). Both NMO 

velocities 1nV , 2nV  and cross-term anellipticity parameters are presented in all equations 

defined either in [ ]ZX ,  or [ ]ZY ,  symmetry planes. 

To reduce the relative geometrical spreading from ORT to VTI cases, the following reduction 

in parameters is required. 
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6.9 Conclusions 

We propose an anelliptic form approximation for the relative geometrical spreading in a 

homogeneous VTI and ORT media under the acoustic anisotropy assumption. All the 

coefficients in the approximation are calculated by fitting with the exact parametric solution 

within the symmetry planes. Compared with the GMA form approximation, our proposed 

anelliptic approximation is more accurate for larger offset in a homogeneous VTI model. Due 

to symmetric behavior, the coefficients of the approximation in ORT model can be easily 

obtained after computing the coefficients in one symmetry plane and applying the required 

rotation for the other. The form of the anelliptic approximation is simpler while the 

traveltime-based counterparts are algebraically complicated. In the numerical examples, one 

can see that compared with the traveltime-based approximations, our anelliptic form 

approximation is more accurate for both homogeneous and multi-layered ORT models. 
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6.11 Appendix A 

The coefficients 1q , 3q , 1s  and 3s  of the anelliptic approximation for a transversely 

isotropic medium with a vertical symmetry axis 
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The function r  in VTI model is defined in equation 6.12, the derivatives of r  with respect to 

the group angle θ  at zero offset are 
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The derivatives of r  with respect to the group angle θ  at infinite offset are 
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By fitting with the exact form the coefficients 1q , 3q , 1s  and 3s  are given by 
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In elliptical case ( 0=η , 131 == qq  and 13/931 == ss ), the function r  becomes  
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6. 12 Appendix B 

The effective model parameters for the multilayered transversely isotropic and 

orthorhombic media 

The effective model parameters from the multilayered model are computed from traveltime 

parameters (high-frequency) and from upscaling (low-frequency). The computation in our 
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paper is computed from dynamic ray-tracing, so the traveltime parameters are used. The Dix 

type equation is derived from the Dix inversion (Dix, 1955) that is estimating the individual 

layer parameters from the recorded reflections on seismic seismogram for the horizontally 

layered medium. 

In order to apply approximation in equation 6.8 computed from the homogeneous model for a 

multilayered VTI medium, the effective parameters by using the Dix-type equations are 

shown by: 
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The exact form of relative geometrical spreading in multilayered VTI case is computed from 

the summation as shown below 
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It is computed by summing for each individual layers (equation 6.B.2) that explains why the 

relative error doesn’t go to zero for large offset-depth ratio.  

Similar to the multilayered VTI case, the effective properties used in multilayered 

orthorhombic (ORT) model are computed from Dix-type equations (Stovas, 2015): 



155 
 

 

( )

( )

( )
.3,..,1,1~~~

41

4
1~

,1~~

81

8
1~

,1~~

81

8
1~

,~
~

,~
~

,~

0
2
2

2
1

1
0

2
2

2
1

0
4
2

1
0

4
22

2

0
4
1

1
0

4
11

1

0

1
0

2
2

2

0

1
0

2
1

1

1
00

=



















−
∑ +

=



















−
∑ +

=



















−
∑ +

=

∑
=

∑
=

∑=

=

=

=

=

=

=

m
tVV

tVV

tV

tV

tV

tV

t

tV
V

t

tV
V

tt

nn

m

j
jjnjnxyj

xy

n

m

j
jjnj

n

m

j
jjnj

m

j
jjn

n

m

j
jjn

n

m

j
j

η
η

η
η

η
η

 

(6.B.3) 

The exact relative geometrical spreading in multilayered ORT is computed by summation for 

individual layers by parametric equations 6.15 and 6.17 as shown below 
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where 
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6.13 Appendix C 

The coefficients of the anelliptic approximation for orthorhombic model in [ ]ZX ,  plane 

The coefficients of the anelliptic approximation defined in on symmetry plane of the 

orthorhombic model are not the same as those computed for the VTI case (Appendix A). Due 

to presence of mixed derivatives in equation 6.14 or equation 6.15, all ORT model parameters 

are entering the equations defined in any of symmetry planes. However, with the use of corss-

term anelliptic parameter xyη , the number of parameters can be reduced to five. For [ ]ZX ,  

symmetry plane, these parameters are 0V , 1nV , 2nV , 1η  and xyη . 

In order to calculate the coefficients in anelliptic form approximation in [ ]ZX ,  plane, we set 

0=y  in approximation given in equation 6.21. Only the [ ]ZX ,  plane coefficients: 32Q , 12Q , 

32S  and 12S  remains in the approximation.  

We introduce the relative geometrical spreading related function R ( 22 /)cos( zR NLθ= ), where 

θ  is the dip group angle to the vertical axis and z  is the depth, we get the second and forth 

order derivatives of R  with respect to θ  as following 
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By fitting with the exact form, the coefficients: 12Q , 32Q , 32S  and 12S  are given as  
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where  
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By setting ηη =1  and ηη 2=xy , the coefficients defined in equations 6.C.2 become 

equivalent to those defined in equations 6.A.3 for VTI model, 112 qQ = , 332 qQ = , 112 sS =  

and 332 sS = . 

Due to the symmetric behavior in the symmetry plane in ORT model, the other coefficients in 

the approximation can be easily obtained by corresponding changes in indices from the 

computed the coefficients in one symmetry plane (see transformation form in Table 6.2). The 

coefficients ( 21Q , 31Q , 21S  and 31S ) defined in [ ]ZY ,  plane and the coefficients ( 23Q , 13Q , 

23S  and 13S ) defined in [ ]YX ,  plane are obtained from [ ]ZX ,  plane coefficients ( 32Q , 12Q , 

32S  and 12S ) by setting ( 21 ηη → ) and ( 13
31 , xyxy ηηηη →→ ), respectively. Note that 

2112
xyxyxy ηηη =≡ . 

6.14 Appendix D 

The indirect rational form approximation for relative geometrical spreading in an ORT 

model. 

A rational form similar to (Vasconcelos and Tsvankin, 2006) approximation for the traveltime 

in ORT model is defined by 

 

( )2
02

2
20

4
04

22
22

4
402

02
2

2000
2

1 yBxB
yAyxAxA

yAxAATRA ++
++

+++=  (6.D.1) 

where the coefficients 00A , 20A , 02A , 40A , 22A  and 04A  are computed from the Taylor series at 

zero offset are given by 
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The remaining coefficients 20B  and 02B  are computed by the infinite offset limit shown as 
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The indirect (traveltime-based) rational form approximation for relative geometrical spreading 

is given by the derivatives of traveltime approximation in equation 6.D.1 with respect to the 

offsets given by 
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Note that the indirect rational form approximation in equation 6.D.4 is algebraically 

complicated due to the second order derivatives. 
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Chapter 7 Fresnel zone in vertical transversely 
isotropic and orthorhombic media  
Shibo Xu and Alexey Stovas  

Norwegian University of Science and Technology, Trondheim, Norway 

Abstract. The reflecting zone in the subsurface insonified by the first quarter of a wavelength 

and the portion of the reflecting surface involved in these reflections is called the Fresnel zone 

or first Fresnel zone. The horizontal resolution is controlled by acquisition factors and the size 

of the Fresnel zone. We derive an analytic expression for the radius of the Fresnel zone in 

time domain in transversely isotropic medium with a vertical symmetry axis (VTI) using the 

perturbation method from the parametric offset-traveltime equation. The acoustic assumption 

is used for simplification. The Shanks transform is applied to stabilize the convergence of 

approximation and to improve the accuracy. The similar strategy is applied for the azimuth-

dependent radius of the Fresnel zone in orthorhombic (ORT) model for a horizontal layer. 

Different with the VTI case, the Fresnel zone in ORT model has a quasi-elliptic shape. We 

show that the size of the Fresnel zone is proportional to the corresponding traveltime, depth 

and the frequency. From the numerical examples, we can see that the Shanks transform 

approximations for Fresnel zone are very accurate for both VTI and ORT media. 

Presented at the 80th EAGE Conference and Exhibition, June, 2018, Copenhagen, Denmark; 

Published in Geophysical Journal International in December 2017. 
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7.1 Introduction 

The most common question in the reflection seismology is the resolution of the seismic image. 

We can consider both vertical and horizontal resolution. The horizontal resolution is 

controlled by acquisition factors and the size of the Fresnel zone. The Fresnel zone is, named 

for physicist Augustin-Jean Fresnel, used to compute the radio waves propagating between a 

transmitter and a receiver in antenna system (Hristov, 2000). The Fresnel zone or first Fresnel 

zone in geophysics indicates the portion of a reflector from which the energy of a reflection 

can reach a detector where the wave propagates within a ¼ wavelength. The second Fresnel 

zone is defined from the energy that arrives delayed one-half to one cycle, adding 

destructively to the energy from the first zone. Similarly, there is a third zone and so on. The 

adjective “first” is often dropped away because when the contributions of all zones are added 

together, only the first Fresnel zone remains while the effects of all subsequent zones cancel 

each other. Borrowed from classical physical optics, Seismic interpreters often use the 

Fresnel-zone concept to estimate the lateral resolution of unmigrated, stacked P-wave data. 

(Sheriff, 1996, Lindsey, 1989).  

The Fresnel zone can be defined as the region of constructive interference enclosing the ray-

theoretical reflection or mode-conversion point (Sheriff, 1980). Fresnel zones and volumes 

can be computed very efficiently by forwarding dynamic ray tracing in a known velocity 

model (Červený and Soares, 1992). Eaton et al (1991) extended the Fresnel-zone concept to 

include mode-converted (P-SV) reflections for both surface and VSP geometries. The 

equation that describes the size of a Fresnel zone in a constant-velocity medium for a zero 

offset can be found in (Sheriff, 1996). How actual Fresnel zones are computed for 3-D zero-

offset reflections by forwarding modeling in a known medium is described in Hubral et al. 

(1993). 
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The projected Fresnel zone of a zero-offset reflection onto the subsurface reflector using a 

standard 3D CMP traveltime analysis, without knowing the overburden was developed in 

(Hubral et al, 1993; Schleicher et al, 1997). The calculation for the Fresnel zone radius was 

done in the time domain by Trorey (1970). 

Since the Fresnel zone width is a measure of lateral resolution, usually, seismic waves cannot 

detect the subsurface features smaller than the size of Fresnel zone. More attention has been 

made to the awareness of three-dimensional effect within the frame of seismic resolution. 

Aspects of the seismic resolution which can be achieved in a seismic survey and the physical 

factors that limit this resolution have been treated by Sheriff (1980) and Lindsey (1989). The 

Fresnel zone determines the spatial resolving power for unmigrated seismic data with which 

important lithological changes along a seismic profile direction may be observed (Sheriff 

1980). Additionally, it also largely contributes to the reflected and transmitted wavefields, and 

more specifically to their amplitudes (Spetzler and Snieder, 2004; Favretto-Cristini et al, 

2007a, 2007b). Hagedoorn (1954) pointed out that the reflections area of the interface, and 

therefore vertical resolution can also be thought of as a Fresnel-zone problem. While the 

vertical resolution is mostly linked to the seismic wavelength (see, for instance, Widess, 

1982), the lateral resolution depends on Fresnel zone considerations (Lindsey, 1989) and its 

difference in pre- and post-migrated data. Červený (2001) suggests two methods to include 

the Fresnel zone parameter calculations into the ray tracing procedure in complex 2D and 3D 

structures. Using a derivation that is based on mostly geometric considerations, Monk (2010) 

examined the shape of the Fresnel zone for the nonzero offset for a model with constant 

velocity gradient. The implications for seismic acquisition for adequate imaging were made 

by Monk (2009) when the Fresnel zone is properly sampled. 

Few papers have been devoted to anisotropic media. For instance, Okoye and Uren (2000) 

calculate the Fresnel zone radius for zero-offset configurations for P- and SH-waves in TI 
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media and isotropic media and for dipping plane reflectors. They conclude that the Fresnel 

zone radius is predominantly dependent on the curvatures and wavelength of the wavefront as 

well as the dip angle of the reflector. The Thomsen anisotropy parameters δ , ε  and γ  

(Thomsen, 1986) also affect the Fresnel zone radius. Moser and Červený (2007) show how 

the Fresnel region can be calculated by conventional dynamic ray tracing in Cartesian 

coordinates, for isotropic and anisotropic inhomogeneous layered media. Fresnel volume and 

interface Fresnel zone for reflected and transmitted waves from a curved interface in 

anisotropic media were analyzed by Ursin et al (2014). 

In this paper, an analytic expression for the Fresnel zone radius is derived using the traveltime 

for VTI model by using the perturbation method. In order to do that, the parametric offset-

traveltime equations under the acoustic approximation are used. We apply the Shanks 

transform to stabilize the approximation and improve the accuracy. The similar perturbation 

strategy is applied for the analytic expression of Fresnel zone radius in orthorhombic (ORT) 

model. The accuracy of proposed approximation for Fresnel zone is illustrated for both VTI 

and ORT models. 

7.2 Fresnel zone using the traveltime 

The seismic wave sent out from the source propagates in space and spread out over a larger 

area. The horizontal resolution is controlled by the Fresnel zone, the part of a reflector 

covered by the seismic signal at a certain depth where the wave propagates within ¼ 

wavelength after it first touches the reflector. The Fresnel zone (or first Fresnel zone) radius 

for a homogeneous horizontal layer is defined in Figure 7.1 (top). It is convenient to express 

the Fresnel zone using the traveltime parameters. The Fresnel zone radius FX  can be treated 

as the wave propagates in lateral direction with certain traveltime Ft  and the Fresnel zone 
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radius using the traveltime is calculated by using the Pythagorean theorem (Figure 7.1, 

bottom),  

 ( ) ,222
FF tVZX ϕ=+  (7.1) 

where Ft  is the corresponding traveltime when the wave propagates by ¼ wavelength after 

arriving the reflector with tttF ∆+= 0 , where 
f

t
4
1

=∆ , f  is the frequency, 0t  is the vertical 

traveltime with 
0

0 V
Zt = , Z  is the reflector depth, 0V  is the P-wave vertical velocity, ϕV  is the 

corresponding group velocity computed for group angle ϕ  defined from the vertical axis. 

For a horizontal layer in a homogeneous isotropic (ISO) medium ( VVV == 0ϕ ), the Fresnel 

radius using the traveltime is computed as following  

 .2
0

2 ttVX FF −=  (7.2) 

By using 
f

ttF 4
1

0 += , the radius of Fresnel zone FX  can be computed from simple 

geometrical considerations (Figure 7.1, top), 
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where λ  is the wavelength with 
f

V
=λ , V  is the constant velocity. Solving equation (7.3) for 

FX  gives 

 
.

4
2

2

Z
f

VZX F −







+=  (7.4) 

As the wave propagates in three dimensions, the Fresnel zone for the isotropic model above is 

a circle with the radius computed from equation (7.4) shown in Figure 7.2. 
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Figure 7.1. The first Fresnel zone diagram in represented by the depth (top) and traveltime 

(bottom). 

 

Figure 7.2. The diagram showing the Fresnel zone in an isotropic medium. 
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7.3 The Fresnel zone in a VTI medium 

In an anisotropic medium, the velocity of the seismic wave varies with the propagation angle. 

For a homogeneous VTI model, there are two additional anisotropic parameters δ  and ε  

(Thomsen, 1986). The shape of the P-wave wavefront in VTI model is a quasi-ellipse instead 

of a circle as it is shown in Figure 3. 

Based on the concept of the Fresnel zone, which indicates the area in the vicinity of a ray that 

can be expressed in terms of the traveltime ( Ft ) (Figure 7.1, bottom) and the change in this 

traveltime with one-fourth of the wavelength ( t∆ ). Computed from the dynamic ray tracing, 

the parametric equations for traveltime and offset are given by (Alkahlifah, 1998)  
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where nV  is the NMO velocity with δ210 += VVn , 
δ
δεη

21+
−

=  is the anellipticity parameter 

(Alkhalifah and Tsvankin, 1995), and p  is the ray parameter (horizontal slowness). For the 

Fresnel zone in VTI model, the radius is computed from the corresponding offset when the 

ray travels from the source to the edge of the Fresnel zone with certain traveltime Ft . The 

geometry for calculating the radius of Fresnel zone in a homogeneous ISO and VTI model is 

shown in Figure 7.3.  

In order to obtain an analytic expression in VTI model, we define the perturbation series for 

Fresnel radius squared up to third order by 

 ,3
3

2
210

2 ηηη MMMMX F +++=  (7.6) 

For the elliptical case ( 0=η ), the traveltime and offset squared are shown by 
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where the slowness for the elliptical assumption is given by 
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The zero order coefficient 0M  is computed by  
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The other coefficients (see Appendix A) in equation (7.6) are given by  
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In order to stabilize the approximation and improve the accuracy, two types of Shanks 

transform (Bender and Orszag, 1978) are defined on the perturbation series in equation (7.6) 

given by 
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where ∑
=

=  =
k

j

j
jk kMX

0

2 .3,2,1,0,η  The perturbation coefficients jM  ( 3,2,1,0=j ) are given 

in equations (7.9) and (7.10).  
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Figure 7.3. The radius of Fresnel zone for P-wave in a homogeneous ISO and VTI medium. 

