
Deep Reinforcement Learning based
tracking behavior for underwater vehicles

Abir Khan

Marine Technology

Supervisor: Ingrid Schjølberg, IMT
Co-supervisor: Anastasios Lekkas, IMT

Department of Marine Technology

Submission date: June 2018

Norwegian University of Science and Technology

NTNU Trondheim
Norwegian University of Science and Technology
Department of Marine Technology

MASTER THESIS IN MARINE CYBERNETICS

Name of the candidate: Abir Khan

Field of study: Marine Technology

Thesis title: Deep Reinforcement Learning based tracking behavior for
underwater vehicles

Background

With the industry is pushing further offshore to more complex and dangerous maritime
conditions, this begs the questions of cost efficiency, health, safety and environment. A central
solution to these questions resides in the increased focus on autonomy, especially underwater
missions related to underwater vehicles.

Today, the industry traditionally employs human operators for control of both Remotely
Operated Vehicles (ROVs) and Autonomous Underwater Vehicles (AUVs) in underwater
operations. Not only is this practice costly, the mission also relies fully on the availability of
these human operators. Most importantly, involving more operators on underwater missions in
challenging maritime conditions is a high risk, which is crucial to minimize. By introducing
increased autonomy within the underwater operations, more specifically render ROVs/AUVs
fully autonomous, one has effectively reduced the need of human operators.

One way to increase autonomy in the underwater missions is by utilizing autonomous behavior
for underwater vehicles. This thesis puts forward a deep reinforcement learning based tracking
behavior for underwater vehicles. This property promotes increased autonomy in the sense of
not being reliant on an extra operator for that specific underwater vehicle during a mission.

The use of AI, specifically machine learning, has been increasingly popular in the late years
due to increased computer power. Especially does reinforcement learning hold an enormous
potential as they are capable of exceeding human performance, which is important to highlight
in complex tasks such as underwater missions. In this thesis a suitable reinforcement learning
algorithm will be implemented to solve the tracking problem for a ROV. The implementation
will be verified for performance in simulations. Ultimately, the implementation will be tested
for performance in physical experiments conducted in the test basin at Marine Cybernetics
Laboratory at Tyholt, NTNU.

Work description

1. Literature study on reinforcement learning with emphasis on the following
 Basic concepts and challenges within reinforcement learning in general

applications
 State of the art reinforcement learning methods in light of robotic systems

2. Develop a reinforcement learning algorithm for a ROV system based on existing
implementation for control tasks

3. Train the tracking behavior using the developed reinforcement learning algorithm on a
simulator

4. Use the simulator results to verify and validate the tracking behavior

5. Test and verify the tracking behavior module through physical laboratory experiments
at a test basin

6. Discuss and compare the results obtained from simulation and physical experiments
7. Write thesis a thesis on the simulation and experimental testing, along with a conclusion

and suggestions for further work

Specifications
The thesis is written in English, where a preface is included, followed by a summary in both
Norwegian and English, which is in accordance to the guidelines for a masters thesis from
NTNU. In the introduction of the report the background and motivation for the thesis are
further detailed. A small-scale review on related work on the topic is provided. The outline of
the rest of the thesis is also included in the introduction. The main section of the thesis
comprise of literature review, description of mathematical models, presentation of
reinforcement learning implementation and simulator setup, presentation of simulation results
and experimental results. Finally, discussion and conclusion is in order, with suggestions for
further work provided. Source codes and a PDF version of the report shall be included
electronically along with the submission.

Start date: January 15th, 2018 Due date: June 25th, 2018

Supervisor: Ingrid Schjølberg

2

Preface

This report is a result of a master thesis in Marine Technology with specialization
within Marine Cybernetics at the Norwegian University of Science and Technology.
The main motivation for this work is to investigate the possibilities for Deep Re-
inforcement Learning as a basis for control systems design in underwater vehicles.
The control sequence that is specifically to be designed is a autonomous tracking
behavior for underwater vehicles with the use of Computer Vision technology as
a key feature. This approach has the potential to, not only reduce the severe en-
gineering workload of manually designing such control systems, but also increase
autonomy in underwater operations. This concept is also easily importable to other
types of vehicular systems, such as cars, autonomous ships and aerial drones.

This thesis is an continuation of a Project Thesis carried out in autumn 2017, and
the period of work ranges from January to June 2018.

The assumed background of the reader should be an education within control en-
gineering, marine hydrodynamics, and basic knowledge in Machine Learning.

i

Acknowledgement

The work is accomplished with the support from my supervisor Ingrid Schjølberg.
I would like to thank Ingrid for her optimism and help. I am grateful to Ph.D
candidate Bent O. Arnesen and researcher Tore Mo-Bjørkelund for introducing me
to the BlueROV2, and spending a lot of their time on debugging softwares with me.
Also, a special thanks to postdoc Mikkel Cornelius Nielsen for his assistance in the
MC-lab, guidance in the thesis work and simulator development.

Lastly, my kindest thanks to my family and friends which has been encouraging me
throughout my years of study.

Abir Khan

Trondheim, June 20, 2018

ii

Summary

This thesis introduces the use of Machine Learning, specifically Reinforcement
Learning, to create a model-free tracking property for Remotely Operated Vehi-
cles (ROV). In detail, the ROV is trained by a RL algorithm to track an aruco
marker, using online implementation of a Computer Vision (CV) algorithm as a
detection property. The main motivation behind this enterprise is the contribu-
tion to increased autonomy in underwater operations, by introducing model-free
autonomous tracking behavior to underwater vehicles. This approach of implemen-
tation requires minimal human intervention during operation, while significantly
reducing prior human control programming effort. Firstly, a simulator based track-
ing behavior training of the ROV was done prior to conducting physical experiments
with a real ROV in the MC-laboratory at NTNU. The ROV used for the exper-
imental tests is a BlueROV2, which is highly customizable and fitting for R&D
purposes.

The theory presented in this thesis lays the groundwork for the many reasonings
done in this project’s course, including the choice of RL method. The RL algorithm
chosen for training the tracking behavior is a online Python implementation of
the type Proximal Policy Optimization (PPO) algorithm. The tracking behavior is
trained on a simulator, which is a Python script based on typical OpenAI’s simulator
architecture. The resulting tracking performance is then evaluated by studying the
evolution of accumulated rewards and ROV’s trajectory plots. While the resulting
performance did show to have some weak sides, it was, however, feasible enough to
test the trained model in a real-world setting.

However, the real-world experiments did not yield positive tracking results, consid-
ering the ROV performed in a random manner instead of favorably moving towards
the aruco marker. Several challenges described in the theory-section proved to be
prevalent during the lab experiments, which caused the disruption in the real-world
tracking performance. Nonetheless, based on experience gained from both the sim-
ulations and real-world experiments, various proposals for further work was devised
and highlighted. Especially, is the importance of appropriate reward function design
underlined.

iii

Sammendrag

Denne oppgaven introduserer maskinlæring, spesifikt forsterket læring (Reinforce-
ment Learning, les: RL), til å utvikle sporingsadferd hos undervannsfarkoster (ROV).
Med andre ord, ROV’en trenes opp av en RL-algoritme for å spore en aruco-kode
under vann ved hjelp av en maskinvisjon-basert deteksjonsalgoritme. Hovedmoti-
vasjonen bak dette prosjektet er å bidra til økt autonomi i undervannsoperasjoner
ved å introdusere modell-fri autonom sporingsadferd hos undervannsfarkoster. På
denne måten reduseres menneskelig intervensjon hos undervannsfarkosten i under-
vannsoperasjoner. I tillegg reduseres arbeidsbelastningen for mennesker da en slip-
per manuelt å utvikle et slikt kontrollsystem. Til å begynne med ble ROV’en trent
opp i en simulator på forhånd før den ble testet i virkelige verden i MC-laboratoriet
ved NTNU. ROV-typen som er brukt til laboratorietestene er BlueROV2 som er
enkelt å modifisere. Dette gjør den utmerket til forskningsprosjekter slik som denne
masteroppgaven.

Den omfattende teorien som er tatt for seg i denne oppgaven er grobunnen til
mange av beslutningene gjort i dette prosjektets forløp. Blant annet er valget av
RL-algoritme basert på argumenter tat for seg i teoridelen av oppgaven. Den valgte
RL-algoritmen er en Python-basert implementasjon anskaffet fra internettet og er
av typen Proximal Policy Optimization (PPO). Sporingsadferden ble trent opp i en
simulator som er et Python-basert skript. Simulatoren baserer seg på en standard
simulator-arkitektur fra OpenAI. Sporingsadferden fra simulasjonsopplæringen ble
vurdert i ettertid ved å studere utviklingen av akkumulert belønning og plottene
av ROV’ens baneløp. Selv om den resulterende opplærte sporingsadferden hadde
noen svakheter så var den egnet til å testes hos en ekte ROV i laboratorieforsøk.

Sporingsadferden under laboratorieforsøkene ble derimot ikke vellykket siden ingen
lovende opptreden ble observert. Isteden for å bevege seg mot aruco-koden som
ønsket oppførte ROV’en seg vilkårlig under eksperimentet. Utfordringer som var
beskrevet i teoridelen av oppgaven ble derimot støtet på under laboratorieforsøkene,
noe førte til begrenset mulighet for optimal sporingsadferd. Likevel ved hjelp av
praktisk erfaring ervervet fra simulasjoner og laboratorieforsøkene ble det utarbeidet
forslag til videre arbeid. Spesielt er viktigheten av riktig type belønningsfunksjon
(reward function) understreket.

iv

Contents

Preface i

Acknowledgement ii

Summary iii

Sammendrag iv

Contents v

List of Figures viii

List of Tables x

1 Introduction 1
1.1 Subsea underwater robotic operations 1

1.1.1 Underwater robotic operations in oil and gas industry 1
1.1.2 Underwater robotic operations related to aquaculture 2

1.2 Underwater robotic control . 3
1.2.1 State of underwater vehicle operations 3
1.2.2 Introducing Machine Learning in robotic control 5
1.2.3 Related work . 5

1.3 Thesis objective . 7
1.4 Overview of the thesis . 7

2 Machine Learning: A Literature Review 9
2.1 An intuitive approach to Reinforcement Learning 10
2.2 Markov Decision Process . 11
2.3 Tabular approaches of solving MDPs 14

2.3.1 Dynamic Programming Methods 14
2.3.2 Temporal Difference Methods 15

2.4 Function approximation approaches for solving MDPs 17
2.4.1 Linear Function Approximation 17
2.4.2 Nonlinear Function Approximation 19

2.5 Reinforcement Learning in Large State and Action Spaces 22
2.5.1 Policy search method . 22
2.5.2 Model-free and Model-based Policy Search 24
2.5.3 Actor-Critic Methods . 25

2.6 Suitable methods for robotic navigation control 28

2.6.1 Partially Observable Markov Decision Processes 28
2.6.2 DDPG - Deep Deterministic Policy Gradient 31
2.6.3 Covariance Matrix Adaption - Evolutionary Strategy 32
2.6.4 Model Predictive Control with Guided Policy Search 33
2.6.5 Asynchronous Off-Policy Updates - A3C 35
2.6.6 CACLA - Continuous Actor Critic Learning Automation . . 35
2.6.7 Trust Region Policy Optimization - TRPO 36
2.6.8 Proximal Policy Optimization - PPO, OpenAI version 38

2.7 Challenges related to Reinforcement Learning in robotic systems . . 40
2.7.1 Exploration-Exploitation dilemma 40
2.7.2 Curse of Dimensionality . 41
2.7.3 Curse of Real-World Samples 42
2.7.4 Curse of Under-Modeling and Model Uncertainty 43
2.7.5 Curse of Goal Specification 44

3 Modeling ROV dynamics 46
3.1 Mathematical model of a ROV . 46

3.1.1 ROV kinematics . 46
3.1.2 ROV kinetics . 48

4 Implementation of RL algorithm and simulator 51
4.1 Simulator configuration . 51

4.1.1 ROV state space . 54
4.1.2 ROV action space . 55
4.1.3 Simulator annotations . 56

4.2 PPO implementation . 57
4.2.1 System architecture . 58
4.2.2 Reward function design . 61
4.2.3 First proposed reward function 62
4.2.4 Second proposed reward function 64
4.2.5 Hyperparameters . 67

5 Simulation results 69
5.1 Discussion of simulation results . 72

6 Outline of the real-world experiments 75
6.1 BlueROV2 . 75
6.2 Qualisys Motion Tracking system 76
6.3 OpenCV and Computer Vision functionality 77
6.4 MOOS-IvP framework . 79

vi

6.5 Lab setup . 80

7 Real-world experiment results 81
7.1 Experiment remarks . 81
7.2 Experiment results . 82
7.3 Discussion of the experiment results 84

