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SUMMARY: 
Unusual shapes are becoming more and more prevalent in the cityscape, however they often rely on large 
and complex configurations of material. New and empowered digital tools - parametric modelling software - 
allow for continuous structural optimisation parallel with the design process. This enhances the synergy 
between architects and engineers and complements the search for alternative solutions with a better use of 
resources. Shell structures provide the opportunity of combining artistic shapes and low use of material due 
to their efficient load bearing capacity. The efficiency of the shell is dependent on its shape and gets 
challenged when exerted to external asymmetric loading pushing it out of its ideal shape. Until now, previous 
research papers and articles have provided information about form finding of shell structures exposed to 
symmetric pressure while omitting asymmetric loading. This leaves an important question of how to cope with 
such load situations? In this thesis, the objective thus became to come up with a parametric design 
procedure for a timber grid shell where the structure was robust enough to handle the asymmetric pressure 
from climate induced loads. The grid shell in question is to be a cabin built by the students at the Norwegian 
University of Science and Technology (NTNU) for the use of NTNU students in the Norwegian mountains. 
Through the studies in this thesis it was found that Eurocode (EC) provides limited information about design 
loads for shell structures, and that it can only be adopted to a certain extent. By comparing the EC loads to a 
load configuration-algorithm built in Grasshopper, it was discovered how EC did in fact not give the worst-
case load scenarios. However, the load distributions obtained from the algorithm showed some 
contradictions with regards to the guidelines in EC and were thus not accounted for in the design. It was 
illustrated how the shape is crucial for the efficiency and structural behaviour of the shell, and how double 
curvature gives a more robust structure which is less prone to deflect. Optimisation of the cabin's shape was 
executed through minimising displacements from external loads. Initially the shape showed substantially 
larger displacements for the Drifted (asymmetric) snow load case from EC compared to the Undrifted 
(symmetric) case, and the optimised shape displayed an increase in the initial double curvature.  The 
optimisation approach led to an improved structural performance and a smaller gap between the structural 
response for the Undrifted and Drifted load cases. 
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Abstract

Unusual shapes are becoming more and more prevalent in the cityscape, however they often
rely on large and complex configurations of material. New and empowered digital tools - pa-
rametric modelling software - allow for continuous structural optimisation parallel with the
design process. This enhances the synergy between architects and engineers and complements
the search for alternative solutions with a better use of resources. Shell structures provide the
opportunity of combining artistic shapes and low use of material due to their efficient load bea-
ring capacity. The efficiency of the shell is dependent on its shape and gets challenged when
exerted to external asymmetric loading pushing it out of its ideal shape. Until now, previous
research papers and articles have provided information about form finding of shell structures
exposed to symmetric pressure while omitting asymmetric loading. This leaves an important
question of how to cope with such load situations? In this thesis, the objective thus became to
come up with a parametric design procedure for a timber grid shell where the structure was
robust enough to handle the asymmetric pressure from climate induced loads. The grid shell
in question is to be a cabin built by the students at the Norwegian University of Science and
Technology (NTNU) for the use of NTNU students in the Norwegian mountains. Through the
studies in this thesis it was found that Eurocode (EC) provides limited information about design
loads for shell structures, and that it can only be adopted to a certain extent. By comparing the
EC loads to a load configuration-algorithm built in Grasshopper, it was discovered how EC did
in fact not give the worst-case load scenarios. However, the load distributions obtained from
the algorithm showed some contradictions with regards to the guidelines in EC and were thus
not accounted for in the design. It was illustrated how the shape is crucial for the efficiency and
structural behaviour of the shell, and how double curvature gives a more robust structure which
is less prone to deflect. Optimisation of the cabin’s shape was executed through minimising dis-
placements from external loads. Initially the shape showed substantially larger displacements
for the Drifted (asymmetric) snow load case from EC compared to the Undrifted (symmetric)
case, and the optimised shape displayed an increase in the initial double curvature. The op-
timisation approach led to an improved structural performance and a smaller gap between the
structural response for the Undrifted and Drifted load cases.
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Sammendrag

Uvanlige og arkitektoniske former blir mer og mer vanlig å se i bybildet, men de består ofte
av kompliserte løsninger og overflødig materialbruk. Digitalisering og framskritt innen ny tek-
nologi som parametrisk modellering, gjør at optimaliseringsprosessen og konstruksjonsanalyse
kan kombineres og utføres parallelt med designprosessen. Dette legger til rette for et bedre
samarbeid mellom arkitekter og ingeniører, og kan bidra positivt mot et slutt-design med mer
effektivt materialbruk. Skallkonstruksjoner er en type konstruksjoner som tillater kombinasjon
av artistiske former med lavt materialforbruk på grunn av skallets effektive bæreevne. Skallets
effektive oppførsel er svært avhengig av formen og blir svekket når asymmetriske laster skyver
formen ut av sin stabile konfigurasjon. Det har blitt funnet flere forskningsartikler som beskri-
ver metoder for hvordan skallform kan og bør utformes når det utsettes for symmetriske laster.
Det gjenstår derimot å finne ut av hvordan asymmetriske laster skal håndteres, og hvordan disse
påvirker skallet. I denne masteroppgaven ble dermed målet å bygge opp en framgangsmåte for
parametrisk design og dimensjonering av et gitterskall i tre som skal være robust nok til å hånd-
tere asymmetriske laster fra snø og vind. Gitterskallet skal være en fjellhytte lokalisert i Indre
Fosen Kommune og skal bygges og brukes av studenter ved Norges teknisk-naturvitenskapelige
universitet (NTNU). Gjennom de utførte studiene i oppgaven ble det funnet at Eurokoden (EC)
gir begrenset informasjon om dimensjonerende laster for skallkonstruksjoner, og at den gitte in-
formasjonen bare kan anvendes til en viss grad. En algoritme for lastkonfigurasjoner ble etablert
i Grasshopper, og lastene viste seg å være mer kritiske for gitterskallet enn de gitt av EC. Disse
lastkonfigurasjonene ble imidlertid antatt å være lite sannsynlige, og ble dermed ikke benyttet
i videre dimensjoneringsprosedyrer. Det ble illustrert hvordan formen påvirker skallets oppfør-
sel, og hvordan dobbeltkrumme former fører til stivere og mer robuste konstruksjoner. Formen
på hytten ble optimalisert basert på å minske forskyvninger. Den initielle formen viste seg å
respondere betydelig verre på snølasten fra snødriver (asymmetrisk) enn på jevnt fordelt snø
(symmetrisk). Den optimaliserte formen viste tydeligere dobbelkurvatur, som førte til en bedre
lastbæringsevne og minsket forskjellen på konstruksjonens påvirkning av snølast fra snødriver
og jevnt fordelt snø.
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Introduction

Advances in computer technology, as well as fabrication and construction methods have opened
the door for designing structures of complex and extraordinary geometry. Elegant, thin-shell
structures can be aesthetically pleasing and can provide more material-efficient designs [1, p.1].

The shape of the shell is of great importance as the load-bearing efficiency derives from it. If the
shape deviates from its stable geometry the structural advantages can be challenged. Deforma-
tion due to actions on the structure can in worst-case lead to collapse of the building. The aim
thus becomes to pursue a design robust enough to withstand all plausible load combinations.
The shape of the shell requires careful consideration and the design should be continuously
modified until the solution is satisfactory. Parametric modelling provides this type of flexible
workflow and is hence an efficient method to adopt for the design of shell structures. In addition
it enhances the synergy between architects and engineers by enabling structural optimisation
parallel with the design process.

A shell structure can either be continuous or reticulated, where the latter is a shell structure
divided into a grid of smaller elements. This characteristic inherits its name of a ’grid shell’,
where the material used is typically timber. The Mannheim Multihalle, the Downland and the
Pods Sports Academy grid shell roofs are just a few examples of State of The Art (SoTA) shell
structures. A common denominator for the structures mentioned above are that they are built
in low lying regions, where the affect of snow loads are less significant. Previous studies have
shown that shells are very efficient when it comes to tackling symmetric loads, however chal-
lenges appear when the shell is exposed to environmental loads which tend to cause asymmetric
pressure.

Norway is a country in Northern Europe where large areas are being seasonally exposed to high
snow and wind loads. Accordingly, the structural capacity of buildings (roofs) depends on the
ability to handle strong winds and snow accumulations on roofs [2, p.283]. The challenge is
how to design a light-weight grid shell structure, so dependent on its shape, in conditions where
asymmetric pressure caused by environmental actions possibly can lead to large deformations.

In this thesis we will investigate how the Eurocode deals with snow and wind actions on shell
structures. A parametric study of simple geometric shell shapes is carried out to get a deeper
understanding of how the shape effects the structural behaviour of the shell. In Chapter 6 a
case study will be performed with the intent of designing a grid shell roof for a cabin planned
to be built in the mountains of the Indre Fosen region near Trondheim. The cabin will be built
as a part of the cabins managed by the sports association of NTNU (NTNUI). The focus will
be on establishing a method of design where parametric modelling and optimisation will be
central. The structural design is done in close cooperation with the PhD candidates Marcin
Luczkowski (structural engineer) and Steinar Hillersøy Dyvik (architect). In addition, we have
been working in parallel on this case with two co-students at NTNU; Helle Stam Faugstad and
Øyvind Sunnvoll Rognes.
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1 | Background

1.1 Architects and engineers

Historical structures

Throughout the history of time, astonishing structures have been raised, and are shown to have
had a great impact and influence on the structures of newer age. The greatness of these structures
does not only lie within the incredible architecture, but also the complexity of the structure
compared to in what age they were built. One of the famous historic buildings, which represents
a major step forward in structural engineering is the Pantheon in Rome (see Fig. 1.1). The
Pantheon was constructed as early as in the 120s, and it is famous for its characteristic dome
which spans about 44 meters [3]. Similar structures such as the Florence Catheral (1434) and
Saint Peter’s in Rome (1590) have since been constructed, where the dome has shown to be a
central eye-catcher seemingly repeated. A common denominator for these structures is that the
same person was in charge of the design and construction. In fact it is an anachronism to use
the words "engineer" and "architect" about the designers in the ages before the 1450s.

Many of the constructors were artists and mathematicians, using the concepts of geometry
and physics to figure out the shape of the structures. Michelangelo for instance, known for his
artistry and poetry, worked on the construction of the dome of the St. Peter’s Basilica in the
1500s[1, p.36].

(a) The Roman "temple of gods"[4] (b) The dome of the Pantheon [5]

Figure 1.1: The Pantheon of Rome

Technological era

The roles of architects and engineers have changed since Michelangelo’s time, from having one
Master Builder in charge of the both the artistic and technical part of the design, to having a
clear distinction between the two disciplines [6].
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Today, the continuing specialization of their disciplines has caused a growing gap in the
understanding between architects and engineers. The architect and the engineer, working on
the same project, will use different measures and be concerned with different objectives while
heading for their goal [7].

Development of new technology has made it possible to enhance the synergy between the
architect and engineer, permitting the design to become more efficient and complex. An ex-
ample of this is parametric design, which is a flexible tool that allows for effortless changes to
the design without deleting and redrawing. It is highly beneficial compared to the traditional
CAD-software where the geometry is more time consuming to change. The model is generated
in an environment where the geometry is parametrically defined and assigned properties that
are either fixed (constrains) or variables (parameters). The designer can modify the parameters,
and the model will adjust accordingly [8]. This opportunity of freely alternating between and
comparing options allows for a more dynamic design.

In traditional methods of design, the structural engineer would optimise the structure mainly
after the design is finalised [7]. This work flow leads to a distinction between the architect and
engineer. By combining parametric design and structural analysis, the structural principles
can be considered parallel with designing the structure’s geometry. This enables the structural
engineer to contribute in the design process by performing structural optimisation from an early
stage [7, p.626]. As a result, this could advance the constructability and thus reduce time and
cost without compromising the structural performance and architectural shape. It must however
be mentioned that parametric design opens the door for a better cooperation, but do not ensure
it. It is up to the architect and engineer to make sure their priorities are shared and that they
have a common understanding for the perfect structure to be realized [1, (Foreword, Shigeru
Ban)].
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1.2 Beauty of shell structures
The roles of the architect and engineer are weighted differently depending on the size and
function of the building. In shell structures, where the shape derives directly from their flow
of forces, the design process is highly reliant on the engineer [1]. The shape is what give
rise to the distinctive characteristic of shell structures, namely the efficient load-bearing beha-
viour and lightness. With the use of shells as structural elements large span to thickness ratios
can be achieved. Thus, the advantages are sustainable structures where the design is efficient,
light-weight and hence also economic. The thin-shell structures will have minimal bending
resistance, assigning the responsibility to the designer to create a shape where the shell works
primarily in membrane action. Form findings techniques are commonly used by engineers and
architects to achieve such shapes. These techniques are based upon the search of optimised
shapes with regards to satisfying required constraints and objectives. An example is the use of
Thrust Network Analysis (TNA) on masonry structures in which finds a shape where the forces
within the structure are solely working in compression. A second is the Force Density Method
(FDM) which has proven to be an invaluable approach to generate equilibrium solutions. Heinz
Isler, a Swiss structural engineer was a master of form finding and famous for his thin concrete
shells. Figure 1.2 illustrates one of his many works on thin concrete shell structures where the
shape is based on the hanging chain principle (will be further discussed in Sec. 2.4).

Figure 1.2: BP Service Station, Deitingen, 1968 [9, Fig. 20.11]

3



1.3 Inspiring shell structures

Mannheim Mulithalle

The timber lattice roof of Mannheim Multihalle is an example of a grid shell many times men-
tioned in literature of structural engineering. The structure was made as a part of a garden
exhibition in Mannheim, Germany in 1975 [10], and was for that reason designed as a tem-
porary structure. The architects of the Mannheim shells wanted the structure to assimilate the
surrounding landscape, and its "hilly" form. To reach this unusual shape, they contacted Frei
Otto, the famous architect and Professor at Stuttgart University. Frei Otto was known for the
use of hanging chain models [10], which used the principle of the oldest form-finding method
published by Robert Hooke [1, p.7]. As mentioned in Section 1.2, form-findings methods are
important tools used for deriving an efficient shape. The unique shape could hence be realized
by deciding on the boundaries of the structure and hanging the chains under gravity-only load
(see Fig. 1.3).

Figure 1.3: The final hanging chain model of Mannheim [11, Fig. 2]

If the self-weight would be the only force acting on the structure, the shell could be very thin,
as the internal forces would only be in compression. However, with the presence of external
actions the structure was found to need a double-layered lattice grid with shear blocks and
diagonal ties to provide the required stiffness to withstand buckling and asymmetrical loading
(see Fig. 1.4). The double layers also enabled the flexibility to bend the timber as it was going
to be constructed by laying the grid out flat, and raising it by the nodes. The grid shell is hence
a kinematic grid shell as it is actively bent into its final position.

4



Figure 1.4: Inside the Multihalle in Mannheim. Shell structure with a double-layered lattice grid [9, Fig.
12.1]

There were issues with installing the structure, as they found out that the supports would
need to be in their right position when raising the structure. Due to the size of Mannheim, it
was nearly impossible to lift the structure in place by cranes and install the shear blocks and
diagonal ties, as the original plan was [10]. The solution became to install scaffolding towers
at precise intervals and jack them up to raise the structure (see Fig. 1.5). Fork trucks were used
to adjust the horizontal placement of the towers. When the towers were lifted to their correct
positions, large shape adjustments were necessary as the deflection between the towers were up
to 200mm. This put constraints on how and in what order to start bolting up the double layered
lattice. The advantage of using the scaffolding towers was that the lifting process was slow
enough to permit adjustments of the shape, and checking the slotted bolt holes.

Figure 1.5: Interior shot of the erection of Multihalle in Mannheim [12]

5



Pods Sports Academy

The Pods Sports Academy, also known as "The Pods", is a state-of-the-art grid shell in Scun-
thorpe’s Central Park in the UK. The sports hall opened in 2011, and the shell roof covers the
whole of six badminton-courts, two swimming pools, a gym, a dance studio, and a cafe area
[13]. Figure 1.6 shows the finished structure.

The design and concept of the sports hall was completed with an interactive collaboration
between the engineer and architect. Where Buro Happold Engineering was the company in
charge of the structural design and optimisation of the grid shell, and Andrew Wright Associates
were the architects in charge of the conceptual phase [13].

Figure 1.6: Aerial view of the Pods Sports Academy [14, Fig. 27]

The structure is an assembly of five domes or pods, where each of them is optimised for the
space it covers. The shape was found by hanging chain models, similar to the exhibition hall in
Mannheim, which gave the same results with regards to presence of compression forces only.
The Pods also had to increase the design resistance to not only take care of the self-weight,
but also consider the effects from wind and snow actions. However contrary to Mannheim’s
kinematic grid shell, the Pods was a reticulated shell with straight timber beams connected in
the nodes (steel joints) (see Fig. 1.7).

Figure 1.7: Reticulated shell roof of The Pods [14, Fig. 24]
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In the design of the grid pattern on the modelled surface, the grid was defined as flat, and
then mapped onto the surface. Dynamic relaxation was adopted as the form finding method to
even out the network of triangles defining the grid. This made it possible to have standardised
beams which could ease manufacture and reduce amount of material [15].

Landesgartenschau Exhibition Hall

The Landesgartenchau Exhibition Hall was conceived through a research project at the Univer-
sity of Stuttgart in 2014. It is a prototype and showcase exhibiting the current developments
in computational design and robotic fabrication for lightweight timber construction [16]. The
Landesgartenschau Exhibition Hall has displayed inventive and sustainable features both with
respect to architecture and engineering. Figure 1.8 shows the structure from the front entrance.

Figure 1.8: The entrance of the Landesgartenschau Exhibition Hall [17]

The structure consists of 50mm thick (thin) segmental plates, connected by finger joints
to allow for transfer of forces. The structure can hence be seen as the timber-variant of a
continuous shell, as the segmental plates ensure that the external loads can be transferred to the
ground in all directions. However, the connections between the plates interrupt the continuity of
the material and therefore the structural design of the finger joints need specific consideration.
This is where the robotic fabrication methods are excellent as they allow for the manufacture of
complex geometry.

The Landesgartenchau Exhibition Hall bases its design on plated shell structures found in
nature. An example used for this project was the skeleton of the sea urchin. This is known as
biomimetics (imitating of models in nature), and was implemented in both the development of
the shells and the finger joints. The robotic fabrication allowed for the precision and individual
details of the finger joints by being able to replicate the solutions from the digital optimisation
process. Figure 1.9 illustrates the sea urchin (left) and the joints between the plates (right) which
are looking very similar to finger joints [18].
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Figure 1.9: The plated shell structure of a sea urchin (left) and the plate edge assimilating finger joints
(right) (microscopic view) ([19, Fig. 2])

The architectural vision of the structure was to have a spacious variety dividing the inside
space into open - closed - open areas. This led to a division which aesthetically makes up
two zones, one entrance space and the main exhibition shape. The shape variation can be seen
as having an architectural function by dividing the space, as well as enhancing the structural
performance [16]. Both zones have dome-like shapes and build with convex polygonal plates.
In the area where the two dome shapes meet, plates that are concave are used. Figure 1.10 shows
the plated shell structure (shape of the structure in Fig. 1.10a and the concave and convex plates
in Fig. 1.10b).

(a) Dome-like shape of the structure (b) The concave and the convex plates

Figure 1.10: Segmental Timber Plate Shell for the Landesgartenschau Exhibition Hall [20]
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2 | Governing Equations

In this chapter we will dive into the characteristics of shell structures and discover how they
achieve their distinct structural behaviour. In addition, the software tools used in this thesis for
examining shell structures will be presented.

2.1 Characteristics of shell structures

Curved Surface

A shell is a three-dimensional curved surface, where one dimension is smaller compared to the
other two [1, pp. 21-31]. It resembles a beam, which is a member defined by a line with a neutral
axis and a cross section - a shell can also be defined by its middle surface and a thickness. Both
a plate and a shell can be described by a surface, like the beam and the arch can be described
by a line [21, pp. 1-2]. However, for both the shell and the arch, the curvature of the surface
and line is essential. The curvature makes it possible to carry vertical loads with only in-plane
forces, which is the primary contribution to the efficiency of the shell (see Sec. 2.3).

Rigidity

A sieve and a spider web can be considered as two different types of shells (see Fig. 2.1). Both
are made up of straight elements woven into a grid. The sieve is permanently bent into a curved
surface creating a grid shell. The spider web becomes a curved surface with the spider threads
acting in tension when the wind blows. However the spider web returns to its original position
after the wind gust.

(a) A sieve is form-passive [22] (b) A spider web is form-active [23]

Figure 2.1: The varying rigidity of the shell

The spider web is a tension structure that adjust its shape under applied load, i.e. it is a
form-active system. Contrary, the form-passive sieve appears rigid and will more-or-less stay in

9



the original curved position when exposed to external load. The shape and curvature give rise
to the strength and rigidity of the sieve [1, pp.21-22]. Form-passive shells, which are rigid, are
primarily of interest from a structural point of view.

Light-weight

Evolution has resulted in development of shells which can function as light-weight shelters
protecting the species from outside danger. Examples are the exoskeleton of the turtle and
the snail (see Fig. 2.2). The shape and material is carefully developed to achieve an optimal
structure.

Figure 2.2: Shells found in nature - the shell of a snail [23]

Drawing a parallel from nature to a structural point of view; if the shell is carefully shaped
it allows for achieving a light-weight structure with an efficient use of material.

2.2 Shells - Classification

Geometric Classification

A method of classifying shell structures is to arrange them into groups based on their geometries
[1, p.2].

Freeform The shell is assigned an arbitrary form that is not derived from any geometrical
objects and where structural performance is not considered. Optimisation of the
predefined freeform shape is important to obtain a stable and efficient structure.

Geometric The shape of the structure is based on geometrical objects.

Physical The shape is derived from form findings methods, like hanging chains (see Sec.
2.4), to obtain a structure in a state of equilibrium.
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Surface Classification

The Gaussian curvature of the surface is used in the classification of shells. Gaussian Curvature
is defined as the product of the two principle curvatures at a given point on a surface [24]. The
curvatures are orthogonal to each other. The shell can be divided into three categories with
respect to the Gaussian curvature, κ (see Fig. 2.3).

κ > 0 A dome is an example of a shell surface having a positive Gaussian curvature and the
surface can be classifies as synclastic.

κ < 0 A saddle-like surface has a negative Gaussian curvature and is categorized as anticlastic.

κ = 0 A single curved surface, like a cylindrical shell has zero Gaussian curvature and is called
monoclastic.

All single curved shells with zero Gaussian curvature are said to have a developable surface.
The surface can be laid out flat without taring, e.g. paper rolled up into a cylindrical shell [25,
pp. 1-4]. Doubly curved surfaces with non-zero Gaussian curvature, on the other hand are said
to be undevelopable i.e. cannot be deformed into a plane without being distorted.

Figure 2.3: From left to right: A synclastic dome, an anticlastic saddle-like surface, a monoclastic
cylindrical surface

Different types of shell structures
The shell roof can be constructed both as a continuous surface with a thickness, and as a grid
of single elements following the surface, a so-called grid shell [1, p.2]. Deitingen Süd Service
Station is an example of a continuous concrete shell, built in 1968 (see Fig. 1.2).

The grid shell can be formed by short segments of straight beam elements connected into
nodes, or by continuous bending members. The latter is a so-called a kinematic grid shell
because of its kinematic construction method where the continuous members are actively bent
into shape from an initial flat surface. Hence, timber is the only suitable material which due to
its flexibility, can handle the large deformations without failing (yielding) [24]. The Mannheim
Multihalle is an example of a kinematic grid shell (see Fig. 1.4. The Pods Sports Academy is
an example of a reticulated shell formed by straight beam elements (see Fig. 1.7).
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2.3 Membrane forces

The curvature of the shell is what makes it a very effective load bearing structure. Figure
2.4 illustrates how curved shapes (Fig. 2.4b) can carry transverse loads differently from plane
shapes (Fig. 2.4a). The plate transfers the load to the supports with bending and shear action,
opposed to the shell which mainly transfers the loads through membrane action [26, p. 499].

