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Abstract

This project thesis presents how a remotely-operated vehicle (ROV) can increase its
situational awareness and positioning accuracy based on visual inputs from a stereo cam-
era and vision-based ego-motion estimation. This is attempted to increase the level of
autonomy and to increase the ROV capabilities, repeatability and efficiency during ROV
operations. The ROV in question is equipped with a stereo camera set and based on a pin-
hole model of the camera, 3D camera frame position of the objects in the image can be
computed and tracked across the image frame. This is used to estimate the motion of the
camera, and thus the motion of the ROV. Objects in the image are detected as features, and
classified using the Binary Robust Invariant Scalable Keypoints (BRISK) method. Each
feature in the image is described using a vector and compared to descriptors in another
frame to match features.

The feature matching is implemented as a circle matching procedure, where features
in the previous left frame is matched with features in the previous right, then current right,
current left and back again to the previous left. This way, we can ensure that all features
used in the motion estimation algorithms are matched both spatially for stereo vision and
temporally for two consecutive frames. The 3D camera frame coordinates are computed
based on the locations of the feature in the image frame and the intrinsic camera param-
eters. With a stereo set of cameras the depth of the features in the image can also be
computed.

The camera frame coordinates of the features of the previous frame are then reprojected
to the current image frame, using the camera intrinsic parameters. There will be an error
between the locations of the features in the current image frame and the reprojected camera
frame coordinates of the same features. This error is minimised using a Gauss-Newton
optimisation in order to estimate the motion of the camera from the previous to the current
frame. The optimisation is initialised N times for three random points, giving N estimates
of the camera motion. These estimates are then compared and adjusted to get the final best
estimate of the camera motion, which also includes a Kalman Filter to smooth the signal
and predict the motion when the features are badly detected or matched.

The vision-based ego-motion estimation is tested on an image set from a previous
mission and compared to the navigation data from the mission. The results show that the
algorithm estimates the overall motion of the ROV, with some smaller oscillations around
the measured value. The oscillations are most likely due to the optimisation algorithm,
which sometimes overestimate the rotations over the translations.

The visual motion estimation output is merged with the measurements from the other
sensors on-board the ROV and included in a Kalman Filter for state estimation. The ob-
jective is to improve underwater localisation and manoeuvring close to the seabed or close
to man-made installations. To validate the results, the system has been simulated on the
image set mentioned above. The simulations show good results, the VME algorithm is
able to output velocity estimates at an average update rate of 2 Hz, meaning the VME can
run at approximately 2 frames per second. The results from the simulation show a slightly
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improved motion estimate, especially for the velocities. The performance of the Kalman
Filter for position estimates was harder to evaluate, as the transponder measurements in-
cluded many wild points and included an offset from the true position, and the Kalman
Filter had not converged when running simulated scenarios.

This project shows how computer vision techniques can improve underwater naviga-
tion by using a stereo camera rig to estimate the ROV motion. The results from the VME
implementation proved that by using feature based method of estimating the camera frame
motion, the output correspond with the actual ROV motion. The feature detection with
spatial and temporal matching of consecutive stereo image pairs was implemented using
the BRISK algorithms, reducing the computational effort compared to other algorithms.
Compared to the SURF method, the BRISK showed comparative accuracy at a consider-
ably reduced computational time.

The next step of development could be to look at the possibility of a SLAM approach.
Using the images taken to update a reconstructed map of the current surroundings. Then
the ROV would recognise its position when returning to a previously visited location,
while continuously updating the map. This would also considerably improve the position
estimate as mentioned above. There is also some areas of improvement regarding the
algorithm developed for this project, both in terms of accuracy and computational time.
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Preface
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Chapter1
Introduction

1.1 Background

1.1.1 ROV
The oceans of the world are still for the most part unexplored areas, and to explore dis-
tant areas and great depths, underwater vehicles are instrumental in further development.
Two classes of underwater vehicles dominate the nomenclature, namely the Autonomous
Underwater Vehicle (AUV) and the Remotely-Operated Vehcile (ROV). The main differ-
ences between these two reside in their name, the one being autonomous and the other
remotely-operated by an ROV pilot.

Figure 1.1: ROV system with control room, launch and revovery system, tether and
tether management system, umbilical and ROV. Courtesy of SAAB
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Chapter 1. Introduction

The ROV is here an underwater remotely operated vehicle, which consists of a frame
with buoyancy elements, thrusters for motion, video cameras for control and typically ma-
nipulator arms. All communication with the ROV is sent through the umbilical that con-
nects the ROV to the surface. An example of a typical ROV - surface system is presented
in Figure 1.1

The first use of ROVs can be traced back to Royal Navy in the 1950s to recover torpe-
does and mines from the sea floor. An example is shown in Figure 1.2a, where the Royal
Navy’s Cutlet ROV is pictured. Further on in the first few decades the ROV, it was mainly
the navies of the world that was driving the development of the unmanned underwater ve-
hicle. When the oil industry went offshore, however, the ROVs finally became available
for commercial use. [1]

The first to explore the commercial side of the ROV market was the US-based Hydro
Products in the 1970s. The Hydro Products RCV 255 and RCV 150 ROVs are pictured in
Figure 1.2b. However, the offshore industry still used manned submersibles and saturation
divers for installations and maintenance. In the 1980s, the ROV industry grew rapidly,
inspired by the technological advancements, such as miniaturisation of the electronics
industry. [1]

(a) Royal Navy’s Cutlet ROV from the
1950s, which was used for recovery of tor-
pedoes and mines

(b) Hydro Products RCV 255 and RCV 150
ROVs, one of the first ROVs for the com-
mercial market

Figure 1.2: Two examples of the ROV in its early technological development

The ROV became smaller and more portable, and the price was pushed down such that
civil organisations and academic institutions now could afford it. These observation class
vehicles soon began in the 80s to perform tasks like civil engineering, dam and tunnel
inspections, fisheries inspections and oceanography. Together with the already growing
offshore market, the ROV had come to stay.

In the 1990s, the ROV industry finally reached full maturity and records were broken
one by one. The Japanese Kaiko ROV reached the deepest point in the Mariana Trench,
10 909meters below sea level, a record impossible to break. The offshore oil industry
was now also exploring fields way beyond diver depth (up to 3000 m), enabling ROV
developers and the oil industry to team up and design integrated systems for installation,
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1.1 Background

operation and maintenance of offshore oil fields. By the end of the 1990s, it is estimated
that more than 3000 vehicles were in operation by more than 100 users.[1] The amount of
ROVs in operation today is a number hard to determine due to the exploding number of
smaller ROVs.

1.1.2 ROV Autonomy
The control system development for the ROV has also followed the main technological
development described above. In the beginning the ROV pilot had to individually con-
trol each thruster on the vehicle. However, soon the automatic depth control eased the
operation, as most ROVs are not neutrally buoyant. With proper thrust allocation and
compasses, automatic heading control also became possible.

Depth and heading control was for many years standard functions, and only in later
years, the scientific community has been focused at making the underwater vehicle more
autonomous, occluding the line between the previously mentioned AUV and the ROV.
The level of autonomy is then a good way to divide the underwater vehicles into different
classes. There are several definitions of the levels of autonomy that includes the differ-
ent levels of human-robot interaction. Most are defined from manual or remote control,
teleoperation, semi-autonomous to highly autonomous operation. A definition proposed
in [2], which is also recommended here at NTNU is:

1. Automatic operation (remote control): The system operates automatically, but
the human controller controls high-level mission-planning functions. Also called
human-in-the-loop or human operated.

2. Management by consent (teleoperation): The system can now make recommen-
dations for specific functions, but still notify the human controller with information
and asks for decisions. The system can also perform some functions delegated by
the human controller. Also called human-delegated system.

3. Semi-autonomous or management by exception: The system executes mission-
related functions automatically when the response time is too short to prompt the
human operator. The operator can still override or cancel decisions made by the
system. Also called human-supervisory control.

4. Highly autonomous: The system executes mission-related functions without noti-
fying the human controller, and is also able to plan and re-plan the mission. The
human operator can still be informed of the progress, but decisions are left to the
independent system. Also called human-out-of-the-loop.

In the last couple of decades, many more automated functions has been developed,
such as station keeping, path tracking and velocity control. Global positioning systems
(GPS) does not work underwater, thus other means of measuring the position and velovity
are needed. A similar absolute position system underwater has always been the acoustic
positioning system (APS), however, the update rate can be quite slow, and the readings
can be erratic and inaccurate. A suitable alternative is the inertial navigation system (INS)
used on submarines, but these have been too large and expensive for smaller ROVs.
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Chapter 1. Introduction

The main sensors for the ROV today are typically the doppler velocity log (DVL) mea-
suring the velocity, an inertial measurement unit (IMU) measuring the accelerations and a
transponder to measure the position by acoustics. For the ROV control system developed
at NTNU AMOS ([3], [4], [5]) these three sensors are the main source of navigational
data.

The problem with this is the accuracy of the sensors mentioned. Manoeuvring and lo-
calisation of underwater vehicles is likely the biggest challenge for autonomous operation
of underwater vehicles. The receivers of the Global Navigation Satellite Systems (GNSS)
does not work underwater, thus the global position is not easily acquired as it is for surface
vessels. As mentioned above, acoustic positioning systems, IMU and DVL have tradi-
tionally been used to find and estimate the position, velocity and attitude in a reference
frame.

The problems with the sensors for underwater navigation and localisation are problem-
atic for the accuracy. The acoustic system can be inaccurate and has a slow update rate,
the acceleration measurements have to be integrated to compute the velocity and position,
which can cause drift. The DVL is quite accurate, especially close to the seabed. However,
when talking about centimetre accuracy at depths ranging to a few thousand metres, more
intelligent systems are needed.

ROV autonomy is an important research area at NTNU Amos [2], and with increased
accuracy of underwater navigation, many ROV operations can be made autonomous. Tasks
such as manoeuvring, inspection, sampling and manipulation can be automated, facilitat-
ing ROVs that can live at the seabed for an extended amount of time, reducing the cost of
deploying a ROV supply vessel each time the ROV is needed. One step towards increased
autonomy in ROV missions is thus improved underwater navigation, a field in which com-
puter vision techniques can offer parts of a solution.

1.1.3 Computer Vision
As the literature review in Section 1.4 will explain in more detail, the use of visual motion
estimation has not been widely explored for the subsea environment. There are a lot of
reasons for this, but mainly poor lighting conditions and a poor medium for cameras are
important issues. Above sea, the development in recent years have been great, and there
are a lot of open-source algorithms out there, exploring everything from security around
and in buildings, to self-driving cars. Later sections will describe this in detail, in addition
to what has been done in the subsea environment.

As humans, we can perceive the 3D world around us with ease, having the ability to
distinguish depth, shape and translucency of objects we see. Over the last 40-50 years,
researchers in computer vision have been developing mathematical models to facilitate
computers to have the same visual perception as humans. Now, there are techniques that
can render a 3D model of a complete scenery using thousands of overlapping photographs.
This includes building surface models using stereo vision, tracking a person or an object
or even name people in a photograph using recognition techniques on faces, clothing and
hair. [6]

Despite all these advances, a computer cannot interpret an image to the degree even a
2-year old kid can today. Computer vision is a difficult subject to study, in part because it
is an inverse problem, where we have insufficient information to find some unknowns. To
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1.1 Background

solve this problem, physics-based and probabilistic models are used to remove uncertain-
ties in the possible solutions. Modelling the visual world turns out to be a quite dificult
task to accomplish.

The possible applications for computer vision are many. Examples are character recog-
nition (letters and numbers), inspection of machinery such as cars or aeroplanes, medical
imaging, automotive security up to self-driving cars, motion capture for computer anima-
tion, image stitching, 3D modelling and more. Some of the applications are presented in
Figure 1.3.

Figure 1.3: Some examples of applications for computer vision: (a) image stitching;
(b) merging different exposures; (c) morphing, blending between two photographs; (d)
turning several images into a 3D model of the scene. [6]

The first mention of computer vision dates back to the 1960s, when Marvin Minsky
at MIT wanted an undergraduate to spend his summer linking a camera to a computer
and describe what it saw. Of course it would never be that easy. In the beginning of the
1970s computer vision was perceived as an agenda to mimic human intelligence in robots.
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Chapter 1. Introduction

Digital image processing had already been around for some time, and computer vision was
distinguished from this field as a desire to recover a 3D structure of the world towards full
artificial understanding of a scene.

The first attempts at this was directed at extracting edges from the topological 2D lines
in the image. Both a qualitative approach to understand intensities and a more quantitative
approach to feature-based stereo correspondence were developed at this time. Later in
the 1980s, much of the attention was directed at the mathematical techniques for doing
analyses of images and scenes. Researchers discovered that if the algorithms could be
posed as variational optimisation problems, many of them could be unified in a single
mathematical framework.

The 1990s saw many improvements regarding optical flow methods and multi-view
stereo algorithms. The stereo algorithms could be used to produce complete 3D surfaces
of a scene, a field of research which continue to be active today. Another accomplishment
at this time was the tracking algorithms, which improved a lot by using intensity-based
techniques, often applied to tracking faces. Computer vision also became more and more
interactive with the field of computer graphics, as the multi-view stereo algorithms became
better, the computer graphics had to keep up in order to animate the 3D models.

This development has only continued, and the last few decades has seen rendering,
image stitching and light-field capture being brought back as computational photography
as the interaction between computer vision and graphics has developed. The last trend in
the field of computer vision is the application of machine learning techniques to computer
vision problems. This has exploded lately as more and more information has been made
available on the internet, including labelled data that can be used to learn object categories
for computers.

The computer vision techniques used in this thesis is mainly feature detection and
matching. In [6] the feature detection and matching are suggested split into four stages:

1. Feature detection: Each image is searched for features that are suitable to match
with features in other images.

2. Feature description: The region around each feature is described in a compact and
stable manner to make matching easier.

3. Feature matching: The features are matched with features in other images com-
paring the feature descriptors.

4. Feature tracking: An alternative to stage three more suitable for video processing
as the algorithm searches in the immediate neighbourhood of the feature.

This is similar to the method used in this thesis and will be explained in detail in
Chapter 3

1.2 Objectives
This master thesis is a continuation of the project thesis of the fall 2017 and is about how
a remotely-operated vehicle (ROV) can increase its situational awereness and accuracy of
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positioning based on visual inputs from a camera. To work on man-made installations
on the seabed, the ROV will not be able to rely solely on absolute global navigation. To
find and interact with small and delicate instruments, spacial references with centimetre
accuracy are required. In most ROV operations the topside pilot is controlling the vehicle,
through video taken from the ROV.

The key problem for this thesis is the accuracy of underwater navigation. This problem
must be solved to automate control of underwater vehicles. ROV autonomy is an impor-
tant research area at NTNU AMOS in order to increase safety for personnel involved in
ROV operations and to reduce costs. There is also a high motivation to increase the ROV
capabilities, repeatability and efficiency to move towards the intervention AUV [2]. This
is especially true for ROV operations far offshore, where the vessel and vessel personnel
is a key factor for both security and costs. The improvement of underwater navigation is
crucial for close range navigation for tasks such as docking, manoeuvring inside structures
or autonomous control of manipulators.

The challenges of underwater navigation today is closely connected to the limitations
of acoustic positioning and dead-reckoning navigation and must be overcome in order to
automate ROV tasks such as manoeuvring, inspection, sampling and manipulation, etc.
Computer vision techniques, developed in the last few centuries, can offer a part of the
solution to these challenges. Thus, the development of the VME, and including the output
in the ROV state estimator is given much attention in this thesis.

1.3 Scope and Limitations
The scope of this master thesis will be a direct continuation of the work done on the project
thesis. The project includes deriving motion from stereo imagery online and combining
the visual motion estimation (VME) with the other sensors using state estimators. To
test the performance of the system it should be simulated with the ROV control system.
In the project thesis the VME was developed in Matlab and the output was compared
with the data from the ROV. In this thesis the VME will be implemented in C++ using
the open source library for computer vision and machine learning, OpenCV. The VME
algorithms will only output the change in position from frame to frame, thus it is not a
SLAM approach where the 3D point clouds are used to form a map of the surroundings.