8 Conclusion and further work 86
8.1 Conclusion . 86
8.2 Further work . 87

Bibliography 89

A Nomenclature i

B BlueROV2 hydrodynamic parameters iii
B.1 Mass matrices . iii

B.1.1 Rigid body mass matrix . iii
B.1.2 Added mass matrix . iii

B.2 Coriolis matrices . iii
B.2.1 Coriolis rigid body matrix iii
B.2.2 Coriolis added mass matrix iii

B.3 Damping matrices . iv
B.3.1 Linear damping matrix . iv
B.3.2 Quadratic damping matrix iv

vii

List of Figures

1 ROVs during an IMR operation. Credit: Aker Solutions. 2
2 Traditional feed-back loop. Credit: Fossen (2011) [25]. 4
3 RL process overview (simplified). Sutton and Barto (1998) [68] . . . 11
4 Overview of tile coding. Sutton and Barto (2012) [69]. 18
5 Feedforward Neural Network, extracted from Boyd et al. (2011) [11] 20
6 Illustrative overview of actor-critic architecture. Sutton and Barto

(1998) [68]. 26
7 Overview of relation between BODY frame and NED frame. Fossen

(2011) [25]. 48
8 Test basin as defined in simulator. 52
9 Area of random ROV deployment (blue) in the simulator. 53
10 Simulator-Agent interaction. 54
11 Overview of the local reference frame. Credit: BlueLink. 55
12 Breakout-ram environment in which the original PPO implementa-

tion was applied on. Credit: OpenAI. 58
13 Plots of sigmoid, tanh and ReLu activation functions. 60
14 Class diagram of the PPO algorithm file. 60
15 Example mesh-grid reward. Red indicate zero reward, while dark

green is the highest reward. 64
16 Mesh-grid reward when v ≤ 0 (a), and when v < 0 (b). 66
17 Growth of reward in throughout the episodes. 69
18 Trajectory plots of the ROV. Red dot is the starting point, green dot

is the aruco marker’s position, and blue is the ROV’s trajectory. . . 70
19 Growth of reward in throughout the episodes. 71
20 Trajectory plots of ROV performance. 71
21 The x-axis show the instantaneous velocities, while y-axis records the

time in seconds. 73
22 BlueROV2. Credit: Blue Robotics. 76
23 BlueROV2 2D BODY frame in a 3D space. The local reference frame

are the same as shown in figure 11. 77
24 BlueROV2’s computer vision apparatus. 78
25 Diagram showing the different communication lines between the com-

ponents. Courtesy of Sandøy [57]. 80
26 Experiment case of ROV convergence test. 81
27 Sample 1: The ROV diverges backwards to the left. 82
28 Sample 2: The ROV moves forward while diverging towards right. . 83
29 Sample 3: The ROV diverges directly towards the right. 83

viii

30 Sample 4: The ROV diverges backwards to the right. 84

ix

List of Tables

1 Overview of the 6 DOFs used for marine vessels and aircrafts. . . . 47
2 Configurations for initial random ROV deployment per episode. . . 53
3 Relevant ROV states. 54
4 ROV actions set. 56

x

1 Introduction

A Remotely Operated Vehicle (ROV) is an unmanned vehicle that is utilized in
deep subsea environments. Typically, ROVs are tethered by an umbilical which
supplies fiber optics and electrical power rendering a feasible communication line
and data transfer possible to the operator. Hence, the ROV is controlled by the
operator from either a surface-vessel or inland control room. The ROV types are
divided into classes which specifies the amount of supporting equipment it can be
equipped with. Apparatus such as sensors and mechanical tools and the physical
ROV size play a major factor in defining which type of class it belongs to. For high
working class ROVs, manipulators are normally applied for physical work during
subsea operations. While as for the lighter classes, commonly a smaller ROV size
with fewer mechanical capabilities is typical.

An Autonomous Underwater Vehicle (AUV) is an untethered unmanned vehicle
that is also operated in deep subsea environments. AUVs are, like ROVs, operated
from a surface vessel or an inland control room. However, since AUVs are not sup-
ported by umbilicals, a sufficient battery is utilized for power supplies. In addition,
transponders are used for communication and navigation purposes. Unlike ROVs,
AUVs are not constrained by the length of a tether, but only by the length of bat-
tery life. This renders surveillance operations a typical field of application for AUVs
as it is less power demanding, in contrast to the power-draining intervention tasks
ROVs normally conduct.

1.1 Subsea underwater robotic operations

The World’s ocean covers three fourth of Earth’s surface and is essential field of uti-
lization for commercial purposes, scientific research and resource extraction. Specif-
ically, Norway is in the possession of high technological activities within naval and
ocean engineering while exploiting the said fields heavily on offshore industries such
as oil and gas production, and aquaculture and fisheries.

1.1.1 Underwater robotic operations in oil and gas industry

The continental shelf outside of the Norwegian coast is rich in natural gas and
oil, but is, however, situated below the seabed in the violent North Sea. Thus, a
feasible solution is to transfer the oil and gas production to the seabed where the

1

subsea installations are placed. Thereby, severely reducing the production cost as
an alternative to a more expensive surface production facility on land.

Subsequently, as the oil and gas production facility is moved to the seabed, the need
for underwater robotic vehicles has grown exponentially. Nowadays, the oil and gas
industry is reliant on ROVs for numerous IMR operations, which is a common term
for inspection, repair and maintenance (IMR) operations. Typical ROV tasks in a
oil and gas facility are subsea construction and maintenance, surveillance of subsea
site, pipeline inspection for fault location, drilling support, and other various types
of operations.

Figure 1: ROVs during an IMR operation. Credit: Aker Solutions.

Now that the oil and gas activity is expected to be pushed further offshore in the
near future, the need for increased autonomy in subsea operations is essential for
saving cost in future endeavors.

1.1.2 Underwater robotic operations related to aquaculture

(Autonomous Underwater Vehicle) The aquaculture and fishing industry is becom-
ing important because fish farming is expanding rapidly as world’s seafood supplier.
In this case, employing ROV’s and AUV’s as a production support for the fish farms
and active surveillance tool can lead to cost reduction and increased quality of the
product. Application of underwater vehicles in aquaculture means that inspection
of fish cages can be preformed both systematically and more autonomously, without
the need for human divers.

Small ROV’s or AUV’s are typically employed for assuring the integrity of mooring

2

lines, detecting net holes in fish cages, surveillance of fish behaviour and other aqua-
culture infrastructure. The increasing aquaculture industry is leading to increased
demand for autonomous underwater operations related to the usage of underwa-
ter vehicles. Hence, rendering an improvement in Health, Safety and Environment
(HSE), and severe cost reduction by being less dependant on expensive operators.

1.2 Underwater robotic control

1.2.1 State of underwater vehicle operations

The control related to underwater robotics encompasses both underwater vehicles
or with manipulators attached, and is considered to be a challenging issue due
to unpredictable external disturbances and non-linearity. There has been devel-
oped control methods for various motion sequences for unmanned vehicle such as
sliding mode control (SMC) [6], Proportional-Integral Derivative controller (PID),
robust/optimal control and many more have been proposed and applied for under-
water robots.

Today most of the state of the art ROVs are controlled manually by an operator,
where only a few or none automatic control actions are utilized. Subsequently, the
ROV operation performance is heavily dependant on the operator expertise. This
renders the long term effects of repeatedly employing ROVs for essential underwater
operations, e.g. IMR operations, to accumulate a huge expense for the industry.
Hence, the need for increased ROV autonomy in the industry is desired leading to
a reduction in workload for the operator. Moreover, increasing autonomy in ROV
motion control will minimize human errors and increase operation efficiency. Au-
tonomy, in this sense, specifies the ROV’s ability to execute actions independently
by utilizing available information during a mission. According til Schjølberg and
Utne (2015) [62], autonomy can be regarded as one of the key factors that will op-
timize IMR operations in oil and gas industry. Current ROV models retain a large
potential for increased autonomy which, if remedied, will increase their potential in
other offshore industries also.

AUVs on the other hand, are typically by default more autonomous than ROVs. The
former is normally assigned a task beforehand which it is to conduct. Typically, this
would be travelling in a specified pattern (e.g. lawnmower pattern) within an area
in which the deployed acoustic transponders encloses. For example, behavior such
as object avoidance is extensively utilized in cases where the AUV is operating in

3

autopilot. This is an essential feature as it is critical for danger avoidance, and thus
saving the industry considerable amount of effort and resources. Other autonomous
functions such as Dynamic Positioning (DP), velocity control and path tracking are
also being further developed and improved, which are utilized for both ROVs and
AUVs. These functions grant the operator the possibility to emphasize more on
data extracted by the cameras and sensors.

However, the main challenge concerning such autonomous functions is to make them
reliable enough such that they can be applicable for motion sensitive operations, for
example IMR operations for ROVs. Improvements are constantly accomplished and
new methods are developed as an increased step towards autonomy in underwater
operations. Naturally, allowing reduced effort for the operator so that he/she can
focus more on important tasks.

Traditionally, an autonomous functionality is based on feedback-loop controller
functions, that requires accurate state estimation to act upon. Figure 2

Figure 2: Traditional feed-back loop. Credit: Fossen (2011) [25].

Such control methods requires an accurate model of the underwater vehicle dynam-
ics, that is kinetics and kinematics. Which can be costly to design.

4

1.2.2 Introducing Machine Learning in robotic control

Lately, there has been an increased number of applied autonomous robots in the
industry that aims to operate in unknown and unstructured environments. Recent
advances done in technology allows for actuators, sensors and mechanical devices to
be applied in autonomous systems platforms that can sense and act in environments
such as air, ground, underwater and space [17].

As modern robotic systems are assigned to increasingly complicated tasks, both
onshore and offshore, a rapid development in robotic techniques needs to be carried
out in order to meet the required brainpower. Manually designing a reliable control
system for autonomous robotic tasks is considered a complicated process, even for
people specialized in robot programming, as stated by Xia and El Kamel (2016)
[79]. The sheer number of situations with high uncertainty a robot must encounter
represents a spectrum of well-defined behaviour it has to perform. Consequently, the
job of programming such an advanced robot is considered difficult, time-consuming
and expensive for the experts. Hence, instead of manually programming all the
behaviours on a robot, it could be rather advantageous if the robot could learn the
tasks by itself.

Recent researches have introduced Machine Learning (ML) into the robotics com-
munity in order to improve the robots’ autonomous capabilities based on acquired
experience. Reinforcement Learning (RL), which is one of ML methods, has es-
pecially increased in interest [45]. This is due to its abilities to exceed human
performance when provided enough training session, and properly designed. Basi-
cally, the RL system learns by interacting with the environment, then changes its
policy regarding action selection by evaluating its feedback signals, thus, converging
towards its desired behaviour. According to Lin et al. (2010) [45], a RL algorithm,
namely Q-learning, is favorably applied in many robotic systems. RL algorithms
have yielded numerous successes in performance, proving the potential for usage of
ML in robotic system. This paves the way into a different approach to the robotic
problem at hand, providing a huge space for searching for the optimal ML algorithm
in robotic systems.

1.2.3 Related work

Recent advances have been made in ML based underwater vehicle control systems
as well. This subsection covers the latest developments in control systems for un-

5

manned vehicles that are both fully and partially based on ML algorithms.

Carreras et al. (2005) [16] presented a behavior-based scheme using high-level
RL based control of autonomous underwater vehicles (AUVs). The paper puts
forward two main features approaches, which are hybrid coordination that includes
the benefits of both competitive and cooperative approaches, and the utilization
of Semi-Online Neural-Q-learning (SONQL). The latter feature is a RL approach
which combines Q-learning algorithm with a multilayered neural network to learn
specific behaviours state-action mapping online. Among the predefined generic
behaviours for the AUV were transition from point to point, strolling, navigation,
hovering, global-path/way-point generation, and obstacle avoidance. The paper
concluded positively that the experimental results showed the feasibility of this
approach for AUVs.

Ahmadzadeh et al. (2013) [2] presents a ML algorithm that is specified for an
autonomous valve turning task for AUVs that renders the control system partially
ML based. To remedy this challenge, the paper proposes a three-layer hierarchi-
cal scheme, where each layer is responsible for specific sub-tasks to improve the
autonomy of the system. The first layer acquires and teaches the robotics skills
of approaching and grasping the valve based on kinesthetic form of learning. The
second layer devices a Reactive Fuzzy Decision Maker (RFDM) which takes the rel-
ative movement between the valve and AUV into account. Third layer implements
apprenticeship learning method, which uses expert knowledge to tune the RFDM.
The paper successfully applied the proposed approach to the task of valve turning
yielding a promising feature to the AUV.