(a) Plate/beam (b) Arch/Shell

Figure 2.4: Load bearing by bending and in-plane (membrane) action. Based on Fig. 15.1 in [26]

The efficiency of the shell depends on the ratio between the loads carried by normal action
versus bending and shear action. Wilhelm Flügge in [21] explained this concept with a simple
comparison of a rolled up paper, identified as a cylindrical shell and an egg shell. If a light
lateral force is applied by two fingers pressing on the paper that is rolled and taped together, it
will deform easily. The cylindrical shell will resist the force mainly with bending moments. The
egg, which in it self is a thin shell made of a fragile material, will withstand a surprisingly high
force without breaking or deforming visually. Unlike the cylindrical paper shell, the egg will
primarily carry the loads with in-plane shear and normal forces [21, p.8]. When the deformation
and the thickness of the shell is small, it is demonstrated that the bending and twisting moments
can be neglected in a stress analysis. This theory is called The Membrane Theory, however it
will not be discussed further in this thesis.

The example with the paper and egg above illustrates how the in-plane stresses (membrane
stresses) are more efficient. This behaviour can be explained further by simple mechanics. A
beam, with a rectangular cross section, exposed to a bending moment will have a linear stress
distribution. The same beam exposed to a compression force will have a uniform distribution
of stresses. Let us assume the maximum stress value in both cases is σ0 (see Figure 2.5).

Figure 2.5: Illustration of normal stresses in a beam exposed to a compression force (left) and a bending
moment (right)
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Figure 2.6: Horizontal view of the uniform stress (compression) and linear stress distribution (bending)
in a beam.

Figure 2.6 shows how the average stress in the bending situation is half compared to the
compression situation. The beam will in other words not be able to take full advantage of its
cross sectional area when it is experiencing bending. As a result, it is easier to bend a struc-
tural element than stretch it, i.e. change its length. Thus, when constructing a shell structure,
engineers pursue to find the shape and the supports leading to an efficient structure working
predominantly by membrane action [1, p.23].

2.4 Funicular shape
Robert Hooke wrote a famous anagram in 1675 stating:

as hangs the flexible line, so but inverted will stand the rigid arch [27].

The shape of a chain hanging in tension, corresponds to its equilibrium shape. Due to the
chain being a form-active system, it will adjust its shape to different load situations. Thus,
the shape of the chains and the path of the resulting axial forces inside will coincide. A chain
hanging under its own self weight will be shaped as a catenary curve. If the chain is rigidified
and inverted it will form the line of trust of the arch (see Fig. 2.7). This line is a theoretical path
of compression forces in the arch, representing static equilibrium. The catenary shaped arc with
only self-weight applied will thus carry all the loads in compression, with no occurring bending
moments.

Figure 2.7: Hooke’s hanging chain, illustrated by Poleni (1748) [28]
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The hanging chain principle may also be used for shells. By loading a hanging membrane,
one can find the form of the shell for which the shell only will work in compression. As
previously mentioned in Section 1.3, Mannheim Multihalle and Pods Sports Academy are both
examples of structures where the form was found using Hooke’s hanging chain principle. If
an arch or a shell can carry a load without producing bending moment, the shape is funicular
for that load situation. However, unlike the chain and the membrane, the arch and the shell
are form-passive systems. If the load situation changes or the form deviates from the ideal
equilibrium shape, additional bending moments arises.

Deviations from the optimal shape will in the real world always exist, either it is from mater-
ial defects, imperfections due to on-site construction or a combination of them. The deviations
cause the structure to be less capable of carrying loads, and it may result in failure. To design
a safe shell, it needs to be able to cope with a certain grade of imperfections, as well as load
variations.

2.5 Structural behaviour and constraints

Boundary conditions and inextensional deformation

A closed shell is more rigid than an open shell. If you have a closed box, for example a paper
coffee cup with a lid; it is more difficult to deform it when the lid is on, than when the lid is off.
If you take the lid off, the cup will though still try to resist deformation and not collapse when
you lift it to drink. This is partly due to the edge of the cup often being thicker than the rest of
the cup. This strengthening ring give the cup more rigidity, even though it is now equivalent
with an open shell.

This shows how an open shell can appear rigid if the boundary conditions are adequate and
the shape is right. However, if either the boundary conditions or the shape is insufficient, a
mechanism may develop and the shell can experience inextensional deformation. This means
that deformation of the shell can happen without any strain, only with bending. Due to no
stretching and changes of length on the surface of the shell, the Gaussian curvature remains
unchanged [1, p. 25] .

As previously explained in Section 2.3, it is easier to bend than to stretch a structural ele-
ment. Hence, structures that can deform inextensionally are more flexible and less efficient. An
example of such a structure is the Mannheim grid shell which was not triangulated and could
therefore have inextensional modes. The presence of the diagonal cable bracing would only
partly contribute in resisting this mode. It is important to have adequate bending stiffness to
resist inextensional deformation.

Buckling

Another unwanted effect crucial to take into account in the design of shell structures, is buck-
ling. If a shell has sufficient boundary conditions and cannot undergo inextensional deform-
ation, they tend to be very stiff and efficient. However, these shells are also very sensitive to
imperfections. As the shell deflects under loading, the shape becomes less efficient at carrying
the load and more prone to instability in the form of buckling. In an efficient shell a minor
imperfection or deformation from the ideal shape can lead to a sudden collapse of the structure.
The collapse can occur with minimal warning, and without material breaking and yielding. The
less efficient the shell is the less sensitive it is to imperfections. The Mannheim Multihalle grid
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shell which can deform inextensially and thus is considered as a more flexible and less efficient
grid shell, is also less sensitive to imperfection [1, pp. 241-243].

Kicking forces

The barrel vault is an extended arch that spans an open space, thus calculating the forces in an
arch and a barrel vault are basically the same. If you apply a load onto the arch, the flow of
forces is going down trough the arch and pushing outward at the base. These forces, which
are directed horizontally outwards, are from here on called kicking forces (see Fig. 2.8a). The
supports need to be able to withstand these kicking forces, to keep the arch from not collapsing.

A dome is the configuration of an arch rotated around its own center axis. In other words,
both the dome and the barrel vault can be formed on the basis of an arch. They differ, however,
of course in their double and single curvature (see 2.2 under Surface classification) but also
with respect to how they are supported. The dome is a closed surface supported on a ring at
the bottom. If this ring can handle tension forces, the ring can support the forces that would
be directed outwards in the arch (see Fig. 2.8b. Therefore, the dome is less dependent on the
external supports. Figure 2.8 illustrates this, and shows the arch (similar to the barrel vault) and
the dome and their force flow due the external load.

(a) Arch

(b) Dome

Figure 2.8: Illustration of the flow of forces in a dome and an arch/barrel vault. The dome is less
dependent on the external supports.
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2.6 Software tools

In this thesis the following software will be adopted for geometric design of shell structures in
addition to performance of structural analysis (FEA) and optimisation.

Rhinoceros 5.0

Rhinoceros, or Rhino, is a 3D modelling tool - a CAD (computer aided design)-software de-
veloped by Robert McNeel & Associates. It provides an interface for defining complex geo-
metry in three dimensions. Rhino provides a visual studio for the programs made in Grasshop-
per.

Grasshopper

Grasshopper (GH) is a graphical algorithm editor also developed by Robert McNeel & Associ-
ates ([29]), and it is a plug-in for Rhinoceros 5.0. The geometry in the program can either be
attained from Rhino and controlled parametrically in GH, or defined directly in GH (see Fig.
2.9). GH is integrated within a parametric environment that uses a visual programming lan-
guage. It uses functional blocks, called "components", which can receive input by connecting
them together by "wires" into a sequence of actions. The algorithmic and visual way of scripting
the geometry makes it more intuitive to use compared to other programming languages.

Figure 2.9: Grasshopper window (right) illustrates how geometry can be defined by components con-
nected by wires. The geometry becomes visible in the Rhino view port (left)

The geometry defined in GH can be easily adjusted by "sliders" connected to the compon-
ents (parametric geometry). If the slider is adjusted the component will change accordingly,
and the rest of the connected geometry will adapt to the new configuration. In the Rhino view
port the geometry and the updates can be observed continuously.
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Karamba 3D (FEM-software)

Karamba is a structural engineering software embedded in the parametric environment of Grasshop-
per. There is no transfer between software in order to perform the structural analysis, as the
Finite Element-analysis (FEA) can be completed within the same environment as the paramet-
erised geometric model in GH [30]. The model can hence be given structural properties directly
by adding the components available in Karamba. Another positive feature is that Karamba is
user friendly, by having a similar algorithmic structure and build-up as GH, and also providing
components with a clear selection-menu.

Finite Element Method (FEM) divides a system with a complex behaviour into several sub-
systems where the behaviour is "known". After assembling the system and applying boundary
conditions, the result is a system of linear algebraic equations [26]. In this thesis, Karamba will
be adopted for evaluating the structural performance of timber grid shells and continuous con-
crete shells. The finite elements (FE) used to assemble the idealised configurations are different
for the two models.

Shell elements in Karamba
To generate the model of a shell structure in Karamba, the surface is subdivided into a finite
element mesh. The resolution of the mesh affects the accuracy of the results, but also the
computation time of the FEA. The goal is to obtain a solution within a prescribed accuracy at a
minimal computational cost.

Karamba (Clemens Preisinger, Karamba developer) explained in a Grasshopper3D forum
that the shell elements are triangular elements with 6 dofs per node based on Kirchhoff theory.
No in-plane rotational stiffness is added [31]. The Kirchhoff theory for thin plates neglects
transverse shear deformation, that is γyz = γzx = 0 [26, p.461]. If the plate gets too thick
this assumption is not valid anymore. Thus, for the thin plate theory to be valid, the following
guideline of the thickness/length-ratio should be followed: t/L ≤ 1/10. The shells investigated
in this thesis will have values of t/L smaller than this ratio.

Beam elements in Karamba
The grid shell model is an assembly of beam elements. The type of beam elements used in
Karamba is not explicitly defined by the Karamba Manual. However in a forum on the GH
web-page, Karamba (Clemens Preisinger) explained how the shear deformation is accounted
for, which suggest that Timoshenko beam elements are used [32]. Unlike the Euler-Bernoulli
beam theory the Timoshenko theory include shear deformation.

Galapagos Evolutionary solver

Galapagos is an evolutionary solver inside GH that apply genetic algorithms to optimise solu-
tions of problems [33]. The Galapagos-component takes variables, so-called genes, as inputs
in addition to a fitness-function. The gene are lists of sliders (gene-pool) that the Galapagos-
solver are allowed to change and create several Genomes in order to maximise or minimisee
the outcome of the fitness-function. A Genome is a the specific values for each of the genes.
First the solver populate the fitness-landscape, with random genomes and evaluate the fitness
for them all. This is the first generation of solutions. The Genomes with the worst fitness gets
killed and the remainder is used to create a new generation. Thus, this second population is not
completely random anymore. It continues to kill and create new genomes until an acceptable
answer is reached.
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Figure 2.10: Galapagos Evolutionary solver Editor window

There are pros and cons with the use of evolutionary algorithms. The advantages is flexib-
ility and that they can tackle a wide range of problems. The algorithms are also "forgiving",
meaning that they try to solve problems even if they have been poorly formulated. Another ad-
vantage is that the run-time process is transparent and it is possible to view the answers during
the process. Cons being that evolutionary algorithms are slow and that a single process may run
for several days before getting a solution. Secondly, it is not guaranteed that the evolutionary
algorithms will find a solution, or recognise the solution when having reached it. If the user
does not provide an interval for where an acceptable solution will be the process can run indef-
initely.

The combination of Rhino, Grasshopper, Karamba and Galapagos forms an important tool
for architects and engineers in the early design phase. Parameterised geometric models in GH
can be combined with FE calculations in Karamba and optimisation algorithms.
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3 | Actions according to Eurocode

In the world of civil engineering, Standards are commonly implemented to ensure that structural
design is being executed on common grounds. In Norway, Eurocode is the Standard frequently
adopted for the design of structures both regarding materials and loads. To examine how the
Eurocode covers the design of wind and snow actions on shell roofs, three simple cases will be
studied (see Fig. 3.1).

Figure 3.1: Geometric shapes to be investigated in Actions according to Eurocode. From left to right:
Cylindrical, spherical and multi-span cylindrical roof.

The design actions on roofs depend on the location of the structure as well as the shape of the
roof. The location chosen is in accordance with the NTNUI cabin which will be the main object
of the Case Study in Chapter 6. The location in question is north of Trondheim, across the
fjords in Indre Fosen Kommune. See Figure 3.2 for the map location and Table 3.1 for more
exact information. Notice that Indre Fosen Kommune is a relatively new municipal established
by the merging of Rissa Kommune and Leksvik Kommune. The National Annex still operates
with the old names, thus information on Leksvik kommune is accounted for.

Figure 3.2: Location of the shell structures addressed. Chosen in accordance with the NTNUI cabin
which will be designed in Chap. 6 [34]
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Table 3.1: Information about the location of the shell structures studied: Basis for the design of actions.

Coordinates 63.5898110, 10.3258360
Kommune Indre Fosen previously known as Leksvik

Name of area Mevassetran
Height above sea level 361 m

3.1 Snow calculations according to NS-EN 1991-1-3
Snow calculations are done in accordance with NS-EN 1991-1-3 ([35]), hence all Eurocode
references in Section 3.1 will refer to to this part unless specified otherwise.

NS-EN 1990 Section 4.1.1(2) states that snow actions may be considered as either variable
actions (Q) or accidental actions (A). The National Annex (NA.2) of NS-EN 1991-1-3 indicates
that for Norway, snow actions should not be considered as accidental nor as exceptional. Snow
actions are thus regarded as variable actions from here on.

NA.4.1(901) gives the characteristic values on ground for Leksvik kommune:

sk = 4.0kN/m2.

Given the structure is situated at a height approximately 200meters above the reference height
of Leksvik kommune, the characteristic value of snow load on ground increases (see detailed
calculations in Appendix A Calculations of actions according to Eurocode):

sk = 4.0 + 3 ∗ 1.0 = 7.0kN/m2.

Snow actions on roofs

According to NA.5.2(2) the expression for the accumulated snow on roofs (given variable action
and no exceptional snow load) becomes:

s = µ ∗ Ce ∗ Ct ∗ sk, (3.1)

where

µ is the shape factor and accounts for how much snow will accumulate on the roof depend-
ing on its shape. [Section 5.3].

Ce is the exposure coefficient taking into account the surrounding terrain of the cabin. As-
sume normal topography Ce = 1.0 (Ce = 1.0 for cylindrical roofs [NA.5.2(7)].

Ct is the thermal coefficient for reduced snow actions on roofs due to heat loss. Assume no
reduction Ct = 1.0

In all of the following sections below (Sec. 3.1.1-3.1.3), Expression (3.1) will be considered
with the shape coefficient µ = µi as the only variable, where i = 1, 2 or 3 depending on the
shape of the roof. According to Eurocode µ1 applies for pitched roofs, µ2 for accumulation of
snow in valleys of multi-span roofs, and µ3 for cylindrical roof shapes. The shape factors (µi)
regulate how much snow will distribute on the roof compared to the estimated snow loads on
ground, sk.

Where Eurocode falls short in explaining the shape of the roof, this will be highlighted and
assumptions will be made in finding the applicable shape coefficient.
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3.1.1 Snow distribution on cylindrical roof shape

The first case is a cylindrical roof shape like shown in Figure 3.3, with the shape continuing
along its length (the y-direction into the plane).

Figure 3.3: Section drawing of the cylindrical roof shape with dimensions [cm].

Section 5.3.5 Cylindrical Roofs in Eurocode provides information on the shape factor for
a generic cylindrical roof as shown in Figure 3.4, both for undrifted (Case(i)) and drifted
(Case(ii)) load configurations.

5.3.5 (1) specifies that µ3 = 0 for roof curvature β > 60◦, i.e. no snow will accumulate due
to the high curvature. This is illustrated as the load width ls in Figure 3.4, where ls ≤ b.

Figure 3.4: Fig. 5.6 in [35]: Snow load shape coefficients for cylindrical roof

The undrifted configuration, Case (i), gives a uniformly distributed snow load with a shape
coefficient equal to 0.8 (see Figure 3.4).

For Case (ii), the drifted load case with β ≤ 60◦, µ3 is obtained using Figure 3.5 with the
following value for h/b (see Fig. 3.4 for definition of h and b):

h/b = 1.5/7.5 = 0.2
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Figure 3.5: Fig. 5.5 in [35]: Shape factor µ3 for different height to span(h/b) and angle β ≤ 60

Figure 3.5 specifies an upper limit of the shape factor µ3 as 2.0. As a result the shape factor
µ3 will be equal to 2.0 for the cylindrical roof shape.

Expression (3.1) is then used to obtain the snow actions:

• Undrifted (Case (i)):

s(0.8) = 0.8 ∗ 1.0 ∗ 1.0 ∗ 7.0kN/m2 = 5.6kN/m2

• Drifted (Case (ii):

s(µ3) = 2.0 ∗ 1.0 ∗ 1.0 ∗ 7.0kN/m2 = 14.0kN/m2

s(0.5µ3) = 0.5 ∗ (2.0 ∗ 1.0 ∗ 1.0 ∗ 7.0kN/m2) = 7.0kN/m2

3.1.2 Snow distribution on spherical roof shape
The second case is a spherical roof shape like shown in Figure 3.6, also called a Dome. Euro-
code does not provide information about snow load distributions on spherical roofs or domes.

Figure 3.6: Section drawing of the spherical roof shape with dimensions [cm].

It could though be reasonable to assume that the load arrangement could be deduced from
the cylindrical roof shape (see Fig. 3.4). A vertical cut through the sphere in Figure 3.6, will
in fact be a cylinder with a varying width b(y) and load width ls(y). The only difference being
that the cylindrical shape of the given vertical section has no vertical walls. Given that the only
information suitable for the spherical roof is the cylindrical shape with vertical walls provided
by EC, Figure 3.4 is still adopted.

Figure 3.4 is used to find the distribution of snow for the undrifted and drifted load case,
and the value of the shape coefficient µ3 is given in Figure 3.5. The following value for h/b
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is inserted into Figure 3.4 to obtain µ3, where h is the height of the curved area and b is the
diameter of the spherical shape:

h/b = 3.75/11.25 = 0.33

The shape coefficient µ3 is found to be equal to the upper limit 2.0 similar as for the cyl-
indrical roof shape. Hence the design actions presented for the in Section 3.1.1 above for the
cylindrical roof will also account for the spherical roof.

Snow distribution over the surface of the spherical shape
It must though be stressed that the shape coefficient found for this case is an approximation
based solely on the similarities between the vertical section (xz-plane) of the sphere and the
cylinder. The shape coefficient’s distribution over the sphere surface is questionable. It could
be a fair assumption that the snow would distribute symmetric or asymmetric (resembling a
chessboard pattern) into the plane like shown in Figure 3.7.

(a) Symmetric load distribution (b) Asymmetric load distribution

Figure 3.7: Two variants of how the snow could be assumed to be distributed on the spherical roof shape

3.1.3 Snow distribution on multi-span roof with cylindrical shape
The last case represents a multi-span roof consisting of a pair of cylinders connected to each
other (see Figure 3.8).

Figure 3.8: Section drawing of multi-span roof with cylindrical shape with dimensions [cm].

Similar to the spherical roof, there is no section in Eurocode which provides information on
this roof shape. However, to determine the snow action on the multi-span roof, it is assumed that
super positioning of Sections 5.3.5 Cylindrical roofs (Figure 3.4) and 5.3.4 Multi-span roofs in
[35] (see Figure 3.9) will give reasonable results.
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Figure 3.9: Fig. 5.4 in [35]: Snow load shape coefficient for multi-span roof for straight roof elements
(pitched roofs)

Figure 3.10: Fig. 5.1 in [35]: Snow load shape coefficients, µ1 and µ2

The multi-span roof illustrated in Figure 3.9 with the shape coefficient µ2 found from Figure
3.10, is used as a basis and applied to the multi-span cylindrical roof. The deduced model is
illustrated in Figure 3.11, and the shape of the accumulated snow is simplified into triangles.

Figure 3.11: Assumed shape coefficients/snow distribution on the multi-span cylindrical roof with the
assuption of superposition of both Case(ii) from Fig. 3.9 and Fig. 3.4

Figure 3.10 indicates that the maximum value of µ2 (accumulation of snow in the valley) is
1.6, i.e. twice the maximum value of µ1 when the angle is α = 30◦.

For α ≥ 30◦ the relationship between µ1 ans µ2 even increases. For the multi-span cyl-
indrical roof the angle α is assumed to be approximately 60◦, meaning the accumulated snow
in the valley should be µ2 ≥ 2 ∗ µ3 = 4.0 (illustrated in Fig. 3.11).
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The snow load in the valley would therefore become 4 times higher then the snow load on
ground, which with expression (3.1) gives:

s(µ2) = (2 ∗ µ3) ∗ Ct ∗ Ce ∗ sk = (2 ∗ 2.0) ∗ 1.0 ∗ 1.0 ∗ 7.0 = 28.0kN/m2.

The resulting snow load for the cylindrical multi-span roof is thus quite high compared to
the mono-span roofs, questioning the reliability of adopting super positioning of the cylindrical
and multi-span roof from EC (Fig. 3.4 and 3.9). It needs to be considered if an upper limit of
the accumulated shape factor should be determined.

3.1.4 Summary of snow calculations

Table 3.2: Summary of snow actions calculated for the cylindrical, spherical and multi-span roof shapes

Shell Shapes EC Figures Load case Snow loads [kN/m2]

Directly used: Drifted s3(µ3) 14
Fig 3.4 s3(0.4µ3) 7

Fig 3.5(µ3) Undrifted s(0.8) 5.6

Approximated: Drifted s3(µ3) 14
Fig 3.4 s3(0.5µ3) 7

Fig 3.5(µ3) Undrifted s(0.8) 5.6

Approx. Drifted s3(µ3) 14
superpos: s3(0.5µ3) 7

Fig 3.4 Undrifted s(0.8) 5.6
Fig 3.9

Fig 3.10(µ2) Accum. valley s2(µ2) 28
Fig 3.5(µ2)

In Table 3.2 the snow loads found for the three shapes are presented. The values are equal for
the drifted and undrifted load case, with the assumption that Figure 3.4 can be adopted directly
or with an approximation.

The ability of adopting EC for snow actions on the shell shapes investigated are seen as the
following:

• Cylindrical shape - EC can be used directly

• Spherical shape - EC can be used to draw parallels with the cylindrical shape, but not clear
how it will distribute into the plane. Also EC does not clarify if the cylindrical shapes
accounts for the shapes both with and without vertical walls.

• Multi-span cylindrical - The shape is similar to the cylindrical mono-roof. However an
upper limit for the accumulation in the valley is missing, questioning the reliability of
adopting superposition of Figures 3.4 and 3.9.
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3.2 Wind calculations according to NS-EN 1991-1-4

Wind calculations are done in accordance with NS-EN 1991-1-4 ([36]), hence all Eurocode ref-
erences will refer to to this part unless specified otherwise.

Wind action calculations depend on the location of the structure as well as the shape and
size of the structure. National Annex and Annex A provide necessary information regarding
the location, type of terrain and the meteorological data. Assumptions are done with regards
to the topography, climate and terrain roughness of the area in order to determine the required
coefficients and values. First the wind pressure is calculated, before the geometry of the three
shapes and the wind distribution on each of them are considered.

The calculations of the wind pressure can be found in Appendix A Calculations of actions
according to Eurocode. The resulting peak velocity pressure is found to be:

qp(z) = 694N/m2

The pressure qp(z) is then multiplied with the pressure coefficient for external pressure(cpe)
to obtain the wind pressure on surfaces [5.2(1) ex. 5.1].

we = qp(ze) ∗ cpe (3.2)

Negative sign on wind pressure means suction, and the wind action will have a direction per-
pendicular to the roof surface. The coefficient, cpe for external and cpi for internal pressure,
takes into account the aerodynamic properties for the structure [7.1(1)]. For buildings both in-
ternal and external pressure should be considered. However for these calculation, only external
pressure and thus only the external pressure coefficient is determined for the roof surface.