The output from the VME will be compared with measurements from other sensors on
the ROV and then be simulated in the ROV Kalman Filter state observer in the ROV control
system. The Kalman Filter will be altered to include the measurements from the VME as a
6 DOF velocity vector. The images used for simulation originate from a previous mission,
thus the simulation will not be run in the ROV control system developed in LabVIEW,
but in a similar Matlab setup with the raw measurements from the same mission and the
output form the VME

The project thesis was a preliminary work into this master thesis project. Thus, some
theory has been taken from that thesis, as well as some of the methods used. Especially for
the theory and methods regarding the feature detection and matching across consecutive
stereo frames. This is, however a larger analysis of the computer vision application to ROV
motion estimation. The theoretical background from ROV modelling and hydrodynamics
and ROV control system with the Kalman Filter state observer is also included.
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The VME will be included in the ROV control system developed at NTNU AUR-lab
for the LabVIEW object-oriented programming tool. The system was meant to be tested
online in the ROV control system with the newly acquired Minerva 2 ROV. However, due
to delays from the manufacturer, sea tests of the system was not accomplished.

1.4 Literature Review
Autonomous underwater vehicles have developed over the past decades as one of the main
drivers of exploring the oceans [7]. As mentioned in Section 1.1, the two main classes
of underwater vehicles, are the AUV and the ROV. The former is already autonomous,
while the latter is a vehicle traditionally deployed form a ship or from land, monitored
and controlled through an umbilical between the ROV control room and the vehicle. Both
regarding the ROV control system and computer vision, studies are made to increase the
level of autonomy for the ROV, although the research regarding surface vehicles has been
greater. Here we will look at progress made in both areas.

1.4.1 ROV Control System
The ROV control system developed at NTNU is presented in [3], with the additions for
path planning in [4]. The problem of navigation, as stated by Dukan [3], is one of the main
problems to be solved for automation of underwater vehicles. In transit the basic sensors
are the transponder, giving the position of the ROV from acoustic positioning. The inertial
measurement unit (IMU) gives the ROV estimates of the vehicle attitude and can provide
estimates of the velocities based on the integration of the accelerations in 6 degrees of
freedom [3].

However, for approach and intervention, more detailed sensor measurements will be
required to avoid undesirable situations. The DVL uses the Doppler shift to calculate the
velocity of the ROV based on acoustic signals sent form transducers to the seabed or water
column. Thus a second sensor for obtaining the close-range localisation and situational
awareness based on the camera equipped on the ROV could increase the navigational ac-
curacy during approach and intervention.

As already mentioned in Section 1.1, ROV autonomy is an important research at
NTNU AMOS [2]. An autonomous ROV could facilitate for increased capabilities, ef-
ficiency and repeatability in underwater operations. The research are driving the ROV to-
wards the concept of an intervention AUV. The advances in recent years have been great,
including the work of [3] and [5] as already mentioned, as well as the semi-autonomous
agent architecture for a ROV [8].

1.4.2 Computer Vision
Several studies and papers have been written on vehicle localisation and ego-motion based
on visual odometry on land, however, the research base on the same problem underwater is
narrower. Some work has been done on photomosaic in underwater operations, such as the
work by [5], [9] and [10]. The photomosaic technique can provide a representation of the
underwater habitat, which can be used in mapping applications and monitoring missions of

8



1.4 Literature Review

underwater areas. The individual pictures taken are stitched together, providing a seamless
picture of the terrain covered.

The process is done by acquiring images, extract features and descriptors, and match
these across multiple images. When stitching the pictures together, this will create a seam-
less image of the motive. This is similar to the method developed in this thesis, however,
with the included motion estimation between frames. As photomosaic techniques focus
more on the construction of an underwater map or for monitoring purposes, not the nav-
igation data that can be extracted from this, the land-based methods will be given more
attention in this thesis.

The work done by [11] and [12] both address the problem of using visual features in
the image for vehicle localisation and ego-motion estimation. By ego-motion estimation
we mean the estimation of the camera based on movements of the features in the image.
Another renowned project that have implemented this type of system is NASAs Mars
Rover [13]. The Mars Rover uses input from its multiple cameras to estimate its motion,
as a global navigation satellite system is yet to have been developed for the planet of Mars.

The two most common approaches to extract information from a camera to compute
motion is the optical flow method and the feature descriptor method. Optical flow is,
according to the early works of [14], the distribution of velocities of the motion in an
image. This motion is caused by the relative movement of the objects in the image and
the camera. Thus, optical flow can give information about the spatial arrangement and the
rate of change of this spatial arrangement.

Features are points of interest in an image that are invariant to scale, rotation, illumina-
tion and viewpoint. Features is instrumental in many computer vision applications, such as
motion estimation, 3D modelling, video tracking, photomosaics and object recognition to
name a few. A feature can be a specific point in an image with a local intensity maximum
or minimum, a corner or an edge. The process of finding these features usually includes
investigating the gradient, i.e. the change of intensity in both the vertical and horizontal
direction [6].

Since the early introduction of optical flow to the world of computer vision [14], the
technique has improved. The algorithms does not have an efficient way of dealing with
outliers, as stated by [15], and many different functions have been explored since then,
as [16], [17] and [18]. The choice of method highly depends on the application for the
method, the accuracy required and the computational effort. However, most methods rely
on constant brightness in the image [15], which is a difficult task to accomplish in the
underwater environment.

Another approach is the feature based method of estimating motion. As the name
implies, also this method is dependent on the image features defined above. The features
are detected based on the same principle as stated above, however, for each feature detected
there is a corresponding descriptor. The descriptor is comprised of a vector, describing the
feature and its neighbourhood. There are several feature detectors and descriptors, and
papers have been written comparing their performance, both with respect to accuracy and
computational effort [19, 20].

The detectors and descriptors with most coverage are the SIFT, SURF, BRIEF, FAST,
BRISK, ORB and MSER. When selecting which detector-descriptor combination to utilise
for a given application, there is always a trade-off between accurate and robust detection
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and computational effort [19]. In an image with a high number of potential features, the
ORB and BRISK methods are the best, showing a potential of tens of thousands of features
detected [20]. However, the accuracy of the SIFT and SURF methods is still the highest
achievable of the methods mentioned here.

SIFT and SURF are based on obtaining vector-based descriptors of real numbers, thus
requiring a large amount of computational effort as well as a large uplink bandwidth if
the system is online [19]. The BRISK and ORB methods are favourable for an online
system that has limited computational effort, such as an autonomous underwater vehicle.
The ORB and BRISK descriptors are binary descriptors that are computed directly on the
image patches. The binary descriptor consists of sampling a pattern, compensating the
orientation and then sampling in pairs. This means the computational time is significantly
reduced compared to the vector-based descriptors of real numbers of SIFT/SURF. When
comparing the ORB and BRISK, it is clear that the ORB is faster. However, with BRISK
the gains are increased repeatability and accuracy [20].

When the features are matched across several images, the motion of the camera can
be estimated based on the change of the features’ position in the image frame. By using
the intrinsic parameters of the camera, a 3D model of the objects in the image is obtained
and the movement of features to the next frame is inversely used to compute the camera’s
movement.

As mentioned above, the work done by [11] and [12] address the problem of vehicle
ego-motion estimation. The method proposed by [12], finds the camera motion using a
least squares optimisation. The basic principle here is to reproject the 3D coordinates
from the previous frame to the current image frame, and finding the motion based on a
Gauss-Newton least-squares optimisation.

According to [12], the Gauss-Newton optimisation only takes 4-8 iterations to con-
verge, and is robust against outliers. The paper describes the 3D reconstruction of a scene,
however, the ego-motion part of the problem is claimed to run at approximately 25 frames
per second, while the depth map runs at 3-4 frames per second. This will be fast enough
for online applications in an autonomous ROV.

This method of reprojecting the previous 3D points to the current image frame is also
utilised in the simultaneously localisation and mapping (SLAM) approach, more particu-
larly in the paper by [21]. The SLAM techniques constitute the most common and succes-
ful approach to perform precise localization in unknown environments. The focus lately
has been on enhancement of visual SLAM techniques, which in some cases integrate, in
an Extended Kalman Filter, the dead-reckoning data, the landmark data and loop closings.

The paper proposes consecutive stereo pairs inserted into the navigation architecture.
From each stereo pair of images, the system extracts image features, matches them recip-
rocally, and computes their 3D coordinates using the stereoscopy principle. The features
corresponding to each pair are stored in a database together with their 3D points and a node
identification number. The current pose of the vehicle is then calculated by computing the
pose of the last graph node with the camera displacement computed by a stereo odometer.

The method is adapted in the paper as (a): recover and match 2D features of current
node and a node candidate for loop-closing; (b) If number of matches is less than a given
threshold, recject, otherwise; (c) extract the 3D coordinates of current node; (d) back-
project the 3D coordinates of current node to 2D features of candidate node, assuming the

10



1.5 Structure of Thesis

existence of rotation and translation, and applying RANSAC to eliminate outliers.

1.4.3 Underwater Imagery
Cameras have been standard equipment for underwater remotely operated vehicles (ROV)
for a long time, and the idea of using the cameras as an aid in the ROV autonomous naviga-
tion is getting more and more attention in the underwater robotics community. The study
of computer vision has been a target for the underwater robotics community for a long
time already, given that video cameras are still the most important source of information
for the ROV pilot. Some of the research and the corresponding challenges of underwater
imagery will be presented here.

The long-range detection is still accomplished by sonar tracking, however, when close
to an object or the seafloor visual sensors can be used on the final approach. ([22]) Unfor-
tunately the lighting conditions on the seafloor are very poor, and the features of artificial
light in seawater, such as absorption, scattering and distortion, make the vision task diffi-
cult. The problem of radial distortion is also more significant in underwater imagery due
to the difference in refractive index between water and air. ([9]) If there is high overlap of
images, which is typical for video or a slow-moving camera, the effects of the distortion is
not as visible as if the overlap of images are low.

Based on the information above, the contrast in underwater imagery can be quite poor.
The detection of features in an underwater image can be done in multiple ways. The
colour-based underwater object recognition using water light attenuation proposed in [22]
argues that colour is a simple and robust information piece in underwater imagery, and
often the most reliable. Another method is a saliency-based bottom-up system, which first
subtract the background in the image, leaving objects of interest in the frames. The frames
are then divided into 7 channels at 6 spatial scales, which are combined again, making up
the saliency map, identifying the objects in the image [23].

The final, and possibly most used, method of finding features in an underwater image,
or in an image in general, is the edge and corner detectors. These algorithms investigate
the intensity map on the image, and where the gradient of the intensities across the image
pixels is high, an edge or corner can be identified. The corner detector used in [9], and
the SURF method used in [24] all use the change of intensities across the image pixels
to identify a point of interest in an image. This type of feature detection can also benefit
greatly from increasing the contrast in the image, for example using the contrast-limited
adaptive histogram equalisation, detailed in [25].

1.5 Structure of Thesis
The structure of the thesis is presented thematically, with the ROV and computer vision
being the two main themes. In these thematic chapters both theory and methods are dis-
cussed, with the first being based on previous work and literature and the latter based on
work done for this thesis. The results and discussion are presented in separate chapters.
The structure is defined as:

• Chapter 1: Introduction. Here the background and motivation are explained in
addition to introducing the objectives and scope of the thesis. A literature review
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is also included here to discuss what has been done regarding computer vision and
underwater imagery.

• Chapter 2: Remotely Operated Vehicle. The chapter introduces the ROV with
modelling and hydrodynamics, forces, sensor and the ROV control system with the
Kalman Filter being the main topic.

• Chapter 3: Computer Vision. The chapter introduces the camera model, the fea-
ture based method of estimating motion with feature detectors and matching. The
optimisation algorithm to solve for the motion is introduced and discussed.

• Chapter 4: Simulation. The chapter explains the simulation set-up and presents
the results from the simulation of the VME with the ROV Kalman Filter.

• Chapter 5: Discussion. Discussion of the results compared with the objectives
made and the theory and methods used.

• Chapter 6: Conclusion. Concluding remarks and recommendations for further
work

1.6 Thesis Contribution
The two main topics of this thesis is the application of computer vision techniques to esti-
mate motion underwater, and the inclusion of these motion estimates in the ROV control
system developed at NTNU. The goal of doing this is to increase the accuracy of ROV nav-
igation to increase the level of autonomy. As discussed in Section 1.4, the computer vision
techniques of estimation ego-motion of the camera frame is extensively researched and
developed. However, most of these techniques have been applied on surface technology.

In this thesis these techniques have been taken underwater and installed on a stereo
camera set mounted on a ROV. There have been some studies and promising results re-
garding SLAM for underwater vehicles, however, this has not been attempted in this the-
sis. The contribution of this thesis has been to investigate whether a feature-based method
of estimating camera motion will function in the water medium, as it has been proven to
work on the surface.

The improvement of accuracy for underwater navigation is instrumental to increase
the level of possible autonomous operations for a ROV. This should as mentioned in [2]
include computer vision techniques, and thus this thesis can give valuable input to the
application of computer vision to improve accuracy of underwater navigation
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Chapter2
Remotely operated Vehicle

2.1 Background
A ROV is a remotely operated vehicle, in this work, an underwater vehicle, that is con-
trolled by a trained pilot, usually in a control room on-board a larger surface vessel. The
ROV consists of a frame with buoyancy elements, thrusters, video cameras, sensors and
some sort of payload designated by the type of mission. A common feature of an ROV is a
manipulator arm, giving the ROV the possibility to perform maintenance and intervention
tasks on the seabed. Power to the vehicle, as well as all signals that are transmitted back
and forth between the control room and the ROV is sent through a cable, normally called
an umbilical

The ROV is not designed to be hydrodynamically efficient, thus the box-shaped design.
This will however, have minimal impact on the overall drag force on the vehicle, as the
umbilical connecting the ROV to the top-side control room represents most of the total
drag force on the ROV. Thus, making the ROV hydrodynamically efficient will only make
a tiny dent in the overall drag force experienced by the system.

2.2 Modelling and Hydrodynamics

2.2.1 Notations
The notations that are used in the thesis are taken from the SNAME convention and from
Fossen’s vectorial model [26, 3]. The position, orientation and linear and angular veloci-
ties are given by generalised coordinates and for an ROV there are 6 degrees of freedom
presented in Table 2.1

Generalised Coordinates

The equations of motion describing the mathematical model of the ROV and hydrodynam-
ics are presented based on the Fossen’s robotic-like vectorial model [26]. The purpose of
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Table 2.1: ROV degrees of freedom

Number DOF Forces &
Moments

Positions &
Orientation

Linear & angular
velocities

1 Surge X x u
2 Sway Y y v
3 Heave Z z w
4 Roll K φ p
5 Pitch M θ q
6 Yaw N ψ r

building a model of the ROV and the hydrodynamics is to simulate the ROV motion in
the observers, controllers and thruster allocation. The models are based on the modelling
performed for the ROV control system developed at NTNU by [3], [5] and [4].

The generalised coordinates for position and velocity are given by (2.1) and (2.2).

η =
[
x y z φ θ ψ

]T
(2.1)

ν =
[
u v w p q r

]T
(2.2)

The linear and angular position and velocity vectors are sub-vectors of the generalized
coordinates and are given by (2.3).

p =

xy
z

 , v =

uv
w

 , Θ =

φθ
ψ

 , ω =

pq
r

 (2.3)

where p ∈ R3×1 is the linear position, v ∈ R3×1 is the linear velocity, Θ ∈ R3×1 is
the angular position, or the attitude, and ω ∈ R3×1 is the angular velocity, or the turn rate
of the vehicle.

Notation Norms

All matrices are expressed in boldface, upper case letters, while vectors are expressed in
boldface, lower case letters. An estimate of a variable is expressed as x̂, the estimate of
the variable x, the time derivative of the variabel is expressed as ẋ, and the time derivative
of the estimate of the variable is expressed as ˙̂x. The cross product of two vectors a, b ∈
R3 can be calculated using the cross product operator, the skew symmetric matrix S as
a× b = S(a)b. The cross product operator S is defined as in (2.4).

S(a) =

 0 −a3 a2

a3 0 −a1

−a2 a1 0

 , a =
[
a1 a2 a3

]
(2.4)

Given the skew symmetric properties; S = −ST .
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2.2.2 Kinematics
Reference Frames

There are several reference frames used for navigational purposes and reference frames to
describe the motion of a vehicle. The three most common navigational reference frames
are

• ECI, {i}: The Earth-centred inertial frame with axes {i} = [xi, yi, zi]

• ECEF, {e}: The Earth-centred Earth-fixed frame with axes {e} = [xe, ye, ze]

• NED, {n}: The North, East, Down frame with axes {n} = [xn, yn, zn]

The three reference frames can be seen in Figure 2.1, where the body frame of a satel-
lite is also present. As depicted in the figure, the ECEF frame is rotating with respect to
the ECI frame with angular rate ωe.

Figure 2.1: The reference frames w.r.t. the Earth-Centered Inertial (ECI)
frame. [26]

The {i} frame is assumed to be inertial if high accuracy is important. However, for
slowly moving vehicles, the {n} frame can be assumed inertial for most purposes and
applications. The {e} frame can be used when the flat Earth approximation of the {n}
is not applicable, i.e. for motion over long distances. GPS coordinates are given in this
frame, however, it is unpractical to display the attitude in this frame.

