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Marine bridges (i.e. floating bridges, submerged tunnels and more traditional bridge types 

with floating foundations) are relevant for crossing of very deep and wide lakes or fjord 

systems. In order to compute the static and dynamic response of these bridges, the joint 

properties of the entire hydro-elastic system need to be accounted for. The objective of the 

present project is to outline methods for response analysis and illustrate the calculation 

procedure for a particular bridge concept. 

 

The following subjects are to be addressed as part of this work: 

 

1. Review of existing marine bridges and future plans for such bridges. Similarities and 

differences between the different bridge types are to be highlighted. Loads acting on such 

bridges are described together with associated structural models. Methods for both static and 

dynamic response analysis are elaborated and relevant numerical algorithms are described.  

2. A global model of a particular bridge (Submerged tunnel for Digernessundet) is to be 

established in SESAM. Static response analyses are performed. Sensitivity studies of bending 

moment and axial forces with respect to current direction and profile are performed.  

3. Concrete stresses for the most critical sections are to be controlled. The influence of post-

tension cables on the stresses is to be investigated. 

4. Natural frequencies (and mode shapes) are to be computed.  

5. Dynamic response analysis is to be performed for the case of swell sea.  

6. Parametric studies are performed with respect to curve height. Static response analyses with 

different curve heights are performed, and associated natural frequencies are investigated. The 

objective is to find the curve height where the first horisontal mode shape consists of two 

halfwaves.   
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Abstract

The relevance of marine bridges have increased during the past years due to the plans
of renewing route E39. Different types of marine bridges have been described in this
thesis, with focus on the concepts proposed for the fjord-crossings along route E39.
The existing bridge over the Digernesund does not meet the new requirements for
the new E39, and a submerged floating tunnel (SFT) has therefore been proposed as a
replacement. The proposed SFT, given in the technical report provided by dr. Techn.
Olav Olsen, has been investigated in this thesis with respect to its structural behaviour.

The SFT proposed by dr. Techn. Olav Olsen is a reinforced concrete structure with
post-tension cables. The cross-section used in this thesis is rectangular, and the bridge
has one single span including both driving directions. There are no intermediate sup-
ports, meaning the bridge is only supported by buoyancy and the connections to rocks
tunnels at the two ends. The model and structural analysis of the SFT were estab-
lished and conducted in the Sesam package. The bridge was modeled as an assemble
of straight 2-node beam elements creating an arc. The influence of reinforcements and
post-tension cables were accounted for in the bending stiffness of the structure, in the
stress calculations and in the eigenvalue analysis. The average increase of moments of
inertia is 3.89% for Iz and 3.24% for Iy. The axial compression from the PT-cables was
calculated 5.75% of the Euler buckling load. Thus, global buckling was not considered
a problem for the base case configuration of the bridge.

Buoyancy was found as the dominating load in the vertical direction for the base case.
The results from static analysis showed high reaction forces to be transferred to the
abutments and high bending moments. The stress calculations showed that the max-
imal total compressive stresses were below the allowable limit. However, the tensile
stresses from the characteristic loads exceeds the tensile strength of concrete. Thus, the
weight should be increased to balance the buoyancy. A full calculation of the amount
of reinforcements should be carried out and its contribution included in the weight
calculations. An alternative could be to increase the ballast chamber fill percentage to
increase the weight. The transverse reactions are dependent on the current direction
and profile. Different directions and profiles were investigated with respect to static
response. The cases of applying uniformly distributed current loads to the full length
of the bridge, in either the positive or negative transverse direction, gave the highest
bending moments and axial forces in the structure. It was found that the contribu-
tions in stress from axial forces and bending moments due to current loads are small
compared to the contributions from PT-cables and the net vertical forces.

Eigenvalue analyses were conducted using Sestra and Abaqus, and the results were
compared to results from analytical calculations. The resulting mode shapes were sim-
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ilar to those given in the technical report established by dr. Techn. Olav Olsen. The
eigenperiods calculated by Sestra and Abaqus deviates from the calculations by the
NPRA by about 10-20%. It is assumed that this deviations can be a result of differ-
ences in modeling and assumptions for the eigenvalue analysis. The eigenfrequency
for the first mode is multiplied by a reduction factor to account for the influence of
the compression force from the PT-cables. The first eigenperiod for the base case was
thus calculated 9.14s. The second eigenperiod, corresponding to a horizontal mode
with one half-wave, was calculated 5.16s by Sestra. The third and forth eigenperiod,
corresponding to vertical and horizontal mode with two half-waves respectively, were
calculated 3.34s and 3.00s by Sestra. For increasing mode number, the eigenfrequencies
were closely spaced.

A parameter study of the curve height in the transverse direction were also carried
out. Increasing curve height influences the static response, the eigenfrequencies and
the mode shapes. The main findings were that the transverse loading is carried by
axial forces and bending moments, as expected. Increasing the curve height results
in reduced bending moments due to transverse loads. However, it also results in in-
creased torsion moments due to the translation of centre of gravity along the y-axis. For
eigenvalue analysis, the first horizontal mode is of interest when introducing a curve
height. The result is reduced eigenfrequency for increasing curve height. At one curve
height, it was expected that the first and second horizontal mode shape changes place.
The curve height corresponding to the changing point was calculated 49m analytically,
53m in Sestra and 56m in Abaqus.

Swell sea was the dominating wave type at the depth of the SFT. The submergence of
the tunnel provides shelter from the wave loads as the wave action at the depth of the
SFT is 35.8% of the wave action at the free surface. Wave loads due to swell sea were
calculated using deterministic wave load calculation in Wajac. The dynamic response
was calculated using direct time domain analysis in Sestra. However, the dynamic
response due to swell waves was found to be of second importance compared to the
response from static loads. Displacements due to the swell waves investigated in this
thesis were found negligible compared to the results from static analysis. The bending
moments due to swell waves were calculated 6% of the bending moment from net
static loads. To ensure conservatism in stress calculations, the bending moments from
wave loads should be included.



Sammendrag

Interessen for marine broer har økt de siste årene som et resultat av planene om en
fornyet E39. Ulike typer marine broer har blitt presentert i denne oppgaven, med fokus
på et konsept foreslått for en fjord-krysning langs E39. Den eksisterende broen over Di-
gernessundet møter ikke dagens krav til nye E39 og en rørbro har derfor blitt foreslått
som erstatning. Den foreslåtte broen, gitt i teknisk raport av dr. Techn. Olav Olsen, har
blitt undersøkt i denne oppgaven med fokus på konstruksjonens oppførsel.

Rørbroen foreslått av dr. Techn Olav Olsen er en armert betongkonstruksjon med et-
teroppspenning. Tverrsnittet brukt i denne oppgaven er rektangulært. Broen har ett
enkelt spenn som inneholder begge kjøreretninger. Den har ingen mellomliggende
støtter, og bæres av oppdrift og endeforbindelser til fjelltunneller. Elementmodell og
strukturanalyse av rørbroen har blitt utført i programvaren Sesam pakken. Broen ble
modelert som en kurve, sammensatt av rette 2-nodede bjelkeelementer. Innflytelse
av armering og spennkabler ble tatt hensyn til i bøyestivheten til broen, i spennings-
beregninger og i egenverdianalysen. Gjennomsnittlig økning av treghetsmomentene
ble beregnet til 3.89% for Iz og 3.24% for Iy. Trykk-kraften fra spennkablene ble bereg-
net til 5.75% av Euler knekklasten. Global knekking ble derfor ikke sett på som et
problem for konseptet brukt i denne oppgaven.

Oppdrift ble observert som den dominerende lasten i vertikal retning for konseptet
brukt i oppgaven. Resultatene fra statisk analyse viste høye reaksjonskrefter og bøye-
momenter. Spenningsberegningene viste at de maksimale trykk-spenningene i be-
tongen var innenfor tillatte verdier, men strekkspenningene fra karakterisiske laster
overgikk karakteristisk strekkfasthet til betongen. Det er derfor viktig at vekten økes
for å balansere oppdriften. Beregning av nødvendig armering og spennkabler må utar-
beides og inkluderes i vektberegningen. Alternativt kan også prosent av fyllmasser
i ballastkammerne økes. Tverr-reaksjonene er avhengig av strømretning og profil.
Forskjellige strømretninger og profiler ble derfor undersøkt mot statisk respons. Jevnt
fordelt strømlast påsatt over hele lengden av broen ga høyeste aksialkrefter og bøye-
momenter i konstruksjonen. Spenningsbidragene fra strøm var lave sammenliknet
med bidragene fra spennkablene og netto vertikale krefter.

Egenverdianalysen ble utført ved bruk av programmvarene Sestra og Abaqus. Re-
sultatene ble sammenlignet med resultater fra analytiske beregningsmodeller. Resul-
terende svingeformer var nærliggende svingeformene gitt i teknisk rapport. Egen-
frekvensen for første svingeform ble multiplisert med en reduksjonsfaktor for å ta
hensyn til trykk-kraft fra spennkablene. Den første egenperioden ble dermed bereg-
net til 9.14s. Den andre egenperioden, tilsvarende første horisontal svingeform, ble
beregnet til 5.16s av Sestra. Tredje og fjerde, tilsvarende andre vertikale og horisontale
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svingeform, ble beregnet til 3.34s og 3.00s av Sestra. For økende moder viste det seg
at egenfrekvensene var nærliggende hverandre. Egenperiodene beregnet fra Sestra og
Abaqus avvek fra beregningene til Statens vegvesen og dr. techn. Olav Olsen med
10-20%. Det ble antatt at disse avvikene skyldes forskjeller i modellering og antakelser
for egenverdi-analysen.

Parameterstudie av kurvehøyden i tverr-retning ble også utført. Endring i kurvehøyde
påvirker blant annet statisk respons, egenfrekvenser og svingeformer. Hovedfunnene
var at tverrlast bæres både av aksiale krefter og bøyemomenter, som forventet. Øk-
ende kurvehøyde resulterte i reduserte bøyemomenter på grunn av tverrlaster, men
økt torsjonsmoment. Sistenevnte antas å skyldes forskyvning av tyngdepunktet langs
tverr-retningen når kurvehøyden øker. For egenverdianalysen var første horisontale
svingeform av spesiell interesse ved introduksjon av kurvehøyde. Resultatet var re-
dusert egenfrekvens for økende kurvehøyde. Ved en bestemt kurvehøyde ble det an-
tatt at første og andre horisontale svingeform ville skifte plass. Kurvehøyden som
tilsvarer dette punktet ble beregnet til 49m analytisk, 53m av Sestra og 56m av Abaqus.

Dønninger ble funnet som den dominerende bølgetypen på dybden av rørboen. Ned-
dykkingen av broen gir beskyttelse mot bølgelaster, da bølgepåvirkningen ved dybden
av rørbroen er redusert til rundt 35% av bølgepåvirkningen ved overflaten. Bølgelaster
på grunn av dønninger ble beregnet ved bruk av deterministisk bølgelastberegning i
Wajac. Her ble dønningene antatt regulære. Dynamisk respons ble beregnet ved hjelp
av direkte analyse i tidsdomenet i Sestra. Resulterende nedbøyninger på grunn av
dønningene brukt i denne oppgaven var neglisjerbare i forhold til den statiske rep-
sonsen. Bøyemomentene på grunn av dønninger ble beregnet 6% av bøyemoment på
grunn av netto statiske laster. For å sikre konservative resultater bør man ta hensyn til
disse bøyemomenter i spenningsberegninene.
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Chapter 1

Introduction

1.1 Background

The relevance of marine bridges has increased the previous years due to the Norwe-
gian government plans for a renewed route E39. The Norwegian Parliament (Stortinget)
has decided to renew route E39 in Norway, between Trondheim and Kristiansand. A
part of the plan is to lower the travel time by avoiding ferries, which is done by replac-
ing the ferries by bridges and tunnels. Due to the large spans and depths of some of
the fjord-crossings, marine bridges are assumed to be the most suitable solutions for
these crossings.

1.2 Objective

Different types of marine bridges are described briefly in this thesis, with focus on
structural behaviour and loads acting on such bridges. Both existing marine bridges
and future plans for such bridges are reviewed, with reference to the ongoing ferry-free
E39 project. The main objective of this thesis is to investigate the structural behaviour
of a submerged floating tunnel. That is, both static response due to weight, traffic,
buoyancy and current as well as dynamic response due to waves. The material of the
floating tunnel is reinforced concrete with post-tension cables. The influence of the
PT-cables on the static behaviour, the natural frequencies and mode shapes will also
be investigated. Another objective of this thesis is to investigate the effect of increasing
height of arc with respect to mode shape and the natural frequencies. In particular, the
mode shape and eigenfrequency of the first horizontal mode is of special interest.

Another objective of this thesis is to get more familiar with the software package Sesam,
provided by the DNV-GL. Quite some time was spent trying to understand the avail-
able programs for hydrodynamic and structural analysis in Sesam. This was done by
reading the user manuals corresponding to the respective programs, and by email cor-
respondence with the Sesam support team.

The reader should be familiar with basic hydrodynamics and regular wave theory.
Knowledge of concrete structures is also beneficial, but not a demand.

1
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1.3 Limitations

Some limitations of the thesis are listed below.

• The model established in this thesis is based on a feasibility study, and not de-
tailed design, of a SFT for the Digernessund.

• Only the minimum reinforcements in longitudinal direction has been included in
the calculations.

• The model established in this thesis does not have a vertical alignment as the
original concept for simplicity.

• Nonlinear geometric stiffness effects are not accounted for. The linear analysis
program Sesam has been used for analyses.

• The dynamic response analysis is based on swell waves only, which are modeled
as regular waves.

• The hydrodynamic coefficients are assumed constant and independent of fre-
quency.

1.4 Structure of the report

This report is divided in two parts. The first part gives a review of existing marine
bridges and future plans for such bridges together with load theory. This part also
gives a description of the concept for a particular marine bridge, which is analyzed in
part two. Part two concerns structural analyses of the particular marine bridge. The
structural analyses part is divided into five chapters. The first chapter, chapter 5, gives
a description of the finite element model of the SFT. The next three chapters concerns
analyses of the finite element model. Chapter 6 concerns static analysis, including
theory for static analysis, finite element formulations, load cases and combinations
used in the static analysis, results and discussion.

The next chapter, chapter 7, concerns eigenvalue analysis of the SFT. Both analytical so-
lutions and theory of modal analysis are given. Results and discussion of the different
configurations of the bridge are also included. Chapter 8 concerns dynamic response
analysis. Here, the dynamic behaviour of the SFT is investigated due to regular swell
waves. Chapter 9 gives concluding remarks, and chapter 10 gives recommendations
for further work. At the end, the bibliography is given. The thesis also include an
appendix with more detailed information and results.



Part I

Marine bridges and load theory
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Chapter 2

Review of marine bridges

Existing floating bridges and future planes are reviewed in this chapter. Floating
bridges have been built for decades for varying purposes. During antiquity, such struc-
tures were often used for military operations. Today, floating bridges are of conven-
tional use in the road network.[Lwin, 2000]

Parts of this chapter is taken from the authors project thesis.

2.1 Conventional floating bridges

Existing floating bridges consist of an elevated superstructure of either steel or con-
crete, supported by floating pontoons. The pontoons can be one large continuous part
or several separated ones. For separated pontoons, it is important to ensure that the
superstructure has sufficient strength and stiffness to maintain the relative position of
the pontoons. The structural system of existing bridges is basically a beam supported
by floating pontoons. The pontoons takes advantage of the buoyancy to support the
beam.[Lwin, 2000] In addition, the bridge has to carry sideways forces from e.g. wind,
waves and current. This has been ensured by either side-anchoring or by building a
curved structure. The latter concept is based on the fact that curved structures carry
the forces as axial forces and bending moments.[Øderud and Nordahl, 2017]

In Norway, there are two existing floating bridges with separated pontoons, the Bergsøy-
sund bridge (fig.2.1a) and the Nordhordland bridge (fig.2.1b). The Bergsøysund bridge,
opened in 1992, has concrete pontoons and a total span of 931 m. The bridge is only
connected at the two ends, ie. without side-anchoring. In addition to lightweight con-
crete pontoons, the bridge consists of a steel truss-work in an horizontal arch.[Riksantikvaren,
Hovedkontor, 2008]

5
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(a) Bergsøysund bridge
(Illustration: Kulturminnesok.no,
photographer: Andersen, O. S.)

(b) Nordhordland Bridge
(Illustration: www.broer.no)

Figure 2.1: Existing floating bridges in Norway.

The Nordhordland bridge is a combination of a floating bridge and a cable-stayed
bridge. This concept was chosen because of the possibility for a ship channel under
the cable-stayed bridge. The floating part consists of a steel box girder and ten concrete
pontoons. The cable-stayed bridge is made of concrete, and consists of a 30 meter deep
underwater foundation and two 99.3 meter high towers. The total length of the bridge
is 1615 meter.[Moe et al., 1995]

One of the concepts purposed for the Sognefjorden crossing, which is a part of the
ferry-free E39 project, is a floating bridge (fig.2.2a). The fjord is very deep, and the is
3700 meters wide. A ship channel is placed midways. The concept can be related to
that of the Bergsøysund bridge, even though the design is somewhat different. Here,
the bridge is connected to the pontoons with columns instead of a steel trusswork as
for the Bergsøysund bridge. Because of the deep fjord, it is desired to avoid secondary
anchoring systems. The structure is curved, providing horizontal stiffness, and the
pontoons are assumed to have high stiffness in the transverse direction of the bridge.
To ensure horizontal stiffness, an alternative is to introduce secondary bearings by
splitting the railway. [Statens Vegvesen, 2011]

(a) Floating bridge with ship channel mid-
ways for Sognefjorden (Illustration: NPRA).

(b) Combined floating bridge and
cable-stayed bridge. (Illustration: NPRA)

Figure 2.2: Future plans of floating bridges in Norway.

A concept purposed for the Bjørnafjorden crossing, which also is a part of the ferry-
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free E39 project, is a combined floating bridge and cable-stayed bridge, fig. 2.2b. The
concept can be related to that of the Nordhordland bridge.[Statens Vegvesen, 2011] The
floating part of the bridge is a conventional floating bridge with separated concrete
pontoons, and this part is connected to the seabed with mooring lines. As for the
Nordhordland bridge, the bridge girder consists of a single steel box. The cable-stayed
bridge is supported by an A-shaped tower with a height of 215 m. The total length is
approximately 4500 m.[Project group, 2016]

2.2 Suspension bridges

To describe floating suspension bridges, a brief description of traditional suspension
bridges is first given. The suspension bridges with TLP technology, cable-stayed bridges
and cable-stayed bridges with TLP-technology are then described.

2.2.1 Traditional suspension bridge

The first suspension bridge in Norway, with steel-wires as suspension cables, was
built in 1904 (Gulsvik bridge).[Olsen, 2008] Today, Hardanger bridge is the longest
suspension-bridge in Norway.[broer.no, 2018] The main bearing in suspension bridges
are the cables, which carry axial loads. The towers usually have a height, from the
lowest points of the cables to the tower top, which is approximately 1/10 of the span.
The suspension cables are anchored to the ground at the two ends of the bridge.[Olsen,
2008]

Figure 2.3: Picture of multi-span suspension bridge Chacao Bridge. [KAA, 2016]

A few suspension bridges with multi-spans have been constructed in China, one is
under construction in Chile (fig.2.3) and several projects have been carried out. The
fundamental challenge with this solution is that if the bridge is loaded over one span,
the central tower will lean relatively freely towards the loaded span. This is because the
cables in the other main span provide little horizontal resistance to movements of the
tower top leading to large vertical displacements in both main spans. For the Chacao
Bridge, the stability has been achieved by a central rigid four-legged A-shaped tower
that prevents the tower top from large horizontal displacements. The TLP-connections
also reduce the vertical displacements of the bridge spans as well.[KAA, 2016]
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2.2.2 Suspension bridge with TLP technology

The idea of floating suspension bridges is to combine traditional suspension bridge
with offshore solutions, to reduce the span of long crossings. Reduced span is desired,
because both the costs and aerodynamic challenges increase with increased span.[Statens
Vegvesen, 2011] Because of the high depths of the Norwegian fjords, TLP-foundations
are considered possible solutions for floating towers. This kind of suspension bridge
has never been built before, but has been proposed for the crossings over Bjørnafjor-
den, Sulafjorden and Sognefjorden.[NPRA, 2016] The first one will be the reference
case here, because it is the most investigated for now.

Figure 2.4: Concept overview for Bjørnafjorden (Illustration:[NPRA, 2016]).

The total length of the Bjørnafjorden crossing is approximately 5 km. The proposed
suspension bridge has four TLP-foundations, three main spans and side spans at each
end (fig.2.4). The TLP-foundations are made of concrete. The hull, either made of steel
or concrete, can be connected to seabed with tensioned tethers (fig.2.6b) and suction
anchors, which provides high stiffness in the vertical direction and for rotation about
the two horizontal axes. The TLP-foundations provide buoyancy, which outweighs the
gravity of the structure and introduce permanent tension of the tethers. In addition,
they are designed to minimize heave, roll and pitch motions. The tension in the tethers,
suspension cables and top cables provides a restoring force for the transverse displace-
ments. Additional stiffness is added in the longitudinal direction by a top cable, due
to the flexible supports at the central towers. This is to prevent large movements of the
tower top.[KAA, 2016]

However, a floating object like a TLP-foundation will be susceptible to motions like
heave, roll and pitch. The tethers of a TLP will eliminate these and create a steady-
state support condition. The tethers also restrain horizontal motions and will recover
the neutral position after movements caused by environmental loads.[KAA, 2016] The
global stiffness, provided by the tethers, suspension cables and top cables, is not that
high as if the central pylons were fixed/not floating. To improve this, it was found ef-
ficient to integrate the floating pylon with the bridge deck. By this, they are monolithi-
cally connected, meaning that all degrees of freedom are transferred between them.[KAA,
2016]
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2.3 Cable-stayed bridges

2.3.1 Traditional cable-stayed bridge

Modern cable-stayed bridges, which also are a type of suspension bridges, were devel-
oped in the 1950s. The first modern cable-stayed bridge in Norway was the Stavanger
city bridge, which opened in 1979.[Øderud and Nordahl, 2017] The Helgelandsbrua,
shown in fig 2.5, opened in 1991 and is 1065m long. The main span is 425m.[Broer.no,
2017]

Figure 2.5: Picture of the traditional cable-stayed bridge Helgelandsbrua.(Picture:
broer.no, 2017)

Cable-stayed bridges are different from suspension bridges described in 2.2.1. The
carriageway-girder is carried by straight, tilted steel trusses connected to a tower. Con-
trary to other suspension bridges, the height of the tower is usually 1/5 of the length
of the span.[Øderud and Nordahl, 2017]

2.3.2 Cable-stayed bridge with TLP technolgy

Another concept proposed for the project ferry-free E39 is a cable-stayed bridge with
TLP-foundations. A cable-stayed bridge, fig. 2.6a, supported by TLP foundations, has
never been built before. The idea is to combine the common cable-stayed bridge with
offshore solutions, ie. TLP foundations. The intention is to reduce the large spans of
the crossings by dividing the bridge in multiple spans, in the same way as for the case
for floating suspension bridge. Se section 2.2.2 for more details about TLP-foundations.
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(a) Cable-stayed bridge with floating pon-
toons. The pontoons are anchored by bars.
(Illustration: Myhre, A. J, NPRA)

(b) Anchoring of cable-stayed bridge with
floating pontoons, seen from the water (Illus-
tration: Myhre, A. J, NPRA)

Figure 2.6: Cable-stayed bridge with pontoons.

2.4 Submerged floating tunnel

A submerged floating bridge has never been built before. However, the concept is old
and has been studied in Norway as well as other countries for years. The first SFT
solution for a fixed link in Norway was established for the crossing of Karmsundet
(1947). As the years past by, the concept was proposed for e.g. crossing of Høgsfjor-
den, Hardangerfjorden and other crossings.[NPRA, 2012] In the recent years, it has
been proposed for crossings in the ferry-free E39 project, including the Digernessund
crossing. The latter will be used as reference later in this assignment.

A submerged floating bridge is a structure floating beneath the sea surface. There exists
several solutions for providing buoyancy and anchoring. The two main solutions are
tether support and pontoon support, see fig.2.7. The different concepts that has been
studied includes many different cross-sections and designs, e.g. circular cylinders,
rectangular boxes, single or double.
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Figure 2.7: Concept overview for Høgsfjorden (1980s)
[NPRA, 2012]

The Norwegian Coastal Administration (Kystverket) sets the requirements for clear-
ance for ship channels. To allow for the largest cruise ships of today, the requirement
for vertical clearance is set to 75m.[Kystverket, 2014] Thus, this requirement set limits
to the height of bridges crossing Norwegian fairways, and submerged floating tunnels
can thus be a good alternative to avoid high bridges.

2.4.1 SFT with tether support

Tethers connected to the seabed provide both vertical and horizontal stiffness (fig.2.8).
The SFT with tethers has excessive buoyancy so that the tethers are in tension at all
times. The tethers are anchored by e.g. gravitational anchors to transfer the tension
forces to the ground. [Statens Vegvesen, 2011]

Figure 2.8: Submerged floating tunnel with tether support. (Illustration: NPRA,
[Statens Vegvesen, 2011])

This concept is limited to certain depths. However, for moderate depths, this solution
is highly relevant. This solution was in fact considered the best and safest solution
for submerged bridges after the development of the Høgsfjord crossing, especially at
locations that may be exposed to high waves.[Statens Vegvesen, 2011] This concept
was also proposed for some of the crossings in the ferry-free E39 project, including
Sulafjorden and Digernessund. Both crossings are under research.
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2.4.2 SFT with pontoon support

The main idea of using pontoons is to provide buoyancy and stiffness in the vertical
direction. To provide horizontal stiffness, the bridge is horizontally curved.
[Statens Vegvesen, 2011] The pontoons consists of either steel or concrete, and can have
different shapes and connections to the bridge (fig.2.7).[NPRA, 2012]

In the case of a single bridge, the structure may need additional side-anchored bars
providing enough stiffness against transverse movements of the bridge (fig.2.9). For
shorter spans, smaller than approximately 2km, the additional side-anchored bars may
be redundant. In the case of a double bridge the two bridges will be parallel and
connected (fig. 2.10). The connection of the two bridges, together with the fact that the
bridge is curved, provides horizontal stiffness. [Statens Vegvesen, 2011]

Figure 2.9: Side-anchored bridge with pontoons.[Statens Vegvesen, 2011]

Some of the drawbacks using pontoons are that the pontoons will be visible on the free
surface, they can be a hinder for ship traffic and exposed to ship collisions. Another
fact, that can be a challenge, is that the concept has to account for tidal variations of the
supports. [Engseth et al., 2016] In addition, waves can be of great importance for the
movements of the pontoons.[Statens Vegvesen, 2011]

However, there is an big advantage using pontoons for submerged floating bridges.
In the case of very deep fjords and crossings, like Sognefjorden, it is not considered
feasible to have tethers connected to the seabed. Using pontoons, this problem is
avoided.[Statens Vegvesen, 2011] This concept has been proposed for the deepest cross-
ings of the ferry-free E39 project, including Sognefjorden and Bjørnafjorden.
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Figure 2.10: Submerged floating tunnel with pontoon support.(Illustration: NPRA)

2.4.3 Free-spanning SFT

Another solution for submerged bridges, proposed by dr. techn. Olav Olsen for the
crossing of Digernessund (fig.2.11), is a single bridge without any tethers or pontoons.
This solution was proposed because the span of this crossing is relatively small (690m).
The drawback is that the solution results in high forces transferred to the abutments.
However, this solution was considered relevant because of small waves and moderate
current in the strait. The proposed bridge is a reinforced concrete structure with post-
tension cables. Several cross-sections have been evaluated, both circular and rectan-
gular. See fig.2.12 for illustration of three cross-section proposed for the free spanning
concepts. The bridge has both horizontal and vertical alignment resulting in a curved
structure.[Engseth et al., 2016]

Figure 2.11: Concept without intermediate support proposed for crossing of Digernes-
sund (Illustration: NPRA/dr. techn. Olav Olsen, [Engseth et al., 2016])
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Figure 2.12: Three different cross-sections proposed for the free-spanning concept for
the Digernessund. Illustrations:[Engseth et al., 2016]

2.4.4 Combined SFT and floating bridge

The main reason for combining a floating bridge and a submerged floating tunnel is to
provide a ship channel. Four different concepts will be presented in the following.