The external pressure coefficients cpe,1 and cpe,10 are given for loaded areas A of 1m2 and
10m2, respectively. For buildings with loaded area between 1m2 and 10m2, the following
expression is used for determining the external pressure coefficient [7.2.1(1) Fig. 7.2]:

cpe = ccp,1 − (cpe,1 − cpe,10)log10A (3.3)

3.2.1 Wind distribution on cylindrical roof shape

Figure 3.12 display the cylindrical roof shape used in the calculations. To find the wind load
distribution on the shape Figure 3.16 is adopted. Very little information regarding wind pressure
on cylindrical roof shape is found. Thus, the majority of the wind pressure calculations are done
only on the basis of Figure 3.16 and remarks given in NA.7.2.8.
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Figure 3.12: Structure with cylindrical roof shape used in the wind action calculations

Wind blowing parallel to the eaves, θ = 0◦

For the wind blowing parallel to the eaves, the code shows a sketch of how the wind zones are
positioned on the roof (see Figure 3.13). However, the Eurocode does not give the dimensions
of the distribution area.

Figure 3.13: Cut-out of Fig. 7.11 in [36]: Wind distribution for wind parallel to eaves, θ = 0◦. Dimen-
sions of the wind zones divisions are not provided.

Figure 3.14 however, illustrates how the Australian and New Zealand code divides the area. U
corresponds to zone A in NS-EN 1991-4, T to B and D to C. Continuing, it is assumed these
dimensions for the zones will be acceptable for our case.

Figure 3.14: Fig. C3 in [37]: Wind distribution for wind parallel to eaves, θ = 0◦. Dimensions of the
wind zone divisions are provided.

Figure 3.15 shows the side view dimensions of the roof. The following values are then calcu-
lated and taken as inputs in Figure (3.16) to obtain cpe,10:

f/d = 1.5/7.5 = 0.2

h/d = 2/7.5 = 0.27

Notice that only cpe,10 is given in [36] for the cylindrical roof when the wind is blowing
parallel to the eaves, but no cpe,1-value. A note in Section 7.2.8(1) explain that the values of
cpe,10 and cpe,1 may be given in the National Annex. However, the Norwegian National Annex
refers back to Section 7.2.8, despite that no information about how to obtain cpe,1 can be found
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Figure 3.15: Section drawing of the cylindrical roof shape with dimensions

Figure 3.16: Fig. 7.11 in [36]: Graph with recommended values of external pressure coefficients cpe,10
for roofs with a cylindrical shape and a rectangular base. The values corresponding to the cylindrical
roof addressed in this section are highlighted

there. Fortunately for the cylindrical roof shape considered, all of the zone areas are bigger than
10m2, thus only the cpe,10 pressure coefficient is relevant.

As stated in 7.2.8 (1), the coefficient for zone A should be obtained with linear interpolation
if 0 ≤ h/d ≤ 0.5. Since h/d = 0.27 the coefficient for zone A is obtained with linear interpol-
ation between the h = 0 value and h/d ≥ 0.5. For h/d ≥ 0.5 two values for cpe,10 need to be
considered (see calculations below):

cpe,10,zoneA(h = 0) = 0.36

cpe,10,zoneA(h ≥ 0.5) = 0

or
cpe,10,zoneA(h ≥ 0.5) = −1.2

This result in:

cpe,10,zoneA(h = 0.27) = 0.36− 0.36− (−0)

0.5
∗ 0.27 = 0.17
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or

cpe,10,zoneA(h = 0.27) = 0.36− 0.36− (−1.2)

0.5
∗ 0.27 = −0.47

Table 3.3 shows the resulting pressure coefficient and external wind pressure blowing paral-
lel to the eaves. The external pressure, we, is obtained with multiplying the pressure coefficient
with the peak velocity pressure (see Eq. (3.2)):

we = qp(ze) ∗ cpe = 0, 694kN/m2 ∗ cpe.

Figure 3.17 shows the distribution of wind zones for the roof when the wind is blowing
parallel to the eaves.

Figure 3.17: Wind zones for cylindrical roof when wind direction is parallel to eaves, θ = 0◦

Table 3.3: Cylindrical Roof Shape: Pressure coefficients and wind pressure due to wind blowing parallel
to the eaves. Two alternative solutions are presented, and both of them needs to be considered when
designing the structure

Zone A Zone B Zone C

cpe,10
Alt. 1 0.17 -0.9 -0.4
Alt. 2 0.47 -0.9 -0.4

we[kN/m
2]

Alt. 1 0.12 -0.62 -0.28
Alt. 2 -0.33 -0.62 -0.28

Wind blowing perpendicular to the eaves, θ = 90◦

For the situation of the wind blowing perpendicular to the eaves (see Fig. 3.18), National Annex
7.2.8 states that the data from the duopitched roofs found in Section 7.2.5 [Figure 7.8 c)] should
be used (see Fig. 3.19). This corresponds to the recommendations of the Australian and New
Zealand code ([38]).

NA.7.2.8 states that the following changes should be done:

• For Zone G, cpe,10 = −1.4 and cpe,1 = −2.0 should be used

• Zone F should be treated as Zone H
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Figure 3.18: Aerial section drawing of the cylindrical roof model with wind direction perpendicular to
the eaves, θ = 90◦

Figure 3.19: Fig. 7.8c in [36]: Wind zone division for a cylindrical roof shape with wind blowing
perpendicular to eaves, θ = 90◦.

Taking these changes into consideration and using Table 7.4 b) in [36] (see Fig. 3.21),
the external pressure coefficients cpe,10 and cpe,1 are obtained. The roof angle varies along the
surface of the roof due to the cylindrical shape. In [38] it is concluded that the effective pitch
angle of the curved roof should be taken as:

α = tanh (f/0.5d), (3.4)

hence giving:

α = tanh 1.5/(0.5 ∗ 7.5) = 21.8◦.

The effective pitch angle is illustrated in Figure 3.20. Linear approximation between the
pressure coefficients for 15 ◦ and 30 ◦ given in Table 7.4 b) is thus used to obtain the pressure
coefficients for 21.8 ◦.

If the surface area is smaller than 10m2, Expression (3.3) is used to determine the pressure
coefficient. Hence, AutoCAD is used to find the roof area and an approximation is done for the
surface area of each zone. The results are presented in Table 3.4.
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Figure 3.20: Section drawing of the cylindrical roof. Effective pitch angle 21.8◦ for the curved roof is
presented.

Figure 3.21: Table 7.4b in [36]: External pressure coefficient for duopitch roofs. The table correlates
with Figure 3.19 and both is used in calculations of wind pressure on cylindrical roof shapes when wind
blowing perpendicular to eaves, θ = 90◦.

Table 3.4: Cylindrical Roof Shape: Pressure coefficients and wind pressure due to wind blowing per-
pendicular to the eaves. Linear approximation between cpe for 15◦ and 30◦ is used to find the resulting
cpe for 21.8◦, and Expression (3.3) is used for zone G

Zone G Zone F/H Zone I

cpe,1

15 ◦ -2.0 -1.2 -0.5
30 ◦ -2.0 -1.2 -0.5

21.8 ◦ -2.0 -1.2 -0.5

cpe,10

15 ◦ -1.3 -0.6 -0.5
30 ◦ -1.4 -0.8 -0.5

21.8 ◦ -1.35 -0.7 -0.5

Area [m2] 3.1 25.9 64.1
Resulting cpe -1.71 -0.7 -0.5

we[kN/m
2] -1.19 -0.48 -0.35
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3.2.2 Wind distribution on spherical roof shape

Figure 3.22 shows the spherical roof shape in question and Figure 3.24 is adopted to find the
wind load distribution. Notice that similarly to the cylindrical roof shape calculations, the
majority of the calculations are solely based on one figure. Very little information to how
this figure should be interpreted is given in the Eurocode, thus there have been difficulties in
thoroughly understanding the provided information.

Figure 3.22: Structure with spherical roof shape used in the wind action calculations

The total height of the spherical roof in question 3.75m (see Fig. 3.23). Figure 3.24 presents
the recommended values of external pressure coefficient cpe,10. In accordance with this figure
and with Figure 3.23 the following values are obtained: f = 3.75, h = 0 and d = 11.25m.
Hence giving the following relations:

h/d = 0/11.25 = 0

f/d = 3.75/11.25 = 0.33

These values are used to extract the relevant data for cpe,10 from the graph presented in Figure
3.24. Similar to the cylindrical roof, only the values of cpe,10 can be found in the Eurocode. The
load areas are not clearly defined for spherical roof shapes, and thus the corresponding pressure
coefficient is difficult to determine. Although this is not stated in Eurocode, it is assumed that
only the values of cpe,10 will be relevant for the spherical roof shape.

Figure 3.23: Section drawing of the spherical roof shape with dimensions
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Figure 3.24: Fig. 7.12 in [36]: Graph with recommended values of external pressure coefficients cpe,10
for roofs with a spherical roof shape and a circular base. The values corresponding to the spherical roof
shape addressed in this section are highlighted

The pressure coefficients are constant along the planes perpendicular to the wind. The
location of the different zones are defined in Figure 3.24. The figure also states that as a first
approximation to the distribution along the arches of circles parallel to the wind, the zones can
be determined by linear interpolation between the values in A, B and C.

The results are presented in Table 3.5 below, together with the wind pressures obtained with
Equation (3.2). Figure 3.25 shows the distribution of the wind load together with the values
obtained for the different wind zones.

Table 3.5: Spherical roof shape: Resulting pressure coefficients and wind pressures corresponding to the
wind zones illustrated in Figure 3.25

Zone A Zone B Zone C

cpe,10 0.55 -0.85 -0
we[kN/m

2] 0.38 -0.59 0

Figure 3.25: Wind distribution on the spherical roof shape with wind pressure values

33



3.2.3 Wind distribution on multi-span roof with cylindrical shape

Figure 3.26: Structure with multi-span roof with cylindrical shape used in the wind action calculations

Section 7.2.7 Multi-span roofs in [36] suggests that the pressure coefficients for each span may
be derived from the pressure coefficient for each individual span. Modification factors for the
pressure in the wind directions θ = 0◦ and θ = 180◦ should be applied on each span. Figure
3.27 proposes factors which can be used.

Figure 3.27: Fig. 7.10 c) and d) in [36]: Modification factors for wind pressure coefficients for multi-
span roofs for wind directions θ = 0◦ and θ = 180◦

There are no modification factors for multi-span cylindrical roofs, and hence there are diffi-
culties regarding the application of the suggested factors. Assuming that the illustration c) in
3.27 (Fig. 7.10 c) in [36]) will be most reasonable to use, a structure consisting of only two
cylindrical shapes will most likely have negligible effects caused by the modification factors.
Thus, this structure is assumed to have the same wind distribution for each of the two spans as
derived for the individual cylindrical roof in Section 3.2.1.
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3.2.4 Summary of wind calculations

Table 3.6: Summary of wind actions calculated for the cylindrical and spherical roof shape

Shell Shapes EC Figures Zone we[kN/m
2]

Parallel to the eaves, θ = 0◦

-
A
B
C

Alt. 1
0.12
-0.62
-0.28

Alt. 2
-0.33
-0.62
-0.28

Perpendicular to the eaves, θ = 90◦

G
F/H
I

-1.12
-0.48
-0.35

A
B
C

0.38
-0.59
0

Table 3.6 summarise the wind calculations done for the cylindrical and spherical roofs. The
multi-span roof is not accounted for as it was assumed to have the same wind distribution as
two cylindrical roofs.

The wind action calculation depends on many variables. Several assumptions and simplific-
ations regarding the wind direction and terrain were made to obtain the peak velocity pressure.
The pressure coefficients and wind load distribution depend on the geometry of the roof. The
Eurocode presented inadequate information with regards to the cylindrical and spherical roof
shape. Only one Figure for each of the roof shapes was given to obtain the pressure coefficient
and describe wind distribution. Difficulties in understanding the limited information leads to
ecen more uncertain results.
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3.3 Review of Actions according to Eurocode
In the beginning of Eurocode under In Status and field of application of Eurocodes, the follow-
ing is stated:

The Eurocode standards provide common structural design rules for everyday use
for the design of whole structures and components products of both traditional
and innovative nature. Unusual forms of construction or design conditions are
not specifically covered and additional expert consideration will be required by the
designer in such cases. [39]

After studying the aforementioned cases, it is clear that the Eurocode falls short in providing
information on snow- and wind load distributions on shell structures, and roofs of particular
geometry.

As Standards are built on empirical data, there are many uncertainties connected to the
information given as there might be simplifications and generalizations in order to transform
practice into theoretical expressions. This is an important factor needed to be addressed if the
Eurocode is adopted for shapes not explicitly defined by the code. In other words, deducing
information cannot be done with great reliability.
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4 | Parametric Study

In this chapter a further investigating of the shapes from Chapter 3 will be performed using
Grasshopper and the plug-in Karamba (see Ch. 2 for information about the software). These
shapes include the cylindrical and spherical roof. In addition, a flat roof is included to examine
the structural differences between curved and flat structures. Going forward, the shapes will be
considered as three-dimensional structures and addressed as the barrel vault, dome and the plate
(see Fig. 4.1).

Figure 4.1: Geometric shapes to be investigated in Parametric Study. From left to right: Barrel vault,
plate and dome.

To examine how the grid shell behaves compared to a "perfect" shell with a continuous
surface, both a timber grid shell and concrete shell is developed in Grasshopper through al-
gorithmic modelling. The aim is to understand and compare the efficiency of the shapes, as
well as the differences of using reticulated bars vs. a continuous surface. The three shapes are
parametrically defined and assigned concrete and timber grid shell properties with Karamba.
The parametric behaviour of the models ensure flexibility with regards to alternating between
the geometric shapes.

Parameters considered

The parameter (variable) of this Parametric Study will be rise/span (r/s)-ratio

Structural response and internal actions

The structures in question will be analysed with regards to displacements, bending moments
and axial forces. These are considered to be the most affected when alternating between the
shapes and given parameter (r/s-ratio). The Shear forces were found to be small in the initial
stage, and will consequently not be considered in this chapter.

Loads considered

The loads considered in the Parametric Study is self-weight of the structures and uniformly
distributed snow load. The magnitude of the snow load is selected to be 6.11kN/m2. In Section
3.1.1 (Sec. 5.3.5(1) in [35]), it was found that the snow load will only be distributed on the
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structure where the curvature is less than 60 degrees as the snow is assumed to slide off when
the angle is steeper. This assumption will be accounted for in this chapter.

4.1 Establishing geometry in Grasshopper

To make the models as parametric as possible, the geometry is modelled in Grasshopper, mak-
ing Rhino merely a visual environment in this case. Lines, generic curves and Non-Uniform
Rational B-Splines (NURBS) are used to establish the geometry. Lines mainly to represent
the grid framework of the timber grid shell, and the curves to establish the overall shape of
the structures. The NURBS curves are mathematical representations of 3D geometry and are
defined by degree, control points, knots and evaluation rule [40]. The given definitions will be
not be further explained in this thesis, but more information can be found on the Rhino home
page [40].

In order to make the task of alternating between shapes as clear and straightforward as
possible, the basic geometry of the structures are defined in the very beginning of the code. The
geometries are given a surface, which is the starting point of the code for the structural analysis
performed with Grasshopper and Karamaba.

Barrel vault

The barrel vault is symmetric over its length, and is modelled by the use of NURBS curves to
get the cylindrical shape. The geometry of the barrel vault is defined by a NURBS curve with
degree and vertices (control points) taken as inputs. The geometry is assembled with a second
degree NURBS curve consisting of 4 control points constrained by symmetry, see Figure 4.2.
The symmetry enables the possibility of having fewer parameters, simply a slider for span and
height. The outer points (point 1 and 4 in Fig. 4.2) can be moved in the y-direction, changing
the span of the barrel vault. The y-coordinate of the inner points is defined as two-thirds of the
y-coordinate of the outer points. Hence, the inner points adjust to the change of span. The height
of the Barrel vault is modified by moving the slider for height connected to the z-coordinate of
the inner points (point 2 and 3). The length of the Barrel vault is defined to be equal to the span,
i.e the floor plan is quadratic.

Figure 4.2: Barrel vault constructed by NURBS curve of 2nd degree with 4 control points
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Plate

The plate is modelled in Grasshopper by constructing four corner points, and creating a surface
from these points. Figure 4.3 shows how the plate surface was established. The surface is
a quadrilateral with equal side, and is established by constructing two points and thereafter
translating these points in a distance equal to the span with the Move-component.

Figure 4.3: Surface of plate modelled by the input of 4 corner points

The purpose of adding the plate to this parameter study is mainly to observe the different
structural behaviour of plane structures (plate) vs. curved ones (barrel vault and dome). This
will be further addressed later in this chapter (see Section 4.4.4).

Dome

The dome is modelled by defining a curve similar to an quarter-arc and revolving it about a
vertical axis. Figure 4.4 shows the code for how the curve is created. A slider is defined both
for the radius and the height of the dome, making it possible to change one dimension independ-
ently of the other. These two sliders define the beginning and end point of the curve. A line
is drawn between these two points, and the center point on the line is found. The point is then
moved with the Move-component a distance (amplitude) in a direction pointing outwards from
the center of the dome. It is observed that the height divided by 3.5 results in a nice shape of the
curve. The middle point of the curve is thus defined, and the curve is created by interpolating
between the radius, middle and height point. The surface of the dome is further created by the
Revolution-component with the input of the 3 point curve and the axis of revolution (z-axis),
see Figure 4.5.

Figure 4.4: Dome geometry - construction of a 3 point curve
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Figure 4.5: Dome geometry - surface constructed by revolution of the 3 point curve

From geometric shapes to structural model

In order to start the FE-analysis of the concrete shell and the grid shell, the geometric shapes
need to be assigned structural properties. The next two sections (Sec. 4.2 and 4.3) explain how
the Grasshopper code was established for the grid shell and the continuous shell. It will also be
explained how the structural analysis was performed with Karamba, and how the data (which
will be presented in Sec. 4.4) was collected and organised. In Appendix B Grasshopper code
for Parametric Study a more detailed illustration of the code is presented.

4.2 Grid shell in Grasshopper and Karamba
The pattern of the grid will have an effect on the results. For the first analysis, a grid shell
consisting of rectangles with diagonal bracing is chosen (see Figure 4.6). Different patterns and
their behaviour will be examined further in Chapter 5.

4.2.1 Creating Beam Elements
The surface defining the shape is divided into rectangular surfaces with an area of approximately
1mx1m, using the DivideDomain- and IsoTrim-components. In order to create the grid
shown in Figure 4.6, the u count in DivideDomain is always set to an even number, and the v
count is set to an odd number. This is ensured using an even- and odd-number generator created
with C#.

Figure 4.6: Grid shell pattern adopted for the Parametric Study of the reticulated timber shell
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Figure 4.6 shows the grid pattern adopted for the Parametric Study, with the nodes 1-4
positioned in a specific order. Every second face of the grid is selected using CullPattern and
the vertices with index 4 and 2 are connected. The face selection is then inverted and the other
diagonal is created by connecting vertices 1 and 3.

Figure 4.7 shows how the diagonal bracing as well as the main grid and edge beams are
generated.

Figure 4.7: Grasshopper code for establishing grid pattern like illustrated in Fig. 4.6

This way of dividing the shape into equally sized rectangles and creating a grid, only works
for a rectangular surface. The dome however, will have a spherical form with curved boundaries.
Therefore, to ensure that the analysed grid shell dome has the same pattern as the barrel vault,
the grid for the dome is first generated on a flat surface and then projected onto the surface of
the curved dome (see Fig. 4.8).

Figure 4.8: Projecting grid pattern onto the surface of the dome

Explode is used to divide the curves between each intersection in to line-like segments
which are then converted to beam elements using LineToBeam(Karamba). The beam ele-
ments are assigned an identifier (BeamID). This is later used to assign properties to the grid.
The Element-output is a list over all the beam elements in the model, and the Points-output
is the global coordinates of all the end nodes of the beam elements. The beam elements are
orientated so that the local z-axis of each beam element is perpendicular to the surface in the
midpoint of each element (see Fig. 4.9).
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At the end-points of the beam elements the Beam − Joints(Karamba) is used to control
the joint properties. For the analysis in this chapter, the joints are assumed to be fixed.

Figure 4.9: Line segments taken as inputs in the LineToBeam-component and orientated to make sure
the local z-direction of the beams measured in the middle point of the beam is located in the direction
parallel with the normal vector of the surface in that point

4.2.2 Specifying Material and Cross Section Properties

Gl32h is used as the material for the Parametric Study. The characteristic properties of GL32h
are found in NS-EN 14080 ([41]) and taken as inputs in the MaterialProperties(Karamba)-
component. The value of the shear modulus however, differ from the one given in [41]. In
Karamba the shear modulus needs to be larger than E/3 (E= Young’s Modulus) and smaller than
E/2, because it assumes an isotropic material. Timber is an orthotropic material and will have
a smaller shear modulus than E/3, hence this assumption is not completely accurate. However,
to continue the analysis and make sure the material behaves as expected by Karamba, the shear
modulus is set between E/2 and E/3.

The material properties are then transferred to the MaterialSelection(Karamba) and
linked to the beam elements with the BeamID’s (see Fig. 4.10).

Figure 4.10: Specifying material properties for GL32h in Karamba

A solid quadrilateral cross section with h = b is used for all components in this analysis.
This is achieved by selecting the Trapezoid cross section in the CrossSections(Karamba)-
component and setting upper width, lower width and height to the same value (see Figure 4.11).
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Figure 4.11: Defining a solid cross section with CrossSections(Karamba)-component

4.2.3 Specifying Supports

Once the elements are created and cross sections with corresponding material are assigned, the
supports needs to be defined. A series of points located in the xy- plane as well as on the edges
of the shape are set as supports. The points already exist in the model as end-points of the beam
elements.

To locate the relevant points PullPoints is first used to measure the distance between each
point and the xy- plane. Then CullPattern is used to remove the points where the distance is
larger than zero. The remaining points is again taken as input in PullPoints, to measure the
distance between the points and the edge of the surface. Finally, the points at the edge curve is
retrieved and taken as inputs in Support(Karamba) (see Fig. 4.12).

Figure 4.12: Grasshopper code for locating the points (nodes) on the ground (xy-plane) and feeding
them as input for the Support(karamba)-component. The supports are pinned.

In the Support(Karamba)-component the support condition are specified with six degrees
of freedom (dofs), three rotational and three translational. The supports are assumed to be
pinned, hence only the three translational dofs are fixed (see Fig. 4.13).
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Figure 4.13: Zoom-in on the pinned supports with fixed translations, and three rotational dofs

4.2.4 Specifying Loads

As mentioned previously only the snow load and the self-weight of the structure will be con-
sidered in this analysis. The snow load (Fig. 4.14 (A)) is projected onto the surface (Fig. 4.14
(C)). This is a simplification as in reality the snow load on the grid shell will be globally projec-
ted as illustrated in Figure 4.14, (B). For a curved surface this means that the points located on
top of the surface (where the surface has the least curvature) will be affected by a greater snow
load compared to the points located near a steeper curvature.

For simplicity, the illustration (C) will be adopted, and the same point loads are lumped onto
the end-points (nodes) of the beam elements. The snow load will only affect the points which
are located on the surface with a curvature less than 60◦ (see Sec. 3.1.1).

Figure 4.14: (A) uniform snow load. (B) globally projected snow load for angle less than 60◦ (C)
simplified projected snow load for angle less than 60◦.

To find the magnitude of the point load, the projection of surface area with the relevant
curvature and the points located in this area needs to be found.

First the uv-coordinates of all the node points are found and taken as inputs in theEvaluateSurface-
component. Here the normal vectors of each point is extracted and used to determine the inclin-
ation of the surface. All the normal vectors are set to have positive valued components only. The
angle between the normal vector of the surface and the unit vector (0, 0, 1) is then determined
(see Fig. 4.15). All points with an angle higher than 60◦ are removed using CullPattern (see
Fig. 4.16).
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Figure 4.15: Illustration of the angle between the normal vector and unit vector

Figure 4.16: Points on the surface with curvature smaller than 60◦, and hence the area defining the
domain for where the snow will accumulate according to [35]

The remaining points are first projected to the ground and then used as inputs inDelaunayMesh
to establish a triangulated mesh (see plane red area in Fig. 4.17). The mesh represents the pro-
jected area of the surface with a curvature less than 60◦, hence the points used to create the
mesh are the points affected by the snow load (see green points in Fig. 4.17).