• BODY, {b}: The body frame with axes {b} = [xb, yb, zb]

• MES, {m}: The measurement frame with axes {m} = [xm, ym, zm]

The two coordinate frames that are fixed to the vehicle are called the body-fixed co-
ordinate frame and the measurement frame. The body fixed frame is fixed to the vehicle

15



Chapter 2. Remotely operated Vehicle

origin and rotates with the vehicle. The measurement frame is usually moving and rotating
with the body frame. Thus, the measurement from an instrument mounted on the vehicle
are expressed in the measurements frame, and moving with the body frame. There can
be multiple measurement frames on the vehicle, depending on the number of instruments
doing measurements. The ROV body frame is presented in Figure 2.2

Figure 2.2: ROV BODY frame, with axes and rotations. [3]

The body frame of a ROV has axes defined as surge, sway and heave, and the rotations
according to the right-hand rule, roll, pitch and yaw around the surge, sway and heave axes
respectively.

Vector Notations

Sub- and superscripts are used to specify which reference frame the vector is decom-
posed in and the start and endpoint of the vector. A vector p that is decomposed in one
frame (frame {a}), can be expressed in another (frame {b}) using a transformation matrix
Rb
a(Θba) ∈ R3×3 as pb = Rb

a(Θba)pa. The superscript express which frame the vector
is decomposed in, and the subscript contains relevant information about the vector. The ro-
tation of a coordinate system (frame {a}) with respect to another (frame {b}) is expressed
by the rotation vector Θba.

Transformations

Translational transformations

As explained in the section above, the transformation matrixRn
b (Θnb) can be used to

rotate a vector expressed in the {b} frame of the vehicle to the {n} frame. The transfor-
mation matrix is given in (2.5).

Rn
b (Θnb) = Rz,ψRy,θRx,φ (2.5)
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where

Rx,φ =

1 0 0
0 cφ −sφ
0 sφ cφ

 ,Ry,θ =

 cθ 0 sθ
0 1 0
−sθ 0 cθ

 ,Rz,ψ =

cψ −sψ 0
sψ cψ 0
0 0 1

 (2.6)

s and c are short for sine and cosine as c− = cos(−) and s− = sin(−). The inverse
transformation is given in (2.7)

Rn
b (Θnb)

−1 = Rn
b (Θnb)

T = Rb
n(Θnb) (2.7)

This representation of the angles has a singularity at 90 degrees pitch, thus a quaternion
representation of the attitude could ease the computations.

Rotational velocity transformations

The Euler rate vector Θ̇nb is found by a transformataion of the body fixed angular
velocity vector as given in (2.8).

Θ̇nb = TΘ(Θnb)ω
b
b/n (2.8)

where the transformation matrix TΘ(Θnb) is given as

TΘ(Θnb) =

1 sinφ tan θ cosφ tan θ
0 cosφ − sinφ
0 sinφ/ cos θ cosφ/ cos θ

 (2.9)

2.2.3 Equations of Motion
A process plant model is a detailed mathematical model of all ROV dynamics, while the
control plant model is a simplified model [26], [27]. The former is mostly used in simula-
tions, while the latter is used in controller and observer design.

Process Plant Model

The process plant model for the ROV is given in (2.10) and (2.11).

η̇ = J(η)ν (2.10)

MRBν̇ +CRB(ν)ν︸ ︷︷ ︸
rigid-body terms

+MAν̇r +CA(νr)νr +D(νr)νr︸ ︷︷ ︸
hydrodynamic terms

+g(η) = τ + τext (2.11)

where MRB ∈ R6×6 is the rigid-body mass matrix in CO and CRB ∈ R6×6 is
the rigid-body Coriolis and centripetal matrix. MA ∈ R6×6 is the added mass matrix,
CA(νr) ∈ R6×6 is the added mass Coriolis and centripetal matrix and D(νr) ∈ R6×6 is
the damping matrix. g(η) ∈ R6×1 is the hydrostatic restoring force vector, τ ∈ R6×1 is
the propulsion force vector and τext ∈ R6×1 is the external forces vector, which includes
environmental forces and umbilical forces. νr ∈ R6×1 is the relative velocity vector and
is given by (2.12)
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νr = ν − νc (2.12)

where νc = [uc, vc, wc, 0, 0, 0]T is the current velocity in the ROV body frame.
The transformation matrix J(η) for the generalised coordinates consists of both the

translational transformation matrix and the rotational transformation matrix as given in
(2.13).

J(η) =

[
Rn
b (Θnb) 03×3

03×3 TΘ(Θnb)

]
(2.13)

Control Plant Model

The control plant model is a simplified version of the process plant model and is also used
for the design of the observers and controllers in the ROV control system at NTNU. The
assumptions for the simplified model includes:

• Slow-mowing vehicle, neglecting the Coriolis and centripetal forces

• Constant or slowly-varying current velocities, thus including the forces from the
ocean currents in the bias estimate, b

• Small roll and pitch motion and a neutrally buoyant vehicle with the centre of buoy-
ancy directly above the centre of gravity, thus linearising the restoring forcesG

The model is given in (2.14), (2.15) and (2.16).

η̇ = J(η)ν (2.14)

Mν̇ +Dν +Gη = τ + JT (η)b (2.15)

ḃ = − T−1
b b+wb (2.16)

where M ∈ R6×6 is the mass matrix and D ∈ R6×6 is the linear damping matrix.
b ∈ R6×1 is the bias accounting for the unmodelled dynamics and slowly-varying loads
such as current. The bias is modelled as a first order Markov process, where Tb ∈ R6×6

is a diagonal matrix with positive bias time constants and wb ∈ R6×1 is a zero mean
Gaussian white noise.

2.3 Generalised Forces
Ocean current, umbilical, manipulator and the thrusters are the contributors to the gen-
eralised forces acting on the ROV. The manipulator and umbilical forces as well as the
current forces are taken care of by the bias estimation in the control plant model, while for
the process plant model the current forces are included in the relative velocity vector.
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2.3 Generalised Forces

2.3.1 Ocean Current Forces
The ocean current forces for use in simulations with the process plant model are generated
using a model of the current speed and direction relative to the {n} frame and is given in
(2.17).

vnc = RT
y,αcRz,−βc

Vc0
0

 (2.17)

where Vc is the current speed and αc and βc are the vertical and horizontal direction re-
spectively. The rotation matrices are computed by (2.6) with αc and −βc as arguments.

2.3.2 Propulsion Forces
ROVs are usually fully actuated or over-actuated vehicles, which means they can produce
force in any DOF by their thrusters. The NTNU ROV SF-30k have both single side and
double-side thrusters. The force produced by the thrusters is hard to measure, thus devel-
oping a good model of the thrusters is important in the control system. The control input is
the revolution speed of the thrusters, thus a mapping from revolution to force is necessary.
A basic model of the thrust from a single thruster is given in (2.18).

f = KT (J)ρD4n2 (2.18)

where f is the thrust, KT (J) is the thrust coefficient, ρ is the water density, D is the
propeller diameter and n is the propeller revolution speed in revolutions per second. The
thrust coefficient depends on the advance number J , defined in (2.19).

J =
Va
nD

(2.19)

where Va is the inflow water velocity to the propeller. The total thruster force, τ , in p
DOFs is

τ = Tf (2.20)

where T ∈ Rp×r is the configuration matrix, a function of the thruster position and angles
relative to the ROV body frame. The thrust vector τ is commanded by the control system,
and has to be distributed and mapped to revolution speed for each thruster. Thus, equation
(2.21) is rewritten as

τ = TKu (2.21)

where K ∈ Rr×r is a diagonal matrix with thruster coefficients, with r being the number
of thrusters and u ∈ Rr is the propeller revolution speed. The thrust allocation solves
for u and then the individual revolution speed for each propeller is determined. As the
configuration matrix T is not invertible, a common solution is the Moore-Penrose pseudo
inverse as

T † = T T
(
TT T

)−1
(2.22)
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Chapter 2. Remotely operated Vehicle

u = K−1T †τ (2.23)

2.4 Sensors
The ROV can be equipped with a wide range of sensors to increase the accuracy of its
navigation. This section will describe the most important sensors often installed on the
ROV for its navigation. The measurements from these sensors will later in this thesis be
combined with the output from the visual navigation system to estimate the states of the
ROV. The typical sensors for a ROV are presented below and in Figure 2.3

(a) Transponder (b) Pressure gauge (c) DVL (d) IMU

Figure 2.3: Typical ROV sensors. Courtesy of Kongsberg Maritime (a,b,d) and
Innova AS (c)

2.4.1 Sensor Description
Transponder

The transponder is mounted on the ROV and transmits and receives signals from an acous-
tic positioning system (APS). The signals from the APS determines the transponder po-
sition and outputs the x, y and z coordinates in the NED frame. Depending on the water
depth, the update rate of the APS ranges from approximately 0.3-1.0 Hz for a typical ROV
mission.

The acoustic frequency of the system is the governing factor for both the range and
accuracy of the acoustic system. Higher frequencies can give good accuracy, but short
waves are very vulnerable to attenuation in water, thus limiting the range of the system.
Lower frequencies are not as vulnerable to attenuation and has a longer range, however
with limited accuracy [28].

There are three main methods for underwater acoustic positioning, super short baseline
(SSBL), short baseline (SBL) and long baseline (LBL), and these are presented in Figure
2.4. SSBL systems has a single multielement transducer mounted on the hull and uses
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2.4 Sensors

(a) LBL (b) SBL (c) SSBL

Figure 2.4: Acoustic positioning systems, Long Baseline (LBL), Short Baseline
(SBL), Super Short Baseline (SSBL). Courtesy of Kongsberg Maritime

measurements of the range and angle to calculate the transponders position. The RV Gun-
nerus, where the NTNU ROVs are deployed has a Kongsberg HiPAP, a SSBL system with
positioning accuracy of 0.2% of the range according to the manufacturer, with a maximum
range of 4000 m. [3]

Short baseline systems typically have three transducers mounted on the hull and uses
measurements of range and angle from all three to calculate the relative position of the
transducer and the vessel. LBL systems are based on range measurements only. The
transducer is mounted on the ROV, and its position is calculated relative to a calibrated
array of transponders, typically installed on the seabed.

In deep waters the position error can be several meters, and it is thus very important to
calibrate the APS for the sound velocity profile. The sound velocity will vary in the water
column, dependent on conductivity, temperature and depth.

Pressure Gauge

The pressure gauge calculates the depth of the ROV given a measured pressure. The
accuracy of a good pressure gauge is typically 0.01% of full scale with an update rate of
approximately 8 Hz. This means the accuracy and update rate of the depth measurement
from the pressure gauge is far superior to the depth measurement given by the transponder.
[3]

DVL

The doppler velocity log (DVL) uses the shift in the echo from an acoustic signal sent from
the ROV. Typically 4 transducer heads pings downward towards the seabed or the water
column and uses the shift in the echo to calculate the velocity vector of the DVL relative
to the sea floor or the water column. The DVL outputs a 3-DOF velocity measurement, u,
v and w in the DVL frame. The DVL has an update rate similar to the pressure gauge, with
maximum rate at 7 Hz [29].
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Inertial Measurement Unit

The inertial measurement unit (IMU) mounted on an ROV typically has 3 accelerometers,
3 gyroscopes and 3 magnetometers, measuring the 3-DOF accelerations, turn rates and
magnetic field components. Given recent advances the IMUs are today very accurate,
small and inexpensive and thus well suited for smaller vehicles, such as the ROV. [3]

A typical IMU has an update rate ranging from 100-1000 Hz, which is much faster than
the update rate of the APS or the DVL. Calibration of the IMU is very important to increase
the accuracy. Despite the advances in the technology the gyroscope and accelerometer still
suffer from drift and noise. The IMU readings thus have to be adjusted by a GPS reading
for a surface vessel or an acoustic reading for subsea vessels.

2.4.2 Measurements
The sensors are mounted on the ROV in different positions and alignment. To combine
the measurements and express them in a common reference frame, the sensor readings
have to be transformed. Figure 2.5 below shows the frame of the ROV and the locations
of the different sensors. All measurements are transformed to the CO of the ROV body
frame or another origin of interest, and the equations describing these translations and
transformations are given in the following. [30]

X
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x y

z

x

z

y

r
b
imu=b

r
b
tp=b

r
b
pg=b

r
b
dvl=b

fdg

fmg r
b
tp=m

r
b
pg=m

r
b
dvl=m

Figure 2.5: ROV frame with sensors and their positions

The position of the sensors relative to the CO of the ROV are given by the vectors rbtp/b,
rbdvl/b, r

b
imu/b and rbpg/b for the transponder, DVL, IMU and pressure gauge respectively.

Figure 2.5 shows both the arm of the sensors with respect to the body frame and the arm
with respect to the IMU frame.
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2.4 Sensors

Sometimes it is useful to express the observer equations in the IMU frame, their po-
sition relative to the IMU is needed. These are noted rmtp/m, rmdvl/m and rmpg/m for the
transponder, DVL and pressure gauge respectively. The calculations of these arms relative
to the IMU frame are given in (2.24)-(2.26).

rmtp/m = Rm
b (Θbm)(rbtp/b − r

b
imu/b) (2.24)

rmdvl/m = Rm
b (Θbm)(rbdvl/b − r

b
imu/b) (2.25)

rmpg/m = Rm
b (Θbm)(rbpg/b − r

b
imu/b) (2.26)

IMU

The measurement equations for the IMU accelerometer, gyro and magnetometer are given
in (2.27), (2.28) and (2.29). The equations are given in IMU frame {m}, as explained
above.

amimu = v̇mm/e + ωmm/i × v
m
m/e +Rm

n (ωne/i + ωnn/e)× v
m
m/e −R

m
n g

n
l

+ bmacc +wm
acc (2.27)

ωmimu = ωmm/n +Rm
n (ωne/i + ωnn/e) + bmgyro +wm

gyro (2.28)

mm
imu = Rm

n R
n
em

e + bmmag +wm
mag (2.29)

where amimu ∈ R3 is the measured acceleration vector, bmacc is the accelerometer bias
vector and wm

acc is the accelerometer noise vector. ωmimu ∈ R3 is the measured turn rate
vector, bmgyro is the gyro bias vector and wm

gyro is the gyro noise vector. mm
imu ∈ R3

is the measured magnetic field, bmmag is the magnetometer bias vector and wm
mag is the

magnetometer noise vector.
The IMU measurement can also be expressed in the vehicle frame, {b}. When simu-

lating IMU measurements from the ROV motion, these equations are used. The equations
are given in (2.30), (2.31) and (2.32)

amimu = Rm
b (v̇bb/e + ωbb/e × v

b
b/e + ω̇bb/e × r

b
imu/b + ωbb/n × (ωbb/n × r

b
imu/b)

+Rb
n(ωne/i + ωnn/e)× v

b
b/e −R

b
ng

n
l ) + bmacc +wm

acc (2.30)

ωmimu = Rm
b

(
ωbb/e +Rb

n(ωne/i + ωnn/e)
)

+ bmgyro +wm
gyro (2.31)

mm
imu = Rm

b R
b
nm

n + bmmag +wm
mag (2.32)

DVL

The equation relating the DVL velocity vector to the ROV body frame is given in (2.33).

vdd/e = Rd
b (Θbd)

(
vbb/n + ωbb/n × r

b
dvl/b

)
+wd

dvl (2.33)
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where vdd/e ∈ R3 is the measured velocity vector and wd
dvl is the DVL noise vector.

For use in the control system, the equation must be solved for vbb/n, the ROV velocity
vector in body frame.

Pressure Gauge

The equations relating the pressure gauge depth measurement to the ROV body frame
relative to the NED frame is given in (2.34) and (2.35).

ppg = patm + ρgznpg/n + wpg (2.34)

znpg/n = znb/n +
[
0 0 1

]
Rb
n(Θnb)r

b
pg/b (2.35)

where ppg is the measured pressure, patm is the atmospheric pressure at the surface,
ρ is the water density, g is the acceleration of gravity, znpg/n is the depth of the pressure
gauge and wpg is the pressure gauge noise, while znb/n i the depth of the ROV.

Transponder

The equations relating the transponder position measurement to the ROV body frame rel-
ative to the NED frame is given in (2.36).

pntp/n = pnb/n +Rn
b (Θnb)r

b
tp/b +wn

tp (2.36)

where pntp/n ∈ R3 is the measured transponder position in NED frame, pnb/n is the
ROV position relative to the NED frame and wn

tp is the transponder noise vector.