Y-shaped SFT combined with floating bridge

A concept proposed for the crossing of Sognefjorden is given in fig. 2.13. The con-
cept consists of a floating bridge resting on pontoons, connected to two submerged
floating tunnels making a Y-shape. The SFTs are connected to the seabed with tethers,
providing vertical stiffness. The Y-shape of the submerged part of the bridge provides
horizontal anchoring and separation of the submerged floating tunnels towards sepa-
rate rock tunnels at the landfalls.[Statens Vegvesen, 2011]

Figure 2.13: Y-shaped concept for a combination of two
submerged floating tunnels and a floating bridge.[Statens

Vegvesen, 2017, Statens Vegvesen, 2011]
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Concept for the crossing of Rovdefjord

Figure 2.14: Illustration of Rovdefjord bridge [Snøhetta, 2016b]

Rovdefjord bridge will be an important link between the southern Sunnmøre and the
outer parts of Nordfjord, at the west coast of Norway. The first conceptual ideas for
a bridge crossing the Rovdefjord were launched in the 1980s. In 2011, the foundation
Rovdefjordsambandet AS was established to investigate the possibilities for a ferry-
free crossing of Rovdefjord. The companies Reinertsen AS, dr. techn Olav Olsen,
Snøhetta and SINTEF have, on behalf of Vanylven Utvikling AS, developed a con-
cept for crossing the Rovdefjord with a SFT (fig.2.14). In 2016, the local council Sande
kommune, approved the municipal sector plan for the Rovdefjord bridge.
[Sande kommune, 2016] However, the bridge has not been built yet.

Figure 2.15: Illustration of Rovdefjord bridge showing the spiral connection between
the SFT and the floating bridge at Saudeholmen. [Snøhetta, 2016b]

The proposed bridge concept has a total length of 3500 m and consists of a rock tunnel,
a floating bridge of length 1500 m and a SFT of length 230 m. The floating bridge,
which is curved in the horizontal plane, is a steel girder connected to 14 concrete pon-
toons. The floating bridge is further connected to the SFT by a spiral culvert at a small
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island called Saudeholmen, fig. 2.15. The SFT is curved in the horizontal plane, con-
sists of concrete, and has a circular cross-section.[Sande kommune, 2016] The SFT has
no intermediate supports and is thus supported only by its buoyancy and the connec-
tions at the two ends.

Artificial seabed

Figure 2.16: Illustration of Artificial seabed concept. [Snøhetta, 2016b]

An ongoing research project called Artificial seabed started in 2014 and is a collabora-
tion project between the former Reinertsen, Dr. Techn. Olav Olsen, Snøhetta, Sapa, Hy-
dro, Deep Ocean Group and Sintef. The project is supported by The Research Council
of Norway.[Snøhetta, 2016a] The concept (fig. 2.16) is a mooring system for a combined
floating bridge and SFT, which enables a flexible placement of the SFT independent of
the water depth on site and sea bottom conditions. The idea is a submerged anchoring
system which provides lateral stiffness of a slender bridge through side mooring. The
anchoring system consists of two pretensioned bundles of steel pipes across the fjord.
The bundles consist of three steel pipes, which are neutrally buoyant, submerged to
about 35 meters and horizontally curved (fig. 2.17). Transverse steel pipes connect the
two bundles making the total anchoring system a stiff horizontal frame.[Reiso et al.,
2017]

A crossing which has been evaluated for the Artificial seabed concept is the Bjør-
nafjord. For this particular crossing, the distance between the bundles at the bridge
ends are 800m, while the distance at mid fjord is 80m. Both the floating bridge and the
SFT are connected to the Artificial seabed by mooring. Transverse loads are transferred
to the submerged anchoring system, and then transferred further to the abutments as
axial forces. The concept allows for reduced span due to side mooring, compared to a
horizontally curved end-moored concept. Another advantage is that the ship passage
can be optimally placed with respect to the ship traffic. However, the concept require
large submerged mooring chambers. These chambers can be accessed by land.[Reiso
et al., 2017]
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Figure 2.17: Illustration of the artificial seabed, mooring system, pontoons, ship barri-
ers and the combined floating bridge and SFT bridge. [Snøhetta, 2016b]
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Chapter 3

Developed concept of a SFT for the
Digernessund

The Digernes strait is one of the crossings along the route E39, with an an existing
suspension bridge called Stordbrua. This bridge is a part of the triangle link connecting
Haugaland and Sunnhordaland, and consists of the 677 m long Stordbrua and a 7.8 km
submerged tunnel crossing the Bømlafjorden meeting at a small island named Føyno.
Spatial restrictions at Føyno resulted in a road alignment with a gradient which does
not meet the requirement for the new E39. The requirement is a maximum gradient
of 5%, and two lanes per driving direction. Therefore, alternative modifications of the
link have been considered.[Engseth et al., 2016]

Figure 3.1: Illustration of the proposed SFT for the
Digernessund. (Illustration:[Engseth et al., 2016])

The submerged tunnel over the Bømlafjorden has a minimum elevation of −260m be-
low the free surface, which govern the high gradient between the Stordbrua and the
submerged tunnel. A submerged floating tunnel bridge is considered a suitable alter-
native to existing bridges requiring high gradients accessing roads, like the crossing of
Digernes strait. On behalf of the NPRA, Dr. techn. Olav Olsen has prepared a feasi-
bility study for a SFT for this crossing (fig.3.1).[Engseth et al., 2016] This thesis takes
advantage of the work done by dr. techn. Olav Olsen in the feasibility study.
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3.1 Functional requirements

Some functional requirements for the SFT are given in tab. 3.1. According to [Vegdirek-
toratet, 2015] the crossing shall have a design life of 100 years. The NPRA has advised
the limiting values of vertical and horizontal deflections of L/350 and L/200 respec-
tively. For horizontal deflections, L represents the total length between the abutments,
while for vertical deflections, L represents the total length between vertical supports.
Further, NPRA has advised maximum accelerations as summarized in tab.3.1 to ensure
pedestrian comfort.[Engseth et al., 2016]

Table 3.1: Functional requirements summarized.

Parameter Requirement
Design life 100 years
Horizontal deflection L/200
Vertical deflection L/350
Horizontal vibration 0.3 m/s2

Vertical vibration 0.5 m/s2

The bridge girder should ensure water tightness in operation and temporary condi-
tions. The design criteria for serviceability limit state is zero crack width, wk = 0 and
membrane compression in the longitudinal direction in the outer fibre. There is also re-
strictions with respect to the minimum compression zone height. For the ultimate limit
state and accidental limit state, the strains in the PT-cables and reinforcements are lim-
ited to the elastic region. Hydrostatic stability should also be ensured in accordance
with requirements in the DNV-OS-C301.[Engseth et al., 2016]

3.2 Global dimensions

The technical report [Engseth et al., 2016] specifies parameters for a SFT for the crossing
of the Digernes strait. The total length of the bridge model is 690m, but in the concep-
tual design Lbridge = 600m is used for modelling and analysis. The bridge has an align-
ment in both horizontal and vertical direction. The radius of curvature is 1850m for
the horizontal alignment, and the radius of curvature in vertical direction is 14km. The
depth of the bridge varies from −50m to −40m. Several bearing systems have been
proposed in the feasibility study including free span, tether support, column support
and pontoon support.[Engseth et al., 2016]

3.3 Cross-section

Several cross-sections have been proposed in the feasibility study, both circular and
rectangular. One of the cross-section proposed by dr. Techn Olav Olsen for the free
span solution is given in figure 3.2. In the following, this will be referred to as the
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original cross-section. A variating cross-section is proposed for separation of carriage-
ways at the landfalls. The cross section height varies over a length of 200m out from
the two ends. The cross-section to the right (cross-section b) in Fig. 3.2 is situated at
the landfalls while the cross-section to the left (cross-section a) is situated at the mid-
span.[Engseth et al., 2016]

Figure 3.2: Cross sections a and b, free span bridge [Engseth et al., 2016].

The cross-section consists of two sections for traffic tunnels and three ballast cham-
bers. The height variation is added to the ballast chambers. The traffic tunnels have
the same width as the rock tunnels connected to the SFT, which is a T10.5 tunnel pro-
file. The free height of the traffic tunnels is 5.1m, including requirements, safety mar-
gin, tolerances, increased pavement thickness and room for fire protection and signal-
ing.[Engseth et al., 2016] Cross-section dimension can be found in fig 3.2 and some of
the properties are summarized in tab.3.2.



22 CHAPTER 3. DEVELOPED CONCEPT OF A SFT FOR THE DIGERNESSUND

Table 3.2: Cross-section properties

Parameter Cross-section a Cross-section b
Top- and bottom thickness (m) 1 1
Web thickness (m) 0.8 0.8
Width (m) 12.2 12.2
Total height (m) 16.3 18.8
Concrete area (m2/m) 57.8 61.8
Ballast chambers
Ballast compartment area (m2) 28.8 53.8
Ballast fill percent (%) 60.4 79
Ballast fill (m2) 17.28 42.5

3.4 Materials

The materials suggested for the bridge girder are concrete B55-MF40 with reinforce-
ment steel B500NC. It is also suggested to post-tension the bridge with post-tension
cables, 6-31 stand Y1860.[Engseth et al., 2016] Material properties for these materials
are given in tables 3.3, 3.4 and 3.5. Information about the materials B55-MF40 and rein-
forcement steel B500NC are gathered from [NS-EN1992, 2004]. Information about the
PT cable material is gathered from [Johansen, 2017].

Table 3.3: Material properties for concrete B55-MF40

Parameter Unit Concrete B55-MF40
Elasticity modulus Ecm GPa 38
Poisson’s ratio ν − 0.2
Characteristic compr. strength fck MPa 55
Characteristic tensile strength fctm MPa 4.2

Table 3.4: Material properties for reinforcement steel B500NC

Parameter Unit Steel B500NC
Elasticity modulus Es GPa 200
Poisson’s ratio ν − 0.3
Characteristic yield strength fyk MPa 500
Design yield strength fyd MPa 434

Table 3.5: Material properties for pretension cables Y1860S7

Parameter Unit Y1860
Elasticity modulus Ep GPa 195
Characteristic tensile strength fpk MPa 1860
Characteristic 0.1% tensile strength fp0,1k MPa 1640
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3.5 Environmental conditions on site

3.5.1 Current

The current velocities estimated by the NPRA are given in table 3.6. These values are
gathered from [Engseth et al., 2016], where it is stated that the estimates are coarse and
probably conservative. The deep water current velocity is used at the depth of the SFT.

Table 3.6: Estimated current velocities for the Digernessund. Values taken from [En-
gseth et al., 2016].

Type of current Current velocity (m/s)
Surface current 2.5
Deep water current 1.0

3.5.2 Wave

The data for wind sea and swell sea are estimated by the NPRA and represented in tab.
3.7 and tab.3.8 respectively. These values are gathered from [Engseth et al., 2016].

Table 3.7: Estimated data for wind induced waves.[Engseth et al., 2016]

Waves form east Waves from west
Direction 105◦-125◦ 280◦-310◦

Return period (years) Hs (m) Tp (s) Hs (m) Tp (s)
10 1.08 3.1-4.3 0.96 2.9-3.8
100 1.29 3.3-4.7 1.14 3.2-4.0
10000 1.62 3.7-5.2 1.42 3.5-4.5

Table 3.8: Estimated data for swell waves.[Engseth et al., 2016]

Direction 120◦-140◦

Return period (years) Hs (m) Tp (s)
100 0.1 14
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Chapter 4

Loads acting on marine bridges

This section describe loads acting on marine bridges in general and then relate them
to the SFT proposed for crossing of Digernessund. Most of the theory is taken from
the handbook N400 "Bruprosjektering", which is a handbook regarding design rules
for bridges, established by NPRA.

Loads acting on marine bridges can be divided into three categories, permanent loads,
variable loads and accidental loads. Permanent loads are assumed constant in the time-
interval considered, and includes self-weight, buoyancy and permanent ballast and
equipment. Variable loads vary in time and include traffic loads, environmental loads,
variable ballast and equipment and loads affecting the bridge in temporary phases like
installation and fabrication. Accidental loads are loads due to accidents or abnormal
events. [Vegdirektoratet, 2015]

4.1 Permanent loads

4.1.1 Self-weight and buoyancy

Self-weight is the weight of all permanent parts of the structure. That is, calculated
weight of the structure, permanent solid ballast, permanent water ballast, permanent
wearing layer, permanent equipment and buoyancy of the structure. There are also
variable permanent self-weights meaning weight of wearing layer, curb stones, fire
protection, fans, cables, ducts, signals, call stations and illuminations. Variable free
self-weight includes loads that may be removed, including weight of marine growth,
water absorption of the structure and solid ballast, dust accumulation, movable ballast,
variable wearing layer and replaceable equipment.[Engseth et al., 2016]

Buoyancy can be determined based on net structural dimension and the mean sea wa-
ter level. Specific weight of water can be assumed 9.955kN/m3, in accordance with
[Engseth et al., 2016] and [Vegdirektoratet, 2015].

For the SFT proposed for the crossing of Digernessund, the values in tab.4.1 are as-
sumed for the relevant permanent weights:

25
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Table 4.1: Loads contributing to permanent self-weight for the SFT proposed for the
crossing of Digernessund, values collected from [Engseth et al., 2016]

Load Value Comment
Reinforced concrete, specific weight 25 kN/m3

Solid ballast, specific weight 19 kN/m3

Water ballast, specific weight 9.81 kN/m3 Assuming water density 1000 kg/m3

Fire protection 8 kN/m Assuming 40 mm layer with
specific weight 5 kN/m3

Wearing layer 34 kN/m Assuming 80 mm permanent layer,
2kN/m

Curb stones 20 kN/m Assuming 150 mm curb
Fans 0 Assuming no need for fans in

500m long tunnel section
Cables 0.07 kN/m Assuming 10 copper cables with

ø20 diameter
Signals 0.1 kN/m Assuming 1000 kg per 100m
Call stations 0.01 kN/m Assuming a 100 kg call station

every 200 m
Illumination 0.08 kN/m Assuming 100kg every 25 m

Marine growth depends on the outer perimeter of the bridge, and is calculated based
on wet surface. For depths above 12m, assume that the weight due to marine growth is
235 N/m2. Water absorption in concrete and solid ballast is assumed 1% of the volume.
Weight of dust is included in the variable asphalt thickness and therefore assumed
zero. Relocatable water ballast is not accounted for in this project. However, it is a
requirement that the ballast system has capacity to increase and decrease. Variable
wearing layer is assumed 40 mm asphalt, either added or removed, corresponding to
17 kN/m. Uncertainties in measured permanent weights in dock are added as a load
factor of 1%. Tolerance of 15% is added as load factor for variable permanent self-
weights. Variable free self-weights are added with a load factor of 1.35%. [Engseth
et al., 2016]

4.1.2 Traffic load

Traffic loads are given in NS-EN-1991-1-2. For influence lengths above 500 m the load
model is specified in "NA-rundskriv 07/2015". The latter will is used for the SFT pro-
posed for Digernessund. In the load model given in "NA-rundskriv 07/2015", all traffic
lanes are loaded with 9 kN/m simultaneously. Line load per driving direction, for two
lanes, is then 18 kN/m. Thus, a total of 36 kN/m for both directions.[Engseth et al.,
2016]
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4.2 Environmental loads

4.2.1 Tide

For marine bridges with structural members near or above the free surface, variations
in the sea level have to be accounted for. According to chapter 5.4.4.2 in N400, tidal
variations should be accounted for when calculating current and wave heights for both
the low and high tide. If the current from tidal variations is significant, this should be
accounted for in the calculations of wave loads.[Vegdirektoratet, 2015]

Tidal variations and the influence of tide on the environmental loads are neglected for
the free-spanning SFT proposed for the Digernessund due to the submergence to 50
meters.

4.2.2 Ice and snow

Snow loads are calculated according to NS-EN 1991-1-3. The procedure for calculating
ice loads is given in chapter 5.4.7 in N400. Ice loads from drifting ice are assumed to
act in the most unfavourable level between LAT and HAT. The load from a flat layer
of drifting ice can be calculated according to the procedures stated in 5.4.7 in N400.
Dynamic response due to ice-breaking should be investigated if the displacement of
the structure due to the ice-breaking is higher than 10 mm.[Vegdirektoratet, 2015]

Horizontal ice loads due to fixed layers of ice are calculated as an uniform distributed
load, and can be calculated according to the procedures in 5.4.7 in N400. [Vegdirek-
toratet, 2015] If the sea level changes, the ice loads from fixed layers of ice get a vertical
component with a maximum magnitude of 1/3 of the horizontal ice load.[Vegdirektoratet,
2015]

Ice and snow loads are only relevant for marine bridges with structural parts near or
above the mean sea level. Thus, these loads are not accounted for in the study of a
free-spanning SFT for the Digernessund.

4.2.3 Current loads

According to N400, calculation of current loads should be based on measurements or
numerical simulations for the specific site. As a minimum, three profiles should be in-
vestigated: uniform distributed current velocity over the whole bridge length, uniform
distributed current velocity over a mid-section of the bridge and a shear current with
uniform current velocity. Methods for calculating current loads for bridges are given
in DNV-RP-C205 and N-003.[Vegdirektoratet, 2015]

When a current flow past a structure flow, separation may occur, depending on Reynolds
number. Due to instabilities, asymmetric wake regimes occur and the consequence is
vortex shedding. Vortex shed from the structure results in oscillatory forces acting on
the body in both lift and drag direction. The oscillatory forces may cause resonance
problems, referred to as vortex-induced resonance vibrations.[Faltinsen, 1990] In the
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following, the calculation model for viscous drag force caused by cross-flow current
and vortex induced vibration will be described.

Viscous drag force

The viscous current load can be generalized for slender structures into a mean force
per unit length (eq.4.1):

FD =
1
2
ρwCDDU2∞ (4.1)

where D is characteristic cross-section length, here corresponding to the height of the
tube, U2∞ is the incident current velocity and CD is the drag coefficient. The latter has
to be empirically determined.[Faltinsen, 1990]

Figure 4.1: Drag coefficient from DNV-RP-C205 (Illustration: NPRA/dr. techn. Olav
Olsen, [Engseth et al., 2016]).

For the SFT proposed for the Digernessund, CD may be determined using DNV-RP-
C205. For the cross-sections given in sec. 3.3, CD can be approximated as 1.0 with
reference to fig.4.1. Assuming a current velocity of 1.0 m/s, the corresponding viscous
drag force is 7.6 kN/m.[Engseth et al., 2016]

Vortex induced vibrations

Resonance effect caused by vortex-induced vibrations occurs if the vortex shedding
period is sufficiently close to the eigenfrequency of the structure. The phenomenon is
called lock-in, meaning that the vortex shedding frequency fv locks onto the natural
frequency. For a circular cylinder, the vortex shedding period Tv can be expressed by
the Strouhal number (eq. 4.2). The reduced velocity, UR = Uc/( fnD) can be used to
indicate if VIV resonance may be a problem. fn represents the natural frequency of
the structure, D is the characteristic length and Uc is the incoming current velocity.
[Faltinsen, 1990]

Tv =
1
St

D
Uc

(4.2)

According to [Engseth et al., 2016], the Strouhals number for a rectangular can be as-
sumed 0.15. D is the characteristic dimension, assumed 15m, and Uc is the incoming
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current velocity, assumed 1 m/s. Thus, the vortex shedding period is calculated 100s
for the SFT.

According to [Engseth et al., 2016], the DNV-RP-F105 give general onset criteria for
cross flow and in-line flow vibrations for current induced vibrations. Cross-flow vi-
brations has onset at UR = 2.0, while in-line vibrations has onset at UR = 1.0. The
reduced velocity for cross-flow and in-line flow, using the eigenfrequency for the first
mode, is calculated in the following.

UR,IL =
Uc

fnD
=

1.0m/s
0.12s−1 ∗ 12.2m

= 0.66m/s (4.3)

UR,CF =
Uc

fnD
=

1.0m/s
0.12s−1 ∗ 18.8m

= 0.49m/s (4.4)

Thus, based on the onset criteria from DNV-RP-F105, both cross-flow and in-line flow
will not cause vortex induced vibrations.[Engseth et al., 2016]

4.2.4 Wind loads

Wind is a time-varying, three-dimensional and random phenomenon consisting of a
mean component and a fluctuating (wind gust) component. The mean component
decrease with reduced distance to the ground, while the fluctuating component is ap-
proximately constant with respect to the distance to the ground.[Myrhaug, 2006] Ex-
ternal wind loads are relevant for the bridge types which are above or partly above the
free surface. Internal wind loads may also act on internal surfaces of open structures,
like SFT. Different design codes provide procedures for calculation of wind loads on
structures, like DNV-RP-C205 and NS-EN-1991-4:2005+NA:2009. The first of the two is
used in the feasibility study of a SFT for the Sognefjord, [Statens Vegvesen, 2011], while
the latter standard is referred to for calculation of wind loads on bridges by N400 [Veg-
direktoratet, 2015]. Both static response and resonant response, in the case of excitation
close to natural frequencies, due to wind loading should be investigated.[DNV-GL,
2010b]

According to DNV-RP-C205 [DNV-GL, 2010b], the wind load component acting nor-
mal to a structural part can be calculated by eq.4.5.

FW = CqSsinα (4.5)

C is a shape coefficient given in NS-EN-1991-1-4, q is the basic wind pressure given by
eq.4.6, S is the projected area of the part normal to the direction of the load and α is
the angle between the axis of the part and the wind direction. Lift forces due to wind
loads may also be important for design.[DNV-GL, 2010b]

q =
1
2
ρaU2

T,z (4.6)
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ρa is the mass density of air and UT,z is the mean wind velocity averaged over a time
T at height z (m) above msl or the ground. UT,z can be estimated based on spectral
analysis of long time-series of wind measurements. Thus, site-specific measured wind
data should be carried out. It is preferred that the data base covers continuous data
for a 10-year period or more.[DNV-GL, 2010b] The DNV-RP-C205 includes various
formulations of the wind velocity profile. A common reference used is a height of 10m
above ground and a time-averaging interval of 10 minutes.[DNV-GL, 2010b]

Wind loads are not considered relevant for the free-spanning SFT for the Digernes-
sund.[Engseth et al., 2016]

4.2.5 Wave-induced loads

According to chapter 5.4.4 in N400 [Vegdirektoratet, 2015], wave loads should be cal-
culated in either time domain based on linear wave theory or in frequency domain
using stochastic methods. For wind-generated waves, the JONSWAP wave spectrum
can be used. Wave loads can also be calculated using empirical formulas given in
DNV-RP-C205 (2010) or by CFD-analysis. For offshore structures, it is normal to use
the wave heights with a return period of 100 years for both wind generated sea and
swell sea, to ensure conservatism.[NORSOK, 2007]

First order wave forces are assumed to be important in the spectral peak interval
3 − 24s for marine structures. However, second order wave forces may be impor-
tant as well. These are mean forces and forces oscillating with difference frequency or
sum frequency. With difference or sum frequency it is meant that either the sum or
difference of two frequencies is used when describing the wave spectrum. Difference
frequency loads are also called slowly-varying loads.[Faltinsen, 1990]

Morison equation

For small scale structures, meaning structures considered much smaller than the wave-
length, the Morison’s equation can be used to calculate the wave loads acting on the
structure.[Vegdirektoratet, 2015] If λ > 5D, where D is the equivalent diameter of the
structure and λ is the wavelength of the incident wave, the structure can be character-
ized as a small scale structure. The wavelength can for deep water waves be calculated
according to eq. 4.7-4.8.[Faltinsen, 1990]

Dispersion relation for deep water (eq.4.7), wave frequency (eq.4.8) and wavelength
(eq.4.9) of incoming waves with wave period T:

ω2 = gk (4.7)

ω =
2π
T

(4.8)

λ =
2π
k

(4.9)

The wave conditions for the Digernessund were given in sec. 3.5.2. In the following,
Tp = 4.7s is used for wind induced waves and Tp = 14s for swell waves. The swell



4.2. ENVIRONMENTAL LOADS 31

sea condition corresponds to a wave length roughly 18 times the largest equivalent
diameter of the SFT. Thus, the condition for being a small structure is satisfied for
swell sea. Therefore, it is assumed that the Morison’s equation can be applied for the
swell sea condition. Investigating the exponential decay of wave action, fig. 4.2, it is
seen that the swell induced waves are also the dominating wave type at the depth of
the SFT.

Figure 4.2: Graph showing the decay of wave action for swell and wind induced waves
in the Digernessund.