A fully ML based underwater vehicle controller is put forward in El-Fakdi and
Carreras (2013) [24] for a cable tracking task. The ML approach is a RL control
system, specifically, a Natural Actor–Critic (NAC) algorithm used for solving the
action-selection problem of a cabled AUV. The visual based cable tracking task is
a learning process that is split into two steps. The first step is where the policy
is computed by the means of simulation environment, in which a hydrodynamic
model of the AUV is to learn the task of following the cable. Once the simulated
results converges to be accurate enough, the second step is set to motion where
the simulation-learned policy is transferred to the real AUV. Hence, continuing the
learning process in a real environment and improving the previously learned policy.

Lin et al. (2010) [45] proposes a SNQL algorithm as a motion controller for a bionic
underwater robot. The main motivation for the paper is to successfully carry out
experiments of bionic robot swimming straight forward using SNQL algorithm.

6

Instead of being propelled by thrusters, two undulating fins are utilized, resembling
a robotic fish in motion. Subsequently, to speed up the learning process and increase
safety, supervised control was introduced in the earlier stages of learning.

Several other notable researches that are recognized are done by Andrew Ng at
Stanford University. Along with his apprentices, a series of RL control system are
developed for Remotely Controlled (RC) helicopter control. Abbeel et al. (2007)
[1], in collaboration with Andrew Ng, used a pilot to fly the helicopter in order to
help find the helicopter dynamics, then utilized a RL algorithm to find a controller
that is used to optimize the behavior of the resulting model.

1.3 Thesis objective

This thesis investigate the use of ML as an apparatus for increased autonomy in
underwater robotics, by putting forward autonomous tracking behavior on a ROV
based on RL and computer vision technology. Specifically, the object of interest
is an aruco marker that the ROV is tasked to track. This thesis focus on the
implementation of the RL algorithm, training and verification of the tracking per-
formance through simulations, and lastly, conduct real-world testing of the trained
model with BlueROV2 and use of computer vision technology.

1.4 Overview of the thesis

The thesis content and structure is given as the following.

Chapter 2 is committed to the literature review. This chapter covers the fun-
damental basics of ML, with emphasis on RL, to more in-depth details on RL
algorithms that are widely used in the industry. In addition, RL algorithms that
are highly relevant to underwater vehicles application are also presented as a propo-
sition for the curious reader. Lastly, a set of relatable RL challenges to this thesis
(i.e. continuous robotic systems) are highlighted. This chapter contains knowledge
in which later chapters lay the groundwork for line of thought and reasonings for
pathways, especially during the implementation of RL algorithm.

Chapter 3 provides an overview of mathematical modeling of the ROV. Both
kinematics and kinetics are highlighted in this chapter and are essential for under-
standing the motion of the ROV during the simulations.

7

Chapter 4 presents the implementation of the RL algorithm and the simulator.
This chapter explains the composition of the simulator and its settings in terms
of optimal training of the ROV tracking behavior. The architecture of the RL
implementation is also detailed, and the reward function design is also presented.

Chapter 5 presents the simulation training results. They are further discussed.

Chapter 6 is committed to the real-world experiments. Here, the main components
essential for the physical tests in the MC-laboratory are presented. An overview
of relevant software frameworks are also put forward. A brief description of the
experimental cases performed during the physical tests are also in place.

Chapter 7 covers the results from the real-world experiments. A discussion sur-
rounding the real-world experiments is covered, along with a comparison to the
simulation results.

Chapter 8 draws a conclusion based on the results and discussions, and proposes
further work.

8

2 Machine Learning: A Literature Review

ML is currently applied on multiple fields, such as robotics [38], processing natu-
ral languages [81], finance [23], and most notably internet advertisement [72]. To
fathom the line of thought in this thesis, one must grasp the fundamentals of ML.
This section introduces the theoretical concepts and mathematical aspect of some
of the fundamentals in ML and key algorithms that are cutting-edge in terms of
performance for use in robotic control. Thereby, laying the basis for understand-
ing the line of thought when implementing the ML control system for the ROV in
chapter 4 in this thesis.

The concept of ML can be divided into three subgroups, and they are namely super-
vised learning, unsupervised learning and reinforcement learning. Where supervised
learning and reinforcement learning are considered feedback based ML. Feedback in
this sense is understood as a reward the robotic system receives as a result after a
single action taken or as a result of the system’s performance as a whole.

The main goal of ML is to learn the mapping between the situations of the robotic
system and the correct action in a given situation. In the sense of ML, a common
term for the learning robotic system is agent, which is prompted to optimize its
behavior to a desirable performance. To guide the learning process, a so called
reward function is introduced to punish and award the agent’s behaviour. This
way, the best actions will lead to a maximum accumulation of rewards.

In supervised learning (SL) the agent is to learn the function mapping between
the state-observations and actions based on knowledge of an already known set of
observation-action pairs. After an extensive training session with feedback received
from a human supervisor, the agent can then, without any further feedback from the
supervisor, autonomously execute the right action for each observed state resulting
in a desired performance.

In unsupervised learning (UL) the agent does not collect any explicit feedback,
nonetheless, it learns the pattern in the data-inputs. A widely used form of unsu-
pervised learning is clustering [56], which observes the most potential useful clusters
of the input examples. Specifically, clustering is favorable in cases such as shopping
websites utilizing this method to classify their potential customers based on their
internet browsing history. Consequently, clustering will arrange customized ads, or
targeted offers, in order to bait the customer to purchase from the store.

In reinforcement learning (RL) the agent receives reinforcement, that is reward

9

or punishment, during the operation. This helps express that the agent has done
something erroneous when it receives punishment after executing an action in a
given state. An example could be that a robotic manipulator, which is due to grab
an object, instead grabs free air. Hence, a punishment will decrease the chance for
the agent to repeat such mistake in the future, and vice versa for the case of receiving
a reward where the agent will be most likely to repeat such rewarding action again
for that given state. RL has shown to be very feasible for applications in real-world
robotic systems such as self-driving Google Car [18], RL based control system for
helicopters by Kim et al. (2004, supervised by Andrew Ng) [36], and lately by Wu
et al. (2017) [78], a RL based depth controller of AUV. RL is also a powerful tool
as it is shown to outperform even human skills when properly designed.

In this thesis a RL algorithm is implemented as the ML based tracking algorithm,
subsequently, this chapter will emphasize the literature study on RL.

The literature on RL is vast and growing in a continuously. Here an effort is made
to present the fundamental theoretical background in RL, and the most recent de-
velopments and state of the art algorithms that are suitable for continuous vehicular
locomotion systems, for example ROVs. This chapter concludes with presenting the
challenges related to continuous RL robotic systems, such as Curse of Dimension-
ality, Exploration vs Exploitation dilemma and Curse of real-world samples. These
challenges are highly imperative to understand when encountering issues during the
implementation, training and real-world experimenting phases in this thesis.

2.1 An intuitive approach to Reinforcement Learning

As previously stated, in ML the goal is to learn the mapping between situations
and correct actions for the situations, and RL is no different in this case. The agent
starts off with a blank memory, thus no knowledge on which steps to take, but
must by itself discover which actions that needs to be taken in order to maximize
its rewards. RL learning can be intuitively understood by explaining it through an
analogy where a dog is learning to fetch a ball.

Consider a dog learning the process of fetching a ball.
1. The dog has to notice how the humans fetches the ball properly.
2. A challenge that comes along with the process of fetching the ball is to first be
able to run. This skill has to be learned and improved so that the dog may run
after the ball.

10

3. When step two is remedied, the dog actually needs to pick up the ball with
its mouth when it finally reaches it.
4. The last step is to return with the ball in its mouth to the owner. However, in
this process there are many things to consider. That is maintaining the ball in the
mouth, maintaining a fitting running speed and form, upkeep a well-behaved motor
skill set, and so forth.

The agent in this sense would be the dog with the goal of fetching the ball. The
agent endeavors to maneuver from one state to another by exploiting the envi-
ronment, that is the surface on which the dog is so eagerly running on. For each
sub-task the dog completes, it receives a reward as a form of feedback. Thus, bad
performance will naturally result in scolding or no reward at all. Subsequently, the
dog would know when to minimize the chance of repeating a certain behavior or
not.

This analogy helps understand the line of logic in a RL process. For humans, many
details and sub-processes that constitute the overall process of fetching a ball are
so deeply embedded in the subconsciousness that they are neglected. However, for
an inexperienced dog these sub-processes and details are heavily focused on when
the aforementioned steps are confronted.

Sutton and Barto (1998) [68] illustrates a simplified model of a RL process in the
following figure.

Figure 3: RL process overview (simplified). Sutton and Barto (1998) [68]

2.2 Markov Decision Process

A Markov Decision Process (MDP) is discrete-time state-transition methodology,
and formalizes the backbone of a typical RL problem. Specifically, MDPs specifies
how an agent plans and acts in face of uncertainty [52]. An MDP consists of five

11

main parameters that describes the central aspects of a RL problem, and are as
following.

• S - The state in which the agent inhabits. For example a ROV may be in a
certain position in the pool with a certain velocity and orientation.

• A - Set of actions the agent is able to execute. For example assign thrust
force such that the ROV may turn or change velocity.

• R - Represents a reward function which maps each state to a reward.

• P - Corresponds to the probabilities of transition between states. Intuitively,
what the chances are for doing such maneuver in a given state and obtain the
expected result.

• γ ∈ [0, 1) is the discount factor.

A MDP process may be better grasped by an example, where an agent starts off
in a state st and performs an action at. Consequently, the agent will transition to
state st+1, with the probability denoted by Pst,at . Thus, the agent receives a reward
from the reward function R accordingly. However, to check that the agent does not
over-complicate a task by performing unnecessary set of actions, a discount factor
γ is introduced. The discount factor determines how much each reward is weighted
based on the time it was received. A γ close to zero assigns early rewards to higher
value, while γ close to one means that the time it was awarded is almost irrelevant.

An essential assumption that lays the foundation for a MDP is that the environment
satisfies the Markov property, which means that the state st+1 is only dependant
on the action at taken in previous state st. In other words, the next state is only
dependant on the current action and state while previous actions in the past are
neglected. Subsequently, it is possible to estimate the next state and rewards based
on the current state. Sutton and Barto (1998) [68] argues that methods of RL based
on MDP may be applied even if this property is approximated.

The parameter that decides which action should be executed in what state is de-
noted as policy π, which is a function that maps each state s ∈ S to an action
a ∈ A. Formally, π : S → A. A policy is considered good if the action selection
yields highest total accumulated rewards, and vice versa for bad policies. Thus, in
order to separate the good policies from the bad policies, a state value function
V π, or an state-action value function Qπ, is introduced. The state-value func-
tion V π is the expected reward the agent receives by following a policy π from a

12

state st. This is mathematically represented in equation 2.1.

V π(s) := E[
∞∑
t=0

γtR(st)|st = s] (2.1)

The action-state value function Qπ is defined correspondingly by considering initial
action at. In other words, what the expected return will be when starting in state
st, taking an action at and then follow a policy π. Formally, it is presented in the
following equation as defined by Sutton and Barto (1998).

Qπ(s, a) := E[
∞∑
t=0

γtR(st)|st = s, at = a] (2.2)

As previously underlined, the main goal of RL is to maximize the accumulated
reward over time. This means finding such policy that maximizes the value func-
tions. This makes policy a key factor in a successful RL implementation. Sutton and
Barto (1998) [68] proves that the maximization process can be done by exploiting
a recursive relationship of V π, as shown in following equation 2.3.

V π(s) =
∑
a∈A

π
∑
s′∈S,r

P (s′, r|s, a)[R(s, a, s′) + γV π(s′)] (2.3)

Equation 2.3 is known as the Bellman equation. It highlights how the value of
a state is related to the value of the succeeding state. The value function V π is
the unique solution to the Bellman equation, yet several policies may posses the
same V π. Hence, this allows for equation 2.3 to form the basis of solving the value
function V π in multiple ways.

A policy that yields maximum accumulated reward is denoted as optimal policy
π∗, such that V π∗(s) ≥ V π(s) for all policies π and all states s ∈ S. Furthermore,
it can be proven that optimal state value function, V ∗, is equal to the largest
state-action value function with respect to optimal policy π∗. This is shown in the
following equation 2.4.

V ∗(s) = max
a∈A(s)

Qπ∗(s, a)

= max
a∈A(s)

∑
s′,r

P (s′, r|s, a)[R + γV ∗(s′)]
(2.4)

13

This is known as the Bellman optimally equation for V ∗, and can also be defined
for the state-action value function as shown in equation 2.5.

Q∗(s, a) =
∑
s′,r

P (s′, r|s, a)[R + γ max
a′
Q∗(s′, a′)] (2.5)

However, solving a MDP can be ambiguous and problematic in terms of learning
efficiency and time. In the next subsection, some common tabular methods are
presented, that stores the state- and state-action values in tables.

2.3 Tabular approaches of solving MDPs

Storing the learning data in tabular form has the fundamental assumption that
the state-action space is deemed small, normally discrete. Hence, the terminology
finite MDP is used for such cases, and their approximation to the value function
can be stored in the tables, which in many cases makes it possible to find the optimal
function.