2.5 ROV Control System
Development of the control system for the ROV at NTNU started as early as in 2004,
when ROV Minerva was acquired. Through several master thesis and the PhD thesis of
Dukan [3] the motion control system was taken from the early PC and Matlab implemen-
tation to the compactRIO and Labview implementation of today. The control system was
restructured in 2012 to object-oriented programming in LabVIEW, and has since been
an important tool for many disciplines at NTNU. The architecture of the control system
makes it suitable as a test bed for PhD candidates and MSc students.

The modes and functions included in the motion control system range from station
keeping, maneuvring from A to B, trajectory tracking, joystick closed-loop control, al-
titude control and more. Later an autonomy mode has also been implemented, having
functions such as obsticle avoidance. The main control loop consists of signal processing,
the observer, controller and thruster allocation. The structure of the motion control system
with blocks and connections is seen in Figure 2.6.

In this thesis the test bed for control system implementation is the observer block. The
output from the visual motion estimation serves as measurement input to the observer in
the control system. The role of the observer is to take measurements in from different sen-
sors and output smooth estimates of the ROV position and velocity to the controller block.
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2.5 ROV Control System

Figure 2.6: ROV Minerva motion control system architecture. Courtesy of Mauro
Candeloro

The sensors have different update rates, noisy measurements, periods of no measurements.
The observer, however, still has to provide the controller with estimates of the states of the
system.

The default observer in the ROV motion control system is a Kalman Filter linearised
around heading sectors. However, the attitude is estimated from the measurements from
IMU prior to the observer in an explicit complimentary filter (ECF) [3]. The changes
made to the observer for this thesis is the added measurements from the visual motion
estimation. These come in as velocity measurements to the Kalman Filter and is supposed
to increase the accuracy of the estimated states and to some degree attempt to minimise
drifting.
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2.5.1 ROV Kalman Filter
The Kalman filter used in the ROV control system and in this thesis is a sector Kalman
Filter, where the observber equations are linearised about 36 heading angles, starting at
5◦ with 10◦ intervals. The filter is based on the equations from [26]. As the sensor mea-
surements come in at different rates, especially the VME measurement, the measurement
matrix H is adjusted accordingly. The Kalman filter in this thesis is 6 DOF Kalman filter
for surge, sway, heave, roll, pitch and yaw.

The control plant model from (2.14), (2.15) and (2.16) is rewritten to the equations
given in (2.37), (2.38) and (2.39).

η̇ = J(η)ν (2.37)

Mν̇ +Dν = τ + JT (η)b+wm (2.38)

ḃ = − T−1
b b+wb (2.39)

where the restoring forces are neglected and a zero mean Gaussian white noise is
added, wm. As before, the unmodelled dynamics are accounted for in the bias b. Equa-
tions (2.37), (2.38) and (2.39) are expressed in state space form as given in (2.40) and
(2.41).

ẋ = Ax+Bu+Ew (2.40)

y = Hx+ v (2.41)

where

x =

ην
b

 , u = τ , w =

 0
wm
wb

 (2.42)

The number of inputs to the system is determined p, the number of states is n, while the
number of outputs, or measurements, is m. Then for 6 DOFs, y ∈ Rm×1 is the measure-
ment vector, H ∈ Rm×n is either zero or one, depending on the available measurements
and v ∈ Rm×1 is a vector with sensor measurement noise. The matrices in the state-space
equations (2.40) and (2.41) are given in (2.43).

A =

0 J(η) 0
0 −M−1D M−1JT (η)
0 0 −T−1

b

 ,B =

 0
M−1

0

 , E =

0 0 0
0 M−1 0
0 0 I

 (2.43)

where the transformation matrix J(η) is linearised about the current heading, measured
in the compass. A function to avoid chattering between the different sectors is also imple-
mented. The state-space model in (2.40) and (2.41) is discretised as given in (2.44) and
(2.45).
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x(k + 1) = Φ(ηi)x(k) + ∆(ηi)u(k) + Γ(ηi)w(k) (2.44)

y(k) = H(k)x(k) + v(k) (2.45)

where the matrices of the continuous model are discretised as

Φ(ηi) = eA(ηi)h ' I +A(ηi)h (2.46)

∆(ηi) =

∫ h

0

eA(ηi)sdsB '
(
Ih+

1

2
A(ηih

2

)
B (2.47)

Γ(ηi) =

∫ h

0

eA(ηi)sdsE '
(
Ih+

1

2
A(ηih

2

)
E (2.48)

k is the step number, and h is the time step in seconds for the discretisation. Based on
these equations, and on [26], the following Kalman filter is proposed. The Kalman filter
gain matrix K is defined in (2.49). R is the measurement covariance matrix and Q is
the model covariance matrix. P is the state covariance matrix, a measure of the estimated
accuracy of the state estimate.

K(k) = P̄ (k)HT (k)
[
H(k)P̄ (k)HT (k) +R(k)

]−1
(2.49)

The corrector equations are given in (2.50) and (2.51).

x̂(k) = x̄(k) +K(k) [y(k)−H(k)x̄(k)] (2.50)

P̂ (k) = [I −K(k)H(k)] P̄ (k) [I −K(k)H(k)]
T

+K(k)R(k)KT (k) (2.51)

The predictor equations are given in (2.52) and (2.53)

x̄(k + 1) = Φ(ηi)x̂+ ∆(ηi)u(k) (2.52)

P̄ (k + 1) = Φ(ηi)P̂ (k)ΦT (ηi) + Γ(ηi)Q(k)ΓT (ηi) (2.53)

The x̂ is the estimated state vector which is sent to the control block. The filter always
runs at the same frequency, thus if a measurement is unavailable at time step k, the corre-
sponding element in the measurement matrix H(k) is set to zero. This way the corrector
only runs when there is an available measurement, otherwise, the predictor outputs the
estimated states based on the mathematical model of the ROV.

There is no proof of stability or convergence when the system is linearised as it is in
the sector Kalman Filter. The extended kalman filter could fix this problem, however, it
is more meticulous to implement and more costly computationally than the linearised ver-
sion. For a slowly-moving ROV the Coriolis force is going to be small, and the quadratic
damping less important, thus the sector Kalman filter is implemented in the ROV control
system at NTNU and in this thesis.
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In order to accommodate the measurements from the visual motion estimation, the
measurement matrix is expanded toH ∈ R18×18 as the number of states remain the same,
but the number of outputs is increased from 12 to 18. The measurement matrix is given in
(2.54).

H =

I6×6 06×6 06×6

06×6 I6×6 06×6

06×6 I6×6 06×6

 (2.54)

For p = 6 number of inputs, n = 18 states and m = 18 outputs, the measurement
noise covariance matrix is defined as a diagonal matrix R ∈ R18×18, while the matrices
A ∈ R18×18, B ∈ R18×6, E ∈ R18×18 are defined as in (2.43). The process noise
covariance matrixQ ∈ R12×12 is also unchanged from the control system from [3].

The visual motion estimation runs on a separate program than the control system,
thus the Kalman Filter is implemented as a case structure. This means the Kalman Filter
changes from its original version to the modified version depending on the existence of an
input from the visual motion estimation. When the Kalman Filter runs without input from
the visual motion estimation the measurement matrix is defined as:

H =

[
I6×6 06×6 06×6

06×6 I6×6 06×6

]
(2.55)

The measurement noise covariance matrixR is expanded to include the measurements
from the VME. The first 12 diagonals are given as before in the ROV control system, the
last 6 for the VME measurements are given in (2.56)

R(12− 18, 12− 18) = diag {0.1, 0.1, 0.1, 100, 100, 10} (2.56)
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Chapter3
Computer vision

Computer vision deals with how digital images and video can be used to gain understand-
ing of the surroundings. In the following the theory of computer vision will be used to
gain understanding of motion, based on the visual input from a stereo camera. The field
of computer vision has really gained ground the last decade as computational power has
become more available to run the expensive algorithms in computer vision. See Section
1.1 and Section 1.4 for more about computer vision.

The method of estimating vehicle motion based on visual input is already used widely
above the sea, especially as the development of the driver-less car is gaining traction. Also
space probes, as the Mars Rover has included computer vision as one of its navigational
sensors when exploring Mars. [13]

In this section we will first look into the model of the camera, then briefly discuss the
different methods of extracting information from the camera, before going more deeply
into the method used in this thesis and the different steps toward having an estimate of
motion from one frame to the next.

3.1 Camera Model

3.1.1 Pin-hole Camera Model
The camera model applied to this problem is the pin-hole camera model. The pin-hole
model centres around the optical axis drawn from the centre of the camera, through the
centre of the image plane into the 3D coordinate frame, called the camera reference frame.
The distance from the camera centre to the image plane is called the focal length, while the
centre of the image plane c = (cx, cy) is called the principle point. The pin-hole camera
model for a stereo camera set is presented in Figure 3.1.
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Figure 3.1: The pin-hole camera model for a stereo pair of cameras

We see the point P = (X,Y, Z) ∈ R3 relative to the camera reference frame, where
the optical axis is the Z-axis. By taking the geometrical relations we derive that the point
projected onto the image plane is

x = f
X

Z
, y = f

Y

Z
(3.1)

where x, y are the coordinates on the image plane. For only one camera, the depth of the
image is difficult to determine. In order to calculate the depth of an object in the image,
it is necessary to have a separate camera. Then by looking at the geometry between the
camera centres, through the image planes to a point in 3D space the depth in the image can
be calculated as:

Z = f
b

xl − xr
(3.2)

where xl, xr is the x-coordinate of the point in the image plane of the left and right camera
respectively and b is the baseline distance between the camera centres of the left and right
camera. The origin of the camera reference frame is chosen to be in the camera centre
of the left camera. By applying the equations of (3.1) and expressing the points in ho-
mogenous coordinates and relative to the principal point, the relation can be expressed in
compact and more general form as:

uv
1

 =
1

Z

f 0 cu
0 f cv
0 0 1



1 0 0 0

0 1 0 0
0 0 1 0



X
Y
Z
1

−
s0

0


 (3.3)
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3.1 Camera Model

where (u, v) is the projected point to the image frame, f is the focal length, (cu, cv) is the
principal point in the image frame and (X,Y, Z) is the point in the camera reference frame
and s is the baseline. This model holds for both cameras, where s = 0 for the left camera
and s = b for the right camera.

In order to implement this simplified pin-hole camera model square pixels are assumed.
The specifications from the camera manufacturer usually specifies this. There is also as-
sumed no skew in the pixels. The distortion in a camera is usually not a problem on land,
however, underwater, this could lead to some errors. The calibration method and how to
account for distortion in the underwater images is described in the next section below.

3.1.2 Camera Calibration
Camera calibration is the process of finding the coefficients explained in the section above,
the intrinsic camera parameters. The intrinsic parameters are mainly the focal length, the
skew coefficient and the principal point coordinates, ideally in the centre of the image.
The skew coefficient is as mentioned above assumed to be zero. The camera calibration
is usually done by picturing a motive with direct lines and known geometry, such as a
chessboard. By looking at the final geometry, the intrinsic parameters are determined.
[31]

Most programming tools with computer vision ability can calibrate the camera, such
as Matlab and OpenCV for C++. As mentioned, underwater imagery can be quite more
challenging with respect to lighting and lens distortion especially. The refractive index of
light travelling in water will change w.r.t. air due to particles. Thus a careful calibration of
both the camera intrinsic parameters and distortion coefficients is necessary to get accurate
results.

A method widely used, among others in the Agisoft software used for the NTNU ROV,
is the Brown distortion model [32]. The distorted image coordinate (x, y) is related to the
undistorted coordinates (x′, y′) by the equation given in (3.4) (3.5)

x′ = x
(
1 +K1r

2 +K2r
4 +K3r

6
)

+ P2

(
r2 + 2x2

)
+ 2P1xy (3.4)

y′ = y
(
1 +K1r

2 +K2r
4 +K3r

6
)

+ P1

(
r2 + 2y2

)
+ 2P2xy (3.5)

where r =
√
x2 + y2

where K1,K2,K3 are radial distortion coefficients, and P1, P2 are tangential distor-
tion coefficients. These coefficients, together with the camera intrinsic parameters are all
estimated by the camera calibration.

The calibration procedure is usually performed on a flat-surface, with known geomet-
rical shapes. The most common flat-surface is the chessboard with fixed square sizes.
The Matlab calibration toolbox is an easy and applicable tool for camera calibration. The
procedure is shown in Figure 3.2 and will be explained here.

The Matlab toolbox for camera calibration takes in a series of images of a chessboard,
as exemplified in Figure 3.2a. For the most optimal results a series of 10-15 images of
the chessboard is recommended, taken at different angles and distances. The algorithm
then detects all the corners of the chessboard as presented in Figure 3.2b. The algorithm
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calculates the focal length, principal point and distortion coefficients based on the images
and chessboard corners.

(a) Chessboard used for camera calibration
(b) Corners and origin detected on chess-
board

Figure 3.2: Camera calibration by chessboard using the Matlab camera calibration tool-
box

The results from the calibration in air with the stereo cameras listed in Appendix B is
presented in Table 3.1.

Table 3.1: Intrinsic parameters and distortion coefficients after cam-
era calibration in air

Left Camera Right camera
Focal length (f ) 1275.8 pixels 1264.35 pixels

Principal point horizontal (cu) 685.79 pixels 705.24 pixels
Principal point vertical (cv) 509.81 pixels 528.75 pixels
Distortion coefficient (K1) -0.1383 0.1730
Distortion coefficient (K2) 0.2929 0.4676
Distortion coefficient (K3) -0.4180 -0.3607

3.2 OpenCV Library
The OpenCV (Open Source Computer Vision Library) is a computer vision and machine
learning library. The library is open sorce, meaning everyone can utilise the library for
all sorts of applications. OpenCV is written natively in C++, but has interfaces with C++,
Python, Matlab and Java, and supports the operating systems Windows, Linux, Android
and Mac OS.

OpenCV has more than 2500 optimised algorithms that can be used for among oth-
ers face recognition, object identification, human actions classification, tracking camera
movements or moving objects, 3D model extraction, points cloud production from stereo
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cameras, image stitching, etc. The library is used by several well-established companies,
such as Google, Yahoo, Microsoft, Intel, Ibm and more. [33]

The use of the library span the entire world, being used for intrusion detection in Israel,
detection of swimming pool drownings in Europe, checking runways for debris in Turkey
and rapid face detection in Japan. [33] In this project the OpenCV algorithms used are
mostly for feature detection and description in underwater images and matching features
across frames. Thus, utilising only a small part of the vast opportunities the library present.

The point cloud production from stereo cameras can be an interesting next step for
this type of project. Then the algorithm could gradually move over to a SLAM approach,
where the ROV creates a map of the surroundings online, and can receive an absolute
position reference when moving in these surroundings.

3.3 Feature Detection and Matching

Features in an image is very important in the study of computer vision. They are
instrumental in motion estimation, 3D reconstruction, image mosaicking etc. An interest
point in the image can be an edge, a corner, a local intensity maximum or minimum, or
line endings. A key condition for an interest point is that it is distinguishable, meaning
recognised in different lighting, different viewpoint or orientation. This is important in
the field of object detection and tracking as the features must be recognised in different
uncorrelated images. In Figure 3.3 the feature detection and matching across two images
is presented, using the BRISK feature detector.

Figure 3.3: Features are retrieved in two different images and matched from left image to
right image

The goal of extracting information about features in the image is to recognise the same
feature in a different image. Thus, by computing the transformation matrix of a specific
feature from frame to frame, the camera’s motion can be estimated. A key parameter to
match features in different images is the feature descriptor. The descriptors are usually a
vector of N unique numbers describing the feature. Two features are matched when the
norm of the corresponding descriptor vectors are sufficiently similar.
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There are multiple feature detectors and descriptors developed for computer vision.
The different methods have different advantages and are developed for different applica-
tions. The two most important criteria is speed and accuracy. The speed criteria is impor-
tant for whether or not it is for online applications or processing applications. Regarding
online implementation, one of the most common applications is navigation, especially ve-
hicles on land, including the Mars rover [13]. In order to receive accurate and up-to-date
information about the vehicles location, the feature detectors must be computationally fast
[19], [20].

For post-processing, like constructing maps based on images, the speed is not as im-
portant. However, especially for map making, high accuracy is instrumental for a good
result. Thus different feature detectors and descriptors have been developed with advan-
tages and disadvantages for the different applications. In particular the SIFT and SURF
methods proposed in the project thesis leading to this work, and the more computationally
efficient binary descriptors, such as the ORB or BRISK methods.

3.3.1 Feature Detector SIFT/SURF
The scale-invariant feature transform (SIFT) method was introduced by [34] and is com-
prised of four basic steps. First the interest points in the image are detected, then their
locations in the image are calculated. Then for each point the orientation is determined
based on intensity gradients, before the descriptors are obtained by their gradient vectors.