In order to test the accuracy of the approximations above, we introduce a VTI model with the 

parameters: skmV /20 = , skmVn /2.2=  and 2.0=η , and plot the relative error in Fresnel 

radius versus corresponding traveltime ( Ft ), depth and frequency by using the approximations 

from second and third perturbation series and the Shanks transforms in Figure 7.4. Note that 

the Fresnel zone varies with depth at frequency Hzf 30= and the Fresnel zone varies with 

frequency at depth kmz 2= . One can see that the accuracy from third order perturbation 

series is higher than second order and the Shanks transform improves the accuracy greatly for 

both second and third order series. The second order Shanks transform approximation 2SX  

results in the most accurate result and even as accurate as the exact one. We plot the Fresnel 

zone radius approximation 2SX  versus anisotropic parameters δ  (with 2.0=η ) and η  (with 

1.0=δ ) in Figure 7.5. One can see that the Fresnel radius is increasing both with δ  and η , 

and it is more sensitive with δ . The radius of Fresnel zone using the approximation 2SX  in 

ISO and VTI models versus traveltime Ft , depth and frequency are shown in Figure 7.6. The 

tendency for the Fresnel zone radius with respect to traveltime, depth and frequency for ISO 

and VTI model is very similar. We plot the shape of Fresnel zone for ISO ( skmV /2= ,

Hzf 30=  and kmz 2= ) and VTI ( skmV /20 = , skmVn /2.2= , 2.0=η , Hzf 30=  and 

kmz 2= ) models in Figure 7.7. One can see that, similar to ISO case, the Fresnel zone in VTI 

model is also a circle but with a larger radius as the velocity in VTI model is independent with 
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the azimuth. Note that the exact numerical results or the reference results are obtained from 

performing the dynamic ray tracing on the parametric offset-traveltime on equations (7.5). 

Similar to the moveout approximation )(xt , the Fresnel zone radius using the traveltime 

parameters can be treated as )(tx . The exact results can be computed from the parametric 

offset-traveltime equation shown in equations (7.5). 

 

Figure 7.4. The relative error in Fresnel radius versus the corresponding traveltime (left), 

depth (middle) and frequency (right) using four types of approximation in VTI model. (Note 

that the Fresnel zone varies with depth at frequency Hzf 30= and the Fresnel zone varies 

with frequency at depth kmz 2= ). 

 
Figure 7.5. The Fresnel radius using second order Shanks transform approximation 2SX  

versus anisotropy parameters δ  (with 2.0=η ) and η  (with 1.0=δ ). 
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Figure 7.6. The radius of Fresnel zone in ISO and VTI models versus traveltime (left), depth 

(middle) and Frequency (right). The Fresnel radius computed from ISO and VTI model is 

shown by black and blue colors, respectively. (Note that the Fresnel zone varies with depth at 

frequency Hzf 30= ; The Fresnel zone varies with frequency at depth kmz 2= ). 

 

Figure 7.7. The Fresnel zone in ISO and VTI model. The Fresnel zone computed from ISO 

and VTI model is shown by black and blue colors, respectively. 
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7.4 The Fresnel zone in an ORT medium 

To compute the azimuth-dependent radius of the Fresnel zone for a homogeneous ORT 

model, we use exact parametric offset and traveltime equations (Stovas, 2015): 
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where x and y  are the corresponding offset projections, and 
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with 0V , 1nV , 2nV  being the vertical and NMO velocities. NMO velocities 1nV  and 2nV  are 

defined in [ ]ZX ,  and [ ]ZY ,  planes, respectively. Anellipticity parameters 1η  and 2η  are 

defined in corresponding two vertical symmetry [ ]ZX ,  and [ ]ZY ,  planes. The cross-term 

anellipticity parameter xyη  is defined as (Stovas, 2015) 

 ( )( )
,1

21
2121

3

21 −
+

++
=

η
ηη

η xy  (7.14) 

where anellipticity parameter 3η  is defined in the [ ]YX ,  plane (Vasconcelos and Tsvankin, 

2006).  

Similar to VTI case, by setting the traveltime t  equal to Ft , we relate the Fresnel zone 

( )FF YXR ,  with the depth of reflector. We introduce a homogeneous ORT model with 
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parameters: skmV /20 = , skmVn /2.21 = , skmVn /4.22 = , 2.01 =η , 15.02 =η , 2.0=xyη , 

Hzf 30=  and the depth of the horizontal reflector is kmz 2=  and show the exact Fresnel 

zone ( )FF YXR ,  for ORT model with a quasi-elliptic shape in Figure 7.8. Note that similar 

to the VTI case, the exact solution is computed from performing the dynamic ray tracing in 

the parametric offsets-traveltime equaiton through the ray parameters (two horizontal 

slownesses) shown in equations (7.12).  

 

Figure 7.8. The Fresnel zone computed for a homogeneous ORT model. The model 

parameters are: skmV /20 = , skmVn /2.21 = , skmVn /4.22 = , 2.01 =η , 15.02 =η , 

2.0=xyη  and Hzf 30= . The depth of the horizontal reflector is kmz 2= . The Fresnel zone 

in ORT model has a quasi-elliptical shape. 

In order to get the analytic expression of the azimuth-dependent radius for the Fresnel zone in 

ORT model, we define the perturbation series up to the second order by 
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where xy≡3 , the perturbation coefficients jN  and ijN  are given by the model parameters: 

0V , 1nV , 2nV , 1η , 2η , xyη , the frequency f  and the group azimuth Φ . To compute the 

perturbation coefficients, we format the parametric offset and traveltime squared from two 

projections into the radial offset and the azimuth given by Koren and Ravve (2014) 
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Angle φ  in equations (7.16) is the phase azimuth. The group azimuth Φ  can be computed 

from the following transform in the ellipsoidal assumption (Stovas, 2015), 
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Note that this equation is correct not only for the ellipsoidal assumption, but also as zero-

order approximation for any non-elliptic VTI media with arbitrarily large intrinsic 

anellipticity η , but for infinitesimal (actually, close to zero) offset or horizontal slowness. 

Otherwise, the transform between the acquisition azimuth and the phase azimuth will include, 

in addition to this zero-order term, also other terms with (even) powers of offset or horizontal 

slowness. 

The analytic expression for Fresnel zone in ORT model in equation (7.15) is derived by 

equating the exact equations (7.12) by setting the traveltime into Ft  with the perturbation 

series defined in equation (7.15). 

The coefficient 0N  is computed by setting all anellipticity parameters into zero given by 
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where )(ΦnV  is the NMO ellipse (Grechka and Tsvankin, 1999) with 
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The coefficient 0N  provides the radius squared of Fresnel zone in the ellipsoidal isotropic 

medium. The other perturbation coefficients jN  and ijN  are computed by equating the exact 

expressions with the perturbation series shown in Appendix B. 

Using the ORT model above, we show the polar plots of sensitivity computed from first order 

(left), quadratic (middle) and cross-term (right) coefficients in the perturbation series versus 

the group azimuth in Figure 7.9, respectively. One can see from the plots that for first and 

quadratic order coefficients, the sensitivity in anellipticity parameters 1η  and 2η  have the 

similar shapes and reach the maximal values for 0  and 2/π  azimuth angle, respectively. The 

sensitivity in cross-term anellipticity parameter xyη  reaches its maximal value at 4/π  

azimuth angle for first order coefficient. For quadratic order coefficient, the sensitivity to 

cross-term anellipticity parameter is very small. For cross-term coefficients, the sensitivity to 

anellipticity parameters 21ηη  reaches the maximal value at 4/π  azimuth angle. For the 

sensitivity to anellipticity parameters xyηη1  and xyηη2 , they obtain their maximal values at 

around 6/π  and 3/π  azimuth angle, respectively. 

 
Figure 7.9. The sensitivity computed from first order (left), quadratic (middle) and cross-term 

coefficients in equation (7.15) in the perturbation series for Fresnel zone versus the group 

azimuth. The depth of the horizontal reflector is kmz 2= .  
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Similar to the approximations in VTI case, the Shanks transform can also be applied to the 

perturbation series in ORT model (equation (7.15)) and results in  
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where 0N  is defined in equation (7.19), i
i

iNR η∑=1  and ( )xyjiNR
ij

jiij ,2,1,,2 == ∑ ηη  are 

the first- and second- order term coefficients are given in Appendix B ( equations (7.B10), 

(7.B12) and (7.B14)). 

7.5 Numerical examples 

In order to test the accuracy of the Fresnel zone approximation in ORT model, we use the 

ORT model introduced above with the parameters: skmV /20 = , skmVn /2.21 = , 

skmVn /4.22 = , 2.01 =η , 15.02 =η  and 2.0=xyη . Note that for the computation versus 

traveltime st 10 = , the computation versus depth Hzf 30=  and the computation versus 

frequency kmz 2= . The relative error in Fresnel zone with two approximations (perturbation 

series and the Shanks transform) using the ORT model above versus corresponding (travetime, 

group azimuth) and (depth, group azimuth) is shown in Figure 7.10, respectively. One can see 

that for the error plotted with traveltime Ft , the maximal error is obtained at about 40  

azimuth for traveltime stF 5.1= , for the plots versus depth, the maximal error is obtained at 

zero depth around 35  azimuth for two approximations and the accuracy from these two 

approximations is almost the same. The Shanks transform does not help a lot in improving the 

accuracy on the perturbation series for the Fresnel zone radius approximation, the reason for 

this is that the sensitivity in perturbation coefficients is very small (shown in Figure 7.9), the 

effect by using the Shanks transform is not obvious. We show another numerical example 

with higher anellipticity parameters with 4.01 =η , 3.02 =η  and 4.0=xyη , while keeping the 
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remaining model parameters the same in Figure 7.11. Compared with the plots in Figure 7.10, 

the error for the ORT model with higher anellipticity parameters is larger and the effect from 

the Shanks transform is more significate. One more numerical example, with all negative 

anellipticity parameters: 2.01 −=η , 15.02 −=η  and 2.0−=xyη , while keeping the same 

remaining model parameters, is shown in Figure 7.12. One can tell that comparing with the 

plots in Figure 7.10 the error from negative anellipticity parameters is larger. Similar to the 

plots in Figure 7.10, the effect from the Shanks transform is not obvious.  

  

  
Figure 7.10. The contour plot of error in FR  from two approximations for ORT model 

plotted versus corresponding traveltime and the group azimuth (top) and depth and the group 

azimuth (bottom). The perturbation series approximation and Shanks transform are shown in 

left and right, respectively. The model parameters are given in caption for Figure 7.8.  
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Figure 7.11. The contour plot of error in FR  from two approximations for ORT model 

plotted versus corresponding traveltime and the group azimuth (top) and depth and the group 

azimuth (bottom). The perturbation series approximation and Shanks transform are shown in 

left and right, respectively. The ORT model parameters are defined with the velocities 

specified in the caption for Figure 7.8 and the higher anellipticity parameters: 4.01 =η , 

3.02 =η  and 4.0=xyη .  
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Figure 7.12. The contour plot of error in FR  from two approximations for ORT model 

plotted versus corresponding traveltime and the group azimuth (top) and depth and the group 

azimuth (bottom). The perturbation series approximation and Shanks transform are shown in 

left and right, respectively. The ORT model parameters are defined with the velocities 

specified in the caption for Figure 7.8 and the negative anellipticity parameters: 2.01 −=η , 

15.02 −=η  and 2.0−=xyη .  
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Using the Shanks transform approximation in equation (7.21), we show the radius of the 

Fresnel zone versus different traveltime, depth and frequency in Figure 7.13. One can see 

from the plots that the radius increases with traveltime and depth while decreases with 

frequency. 

 

Figure 7.13. The Fresnel zone computed for ORT model for different traveltime (left), depth 

(middle) and frequency (right) using the ORT model with parameters given in the caption for 

Figure 7.8. 

Selecting a horizontal reflector with the depth kmz 2= , we show the shape of the Fresnel 

zone using the Shanks transform approximation (shown in equation (7.21)) for ORT, elliptical 

isotropic (EI), and ISO model in Figure 7.14, respectively. Note that for EI model, all 

anellipticity parameters are zero ( 0321 === ηηη ), for ISO model, there is one velocity with 

skmVVVV nn /2210 ==== . One can see from the plots that the Fresnel zones for ORT and 

EI model almost coincide that indicates that less sensitivity of the Fresnel zone in anellipticity 

parameters, which is also explained by the polar plots in Figure 7.9. For ISO case, the Fresnel 

zone is just a circle with the radius smaller than the ones in ORT and EI model. 
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Figure 7.14. The shape of the Fresnel zone computed for ISO, EI and ORT model. The depth 

of the horizontal reflector is kmz 2= .  

Note that the advantage of this paper is an attempt of a direct offset-traveltime approximation, 

perturbing the anellipticity of VTI, or the three anellipticities of ORT medium. The Fresnel 

zone calculation is a particular case for this method, when the time is the Fresnel zone 

traveltime, and the offset is its radius. Similarly, the moveout approximation can also be 

derived from the same strategy. 

7.6 Discussions 

The reason why we derive the approximation for the Fresnel zone using the traveltime is to 

avoid the complexity in dealing with the phase domain velocities. By the definition, the 

Fresnel zone radius is defined by the lateral projection when the seismic wave propagates for 

¼ wavelength after arriving the reflector with 
f

Vθλ = , θV  is the wavefront velocity (phase 

velocity) with the phase angle θ . Shown in Figure 7.15, if the model is isotropic, the phase 

angle 1θ  measured at wavefront ( 0tt = ) is equal to 2θ  measured at wavefront ( ttt ∆+= 0 ). 

However, for the anisotropic model, two wavefronts are not parallel ( 21 θθ ≠ ), to compute the 

Fresnel zone radius FX , the change in the phase angle needs to be taken into consideration, 

which makes the computation much more complicated. Using the traveltime parameters, what 



182 
 

we are interested in is the ray traveling from the source to the reflector with the certain 

traveltime tttF ∆+= 0  (Figure 7.1, bottom) that makes the derivation much simpler for 

anisotropic media. 

 

Figure 7.15. The diagram showing the Fresnel zone in an anisotropic medium. Angle 1θ  and 

2θ  are phase angles measured in corresponding points at wave-fronts 0tt =  and ttt ∆+= 0 , 

respectively. 

In order to singularize the anomaly of error plot in ORT model, we apply one more numerical 

example from the perturbation series (equation (7.15)) and the Shanks transform 

approximation (equation (7.21)) in Figure 7.16, (left and right, respectively) with a smaller 0t  

( st 6.00 = ) and frequency ( Hzf 10= ). One can see that for the error plot versus traveltime 

and group azimuth, the shape of the anomaly is more obvious and maximal error is obtained 

at the center of the anomaly. For the error plot versus depth and group azimuth, the maximal 

error is obtained at about 40  azimuth when the depth is zero. 
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Figure 7.16. The contour plot of error in FR  from two approximations for ORT model 

plotted versus corresponding traveltime and the group azimuth (top) and depth and the group 

azimuth (bottom). The perturbation series approximation and Shanks transform are shown in 

left and right, respectively. The ORT model parameters are: (Top) st 6.00 = , skmVn /2.21 = , 

skmVn /4.22 = , 2.01 =η , 15.02 =η  and 2.0=xyη ; (Bottom): skmV /20 = , skmVn /2.21 = , 

skmVn /4.22 = , 2.01 =η , 15.02 =η , 2.0=xyη  and Hzf 10= . 

This perturbation based method for the Fresnel zone in the anisotropic model can be extended 

for the model with a dip reflector. Shown in Figure 7.17, the Fresnel zone for a dip reflector 

with the dip angle α  in a homogenous VTI model is consist of two parts ( 1r  and 2r ), which is 

the corresponding distance in two directions along the dip reflector when the seismic wave 

propagates within ¼ wavelength after it first touches the dip reflector. We assume the value of 

the dip angle α  and the depth of the first touching point 0z′  are known. The Fresnel zones ( 1r  

and 2r ) are calculated by  

 
,

cos
,

cos
02

2
10

1 αα
xxrxxr
′−′

=
′−′

=  (7.22) 
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where 0x′  is the offset for the first touching point, 1x′  and 2x′  are the corresponding offsets for 

the Fresnel zone boundary point with the corresponding depth 1z′  and 2z′ . The corresponding 

offsets 1x′  and 2x′  are computed by the Shanks transform approximation shown in equations 

7.10 with the certain traveltime tttF ∆+= 0  

 { }
{ },,,,,,

,,,,,,

022

011

αη
αη

nF

nF

VVtzx
VVtzx

′=′
′=′

 (7.23) 

where the two corresponding depth 1z′  and 2z′  are obtained from the Pythagorean theorem 
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Note that on contrary to the horizontal reflector case, the Fresnel zone is not symmetric for 

dip reflector case ( 21 rr ≠ ).  