Figure 4.17: Illustration of the points (green) where angle of surface ≤ 60◦ and hence the domain for
the snow load. The figure also shows the projected area on the xy-plane

The area of this projected surface and the number of points within the area are used to
approximate the magnitude of the point loads (see Fig. 4.18). As a result the value of the point
loads and the points of interest are found and used as inputs in Loads(Karamba).
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Figure 4.18: Input to the Loads(karamba)-component with magnitude of point loads based on the area
of where the snow distributes on the roof shape

4.2.5 Assemble the model and perform structural analysis with Karamba
To perform a structural analysis in Karamba all the necessary information is collected in the
AssembleModel-component. Initially small deformations are assumed, and the model output
is connected to the analysis component AnalyzeThI(Karamba) which performs a first order
analysis (see Fig. 4.19). Later, a linear buckling analysis is done withAnalyzeThII(Karamba)
and theBucklingModes(Karamba). ModelV iew(Karamba)- andBeamV iew(Karamba)-
components are used to visualise and interpret the results (see Fig. 4.20).

Figure 4.19: AssembleModel-component used to collect all the information about the structural model

Figure 4.20: ModelV iew(Karamba)- andBeamV iew(Karamba)-components used to view the res-
ult from the analysis in Rhino
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4.2.6 Retrieving Results
Beam Resultant Forces
The BeamResultantForces(Karamba)-component retrieves the maximum resultant forces
for all beam elements in the model (see Fig. 4.21). The output is a data tree where each branch
represent a load case with resulting beam forces. A C# script is created to control which load
cases should be added together to achieve the total beam force (see Fig. 4.22). The yellow
panels in the figure shows the results of the largest axial force N , the resulting bending moment
Mres and shear force V for all beam elements and load cases/ load combinations. The resulting
bending moment Mres is defined as:

Mres =
√
M2

y +M2
z

Figure 4.21: BeamResultantForces(Karamba)-component used to collect axial force N , the result-
ing bending moment M and shear force V

Figure 4.22: C#- script used to combined and retrieve the correct beam forces
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Figure 4.23 shows the direction of the local coordinate axis of the beam elements. The cross
sectional forces are defined according to this coordinate system. Negative normal force means
the beam element is in compression, positive means tension.

Figure 4.23: Normal force, resulting shear force and bending moment related to the local coordinate
system of the cross section (Fig. 83 in [42])

Reaction Forces in the grid shell
ReactionForces(Karamba)- component are used to find the reaction forces at the supports.
Also here a C# script is created to sort the reaction forces after the different load cases. The
results are presented as the average reaction force per meter support.

Displacements in the grid shell
The displacement of the structure is found with collecting the nodal displacements with the
NodalDisplacement(Karamba)- component and processing these with C#. The nodal trans-
lation output gives the nodal translations in the global x-, y- and z-direction (dx, dy, dz). The
total displacement is defined as:

dtotal =
√
d2x + d2y + d2z (4.1)

Figure 4.24: NodalDisplacement(Karamba)-component used to retrieve the maximum displacement
due to self-weight and snow load

4.3 Concrete shell in Grasshopper and Karamba
The parametric model of the concrete shell is built in the same manner as the grid shell. How-
ever, there are some principal differences. The main one being that the concrete shell model is
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based on shell elements, contrary to the beam elements in the grid shell. Another difference is
that the concrete model of the barrel vault, plate and dome is created in the same GH model.

4.3.1 Mesh and Shell Elements
In order to start the FE-analysis of the concrete shell a mesh needs to be created for the shell sur-
face. The mesh density affects the accuracy of the finite element model as well as computational
power needed. A denser mesh gives more accurate result but also demands longer computation
time. MeshBreps is used to mesh the surface, and a mesh resolution of 0.5meters is assumed
to be sufficient and taken as input (see Fig. 4.25). MeshtoShell(Karamba) converts the mesh
geometry in Grasshopper to shell elements in Karamba (see Sec. 2.6). The shells are assigned
an identifier called "s".

Figure 4.25: MeshBrep-component used to generate the mesh with a selected resolution of 0.5. The
MeshToShell(Karamba)-component creates the structural Shell Elements from the mesh geometry.

4.3.2 Specifying Material and Cross Section Properties
The material properties are specified using MaterialSelection(Karamba). In the drop-down
menu the predefined material concrete C30/37 is chosen. Note that default values for concrete
C30/37 in Karamba are used and the material properties will differ from the ones provided by
the code for concrete (NS-EN 1992-1-1).

The cross section is defined using the CrossSections(Karamba)- component, where shell
is selected in the drop-down menu and a thickness is assigned. The shell identifier, "s" is connec-
ted toMaterialSelection(Karamba)- and theCrossSectionSelector(Karamba)-components
to apply the properties to the shell elements.

4.3.3 Specifying Supports
The vertices of the shell meshes that are located on the edge of the surface and in the xy-plane
are specified as supports (see Fig. 4.26).
The vertices are extracted from theMeshToShell(Karamba)-component, otherwise the grasshop-
per code for determining the relevant points are similar to the one used for grid shells (see Fig.
4.12).

49



Figure 4.26: Illustration of the supports for the concrete barrel vault. The points on the shell surface
represent the vertices of the shell elements

4.3.4 Specifying Loads

Similar to the grid shell, the self-weight of the structure and snow load is applied. The surface
area of the structure with a curvature less than 60◦ is found using the same code as for the
grid shell (see Fig. 4.16). However, instead of approximating the globally projected load (see
Fig. 4.14 (C)), the Loads(Karamba)-component for mesh loads allows for a simpler and more
accurate method. First DelaunayMesh- and SmoothMesh- component is used to establish
a mesh based on the relevant points (i.e. the points located on the surface with a curvature
less than 60◦). Then the mesh is directly taken as input in the Loads(Karamba)-component,
where "Mesh Load" is selected as the type of load (see Fig. 4.27). "Global Proj." is checked
off under "Orientation", which ensures that the load vector is orientated according to the global
coordinate system. It also ensures that the area where the load is distributed is the projected
area of each mesh face. Thus, the load on each face will vary due to the varying size of the
projected area. This will replicate a more realistic snow distribution, than the one used for the
grid shell model (see Fig. 4.14, (B)).

Figure 4.27: Grasshopper code for the globally projected snow load on the concrete shell, added to the
points of the mesh as MeshLoad
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4.3.5 Assemble the model and perform structural analysis with Karamba
Information about the shell element, cross section, material, loads and supports is collected in
theAssemblyModel-component, before a first order analysis with theAnalyzeThl-component
is performed. For the concrete shell, ModelV iew(Karamba), ShellV iew(Karamba) and
ResultV ectorsonShell(Karamba) are used to visualise the results.

4.3.6 Retrieving Results
From the ShellForces(karamba) the values of the principal normal forces and moments are
collected. A C# script is made to find the maximum values (see Fig. 4.28 for the output of the
C#-code). The displacements and reaction forces are collected in the same manner as the grid
shell model (see 4.2.6).

Figure 4.28: ShellForces(Karamba) and C#- component used to retrieve the principle forces in [kN ]
and principal moments in [kNm]

51



4.4 Results from the concrete shell and grid shell analysis in
Karamba

As mentioned in the introduction of this chapter, the idea is examining the differences of perfect
shell behaviour (concrete) vs. reticulated bars (timber grid shell). In addition a shape analysis
will be completed of the dome, barrel vault and plate. Their efficiency and response due to
change in different geometrical parameters will be investigated.

To begin with a first order analysis will be performed with main focus on mass, displace-
ments and normal forces. The span is set to 12 m and the height will vary to study the behaviour
with a changing r/s-ratio. Self-weight and snow load is the loads considered. As mentioned in
the previous sections, the snow load on the grid shell has a different distribution compared to
the continuous concrete shell (see Sec. 4.2.4 and 4.3.4 and Fig. 4.14). However, this difference
is considered to be negligible in the following analyses.

The analyses are carried out by the use of the Grasshopper codes defined in Sections 4.2 and
4.3 (See Appendix B for more details about the parametric codes). The results obtained from
the structural analysis in Karamba are transferred to Excel, where the results are be presented
in graphs and illustrations.

The materials selected and their properties are presented in Table 4.1.

Material E G fy γ αT

[MPa] [MPa] [MPa] [kN/m3] [1/◦C]

C30/37 33000 13750 20 25 1.0E−5
GL32h 11800 400 32 4.3 5.0E−6

Table 4.1: Material properties (concrete and timber) adopted in the Parametric Study

Timber is a light-weight material with a low density of γ = 4.3kN/m3, compared to con-
crete where γ = 25kN/m3. This, in addition to the stiffness of concrete being approximately
3 times as large as for timber (E-modulus, see Tab. 4.1), gives the materials different structural
behaviours. Timber is a an anisotropic material and has a high capacity in both compression and
tension in the grain direction but is weak perpendicular to the grain. Concrete is very good in
compression, but requires reinforcement in order to handle tension. Timber has a more ductile
failure mechanics in compression compared to concrete, i.e. it can handle a lot of deformation
before breaking.

Despite the fact that the two materials are quite different, their behaviours in the configura-
tion of shell structures is assumed to be comparable in the following sections.

4.4.1 Continuous concrete vs. reticulated timber
A general comparison is made of the two shells to gain an overall understanding of the structural
behaviour of a continuous concrete shell and a reticulated timber shell. This will give an idea
on how to further compare the two and correctly interpret the data obtained.

Figure 4.29 portrays the moment distribution for the dome and the barrel vault constructed
with similar dimensions both as a concrete shell and a grid shell. For the concrete shells the
moment distribution is illustrated with vectors (see Fig. 4.29a and 4.29c). The green arrows
illustrate the first principle moment (M1) in the global coordinates on the deformed structure,
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and the red illustrate the second principle moment (M2). The bigger the arrows, the bigger the
principle moments are at that point. For the grid shell, the moments are presented with regular
moment diagrams (see Fig. 4.29b and 4.29d).

(a) Concrete Barrel Vault
(b) Timber Grid Barrel Vault

(c) Concrete Dome (d) Timber Grid Dome

Figure 4.29: Moment distribution of the dome and the barrel vault both as concrete shell and grid shell

From Figure 4.29 is appears that the distribution of arrows in the concrete shell corresponds
to the moment distribution in the timber grid shell. This indicates that the grid shell have a
similar force distribution and bearing system as the concrete shell. Which again implies that
the behaviour in the timber grid shell i.e. reticulated bars can be compared to the behaviour in
a "perfect"/continuous shell.

To evaluate this statement further, the moment distribution and the displacement of the four
structures in Figure 4.29 are presented and compared in the two following sections (Sec. 4.4.2
and 4.4.3).
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4.4.2 Moment relative to r/s-ratio
Figures 4.30 and 4.31 show the maximum resulting moments Mres occurring in the concrete
shell and grid shell, respectively, when shaped as both a dome (red) and a barrel vault (green).
Both self-weight and snow load is applied to the structures.

Figure 4.30: Concrete shell: Moment Mres =
√
M2

1 +M2
2 [kNm/m] occurring in barrel vault and

dome with changing r/s-ratios

Figure 4.31: Grid shell: Moment Mres =
√
M2

y +M2
z [kNm] occurring in barrel vault and dome with

changing r/s-ratios

From the figures above it appears that the change in maximum moment with respect to r/s-
ratio for the concrete shell-shapes (Fig. 4.30), resembles the change in moment for the grid
shell-shapes (Fig. 4.31). In addition, the order of magnitude of the moment values for the
concrete dome and the grid shell dome coincide, and similar observations can be done for the
barrel vaults. This substantiates that the behaviour of the concrete shell corresponds to the grid
shell behaviour.
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Higher moments in the barrel vault
Notice that the left axis in the graphs presented in Figures 4.30 and 4.31 corresponds to the mo-
ment obtained in the barrel vault, and the right side corresponds to the moment in the domes.
This is solely done to get a better observation of the values, as the acting moments in the barrel
vault are considerably higher than in the dome.

Uneven increase in moments in the dome
From Figure 4.30 and 4.31 it can be observed that the maximum moment in the dome will have
a uneven increase after rise/span - ratio 0.25. The dome will have a small peak around r/s-ratio
0.33. This peak is due to the redistribution of maximum moment.Figure 4.32 illustrates the
maximum principle moments M1 and M2 with green and red arrow, respectively. The location
of the maximum M2 (red arrow), change as the r/s-ratio climb over 0.25.

(a) r/s-ratio=0.25 (b) r/s-ratio=0.33

Figure 4.32: Location of maximum principle moment M1 (green) and M2(red) in kNm/m (illustrated
with arrows) in the concrete dome

Higher relative change in moments for the dome
The maximum moment in the dome undergoes only modest changes when the r/s-ratio climbs
above 0.2. Decreasing the r/s-ratio however (rise/span ≤ 0.2) the dome will have a sudden
increase in moment. The barrel vault will also experience an increase in moment when the r/s-
ratio decreases below approximately 0.2, yet the relative increase in the dome will be notably
higher. The dome will in general have a greater relative change in moment compared to the
barrel vault, indicating that the change in r/s-ratio is of less significance for the barrel vault (see
Fig. 4.33).
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(a) Dome r/s-ratio = 0.08
(b) Barrel Vault r/s-ratio = 0.08

(c) Dome r/s-ratio = 0.25

(d) Barrel Vault r/s-ratio = 0.25

(e) Dome r/s-ratio = 0.42

(f) Barrel Vault r/s-ratio = 0.42

Figure 4.33: Moment distribution My [kNm] for the grid shell dome and barrel vault for changing
r/s-ratios

The barrel vault will have a smoother and more predictable change in maximum moment
as the r/s-ratio increase. Figure 4.33 illustrates how the moment distribution for the dome and
barrel vault develops when the r/s-ratio is changing. The figure indicates how the dome will
adjust its moment distribution according to the curvature more than the barrel vault.

Optimal r/s-ratio for arch-like structures exerted to different load situations
As previously mentioned in Section 2.5 a barrel vault and a dome can both be defined by an arch.
It could therefore be interesting to see what the optimal r/s-ratio is for an arch, and compare it
to the values presented in Figures 4.30 and 4.31.

The arch is modelled as a concrete arch in GH, discretised into 100 beam elements and ap-
plied loads in the end-nodes of the beam elements. Galapagos is used to minimise the moment
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by keeping the span fixed and changing the height, to seek for the shape which is (approxim-
ately) funicular for the load situation in question. Figure 4.34 shows the two various shapes
obtained when minimising the moment for only self-weight applied (see Fig. 4.34a) and both
self-weight and snow load (see Fig. 4.34b).

With only self-weight applied the concrete arch is found to have an optimal ratio around
1.05, while for the second case with snow load + self weight the concrete arch had an optimal
ratio equal to 0.36. The variance between these two ratios display how the optimal shape will
adjust to the load situation. Referring to the latter case, the optimal r/s-ratio is comparable with
the results presented in Figures 4.30 and 4.31 (also self-weight + snow load applied). This
substantiate that the behaviour of the arch can relate to the behaviour of the barrel vault and the
dome.

(a) Only self-weight applied (r/s=1.05)

(b) Snow load + self-weight applied (r/s=0.36)

Figure 4.34: Illustration of the optimal arch shape obtained with Galapagos with regards to minimising
moments. The arch is modelled in concrete and discretised into 100 beam elements. The two shapes are
results of two different load situations.
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4.4.3 Displacement relative to r/s-ratio
Figures 4.35 and 4.36 below illustrate the largest displacement for the dome and barrel vault
modelled as a concrete shell and grid shell for different r/s-ratios. The displacement due to
self-weight and snow load is considered, and the maximum total displacement in [mm] (see Eq.
(4.1)) is presented in the graphs.

Figure 4.35: Concrete shell: Total displacement [mm]of the barrel vault and dome with changing r/s-
ratios

Figure 4.36: Grid shell: Total displacement [mm] of the barrel vault and dome with changing r/s-ratios

Analogous to Figures 4.30 and 4.31, both Figures 4.35 and 4.36 show how the displacements
of the concrete barrel vault and dome resemble the displacements of the reticulated dome and
barrel vault. This underlines once again that the concrete shell and grid shell have similar
behaviours.

In Figures 4.35 and 4.36 the lowest displacement found for all configurations are high-
lighted. The Galapagos evolutionary solver in GH was used to minimise the displacement and
the corresponding r/s-ratio.
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Lower displacements in the dome
Figure 4.36 illustrates the maximum total displacement for the grid shell dome and barrel vault.
The barrel vault will have a considerably higher displacement compared to the dome, and the
displacement is also more affected by the change in height in comparison with the dome.
Between the r/s-ratios 0.12 and 0.5, the barrel vault will experience an increase in displace-
ment of 48.4% compared to the dome where the increase is 28.6% for the same interval. Due
to the barrel vault having larger values of displacements, the relative increase will influence the
barrel vault structure considerably more than the dome structure. This indicates that the dome
is a more efficient structure than the barrel vault.

Developable and non-developable surface
The dome is simply supported around the entire edge of the surface, contrary to the barrel vault
which only has supports on two of its four edges. In addition, the dome is doubly curved and
a non-developable structure compared to the single curvature and developable barrel vault (see
Sec. 2.2). Referring to Section 2.5, the dome is more rigid and a more stable structure due to
its closed ring at the bottom.

4.4.4 The effect of curvature
The shell is defined by a curved surface (see Sec. 2.1). Section 2.3 Membrane forces explained
how the curvature is the reason for why the shell can carry vertical loading with only in-plane
forces. It was also explained how it is easier to deform the structure by bending it, than by
stretching it. Figure 4.37 illustrates the concrete model, with the displacement of the plate,
barrel vault and dome for an increasing span (with height equal to 5m for the two latter). The
figure illustrates how curvature clearly is an important factor in withstanding deformation. A
plate supported on all sides will only experience bending forces when vertical load is applied,
however no compression forces. Thus, the plate’s ability to withstand the deformation only
depends on its bending resistance. Contrary to a structure with a curvature, like the barrel vault
and the dome, where the in-plane compressive forces will contribute in resisting the deformation
(see Fig. 4.37).

Figure 4.37: Total displacement [mm] of the concrete model, modelled as a plate, barrel vault and dome
for varying span. The height is fixed to 5m for the dome and barrel vault.
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To highlight this further; the displacements of the barrel vault and the dome when laid out
flat (height= 0, illustrating a plate) were found to be 1614mm and 484.2mm, respectively. By
increasing the height to 1 meter, the displacement seems to decrease with 98.6% for the dome
and 99.8% for the barrel vault. In addition the moment will decrease greatly. This shows how
the curvature plays an important part in the efficiency of shells.

Traditional flat roof vs. barrel vault

Traditionally, roof structures will be built with simple geometric shapes like mono-or duo-
pitched roofs. Hence, to emphasize the efficiency of the less traditional shell structure, a com-
parison is made between a flat roof (mono-pitched with zero angle) and a barrel vault. The flat
roof structure consists of rafters supported on columns c/c 600mm. The roof is covering ap-
proximately the same floor area for the two structures. The total length of timber material used
is 696m for the barrel vault and 625m for the flat roof. Figure 4.38 shows the two structures in
question.

The necessary cross section for the two structures is found by limiting the displacement
to be equal to 5cm. The corresponding weight of the structures is also found, and both cross
sections and weights are presented in Table 4.2.

(a) Traditional Flat Roof c/c 600mm (b) Timber Grid Barrel Vault

Figure 4.38: Illustration of a traditional flat roof structure and a barrel vault grid shell with approximately
the same floor area and size of structure. The size of cross section is chosen with regards to keeping the
displacement = 5cm.

Table 4.2: Cross section and weight for the barrel vault and the traditional flat roof, given a displ. = 5cm

displacement = 5cm
Shape Cross section Weight tot. length of beams

[mmxmm] [kg] [m]

Barrel Vault 90 x 90 2424 696
Flat Roof w/col 225 x 115 6952 625

As seen from Table 4.2 the necessary cross section to keep the displacement at approxim-
ately 5cm is greater for the flat roof than for the barrel vault. The total mass of the flat roof
structure will thus also be larger. This illustrates why timber grid shells and shell structures in
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general can be characterized as being light-weight structures. The shape of the structure makes
it more efficient and the necessary material (and thus the material costs) will be lower than for
the traditional roof structures.

Even though curved structures are found to have benefits with respect to deformation and
material use, there are still some concerns that need to be taken. As mentioned in Section 4.4.2,
large moments were found for low r/s-ratios, which in combination with compression forces
and slender cross sections poses a threat to the stability of the structure. This will be further
addressed in Section 4.5.

4.4.5 Normal forces in grid shell
The largest axial forces of all beam elements in the grid shell when both self-weight and snow
load is applied are presented in Figure 4.39 (compression) and Figure 4.40 (tension).

Figure 4.39: Largest compression force Nc [kN ] of all beam elements in the grid shell dome and barrel
vault relative to r/s-ratio

Figure 4.40: Largest tension force Nt [kN ] of all beam elements in the grid shell dome and barrel vault
relative to r/s-ratio

As seen from Figure 4.40 the dome will not have any beam elements in tension before
reaching a r/s-ratio above 0.25. The forces are able to flow down to the ground in all directions
due to the the curvature of the surface and the supports placed continuously around the edges
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of the surface. The loads will be evenly transferred to all the beam elements. For the singly
curved barrel vault, on the other hand, the forces can only be transferred to the ground on two
of the sides (where there are supports). The barrel vault will thus experience a higher stress
concentration near the supports.

4.4.6 Axial stresses in grid shell
As seen in Figure 4.40 above, the dome showed to not have normal forces acting in tension in
any of the beam elements before a r/s-ratio above 0.25. The barrel vault however, showed to
have tension members for all r/s-ratios. To investigate this difference further the axial stresses
were found for the barrel vault and dome at a r/s-ratio of 0.08.

Figure 4.41: Axial stresses in a grid shell barrel vault with r/s-ratio of 0.08. Red colour indicate tension,
and blue indicate compression axial stresses

Figure 4.42: Axial stresses for a grid shell dome with r/s-ratio of 0.08. Red colour indicate tension, and
blue indicate compression axial stresses
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Figures 4.41 and 4.42 shows that the distribution of stresses will be quite different for the two
shapes (same r/s-ratio). The barrel vault in Figure 4.41 will experience more tension stresses,
as indicated with the red and yellow colours. Most of the red area will be close to the support
and in beam elements located parallel to the supports. This illustrates the disadvantage of force
transfer in the barrel vault (only one direction) - as the beams parallel with the supports will
have to transfer the loads to the ground orthogonal to their neutral axis. The dome in Figure
4.42 will mostly experience compressive stresses. As mentioned above in Section 4.4.5, the
shape of the dome enables the forces to flow to the ground in all direction, which distributes the
loads evenly to all element.

At the top of the dome, the bending moment causes tension in the upper fibers of the cross
section. In the dark blue area the bending moment will cause compression in the upper fibers
and tension in the lower (this tension area appears if the dome is seen from below). Note that
the magnitude of the stresses in the barrel vault is much greater than in the dome.

To conclude this, the dome will have a more efficient stress distribution than the barrel vault
for a low r/s-ratio.

To investigate how the axial stress distribution of the dome changes with a changing curvature,
two additional r/s-ratios of the dome were investigated. Figures 4.43 and 4.44 illustrate the axial
stress distribution in the dome when the r/s-ratio is 0.25 and 0.42, respectively.

Figure 4.43: Axial stresses for a grid shell dome with r/s-ratio of 0.25. Red colour indicate tension, and
blue indicate compression axial stresses

From Figure 4.43 it can be observed how most of the dome will be in compression, as
indicated with the blue colours. The colours are mainly in the same colour shade, i.e. the
stresses are evenly distributed. This is favourable as all the beam elements contribute equally in
carrying the load, and thus avoiding that one element fail ahead of the other beam elements.

When the rise/span ratio increases further, the members close to the support will start acting
in tension (see Figure 4.44). Due to the configuration of the model in Grasshopper, the length
of these bean elements will also be longer and thus more exposed to high moments and axial
forces. However, a higher curvature will cause the dome to deform differently, regardless of
the length of the beam elements. As seen from Figure 4.45 the dome with the higher r/s-ratio
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Figure 4.44: Axial stresses for a grid shell dome with r/s-ratio of 0.42. Red colour indicate tension, and
blue indicate compression axial stresses

will tend to deform by bending outwards, compared to a more inwards deformation for a lower
r/s-ratio. This implies that as the curvature gets two steep, the flow of forces will be less smooth
and the structure will be more prone to higher deformations and axial stresses in tension.