In the first step the image is scanned for potential interest points. These interest points
must satisfy the invariant criteria for both scale and orientation. The detection of features
that are invariant to scale is done by searching for interest points across many scales using
a scale-space function [34]. The scale space is obtained from the convolution of a variable-
scale Gaussian filter G(x, y, σ) with an input image I(x, y).

L(x, y, σ) = G(x, y, σ) ~ I(x, y), G(x, y, σ) =
1

2πσ2
e−

(x2+y2)/2σ2 (3.6)

To detect the location of a stable interest point, the difference of two nearby scales is
computed D(x, y, σ), separated by a multiplication factor k, D(x, y, σ) = L(x, y, kσ) −
L(x, y, σ). Then the local maximum and minimum of D is detected by comparing the
sample point to its neighbours. To be selected as a detected interest point, the local max-
imum or minimum of the sample point must be bigger or smaller than all its neighbours
[34].

If the interest point is a valid candidate, the point’s location is found. The point is
rejected if the contrast is poor or if it is badly located along an edge. This is either done
by simply extracting the information from the original sampling point [35], or by fitting a
function to the sample point and interpolating the location of the maximum or minimum
[36]. In order for the feature to be invariant to rotation, the orientation of the feature is also
assigned. The orientation is assigned based on the properties of the neighbouring pixels,
such that even if the image is rotated, so is the neighbourhood of the feature.

Based on the information computed up to this point, a descriptor of the feature is
formed. When extracting the descriptor, the gradient magnitude is computed at each sam-
ple point in a 4 × 4 region around the interest point. For each sample point the gradient
histogram is computed in 8 orientation, thus creating a descriptor of 4 × 4 × 8 = 128
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elements for each feature. To avoid the effect of brightness and illumination change, the
vector is normalised and reduced based on a given threshold. An example showing a 2×2
region of the interest point and the 8 orientations of the gradient histogram is presented in
figure 3.4

Figure 3.4: Left shows the computation of gradient magnitude and orientation for
an 8 × 8 set of samples weighted by a Gaussian window. Right shows the samples
accumulated into orientation histograms in a 2× 2 descriptor array. [34]

The SURF method was introduced in [24] to reduce computation time and includes
two new concepts to the SIFT method. Box filters are used to detect interest points and
the vector containing the descriptors are reduced to half the size of the SIFT method [37].
The 128-vector long descriptor in the SIFT method is reduced to a 64-vector descriptor in
the SURF method.

When extracting the descriptor, a square region is first centred around the interest point.
This region is then divided into subsequent smaller 4×4 sub-regions. For each sub-region
simple features are computed, and filters in horizontal and vertical direction are applied to
the computed features. The filter responses are then summed over the sub-regions, giving
a descriptor vector for all 4× 4 sub-regions of length 64 [24]. The SURF method is faster
than the SIFT, however still quite slow for online applications.

3.3.2 Feature Detector BRISK
The goal of the binary robust invariant scalable keypoint (BRISK) method is to reduce the
computational cost, while still requiring high-quality descriptions of features in an image
[38]. The method is mainly structured in the steps of detecting scale-space interest points
and describing them, much like the SIFT and SURF methods. An advantage with the
BRISK method of keypoint detection is that it allows for the combination of a BRISK
detector with another feature descriptor and vice versa [38].

The BRISK methodology is inspired by the AGAST method in [39], which uses the
FAST corner detection algorithm. In addition to searching for maximum and minimum in
the image plane, the BRISK method also searches in the scale-space. The image is divided
into pyramid layers, achieved by half-sampling the original image. The pyramid usually
consists of 4 octaves and 4 intra-octaves. The sample point for detection must fulfil a
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maximum condition compared to all of its 8 neighbouring pixels. This is done by a score,
which is defined as the maximum threshold of an image point detected as a corner. The
maximum condition will then have to be applied to all layers both above and below the
active layer.

The feature description is composed as a binary string by assembling results of simple
comparison of brightness. The characteristic direction of the interest points is also iden-
tified in order to allow features invariant to rotation. As mentioned before, invariance to
scale and rotation are two very important abilities for a robust feature detection and de-
scription. BRISK uses a pattern for sampling the neighbourhood of a feature. N locations
are placed around the feature spaced on circles, expanding from the center. To avoid alias-
ing when sampling the intensity of a point in the pattern, a Gaussian smoothing filter is
applied. An example of the sampling pattern with N = 60 points is presented in figure
3.5.

Figure 3.5: BRISK sampling pattern with 60 points. Blue circles are sampling loca-
tions, red circles corresponds to standard deviation of Gaussian kernel applied to the
sampling points, The scale here is 1. [38]

The intensity values after the Gaussian smoothing are then used to estimate the local
gradients. The algorithm looks at the intensity values for sampling-point pairs (pi,pj),
with their intensity values I(pi, σi) and I(pj , σj), where σ is the standard deviation of the
Gaussian filter. The local gradient is then determined as given in (3.7)

g(pi,pj) = (pj − pi)
I(pj , σj)− I(pi, σi)

||pj − pi||2
(3.7)

By iterating over the points, the overall characteristic direction of the feature is calcu-
lated. Only the long distance point pairs are used here, given a previously set threshold.
The descriptor is then formed by rotating the sampling pattern around the feature and the
descriptor is formed with each bit b satisfying (3.8)
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b =

{
1, I(pj , σj) > I(pi, σi)

0, otherwise
(3.8)

The matching of descriptors is a simple calculation of the Hamming distance between
the two descriptors. The Hamming distance is essentially the number of positions in the
descriptors that are not equal. Thus, a match is awarded if this number is below or above
some user-specified threshold. In Figure 3.6 the BRISK feature detector is used to exam-
plify the robustness of the algorithm to rotations.

Figure 3.6: Example of BRISK feature detection and matching algorithm and its robustness
to rotation

3.3.3 Feature Matching
The matching procedure of the VME is performed using the brute-force matcher. The
brute-force means it will look through all feature descriptors in the second image for a
match with every descriptor in the first image. For each match the distance between the
descriptors is computed. As mentioned above, the Hamming distance is the one used when
applying binary feature descriptors as with the BRISK feature detector and descriptor.
Thus for all features the brute-force matcher will find a match and allocate it a Hamming
distance. The Hamming distance is faster to compute than the euclidean distance as used
in SIFT/SURF, making it another advantage w.r.t. computational effort [40].

Not all matches will be a correct match, and to sort out the incorrect matches the
matching procedure also includes a nearest-neighbour search. This means that for each
descriptor, the algorithm will find, in this case, two descriptors that are a match. The idea,
that is explained in [34], that the closest neighbour is the actual matching feature, and
second-closest is defined as the closest neighbour that is known not to be match. Thus, for
each feature there will be two matches and two Hamming distances computed.

The next step is to sort out the matches that are incorrect. To do this, the ratio between
the two matches is computed. If the closest neighbour is a correct match, the distance will
be much lower than the distance of the second-closest neighbour. Thus the match will be
accepted as a correct match. If the closest neighbour is an incorrect match, then by the
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definition in [34], both distances will be quite similar. Thus by excluding all matches with
a ratio above some threshold will eliminate most incorrect matches. This threshold is set
to 0.65 for the implementation of the VME in this project.

3.4 Comparative Feature Detector Analysis

3.4.1 Feature Detection
In the project thesis leading up to this master thesis, the SURF feature detector was applied.
However, as that part of the project was only applied to offline simulation, the computa-
tional speed of the solution was not emphasised. For online applications the BRISK feature
detector is chosen based on its lower computational demand with comparative accuracy to
SIFT/SURF as stated in [38]. The feature detection utilises the BRISK feature toolbox
from the OpenCV library. For every iteration features are detected in 4 images, left and
right from the current frame and from the previous frame. The BRISK feature detector
class in the OpenCV library has functions for both detecting features and extracting the
feature descriptor as explained in Section 3.3.

The feature detector returns a keypoint class of objects, representing the features in
the image. The information returned include the location, orientation and the size of the
feature’s immediate neighborhood. The extractor returns the binary descriptor vector for
each feature, the scope of which depends on the accuracy wanted. A comparison of the
SURF and BRISK feature detection and description follows.

When deciding whether to use SURF or BRISK for the feature detection and descrip-
tion both methods were tried on the underwater images captured on the Stokkbergneset
image set. The two algorithms were tested for two sets of 4 images in two consecutive
stereo frames. The first set includes images with low activity, meaning the expected num-
ber of features is low. The second set includes images with high activity, thus expecting a
large number of features.

The SURF algorithm was as expected quite slow, one run of the circle matching as
described in Section 3.3 took on average 1.80 seconds for the first set, and 3.49 s for the
second set. The SURF algorithm beats the BRISK on both sets of images, however com-
paratively much more on the first set of images. The BRISK algorithm was significantly
faster, on average one run took 0.28 seconds for the first set and 0.74 s for the second set.
The performance of the SURF and BRISK feature detection is presented and compared in
Table 3.2.

3.4.2 Feature Matching
The feature matching utilises the matching class from the OpenCV library. The procedure
for both BRISK and SURF follows the procedure explained in Section 3.3. The difference
between the two is that the BRISK feature matching computes the Hamming distance, as
the descriptors are binary, while the SURF matching computes the euclidean distance, as
the descriptors contain real numbers.

A problem with this approach is the classification of the matched features in the 4
images. To make use of the Gauss-Newton optimisation and the reprojection error of a
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Table 3.2: Feature detection results comparing SURF and BRISK algorithms.

SURF set 1 SURF set 2 BRISK set 1 BRISK set 2
Features previous
left

4009 7518 980 6595

Features previous
right

3080 7902 1108 9647

Features current
right

2721 7157 886 6860

Features current
left

3739 7017 902 4500

Average time 1.80 s 3.49 s 0.28 s 0.75 s

(a) Previous left to previous right (b) Previous right to current right

(c) Current right to current left (d) Current left to previous left

Figure 3.7: Circle matching of features detected using BRISK and matched using the
Hamming distance across 4 images, from a stereo camera in two consecutive frames

feature, as will be discussed in Section 3.5, it is important to compare the same feature in
four separate images. Thus, a circle matching is performed on the 4 images present at each
iteration.

The features are detected in two consecutive stereo frames, meaning there will be
4 feature objects for each iteration, previous left and right frames and current left and
right frames. First the feature descriptor of the previous left is matched with the feature
descriptor in the previous right frame. The matched features is then extracted from the
class of feature points in the previous right frame. These descriptors are then matched
with the feature descriptors in the current right frame. These features are extracted and
then matched with the feature descriptors in the current left frame.

To make sure the features matched through the circle to the current left are also present
in the previous left frame, the circle is fully connected by matching the feature descriptors
in the current left with the extracted descriptors from the previous left frame. This way it
is ensured that all features or objects in the image are matched across all 4 images and can
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be used for the Gauss-Newton optimisation algorithm. The circle matching procedure is
presented in Figure 3.8.

Previous left frame Previous right frame

Current left frame Current right frame

p1(u; v)

p1(u; v) p1(u; v)

p1(u; v)

uL

uL

vL

vL

uR

uR

vR

vR

1

2

3

4

Figure 3.8: Circle matching of features across two consecutive stereo frames

A feature, in this case p1 is matched across all four images and logged as a point for
the subsequent algorithms. This way the features are matched in the temporal and spatial
domain simultaneously. A comparison of the SURF and BRISK matching procedures
follows.

Despite the comparatively low number of features, the BRISK and SURF algorithms
computes a similar number of matched features through the whole circle for the first set.
However, in the second set, the BRISK algorithm outperforms the SURF by almost dou-
bling the number of matched features. The results from the feature matching is presented
and compared for the two methods in Table 3.3. An example of the circle matching is also
presented in Figure 3.7, where the BRISK algorithm is used on a set of images from the
Stokkbergneset survey.

The accuracy of the two algorithms was studied by looking at the standard deviation
on the matched features form image to image in both horizontal (x) and vertical (y) direc-
tion. The relative distance between the matched features for two images was computed
and compared with all other matched features. The standard deviation was then computed
based on the features matched across all 4 images as explained above. The result is pre-
sented in Figure 3.9, where the standard deviation is listed as distance in mm in the image
frame.

The results show that the standard deviation of the first set is considerably larger than
the second set, thus with more features come greater accuracy. The difference from the
two algorithms is also evident at this point. With a low number of features the SURF
algorithm is more accurate than the BRISK. However, with the large number of features
in the second set of images, the standard deviation is quite similar, even in favour of the
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Table 3.3: Feature matching results comparing SURF and BRISK algorithms.

SURF set 1 SURF set 2 BRISK set 1 BRISK set 2
Previous left - pre-
vious right

796 1875 454 2383

Previous right -
current right

286 683 235 972

Current right -
previous right

156 442 184 711

Previous right -
previous left

144 397 156 608

Average time 0.42 s 1.82 s 0.04 s 0.85 s

Standard deviation of matched features

PL-PR x PL-PR y PR-CR x PR-CR y CR-CL x CR-CL y CL-PL x CL-PL y

Matched images and direction, P=Previous, C=Current, L=Left, R=Right
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Figure 3.9: Standard deviation of the relative distance to matched features during
circle matching in both horizontal and vertical direction

BRISK in some cases. This builds up under the conclusion made in Section 3.3 where
it is said that the BRISK method has comparative performance with SURF with lower
computational effort.

The standard deviation presented here will partially be dealt with by the motion es-
timation algorithm that includes a Gauss-Newton optimisation. As will be explained in
Section 3.5 the algorithm selects the motion vector that best fit the most matched features.
The algorithm will thus select the motion vector that fits the matched features around the
median of the features which the standard deviation is based on.
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3.5 Visual Motion Estimation
The visual motion estimation is implemented as a .exe executable, programmed in C++
using the openCV computer vision library. The program outputs an estimation of the
motion from one frame to the next. The visual motion estimation pipeline is presented in
Figure 3.10.
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Figure 3.10: Visual motion estimation pipeline from feature detection to motion esti-
mation

As presented, the pipeline consists of feature detection, feature circle matching, com-
puting the camera frame coordinates, reprojection back into the image frame and a Gauss-
Newton optimisation to solve for the camera frame motion [r, t]T . In the following,
the implementation of the algorithm will be explained, including some of the choices of
method made during the development. The complete VME program is outlined in Algo-
rithm 1.

Algorithm 1 Visual motion estimation

1: Get new current stereo images
2: Compute features and match in circle, see Algorithm 2
3: Calculate 3D location of features, see Algorithm 3
4: Gauss-Newton optimisation, see Algorithm 4
5: Export motion estimation
6: Send the current images to next iteration
7: Return to step 1

The first step of the algorithm is the feature detection and matching. The theory is
discussed in Section 3.3, and the algorithm follows the steps as presented in Algorithm 2.
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Algorithm 2 Feature detection and matching

1: Detect features using BRISK
2: Compute binary descriptors
3: Match features in previous left with previous right, 2 matches for each feature
4: for i = 1 : N , N number of matches do
5: if r < 0.65, r is ratio of hamming distance of the two matches then
6: Correct match
7: end if
8: end for
9: Compute new descriptors for matched features in previous right

10: Match features in previous right with current right, 2 matches for each feature
11: for i = 1 : N , N number of matches do
12: if r < 0.65, r is ratio of hamming distance of the two matches then
13: Correct match
14: end if
15: end for
16: Compute new descriptors for matched features in current right
17: Match features in current right with current left, 2 matches for each feature
18: for i = 1 : N , N number of matches do
19: if r < 0.65, r is ratio of hamming distance of the two matches then
20: Correct match
21: end if
22: end for
23: Compute new descriptors for matched features in current left
24: Match features in current right with previous left, 2 matches for each feature
25: for i = 1 : N , N number of matches do
26: if r < 0.65, r is ratio of hamming distance of the two matches then
27: Correct match
28: end if
29: end for
30: Convert keypoints to 2D image frame coordinates
31: return 2D image frame coordinates

3.5.1 Gauss-Newton Optimisation
For numerical optimisation of larger least-squares problems, the Gauss-Newton method is
a good choice. In least-squares problems, the objective function has the form

f(x) =
1

2

m∑
j=1

r2
j (x) (3.9)

In this equation, each rj is a smooth function determined a residual, and x is the pa-
rameter we want to find. For many unconstrained minimisation problems, the first and
second derivative is necessary to find a solution. However, for a least-squares problem,
the solution comes easier [41]. The individual residuals are formed into a residual vector
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r(x), and we can thus rewrite the objective function f(x) = 1
2 ||r(x)||22. The derivatives

of f is then described through the Jacobian matrix given in (3.10).