 

Figure 7.17. The sketch showing the Fresnel zone for a dip reflector in a homogeneous VTI 

model. 

7.7 Conclusions 

We derive the form of Fresnel zone radius using the traveltime parameter and use it to obtain 

the analytic expressions in an acoustic VTI and ORT models from the exact offset-traveltime 
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parametric equation using the perturbation method. The analysis of the Fresnel zone radius is 

applied versus corresponding traveltime, depth and the frequency. One can tell that the 

Fresnel zone radius in anisotropic media (VTI and ORT) increases with traveltime and depth, 

while decreases with frequency. The Shanks transform is applied to stabilize the 

approximation and improve the accuracy for both two models. Shown from the numerical 

examples that for VTI model, the second order Shanks transform is the most accurate 

approximation that is almost as accurate as the exact one. For ORT model, the quasi-elliptical 

shape is obtained for the Fresnel zone. The perturbation series and the Shanks transform 

approximation are all very accurate and almost the same accuracy for the Fresnel zone 

calculation due to the small sensitivity in perturbation coefficients. 
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7.9 Appendix A 

The analytic expression for Fresnel zone in a homogeneous VTI model using the 

perturbation method 

In order to obtain an analytic expression for Fresnel radius squared in VTI model, we define 

the perturbation series up to third order by 

 ,3
3

2
210

2 ηηη MMMMX F +++=  (7.A1) 

For elliptical case ( 0=η ), the traveltime and offset squared are obtained from the parametric 

equations (7.5) by 
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where 
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computed by  
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The first order coefficient is obtained by  
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Subsequently, we compute the second and third order coefficients given by 

( ) ( ) ( )

( ) ( ) ( )

( )
.24

)(

,4)(

10

242
0

24
0

3

22
0

3

2

22
1

222
2

3

23

3

6

232
0

22
0

2

22
0

222
1

2

22

2

F

nF

FFF

F

nFFF

t
Vttt

ttMttMttMpXM

t
VtttttMttMpXM

−
=













∂

→∂
−

∂

→∂
−

∂
→∂

−
∂

∂
=

−
=













∂

→∂
−

∂
→∂

−
∂

∂
=

       

ηηηη

ηηη

 (7.A5) 

Note that these perturbations coefficients )3,...,0(, =iMi  are all η  independent since Ft  is an 

argument in the approximation. The parameters for the approximation in VTI model are: Ft , 

0t  and nV . The effect for the anellipticity is hidden in parameter Ft . 22 ttF →  means Ft  here 

should use the function form shown in the parametric equation (equations (7.5)) for derivation 

after that the elliptical assumption is applied to get the expression for the coefficients ( 1M ,

2M  and 3M ). 
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7.10 Appendix B 

The analytic expression for Fresnel zone in a homogeneous ORT model using the 

perturbation method 

To compute the perturbation coefficients in equation (7.15), we format the parametric offset 

and traveltime squared from two projections into the radius offset and the phase azimuth 

given by 
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with the relations as below 
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We represent the parametric equations in terms of slowness rp  and the phase azimuth φ  for 

the elliptical assumption  
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That gives  
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First the coefficient 0N  for the ellipsoidal case is computed by setting all anellipticity 

parameters into zero given by 
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Note that the azimuth φ  in equations above is the phase azimuth. We need to convert the 

azimuth from phase to group domain by the relation in the elliptic assumption 
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The coefficient 0N  for the ellipsoidal case is term of group azimuth is given by 
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where )(ΦnV  is the NMO ellipse (Grechka and Tsvankin, 1999) with 
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Similar to VTI case, using the perturbation method, we compute the first order coefficients as 

following 
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The first order coefficients 1N , 2N  and xyN  in term of group azimuth are given by 
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Subsequently, the quadratic coefficients 11N , 22N  and xyxyN  are computed as following 
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and shown in terms of group azimuth by 
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The remaining cross-term coefficients 12N , xyN1  and xyN2  are computed as following 
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and shown in terms of group azimuth by 
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Note that when taking the derivatives for the coefficients jN  and ijN , we need to set the Ft  

in the coefficients into T  shown in equations (7.B1) for computation. 
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Chapter 8 Conclusions  

In this research work, we derive the P-wave traveltime approximations, relative geometrical 

spreading and the radius of Fresnel zone in a homogeneous VTI and ORT medium from the 

parametric traveltime-offset equations through the fitting process and the perturbation-based 

approach. The acoustic assumption is used to reduce the model parameters for simplification. 

The Shanks transform is applied to stabilize the convergence of approximation and to improve 

the accuracy. The accuracy of these approximations is tested in the numerical examples where 

the exact (standard) solutions are computed from the parametric equations measured through 

the dynamic ray tracing. In order to apply these approximations to the multilayered case, the 

Dix-type equation is utilized to compute the effective model parameters. For multilayered 

ORT model, in case of azimuthal variations in the symmetry axis between the layers, the 

least-squares approximation is adopted to estimate the effective anellipticity parameters from 

this layered medium.  

For the moveout approximation in anisotropic media, we define a group of parameterization 

for acoustic ORT model and test the accuracy in traveltime by using a different 

parameterization of the perturbation-based approximation. Shown in the numerical examples, 

we conclude that the accuracy of the traveltime approximation is mostly driven by the 

selection of the elliptical background model and the parameterization with vertical and 

horizontal velocities is generally more accurate. The selection of the anellipticity parameters 

also affects the perturbation-based traveltime approximation. A more accurate result is 

obtained from less sensitivity in the anellipticity perturbation parameters.  

The relative geometrical spreading term can be written as a function of the horizontal 

slowness, which allows us to derive the approximation directly from the parametric equation. 

We derive the analytic expressions for the relative geometrical spreading in the GMA and 
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anelliptic forms for a homogeneous VTI and ORT model and extend the approximations to 

the multilayered cases. Using the numerical examples, we show that our approximations are 

highly accurate than the conventional traveltime based traveltime-based counterparts in for 

homogeneous and multi-layered VTI and ORT models.  

For anisotropy estimation, we develop an analytical formula for the residual moveout of 

diving waves in a factorized velocity model and estimate the anisotropy parameters from the 

semblance analysis on residual moveout in the RTM image gathers. These inverted models, 

which are based on diving waves, can provide an initial velocity model that is sufficiently 

close to the true model within the FWI requirements. We also propose a new method to 

evaluate the anisotropy parameters and the circular reflector parameters from the behavior of 

estimates with the midpoint position for a circular reflector based on the anisotropic CRS 

approximation.  

Seismic anisotropy impacts the data processing methods like smoothing and resolution studies. 

For the studies of the horizontal resolution, we derive the approximation for the radius of the 

Fresnel zone in the time domain in VTI model using the perturbation method and apply this 

strategy for the azimuth-dependent radius of the Fresnel zone in ORT model for a horizontal 

layer. From the numerical examples, we can see that the Shanks transform approximations for 

Fresnel zone are very accurate for both VTI and ORT media. A certain degree of smoothness 

of velocity models is required for most ray-based migration and tomography. We extend the 

PTS method to ORT model with and without the azimuthal variation between the layers and 

show that the smoothing driven errors in traveltime are very small for the practical application. 
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Appendix A Perturbation-based moveout 
approximations in anisotropic media 
Shibo Xu, Alexey Stovas and Qi Hao 

Norwegian University of Science and Technology, Trondheim, Norway 

Abstract. The moveout approximations play an important role in seismic data processing. 

The standard hyperbolic moveout approximation is based on an elliptical background model 

with two velocities, vertical and normal moveout ones. We propose a new set of moveout 

approximations based on the perturbation series in anellipticity parameter using the alternative 

elliptical background model defined by vertical and horizontal velocities. We start with 

transversely isotropic medium with a vertical symmetry axis (VTI). Then, we extend this 

approach to a homogeneous orthorhombic (ORT) medium. To define the perturbation 

coefficients for a new background, we solve the eikonal equation with horizontal velocities in 

VTI and ORT media. In order to stabilize the perturbation series and improve the accuracy, 

the Shanks transform is applied for all the cases. We select different parameterizations for 

both velocities and anellipticity parameters for ORT model. From the comparison in 

traveltime error, the new moveout approximations result in better accuracy comparing with 

the standard perturbation based methods and other approximations. 

Presented at the 86th SEG Conference and Exhibition, October, 2016, Dallas, USA; Published 

in Geophysical Prospecting in December 2016.  
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A.1 Introduction 

The moveout approximations are commonly used in seismic data processing such as velocity 

analysis, modeling and time migration. In isotropic or elliptical isotropic media, the moveout 

function has a hyperbolic form. We need to take non-hyperbolicity (driven by anellipticity) 

into consideration, as it is commonly exists and plays an important role in seismic data 

processing and interpretation, especially for large offsets. The moveout function has a non-

hyperbolic form in anisotropic media. Different nonhyperbolic moveout approximations for a 

homogeneous transversely isotropic medium with vertical symmetry axis (VTI) are listed and 

discussed in Fowler (2003), Fomel (2004) and Golikov and Stovas (2012). Fomel and Stovas 

(2010) proposed the generalized nonhyperbolic moveout approximation (GMA) based on 

parameters computed from the zero-offset ray and one additional nonzero-offset ray. This 

approximation is very accurate and can be converted into other well-known approximations 

by the appropriate choice of the parameters. Alkhalifah (2011) proposed the traveltime 

expression with series in terms of anelliptic parameter η  by solving the eikonal equation for 

acoustic VTI medium and by applying the Shanks transform to obtain the higher accuracy.  

The orthorhombic (ORT) model is introduced by Schoenberg and Helbig (1997) to describe 

fractured reservoirs and explains well the azimuthal dependency in surface seismic data 

Tsvankin (1997, 2012) defined nine elastic model parameters for ORT model that can be 

reduced to six parameters in an acoustic approximation (Alkhalifah, 2003). In group domain, 

we call the first order curvatures the normal moveout (NMO) velocity ellipses (Grechka and 

Tsvankin, 1999a, 1999b) and the second order curvatures the anellipticities as  they represent 

the anelliptic behaviour for slowness or traveltime surface. Stovas (2015) derived the 

azimuthally dependent kinematic properties of the orthorhombic media and defined the 

effective ORT parameters in the Dix-type when there are azimuth variations between the 

multilayers. Recently, Sripanich and Fomel (2015) proposed an anelliptic approximation for 
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qP velocities in ORT media. A very accurate GMA approximation in ORT media for phase 

and group velocities is developed by Hao and Stovas (2016). The perturbation based moveout 

approximation with a traditional elliptic background for ORT media is discussed by Stovas, 

Masmoudi and Alkhalifah (2016). The traveltime approximation for orthorhombic model 

using perturbation theory by other anellipticity parameters in inhomogeneous background 

media is developed by Masmoudi and Alkhalifah (2016). 

We develop a new perturbation based moveout approximation based on an alternative 

background model in VTI and ORT models, and apply the Shanks transform (Bender and 

Orszag, 1978) to improve the accuracy. For a homogeneous ORT model, we select different 

parameterizations for both velocity background and anelliptic parameters. 

A.2 New moveout approximation in a VTI model 

In order to define the nonhyperbolic traveltime approximation for a VTI model, we select the 

hyperbolic traveltime background and anellipticity parameter η  (Alkhalifah, 1998), where 

)21/()( δδεη +−=  with parameters δ  and ε  being the Thomsen anisotropy parameters 

(Thomsen, 1986). In the standard case, one can use the Taylor series in offset for traveltime 

squared to obtain the moveout approximation. Alternatively, we can have more options to 

represent the traveltime function when using the perturbation series in terms of small model 

parameters. Alkhalifah (2011) proposed a moveout approximation based on the perturbation 

series in anellipticity parameter η , which is more accurate than the standard Taylor series in 

offset. In our approach, we follow the same idea. For a VTI model, compared with the 

orthorhombic model, there is only one parameter that can be considered as the small one, 

namely, anellipticity parameter η . 
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To define the standard background model, we use two velocities: vertical velocity (or zero 

offset traveltime) and normal moveout velocity. The classic moveout is given by hyperbolic 

equation, 

 
,2

2
2
0

2

nV
xtt +≈  (A.1) 

where t  and 0t  are the traveltime and vertical traveltime, respectively, x  is the offset and nV  

is the normal moveout (NMO) velocity. For a VTI model, δ210 += VVn , 0V  is the vertical 

velocity. 

Alkhalifah (2011) proposed to expand the traveltime expression into series in anelliptic 

parameter η  by solving the eikonal equation (Alkhalifah, 2000) 
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The perturbation series is defined by 

 ,2
210 ηητ aaa ++=  (A.3) 

where the series coefficients ( )xa j  can be found in Appendix A. The Shanks transform 

(Bender and Orszag, 1978) is applied to the approximation presented in equation (A.3) to 

obtain a higher accuracy. 

In this paper, we propose an alternative hyperbolic background model, 

 
,2

2
2
0

2

hV
xtt +≈  (A.4) 

where hV  is the horizontal velocity with ηε 21210 +=+= nη VVV . Using the alternative 

background model means instead of the vertical velocity 0V  and NMO velocity nV  (the 

curvature of slowness surface at zero horizontal slowness) we are using the vertical velocity 
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0V  (or the vertical slowness) and the horizontal velocity hV  (or the horizontal slowness) to 

represent the model as shown in Figure A.1. 

 

Figure A.1. The slowness curve for VTI model. p  and q  are the horizontal and vertical 

slowness, respectively. The exact one, the approximations by vertical velocity and NMO 

velocity, and by vertical velocity and horizontal velocity are shown by solid, dashed and 

dotted lines, respectively.  

The comparison between the hyperbolic moveout approximations (A.1) and (A.4) is 

illustrated in Figure A.2 for a VTI model with parameters: skmV /20 = , st 5.00 = , 1.0=δ  

and 1.0=η . One can see that the new approximation is slightly worse for intermediate offset 

but much better for large offsets. 

To define the perturbation coefficients for a new background, we solve the VTI eikonal 

equation (Alkhalifah, 2000) defined with horizontal velocity, 
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Similar to equation (A.3), the new perturbation series up to the third order in η  is defined as 
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 .3
3

2
210 ηηηττ bbb +++=  (A.6) 

 

Figure A.2. The traveltime error from hyperbolic moveout approximations using two 

background models in VTI media. The results using NMO and horizontal velocities are 

shown by solid and dashed lines, respectively. 

Solving eikonal equation (A.5) for a homogeneous VTI medium results in the following 

coefficients (Appendix B), 
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To improve the accuracy of perturbation series in equation (A.6), we can use the first- and 

second-order Shanks transform (Bender and Orszag, 1978) that give 
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where ∑
=

=  +=
k

j

j
jk kb

1
0 .3,2,1,ηττ  

Using the VTI model parameters introduced above, we compare the accuracy of the proposed 

approximations in equations (A.8) with other well-known approximations: GMA and 

Alkhalifah (2011) (Appendix A). The results are shown in Figure A.3 with different values 

for anellipticity parameter η . The relative error in traveltime is plotted versus normalized 

offset, )/(ˆ 0 nVtxx = . One can see that, regardless of the chosen values for η , the second-order 

Shanks transform from equations (A.8) gives the best accuracy, while the Alkhalifah (2011)’s 

method is the worst one. The sensitivity analysis from the second-order Shanks transform 2Sτ  

with anellipticity parameter η  is shown in Figure A.4. The error is very small with a small 

value of η . 

 

Figure A.3. The relative traveltime error from non-hyperblic approximations in VTI media 

with 1.0=η  (left) and 2.0=η  (right). The results from the GMA, Alkhalifah (2011) 

approximation, the first- and second-order Shanks transform (equations (A.8)) are shown by 

dotted, dotdashed, dashed and solid lines, respectively. x̂  is the normalized offset. 
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Figure A.4. The relative traveltime error with offset and anellipticity parameter η  using the 

second-order Shanks transform 2Sτ . 

A.3 New moveout approximation in an ORT model 

We can also select the perturbation series in anellipticity parameters for ORT case. Compared 

with VTI model, different from the anellipticity parameters in Masmoudi and Alkhalifah 

(2016), three anellipticity parameters in ORT model are 1η  and 2η  defined in two vertical 

symmetry planes [ ]ZX ,  and [ ]ZY , , and 3η  in horizontal plane [ ]YX ,  (Vasconcelos and 

Tsvankin, 2006) or anellipticity parameters 1η  and 2η  defined in two vertical symmetry 

planes [ ]ZX ,  and [ ]ZY , , and one cross-term anelliptic parameter xyη  (Stovas, 2015). With 

these parameterizations, we define different forms of the moveout approximation based on 

selection of anellipticity parameters and elliptical background models shown in Table A.1. 