In Faltinsen (1990), two different forms of Morison’s equation for a strip of a circular
cylinder with length dz are given (eq.4.10-4.11). Both forms includes a mass term pro-
portional to the incident fluid acceleration u, and a drag term. The difference is that
the latter form includes a nonlinear drag term, and therefore, the velocity is here the
relative velocity between the incident fluid velocity u and the structure velocity η̇. The
latter form has also an additional inertia term proportional to the structure accelera-
tion η̈. This expansion of the equation is due to the fact that the latter form applies to a
moving structure, while the first form assumes a fixed and rigid one.

dF = ρw AzCMa +
ρw

2
CDDdz|u|u (4.10)

dF =
1
2
ρwCDDdz(u− η̇)|u− η̇|+ ρwCM Adza− ρw(CM − 1)Adzη̈ (4.11)

where ρ is the water density, D is the diameter of the strip, A is the cross-section area of
the strip, CM is the added mass coefficient and CD is the drag coefficient. The two coef-
ficients, CM and CD have to be empirically determined and are dependent on Reynolds
number, Keulegan-Carpenter number, surface roughness ratio, a relative current num-
ber, form of the structure, free-surface effects, sea-floor effects. CD = 0.7 is a typical
value for smooth surfaces. By inserting the expression for the fluid particle acceleration
and velocity in the Morison equation, it can be shown that the mass-force term decays
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with the depth with a factor of e
2πz
λ , and the drag force term decays with a factor of

e
4πz
λ .[Faltinsen, 1990]

Wave loads on Large-volume structures

For large scale structures, meaning structures with cross-section dimensions larger
than the wavelength, the diffraction effects become important.[Vegdirektoratet, 2015]
The procedure for this is given in chapter 7 in DNV-RP-C205.

Similar to wind, waves are time-varying and random, or irregular, by nature. As-
suming that linear theory is valid, wave induced loads in irregular sea can be found
by linear superposition of loads from regular wave components. Transient effects are
neglected by assuming steady state, which also implies that the dynamic response os-
cillates harmonically with the same frequency as the waves exciting the structure. The
response from regular waves is found by looking at two sub-problems: radiation and
diffraction.[Faltinsen, 1990]

The radiation problem is associated with no incoming waves and forces and moments
on the structure when it is forced to oscillate in a rigid body motion with the wave
frequency. This produces the hydrodynamic forces and moments corresponding to
added mass and damping loads. The latter is due to the generation of waves because
of the forced motion. The forced motion also results in oscillating water pressure act-
ing on the body surface. Thus, integrating the pressure over the body surface give
resulting forces and moments. For the harmonic motion η j the hydrodynamic added
mass, damping and restoring loads can be written as eq. 4.12.[Faltinsen, 1990]

Fk = −Ak j
d2η j

dt2 − Bk j
dη j

dt
− Ck jη j (4.12)

Ak j is an added mass coefficient, Bk j is a damping coefficient and Ck j is a restoring coef-
ficient with k, j = 1, 2, .., 6, meaning for the six degrees of rigid body modes. The added
mass and damping coefficients are functions of the structure form and frequency of os-
cillation.

For the diffraction problem, there are incoming waves exposing the structure to wave
excitation loads. The structure is assumed fixed, or restrained from oscillating. This re-
sults in two effects, the unsteady pressure induced by the undisturbed waves (Froude-
Kriloff) and an additional force due to the structure presence changes the pressure
field. The latter produce diffraction forces and moments.[Faltinsen, 1990]

4.3 Deformation loads for concrete structures

4.3.1 Post-tension

According to N400, both the direct and indirect reactions due to tensioning of post-
tension cables should be included.
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4.3.2 Creep

Creep is an additional deformation of concrete subjected to compression for a long
time. The concrete continues to compress beyond the instantaneous deformation of the
applied loads. Shrinkage (svinn) is caused by dehydration of the concrete.[Sørensen,
2013] Creep and shrinkage is dependent the humidity of the environments, the cross-
section dimensions and the composition of the concrete. Creep is also dependent on
the maturity of the concrete when the load is applied, the load level and load dura-
tion.[NS-EN1992, 2004] The procedure for calculating creep strain is given in 3.1.4 in
[NS-EN1992, 2004].

Shrinkage is composed of two contributions, dehydration shrinkage and autogenous
shrinkage. The latter develops together with the concrete strength development, while
the dehydration shrinkage is a slow process forced by moisture transfer through the
cured concrete. For a given age, the development of shrinkage is given by mathemati-
cal formulas in 3.1.4(6) and appendix B in [NS-EN1992, 2004].[Sørensen, 2013]

Creep and shrinkage are not accounted for the SFT in this thesis.

4.3.3 Temperature

Thermal reactions can cause deformations of the structure. Relevant reactions due
to temperature differences are calculated according to NS-EN 1991-1-5. According to
[Engseth et al., 2016], the temperature variations are ±5◦C and can thus be neglected
for the SFT for the Digernessund.

4.4 Accidental loads

Accidental loads relevant for marine bridges are listed below. The load combinations
for accidental limit state can be found in NS-EN1990:2002.[Vegdirektoratet, 2015]

• Accidents with anchors and trawlers

• Fire

• Explosions

• Landslide

• Ship collisions

• Sinking ship and dropping objects

• Flooding

• Abnormal waves

• Earthquake
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Part II

Structural analysis of a SFT
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Chapter 5

FE-model of the SFT

5.1 Modeling software

In this thesis, two types of softwares are used. The software package Sesam, provided
by the DNV-GL, is the main software used. In addition, the results from eigenvalue
analysis are compared with results form Abaqus. The latter program is capable of
non-linear static analysis, which is not the case for Sesam. The Sesam software package
consists of several programs, as shown in the figure 5.1 below. The ones used in this
thesis are marked with red circles.

Figure 5.1: Overview of the software package SESAM. Red circles show the programs
used in this thesis. Illustration:[DNV-GL software, 2017]

The Sesam Manager is a control program used to set up runs of the different programs
in Sesam. GeniE is the modelling software used to establish a finite element model of
the bridge. Static loads like traffic load are also be defined here. Sestra is the program
for linear static and dynamic analysis, and can be executed from the Sesam Manager.
Wajac is the program for calculating wave loads for fixed structures.[DNV-GL soft-
ware, 2017] Xtract is a program for postprocessing the results from Sestra.

37



38 CHAPTER 5. FE-MODEL OF THE SFT

5.2 Global model

Elements

The bridge is modeled by 2-node straight beam elements, which have degrees of free-
dom per node, 3 translational and 3 rotational, ie. a total of 12 degrees of freedom per
element. It is assumed that the cross-section is constant within the element, and the
material is assumed isotropic. Axial strain, bending strain and shear strain about the
two principal directions of the cross-section are accounted for, and St. Venant torsion
is also accounted for in the element formulation.[DNV-GL software, 2014]

Configurations of the bridge

In this thesis, four different configurations of the bridge are investigated for both static
and eigenvalue analysis. The first and simplest one is a straight configuration. Three
horizontally curved models are also investigated. The first curved model (fig. 5.2),
which is the base case in this thesis, has a curve height C1 = 24.25m and radius R =
1850m, which corresponds to the curved model in [Engseth et al., 2016]. The second
curved model has a curve height of C2 = 53m and corresponding radius R = 867.53m.
The third curved model has a curve height C3 = 60m and corresponding radius R =
772.92m. See app. C for how the curved models are established.

Figure 5.2: Illustration of global model for base case.

5.3 Material

To satisfy the SLS conditions, the concept proposed in [Engseth et al., 2016] is heavily
post-tensioned. Thus, minimum reinforcement is sufficient to satisfy ULS and ALS.
[Engseth et al., 2016] Because the technical report provides insufficient details regard-
ing the reinforcements, a rough estimate of the minimum reinforcements is provided
in this thesis. A resulting sketch of the minimum reinforcements and PT-cables in the
longitudinal direction is given in app. E.2. The material density of reinforced concrete
is assumed 25kN/m3 in agreement with [Engseth et al., 2016].
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5.3.1 Reinforcement steel

Instructions for design of reinforcements in concrete bridges are given in N400, page
89 to 91. The instructions will be briefly summarized here. The smallest allowable di-
ameter for reinforcements is 12 mm, according to N400. All cross-sections should have
double reinforcement in both directions. For the walls, the vertical and horizontal re-
inforcement should have centre distance smaller or equal to 200 mm. Longitudinal
reinforcements should have diameter higher or equal to 16 mm. For horizontal decks,
the centre distance should also be smaller or equal to 200 mm, and the longitudinal re-
inforcements should have a diameter higher or equal to 16 mm.[Vegdirektoratet, 2015]

Minimum reinforcement requirements are given in [NS-EN1992, 2004]. For the outer
and inner walls, point 9.6.2 and 9.6.3, page 161, and NA.9.6.2 and NA9.6.3, page
16, are used. Point 9.2.1.1 is used for reinforcement in the horizontal bearing. The
resulting minimum reinforcements are given in tab.5.1 and total reinforcement areas
are given in section. E.1.

Table 5.1: Summary of calculated minimum reinforcement

Section Type Diameter Centre distance

Outer walls Horizontal, longitudinal φ25 c200
Outer walls Vertical φ25 c200
Inner walls Horizontal, longitudinal φ16 c190

Top/bottom slabs Horizontal, longitudinal φ16 c200
Inner slabs Horizontal, longitudinal φ16 c200

Note that this is only an estimate of the minimum longitudinal reinforcements. The
objective for estimating these reinforcements is to include the contributions from the
reinforcements in the bending stiffness of the structure. In detailed design, a full as-
sessment of the necessary reinforcements should be carried out. A special care has to
be taken with respect to the hydrostatic pressure, which is calculated 0.497 MPa at a
water depth of 50m.

5.3.2 Post-tension cables

Stressed concrete is defined as concrete subjected to compression to counter-act the
external loads to some extent. The compression is induced on the concrete by pre-
stressing steel given an initial strain and tension force. Meaning, the tension in the
prestressing steel is transferred to concrete as compression at end anchorage of the
prestressing steel or by adhesion between the two materials. The main advantages of
using prestressing steel is that cracking reduces, and that displacements reduces be-
cause of opposite displacements induced by the prestressing steel and higher bending
stiffness.[Sørensen, 2013]

There exists two methods of stressed concrete, pre-tension, using wires, and post-
tension, using cables. The latter will in the following be referred to as PT-cables. The
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main difference is whether the steel is subjected to a tension force before or after the
concrete is cast and cured. When pre-tension wires are used, the steel is given a ten-
sion force before casting the concrete. When the concrete reach adequate strength or
compactness, the pre-tension wires are cut at the die or at end-anchorages. The PT-
cables are carried through ducts in the cast structure and anchored at one of the ends
at anchor plates. After giving them a tension force, by a jack for instance, the ducts
are injected with injection mortar to ensure adhesion between the concrete and PT-
cables. The cables can be given a desired curved path adjusting the post-tension to
the moments from the external loads to fit. PT-cables are used for e.g. large bridges,
containers, concrete platforms and frame structures cast in situ.[Sørensen, 2013]

PT-cables for the base case

In the technical report [Engseth et al., 2016], it is suggested to use post-tension cables,
6-31 stand Y1860 for the longitudinal cables, as stated in 3.4. The technical report
suggests further a centre distance of 700 mm, and a total area of 4650 mm2 per post-
tension cable, for both walls and top and bottom slabs.[Engseth et al., 2016]

However, in order to include the effects of the post-tension cables, the amount of cables
is needed. As suggested by Arianna Minoretti, representing the NPRA, the amount of
necessary PT-cables for the smallest cross-section is used for all cross-sections in the
parts with varying heights as a simplification. In reality, the amount of PT cables may
vary across the length of the bridge. Using a centre distance of 700 mm, the amount
of PT-cables are approximately 18 in bottom/top slab and 21 in the walls. That is, 78
cables in total. In this thesis, it is assumed that the cables are symmetric and have a
centric location in each part of the cross-section.

5.4 Cross-sectional properties

The original model proposed by dr. techn. Olav Olsen in [Engseth et al., 2016] has
varying cross-section, as shown in fig. 3.2. Two cross-sections cases are investigated
in this thesis. The base case is a simplification of the original model proposed by dr.
techn. Olav Olsen in [Engseth et al., 2016]. That is, a simplification of the tapered
part using a linear approximation. The next model is a constant average cross-section
throughout the structure length.

As earlier stated in section 5.2, the 2-node beam elements in GeniE assume constant
cross-sections. To account for the two parts with linearly varying cross-section an ap-
proximation has to be made. The part with linearly varying cross-section is divided
into 4 parts with different cross-sections. Within each part, the cross-section is con-
stant. The method for finding the cross-sections heights is given in AB.3. Dimensions
for the cross-sections in fig. 3.2, together with concrete area and second moment of in-
ertia about z-axis, are given in the feasibility study [Engseth et al., 2016]. These values
are the basis for calculating the resulting dimensions. An illustration of the resulting
front elevation is given in figure 5.3.
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Figure 5.3: Illustration of the model with varying cross-section

For simplicity, the cross-sections are modeled in GeniE as general cross-sections. When
creating a general section, the software demands even more cross-section properties
which have to be calculated in advance. These are calculated based on the cross-
sectional dimension given in fig.3.2. The calculated cross-sectional properties and for-
mulas can be found in appendix B. It is important to note that the cross-section in 3.2
is assumed doubly symmetric. In z-direction, it is assumed that the ballast chambers
COG, coincides with the outer structure COG. Also note that when calculating the mo-
ments of inertia about y-direction Iy, the brackets are included by adding 2%. This
percentage corresponds to the deviation in Iz when calculating Iz without brackets,
based on the dimensions given in fig 3.2, compared to the values given in the technical
report. For the remaining properties, the brackets are simply not accounted for.

The cross-sectional properties for the case of a constant cross-section are found by tak-
ing the average of the given heights, areas and moments of inertia for cross-section 3.2
a and b. Additional properties are calculated from these average values. A complete
summary of cross-sectional properties used in the analysis is given in app. B.

5.4.1 Transformed cross-section

When calculating the stresses in concrete in SLS, it is assumed that there is full ad-
hesion between the concrete and the reinforcements, meaning that the materials have
the same strain, and that the materials are linearly elastic. The latter refers to Hook’s
law. The stresses will be affected by the different modulus of elasticity for the different
materials. First, we look at the effects of ordinary reinforcements only. By equilibrium
considerations, a mutual strain can be expressed as given in eq. 5.1. The derivation of
eq. 5.1 can be found in [Sørensen, 2013].

ε =
P

Ec[Ac + ( Es
Ecm

)As]
(5.1)

Where P is an axial compression force, Ecm and Es are the modulus of elasticity of
concrete and reinforcements respectively and Ac and As are the cross-section areas
of concrete and reinforcements, respectively. The denominator in eq. 5.1 represents
the equivalent stiffness of the cross-section. The modulus of elasticity of concrete Ec
is multiplied with an equivalent or transformed concrete cross-section, including the
effects of the reinforcements.[Sørensen, 2013]

In [Bernhardt, 1975], the effects of PT-cables are included when calculating the trans-
formed concrete area as shown in eq.5.2.
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AT = Ac + η(As + A′s) + ηp Asp (5.2)

where AT represents the transformed concrete area, Ac is the total concrete area, As
and A′s are the total ordinary reinforcement areas and Asp represents the total PT-cable

area. Here, η = Es
Ec

and ηp =
Ep
Ec

. In the latter, Ep is the modulus of elasticity for
PT-cables.

If the PT-cables have an eccentricity in relation to the COG, the new location of the
COG has to be determined.[Bernhardt, 1975]

Transformed area and moment of inertia for the base case

In the following, only the longitudinal reinforcements and post-tension cables are ac-
counted for. Contributions from vertical reinforcements and post-tension cables should
also be investigated. In addition, brackets are not included here.

Due to the assumption of symmetric ordinary reinforcements and symmetric amount
of PT-cables in both directions, the COG including the reinforcements and PT-cables
will coincide with the COG of concrete. However, if there was unsymmetrical number
of PT-cables, the COG would have shifted in z-direction. The procedure for calculating
the new position of the COG is based on moment equilibrium about the original COG
and given in [Sørensen, 2013].

For a rectangular section with post-tension cables in the lower edge, [Sørensen, 2013]
defines the transformed moment of inertia as eq. 5.3.[Sørensen, 2013]

It =
bh3

12
+ bhy2

t + (ηp − 1)Ap(e− yt)
2 (5.3)

However, in this particular case we have a box section. To simplify the calculations
of the transformed moment of inertia, the contributions from concrete, ordinary rein-
forcements and PT cables are kept separate. That is:

It = It,c + It,s + It,p (5.4)

where It,c is the contributions in moment of inertia from concrete area, It,s is the contri-
butions in moment of inertia from ordinary reinforcements and It,p is the contributions
from post-tension cables. All contributions includes the effects of parallel axis theorem.
See appenxix.F.2.

5.5 Boundary conditions

By reference to the technical report [Engseth et al., 2016] the bridge is assumed clamped
at both ends. That is, that all translations and rotations are fixed at the two ends of the
structure. This simulates the connections to the rock tunnels at the two ends of the
crossing.
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5.6 Ballast

According to the technical report, the bridge should contain permanent ballast con-
sisting of both solid ballast and water ballast. The solid ballast has specific weight
19kN/m3.[Engseth et al., 2016]. The ballast chambers has varying height, as seen from
fig. 3.2. The total area of the three chambers for the smallest cross-section is 28.3m2,
while the total area of the three chambers for the largest cross-section is 53.8m2. In this
thesis, it is assumed that the total ballast chamber area vary linearly between these two
areas for the part of the bridge with varying cross-section. The same method for finding
the height of the approximated cross-sections, app. B.3, is applied to find the chamber
areas for each element in fig. 5.3. In the technical report, the ballast chamber fill is
given in percentage for the two cross-section. It is given that the smallest cross-section
has ballast fill of 60.4%, while the largest cross-section has ballast fill of 79%.[Engseth
et al., 2016] For the part of the bridge with varying cross-section, the same approach
of linear approximation is applied. The amount of water and solid ballast is assumed
34% and 66% respectively, of the ballast fill.

In this thesis, the permanent ballast is accounted for by increasing the total material
density ρ0. This can easily be done by rearranging the equation for mass, eq. 5.5,
which corresponds to the mass of concrete plus mass of ballast fill.

AcLρ0 = AWBLρWB + ASBLρSB + AcLρRC (5.5)

where RC stands for reinforced concrete, WB stands for water ballast and SB stands for
solid ballast. AWB is assumed 34% of the total ballast fill area, while ASB is assumed
66% of the total ballast fill area. Each element in fig 5.3 has individual values for the
ballast fill area. Thus, there will be five material densities in total for the case with
tapered parts, and one additional density for the case with constant average cross-
section. The ballast fill percentages and resulting ballast fill areas for the base case are
given in tab.5.2.

Table 5.2: Linearly varying ballast fill, section 1 to 5.

Section Ballast percent fill Resulting ballast fill area
1 79% 42.50 m2

2 74.4% 35.35 m2

3 69.7% 28.79 m2

4 65.1% 22.80 m2

5 60.4% 17.39 m2

In both static analysis and eigenvalue analysis, a simplified ballast case is used in addi-
tion to the base case. This simplification is made to compare results from the software
with simple hand-calculations. The simplified case is a constant average cross-section
throughout the structure length, where an average is taken between the two given
ballast fills (average between the ballast fill corresponding to the largest and smallest
cross-section given in the technical report). The average ballast fill is given in table 5.3.
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Table 5.3: Constant average ballast fill, for average cross-section.

Section Ballast percent fill Resulting ballast fill area
Average 69.7% 28.79 m2

5.7 Hydrodynamic coefficients

Added mass and damping coefficients from [Xiang et al., 2017] are based on Frank
Close Fit Method. The damping coefficients are close to zero, reflecting that the abil-
ity of the structure to generate waves is very small. The added mass coefficients are
assumed constant without potential damping.[Xiang et al., 2017] Added mass and
damping coefficients are assumed independent of frequency. In Sesam, added mass
loads are calculating by executing Wajac. The default is to not calculate added mass
and damping, so this has to be checked. The value Cm = 2.0, corresponding to added
mass coefficient with value 1.0, is used for all elements. The coefficient is specified for
force components normal to the members. At each load calculation point, added mass
components per unit length are calculated [DNV-GL software, 2017]:

ma = [ρ
π2

4
(Cm − 1)] (5.6)



Chapter 6

Static response analysis

This chapter concerns a study of the static response of the SFT proposed for the Di-
gernessund. First, the theory for static analysis is given together with finite element
formulations for straight and curved beams. The load cases and load combinations
used in static analysis are also given. The structural behaviour is investigated in both
ultimate limit state and serviceability limit state. The response of static analysis is
meant as the resulting bending moments, torsion moments, reaction forces and the
displacements of the structure.

The results from static analysis are given in section 6.5. The base case is a curved bridge
with a horizontal curve height C = 24.25m, in correspondence with the proposed
concept in [Engseth et al., 2016]. The model has varying cross-section as described
earlier. The result-section also includes a parameter study of the curve height. The
results from static analysis with straight configuration (C = 0), curved configuration
with curve height C = 53 and C = 60 are compared to the results for the base case.

The effects of the PT-cables and reinforcements on the bending moments were calcu-
lated by hand, and are also included in the result section.

6.1 Theory of static analysis

6.1.1 Static analysis

The theory for static response analysis given in this section is gathered from [Moan,
2003a].

Structural analysis using finite element method is based on three fundamental laws.
These are equilibrium in all parts of the structure, compatibility in the material and
Hook’s law for linearly elastic material. Compatibility in the material means that the
material is contionus as it deforms, and that all adjacent sections share deformations. In
addition, in linear analysis it is assumed that the displacements are small, meaning that
the equilibrium equations are established based on the initial configuration. [Moan,
2003a]

45
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For each element, the displacement within the element can be expressed by assumed
shape functions. These shape functions are scaled by the node displacements. The re-
lationship between the displacements and forces at the node points are given in eq.6.1.

S = kv + So (6.1)

where S is the generalized nodal point forces, k is the element stiffness matrix, v is the
nodal displacements and So is the external nodal point forces. The element stiffness
matrix can be found by energy or work considerations.

Demanding equilibrium for all nodal points, the stiffness relation for the total system
is given by eq. 6.2.

R = Kr + Ro (6.2)

where R is the nodal load vector, K is the global stiffness matrix, r is the unknown
nodal displacements and Ro is the external nodal point forces.

The global stiffness matrix K can be found by assembling and adding the element stiff-
ness matrices. The nodal load vectors R and Ro can also be obtained from the element
nodal forces. Applying the boundary conditions, meaning setting nodal displacement
equal to known values, the global displacements can be found by rearranging eq. 6.2
and solving eq. 6.3:

r = K−1(R−Ro) (6.3)

Knowing the displacements, stresses can be found by Hook’s law on matrix form.

Static analysis in Sestra

The method in Sestra is based on a displacement based finite element method which
results in a linear system of equilibrium equations (eq. 6.4).

Kr = R (6.4)

where R represents the nodal load matrix. Application of boundary conditions reduce
the system to 6.5:

Kiiri = Ri (6.5)

where i represents the dof of the structure.

In Sestra, the solution method for the system equilibrium equation is based on Cholesky
factorization. Please note that Sestra is limited to linear theory assuming small dis-
placements.
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Nonlinear analysis

The theory in this section is gathered from [Moan, 2003b]. A linear structural analysis
gives information about nonlinearities that can be important for the particular problem
of interest. Such information can be if and where the stresses exceeds allowable limits,
which may imply that elasto-plastic behaviour should be considered. If the structure
is loaded with compressive loads, buckling may be an important problem. Code for-
mulations about the ultimate strength can together with the elastic buckling load give
information about the ultimate capacity to be expected.[Moan, 2003b]

For ultimate and accidental limit states it can be necessary to include nonlinear struc-
tural behaviour for design. Nonlinear structural behaviour can be divided into three
different types, geometrical nonlinearity, material nonlinearity and nonlinearity asso-
ciated with boundary conditions. Geometrical nonlinearity will be the focus in the
following, and is the structural behaviour when the deformations cannot be assumed
small and the change of geometry is accounted for when calculating strains, stresses
and establishing equilibrium equations.

Geometrical nonlinear problems can be classified into small strain GNL problems and
large strain GNL problems. The first is associated with small or large rotations. Rele-
vant problems with small rotations can for instance be arches deflected by transverse
load. Relevant problems with large rotations can for instance be for deep arches. Large
strain GNL problems are complex and associated with manufacturing processes.

Two different formulations for geometrical non-linear problems are the total Lagrange
formulation and the updated Lagrange formulation. In the latter formulation, a local
system is used to determine the element stiffness relationships, which then is trans-
formed into a fixed, global coordinate system before assembling the global stiffness
relation. When the deformations cause the geometry to change the local coordinate
systems need to be updated. Thus, the non-linear effects are included by continuously
changing the transformation matrices. Here each element is assumed to behave lin-
early when referred to co-rotational coordinates, and thus small deformations on local
level are assumed. The total Lagrange formulation is on the other hand based on a
fixed coordinate system. The strain formulation utilized here is the Green’s strain. For
a plane beam with axial displacements of the neutral axis, the vertical displacement
wx causes additional axial membrane strain, which is recognized as the last term in
eq.6.6. If the axial strains are not small, the horizontal displacement ux cause another
additional term, which is recognized as the third term in the same equation. These two
additional terms are ignored in linear theory. Thus, as opposite to linear analysis, the
axial and lateral behaviour is coupled in non-linear geometrical problems.

Exx = u,x − zw,xx(x) +
1
2

u2
,x +

1
2

w2
,x (6.6)

An initial lateral deflection, which is the same as the beam being a shallow arch, will
also affect the formulations. When an additional lateral displacement wx occurs, the
resulting arch length is given by eq.6.7 and the resulting Green strain is given by eq.6.8.

ds∗ = [1 + (w̄,x + w,x)
2]

1
2 dx ≈ [1 +

1
2
(w̄,x + w,x)

2]dx (6.7)
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Exx = u,x − zw,xx + w̄,xw,x +
1
2

w2
,x (6.8)

The equations to be solved in nonlinear structural analysis is given by eq.6.9 and
eq.6.10. The displacement vector r is sought for a given external load R, and the stiff-
ness matrix is dependent on the displacements and thus given on incremental form
(eq.6.11). The equations can be solved by different techniques, such as incremental
procedures, iterative procedures or combined methods. See [Moan, 2003b] for more
information about the solution methods.

∑
i
(ai)TSi = R (6.9)

KI(r)dr = dR (6.10)

KI = K0 + KG + Kσ (6.11)

The first term is the contribution from small displacement structural analysis. The
second term represents the effect of changing geometry on the stiffness, and the latter
term represents the effect of initial member forces.

Initial imperfections and amplification factor

The theory in this section is gathered from [Amdahl, 2013]. For real structures, ge-
ometric imperfections exist. Assume that initial imperfections can be described by a
sinusoidal (fig. 6.1):

Figure 6.1: Pin-end column under axial compression. Illustration: [Amdahl, 2013]

The total deformation is given by:

w = wosin(
πx
l
) (6.12)

By means of energy methods and the principle of minimum potential energy, an ex-
pression for wo can be obtained according to [Amdahl, 2013], eq.6.13-6.14:
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wo = woi
1

1− N
NE

(6.13)

M = M0
1

1− N
NE

(6.14)

where the latter term represents an amplification factor. Generally, the amplification
factor multiplied by the deflection gives a good estimate for the maximal deflection,
but is poorer for maximum bending moment. For large axial forces, the discrepancy
can be significant. Still, the total stress is dominated by the mean compressive stress
and the discrepancy in the total stress will be smaller.[Amdahl, 2013]

The capacity is smaller than the Euler buckling load, NE, which is approached asymp-
totically. Increasing initial imperfections results in non-linear response (fig. 6.2).