2.3.1 Dynamic Programming Methods

The idea behind Dynamic Programming methods is to organize the search for opti-
mal policy by utilizing the value function. This method assumes a perfect model of
the environment. Hence, known as model-based method which will be explained in
subsection 2.5.2. The principle in Dynamic Programming method is used in policy
iteration and value iteration algorithms.

Policy iteration method is made up by two parts, policy evaluation and policy
improvement. Both of which are carefully presented in Sutton and Barto (1998)
[68]. This algorithm initializes a policy for the agent, so that the policy evaluation
determines a value function for the policy using the Bellman equation. Each state
is then explored so that the value function of the state is updated based on the
value of its succeeding states, along with the transition probabilities and the policy
itself. Subsequently, this process will repeat until the value function converges to a
fixed value. Thus, the policy improvement is initialized, which will then select the
best action, known as greedy selection, in each state, hence, creating a new fixed
policy.

14

Value iteration method, on the contrary, does not wait until the value function
converges before computing the value function. This method rather improves the
policy on the go. The value iteration method shortens the evaluation part of the
policy iteration to a single step. Consequently, integrating the policy improvement
in each iteration, emphasizing only on estimating the value function directly.

The major disadvantage with Dynamic Programming methods is the requirement
of exploring the entirety of the MDP state space, which is typical for model-based
methods. Thus, convergence is hard to achieve if the state space grows large, espe-
cially large enough to be considered continuous state space. However, Asynchronous
Dynamic Programming is introduced to counteract this drawback. In contrast to
the systematic approach of the Dynamic Programming methods, policy and value
iteration, Asynchronous Dynamic Programming backs up the value in random or-
der by using the available values at that time instant. Thus, some values may be
backed up multiple times while other values are not backed up yet. A criteria for
the algorithm to fully converge is that all states must be backed up after some
time. The benefit with Asynchronous Dynamic Programming is the possibility for
the agent to back up selected states which will most likely lead to an optimal policy.

2.3.2 Temporal Difference Methods

Unlike Dynamic Programming methods, Temporal Difference (TD) methods is a
model free method, and does not require an explicit model of the environment.
However, similar to Dynamic Programming method, this method also estimates
the values of the states based on estimates of the succeeding states, known as
bootstrapping. The most elementary TD method is TD(0) which is not used in
control, but lays the foundation for RL-based control algorithms. The mathematical
representation of TD(0) is defined in equation 2.6. Where α is the learning rate
and γ is the discount factor.

V (st)← V (st) + α(rt+1 + γV (st+1)− V (st)) (2.6)

This method examines the transition between the states, and learns the value of
each state. Equation 2.6 presents how the value of current state, V (st), is updated
using the difference between the estimated value function of the next state. The
current state and the reward rt+1 is given in the next state. This term is denoted as
TD-error, and can be thought of as the "wake-up call" the agent experiences when

15

it moves to a new state and realizes the large gap between its estimate value against
the actual value of the state. The TD-error can be formalized as follows:

δt := rt+1 + γ(V (st+1)− V (st)) (2.7)

TD methods are particularly used in two well known control algorithms which are
the on-policy method SARSA, and the off-policy method Q-learning. An off-policy
approach is known as updating the state-action value, Q(st, at) using the state-
action value of the next state while retaining a greedy action selection policy. As
for the on-policy approach, Q(st, at) is updated using the value of Q(st+1, at+1) and
following the current policy for action selection.

SARSA is built on the generalized policy iteration, presented in Sutton and Barto
(1998) [68]. However, for the policy evaluation a TD-method is used. It separates
itself from TD(0) method by taking the transitions between state-action pairs into
account, and learns the values of these. Otherwise, the methods are identical.
SARSA state-action value update law is given as follows.

Q(st, at)← Q(st, at) + α(rt+1 + γQ(st+1, at+1)−Q(st, at)) (2.8)

Similar to the update law for TD(0) in 2.6, the state-action value are updated after
each state transition. However, if St+1 is a terminal state, Q(st+1, at+1) is equal to
zero. A terminal state is understood as the agent’s final desired state which yields
reward equal to one, while other states yield zero reward.

Watkins (1989) [77] introduced Q-learning, which uses Q(st, at) directly to approx-
imate the optimal state-action value Q(st, at)∗ without regarding for which policy
is being followed. In the case of discrete state space, Q-learning algorithms will
converge if all states and actions are tried. The state-action value update law is
defined in equation 2.9.

Q(st, at)← Q(st, at) + α(rt+1 + γ max
a
Q(st+1, at)−Q(st, at)) (2.9)

16

2.4 Function approximation approaches for solving MDPs

Approaches for solving MDPs in the previous section assumes a relatively small state
space which allows for storing the results in a tabular representation. However, for
larger and continuous state spaces this quickly becomes impractical. For example,
discretizing a 2D ROV state space which consists of three DOFs, where both the
position and velocity must be accounted for. This yields a total of six unique
parameters describing a single ROV state. Even using coarse discretizing dimensions
in a small spatial area, the total number of unique states could rapidly reach 50
million different states. ROVs are typically equipped with multiple actuators, thus,
a combination of the actuator effort represent an action. Thereby, when including
the ROV set of actions into the state space, rendering it to action-state space,
the table grows exponentially larger. Dealing with such large tables requires large
amount of storage and computational capacity to search, compute and process all
the stored data. This phenomena in ML is known as Curse of dimensionality and
will be further detailed in section 2.7.2.

The core obstacle with discretization is the inability to generalize states. In other
words, each state is treated as a complete distinction, which leads to that near
identical states are assumed unknown until explored. However, function approxi-
mation remedies this issue which generalizes the continuous state space, rendering
it possible for the agent to operate in a large state spaces.

A function approximator uses values from the full state space to design a function
which returns approximately that of the original function. Subsequently, function
approximators can be compared to SL where a function is used to map between the
inputs and outputs as introduced in this section. Function approximators can be
applied in state value functions V π or state-action value functions Qπ, the policy
π, or the model itself which represents the reward functions and state transitions.
Function approximators can be classified in two sub-categories, linear and non-linear
function approximators, which will be detailed further in the following subsections.

2.4.1 Linear Function Approximation

A linear function approximator performs the generalization by projecting the full
set of states to a lower dimensional space where the original function can be approx-
imated by a linear function. In this case the function that is to be approximated
is the state-value function V (s) and state-action value function Q(s, a). However,

17

in this section only V (s) is considered as the approximation function of interest.
The following equation represents the linear function approximator which can be
described by a feature vector φ, and a weight vector θ.

f(x) = θTφ(x) (2.10)

The weights have to be tuned to minimize the error between the function approxi-
mator and the original function. Typically, the performance is measured by utilizing
the Mean Squared Error over an arbitrary distribution µ of the inputs. Where µ
indicates how much error in each state is valued. The mathematical representation
is shown in equation 2.11.

MSV E(θ) =
∑
s∈S

µ(s)[V π(s)− V̂ (s, θ)]2 (2.11)

To maximize the performance, the local minimum of MSVE remains to be found.
This can be remedied by introducing gradient decent methods which are widely
utilized in domain of RL. Especially, Stochastic Gradient Decent (SGD) method
is prevalent and is thoroughly introduced in Sutton et al. (2009) [70] and Mnih
et al. (2013) [49]. For more complex approximators, convergence typically takes
place towards a local minimum. However, for simple linear function approximators
it might be possible to obtain a global minimum.

A widely used linear function approximator is the Cerebellar Model Arithmetic
Computers (CMAC), introduced by Miller et al. (1990) [47]. CMACs, also known
as tile coding, can be viewed as a complex table look-up tool. Figure 4 shows the
nature of tiling structure in CMACs.

Figure 4: Overview of tile coding. Sutton and Barto (2012) [69].

18

This methodology divides the state space into multiple overlapping tilings that are
slightly displaced from each other while the tilings are divided into tiles. The tiles
contains a binary feature such that the overlapping tiles can create a feature vector.
These feature vector are utilized to define the value of each point on the overlapping
tiles. CMAC as a function approximator has been extensively used by prominent
figures in ML, amongst whom Sutton et al. in (1996) [67] and (1997) [58]. Timmer et
al. (2007) [73] utilized a modified CMAC function approximator, namely A-CMAC,
which proved convergence guarantee if used along with Q-learning. However, this
approach also resulted in reduced performance.

An implementation tool that is well known for its usage with function approximators
is the Radial Basis Function (RBF). It allow for continuous valued features in the
range [0, 1]. The RBF feature transforms the tile representation from binary value
to a response in the form of Gaussian distribution in accordance to equation 2.12.

xi(s) := exp(−||(s− ci)||2σ2
i

) (2.12)

The feature width is defined by σ, and ||(s − ci)|| is the distance between the
state s and the feature’s center state ci, which can be selected by the designer. The
RBF implementation yields a smooth and differentiable function approximator, but
computational cost is immensely increased. Sutton and Barto (2012) [69] showed a
decrease in performance in environments with more than two dimensions, making
it less feasible for robotic implementations.

2.4.2 Nonlinear Function Approximation

Linear function are utilized for their stability properties and good predictive be-
havior. However, when the state space becomes more complex as in robotic envi-
ronments, a linear function approximator may not be feasible due to its inability to
grasp the desired approximation function. Subsequently, this would yield a diver-
gent result. On the other hand, nonlinear function approximators such as Artificial
Neural Network (ANN), and its extension to Deep Neural Network (DNN), are
possible options. Yet, as discussed in Tsitsiklis et al. (1996) [75], both ANNs and
DNNs have recently been struggling with divergent results. Since the use of both
ANNs and DNNs have been the basis for many recent developments in RL, they
will both be emphasized in this section.

The ANNs, inspired by the structure of human brain, consist of a network of a

19

interconnected artificial neurons. The structure of ANNs consists of an input layer,
a set of hidden layers and an output layer. Figure 5 illustrates an example of three-
layered ANN structure, and the arrows between each layers are called links, which
represents a real-valued weight that is multiplied with the output of the neuron. A
network with one hidden layer is known as a shallow network, while network with
more than one hidden layers is known as deep neural network.

Figure 5: Feedforward Neural Network, extracted from Boyd et al. (2011) [11]

The neuron calculates a weighted sum of their inputs and the values is then injected
in the activation function. Each neuron is equipped with an activation function
which is used to render the calculated the weighted sum of neuron inputs into a
range from zero to one. Basically, the introduction of activation functions serves
as a measure of how positive the relevant weighted sum is. A common activation
function used in the ANN is the S-shaped sigmoid function, and is prevalent in use
for SL algorithms. The simgoid activation function is formulated in equation 2.13.

f(x) = 1
1 + e−x

(2.13)

However, a recent trend discovered by Sze et al. (2017) [71] shows that Rectified
Linear Unit (ReLu) has an increasing popularity due to its simplistic usage and
fast training abilities. In addition, it also makes it possible to utilize more than one
activation function in ANNs. Thereby, this allows for different activation functions
per layer.

Before ANN is utilized, it must be trained in advance, that is updating the weights.
Typically, stochastic gradient method (SGD) is used for learning the ANN, where
each weight is updated with respect to optimizing the performance assessment. In
such cases, the measurement of performance can be in the form of TD-error or the
expected reward.

20

Bengio et al. (2007) [7] showed with experimental results that deep supervised
neural network with gradient-based methods, such as backpropagation algorithm,
tend to converge towards local minimums. Bengio et al. (2009) [8] further supported
this statement by proving that DNNs with more than two hidden layers seems
to preform less better than DNNs with fewer hidden layers. Yet, recent research
done by Mnih et al. (2013) [49] proved that the DQN algorithm contradicts the
experimental results of Bengio and his associates. This resulted in a large scale
increase in newly developed ML methods using DNNs.

As stated, DNNs are defined by ANNs with more than one hidden layer. Cybenko
(1989) [20] put forward that a single-layered ANN with a finite amount of neurons,
each using sigmoid activation function, is able to represent any continuous function
on a compact region of the network’s input. This begs the question of why it would
be necessary to apply DNNs as it may possess instabilities. The answer to this
question is explained in Dellalleau and Bengio (2011) [22] and Liang et al. (2016)
[42], where the former used deep sum-product networks while the latter used neural
networks. Both papers proved that shallow networks required an exponentially
larger amount of neurons than DNNs in order to approximate the same function.
Thus, by utilizing DNNs, a less significant amount of data is required than a large
single-layered shallow neural network, making the computational workload much
less wearing. Consequently, this renders DNNs to a key player in ML as a function
approximator for continuous environments, even though it suffers from instabilities
as discussed in Tsitsiklis et al. (1996) [75].