The perturbation series in terms of anellipticity parameters is defined up to the second order 

(Stovas et al. 2016), 
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0 DCBAkba j
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First, we define case A for ORT medium by selecting the elliptical background model by 0V , 

1nV  and 2nV  and the perturbation parameters 1η , 2η  and 3η . 

Parameterization Background Perturbation parameters 

Case A 210 ,, nn VVV  321 ,, ηηη  
Case B 210 ,, nn VVV  xyηηη ,, 21  
Case C 210 ,, hh VVV  321 ,, ηηη  
Case D 210 ,, hh VVV  xyηηη ,, 21  

Table A.1. Four types of parameterizations based on different background models and the 
perturbation parameters. 

We solve the ORT eikonal equation (Alkhalifah, 2003) with NMO velocities, 
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(A.10) 

where 0V , 1nV , 2nV  are the vertical and the corresponding NMO velocities, respectively. 

Anellipticity parameters 1η , 2η  and 3η  are defined in corresponding two vertical symmetry 

planes and horizontal plane, respectively. For homogeneous ORT model, the series 

coefficients A
ia  and A

ijb , ( )3,2,1, =ji  are given in Appendix C. 

We also define case B by selecting the elliptical background model by 0V , 1nV  and 2nV  and 

the cross-term anelliptic parameter xyη  defined by Stovas (2015) 
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The eikonal equation in this case takes the form of 
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Solving the eikonal equation (A.12) with the corresponding perturbation series, we obtain the 

series coefficients B
ia  and B

ijb , ( )xyji ,2,1, =  shown in Appendix C. 

Similarly, we select another hyperbolic background model case with the horizontal velocities 

and reparameterize the ORT eikonal equation and solve it by using the corresponding 

perturbation series. The relation between horizontal and NMO velocities is given by 

2,1,21 =+= jVV jnjhj h , and the relation between 3η  and xyη  is given in equation (A.11). 

We define the case C by using 0V , 1hV  and 2hV  as elliptical background model and the 

perturbation parameters by 1η , 2η  and 3η . The eikonal equation is given by 
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and the corresponding series coefficients C
ia  and C

ijb , ( )3,2,1, =ji  are shown in Appendix C. 

For case D, we solve the ORT eikonal equation with horizontal velocities 1hV  and 2hV  and the 

perturbation parameters 1η , 2η  and xyη , 
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The corresponding series coefficients D
ia  and D

ijb , ( )xyji ,2,1, =  are shown in Appendix C. 

To test the proposed method, we select case D as an example for ORT model with the 

parameters: st 5.00 = , skmV /20 = , skmVh /4.21 = )/191.2( 1 skmVn = , skmVh /6.22 =

)/28.2( 2 skmVn = , 1.01 =η , 15.02 =η  and 2.03 =η ( 0556.0=xyη ). The coefficients 

),2,1,(, xykiba D
ij

D
i =  from equation (A.C8) are plotted in Figures A.5, A.6 and A.7. One can 

see that the first order coefficients D
ia  (Figure A.5) are of the same magnitude, while the 

second order diagonal coefficients Db11  and Db22  (Figure A.6) are slightly higher in magnitude 

comparing with coefficient D
xyxyb . The cross-term coefficients Db12 , D

xyb1  and D
xyb2  are smaller 

comparing with Db11 , Db22  and D
xyxyb . Relatively large values of D

xyb1  and D
xyb2  at azimuth of 

4/π±  indicate the cross-talk between anelliptic parameters 1η  and xyη , 2η  and xyη , 

respectively. 
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Figure A.5. The first order coefficients Da1  (Top), Da2  (Middle) and D
xya  (Bottom) computed 

from equations (A.C8) in ORT model.
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Figure A.6. The second order coefficients Db11  (Top), Db22  (Middle) and D
xyxyb  (Bottom) 

computed from equations (A.C8) in ORT model. 
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Figure A.7. The cross term coefficients Db12  (Top), D
xyb1  (Middle) and D

xyb2  (Bottom) computed 

from equations (A.C8) in ORT model. 
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The anellipticity in terms of azimuth is given by Stovas (2015), 
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where the group azimuth is defined by 

 ,tan
x
y

=Φ  (A.16) 

with x  and y  being the corresponding projections of radial offset. 

The azimuth dependent anellipticity from equation (A.15) defined for ORT model described 

above is shown in Figure A.8. We see that the anellipticity is very weak at the azimuth around 

4/π±  because the cross-term xyη  in this model is very small, which can be observed from 

coefficients D
xyb1  and D

xyb2  shown in Figure A.7. 

 

Figure A.8. The azimuth-dependent anellipticity from equation (A.15) in ORT model. 
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In order to obtain a higher accuracy, the Shanks transform (Bender and Orszag, 1978) is 

applied for all these four cases defined in Table A.1 by the form given by 

 
,

2 120

2
120

3 τττ
τττ

τ
−+

−
=  (A.17) 

where 0τ  is defined in equation (A.C1) and i
i

k
ia ηττ ∑+= 01  and ji

k
ijb ηηττ += 12 , 

DCBAk ,,,= . 

To demonstrate equation (A.17), we select case D and use the ORT model with parameters 

mentioned above. In Figure A.9 (Top), one can see the relative error in the estimation of 

traveltime curves from the perturbation series approximation given in equation (A.C7). The 

relative error in the estimation of traveltime from approximation with Shanks transform given 

by equation (A.17) is shown in Figure A.9 (Bottom). One can see that the Shanks transform 

results in one order improvement in traveltime accuracy. 



209 
 

 

Figure A.9. The relative traveltime error for ORT model by using the perturbation series 

approximation in equation (A.C7) (Top) and the one after Shanks transform in equation (A.17) 

(Bottom). 
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A.4 Numerical examples 

To compute the traveltime for ORT model, we use exact parametric offset-traveltime 

equations (Stovas 2015): 
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(A.18) 

where x and y  are the corresponding offset projections, xp  and yp  are the horizontal 

slowness defined in two vertical symmetry planes, and 
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(A.19) 

Using the ORT model introduced above, the results of the Shanks transform applied for 

perturbation series using these parameterizations are illustrated in Figure A.10. One can see 

that the results obtained with the Shanks transform in case A are very similar with the results 

obtained with the Shanks transform in case B, while the best results are obtained with the 

Shanks transform in cases C and D (with horizontal velocities parameterization). The detailed 

analysis indicates that the case D results in slightly better accuracy comparing with the case C. 

In order to compare our results with other well-known moveout approximations, we select the 

most accurate ones: from Sripanich and Fomel (2015) and Hao and Stovas (2016). The results 

from these approximations are shown in Figure A.11. One can see that the Sripanich-Fomel 

approximation is one order less accurate comparing with our best approximation, and the 

Hao-Stovas approximation is slightly worse in accuracy. 
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Figure A.10. The relative traveltime error for ORT model by using Shanks transform based 

on different parameterizations (cases A, B, C and D correspond to the ones specified in the 

main text). 
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Figure A.11. The relative traveltime error for ORT model by using the approximations from 

Sripanich and Fomel (2015) (Top) and Hao and Stovas (2016) (Bottom).  

A.5 Conclusions 

We developed a new moveout approximation based on the perturbation method with 

alternative background model. We applied this approach for homogeneous VTI and ORT 

media. We test our approach with different parameterizations both for velocities and anelliptic 

parameters in ORT model. The comparison between the results from the standard moveout 

approximations based on NMO velocities and two well-known moveout approximations 

shows that the application of our proposed approach with horizontal velocities as a 

background model results in a better traveltime accuracy. The parameterization with anelliptic 
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parameters xyηηη ,, 21  results in the best accuracy for traveltime estimation in ORT model. 

The Shanks transform improves almost one order in trraveltime accuracy. This method is 

applied for a homogeneous model but can be extended for a multi-layered medium. 

A.6 Acknowledgments  
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A.7 Appendix A 

Fomel and Stovas (2010) proposed the generalized nonhyperbolic moveout approximation 

(GMA) from the zero-offset ray and one additional nonzero-offset ray given by  
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where the parameters B  and C  are set for acoustic VTI medium, x̂  is the normalized offset 

defined by ( )nVtxx 0/ˆ = . 

Alkhalifah (2011) proposed to expand the traveltime expression into series by anelliptic 

parameter η  (Alkhalifah, 1998) by solving the eikonal equation (Alkhalifah, 2000), where 

)21/()( δδεη +−=  with parameters δ  and ε  being the Thomsen anisotropy parameters 

(Thomsen, 1986). 
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The perturbation series is defined by 
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 ,2
210 ηητ aaa ++=  (A.A3) 

where the series coefficients are 
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Shanks transform is applied to the approximation presented in equation (A.A3) to obtain a 

higher accuracy with the following form, 
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A.8 Appendix B 

In order to derive the perturbation series for traveltime, we solve the eikonal equation for VTI 

media (Alkhalifah, 2000) with horizontal velocity, 
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A trial solution can be represented as a series expansion in parameter η  from solving 

equation (A.B1) by the perturbation method, 

 .3
3

2
210 ηηηττ bbb +++=  (A.B2) 

where 3,1, =jb j  are the coefficients of the expansion.  
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The zero order term 0τ  can be obtained by solving equation (A.B1) with 0=η , 
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In succession, the first order coefficient 1b  can be obtained by solving the following equation 
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The second order coefficient 2b  can be computed from the following equation,  
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The third order coefficient 3b  is computed from, 
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For a homogeneous VTI medium, these coefficients can be explicitly computed as 
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A.9 Appendix C 

We can select different parameterizations for both velocities and anellipticity parameters. We 

use the following parameterization cases shown in Table A.1: ( 321210 ,,,,, ηηηnn VVV , case A), 

( xynn VVV ηηη ,,,,, 21210 , case B); ( 321210 ,,,,, ηηηηη VVV , case C) and ( xyhh VVV hhh ,,,,, 21210 , case 

D). In order to compute the perturbation coefficients, we have to reparameterize the ORT 

eikonal equation and solve it by using the corresponding perturbation series shown in 

equation (A.9). 

Using the standard elliptical background model with vertical and NMO velocities and 

anellipcitity parameters 1η , 2η , 3η , the perturbation series for ORT model (Case A) is defined 

by  

 .3,2,1,,
,

0 =  ++= ∑∑ jiba j
ji

i
A

ij
i

i
A
i ηηηττ  (A.C1) 

For a homogeneous ORT model, the coefficients A
ia  and A

ijb  are computed from equation 
(A.10) and given by 
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(A.C2) 

where 1nnx Vx=τ  and 2nny Vy=τ . 

Using the standard elliptical background model with vertical and NMO velocities and 

anellipcitity parameters 1η , 2η  xyη , the perturbation series for ORT model (Case B) is defined 

by  

 .,2,1,,
,

0 xyjiba j
ji

i
B
ij
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i

B
i =  ++= ∑∑ ηηηττ  (A.C3) 

For a homogeneous ORT model, the coefficients B
ia  and B

ijb  are computed from equation 
(A.12) and given by 
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(A.C4) 

Using the elliptical background model with vertical and horizontal velocities and anellipcitity 

parameters 1η , 2η , 3η , the perturbation series for ORT model (Case C) is defined by  

 .3,2,1,,
,

0 =  ++= ∑∑ jiba j
ji
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For a homogeneous ORT model, the coefficients C
ia  and C

ijb  are computed from equation 
(A.13) and given by 
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(A.C6) 

where 1hhx Vx=τ  and 2hhy Vy=τ . 

Using the elliptical background model with vertical and horizontal velocities and anellipcitity 

parameters 1η , 2η  xyη the perturbation series for ORT model (Case D) is defined by  

 .,2,1,,
,

0 xyjiba j
ji

i
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ij
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For a homogeneous ORT model, the coefficients D
ia  and D

ijb  are computed from equation 
(A.14) and given by 
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Appendix B Three-dimensional generalized non-
hyperbolic approximation for relative geometrical 
spreading 
Shibo Xu and Alexey Stovas  

Norwegian University of Science and Technology, Trondheim, Norway 

Compensation for geometrical spreading along the ray-path is important in AVO (amplitude 

versus offset) analysis since it contributes to the seismic amplitude preservation. The P-wave 

geometrical spreading factor is expressed by the reflection traveltime described by a 

nonhyperbolic moveout approximation using the traveltime parameters that can be estimated 

in velocity analysis. The generalized nonhyperbolic moveout approximation (GMA) for 

traveltime was proposed by Fomel and Stovas (2010) by using two reference rays. We 

develop a 3D GMA type approximation for the relative geometrical spreading in a 

homogeneous orthorhombic (ORT) medium using the same strategy. Two type of GMA form 

approximations are defined by different selection of reference rays: two reference rays with 

finite offsets and two horizontal reference rays in two corresponding vertical symmetry planes. 

One horizontal ray in between the vertical symmetry planes is selected to compute the cross-

term coefficient in the approximation. In the numerical examples, we compare our proposed 

GMA form approximations with other type of approximations in a homogeneous transversely 

isotropic medium with a vertical symmetry axis (VTI), transversely isotropic medium with a 

horizontal symmetry axis (HTI), ORT and multilayered ORT models and show that our GMA 

type approximations are superior among all approximations. 

Published in Geophysical Journal International in August 2017. 
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B.1 Introduction 

Geometrical spreading describes the amplitude decay of propagating waves and is one of the 

most fundamental subjects in seismic data processing. It is important to prestack Kirchhoff 

migration, amplitude versus offset (AVO) analysis and other seismic data processing methods 

that require the true amplitude processing. If the velocity model is anisotropic, the amplitude 

distribution along the wavefront of the reflected wave is changed significantly. Without an 

accurate geometrical spreading correction, estimation of the reflection coefficient for targets 

beneath anisotropic layers may be strongly distorted. In order to study reflection coefficients 

as a function of offset or incidence angle, seismic date must be compensated for geometrical 

spreading before AVO or amplitude versus angle (AVA) analysis. Although geometrical 

spreading is a dynamic quantity, it is governed by the kinematic parameters of seismic waves. 

The relative geometrical spreading can be computed by performing dynamic ray tracing when 

the velocity model is available. Accurate information about the anisotropic velocity model for 

the whole overburden is seldom available for practice. To avoid the use of numerical ray 

tracing, expressing the geometrical spreading through traveltime of the reflection events 

recorded at the surface using ray theory (Červený, 2001) is a more practical method for 

seismic time processing. Therefore, it is convenient to express the geometrical spreading in 

terms of the processing parameters that can be estimated from the nonhyperbolic velocity 

analysis. 

Ursin (1990) proposed a geometrical spreading approximation represented by traveltime 

parameters for a layered isotropic medium. Červený (2001) developed an expression for 

geometrical spreading in terms of the traveltime functions at the source and receivers 

locations that is one of the practical contributions from the paraxial ray theory. Zhou and 

McMechan (2000) derived an analytical formula for the geometrical spreading of P-waves in 

a layered transversely isotropic medium with vertical symmetry axis (VTI) with the source 
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and receivers in the same layer. Ursin and Hokstad (2003) extended the method of Ursin 

(1990) for multiple reflected and converted P- and SV-waves in a layered VTI medium with 

the source and receivers in different layers. The geometrical spreading of SV-waves in TI 

media was discussed by Tsvankin (1995, 2005). For azimuthally anisotropic media, the 

geometrical spreading as a function of traveltime derivatives was derived by Xu et al. (2005) 

who used the traveltime approximation from Tsvankin and Thomsen (1994).The geometrical 

spreading correction for an azimuthally anisotropic medium was later derived by Xu and 

Tsvankin (2006), and was extended for converted waves in a VTI medium (Xu and Tsvankin, 

2008). The traveltime-based geometrical spreading approximation (based on the traveltime 

approximation) in TTI media was derived by Golikov and Stovas (2013). The approximations 

we mentioned above are using the traveltime approximation to compute the geometrical 

spreading approximation, we refer these methods as the indirect type (traveltime-based) 

approximations.  

As the name indicates, the indirect type (traveltime-based) approximation for geometrical 

spreading is defined from the traveltime approximation since the relative geometrical 

spreading is expressed by traveltime and its derivatives. Instead of approximating the 

geometrical spreading directly, these types of approximation are obtained by substituting the 

traveltime approximation and its derivatives into the form of relative geometrical spreading. 

Although the geometrical spreading factor is controlled by first- and second-order traveltime 

derivatives, there is no guarantee that the most accurate traveltime approximation being used 

in equations for geometrical spreading results in the most accurate geometrical spreading 

approximation. 

Different with the indirect type approximation, the direct type approximation is obtained by 

approximating the geometrical spreading term directly. Using the horizontal slowness instead 

of traveltime, the explicit form for relative geometrical spreading is derived from the exact 
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parametric equation that obtained from dynamic ray tracing. In direct type approximation, the 

accuracy of the approximation is decided directly by properly define the form of the 

approximation. The first example of the direct type approximation for relative geometrical 

spreading is done by Stovas and Ursin (2009) who developed the rational form approximation 

directly. They showed that the direct rational approximation is simpler and more accurate than 

the indirect counterpart for a homogeneous and multilayered VTI model. Xu and Stovas 

(2017) proposed a direct approximation in GMA type for the relative geometrical spreading 

for a VTI medium and compared them with the traveltime-based ones. 