J(x) =
[
∂rj
∂xi

]
, j = 1, 2, ...,m, i = 1, 2, ..., n (3.10)

For this problem to have a solution a requirement is that m > n, which means there
are more residuals than parameters to be optimised. Any solution for x∗ must then satisfy

∇2f(x)x∗ = −∇f(x)rj (3.11)

where we have

∇f(x) =

m∑
j=1

rj(x)∇rj(x) = J(x)T r(x) (3.12)

∇2f(x) =

m∑
j=1

∇rj(x)∇rj(x)T +

m∑
j=1

rj(x)∇2rj(x)

= J(x)TJ(x) +

m∑
j=1

rj(x)∇2rj(x) (3.13)

Here we see that by computing the Jacobian matrix, we get easily both ∇f(x) and
the first part of ∇2f(x). In addition, the first part of the second derivative is much more
important than the second part. In fact, because of near-linearity close to the solution or
very small residuals, the second part is usually neglected, meaning

∑m
j=1 rj(x)∇2rj(x) ≈

0 [41]. Thus the solution is then found to satisfy the equation

J(x)TJ(x)x∗ = −JT r(x) (3.14)

3.5.2 Gauss-Newton For Visual Motion
As mentioned above the ego-motion estimation, meaning the estimation of the camera mo-
tion can be done in multiple ways. For underwater imagery, the feature-based method of
estimating motion is the preferred, as quality of the images decreases when taken under-
water. In [12] a method of minimising the reprojection error is proposed.

The motion of the camera is described in terms of both translation and rotation. As
the ROV, the camera frame can move in 6 degrees of freedom, translation along the x, y
and z-axis, tx, ty and tz , and rotation around the three axes, rx, ry and rz . In computer
vision it is beneficial to talk about homogenous coordinates, meaning there is also one
more dimension to the coordinate system. In a 2D image frame, the point will have three
coordinates, while in a 3D camera frame, the point will have 4 coordinates. The extra
coordinate will always have the value of one. With the extra coordinate, translation and
rotation can fit into one 4× 4 matrix, thus avoiding addition and subtraction.

The motion of the camera frame is described by the matrix T , given in (3.15)

T (r, t) = [R(r) t] (3.15)
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To solve for the transformation matrix T , the relation between the image frame and
camera frame coordinates can be utilised as in (3.3). Here, the transformation matrix is
simply set equal to the homogenous identity matrix. To find T the image frame coordinates
of the current frame can be compared with the camera frame coordinates of the previous
frame. Thus, by solving for the transformation matrix the motion of the camara from one
frame to the next is found. Equation (3.3) is expanded with T in (3.16)

uv
1

 =

f 0 cu
0 f cv
0 0 1


[R(r) t

] 
X
Y
Z
1

−
s0

0


 (3.16)

whereR(r) = Rx(rx)Ry(ry)Rz(rz) is the rotation matrix describing the rotation of the
stereo camera set from previous to current frame, and t = [tx, ty, tz]

T is the translation
vector. The s is the baseline and is defined s = 0 for the left camera and s = b for the
right camera. The camera frame coordinates are given by (3.17)

Z = f
b

ul − ur
, X =

ul − cx
f

Z, Y =
vl − cy
f

∗ Z (3.17)

To solve this equation for the 6 unknowns, three translations and three rotations, a
Gauss-Newton optimisation can be applied. The goal of this optimisation is to minimise
the sum of reprojection errors and optimise the rotation and translation vectors r, t, thus
estimating the motion of the camera frame. Using least-squares optimization the sum is
minimised according to the relation given in (3.18)

N∑
i=1

||x(l)
i − π

(l)(Xi; r, t)||2 + ||x(r)
i − π

(r)(Xi; r, t)||2 (3.18)

Here x(l)
i and x(r)

i denote the locations of the features in the current image frame for
the left and right cameras respectively. The π(l) and π(r) is the projection matrices of the
3D points in the previous camera frame from the left and right cameras respectively to the
current imageframe.

3.5.3 Program Implementation
We let the previous frame be denoted i− 1 and the current frame denoted i. The matched
features in frame i − 1 are used to compute the coordinates of the features in the camera
reference frame, using equation (3.17). The points are then stored for the least-squares
optimisation used to estimate the motion of the camera reference frame. The calculation
of the camera frame coordinates are implemented according to the steps outlined in Algo-
rithm 3.

45



Chapter 3. Computer vision

Algorithm 3 Compute 3D camera frame coordinates

1: Image frame coordinates as input
2: for i = 1 : N , N number of points do
3: Compute 3D points
4: Z = fb

d
5: X = u−cu

f Z

6: Y = v−cv
f Z

7: Correct for distortion
8: x = X

Z , y = Y
Z

9: x′ = x(1 +K1r
2 +K2r

4 +K3r
6), r =

√
x2 + y2

10: y′ = y(1 +K1r
2 +K2r

4 +K3r
6), r =

√
x2 + y2

11: Compute distortion corrected 3D points
12: Z = fb

d
13: X = x′Z
14: Y = y′Z
15: end for
16: return 3D camera frame coordintates

The motion of the camera is described by a homogeneous transformation matrix con-
taining the rotations and translations of the camera. The rotation matrix is developed the
same way the rotation matrix in (2.6), with angles defined as above. The order of multi-
plication for the camera frame computation is R(r) = Rx(rx)Ry(ry)Rz(rz). The full
transformation matrix, including the translation is defined as the homogeneous transfor-
mation matrix in (3.15).

To map the 3D camera frame coordinates back to the 2D image frame, homogeneous
coordinates are implemented, as in (3.16) the camera frame coordinates are mapped to the
image frame. This will be the framework for the Gauss-Newton optimisation to solve for
the translational and rotational motion of the camera frame.

The 3D coordinates computed in frame i − 1 are reprojected into image coordinates
in frame i. The expressions mapping the 3D coordinates to image frame is denoted π(l)

and π(r) for the left and right camera respectively and are given in equation (3.18). The
function to be minimised through the Gauss newton optimization is then given in (3.19).

N∑
j=1

∥∥∥∥∥
[
u

(l)
i

v
(l)
i

]
− π(l

xi−1

yi−1

zi−1

 ; r, t

∥∥∥∥∥
2

+

∥∥∥∥∥
[
u

(r)
i

v
(r)
i

]
− π(r

xi−1

yi−1

zi−1

 ; r, t

∥∥∥∥∥
2

(3.19)

The equation is iteratively minimised with respect to optimising the variable r, t, which
is the rotational and translational motion of the camera from frame i − 1 to frame i. The
number of points in each iteration is chosen asN = 3 and the points are chosen at random.
Hence, the optimisation takes in three random points that are matched across all four
images and performs the iteration to minimise the function value.

The idea behind the reprojection and least-squares optimisation is presented graphi-
cally in Figure 3.11. The camera has here moved in one direction to make the example
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Figure 3.11: Graphical representation of the least-squares problem with
reprojection

easy to understand. Correspondingly, the feature has moved in the opposite direction in
the image plane and is detected and matched at two time instants, T0 and T1. The true
transformation between the two time instants is not known, hence the variable describing
the transformation have to be estimated.

The features have their image plane coordinates in (u0, v0) and (u1, v1) and their cam-
era frame coordinates (x, y, z)T0

and (x, y, z)T1
respectively. By following the Figure and

equation (3.19) the reprojection of the camera frame point to the image plane is recog-
nised as π(Xi; r, t). Thus, the Gauss-Newton minimises the error in the image plane
ε = (u1, v1)− (û1, v̂1). The method used in this thesis, with the Gauss-Newton optimisa-
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tion follows.
The optimisation algorithm takes in an initial guess of the variables, here named

β = [rx, ry, rz, tx, ty, tz]
T . The equation (3.19) is then calculated for the three randomly

picked points and gives a 12× 1 vector of residuals, classified r(β). The jacobian matrix
must be computed for all 12 residuals as functions of the optimisation parameter β. Thus
the Jacobian matrix is defined as:

J(β) =


∂r1
∂rx

∂r1
∂ry

∂r1
∂rz

∂r1
∂tx

∂r1
∂ty

∂r1
∂tz

∂r2
∂rx

∂r2
∂ry

∂r2
∂rz

∂r2
∂tx

∂r2
∂ty

∂r2
∂tz

......
∂r12
∂rx

∂r12
∂ry

∂r12
∂rz

∂r12
∂tx

∂r12
∂ty

∂r12
∂tz

 (3.20)

The parameter iteration is then performed as presented in equation (3.21)

βj = βj−i −
(
JTJ

)−1
JTr(βj−1) (3.21)

The average number of iterations to reach below the selected threshold of 10−10 is
between 5 and 15 iterations. The optimisation parameters are initialised at 0, however, the
number of iterations does on average never exceed 15. Thus, this part of the algorithm will
run quite fast compared to the feature detection and matching, and will not be a delimiting
factor on the overall computational effort of the system.

The inverse of the expression A−1 = (JTJ)−1 is computed using the Gauss-Jordan
method of matrix inversion. The identity matrix is set up next to the matrix asA1 = [A, I].
Then we find the sequence of elementary row operations that reduces A to the identity
matrix. Then the same operations are performed on the identity matrix in order to obtain
A−1. Then the matrix and its inverse will satisfy the equation I = AIA−1

The optimisation is initialised 50 times for 3 random points, giving 50 solutions to
the optimisation problem. As Gauss-Newton optimisation tool is powerful for these large
problems, the average number of iterations before convergence is between 5 and 15. Thus,
for each three points, the program runs 20 iterations, and by a set of conditions the best
solution is chosen. For each of the 50 iterations the solution is applied to the reprojection
from equation (3.18) on all matched features. The residuals are checked against a defined
threshold of 10−4 and the solution that best fits the highest number of features are selected.

In addition the solution will sometimes emphasise the rotations over translations. As
the ROV normally is relatively stable in pitch and roll, these DOFs are forced to be small
in order to find a realistic estimation of the ROV motion. The algorithm for both the
Gauss-Newton optimisation and the algorithms used for determining the best solution of
the optimisation are implemented according to the steps outlined in Algorithm 4 and Al-
gorithm 5.

48



3.5 Visual Motion Estimation

Algorithm 4 Gauss-Newton optimisation

1: for i = 1 : N , N number of solutions do
2: Pick three random features
3: Initialise estimate (β)
4: for i = 1...M , M iterations do
5: Calculate residuals, r(βi−1)
6: Calculate jacobian J
7: βi = βi−1 − (JTJ)−1JTr(βi−1)
8: if (JTJ)−1JTr(βi−1) < δthreshold then
9: break

10: end if
11: end for
12: Calculate inliers, see Algorithm 5
13: if Current inliers > best inliers then
14: Save estimation
15: Save best inliers
16: end if
17: end for

Algorithm 5 Caluclate inliers for the solution from Gauss-Newton optimisation

1: Motion solution, image frame coordinates and camera frame coordinates as input
2: count = 0
3: for i = 1 : N , N number of points do
4: Reproject 3D coordinates to image frame
5: [ur, vr, 1]T = C[R(r), t][X,Y, Z, 1]T , where C is camera intrinsic parameters
6: if (ur − u)2 + (vr − v)2 < t, t is pre-defined threshold then
7: count = count + 1
8: end if
9: end for

10: return Number of inliers, count

The estimated motion can be ragged and prone to unrealistic spikes, thus a standard
Kalman filter (KF) is placed on top of the optimisation. The states of the KF are the transla-
tional velocities and the angular velocities given by the translation and rotation vectors t, r
divided by the time between successive frames, ν = [r, t]T /∆t. The 6 DOF accelerations
are also included in the KF as states and are assumed constant.

This gives the state equation:[
ν(k)
a(k)

]
=

[
I6×6 ∆tI6×6

06×6 I6×6

] [
ν(k − 1)
a(k − 1)

]
+ v (3.22)

and the output equation:

1

∆t

[
r(k)
a(t)

]
=
[
I6×6 06×6

] [r(k)
t(k)

]
+w (3.23)
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In the equations above ν is the velocity vector with translational and angular veloc-
ities, I6×6 is the identity matrix, a is the acceleration vector, and v,w are the process
and measurement noise respectively. The Kalman Filter equations are adopted from the
discrete Kalman Filter of [26] page 297.

The translational and angular velocities are now described in the camera frame for the
left camera, so in order to compare the data with the data from the ROV, and to implement
the sensor data to the ROV control system, the velocities must be rotated to the ROV body
frame. This is accomplished using the relations between reference frames described in
[26]. First the angular velocities are rotated to the body frame by Θbc = [φ, θ, ψ]T =
[0, π/2, π/2]T , then the translational velocities are rotated as given in (3.24):

ωbb/n = Rb
c(Θbc)

Tωbc/b

vbb/n = Rb
c(Θbc)

Tvbc/b − ω
b
c/b × r

b
c/b

(3.24)

where the notation c refers to the camera coordinate frame and b refers to the body
frame of the ROV. Rb

c(Θbc) is the rotation matrix from the camera frame to the body
frame, ωbc/b and ωbb/n are the angular velocities in the camera frame and ROV body frame
respectively, vbc/b and vbb/n are the translational velocities in the camera frame and body
frame respectively and rbc/b is the arm from the camera frame origin to the body frame
origin of the ROV.

For the results below and for the simulation presented in Section 4 the cameras are
located at the front of the ROV frame pointing along the x-axis of the ROV body frame.
The location of the left camera from the ROV origin is given in (3.25).

rbc/b = [1.21,−0.19, 0.05]T (3.25)

3.6 Motion Estimation Results
The vision-based ego-motion scheme is tested on an image set taken from a mission to
Stokkbergneset in February 2017. An ROV is surveying the seabed with a stereo image
set and the data from the mission include image sets and navigational data from the ROV.
For the simulation an image set of 485 × 2 images with a time interval of approximately
2 seconds are used, giving a total simulation time of 770 seconds. The results presented
in this section is simulated on this image set and the corresponding navigational data from
the ROV control system. The cameras were not explicitly calibrated for this mission, thus
the camera intrinsic parameters are estimated based on the images taken.

The image set from Stokkbergneset also included the navigational data from the ROV
during the mission. The body-frame velocities ν from the navigational data was hence
compared with the motion estimates obtained using the vision-based ego-motion scheme
of this thesis. The results are presented in Figures 3.12 (u and p), 3.13 (v and q) and
3.14 (w and r). In these figures the motion estimate from the vision-based ego-motion is
compared with the measured velocity from the ROV mission, which is based mainly on
the input from the DVL and IMU sensors.

The results show general good performance of the visual motion estimation compared
to the measured values from the ROV sensors. Especially for the translational velocities
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Figure 3.12: Performance of the vision motion estimation system compared to the measured
states from the ROV for velocity in x-direction and roll rate
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Figure 3.13: Performance of the vision motion estimation system compared to the measured
states from the ROV for velocity in y-direction and pitch rate
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Figure 3.14: Performance of the vision motion estimation system compared to the measured
states from the ROV for velocity in z-direction and yaw rate

the performance is very close to the sensor measurements. There are some larger oscilla-
tions in all three directions, however, there is a considerable improvement from the results
in the project thesis. The process of selecting the best optimisation from the Gauss-Newton
algorithm is improved, and the computational speed is reduced to a quarter.

The angular velocities deviate more from the ROV measurements. This is in line with
the experience from the project thesis, the angular velocities are harder to estimate cor-
rectly than the translations. In this thesis the rotations from the Gauss-Newton optimisa-
tion have been played down, due to their inclination to emphasise rotational motion over
translational, which usually is not the case for a ROV.
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The simulation of the VME performance together with the Kalman Filter in the ROV
control system is done based on the same image sets from the mission at Stokkbergneset
mentioned in Section 3.6. The setup for simulation could not be accomplished through the
ROV control system in LabVIEW, because the image data taken from previous missions
could not be simulated together with the navigation data from the same mission. This was
solved by exporting all data from both the ROV control system and the VME to Matlab.

The Kalman Filter was implemented as it is in the ROV control system in LabVIEW
and the measurements from the VME is processed together with the raw measurements
from the ROV. The results are then compared to the estimated states from the actual mis-
sion without the visual measurements and the actual position of the ROV. The actual po-
sition is not definite, as it is estimated based on the images taken by the software Agisoft
after the mission. Based on this data and the map created of the environments, the ROV
position is estimated.

The Kalman Filter develops over time, and gives better estimates after having con-
verged. Thus, by instigating the Kalman Filter at a point in time during post processing
will give a different result than the real time estimates. The real time Kalman Filter in
this scenario has had time to converge and will thus be a better estimate. However, as
the Kalman Filter converges in this simulated scenario, the estimates should converge to
similar states.