However, the introduction of DQN by Mnih et al. (2013) [49] has remedied the many
stability- and divergence related issues when using DNNs. An addition to DNNs
is the utilization of the concept named experience replay originally proposed by
Lin (1993) [44]. This concept reuses previous experience when learning while at the
same time breaking the similarity the training samples. This leads to a reduction in
probability of statistical overfitting and correlation of experiences. Overfitting will
be further discussed in chapter 4. In light of robotic usage, when the agent interacts
with the environment, each experience is stored as a tuple of parameters (st, at, rt, st)
to a replay memory. During a training session, a minibatch of these tuples are
randomly extracted from the replay buffer and employed to train the neural network
instead of the current experience. The concept of experience replay has been further
developed, such as the Prioritized Experience Replay proposed by Schaul et al.
(2015) [61]. This rates sample transition in the replay memory based on TD-error,
and replay important transitions more regularly. This approach outperformed the
uniform replay in 41 out of 49 games when using the DQN algorithm and Atari

21

as benchmark. Hindsight Experience Replay was introduced newly introduced in
2017 by Andrychowicz et al. [3]. This method incorporates goals to the experience
replay, which considerably assists the progress in environments with sparse or binary
rewards, hence bypassing the need for complicated reward engineering. Even though
experience replays has been beneficial against stabilization problems, Zhang et al.
(2017) [82] discussed that experience replays used inaccurately may lead to serious
decline in performance. Subsequently, experience replays must be considered as a
hyper-parameter which requires careful tuning.

Ioffe et al. (2015) [33] introduced the batch normalization as an improvement to
DNNs. In a nutshell, this improvement provides solution to the changes in distri-
bution which takes place in each of the layers in DNN while training. Ioffe et al.
coined this phenomenon as internal co-variate shift. Batch normalization ensures
that each layer receives whitened input which has also been used on DDPG algo-
rithm, which is introduced in subsection 2.6.2. This concept increases the learning
rate for the agent, thereby leading to a reduction in training time.

2.5 Reinforcement Learning in Large State and Action Spaces

This section puts forward state of the art RL algorithms that are designed for
robotic systems operating in continuous, or near-continuous, action-state spaces.
For such cases, a RL based ROV control system fits the profile perfectly. By em-
ploying the fundamental methods presented in sections 2.2−2.3 and the function
approximation techniques in section 2.4.2, it forms the principals for highly com-
plex RL control systems. These are heavily applied on robotic systems which yields
good performance.

2.5.1 Policy search method

In contrast to value function based methods as discussed in previous sections, in
policy search method, the policy is the most important formulation instead of value.
The policy search based approaches find the optimal solution by searching for the
optimal policy. This approach yields many features in robotic applications while
allowing for an integration of highly trained knowledge, by e.g. policy structure
and initialization. Kirk et al. (1970) [37] has proven that local policy searches can
result in a good performance with hill-climbing approaches. Policy search has a
good ability to easily include constraints, for example the possibility to regularize

22

the change appearing in path distributions. For this reason, policy search methods
fit naturally in robotic applications.

However, Kober et al. (2013) [34] asserts that policy search methods is deemed to
be the harder problem to solve. The paper argued that this is due to the inability
for the maximum return function 2.14 to provide the optimal solution directly.

maxπJ(π) =
∑
s,a

µπ(s)π(s, a)R(s, a) (2.14)

Here J represents the return, which combines the reward R(s, a), policy π(s) and
state distribution in order to obtain the optimal behaviour of the system. The state
distribution keeps track of the states and ensures that the states are well-defined.
Equation 2.14 is also widely known as the optimization problem. In value function
based methods, the optimization problem is remedied by using the Lagrangian
approach, ending up with the value function V (s). This is where the drawbacks with
policy search methods may occur, that is if there cannot be obtained any suitable
optimization method for the problem. Hence, leading to a worst case scenario where
an comprehensive search for the optimal policy have to be conducted. Bosinou et
al. (2010) [14] compared such a search to a Q-learning algorithm which resulted in
50 times higher computational cost for the policy search.

However, policy search methods possesses much better scalability capabilities than
value function based methods as proven by Kober et al. (2013) [34] and Nagabandi
et al. (2017) [51]. Scalability property is understood as the extent the algorithm
performs feasibly when the number of state-action space grows in scale (e.g. scale to
continuous state-action space). This is one of the key reasons to why policy search
has grown to be competitive alternative to value based methods. Yet research
conducted by Li et al. (2017) [41] has shown that value function based deep RL
methods prove to operate with feasible performance in very large state spaces. Even
close to continuous state spaces. This research contested any perception of value
function based methods not being able to operate in very large state spaces.

Generally, most policy search methods seem to optimize locally, surrounding exist-
ing policies π, which are parametrized by a set of policy parameter θi in a policy pa-
rameter vector θ. A change in policy parameter ∆θi, which is calculated, increases
the expected return E{J} and the following update in policy has the following
iterative form.

θi+1 = θi + ∆θi (2.15)

23

Equation 2.15 represents a crucial step in the policy search method, that is the policy
update computation. A great variety of policy update computation proposals has
been put forward such as pairwise comparison by Strens et al. (2002) [66], gradient
estimation using finite policy differences in Buesing et al. (2016) [13] (and Roberts
et al. (2016)), and general stochastic optimization methods in Deisenroth et al.
(2013) [21].

Another promising discovery by Li et al. (2016) [40] is an algorithm developed based
on off-the-shelf guided policy search RL, which allows for learning an optimization.
Thus, making it possible for algorithms to autonomously discover algorithms that
will improve the performance. With regard to speed of convergence and the final
objective, as a result this approach outperforms any hand-engineered algorithms.

2.5.2 Model-free and Model-based Policy Search

Within policy search methods, the two classes of both model-free and model-based
methods uses the concept of sample trajectory which basically initiates a policy π in
a given state 1, denoted s1. That will cause an action execution, and in turn yield
a reward. This reward will be used to update the value function Vk(s1) at point k.
This update form is known as temporal difference update which is also extensively
used for updating value function.

Model-free policy search methods directly learn their policy from sampling trajecto-
ries that are based on stochastic trajectory generation. Specifically, the trajectories
p(st+1|st, at) are generated by sampling from the agent, e.g. robotic system, and
the policy π. Thus, a previous learned model is not required as the agent is able to
acquire it through experience. However, in the case of model-based policy search
methods, a sampled trajectory is not acquired from the agent itself, but from pre-
viously learned environment. Which can be obtained, for example from a computer
simulated trajectory learning, where the environment is fully explored. Then the
sample trajectory is imported to the agent and the model of the state dynamics for
the robotic system is built, and ready for use.

Both stochastic and deterministic approaches are suitable for model-based
methods. In RL sense, a deterministic view on an action will imply that the per-
formed action will affect the state space the same way each time. Thus, is deter-
ministic approach suitable for software based RL algorithm such as computer simu-
lations. For the stochastic approach, physical control systems for robotic agents are
suitable as the real-life outcome of an action is not guaranteed to be the exact same

24

each time. The stochastic approach is applicable in model-free methods since the
learned models are used as simulators for the sampling trajectories, and the robot
can be replaced with the learned model with similar robotic dynamics. However,
in the case of deterministic approach, the trajectories are not sampled, but analyt-
ically predicted and the trajectory distribution pθ(τ) is obtained. Deisenroth et al.
(2013) [21] further adds that even though the deterministic approach for predicting
trajectories requires more computation than its stochastic counterpart, the policy
gradient can easily be acquired. Since the policy gradient can only be approximated
in stochastic approach, the deterministic approach is at an advantage as it can find
it directly.

Model-based methods remedy the issue of sample inefficiencies through instead
learning the samples by learning a complete model of the environment, typically on
a simulator. When the environment is learned, a RL algorithm is then applied on
the agent to find the most optimal solution in the pre-learned environment before
even initiating its first action. It can be viewed as the RL problem is transformed to
a path planning problem. As such, the robotic system quickly acquires the optimal
solution which outperforms any other solutions existing in the environment, while
saving time as fewer real-world interactions is required for training.

Despite for all the advantages, model-based methods still faces a weighty set of chal-
lenges that remains to be remedied. Specifically for cases with continuous domains,
which often requires simulator based model pre-learning, the biggest issue is that
the simulator-learned model is not identical to the real-world environment. Despite
how much effort is put to design a realistic simulator, it remains rather an ap-
proximation. This challenge will be further detailed in section 2.7.4. Subsequently,
utilization of models in continuous domain RL has been limited because inaccurate
environment may be learned from the simulation-learned models. In which case
physical parameters may have been assigned dubious values. While as for ROV’s,
faulty physical parameters such as negative friction, coefficients and masses may be
derived. This results in a poor learned policy as the policy search algorithms will
exploit the inaccurate parameters.

2.5.3 Actor-Critic Methods

Actor-critic methods are designed such that the policy is explicitly represented
independently from the value function. In this algorithmic structure, the critic’s
role is to evaluate the action taken by the actor. Such learning form is classed as

25

on-policy algorithm since the critic learns on-the-go about the current policy while
evaluating the actor. The TD-error is fundamental for all of the learning processes
taking place in the actor-critic methods as the critic is based upon it. The role
of TD-error is depicted in Figure 6 which illustrates the process of an actor-critic
algorithm.

Figure 6: Illustrative overview of actor-critic architecture. Sutton and Barto (1998)
[68].

From the figure, it can be noticed how the value function bases on the TD-error
feedback, which is estimated by the critic’s value function and current reward. The
TD-error is delivered to the actor which is prompted to update its estimates on the
most rewarding actions in the current residing state.

The purpose of the TD-error is to specifically evaluate action at executed in state
st. If the TD-error turn out to be positive, the probability of choosing at in the
future is more probable. Should the TD-error be negative, however, the tendency
of choosing at will be decreased in the future. Value function update based on TD-
error is formulated in following equation as presented in Bhatnagar et al. (2008)
[10].

V (st) = V (st) + αδ (2.16)

α is the learning rate of the algorithm. Equation 2.16 is basically a combination of
equation 2.6 and 2.7. While the actor can be, among many alternatives, presented
as the Gaussian probability distribution with stochastic parameters managed by a
mean µ and variance σ.

26

π(s, a) = 1√
2πσ(s)

e
− (a−µ(s))2

2σ(s)2 (2.17)

Parameters µ and σ are functions of state s, thereby the parameters will change
over time as the policy changes.

While another widely used stochastic actor representation is Gibbs Softmax method
as shown in equation 2.18.

πt(s, a) = Pr(at = a|sr = s) = ep(s,a)∑
b ep(s,b) (2.18)

The parameter p(s, a) indicates the tendency of choosing action a in state s, and
are the values of the actor’s policy. After an action is initiated, p(s, a) will then be
updated in the following manner.

p(st, at) = p(st, at) + βδt (2.19)

With β being a positive step-size parameter. While the critic is employed to observe
and evaluate the actor’s performance, it also determines whether the policy needs
to be updated or not. The policy update is done using the update law in equation
2.19. For instance, the update step can be based on the policy gradient method. This
method assumes that there exists differentiable presentations of a predefined class
of stochastic policy, and thus ascend the measurement of the policy’s performance.
For instance, policy gradient formulation can be presented by the following formula
obtained from Heidrich-Meisner et al. (2007) [30].

ρ(θ) =
∑

s,s′∈S,a∈A
dπ(s)π(s, a)Pas,s′Ra

s,s′ (2.20)

The policy gradient method assumes that a stationary state distribution exists,
and is represented as dπ(s) = limt→∞ Pr(st = s|s0, π) in the equation. However,
the performance gradient ∇θρ(π) is expressed by the policy parameters θ, which in
turn is estimated by interacting with the environment. The policy gradient theorem,
that is equation 2.21, can be derived based on Q and dπ, and determines the policy
gradient.

∇θJ
θ = E {∇θρ} =

{∑
s∈S

dπ(s)
∑
a∈A
∇θ(s, a)Qπ(s, a)

}
(2.21)

27

Action-state value Q(s, a) is unknown and needs to be estimated using, for example
by using a function estimator fw as discussed in Heidrich-Meisner (2007) [30].

Peters and Schaal (2008 c,b) [55] introduced a natural policy gradient by modi-
fying the policy gradient approach using the Fisher information matrix F (θ). This
method yields faster convergence resulting in reduced learning time and reduced re-
quired real-world interaction. Other advances done in policy gradient based actor-
critic methods is DDPG [43], DQN [49], asynchronous advantage actor-critic AC3
[48] and NFAC [85].

2.6 Suitable methods for robotic navigation control

Since the real-world environment is a continuous state space, the robotic controller
must also operate in continuous state spaces. While in some cases action-state
spaces depends on the robot dynamics. As previously stated, coping with continuous
environments is one of the main areas of challenge in RL. While recently, several
highly promising developments in ML have shown that RL algorithms have proven
to be suitable for robotic control, even surpassing traditional feedback-based control.
This subsection introduces the RL algorithms which have been proven to be feasible
in robotic control, or that is deemed arguably promising as a robotic controller.

