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Abstract

For ocean application, a High Order Spectral (HOS) method is studied. Different from
most application of HOS method which use initial value problem to investigate the spec-
trum evolution, embedded wave generation is implemented to assess the HOS method
with the wave tank experiments. The HOS method is also extended for non-uniform
bathymetry to handle wave steepening during propagation from deep to shallow water.
The enchancement of rogue wave occurence due to bottom topography is studied by con-
sidering irregular waves propagation over a sloping bottom. Furthermore, the increasing
use of Computational Fluid Dynamics (CFD) in ship and offshore structure analysis re-
quires an accurate water particle kinematics for the input. Therefore, the calculation of
water particle kinematics is investigated.
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Chapter 1
Introduction

1.1 Background and motivation

For centuries, the occurence of extreme waves in ocean have been reported by sailors and
scientists thought that was a myth. In the report of ESA News 21 July 2004, this extreme
waves are believed to be the main cause of the sinking more than 200 supertankers and
container ships in the last two decades. This extreme waves are also known as rogue, freak,
monster, giant, or abnormal waves. This type of accidents are often reported in media and
this extreme events have caught attention both in industry and scientific community.

There is no unique definition of rogue wave. A common definition is to apply the
criteria by Haver (2000):

Hmax

Hs
> 2 and/or

Cmax
Hs

> 1.25

where Hmax denotes the maximum of zero-crossing wave height, Cmax is the maximum
crest height, and Hs is the significant wave height.

The first scientific evidence of rogue waves is the New Year wave or also known as
Draupner Wave. On 1st January 1995, hurricane winds were blowing and extreme waves
were hitting the rig. It was recorded by a laser-based rangefinder and measured 26 m from
trough to peak (see Figure 1.1). The significant wave height was 10.8 m and according to
statistics, such an event was possible only once every 10,000 years. This was the turning
point of the study on rogue waves. Many scientists around the world started to investigate
and analyze this rogue waves by using numerical models.

Nowadays, the measurements from oil rigs, satellites, or marine radar have confirmed
the existence of rogue waves. Nevertheless, a lot of open questions still remain: how often
a rogue wave happens, should these waves be accounted for in design, what is the best way
to take rogue waves into account for design.

1



Chapter 1. Introduction

Figure 1.1: The time series of the New Year Wave, recorded at the Draupner platform in the North
sea on January 1st, 1995. Haver (2000)

1.2 Mechanism of rogue waves

In the annual review of rogue waves by Dysthe et al. (2008), several physical mechanism of
rogue waves are discussed: spatial focusing, dispersive focusing, and nonlinear focusing.

Spatial focusing is occured by shoaling and refraction of waves due to varying bottom.
As water waves are transmitted from deep water into shallow water, the wavelength will
be reduced and the wave height become higher. Another consequence is the direction of
the waves can be changed depends on the bottom topography, this phenomena is called
refraction. Several wave tank experiments have been conducted to see this physical mech-
anism of spatial focusing wave, for example wave propagation over a shoal by Berkhoff
et al. (1982). Another possibility is from the wave-current interaction. A wave propagat-
ing against the current going in the opposite direction gathers energy and amplify the wave
height.

Dispersive focusing is achieved by linear effect and occured when the phase from
different wave frequency is the same. The dispersion means the long waves travel faster
than shorter waves. Dispersive focusing can be explained from wave tank experiment by
creating a long wave group with linearly decreasing frequency, then the wave group can
be designed to be focused at a certain position. Another way to observe this phenomena
is by running long time linear simulation of wave model for a broad band spectrum, e.g.
JONSWAP spectrum. This type of focusing has been suggested in Kharif and Pelinovsky
(2003) as a possible mechanism for exceptional rogue waves.

Nonlinear focusing has been researched actively for past few decades. Starting from
Benjamin and Feir (1967) observation in laboratory tank, a modulational instability of
nonlinear waves can lead to a extremely high wave. This is known as Benjamin-Feir insta-
bility (BF instability). Alber (1978) showed that the BF instability is only for narrow band
random wave field and it can be neglected for a broad band spectrum. However, Gramstad
(2017) discussed about the modulational instability for the JONSWAP spectrum and this
show that this phenomenon is still an open discussion. While the instability develops, the
occurence of rogue waves increase, but Gramstad and Trulsen (2007) stated that this only

2



1.3 Outline

occurs for long-crested waves. The nonlinear focusing can also be observed in wave tank
experiment, the initial spectrum will be deformed and the growth of the nonlinear bound
waves in the spectrum tail will contribute to a freak wave formation.

1.3 Outline
This report consists of an introduction, four main chapters, conclusion and recommenda-
tions, and an appendix.

In Chapter 2, Hamiltonian structure for water waves is discussed. Subsequently, the
High Order Spectral (HOS) method approximate the kinetic energy with consistent order
and possess the Hamiltonian structure. To study the nonlinearity of HOS method, a wave
model from HAWASSI (Hamiltonian Wave-Ship-Structure Interaction) software which is
Variation Boussinesq model (VBM) is used for comparison. Embedded wave generation is
described briefly. The pseudo spectral implementation for HOS method and finite element
implementation for VBM are given in this chapter.

In Chapter 3, HOS method is extended to deal with varying bathymetry with two dif-
ferent methods.

In Chapter 4, several numerical and experimental cases are selected to assess the dis-
persion and nonlinearity of HOS method. Effect of non-uniform bathymetry into the rogue
wave occurence is studied in this chapter.

In Chapter 5, three different methods to calculate water particle kinematics are de-
scribed. Furthermore, each method is tested against a reference results.

Conclusions and recommendations for future work are covered in the final chapter.
Some additional simulation results are presented in appendix.
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Chapter 2
Hamiltonian Wave Modelling

The mathematical-physical description of surface water waves for an incompressible and
irrotational flow has a Hamiltonian structure, as discovered by Zakharov (1968) for waves
on infinite depth, rediscovered by Broer (1974) for waves above a flat bottom, and verified
by Miles (1977) through Luke variational principle.

The Hamiltonian is the total energy which is the sum of the potential energy and kinetic
energy. The potential energy which is only depends on η is given by

P(η) =

∫
x

1

2
gη2dx.

The kinetic energy is given by

K(Φ) =

∫
x

∫ η

−h

1

2

[
(∇Φ) · (∇Φ) + (∂zΦ)

2
]
dzdx (2.1)

with constraints as follow :

• The velocity potential Φ satisfies the Laplace equation in the fluid interior because
of the incompressible and irrotational flow.

• The impermeability of the bottom leads to the condition for velocity component
normal to the bottom, i.e. ∂nΦ = 0 at z = −h(x).

• The velocity potential at the surface is Φ(x, z = η, t) = φ(x, t).

Note that ∇ is the horizontal gradient (∂x, ∂y). These constraints are direct consequences
from the requirement of variational derivative of HamiltonianH with respect to Φ is zero.
In other words, these conditions can be achieved by minimizing the kinetic energy as stated
by Dirichlet’s principle.

δH
δΦ

= 0

5



Chapter 2. Hamiltonian Wave Modelling

Therefore, the Hamiltonian can be written as functional of the two canonical variables η
and φ as

H(η, φ) = K(η, φ) + P(η).

The dynamics of the canonical variables η(x, t) and φ(x, t) or well known as Hamiltonian
equations is given by (Zakharov (1968), Broer (1974), Miles (1977))

∂tη = δφH (η, φ)

∂tφ = −δηH (η, φ) .
(2.2)

It turned out that there is a connection between the Hamiltonian formulation and the vari-
ational formulation in Lagrangian density L(η,Φ) by Luke (1967):

L = −
∫ [∫

x

∫ η

−h

{
∂tΦ +

1

2
(∇Φ)

2
+

1

2
(∂zΦ)

2
+ gz

}
dzdx

]
dt.

By integrating out the ∂tΦ to the boundary of the time domain using Leibniz integral rule
and dropping dynamically uninteresting terms, Miles (1977) showed the Lagrangian can
be expressed as

L =

∫ [∫
φ∂tηdx−H(η, φ)

]
dt (2.3)

The variation of L with respect to η and φ leads to Hamiltonian equations which satisfy
incompressible Euler equations.

2.1 Consistent Hamiltonian modeling
In this section, it will be shown that several wave model can be derived consistently
through the hamiltonian. It is important to aware that even shallow water equations possess
the hamiltonian structure.

2.1.1 Shallow Water Equations
The shallow water equations (SWE) can be derived through Hamiltonian formulation.
Here, shallow water means the wavelength is much larger than the water depth. Since the
flow is mainly uniform in horizontal direction and the variations in the vertical direction
may be neglected therefore it is logical to assume that Φ = φ. Inserting this assumption
into Equation (2.1), the Hamiltonian equations become

∂tη = −∇ · [(h+ η)∇φ]

∂tφ = −gη − 1

2
|∇φ|2 .

(2.4)

These are the shallow water equations (SWE). Note that the equations are fully nonlinear
but do not possess the property of dispersion, i.e. all linear waves propagate with the same
velocity.
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2.1 Consistent Hamiltonian modeling

Linear Shallow Water Equations

By neglecting all the nonlinear terms in Equation (2.4), we get the linear shallow water
equations (LSWE) as

∂tη = −h∇2φ

∂tφ = −gη.
(2.5)

This set of two first order equations in time is coupled. Decouple these equations lead to
second order equation in surface elevation η only. Notice, this is the well-known wave
translation equation:

∂2
t η = C2∇ · ∇η (2.6)

whereC is the phase velocity of shallow water equation. For flat bottom h = h0, the phase
velocity is C0 =

√
gh0 which show the long wave character of the equations.