4.1 Simulation Set-up
The simulation is based on image sets and navigational data from the mission to Stokkberg-
neset. The ROV in use is the SUB-fighter 30k with specifications described in Appendix
A. The cameras in use are two Allied Vision Prosilica model GC1380 cameras. The cam-
eras use a GigE Vision Gigabit Ethernet interface for high-speed data transmission over
Ethernet networks and are set up with Schneider Kreuznac Cinegon lenses. The camera
and lens specifications are described in Appendix B. The cameras are placed at the front
of the ROV frame, and are pointing along the x-axes of the ROV body frame as Figure 4.1
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shows. The location of the left camera, the origin of the camera frame, that is used in the
rotation of the 6 DOF velocity vector is given in (3.25).
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Figure 4.1: ROV frame with sensors and their positions, including the stereo camera
mounted at the front of the ROV with the camera frame in the colour purple

The camera frame is coloured in purple to make it visible, where the depth of the
camera frame is pointing in the ROV body frame x-direction, the x and y of the camera
frame pointing in the y, and z-directions respectively of the ROV body frame.

The intrinsic parameters of the camera are estimated based on the images taken dur-
ing the mission by the Agisoft software. Agisoft Photoscan is a software that performs
photogrammetric processing of digital images. The software can also generate 3D spatial
data as mentioned above. Thus a 3D map of the surroundings comprising the ”ground
truth” position of the ROV is obtained based on the images taken during the mission. The
calibration parameters estimated by the Agisoft software are listed in Table 4.1. [42]

Table 4.1: Intrinsic parameters and distortion coefficients after un-
derwater camera calibration using the Agisoft software

Left Camera Right camera
Focal length (f ) 1692.56 pixels 1701.64 pixels

Principal point horizontal (cu) 670.21 pixels 675.04 pixels
Principal point vertical (cv) 526.37 pixels 503.70 pixels
Distortion coefficient (K1) 0.52 0.50
Distortion coefficient (K2) 0.60 0.73
Distortion coefficient (K3) 2.96 2.64
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Comparing these parameters with the parameters given in Table 3.1, they are quite
different. Especially the distortion coefficients differ a lot from air to water. Also the focal
length changes as the cameras are submerged.

As mentioned, the mission to Stokkbergneset was meant to take pictures of a near
vertical wall on the seafloor, thus the stereo cameras are pointed in the ROV body frame
x-direction. The ROV moves in a lawnmower pattern up and down along the subsea wall,
at a fixed distance (altitude) from the seabed. This will be visible in the plots presented in
Section 4.2

4.2 Results
The simulations with the ROV observer was also performed on the image set from Stokk-
bergneset. The measurements corresponding to the image set was simulated with the visual
motion estimation in a Kalman filter according to (2.37), (2.38), (2.39). The measurement
matrix and the measurement covariance matrix were expanded according to Section 2.5 to
accommodate the additional measurements, and the Kalman filter was simulated in the 4
DOFs of the control system, north, east, down and yaw for both position and velocity.

This section presents results from two scenarios, from two image sets taken during the
mission to Stokkbergneset. The first scenario is simulated at a depth of 100 meters, while
the second scenario is simulated at a depth of 300 meters. For most of the Figures the
position plot and velocity plot in the same direction are grouped together with the velocity
placed below the position. Error plots comparing the difference between the measured and
estimated values are also included for all 4 DOFs. In addition a trajectory plot of the ROV
in the North-East plane is included for both scenarios.

The subscripts in the legend for all plots are explained as follows: m, sensors means
raw measurements from the DVL, IMU, transponder and pressure gauge. ROV, nav
means estimated values in the ROV control system online during the mission. ROV, IMG
means simulated estimated values with the visual estimation of motion. ”true” means the
estimated ground truth from the image post-processing in Agisoft Photoscan. For the error
plots, the subscript err, nav is the error between the raw measurements and the online esti-
mation, while the err, IMG is the error between the raw measurements and the estimated
values from the simulated Kalman Filter.

4.2.1 First Scenario
The results from the first scenario are presented in Figures 4.3 (N and u), 4.4 (E and v),
4.5 (D and w) and 4.6 (ψ and r). The North-East plot of the estimated trajectory of the
ROV is presented in Figure 4.2

The North-East plot in Figure 4.2 with the visual motion estimation deviates from the
output from the Kalman Filter during the mission. One reason for this is that the Kalman
Filter on the ROV has already converged at this point. In the simulation, the Kalman Filter
including the visual motion estimation has to start from the beginning each time. The time
for it to converge explains the large deviation in the beginning.

In addition, the transponder measurements deviates from the estimated trajectory dur-
ing the mission as well. This could be a symptom of a poorly calibrated acoustic po-
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Figure 4.2: Simulation results scenario 1: North-East plot of the estimated trajectory of the
ROV with and without visual motion estimation

sitioning system. This also becomes evident when looking at the estimated trajectory
post-processed based on the images taken on the mission, which is very close to the on-
line estimated trajectory. The ROV trajectory is simulated at positions relative to the first
measured position, thus always starting in the point (E,N) = (0, 0).

For the individual plots of the North and East directions in Figures 4.3 and 4.4 the
simulation shows that by combining the sensor measurements from the ROV with the
output from the visual motion estimation gives a similar result as the one obtained without
the visual motion estimation. The difference is quite small and can be explained mostly
by the problems stated above.

The results showing the performance in z-direction in Figure 4.5 is almost identical
for measured, real estimated and simulated estimated. This is because the pressure gauge
measuring the depth of the ROV is very accurate, thus the role of the visual motion esti-
mation is played down in the measurement covariance matrix. This matrix will thus lead
the Kalman Filter to rely more on the measurements from the pressure gauge sensor than
other sensors.

The results for ROV yaw and yaw rate in Figure 4.6 shows a different picture than for
the other DOFs. This is mostly due to the combination of Kalman Filter convergence and
the role of the rotational velocity of the visual motion estimation as discussed in Section
3.5. The estimated and measured values for the yaw and yaw rate are identical, meaning
the measured values have been passed directly through the Kamlam Filter.

In the Figures 4.7, 4.8, 4.9 and 4.10 the error plots are presented. Here the estimated
states with and without the VME are compared to the measured states of the ROV. Also
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Figure 4.3: Simulation results scenario 1: Performance of the Kalman filter with and without
visual motion estimation for North position and velocity in x-direction
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Figure 4.4: Simulation results scenario 1: Performance of the Kalman filter with and without
visual motion estimation for East position and velocity in y-direction
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Figure 4.5: Simulation results scenario 1: Performance of the Kalman filter with and without
visual motion estimation for Down position and velocity in z-direction
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Figure 4.6: Simulation results scenario 1: Performance of the Kalman filter with and without
visual motion estimation for heading and yaw rate
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here we can see that the estimates with VME are slightly closer to the measured values
than the estimates without VME.

Also worth mentioning is the error plot of the North and East position. The estimates
with VME are closer to the measured values, but as mentioned above, this could have
been a result of a slowly converging Kalman Filter for the simulations. As the measured
position is mainly based on the transponder, there are some possibilities of errors, such as
poor calibration as mentioned above.

The error plot of the heading and yaw rate in Figure 4.10, the error of the estimated
value with VME is much higher than the error of the online estimate. As mentioned above,
this could be because the measured heading is trusted in the online Kalman Filter, and sent
through almost without filtering.
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Figure 4.7: Simulation results scenario 1: Error plot comparing the error between the two
estimated values and the measured values for North position and velocity in x-direction
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Figure 4.8: Simulation results scenario 1: Error plot comparing the error between the two
estimated values and the measured values for East position and velocity in y-direction
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Figure 4.9: Simulation results scenario 1: Error plot comparing the error between the two
estimated values and the measured values for Down position and velocity in z-direction
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Figure 4.10: Simulation results scenario 1: Error plot comparing the error between the two
estimated values and the measured values for heading and yaw rate

4.2.2 Second Scenario
The results from the second scenario are presented in Figures 4.12 (N and u), 4.13 (E and
v), 4.14 (D and w) and 4.15 (ψ and r). The North-East plot of the estimated trajectory of
the ROV is presented in Figure 4.11

The second scenario shows similar results as the first one. The North-East in Figure
4.11 has the same deviations between the measured and online estimated and between the
online estimated and the states estimated with the VME. However, in this scenario the
measurements are more scattered due to the increased depth of the ROV and longer travel
time for the acoustic signals. However, the simulations are clearly able to filter out the
wild points of the transponder measurement and estimate a trajectory similar to the one
computed online in the control system.

For the individual plots of the North and East directions in Figures 4.12 and 4.13
this scenario is also similar to the first. The more scattered behavior of the transponder
measurements are also clearly visible in these plots.

The results showing the performance in z-direction in Figure 4.14 is almost identical as
in the first scenario. As in the first scenario this is because of the highly accurate pressure
gauge sensor.

The results for ROV yaw and yaw rate in Figure 4.15 has the same tendency as in the
first scenario. The online estimated heading and yaw rate are identical to the measured
values, leading again to the assumption that these states are passed directly through the
Kalman Filter.

As with the first set, the error is slightly smaller for the new estimates than the old
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Figure 4.11: Simulation results scenario 2: North-East plot of the estimated trajectory of the
ROV with and without visual motion estimation
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Figure 4.12: Simulation results scenario 2: Performance of the Kalman filter with and without
visual motion estimation for North position and velocity in x-direction
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Figure 4.13: Simulation results scenario 2: Performance of the Kalman filter with and without
visual motion estimation for East position and velocity in y-direction
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Figure 4.14: Simulation results scenario 2: Performance of the Kalman filter with and without
visual motion estimation for Down position and velocity in z-direction
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Figure 4.15: Simulation results scenario 2: Performance of the Kalman filter with and without
visual motion estimation for heading and yaw rate

estimates. This is most notably true for the velocities, as these will be impacted the most
from the VME output, being a 6 DOF velocity vector. The error plots are presented in
Figures 4.16, 4.17, 4.18 and 4.19

The most notable difference in the error plots from the first to the second scenario is
the fact that the error in the heading and yaw rate is doubled in the second compared to the
first (Fig. 4.15). The increasing depth may be a large contributing factor to this.
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Figure 4.16: Simulation results scenario 2: Error plot comparing the error between the two
estimated values and the measured values for North position and velocity in x-direction
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Figure 4.17: Simulation results scenario 2: Error plot comparing the error between the two
estimated values and the measured values for East position and velocity in y-direction
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Figure 4.18: Simulation results scenario 2: Error plot comparing the error between the two
estimated values and the measured values for Down position and velocity in z-direction
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Figure 4.19: Simulation results scenario 2: Error plot comparing the error between the two
estimated values and the measured values for heading and yaw rate
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Discussion

5.1 Computer Vision
During the work on the project thesis last year, leading up to this master thesis, the SURF
feature detection and description method was applied to the VME for an underwater ROV.
The results from that project showed that the computational load from the algorithms was
too high to run the VME program online in the control system. Thus, for the master thesis
work, another method is proposed. The BRISK feature detection and description has a big
advantage over the SURF algorithm with regards to computational speed. The results from
the comparison show that the performance of the two methods are comparatively good.

The binary descriptors of the BRISK method is often 5-6 times faster than the SURF
and provided a higher number of matched features in the comparison presented in Section
3.4. To check the accuracy of the methods, the position change of the features in the image
frame were compared. The standard deviation of this distance for all features matched
were computed, and the results plotted in Figure 3.9. As expected, the accuracy increases
with the number of features detected. The difference of standard deviation between the
two methods is also very low, having similar standard deviation in both directions. This
confirms the findings in [19, 20] discussed in Section 3.3.

A key point to the computer vision problem is the concept of probability in the solu-
tions, with how much certainty can we guarantee a match. For this type of feature detection
and matching there will be outliers, incorrect matches that will cause problems in solving
for the camera motion. In this project there are two main mechanisms to avoid outliers
clouding the solution. The first resides in the feature matching itself, as explained in Sec-
tion 3.3. However, the nearest-neighbour search for matches and the threshold of the ratio
between the two nearest neighbours will sometimes lead to an incorrect match when there
are similar features in the image. This can be a possibility underwater, where lighting is
difficult.

The other mechanism does not remove outliers from the feature detection and match-
ing, but rather minimises their relevance to the solution. The Gauss-Newton optimisation
takes in three random features in the images and the corresponding camera frame coordi-
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nates. The algorithm then iterates by the least-squares method until a solution is within
acceptable limits. This procedure can be done several times, in this project the process is
initialised 50 times, creating 50 solutions, each based on three randomly chosen features.
This way the solution that fits the most features will be accepted as the correct one. If one
of the features randomly chosen is an outlier match, the solution will not fit many features
and be discarded. Thus, we can always ensure that that the best solution is chosen, based
on correct matches.

There are still more possible improvements to the VME algorithm. As it is today,
the program utilises the openCV library with its built-in functions. The feature detection
is quite effective, and faster than the Matlab implementation developed for the project
thesis. However, the matching procedure implemented in the master thesis is the brute-
force matching algorithm. The algorithm will compare a feature with all possible features
in the other image, by ”brute-forcing” its way through the features.

For a slowly-moving ROV, and a sufficiently high frame rate, the features in the one
image will be located at a small distance from the features in the other image. Thus, to
speed up the VME, the algorithm can be altered to check for matches in an area around the
features, expanding from the previously known position. This method will of course fail
sometimes, having to look through the entire image for a match. However, when failing
it will work as a brute-force matching algorithm, thus either equally fast or faster than
implemented in this thesis. The benefits from this setup is explained in [12], where it
is claimed the algorithm runs at 3-4 frames per second, twice as fast as obtained in this
project.

The image set from Stokkbergneset, used in the simulations, has an update rate of
0.5 frames per second, making it the ”slowest” sensor on the ROV. However, the stereo
cameras mounted on the ROV has a maximum frame rate of 20 frames per second, meaning
the potential for a higher sensor update rate is there. The final algorithm developed for this
project runs at an average of 2 frames per second, which is faster than GPS and an acoustic
positioning system. [30]

The program can give both an absolute relative position change from frame to frame
and the average velocity between frames, depending on the application. For implemen-
tation in the ROV control system, as an additional sensor input to the Kalman Filter, the
velocity between frames was chosen to be best. However, if the algorithm was to be de-
veloped into a SLAM framework, the absolute position would be used to build a map of
the surroundings online. This was however not attempted in this project, but could be an
interesting approach for further development.

The SLAM approach is used in [21]. The paper proposes consecutive stereo pairs,
where the system extracts the image features and computes the 3D coordinates. The fea-
tures and their corresponding 3D points are stored in a database with a node identification
number. Thus, the 3D points will form a virtual map of the surroundings that can be used
later. The SLAM approach could be a natural continuation of this project.

5.2 Motion Estimation
As explained in Section 3.5 the Gauss-Newton optimisation to estimate the motion is a
very effective and fast method to find the rotations and translations of the camera. Despite
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initialising the parameters at zero, the algorithm completes a solution at an average of
between 5 and 15 iterations. These results are similar to the ones discussed by Geiger
et. al [12] for their 3D reconstruction algorithms. This means the Gauss-Newton will
only make a small dent in the overall computational effort for the algorithm. Thus, in
order to speed it up further more, the feature detection and matching is the major area of
improvement.

Still, the average computational time of one run is at 0.5 seconds, which means the
system has an update rate of approximately 2 Hz. This is lower than most sensors on the
ROV, but can compete with GPS measurements and transponders used at great depths.
There is however, some differences in computational time, depending on the quality of
images and environment at capture. As explained in Section 3.4, the computational time
increases with increasing number of features. This could be a problem for a potential
experimental implementation, as the environment and quality of the images cannot always
be controlled.

The computational time for the algorithm also constitutes a delay of the measurement
to the Kalman filter, compared to the other sensors. An average delay per measurement
of 0.5 seconds is unfortunate in a control system, as the measurement is not fresh. This
is another reason for choosing the velocity output of the VME compared to the position
change output. Assuming the ROV is slowly moving, the change in velocity normally
doesn’t happen in 0.5 seconds, thus this delay is not catastrophic for the Kalman Filter.
The delay can be fixed by applying a fusion of time delayed measurements, even with an
uncertainty in the length of the time delays as in [43]. This was not attempted in this thesis.

The results from the VME on the Stokkbergneset image set are presented in Section
3.6. The results from the VME are presented and compared with the measurements from
mainly the DVL sensor during the same mission. As the plots show (Figures 3.12, 3.13,
3.14), the estimated translations follow the trend of the measurements from the ROV. The
VME results overshoots the measurements in the x-direction, but other than that provide
good estimations of the ROV velocity when compared with the ROV measurements.