2.6.1 Partially Observable Markov Decision Processes

A elementary assumption in a MDP (see section 2.2) is that the environment is
entirely observable. In other words, the agent has full overview of its current state,
without any uncertainties. Therefore, the optimal policy is only dependant on
the current state. As for the cases where the environment is partially observ-
able, such as real-world robotic computer vision interaction, the situation is more
blurred. In Partially Observable Markov Decision Processes (POMDPs) cases, the
agent does not possess complete information about its current state, and for that
reason, it may find a hard time executing any policy π(s). Not only does the policy
in POMDPs depend on the state s, but also on how much the agent knows when it is
in state s. This framework renders POMDPs much more complex than MDPs, and
is widely applied in RL robots operating in continuous real-world environments.
Specifically, is POMDPs prominent in robotic navigational tasks since the envi-
ronment is expected to change randomly for each time-step. For instance, a ROV
cruising through rocky underwater environment, or self-driving car are prime exam-

28

ples where the environment would only be partially observable through computer
vision cameras and positioning sensors installed on the vehicles.

When it comes to parameters, the POMDP approach has the same parameters as
MDP, which are the set of actions A(s), the transition model P (s′|s, a), and a reward
function R(s). However, in addition to these aforementioned MDP-parameters,
POMDP also includes a sensor model P (e|s) which represents the uncertainty re-
lated to the sensors. The latter parameter indicate how much the agent knows when
it is in state s. In the sensor model P (e|s), the parameter e indicates the probability
of perceiving evidence in state s. In this formulation, the noisy measurements and
uncertainty linked to sensor perception influence the probabilistic values of evidence
e in a given state s, i.e. P (e|s).

The POMDP has another property which is the belief state b. The belief state b
is probability distribution which covers all possible states in which the agent might
be in, given a current state s. Therefore, is the belief b(s) probability an expression
of state s. The belief state is calculated by filtering methods, also known as "state
estimation", where the objective is to filter out noise from the sensors by estimating
the underlying properties. Sardag et al. (2006) [59] proved that a Kalman filter,
which is a commonly used filtering technique, has proven to work with POMDPs.
This renders the agent to perform a reliable belief state estimation. Equation 2.22
shows how the basic recursive nature of filtering is used to calculate the belief state
b.

P (Xt+1|e1:t+1) = αP (et+1|Xt+1
∑
xt

P (Xt+1|xt, e1:t)P (xt|e1t)

= αP (et+1|Xt+1)
∑
xt

P (Xt+1|xt)P (xt|e1:t)
(2.22)

However, in cases for POMDPs, actions needs to be taken into consideration in the
calculations while obtaining the same results. Considering that b(s) is a previous
belief state, and the agent executes an action a and perceives an evidence e, then
the new belief state b′(s′) is calculated as follows.

b′(s′) = αP (e|s′)
∑
s

P (s′|s, a)b(s) (2.23)

Where α is a normalizing constant which renders the probability function of the
belief state sum to 1.

Russell et al. (2002) [56] emphasizes that the fundamental understanding in POMDPs
is that the optimal policy is only dependant on the agent’s current belief state. Sub-
sequently, the agent does not depend on the actual state s itself, and that the

29

optimal policy π∗(s) is directly mapped from belief states b(s) to actions a. As a
result, the decision cycle for a POMDP agent can be understood as:
1. Given a current belief state b(s), execute an action a.
2. Assess the perception evidence e.
3. Update the current belief state using equation 2.23 and repeat.

Considering the case of calculating the probability of an agent residing in belief
state b, which then takes action a and shifts to next belief state b′. The following
perception evidence e in the next belief state b′ is currently unknown. Therefore,
the agent may appear in various possible belief states that are dependant on the
registered perception evidence e. Provided an action a is performed in a belief state
b, the perception evidence e probability P (e|a, b) is given by summing over all prob-
abilities of the actual states s′ the agent might enter. The following mathematical
formulations are thoroughly described in Russel et al. (2002) and are presented in
equation 2.24 and 2.25.

P (e|a, b) =
∑
s′
P (e|a, s′, b)P (s′|a, b)

=
∑
s′
P (e|s′)P (s′|a, b)

=
∑
s′
P (e|s′)

∑
s

P (s′|a, b)b(s)

(2.24)

As for the case, where action a and current belief state b are given, the probability
of reaching the next belief state b′ is then denoted as P (b′|b, a).

P (b′|b, a) = P (b′|a, b) =
∑
e

P (b′|e, a, b)P (e|a, b)

=
∑
e

P (b′|e, a, b)
∑
s′
P (e|s′)

∑
s

P (s′|s, a)b(s)
(2.25)

Equation 2.25 can be viewed as a transition model between current belief state b
and the next belief state b′. Moreover, a belief state has its corresponding reward
function which is defined in the following equation.

ρ(b) =
∑
s

b(s)R(s) (2.26)

Both equations 2.25 and 2.26 together characterize "observable" MDP on the belief
state space. Russel et al. (2002) also proves that an optimal policy π∗(s) for "ob-
servable" MDP is also an optimal policy for the corresponding POMDP. Principally,
a POMDP problem in physical state space can be scaled down to solving a MDP
problem in belief state space.

30

2.6.2 DDPG - Deep Deterministic Policy Gradient

Silver et al. (2014) [65] introduced the Deterministic Policy Gradient (DPG) al-
gorithm and which was extended to Deep Deterministic Policy Gradient (DDPG)
algorithm by Lillicrap et al (2015) [43]. In Sivler et al. (2014) it was argued how
DPG could be estimated more efficiently than the stochastic policy gradient. Since
the latter integrates over both action and state spaces while DPG only accounts
for the action space. The researchers then employed an off-policy algorithm which
learns the deterministic desired policy from an exploratory policy behaviour. Sub-
sequently, compared to the stochastic policy gradients, Silver et al. (2014) were
able to show remarkable behaviour in both high- and low dimensional tasks with
DPG.

In 2015 Lillicrap et al. extended the DPG algorithm utilizing the benefits from
DQN algorithm introduced by Mnih et al. (2013), and batch normalization by Ioffe
et al. (2015). Lillicrap et al. (2015) put forward DDPG, which is an off-policy,
model-free actor-critic algorithm. DDPG is desgined to be applicable in continuous
state-action spaces while using deep neural networks as function approximators.
Specifically, in order to render the deep neural networks stable and robust, the two
benefits from DQN that remedies this are experience replay and use of fixed target
networks. In addition, it utilizes the batch normalization as further stabilizing
mechanism. These benefits were previously discussed in section 2.4.2.

In relation to underwater vehicle (UV) control, Wu et al. (2017) [78] applied a
DPG algorithm where a state-feedback controller for an AUV’s depth was learned.
Specifically, the applied RL algorithm applied was neural network DPG (NNDPG),
which trained on sample trajectories of the AUV. The NNDPG is almost equiva-
lent to the DDPG algorithm since both uses neural networks as function approx-
imators, specifically, four hidden-layered deep ANN. NNDPG utilizes a modified
experience replay and batch normalization. The paper compares the performance
of the NNDPG algorithm to those of linear quadratic integral (LQI) controller and
Nonlinear Model Predictive Control (NMPC). The LQI controller uses a linearized
model of the AUV while the NMPC is derived from the exact nonlinear AUV dy-
namics. The experiment resulted in the NNDPG performance closely challenging
the NMPC method, while exceeding the LQI method. However, it should be known
that the paper performed all experiments in a simulator, hence, the results from
the simulations may differ from those of real-world applications. Andrychowiz et
al. (2017) [3] evaluated an algorithm which combined Hindsight Experienced Re-
play with DDPG on a 7 DOF manipulator on a sparse reward environment. The

31

training was conducted on a simulator. However, when the model was transferred
to a real-world manipulator, the resulting performance proved to be satisfactory,
which verified the trained policy. As a result, the manipulator was able to complete
the task without fine tuning, and succeeded the performance of the original DDPG
algorithm.

2.6.3 Covariance Matrix Adaption - Evolutionary Strategy

Within the model-free policy search approach, Covariance Matrix Adaption - Evo-
lutionary Strategy (CMA-ES) is a unique policy update method which allows for
use in continuous environment. It is based on the stochastic optimization approach,
which is episode-based algorithm that model upper level policy πω(θ). This creates
samples in the policy parameter space θθθ which is then evaluated on the agent’s
performance. The term "upper level policy", coined by Deisenroth et al. (2013)
[21], differs from the lower level policy by πθ(s) by being typically modeled as a
Gaussian distribution, while the latter being typically of deterministic form. The
parameter ω represents policy parameter θ distribution, which is beneficial for the
ability of exploring policy parameters space as discussed in the report. The derived
stochastic optimization for learning for upper-level policies becomes as follows.

Jω =
∫
θ
πω(θ)

∫
τ
p(τ |θ)R(τ)dτdω =

∫
θ
πω(θ)R(θ)dθ (2.27)

Deisenroth et al. (2013, 2014-updated) asserted that the CMA-ES is considered to
be the state of the art policy search method for stochastic optimization as stated
in Hansen et al. (2003) [28]. The works reported in Heidenreich et al. (2009)
[29] confirms the feasibility of CMA-ES method as a robotic controller. This was
supported by a cart-pole system with the assigned task of balancing the pole yielded
satisfying results. CMA-ES method maintains the Gaussian distribution πω(θ) over
θ while utilizing a data set Dep for policy updates and weight di for each samples.
The weights di are obtained through non-provable approaches, that is empirical
approaches known as heuristics in algorithm-terminology. CMA-ES estimates the
weights di by first sorting the policy parameters samples θi by returning Ri, and
then compute the weights of n best samples by the following equation.

di = log(1 + n)− log(i) (2.28)

Consequently, the new mean µ of the policy distribution π(θ) is found by weighing
the average of the data points from data set Di. Deisenroth et al. (2013) argues
that the main advantage with this approach is that the covariance matrix is only

32

dependant on the current sample θi. Thereby, only depended on few samples.
Nevertheless, while being simple to utilize, and being of stochastic form, CMA-ES
has a disadvantage of failing to generalize the upper level of policy πω(θ) in various
contexts. Additionally, if the sample return Ri proves to be noisy, then the sample
trajectory needs to be evaluated.

Yet, CMA-ES proves its potential as a viable control system for robotic systems,
which may be of interest for agents like ROV/AUV’s and other vehicular robots.
Ahmahdzadeh et al. (2013) [2] proposed CMA-ES algorithm as a part of AUV
control, designed for underwater valve-turning operations. The authors highlighted
that the relative motion between a manipulator-equipped AUV and the valve is a
challenging task which required a high-precision controller. The input parameter
to CMA-ES algorithm is dependent on relative motion between the AUV and the
valve, so that the a suitable tuning parameter for the RL AUV controller can be
found. At first glance, this may seem like a time demanding task for the AUV
to learn the underwater robot dynamics. However, the principal knowledge of the
relative movements between the manipulator end effector and the valve is imported
through expert demonstrations, on an imitation algorithm. Which is also based in
Dynamic Movement Primitive. The latter is, as described by Ijspeert et al. (2003)
[32] and Schaal et al. (2005) [60], a common time-dependent policy representation
employed extensively in robotic systems. As a result, much of the underwater dy-
namics knowledge is obtained beforehand, thus, reducing learning time significantly.
Ahmadzadeh et al. (2013) [2] further added that CMA-ES was the fastest algorithm
in terms of computation time. Additionally, it required a small number of initial
parameter settings. Consequently, the algorithm yielded feasible results in tuning
the Reactive Fuzzy Decision Maker (RFDM), that is the AUV-manipulator-valve
dynamic system the RL controller is based upon.

This development has proved to be promising for further developments in designing
a CMA-ES based ROV RL controller. Specifically, since the CMA-ES approach
has low computation time, it may more smoothly process the sheer amount of data
stream between the top-side PC and the ROV.

2.6.4 Model Predictive Control with Guided Policy Search

In Zhang et al. (2016) [83] a survey was done on Model Predictive Control (MPC)
in combination with guided policy as a control system on a quadcopter, which
yielded positive results. Naturally, underwater vehicles operates under similar dy-

33

namic conditions, compared to aerial vehicles in terms of relevant DOFs and the
unstructured complex environment. Hence, this approach should be considered for
autonomous ROV/AUV control.

Mayne et al. (2005) [46] argued that a standalone MPC proved to be both reliable
and effective control system for robotic systems. This statement was proved by
Todorov et al. (2012) [74] when the paper experiments showed the MPC’s ability
to work with complex objectives. Mayne et al. (2005) also argued that MPCs
posses a simplistic design and has the ability to control model errors. However, a
major obstacle with MPSc applied on complex robotic systems is that estimation
of the state is required. For example using Kalman Filter as state estimator. This
is a challenging task for complex environments where ROVs and AUVs operates in.
RL itself should render state estimation negligible by learning a policy that maps
sensor readings to actions. However, the MPC approach is done by trial and error,
and employing a partially trained policy on an unstable, fragile robotic system such
as AUVs, ROVs and UAVs can lead to hazardous situations and costly damages.