2.1.2 High Order Spectral method
By utilizing Green’s theorem, the kinetic energy in Equation (2.1) can be expressed as

K(η, φ) =
1

2

∫
φ∂nΦdx

where ∂nΦ = ∂zΦ(x, η)−∇η · ∇Φ(x, η) is the normal velocity at the surface, so-called
Dirichlet to Neumann (DtN) operator. For convenience, denote W is the vertical velocity
at the surface, W = ∂zΦ(x, η). Since ∇Φ(x, η) = ∇φ −W∇η, then the kinetic energy
can be rewritten as

K(η, φ) =
1

2

∫
φ
(
W (1 + |∇η|2)−∇η · ∇φ

)
dx.

Taking the first variations of the Hamiltonian H with respect to surface potential φ leads
to the continuity equation. As shown by Zakharov (1968), the continuity equation is ex-
pressed by DtN operator as

∂tη = δφH = ∂nΦ.

Moreover, taking variations of the HamiltonianH with respect to surface elevation η leads
to the momentum equation or the Bernoulli equation.

∂tφ = −δηH = −gη − 1

2

(
|∇Φ(x, η)|2 +W 2

)
+W∂nΦ

Rewrite these two equations in term of surface variable only, the dynamic of Hamiltonian
equations is given as follow

∂tη = W (1 + |∇η|2)−∇η · ∇φ

∂tφ = −gη − 1

2
|∇φ|2 +

1

2
W 2(1 + |∇η|2).

(2.7)

The solution of Equation (2.7) depends on obtaining the vertical surface velocity W in
terms of η and φ. An efficient recursive spectral method for evaluating W was proposed
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Chapter 2. Hamiltonian Wave Modelling

by Dommermuth and Yue (1987) and West et al. (1987) simultaneously, and has been
known as the Higher Order Spectral (HOS) method. In the following, the solution proce-
dure of HOS method is described.

Expansion of the velocity potential Φ(x, z, t) and the vertical surface velocity W in power
series of η give

Φ(x, z, t) =

∞∑
m=1

Φ(m)(x, z, t) (2.8)

W (x, t) =

∞∑
m=1

W (m)(x, t)

where m shows the order of η. Further, using taylor expansion on each terms Φ(m) and
W (m) around the still water elevation z = 0 :

Φ(m)(x, z = η, t) =

∞∑
n=0

ηn

n!

∂nΦ(m)

∂zn
(x, 0, t) (2.9)

W (m)(x, t) =
∂Φ(m)

∂z

∣∣∣∣
z=η

=

∞∑
n=0

ηn

n!

∂n+1Φ(m)

∂zn+1
(x, 0, t).

From Equation (2.8) and (2.9), the surface potential φ can be expressed as

φ(x, t) = Φ(x, η, t) =

∞∑
m=1

∞∑
n=0

ηn

n!

∂nΦ(m)

∂zn
(x, 0, t) (2.10)

Classifying the left hand side and right hand side of Equation (2.10) based on the same
order results in a triangular system for Φ(m)

φ = Φ(1)

0 = η
∂Φ(1)

∂z
+ Φ(2)

0 =
η2

2

∂2Φ(1)

∂z2
+ η

∂Φ(2)

∂z
+ Φ(3)

0 =
η3

6

∂3Φ(1)

∂z3
+
η2

2

∂2Φ(2)

∂z2
+ η

∂Φ(3)

∂z
+ Φ(4)

0 =

m∑
n=1

ηn−1

(n− 1)!

∂n−1Φ(m−n+1)

∂zn−1
.

(2.11)
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2.1 Consistent Hamiltonian modeling

Rearrange Equation (2.11) gives the following velocity potential solution at z = 0 for each
order explicitly :

Φ(1) = φ

Φ(2) = −η ∂Φ(1)

∂z

Φ(3) = −η
2

2

∂2Φ(1)

∂z2
− η ∂Φ(2)

∂z

Φ(4) = −η
3

6

∂3Φ(1)

∂z3
− η2

2

∂2Φ(2)

∂z2
− η ∂Φ(3)

∂z

Φ(m) = −
m−1∑
n=1

ηn

n!

∂nΦ(m−n)

∂zn
.

(2.12)

In the same way, we obtain the vertical surface velocity W for each order in the form :

W (1) =
∂Φ(1)

∂z

W (2) = η
∂2Φ(1)

∂z2
+
∂Φ(2)

∂z

W (3) =
η2

2

∂3Φ(1)

∂z3
+ η

∂2Φ(2)

∂z2
+
∂Φ(3)

∂z

W (4) =
η3

6

∂4Φ(1)

∂z4
+
η2

2

∂3Φ(2)

∂z3
+ η

∂2Φ(3)

∂z2
+
∂Φ(4)

∂z

W (m) =

m−1∑
n=0

ηn

n!

∂n+1Φ(m−n)

∂zn+1
.

(2.13)

Dommermuth and Yue (1987) approximate the terms related with vertical surface velocity
in Equation (2.7) with

W
(

1 + |∇η|2
)
≈

M∑
m=1

[
W (m)

(
1 + |∇η|2

)]
1

2
W 2

(
1 + |∇η|2

)
≈

M∑
m=1

[
1

2

(
W (m)

)2 (
1 + |∇η|2

)]
On the other hand, according to West et al. (1987) these terms need to be truncated at
consistent nonlinear order to possess Hamiltonian structure,

W
(

1 + |∇η|2
)
≈W (1) +W (2) +

M∑
m=3

[(
W (m) +W (m−2) |∇η|2

)]
W 2

(
1 + |∇η|2

)
≈

M∑
m=2

(
W 2
)(m)

+

M∑
m=4

(
W 2
)(m−2) |∇η|2

9



Chapter 2. Hamiltonian Wave Modelling

with

(W 2)(m) =

m∑
n=1

WnWm−n.

For clarity, the dynamic equations of HOS method up to fourth order based on West et al.
(1987) are given as

∂tη = W (1) +
(
W (2) −∇φ · ∇η

)
+
(
W (3) +W (1) |∇η|2

)
+
(
W (4) +W (2) |∇η|2

)

∂tφ =− gη +

(
−|∇φ|

2

2

+
W (1)W (1)

2

)

+
(
W (1)W (2)

)
+

(
W (2)W (2) + 2W (1)W (3)

2
+
W (2)W (2)

2
|∇η|2

)
Terms of the same order have been grouped together in the bracket.

2.1.3 Variational Boussinesq model
The Variational Bussinesq model (VBM) is under HAWASSI (Hamiltonian Wave-Ship-
Structure Interaction) software license. The HAWASSI-VBM is for simulations of long
(1HD) and short crested waves (2HD) with excellent dispersion properties in coastal areas
with harbours and strongly varying bathymetry, and for simulation of oceanic waves.

Starting from Klopman et al. (2010), the velocity potential Φ(x, z, t) is extended by
adding z-dependence functions.

Φ (x, z, t) = φ (x, t) + ΣmFm (z, η, h)ψm (x, t) = φ+ F ·Ψ (2.14)

where Fm are vertical shape functions that will be chosen in advance and ψm are spatially
dependent functions that need to be determined by minimizing the kinetic energy with re-
spect to ψm.

Substituting Equation (2.14) into kinetic energy functional results in

KV BM =
1

2

∫
x

∫ η

−h
|∇φ+∇ (F ·Ψ)|2 + (∂zF ·Ψ)

2
dzdx

=
1

2

∫
x

∫ η

−h
|∇φ+ F · ∇Ψ +∇F ·Ψ|2 + (∂zF ·Ψ)

2
dzdx

(2.15)

Neglecting the effects of variations of F with x, i.e. ∇F = 0, leads to weakly nonlin-
ear VBM (see Klopman et al. (2010), Lakhturov et al. (2012), Adytia and van Groesen
(2012)). Taking all terms in Equation (2.15) into account will produce fully nonlinear
VBM, without approximation for the nonlinearity. The derivation of fully nonlinear VBM
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2.1 Consistent Hamiltonian modeling

is described in Lawrence et al. (2018). In this project report, we only derive for linear
VBM to show the linear dispersion of the model.

For convenience, matrices α and γ, and a vector β are introduced as

αij =

∫ 0

−h
FiFjdz, γij =

∫ 0

−h
F ′iF

′
jdz, βi =

∫ 0

−h
Fidz (2.16)

Using this notation, the kinetic energy of linear VBM is rewritten as

KV BM =
1

2

∫
x

[
h |∇φ|2 + α∇Ψ · ∇Ψ + γΨ ·Ψ + 2∇φβ · ∇Ψ

]
dx (2.17)

The dynamic equations of VBM is found by taking variations of Hamiltonian of VBM
with respect to η and φ . Meanwhile, the functions Ψ are calculated by minimizing kinetic
energy of VBM with respect to Ψ, leading to a system of linear elliptic equations. Hence,
the linear VBM equations are as follows

∂tη = −h∇2φ− β∇ · ∇Ψ

∂tφ = −gη
α∇ · ∇Ψ + γΨ = β∇ · ∇φ

(2.18)

VBM linear dispersion relation

The VBM with multiple profiles has dispersion relation that depends on the choice of
vertical shape functions. The linear VBM dispersion is given as

ΩV BM (k) = c0k

√
1− k2

h
β · (αk2 + γ)−1β.

Vertical profile optimization

Several type of vertical shape functions were discussed in Klopman (2010). By choosing
a parabolic profile as in Equation (2.19), it gives the same quality of dispersion as the
Boussinesq model of Madsen et al. (1991) which is good only for long waves or up to
kh ≈ 3.