Figure 6.2: Pin-end column under axial compression. Illustration: [Amdahl, 2013]

The Euler buckling load for a straight beam is given by eq.6.15.[Larsen et al., 2009]

NE =
π2EI

l2
k

(6.15)

lk is defined as the buckling length and is dependent on the supports. For a straight
beam with both ends fixed, lk can be approximated as lk = 0.5l, where l is the total
length of the beam.[Larsen et al., 2009]

True amplification factor for beam with fixed ends, subjected to axial compression and
lateral uniform load (fig. 6.3) are given in eq. 6.16-6.17 [Amdahl, 2013].

Figure 6.3: Pin-end column under axial compression.[Amdahl, 2013]
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a =
kl
2

=
π

2

√
N

π2EI/l2 (6.16)

fm =
2
a2 (

1
cos(a)

− 1) (6.17)

6.1.2 Finite element formulations

Finite element formulation for a beam element

For a beam element, compatibility is ensured by proper boundary conditions, and de-
scribing the displacements by continous lateral displacement w. Navier’s hypotesis is
assumed, meaning that it is assumed that the cross-sections remain plane and perpen-
dicular to the beam axis at all times. [Moan, 2003a]

The displacements are assumed expressed by displacement patterns w within the ele-
ment. The displacement pattern is defined by eq. 6.18:

w = Nqq (6.18)

where q is defined as a set of generalized displacements, and Nq is the generalized
shape functions.

The nodal displacements v is related to the generalized displacements q in eq.6.19.

v = Aq (6.19)

Inserting eq.6.19 into eq. 6.18 we obtain the following:

w = Nqq = NqA−1v = Nv (6.20)

The approximated curvature can be calculated by eq.6.21:

κ =
d2w
dx2 =

d2

dx2 [Nqq] = [Bqq] (6.21)

Applying the principle of virtual displacement results in eq.6.22:

∫ L

0
ṽTA−TBT

q (EI)Bq(A−1)ṽdx = (ṽ)TS +
∫ L

0
(ṽ)T(N)Tqdx (6.22)

For all possible ṽ:

∫ L

0
[(A)−TBT

q (EI)Bq(A−1)dx]v = S +
∫ L

0
(N)Tqdx (6.23)
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resulting in eq. 6.24:

S = kv + So (6.24)

where k =
∫ L

0 (A)−TBT
q (EI)Bq(A)−1dx = (A)−Tkq(A)−1. Here, kq is the generalized

stiffness matrix.

When the system relation eq. 6.24 is solved, the bending moment in an arbitrary point
in the beam can be found by 6.25:

Mx = −EIw,xx = −EI
∂2

∂x2 (N)v (6.25)

Finite element formulation for curved one-dimensional structures

The theory in this section is gathered from chapter 8 in [Moan, 2003a]. Curved struc-
tures carry loads by a combination of bending moments and in-plane forces. The in-
teraction between the bending and membrane behaviour is due to the curved config-
uration. Fig.6.4 show the definitions of the axial force N, shear force Q and bending
moment M for an arc. Considering a infinitesimal element of length ds, 6.4 a, equilib-
rium equations can be established.

Figure 6.4: Displacements and forces for an arc. (Illustration: [Moan, 2003a])

Requiring equilibrium in s-direction:

qsds + (N + dN − N) + Qdθ = 0 (6.26)

inserting dθ = ds/R into eq. 6.26 give:

qs +
∂N
∂s
− Q

R
= 0 (6.27)

similar in z-direction:
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qz +
∂Q
∂s
− Q

R
= 0 (6.28)

Fig. 6.4b show the displacement of the middle surface when the element deforms be-
cause of the applied forces in 6.4a. The total length change ∆ds due to the deformation
is given by:

∆ds =
∂u
∂s

ds + wds =
∂u
∂s

ds +
w
R

ds (6.29)

The slope of the middle surface due to the deformation is given by:

θs =
dw
ds
− u

R
(6.30)

The second term in 6.30 represents the contribution from the arc undergoing pure axial
displacement, while the first term is known from straight beams.

Based on eq. 6.30, the curvature is given by:

κs =
dθs

ds
=

d2w
ds2 −

du
Rds

(6.31)

The total strain for the arc is given by eq. 6.32:

εt = εm +εb = εm − zκ (6.32)

where εb represents the contribution from bending, and εm is the contribution form
membrane action. The membrane, or axial, strain is defined as following:

εm =
∆ds
ds

=
∂du
∂ds

+
w
R

(6.33)

The stiffness relation can be obtained by principle of virtual displacements, in the same
manner as shown for straight beam elements in sec. 6.1.2. The stiffness expression
for an arc will however consist of one bending term and one additional term.[Moan,
2003a]

Arc as an assemble of straight beam elements

An arc can be modelled by straight beam elements (fig.6.5). The differences in element
orientation result in coupling between axial forces (membrane action) and bending
action. The displacements may be assumed cubic and linear for lateral and axial dis-
placements, respectively. [Moan, 2003a]
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Figure 6.5: Illustration of the coupling between membrane and bending action due to
element orientations (Illustration: [Moan, 2003a]).

6.2 Load cases used in static analysis of the SFT

Current

The current load was applied as an uniformly distributed load, or line load. The mag-
nitude was, in accordance with section 4.2.3, set to 7.6kN/m. Different profiles of the
current were investigated in this thesis: uniform distributed current over the full length
of the bridge in negative and positive y-direction, asymmetrically distributed current
and a uniform distributed current over a mid-section of the bridge.

Traffic

Traffic loads were applied as uniformly distributed loads, or line loads, on each el-
ement. These loads were applied in the negative z-direction, meaning in the lateral
direction. The magnitude, according to section 4.1.2, was set to 36kN/m.

Selfweight

A built-in option for the self-weight in GeniE uses the material densities to calculate
the total self-weight of the structure. An acceleration field corresponding to gravity
is used, and Sestra converts the gravity load to a linearly varying load.[DNV-GL soft-
ware, 2014] Thus, in addition to the actual material density of concrete, ballast and
other weights are added to the material density to be included in the mass-matrix.
This is especially important for the eigenvalue analysis in section 7. The material den-
sity is therefore adjusted to account for all contributions to the self-weight. This can
easily be done by rearranging the equation of mass, eq.5.5, including all contributions.

AeLρtot = AcLρRC + mballast + mother (6.34)

The first term corresponds to the mass of concrete, where RC stands for reinforced
concrete and Ae is the equivalent area, recall sec.3.3. ρRC was found based on the
specific weight of reinforced concrete, assumed 25kN/m3 for the analysis carried out
in [Engseth et al., 2016]. mballast was found in section 5.6 and mother is a sum of all other
contributions, meaning pavement, curbstone, fire protection, cables and ducts, signals,
call stations, marine growth, extra asphalt and illumination. The magnitude of these
mass contributions are calculated according to tab. 4.1. All contributions are multiplied
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with corresponding load factor, given in section 6.3. Because of the varying cross-
section, there are five total material densities applied to the corresponding sections
(see app.D, tab.D.1).

To ensure that the self-weight is applied in a correct manner by using the built-in option
in GeniE, a simple calculation of a straight beam with constant average cross-section
was carried out, see app. H.1 for calculation and sec. 6.5.1 for the results.

Buoyancy

Buoyancy is modeled using a built-in function in GeniE, executing Wajac. Hydro prop-
erties, called "hydro" in GeniE, has to be defined and assigned to the structure. These
properties are flooding-properties and buoyancy areas. The environment data needed
for the buoyancy calculation is the water density, water depth and waterline Z above
the structure. The density of seawater was assumed 9.955kN/m3, in accordance with
[Engseth et al., 2016] and [Vegdirektoratet, 2015]. The water depth, meaning the loca-
tion of the seabed, is assumed z = −200 meters and the free surface at z = 0. The
structure is located to a water depth of z = −50m.

The flooding property in GeniE tells whether the structure is flooded(=1), meaning
filled with water or non-flooded(=0), meaning filled with air. [DNV-GL software, 2017]
The straight beam elements are assumed non-flooded with buoyancy area equal to the
concrete area plus the area of air inside the structure. Each cross-section of the varying
part of the bridge is assigned corresponding buoyancy areas, which are calculated in
advance. The buoyancy forces are thus calculated by Wajac as a vertical line load along
the member.[DNV-GL software, 2016]

To check that the buoyancy is applied in the correct manner, the results from static
analysis with buoyancy only is compared with the results obtained when buoyancy is
applied manually as distributed loads. See results in app. H.2.

Axial compression force from PT-cables

In the feasibility study of a SFT for Sognefjorden, the same type of post-tension cables
are chosen as for the base case. For Sognefjorden, a loss of post-tension is assumed
10%, giving an effective post-tension force (eq.6.35). [Statens Vegvesen, 2011]

P = 0.9 · 0.8 fp,0.1k Ap (6.35)

Assuming that the amount of post-tension cables for the base case are constant for the
whole bridge length, the total effective post-tension force is calculated 428 MN, based
on eq. 6.35. Thus, the concrete is subjected to a compression from the PT-cables with
magnitude −428MN. Note that the compression force from PT-cables is not included
in the static analysis in Sestra. However, the compression force is included in the stress
calculations for SLS.
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6.3 Load combinations

ULS

The load combination "ULS maximum buoyancy", tab. 6.1, is a load combination sim-
ulating worst ULS case with minimum weight. Thus, marine growth and variable
wearing layer are not accounted for. The load factors are taken from [Engseth et al.,
2016]. Because the buoyancy is dominating it is assumed that the most unfavourable
is to assume no traffic loads.

Table 6.1: Load combination for ULS max buoyancy

Load Load factor
Buoyancy 1
Weight of concrete structure 1
Weight of permanent solid ballast 1
Weight of water ballast 1
Sum permanent weights 0.99
Non-structural elements installed in place 0.85
Marine growth 0
Weight of water absorbed 0
Weight of variable wearing layer -1.35
Post-tension 1.1

Load factor unfavorable
Traffic 0
Current 1.12

SLS

The load combination "SLS", tab. 6.2, is a load combination for the serviceability limit
state simulating the worst case in SLS. The load factors are taken from [Engseth et al.,
2016].
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Table 6.2: Load combination for SLS

Load Load factor
Buoyancy 1
Weight of concrete structure 1
Weight of permanent solid ballast 1
Weight of water ballast 1
Sum permanent weights 1
Non-structural elements installed in place 1
Marine growth 1
Weight of water absorbed 1
Weight of variable wearing layer 1
Post-tension 1

Load factor unfavorable
Traffic 0.7
Current 1

6.4 Stress calculations

This section gives the basis for conducting stress checks to ensure that the base case
structure has desirable structural integrity. The theory and practical methods are gath-
ered from [NS-EN1992, 2004], [Sørensen, 2013] and [Statens Vegvesen, 2011]. In the
stress calculations it is assumed that tensile stresses are positive, forces are positive in
tension and positive bending moments give tension at the underside. This corresponds
to the convention in section 6.2 in [Sørensen, 2013]. In the feasibility study of a SFT for
the Sognefjorden, it was required that the cross-section of the SFT remain uncracked
in SLS to avoid leakage.[Statens Vegvesen, 2011] This requirement is in this thesis also
employed for the base case SFT. Thus, for the stress calculations in SLS, the concrete
cross-section is assumed uncracked.

Check of compressive stresses in the concrete in SLS

According to [NS-EN1992, 2004] 5.10.2.2, it is important to check for and to avoid
local crushing of concrete in the ends of a post-tensioned structure. The compressive
stress in the concrete should therefore be checked, to avoid both crushing and cracks
in the longitudinal direction. According to 7.2(1), cracks may occur if the stress level
for the characteristic load combination exceeds a critical value, which may affect the
durability of the structure. The compressive stress in the concrete due to the post-
tension force and other loads, which acts when the post-tension is applied, is limited
to σc ≤ 0.6 fck(t). fck(t) is the compressive strength of concrete.[NS-EN1992, 2004]

Recall that in sec. 5.3.2, it was assumed that the number of PT-cables is constant for the
whole length of the bridge and symmetrically placed around the neutral axis. See app.
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E.2 for sketch of the placement of reinforcements and PT-cables. Moments from longi-
tudinal PT-cables are neglected because the contributions above and below the centre
of gravity will cancel each other if the concrete cross-section is assumed uncracked.

The compression stresses in the transformed concrete cross-section are calculated based
on the procedure in sec. 6.2 in [Sørensen, 2013]. It is assumed that the axial compres-
sion forces from applied current and PT-cables, together with the bending moments
due to net vertical forces and current, acts in the reinforced concrete cross-section cen-
tre of gravity.

σc =
P

AT
+

Nxx

AT
+

Mxzy
Iz,t

fm +
Mxyz

Iy,t
fm (6.36)

The stresses are found by eq. 6.36 by inserting the right signs for the moments, forces
and actual value for y and z. The stresses can thus be found at desired locations in the
cross-section. P is the axial compression force from the PT-cables, Nxx is the axial force
from the current acting in the negative y-direction, Mxz is the bending moment due to
the current acting in the negative y-direction and finally Mxy is the bending moment
due to net vertical forces (buoyancy, traffic and self-weight). fck(t) is 55 MPa for the
base case. fm is an amplification factor due to the axial compression from PT-cables.

Equation 6.36 is adapted from [Sørensen, 2013], but include some modifications. First,
the equation is modified to include bending moment from the transverse current load.
Next, the bending moments are amplified by an amplification factor fm due to the axial
compression from the PT-cables. Recall section 6.1.1.

Check of tensile stresses in the concrete in SLS

According to [NS-EN1992, 2004] 7.1(2), the concrete cross-section should be consid-
ered un-cracked in the calculations of stresses, provided that the tensile stresses in the
concrete is below fctm, which is the tensile strength of concrete. If this is not the case,
the stress calculations should be carried out based on a cracked cross-section.

σcs =
P

AT
+

Nxx

AT
+

Mxzy
Iz,t

fm +
Mxyz

Iy,t
fm (6.37)

To find the critical current condition for the base case and the present signs of the
different terms in eq.6.37, a sensitivity study of the axial forces for different current
conditions were conducted. Results are given in app.G.1.1
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6.5 Results from static analysis

6.5.1 Results from Sestra compared to hand-calculations

Table 6.3: Comparison of results for the bending moments about y-axis from hand
calculations and SESAM. Straight bridge configuration with constant average cross-
section is assumed here.

Hand calc. (MNm) SESAM (MNm)
Mend 5887 5885
Mmid -2943 -2942

6.5.2 Base case static analysis results

Amplification factor due to axial compression from PT-cables

Table 6.4: Amplification factor for straight bridge configuration with fixed ends and
constant average cross-section.

Parameter Unit Value
Axial compression from PT-cables (MN) 428
Euler buckling load (MN) 7438
Amplification factor (-) 1.063

Results for ultimate limit state with max buoyancy

Table 6.5: Reaction forces, ULS max buoyancy

Results
Fx (MN) -8.988
Fy (MN) 2.553
Fz (MN) -45.758

Table 6.6: Bending moments and torsion moment, ULS max buoyancy

Results
Mxy,ends (GNm) 5.818
Mxy,mid (GNm) -2.955
Mxz,ends (GNm) 0.114
Mxz,mid (MNm) -48.773
Nxx,max (MN) 9.267
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(a) Net moment distribution of bending mo-
ment about y-axis due to forces applied in z-
direction.

(b) Bending moment about z-direction due to
current applied in positive y-direction.

Figure 6.6: Bending moment distribution

(a) Shear force distribution in y-direction
due to current forces applied in positive y-
direction. (b) Net shear force distribution in z-direction.

Figure 6.7: Shear force distributions

Figure 6.8: Axial force distribution due to current applied in positive y-direction.
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Figure 6.9: Net torsion moment distribution.

Results for serviceability limit state

Table 6.7: Bending moments, torsion moment, axial forces and reaction forces for base
case, SLS. The bending moments include an amplification factors due to compression
force from PT-cables.

Results Sestra
Mxy,ends (GNm) 2.65
Mxy,mid (GNm) -1.59
Mxz,ends (MNm) 108.54
Mxz,mid (MNm) -46.29
Mxx,max (MNm) 81.32
Nxx (MN) 8.274
Fx (MN) -8.025
Fy (MN) 2.279
Fz (MN) -13.59

Table 6.8: Displacements for base case, SLS. Including amplification factor due to com-
pression force from PT-cables.

Results
u (mm) 0.28
v (mm) 13.51
w (m) 0.52
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(a) Moment distribution about y-axis (b) Net moment distribution about z-axis

Figure 6.10: Bending moment distributions

Figure 6.11: Axial force due to current applied in positive y-direction.

(a) Distribution of shear force in y-direction
(b) Distribution of net shear force in z-
direction

Figure 6.12: Shear force distributions
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Figure 6.13: Net torsion moment about x-axis

6.5.3 Results from stress calculations for base case

Check of compression stress in concrete in SLS

Table 6.9: Calculated maximum compression stresses in concreteσc for SLS. The results
are given in N/mm2 and in percent of the compression strength of the base case bridge.

Location σc (N/mm2) Utilization (%)
At bridge ends -19.24 58.3
At midspan -16.813 50.9

Check of tensile stress in concrete in SLS

Table 6.10: Calculated maximum tensile stresses in concreteσcs for SLS. The results are
given in N/mm2 and in percent of the tensile strength of the base case bridge.

Location σcs (N/mm2) Utilization (%)
At bridge ends 5.70 135.7
At midspan 2.26 53.8

6.5.4 Results from parameter study with curve height

The results below does not include effects from PT-cables and reinforcements for sim-
plicity. Thus, Iy and Iz are used.

Table 6.11: The curve heights used in the parameter study with associated element
lengths and total bridge length. The number of elements are 12 for all curve heights.

C (m) Le (m) Lbridge (m)
0 49.7666 597.2
24.25 50.0000 600.0
53 50.7917 609.6
60 51.0719 612.9
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Table 6.12: SLS reaction forces, bending moments and axial forces for different curve
heights with the case of a negative current applied to the full length of the bridge.

Curve height 0m 24.25m 53.0m 60m
Mxy,ends (GNm) 2.605 2.500 2.628 2.672
Mxy,mid (GNm) -1.572 -1.492 -1.526 -1.538
Mxz,ends (MNm) -237.36 -100.09 -31.16 -24.65
Mxz,mid (MNm) 101.45 42.57 14.41 12.05
Mxx,max (MNm) 0 81.08 177.03 200.20
Nxx (MN) 0 -8.397 -6.075 -5.63
Fx (MN) 0 8.15 5.63 5.14
Fy (MN) 2.26 2.28 2.32 2.33
Fz (MN) -14.43 -13.59 -13.82 -13.89

Table 6.13: SLS dispalcements for different curve heights.

Curve height 0m 24.25m 53.0m 60m
u (mm) 0 0.28 0.19 0.17
v (mm) -30.4 -12.9 -4.29 -3.5
w (m) 0.524 0.508 0.553 0.570

6.6 Discussion of static analysis results

Hand calculations compared to results from Sestra

The results from Sestra are similar to those obtained from hand calculations of the self-
weight, tab.6.3. Note again that this calculation was done with a straight model of the
bridge with constant average cross-section for simplicity. The FEM-solution slightly
underestimates the bending moments and forces. Since the results from Sesam de-
viates from the hand-calculations with less than one percent it is assumed that the
deviations are a result of round-off errors. It is concluded that the FEM-model give
reasonable results when the bridge is subjected to the self-weight of reinforced con-
crete.

Discussion of static analysis results for base case

The load combinations and load factors were chosen based on the chart given in [En-
gseth et al., 2016], see app.A.1. Two load combinations were investigated in this thesis,
the serviceability limit state case and the ultimate limit state case with maximum buoy-
ancy. Other load combinations should also be investigated, like the case of minimum
buoyancy, maximum weight and traffic for instance. For the SLS combination, the load
factor for traffic loads was set to 0.7, according to the chart. With the ballast amount
used for the base case, the net vertical loads were dominated by buoyancy. An even
worse scenario in the SLS combination will thus be no traffic loads.
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Figures 6.6a and 6.7b show the net moment distribution for bending moment about
y-axis and corresponding shear forces in z-direction. The largest values of the bending
moments are located at the two ends of the bridge, giving tension on the underside. At
midspan the value is approximately half the value at the ends, and give tension on the
upper side. This is similar to the moment distribution for a simple straight beam with
clamped support, subjected to uniform distributed load. It is observed that buoyancy
is dominating for this load combination. The maximum bending moment is 5.818 GPa,
which is a relatively high value. To avoid cracking of the concrete due to bending mo-
ments and shear forces, an assessment of necessary reinforcements should be carried
out. The procedure for this is described in [Sørensen, 2013]. The bending moments can
also be lowered by optimizing the cross-section and ballast amount. Increasing e.g.
the cross-section thicknesses will increase the mass, which again will counter-act the
buoyancy and result in lower bending moments and shear forces.

The reaction forces in x-direction and y-direction are results from applying current
loads in y-direction. Because the bridge is curved, the current loads will have com-
ponents in both x- and y-direction because of the eccentricities of the straight beam
elements. The applied current loads produces both axial forces in the bridge and bend-
ing moments about z-direction, which is illustrated in figures 6.6b and 6.8. The corre-
sponding shear force distribution in y-direction is given in fig.6.7a. As earlier explained
in section 6.1.2, the transverse loads are carried by both membrane and bending action
due to the horizontally curved configuration.

Fig.6.9 show the moment distribution for torsion moment about z-axis. The torsion
moment is due to the fact that the bridge is curved. The gravity and other inertia
loads act in the centre of gravity. If the centre of gravity does not coincide with the
shear centre the consequence is torsion.[DNV-GL software, 2014] Torsion moments on
concrete structures may result in cracking of the concrete.[Sørensen, 2013] Therefore,
an assessment checking whether it is necessary with torsion reinforcement should be
carried out. The procedure for this is given in [Sørensen, 2013].

The tables 6.7 and 6.8 show results from static analysis with the SLS load combination.
Because of the applied current load, there are small displacements in x- and y-direction.
The limitation of short time deflections in the horizontal direction was set to L/200, cor-
responding to 3 m.[Engseth et al., 2016] Thus, the horizontal displacements are within
the limitation and therefore acceptable. The lateral displacement is 0.52 m. The limi-
tation of short time deflection in vertical direction was set to L/350, corresponding to
1.71 m.[Engseth et al., 2016] Thus, the vertical displacement calculated from Sestra is
also acceptable according to the limitations.

Fig.6.10a shows the bending moment about y-axis due to applied forces in z-direction.
Fig.6.10b shows the bending moment distribution about z-axis, due to applied forces
in y-direction. The shape of the bending moment distributions are similar to those in
the ULS maximum buoyancy load combination. Compared to the results from SLS,
tab.6.7, the bending moment about y-axis is nearly doubled in ULS maximum buoy-
ancy. Recall that the SLS load combination includes a traffic load with load factor 0.7.
The traffic loads are applied in negative z-direction which unloads the dominating
buoyancy in contrast to the ULS maximum buoyancy load combination. The torsion
moment distribution given in fig 6.13 for SLS is also similar to that of the ULS maxi-
mum buoyancy, but the maximum values are lowered due to the applied traffic loads
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and higher weights. However, the positive vertical displacement of 0.52m and the mo-
ment distribution about y-axis show that the buoyancy is still the dominating load in
z-direction.

Fig 6.11 show the axial force distribution when the current is applied in positive y-
direction. The result is a constant tension force in the structure. This seems reasonable,
because the current is applied at the underside of the arc, forcing the arc to stretch
and thus resulting in tension forces. It is not favourable to have tensile forces in a
concrete structure, because the concrete is sensitive to tensile forces, which may result
in cracking. It is therefore important that the structure is reinforced with adequate
post-tension cables and reinforcement to carry tensile forces.

For both ULS and SLS conditions, the current loads can be applied in both positive and
negative y-direction. The results from the sensitivity study of current direction and
profiles can be found in app. G.1.1. If the current is applied in the negative y-direction
the bending moment about z-axis gives tension at the upper side at the bridge ends,
and tension at the underside at midspan (fig.G.1). The current loads now produces
compression in the structure (fig.G.1a). This seem reasonable, because the current is
applied at the upper side of the arc, forcing the arc to compress, which again results
in compression forces. High compression forces in a concrete structure may result in
crushing. A check should therefore be carried out, checking whether this might be a
problem.

The main finding of the sensitivity study is that uniform current applied over the whole
bridge length gives the highest bending moments and axial forces from current in the
structure. This was as expected. However, an asymmetrically distributed current pro-
duces a more complicated bending moment (fig. G.3) giving tension at the upper side
at one end, and compression at the underside at the other. The current forces also pro-
duces axial forces where one part of the structure is given an axial compression and
another part tension.

Influence of PT-cables on static response

The average increase of moment of inertia, when accounting for reinforcements and
PT-cables in transformed concrete cross-sections, is 3.89% for Iz and 3.24% for Iy. The
results from static analysis discussed in the latter section were based on a transformed
concrete cross-section. Thus, the contributions from reinforcements and PT-cables
were included in the bending stiffness. However, the tension force in the PT-cables
produce axial compression forces in the concrete. With a post-tension force loss of 10%
and a total amount of 78 longitudinal cables the total axial tension force in the cables
was calculated 428MN (tab.6.4). Thus, the concrete is subjected to a compression force
with magnitude 428MN.

If the compression force is too high, global buckling can be a problem. The euler buck-
ling load for a straight beam was calculated according to section 6.1.1. It was found
that the compression force due to the PT-cables was 5.75% of the euler buckling load.
Thus, it is further assumed that global buckling is not a relevant problem for the base
case structure. In the stress calculations, the influence of the PT-cables on the stresses
is accounted for by including the compressive stresses from the PT-cables and by mul-
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tiplying the bending moments with an amplification factor. The highest amplification
factor due to the axial compression from PT-cables was calculated according to eq.6.17
in section 6.1.1. The result was an amplification factor of 1.063 (tab.6.4). The ampli-
fication factor was calculated based on a straight configuration of the bridge with a
constant average cross-section (see sec.6.1.1). That is, the euler buckling load was cal-
culated based on a simple straight beam model rather than a curved model. For a better
accuracy of the amplification factor, the euler buckling load should be calculated based
on a curved beam model rather than a straight one.

Check of concrete stresses in SLS

A check of compression stresses was carried out at the most critical regions with respect
to compression at supports and at mid-span. Based on the bending moments about y-
and z-directions (fig. 6.10a and 6.10b), the most critical region at the supports, with
respect to compression, was found in the upper right corner of the cross-section. In
similar way, the most critical region was for the midspan found in the left corner in the
lower slab.