The orthorhombic (ORT) model is introduced by Schoenborg and Helbig (1997) and has 

gained more attention due to the need to characterize the fractured earth and has become a 

new standard to define model parameters to cover the azimuthal dependence of the traveltime 

surface. Tsvankin (1997, 2012) defined nine elastic model parameters for ORT model that can 

be reduced to six parameters in an acoustic approximation (Alkhalifah, 2003). The first order 

curvatures are defined by the normal moveout (NMO) velocity ellipse (Grechka and Tsvankin, 

1999a, 1999b), and the second order curvatures are defined by the azimuth-dependent 

anellipticity. Stovas (2015) derived azimuthally dependent kinematic properties of the 

orthorhombic media and defined the effective ORT parameters in the Dix-type formula in 

layered ORT media. The VTI and HTI model can be considered as the special cases from the 

ORT model by proper operating the ORT model parameters (Tsvankin, 1997; Stovas, 2015). 

Sripanich and Fomel (2015) modified the anelliptic functional form of Fomel (2004) and 

extended it to ORT model to approximate P-wave phase and group velocities. Xu et al (2017) 

derived the perturbation-based traveltime approximations using the alternative elliptical 

background model. Xu et al. (2017) developed an anelliptic approximation for the relative 

geometrical spreading in a homogeneous ORT model with the coefficients defined within the 

symmetry planes and showed its superior accuracy compared with the traveltime-based one. 



225 
 

Fomel and Stovas (2010) derived a generalized nonhyperbolic moveout approximation (GMA) 

for the traveltime approximation defined from zero-offset and one nonzero-offset ray 

computation, which is very accurate even as good as exact for many practical implement such 

as the model parameters estimation in velocity analysis. Sripanich et al. (2016) extend it to the 

3D multi-azimuth case using zero-offset attributes and four additional far-offset rays. 

In this paper, we revisit the direct type GMA form approximation for the relative geometrical 

spreading in a VTI model and propose a direct rational form approximation in a homogeneous 

ORT model. We subsequently extend the 2D GMA approximation to 3D case in the 

homogeneous ORT model by using different selected rays: two reference rays with finite 

offsets and two horizontal reference rays in two vertical symmetry planes and one horizontal 

reference ray in between the vertical symmetry planes. The acoustic approximation is used to 

reduce the number of parameters that makes the forms of direct GMA relative geometrical 

spreading approximation similar to the GMA traveltime approximation (Fomel and Stovas, 

2010). Using the numerical tests in different models, we show that the proposed 3D GMA 

type approximations perform several orders of magnitude more accurate than other form of 

approximations in all tested models. 

B.2 Relative geometrical spreading in a VTI model 

The geometrical spreading is given in Červený (2001) as 

 
,

det
coscos
M

RS θθ
=L  (B.1) 

where Sθ  and Rθ  are the angles between the ray and the normal to the surface measured at the 

source and receiver, respectively, and M is the second order derivatives matrix given by 
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where T  is the traveltime, ( )SS yx ,  and ( )RR yx ,  are the lateral coordinates of source and 

receiver, respectively. Note that equation (B.1) gives a general form for geometrical spreading. 

The relative geometrical spreading in a VTI model is given by (Ursin and Hokstad, 2003) 
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where Ω  is the radiation pattern given by RS θθ coscos=Ω , t  is the traveltime in VTI 

model. In our paper, we focus only on the term NL , we call it the relative geometrical 

spreading factor that is given as 
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Note that NLL Ω= . The relative geometrical spreading factor NL  given in equation (B.4) can 

also be written as a function of horizontal slowness p  with xtp ∂∂= /  as follows (Stovas and 

Ursin, 2009) 
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For a homogeneous VTI model, the offset can also be given in terms of horizontal slowness, 
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where 0t  is the vertical travel time, nV  is the normal moveout (NMO) velocity and η  is the 

anellipticity parameter (Alkhalifah, 1998). Substituting equation (B.6) into equation (B.5) 

gives (Stovas and Ursin, 2009) 
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Instead of using the traveltime derivative form approximation in equation (B.4), equations 

(B.6) and (B.7) give a parametric equation for relative geometrical spreading NL  in terms of 

horizontal slowness. 

B.3 GMA-type geometrical spreading approximations 

The generalized nonhyperbolic moveout (GMA) approximation proposed by Fomel and 

Stovas (2010) is based on parameters computed from the zero-offset ray and the reference ray. 

The direct GMA type approximation of the relative geometrical spreading in VTI model is 

given by the similar form (Xu and Stovas, 2017), 
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where x̂  is the normalized offset defined by )/(ˆ 0 nVtxx = , 2
00 nVt=L , 2A  and 4A  are the 

Taylor series coefficients computed in zero offset ray given as 

 ( ).419,81 42 ηηη +−=+= AA  (B.9) 

To compute coefficients 2C  and 4C , we use similar approach as for GMA traveltime 

approximation (Fomel and Stovas, 2010). For a given reference ray, we define NL  and 

dxd N /L . Being converted for normalized offset X̂ , they result in two equations: 

( )XxW N
ˆˆ1 == L  and ( )XxxddW N

ˆˆˆ/2 ==  L . The coefficients 2C  and 4C  take the following 

form 
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For a horizontal reference ray, the coefficients 2C  and 4C  take the form, 
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Two types of the GMA form approximation are defined with reference limited offset XGMA  

at 5.2ˆ =X  and the infinite offset limit ∞GMA . The form of two GMA type approximations is 

the same shown in equation (B.8). The difference is the computation for coefficients 2C  and 

4C . Using the horizontal ray, the coefficients 2C  and 4C  are offset independent and 

represent only in anellipticity parameter η  explicitly. Using the reference ray, the information 

about the geometrical spreading at certain normalized offset X̂  are involved in the 

approximation for relative geometrical spreading. 

We show their relative error in a homogeneous VTI model (Figure B.1, left) with parameters 

st 10 = , skmVn /2=  and 2.0=η  and a five-layer VTI model (Figure B.1, right) with the 

parameters in Table B.1. One can tell that the XGMA  approximation results in better 

accuracy comparing with ∞GMA  in both homogeneous and multi-layered VTI models. 
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Layer  Z (km) 0V (km/s) nV (km/s)  η  

1 0.3 1.5 1.7 0.1 

2 0.7 1.8 2 0.12 

3 1 2 2.3 0.18 

4 1.5 2.2 2.5 0.2 

5 0.5 2.5 2.8 0.22 

Table B.1. The model parameters in a multilayered VTI model. 

 

 

Figure B.1. The relative error in relative geometrical spreading of two type of GMA 

approximation in homogeneous (left) and multi-layered (right) VTI models. The result from 

∞GMA  and XGMA  are computed from infinite and reference offset limit and shown by solid 

and dashed lines, respectively. Note that normalized offset )/(ˆ 0 nVtxx = . 

B.4 Direct relative geometrical spreading in a homogeneous ORT model 

For a homogeneous ORT model, we introduce two lateral offset projections 
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The matrix M in equation (B.2) takes the form 
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In phase domain, the relative geometrical spreading NL  can be given by 
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To compute the geometrical spreading for a homogeneous ORT model, we use exact 

parametric offset equations (Stovas, 2015): 
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x and y  are corresponding offset projections, and 
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where 0V , 1nV , 2nV  are vertical and corresponding NMO velocities defined in [ ]XOZ  and 

[ ]YOZ  planes. Anellipticity parameters 1η  and 2η  are defined in symmetry planes [ ]XOZ  and 

[ ]YOZ , respectively. The cross-term anellipticity parameter xyη  is defined as (Stovas, 2015) 
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where anellipticity parameter 3η  is defined in [ ]XOY  plane (Vasconcelos and Tsvankin, 

2006).  
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The relative geometrical spreading for ORT medium is given by Stovas (2017) 
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B.5 Direct type approximations for relative geometrical spreading in ORT 

model 

In ORT model, the limited Taylor series for relative geometrical spreading up to the forth 

order in terms of two offset projections x  and  is shown as 
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where the series coefficients computed in zero offsets are given by 
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We first define the direct rational form approximation similar to (Vasconcelos and Tsvankin, 

2006) for the relative geometrical spreading by 
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where the coefficients 00a , 20a , 02a , 40a , 22a  and 04a  are given in equations (B.21), the 

coefficients 20b  and 02b  are computed separately from asymptotic behavior of NL  in [ ]XOZ  

and [ ]YOZ  symmetry planes, respectively (Appendix B). 

We also develop the GMA form approximation for the relative geometrical spreading: 
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The coefficients 00a , 20a , 02a , 40a , 22a  and 04a  are given in equations (B.21). The 

coefficients 20c , 40c  and 02c , 04c  are computed from two reference rays separately in [ ]XOZ  

and [ ]YOZ  symmetry planes, respectively (Appendix C). Note that the rational type 

approximation can be easily converted from GMA type approximation by setting 

022022
2
0204

2
2040 2 cc, cc, ccc === . 

Similarly to the VTI case, we define two types of GMA form approximation for ORT model 

from two groups of reference rays: )( XGMANL  and )( ∞GMANL . For reference offsets case 

( )( XGMANL ), we use two rays 1 and 2 with offsets ( )0 ,d  and ( )d ,0  in two vertical symmetry 

planes and ray 3 with offset ( )dd  , . The coefficients 20c , 40c  and 02c , 04c  are computed from 

the reference rays 1 and 2, respectively. The cross-term coefficient 22c  is computed from ray 
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3. Another infinite offsets case ( )( ∞GMANL ) can be obtained by sending d  to infinity for rays 

1 and 2 (they become horizontal rays) and keeping finite d  for ray 3. In order to see 

difference of selecting different d  along ray 3, we introduce a homogeneous ORT model with 

the parameters: ( sT 10 = , skmVn /21 =  , skmVn /5.22 = , 2.01 =η ,. 1.02 =η  and 15.0=xyη ) 

and show the relative error of )( ∞GMANL  selecting different d  by 2=d  (top), 4=d  (middle) 

and 10=d  (bottom) in Figure B.2. The error is small for short offsets for the case 2=d , but 

increasing greatly along the offsets especially for the diagonal direction. The maximal error is 

increasing when we increase the value of d  from the comparison between the cases 4=d  

and 10=d .  
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Figure B.2. The relative error in relative geometrical spreading )( ∞GMANL  using the constrain 

point at 2=d  (top), 4  (middle) and 10  (bottom). 

For GMA type approximation computed from the finite-offset rays ( )( XGMANL ), the selection 

of the reference offsets depends on the acquisition part. When fixing the computation area, the 

certain reference offsets ( X  and Y ) and the information at these offset are involved in the 

computation of the relative geometrical spreading. Since the information about the certain 
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offsets is obtained in advance from the acquisition process, the approximation )( XGMANL  

using the certain reference offsets is more accurate and preferable. 

B.6 Numerical examples 

To test the accuracy of the proposed approximations, we compare our GMA type 

approximations ( )( XGMANL  and )( ∞GMANL ) with other approximations: traveltime based 

approximation (TBA) (Xu et al. 2005), indirect rational approximation (IRA) (Appendix D), 

direct rational form approximation (DRA) in equation (B.22) and anelliptic form 

approximation (AFA) (Xu et al. 2017) shown in Table B.2 in a homogeneous VTI, HTI, ORT 

and multilayered ORT models. Note that approximations TBA and IRA are all traveltime 

based approximation, the difference between them is the form of the traveltime approximation. 

We use the constrain point 4=d  in ray 3 for both two GMA type approximations: 

)( XGMANL and )( ∞GMANL  for the following numerical examples in homogeneous VTI, HTI 

and ORT models. The exact results for relative geometrical spreading used in the numerical 

examples are obtained by dynamic ray tracing shown in parametric equations (B.14) and 

(B.15).  

Homogeneous VTI model 

We first consider a homogeneous VTI model which can be treated as a special case from ORT 

model with the parameters setting by: ( sT 10 = , skmVVV nnn /221 === , 1.011 === ηηη  

and 2.02 == ηη xy ). The relative error from the approximations TBA, IRA, DRA and AFA 

and two GMA type approximations )( XGMANL  and )( ∞GMANL  are shown in Figure B.3. One 

can see from the comparison that GMA type approximations are more accurate than other 

approximations while the approximation from the direct rational form is the worst. Among 

two GMA approximations, the one with reference offset )( XGMANL  is more accurate. 
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Homogeneous HTI model 

The HTI model is obtained by using the model parameters: ( skmV /8.10  = , kmz  8.1= , 

skmVn /2.21  = , skmVVn /8.102  == , 1.01 =η , 02 =η  and 0=xyη ), where 0V  is the 

vertical velocity and z  is the depth associated with the vertical traveltime by 00 /VzT = . The 

relative error from TBA, IRA, DRA, AFA and two types of GMA form approximations are 

shown in Figure B.4. The GMA type approximations show several orders of magnitude more 

accurate than other approximations while the traveltime-based approximation TBA (Xu et al. 

2005) is the worst. 

Homogeneous ORT model 

We use the homogeneous ORT model introduced above and show the relative error of 

geometrical spreading from TBA, IRA, DRA and AFA approximations and our proposed two 

GMA type approximations )( XGMANL  and )( ∞GMANL  in Figure B.5. One can tell from the 

comparison that the GMA type approximations are the most accurate ones, while the rational 

form approximation (DRA) is the worst. Compared with accuracy in GMA type 

approximation, anelliptic form approximation (AFA) is slightly less accurate. The 

approximations )( XGMANL and )( ∞GMANL  result in almost the same accuracy. 

Multi-layered ORT model 

For the multilayered ORT model, we use a 3-layer ORT model with the parameters shown in 

Table B.3. We apply all mentioned approximations from the homogeneous ORT case to 

multilayered ORT model with the effective parameters computed from the Dix-type equations 

(Stovas, 2015): 
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where the symbols with index j  denote the individual layer parameters, the symbols with 

tilde denote the effective parameters, m  is the number of layers the wave passing through. 

Note that the expressions for geometrical spreading approximation we use are computed from 

homogeneous model with the effective model parameters computed from Dix-type equations. 

To compute the error for multi-layered case, the model parameters in exact expression ( 0t , 

1nV , 2nV , 1η , 2η  and xyη ) become depth dependent ( [ ]jt0 , [ ]jVn1 , [ ]jVn2 , [ ]j1η , [ ]j2η  and 

[ ]jxyη ), and the exact geometrical spreading is computed from the integral for equations 

(B.18) along the depth. 

We show the relative error of these corresponding approximations above versus offset-depth 

ratio in Figure B.6. One can see from the comparison that the GMA type approximations 

perform better accuracy than the others while the direct rational form approximation (DRA) is 
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the worst. The GMA type approximation computed from the reference normalized offset 

( )( XGMANL ) performs the most accurate result among all approximations.  
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Figure B.3. The relative error in relative geometrical spreading from the traveltime based 

approximation (TBA) (Xu et al. 2005) (top, left), indirect rational approximation (IRA) (top, 

right), direct rational form approximation (DRA) (middle, left), anelliptic form approximation 

(AFA) (Xu et al. 2017) (middle, right), GMA form approximation XGMA  (bottom, left) and 

∞GMA  (bottom, right) computed for a homogeneous VTI model.  
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Figure B.4. The relative error in relative geometrical spreading from the traveltime based 

approximation (TBA) (Xu et al. 2005) (top, left), indirect rational approximation (IRA) (top, 

right), direct rational form approximation (DRA) (middle, left), anelliptic form approximation 

(AFA) (Xu et al. 2017) (middle, right), GMA form approximation XGMA  (bottom, left) and 

∞GMA  (bottom, right) computed for a homogeneous HTI model.  



241 
 

  

  

  
Figure B.5. The relative error in relative geometrical spreading from the traveltime based 

approximation (TBA) (Xu et al. 2005) (top, left), indirect rational approximation (IRA) (top, 

right), direct rational form approximation (DRA) (middle, left), anelliptic form approximation 

(AFA) (Xu et al. 2017) (middle, right), GMA form approximation XGMA  (bottom, left) and 

∞GMA  (bottom, right) computed for a homogeneous ORT model.  



242 
 

  

  

  
Figure B.6. The relative error in relative geometrical spreading from the traveltime based 

approximation (TBA) (Xu et al. 2005) (top, left), indirect rational approximation (IRA) (top, 

right), direct rational form approximation (DRA) (middle, left), anelliptic form approximation 

(AFA) (Xu et al. 2017) (middle, right), GMA form approximation XGMA  (bottom, left) and 

∞GMA  (bottom, right) computed for a multilayered ORT model.  
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Geometrical spreading 

approximation 
Type Form  

Traveltime based approximation 

(TBA) 
Indirect  
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The traveltime approximation T  is shown in Tsvankin 

and Thomsen (1994) 

Indirect rational approximation 
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The rational traveltime approximation T  is shown in 

Appendix D. 