F1(z, η, h) =
1

2
(z − η)

2h+ z + η

h+ η
(2.19)

For multiple profile, Adytia (2012) used the normalized hyperbolic-cosine vertical profile
and adjusted to satisfy Fm(z = η) = 0

Fm (z, η,h) =
cosh (κm (z + h))

cosh (κm (η + h))
− 1 (2.20)

Here the parameters κm are constants that can be optimized to improve the dispersion
quality. For waves with a narrow band spectrum, e.g. monochromatic waves, it is enough
to choose one profile with parameter κ is wave number that corresponds with frequency
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Chapter 2. Hamiltonian Wave Modelling

of the monochromatic waves. Another example, for bichromatic waves that travel with
frequency ω1 and ω2, two profiles should be used with parameters κ1 and κ2 are wave
number that correspond with frequency ω1 and ω2, respectively. For broad band spectrum,
it is recommended to use multiple profiles. Lakhturov et al. (2012) use kinetic energy
minimization based on power spectrum of the influx signal. Later, Lawrence et al. (2018)
found that the initial spectrum will deform during the evolution when strong nonlinear
effects are present and the optimization should be based on deformed spectrum.

2.2 Embedded wave generation
There are two ways to study the evolution of water waves by utilizing the wave model.

First, the initial value problem, i.e. the description of the surface elevation η and sur-
face potential φ at initial time instant are chosen. Ideally, these initial conditions should
be chosen consistently through their nonlinear relationship which represent the bound
wave components correctly. However, these nonlinear relationship is complicated there-
fore most applications use linear relationship between η and φ. Notice that the typical
model spectrum such as JONSWAP spectrum is calibrated from measurement in the North
Sea which is already contain the bound waves. Therefore, using linear relationship for a
JONSWAP spectrum means the free wave components is overpredicted and may lead to
excess energy in the spectrum tail. Lack of consistent initialization by linear relationship,
may lead to instabilities with high frequency spurious modes in the simulations. To rem-
edy this problem, Dommermuth (2000) proposed an adjustment scheme in time where the
nonlinear terms in the equations are turned on gradually.

The second one is influxing problem. The condition is different with the initial value
problem when the waves have to be excited from the boundary or inside the domain. For
instance, evolution of the waves that is generated by the wavemaker in a hydrodynamic
laboratory or waves propagation from offshore to nearshore. Engquist and Majda (1977)
describe the wave generation from the boundary with phase speed. However, it is impor-
tant to ensure the reflected waves should be able to pass through the influx boundary which
is way too complicated because the natural boundary of the wave model. On the contrary,
in Wei et al. (1999) the waves is generated from the vertical line under an angle theta with
respect to x-axis. They used a spatially distributed source function method (Gauss shape
function) to generate waves inside the domain for nonlinear shallow water equations, the
classical Boussinesq model of Peregrine (1967), extended Boussinesq model of Nwogu
(1993), and in the fully nonlinear form Wei and Kirby (1995). Kim et al. (2007) showed
that it is possible to generate oblique waves by using a delta source function and argued
that the group velocity of the wave model plays an important role. Liam et al. (2014)
derived the embedded wave generation in a general way for any linear dispersive wave
models.

For the influx problems in this project report, we use the embedded wave generation by
Liam et al. (2014). Here we describe briefly the derivation of embedded wave generation
with source function by Liam et al. (2014).

The first order translation or 1D uni-directional equation for positive traveling waves
(toward positive x-axis) is

∂tη = −Aη
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2.2 Embedded wave generation

with
Aη = i

∫
Ω(k)η̂(k)eikxdk.

Here A is the (pseudo-differential) operator that has a connection with dispersion relation
Ω and it is applied to function η in spectral space.

For shallow water, the dispersion relation is Ω(k) = C0k with C0 =
√
gh0 which

corresponds to A = C0∂x and the equation become ∂tη = −C0∂xη. This is the solution
of the wave equation in Equation (2.6) that travel to positive x-direction.

The embedded wave generation is accomplished by adding source function S(x, t) in
the equation as

∂tη = −Aη + S(x, t).

Suppose we have influx signal s(t) at x = 0. The source function S(x, t) have to be
determined so that the solution of η at x = 0 is equal to the given signal s(t). Consider
the source function has the form

S(x, t) = q(x)f(t)

The condition of this source function has been discussed in detail by Liam (2013). The
condition is

q̂(K(ω))f̌(ω) =
1

2π
Vg(K(ω))š(ω). (2.21)

The hat and check notation represent a temporal Fourier transform in space and time,
respectively. The notation Vg is the group velocity and K(ω) = Ω−1(ω) is the inverse of
dispersion relation function.

To satisfy the condition in Equation (2.21), the functions of q and f is not unique.
In this project, only point generation that is used for influx problem simulation, i.e. a
source that is concentrated at a certain point x = x0. These point source generation can
be obtained by choosing the function q as Dirac-delta function δ(x − x0). Subsequently,
the source condition become

δ̂(k)f̌(ω) =
1

2π
Vg(K(ω))š(ω)

f̌(ω) = Vg(K(ω))š(ω)

Notice that the function f is the convolution between the influx signal s(t) and the inverse
temporal Fourier transform of the group velocity ω → Vg(K(ω)). A more general choice
is by choosing spatial distributed source of function q. A Gauss shape function has been
used by Wei et al. (1999).

However, the Hamiltonian wave model in Equation (2.2) is a multi-directional dis-
persive wave equation. In one horizontal dimension (1D), it produce waves travelling to
positive x-direction and negative x-direction symmetrically therefore the source function
S(x, t) have to be doubled. Here, we only consider bi-directional elevation influxing since
we have the input signal in surface elevation η. The bi-directional elevation influxing in
Hamiltonian equation is given as

∂tη = δφH (η, φ) + 2S(x, t)

∂tφ = −δηH (η, φ) .
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Chapter 2. Hamiltonian Wave Modelling

It’s also possible to have the uni-directional influxing in Hamiltonian equation. For math-
ematics point of view, it is sophisticated to produce uni-directional wave influxing. How-
ever, it’s not necessary since the waves will be damped near the boundary.

Notice that the source function was derived based on linear theory. In order to generate
high waves into the nonlinear wave model, nonlinear adjustment is needed. Otherwise,
undesirable spurious modes will be generated. Dommermuth (2000), for nonlinear wave
generation Liam et al. (2014) proposed the nonlinear adjustment in space from the influx
position.

2.3 Numerical implementation
The Hamiltonian wave model will be solved numerically. In this section, numerical im-
plementation for HOS method and VBM in one horizontal dimensional (1HD) will be de-
scribed. We use pseudo spectral method to solve HOS method and finite element method
to solve VBM.

2.3.1 Spatial discretization
Pseudo Spectral method

Suppose surface elevation η and velocity potential Φ can be represented in Fourier space
as follow

η(x, t) =

∫
η̂(k, t)eikxdk

Φ(x, z, t) =

∫
Φ̂(k, t)

cosh (k(z + h))

cosh (kh)
eikxdk

where the hat notation represents the spatial Fourier transform. Denote F and F−1 are
the Fourier transform and inverse Fourier transform in space. Subsequently, the vertical
velocity is

∂Φ

∂z
(x, 0, t) = F−1

[
Φ̂(k)k tanh(kh)

]
.

Since velocity potential Φ has to satisfy the Laplace equation, therefore we can calculate
the second derivative of Φ with respect to z by

∂2Φ

∂z2
(x, 0, t) = −∂

2Φ

∂x2
= F−1

[
Φ̂(k)k2

]
.

From these we can get formula for the derivative of the velocity potential at order m with
respect to z as

∂nΦ(m)

∂zn
(x, 0, t) = F−1

[
Φ̂(m)En

]
where

En =

{
kn for n is even,
kntanh(kh) for n is odd.
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2.3 Numerical implementation

Therefore, the velocity potential and vertical surface velocity at orderm in Equation (2.12)
and (2.13) can be calculated as

Φ(m) = −
m−1∑
n=0

ηn

n!
F−1

[
F
[
Φ(m−n)

]
En

]

W (m) =

m−1∑
n=0

ηn

n!
F−1

[
F
[
Φ(m−n)

]
En+1

]
In the numerical implementation of pseudo spectral method, we solve the dynamic equa-
tions of HOS method into Fourier space. For instance, the HOS method second order is
written in Fourier space as

∂tη̂ = Ŵ (1) +
(
Ŵ (2) − ̂∂xφ ∂xη

)
∂tφ̂ =− gη̂ +

1

2

(
−(̂∂xφ)

2
+ ̂W (1)W (1)

)
.

The nonlinear terms can be calculated by pseudo spectral procedure, i.e. the multiplication
of nonlinear terms is done in real space and then convert it back to Fourier space. For
example,

̂∂xφ ∂xη = F
[
F−1

[
ikφ̂
]
F−1 [ikη̂]

]
(̂∂xφ)2 = F

[(
F−1

[
ikφ̂
])2
]
.