However, Zhang et al. (2016) countermeasured these mentioned issues regarding
standalone MPCs by introducing off-policy guided policy search. Specifically, is
the high computation power remedied, along with hazards related to RL training
process. The authors showed that the resulting computational cost was only a
fraction of a standalone MPC approach. Additionally, the guided policy feature
transforms the algorithm from from RL method to SL approach. Consequently, the
policy training process is administered by a supervisor, i.e. a human operator or
expert, by initially steering the UAV to avoid dangers.

While guided policy search offer such improvements to standalone MPCs, Zhang
et al. (2016) asserts that this method still assumes a previously known model
dynamics during test flights. Otherwise, the results would most likely be a failure
as both known and learned model would be inaccurate. Hence, when the test flight
is due, a DNN is used with guided policy since the former represents a wide-ranged
complex behaviours. This approach provides two great advantages. The first being
that DNN can restrict its observations from sensors to only those equipped on
the UAV, for example Inertial Measurement Unit (IMU) inputs and camera vision
feed. Thus, since the policy is represented by neural network, it can learn policies
directly from, e.g. sensor cameras. The second advantage this approach introduces
is heavily reducing computational cost compared to standalone MPC. Specifically,
this applies to faster processing sensor observation data. This results in a robotic
system with a satisfactory performance based on neural network, which is simply

34

trained with supervised learning.

2.6.5 Asynchronous Off-Policy Updates - A3C

Gu et al. (2016) [27] presented in their paper the benefits of employing Asyn-
chronous Off-Policy Updates (also known as A3C) on robotic manipulation systems.
In this sense, state of the art deep RL algorithms that are based on deep Q-learning
functions, were scaled to perform complex 3D manipulation tasks. Additionally, the
authors demonstrated that the A3C approach efficiently learns policies from DNNs,
so that the simulation based training phase is negligible and directly training the
robot in real-world environment is possible. The report also proves reduction in
learning time as multiple robots are training simultaneously by parallelizing the
algorithm across these robots. Subsequently, policy updates on multiple training
robots takes place asynchronously, hence the name. This report confirms the effi-
cient learning from this approach as a variety of 3D manipulation tasks was learned
without any prior expert demonstrations.

2.6.6 CACLA - Continuous Actor Critic Learning Automation

Hasselt and Wiering (2007) [76] presented both Actor-Critic Learning Automation
(ACLA), and its extension CACLA (Continuous Actor-Critic Learning Automa-
tion). The former algorithm bases itself on tabular representations, where one is for
storing values and the other is for storing probabilities for performing each action
in all states. ACLA assumes that the states and actions are in discrete form, and
the values can be updated using for example TD-learning update. Given a state st,
if the resulting action performance for a value is a positive change (δt > 0), then
the corresponding action at is considered to potentially lead to a higher future dis-
counted reward. Thus, ending up with a improved policy π(st, at). In other words,
the probability of selecting at is increased and probability of taking other actions
is reduced accordingly. ACLA approach differs from conventional actor-critic ap-
proach by only using the sign of the TD-error to update the actor, while the latter
approach uses the exact value of TD-error for the value update process.

ACLA value update has its advantages as it is easily extendable to continuous do-
main, rendering the method to CACLA. The extension into continuous state space
can be done by replacing the tabular representation with function approximator. In
which case takes state st as an input and outputs an action at. In Hasselt and Wier-

35

ing (2007) the action output of the function approximator as time t is denoted as
Act(st), and its corresponding parameter vector is θAc. Hence, the report describes
the parameter update as following.

IF δt > 0 : θAci,t+1 = θAci,t + α(at − Act(st))∂Act(st)∂θAci,t

As stated in the logic above, given that the value has increased, that is positive
TD-error, this results in that the actor learns to perform more similar actions to
at in state st. Otherwise, if the value is not increased (δt < 0) the actor will not
change and the value is not further updated. This algorithmic structure informs
the agent that the latest action is more sufficient if there is no positive change in
value. Subsequently, avoiding faulty value updates towards some random action
that leads to a worsened present approximation of the optimal action.

It is also possible to extend the vector parameter update so that the effects of
actions are stressed to further improve the value. This can be achieved by storing
an average variance of TD-error and use this variance to determine whether the
action was particularly good or not. The number of updates towards an action is
related to the number of standard deviations between the target value and the old
value. This approach results in more updates than the standard CACLA, which
updates more than once, and is referred to as CACLA+Var.

2.6.7 Trust Region Policy Optimization - TRPO

Schulman et al. (2015) [63] put forward TRPO algorithm which utilizes the policy
gradient methodology that adopts the actor-critic architecture. In line with DDPG,
TRPO also allows for agents operating in continuous action-state space while main-
taining a decent performance. However, a major difference from the DDPG method
is that TRPO uses a different approach to update its policy parameters of the ac-
tor. TRPO introduces the advantage element η(π̃), which is considered as the
expected return of the new policy π̃ with respect to the advantage over old policy
π. In Schulman et al. (2015), the advantage is formally presented in the following
equation.

η(π̃) = η(π) + Es0,a0,...˜̃π[
∞∑
t=0

γtAπ(st, at)] (2.29)

Intuitively, the advantage module can be viewed as measurement of how good the
new policy is compared to the average performance of the old policy. As shown in

36

Schulman et al. (2015) the advantage η of the new policy can be rewritten into the
following equation.

η(π̃) = η(π) +
∑
s

ρπ̃(s)
∑
a

π̃(a|s)Aπ(s, a) (2.30)

Where ρ is discounted visitation frequencies.

ρπ(s) = P (s0 = s) + γP (s1 = s) + γ2P (s2 = s) + ... (2.31)

Nonetheless, equation 2.30 has proven to be hard to optimize since ρ is greatly
dependant on the new policy π̃. Hence, to counter this issue, the paper introduced
an approximation to η(π̃), which is denoted as Lπ(π̃).

Lπ(π̃) = η(π) +
∑
s

ρπ̃(s)
∑
a

π(a|s)Aπ(s, a) (2.32)

The difference between equation 2.30 and 2.32 is that ρπ̃ is replaced by ρπ. This
approach anticipates that state visitation for the old and new policies is not too
different. This equation is then combined with the favourable policy update method
shown below.

πnew(a|s) = (1− α)πold(a|s) + απ′(a|s) (2.33)

Where πold is the current policy used, and π′ = argmaxπ, Lπold(π′) is the argument
max of the policy that maximizes Lπold . Hence, the following theorem is obtained.

η(π̃) ≥ Lπ(π̃)− CDmax
KL (π, π̃) (2.34)

C is the penalty coefficient, whereas Dmax
KL correspond to the maximum information

loss (namely KL divergence) of the two parameters for each of the states. Simply
put, the last term in general represents how different the parameters π and π′ are.
Schulman et al (2015) proved in their paper that equation 2.34 can be viewed as
the expected long term reward η is monotonically improving, given that the right-
hand-side of the inequality is maximized. All in all, the problem is boiled down to
the objective function of maximizing the right-hand-side of the equation in terms
of policy parameter θ.

maximizeθ[Lθold(θ)− CDmax
KL (θold, θ)] (2.35)

37

In practice, when introducing a penalty coefficient in the objective function, the
step size becomes very small, which will lead to long training time. However,
constraining the KL divergence allows for a larger step while guaranteeing good
performance. The KL divergence constraint is imposed on every state s in the
state space by controlling that the maximum of which should be smaller than, or
equal to, a small number δ.

Dmax
KL (θold, θ) ≤ δ (2.36)

Since, TRPO assumes a continuous state, there is an infinite large amount of states,
which in turn would have yielded infinite large amount of constraints. To remedy
this, the paper proposed a solution based on heuristic approximation with the ex-
pected KL divergence, instead of finding the maximum KL divergence. Here, the
term heuristics is understood as a technique for finding an approximate solution
where classical methods fails to find the exact solution. In often cases, heuristic
approach trades completeness, accuracy and precision for speed, which renders this
method as a shortcut.

Consequently, the paper shows that the objective functions is rendered to the fol-
lowing resulting problem.

maximizeθEsπθold ,aπθold [πθ(a|s)
πθold(a|s)

Aθold(s, a)]

subject to Esπθold [DKL(πθold(·|s)||πθ(·|s))] ≤ δ

(2.37)

This objective function is also named "surrogate" function since it consist of a prob-
ability ratio between the current policy and the next policy. TRPO prosperously
addresses the issue introduced by DDPG, where the performance does not improve
monotonically. While the change in policy is fairly small, the approximation is not
much different from the original true objective function. Hence, a new policy pa-
rameter θ is chosen which maximizes the expectation subject to the KL divergence
constraint. Following, a lower bound of the expected long-term reward η is assured,
which implies that the step size in TRPO is of little significance.

2.6.8 Proximal Policy Optimization - PPO, OpenAI version

Although TRPO proves to be very prominent in its performance, the computational
power and implementation of this algorithms is immensely complicated. This prob-
lem has its roots from the constraint imposed on the surrogate objective function
(i.e. equation 2.37), which is the KL divergence between πold and πnew.

38

To approximate the KL term, a second-order derivative of KL term is used, which
is the Fisher Information Matrix. This process requires large amount computation
capacity as it requires calculating several second-order matrices. In the TRPO
paper by Schulman et al. (2015) [63], this problem is addressed by introducing
Conjugate Gradient (CG) algorithm to solve the constrained optimization problem
in order to bypass the explicit computation of Fisher Information Matrix. However,
the introduction of CG renders the TRPO implementation severely complicated.

However, Schulman et al (2017) [64] later introduced PPO that avoids the compu-
tation step due to the constrained optimization problem. This paper put forward
a clipped surrogate objective function. The main intention of TRPO’s constraint
is to forbid the policy to change too much. Hence, instead of adding a constraint
like TRPO, PPO rather slightly adjust TRPO’s objective function with a penalty
for policy updates that are too large. Subsequently, the new surrogate objective
function becomes as following.

LCLIP (θ) = Êt[min(rt(θ)Ât, clip(rt(θ), 1− ε, 1 + ε)Ât)] (2.38)

Where rt(θ) is the probability ratio between the new and the old policy. In equation
2.38 is it shown how rt(θ) is clipped between [1− ε, 1 + ε]. This implies that if rt(θ)
prompts the objective function to increase to a predefined limit, its efficiency will,
that is be clipped. This algorithm design renders to main cases, that is when the
advantage Ât is larger than 0, and when Ât is smaller than 0.

When Ât is greater than 0, it means that the action taken is better than the average
of all the actions that state. Hence, is the rt(θ) for that action increased in order
to encourage such action. This way any promising action has a higher chance to be
adopted by the agent. This is due to since the denominator of rt(θ) is constant, i.e.
πθold(s, a), only the πθnew(s, a) is increased. In other words, increase the chance for
taking that action a in state s while the clip functions limits rt(θ) to grow larger
than 1 + ε. On the other hand, should Ât shrink smaller than 0, then that action
is discouraged by the algorithm. Subsequently, rt(θ) is decreased, and in contrast
to the other case, rt(θ) will not decrease to a smaller value than 1 − ε, due to the
clip function. Fundamentally, the clip function restricts the range in which the new
policy can vary from the old policy, hence, discouraging the probability ratio rt(θ)
to step outside the defined interval.

Schulman et al (2017) argues in their paper that when comparing the objective
function used in TRPO (i.e. equation 2.37) to the objective function used in PPO
(equation 2.38), the latter is in fact a lower bound of the former one. This means

39

that a "pessimistic" estimate of the policy’s performance is weighed. It also re-
moves the heavy computational nature ofKL divergence constraint, thus, rendering
the optimization process for a PPO objective function much easier than that of a
TRPO’s. In addition, PPO has empirically proven to outperform TRPO.

2.7 Challenges related to Reinforcement Learning in robotic
systems

Although utilizing RL in robotic systems increases the autonomy in the operator’s
perspective, it is, however, far from a smooth process in order to obtain a reliable
RL based robotic control system. Real-world robots operates in the continuous
domain, and thus, it is crucial to carefully design the RL system to obtain the
optimal behaviour.

This section presents the most renowned challenges in applied RL systems in general
basis, and related to real-world robotic systems. In addition, recent developments
that are dedicated to remedy these issues are also presented.