Direct rational approximation 

(DRA) 
Direct  

,
1 2

02
2
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4
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4
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02
2

2000 ybxb
yxayaxa

yaxaaN ++
++

+++=L  

The coefficients are shown in equations (21) and (B4). 

Anelliptic form approximation 

(AFA) 
Direct  

,ˆ)ˆ1( 2 FHSSHN ++−=L  

The anelliptic form geometrical spreading approximation 

is shown in Xu et al (2017). 

GMA approximation with 

reference offset 

(GMAX) 

Direct ),(~),(~21),(~1

),(~2),(~

422

4
200

yxCyxCyxC

yxAyxAaN
++++

++=L  

The coefficients are shown in equations (21) and (C2). 

GMA approximation with 

infinite offset 

(GMA∞) 

Direct 
,

),(~),(~21),(~1

),(~2),(~

422

4
200

yxCyxCyxC

yxAyxAaN
++++

++=L  

The coefficients are shown in equations (21) and (C3). 

Table B.2. Six approximations for the relative geometrical spreading computed in the 

numerical examples.   
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Layer )(kmz  )/(0 skmV  )/(1 skmVn  )/(2 skmVn  1η  2η  xyη  

1 0.25 1.5 1.65 1.8 0.05 0.08 0.2 

2 0.75 1.8 2 2.2 0.1 0.1 0.18 

3 1 2 2.2 2.15 0.08 0.12 0.22 

Table B.3. The model parameters in a multilayered ORT model. 

B.7 Discussions 

For multilayered case, the expressions for geometrical spreading approximation we use are 

computed from homogeneous model with the effective model parameters computed from Dix-

type equations. Compared with the other cases, the GMA type approximation computed from 

infinite offset limit ( )( ∞GMANL ) and the anelliptic form approximation (AFA) are less accurate 

for multilayered case. That is because the coefficients in the approximations are computed 

from the horizontal ray (infinite offset), while, it is impossible to trace the horizontal rays for 

multilayered ORT case, which means that the assumption for infinite offset limit is not 

availed anymore. After using the Dix-type equations for effective model parameters, the 

approximations used for multi-layered ORT case are become effective homogeneous, while 

for the computation of the exact form, we still need to take the properties of each individual 

layer ( [ ]jt0 , [ ]jVn1 , [ ]jVn2 , [ ]j1η , [ ]j2η  and [ ]jxyη ) into considersion that is different with 

the exact form calcualtion in homogeneous ORT case, which explains the difference in the 

error plot in Figure B.5 and Figure B.6. 

For GMA type approximation computed from reference offset ( )( XGMANL ), the expression 

computed from homogeneous ORT model is still applicable since the information at certain 

reference offsets X  and Y  are needed for computation regardless the model is homogenous 
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or not that explains the more accurate result from )( XGMANL  compared with the horizontal 

rays case )( ∞GMANL  in multilayered ORT model in Figure B.6. 

The application of GMA type approximation with the reference rays is not straight forward 

because the coefficients 1XW , 2XW  and 1YW , 2YW  are not available in the practical use. In 

order to compute them, the information about the traveltime function and its derivatives are 

required. For example, the coefficients 1XW  and 2XW  in [ ]XOZ  symmetry plane can be 

computed as follows. For 1XW  can be obtained from corresponding value of )0,(XNL , 
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The coefficient 2XW  can be obtained by taking corresponding derivative xXN ∂∂ /)0,(L , 
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(B.27) 

Note that computation in equations (B.26) and (B.27) requires information about traveltime 

derivatives up to the third order taken at the reference offset. 

The VTI and HTI model can be considered as the special cases from the ORT model by 

resetting the model parameters: for VTI ( nnn VVV == 21 , ηηη == 11  and ηη 2=xy ); for HTI 

( 02 VVn = , 02 =η  and 0=xyη ). For GMA type approximation with reference rays 

)( XGMANL , the contribution is equivalent for the reference rays at ( )0 ,d  and ( )d ,0  in VTI 

case and ( )0,0   and ( )d ,0  in HTI case due to their equivalent properties, respectively.  
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B.8 Conclusions 

We develop the direct rational and GMA type approximations for the relative geometrical 

spreading in a homogeneous ORT medium. The acoustic approximation is used to reduce the 

number of medium parameters that makes the GMA form of direct relative geometrical 

spreading approximation similar to the GMA traveltime approximation. Two types of GMA 

form approximations are defined from the reference offsets and the infinite offsets assumption, 

respectively. One horizontal ray in between the vertical symmetry planes is selected to 

compute the cross-term coefficients in the approximation. We also apply our approximations 

for a multilayered ORT model with the effective parameters computed from the Dix-type 

equations. In the numerical examples, we test our proposed approximations with other direct 

and indirect type (traveltime-based) approximations in a homogeneous VTI, HTI, ORT and 

multilayered ORT models. We show from the comparison in the numerical examples that our 

GMA type approximations perform the best regardless to the model. 
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B.10 Appendix A 

The GMA type approximations of the direct geometrical spreading in a VTI model. 

The generalized nonhyperbolic moveout (GMA) approximation proposed by Fomel and 

Stovas (2010) is based on parameters computed from the zero-offset ray and the reference ray. 

The direct GMA type approximation of the relative geometrical spreading is defined by Xu 

and Stovas (2017) 
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where 2
00 nVt=L , 2A  and 4A  are the Taylor series coefficients computed from zero offset 

limit given by 

( ).419,81 42 ηηη +−=+= AA  (B.A2) 

For a horizontal reference ray, we define two asymptotic terms of geometrical spreading in 

GMA form at infinite offset, 
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where 0m  and 2m  corresponds to the asymptotic intercept and asymptotic slope, respectively. 

Computing these limits gives 
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To compute these asymptotic parameters from proposed approximation (B.A1), we take the 

corresponding limits, 
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By fitting 2m with 2M  and 0m  with 0M , respectively, we obtain the coefficients 2C  and 4C   
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substitute 0m  and 2m  from equations (A4) results in 
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B.11 Appendix B 

The direct rational form approximation for relative geometrical spreading in ORT 

model. 

The rational approximation for geometrical spreading in a homogeneous ORT media is 

defined by 
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where the series coefficients 00a , 20a , 02a , 40a , 22a  and 04a  are obtained from the 

zero-offset expansion given in equations (B.25). Similar to the rational approximation in VTI 

case, we calculate the coefficients 20b  and 02b  separately from two VTI cases in two 

symmetry [ ]XOZ  and [ ]YOZ  planes, respectively. 

In [ ]XOZ  plane, we calculate the asymptotic term at infinite offset limit by setting the 

slowness yp  into zero gives 
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and the term in [ ]YOZ  plane 
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The coefficients 20b  and 02b  are represented by the zero-offset coefficients and the infinite 

terms given by 
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B.12 Appendix C 

The direct GMA form approximation for relative geometrical spreading in an ORT 

model. 

The GMA form approximation for the geometrical spreading given by 
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(B.C1) 

Similar to the rational form approximation, the coefficients 00a , 20a , 02a , 40a , 22a  and 04a  

are obtained from the zero-offset expansion given in equations (B.21), the coefficients 20c , 

02c , 40c  and 04c  are computed separately from two VTI cases in two symmetry [ ]XOZ  and 

[ ]YOZ  planes, respectively.  

To compute the coefficients 20c  and 40c , we use the similar approach as in the VTI case. For 

the given reference rays in [ ]XOZ  symmetry plane, we define ( )0 ,x̂NL  and ( )0,ˆˆ/   xxdd NL  by 

equations: ( )0 ,ˆ
1 XW NX L=  and ( )0,ˆˆ/2 XxddW NX  L= . The coefficients 20c  and 40c , take the 

following form 
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For [ ]YOZ symmetry plane, for a normalized Ŷ , the coefficients 02c  and 04c  are computed 

from similar equations: ( )YW NY
ˆ ,01 L=  and ( )YyddW NY

ˆ,0ˆ/2   L= . They take the following 

form 
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For two horizontal reference rays, the coefficients 20c , 02c , 40c  and 04c  are computed from 

the asymptotic terms within two corresponding symmetry planes, respectively. In [ ]XOZ  

symmetry plane, we calculate the asymptotic behavior at the infinite offsets limit, the 

asymptotic intercept and the slope are given by 
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The asymptotic intercept and the slope in [ ]YOZ  plane are given by  
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The series coefficients 20c , 02c , 40c  and 04c  are subsequently given by the forms: 
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B.13 Appendix D 

The indirect rational form approximation for relative geometrical spreading in an ORT 

model. 

To compute the indirect rational form approximation for relative geometrical spreading in an 

ORT model, we first need to derive the traveltime approximation from the exact traveltime 

equation (Stovas, 2015): 
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where the functions 1F , 2F , 1f  and 2f  are given in equations (B.16) in the main text.  

A rational form similar to (Vasconcelos and Tsvankin, 2006) approximation for the traveltime 

in ORT model is defined by 
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where the coefficients 00A , 20A , 02A , 40A , 22A  and 04A  are computed from the Taylor series at 

zero offset are given by 
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Two asymptotic terms in [ ]XOZ  and [ ]YOZ  symmetry planes are computed respectively by 

infinite offsets limit given by 
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The remaining coefficients 20B  and 02B  are computed by 
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We show the relative error from rational form approximation in equation (B.D2) and the one 

from Tsvankin and Thomsen (1994) using the homogeneous ORT model defined in the main 

text in Figure B.7. We can see that the proposed rational form approximation is more accurate 

than the one from Tsvankin and Thomsen (1994). 

The indirect rational form approximation for relative geometrical spreading is given by the 

derivatives of traveltime approximation in equation (B.D2) with respect to the offsets given 

by 
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Note that the indirect rational form approximation in equation (B.D6) is algebraically 

complicated due to the second order derivatives. 



253 
 

  

Figure B.7. The relative error in traveltime from rational form approximation shown in 

equation (B.D2) (left) and from Tsvankin and Thomsen (1994) (right) in a homogeneous ORT 

model. 
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Table A.1. Four types of parameterizations based on different background models and the 

perturbation parameters. 

Table B.1. The model parameters in a multilayered VTI model. 

Table B.2. Six approximations for the relative geometrical spreading computed in the 

numerical examples. 

Table B.3. The model parameters in a multilayered ORT model. 
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List of Figures 
Figure 1.1. The anisotropy parameters defined in the ORT model. 

Figure 1.2. The relative error in the vertical slowness q  ( qqq /100)( 0 ×− ) versus horizontal 

slowness p .  

Figure 1.3. The relative error in the traveltime versus offset using the acoustic approximation 

in the VTI model with the parameters: skmVP /20 = , 1.0=δ , 22.0=ε  and 1.0=γ . 

Figure 2.1. (left) is the reflection from a circular reflector in a homogeneous medium, (right) 

is the illustration of the three CRS attributes β , NIPR  and NR , where β  is the emergence 

angle of the reflector, NIPR  is the distance from the reflection point to the surface, and NR  is 

the distance from the centre of the reflector to the surface. 

Figure 2.2. Traveltime surface ),( hmT  from a circular reflector and the reference point 

( 0mm = ) for Taylor series expansion (equation 2.4). 

Figure 2.3. Reflector in the layered isotropic medium (top) and two effective layers (bottom). 

Figure 2.4. The plot of GMA group velocity of different models versus group angle φ . The 

2LI ( 20 =m ), 2LI ( 40 =m ), EI and VTI cases are shown by solid, dotted, dashed and 

dot-dashed lines, respectively.  

Figure 2.5. The series coefficients in equations (2.4) plotted versus 0m . The ISO, EI, VTI and 

2LI cases are shown by solid, dotted, dashed and dot-dashed lines, respectively.  

Figure 2.6. The CRS attributes given in equations (2.7) and plotted versus 0m . The ISO, EI, 

VTI and 2LI cases are shown by solid, dotted, dashed and dot-dashed lines, respectively. 

Figure 2.7. The estimates in isotropic model parameters in equations (2.8) plotted versus 0m . 

The ISO, EI, VTI and 2LI cases are shown by solid, dotted, dashed and dot-dashed lines, 

respectively. 

Figure 2.8. The reconstructed shape of reflector based on estimations of )(ˆ
0mRNIP  and 

)(ˆsin 0mβ  for different models. The ISO, EI, VTI and 2LI cases are shown by solid, dotted, 

dashed and dot-dashed lines, respectively. 

Figure 2.9. The plot of the estimated radius (left) and depth for the centre of a circular 

reflector (right) plotted versus 0m . The EI and VTI cases are shown by solid, dotted lines, 

respectively. 
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Figure 2.10. The reflection from a circular reflector in a homogeneous anisotropic medium. 

Figure 2.11. The difference between reflection and incidence group angle in EI model plotted 

versus 1φ  and α  ( 1.0=δ  top, 2.0=δ  bottom), 
21
παφ ≤+ . 

Figure 2.12. The point diffractor in a homogeneous medium. 

Figure 2.13. The CRS attributes for a point diffractor plotted versus 0m . The ISO, EI and 

VTI cases are shown by solid, dotted and dashed lines, respectively. 

Figure 2.14. The estimated model parameters for a point diffractor plotted versus 0m . The 

ISO, EI and VTI cases are shown by solid, dotted and dashed lines, respectively. 

Figure 2.15. The sensitivity coefficients for anisotropy parameters δ  and η , shown by solid, 

dotted lines, respectively, and plotted versus 0m . The corresponding CRS attributes are NIPR̂  

(top), NR̂  (middle) and β̂sin  (bottom). 

Figure 2.16. The sensitivity coefficients for anisotropy parameters δ  and η , shown by solid, 

dotted lines, respectively, and plotted versus 0m . The corresponding estimates for isotropic 

model parameters are R̂  (top), V̂  (middle) and 0ẑ  (bottom). 

Figure 3.1. Ray trajectory of diving wave in a factorized VTI medium. 

Figure 3.2. Change in ray trajectory due to perturbations in 0V , G , ε  and η , respectively. 

The model parameters are km/sV  = 20 , 150 -s.G  = , 2.0= ε  and 2.0=η  with perturbations 

of km/s.ΔV  ±= 200 , 110 -s.ΔG  ±= , 1.0±=∆ε and 1.0±=∆η . 

Figure 3.3. Diving-wave imaging moveout. (imaging point shift from the turning point). The 

ray trajectories in factorized VTI and isotropic media are shown by solid and dashed lines, 

respectively. 

Figure 3.4. Exact imaging moveout with the perturbations in 0V  and G  and anisotropy 

parameters ε  and η . The parameters are km/sV  = 20 , 150 − = s.G , 3.0=ε  and 15.0=η , and 

with the perturbations are km/s.ΔV  ±= 500 , 120 -s.ΔG  ±= , 10.Δε ±=  and 10.Δη ±= . 

Figure 3.5. The limited Taylor series approximations from equation (3.11) (left) and their 

errors (right). The one-, two-, three- and four-term approximations are shown by large dashed, 

tiny dashed, dotted and dash-dotted lines, respectively. The exact imaging moveout curve is 
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shown by solid line. The parameters are km/sV  = 20 , 151 -s.G  = , 22.0=ε  and 1.0=η . The 

error in imaging moveout is )()( pp zxzxS appexact ∆−∆= . 

Figure 3.6. The imaging moveout of three types of Padé approximation [ ]2,2P , [ ]3,2P , 

[ ]3,3P  (left) and their errors (right) are shown by dashed, dotted and dash-dotted lines, 

respectively. The exact imaging moveout curve is shown by solid line. 

Figure 3.7. The imaging moveout of two rational approximations in equations (3.15) and 

(3.16) and their errors are shown in dashed and dotted lines, respectively. The exact imaging 

moveout curve is shown by solid line. 

Figure 3.8. (a) The common shot gather for the diving wave from the synthetic data with the 

parameters km/sV  = 20 , 1
1 51 -s.G  = , 22.0=ε  and 1.0=η . (b) The common shot gather for 

the diving wave from the synthetic data with the parameters km/sV  = 20 , 1
2 2 -sG  = , 

22.0=ε  and 1.0=η .  

Figure 3.9. The common image gather for the diving wave when applying the anisotropic 

RTM with the accurate parameters. 

Figure 3.10. (a) The common image gather when using the isotropic RTM with parameters 

km/sV  = 20 , 1
1 51 -s.G  = , 22.0=ε  and 1.0=η . (b) The common image gather when using 

the isotropic RTM with parameters km/sV  = 20 , 1
2 2 -sG  = , 22.0=ε  and 1.0=η . We 

overlay the residual curve predicted by the imaging moveout from rational approximation 2R  

in equation (3.16). 

Figure 3.11. The semblance plots for different parameterizations computed for factorized 

model with 1
1 5.1 −= sG  (a) NV -fixed, ηε , ; (b) NV -fixed, δε , ; (c) 0V -fixed, HV,δ ; (d) NV -

fixed, HV,ε . The anisotropy parameters can be evaluated from the coordinates of the maximal 

value of the semblance plot. 