Finite Element method

The solutions are aproximated by superpositions of the basis functions as

η(x, t) ≈
∑
i

ηi(t)Ti(x) = η̄(t) · T (x)

φ(x, t) ≈
∑
i

φi(t)Ti(x) = φ̄(t) · T (x)

ψ(x, t) ≈
∑
i

ψi(t)Ti(x) = ψ̄(t) · T (x)

(2.22)

where η̄(t), φ̄(t), ψ̄(t) and T (x) are vector functions. Notice that the highest order of
spatial derivatives in the Lagrangian of VBM are first order. Therefore piecewise linear
spline basis function is chosen for FEM implementation. For 1D FEM, these basis function
is given as

Ti(x) =


x−xi−1

xi−xi−1
, if x ∈ [xi−1, xi]

xi+1−x
xi+1−xi

, if x ∈ [xi, xi+1]

0 , else
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Substitute the approximation in Equation (2.22) into the Equation (2.3) leads to the dis-
cretized version of Lagrangian :

L̄(η̄, φ̄, ψ̄) =

∫
t

[
Mφ̄ · ∂tη̄ − H̄(η̄, φ̄, ψ̄)

]
dt. (2.23)

Here M is the mass matrix, with elements as follow

Mi,j =

∫
x

TiTjdx.

The discretized Hamiltonian of the linear VBM is

H̄V BM ≈
1

2
gMη̄ · η̄ +

1

2
S(h)φ̄ · φ̄+ S(β)φ̄ · ψ̄ +

1

2
S(α)ψ̄ · ψ̄ +

1

2
M (γ)ψ̄ · ψ̄

where S(h) and S(α) are the stiffness matrices with elements

S
(h)
i,j =

∫
x

hT ′iT
′
jdx

S
(β)
i,j =

∫
x

βT ′iT
′
jdx

S
(α)
i,j =

∫
x

αT ′iT
′
jdx,

and the M (γ) has elements
M

(γ)
i,j =

∫
x

γTiTjdx.

Taking first variations of Equation (2.23) with respect to η, φ and ψ result the system
equations in matrix system

M∂tη̄ = S(h)φ̄+ S(β)ψ̄

M∂tφ̄ = −gMη̄

S(α)ψ̄ +M (γ)ψ̄ = S(β)φ̄.

2.3.2 Initialization and time stepping
For the initial value problem, the prescribed surface elevation η and velocity potential
φ have to be periodic in HOS method because of the natural boundary condition of the
pseudo spectral method. On the other hand, there is no requirement for the VBM since the
natural boundary condition of FEM is hardwall.

For the influx problem, embedded wave generation is implemented with nonlinear
adjustment as described in Liam et al. (2014) The initial condition for both η and φ is set
to be zero.

For the time integration, we use ODE solver from MATLAB which has adaptive time
step. There are several ODE solvers from MATLAB, e.g. ode45, ode113, and ode23. Here
we use ode23 that is an implementation of an explicit Runge-Kutta (2,3) pair of Bogacki
and Shampine (1989).
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2.3 Numerical implementation

The shortest wave component should be represented by enough grid points, let say one
wave is well defined by at least 10 grid points. This shortest wave component leads to
a largest wave number kmax and will be the cut-off for the filtering. In fully nonlinear
VBM, aliasing error is prevented by filtering the output after each 50 or 100 time steps.
Meanwhile in HOS method the filtering is done by setting the higher modes larger than
kmax to be zero in each time step.

2.3.3 Nonlinear adjustment and damping zones
Nonlinear adjustment is implemented as described in Liam et al. (2014), we separate the
linear and nonlinear terms and multiply the nonlinear terms with a characteristic smooth
function χnonlin.

The pseudo spectral method leads to a periodic solution, i.e. the solution in right
boundary is equal to solution in left boundary or in other words the waves propagate to
the right boundary will be forwarded to the left boundary. On other hand, the natural
boundary conditions for finite element method is hardwall. In the influxing problem, we
add energy into the domain. It means the propagating waves toward the boundaries have
to be vanished. Instead of modifying the boundary conditions to be transparent, we use
damping zones so that the wave will be vanished smoothly near the boundaries. Therefore,
we define another characteristic smooth function χdamping which has value one in the
boundaries and vanished towards the inside of domain.

The dynamic equations with nonlinear wave generation and damping zones is

∂tη = RHSlin + χnonlinRHSnonlin − χdampingη
∂tφ = RHSlin + χnonlinRHSnonlin − χdampingφ.

An illustration of the characteristic functions for nonlinear adjustment and damping
zones are shown in Figure 2.1. Normally, the length of damping zones are larger than two
times of peak wave length.
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Figure 2.1: Characteristic smooth functions for damping zones (blue, solid) and nonlinear adjust-
ment (red, solid) with influx position at x = 10 m.
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Chapter 3
Higher Order Spectral Method on
Variable Depth

The Higher order spectral (HOS) method was first developed by Dommermuth and Yue
(1987) and West et al. (1987) for flat bottom. Later, Liu and Yue (1998) introduced an addi-
tional velocity potential to deal with varying bottom. However, this method uses the same
order of non-linearity for the bottom and the free surface. In order to give more flexibility
in order of non-linearity, Gouin et al. (2016) adapted the work of Guyenne and Nicholls
(2007) from Dirichlet to Neumann (DtN) model to the HOS method by considering two
independent orders of non-linearity.

van Groesen and Andonowati (2011) derive fully dispersive models for varying bot-
tom, so-called AB model. In van Groesen and van der Kroon (2012), hybrid spatial spec-
tral implementation was used in AB model. Multiple works in Kurnia and van Groe-
sen (2014), van Groesen et al. (2017), van Groesen and Wijaya (2017) are based on this
method. This method will be adapted into HOS method and is referred as hybrid spatial
spectral method in this thesis.

In this chapter, two methods to deal with varying bottom which were proposed by
Gouin et al. (2016) and van Groesen and Andonowati (2011) will be discussed. The former
is referred as original method while the latter is referred as hybrid spatial spectral method.

3.1 Original method

Let z = η(x, t) represents the free surface elevation, h is the total water depth, h0 is mean
depth, and ξ(x) is the bottom variation, such as −h(x) = −h0 + ξ(x). In HOS method,
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Chapter 3. Higher Order Spectral Method on Variable Depth

the free surface boundary condition is

∂η

∂t
= W (1 +

∣∣∣∣∂η∂x
∣∣∣∣2)− ∂η

∂x
· ∂φ
∂x

∂φ

∂t
= −gη − 1

2

∣∣∣∣∂φ∂x
∣∣∣∣2 +

1

2
W 2(1 +

∣∣∣∣∂η∂x
∣∣∣∣2).

HOS method only needs to evaluate the vertical velocity at free surfaceW (x, t) = ∂Φ
∂z (x, z =

η, t) for the time evolution of free surface elevation η and surface potential φ. This quan-
tityW is essential in HOS method and it is affected by the bathymetry. For uneven bottom,
the bottom boundary condition is

∂Φ

∂x

∂ξ

∂x
− ∂Φ

∂z
= 0 on z = −h0 + ξ(x).

Liu and Yue (1998) introduce an additional potential to deal with varying bathymetry. The
total potential Φ is expressed as

Φtotal = Φh0 + Φξ.

Φh0
satisfies a Neumann condition on z = −h0, therefore Φh0

is the solution of the
Laplace problem at constant depth h0 :

∂Φh0

∂z
(x,−h0, t) = 0 on z = 0.

Φξ is added for the remedy of bottom boundary condition and satisfies a Dirichlet condi-
tion on z = 0 :

Φξ (x, 0, t) = 0 on z = 0.

Furthermore, the potentials are expressed in Fourier space taking into account the previous
boundary conditions as :

Φh0(x, z, t) =

∫
Φ̂h0(k, t)

cosh (k(z + h0))

cosh (kh0)
eikxdk

Φξ(x, z, t) =

∫
Φ̂ξ(k, t)

sinh (kz)

cosh (kh0)
eikxdk.

In HOS method, the total potential is represented as a truncated power series of order M
(M is the order of nonlinearity of the HOS method). Liu and Yue (1998) truncated the bot-
tom condition also at order M . Meanwhile, Gouin et al. (2016) adapted the method from
Dirichlet to Neumann (DtN) modeling by Craig et al. (2005) and Guyenne and Nicholls
(2007) by Taylor expansion of the bottom boundary conditions with a different order of
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3.2 Hybrid spatial spectral method

truncation Mb :

M∑
m=1

[(
∂Φ

(m)
total

∂x

∂ξ

∂x

)
−h0

+ ξ
∂

∂z

(
∂Φ

(m)
total

∂x

∂ξ

∂x

)
−h0

+ · · ·+ ξMb−1

(Mb − 1)!

∂Mb−1

∂zMb−1

(
∂Φ

(m)
total

∂x

∂ξ

∂x

)
−h0

]

=

M∑
m=1

[(
∂Φ

(m)
total

∂x

)
−h0

− ξ

(
∂2Φ

(m)
total

∂x2

∂ξ

∂x

)
−h0

− · · · − ξMb

(Mb)!

∂Mb−1

∂zMb−1

(
∂2Φ

(m)
total

∂x2

)
−h0

]
.

(3.1)

Equation (3.1) is truncated consistently by expanding the left hand side up to orderMb−1

since O (ξ) ≡ O
(
∂ξ
∂x

)
. Additionally, it is assumed that each potential Φ

(m)
ξ as a truncated

power series up to order Mb (Mb is the order of nonlinearity of the bottom):

Φ
(m)
ξ =

Mb∑
l=1

Φ
(m,l)
ξ .

At each order m, the total potential is Φ
(m)
total = Φ

(m)
h0

+ Φ
(m)
ξ . By keeping only the terms

of maximum order m + Mb and assuming O (ξ) ≡ O
(
∂ξ
∂x

)
≡ O (η), Equation (3.1)

become: (
∂Φ

(m)
ξ

∂z

)
−h0

=

Mb∑
l=1

(
∂Φ

(m,l)
ξ

∂z

)
−h0

=

Mb∑
l=1

{
∂

∂x

ξl

l!