(a) Rise/span ratio: 0.25 (b) Rise/span ratio: 0.42

Figure 4.45: The different types of deformation for grid shell dome with two different r/s-ratios. Inwards
deformation for low r/s-ratio and outwards deformation for high r/s-ratio. Scale: 500:1

4.4.7 Kicking forces
For structures with low curvature i.e. a low r/s-ratio, kicking forces needs to be taken into
account (explained in Sec. 2.5). Figure 4.46 shows the reaction force R which is the force
needed to be transferred to the ground. The arch on the left has a low curvature which will
give rise to a large horizontal force Ry, the kicking force. For a high curvature arch (the right
illustration in Fig. 4.46) the vertical component Rz from the reaction force R is the largest,
hence the forces from the structure will easily be transferred to the ground mainly from the
weight of the structure.

Figure 4.47 illustrates the magnitude of the kicking force for different r/s-configurations for
grid shell shaped as a barrel vault and a dome. The kicking force is determined by considering
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Figure 4.46: Kicking forces (Ry) for low and high r/s-ratio (low and high curvature arches)

the resultant of the x- and y-component in the reaction forces obtained in Karamba. The kicking
forces are presented as the force per meter support.

Figure 4.47: Kicking forces (Horizontal reaction force in the plane) for grid shell barrel vault and dome
with regards to changing r/s-ratio. Kicking Force R =

√
R2

x +R2
y

The kicking forces become activated when the curvature increases from height equal to zero
(where zero height is equivalent with a plate i.e. zero normal forces, andRy = 0). As seen from
Figure 4.47, the values decrease exponentially when the ratio, i.e the height of the structure,
continue to increase. It can be observed how the kicking forces for the barrel vault is larger than
the kicking forces in the dome. This coincide with the concept discussed in Section 2.5. Here
it was explained how the dome is less dependent on the external support due to the ability of
supporting forces directed outwards from the structure with tension rings.

4.5 Buckling
As mentioned in Section 2.5 (and repeated in Section 4.4.4), shell structures are prone to buckle
as they in general are slender structures with large compression forces. Axial forces in beams
and trusses as well as in-plane forces in shells influence the stiffness of the elements in second
order theory calculations. Tension makes them stiffer and increase their bending stiffness, com-
pression has a softening effect. Slender columns or thin shells may fail due to buckling before
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the stresses in the cross section reach the material strength. Stability analysis therefore plays an
important role in structural design.

Karamba allows for considering second order theory (Th.II) via theAnalyzeThII -component.
It is based on small displacements and takes account of axial forces via the element’s geometric
stiffness matrix, KG [42].

The buckling analysis is based on the linear eigenvalue problem:

[K + λKG]x = 0, (4.2)

where K is the stiffness matrix of the element, KG is the geometric stiffness matrix, λ is a
scalar (the eigen-value), and x is the eigenvector [26].

The buckling load factor is the output of the 2nd order analysis in Karamba, and is equivalent
with the eigenvalue λ, obtained by expression (4.2). The buckling factor reveals if the structure
is safe or not, and safety is ensured if the following expression holds:

λ =
Ncrit

N II
≥ 1.0,

where the expression shows how λ is the ratio between the normal force acting within the
structure (N II) and the normal force at which the structure will fail due to buckling (Ncrit).

Buckling analysis of the barrel vault

The buckling load factor was found for the grid shell barrel vault and the concrete barrel vault.
Comparing the buckling factor for two different materials is not ideal. However, as one of the
objectives of this chapter is comparing a reticulated shell with a continuous shell, a comparison
of timber and concrete is difficult to avoid - as these are the most popular materials to use for
such structures.

The displacement was set to 5cm, and the cross section of the beam elements and the thick-
ness of the shell was changed accordingly. Figure 4.48 shows the BLFacs for the two shells.

Figure 4.48: Buckling load factor for a barrel vault with a change in r/s-ratio (concrete shell and grid
shell). Cross section and thickness chosen in accordance with reaching a displacement of the barrel vault
of 5cm.
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Different stiffnesses of the two shells
The solid concrete vault will be stiffer than a reticulated grid shell. The buckling factor, λ,
depends on the stiffness of the system, where a higher stiffness gives a higher buckling safety.
This is illustrated in Figure 4.48 where the concrete shell displays higher buckling factors than
the timber grid shell.

BLFac relative to mass of the structures
The concrete shell has a very high mass compared to the timber grid (see Fig. 4.49), and the
mass of the structure will in general have a positive influence on the buckling safety. More mass
will normally indicate more material and higher moment of inertia, i.e. higher stiffness of the
structure. However note that this is only the case if the mass is located efficiently (bigger cross
section rather than longer beams).

Given the significance of the mass the relative value between the BLFac and the mass of the
structure is found (see Fig. 4.50).

Figure 4.49: Mass [kg] of the concrete and grid shell barrel vault for a changing r/s-ratio (displ. = 5cm)

Figure 4.50: Buckling load factor relative to mass of the structures (concrete and grid shell barrel vault,
displ. = 5cm).

Figure 4.50 indicates that the timber grid shell is in fact a more efficient structure as less
material is needed to keep the structure safe from buckling. This indicates how the mass in the
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reticulated shell is exploited in a better way than in the concrete shell.

Figure 4.51: Buckling shapes for a concrete barrel vault with low (left) and high (right) r/s-ratios. S-
shape for low r/s-ratio, sway-shape for high r/s-ratio

The buckling deformation shown in Figure 4.51 the figure is the first buckling mode, which
is the mode for when the structure will first buckle (at the lowest load). With an increasing
r/s-ratio the buckling shape will move from being vertical to horizontal, from an s-shape to a
sway shape. The first mode tend to always be asymmetric, indicating that symmetric buckling
will demand higher forces.

Buckling of the concrete and grid shell dome
It was also done a short buckling check of the dome, and the BLFacs were found to be very
large. Thus, the dome was considered as safe and not further investigated.

4.6 Summary of the Parametric Study
In this chapter different shells, constructed both as a reticulated shell in timber and a concrete
shell shapes have been studied. It is emphasized that the comparison is done based on their
structural behaviour for a changing r/s-ratio rather than their point-wise values. It is understood
that the materials used each have unique properties and behaviours, and will demand separate
designing procedures. The Parametric Study in this chapter however, does not cover the design
of the structures.

In the beginning of the analysis it was disclosed that a reticulated shell can be treated as a
shell, equivalent to the continuous concrete shell. Their behaviours regarding displacement and
moments were found to be quite similar.

The analyses showed that a r/s-ratio between 0.2 and 0.4 was in general the most optimal
(for both barrel vault and dome). Too low ratios led to high moments, normal forces, kicking
forces and displacements, in addition to low buckling factors for barrel vault. For high ratios
the structure became less stable with larger displacements, axial stresses and moments.

It was observed how the dome is a very efficient structure. The reasons being the double
curvature and the smooth flow of forces, which is the main features of a great shell structure.
The barrel vault with its singly curved surface, was found to have higher moments, displace-
ments and normal forces compared to the dome, indicating a less stable structure.

A comparison was done between a plate, barrel vault and dome, to show the effect of
curvature. A large difference was found for only a small increase in the height, stating how
a curved shape is beneficial as it decreases both the occurring moments and displacements.
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This demonstrates how it is possible to reach great spans for curved shell structures, whereas
typically shorter spans and heavier structures are seen for the traditional buildings with beams
and columns.
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5 | Grid patterns on freeform structures

(a) Diamond grid (b) Square grid (c) Triangulated square grid

(d) Triangle grid (e) Hexagon grid

Figure 5.1: Different grid patterns for a freeform timber grid shell

Objective of the grid pattern analysis
In Chapter 4, it was depicted how the shell behaviour depends on both the shape and the type of
shell (continuous vs. reticulated). The aim of this chapter, is to further investigate the reticulated
shell, and move beyond the shapes of regular geometry to freeform structures (see definition of
Freeform in Sec. 2.2 Shells-Classification).

In a grid shell the forces will be transferred to the beams and down into the ground. Hence,
the grid’s shape and orientation will influence how well the forces flow though the structure.
The idea of this chapter is to start out with an arbitrary shape of the grid shell, and explore its
behaviour for different patterns of the reticulated bars. The grid patterns analysed are presented
in Figure 5.1.
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To draw the main advantage of a continuous shell i.e force flow in all directions, the arbitrary
shape of the grid shell will also be presented as an equivalent concrete shell. The principle stress
lines will be considered, as they give an indication on what would be the optimal grid pattern
topology. However, this is only included for a comparison to the geometric patterns in Figure
5.1 (the grid pattern topology will not be modelled/adopted).

5.1 Creating grid patterns
To compare the grids of interest, the geometry of the patterns shown in Figure 5.1 is defined in
Grasshopper. We adopt the Grasshopper code explained in Section 4.2, but replace the part of
creating beam elements (Sec. 4.2.1) with grid patterns established by the use of the Grasshopper
plug-in LunchBox. Figure 5.2 illustrates how the square grid (Fig. 5.1b) was established by the
use of LunchBox.

Figure 5.2: Establishing the grid patterns with the Grasshopper plug-in LunchBox. The example here
shows the square pattern presented in Fig. 5.1, created with the QuadGrid-component in Lunchbox.

The squared grid pattern is created by inputting a freeform-surface and a uv-domain to
divide the surface. The output is four corner points defining the location of each square in the
grid. Lines are created by the Line-component connecting the start- and end-points of the four
corners. The removeDuplicateLines-component is added to remove any excess lines.

This procedure is done for all the grid patterns in Figure 5.1. The uv-domain are chosen
individually for the different grids to pursue nice and even geometries with approximately 1m
length of beam elements. The output-lines generated for each pattern, are transferred to the
LineToBeam-component in Karamba to create the timber beams for the structural model (see
Appendix C for more details about the code).
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5.2 Grid pattern analysis

The comparison is made on behalf of displacements, normal forces and moments occurring for
the same load situation. Both snow load and self-weight will be considered in this analysis. The
aim is to understand which geometric pattern gives the best structural performance with respect
to the abovementioned.

It will also be highlighted how much timber is used to generate the different patterns, as
this may vary with the geometry. This will be an important factor with respect to minimising
the use of material for better costs (given the structural performance is sufficient). A simple
investigation will also be done with respect to the spacing length in between the beams.

An arbitrary cross section and snow load was assigned to the grid shells. A first order
analysis was performed with Karamba, and the values obtained for the grids are presented in
Figures 5.3-5.5.

Normal forces in the grid shell for different grid patterns

Figure 5.3: Normal forces [kN ] for the different grid patterns presented in Fig. 5.1

Figure 5.3 below illustrates the normal forces occurring in the grid shells (presented in Fig.
5.1). The maximum values Ncompression and Ntension represent the extreme values found for the
grids, where the negative value is compression (orange) and the positive is tension (blue).

From the figure it can be seen that the highest compression force is found for the diamond
pattern. The triangulated square grid has the highest tension force. The square pattern and the
triangle seem to have the smallest tension and compression forces and thus the lowest range
between the maximum compression and tension.
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Moments in the grid shell for different grid patterns

Figure 5.4 presents the moments occurring in the grids, where Mmax and Mavg represent the
maximum and average value of all moments in the reticulated shells. The maximum moment in
[kNm] is considered as:

Mmax = Max(My,max,Mz,max),

and similarly for the average moment Mavg.

Figure 5.4: Moments (Mmax and Mavg) [kNm] for the different grid patterns presented in Fig. 5.1

The moments are found to be fairly low for all grids, which could suggest that the shape
investigated is a decent shape for a shell structure. The grids presented on the far left and right
in Figure 5.4, namely the diamond grid and the hexagon, show the largest moments. The grid
pattern made of triangles (see Fig. 5.1d) show the smallest maximum and average moments
with values Mmax = 0, 47kNm and Mavg = 0, 09kNm.
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Displacement and amount of material used to create the grid shell for different grid pat-
terns

Maximum displacement and total length of material used to generate the grids is found and
presented in Figure 5.5.

Figure 5.5: Maximum displacement and total length of material used to create the grid patterns presented
in Fig. 5.1

As seen from Figure 5.5, the displacement is found to be largest for the diamond and
hexagon grids. In other words they seem to display less stiffer structures compared to the
three others. The triangular grid seems to have the lowest displacement with a maximum value
of 9.8mm. The total length of material used depends on the pattern, and it shows that the trian-
gular patterns (Triangulated square and Triangle) investigated consist of more material than the
others.

Different spacing lengths of the square grid pattern for the freeform grid shell

(a) Pattern#1 (b) Pattern#2 (c) Pattern#3

Figure 5.6: Square grid pattern presented in Fig. 5.1 with different spacing lengths
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To compare the effect the beam lengths may have on the shell behaviour, the square grid pattern
is analysed for different spacing lengths (see Fig. 5.6). Figure 5.6b portrays the shape already
analysed in the previous sections with beam lengths of approximately 1m, and Figures 5.6a
and 5.6c represent the same pattern but with average beam lengths of approximately 0.7m and
1.4m, respectively.

The results obtained are presented in Table 5.1 and illustrated in Figure 5.7.

Table 5.1: Normal forces Ncompression [kN ] and tot.displacement [mm] for varying spacing lengths

Beam length [m] Ncompression [kN ] Tot.displ. [mm]

Pattern #1 0.7 -21.9 43.6
Pattern #2 1.0 -30.2 61.3
Pattern #3 1.4 -44.2 115.8

Figure 5.7: Normal forces Ncompression [kN ] and tot.displ. [mm] for varying spacing lengths (x-axis)

As seen from the graphs in Figure 5.7, both the displacement and normal force seem to show
approximate linear behaviours when the spacing length is increased. The compression forces
increase for larger beam lengths, as do the displacements. In other words, a denser grid will
give lower displacements and normal forces.

5.3 Principle stress lines for an equivalent continuous shell

The principle stress lines indicate the trajectories of internal forces. In other words it provides
information for the ideal paths of where the material should be arranged, namely the pattern for
the optimal grid topology. By creating a stress-based grid pattern, it enhances the possibility
of achieving complex structures both satisfying architectural design and structural performance
and efficiency.
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Figure 5.8 illustrates the principle stress lines for the freeform structure. From the figure one
can see how the blue lines (second principle stress lines) is shaped like arches along the surface,
starting from one side and ending on the other supported side. The path of the red lines will
vary more. However, the general direction of them will be parallel to the supports. The stress
lines resembles the square grid (Fig. 5.1b) however, the ideal pattern would in fact be a grid
oriented approximately 45◦ on the principle lines. This to ensure a more smooth distribution of
stresses, and to avoid highly utilised beam elements.

Figure 5.8: Principle stress lines for the freeform structure modelled as a continuous shell. Red lines
illustrates the first principle stresses, blue lines the second principle stresses.

5.4 Discussion
With respect to the figures presented above (Fig. 5.3-5.5), the triangle and triangulated square
grid seem to show the lowest overall values. However, the total length of material used in these
patterns is higher than for the other patterns, which indicate higher costs. The square grid is
also showing relatively low values of normal forces, moments and displacement, and consist of
only 60 % of the material used in the triangulated square.

The total amount of beam elements is a relevant measure not only for costs, but with regards
to comparing the respective normal forces and displacement. As the snow load applied will be
the same for all grids, the expected normal forces in each beam will be smaller if the forces can
be distributed to more beams. This gives an advantage to the triangulated square and triangles,
which consist of more beam elements compared to the three other grids.

With respect to displacements, more material could be beneficial as it results in a stiffer
structures more suited against deformations. For instance the displacement of the square grid is
found to be 61.3mm, while for an equivalent structure with bracing (triangulated square grid)
the displacement is only 15.4mm.

Hence, the discussion is how to reduce costs (low usage of material) and be able to decrease
the displacement as much as possible.

To properly consider the squared, diamond and hexagon grid patterns, the rigidity in the
beam joints needs to be considered, as they have a crucial influence on the behaviour and
strength of the grids. As they do not have bracing, the joints need to be as rigid as possible
for the grids to reach their structural integrity.
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6 | Case Study: NTNUI cabin

Through the preceding chapters, we have managed to collect and sort information about shell
structures and shapes, and have portrayed some of their advantages and drawbacks. Moving
into this chapter, we would like to merge our learnings in the seek of designing a grid shell
roof for a cabin, both structurally and architecturally pleasing. The parametric code established
for the grid shell in Chapter 4 will be employed also in this chapter. The modifications and/or
additions to the code will be emphasised (see Appendix C Grasshopper code for Case Study for
details).

The cabin is planned to be built by the end of 2019, and should be a part of several small
cabins (koier) managed by NTNUI. The project is done in close cooperation with the PhD
candidates Marcin Luczkcowski (Department of Structural Engineering) and Steinar Hillersøy
Dyvik, both working in the conceptual structural design group (CSDG) at NTNU.

In addition we have worked together with two other NTNU student, Helle Stam Faugstad
and Øyvind Sunnvoll Rognes. We have been focusing on the grid shell structure as a whole, and
they have been focusing on the joints connecting the beam elements in the grid shell. The intent
is to merge the results from our theses and together develop a code (design procedure) taking
into account all the necessary concerns with regards to the structural system and capacity of the
grid shell cabin.

Note that the shape in question is under development as the project of the NTNUI cabin is
still at an early stage. Hence it is very likely that other concepts will be considered, and that
the final shape will not be similar to the shape investigated in this thesis. This is however where
the beauty of parametric design will come in handy, as it is flexible and not fixed to one shape.
The parametric model can hence be adopted also for future conceptual shapes, as the process
presented in this chapter is a recipe for structural optimisation and design of a grid shell.

6.1 Information

As mentioned previously in this thesis, the location for the cabin is across the fjords of Trond-
heim in Indre Fosen Kommune (see Ch. 3). Necessary information of the location is presented
in Table 6.1, and the site of the cabin can be seen in Figures 6.1 and 6.2.

Table 6.1: Information about the building site of the NTNUI cabin

Name of area Mevassetran
Coordinates 63.5898110, 10.3258360

Approx. floor area of the cabin 115 m2
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Figure 6.1: Map showing where the location of the cabin is with respect to Trondheim. The cabin is
located at Mevassetran, next to a lake. [43]

Figure 6.2: 3D topographic map of the cabin location at Mevassetran
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6.2 Concept of shape and function
The reasons for constructing a grid shell (with the use of parametric modelling) in the Norwe-
gian mountains can be seen as the following:

• Light weight structure (emphasised in Sec. 4.4.4) - minimal use of materials, reduced
costs, reduce amount of heavy lifts during the construction phase.

• Easy assembly with prefabricated precision, where the parametric software handles the
modelling complexity and the manufacturing is done with Computer Numeric Controller
(CNC) machines. The simple assembly will be positive for the constructors of the cabin,
which will most likely be volunteers and not professionals.

• Unique structure, architecturally and structurally pleasing

• Reflects and represents the university NTNU, and the students’ competence and creativity

Figure 6.3: 3D illustration of the first concept of the cabin presented by the architect, Steinar Hillersøy
Dyvik

The concept for the cabin is that it should be simple in terms of function, mainly offering
a bright and open space and a shelter for the students/guests visiting. The visual appearance
however, should be that it portrays a fully functioning cabin. The focus is hence on the structural
integrity of the grid shell as well as the architectural appearance of the shell and its adaptability
in the Norwegian mountains. Figures 6.3 and 6.4 illustrates the first concept of the exterior
design and shape of the cabin.
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Figure 6.4: 3D illustration (front view) of the first concept of the cabin presented by the architect, Steinar
Hillersøy Dyvik

The vision of the shape in question, is to create a space which expresses an open-closed-open
arrangement. Visually the shape resembles the Landesgartenschau Exhibition Hall presented in
1.3 Inspiring shell structures. Figure 6.5 shows the floor plan of the cabin, with the simplicity
of function and interior design. The cabin consists of one room functioning both as a living
room, kitchen and bedroom.

Figure 6.5: Draft of the floor plan for the first concept of the cabin presented by the architect, Steinar
Hillersøy Dyvik

The conceptual shape presented by Steinar Hillersøy Dyvik (the architect) will be invest-
igated in this chapter, and alternative changes to the shape will be examined with regards to
optimising the structural performance.

To keep a structured arrangement of the shapes in discussion, the initial shape will from
here on be spoken of as Shape 0.

6.3 Materials and constraints

The shell structure will be built as a timber grid, with straight beam elements connected by
aluminum joints. Ergo the grid shell will be non-kinematic, and have the same configuration as
the Pods Sports Academy, presented in Section 1.3 Inspiring shell structures.
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Aluminum joints

The joints are designed in aluminum and are assumed to be rigid. This means all the transla-
tional and rotational degrees of freedom on the beam elements are constrained, and moments
can be transferred between the beam elements.

Timber beam elements

The material chosen for the beam elements is GL32c. Glulam (combined laminated timber)
consist of wood laminates glued together. The laminates on the top and bottom have a higher
strength class than the laminates in the rest of the cross section. This is because the greatest
tensile and compressive stresses generally occur at the top and the bottom grains of the cross
section [44].

The cross sections need to have sufficient bending and compressive resistance. The supplier
of Glulam beams is assumed to be Moelven and the type of tree is assumed spruce. Hence,
standard dimensions supplied by Moelven are used as a reference for selecting cross sections
[45]. The following dimensions in [mm] are considered as standard:

Width 90, 115, 140

Height 90, 115, 135, 180, 225, 270, 315, 360, 405, 450, 495, 540, 585, 630

Shape optimisation

The roof shape received from architect, Shape 0 will be adjusted with the attempt of improving
its load resistance. This will however only include small tweaks, i.e.ensuring the original shape
intended by the architect is retained. The available floor area at the construction site will be
limited, thus also restricting the possibility of adjusting the shape. There needs to be enough
space available for the structure to stand, as well as sufficient space for the assembling of the
structure during the construction phase. It is assumed that the architect will consider this and
that the small adjustments to the positioning of the supports (affecting the size of the floor area)
during optimisation process will be negligible.

6.4 Load combinations
Action on structures is classified by their variation in time [39, 4.1.1(1)]. The classes are as
follows:

• Permanent actions (G), e.g. self-weight of the structure.

• Variable actions (Q), e.g. wind and snow action.

• Accidental actions (A), e.g. explosions.

Accidental actions will not be considered for the cabin roof. The individual actions for
the critical load cases should be combined with regards to the selected design situation and
the relevant limit states. If actions cannot occur similatniously, they should not be considered
together in combination [39, 6.1(2)].
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Ultimate Limit States (ULS)

The Ultimate limit state concern the safety of people and structures ([39, 3.3(1)]). The ultimate
limit state verified in this thesis will be STR, i.e. internal failure or excessive deformation of
structure or structural members [6.4.1(1)]. The design should be verified using the design values
of actions in Table NA.A2.4(B) (see Fig. 6.6 below).

Figure 6.6: Part of Table NA.A2.4(B) in [39]: Design values of actions (STR/GEO)

The following values are used for γ and ξ and ψ:

γG,sup 1.35 (is used when the resulting total load effect is unfavourable)

γG,inf 1.0 (is used when the resulting total load effect is favourable)

ξ 0.89

γQ 1.5 for variable actions, when unfavourable (1.6 for wind)

γQ 0 for variable actions, when favourable

ψ0 0.7 (snow load) and 0.6 (wind load) [39, Table NA.A1.1]

When permanent action is unfavourable and snow load is the leading variable action and
wind is accompanying variable actions, the design values for effects of actions Ed become:

Eq. 6.10 a):

Ed = 1.35 ∗Gk,j,sup + 0.7 ∗ 1.5 ∗Qk,1 + 0.6 ∗ 1.6 ∗Qk,2 (6.1)

6.10 b):

Ed = 0.89 ∗ 1.35 ∗Gk,j,sup + 1.5 ∗Qk,1 + 0.6 ∗ 1.6 ∗Qk,2 (6.2)

Serviceability Limit States (SLS)

The Servicability limit state concern the functioning of the structure or structural members
under normal use, the comfort of people and the appearnce of construction works ([39, 3.4(1)]).
Design values of actions in the SLS are defined in Table NA.A2.6 in [39].

84



Figure 6.7: Table NA.A2.6 in [39]: Design vaules of actions for use in the combinations of actions

Section NA.A1 4.2 (3) states that deflection can normally be calculated for the action situ-
ation quasi-permanent, when the time-dependent effects are important. Whereas the additional
action for the design situation characteristic or frequent is regarded as short-term load. We
assume that the snow load will be the leading variable action and the main contributor to the
deflection. Hence, we conservatively consider the characteristic design situation when looking
at the deformation of the roof, as this is the most critical situation. The following will be the
design value:

Ed = Gk,j,sup +Qk,1 +Qk,i (6.3)

6.5 Actions on the roof
The loads which needs to be considered when designing the roof will be presented in the fol-
lowing. An investigation will be done in the seek for the worst load distribution of the variable
loads, snow and wind. This will be divided into two approaches. The first one will be to draw
the concepts from Chapter 3 Actions according to Eurocode and determine a suitable load dis-
tribution on the shell roof both for a drifted and undrifted load case. Secondly, the Galapagos
evolutionary solver in GH will be used to find the most critical placement of load with regards
to what load configuration gives the largest displacement and moments.