The results from check of compressive stresses in concrete are given in tab.6.9. The
maximal compressive stress in the concrete was calculated σc = −19.24 N/mm2 at
bridge ends, which corresponds to 58.3% of the allowable value. The check of tensile
stresses was carried out for the most critical current condition with respect to tension.
For the base case, the critical condition is a current applied in the positive y-direction,
which results in axial tension Nxx (see. G.2a.). It also results in a bending moment giv-
ing tension on the right side of the cross-section at the two ends (see. G.2). The results
from the check of tensile stresses in concrete are given in tab.6.10. The maximal tensile
stress was calculated σ = 5.7 N/mm2 at bridge ends, which is 35.7% higher than the
characteristic tensile strength of the concrete. At midspan, the maximal tensile stress
was calculated 2.26N/mm2, which corresponds to 53.8% of the characteristic tensile
strength. Since the maximal tensile stress exceeds the allowable value at bridge ends,
the stress calculations at this location should be based on a cracked cross-section. How-
ever, one of the requirements for SLS was that the concrete cross-section should remain
uncracked to avoid leakage. By investigating the terms in eq.6.37 it was observed that
the contribution from bending moment about y-axis was the dominating one. Thus,
the net vertical forces should be lowered to avoid cracking of the concrete.

N400 states that for structures carried by or partly by buoyancy, the specific weight of
reinforced concrete shall be calculated based on the amount of reinforcements, which
is be added to the specific weight of mass concrete (24kN/m3). The technical report
[Engseth et al., 2016] does not provide sufficient information about the reinforcements,
and an estimate of the minimum reinforcements were therefore estimated in this the-
sis to account for the reinforcements when calculating the transformed concrete area.
However, only the minimum longitudinal reinforcements were calculated. To have the
correct specific weight of reinforced concrete for this case, a full assessment of all the
reinforcements should be carried out. In the technical report, they used 26.5kN/m3

for the specific weight in their hand-calculations, but 25kN/m3 for the analysis. Based
on the amount of longitudinal reinforcements that I have calculated, it is assumed in
this thesis that the correct specific weight of reinforced concrete will be somewhere be-
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tween 25kN/m3 and 26.5kN/m3. The static analysis was therefore rerun with a specific
weight of 26.5kN/m3, giving the results in app.G.1.2.

If a specific weight of concrete of 26.5kN/m3 is used, the net bending moments due to
vertical loads are reduced with a factor of ten in SLS. In contrast to the base case, the
largest bending moment is here located at midspan. With a positive current load, the
concrete stresses were calculated at the most critical location with respect to tension at
midspan. Here, the maximal concrete stress was calculated −5.160N/mm2. Thus, the
concrete is in compression even though the bridge is subjected to an axial tension force
due to the current loads.

An alternative way to balance the buoyancy is to increase the ballast amount or the wall
thickness of the concrete section. To investigate the sensitivity of the tensile stresses in
concrete to the ballast amount, two other ballast cases were investigated, see app.G.1.3.
One of the two ballast cases considered was a ballast percent increase of 3%. The
resulting maximal tensile stresses at the bridge ends was calculated σ = 4.11 N/mm2,
corresponding to 97.9% of the characteristic tensile strength of the concrete. Thus, by
increasing the ballast percent by 3%, the maximal tensile stresses in the concrete is just
below the allowable value.

Parameter study with curve height

The objective of this parameter study was to investigate the influence of introducing a
curve height with respect to the static response. Recall section 6.1.2. Note that increas-
ing the curve height will also increase the length of the bridge. Keeping the airline-
distance between the abutments constant equal to 598.6m, the total length of the bridge
for curve heights are given in tab.6.11. Three curve heights were investigated in Sestra,
in addition to a straight bridge model with zero curve height. The results from param-
eter study with curve height with respect to static response are given in tables 6.12 and
6.13. It is observed, from the first table, that the net bending moments about y-axis re-
duces when the first curve height is introduced, compared to the straight bridge. This
was unexpected. However, the net bending moment increases as the curve height is
increased further. Increasing the curve height also means increasing the length of the
bridge, which again increases buoyancy and weight.

The same table gives the results for bending moments about z-axis and axial forces.
The bending moment reduces as the curve height increases. For the straight bridge,
there are no axial forces due to transverse loads. When introducing a curve height, it
is observed that axial forces due to the transverse loads are present. This is a result
of curving the structure, because the transverse loads are carried by both axial forces
and bending moments (fig. 6.5). When the curve height is increased further, the axial
forces reduces. When the curve height increase, so does the angle between the normal
component of the current force and the axial forces in the beams, and the result is
decreased axial forces.

However, the torsional moment increases with increasing curve height. When intro-
ducing a curve height, the total centre of gravity is translated in y-direction. When the
curve height is increased, the centre of gravity translates further in y-direction. This
causes increased torsion-arm and thus higher torsion moments. The reaction forces
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are also given in tab.6.12. As for the bending moment about y-axis, the reaction forces
in z-direction reduces as a curve height is introduced compared to the straight bridge.
Increasing the curve height results in slightly increased reaction forces in z-direction.
This is also the case for the displacement in z-direction (tab.6.13). Meaning, the intro-
duction of a curve height reduces the displacement in z-direction, but when increasing
the curve height further the displacements are increased. For the straight configura-
tion, there are no reaction forces in x-direction due to no difference in the element
orientation. When introducing a curve height, reaction forces in x-direction becomes
present due to the applied transverse current loads and the difference in element ori-
entation. This is also the case for the displacement in x-direction. The reaction force in
y-direction increases with increasing curve height. The displacement in y-direction is
however reduced for increasing curve height.



Chapter 7

Eigenvalue analysis

This chapter concerns an extensive study of the natural frequencies and mode shapes
of the SFT proposed for the Digernessund. First, the theory for vibrating beams are
given. That is, analytical solutions of the eigenfrequencies for straight beams, curved
beams and beams subjected to axial loading. These solutions are calculated to check if
the results from the analytical solutions coincides with the numerical results in GeniE
and Abaqus.

The results of the eigenvalue analyses are given in section 7.4. First, the results for a
straight configuration of the bridge with a constant average cross-section are given.
The results from a convergence test are also included here. Next, the results for a hor-
izontally curved bridge, with constant average cross-section, are given. This curved
configuration corresponds to the configuration of the bridge given in the technical re-
port [Engseth et al., 2016], with a curve height of c = 24.25m.

The result section also includes results from a parameter study of the curve height. The
curve height for which the first and second horizontal mode shape change order was
first calculated analytically. This was done by setting eq. 7.3 equal to eq.7.1, with the
values for fixed supports and n = 2, and then solve for the curve height C̄. Then, a
parameter study for the curve height was carries out in both GeniE and Abaqus to see
if the analytically calculated curve height coincides with the numerical results. Five
different curve heights were investigated in the two programs to find the changing
point. These were 50m, 52.5m, 53m, 55m and 56m. The results for the curve heights
C = 24.25m, C = 53m and C = 56m are given in the result section.

The influence of the PT-cables and reinforcements on the eigenfrequencies is also in-
cluded in the results. The reductions in percentage of the eigenfrequencies are first
calculated analytically, according to section 7.1. An analysis in Abaqus was then car-
ried out to compare the results with the analytical solution (see app.G.2.4).

The last result-section includes the numerical results from Sestra for a more realistic
model of the SFT, which also is the base case. That is, a curved configuration with
c = 24.5m, varying cross-section and including the effects of the PT-cables and rein-
forcements by transformed moments of inertia. Here, the mode shapes are also given.
The results are shown for element size 50m.
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7.1 Analytical solutions for eigenvalue analysis

7.1.1 Oscillating beam

For a simply supported beam with a constant cross-section, the angular frequencyω0
n

is given by eq.7.1 [Larsen, 2014]. The values ω̄n needed for a beam with fixed ends,
and for a beam with simply supported ends, are given in tab. 7.1.

ω0
n = ω̄n

√
EI

ml4 (7.1)

Table 7.1: Eigenvalues used in equation 7.1.[Larsen, 2014]

Support n=1 n=2 n=3 n>3
Simply supported 0 9.872 39.48 (n− 1)2π2

Fixed 22.37 61.67 120.9 ( 2n+1
2 π)2

For the case of simply support, the equation 7.1 represents the exact solution to the
differential equation, while the other case is an approximation.

7.1.2 Oscillating curved beams

The theory in this section is gathered from [A. R. Reinertsen, 1988]. The derivation of
natural frequencies in sway for curved beams can be found in chapter 3 in the men-
tioned reference. It is based on energy principles and takes advantage of the Hamil-
ton’s principle.

Curved beam with rotation free ends

A curved beam with rotation free ends is illustrated in figure 7.1. The first and second
mode shapes are sketched in figure 7.2. In figure 7.2a, C̄ represents the initial curve
height and C is the variation of the curve height during oscillation.

Figure 7.1: Sketch of a curved beam with rotation free ends. Illustration:[A. R. Reinert-
sen, 1988]
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(a) First mode shape in sway. (b) Second mode shape in sway.

Figure 7.2: First and second mode shape for curved beam with rotation free ends.
Illustrations:[A. R. Reinertsen, 1988]

For a curved bridge with rotation free ends, the eigenfrequency for the first horizontal
mode can be estimated by eq.7.2.

ω =
π2

L2

√
EIz

m
·

√
1 +

C̄2

2i2
r

(7.2)

where ir =
√

Iz
A is the radius of gyration and C̄ is the curve height in the horizontal

plane. For mode 2, 3, . . ., the membrane action in the curve will not be activated. [A.
R. Reinertsen, 1988] Thus, the eigenfrequencies for modes 2, 3, . . . can be estimated by
eq.7.1.

Curved beam with fixed ends

A curved beam with fixed ends is illustrated in figure 7.3. The first and second mode
shapes are sketched in figure 7.4. In figure 7.4a, C̄ again represents the initial curve
height and C is the variation of the curve height during oscillation.

Figure 7.3: Sketch of a curved beam with fixed ends. Illustration:[A. R. Reinertsen,
1988]
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(a) First mode shape in sway. (b) Second mode shape in sway.

Figure 7.4: First and second mode shape for curved beam with fixed ends. Illustra-
tions:[A. R. Reinertsen, 1988]

For a curved bridge with fixed ends, the eigenfrequency for the first horizontal mode
can be estimated by eq. 7.3. [A. R. Reinertsen, 1988]:

ω =
π2

L2

√
16EIz

3m
·

√
1 + 0.100

C̄2

i2
r

(7.3)

Eigenfrequencies for modes 2, 3, . . . for curved beam with fixed ends are similar to
those of curved beam with rotation free ends (eq.7.1).

7.1.3 Influence of axial forces on oscillating beams

Axial forces can be important for transverse vibration of beams. According to
[Clough and Penzien, 2003], both frequency and the vibration mode shapes are gener-
ally modified by an axial load. The structure can be evaluated in the same way as for
a system without axial forces. However, the geometric stiffness due to axial loading
has to be included in the equation of motion. In the case of a compression force, the
effect is a reduction of the effective stiffness of the structure and thus reduction of the
vibration frequency. [Clough and Penzien, 2003]

Derivation of eigenfrequency for beams subjected to axial forces (eq. 7.4) can be found
in section 3.4.4 in [Bergan et al., 1981]. Here, axial force N is considered positive for
compression, and is assumed to be constant over the beam length.

ωn =ω0
n

√
1− 1

n2
N
NE

(7.4)

whereω0
n is the angular frequency for a system without axial force N, and NE is the eu-

ler buckling load. This formula is not exact for all beam conditions but can be used as a
good approximation.[Bergan et al., 1981] This equation is especially relevant when in-
cluding the effects of PT-cables. The PT-cables and ordinary reinforcement are included
by transformed moment of inertia. In addition, the beam is subjected to a compression
force simulating the action on the concrete from PT-cables.
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7.2 Modal analysis

The theory in this section is gathered from chapter 4 in [Langen and Sigbjornsson,
1979]. The dynamic equilibrium equation can be expressed by eq. 7.5.

Mr̈ + Cṙ + Kr = Q(t) (7.5)

with M, C and K representing mass, damping and stiffness matrices respectively of
a given structure. Q(t) represents external forces applied on the structure. r, ṙ and r̈
represents the nodal response (displacement, velocity and acceleration respectively) to
the applied external force. The dynamic equilibrium equation will be further explained
and investigated in section 8.1.

For free undamped vibration we assume that there are no damping or external forces
acting on the structure, i.e. C = 0 and Q(t) = 0.

Then, eq. 7.5 can be written:

Mr̈ + Kṙ = 0 (7.6)

It can be assumed that the vibration is harmonic, that is, that all points vibrate in the
phase with the same frequency. Then, the motion can be expressed as r = φsin(ωt).
Inserting this into eq. 7.6 the general eigenvalue problem is obtained:

(K−ω2M)φ = 0 (7.7)

φ represents the eigenvector, which determines the mode of vibration, while ω is the
angular frequency for the undamped, free and harmonic vibration. K and M are both
symmetric and commonly positive. The mass matrix is either banded (for consistent
mass) or diagonal (for concentrated mass). [Langen and Sigbjornsson, 1979]

7.3 Eigenvalue problem in Sestra

Sestra offers different alternative eigenvalue solvers. The Lanczos method is well
suited for solving moderate sized to big problems when a few up to some hundred
eigenvalues are desired. The aim of this method is to find the lowest frequencies and
corresponding eigenvectors.[DNV-GL software, 2014] This eigenvalue solver is used
for the present case.

The eigenvalues and eigenvectors described in section 7.2 have to satisfy the equation
7.8:

KΦi = λiMΦi (7.8)

where K is the global stiffness matrix, M in the global mass matrix, λi is the eigenvalues
and Φi is the eigenvectors or mode shapes for i = 1, ..., n. n is the number of degrees of
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freedom. Thus, the number of solutions to the general eigenvalue problem is equal to
the number of degrees of freedom of the system. The eigenfrequencies,ωi, of the finite
element model can be found by taking the square root of the eigenvalues. The natural
periods, or eigenperiods Ti may be found by:

Ti =
1
fi
=

2π
ωi

(7.9)

The eigenvectors are normalized with respect to the mass matrix, ie. ΦT
i MΦi = 1 for

all i.

7.4 Results from eigenvalue analysis

7.4.1 Effects of PT-cables and reinforcements

Table 7.2: Reduction of eigenfrequency because of axial compression due to PT-cables.

Mode w0
n (rad/s) Reduction factor wn (rad/s) Reduction (%)

1 0.687 0.9720 0.668 -2.825
2 1.895 0.9930 1.882 -0.699
3 3.715 0.9969 3.704 -0.310
4 6.135 0.9983 6.125 -0.174
5 9.165 0.9989 9.155 -0.111

7.4.2 Eigenvalue analysis results for base case

Table 7.3: Eigenfrequencies and periods for curved model, varying cross-section, ob-
tained with Sestra and Abaqus. The deviations between the results from the two soft-
wares are also given.

Sestra Abaqus
Mode fn (1/s) Tn (s) fn (1/s) Tn (s) Dev (%)
1 0.113 8.881 0.114 8.788 -1.05
2 0.194 5.160 0.195 5.134 -0.51
3 0.299 3.342 0.307 3.260 -2.44
4 0.333 2.999 0.345 2.901 -3.26
5 0.572 1.748 0.596 1.677 -4.05
6 0.639 1.564 0.673 1.486 -5.02
7 0.924 1.082 0.983 1.018 -5.94
8 1.023 0.977 1.093 0.915 -6.38
9 1.353 0.739 1.471 0.680 -8.05
10 1.489 0.672 1.647 0.607 -9.57
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Table 7.4: Eigenperiod and frequency for the first mode for base case, including ana-
lytically calculated reduction factor due to PT-cables.

Sestra Abaqus
Mode fn (1/s) Tn (s) fn (1/s) Tn (s)
1 0.109 9.137 0.111 9.041

The ten first mode shapes are given in the figures 7.5 a-j below.

(a) Mode shape 1, vertical (b) Mode shape 2, horizontal

(c) Mode shape 3, vertical (d) Mode shape 4, horizontal

(e) Mode shape 5, vertical (f) Mode shape 6, horizontal

(g) Mode shape 7, vertical (h) Mode shape 8, horizontal
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(i) Mode shape 9, vertical (j) Mode shape 10, horizontal

Figure 7.5: Mode shapes for base case.

7.4.3 Results from parameter study with curve height

Table 7.5: Curve heights in-which the order of the first and second horizontal mode
shapes changes. f2 corresponds to the first horizontal natural frequency.

Solution method C̄ (m) f2 (1/s) Ltot (m)
Analytical 49 0.331 608.4
GeniE 53 0.313 609.6
Abaqus 56 0.326 611.5

7.5 Discussion of eigenvalue analysis results

The results of eigenvalue analysis for the straight bridge model are given in app. G.2.1.
As shown in tab. G.5 the numerical results from Sestra and Abaqus seem to coincide
with the analytical results for the first five modes, with deviations less than ± five
percent. The deviations of eigenperiods from the analytical results (termed Dan in the
table), do however increase for increasing mode number for both Sestra and Abaqus.
With reference to the analytical results, Sestra slightly overestimates the eigenperiods,
while Abaqus slightly underestimates them. The aim of the eigenvalue solver used in
both programs is to find the lowest eigenfrequencies, and thus the highest eigenperi-
ods. It can therefore be assumed that Sestra provides the most conservative results for
the straight bridge model.

A convergence test was conducted for the straight bridge model. The results are given
in app.G.2.1 tab.G.6. The eigenperiods seem to converge for reduced element size for
all ten modes. The convergence rate is however higher for the first modes than for
higher modes. This is expected, because higher modes are more sensitive to element
size than lower modes. One of the reasons for that is that higher mode shapes is as-
sociated with higher amount of halfwaves to be represented. To represent the higher
mode shapes accurately, there must be enough elements per halfwaves. The devia-
tions from analytical solution for all element sizes are given in the same table. For
the first six modes, the deviations from analytical solution are under five percent, and
thus the results from Sestra seem to coincide with the analytical solutions for the six
first eigenperiods. For higher modes, the deviations are higher than five percent and
increases for increasing mode. The deviation for the higher modes also increases for
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lower element sizes. As explained in the previous paragraph, the higher modes are
more sensitive to element size. The analytical solution for n>3 give approximated so-
lutions, which may explain why the higher modes calculated by Sestra deviate more
from the analytical solution than the first modes.

Influence of a curved model on eigenvalue analysis

In app.G.2.2, the results of eigenvalue analysis for curved bridge model with constant
cross-section are given. As for the straight bridge results, both Sestra and Abaqus
seem to coincide with the analytical results for the first modes. The exception here is
the second mode, which is recognized as the first horizontal mode. Both Sestra and
Abaqus underestimates this eigenfrequency compared to the analytical result. The
second mode from Abaqus is however slightly closer to the analytical solution than the
result from Sestra. The second mode of the curved model has increased eigenfrequency
and thus reduced period compared to the second mode of the straight model. This is a
consequence of the curved configuration of the bridge and thus membrane action in the
curve, as described by [A. R. Reinertsen, 1988]. In the same reference, it is stated that
the membrane action will not be activated for the following modes. This is observed
when comparing the eigenfrequencies for the next modes from the curved model with
the ones for the straight model, as they are quite similar.

Discussion of parameter study with curve height

The results from the parameter study of curve height are given in tab.7.5. The main
objective of the parameter study with curve height was to investigate when the first
and second horizontal mode shape changes order (fig. 7.5b and 7.5d). It was assumed
that if the curve height was high enough, the first horizontal mode should include two
halfwaves. Analytically, this curve height was found 49m. In Sestra, the curve height
giving two halfwaves for the first horizontal mode was 53m, while in Abaqus the result
was 56m. The six first modes for a curved SFT with a constant average cross-section are
given in app.G.2.3, tab.G.9. From tab.G.9 it is observed that the eigenperiod increases
for increasing curve height.

Influence of PT-cables

In table 7.2 ω0
n is given for the straight bridge model. This is the angular eigenfre-

quency including transformed moment of inertia for a system without axial force P. It
is observed that these eigenfrequencies are higher than those without the contribution
in bending stiffness from the PT-cables and reinforcements, given in tab. G.4. The in-
creased eigenfrequencies are a result of using the transformed moment of inertias (see
sec. 5.4.1 and app. F). The transformed moment of inertias contain contributions from
the reinforcements and PT-cables, which also results in increased bending stiffness as
described in sec.6.6. The increased eigenfrequencies due to the transformed moment
of inertia can be explained by looking at eq. 7.1. From this, it is clear that increasing
the bending stiffness will increase the eigenfrequency.
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Table 7.2 also give the results for ωn, which in this case includes a reduction factor
due to the compression forces from the PT-cables. The eigenfrequencies are generally
modified by this axial force, as explained in sec. 7.1.3. Here, it was stated that a com-
pressive axial force will reduce the effective stiffness of the structure and thus reduce
the vibration frequency. From tab.7.2, it is observed that the reduction for the first
eigenfrequeny is -2.83%. For the following modes, the reduction is smaller than -1%. It
is therefore assumed that for higer modes, the reduction due to the compression force
can be neglected. By investigating eq.7.4, it is observed that the reduction of the effec-
tive stiffness and the eigenfrequency is reduced for increasing mode number, which is
also observed in table 7.2.

Discussion of results for base case

The results from eigenvalue analysis for the base case are given in section 7.4.2. The
eigenfrequnecies and periods calculated from both Sestra and Abaqus are given in
tab.7.3. The results for the eigenperiods from Abaqus deviates from the results from
Sestra. The deviations increase for increasing mode number. However, for the first five
modes, the deviations are below five percent. Abaqus slightly underestimates the pe-
riods, compared to the results form Sestra. As for the case of a straight bridge, Sestra is
thus assumed to give the most conservative results for the eigenperiods. The eigenfre-
quency for the first mode is multiplied by a reduction factor to account for the influence
of the compression force from the PT-cables (tab.7.4). The first eigenperiod for the base
case was thus calculated 9.14s. The second, corresponding to a horizontal mode with
one half-wave, was calculated 5.16s by Sestra. The third and forth, corresponding to
vertical and horizontal mode with two half-waves respectively, were calculated 3.34s
and 3.00s by Sestra. For increasing mode number, the eigenfrequencies are close.

The results from the eigenvalue analyses are different from the results calculated by
the NPRA (tab.A.1). The eigenperiods calculated by Sestra and Abaqus deviates from
the calculations by the NPRA by about 10-20%. Some of the reasons for this can be
differences in the modeling, assumptions and rounding off. The information regarding
the basis for the eigenvalue analysis in [Engseth et al., 2016], meaning assumptions and
information about the FE-model used, are limited. By correspondence with Arianna
Minoretti, representing the NPRA, it was found that the eigenvalue analysis done by
the dr. techn Olav Olsen is based on a simplified model with a constant cross-section
and no influence of the PT-cables and reinforcements. Because the results for the base
case in this thesis are based on a model with varying cross-section, varying ballast
and influence of PT-cables, it is expected that the results will deviate from the results
calculated by the NPRA and dr. techn Olav Olsen.

Associated mode shapes from the analysis in Sestra are given in fig.7.5. The first mode
shape represents a vertical mode according to the [Engseth et al., 2016], see fig. (A.2a).
This is also the case for the first mode shape obtained in Sestra, fig. 7.5a. This is as
expected, because the bending stiffness about y-direction (EIy) is weak compared to the
bending stiffness about z-direction (EIz) for the SFT. The next mode shape represents
a horizontal mode both in the technical report (fig.A.2b) and in Sestra (fig.7.5b). For
increasing mode number (fig.7.5c-7.5j), the number of half-waves increases.

Recall the tables 3.7 and 3.8, which gives the data for wind and swell generated waves
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estimated by the NPRA. The third and forth eigenperiods of the structure (tab. 7.3)
are within the ranges of the estimated peak periods for wind generated sea. These
sea states are assumed to exhibit low energy levels [Xiang et al., 2017]. The two first
eigenperiods are also within the range of common wave periods for ocean waves (re-
call section 4.2.5). The dynamic response excited by waves with wave periods close to
these eigenperiods should be investigated to avoid resonance.
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Chapter 8

Dynamic response analysis

The theory in this section is gathered from [Langen and Sigbjornsson, 1979]. In dy-
namic response analysis, also called vibration analysis, the response due to time-varying
loads are investigated. The response can here be the motion or velocity of the structure
due to the time-varying loads for instance, or bending moments.

This section includes method for dynamic response analysis, a brief introduction to so-
lution methods of the dynamic equilibrium equation and an example of a time-varying
load relevant for marine bridges, meaning wave loads. The properties of a vibrating
system is also described, meaning mass, stiffness and damping.

8.1 Theory of dynamic analysis

8.1.1 Dynamic equilibrium equation

If the motion of the structure is sufficiently large, inertia and damping loads have to be
accounted for.[Moan, 2003a] Considering a rigid body with one translational degree-
of-freedom (dof) u and mass m, the dynamic equilibrium equation for a one degree-of-
freedom system is given by eq. 8.1 [Langen and Sigbjornsson, 1979]:

mü + cu̇ + ku = Q(t) (8.1)

The first term on the left hand side represents the inertia load, the second term repre-
sents the damping load and the third term represent the stiffness known from static
analysis. u̇ is the velocity of the system, ü is the acceleration, c is the viscous damp-
ing coefficient of the system, k is the stiffness of the system and Q is the external
loads.[Langen and Sigbjornsson, 1979]

The number of dofs is equal to the number of translations and rotations needed to de-
scribe the deformation state of the system. For a dynamic system, the dofs must be
chosen such that the inertia forces can be represented accurately enough.[Langen and
Sigbjornsson, 1979] As described in [Larsen, 2014], an example of a system with more

81



82 CHAPTER 8. DYNAMIC RESPONSE ANALYSIS

than one degree-of-freedom is a vibrating beam. It has infinitely number of degrees-
of-freedoms because the deformation of the beam is described by a continuous func-
tion, which again is calculated based on infinitely number of points. The continuous
system has to be transformed into a discrete system with a finite number of degrees-of-
freedoms to solve the dynamic equilibrium equation. [Larsen, 2014] This can be done
by means of two different methods, discretizing the structure into finite elements with
concentrated mass, or by expressing the deformations by one or more assumed shape
functions φ(x). The latter method, generalized dofs, depends on how accurate the as-
sumed displacement shape is, and is employed by the finite element method and the
Rayleigh-Ritz method.[Langen and Sigbjornsson, 1979]

Dynamic equilibrium equation for a multi-dof system is given by :

Mr̈ + Cṙ + Kr = Q(t) (8.2)

For each node i, the displacements are collected in a displacement vector ri and the
total load can be written on matrix form:

Mir̈i + Ciṙi + Kiri = Qi(t) (8.3)

8.1.2 Mass matrix

The mass matrix is either consistent(banded) or concentrated(diagonal), and includes
the effect of inertia forces due to hydrodynamic mass. The consistent mass matrix is
based on the same interpolation polynomials as the stiffness matrix. The concentrated
mass matrix is based on collecting the mass at the nodes of the structure based on equi-
librium considerations. The rotation mass is commonly neglected, which may cause
problems for eigenvalue calculations.[Langen and Sigbjornsson, 1979] Remedies for
this is static condensation, which is described in chapter 6 in [Langen and Sigbjorns-
son, 1979].