[
∂l−1

∂zl−1

(
∂Φ

(m)
h0

∂x

)]
−h0

}

+

Mb∑
l=1

l−1∑
p=1

{
∂

∂x

ξp

p!

[
∂p−1

∂zp−1

(
∂Φ

(m,l−p)
ξ

∂x

)]
−h0

}
.

Subsequently, the fourier amplitude Φ̂ξ can be calculated iteratively at a given order m.
The explicit expression for this formulas can be found in Gouin et al. (2016).

3.2 Hybrid spatial spectral method
van Groesen and Andonowati (2011) showed that the kinetic energy can be written with a
positive definite symmetric operator C as

K =
1

2g

∫
C2 (∂xφ)

2
dx (3.2)
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Chapter 3. Higher Order Spectral Method on Variable Depth

where C is phase velocity operator. For flat bottom, C =
√
g tanh kh/k is pseudo-

differential operator (PDO) where h is constant depth and k is the wavenumber. To deal
with varying bottom, the variable h(x) is included in the phase velocity. Therefore it is not
a PDO anymore but it is called Fourier integral operator (FIO), an extension of the class
of PDO’s. It is computationally expensive to calculate the FIO because a Fast-Fourier
Transform (FFT) is required for each spatial grid. However, the computational time can
be reduced significantly by using a piecewise constant approximation or by interpolation
method. Kurnia and van Groesen (2017) showed that the second order accurate wave
model over varying bottom can be derived by introducing the nonlinear phase velocity
operator

C =

√
g tanh k (h(x) + η(x, t))

k
.

As in van Groesen and van der Kroon (2012), a hybrid spatial spectral method to ap-
proximate the FIO C2(k, h(x)) is described briefly in the following. The FIO C2(k, h(x))
is approximated by using a suitable smooth interpolation between the squared phase ve-
locity at the deepest part (h0) and the shallowest part (h1),

C2
approx (k, h(x)) = a(x)C2(k, h0) + b(x)C2(k, h1).

Let ν be a characteristic peak frequency, then κ(x) is the wave number corresponding to ν
at depth x, Ω(κ(x), h) = ν, where Ω is the function describing the dispersion relation. The
coefficients a(x) and b(x) can be determined uniquely by having two conditions. First, the
squared phase velocity is required to has the exact value for all these wave numbers:

C2 (k, h(x)) = a(x)C2 (κ(x), h0) + b(x)C2 (κ(x), h1) .

Secondly, the frequency also has to be exact for these wave numbers:

ν = a(x)Ω (κ(x), h0) + b(x)Ω (κ(x), h1) .

3.2.1 Limiting cases
In this subsection, two limiting cases which are shallow water and Airy’s linear wave
theory are given to show that the wave equation can be derived through approximation of
kinetic energy in Equation (3.2).

Shallow water

For shallow water condition, the horizontal velocity is assumed uniform from the bot-
tom until free surface. Therefore it is natural to approximate the velocity potential by
Φ(x, z, t) = φ(x, t). Then

KSW =
1

2

∫
(h+ η)(∂xφ)2dx.

Notice that KSW can be expressed as in Equation (3.2) with C =
√
g(h+ η) is the

nonlinear phase velocity for shallow water.
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3.2 Hybrid spatial spectral method

Airy’s linear wave theory

The solution of the Laplace equation above flat bottom with depth h is

Φ(x, z, t) =

∫
φ̂(k, t)

cosh k(z + h)

cosh kh
eikxdk.

And also the well known linear dispersion relation is

C0 =
ω

k
=

√
g tanh kh

k
. (3.3)

From the wave equation and using the linear phase velocity C0 in Equation (3.3), the
equations for linear waves above flat bottom are given by

∂tη = −1

g
∂x
(
C2

0∂xφ
)

∂tφ = −gη.
(3.4)

Observe that Equation (3.4) can also be derived from the Hamiltonian with kinetic energy
as follow

K0 =
1

2g

∫
(C0∂xφ)2dx. (3.5)

3.2.2 HOS method with hybrid spatial spectral method
As discussed in Chapter 2.1.2, the vertical velocity is calculated recursively. In the HOS
method implementation for flat bottom, the derivative of velocity potential with respect to
z is pseudo-differential operator. In order to deal with uneven bottom, this operator will
become Fourier integral operator (FIO) and the formulation of this FIO will be discussed
in the following.

From Equation (3.4), the linear vertical velocity at the surface can be expressed as

W (1) = −1

g
∂xC

2
0∂xφ = Lφ (3.6)

where operator L is defined as the derivative with respect to z. This operator Lwill replace
operator E and will be exactly the same with operator E for flat bottom. For varying
bottom, the phase velocity operator C2

0 is Fourier integral operator and is implemented by
using hybrid spatial spectral method as described above.

This operator L can also be obtained by using quasi homogeneous approximation.
During propagation above varying bottom, the dispersive properties change since the dis-
persion relation depends on depth. In quasi homogeneous approximation, the wave prop-
erties are determined by the local dispersion relation. Therefore, at each position x the
fluid domain is replaced by horizontal strip with constant depth h(x).

In the following, the operator L in equation (3.6) will be achieved from quasi homo-
geneous way. The velocity potential is represented in Fourier space as

Φ(x, z) =

∫
Φ̂(k)

cosh (k(z + h(x)))

cosh (kh(x))
eikxdk. (3.7)
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Then the linear vertical velocity is

∂zΦ(x, 0) =

∫
Φ̂(k) k tanh (kh(x)) eikxdk

= −1

g

∫
ikφ̂(k)

g tanh (kh(x))

k
ik eikxdk

= −1

g

∫
ikφ̂(k) C2

0 ik e
ikxdk

= −1

g
∂xC

2
0∂xφ.

(3.8)
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Chapter 4
Numerical Investigation

Dispersion and nonlinearity quality of the HOS method are investigated in this chapter.
Furthermore, the method that has been discussed in previous chapter will be tested and
utilized. In the first subsection, solitary wave propagation over flat bottom case is con-
sidered. In the following three subsections, the HOS method is tested against wave tank
experiment, namely bichromatic wave train experiment, focusing wave group experiment,
regular and irregular waves over a submerged bar. In the last subsection, irregular waves
over a sloping bottom is investigated to study the behaviour of rogue wave occurence over
non-uniform bathymetry.

4.1 Solitary wave propagation over flat bottom

The first test case is solitary wave propagation over a constant depth. In order to maintain
the shape of the solitary wave, the wave model needs a good dispersion and nonlinearity
properties. Dutykh and Clamond (2014) provide solitary wave solutions for free surface
Euler equations which is computed numerically. In this numerical experiment, we choose
the initial condition by Dutykh and Clamond (2014) with high nonlinearity which has
amplitude 0.7 m and water depth 1 m. Figure 4.1 show the initial condition for free surface
η and velocity potential φ.

Lawrence et al. (2018) has shown that the fully nonlinear VBM retains both shape and
speed of the Euler soliton. Here we choose fully nonlinear VBM as a reference solution
for testing the convergence of the HOS nonlinearity. In Figure 4.2, we show the simulation
results for HOS method up to 7th order compared to FN-VBM. Quantitative informations
for the HOS method compared to FN-VBM are given in terms of correlation and variance-
quotient in Table 4.1. These quantities are calculated in interval x = (70; 90) m at t = 20
s. The simulation results indicate that the HOS method converge to fully nonlinear model
by increasing the nonlinear order.

In Figure 4.3, interesting phenomena is observed for longer time simulation. For HOS
third order, it retain the solitary wave shape with lower wave height after shedding off
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Figure 4.1: The initial wave elevation (upper plot) and velocity potential (lower plot) of the solitary
wave with height of 0.7 m.

Table 4.1: Comparison of correlation and variance-quotient for HOS method up to 7th order in
solitary wave propagation case.

Correlation Variance-quotient
HOS 3rd 0.9290 0.9930
HOS 4th 0.8993 1.0039
HOS 5th 0.9970 0.9988
HOS 6th 0.9993 1.0009
HOS 7th 1.0000 1.0002

some slower waves. This result confirm the work by Lawrence et al. (2018) that Hamil-
tonian wave possess the steady waves propagation even with low order approximation in
Hamiltonian. This also prove that the HOS method is energy conserved which is one of
the properties of Hamiltonian wave model.

4.2 Bichromatic wave train experiment

Two experiments with bichromatic waves (Test 60 and Test 61) were conducted in the 270
m long and 1 m wide wave tank at MARINTEK, Trondheim, Norway. A hydraulic-drive
double flap wave maker was installed at one end of the tank and at the other end waves are
absorbed by a sloping beach. The still water depth is 10 m in the range 0-80 m from the
wave maker and 5 m elsewhere. The wave elevation was measured at 6 different locations
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4.2 Bichromatic wave train experiment

Figure 4.2: Comparison for solitary wave simulation between FN-VBM (blue, dash) and HOS up
to 7th order (red, solid) at t = 20 s.

: W1 at x = 9.3 m, W2 at x = 40 m, W3 at x = 80 m, W4 at x = 120 m, W5 at x = 160
m, and W6 at x = 200 m. The layout of the experimental setup is shown in Figure 4.4
. Further details of the experiment are reported in Stansberg (1998). The specification of
these two experiments is described in table below. In this project report, we only focus on
Test 60.