6.5.1 Self-weight
The self-weight of the building will involve the following:

• The weight of the Glulam beams. Karamba will automatically take into account the
weight of the timber beams

• The weight of the aluminum joints connecting the beam elements. This is taken in as
point loads in the end nodes of the beam elements. The load will depend on the size of the
beam cross section and the necessary thickness of aluminum plates and amount of bolts
to transfer the forces. Thus, as a first assumption the load is conservatively considered
to be 0.20kN . After the cross section is optimised the weight of the joints will again be
examined to check whether the assumption still stands.

• The weight of the insulation, roof plates and roof covering (asphalt). This is assumed to be
a uniform load of 0.5kN/m2. The load is applied as a Mesh load with global orientation.
The vertices of the mesh faces corresponds to the connecting nodes in the grid, i.e. all the
load is transferred to the end nodes of the beam elements.

85



6.5.2 Live Load

When designing a roof structure, it is necessary to ensure that the design resistance is consid-
ering all plausible loads. This would include maintenance work on the roof, meaning the load
of at least one person climbing and/or standing on top of the roof should be considered. For the
early stage of the design process of the NTNUI cabin presented in this Chapter, live load will
though not be considered.

6.5.3 Snow Load

Snow is an environmental load caused by nature, thus a lot of variables will influence how
and to what degree the snow affects the structure. The difficulty in predicting how the snow
is distributed leads to the requirement of considering several load situations. To determine the
magnitude of the snow load on the roof the characteristic snow load and shape factors given
in Eurocode ([35]) are used (same procedure as found in Ch. 3, Sec. 3.1). The snow load
distributions are also found in accordance with Eurocode (further explained in the following
subsection).

To investigate which load distributions actually gives the most critical displacements and
moments, Galapagos will be adopted to parametrically generate the distribution. In addition a
load case where the snow load is applied evenly over the entire roof will be considered.

In Chapter 4 the snow load was applied as a point load with equal magnitude to all relevant
nodes (see Sec. 4.2.4). In this Chapter the snow load is globally projected and applied using
Mesh load in the Loads(Karamba)-component. The surface is meshed with the same uv-count
as the grid pattern. As a result the mesh faces is corresponding to the rectangular grid faces (see
Figure 6.8). This way the load is transferred to the beam element end-nodes via the vertices of
the fictitious mesh faces. The resulting load transferred to the nodes will vary depending on the
location of the load, hence this load distribution will be a better approximation in comparison
to the one adopted in Chapter 4.

(a) Mesh face 1 (b) Mesh face 2

Figure 6.8: Loads applied on the corners of the fictitious mesh faces corresponding to the nodes of the
grid. Two arbitrary mesh faces are illustrated with the distinctive loads applied in the corners.

86



Snow Load distribution according to Eurocode

In Chapter 3 Actions according to Eurocode it was found that Eurocode provides limited inform-
ation on load distribution on irregular roof shapes. The cylindrical shape will be the geometric
shape having the most resemblance with the freeform roof received from the architect, Shape
0. Thus an assumption is made that the loads on Shape 0 will coincide with the load distribu-
tion on the cylindrical shape presented in Section 3.1 Snow calculations according to NS-EN
1991-1-3 in Figure 3.4. Some simplifications will however be necessary to adopt EC on the
freeform shaped cabin. In Section 3.1 it was explained how Eurocode considers both a drifted
and undrifted load configuration, depending on the wind effects.

Undrifted Load Case
The Undrifted load case was adopted in Chapter 4, when the basic geometric shapes were stud-
ied. However, the load distribution now becomes more irregular as the shape is not symmetric.
Figure 6.9 shows how the load will be applied, where the marked areas represent the mesh faces
where the snow will be applied, i.e. β ≤ 60◦. The load values are presented in Table 6.2.

Figure 6.9: Undrifted load snow load according to Eurocode distributed on Shape 0. The green area
highlights where the load is applied

Table 6.2: Shape coefficient (µ3) and undrifted snow load for Shape 0. Characteristic snow load is
sk = 7kN/m2. The snow load is found with Eq. (3.1)

Shape factor Undrifted snow load [kN/m2]

Shape 0
µ3 s(µ3)
0.8 5.6

Drifted Load Case
The Drifted load case will give an asymmetric pressure on the reticulated shell structure. Fig-
ure 6.10 shows the basis on which the load area is selected. The strip of grid faces in the
entrance/opening of the structure (highlighted faces in Fig. 6.10) is similar to the shape of a
cylindrical shell. The load is hence applied in accordance with the cylindrical shape presented
in Chapter 3 Actions according to Eurocode (Sec. 3.1.1 and Fig. 3.4).
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Figure 6.10: Area where the snow load is applied on the first strip of grid faces. The green arrows
display the normal vectors of the grid faces, which is used to determine the curvature based on the angle
with the unit z-vector (red arrows). The curvature of the marked faces is β ≤ 60◦.

In GH, this curve is analysed to find where the angle is less than 60◦, by finding the normal
to all faces, and comparing this vector with a unit vector in z-direction (see Fig. 6.10). Where
the absolute value of the angle is smaller or equal to 60◦, the faces are selected. The curvature
and the faces with β ≤ 60◦ will change for every strip of grid faces over the length of the
structure. However to simplify this, the distribution on the first strip is repeated for all strips
over the length of the surface.

The concept of the Drifted load case from Figure 3.4 is adopted. The concept being that the
snow will be drifted by the wind, and accumulate more on one side than the other. However
the triangular snow distribution with shape factor µ3 in Figure 3.4 is replaced by a rectangular
distribution increasing in magnitude towards the right (see Fig. 6.11). The corresponding shape
factor is named µ4.

The magnitude of the shape factor µ4 is found by requiring the same resulting amount of
snow on the freeform roof as for the cylindrical. Table 6.3 presents the resulting snow loads in
the three zones considered (see Fig. 6.11) for the cabin, and two zones for the cylindrical roof,
respectively.

Figure 6.11: The triangular snow distribution with shape factor µ3 given in Eurocode and the approx-
imated snow distribution used for Shape 0 with shape factor µ4. ls illustrates the load width where the
curvature is less than 60◦.
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Table 6.3: Shape coefficients (µ3 and µ4) and drifted snow loads for cylindrical and Shape 0. Zone
1, 2 and 3 corresponds to the three levels of magnitude in Fig. 6.11. The characteristic snow load is
sk = 7kN/m2, found with Eq. (3.1)

Shape factor Drifted snow load [kN/m2]

Cylindrical shape
Zone 1 Zone 2 Zone 3

µ3 s(0.5µ3) s(µ3)
2.0 7 14

Shape 0
µ4 s(1

3
µ4) s(2

3
µ4) s(µ4)

1.13 2.63 5.25 7.88

Thus by separating the load area into three zones (illustrated on the left shape in Fig. 6.12),
the loads in the given zones are applied with magnitudes in accordance with Table 6.3 (Shape 0
in 2nd row).

Figure 6.12: Illustration of the three zones assumed to have a different magnitude of snow load (left ill.)
and the drifted load distribution in Karamba (right ill.). Increasing magnitude of the snow load from left
to right. The load distribution is based on the concept of Drifted snow load from Eurocode

89



Snow Load distribution found with Galapagos

The following assumptions were made when finding the worst snow load situation for the roof
with Galapagos (see Sec. 2.6 for details about software and Galapagos):

• Uniform snow load with the same load value as presented in Table 6.2 (Undrifted).

• No restrictions to where the load can be applied, i.e. the β ≤ 60◦ from Section 3.1 is no
longer accounted for.

Galapagos was used to find the 4 load distributions maximising the following (see Fig. 6.13
for directions):

1. Displacement in x-direction

2. Displacement in y-direction

3. Displacement in z-direction

4. Moment Mres =
√
M2

y +M2
z

The meshed surface was first exploded into its faces. Where each mesh face corresponds
to the rectangular grid face and represents a possible load area. The load applied on the mesh
face was transferred to the end-nodes of the beam elements. A gene pool with as many genes
(i.e. variables) as there were mesh faces, was then created. Where the genes in the gene pool
is a collection of sliders where each can alternate between 0 and 1, i.e. false and true. The
sliders in the gene pool controls which one of the mesh faces are "turned on"(1) and which ones
are "turned off"(0). If the load on the mesh face leads to a larger displacement in the given
direction, the mesh face in question is "turned on". These mesh faces (true) were then taken as
inputs into the Loads(Karamba)-component and applied the snow load.

Figure 6.13: Shape 0 with global coordinate system

The maximisation process with Galapagos gave the following load distributions for the four
cases:

90



1. Maximise displacement in x-direction

Load distribution for load case: Max x-dir.

(a) Front view

(b) Aerial view

Figure 6.14: Snow load area found by maximising the displacement in x-direction with Galapagos

The displacement in x-direction was found to be maximised when the snow load was applied
to the right side of the structure. Figure 6.15 illustrates how the structure deforms by being
pushed to the side by the snow load.

Figure 6.15: Deformed structure with snow load case Max x-dir.
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2. Maximise displacement in y-direction
Load distribution for load case: Max y-dir.

(a) Front view

(b) Aerial view

Figure 6.16: Snow load area found by maximising the displacement in y-direction with Galapagos

As seen in Figure 6.16, the critical load case will be when the snow is distributed in the two
opposite quadrants, similar to the chessboard pattern previously mentioned for the spherical
shaped roof in Chapter 3 (Sec. 3.1.2). From Figure 6.17 one can observe how the the load
will twist the structure which leads to a large horizontal displacement along the length of the
structure (y-direction).

Figure 6.17: Deformed structure with snow load case Max y-dir.
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3. Maximise displacement in z-direction
Load distribution for load case: Max z-dir.

(a) Front view

(b) Aerial view

Figure 6.18: Snow load area found by maximising the displacement in z-direction with Galapagos

A natural assumption could be that when the snow load is distributed over the entire structure
and the structure is applied maximum snow load, the displacements in z-direction would be
largest. However, from Figure 6.18 it can be observed how the load distribution causing the
highest displacement in z-direction is when the load is applied asymmetrically on the surface.
The load distribution is very similar to the load case for Max x-dir., which results in almost
identically deformed structures for both load cases. The deformation of Max z-dir. is hence
similar to Figure 6.15.
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4. Maximise resulting moment

Load distribution for load case: Max moment

(a) Front view

(b) Aerial view

Figure 6.19: Snow load area found by maximising the occurring moment Mres [kNm] in the beam
elements with Galapagos

The worst load situation giving the maximum resulting moment, Mres =
√
My

2 +Mz
2, is

when the snow load is applied along the right side of the structure as shown in Figure 6.19. This
is similar to the load cases Max x-dir. and Max z-dir. presented in the load cases No.1 and No.3
above.

Brief recap regarding the loads found with Galapagos
Unlike the load distributions according to Eurocode, the load distribution found with Galapagos
will not be a result of empirical data based on real situations. Thus it is necessary to be extra
careful in adopting the load distributions, and discuss the plausibility of the loads occurring.
Fortunately for all the load situations, the snow loads were found to accumulate in the same
area and were not spread out randomly over the surface. The snow will not naturally gather in
only certain areas of the roof unless wind, shape of the roof or other factors affects the snow.
A large wind load coming in perpendicular to the side of the structure, could lead to the snow
accumulating on one side, like the load cases Max x-dir, Max z-dir and Max moment illustrates.
The load case Max y-dir. where the snow accumulates in two opposite quadrants, seems less
likely.
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Uniform snow load over the entire roof

Loadcase Uniform:

(a) Side view

(b) Aerial view

Figure 6.20: Snow load distributed over the entire surface area (Load case Uniform)

Directional displacements and moments for all the snow load cases

The displacements and the moments from the different snow load cases are presented in Table
6.4 below.

Table 6.4: Resulting directional displacements [mm] and moments My and Mz in [kNm] for all the
snow load cases introduced in this section

Loadcase Displ.x Displ.y Displ.z My Mz

[mm] [mm] [mm] [kNm] [kNm]

Undrifted 35.8 10.3 19.4 0.85 1.95
Drifted 118.2 27.5 81.6 2.12 4.35

Max x-dir. 214.5 45.1 134.4 2.84 6.09
Max y-dir. 152.5 83 97.4 2.52 6.16
Max z-dir. 214.5 44.3 134.5 2.84 6.1

Max Moment 211.5 38.8 132.7 2.79 6.24
Uniform 18.7 4.0 14.8 0.41 1.01

In Table 6.4 the results from the load distributions found with Galapagos, and the Eurocode
loads are presented. The values for load cases Max x-dir., Max z-dir. and Max moment are shown
to be approximately similar. This is due to the load distributions obtained with Galapagos,
where the load is applied along the right side of the structure for all three cases (see Fig. 6.14,
6.18 and 6.19).
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As seen from Table 6.4 the Undrifted and Drifted load cases found on the basis of Eurocode
are not the load distributions giving the most critical displacements and moments. The load
case Uniform where the load is applied over the whole surface is displaying even lower values,
illustrating how the shell is efficient in withstanding symmetric loads. Considering the distribu-
tions obtained with Galapagos, the displacements are found to be quite large compared to the
ones EC suggest - even though the Undrifted and Drifted load cases in question are limited to
the extent EC provides information. However, it is evident that it could be risky to solely rely
on the load distributions given by EC. The discussion turns into whether the load cases found
with Galapagos are probable or not, and ideally, the loads should be verified experimentally for
the given shapes.

As the results from Galapagos contradict with some of the guidelines given in Eurocode
(e.g. accumulations doe not occur where β ≥ 60◦), the load cases found in accordance with
EC will be load situations considered further on in this thesis. They will be referred to as the
Undrifted and Drifted load case.

6.5.4 Wind Load
It is assumed that the wind load distribution on Shape 0 will resemble the wind load distribution
on the cylindrical roof as presented in Section 3.2 Wind calculations according to NS-EN 1991-
1-4.

The wind pressure values obtained for Case 1 - Cylindrical roof shape in 3.2.1 were all
low. Negative values were found for both wind blowing parallel (θ = 0◦) and perpendicular
(θ = 90◦) to the eaves, see Table 3.3 and 3.4, respectively. Negative values imply suction over
the entire roof area, which in fact makes the combination of snow and wind favourable (opposite
load directions).

A load situation that could occur is wind acting on the structure without snow load present.
The wind could in worst-case lead to a lifting of the roof if the suction is high enough. Due
to the light-weight characteristic of the structure, this scenario should be carefully considered.
In this thesis it is assumed that snow load is always present. As a result of this the presence of
wind will always be favourable, and thus wind loads are not accounted for in this thesis.
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6.6 Initial study of the shape
Initially it appears that Shape 0 resembles the barrel vault investigated in Chapter 4 Parametric
Study. Both have openings on the ends of the structure, and they both have shapes defined by
arched sections along the structure. Figure 6.21 illustrates the two structures in question.

As seen from Figure 6.21a, Shape 0 also shows to have the same effective feature as the
dome, namely the double curvature. As presented in Chapter 2 Governing equations and illus-
trated in Chapter 4 Parametric Study (summary of the Parametric Study), a shell structure which
is doubly curved will be more efficient than a singly curved shell. This increases the rigidity of
the shape and will cause it to better withstand imposed loading with regards to deformation.

(a) Shape 0 (b) Barrel Vault

Figure 6.21: The freeform Shape 0 vs. a regular shaped barrel vault of similar size

To check if the double curvature will have a significant effect on the resulting displacements,
a comparison is made between Shape 0 and the generic barrel vault (otherwise rather similar
shapes). The aim is to understand the structural intention behind creating a shell with an unsual
shape.

The dimensions for the floor area of the barrel vault are selected based on reaching a similar
floor area as for Shape 0. The height of the two shapes are both 4.14m. The cross section of the
beam elements and grid pattern are equal for both shapes. As a result they are comparable with
regards to amount of material used and their boundary conditions are similar in that only two
sides are supported. Both shapes are applied the Undrifted snow load as shown in Figure 6.9,
with values presented in Table 6.2.
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Results from the initial study of Shape 0

The directional displacements and maximum moment Mmax for the two shapes was found, and
the results are presented in the following table (Tab. 6.5):

Table 6.5: Directional displacements [mm] and moment Mmax = max(My,Mz) obtained for Shape 0
and the barrel vault

Floor area Displ. x Displ. y Displ. z Mmax

[m2] [mm] [mm] [mm] [kNm]

Shape 0 114.7 35.7 10.2 19.3 1.94
Barrel vault 112 115.9 0.18 105.3 3.05

The directional displacements of the barrel vault were found to be approximately 4 times
larger (or more) than for Shape 0. The exception is the horizontal displacement parallel to the
structure’s length (displ.y) where the barrel vault seems to barely move.

The results obtained in Table 6.5 suggest that enabling the generic barrel shape to be adjusted
slightly could reduce the displacements and the moments in the structure. By allowing the
supports to be generated on a curved rather than a straight line, the shape can be generated with
a double curvature, which repeats to show a more rigid structure.
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6.7 Optimisation of the shape
In this section the aim is to optimise the Shape 0 using the genetic algorithm solver, Galapagos,
with respect to minimising the displacements (see Sec. 2.6 Software tools for details about
Galapagos). The intention is to illustrate how small changes to the geometry can improve the
structural performance. The loads accounted for in Section 6.7 will be the Undrifted and Drifted
snow loads according to EC, as presented above in Section 6.5. Self-weight, live load and wind
load will not be considered in the optimisation of the shape, but the first become included in the
design proposal given in Section 6.8 (wind load and live load not considered, see Sec. 6.5.2 and
6.5.4).

Optimisation process

The changes of the geometry include the following:

• Right rail: change the span, the overall shape remains the same

• Section: Height and shape of the section, floor area remains the same

• Left rail: Curvature where the shape is doubly curved, section remains the same

Note that the left rail, right rail and section mentioned above refer to the curves in which
define the surface of the structure, see Fig 6.22 (explained further in Sec. 6.7.1).

Figure 6.22: Curves defining the surface of Shape 0. The curves are named left rail, right rail and section

The following figure 6.23 illustrates the optimisation process of finding a more robust shape
with lower displacements (Shape 1).

Figure 6.23: Flow diagram for the optimisation process of the shape, from Shape 0 to Shape 1

In addition to the optimisation of the shape and minimising the displacement, an additional
analysis is done where the displacements are maximised. This is added to get an idea of what
features of the shape should be avoided. The results for both the optimisation (minimisation)
and the maximisation will be presented in the same table.
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6.7.1 Rebuilding surface in Grasshopper
Unlike the geometric shapes used in Chapter 4 which were defined within the GH environment,
the shape is now defined by a surface created in Rhino. The surface was originally made by
the component Sweep2 using three defining curves. To be able to control the shape of the
surface in GH and perform a structural optimisation, the surface needs to be redefined in GH.
To achieve this, the curves used to establish the sweep-surface in Rhino are extracted in GH.
These curves (NURBS curves) include the two rails in the XY-plane, defining the shape along
the length of the structure, and the section which defines the sectional shape (see Fig. 6.22).
The control points for the three curves are found, and separated to be able to individually adjust
their positions.

The Move-component is connected to the control points, and a vector {x, y, z} is taken as
input to determine the movement of the points (z = 0 for the control points on the rails/supports).
By connecting sliders to the x, y, and z-components of the vector, the points can change pos-
itions. The parametric control points replace the original control points of the three curves
and the two rails and the section can be reestablished. The new curves are then fed into the
Sweep2(old)-component to rebuild the surface in GH (see Fig. 6.24). Now the shape of the
surface can be controlled from within GH.

Figure 6.24: Process of rebuilding the surface with the Sweep2(old)-component in GH. The illustration
shown is the finishing part where the optimised curves are taken as inputs to rebuild the surface.

6.7.2 Optimisation approach with Galapagos
The shape optimisation is, as mentioned in the beginning of Section 6.7, performed with the
genetic algorithm approach using Galapagos. The three curves defining the surface (left rail,
right rail and section) will be optimised separately. Each curve is assigned individual gene
pools containing sliders that controls the movement-interval of the control points. The gene
pool defines the Genomes that Galapagos should change with respect to a certain fitness.

The two snow load distributions presented in Section 6.5.3 under Snow Load distribution
according to Eurocode are used to optimise the shape. A C#-code is generated to find the
maximum resulting displacement from the load distributions:

dresultant =
√
d2x + d2y + d2z.
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For each configuration of the control points (genome), the C#-code loops over the load
cases, finds the resulting displacement for all nodes and stores them in a list. The largest res-
ulting displacement of the two load cases is determined by finding the maximum of the list.
The displacement is the fitness function which Galapagos seeks to minimise, by changing the
Genomes. This way the structure will be optimised with regards to the load case in which gives
the largest displacements. Figure 6.25 illustrates the process explained above, where the right
rail is the curve being optimised.

Figure 6.25: Optimisation process with Galapagos. The Genome is the parametric control points for
the curve in question, and the Fitness is minimising the resulting displacement dresultant. The example
shown is the optimisation of the right rail.

Interpreting results

The optimised shapes will be compared to the Shape 0 with respect to the results presen-
ted in Table 6.6. The optimised shapes will be analysed for the same arbitrary cross section
80mmx80mm as selected for Shape 0. The difference in results for the two shapes will be
displayed, where a negative difference means decreasing forces and displacements (green), and
positive means increasing values (red) (see Tables 6.7-6.10)

Table 6.6: Structural behaviour of Shape 0 with the arbitrary cross section 80mmx80mm

Displ.Res Load case Displ.x Displ.y Displ.z My Mz

[mm] [mm] [mm] [mm] [kNm] [kNm]

Shape 0
142.8 Undrifted 35.8 10.2 19.4 0.85 1.95

Drifted 118.2 27.5 81.6 2.11 4.32
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6.7.3 Optimise right rail

Figure 6.26 illustrates the parameters in question for the changes done to the right rail. The
middle three control points are locked from moving separately, but can move in the x-direction
within the interval x[m] =< −2, 2 > with a step of 0.01m.

Figure 6.26: Shape optimisation: Three control points for the right rail are free to move in the x-
direction, within the interval x =< −2, 2 > meter.

Figure 6.27: Shape after optimisation of the right rail. Green curve represents the curve belonging to
Shape 0

The optimised position of the right rail was found by moving the control points approxim-
ately 0.3m to the left. Figure 6.27 illustrates the small movement from the old curve to the new
position of the right rail. In Table 6.7 the new values for the optimised shape are presented.
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Table 6.7: Structural behaviour of shape with optimised right rail, for both Undrifted and Drifted snow
load case. Red values indicate increase and green values indicate decrease compared to Shape 0

Displ.Res Load case Displ.x Displ.y Displ.z My Mz

[mm] [mm] [mm] [mm] [kNm] [kNm]

Undrifted 32.3 9.4 17.0 0.8 1.78
Right rail 137.6 Difference -3.4 -0,8 -2.4 -0.05 -0.17
optimise Drifted 115.7 27.1 78.2 2.07 4.09

Difference -2.5 -0.4 -3.4 -0.04 -0.23

The rows for the Undrifted and Drifted load case in Table 6.7 represent the new values
obtained for the optimised shape. The Difference between the optimised shape and Shape 0
are marked with green values, which indicates improvements for the optimised shapes. The
changes are though small both for the Undrifted and Drifted load case.

Figures 6.28 and 6.29 illustrate the total displacements of the two load cases. The legend on
the right hand side describe the displacements, where red is the maximum value, and blue the
minimum. The red area seems to be slightly smaller on the optimised shapes, which is the same
as indicated in Table 6.7

Figure 6.28: Right rail: Displacement of the structure when applied the undrifted snow load case. Left:
Shape 0. Right: Optimised right rail
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Figure 6.29: Right rail: Displacement of the structure when applied the drifted snow load case- Left:
Shape 0. Right: Optimised right rail

6.7.4 Optimise section
Two optimisation analyses where done when considering the section curve. First the control
points were restricted to move in the z-direction within the interval z[m] =< −2, 2 > (see Fig.
6.30a). For the second analysis the control point could move both in the x- and z-direction (see
Fig. 6.30b), with the same interval for z and x[m] =< −1, 1 >.