8.1.3 Damping

The damping term in the equation motion, eq. 8.1, represents the structures ability to
dissipate kinetic energy. That is, to transform it into other forms of energy. Damping
will always be present for a real vibrating system, and is generally difficult to model
correctly. For many applications, simplified models of the damping will give satisfac-
tory results. Such models are e.g. linear and nonlinear viscous damping, structural
damping and coulomb damping.[Langen and Sigbjornsson, 1979].

The damping sources can be divided into two main groups, internal damping in the
structure and external damping due to interactions between the structure and its sur-
roundings. In addition, for some types of structures like ships for instance, the most
important damping source can be friction in the load. The load damping can be a mix-
ture of the three damping models mentioned above.[Langen and Sigbjornsson, 1979]
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The internal damping in the structure, also known as structural damping, is related to
the internal friction of the material and the connections between the structure elements.
Damping related to the connections between the structure elements is often modelled
as Coulomb damping. Damping related to the internal friction of the material is char-
acterized by the hysteresis curve of the material, see chapter 9 in [Langen and Sigb-
jornsson, 1979]. Typical values of the equivalent critical damping ratio is 0.5 − 0.8%
for steel structures, and up to 1.2% in concrete structures.[Langen and Sigbjornsson,
1979] The offshore standard OS-C502 app. B A401 states that the damping should be
less than 3.0% of the critical damping.[DNV-GL, 2010a]

The damping related to energy loss to the surroundings is typically due to interac-
tions between the structure and a fluid (water/air) or between the structure and its
foundation. The first can be divided into hydrodynamic damping, if the fluid is water,
and aerodynamic damping, if the fluid is air. Both phenomenon is due to the fact that
parts of the fluid pressure are in-phase with the velocity of the structure. Hydrody-
namic and aerodynamic damping has two main contributions, one proportional to the
velocity and related to the fact that the structural vibrations generates waves propagat-
ing away from the structure. This damping is frequently described by a linear viscous
model. The second contribution is a non-linear one, related to viscous effects in the wa-
ter, e.g. vortex shedding. It is often assumed proportional to the square of the relative
velocity between the structure and the fluid.[Langen and Sigbjornsson, 1979]

The damping related to interactions between the structure and its foundation has two
contributions. The first is geometrical damping, a result of wave energy propagating
away from the foundation. This contribution is described by equivalent linear viscous
damping model. The second is internal damping in the foundation material. This
contribution is described by hysteresis-loop obtained by cyclic deformation of the foun-
dation.[Bergan et al., 1981]

Modal damping

Modal damping is defined as damping associated with mode shapes. Structural damp-
ing can be described by means of modal damping if we know the logarithmic decre-
ment δ, the loss coefficient η or the damping ratio λ for the mode shapes. These values
applies usually only to a few of the lowest modes, and can be found by exciting the
structure in resonance. They can be employed directly in the uncoupled dynamic equi-
librium equations. For coupled systems, direct solution by frequency-response method
demands that the damping is given as a damping matrix C.[Langen and Sigbjornsson,
1979] Methods for determining C from modal damping can be found in section 9.5 in
[Langen and Sigbjornsson, 1979].

Commonly, for direct integration of the equation of motion, the damping matrix is
expressed as a linear combination of M or K, or directly from modal damping data.
[Langen and Sigbjornsson, 1979]
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Rayleigh-damping

Rayleigh-damping, or proportional damping, assumes a distributed damping force
proportional to the velocity of mass and to the strain velocity, at each point. Thus, C is
a linear combination of M and K [Langen and Sigbjornsson, 1979]:

C = αM +βK (8.4)

C has the same orthogonality properties as M and K, meaning:

φiCφ j = αφ
T
i Mφ j +βφ

T
i Kφ j = 0 (8.5)

for i 6= j. Thus, the modal damping coefficients are given by eq.8.6 found in
[Langen and Sigbjornsson, 1979, Bergan et al., 1981]:

c̄i = φ
T
i Cφi = αm̄i +βk̄i (8.6)

The damping ratios are given by eq. 8.7 [Bergan et al., 1981]:

ξi =
c̄i

c̄i,cr
=

1
2
(α

1
ωi

+βωi) (8.7)

with critical damping:

c̄i,cr = 2m̄iωi (8.8)

α introduces damping inversely proportional to the angular frequency ωi, and thus
damps out the lower vibration modes. β introduces damping proportional to ωi and
damps out the higher vibration modes.[Bergan et al., 1981]

For desired damping ratios ξi and ξ j for two eigenfrequenciesωi andω j, α and β can
be found by substitution to eq. 8.7 [Bergan et al., 1981]:

α =
2ωiω j(ξ jωi −ξiω j)

ω2
i −ω2

j
(8.9)

β =
2(ξiωi −ξ jω j)

ω2
i −ω2

j
(8.10)

8.1.4 Stiffness matrix

The stiffness matrix is assumed linear in this thesis, and equal to that of the static
analysis. Thus, nonlinear geometric effects are neglected also for the dynamic response
analysis. The structure does not have any water-plane area due to the submergence,
and the stiffness is thus provided by axial stiffness and bending stiffness only.
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8.2 Wave theory and wave load model used in the dy-
namic analysis

When investigating the response of a structure due to wave loads, it is interesting to
look at the response to the maximum wave height expected at the cite. This section
gives a brief description of how to estimate the maximum wave height, how to calcu-
late first order wave loads in Sesam and the wave model used in this thesis. Recall
section 4.2.5 in the load theory chapter.

8.2.1 Stochastic wave theory

In design of offshore structures it is important to investigate the worst possible sea
state to ensure that the structure can survive it. For this purpose the sea state with
return period of 100 years is often used. It is assumed that the significant wave height,
corresponding to average of the 1

3 highest waves, is constant within a sea state. The
100 year value of Hs is defined as the value that on average occurs only once dur-
ing 100 years. The parameters corresponding to this sea state can then be used in a
standardized wave spectrum.[Myrhaug, 2007]

When the worst sea state is found we seek the individual wave height H, in that sea
state, which is exceeded once during m years, here 100 years. Before this can be found,
we need to look at the behaviour of the individual wave heights.

Short term statistics

The short term distribution of wave heights for a given sea state is defined as the prob-
ability distribution of the wave heights in that sea state. It is mathematically difficult
to find the probability distribution of wave heights of a given wave record. A sim-
plified probability distribution can be obtained by assuming that the wave elevation is
stationary, narrow-banded and a Gaussian distributed stochastic process. The assump-
tion of a stationary wave elevation means that the average wave height and variance
are constant within the duration of the wave process.[Myrhaug, 2007] Narrow-banded
process means that there are only positive maxima and there are only one maxima per
positive zero-crossing.[Myrhaug, 2005] The name narrow-banded process comes from
the fact that its spectral density occupies a narrow band of frequencies.[Newland, 1993]
See the realization of a general and a narrow-banded stochastic process below.
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Figure 8.1: To the left: an example of a realization of a general stochastic process. To the
right: an example of a realization of a narrow-banded stochastic process. Illustration:
[Myrhaug, 2007]

The wave elevation was also assumed Gaussian distributed. It is further assumed that
the wave elevation has zero mean value, corresponding to the mean free surface, and
a variance σ2.[Myrhaug, 2007] The Gaussian distribution, also called normal distribu-
tion, is a common probabilistic model in which the variable under consideration is of
additive type, i.e. expressed as a sum. This is a result from the central limit theorem,
which states: "If the number of variables in a sum approaches a large number, the distribu-
tion of the sum will approach the normal distribution under very general conditions".[Leira,
2010] For this to be fulfilled, the most common requirement is that the variables must
be independent and identically distributed. See page 5.12 in [Leira, 2010] for other
categories of requirements for the central limit theorem.

For an idealized wave process which is stationary, narrow-banded and Gaussian dis-
tributed, the individual maximal values of the wave elevation can be approximately
described by the Rayleigh distribution.[Myrhaug, 2007]

In [Myrhaug, 2007] it is shown that if the wave maximas are Rayleigh distributed, then
the significant wave height can be estimated as Hs = Hm0 = 4

√
m0. Rearranging this

gives m0:

m0 =
H2

m0
16

(8.11)

Thus, the Rayleigh distribution of the maximas can be written [Myrhaug, 2007]:

fH(h) =
4h

H2
m0

exp(−2(
h

H2
m0

) (8.12)

FH(h) = 1− exp(−2(
h

Hm0
)2) (8.13)

Extreme value distribution

The theory in this section is gathered from [Myrhaug, 2007, Myrhaug, 2005]. The
aim of extreme value statistics is to estimate the expected largest or smallest among
N outcomes in a given time interval. With a given sample of maximas (H1 . . . HN),
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which is assumed identically Rayleigh distributed (FH(h)) and statistically indepen-
dent, the distribution of the largest maxima, here called Hmax, can be derived as follows
[Myrhaug, 2007]:

FHmax(h) = P[Hmax ≤ h] = P[(H1 ≤ h) ∩ . . . (HN ≤ h)]
= P(H1 ≤ h) · P(H2 ≤ h) · . . . · P(HN ≤ h)

= [P(Hi ≤ h)]N = [FH(h)]N
(8.14)

From the distribution of the largest maxima, the expected largest can be estimated in
three different ways. The derivation of the three values can be found in [Myrhaug,
2005]:

The expected largest wave height, for large N:

E[Hmax] =
∫ ∞

0
h · fHmax(h)dh ≈ Hm0{

√
lnN

2
+

0.2886√
2lnN

} (8.15)

The most probable largest wave height HM, also known as the characteristic wave
height:

[
d

dh
fHmax(h)]h=HM = 0 (8.16)

which for large N can be approximated by:

HM = Hm0

√
lnN

2
(8.17)

The definition of the characteristic wave height is the value, out of N values, that is
only exceeded by one value. Thus, HM can also be estimated by:

(1− FH(HM)) =
1
N

(8.18)

Thus, for all methods, the uncertainty is dominated by the number of maxima in the
given sea state. If the duration D of the sea state and zero crossing period Tz is known,
then the number of wave heights in the sea state is:

N =
D
Tz

(8.19)

8.2.2 Design swell model

The swell waves are in this thesis modeled as regular waves, with a constant wave
height equal to the estimated maximal wave height. The response is assumed linear,
meaning that harmonic loads results in harmonic responses. It is also assumed that
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the maximal response occurs at the maximal wave height. The wave period and wave
direction is varied. The sea states investigated in this thesis are given in table 8.1.

Table 8.1: Overview of the sea states investigated in this thesis.

Sea state T(s) Hmax(m) β0 (deg)
1 8.9 0.19 110◦

2 14 0.19 110◦

3 8.9 0.19 140◦

4 14 0.19 140◦

8.2.3 Wajac

As earlier stated, Wajac is a program in the Sesam system that calculates wave and cur-
rent loads on fixed and rigid frame structures. It is limited to structures with structural
members of relatively small cross-section compared to the wave lengths. Morison’s
equation is used for calculation of wave loads. The loads calculated by Wajac can be
transferred for structural analysis by Sestra.[DNV-GL software, 2017]

There are three different approaches for load calculations in Wajac, deterministic load
calculation in the time domain, calculation of force transfer function in the frequency
domain and time domain simulations of wave loads for given short-term seastates. The
first is the one used in this thesis. In the deterministic load calculation, the structure
is subjected to an unidirectional periodic wave. The loads are calculated at given time
instants. Different wave models are available, and the one used in this thesis is the
Airy wave theory.[DNV-GL software, 2017]

Description of environment in Wajac

The periodic surface waves are described by a wave period T, wave height H, wave
propagation angle β0, measured counter-clockwise from the global positive x-axis to
the propagation direction of the waves, and the mathematical model of the waves. This
makes up the specified sea condition, or in Wajac called sea state.

Figure 8.2: Description of surface waves. Illustration:[DNV-GL software, 2017]
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Load calculation in Wajac

As earlier mentioned, the Morison’s equation with non-linear drag formulation is used
to calculate the hydrodynamic forces (eq. 8.20). Recall section 4.2.5 in the load theory
chapter.

Fn(r, t) = ρ
πD2

4
Cman(r, t) +

1
2
ρDCdvn(r, t)|vn(r, t)| (8.20)

where ρ is the density of water, D is the equivalent diameter of the structure, Cm is the
inertia coefficient matrix, Cd is the drag coefficient matrix, vn(r, t) is the undisturbed
velocity component of the fluid particles normal to the member at the time and point
instant, an(r, t) is the undisturbed acceleration component of the fluid normal to the
member and r is the global coordinate of the point of load calculation.

The transverse components are given as linearly varying line loads. For each time step,
the loads are calculated for each specified sea state. The distributed loads are saved
for subsequent structural analysis in Sestra. In addition, another result file, called the
S-file, is produced by Wajac. This file needs to be manually modified for dynamic
analysis in Sestra, see [DNV GL, 2018].

Wajac calculates the wave loads as if the structure was a circular cylinder. The equiv-
alent diameters are thus calculated by setting the area of a rectangular cross-section
equal to the area of a circular cylinder and solve for the diameter (eq.8.21).

D =
√

4bh/π (8.21)

Limitations of Wajac

• Assumes that the structure is fixed in space.

• Assumes that there are no diffraction effects, meaning that the structure does not
have any influence on the fluid.

• Hydrodynamic coefficients are assumed frequency independent.

• The structure is modeled as a circular cylinder for the wave load calculation, with
an equivalent diameter.

8.3 Solution methods of the dynamic equilibrium equa-
tion

The dynamic equation, eq. 8.2, can be solved either in the time-domain, ie. assuming
a deterministic system, or in the frequency domain. The latter is commonly used for
response due to stochastic loads. Time-varying loads like wave loads are often ran-
dom and can be described by assumed probabilistic models. However, the response
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of a stochastic load will be stochastic, and therefore, it is only possible to give state-
ments about the response magnitude, or the probability that it will not exceed a certain
value.[Langen and Sigbjornsson, 1979]

Direct solution method, in either time or frequency domain, is meant as the solution
for the coupled equation system. The alternative is to transform the coupled equation
system into an uncoupled system and then solve separately.[Langen and Sigbjornsson,
1979]

Solution obtained in the frequency domain

An arbitrary time-varying loading can be described by a sum of harmonic contribu-
tions. Mathematically, this is expressed by the Fourier-transformation. Each single
harmonic component is a function of the frequency ω. Thus, the sum represents ex-
citation in the frequency domain. Similarly, the response can be transformed to the
time domain. Thus, solving the dynamic equilibrium equation in the frequency do-
main means solving eq. 8.2 for harmonic loading for different frequencies. By this, the
solution directly shows the sensitivity of a structure to load frequency. [Langen and
Sigbjornsson, 1979]

Modal analysis and modal superposition

In dynamic analysis it is common to express the displacements in terms of the mode
shapes, which were described and found in sec. 7. Because the n eigenvectors φi are
linearly independent, a linear combination of these can be used to express an arbitrary
displacement r of a structure (eq. 8.22).[Langen and Sigbjornsson, 1979] See figure 8.3
for an illustration of the method.

r =
n

∑
i=1
φi yi(t) = φy (8.22)

The matrix φ represents the matrix of vibration modes and contains the mode shapes
φ = [φ1φ2...φn] and y is the vector of displacement amplitudes designated normal
coordinates:

y =


y1
y2
...

ym

 (8.23)
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Figure 8.3: Illustration of the concept of modal superposition. [DNV-GL software,
2014]

Solution obtained in the time domain

The response to an arbitrary load history can be obtained by expressing the load his-
tory as a series of short impulses, and then superimpose the responses to get the total
response. A method for finding the response of a multi-degree of freedom system is
direct numerical integration of the dynamic equilibrium equation. The dynamic re-
sponse is thus found as values at discrete time instants rather than a continuous func-
tion. However, the accuracy of the numerical solution is limited by the calculation
method used and the step size for time-integration.[Larsen, 2014]

One method described in [Larsen, 2014], for finding the response by numerical inte-
gration, is the Newmarks β-method. The general integration equations in this method
are given in eq.8.24-8.26. By using these equations together with the equation of mo-
tion (eq.8.27), the resulting displacement, velocity and acceleration can be found. γ
is a parameter controlling the numerical damping, and is often set to γ = 1

2 , which
represents no numerical damping.[Larsen, 2014] The parameter β is different for the
different Newmark-family methods, see [Larsen, 2014].

ui+1 = ui + hu̇i + (
1
2
−β)h2üi +βh2üi+1 (8.24)

u̇i+1 = u̇i + (1−γ)hüi +γhüi+1 (8.25)

üi+1 =
1
βh2 ui+1 − (

1
2β
− 1)üi −

1
βh

u̇i −
1
βh2 ui (8.26)
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[
1
βh2 m +

γ

βh
c + k]ui+1 = Pi+1 + [m(

1
2β
− 1) + h(

γ

2β
− 1)c]üi

+ [
1
βh

m + (
γ

β
− 1)c]u̇i + [

1
βh2 m +

γ

βh
c]ui

(8.27)

Sestra takes advantage of a generalization of the Newmarks method for discretising
the equation of motion in time. See Sestra User manual [DNV GL, 2018] for more in-
formation about the different generalization methods available in Sestra. In this thesis,
Newmark method with β = 1

4 and γ = 1
2 is used to ensure a conditionally stable so-

lution. Thus, constant average acceleration is assumed. This is according to [Larsen,
2014] one of the most applied methods for time integration.

8.4 Results of dynamic analysis

8.4.1 Estimation of Rayleigh-damping coefficients

Figure 8.4: Damping ratio versus angular frequency. ξi = 0.5% and ξ j = 0.8%.

Table 8.2: Rayleigh-damping coefficients for different damping ratios.

Damping Ratios Rayleigh coefficients
ξi ξ j α β

0.5% 0.8% 0.0026 0.0095
0.8% 1.5% 0.0034 0.0185
1.5% 3.0% 0.0056 0.0375
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8.4.2 Estimation of maximum wave height

Table 8.3: Estimation of maximum wave height for the given 100 year sea state.

Parameter Result (m)
E[Hmax] 0.1902
HM 0.1823

8.4.3 Response due to swell sea

Note that the results are given for the direction and wave period giving the maximal
results for the respective variable.

Maximal displacements and accelerations

Figure 8.5: Time record of vertical displacement amplitudes due to regular swell wave
Tp = 14s, β0 = 110◦.

Figure 8.6: Time record of transverse displacement amplitudes due to regular swell
wave Tp = 14s, β0 = 110◦.
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Figure 8.7: Time record of vertical acceleration amplitudes due to regular swell wave
Tp = 14s, β0 = 110◦.

Figure 8.8: Time record of transverse acceleration amplitudes due to regular swell
wave Tp = 14s, β0 = 110◦.

Envelopes of maximal bending moments

(a) Mxy, bending moment about z-axis. (b) Mxz, bending moment about y-axis.

Figure 8.9: Envelopes of maximal bending moments due to regular swell sea with
Tp = 14s, β0 = 110◦.
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8.5 Discussion of results from dynamic analysis

Discussion of damping model and added mass coefficient

The viscous damping is considered small due to low ability to generate waves at the
water depth of the SFT.[Xiang et al., 2017] It is assumed that there exists some struc-
tural damping in the concrete, which is modeled as Rayleigh damping. The Rayleigh
coefficients were found for three different damping ratios in tab.8.2. The lowest coef-
ficients, meaning the coefficients corresponding to damping ratios of 0.5− 0.8% were
used in further analysis. From the table, it is evident that the damping is dominated by
damping proportional to the stiffness. There is a small contribution in damping pro-
portional to the inertia. When increasing the damping ratios, the graph over damping
versus frequency (fig.8.4) gets steeper, see app.G.3. Higher damping ratios results in
higher Rayleigh damping coefficients. The desired region, for the structure eigenfre-
quency to be, is in the lower part of the blue graph. For all damping ratios, both the
first and second eigenfrequency lay in the desired region.

Added mass and damping coefficients were assumed independent of direction, fre-
quency and Reynolds number. In reality, this is not the case. The frequency depen-
dence of the coefficients should be investigated.

Discussion of maximum wave height estimation

The maximal wave height estimation was based on stochastic theory. The estimated
maximal wave height was found as the expected largest, with a magnitude of 0.1902
m (tab.8.3). Thus, the expected maximal was larger than the most probable largest
maximal as expected. The expected value and the characteristic value was based on
the assumption of N, meaning the number of wave heights, being large. That assump-
tion is dependent on the sample of wave heights. The number of wave heights was
calculated based on the duration of the sea state and the zero-crossing period, which
was assumed equal to the peak period for simplicity. To ensure that the maximal wave
heights are captured, the sample must be large enough. According to [Engseth et al.,
2016], hindcast data didn’t give good results for the site, and the wave heights were
estimated based on SWAN analysis. An alternative could be measurements at site.
However, this will be time consuming as the sample need to be large enough to be able
to capture the maximal response. It is therefore important to note that the maximal
wave height estimate is an rough estimate.

Discussion of the use of Wajac for wave load calculation

By investigating the exponential decay of wave action, it was found that swell sea is
dominating at the depth of the SFT (fig.4.2). A peak period of 14s corresponded to a
wave length which was roughly 18 times the largest equivalent diameter of the SFT.
It was therefore assumed that the structure was small compared to the swell waves,
and thereby that Morison’s equation was applicable. Wave load calculation in Wajac
is based on the assumption of no diffraction effects [DNV-GL software, 2017]. This is
unphysical, because the presence of the structure will affect the water.[Faltinsen, 1990]
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However, because the response of the structure is found to be small at the depth of the
SFT, it can be argued if the diffraction effects can be neglected.

Note that the wave load calculation in Wajac is carried out as if the structure was a
circular cylinder, which simplifies the wave load calculations. The cross-sections were
modeled as circular cylinders with equivalent diameters D. According to [Faltinsen,
1990], Morison equation calculates the wave loads in the direction of the incoming
wave. However, the equivalent diameters were assumed constant for the two wave
headings investigated in this thesis. For more realistic results, the equivalent diame-
ters should be representative for the wave heading of interest. In addition, the same
equivalent diameters are used for both terms in the Morisons equation. The first term,
representing the inertia term, should be based on the correct area for a rectangular
cross-section, while the latter term, representing the drag term, should be based on the
height of the rectangular. Due to the many limitations of Wajac, other software like
SIMA/Riflex or ANSYS should be used to obtain a better and more realistic represen-
tation of the wave loads acting on the structure. The results from Wajac should only be
used as an rough estimate.

Discussion of the design swell model

The swell sea is modeled as regular waves. In reality, waves in general are irregular by
nature. The results based on regular waves is therefore a rough estimate of the maximal
response. Sending a regular wave through the structure, with a constant wave height
equal the estimated maximal wave height, is conservative. According to [Myrhaug,
2005], the characteristic largest wave height, HM, corresponds to the value which is
only exceeded once among a sample of N wave heights. It is unlikely that the largest
wave height will occur multiple times in a row. A better model of the design swell
wave can for instance be based on New-wave theory.

The assumption of linear response can also be questioned. In this thesis, it is assumed
that the maximal response occurs at the maximal wave height. This is not necessar-
ily true. Using Morison’s equation will introduce non-linear effects on the response
due to the non-linear drag-term. To have a clear picture of the occurrence of maximal
response, a full analysis with actual wave data or a simulation of the wave elevation
should be done. This thesis gives approximated results of the response only.

Discussion of the response due to swell waves

It was chosen to investigate the response from four different sea states with the objec-
tive to estimate the maximal dynamic response which can be expected at site (tab.8.2.3).
Two sea states with peak period 8.9s were investigated, with different respective direc-
tions. The peak period of 8.9s was chosen with the objective to investigate possible
resonance, as it is close to the first eigenfrequency of the base case without influence of
the compression force from the PT-cables.

The sea state with Tp = 14s and directionβ = 110◦ gave the highest displacements and
accelerations in z-direction. The time record of the vertical displacement amplitudes
are shown in fig.8.5. It is seen from the time record that the response in this case builds
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up towards an amplitude of 2.67 mm when t is large. The response seem to converge
to a harmonic response after 900s. Compared to the vertical displacement due to static
loads, which was found to be 0.52 m (tab.6.8), the vertical displacement due to wave
loads is considered negligible. The time record for the vertical acceleration is shown
in fig.8.7. As for the vertical displacement, the time record shows that the response
builds up towards an harmonic response. The amplitude of the harmonic response
for the acceleration is about 0.0005m/s2. Compared to the limit for maximal vertical
acceleration, which was set to 0.5m/s2, the vertical vibrations due to waves are also
negligible.

The highest displacements and accelerations in y-direction due to swell waves were
found for the sea state with Tp = 14s and wave direction 110◦. The time record of
the transverse displacement amplitudes is shown in fig.8.6. After 400s, the response
seem to stabilize and converge to a harmonic response with an amplitude of about 0.6
mm. Recall that the transverse displacement due to static loads was 13.51 mm (tab.6.8).
Thus, the transverse displacements due to swell waves are considered negligible com-
pared to the static response. The time record of the transverse acceleration is given in
figure 8.8. The numerical solution does not converge towards a regular response, but
the solution stabilizes after 350s with an maximal amplitude of 0.0002 m/s2. Recall that
the limit for maximal horizontal vibration was set to 0.3m/s2 [Engseth et al., 2016]. The
horizontal vibrations due to the swell waves are also considered negligible compared
to the limitation.

Recall the equations for linear waves in deep water in sec.4.2.5. By investigating the
exponential decay for wave action it is found that a wave period of 8.9s results in
wave action, at the depth of the SFT, which is only 7.9% of the wave action at the free
surface. For a wave period of 14s, the wave action at the depth of the SFT is 35.8% of the
wave action at the free surface. It is therefore expected that the sea states with a wave
period of 14s give the highest wave loads. This is also what is observed by looking
at the envelopes of bending moments for all the sea states considered. The maximal
bending moments were found for the sea state with Tp = 14s and wave direction
110◦. The envelope for maximal bending moment about y-axis due to swell waves is
shown in fig.8.9a. The highest bending moments are located at the bridge ends, with a
magnitude of 15 MNm, which is approximately 5.7% of the maximal bending moment
due to the static loads in SLS. The envelope for maximal bending moment about z-axis
due to swell waves is shown in fig.8.9b. The highest bending moments are located at
the bridge end to the left, with a magnitude of 7 MNm. This is approximately 6.4% of
the bending moment at the bridge ends due to the static current loads in SLS. Because
the bending moments due to swell sea were found approximately 6% of the bending
moment from net static loads, it can be debated if they can be neglected. To ensure
conservatism, they should be included in both the check of max allowable stresses and
moment capacity.