Figure 3.12. The semblance plots for different parameterizations computed for factorized 

model with 1
1 2 −= sG  (a) NV -fixed, ηε , ; (b) NV -fixed, δε , ; (c) 0V -fixed, HV,δ ; (d) NV -

fixed, HV,ε . The anisotropy parameters can be evaluated from the coordinates of the maximal 

value of the semblance plot. 
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Figure 3.13. The ray trajectory of the diving waves. 

Figure 3.14. Subsurface image gathers in offset pulled from left (a) (4400m) and right (b) 

(4600m) of the model migrated with the correct velocity. 

Figure 4.1. The unsmoothed and smoothed composite parameters (left). The same composite 

parameter with compensation functions (right). The unsmoothed and smoothed parameters are 

shown by solid and dashed lines, respectively. 

Figure 4.2. The composite parameters 1m  (top), 2m  (middle) and 3m  (bottom) before and 

after smoothing for VTI model. The unsmoothed and smoothed parameters are shown by 

solid and dashed lines, respectively. 

Figure 4.3. The model parameters 0V  (top), nmoV  (middle) and η  (bottom) before and after 

smoothing for VTI model. The unsmoothed and smoothed parameters are shown by solid and 

dashed lines, respectively. 

Figure 4.4. The kinematic parameters nmoV  (top) and η  (bottom) computed for isotropic 

model. 

Figure 4.5. The smoothing induced anisotropy parameters δ  (top) and ε  (bottom) computed 

for isotropic model. 

Figure 4.6. The induced anellipticity from EI (solid line) and ISO (dashed line) models.  

Figure 4.7. The traveltime error between two models-smoothed and unsmoothed for VTI, 

elliptical isotropic (EI) and the isotropic (ISO) cases shown by solid, dashed and dotted lines, 

respectively.  

Figure 4.8. The composite parameters before and after smoothing for ORT model. The 

unsmoothed and smoothed parameters are shown by solid and dashed lines, respectively. 

Figure 4.9. The model parameters 0V  (top), 1nmoV  (middle) and 2nmoV  (bottom) before and 

after smoothing for ORT model. The unsmoothed and smoothed parameters are shown by 

solid and dashed lines, respectively. 

Figure 4.10. Four anellipticity parameters before and after smoothing for ORT model. The 

unsmoothed and smoothed parameters are shown by solid and dashed lines, respectively. 



261 
 

Figure 4.11. The composite parameters before and after smoothing for φORT model. The 

unsmoothed and smoothed parameters are shown by solid and dashed lines, respectively. 

Figure 4.12. The effective velocities and effective azimuth before and after smoothing for 

φORT model. The unsmoothed and smoothed parameters are shown by solid and dashed lines, 

respectively. 

Figure 4. 13. Four anellipticity parameters before and after smoothing for φORT model. The 

unsmoothed and smoothed parameters are shown by solid and dashed lines, respectively. 

Figure 4.14. The PTS results in smoothing induced anellipticity, 1η  (top), 2η  (middle) and xyη  

(bottom). The anellipticity from the ORT model and φORT model are shown in dashed and 

dotted lines, respectively. 

Figure 4.15. The traveltime error surface for ORT model (left) and EI model (right). 

Figure 4.16. The traveltime error surface for φORT model (top) and φEI  model (bottom). 

Figure 4.17. The traveltime error surface using conventional smoothing for ORT model (top) 

and EI model (bottom). 

Figure 4.18. The traveltime error surface using conventional smoothing for φORT model (top) 

and φEI  model (bottom). 

Figure 5.1. Sketch for cross-term anellipticity parameters: xyη , xzη  and yzη  (left) and cross-

term NMO velocities: 12V , 13V  and 23V  (right) in ORT model. 

Figure 5.2. Sketch for non-symmetric parameterizations for acoustic ORT model defined by 

Cases A-D. 

Figure 5.3. Sketch for symmetric parameterizations for acoustic ORT model defined by 

Cases E-H. 

Figure 5.4. The first order perturbation coefficients ia  (Case H). Coefficients 1a , 2a  and 3a  

are shown in left, middle and right, respectively.  

Figure 5.5. The quadratic perturbation coefficients iib  (Case H). Coefficients 11b , 22b  and 

33b  are shown in left, middle and right, respectively.  
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Figure 5.6. The cross-term perturbation coefficients )(, jibij ≠  (Case H). Coefficients 12b , 

13b  and 23b  are shown in left, middle and right, respectively. 

Figure 5.7. The first order sensitivity coefficients iâ  in Case H for short offset (left) 

( )30,0( ∈θ ), intermediate offset (middle) ( )60,30( ∈θ ), and far offset (right) 

( )90,60( ∈θ ). The coefficients 1a , 2a  and 3a  are shown by blue, red and black colors, 

respectively. 

Figure 5.8. The quadratic sensitivity coefficients iib̂  in Case H for short offset (left) 

( )30,0( ∈θ ), intermediate offset (middle) ( )60,30( ∈θ ), and far offset (right) 

( )90,60( ∈θ ). The coefficients 11b , 22b  and 33b  are shown by blue, red and black colors, 

respectively. 

Figure 5.9. The cross-term sensitivity coefficients )(, jibij ≠  in Case H for short offset (left) 

( )30,0( ∈θ ), intermediate offset (middle) ( )60,30( ∈θ ), and far offset (right) 

( )90,60( ∈θ ). The coefficients 12b , 13b  and 23b  are shown by blue, red and black colors, 

respectively. 

Figure 5.10. The overall sensitivity coefficients: first order (left) and second order (right) 

using parameterization Case H. The coefficients 1Â , 2Â  and 3Â  are shown from left to right. 

The second order coefficients are composed in matrix form with indices 

yzxzxy ηηη ≡≡≡ 3,2,1 .  

Figure 5.11. The second order overall sensitivity coefficients ijB̂  using non-symmetric 

parameterizations Cases A-D. The second order coefficients are composed in matrix form 

with indices 321 3,2,1 ηηη ≡≡≡  for Case A, xyηηη ≡≡≡ 3,2,1 21  for Cases B and D, 

yzxzxy ηηη ≡≡≡ 3,2,1  for Case C.  

Figure 5.12. The second order overall sensitivity coefficients ijB̂  using symmetric 

parameterizations Cases E-H. The second order coefficients are composed in matrix form 

with indices 321 3,2,1 ηηη ≡≡≡  for Cases E and G, yzxzxy ηηη ≡≡≡ 3,2,1  for Cases F and 

H. 
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Figure 5.13. The relative error of perturbation series (left) and the Shanks transform (right) 

for traveltime with parameterization Case H. 

Figure 5.14. The relative error in traveltime using the hyperboloid approximation with 

vertical and two NMO velocities (left), vertical and two horizontal velocities (middle) and 

three cross-term NMO velocities (right). 

Figure 5.15. The relative error in traveltime of the Shanks transform for parameterizations 

from Cases A-D. 

Figure 5.16. The relative error in traveltime of the Shanks transform for parameterizations 

from Cases E-H. 

Figure 6.1. The location of fitting indices 1q , 3q , 1s  and 3s  in a homogeneous VTI model. 

Figure 6.2. The sensitivity of coefficients 1q , 3q , 1s  and 3s  versus anellipticity η . 

Figure 6.3. The relative error for anelliptic (solid) and GMA form (dashed) approximation for 

the relative geometrical spreading in a homogeneous VTI medium. 

Figure 6.4. The relative error for anelliptic (solid) and GMA form (dashed) approximation for 

the relative geometrical spreading in a multi-layered VTI medium. 

Figure 6.5. The location of fitting indices ( )3,2,1, =≠ jiQij  and ( )3,2,1, =≠ jiSij  in a 

homogeneous ORT model. 

Figure 6.6. Rotation from [ ]ZX ,  symmetry plane to [ ]YX ,  symmetry plane. 

Figutre 6.7. The relative error of the relative geometrical spreading for a homegeneous ORT 

model by using the traveltime based approximation Xu et al (2005) (top), indierct rational 

approximaiton (middle) and anelliptic approximation (bottom). 

Figutre 6.8. The relative error of the relative geometrical spreading for a multi-layered ORT 

model by using the traveltime based approximation Xu et al (2005) (top), indierct rational 

approximaiton (middle) and anelliptic approximation (bottom). 

Figure 7.1. The first Fresnel zone diagram in represented by the depth (top) and traveltime 

(bottom). 

Figure 7.2. The diagram showing the Fresnel zone in an isotropic medium. 

Figure 7.3. The radius of Fresnel zone for P-wave in a homogeneous ISO and VTI medium. 



264 
 

Figure 7.4. The relative error in Fresnel radius versus the corresponding traveltime (left), 

depth (middle) and frequency (right) using four types of approximation in VTI model. (Note 

that the Fresnel zone varies with depth at frequency Hzf 30= and the Fresnel zone varies 

with frequency at depth kmz 2= ). 

Figure 7.5. The Fresnel radius using second order Shanks transform approximation 2SX  

versus anisotropy parameters δ  (with 2.0=η ) and η  (with 1.0=δ ). 

Figure 7.6. The radius of Fresnel zone in ISO and VTI models versus traveltime (left), depth 

(middle) and Frequency (right). The Fresnel radius computed from ISO and VTI model is 

shown by black and blue colors, respectively. (Note that the Fresnel zone varies with depth at 

frequency Hzf 30= ; The Fresnel zone varies with frequency at depth kmz 2= ). 

Figure 7.7. The Fresnel zone in ISO and VTI model. The Fresnel zone computed from ISO 

and VTI model is shown by black and blue colors, respectively. 

Figure 7.8. The Fresnel zone computed for a homogeneous ORT model. The model 

parameters are: skmV /20 = , skmVn /2.21 = , skmVn /4.22 = , 2.01 =η , 15.02 =η , 

2.0=xyη  and Hzf 30= . The depth of the horizontal reflector is kmz 2= . The Fresnel zone 

in ORT model has a quasi-elliptical shape. 

Figure 7.9. The sensitivity computed from first order (left), quadratic (middle) and cross-term 

coefficients in equation (7.15) in the perturbation series for Fresnel zone versus the group 

azimuth. The depth of the horizontal reflector is .  

Figure 7.10. The contour plot of error in  from two approximations for ORT model 

plotted versus corresponding traveltime and the group azimuth (top) and depth and the group 

azimuth (bottom). The perturbation series approximation and Shanks transform are shown in 

left and right, respectively. The model parameters are given in caption for Figure 7.8.  

Figure 7.11. The contour plot of error in  from two approximations for ORT model 

plotted versus corresponding traveltime and the group azimuth (top) and depth and the group 

azimuth (bottom). The perturbation series approximation and Shanks transform are shown in 

left and right, respectively. The ORT model parameters are defined with the velocities 

specified in the caption for Figure 7.8 and the higher anellipticity parameters: , 

 and .  
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Figure 7.12. The contour plot of error in  from two approximations for ORT model 

plotted versus corresponding traveltime and the group azimuth (top) and depth and the group 

azimuth (bottom). The perturbation series approximation and Shanks transform are shown in 

left and right, respectively. The ORT model parameters are defined with the velocities 

specified in the caption for Figure 7.8 and the negative anellipticity parameters: , 

 and .  

Figure 7.13. The Fresnel zone computed for ORT model for different traveltime (left), depth 

(middle) and frequency (right) using the ORT model with parameters given in the caption for 

Figure 7.8. 

Figure 7.14. The shape of the Fresnel zone computed for ISO, EI and ORT model. The depth 

of the horizontal reflector is .  

Figure 7.15. The diagram showing the Fresnel zone in an anisotropic medium. Angle  and 

 are phase angles measured in corresponding points at wave-fronts  and , 

respectively. 

Figure 7.16. The contour plot of error in  from two approximations for ORT model 

plotted versus corresponding traveltime and the group azimuth (top) and depth and the group 

azimuth (bottom). The perturbation series approximation and Shanks transform are shown in 

left and right, respectively. The ORT model parameters are: (Top) , , 

, ,  and ; (Bottom): , , 

, , ,  and . 

Figure 7.17. The sketch showing the Fresnel zone for a dip reflector in a homogeneous VTI 

model. 

Figure A.1. The slowness curve for VTI model.  and  are the horizontal and vertical 

slowness, respectively. The exact one, the approximations by vertical velocity and NMO 

velocity, and by vertical velocity and horizontal velocity are shown by solid, dashed and 

dotted lines, respectively.  
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Figure A.2. The traveltime error from hyperbolic moveout approximations using two 

background models in VTI media. The results using NMO and horizontal velocities are 

shown by solid and dashed lines, respectively. 

Figure A.3. The relative traveltime error from non-hyperblic approximations in VTI media 

with  (left) and  (right). The results from the GMA, Alkhalifah (2011) 

approximation, the first- and second-order Shanks transform (equations (A.8)) are shown by 

dotted, dotdashed, dashed and solid lines, respectively.  is the normalized offset. 

Figure A.4. The relative traveltime error with offset and anellipticity parameter  using the 

second-order Shanks transform . 

Figure A.5. The first order coefficients  (Top),  (Middle) and  (Bottom) computed 

from equations (A.C8) in ORT model. 

Figure A.6. The second order coefficients  (Top),  (Middle) and  (Bottom) 

computed from equations (A.C8) in ORT model. 

Figure A.7. The cross term coefficients  (Top),  (Middle) and  (Bottom) computed 

from equations (A.C8) in ORT model. 

Figure A.8. The azimuth-dependent anellipticity from equation (A.15) in ORT model. 

Figure A.9. The relative traveltime error for ORT model by using the perturbation series 

approximation in equation (A.C7) (Top) and the one after Shanks transform in equation (A.17) 

(Bottom). 

Figure A.10. The relative traveltime error for ORT model by using Shanks transform based 

on different parameterizations (cases A, B, C and D correspond to the ones specified in the 

main text). 

Figure A.11. The relative traveltime error for ORT model by using the approximations from 

Sripanich and Fomel (2015) (Top) and Hao and Stovas (2016) (Bottom).  

Figure B.1. The relative error in relative geometrical spreading of two type of GMA 

approximation in homogeneous (left) and multi-layered (right) VTI models. The result from 

 and  are computed from infinite and reference offset limit and shown by solid 

and dashed lines, respectively. Note that normalized offset . 

1.0=η 2.0=η

x̂

η

2St

Da1
Da2

D
xya

Db11
Db22

D
xyxyb

Db12
D
xyb1

D
xyb2

∞GMA XGMA

)/(ˆ 0 nVtxx =



267 
 

Figure B.2. The relative error in relative geometrical spreading  using the constrain 

point at  (top),  (middle) and  (bottom). 

Figure B.3. The relative error in relative geometrical spreading from the traveltime based 

approximation (TBA) (Xu et al. 2005) (top, left), indirect rational approximation (IRA) (top, 

right), direct rational form approximation (DRA) (middle, left), anelliptic form approximation 

(AFA) (Xu et al. 2017) (middle, right), GMA form approximation  (bottom, left) and 

 (bottom, right) computed for a homogeneous VTI model. 

Figure B.4. The relative error in relative geometrical spreading from the traveltime based 

approximation (TBA) (Xu et al. 2005) (top, left), indirect rational approximation (IRA) (top, 

right), direct rational form approximation (DRA) (middle, left), anelliptic form approximation 

(AFA) (Xu et al. 2017) (middle, right), GMA form approximation  (bottom, left) and 

 (bottom, right) computed for a homogeneous HTI model. 

Figure B.5. The relative error in relative geometrical spreading from the traveltime based 

approximation (TBA) (Xu et al. 2005) (top, left), indirect rational approximation (IRA) (top, 

right), direct rational form approximation (DRA) (middle, left), anelliptic form approximation 

(AFA) (Xu et al. 2017) (middle, right), GMA form approximation  (bottom, left) and 

 (bottom, right) computed for a homogeneous ORT model. 

Figure B.6. The relative error in relative geometrical spreading from the traveltime based 

approximation (TBA) (Xu et al. 2005) (top, left), indirect rational approximation (IRA) (top, 

right), direct rational form approximation (DRA) (middle, left), anelliptic form approximation 

(AFA) (Xu et al. 2017) (middle, right), GMA form approximation  (bottom, left) and 

 (bottom, right) computed for a multilayered ORT model. 

Figure B.7. The relative error in traveltime from rational form approximation shown in 

equation (B.D2) (left) and from Tsvankin and Thomsen (1994) (right) in a homogeneous ORT 

model. 

  

)( ∞GMANL

2=d 4 10

XGMA

∞GMA

XGMA

∞GMA

XGMA

∞GMA

XGMA

∞GMA



268 
 

  



269 
 

References 

Alkhalifah, T. 1995, Efficient synthetic-seismogram generation in transversely isotropic, 

inhomogeneous media. Geophysics 60, 1139-1150. 

Alkhalifah, T. and R.-É. Plessix, 2014, A recipe for practical full-waveform inversion in 

anisotropic media: An analytical parameter resolution study. Geophysics 79, R91-R101. 