Table 4.2: Wave properties for bichromatic wave train experiment

Test Wave periods Wave heights
T1 [s] T2 [s] H1 [m] H2 [m]

60 1.90 2.10 0.16 0.16
61 0.95 1.05 0.04 0.04
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Figure 4.3: Simulation results of the HOS third order (red, solid) and the Maximum Temporal Crest
(black, solid) at t = 10, 25, 40 s.
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Figure 4.4: Sketch of the wave tank with the location of wave gauges.
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4.2 Bichromatic wave train experiment

The nondimensional depth kh0 = 10 for the first 80 m and kh0 = 5 for the rest of the
wave tank. Here we present the HOS simulation with kh0 = 10 for the whole domain. As
discussed in Trulsen and Stansberg (2001), the effect of the jump at 80 m is not important.
The measurement at first wave gauge W1 is used as an influx signal for the simulation.

Neither HOS first order nor HOS second order predict the wave elevation correctly.
The simulation result for HOS first and second order are given in Appendix, meanwhile
for the HOS third order is shown in Figure 4.5, 4.6, 4.7, 4.8, and 4.9. As expected by
linear theory, there is no energy transfer between free modes and it retain the shape of
bichromatic wave group. For the second order effect, it can be sum or difference of the
frequency. Suppose the bichromatic wave travel with frequency ω1 and ω2 with ω2 > ω1

and denote ∆ω = ω2 − ω1. The higher order modes 2ω1 and 2ω2 are generated by sum
frequency of ω1 and ω2, respectively. This modes is called the bound waves. These 2ω1

mode can interact with ω2 mode and generate the first left side band mode, i.e. the mode
with frequency ω1−∆ω. In a similar way, the first right band side mode (ω2+∆ω mode) is
generated by 2ω2 mode and ω1 mode. In the HOS second order simulation, it is observed
that the side band modes are generated. However, the energy transfer is very weak because
it’s generated from the higher order mode 2ω1 and 2ω2 which have small energy. For this
experiment, third order effects need to be take into account since the side band modes is
generated from the free modes ω1 and ω2 directly. For instance, the first right side band
frequency is generated by ω2 + ∆ω = ω2 + ω2 − ω1. From this, the side band modes are
grow automatically from the free modes ω1 and ω2 contribution. Therefore the third order
effects is important in this experiment.
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Figure 4.5: Comparison of wave elevation (upper plot) and amplitude spectrum (lower plot)
for bichromatic wave train experiment between HOS third order (red, dash) and measurement
(blue,solid) at position W2 (x = 40 m).
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Figure 4.6: Same as Figure 4.5. Now at position W3 (x = 80 m).
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Figure 4.7: Same as Figure 4.5. Now at position W4 (x = 120 m).
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Figure 4.8: Same as Figure 4.5. Now at position W5 (x = 160 m).
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Figure 4.9: Same as Figure 4.5. Now at position W6 (x = 200 m).

In Table 4.3, we present the correlation and variance quotient for 300 s simulation at
different measurement locations. We observe that simulation of HOS third order gives
correlation over than 0.85 and variance quotient error less than 0.03 which show energy
conservation property of the hamiltonian wave model.
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Table 4.3: Correlation and Variance-quotient for HOS third order simulation in bichromatic wave
experiment.

Position Correlation Variance-quotient
W2 0.854 0.996
W3 0.987 0.972
W4 0.981 0.993
W5 0.926 0.995
W6 0.893 0.982

4.3 Focusing wave group experiment
The focusing wave group experiment (MARIN 101013) was conducted in 200 m long
wave tank with 1 m water depth at Maritime Research Institute of Netherlands (MARIN),
Wageningen, Netherlands. The experiment is designed to have a focused wave at certain
position by generating first short period small amplitude waves, followed by longer and
higher waves. The wave was generated by flap wave maker at position x = 0, and was
measured at x0 = 10 m and x1 = 50 m. The experiment was designed to have a focused
wave at position x = 50 m. The measured elevation at x0 = 10 m is used as influx
signal for the simulation. The influx signal and the amplitude spectrum are shown in
Figure 4.10. The measurement of the elevation at x1 is the only available data around the
focusing position. As seen in Figure 4.10, this dispersive focusing experiment requires a
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Figure 4.10: The influx signal (upper plot) and the amplitude spectrum (lower plot) of the focusing
wave group experiment

broad spectrum, therefore the dispersion of the wave model plays an important role in this
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4.3 Focusing wave group experiment

experiment. In the experiment, some breaking wave (white capping) was observed just
downstream of the focusing point which means the nonlinearity is also important.
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Figure 4.11: Comparison of wave elevation (upper plot) and amplitude spectrum (lower plot) for
focusing wave group experiment between HOS first order (red, dash) and measurement (blue, solid)
at x = 50 m.

The simulation result for HOS first order is shown in Figure 4.11. As expected, there is
no energy transfer between fourier mode as seen in the amplitude spectrum plot. In reality,
the spectrum will deform from the initial spectrum and the energy in spectrum tail will be
increased due to nonlinear interaction. In Figure 4.12, the deformation in spectrum tail
is well predicted by HOS third order simulation . However, the wave propagates too fast
since the correct profile is observed 0.2 m further as shown in Figure A.11 in Appendix.
The difference between linear and nonlinear simulation can be observed in Figure 4.13.
The linear simulation predict the focused point exactly at x = 50 m as initial design of the
experiment. Due to the nonlinearity, the focused point is shifted more than 1 m and the
resulting wave profile for nonlinear simulation at focused point is steeper than the linear
simulation.
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Figure 4.12: Comparison of wave elevation (upper plot) and amplitude spectrum (lower plot) for
focusing wave group experiment between HOS third order (red, dash) and measurement (blue, solid)
at x = 50 m.
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Figure 4.13: Spatial wave profiles for HOS first order (blue, solid), and for HOS third order (red,
solid) at time t = 94.2 s and the Maximum Temporal Amplitudes for HOS first order (blue, dash) and
HOS third order (red, dash).

4.4 Regular and irregular waves over a submerged bar
Wave propagation over a submerged bar is a suitable test to check the nonlinearity and
dispersion of a wave model. On the front slope of a bar, higher harmonic bound waves are
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4.4 Regular and irregular waves over a submerged bar

generated and the waves become higher and steeper, i.e. the wavelength become shorter.
The bound waves become free on top of the bar while on the back slope the wave energy
is transferred back to lower harmonics.

Beji and Battjes (1993) conducted a series of experiments concerning the propagation
of regular and irregular waves over a submerged bar with non-breaking or breaking waves.
In this thesis, only non-breaking case for both regular and irregular waves is considered.
The bathymetry is shown in Figure 4.14 which has 1:20 front slope followed by 2 m flat
bottom and a 1:10 back slope. The water depth varies from 0.4 m in the deeper region
to 0.1 m on top of the bar. In the experiment the wave elevation is measured at seven
positions: W1 = 5.7 m, W2 = 10.5 m, W3 = 12.5 m, W4 = 13.5 m, W5 = 14.5 m,
W6 = 15.7 m, W7 = 17.3 m. The regular (harmonic) case has wave period T = 2 s
and wave height H = 2cm. Meanwhile the irregular case has a JONSWAP-type spectrum
with peak period Tp = 2 s and significant wave height Hs = 1.8 cm.
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Figure 4.14: Bottom profile of the experiment of Beji and Battjes (1993).

To perform simulations for these cases, second order HOS method with 211 grid points
are used for both original and hybrid spatial spectral method. Evolution of surface eleva-
tion from the simulation using hybrid spatial spectral method are shown in Figure 4.15 for
regular waves and in Appendix for irregular waves. In Table 4.4 and 4.5, statistical prop-
erties (correlation and variance quotient) and relative computation time (Crel) are given
for irregular wave case. The relative computation time is defined as the cpu-time divided
by the total time of the simulation. The simulations were performed on a laptop with CPU
i7, 2.50 GHz processor with 16 GB memory. The original method with third order non-
linearity for the bottom (Mb=3) give poorer result in correlation compared to the other
method. However, it can be improved by increasing the nonlinearity order, in this case
Mb=5 is used. On the other hand, the computational time is more expensive by increasing
the nonlinear order for the bottom in original method. The hybrid spatial spectral method
gives better computational time due to efficiency and consistency in solving the dynamic
equation only at the surface. Overall, the second order simulation give satisfactory results
compared to experimental data.
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Table 4.4: Statistical properties and computational relative time for irregular waves over submerged
bar simulation using Original method with Mb = 3 and Mb = 5.

Original Method (Mb=3) Original Method (Mb=5)
Crel 0.31 0.75

Position Correlation Variance-Quotient Correlation Variance-Quotient
W2 0.976 1.001 0.979 1.005
W3 0.943 0.995 0.967 1.012
W4 0.923 0.986 0.972 1.009
W5 0.833 1.027 0.950 1.033
W6 0.853 1.038 0.961 1.023
W7 0.860 1.043 0.963 1.029

Table 4.5: Statistical properties and computational relative time for irregular waves over submerged
bar simulation using Hybrid spatial spectral method.

Hybrid Spatial Spectral Method
Crel 0.18

Position Correlation Variance-Quotient
W2 0.960 1.006
W3 0.953 1.024
W4 0.966 1.029
W5 0.922 1.065
W6 0.950 1.048
W7 0.952 1.067
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4.5 Irregular waves over a sloping bottom

Figure 4.15: Comparison for harmonic wave over a submerged bar experiment between second
order HOS method with hybrid spatial spectral method (red, dashed) and measurement (blue, solid).