In the y-direction, the VME results are closer to the measured values. There are some
wild points as can be seen from the plot. In the z-direction the VME results are almost
identical, aside from the occasional wild point and some oscillations. The camera frame di-
rection corresponding to the x-direction in the ROV body frame is the z-direction, meaning
the depth in the image. This is the most difficult distance to estimate, as the image frame
is ultimately in 2D. In order to accurately estimate the depth, stereo vision is needed, and
the camera parameters must be calibrated accurately.

The calibration was not performed as described in Section 3.1 for the mission to Stokk-
bergneset. The parameters were computed by the Agisoft Photoscan software as discussed
in Chapter 4 based on the images and motion after the mission. This is not as accurate
as if the calibration was set up as performed in Section 3.1. As already mentioned, the
distortion is an important factor for underwater imagery. Thus, without being able to
validate the camera calibration for the image sets used in this mission, it could be a source
of error.

The VME algorithm has a slight tendency to overestimate the rotations compared to
the translations. This is most easily visible in Figure 3.13, where the velocity in the y-
direction and pitch rate are displayed. The pitch rate estimates from the VME follows
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the same pattern as the velocity in z-direction in Figure 3.14. As the ROV moves up and
down, the VME will interpret this as rotations around the camera frame x-axis, which
corresponds to pitch in the ROV body frame.

5.3 Simulation
The simulation of the ROV observer, providing the control system with estimates of the
ROV position and velocity in 4 DOFS, is presented in Section 4.2. The simulation is
performed for two scenarios. The online state estimates are here compared to the estimates
from the off-line simulation of the Kalman Filter including the results from the VME
with the same navigational data. There is a distinct difference between the results for the
velocities and the position of the ROV. The estimates without VME is referred to as old
estimates, while the estimates with the VME is referred to as new estimates.

Regarding the velocities, the new estimates are better than the old estimates, meaning
they are closer to the measured values. This is visible in the plots showing the velocities
in the x, y, and z-direction (Fig. 4.3-4.5 and 4.12-4.14). However, the new estimate of
the yaw rate differs from the old estimate in a negative direction. As discussed briefly in
Section 4.2, it seems the heading and the yaw rate are sent straight through the Kalman
Filter, meaning the measurements are identical to the estimates. Thus, with the inclusion
of the VME in the Kalman Filter, these will be somewhat different.

The ROV control system has a separate attitude observer [3], that estimates heading
and yaw rate, thus the Kalman Filter state observer doesn’t affect these. As the plots show,
the output from the new estimates has been filtered. Most peaks have been shaved off a
little, and the new estimate is smoother than the old, which is the Kalman Filter’s main job
in addition to predict the states.

The position estimates should not be as different from the old estimates. However,
there is a big difference here. As the plots show, the new estimates are much closer to
the measurements from the transponder than the old estimates. As have been already
mentioned at the presentation of the results, the big discrepancy could result from the
Kalman Filter convergence. The old estimates are processed online on the observer with
time to converge. The new estimates are processed on a Kalman Filter that has to restart
each time the simulation is started.

Another explanation of the large discrepancy is the transponder accuracy in general.
A small error in the calibration can send the measurements off the actual trajectory of the
ROV. For the trajectory plots in the North-East plane, the ground truth is also included.
Ground truth is in this context the post-processed estimates of the ROV’s absolute position
based on the images taken during the mission. By stitching together the images in the
Agisoft software, the images can provide very accurate position estimates.

As the results show, the ground truth is very close to the old estimates of the ROV
trajectory. This is another indication that the transponder measurements are a little off
from the actual trajectory of the ROV. This discrepancy is also represented in the individual
plots showing the position in the North and East direction. The transponder presumably
has an offset in its measurements that are not accounted for in the simulations as the offset
is unknown at this point.

The two scenarios are situated at different depths, the first at 100 meters, the second
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at 300 meters. This has a big impact on the accuracy of the transponder measurements.
The acoustic signals have to travel from the vessel at sea level to the transponder mounted
on the ROV. Thus, the accuracy is much better for the scenario at 100 meters than at 300
meters. This is most visible at the North-East plots in Figures 4.2 and 4.11, where the
measurements are more scattered in the latter.

This will also have an impact on the simulated estimates in the North-East plane. The
plotted trajectory of the new estimates at 100 meters is much closer to the old estimates
and the ground truth, than the plotted trajectory of the new estimates at 300 meters. This
is an important observation as the reliability of the acoustic measurements clearly worsens
at increasing depth. There is thus a need for online tuning of the measurement noise
covariance matrix to reduce the trust in the acoustic measurements at increasing depths.

The Kalman Filter simulated for the new estimates always start in the first measured
position, and will then continue to base its estimates on the measurements. The bias esti-
mate is also supposed to fix some unmodelled dynamics and environmental forces. How-
ever, as also the bias needs time to converge, the new estimates are different than both
the new estimates and the ground truth. When the ROV runs online, the bias builds up
and converges. When simulating offline, the bias has to build up and converge again for
each run or scenario. Thus, the observer needs time for the bias to converge, and give an
accurate estimate of the environmental forces, cable drag etc.

The work on the thesis is part of a larger group working on the ROV control system for
the newest addition to NTNUs ROV park, the Minerva 2. Due to delays on deliverance,
the experimental tests had to be cancelled. The evaluation of the performance of the VME
included in the ROV control system is thus insufficient to conclude that it improves the
accuracy of navigation of the ROV. However, the performance of the VME alone compared
to the actual ROV movements has been proven in Section 3.6.

The system is implemented in the ROV control system in LabVIEW. The output from
the VME is sent through a User Datagram Protocol (UDP) that allows messages being sent
across network connections. The motion estimations are here applied to the Kalman Filter
in the ROV control system according to equations in Section 2.5. As the experimental
tests weren’t performed, the author cannot conclude VME’s successful integration with
the ROV control system developed in LabVIEW.

5.4 ROV autonomy
The goal of the thesis is to increase the ROVs accuracy of positioning and increase its
situational awareness. As stated in Section 1.2, the development of the VME is done to
include the output from the estimation in the ROV control system and the state estimator
to increase the accuracy of the ROV position and velocity estimates. Underwater naviga-
tion is one of the most important problems to solve in order to increase the autonomy of
the ROV. As it stands now, the VME performance has been proven to deliver a slightly
improved velocity estimate, however, without having it tested online on an actual mission,
it is hard to conclude the benefit to increased accuracy of positioning.

The goal of the inclusion of computer vision in the control system is to increase the
precision for close range navigation for tasks such as docking, manoeuvring inside struc-
tures or autonomous control of manipulators. As stated in [2], the limitations of acoustic
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positioning and dead-reckoning navigation have to be challenged before achieving a higher
level of autonomy. Computer vision techniques have matured and can offer a part of the
solution to the challenges. As discussed in this thesis, the simulation on the close-range
navigation in Section 4.2 show that computer vision accurately provide navigational data.

This system can be further developed into a SLAM approach where the control system
can use loop-closings when revisiting areas. Then the ROV can localise itself in the map
created online, which would reduce drift by applying a fixed-point reference to the control
system. According to [21] the focus has been directed at enhancing the SLAM techniques
with integration of an extended KF, dead-reckoning data, landmark data and loop clos-
ings. The loop closing is both considered a problem and a solution to drift. When the
ROV revisits areas it closes the loop and can thus eliminate the drift from other sensors.
However, if the VME fails, the ROV cannot close the loop and have to look through the
entire database to re-localise in the map.

ROV autonomy is an important research area at NTNU AMOS [2]. The goal with
improved autonomy for the ROV is to automate tasks such as manoeuvring, inspection,
sampling and manipulation. If this is achieved, we are moving more in the direction of an
intervention AUV. An intervention AUV can be based on the seafloor and perform tasks
previously done by surface-controlled ROVs. This can be a huge cost benefit for businesses
that operates in areas such as offshore oil and gas, monitoring, biological sampling and
new areas such as deep-sea mining.

The visual motion estimation developed in this thesis is not close to fulfil the goals of
ROV autonomy, but is a step in the direction of increased utilisation of computer vision
techniques for underwater vehicles. This in turn can really boost underwater navigation
for ROVs and facilitate for an increased level of autonomy in ROV operations.
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6.1 Concluding Remarks
This thesis has shown how computer vision techniques can improve underwater naviga-
tion by using a stereo camera rig to estimate the ROV motion. The results from the VME
implementation proved that by using feature based method of estimating the camera frame
motion, the output correspond with the actual ROV motion. The feature detection with
spatial and temporal matching of consecutive stereo image pairs was implemented using
the BRISK algorithms, reducing the computational effort compared to other algorithms.
Compared to the SURF method, the BRISK showed comparative accuracy at a consider-
able reduced computational time.

The camera ego-motion was solved using a Gauss-Newton optimisation, solving for
the translational and rotational camera motion. The optimisation only needed between 5-
15 iterations on average to find a suitable solution to the problem, even when initialised
at zero. This resulted in a fast algorithm, able to estimate the motion of the camera at an
average of 0.5 seconds. The VME could then output motion estimates at an update rate of
2 Hz. The update rate is considerably slower than the DVL or IMU, but can compete with
the transponder update rate.

A drawback with the computational time of 0.5 seconds is that the motion estimate
is available 0.5 seconds after it is measured. This problem is minimised when the ROV
moves at constant speed, but could cause errors if the ROV is in an accelerating or decel-
erating state. By applying fusion of time delayed measurements in the Kalman Filter this
problem could be eliminated entirely, however, this was not attempted in this thesis.

The VME was included in the Kalman Filter state observer in the ROV control system,
and simulated with raw measurements from the other sensors on a previous mission. The
ROV velocities showed a slight improvement with the VME as an additional sensor. The
position estimates does not give enough information to conclude with an improvement of
the estimate. However, the simulated Kalman Filter was able to estimate a position similar
to the one estimated online in the ROV control system.

Computer vision techniques has been proven to quite accurately estimate the motion
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of the ROV, and is thus a promising technique to increase the level of autonomy in ROV
operations. Computer vision is probably one of many applications necessary to accomplish
complete autonomy for the ROV as outlined in Section 1.1.

6.2 Further Work
This thesis has attempted to improve the accuracy of the ROV underwater navigation in
order to increase its level of autonomy. The system has been simulated with a similar state
observer as in the ROV control system, however, not been tested in sea trials. Thus, in
order to fully verify the possible improvement to the navigation, the system must be tested
online with ROV control system on sea trials.

As discussed in Chapter 5, the output from the VME is a 6-DOF velocity vector. How-
ever, to solve the transponder inaccruacy and the drift during dead-reckoning, the VME
should also give a position estimate. In addition, this can be included in a wider SLAM
framework. In close-range operations, the ROV can then build a map of its surroundings
and get near-absolute position fixes while submerged in operation.

The author would recommend focusing on this aspect of the computer vision tech-
niques to further increase the accuracy of underwater navigation. The SLAM approach
can also be included in the work currently being done at NTNU AMOS regarding object
recognition and autonomous manipulation. This is an important step to achieve the goals
outlined in [2, 8].

There are also improvements related to the feature-based visual motion estimation
developed in this thesis, especially regarding computational effort. The feature detection
is here accomplished through built-in functions in the OpenCV C++ library. However, by
applying the techniques outlined in Section 3.3 manually, the computational time may be
reduced, as accomplished in [12]. The feature matching can also be made more efficient
by assuming a slowly-moving vehicle and search for matching features in close proximity
to the original features.
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Appendices

A ROVs

A.1 ROV SF-30k
The SF-30k ROV is produced by Sperre ROV technology and is a standard ROV model.
The specifications of the ROV are listed in Table A.1. The ROV is powered by 6 thrusters,
each supplying 3000 W of power. The top speed of the ROV is 2.1 knots (1.1 m/s) in
surge. The SF-30k is pictured on board NTNU research vessel Gunnerus in Figure A.1

Figure A.1: The SF-30k ROV pictured at RV Gunnerus. Courtesy of NTNU
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Table A.1: ROV SF-30k specifications

Make Sperre AS
Model SUB-fighter 30K
Year 2004

Dimensions (LWH) 260 x 150 x 160 cm
Weight (air) 1800 kg

Payload 60 kg
Max depth 1000 m

Power Input 230 VAC, 3 phase, 40 kW, 125 A

Thrusters

Horizontal: 2 x 3000 W
Vertical: 3 x 3000 W
Lateral: 1 x 3000 W

(electrical asynchronous motors)

Manipulators 7-function hydraulic arm
Kraft Telerobotics (Raptor)

Umbilical 27 mm

Lights 6 x 250 W halogen lights
2 x 400 W HMI lights

The values for mass, added mass, linear and quadratic damping of ROV SF-30k are
given in (A.1), (A.2), (A.3) and (A.4) respectively.

MRB =


1862.87 0 0 0 0 0

0 1862.87 0 0 0 0
0 0 1862.87 0 0 0
0 0 0 525.39 1.439 33.413
0 0 0 1.439 794.199 2.596
0 0 0 33.413 2.596 691.229

 (A.1)

MA =


779.79 −6.8773 −103.32 8.5426 −165.54 −7.8033
−6.8773 1222 51.29 409.44 −5.8488 62.726
−103.32 51.29 3659.9 6.1112 −386.42 10.775
8.5426 409.44 6.1112 534.9 −10.027 21.019
−165.54 −5.8488 −386.42 −10.027 842.69 −1.1162
−7.8033 62.726 10.775 21.019 −1.1162 224.32

 (A.2)
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DL =


74.82 0 0 0 0 0

0 69.48 0 0 0 0
0 0 728.40 0 0 0
0 0 0 268.80 0 0
0 0 0 0 309.77 0
0 0 0 0 0 105

 (A.3)

DNL =


748.22 0 0 0 0 0

0 992.53 0 0 0 0
0 0 1821.01 0 0 0
0 0 0 672 0 0
0 0 0 0 774.44 0
0 0 0 0 0 523.27

 (A.4)
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B Camera Set-up
For both the simulation and experiments a set of two Allied Vision Prosilica model GC-
1380 cameras has been used. The cameras use a GigE Vision Gigabit Ethernet interface
for high-speed data transmission over Ethernet networks. The cameras are set up with
Schneider Kreuznac Cinegon lenses.

Table B.1: Camera specifications Allied Vi-
sion Prosilica GC1380

Interface IEEE 802.3 1000baseT
Resolution 1360×1024
Sensor type CCD Progressive
Sensor size Type 2/3
Megapixels 1.4 MP
Pixel size 6.45 µm×6.45 µm

Max frame rate 20.2 fps
Lens mount C-mount

Dimensions (L×W×H) 59×46×33 mm
Weight 104 g

Power consumption 3.3 W at 12 VDC
Operating temperature 0-50 ◦C

The camera specifications are presented in Table B.1, and the lens specifications listed
in Table B.2. Both camera and lens is presented in Figure B.1.

Table B.2: Lens specifications
Schneider Kreuznac Cinegon 1.4/8

F-numner 1.4
Focal length 8.2 mm
Image circle 11 mm
Transmission 400-1000 nm

Interface C-mount
Weight 90 g
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(a) Prosilica GC1380 camera. Courtesy Allied Vision

(b) Cinegon 1.4/8 lens.
Courtesy Schneider Kreuz-
nach

Figure B.1: The camera and lens used in the stereo camera setup on the ROV

vi


	Abstract
	Preface
	Table of Contents
	List of Tables
	List of Figures
	Abbreviations
	Introduction
	Background
	ROV
	ROV Autonomy
	Computer Vision

	Objectives
	Scope and Limitations
	Literature Review
	ROV Control System
	Computer Vision
	Underwater Imagery

	Structure of Thesis
	Thesis Contribution

	Remotely operated Vehicle
	Background
	Modelling and Hydrodynamics
	Notations
	Kinematics
	Equations of Motion

	Generalised Forces
	Ocean Current Forces
	Propulsion Forces

	Sensors
	Sensor Description
	Measurements

	ROV Control System
	ROV Kalman Filter


	Computer vision
	Camera Model
	Pin-hole Camera Model
	Camera Calibration

	OpenCV Library
	Feature Detection and Matching
	Feature Detector SIFT/SURF
	Feature Detector BRISK
	Feature Matching

	Comparative Feature Detector Analysis
	Feature Detection
	Feature Matching

	Visual Motion Estimation
	Gauss-Newton Optimisation
	Gauss-Newton For Visual Motion
	Program Implementation

	Motion Estimation Results

	Simulation
	Simulation Set-up
	Results
	First Scenario
	Second Scenario


	Discussion
	Computer Vision
	Motion Estimation
	Simulation
	ROV autonomy

	Conclusion
	Concluding Remarks
	Further Work

	Bibliography
	Appendices
	ROVs
	ROV SF-30k

	Camera Set-up