Alkhalifah, T., 1998, Acoustic approximations for processing in transversely isotropic media: 

Geophysics, 63, 623-631. 

Alkhalifah, T., 2000, An acoustic wave equation for anisotropic media: Geophysics, 65, 1239-

1250. 

Alkhalifah, T., 2003, An acoustic wave equation for orthorhombic anisotropy: Geophysics, 68, 

1169-1172. 

Alkhalifah, T., 2011, Scanning anisotropy parameters in complex media: Geophysics, 76, 

U13–U22. 

Alkhalifah, T., 2013, Traveltime approximations for inhomogeneous transversely isotropic 

media with a horizontal symmetry axis: Geophysical Prospecting, 61, 495–503 

Alkhalifah, T., and I. Tsvankin, 1995, Velocity analysis for transversely isotropic media: 

Geophysics, 60, 1550–1566. 

Alkhalifah, T., and R.-É. Plessix, 2014, A recipe for practical full-waveform inversion in 

anisotropic media: An analytical parameter resolution study: Geophysics, 79, R91–R101 

Baina, R., E. Zamboni, and G. Lambaré, 2006, How to cope with smoothing effect in ray 

based PSDM: 68th EAGE Conference and Exhibition, Extended Abstracts. 

Baker, G. A., J. Gammel, and J. G. Wills, 1961, An investigation of the applicability of the 

Padé approximant method: Journal of Mathematical Analysis and Applications, 2, 405–418. 



270 
 

Baykulov, M., and D. Gajewski, 2009, Prestack seismic data enhancement with partial 

common-reflection-surface (CRS) stack: Geophysics, 74, V49-V58. 

Bender, C. M., and S. A. Orszag, 1978, Advanced mathematical methods for scientists and 

engineers: McGraw-Hill. ISBN 978-0-387-98931-0. 

Červený, V., 2001, Seismic Ray Theory: Cambridge Univ. Press, Cambridge. 

Červený, V., and J. Soares, 1992, Fresnel volume ray-tracing: Geophysics, 57, 902–915. 

Crampin, S., 1984, An introduction to wave propagation in anisotropic media: Geophysical 

Journal International, 76, 17-28. 

Crampin, S., 1987, The basis for earthquake prediction: Geophysical Journal International, 92, 

331-347. 

Dix, C. H., 1955, Seismic velocities from surface measurements: Geophysics, 20, 68-86. 

Duveneck, E., 2004, Velocity model estimation with data-derived wavefront attributes: 

Geophysics, 69, 265-274. 

Eaton, D., W., Stewart, and M. P. Harrison, 1991, The Fresnel zone for P-SV waves: 

Geophysics, 56, 360-364. 

Favretto-Cristini, N., P. Cristini, and E. deBazelaire, 2007a, Influence on the interface Fresnel 

zone on the reflected P-wave amplitude modelling: Geophysical Journal International, 171, 

841–846. 

Favretto-Cristini, N., P. Cristini, and E. deBazelaire, 2007b, Some reflections on reflectors 

and wave amplitudes: Acta Acustica united with Acustica, 93, 909–916. 

Fomel, S., 2004, On anelliptic approximations for qP velocities in VTI media: Geophysical 

Prospecting, 52, 247–259. 



271 
 

Fomel, S., and A. Stovas, 2010, Generalized nonhyperbolic moveout approximation: 

Geophysics, 75, U9–U18. 

Fomel, S., and R. Kazinnik, 2013, Non-hyperbolic common reflection surface: Geophysical 

Prospecting, 61, 21-27. 

Fowler, P. J., 2003, Practical VTI approximations: a systematic anatomy: Journal of Applied 

Geophysics, 54, 347–367. 

Gelchinsky, B., A. Berkovitch, and S. Keydar, 1999a, Multifocusing homeomorphic imaging 

- Part 1 Basic concepts and formulae: Journal of Applied Geophysics, 42, 229-242. 

Gelchinsky, B., A. Berkovitch, and S. Keydar, 1999b Multifocusing homeomorphic imaging - 

Part 2 Multifold data set and multifocusing: Journal of Applied Geophysics, 42, 243-260.  

Gholami, Y., Brossier, R., Operto, Stephane., Ribodetti, A., and Virieux. J., 2013, Which 

parameterization is suitable for acoustic vertical transverse isotropic full waveform inversion? 

Part 1: Sensitivity and trade-off analysis: Geophysics, 78, R81-R105. 

Golikov, P., and A. Stovas, 2012, Accuracy comparison of nonhyperbolic moveout 

approximations for qP-waves in VTI media: Journal of Geophysics and Engineering, 9, 428-

432. 

Golikov, P., and A. Stovas, 2013, Moveout-based geometrical spreading approximation in 

TTI media: 75th EAGE Conference and Exhibition incorporating SPE EUROPEC. 

Gonzalez, R., and R. Woods, 2008, Digital Image Processing: 3rd edition, Prentice Hall. 

Grechka, V., and I. Tsvankin, 1999a, 3-D moveout velocity analysis and parameter estimation 

for orthorhombic media: Geophysics, 64, 820–837.  

Grechka, V., and I. Tsvankin, 1999b. 3-D moveout inversion in azimuthally anisotropic media 

with lateral velocity variation: Theory and a case study: Geophysics, 64, 1202–1218. 

Hagedoorn, J. G., 1954, A process of seismic reflection interpretation: Geophysical 

Prospecting, 2, 85-127. 



272 
 

Hao, Q., and A. Stovas, 2016, Analyic calculation of phase and group velocities of P-waves in 

orthorhomic media: Geophysics, 81, C79-C97. 

Helbig, K., 1994, Foundations of anisotropy for exploration seismics: Handbook of 

geophysical exploration, I: Seismic exploration. 

Höcht, G., E. de Bazelaire, P. Majer, and P. Hubral, 1999, Seismics and optics: Hyperbolae 

and curvatures: Journal of Applied Geophysics, 42, 261-281. 

Hristov, H. D., 2000, Fresnal Zones in Wireless Links, Zone Plate Lenses and Antennas: 

Artech House, Inc. ISBN: 0890068496 

Hubral, P., 1983, Computing true amplitude reflections in a laterally inhomogeneous earth: 

Geophysics, 48, 1051-1062. 

Hubral, P., J. Schleicher, M. Tygel, and V. C. Hanitzch, 1993, Determination of Fresnel zones 

from traveltime measurements: Geophysics, 58, 703–712. 

Jäger, R., J. Mann, G. Höcht, and P. Hubral, 2001, Common-reflection-surfacestack: Image 

and attributes: Geophysics, 66, 97-109. 

Kazei, V., V. Troyan, B. Kashtan, and W. Mulder, 2013, On the role of reflections, refractions 

and diving waves in full-waveform inversion: Geophysical Prospecting, 61, 1252–1263. 

Koren, Z., and I. Ravve, 2014, Azimuthally varying anisotropic velocity model update: 

Geophysics, 79, C27-C53. 

Koren, Z., and I. Ravve, 2017, Fourth-order normal moveout velocity in elastic layered 

orthorhombic media — Part 2: Offset-azimuth domain: Geophysics, 82, C113-C132. 

Landa, E., S. Keydar, and T. J. Moser, 2010, Multifocusing revisited: Inhomogeneous media 

and curved interfaces: Geophysical Prospecting, 58, 925-938. 

Levin, F. K., 1996, Anatomy of diving waves: Geophysics, 61, 1417–1424. 



273 
 

Lindsey, J. P., 1989, The Fresnel zone and its interpretive significance: The Leading Edge, 7, 

33-39. 

Masmoudi, N., and T. Alkhalifah, 2014, Multi-parameters scanning in HTI media: 84th 

Annual International Meeting, SEG, Expanded Abstracts, 480–485. 

Masmoudi, N., and T. Alkhalifah, 2016, Traveltime approximations and parameter estimation 

for orthorhombic media: Geophysics, 81, C127-C137. 

Monk, D., 2009, Fresnel zone binning: Application to 3D seismic fold and coverage 

assessments: The Leading Edge, 28, 288–295 

Monk, D., 2010, Fresnel-zone binning: Fresnel-zone shape with offset and velocity function: 

Geophysics, 75, T9–T14. 

Moser, T. J., and V. Červený, 2007, Paraxial ray methods for anisotropic inhomogeneous 

media: Geophysical Prospecting, 55, 21–37. 

Okoye, P., and N. Uren, 2000, Fresnel zones and spatial resolution for P- and SH-waves in 

transversely isotropic media: Geophysics, 65, 1168–1178. 

Ravve, I., and Z. Koren, 2017, Fourth-order normal moveout velocity in elastic layered 

orthorhombic media — Part 1: Slowness-azimuth domain: Geophysics, 82, C91- C111. 

Rogister, Y., and M. A. Slawinski, 2005, Analytic solution of ray-tracing equations for a 

linearly inhomogeneous and elliptically anisotropic velocity model: Geophysics, 70, D37–

D41. 

Sarkar, D., and I. Tsvankin, 2003, Analysis of image gathers in factorized VTI media: 

Geophysics, 68, 2016–2025. 

Schleicher, J., P. Hubral, M. Jaya, and M. Tygel, 1997, Minimum apertures and Fresnel zones 

in migration and demigration: Geophysics, 62, 183–194. 



274 
 

Schoenberg, M., and K. Helbig, 1997, Orthorhombic media: Modeling elastic wave behavior 

in a vertically fractured earth: Geophysics, 62, 1954–1974. 

Schwarz, B, C. Vanelle, D. Gajewski and B. Kashtan, 2014, Curvatures and inhomogeneities: 

An improved common reflection surface approach: Geophysics, 79, S231-S240. 

Shen, P., 2013, Subsurface focusing measurement of diving waves and its application to 

reflection tomography: 75th Annual International Conference and Exhibition, EAGE, 

Extended Abstracts, Th1005. 

Sheriff, R. E., 1996, Understanding the Fresnel zone: AAPG Explorer, 18-19 

Sheriff, R.E., 1980, Nomogram for Fresnel-zone calculation: Geophysics, 45, 968-972. 

Sirgue, L., and R. G. Pratt, 2004, Efficient waveform inversion and imaging: A strategy for 

selecting temporal frequencies: Geophysics, 69, 231–248. 

Spetzler, J., and R. Snieder, 2004, The Fresnel volume and transmitted waves -A tutorial: 

Geophysics, 69, 653–663. 

Sripanich, Y., and S. Fomel, 2015, On anelliptic approximations for qP velocities in 

transversely isotropic and orthorhombic media: Geophysics, 80, C89-C105. 

Sripanich, Y., S. Fomel, A. Stovas, and Q. Hao, 2016, 3D generalized nonhyperboloidal 

moveout approximation: Geophysics, 82, C49–C59. 

Stovas, A., 2008, Kinematically equivalent velocity distributions: Geophysics, 73, VE369-

VE375. 

Stovas, A., 2010, Kinematical characteristics of the factorized velocity model: Geophysical 

Prospecting, 58, 219-227. 

Stovas, A., 2015, Azimuthally dependent kinematic properties of orthorhombic media: 

Geophysics, 80, C107-C122. 



275 
 

Stovas, A., 2017, Geometrical spreading in orthorhombic media: Geophysics, 83, C61-C73. 

Stovas, A., and B. Ursin, 2009, Improved geometric-spreading approximation in layered 

transversely isotropic media: Geophysics, 74, D85–D95. 

Stovas, A., and T. Alkhalifah, 2014, Analytical approximations of diving wave imaging in 

constant-gradient medium: Geophysics, 79, S131–S140. 

Stovas, A., N. Masmoudi, and T. Alkhalifah, 2016, Application of perturbation theory for P-

wave eikonal equation in orthorhombic media: Geophysics, 81, C309-C317. 

Tang, Y., S. Lee, A. Baumstein, and D. L. Hinkley, 2013, Tomographically enhanced full 

wavefield inversion: 83rd Annual International Meeting, SEG, Expanded Abstracts, 1037–

1041. 

Thomsen, L., 1986, Weak elastic anisotropy: Geophysics, 51, 1954–66. 

Thomsen, L., 2001, Seismic anisotropy: Geophysics, 66, 40-41. 

Trorey, A.W., 1970, A simple theory for seismic diffraction: Geophysics, 35, 762-784. 

Tsvankin, I., 1995, Body-wave radiation patterns and AVO in transversely isotropic media: 

Geophysics, 60, 1409–1425. 

Tsvankin, I., 1997, Anisotropic parameters and P-wave velocity for orthorhombic media: 

Geophysics, 62, 1292–1309. 

Tsvankin, I., 2005, Seismic Signatures and Analysis of Reflection Data in Anisotropic Media, 

2nd edition.  

Tsvankin, I., 2012, Seismic signatures and analysis of reflection data in anisotropic media, In: 

Geophysical References Series, Vol. 19. SEG. ISBN 9781560803003. 

Tsvankin, I., and L. Thomsen, 1994, Nonhyperbolic reflection moveout in anisotropic media: 

Geophysics, 59, 1290-1304. 



276 
 

Tygel, M., and L. T. Santos, 2007, Quadratic normal moveouts of symmetric reflections in 

elastic media: A quick tutorial: Studia Geophysica et Geodaetica, 51, 185-206. 

Ursin, B. and K. Hokstad, 2003, Geometrical spreading in a layered transversely isotropic 

medium with vertical symmetry axis: Geophysics, 68, 2082–2091. 

Ursin, B., 1990, Offset-dependent geometrical spreading in a layered medium: Geophysics, 

55, 492–496. 

Ursin, B., and K. Hokstad, 2003, Geometrical spreading in a layered transversely isotropic 

medium with vertical symmetry axis: Geophysics, 68, 2082–2091. 

Ursin, B., N. Favretto-Cristini, and P. Cristini, 2014, Fresnel volume and interface Fresnel 

zone for reflected and transmitted waves from a curved interface in anisotropic media: 

Geophysics, 79, C123-C134. 

Vanelle, C., M. Bobsin, P. Schemmert, B. Kashtan and D. Gajewski, 2012, i-CRS: A new 

multiparameter stacking operator for an/isotropic media: 82nd Annual International Meeting 

SEG Expanded Abstracts. 

Vasconcelos, I., and I. Tsvankin, 2006, Non-hyperbolic moveout inversion of wide-azimuth 

P-wave data for orthorhombic media: Geophysical Prospecting, 54, 535-552. 

Vinje, V., A. Stovas, and D. Reynaud, 2012, Preserved-traveltime smoothing: Geophysical 

Prospecting, 61, 380-390. 

Vinje, V., E. Iversen, K. Åstebøl, and H. Gjøystdal, 1996, Estimation of multivalued arrivals 

in 3D models using wavefront construction, Part I: Geophysical Prospecting, 44, 819-842. 

Virieux, J., and S. Operto, 2009, An overview of full-waveform inversion in exploration 

geophysics: Geophysics, 74, WCC1–WCC26. 



277 
 

Widess, M. B., 1982, Quantifying resolving power of seismic systems: Geophysics, 47, 1160-

1173. 

Xu, S., A. Stovas, and Q. Hao, 2017, Perturbation-based moveout approximations in 

anisotropic media: Geophysical Prospecting, 65,1218-1230. 

Xu, S., A. Stovas, and Y. Sripanich, 2017, An anelliptic approximation for geometrical 

spreading in transversely isotropic and orthorhombic media, Geophysics, 83, C37-C47.  

Xu, S., and A. Stovas, 2017, A new parameterization for acoustic orthorhombic media: 

Geophysics, 82, C229-C240.  

Xu, S., and A. Stovas, 2017. Direct Geometrical Spreading Approximations in Anisotropic 

Media: Technical Program of the 79th EAGE Conference and Exhibition, Tu P8 13. 

Xu, X., and I. Tsvankin, 2006, Anisotropic geometrical-spreading correction for wide-

azimuth P-wave reflection: Geophysics, 71, D161–D170. 

Xu, X., and I. Tsvankin, 2006, Anisotropic geometrical-spreading correction for wide-

azimuth P-wave reflection: Geophysics, 71, D161–D170. 

Xu, X., and I. Tsvankin, 2007, A case study of azimuthal AVO analysis with anisotropic 

spreading correction: The leading edge, 26, 1552-1561. 

Xu, X., and I. Tsvankin, 2008, Moveout-based geometrical-spreading correction for PS-waves 

in layered anisotropic media: Journal of Geophysics and Engineering, 5, 195-202. 

Xu, X., I. Tsvankin, and A. Pech, 2005, Geometrical spreading of P-waves in horizontally 

layered, azimuthally anisotropic media: Geophysics, 70, D43–D53. 

Yilmaz, O., 2001, Seismic Data Analysis: Processing, Inversion, and Interpretation of Seismic 

Data: Investigations in Geophysics. 

Zhou, H., and McMechan, G. A., 2000, Analytical study of the geometrical spreading of P-

waves in a layered transversely isotropic medium with vertical symmetry axis: Geophysics, 

65, 1305–1315. 


	97717_PhDCover_Shibo_Xu_ny
	97717_PhD_Shibo_Xu_83_ny