Further discussion the equivalent diameter

The first dynamic response analyses were carried out with an equivalent diameter
equal to the diagonal of the rectangular. This was the definition of the equivalent diam-
eter for a rectangular in the Wajac user manual, [DNV-GL software, 2017]. However, it
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is assumed that a circular cylinder with diameter equal to the diagonal of the rectangu-
lar will overestimate the dimensions of the tube for beam sea. Based on recommenda-
tions from the supervisor, Bernt J. Leira, the equivalent diameters were reconsidered.
Recall from section 4.2.5 (gathered from [Faltinsen, 1990]) that the inertia term in the
Morison equation decays with e

2πz
λ and the drag term decays with a factor of e

4πz
λ .

Due to the high submergence of the SFT, the inertia term is the dominating force in the
Morison equation. The equivalent diameters for wave headingsβ0 = 110◦− 140◦were
therefore estimated based on setting the area of the circumferenced rectangle equal to
the area of a circular cylinder (eq.8.21, sec.8.2.3).

The results for the maximal dynamic response, from the first runs of dynamic analysis,
are given in app.G.3. These runs were based on an equivalent diameter equal to the di-
agonal of the rectangular. These equivalent diameters are approximately 30.7% higher
than the diameters for the base case. Investigating the terms in Morison’s equation
(eq.8.20), it is found that the diameter increase should result in approximately 70.8%
higher inertia term, and 30.7% higher drag term, than for the base case.

The time records of the vertical displacement and acceleration are given in fig.G.10 and
G.12. Contrary to the base case, the maximal response with respect to the vertical dis-
placement and acceleration were found for the sea state with Tp = 8.9s and β0 = 110◦.
For the case of increased equivalent diameter, both the results for vertical displacement
and acceleration start to oscillate, and the oscillation amplitude increases linearly to-
wards the harmonic solution obtained after 650s. For the base case, the start-up of the
response, for the vertical displacement and acceleration, is unstable and unexpected.
In addition, the numerical solution for the base case stabilizes after longer time than
for the case of increased equivalent diameter. The harmonic response amplitude of the
maximal vertical displacement is approximately 87% higher than that of the base case.
The time record of the transverse displacement for the case of increased equivalent di-
ameter is given in fig.G.11. The start-up of the response is unstable for both diameter
cases. For the base case, the numerical solution for the transverse displacement seem
to stabilize after approximately 400s, whereas the numerical solution for the increased
equivalent diameter seem to stabilize after approximately 350s. Thus, it is concluded
that the numerical solution in Sestra is dependent on the size of the structure. Higher
equivalent diameters give faster stabilization of the solution. The harmonic response
amplitude for the maximal transverse displacement for the case of increased equiv-
alent diameter is approximately 57% higher than the result from the base case. The
response of the transverse acceleration for both diameter cases is unstable, and do not
seem to converge to harmonic response.

The envelopes of maximal bending moments for the case of increased equivalent di-
ameter are given in figure G.14. The maximal bending moment about y-axis is 2 times
the result of the base case (fig.8.9a). The maximal bending moment about the z-axis is
1.57 times for that of the base case (fig.8.9b).



Chapter 9

Concluding remarks

With a specific weight of reinforced concrete of 25kN/m3, the buoyancy is the dominat-
ing load in the vertical direction. This results in high reaction forces to be transferred
to the abutments and high bending moments. The stress calculations showed that the
maximal total compressive stresses were below 0.6 fck. The tensile stresses from the
characteristic loads exceed the tensile strength of concrete and the cross-section should
be considered cracked. One of the requirements in SLS was that the cross-section
should remain uncracked to avoid leakage. Thus, the weight should be increased to
balance the buoyancy. A full calculation of the amount of reinforcements should be
carried out and its contribution included in the weight calculations. In addition, it is
possible to increase the ballast chamber fill percentage to increase the weight.

The transverse reactions are dependent on the current direction and profile. Uniform
distributed current loads applied to the full length of the bridge in either positive or
negative y-direction resulted in tension and compression forces in the bridge respec-
tively. These cases were found to give the highest bending moments and axial forces in
the structure compared to the two other current load cases. When calculating the max-
imal total stresses in the concrete at critical sections with respect to tension or com-
pression, it was found that the contributions in stress from axial forces and bending
moments due to current loads are small compared to the contributions from PT-cables
and the net vertical forces.

Increasing curve height influences the static response, the eigenfrequencies and the
mode shapes. When a curve height is introduced, axial forces are present due to trans-
verse loading. As the curve height is further increased, the axial forces and bending
moments due to transverse loading decrease. However, the torsional moments in-
creases with increasing curve height. This is due to the centre of gravity translating
as the curve height increases. For the eigenvalue analysis, the eigenfrequency of the
first horizontal mode is of interest when introducing a curve height. For the straight
bridge model, the eigenfrequency of the first horizontal mode is 0.120 Hz. Introduc-
ing a curve height of 24.25m, which is the base case, the eigenfrequency of the first
horizontal mode is 0.189 Hz. Increasing the curve height further results in further in-
creased eigenfrequency of the first horizontal mode. The curve height where the first
and second mode shape changes order was found 49m analytically, 53m in Sestra and
56m in Abaqus.
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The influence of reinforcements and post-tension cables were accounted for in the
bending stiffness of the structure, in the stress calculations and in the eigenvalue anal-
ysis. The average increase of moment of inertia, when accounting for reinforcements
and PT-cables in transformed concrete cross-sections, are 3.89% for Iz and 3.24% for
Iy. The axial compression from the PT-cables on the concrete was calculated 428 MN,
corresponding to 5.75% of the Euler buckling load. This gave an amplification factor
of 1.063 to multiply with the bending moments in the stress calculations. In the eigen-
value analysis, the PT-cables were accounted for by reducing the eigenfrequencies. The
reduction for the first mode was -2.83%. For higher mode number, the reductions were
calculated less than one percent and are thus neglected.

The eigenvalue analysis in Sestra and Abaqus gave different results for the base case.
For the first five modes, the deviations are below five percent. For increasing mode
number, the deviations increase. Sestra gave the lowest eigenfrequencies, and are thus
assumed to give the most conservative results compared to Abaqus. The eigenperiods
calculated by Sestra and Abaqus deviates from the calculations by the NPRA by about
10-20%. It is assumed that this deviations is a result of differences in modeling and
assumptions for the eigenvalue analysis. Accounting for the reduction factor due to
compression force from PT-cables, the first eigenperiod for the base case was calcu-
lated 9.14s. The second, corresponding to a horizontal mode with one half-wave, was
calculated 5.16s by Sestra. The third and forth, corresponding to vertical and horizon-
tal mode with two half-waves respectively, were calculated 3.34s and 3.00s by Sestra.
For increasing mode number, the eigenfrequencies are close.

The second, third and forth eigenfrequency are close to, or in the range of, the peak
periods for wind generated sea at site. However, these sea state are assumed to exhibit
low energy levels, especially at the depth of the SFT. Swell sea was found to be the
dominating wave type at the depth of the SFT. However, the dynamic response from
first order swell waves was found to be of second importance compared to the response
from static loads. Displacements due to the swell waves investigated in this thesis
were found negligible compared to the results from static analysis. The submergence
of the tunnel provides shelter from the wave loads as the wave action at the depth of
the SFT is 35.8% of the wave action at the free surface. The bending moments due to
swell waves were calculated roughly 6% of the bending moment from net static loads.
To ensure conservatism in stress calculations, the bending moments from wave loads
should be included.



Chapter 10

Recommendations for further work

Topics that can be investigated are listed below.

• Calculate the weight for correct amount of reinforcements and post-tension ca-
bles, and include weight of emergency exits.

• Check moment and shear capacity in ultimate limit state.

• Create a general input file for GeniE to effectively edit the dimensions of the
model and generation of new nodal points.

• Model the bridge with both vertical and horizontal alignment.

• Dynamic response analysis due to irregular waves.

• Dynamic response analysis for the towing and installation phase.

• Convergence studies of the static results when increasing the curve height.

• Dynamic response analysis in the frequency domain.

• Investigate other wave models, like Stokes 5th or new wave theory.

• Assessment of necessary post-tension cables and reinforcements.

• Parameter studies with variation with respect to geometry, ballast, supporting
system etc.

• Compare with a model with tethers at the mid-span, modeled as a spring-support.

• Investigate damaged configuration, i.e. cracks.

• Optimize amount of permanent ballast.

• Investigate the hydrodynamic coefficients

• Model the bridge with other element, e.g. shell elements.

• Investigate the response to non-linear wave loads.

• Accidental limit state analysis.

• VIV analysis.
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Appendix A

Additional information about the SFT
for the Digernessund gathered from the
technical report

A.1 Load factors

Chart of load factors and load combinations

Figure A.1: Chart of load factors and load combinations used in the feasibility study of
a SFT for Digernessund.[Engseth et al., 2016]



A.2. EIGENPERIODS CALCULATED BY THE NPRA iii

A.2 Eigenperiods calculated by the NPRA

The eigenperiods for mode 1-3 given in table A.1 are collected from [Engseth et al.,
2016]. Eigenperiods for mode 4-10 were distributed by the NPRA [Minoretti, 2018].
The mode shapes for the first and second modes are given in fig. A.2.

Table A.1: Eigenperiods and frequencies calculated by the NPRA and dr. techn. Olav
Olsen.[Engseth et al., 2016]

Mode fn (1/s) Tn (s)
1 0.124 8.07
2 0.170 5.87
3 0.240 4.16
4 0.268 3.73
5 0.532 1.88
6 0.523 1.88
7 0.893 1.12
8 0.901 1.11
9 1.149 0.87
10 1.370 0.73

(a) Mode shape 1, vertical. (b) Mode shape 2, horizontal.

Figure A.2: First and second mode shape calculated by dr. techn Olav Olsen.
Illustrations: [Engseth et al., 2016]
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Appendix B

Section properties

B.1 Summary of section properties

Table B.1: Summary of section properties for section 1-5 and average section

Parameters Unit 1 2 3 4 5 Average section
h1 m 18.49 17.86 17.24 16.61 16.3 17.55
h2 m 5.19 4.56 3.93 3.31 3.00 4.254
b1 m 12.2 12.2 12.2 12.2 12.2 12.2
b2 m 10.6 10.6 10.6 10.6 10.6 10.6
t1 m 0.8 0.8 0.8 0.8 0.8 0.8
t2 m 1.0 1.0 1.0 1.0 1.0 0.8
t3 m 0.3 0.3 0.3 0.3 0.3 0.3
Ac m2 61.30 60.30 59.30 58.30 57.8 59.8
Iz m4 2580 2379 2179 1978 1878 2279
Iy m4 1972 1851 1730 1640 1548 1790
It m4 6037 5769 5503 5238 5107 5636
Wz m3 422.91 390.04 357.17 324.30 307.87 381
Wy m3 207.48 207.22 200.67 197.43 189.91 203
Wt m3 360.88 348.68 336.48 324.28 318.18 343
Sy m3 104.04 98.99 94.05 89.24 86.34 95
Sz m3 87.03 83.32 80.67 77.49 75.90 83
Asc,y m2 30.76 30.76 30.76 30.76 30.76 30.76
Asc,z m2 32.69 31.32 29.94 28.57 27.88 30.63
cy m 0 0 0 0 0 0
cz m 0 0 0 0 0 0

v
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B.2 Calculation of section properties

Moment of inertia

The general formula for moment of inertia Iy, adapted from [Irgens, 2006] (page. 413),
is given in eq. B.1:

Iy =
∫

A
z2dA (B.1)

For simplifying the calculations of Iy, the cross-section of the SFT can be divided into
i rectangles or "sub-elements", disregarding the brackets. The moment of inertia for
rectangle i is given in eq. B.2, adapted from [Irgens, 2006] (page. 555).

Iy,i =
hib3

i
12

(B.2)

When calculating the moment of inertia for a cross-section divided into i sub-elements,
Steiners theorem has to be accounted for. According to [Irgens, 2006] (page. 198),
Steiners theorem states the following:

I′ = I + b2 A (B.3)

I′ is the total moment of inertia, including the effect of Steiners contribution, I is the
moment of inertia for sub-part i, calculated according to eq. B.2, b is the distance be-
tween the COG of sub-element i and the total cross-section COG and A is the area of
sub-element i.

Product of inertia about y- and z-axis Iyz, adapted from [Irgens, 2006] (page.413):

Iyz = Izy =
∫

A
yzdA (B.4)

According to [Irgens, 2006], Iyz is zero if at least one of the axes is symmetric. It can be
seen from 3.2 that the cross-section of the SFT is symmetric about y-axis. Thus, Iyz is
zero.

Torsion moment of inertia It for thin-walled sections, corresponding to (IV.53) on page
IV.30 in [Leira, 2014]:

It =
4A2

o∫
s

ds
t

(B.5)

where t is the thickness, ds is a small element length and the Ao is the circumscribed
area of the cross-section.

However, the cross-section of the SFT in this thesis is not a thin-walled one. Prof. Bernt
Leira recommended to increase the torsion moment of inertia by 20− 50% due to the
fact that the SFT is not thin-walled.
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Static area moment

Static area moment about y- and z-axis [Irgens, 2006] (page.421).

Sz =
∫

A′
ydA (B.6)

Static area moment about z-axis

Sy =
∫

A′
zdA (B.7)

where A′ is the area of a sub-element, and y and z represents the distance from the
sub-element COG to the element COG.

Section modulus

Minimum section modulus Wy and Wz, about y- and z-axis respectively, adapted from
[Irgens, 2006] (p.194-196):

Wy =
Iy

z
(B.8)

Wz =
Iz

y
(B.9)

Iy and Iz represents the moment of inertia about y- and z-axis, respectively. z and y
represents the largest distances from the outer fibers of the cross-section to the neutral
axis.

Minimum torsional section modulus about shear center Wt, for an arbitrary cross-
section, adapted from [Irgens, 2006] (p.485-486):

Wt = 2
n

∑
i=1

Aiti (B.10)

Eq. B.10 is based on the idea of dividing the cross-section into n rings. Each ring forms
a sub-cross-section with constant thickness ti and Ai. The latter is the area enclosed by
the ring. [Irgens, 2006]

Shear center

In the case of doubly symmetric cross-sections, the shear center is located at the inter-
section point between the two axes of symmetry ([Leira, 2014] p.17).
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B.3 Method for approximation of varying cross-section

The idea of the approximation is to have elements with constant cross-sections.

Figure B.1: Illustration of the part with linearly varying cross-section

The figure B.1 show that the part with linearly varying cross-section is divided into 4
elements with equal length. Each element has an varying cross-section, e.g. for element
1, the cross-section vary form a to b.

The outer heights (h1) for cross-sections a and e are known from [Engseth et al., 2016],
ie. 3.2 ii and i respectively. The height for cross-section c, hc1 is then assumed by taking
the average of ha and he:

hc1 =
ha + he

2
(B.11)

When hc1 is known, the heights for the cross-sections b and d can be found in similar
way.

Having the height for all cross-sections a, b, c, d and e, the heights for the approximated
elements can be found by taking the average of the two heights at the ends of the
element, e.g. for element 1:

h1 =
ha + hb

2
(B.12)
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Curved model

A sketch of the curved bridge model, corresponding to the red dotted line, is given in
fig. C.1. Note again that this curved configuration is in the horizontal plane. In the
technical report [Engseth et al., 2016], the radius was given R = 1850m and total span
of the bridge L = 600m. By trigonometry and geometric considerations, the length of
the crossing (air line) between the abutments is thus 597.16m.

Figure C.1

In the second curve model another curve height was investigated. Keeping the length
of the crossing between the abutments constant, the new radius can be found by Pythagorean
theorem eq.C.1. Rearranging the equation give the radius (eq.C.2).

R2 = x2 + (R− c)2 (C.1)

ix
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R =
x2 + c2

2c
(C.2)

When the new radius is known, angle b can be found by trigonometry. This angle
is needed to establish the curve in GeniE/Abaqus. The angle b can be divided into
n angles, where n is the number of times the centerline is rotated (see the subsection
below). Thus, n is also the number of elements for half the bridge.

Establishing a curved model in GeniE

Fig. C.2 show the geometrical model used to find the location of the bridge elements
and thus how to establish the global model of the bridge. This figure show one half of
the bridge due to symmetry. The bridge is modeled as an arc consisting of n straight
beam elements with equal length of Le m. The straight beam elements are represented
as the red lines in the figure. The radius of the arc, corresponding to horizontal align-
ment, is represented as R.

Figure C.2: Arc model showing how the positions of the bridge elements are found.



xi

In GeniE, the arc was established using GeniE user manual tutorials, [DNV-GLsoftware,
2015], which gives a step-wise introduction to modeling of arces in GeniE. Fig. C.3
show how the curved model is established by defining guiding plane and lines. When
establishing the curve, half of the bridge is considered. Because of symmetry, the
model can be mirrored to get the total arc.

Figure C.3: Establishing curved model

The green lines represents the guiding plane, which has height equal to the radius of
the arc. The width of the guiding plane, corresponding to X1 in fig. C.2, has to be
found by geometrical considerations.
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Figure C.4: Cut-out of the curve-model in GeniE, showing half the bridge

Before establishing the arc, some helping lines (blue) are drew. The top points of these
helping lines corresponds to the location of the nodes for the straight beam elements.
The upper right corner of the guiding plane, and the top point of the first guiding line
from the right, corresponds to the mid point of the total bridge. To find the location
of the next nodes, the blue guiding line is rotated an angle of θ n times. θ is found
by trigonometric considerations. Then, straight beam elements are drew between the
upper points of the blue guiding lines, resulting in half of the total arc. Finally, the arc
can be mirrored about the mid point of the bridge to achieve the total model (fig.C.5).

Figure C.5: Global model, xy-plane
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Material densities

Table D.1: Total material densities for section 1 to 5, with linearly varying ballast

SLS ULS max buoyancy
Section ρ (kg/m3) ρmaxb(kg/m3)
1 3826 3684
2 3655 3513
3 3494 3352
4 3343 3202
5 3199 3058

For the case with constant average cross-section throughout the structure length, an
average is taken between the two given ballast fills (average between the ballast fill
corresponding to the largest and smallest cross-section given in the technical report).
The average ballast fill is given in table 5.3. Table D.2 show the resulting material
densities for the case with average constant cross-section, including the contribution
from ballast and all other weights. Load factors, which are given in section 6.3, are
applied to all respective contributions to achieve the correct mass of the structure.

Table D.2: Total material densities for average section and section 5, with constant
ballast

SLS ULS max buoyancy
Section ρ (kg/m3) ρmaxb (kg/m3)
Average 3486 3345

xiii
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Appendix E

Reinforcements and PT-cables

E.1 Summary of ordinary reinforcements

Table E.1: Total minimum longitudinal reinforcement areas mm2 for section 1 to 5

Section Type 1 2 3 4 5
Outer walls

Horizontal 161867.68 155731.68 14595.68 143459.69 140391.68
Vertical 161864.38 155728.5 149592.63 143456.76 140388.82

Inner walls
Horizontal 21961.96 19316.96 16671.96 14026.96 12704.72

Top/bottom slab
Horizontal 49058.64 49058.64 49058.64 49058.64 49058.64

Inner slab
Horizontal 42624.72 42624.72 42624.72 42624.72 42634.72

xv
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E.2 Sketch of reinforcements and PT-cables

Figure E.1: Sketch of cross-section with minimum reinforcements and PT-cables. Only
the longitudinal reinforcements are included for simplicity.
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Transformed cross-section

F.1 Summary of transformed cross-section properties

Table F.1: Calculated transformed moment of inertia and transformed area for section
1 to 5

Section 1 2 3 4 5
Itz (m4) 2673.5 2463.3 2267.5 2059.3 1955.3
Ity (m4) 2029.9 1907.9 1785.8 1695.3 1602.8
Av m2 63.20 62.17 61.13 60.09 59.57

Table F.2: Calculated transformed moment of inertia for average section

Section Average section
Itz (m4) 2369.8
Ity (m4) 1846.3

F.2 Transformed moment of inertia calculations

F.2.1 Transformed moment of inertia about z-axis

It,z = Iz,bet + Iz,s + Iz,p (F.1)

As described in section 5.4.1, the transformed moment of inertia about z-direction,
It,z, includes contributions from concrete, Iz,bet, ordinary reinforcements, Iz,s, and PT-
cables, Iz,p. These contributions are kept separate when calculated below.

Total contribution from ordinary reinforcements

For the horizontal decks:

Iz,s1 = 2(η− 1)As1e2
1 + 2(η− 1)As3e2

2 (F.2)

xvii
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where As1 is the total area for horizontal reinforcements per deck (bottom or top slab),
whereas As3 is the total area for horizontal reinforcements per inner deck. e1 and e2 is
the vertical distances from the reinforcements COG to the cross section COG.

For vertical walls (both outer and inner walls):

Iz,s2 = 2 ∗ 2 ∗ (η− 1)(
As2

2
)e2

3 + 2 ∗ 2 ∗ (η− 1)(
As4

2
)e2

4 (F.3)

where As2 is the total area of horizontal reinforcements per outer wall, whereas As4 is
the total area of horizontal reinforcements per inner wall. To account for the horizon-
tal reinforcements in the walls a simplification is made. Each wall is divided in two
parts. It is assumed, for each part of the wall, that the position of the local COG, corre-
sponding to the horizontal reinforcements in the respective part, is placed halfway. The
vertical distances from the reinforcement COG to the cross-section COG is therefore e3
and e4 for the respective parts. See definitions below.

Total contribution from PT-cables

For the horizontal decks:

Iz,p1 = 2(ηp − 1)Ap1e2
1 (F.4)

where Ap1 is the total area of longitudinal PT-cables per slab (bottom or top). e1 repre-
sents the vertical distance from PT-cables COG to the cross-section COG.

For the vertical outer walls:

Iz,p2 = 2 ∗ 2(ηp − 1)(
Ap2

2
)e2

3 (F.5)

Here, Ap2 is the total area of longitudinal PT-cables per wall. The same simplification,
as described above for the ordinary reinforcements, is made for the longitudinal PT-
cables in the walls.

The vertical distances e1, e2, e3 and e4 to the cross-section COG are defined below.

e1 =
h1

2
+

t2

2
(F.6)

e2 =
3.002

2
+

t3

2
(F.7)

e3 =
h1

4
(F.8)

e4 =
3.002

4
(F.9)
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F.2.2 Transformed moment of inertia about y-axis

The same simplification, as described in sec.F.2.1, is made in this section for the rein-
forcements and PT-cables in the horizontal decks. Thus, the decks are here divided
into two parts, and the COG of the reinforcements or PT-cables is halfway in each of
the deck-parts.

Total contributions from ordinary reinforcements

For horizontal deck/slab:

Iy,s1 = 2 ∗ 2 ∗ (η− 1)
As1

2
a2

3 + 2 ∗ 2 ∗ (η− 1)
As3

2
a2

3 (F.10)

As1 and As2 were defined in section F.2.1. a3 is the horizontal distance between the
reinforcements COG and the cross-section COG. See definitions below.

For the vertical walls:

Iy,s2 = 2(η− 1)As2a2
1 + 2(η− 1)As4a2

2 (F.11)

As2 and As4 were also defined in section F.2.1. a1 and a2 are horizontal distances from
the reinforcements COG to the cross-section COG.

Total contributions from PT-cables

For horizontal decks:

Iy,p1 = 2 ∗ 2(ηp − 1)
Ap1

2
a2

3 (F.12)

Iy,p2 = 2(ηp − 1)Ap2a2
1 (F.13)

Ap1 and Ap2 were defined in section F.2.1.

The horizontal distances a1, a2 and a3 to the cross-section COG is defined below.

a1 =
b1

2
− t1

2
(F.14)

a2 =
3.2
2

+
t3

2
(F.15)

a3 =
b1

4
(F.16)
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Appendix G

Additional results from structural
analysis

G.1 Additional static analysis results

G.1.1 Sensitivity study of current direction in SLS condition.

(a) Axial force in x-direction. (b) Bending moment about z-axis.

Figure G.1: Constant current applied in negative y-direction over the full length of the
fjord.

xxi
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(a) Axial force in x-direction. (b) Bending moment in z-direction.

Figure G.2: Constant current applied in positive y-direction over the full length of the
fjord.

(a) Axial force in x-direction (b) Bending moment in z-direction.

Figure G.3: Constant current applied asymmetrically in y-direction over the full length
of the fjord.

(a) Axial force in x-direction. (b) Bending moment about z-direction.

Figure G.4: Constant current applied in negative y-direction at the mid-section over a
length of 300m of the bridge.
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G.1.2 Static analysis results for case with specific weight of reinforced
concrete 26.5kN/m3

In the technical report [Engseth et al., 2016], 26.5kN/m3 was used as the specific weight
of reinforced concrete in hand-calculations. This section includes results from static
analysis in SLS if this specific weight is used.

(a) Resulting distribution of bending mo-
ments about y-axis if 26.5kN/m3 is used as
density of reinforced concrete.

(b) Resulting distribution of shear forces in z-
direction if 26.5kN/m3 is used as density of
reinforced concrete.

Figure G.6: Resulting distribution of torsion moment if 26.5kN/m3 is used as density
of reinforced concrete.

Table G.1: Bending moments and reaction forces due to net vertical forces, SLS.

Results
Mxy,ends (GNm) -0.222
Mxy,mid (GNm) -0.296
Fz (MN) 12.78

The bending moments are reduced with a factor of ten compared to the results of static
analysis with specific weight of concrete 25kN/m3. The largest bending moment is
here located at the midspan. With a positive current force, giving axial tension in the
concrete, the concrete stresses were calculated at the most critical location with respect
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to tension at midspan. Looking at the distribution of bending moments, the critical
location wrt tension was the upper corner to the right. The concrete stress was here
calculated −5.160N/mm2. Thus, the concrete is in compression even though the cur-
rent is subjecting the bridge to axial tension forces.

For the case with a negative current force, giving compression in the concrete, the
concrete stresses were calculated at the most critical location with respect to compres-
sion at midspan. Looking at the distribution of bending moments, the critical location
wrt compression was the lower left corner. Here, the concrete stress was calculated
−9.26N/mm2.

G.1.3 Static analysis results for alternative ballast cases

Two additional ballast amounts were investigated (tab.G.2). The resulting net bending
moments about y-axis are given in fig.G.7. The maximal concrete stress in the most
critical sections with respect to tension are given in tab.G.3.

Table G.2: Ballast fill percentages for three different ballast cases.

Case 1 (%) 2 (%)
Base 60.4 79.0
a 62.2 81.4
b 65.0 85.0

(a) Net bending moment about y-axis for bal-
last case a.