Figure 6.31 shows the optimised shapes (see Fig. 6.31b and 6.31c) compared to the original
shape, Shape 0. When restricting the control points to only move in z-direction, the optimised
shape ends up resembling Shape 0 (see Fig. 6.31b). However, when the control points are
free to move in both x- and z-direction the resulting shape appear more different (see Fig.
6.31c). Table 6.8 presents the displacements and moments for the two optimised shapes and the
difference compared to Shape 0.

(a) Shape 0
(b) z-direction (c) x- and z-direction

Figure 6.31: Shape 0 vs. the shapes after optimising the section
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(a) z-direction (b) x- and z-direction

Figure 6.30: Shape optimisation: Three control points for the section free to move in the directions
indicated. In x-direction the points can move within the x =< −1, 1 > meter. In z-direction; z =<
−2, 2 > meter

Table 6.8: Structural behaviour of the shape with optimised section when parametric control points are
free to move in either z-direction or x-and z-direction. Both Undrifted and Drifted snow load case is
presented. Red values indicate increase and green values indicate decrease compared to Shape 0

Displ.Res Load case Displ.x Displ.y Displ.z My Mz

[mm] [mm] [mm] [mm] [kNm] [kNm]

Undrifted 54.3 22.5 32.9 1.12 1.53
z-dir. Difference +18.5 +12.3 +13.5 +0.28 -0.42

optimise 68.3 Drifted 42.2 10.7 25.4 0.77 1.21
Difference -76 -16.8 -56.2 -1.34 -3.11

Undrifted 50.1 15.1 37.6 0.79 2.29
x-& z-dir. Difference +14.3 -4.9 +18.2 -0.06 +0.34
optimise 68.9 Drifted 50.7 11.4 40.5 1.47 1.59

Difference -67.5 -16.2 -41.2 -0.64 -2.73

From Table 6.8 it is observed that both of the optimised shapes will improve the values in
terms of lower displacements and moment for the Drifted load case. However, for the Undrifted
load case, some of the displacements and moments show a small increase in values.

Figures 6.32 and 6.33 (representing the optimised shape for movement only in z-direction)
substantiates this. The first (Fig 6.32) show larger red areas on the optimised shape indicating
larger displacements for the Undrifted case, while the latter (Fig. 6.33) show the red areas
disappear meaning the displacements decrease in the optimised shape for the Drifted case.
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Figure 6.32: Section: Displacement of the structure when applied the undrifted snow load case. Left:
Shape 0. Right: Optimised section (z-direction)

Figure 6.33: Section: Displacement of the structure when applied the drifted snow load case. Left:
Shape 0. Right: Optimised section (z-direction)

6.7.5 Optimise left rail
Two shapes were found when considering the left rail, one for maximising displacements and
one for minimising. The control points for the left rail were free to move separately in the
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x-direction (sideways) between the interval x[m] =< −1, 1 > with a step of 0.01m, except for
the middle point which was assigned a bigger interval of x[m] =< −2, 2 > (see Fig. 6.34).

Figure 6.34: Shape optimisation: Five control points for the left rail free to move in the x-direction,
within x[m] =< −1, 1 >. Except mid-point which can move within x[m] =< −2, 2 >

(a) maximised/weakened left rail (b) Shape 0 (c) Optimised left rail

Figure 6.35: Shape 0 vs. optimised and maximised(weakened) shape with respect to left rail

Figure 6.35 shows the shapes obtained when moving the control points of the left rail to
maximising and minimising the displacements with Galapagos. The optimised shape (Fig.
6.35c) displays a distinct increase in the curvature of the shape, i.e. it becomes more doubly
curved. Note that the increase in curvature also leads to a shortening of the span. The weakened
shape (Fig. 6.35a), on the other hand, shows a lesser curvature and an increase in span, where
the left rail seems to straighten up.

Table 6.8 presents the displacements and moments for the optimised shape and the differ-
ence compared to Shape 0. The shape found with maximising displacements is also presented
in the table for comparison.
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Table 6.9: Structural behaviour of the shape with optimised left rail and for the shape found by max-
imising displacements. Both Undrifted and Drifted snow load case is presented. Red values indicate
increase and green values indicate decrease compared to Shape 0

Displ.Res Load case Displ.x Displ.y Displ.z My Mz

[mm] [mm] [mm] [mm] [kNm] [kNm]

Left rail 224.5 Undrifted 30.57 9.17 23.61 0.77 1.82
Difference -5.13 -1.03 +4.22 -0.08 -0.13

maximise Drifted 184.6 12.7 135 2.86 6.87
Difference +66.4 -14.8 +53.4 +0.75 +2.55

Undrifted 32.8 14.7 17.4 0.79 1.83
Left rail 108.3 Difference -2.9 4.5 -2.0 -0.06 -0.12
optimise Drifted 88.2 34.2 62.8 1.85 3.46

Difference -30 6.7 -18.8 -0.26 -0.86

As presented in Table 6.7, the values found after optimising the left rail show improvements
both for the Undrifted and Drifted load case. The exception is the displacement in y-direction,
which seems to have increased a few millimeters. The largest changes are seen for the Drifted
case for the displacements in x- and z-direction, where the values have decreased with 3cm for
the first and approximately 2cm for the latter.

The maximised shape show lower values for the displacement in y-direction, implying that
a shape similar to a barrel vault is more stable in the given direction (see Sec. 6.6 Initial study of
the shape), compared to a shape with more double curvature (Shape 0 and optimised left rail).
The rest of the values will increase for the Drifted load case.

Figure 6.36 shows how the Undrifted load case only show small changes in the total dis-
placement for the three shapes (the colour shades are quite similar). For the Drifted case (Fig.
6.37 , the decreasing displacement is apparent with the red zones in the maximised shape, and
the blue zones in the two other.

Figure 6.36: Left rail: Displacement of the structure when applied the undrifted snow load case, Left:
Maximised left rail, middle: Shape 0 right: Optimised left rail
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Figure 6.37: Left rail: Displacement of the structure when applied the drifted snow load case, Left:
Maximised left rail, middle: Shape 0 right: Optimised left rail

6.7.6 Shape 1 - Combine optimisations
Figure 6.38 shows the resulting shape (Shape 1), and Table 6.10 presents the resulting values
when combining the optimised section and rails found in Sections 6.7.3-6.7.5 above.

(a) Shape 0 (b) Shape 1: combined optimisations

Figure 6.38: Shape 0 and the resulting Shape 1 when combining the different optimisations (right rail,
left rail and section )

Table 6.10: Structural behaviour of the shape with combined optimisations - Shape 1, for Undrifted and
Drifted snow load case is presented. Red values indicate increase and green values indicate decrease
compared to Shape 0

Displ.Res Load case Displ.x Displ.y Displ.z My Mz

[mm] [mm] [mm] [mm] [kNm] [kNm]

Undrifted 56.7 20.4 28.8 1.1 1.93
Shape 1 64.8 Difference 21 10.2 9.4 0.25 -0.02

combined Drifted 32.8 13.2 32.4 1.62 1.57
results Difference -85.4 -14.3 -49.2 -0.49 -2.75
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From Table 6.10 it is evident how the optimisation process has improved the Drifted load
case rather than the Undrifted case. This is due to the optimisation approach using Galapagos
(see Sec. 6.7.2), where it is the maximum nodal displacement of the two load cases being
minimised. As seen in the initial results of Shape 0 (see Tab. 6.6), the Drifted load case gives
the largest values, i.e. the optimisation with Galapagos is hence minimising the displacements
of this load situation, which does not necessarily improve the Undrifted load case.

Figures 6.39 and 6.40 illustrates the total displacement for the two load cases applied to
Shape 0 (left) and Shape 1 (right). The Undrifted case shows larger displacements in Shape 1,
while the Drifted case is improved.

Figure 6.39: Combined optimisation: Displacement of the structure when applied the undrifted snow
load case, Left: Shape 0 right: Shape 1
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Figure 6.40: Combined optimisation: Displacement of the structure when applied the drifted snow load
case, Left: Shape 0 right: Shape 1

Comparison of Shape 0 and Shape 1

A stable shape or structure can be thought of as a structure which has the ability to handle
multiple load situations. Given that the values for Shape 0 displayed quite large displacements
for the Drifted load case compared to the Undrifted, the results in Table 6.10 are in fact an
improvement seen in total.

The combination of the positive (red) difference for the Undrifted case and negative (green)
for the Drifted (shown in Table 6.10) gives a shape which is more robust compared to Shape 0,
as the displacements and moments for the two load cases are more equal. Shape 1 will in other
words have a similar structural response for the two different load cases, which is a positive
feature.

The optimised shape will appear more narrow in the middle of the structure. The floor area
of Shape 1 is approximately 106 m2 compared to 115 m2 for Shape 0. Thus, the optimisation
will decrease the available space inside the cabin.
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6.8 Design of the grid shell structure, Shape 1 - cross section
Tables 6.6-6.10 illustrate the displacements and moments before the design process of the ap-
propriate cross section, and the structure is applied either Undrifted or Drifted snow load. When
designing the structure, which will be the aim of this section, all relevant loads need to be con-
sidered. This includes the following loads and load combinations presented in Figure 6.41:

Figure 6.41: Loads and load combinations used in the design of the structure.

Table 6.11 presents the resulting maximum forces and displacements for Shape 0 and Shape
1 for both load combinations with cross section 80mmx80mm.

Table 6.11: Structural behaviour for Shape 0 and Shape 1 with cross section 80mmx80mm for Un-
drifted and Drifted snow combination. Red values indicate increase and green values indicate decrease
compared to Shape 0

Shape 0 Shape 1 (optimised)
Load combinations: Undrifted Drifted Undrifted Diff. Drifted Diff.

Ncompression[kN ] -27.90 -37.60 -29.09 1.19 -29.23 -8.37
Ntension[kN ] 5.60 10.70 8.93 3.33 10.15 -8.37
My[kNm] 0.88 2.18 1.12 0.24 1.66 -0.52
Mz[kNm] 2.08 4.45 2.32 0.24 1.66 -2.79

Displ.x[mm] -38.2 -125.0 62.8 24.6 29.6 -95.4
Displ.y [mm] 10.9 28.9 -24.9 14.0 10.6 -18.3
Displ.z [mm] -20.9 -87.1 -35.5 14.6 -32.6 - 54.5

Totaldispl.[mm] 46.7 151.9 71.3 24.6 53.4 -98.5

The necessary cross section for Shape 1 will be determined based on the following require-
ments:

• Minimum displacement of (L/250) in all directions (SLS)

• Utilisation of the beam elements < 1 (ULS)
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• Minimising mass [kg] of structure

The utilisation is checked for load combinations according to Ultimate Limit State (ULS),
and the displacement for combinations according to Service Limit State (SLS) (see Sec 6.4).
The flow diagram for the design process is presented in Figure 6.42, below:

Figure 6.42: Flow diagram for the design process of the cross section for Shape 1, from arbitrary cross
section to design cross section satisfying ULS, SLS and buckling.

According to Table NA.A1 (904) in [39] the recommended value for the highest permitted
deflection is between L/200 and L/250, where L is the span. The span is measured at three
places and conservatively assumed to be the smallest of the measured values. For the cabin roof
(Shape 1) the span is assumed to be approximately 6m.

L/250 = 6000/250 = 24mm

A deflection (displacement) of 24mm is hence chosen as the maximum requirement. The
utilisation of all beam elements will be found according to Eurocode 5 ([46]), and limited to 1.
See Appendix D for detailed utilisation calculations. The following checks in [46] is performed
(see Fig. 6.43):

• (6.1.2) Tension parallel to grain direction

• (6.1.4) Compression parallel to grain direction

• (6.1.6) Combined bending about local y- and z-axis

• (6.1.7) Shear

• (6.2.3) Combined bending about local y- and z-axis, and axial tension

• (6.2.4) Combined bending about local y- and z-axis, and axial compression

• (6.3.2) Local buckling of members. Assumed buckling length: 0.5L, where L is the length
of each beam member.

The following example illustrates the requirements for combined bending about local y- and
z-axis, and axial compression (Eq. 19 and 20 in [46]):

(
σc,0,d
fc,0,d

)2 +
σm,y,d

fm,y,d

+ km
σm,z,d

fm,z,d

≤ 1 (6.4)

(
σc,0,d
fc,0,d

)2 + km
σm,y,d

fm,y,d

+
σm,z,d

fm,z,d

≤ 1 (6.5)
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• km is a factor that is set to 0.7 for rectangular cross sections [6.1.6(2)]

• σm,y,d & σm,z,d are the design bending stresses about the principle axes shown in Figure
4.23, where: σm,y,d =

My,d

Wz
and σm,z,d =

Mz,d

Wy

• σc,0,d is the design compressive stress along the grain: σc,0,d = Nd

A

Figure 6.43: C#-component for calculation the utilisation of each beam member

TheBeamForces(Karamba)-component and C# is used to extract the forces in the beams,
which includes N , My, Mz, Vz and Vy. Karamba gives two measured values per beam element,
and thus to be on the conservative side the the maximum of the two is evaluated for each beam.
This means that the resulting design force is not guaranteed to be occurring in the same section
of the beam element. A C# code is used for establishing the correct load combinations and
calculating the utilisation of each beam element (see Figure 6.44).

Figure 6.44: C# -components for establishing ULS load combinations (Eq. 6.10a) and 6.10b)) and
hence determining the design loads. The C#-code (see the component on the right) returns the ULS
combination giving the highest design load.

Galapagos is used to find the necessary height and width of the cross section satisfying
both SLS and ULS, i.e. the displacement is below 24mm and the utilisation is below 1. The

114



Galapagos solver is allowed to switch between the available heights and widths presented in
6.3. In addition the mass of the structure is minimised. The fitness selected for Galapagos to
minimise is a combination of numbers representing displacement, utilisation and mass (see Fig.
6.45). For both the utilisation and displacement the number is set to 0 if the result is within
the limits and 1000000 if the result is above the limit. This way Galapagos will always avoid
choosing cross sections that does not satisfy the requirements. Minimising the mass ensures
that the solver does not end up with a massive cross section (see Appendix C for more details
from the optimisation code).

Figure 6.45: Illustration of the optimisation code established in GH. Galapagos is used to optimise the
cross section for Shape 1 with respect to satisfying ULS and SLS requirements as well as minimising
mass [kg].

6.8.1 Results from the design of the grid shell, Shape 1 - cross section

From an initial stage it was established that the total displacement will always be below 2.4cm
when the utilisation check is OK. Secondly it was found that the utilisation check which gave
the most critical results was in general local buckling (Eq. 6.23 and Eq. 6.24 in [46]). In the
local buckling check the beam elements were assumed to have a buckling length equal to 0.5L
as the joints were assumed to be fixed.

Table 6.12 shows the cross section optimised and designed for Shape 1, and the resulting
maximum forces and displacements for Shape 0 and Shape 1 for both load combinations.
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Table 6.12: Structural behaviour for Shape 0 and Shape 1 with the designed cross section
140mmx180mm when applied Undrifted and Drifted snow load combinations. Red values indicate
increase and green values indicate decrease compared to Shape 0

Shape 0 Shape 1 (optimised)
Load combinations: Undrifted Drifted Undrifted Diff. Drifted Diff.

Cross section 140mmx180mm 140mmx180mm 140mmx180mm
Utilisation 0.74 0.88 0.76 0.02 0.80 -0.08

Ncompression[kN ] -28.43 -31.22 -29.36 0.93 -29.47 -1.75
Ntension[kN ] 2.41 6.44 5.34 2.93 5.02 -1.42
My[kNm] 1.03 2.47 1.26 0.23 1.80 -0.67
Mz[kNm] 1.75 3.94 2.16 0.41 1.17 -2.77

Displ.x[mm] -2.4 -8.4 4.1 1.7 1.5 -6.9
Displ.y[mm] 0.6 1.7 -1.9 1.3 0.5 -1.2
Displ.z[mm] -1.7 -5.9 -2.9 1.2 -2.4 -3.5

Totaldispl.[mm] 3 10.1 5.1 2.1 3.7 -6.4

Figure 6.46: Utilisation results obtained in GH with Galapagos. Example shows the most critical beam
member in Shape 1 for the Drifted load combination.

Table 6.12 shows how the displacements, internal beam forces and thus utilisation will de-
crease for Shape 1 compared to Shape 0 when the Drifted load combination is applied (see
green numbers). The decrease for the Drifted load combination for Shape 1 illustrates how a
smaller cross section could in principle be adopted for this shape compared to the initial one to
obtain the same degree of utilisation. As there are limited alternatives for the beam sizes and
cross sections on the market however, the same cross sections are still adopted. The utilisation
was below 1 and hence OK for both shapes and both load combinations.
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6.8.2 Buckling check
A buckling analysis was done for the grid shell with the resulting cross section 140mmx180mm
obtained through optimisation with Galapagos (see Fig. 6.45). The buckling load factors for
the Undrifted and Drifted load combinations (see Fig. 6.41) were found, and the results are
presented in Table 6.13.

Table 6.13: Resulting buckling load factors for the timber grid shell with cross section 140mmx180mm
and the corresponding maximum compression force Ncompression [kN ] for the different load combina-
tions.

Undrifted load comb Drifted load comb.

Ncompression [kN ] -29.7 -29.3
BLFac 18.0 20.6

As seen from Table 6.13 the structure will have a high buckling load factor and will therefore
be considered safe with regards to buckling under the given load combinations. Figure 6.47
illustrates the 1st buckling mode for the Undrifted load combination.

Figure 6.47: 1st buckling mode for the timber grid shell (Shape 1) under the Undrifted load combination.
The legend on the right illustrates the corresponding displacements.
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6.9 Design proposal for the NTNUI cabin
After optimising the initial Shape 0 in Section 6.7 resulting in Shape 1, a suitable cross section
was obtained in Section 6.8 and hence the following design proposal in Table 6.14 is given.

Table 6.14: Design proposal for Shape 1 for the NTNUI timber grid shell. With the selected cross
section, the ULS, SLS and buckling requirements are satisfactory for both the Drifted and Undrifted
load combinations.

Shape 1:

Material GL32c
Cross Section 140mmx180mm

Load combinations Undrifted Drifted
Requirements:
ULS Utilisation 0.77(OK!) 0.85(OK!)
SLS Deflection 5.1mm(OK!) 3.7mm(OK!)

Buckling 27.1(OK!) 23.4(OK!)
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6.10 Discussion
The design proposal in Table 6.14 displays a structure with a design resistance satisfying the
requirements of ULS, SLS and buckling. Nevertheless there are some observations regarding
the design and optimisation process in this chapter which should be mentioned.

• For Shape 0 the most critical load situation with regards to displacements and internal
beam forces was the asymmetric Drifted load combination, and the Undrifted combina-
tion was a lot less critical. The optimised Shape 1 displayed improvements in structural
performance for this load combination, but an increase in forces and displacements for
the Undrifted one. This is however favourable as the configuration of Shape 1 leads to a
smaller gap between the structural response for the two load combinations.

• The changes in structural performance between Shape 0 and Shape 1 are quite small for
cross section 140mmx180mm (see Tab. 6.12). For the Drifted load combination the
displacements improved by a maximum of approximately 7mm (sideways displacement
in x-direction), and the moments with 2.8 kNm (Mz). It must however be noted how
these values do display noticeable changes if the percentage of decrease is considered.
The maximum total displacement due to the Drifted load combination decreased with
63% compared to the displacement for Shape 0. The maximum moments My and Mz

decreased with 27% and 70%, respectively.

• The displacements for Shape 1 were displayed visually in GH, and the structure seemed
to have some local weaknesses in one of the openings (see red area for Shape 1 in Fig.
6.39 and Fig. 4.51). This could have been prevented by manipulating the control points of
the left rail also in the direction parallel with the structure (y-direction, see Fig 6.34). The
result would most likely be an increase in the double curvature in the entrance part of the
structure. This would have been beneficial as it would resemble the back of the structure,
which showed to the more stable part of the structure with respect to displacements (see
Fig. 6.47).

• The control points in the optimisation process were only allowed to move within a small
interval to maintain the same size of the cabin. The changes did however result in a Shape
1 with a noticeably smaller floor area than the initial one and should thus be checked to
ensure the available floor area is sufficient for the cabin’s type of use.

In conclusion, it would have been preferred to optimise the shape multiple times in an iterative
manner before the final design proposal was set. The optimisation process should be a loop of
improved shapes to be able to consider all components, and build a structure both globally and
locally robust.
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7 | Concluding remarks

Through the work of this master thesis our knowledge about parametric modelling and the
design of shell structures has grown. We are left with a better understanding of the process of
designing a structure with the use of parametric software, as well as having learned some of the
opportunities and challenges connected with it. In the following sections below, we will present
some lessons learned and further thoughts.

Design actions on shell structures according to Eurocode

• EC provides limited information regarding shell roofs - difficult to determine the distri-
bution of wind and snow loads.

• The information provided in EC lacks detailed guidelines, hence deriving information
cannot be done with great reliability.

• Snow: Parallels from the cylindrical shape presented in [35] can be drawn to similar shell
shapes, however upper limits and details about the snow distribution on the surface of the
shape are lacking.

• Wind: Only one figure for each roof shape (barrel vault and dome) is given in [36] to
obtain the pressure coefficient and describe the wind distribution. The information lacks
detail and clarity.

• Experiments and/or simulations are needed to verify the design loads and their distribu-
tion on shell roofs. This could be carried out using drifted artificial snow in a wind tunnel
and wind simulations such as CFD (Computational Fluid Dynamics).

Shell shapes

• A dome is a distinctly efficient structure. This is as a result of its doubly curved shape
facilitating a smooth flow of forces, the aforementioned being the main feature of a great
shell structure.

• The singularly curved barrel vault displayed a structure more prone to deflect compared
to the dome. This led to higher moments, normal forces and displacements.

• If the geometric barrel vault is substituted by a free-form structure resembling the barrel
vault with a double curvature, the structural capacity will increase noticeably coupled
with decreasing moments and displacements.

• A curved shape structure can withstand vertical load with primarily membrane forces,
consequently it is efficient in resisting deformation. A flat surface will resist the vertical
load solely with bending action, deducing that shorter spans and heavier structures are
necessary to limit the moments and displacements.
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Grid shell structures

• The reticulated shell can be treated as a shell, equivalent to the continuous concrete shell.
Their structural behaviours regarding displacement and moments were found to be relat-
ively similar.

• Environmental friendly structure: Timber is a green material, efficiency of a grid shell
leads to low use of material. In addition, wood from local forests allows for shorter
transport distances.

• Light-weight structure: Important factor to consider when the structure is located in se-
cluded locations, with challenges related to transportation.

• The combination of an unrestrained timber grid shell and the possibility of prefabricated
precision connected to the parametric software, would facilitate a manageable assembly
of the grid shell.

Asymmetric loads on shell structures

• A load configuration-algorithm was established in GH to find the load distribution dis-
playing maximum displacements and moments. The Galapagos evolutionary solver was
implemented, where the result gave asymmetric load distributions for all cases.

• The load distributions obtained with Galapagos result in a more critical load situation for
the grid shell compared with the EC load distributions. However, the plausibility of the
given load situations is questionable.

• Implementing the loads from EC, the asymmetric Drifted load case is generally worse for
the structure when compared to the symmetric Undrifted load case.

Optimisation with Galapagos evolutionary solver

• It was found to be challenging to optimise a structure to handle various load situations in
order to increase its overall structural capacity.

• The optimisation process with Galapagos performed in this thesis has been carried out
based on minimising displacement. Minimising the displacements caused a decrease in
moments and normal forces.

• Optimisation of the shape with regards to minimising displacements improved the shape’s
capability to handle the load case with highest displacements. When minimising displace-
ments for load combinations with the Undrifted and Drifted snow, the shape was directly
optimised for the latter load situation with the Drifted case initially giving the largest dis-
placements. The Undrifted load combination, on the other hand, displayed an increase in
displacement after optimisation.

• The optimisation approach did however decrease the gap between the structural response
for the two load combinations, i.e. more equal displacements and moments after the
optimisation.
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Parametric design workflow

• We learned how it is more time consuming and complicated to generate a parametric
model when compared to a traditional CAD design. Instead of simply drawing the geo-
metry, programming skills are required to establish the geometry for the model to become
parametric. Adopting parametric software for structural design requires interest in learn-
ing and developing these skills.