4.5 Irregular waves over a sloping bottom

The propagation of waves from deep water towards shallow water may enhance the oc-
curence of rogue waves. Sergeeva et al. (2011) used a Korteweg-de Vries (KdV) model to
observe that there is a local maximum of kurtosis near the shallower edge of slope. In their
simulation, the waves propagate from kh = 0.44 to kh = 0.3. Zeng and Trulsen (2012)
studied in deeper water depth by utilizing the Nonlinear schrodinger equation (NLS). It is
found that the skewness and kurtosis are decreasing in the shallower region with assump-
tion the wavelength is shorter than the slope length. In Trulsen et al. (2012), they reported
a significant increase and local maximum in skewness, kurtosis, and rogue wave proba-
bility from laboratory experiment. Gramstad et al. (2013) use standard boussinesq model
with improved dispersion to study the effect of slope length, the shallower water depth and
also the effect wave steepness.

Either KdV model or standard boussinesq model is only good for shallow water but
not for deep water. On the other hand, the NLS model can handle the wave propagation
in deep water but not in shallow water region. In this section, the HOS method is utilized
to handle the propagation from deeper water towards shallow water. Third order HOS
method with hybrid spatial spectral method is used for all the simulations. In the first
subsection, comparison with laboratory experiments are performed to see if HOS method
can reproduce the evolution of skewness and kurtosis over a sloping bottom. In the last
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subsection, the bottom profile is modified to have different steepness of bottom and also
different range of depth ratio between deep and shallow water.

4.5.1 Comparison with laboratory experiments
The experiments were conducted at MARIN in The Netherlands for a benchmark work-
shop on numerical wave modeling (see Bunnik (2010)). Irregular waves with spectrum of
JONSWAP-type and random phases were generated to propagate over a 1:20 slope from
water of constant depth 0.6 m to 0.3 m. The distance from the wave generator to the start of
the slope was 143.41 m and the slope ended 6 m further. The wave gauges were installed
at distances 39.15 m, 78.80 m, 102.12 m, 143.41 m, 146.43 m, 149.41 m, 157.74 m, and
172.89 m from wave maker. In this experiment, three cases of long crested irregular waves
were considered as shown in Table 4.6. The statistical properties of this experiment is
reported by Trulsen et al. (2012)

Table 4.6: Parameters of the wave-fields in MARIN experiment

Case Hs [m] Tp [s] (kph)deep (kph)shallow
1 0.06 1.273 1.6 0.99
2 0.06 1.697 1.1 0.70
3 0.06 2.121 0.81 0.54

For each simulation, the statistical properties (kurtosis and skewness) are calculated
from time series of length 200Tp after all wave components have propagated through the
whole domain. The convergence of the statistical quantities with respect to number of runs
is investigated and it is observed that using 100 random runs in each case is sufficient to
get an accurate result. An example of the convergence of these statistical quantities are
shown in Figure 4.16.

Figures 4.17, 4.18, and 4.19 show the comparison of kurtosis and skewness for case
1, 2, and 3 between the numerical simulation and the experiments. The local maxima of
kurtosis and skewness close to the end of the slope are reproduced in the numerical simu-
lations. For all three cases, simulation result show a good agreement with the experiments.

4.5.2 Effects of the bottom slope and water depth
In this subsection, only one specific type of irregular wave propagating over a set of differ-
ent bathymetries is considered. A JONSWAP-type spectrum with significant wave height
Hs = 0.06 m, peak period Tp = 1.697 s is chosen. The bottom slope and different water
depth in deeper and shallower water region are varied as shown in Table 4.7. The edge of
slope in shallower region is fixed at position x = 149.41 m.

For all cases, the numerical simulations are carried out by using HOS method third
order with hybrid spatial spectral method in a Monte Carlo approach, where the simula-
tions are performed by different incoming wave field, i.e. it is generated from the same
spectrum but with different random phases each time.

The skewness, kurtosis and rogue wave probability are calculated for each case. The
rogue wave probability is estimated as the probability that wave height H is larger than
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Figure 4.16: Convergence of the ensemble-averaged kurtosis and skewness with respecto to number
of runs in the ensemble for case 2.

Table 4.7: Parameters for irregular wave propagation over a sloping bottom simulation. Subscript 1
indicate deeper region, and subscript 2 indicate shallower region.

Case Slope length[m] h1[m] h2[m] kph1 kph2 Slope
I 3 0.6 0.3 1.065 0.696 1/10
II 15 0.6 0.3 1.065 0.696 1/50
III 30 0.6 0.3 1.065 0.696 1/100
IV 45 0.6 0.3 1.065 0.696 1/150
V 45 0.9 0.3 1.415 0.696 1/75
VI 45 1.2 0.3 1.776 0.696 1/50
VII 45 1.8 0.3 2.546 0.696 1/30
VIII 45 2.4 0.3 3.362 0.696 1/21.4

two times significant wave height Hs where Hs = 4σ and σ is the standard deviation
of the surface elevation. The wave height H is the vertical distance between upper and
lower envelopes, and calculated as H(t) = 2

√
η(t)2 + η̃(t)2, where η̃(t) is the Hilbert

transform of η(t).
For Case I-IV, the slope length is modified and it is observed in Figure 4.20 and 4.22

that the kurtosis, skewness, and rogue wave probability has local maxima at the end of
the slope and it decrease after some distance in shallower region. For large slope length,
the local maxima of the statistical quantities disappear as shown in the results of Case IV.
For Case V-VIII, it is shown that local maxima of kurtosis and skewness can be observed
even with sufficiently large slope length as shown in Figure 4.21. Furthermore, the rogue
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Figure 4.17: Kurtosis and skewness for the experimental case 1. Black circles: experimental results
reported by Trulsen et al. (2012), solid line: numerical simulations.
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Figure 4.18: Same as Figure 4.17 for experimental case 2.
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Figure 4.19: Same as Figure 4.17 for experimental case 3.

wave probability of these cases are not that different in terms of magnitude even though
the probability is increasing in the slope region (see Figure 4.23).

From these results, it is confirmed that the slope length plays an important role when
the water depth is sufficiently small. For propagation from deeper water region towards
shallow water, the steepness of the bottom is important for the behaviour of kurtosis and
skewness.
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Figure 4.20: Kurtosis and skewness for different slope length cases, i.e. Case I-IV.
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Figure 4.21: Kurtosis and skewness for different water depth cases, i.e. Case V-VIII.
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Figure 4.22: Probability of rogue waves for case I-IV.
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Figure 4.23: Probability of rogue waves for case V-VIII.
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Chapter 5
Calculation of Water Particle
Kinematics

This chapter describes the calculation of water particle kinematics based on the informa-
tion at the surface. For Boussinesq-type of equation , the surface elevation η and velocity
potential φ are calculated at every integration time step. However, the water particle kine-
matics in the interior domain are needed in many practical applications such as coupling
with Computational Fluid Dynamics (CFD) code to deal with breaking waves for instance.
The accurate prediction of these kinematics is essential since it is related to force calcula-
tion and directly connected with the design of offshore structures. Three different methods
will be discussed as follow.

5.1 H and H2 operator
Two new operators, referred as the H and H2 operators were introduced in Bateman et al.
(2003). The H operator improves the method proposed by Fenton and Rienecker (1982)
which transforms any kinematic quantity at the surface to still water level z = 0. However
the H operator accuracy is related to the convergence of Taylor series therefore the errors
arise during the calculation of the kinematics profile beneath the crest of an extreme wave.
To remedy this problem, a second operator (H2 operator) allows the kinematic values on
any surface to be transformed onto a second arbitrary surface. It leads the transformation
from the surface to z = 0 in several small steps. By using sufficiently number of steps, the
convergence of the operator is maintained. Brief review of these two operators is given in
the following.

Assume an arbitrary kinematic quantity ξ can be represented in Fourier space as follow

ξ(x, z, t) =

∫
ξ̂(k)

cosh (k(z + h))

cosh (kh)
ei(kx−ωt)dk. (5.1)

Equation (5.1) is suitable for kinematic quantity whose profile with depth can be repre-
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sented by summation of cosh terms such as velocity potential Φ or horizontal velocity
u = Φx. For an alternative conjugate variable such as vertical velocity w = Φz , the cosh
terms in Equation (5.1) should be replaced by sinh.

For H operator, completely analogous with HOS method approach as in Equation
(2.12), the kinematic quantity ξ is transformed to z = 0 as follow

ξ(1)(x, 0, t) = ξ(x, η, t)

ξ(m)(x, 0, t) = −
m−1∑
n=1

ηn

n!

∂nξ(m−n)

∂zn
(x, 0, t), m ≥ 2.

(5.2)

For H2 operator, the kinematic quantity is calculated on a second arbitrary surface
η2 = cη with c decreasing from 1 to 0. Note that the H2 operator is equivalent to H
operator when η2 = η. The kinematic quantity at z = η2 is expanded by using taylor
expansion as

ξ(m)(x, z = η2, t) =

m−1∑
n=0

ηn2
n!

∂nξ(m−n)

∂zn
(x, 0, t). (5.3)

5.2 Variational Boussinesq Model
As discussed in Chapter 2.1.3, the velocity potential Φ can be expressed explicitly as

Φ (x, z, t) = φ (x, t) + ΣmFm (z, η, h)ψm (x, t) = φ+ F ·Ψ

whereF and Ψ are vector functions. The vertical profilesFm have to be chosen in advance.
The normalized hyperbolic-cosine vertical profile in Equation is used in this thesis. The
parameters κm are optimized based on the given wave spectrum. While the functions ψm
are determined by minimizing the kinetic energy with respect to ψm in order to satisfy the
laplace equation.