(b) Net bending moment about y-axis for bal-
last case b.

Figure G.7: Net bending moments about y-axis for alternative ballast cases.

Table G.3: Maximal concrete stress in most critical section with respect to tension.

Ballast case σc N/mm2 Utilization(%)
Base 5.7 135.7
a 4.1 97.9
b 1.6 33.1
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G.2 Additional eigenvalue analysis results

G.2.1 Results for straight bridge model

The results in this section are based on a straight bridge model with constant average
cross-section and constant mass over the bridge length. All rotations and translations
are fixed at the bridge ends.

Analytical solutions for straight bridge

Table G.4: Vertical (V) and horizontal (H) eigenperiods and frequencies for straight
bridge.

Mode H/V ωn (rad/s) fn (1/s) Tn (s)
1 V 0.677 0.108 9.277
2 V 1.866 0.297 3.365
3 V 3.658 0.582 1.717
4 V 6.042 0.962 1.039
5 V 9.025 1.436 0.696
1 H 0.764 1.122 8.222
2 H 2.106 0.335 2.982
3 H 4.128 0.657 1.521
4 H 6.817 1.085 0.921
5 H 10.183 1.621 0.617

Results from Sestra and Abaqus for straight bridge

Table G.5: Eigenperiods and frequencies obtained with Sestra and Abaqus.

Sestra Abaqus
Mode H/V fn (1/s) Tn (s) Dan (%) fn (1/s) Tn (s) Dan (%)
1 V 0.107 9.363 0.93 0.109 9.175 -1.10
2 H 0.120 8.317 1.16 0.123 8.134 -1.07
3 V 0.291 3.435 2.08 0.304 3.284 -2.39
4 H 0.327 3.059 2.58 0.343 2.914 -2.28
5 V 0.563 1.776 3.44 0.608 1.645 -4.21
6 H 0.630 1.587 4.34 0.685 1.460 -3.98
7 V 0.916 1.092 5.10 1.031 0.970 -6.61
8 H 1.022 0.979 6.30 1.159 0.863 -6.34
9 V 1.346 0.743 6.75 1.592 0.628 -9.74
10 H 1.496 0.669 8.43 1.787 0.560 -9.28
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Results from convergence test in Sestra

Table G.6: Convergence test for straight bridge model. Dan is the deviation from the
analytical calculation results for straight beam.

Le = 50m Le = 25m Le = 20m Le = 15m
Mode Tn (s) Dan (%) Tn (s) Dan (%) Tn (s) Dan (%) Tn (s) Dan (%)
1 9.3659 0.95 9.3641 0.93 9.3641 0.93 9.3641 0.93
2 8.3194 1.18 8.3199 1.19 8.3199 1.19 8.3199 1.19
3 3.4595 2.80 3.4353 2.08 3.4354 2.08 3.4354 2.08
4 3.0599 2.51 3.0610 2.64 3.0611 2.64 3.0612 2.64
5 1.7769 3.51 1.7773 3.54 1.7775 3.55 1.7777 3.56
6 1.5873 4.34 1.5893 4.47 1.5896 4.48 1.5897 4.49
7 1.0919 5.05 1.0934 5.19 1.0940 5.24 1.0942 5.26
8 0.9789 6.26 0.9820 6.60 0.9823 6.63 0.9825 6.66
9 0.7433 6.83 0.7465 7.28 0.7469 7.34 0.7472 7.38
10 0.6689 8.46 0.6733 9.18 0.6737 9.25 0.6740 9.30

G.2.2 Results for curved bridge model

Analytical results

Table G.7: Analytical results for curved beam, constant cross-section, vertical (V) and
horisontal (H) modes.

Mode H/V ωn (rad/s) fn (1/s) Tn (s)
1 V 0.678 0.108 9.268
2 V 1.868 0.297 3.362
3 V 3.662 0.583 1.715
4 V 6.048 0.963 1.038
5 V 9.034 1.439 0.695
1 H 1.247 0.199 5.037
2 H 2.113 0.337 2.972
3 H 4.143 0.660 1.516
4 H 6.842 1.090 0.918
5 H 10.221 1.628 0.614
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Results from Sestra and Abaqus

Table G.8: Eigenperiods and frequencies for curved model, constant cross-section, ob-
tained with Sestra and Abaqus.

Sestra Abaqus
Mode H/V fn (1/s) Tn (s) Dan (%) fn (1/s) Tn (s) Dan (%)
1 V 0.107 9.390 1.32 0.110 9.123 -1.56
2 H 0.186 5.381 6.83 0.189 5.299 5.20
3 V 0.291 3.438 2.26 0.307 3.261 -2.99
4 H 0.326 3.064 3.10 0.347 2.884 -2.97
5 V 0.563 1.777 3.62 0.613 1.632 -4.83
6 H 0.633 1.579 4.16 0.695 1.438 -5.14
7 V 0.916 1.091 5.11 1.039 0.963 -7.26
8 H 1.022 0.979 6.64 1.172 0.853 -7.08
9 V 1.346 0.743 6.91 1.605 0.623 -10.33
10 H 1.496 0.668 8.72 1.808 0.553 -9.97

G.2.3 Additional results from parameter studies with curve height

Table G.9: Results for the first six modes from parameter study with curve height.

An. C = 49m Sestra C = 53m Abaqus C = 56m
Mode H/V fn (1/s) Tn (s) fn (1/s) Tn (s) fn (1/s) Tn (s)
1 V 0.109 9.190 0.106 9.406 0.103 9.748
2 V 0.300 3.333 0.284 3.519 0.285 3.504
3 H 0.339 2.950 0.315 3.175 0.326 3.064
4 H 0.339 2.950 0.326 3.064 0.329 3.036
5 V 0.588 1.701 0.545 1.834 0.563 1.778
6 H 0.665 1.504 0.624 1.603 0.664 1.505

G.2.4 Abaqus eigenvalue analysis with axial compression from PT-
cables

Abaqus was used to investigate how the compression from PT-cables affect the eigen-
periods and mode shapes of the bridge. Two analyses were carried out, one with the
straight configuration and one with the base case. The analysis with the straight con-
figuration was conducted to compare the results form Abaqus to the analytical results
(see sec. 7.1 and 7.4.1).

The compression forces were applied as "bolt loads" in Abaqus at both ends of the
bridge. Both ends were considered fixed for all rotations and translations. The bolt
loads were applied at both ends in a step prior to the eigenvalue-analysis step. To
account for the non-linear geometric effects due to the applied pre-load, the NL-GEOM
option was checked. See Abaqus user manual for more information about the meaning
of bolt loads and the NL-GEOM option.
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The results from the two analyses, discussed in the following, were found rather strange
for both the straight bridge and the base case.

Straight bridge configuration with applied compression forces from PT-cables

Table G.10: Results for eigenvalue analysis in Abaqus for straight bridge. Results with
and without compression from PT-cables are compared.

Abaqus res. Abaqus res. w/bolt loads
Mode fn (1/s) fn (1/s) D (%)
1 0.109 0.000 (-)
2 0.123 0.106 -2.69
3 0.305 1.020 -2.10
4 0.343 0.301 -1.24
5 0.608 0.340 -0.96
6 0.685 0.604 -0.63
7 1.031 0.681 -0.49
8 1.159 1.027 -0.34
9 1.592 1.156 -0.27

Table G.10 show the results from eigenvalue analysis of the straight bridge configura-
tion in Abaqus with and without applied compression forces from PT-cables. When
applying compression forces, the first eigenfrequency given by Abaqus is 0.000s. This
was unexpected, and it was found difficult to figure out why the first eigenfrequency
is zero. The eigenfrequency for the model without the applied compression was com-
pared to the results from GeniE for the corresponding case (straight bridge), and the
deviations was found within 5% for the first four modes. All inputs to Abaqus and
modelling-steps in Abaqus was double-checked to screen for errors.

Now, lets call the case with applied compression force "case 2", and the case without
the applied compression force "case 1". The next resulting eigenfrequencies (modes
2-10) for the case 2, are similar to the eigenfrequencies for mode 1-9 for case 1. The
eigenfrequency for mode 1 case 1 is similar to the period for mode 2 case 2, and so on.
The deviation between the corresponding modes are given as D in the same table.

The analytical calculated reductions of eigenfrequency due to axial compression for the
straight bridge configuration were presented in tab.7.2. The reduction was calculated
for the first modes to approximately −2.83%. In Abaqus, the reduction from the first
mode for case 1, to the second mode for case 2, was found −2.69%. As for the ana-
lytical reduction results, the reduction is reduced for increasing mode number. Thus,
there exists similarities between the analytical calculation model and the results from
Abaqus when applying the compression forces from PT-cables. However, because of
the strange first mode in Abaqus, the Abaqus model and modelling technique with
bolt-loads in Abaqus should be further investigated to accept and utilize the results.
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Base case bridge with applied compression forces from PT-cables

Table G.11: Abaqus results for curved structure subjected to bolt loads.

Abaqus res. Abaqus res. w/bolt loads
Mode fn (1/s) fn (1/s) D (%)
1 0.115 0.008 (-)
2 0.196 0.112 -2.57
3 0.313 0.126 -35.70
4 0.352 0.309 -1.27
5 0.619 0.348 -0.92
6 0.698 0.615 -0.65
7 1.042 0.691 -1.03
8 1.169 1.038 -0.37
9 1.608 1.166 -0.26

Figure G.8: First horizontal mode when the structure is subjected to bolt loads.

Table G.11 show the results from eigenvalue analysis of the base case configuration in
Abaqus with and without applied compression forces from PT-cables. When applying
compression forces, the first eigenfrequency given by Abaqus is 0.008s which corre-
sponds to a period of 114s. The mode shape for the first mode is given in fig.G.8. Both
the low eigenfrequency and the mode shape for the first mode were unexpected. The
next eigenfrequencies (modes 2-10) for the case of applying compression (case 2), are
similar to the eigenfrequencies for mode 1-9 for case without compression forces (case
1). The eigenfrequency for mode 1 case 1 is similar to the period for mode 2 case 2,
and so on. The deviation between the corresponding modes are given as D in the same
table. It is observed that for the base case configuration, the second horizontal mode
for case 2 deviates from case 1 by approximately 36%.

The bolt loads were applied in a step prior to the eigenvalue analysis to obtain a new
reference with the deformed configuration. Investigating the deformed configuration,
it is observed that the bolt loads cause an deformation in x-direction with maximum
value 0.8515m, and a deformation in y-direction with maximum value 0.1283m. Scaled
deformations are showed for x- and y-direction in fig.G.9a and G.9b, respectively.
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(a) Displacements in x-direction. (b) Displacements in y-direction.

Figure G.9: Displacements in x- and y-direction when the structure is subjected to bolt
loads. Note that the displacements are scaled.

G.3 Additional dynamic response analysis results

Note that the results are given for the direction and wave period giving the maximal
results for the respective variable. The results in this section is based on a equivalent
diameter equal to the diagonal of the rectangular sections.

Maximal displacements and accelerations

Figure G.10: Time record of vertical displacement amplitudes due to regular swell
wave Tp = 8.9s, β0 = 110◦.
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Figure G.11: Time record of transverse displacement amplitudes due to regular swell
wave Tp = 14s, β0 = 110◦.

Figure G.12: Time record of vertical acceleration amplitudes due to regular swell wave
Tp = 8.9s, β0 = 110◦.

Figure G.13: Time record of transverse acceleration amplitudes due to regular swell
wave Tp = 14s, β0 = 110◦.
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Envelopes of maximal bending moments

(a) Mxy, bending moment about z-axis. (b) Mxz, bending moment about y-axis.

Figure G.14: Envelopes of maximal bending moments due to regular swell sea with
Tp = 14s, β0 = 110◦.
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Rayleigh-damping coefficients for different damping ratios

Figure G.15: Damping ratio versus angular frequency. ξ,i = 0.8% and ξ, j = 1.5%
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Figure G.16: Damping ratio versus angular frequency.ξ,i = 1.5% and ξ, j = 3.0%



Appendix H

Hand-calculations for checking results
from static analysis in Sestra

H.1 Selfweight check

To verify that the established FEM-model give reasonable results when applying the
self-weight with the built-in option, the results are compared with analytic hand-calculations
based on simple beam theory.

The comparison is carried out for straight configuration of the bridge, with a constant
average cross-section and constant mass. In this calculation, the two ends are assumed
clamped, ie. all degrees of freedom are fixed. The following calculation model is used
to calculate the resulting moment at the two ends and at the mid-point of the beam
(fig. H.1).

Figure H.1: Illustration of clamped plate with uniform distributed load and resulting
moment diagram

q is calculated by use of the gravitational law:

xxxv
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G = mg (H.1)

m is the self-weight of reinforced concrete given by:

m = ρconcreteVconcrete (H.2)

where Vconcrete is the concrete volume.

Combining eq. H.1 and H.2 the expression for the distributed load q (N/m) is ob-
tained:

q = ρconcrete Ag (H.3)

The following parameters are used in the hand-calculations:

Table H.1: Calculation parameters

Parameter Value
A 59.8m2

ρconcrete 3345kg/m3

L 600m
g 9.81m/s2

Where A is the cross-section area of the simplified cross-section, ie. the one without
the inner sections.

H.2 Buoyancy check

The check was carried out by applying the buoyancy in two different ways, both by
the built-in way in GeniE described earlier, and by applying the buoyancy manually
as external distributed loads, pointing upwards. The magnitude of the buoyancy in
kN/m was calculated and applied manually for each element by the formula:

B = ρgAelement (H.4)

In this context, Aelement is the whole circumscribed area. Meaning, Aelement = b1h1.

The bending moments in z-direction caused by buoyancy was then checked for both
methods, giving the results in table H.2:

Table H.2: Maximal bending moments caused by buoyancy

Mxy (GNm) at ends Mxy (GNm) at midspan
Wajac 63.381 -27.569
Manually applied 63.532 -27.663
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From table H.2 it is seen that the two methods give similar results. Wajac slightly
underestimates the buoyancy. The deviation can also be caused by round-off errors. It
is therefore concluded that the buoyancy is correctly applied using Wajac.
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Appendix I

MATLAB script

I.1 Script estimating the Rayleigh damping coefficients

% This s c r i p t conta ins information needed f o r c a l c u l a t i o n of c o e f f i c i e n t s
% used f o r Rayleigh damping

% Eigenfrequencies from GeniE
w = [ 0 . 1 1 2 0 .194 0 .297 0 .335 0 .569 0 .646 0 .921 1 .036 1 .351 1 . 5 2 9 ] ;
wa = 2∗pi∗w; % Angular e i g e n f r e q u e n c i e s
wk = [ 0 . 0 5 : 0 . 0 5 : 4 ] ; % Frequency range ( x−a x i s in p l o t )

% Desired dampingratios
e ta1 = 0 . 0 0 5 ;
e ta2 = 0 . 0 0 8 ;
e ta3 = 0 . 0 1 5 ;

% C a l c u l a t i o n of c o e f f i c i e n t s
[ alpha , beta ] = c o e f f ( eta1 , eta2 , e ta3 )

% Damping r a t i o corresponding to f i r s t and second eigenfrequency
r a t i o 1 = 0 . 5 ∗ ( ( alpha ∗(1/wa ( 1 ) ) ) + ( beta∗wa ( 1 ) ) ) ;
r a t i o 2 = 0 . 5 ∗ ( ( alpha ∗(1/wa ( 2 ) ) ) + ( beta∗wa ( 2 ) ) ) ;

%−−−−−−−−−−−−−−P l o t t i n g−−−−−−−−−−−−−−−−−−−−−−−−−−−
asymp = zeros ( length (wk ) , 1 ) ; % Asymptote
r a t i o = zeros ( length (wk ) , 1 ) ; % Damping r a t i o graph
f o r i = 1 : length (wk)

asymp ( i ) = 0 .5∗ beta∗wk( i ) ;
r a t i o ( i ) = 0 . 5 ∗ ( ( alpha ∗(1/wk( i ) ) ) + ( beta∗wk( i ) ) ) ;

end
%{
f i g u r e ( 1 )
p l o t (wk, asymp , ’−−r ’ )
hold on
p l o t (wk, r a t i o , ’b ’ )
hold on
p l o t ( 0 . 7 0 3 3 6 , r a t i o 1 , ’ x ’ ) % Rat io corresponding to f i r s t e igenperiod
hold on
p l o t ( 1 . 2 1 8 3 2 , r a t i o 2 , ’ x ’ ) % Rat io corresponding to second eigenperiod
t i t l e ( { ’ Rayleigh damping ’ } , ’ FontSize ’ , 10)
y l a b e l ( ’ Damping r a t i o \ x i (− ) ’ )
x l a b e l ( ’\omega ( rad/s ) ’ )
grafnavn ={ ’ Asymptote 0.5\ beta\omega ’ , ’ Resul t ing damping with \alpha = 0 .0026 and \beta = 0 . 0 0 9 5 ’ } ;
legend ( grafnavn , ’ Location ’ , ’ northeast ’ )
%}
%{
f i g u r e ( 2 )
p l o t (wk, asymp , ’−−r ’ )
hold on

xxxix
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p l o t (wk, r a t i o , ’b ’ )
hold on
p l o t ( 0 . 7 0 3 3 6 , r a t i o 1 , ’ x ’ ) % Rat io corresponding to f i r s t e igenperiod
hold on
p l o t ( 1 . 2 1 8 3 2 , r a t i o 2 , ’ x ’ ) % Rat io corresponding to second eigenperiod
t i t l e ( { ’ Rayleigh damping ’ } , ’ FontSize ’ , 10)
y l a b e l ( ’ Damping r a t i o \ x i (− ) ’ )
x l a b e l ( ’\omega ( rad/s ) ’ )
grafnavn ={ ’ Asymptote 0.5\ beta\omega ’ , ’ Resul t ing damping with \alpha = 0 .0034 and \beta = 0 . 0 1 8 5 ’ } ;
legend ( grafnavn , ’ Location ’ , ’ northeast ’ )
%}
f i g u r e ( 3 )
p l o t (wk, asymp , ’−−r ’ )
hold on
p l o t (wk, r a t i o , ’b ’ )
hold on
p l o t ( 0 . 7 0 3 3 6 , r a t i o 1 , ’ x ’ ) % Rat io corresponding to f i r s t e igenperiod
hold on
p l o t ( 1 . 2 1 8 3 2 , r a t i o 2 , ’ x ’ ) % Rat io corresponding to second eigenperiod
t i t l e ( { ’ Rayleigh damping ’ } , ’ FontSize ’ , 10)
y l a b e l ( ’ Damping r a t i o \ x i (− ) ’ )
x l a b e l ( ’\omega ( rad/s ) ’ )
grafnavn ={ ’ Asymptote 0.5\ beta\omega ’ , ’ Resul t ing damping with \alpha = 0 .0056 and \beta = 0 . 0 3 7 5 ’ } ;
legend ( grafnavn , ’ Location ’ , ’ northeast ’ )
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Sesam scripts

J.1 Wajac analysis control file

WAJAC
TITL Wajac run name : Analysis1 . s tep ( 2 )
C
C PREFIX
FMOD GeniEModel
C
C PREFIX FORM
FWAVE WajacWave FORMATTED
C
C UNITS GRAVITY RHO VISC RHOAIR VISCAIR
CONS 1 . 9 .80665 1014 . 1 . 1 9 e−006 1 .226 1 .462 e−5
C
C OPT1 OPT2 OPT3 OPT4 OPT5 OPT6 OPT7
OPTI 0 . 1 . 0 . 0 . 0 . 0 . 0 .

0 . 0 . 0 . 0 . 0 . 0 .
C
C ILFSAV ISETOP
MODE 1 . 1 .
C
C LN
LONO 1 .
C ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ GEOM S e c t i on ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
GEOM
C
C Z
MUDP −200.
C ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ HYDR S e c t i on ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
HYDR
C
C TYPE
CPRI SPEC
C
C ADMAS DAMP
MASS 1 . 0 .
C
C HydroDynamicDiameter2 ( Hydrodynamic Diameter property )
C
C M1 M2 INC STYP IDX DIAM IGWD
SPEX 2 . 0 . 0 . 1 . 1 . 16 .66 0 . 7 0 . 7 −1. 0 .
SPEX 1 1 . 0 . 0 . 1 . 1 . 16 .66 0 . 7 0 . 7 −1. 0 .
C
C HydroDynamicDiameter3 ( Hydrodynamic Diameter property )
C
C M1 M2 INC STYP IDX DIAM IGWD
SPEX 3 . 0 . 0 . 1 . 1 . 16 .37 0 . 7 0 . 7 −1. 0 .
SPEX 1 0 . 0 . 0 . 1 . 1 . 16 .37 0 . 7 0 . 7 −1. 0 .
C
C HydroDynamicDiameter4 ( Hydrodynamic Diameter property )

xli
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C
C M1 M2 INC STYP IDX DIAM IGWD
SPEX 4 . 0 . 0 . 1 . 1 . 16 .07 0 . 7 0 . 7 −1. 0 .
SPEX 9 . 0 . 0 . 1 . 1 . 16 .07 0 . 7 0 . 7 −1. 0 .
C
C HydroDynamicDiameter5 ( Hydrodynamic Diameter property )
C
C M1 M2 INC STYP IDX DIAM IGWD
SPEX 5 . 8 . 1 . 1 . 1 . 15 .92 0 . 7 0 . 7 −1. 0 .
C
C HydroDynamicDiameter1 ( Hydrodynamic Diameter property )
C
C M1 M2 INC STYP IDX DIAM IGWD
SPEX 1 . 0 . 0 . 1 . 1 . 16 .95 0 . 7 0 . 7 −1. 0 .
SPEX 1 2 . 0 . 0 . 1 . 1 . 16 .95 0 . 7 0 . 7 −1. 0 .
C
C BuoyancyArea1 ( Buoyancy Area property )
C
C M1 M2 INC STYP IDX ANFLD AFLD
BUOA 5 . 8 . 1 . 1 . 1 . 1 9 8 . 1 9 8 .
C
C BuoyancyArea2 ( Buoyancy Area property )
C
C M1 M2 INC STYP IDX ANFLD AFLD
BUOA 4 . 0 . 0 . 1 . 1 . 202 .673 202 .673
BUOA 9 . 0 . 0 . 1 . 1 . 202 .673 202 .673
C
C BuoyancyArea4 ( Buoyancy Area property )
C
C M1 M2 INC STYP IDX ANFLD AFLD
BUOA 3 . 0 . 0 . 1 . 1 . 210 .298 210 .298
BUOA 1 0 . 0 . 0 . 1 . 1 . 210 .298 210 .298
C
C BuoyancyArea5 ( Buoyancy Area property )
C
C M1 M2 INC STYP IDX ANFLD AFLD
BUOA 2 . 0 . 0 . 1 . 1 . 217 .923 217 .923
BUOA 1 1 . 0 . 0 . 1 . 1 . 217 .923 217 .923
C
C BuoyancyArea6 ( Buoyancy Area property )
C
C M1 M2 INC STYP IDX ANFLD AFLD
BUOA 1 . 0 . 0 . 1 . 1 . 225 .548 225 .548
BUOA 1 2 . 0 . 0 . 1 . 1 . 225 .548 225 .548
C ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ LOAD S ec t i o n ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
LOAD
C
C ElementRefinement1 ( Element ref inement property )
C
C Z1 Z2 SEG SLMIN SLMAX IMEM
SEGM 0 . 250 .143 1 . 0 . 0 . 1 .
C
C M1 M2 INC STYP IDX IMEM
MEMSEG 1 . 1 2 . 1 . 1 . 1 . 1 .
C
C ISEA THEO HEIGHT PERIOD PHI0 T0 STEP NSTEP
SEA 1 . 1 . 1 0 . 1 9 1 4 . 0 . 0 . 1 0 . −3000.
C
C ISEA BETA WKFA CTNO CBFA CSTR LOAD DLOA WID WIME IDPT
SEAOPT 1 . 1 1 0 . 1 . 0 . 1 . −1. 5 . 0 . 0 . 0 . 1 .
C
C DEPTH IDPT
DPTH 2 5 0 . 1 .
C
C X Y Z
MOMT 0 . 0 . 0 .
END
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J.2 Sestra dynamic analysis control file

COMM
COMM−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
HEAD Job_time_domdyn − SestraDynamicTime
COMM Superelement : 1
COMM Dynamic time domain a n a l y s i s
COMM Mult i f ront s o l v e r used
COMM−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
COMM Data Formats − the numbers are r i g h t adjusted in the f i e l d s
COMM <−1−><−2−><−3−><−4−><−5−><−6−><−7−><−8−><−9−><−−−10−−−><−−−11−−−><−−−12−−−>
COMM <−1−><−−−−2−−−><−−−−3−−−><−−−−4−−−><−−−−5−−−><−−−−6−−−><−−−−7−−−><−−−−8−−−>
COMM−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
COMM−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
COMM CHECK ANTP MSUM MOLO STIF RTOP LBCK PILE CSIGN SIGM
CMAS 0 . 2 . 1 . 0 . 0 . 0 . 0 . 0 .
COMM
COMM−−−−−−−−−−−−−−−−−−−−−−−INPUT AND OUTPUT FILES−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
COMM
COMM PREF FORMAT
INAM . . \ _ r e p o s i t o r y \GeniEModel
COMM−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
COMM PREF FORMAT
LNAM . . \ _ r e p o s i t o r y\WajacWave
COMM−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
COMM PREF FORMAT
RNAM . . \ _ r e p o s i t o r y \SestraDyn SIN
COMM−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
COMM
COMM−−−−−−−−−−−−−−−−−−−−−−− DIRECT TIME DOMAIN ANALYSIS −−−−−−−−−−−−−−−−−−−−−−−
COMM
COMM ITP1
ITOP 1 .
COMM−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
COMM−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
COMM CALTYP RESVA BETA THETA H( tmstp )
FRSP 4 . 1 . 0 . 2 5 0 . 1 . 0 E−3
COMM
COMM−−−−−−−−−−−−−−−−−−−−−−−−−−−− STRUCTURAL DAMPING −−−−−−−−−−−−−−−−−−−−−−−−−−
COMM
COMM ALPHA_1 ALPHA_2
MDAP 0.0026 0 .0095
COMM
COMM−−−−−−−−−−−−−−−−−−−−−−−−−−−− REQUESTED RESULTS −−−−−−−−−−−−−−−−−−−−−−−−−−−−
RETR 3 .
COMM ISEL1 ISEL2 ISEL3 ISEL4 ISEL5 ISEL6 ISEL7 ISEL8
RSEL 1 . 1 . 1 . 1 .
COMM−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
COMM SELTY
IDTY 1 .
COMM−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
COMM
COMM−−−−−−−−−−−−−−−−−−−−−−−−−−−− INCLUDING ADDED MASS −−−−−−−−−−−−−−−−−−−−−−−−−
COMM IMAS IDNA ISST
DYMA 1 .
COMM−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Z
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