• You give and you gain. Once the parametric model is created, the design is flexible
and iterative steps can easily be made. By modifying a parameter the model will adapt
accordingly, whereas a traditional CAD software will demand redrawing and remaking
the model. Thus making modifications more time consuming for this type of workflow.

• When creating complex structures such as shell structures, where the shape and structural
performance go hand in hand, parametric modelling is highly beneficial due to its flexible
nature. The investigation of the shape requires careful consideration and the design should
be continuously updated until the solution is satisfactory. Through the course of this
thesis, benefits of the parametric design were found to be abundant. Both with regards to
obtaining good results and optimising the structure, but also how small changes really do
affect a shell structure.

• Conventional methods would be very inefficient to adopt for the design of shell struc-
tures. However, when the structure is more classic and the design process is well-known
or straight forward, the traditional design methods may be as good or even better than
parametric design.
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7.1 Considerations regarding design proposals of the NTNUI
cabin

Note that the design proposal is based on the assumptions:

1. Rigid joints.

2. Buckling length Lk = 0.5 ∗ Lbeam (Based on assumption No.1. above).

3. Shear forces are small, hence not studied in detail. Only accounted for in ULS checks.

4. Displacements are considered the most crucial to minimise and therefore the shape is
optimised accordingly.

5. The same UV-count of the grid (UV defined based on the length of the curves for the left
rail (U) and the section(V)) can be adopted for Shape 1 as for Shape 0 due to the small
modifications of the shape.

6. Approximate value of the cladding is set to 0.5kN/m2.

7. The Drifted load case is deduced from EC, but is not divided into the same zones, i.e. not
triangular snow distribution etc.

8. Snow will always be present, thus suction of wind is not investigated as a case.

9. Live load not considered due to early stage of design process.

Based on these assumptions, the following needs to be taken into consideration.

1. The joints are designed by Helle and Øyvind in a different case study of the NTNUI cabin,
where they are seeking to design the joints as rigid as possible. However 100% rigidity
does not exist. As the grid pattern until now has been considered as squared, sufficient
rigidity of the joints is crucial. We want to avoid planar movement of the grid due to
lacking shear stiffness - squares as structural elements has the possibility of generating
a mechanism. This invites the question of adding stiffeners to avert the mechanism, for
instance diagonal stiffeners and creating a triangular pattern.

2. This is a non-conservative assumption which needs thorough consideration based on what
is resolved with regards to consideration No.1 above.

3. Going forward this ought to be validated. Need to consider shear forces in the design of
the joints.

4. Alternative approaches of optimising the shape should be considered. It was observed
how the SLS requirements (displacements) were satisfied with a good margin when the
cross section was designed according to ULS. It could therefore be thought that the more
optimised shape could have been found with minimising the combination of normal forces
and moment, to increase the buckling safety for instance, and in general reduce the most
critical checks for utilisation.
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5. This was found to not be correct as the length of the left rail and section curve for Shape
1 would result in a higher UV-count and a denser structure. Shape 1 was accordingly
analysed with longer beam elements than Shape 0 and thus more prone to local buckling.
Had the UV- count been updated the structure would have needed a lower cross section.
Consequently, the optimisation should been done with a changing UV-count.

6. This can easily be changed in the code, magnitude of load is controlled by a slider for the
load of interest.

7. Should look into adopting wind tunnels and/or other experiments to find how the wind
affects the cabin, and how the snow would realistically accumulate on the shape in ques-
tion.

8. Need to consider wind actions without snow, as suction/lifting of the roof can be a poten-
tial problem.

9. Live load should be considered for the final design of the grid shell cabin. As point
loads are especially dangerous for shell structures (local action), the live load should be
considered as a point load equivalent to the weight of a person, approximately 1kN .

In addition, the structural details of the cabin needs further study. For instance, the connection
details of how the cladding is connected to the grid. Given a sufficient rigidity of the joints
in the grid shell, the cladding should simply offer coverage, and not be a part of the structural
framework. This implies that the panels/cladding should be connected to the grid directly to
the nodes, to ensure all forces are being transferred to the nodes and through the beams to the
ground (and not through the surface). Hence some relative movement of the plates should be
allowed.
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7.2 Further work
The exploration of shell shapes should be continued with parametric approaches of form-finding
and procedures of optimising shapes. Throughout this thesis it was found how small adjust-
ments to the shape can contribute to substantially increasing the structure’s capacity. The shape
optimisation in Chapter 6 is solely a suggestion and only the beginning of exploring the com-
plexity and details rooted in the parametric form-optimisation procedure. Further research could
be to continue adjusting the shape as the optimisation process should be an iterative process.

It could be interesting to perform a shape study with the inclusion of practical constraints. For
instance by initiating the form finding procedure of the shell with a specific floor area, and im-
plement various methods to see how the shape is optimised for different boundary conditions.
This could be a parametric study of arbitrary freeform shapes or geometric shapes like the dome
but with openings to make the shape more realistic to construct. Alternatively, the form could
be found with numeric approaches such as the Force Density Method, to obtain a structure
working primarily in membrane action.

The opportunities attached to the use of parametric software deserves to be exploited and invest-
igated further. A variant of load design on shell structures was sought out in this thesis, and the
load algorithm gave interesting results. However, its adoptability was questionable due to some
contradictions with the guidelines in EC. Hence, an interesting topic would be the development
of a parametric load algorithm for shell structures based on a combination of experimental data
and/or EC. A code receiving the input of the shape of a shell, and automatically generating an
appropriate/several load distribution(s) on the shape in question.
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A | Calculations of Actions according to Euro-
code
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Snow calculations according to NS-EN 1991-1-3

NA.4.1(901) gives the characteristic values on ground for Leksvik kommune The values in
Eurocode accounts for heights lower or equal to the limit height, Hg = 150m. Thus, since
H = 361m > Hg = 150m, the expression (A.1) should be determined [NA.4.1(1)]:

sk = sk,0 + n∆sk, (A.1)

where

sk,0 is the characteristic snow load on ground for the given municipal. sk,0 = 4.0 for Leksvik
kommune.

n = (H −Hg)/100, and n should be rounded up to the nearest integer, n=3.0.

∆sk takes into account the increase in snow load for when H > Hg. ∆sk = 1.0

As a result, given the structure is situated at a height approximately 200meters above the
reference height of Leksvik kommune, the characteristic value of snow load on ground in-
creases:

sk = 4.0 + 3 ∗ 1.0 = 7.0kN/m2.

The shape coefficients for the cylindrical, spherical and mulit-span cylindrical roof shapes,
and the relevant values for the corresponding snow loads (according to Sec. 5.3 in NS-EN
1991-1-3) are presented in Figure A.1.
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Figure A.1: Shapes investigated in Ch. 3 Actions according to Eurocode with shape factors and corres-
ponding snow loads, Drifted: s(µi), i=2,3. and Undrifted: s(0.8).
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Wind calculations according to NS-EN 1991-1-4

Calculation of wind pressure
The basic wind velocity is calculated from the following expression given in NA.4.2(2) expres-
sion (NA.4.1):

vb = cdir ∗ cseason ∗ calt ∗ cprob ∗ vb,0 (A.2)

cdir The value of the directional factor for various wind directions may be found in Table
NA.4(901.4). The recommended value is 1.0, which coincides with the value for wind
coming from North-West direction in Region Trøndelag. Due to the surrounding topo-
graphy, this is assumed to be the most recurring wind direction and is therefore considered
in these calculations (see Fig. A.3).

cseason The value for the season factor is given in Table NA.4 (901.5) and is recommended to 1.0.

calt Above the tree line level, H0, the basic wind velocity will increase [NA.4.2(2)P(901.1)].
In Table NA.4 (901.2) H0 = 700 m for the district of the location evaluated. The structure
is located 361 m.a.s.l, thus there will be no increase and the altitude factor, calt, is set to
1.0.

cprob The probability factor is used if the return period differ from 50 years. Here 50 years is
assumed, and cprob is set to 1.0.

vb,0 In the National Annex Table NA.4 (901.1) the fundamental basic wind vb,0 = 26m/s is
found for Leksvik Kommune.

As a result:

vb = 1.0 ∗ 1.0 ∗ 1.0 ∗ 1.0 ∗ 26m/s = 26m/s

The peak velocity pressure given in expression NA. 4.8 (see Ex. (A.3)), which includes mean
and short-term fluctuations, should then be determined:

qp(z) = 0, 5 ∗ ρ ∗ vm(z)2 ∗ [1 + 2 ∗ kp ∗ Iv(z)], (A.3)

where

ρ is the air density with recommended value of 1.25m/s3

vm(z) is the mean velocity defined later in ex. (A.4).

Iv(z) is the turbulence intensity defined later in ex. (A.6).

kp a peak factor equal to 3.5
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The mean velocity vm(z) is determined with expression (4.3) in Eurocode:

vm(z) = cr(z) ∗ co(z) ∗ vb (A.4)

The roughness factor, cr(z) accounts for variations in the mean wind velocity due to height
above sea level and ground roughness of the terrain upwind the structure in the wind direction
considered [4.3.2(1)].

To determine this factor Table NA.4.1 is used to define the terrain category and the values
z0, zmin and kr. The terrain category is assumed to be 2, which is defined as: an area with low
vegetation such as grass and isolated obstacles with separations of at least 20 obstacle heights.
The values z0 = 0, 05m, zmin = 4m and kr = 0, 19 are given in the table.

Expression (4.4) in [36] (see ex. (A.5)) is then used to determine the roughness factor cr(z),
where z is the height above terrain. The structures is assumed to have a height of approximately
4 m. When zmin ≤ z ≤ zmax, where zmax is to be taken as 200 m, the following equation
should be used:

cr(z) = kr ∗ ln(z/z0) = 0, 19 ∗ ln(4/0, 05) = 0, 83 (A.5)

Figure A.2: 10 km radius circle drawn around the cabin location

In Figure A.2 a circle with 10 km radius is drawn around the location. NA.4.3.2(2) states that
if the construction area is closer than 10 km from areas with deviating roughness, both vm and
Iv should be adjusted. As it appears from Figure A.2, the terrain will vary and have a lower
category level around the sea and bigger lakes. However, here the wind direction considered
is from north- west (see Fig. A.3), and it is assumed that the upstream distance with uniform
terrain roughness is long enough to stabilize the profile sufficiently.

The mean wind velocity vm(z) (see eq. (A.4)), also depends on the topography. The topo-
graphy factor c0(z) takes into account an increase in wind velocity due to e.g. hills and cliffs.
The structure is not located near any slope tops, and it is assumed that the surrounding terrain
resembles a valley (see Fig. A.3). Annex A, Section A.3(4) in [36] states that in a valley, c0(z)
may be set to 1.0. The resulting mean wind velocity, defined in (A.4), is then:

vm(z) = cr(z) ∗ c0(z) ∗ vb = 0.83 ∗ 1.0 ∗ 26m/s = 21.65m/s

Then in order to calculate the peak velocity pressure (see eq. (A.3)), the wind turbulence
intensity Iv(z) need to be determined. Section 4.4 defines the turbulence intensity as:
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Figure A.3: Wind direction considered indicated with red arrow

Iv(z) = σv/vm(z) =
kl

co(z) ∗ ln( z
z0

)
(A.6)

where

σv = kr ∗ vb ∗ kl (A.7)

According to Note 2 in Section 4.4(1) the turbulence factor kl has the recommended value 1.0,
and kr is previously defined in Table NA.4.1. Hence,

σv = kr ∗ vb ∗ kl = 0.19 ∗ 1 ∗ 26 = 4.94

and as a result:

Iv(z) =
σv

vm(z)
=

4.94

21.65
= 0.228

Now the peak velocity pressure for z=4 (see eq. (A.3)), can be determined.

qp(z) = 0, 5 ∗ ρ ∗ vm(z)2 ∗ [1 + 2 ∗ kp ∗ Iv(z)]

qp(z) = 0.5 ∗ 1.25 ∗ 21.652 ∗ [1 + 2 ∗ 3, 5 ∗ 0, 228]

qp(z) = 694N/m2
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B | Grasshopper code for Parametric Study
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Grasshopper codes for:

1. Concrete model

2. Grid shell Barrel Vault/ Plate

3. Grid shell Dome
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1. Concrete model
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PART 1: Concrete model

*Create geometry

PART 2: Concrete model
*Mesh Surface
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PART 3: Concrete model
*Create shell elements

*Assign material and cross section preperties

*Define supports at relevant points
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C#-code No.1 Concrete

Chose between Dome/Barrel Vault/Plate - Support conditions

*Define loads on structure
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PART 4: Concrete model

Results:

* Principle Moment Vectors

* Displacement

* Reaction Forces

* Shell Forces

* Principle Stress lines

C# code No. 2 and No. 4 are similar to C# code No. 1.

 The purpose of the codes are to choose a value based on if it is a barrel vault, dome or plate 
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C#-code No.3 Concrete

Find displacement due to self-weigth, snow and total displ.
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C#-code No.5,6,7 Concrete

Reaction forces Rx,Ry,Rz 
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C#-code No.8,9 Concrete

Check if all forces are in compression
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C#-code No.10 Concrete

Principal shell forces and resulting moment
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PART 5: Concrete model

*2nd order analysis

*Calculation of Buckling Modes
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2. Grid shell model Barrel Vault/Plate (BV/P)
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PART 1: Grid shell barrel vault/plate

C#-code No.1 Grid shell BV/P

Check if height equals 0 or not
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C#-code No.2 Grid shell BV/P

Choose either barrel vault or plate surface
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PART 2: Grid shell barrel vault/plate
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C#-code No.3 Grid shell BV/P

U-Count: generate even numbers

C#-code No.4 Grid shell BV/P

V-Count: generate odd numbers
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*Create beam elements

* Assign material, cross section and joint properties

PART 3: Grid shell barrel vault/plate
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*Define supports at relevant points

*Define Loads on structure
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*1st order analysis

Results:

PART 4: Grid shell barrel vault/plate
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C#-code No.5,6,7 Grid shell BV/P

Sum together resulting forces from different load cases

C#-code No.8,9,10 Grid shell BV/P 

Reaction forces (Rx,Ry,Rz)

This code is equal to C# code No. 5,6,7 in the concrete model

C#-code No.11 Grid shell BV/P 

Find displacement due to self-weigth, snow and total displ.

This code is equal to C#-code No.3 Concrete

*2nd order analysis

* Calculation of buckling modes

Same procedure as for concrete shell

PART 5: Grid shell barrel vault/plate
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3. Grid shell model Dome (D) 
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For the Grid shell dome PART 3, 4 and 5, will be similar to grid shell barrel vault and plate

Hence, these part are not presented. The only difference is the creation of the 

geometric shape and the projection of the grid pattern onto the surface

The grid pattern is created similarly to the barrel vault

The grid pattern is projected onto the dome-surface

PART 2: Grid shell Dome

PART 1: Grid shell Dome

161



C | Grasshopper code for Case Study
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163
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* Take in the original surface

* Rebuild original surface

* Take out control points and control the movement with sliders in Gene Pool

PART 1
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*Assign rebuild surface a grid pattern

PART 2
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*Create beam elements

*Assign material, cross section and joint properties

PART 3
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*Define supports at relevant points

*Define loads on structure

168



C# code for retrieving the mesh faces which corresponds to True-value 
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*Assemble model:

*1st order analysis

PART 4:

171



*Displacements

C # code for adding together displacements for different loadcombinations

Results:
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*Reaction Forces
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*Beam Forces

C# Characteristic values

175



176



C # Min, Max, Avg of Forces
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*Design load combinations

*Design beam forces

Processing and optimising of results
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*Utilisation of timber beam elements according to Eurocode 5 
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C# Utilisation code
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181
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*Optimising of cross section

C# Displacement Optimisation
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C# Utilisation Optimisation

*2nd order analysis

PART 5
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*Calculation of  Buckling Modes
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D | Utilisation of timber elements
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Cross Section 

h 80 mm

b 80 mm

Area 6400 mm^2

W_y 85333 mm^3

W_z 85333 mm^3

I_y 3413333 mm^4

I_z 3413333 mm^4

Lenght 0,897 m

Input values: (Arbitrary values are taken as inputs)

Forces N_t 1 kN

N_c 1 kN

M_y 0,77 kNm

M_z 2,78 kNm

V_y 0,92 kN

V_z -6,06 kN

Material properties 

Glued Laminated Timber (GL)

GL32c

Table 4 [NS-EN 14080] f_mk 32 MPa

f_c0k 24,5 MPa

f_t0k 19,5 MPa

f_vk 3,5 MPa

E_0,05 11800 MPa

Table NA. 2.3 Partial factor for material property

GL ϒm 1,15

Table NA.901 Climate conditions:

Assume: load-bearing beam element that usually are not

heated, but ventilated

Hence; Service Class 2 
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Table 3.1 Modification Factor, k_mod:

include the duration of the load and moisture content

Load combination: k_mod

Selfweigt + Snow + Wind:

Instantaneous action 1,10

Selfweigt + Snow :

Short term action 0,9

In this calculation sheet utilisation calculations are presented for both load combinations.

This is to illustrate how k_mod effects the result.

However, it should be noted that the internal forces will not be the same for both situations.

This is due to the snow load comb. giving a different design load compared to wind load comb.

In Karamba only the load combination involving snow load will be considered, and this calculation

sheet is simply presented to give the procedure of how the calculations are done with Eurocode 5.

Note: The values of the internal forces in this calculation sheet are arbitrary.  

However by inputting the correct values corresponding to a beam element in the model,

 the excel code can be used to double check the utlisation calculations in Karamba.

2.4.1(1) The design value of strength properties

3.3 (3) If the height, h, of the rectangular cross section is below 600 mm

f_m,k and f_t0k may be increased with the factor k_h

k_h 1,100

Design value of material strength

SnowLoad WindLoad

f_md 27,55 33,67 MPa

f_c0d 19,2 23,43 MPa

f_t0d 16,8 20,52 MPa

f_vd 2,7 3,35 MPa

𝑋𝑑 = 𝑘𝑚𝑜𝑑 ∗
𝑋𝑘
𝛾𝑀

𝑘ℎ = 𝑚𝑖𝑛
600

ℎ

0.1

1.1
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6.1.2(1) Tension parallell to grain direction

σ_t0d 0,15625 MPa

Snow Wind

Utilization Nt 0,01 0,01

6.1.4(1) Compression parallell to grain direction

σ_c0d 0,15625 MPa

Snow Wind

Utilization Nc 0,01 0,01

6.1.6(1) Bending

Eq. 6.11

Eq. 6.12

6.1.6(2) k_m 0,7 (rectangular cross section)

σ_myd 9,051550781

Snow Wind

Utilization My 0,33 0,27

σ_mzd 32,60507813

Snow Wind

Utilization Mz 1,18 0,97

𝜎𝑡,0,𝑑 ≤ 𝑓𝑡,0,𝑑,

𝜎𝑡,0,𝑑 =
𝑁𝑡
𝐴

𝜎𝑐,0,𝑑 ≤ 𝑓𝑐,0,𝑑,

𝜎𝑐,0,𝑑 =
𝑁𝑐
𝐴

𝜎𝑚,𝑦,𝑑

𝑓𝑚,𝑦,𝑑
+ 𝑘𝑚

𝜎𝑚,𝑧,𝑑

𝑓𝑚,𝑧,𝑑
≤ 1

𝑘𝑚
𝜎𝑚,𝑦,𝑑

𝑓𝑚,𝑦,𝑑
+
𝜎𝑚,𝑧,𝑑

𝑓𝑚,𝑧,𝑑
≤ 1

𝜎𝑚,𝑑 =
𝑀

𝑊
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Total Utilization when considering My and Mz

Snow Wind

Eq. 6.11 1,16 0,95

Eq. 6.12 1,41 1,16

6.1.7 (1) Shear

6.1.7(2)

k_cr 0,8 (GL)

Vd 0,92 kN

τd 0,18 Mpa

Snow Wind

Utilization Vd 0,066 0,054

6.2.3 (1) Combined bending and axial tension

Eq. 6.17

Eq. 6.18

Utilization : Snow Wind

Eq. 6.17 1,17 0,95

Eq. 6.18 1,42 1,16

𝜏𝑑 ≤ 𝑓𝑣,𝑑

𝜏𝑑 =
𝑉𝑑

𝑘𝑐𝑟𝑏ℎ

𝑉𝑑 = 𝑀𝑎𝑥{ 𝑉𝑧; 𝑉𝑦}

𝜎𝑡,0,𝑑
𝑓𝑡,0,𝑑

+
𝜎𝑚,𝑦,𝑑

𝑓𝑚,𝑦,𝑑
+ 𝑘𝑚

𝜎𝑚,𝑧,𝑑

𝑓𝑚,𝑧,𝑑
≤ 1

𝜎𝑡,0,𝑑
𝑓𝑡,0,𝑑

+ 𝑘𝑚
𝜎𝑚,𝑦,𝑑

𝑓𝑚,𝑦,𝑑
+
𝜎𝑚,𝑧,𝑑

𝑓𝑚,𝑧,𝑑
≤ 1
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6.2.4 (1) Combined bending and axial compression

Eq. 6.19

Eq. 6.20

Utilization : Snow Wind

Eq. 6.17 1,17 0,95

Eq. 6.18 1,42 1,16

6.3.2(1) Local Buckling of timber elements

Assume buckling length of each member equals 0.5*L

Where L is the length of the beam member

l_ky 0,897 m

l_kz 0,897 m

Relative slenderness:

Eq. 6.21

Eq. 6.22

λ_y 38,84

λ_rel,y 0,56

λ_z 38,84

λ_rel,z 0,56

βc 0,1 GL

k-factor

Eq. 6.27

k_y 0,671854638

Eq. 6.28

k_z 0,671854638

𝜎𝑐,0,𝑑
𝑓𝑐,0,𝑑

2

+
𝜎𝑚,𝑦,𝑑

𝑓𝑚,𝑦,𝑑
+ 𝑘𝑚

𝜎𝑚,𝑧,𝑑

𝑓𝑚,𝑧,𝑑
≤ 1

𝜎𝑐,0,𝑑
𝑓𝑐,0,𝑑

2

+ 𝑘𝑚
𝜎𝑚,𝑦,𝑑

𝑓𝑚,𝑦,𝑑
+
𝜎𝑚,𝑧,𝑑

𝑓𝑚,𝑧,𝑑
≤ 1

𝜆𝑦 =
𝑙𝑘,𝑦

𝐼𝑦
𝐴

𝜆𝑟𝑒𝑙,𝑦 =
𝜆𝑦

𝜋

𝑓𝑐,0,𝑘
𝐸0,05

𝜆𝑧 =
𝑙𝑘,𝑧

𝐼𝑧
𝐴

𝜆𝑟𝑒𝑙,𝑧 =
𝜆𝑧
𝜋

𝑓𝑐,0,𝑘
𝐸0,05

𝑘𝑦 = 0,5 (1 + 𝛽𝑐 𝜆𝑟𝑒𝑙,𝑦 − 0,3 + 𝜆𝑟𝑒𝑙,𝑦
2 )

𝑘𝑧 = 0,5 (1 + 𝛽𝑐 𝜆𝑟𝑒𝑙,𝑧 − 0,3 + 𝜆𝑟𝑒𝑙,𝑧
2 )
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Eq. 6.25

k_cy 0,65

Eq. 6.26

k_cz 0,65

Eq. 6.23

Eq. 6.24

Utilization Buckling

Snow Wind

Eq. 6.23 1,16 0,95

Eq. 6.24 1,41 1,16

𝑘𝑐,𝑦 =
1

𝑘𝑦 + 𝑘𝑦
2 − 𝜆𝑟𝑒𝑙,𝑦

2

𝑘𝑐,𝑧 =
1

𝑘𝑧 + 𝑘𝑧
2 − 𝜆𝑟𝑒𝑙,𝑧

2

𝜎𝑐,0,𝑑
𝑘𝑐,𝑦𝑓𝑐,0,𝑑

+
𝜎𝑚,𝑦,𝑑

𝑓𝑚,𝑦,𝑑
+ 𝑘𝑚

𝜎𝑚,𝑧,𝑑

𝑓𝑚,𝑧,𝑑
≤ 1

𝜎𝑐,0,𝑑
𝑘𝑐,𝑧𝑓𝑐,0,𝑑

+ 𝑘𝑚
𝜎𝑚,𝑦,𝑑

𝑓𝑚,𝑦,𝑑
+
𝜎𝑚,𝑧,𝑑

𝑓𝑚,𝑧,𝑑
≤ 1
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