The horizontal and vertical velocity for VBM are given as follow

u =
∂Φ

∂x
=
∂φ

∂x
+
∂F

∂x
·Ψ + F · ∂Ψ

∂x

w =
∂Φ

∂z
=
∂F

∂z
·Ψ

(5.4)

Other kinematic quantities such as the acceleration or the dynamic pressure can be cal-
culated directly since the velocity potential Φ is expressed explicitly. The calculation of
kinematics is relatively easy with this method. However, the function Ψ needs to be cal-
culated every integration time step.

5.3 Nonlinear Extension of Airy Theory
The ansatz of the nonlinear extension of Airy potential to calculate water particle kine-
matics was introduced in Kurnia and van Groesen (2017). The explicit expression of the
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velocity potential is given as

Φ(x, z, t) =

∫
φ̂(k)

cosh k(z + h)

cosh k(η + h)
eikxdk. (5.5)

The horizontal and vertical velocity are given by the expressions below

u =
∂Φ

∂x
=

∫
ikφ̂(k, t)

cosh k(z + h)

cosh k(η + h)
eikxdk +

∂(η + h)

∂x
· Γ

w =
∂Φ

∂z
=

∫
φ̂(k, t)

k sinh k(z + h)

cosh k(η + h)
eikxdk

(5.6)

with

Γ =

∫
φ̂(k, t)

cosh k(z + h)

cosh k(η + h)
[−k tanh k(η + h)] eikxdk.

The condition that velocity potential at surface Φ(z = η) is equal to surface potential φ is
fulfilled in Equation (5.5). Different from VBM, this approach doesn’t have any functions
that need to be calculated in each time step. Consequently, it is dubious to claim the
ansatz fulfill the laplace condition for nonlinear waves. This method only valid for waves
with moderate slope and small amplitude since the ansatz use quasi homogeneous way to
express the velocity potential Φ explicitly. A counter example for this method to calculate
the kinematic on high amplitude wave will be shown in the next section.

5.4 Validation
Kinematic calculation on solitary wave with high amplitude is chosen as a test case in
this section. Dutykh and Clamond (2014) give the solitary wave solutions for free surface
Euler equations and their solutions will be referred as exact solution in this thesis. The
solitary wave has amplitude 0.6 m and water depth 1 m.

The kinematic calculation results at still water level z = 0 for the first method which
is H and H2 operator with third order HOS method can be seen in Figure 5.1 and 5.2.
Inaccuracy for H operator is expected since the solitary wave has high amplitude. This
can be improved by using H2 operator with increasing number of steps. It is clearly that
H2 operator give a significant improvement from H operator by only using two number
of steps. Convergence analysis of horizontal and vertical velocity calculation has been
carried out in terms of number of steps and different nonlinearity order, as shown in Figure
5.3 and 5.4. These figures show that the kinematic calculation with H2 operator converge
with approximately less than ten steps and also the error is reduced by increasing nonlin-
earity order. Velocity profiles for solitary wave by using H2 operator method are shown in
Figure 5.5 and 5.6

For the kinematic calculation with VBM, the horizontal and vertical velocity at z = 0
are in a good agreement with the exact solution as shown in Figure 5.7. The root mean
square errors of horizontal and vertical velocity are 1.3×10−4 and 5.2×10−4 respectively.

For nonlinear extension of airy theory, comparison of vertical velocity at surface with
exact solution is given in Figure 5.8. From this figure, it is enough to observe that this
method is inaccurate for high amplitude waves. The vertical velocity at the surface can be
obtained directly from HOS method which means this is the easiest case.
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Figure 5.1: Comparison of horizontal velocity at z = 0 betwen H and H2 operator with exact
solution. The H2 operator is performed by two steps.
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Figure 5.2: Same as Figure 5.1, now for vertical velocity
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Figure 5.4: Same as Figure 5.3, now for vertical velocity.
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Figure 5.5: Horizontal velocity profile of a solitary wave by using H2 operator.

Figure 5.6: Vertical velocity profile of a solitary wave by using H2 operator.
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Chapter 6
Conclusion and recommendations

6.1 Conclusion
The important aspects in wave modeling are the frequency dispersion and the nonlinearity.
The frequency dispersion is the relation that describe the speed of the wave propagation at
different wave length. In this aspect, the nonlinearity describe the phenomenon that there
is energy exchange between different wave modes that can lead to steeper waves.

Two wave models based on Hamiltonian formulation are considered and implemented
in different numerical methods. The High Order Spectral (HOS) method is valid for any
uniform depth, and the order of nonlinearity can be increased to deal with high steep
waves. The pseudo spectral implementation on HOS method give an efficient computa-
tional time and accurate dispersion which is essential in predict the wave propagation at
sea. For comparison, the Variational Boussinesq Model (VBM) which is included in soft-
ware package HAWASSI is utilized to study the performance of HOS method. The VBM
has parameters that can be tuned to approximate the dispersion based on kinetic energy
minimization. Furthermore, the VBM has a fully nonlinear model and it is implemented
in finite element method for both 1D and 2D in the software HAWASSI-VBM.

In order to be able to study the wave model from wave tank experiment, wave genera-
tion in wave model is needed to see the evolution of the waves. As in HAWASSI software,
embedded wave generation is adapted and implemented in HOS method. Furthermore,
the HOS method is extended to handle varying bottom successfully with two different
methods.

A solitary wave with high nonlinearity (a/h0 = 0.7) is simulated with different or-
der nonlinearity in HOS method. The HOS method simulation results converge to fully
nonlinear VBM which show the importance of dispersion and nonlinearity to maintain the
shape of the solitary wave. Subsequently, this case also proof that the Hamiltonian wave
model possess the property of energy conservation.

The bichromatic wave train experiment is chosen to study the nonlinear interaction
between modes. In the propagation of bichromatic waves, the side frequency modes are
generated due to third order effect. As expected, the HOS method first and second order
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are fail to predict the generation of side frequency modes. In this case, HOS third order
give a satisfactory results compared to the experiment data.

A focusing wave group experiment is chosen to study the nonlinear interaction in broad
band spectrum. This experiment was designed to be focused at a certain position based
on linear theory. However, in reality the nonlinearity plays an important role when deal-
ing with the high amplitude waves. In this experiment, some white capping was observed
about the focusing point which means this focusing wave experiment has strong nonlin-
earity. The HOS first order simulation predicts the focused point exactly the same with the
initial design but the spectrum from the measurement data show that the initial spectrum
is deformed in tail part and the linear simulation fail to predict the energy transfer to the
spectrum tail. Subsequently, the HOS third order give a better results and produce higher
and steeper focused wave compared to the linear simulation.

For non-uniform bathymetry, HOS method is tested against wave propagation over a
submerged bar. Both original and hybrid spatial spectral method work very well. Appar-
ently, the hybrid spatial spectral method has a huge advantage in terms of computational
time. However, the FIO interpolation should be done carefully to get accurate result.

The study in irregular waves propagation from deep to shallow water over a sloping
bottom has been done with comparison against laboratory experiment and several numer-
ical cases. In this case, the validation with experimental data show a good agreement in
terms of statistical quantities (kurtosis and skewness). Furthermore, it is found that the bot-
tom slope is an important parameter for the statistical quantities including the probability
of rogue waves.

Finally, the calculation of water particle kinematics are described and validated against
exact solution. This calculation allows the HOS method to be coupled with other CFD
codes to handle wave-body interaction or other difficult cases such as breaking waves.

6.2 Recommendations
The following problems are recommended for future research related to the work of this
thesis.

• It is useful to study further the interpolation technique to calculate the Fourier inte-
gral operator (FIO) in hybrid spatial spectral method.

• The present HOS method is implemented for long crested waves only. It is interest-
ing to extend the HOS method into 3D framework to study the occurence of rogue
waves over bathymetry with short-crest waves.
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Appendix

A Supplementary of simulation results

HOS first order simulation on bichromatic wave group experiment
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Figure A.1: Comparison of wave elevation (upper plot) and amplitude spectrum (lower plot) for
bichromatic wave train experiment between HOS first order (red, dash) and measurement (blue,solid)
at position W2 (x = 40 m).
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Figure A.2: Same as Figure A.1. Now at position W3 (x = 80 m).
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Figure A.3: Same as Figure A.1. Now at position W4 (x = 120 m).
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Figure A.4: Same as Figure A.1. Now at position W5 (x = 160 m).
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Figure A.5: Same as Figure A.1. Now at position W6 (x = 200 m).
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HOS second order simulation on bichromatic wave group experiment
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Figure A.6: Comparison of wave elevation (upper plot) and amplitude spectrum (lower plot)
for bichromatic wave train experiment between HOS second order (red, dash) and measurement
(blue,solid) at position W2 (x = 40 m).
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Figure A.7: Same as Figure A.6. Now at position W3 (x = 80 m).
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Figure A.8: Same as Figure A.6. Now at position W4 (x = 120 m).
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Figure A.9: Same as Figure A.6. Now at position W5 (x = 160 m).
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Figure A.10: Same as Figure A.6. Now at position W6 (x = 200 m).
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Focusing wave group experiment

Figure A.11: Comparison of wave elevation for focusing wave group experiment between HOS 3rd
order (red, dash) at x = 50.2 m and measurement (blue, solid) at x = 50 m.
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HOS second order simulation on irregular waves over a submerged
bar experiment
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Figure A.12: Comparison of wave elevation for irregular waves over a submerged bar experiment
between HOS second order (red, dash) and measurement (blue, solid) at position W2.
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Figure A.13: Same as Figure A.12, now at position W3.
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Figure A.14: Same as Figure A.12, now at position W4.
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Figure A.15: Same as Figure A.12, now at position W5.
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Figure A.16: Same as Figure A.12, now at position W6.
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Figure A.17: Same as Figure A.12, now at position W7.
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