2.7.1 Exploration-Exploitation dilemma

In contrast to SL, in RL, the agent must first discover its environment. This is
fundamental for the agent to obtain experience about the reward and general system
behaviour. Hence, it is required for the agent to take actions that are rarely used, or
completely unused, which has high statistical uncertainty. Therefore, it comes down
to whether to play it safe and embrace the current working policy that guarantees
adequate rewards, or to step out of the comfort zone and try new strategies which
may yield exceeding rewards. This is a dilemma that nearly all RL systems must
face, and is known as exploration-exploitation dilemma.

The term "exploitation" term means that the agent only chooses the optimal action
known to the current policy. However, a pure exploitation behavior renders the
agent to probe within a limited region of search space. This leads to only optimizing
its behaviour within the current area, while neglecting a possibly more optimal
solution in other state spaces. A policy gradient policy search method is viewed as
an exploitative algorithm, since it only utilizes its current policy and its surrounding
area only to gradually improve performance. According to Kober et al. (2013) [34],
this kind of method only results in local optima being obtained, while possibly

40

leaving out a more rewarding optima.

As for the term "exploration", which refers to nature of selecting sub-optimal actions
in the hope of acquiring more rewarding policies than the currently pursued. Yet,
this may result in the agent probing in a much larger state space area in order to
search for other more optimal solutions. As a result, methods that are purely build
on explorative behavior requires vast amount of training time during the learning
phase before converging towards a solution.

Consequently, it is essential for algorithms to balance the frequency of both exploit-
ing and exploring actions so that the global optima is obtained within a reasonable
amount of time.

One commonly used algorithm that handles the exploration-exploitation trade-off
is the ε− greedy strategy. This algorithm aims at choosing a greedy action which
maximizes Q(s, a) with a probability of (1 − ε). Where the parameter ε has the
range 0 < ε < 1, and defines a randomly selected action with probability ε. Thus, by
decreasing ε, the level of explorative behavior is correspondingly decreased, and vice
versa for exploitative behavior. Poole et al. (2010) unveiled a downside with the ε−
greedy strategy, which is that it treats all actions equally, aside from the seemingly
optimal solution. For instance, when ending up with two apparent feasible actions,
while the rest of the actions are deemed less rewarding, it may be more beneficial
to explore the two promising actions rather than the rest.

As a countermeasure to this problem, an alternative action-selection approach can
be employed, such as Gibbs Softmax action-selection. This approach chooses action
a with respect to the value of Q(s, a). A favourable action-selection distribution
utilized in Softmax method is Gibbs- or Boltzmann-distribution. This renders the
probability of selecting action a in state s proportional to eQ(s,a)τ . Where τ is
a parameter that determines the randomness of choosing a value. If τ is high,
the actions are selected on equal ground, and if τ is converging towards zero, the
supposed optimal action is repeatedly chosen.

2.7.2 Curse of Dimensionality

Bellman (1957) formulated the term curse of dimensionality after studying optimal
control in discrete high-dimensional state spaces. It was observed how the amount of
data and computational effort increased exponentially as the number of dimensions
grew. For instance a discretized state space, where each dimensions dimension is

41

divided into 10 levels, then there are 10 states for one-dimensional state spaces,
while as for 3D state spaces that renders 103 = 1000 different states. Hence, this
can in general be formalized as such, for n-D state spaces there is 10n different
states. Even in discrete cases, the state space may quickly grow large and become
impractical to cope with.

This is a challenge that often limits the capabilities in robotic systems operating in
continuous state spaces. Yamaguchi et al. (1997) [80] highlights how the curse of
dimensionality is prominent in anthropomorphic (i.e. human-like) robotic systems
with antagonistic driven joints that resembles human tendon-muscle system.

Traditionally, in RL based robotic operations, the engineer normally decomposes
the task into hierarchies. This is to shift complexity towards a lower layer of physical
functionality. For instance, RL approaches often perceive the world as grid-based,
which is in ML terminology known as grid-world, where states and actions are
expressed in discrete form. For instance, if using this grid-world perception on a
navigational task on robot, a potential command would be "move to the right hand
cell". In such cases a low-level controller is employed that handles the movement
dynamics, bein0g acceleration and stopping. However, Schaal et al. (2002) and
Peters et al. (2010b) argued that the grid-world representation renders the dynamic
capabilities for the robots considerably limited, unveiling a major downside in this
type of state-dimensionality reduction.

A common way to cope with curse of dimensionality is by using ML tools such as
appropriate function approximators, as presented in section 2.4.2. It can also be
solved by employing macro-actions, which is comprehensively introduced in Barto
et al. (2003) [5].

2.7.3 Curse of Real-World Samples

Other than issues in algorithmic-level related to robotic control, there are also
real-life factors needed to consider during robotic systems design. For example, a
practical case of hardware wear and tear is a major threat, and requires constant
care to avoid such physical damage. Should any damage occur, the resulting main-
tenance labor would have been both quite costly and cause unnecessary stagnation
in development. Subsequently, safe exploration is naturally a key factor to consider
in order to avoid unintentionally hazards for the robot. Yet, self-exploration pro-
cess in the real-world is a central part of the learning process, from which a large
amount of dangers are expected. A approach to remedy this hazardous phase is

42

by switching between the underlying controllers in the robot, hence, preserving an
abundance of safety and performance guarantees. This approach was introduced by
Perkins et al. (2002) [54], which in their work based their RL method on Lyapunov
functions.

A relatable real-world challenge is the use of computer visualization technology.
In this thesis, for example, a ROV using camera for object detection may suffer
from faulty image processing such as non-ideal light conditions, particle reflections
or image distortion. Hence, should the visual performance be negatively affected,
it will then negatively affect the robot’s sate perception, resulting in misguided
performance. As argued by Kober et al. (2013) [34], such cases requires human
supervision in order to avoid dangerous situations for the robot itself, and in some
cases the environment itself, specifically for self-driving cars systems. Subsequently,
real-world challenges can arise in terms of time consuming training phases, human
workload, and result in growing expenses. Thus, Kober et al. (2013) argue that in
many robotic learning situations, limiting the real-world interaction time is often
preferred instead of limiting the computational memory and complexity.

Time-discretization is also a case of real-world problem since the RL algorithms are
normally implemented on a computer, which is a digital platform. Event though
the physical system is continuous-time domain, time-discretization is still inevitable.
This induces inaccuracies, such as time-delays during data processing from sensors
to initiating actions, or physical delays stemming from joint motion and actuation.
As a result, action executed may not have immediate physical effect on the RL
robotic system, but only observable first some time-steps later. Time-delays due
to time-discretization can be remedied by increasing the duration of time steps,
however, at the cost of more unreliable robotic controller.

2.7.4 Curse of Under-Modeling and Model Uncertainty

In RL it is a common practise to pre-learn the robotic system, specifically the
interaction with the environment, as it reduces required learning time. However,
some physical environments prove hard to model with decent accuracy, e.g. an
ROV operating in underwater environment. Physical states and environments of an
underwater ROV robotic system requires careful design and verification before use.
Otherwise, any small parameter deviations may accumulate to significant erroneous
real-life performance.

Importing policies from simulator trained model into real-world robotic systems can

43

be done smoothly if the task, or the physical environment, is self-stabilizing. While
in the case of ROVs operating in underwater environment is not self-stabilizing as it
constantly relies on active control to maintain a safe state. Naturally, active control
is needed to avoid hazardous situations like collisions or drifting. However, should
the task be stable by nature, it is then more suitable to assume that the model
obtained from the simulations would operate feasibly in the real-world environment.
However, when it comes to critical physical parameters, such in the case of ROVs,
frictional and 2nd order hydrodynamical forces are the key parameters to be learned.
Typically, they are hard to learn precisely through simulations, and are learned to
a certain extend, in order to be fully mastered later when imported to real-world
environment and continue the remaining training phase.

2.7.5 Curse of Goal Specification

The reward function is the only element that provides feedback to the RL perfor-
mance in terms of reaching the optimal behaviour, and is therefore a key element in
RL. Designing reward functions may prove to be troublesome, especially for high-
dimensional state spaces. For instance, if the reward function is binary, the same
return will be collected. Consequently, the agent will not be able to distinguish if
its policy is improving and/or converging towards the optima. Such challenge is
classified as Curse of Goal Specification, which is thoroughly represented in Kober
et al. (2013) [34].

Binary reward functions can be convenient in software-based low-dimensional dis-
crete board games, in which the reward is provided only after winning a match.
While as for robotic control systems, a more intricate reward function is required
in order to receive corrects reward signals for each action-state pairs. Laud et
al. (2004) [39] introduced reward shaping, which is initiating rewards midway for
agents, operating in high-dimensional state spaces, along the way to guide the learn-
ing process to a solution.

Reward shaping shortens the problem horizon by introducing midway rewards.
However, this may result in trade-off in several performance aspects. For instance,
a ROV moving to a desired point at highest possible speed would have yielded high
reward, but is likely that the actuators would experience wear and tear. As such,
by behaving in nonsensical ways, RL algorithms may very well exploit the reward
functions so that high rewards are obtained, while still achieve solution. Another
example is robotic ball-paddling RL system, where the distance between ball and

44

the highest defined desired is a parameter in the reward function. Thus, the manip-
ulator may find the local optimal solution by easily moving the racket, with the ball
on it, to the desired point and hold it there. Reward shaping allows for an optimal,
or desired, behaviour for high-dimensional systems instead of coping with ultimate
success or failure scenarios. This approach renders the RL problem manageable.

Curs of goal specification can also be remedied by employing Inverse Reinforcement
Learning methods, which is presented in detail by Ng et al. (2000) [53]. This
method, also known as "inverse optimal control", defines the reward function for
the agent by being initialized with a policy. This policy can be, for instance, be
defined by human-supervised demonstrations. The resulting constructed reward
function may not automatically be optimal, nevertheless, it may be considerably
better than that of a typically manually designed reward function. Ziebart et al.
(2008) [84] describes how, over time, inverse learning has been elaborated with
various applied techniques. Inverse learning has proven by Bagnell et al. (2007)
[4] to be efficient tool for robotic systems such as manipulators, outdoor robotic
manipulation and robotic legged locomotion.

45

3 Modeling ROV dynamics

As explained in subsection 2.5.2, in model-free ML cases, the environment dynam-
ics are not taken into consideration because it is expected to be learned when the
agent interacts with the environment. While, in this case, since the training phase
of the ROV will take place in a simulator, the environment dynamics are needed
to simulate the real-world underwater effects adequately. Specifically, the hydrody-
namic coefficients and equations of motions play a vital role in rendering a reliable
simulator.

This section aims to present the mathematical model of the ROV that describes its
dynamics and used in the simulation training in this thesis. The theory is mainly
based on Fossen (2011) [25], and thereby, the mathematical notation is also adopted
from the author.

3.1 Mathematical model of a ROV

Fossen (2011) divides mathematical models of aerial- and underwater vehicles in two
main parts, that is kinematics and kinetics. The former describes the geometrical
approach of motion while the latter comprises the forces and moments acting on
the ROV body generate motion. The kinematic aspect does not consider the cause
of the motion, while kinetic aspect specifically explains the motion.

In this section, the ROV’s kinematic model is described, which encompasses the
equations of motions including its physical parameters. The relations between the
kinematic and kinetics are explained, and how those together induces ROV motions.
In addition the concept of reference frames are fundamental for understanding the
current state of the ROV in terms of positioning, velocity and orientation.

3.1.1 ROV kinematics

In this thesis, the ROV kinematics are introduced to define the motions in differ-
ent reference frames. Here, the position, orientation and motion are presented by
vectors and generalized coordinates.

Table 1 below shows the notations for 6 DOFs representation of a vessel.

46

Table 1: Overview of the 6 DOFs used for marine vessels and aircrafts.
Kinematic
direction

Positions and
Euler angles

Linear and
angular velocities

Forces and
moments

x-direction (surge)
y-direction (sway)
z-direction (heave)

Rotation about x-axis (roll)
Rotation about y-axis (pitch)
Rotation about z-axis (yaw)

x

y

z

φ

θ

ψ

u

v

w

p

q

r

X

Y

Z

K

N

M

Reference frames

Reference frames are utilized to represent the position, orientation and motion of
the vessel. The two most used reference frames are the North-East-Down frame
(NED) and the body-fixed frame . Typically, those frames are used in conjunction
to determine the relative global motion of a marine vessel.

NED frame, denoted with a ”n”-subscript, is defined with the [xn, yn, zn] axes.
The frame’s origin is fixed on the Earth’s surface while the frame is tangential to
the spherical nature of the Earth’s surface. xn aims towards the true north, yn
towards the true East, while zn points downwards normal to the frame plane and
to the Earth’s core origin. According to Fossen (2011), a vehicle, within a small
area, which travels with a relatively low speed renders the longitude and latitude
to be assumed constant. This means that the NED frame can be deemed inertial
(i.e. non-accelerating) and the Earth’s angular rates are then negligible such that
Newton’s laws are valid.

BODY frame, denoted with a ”b”-subscript, is defined with the [xn, yn, zn] axes.
The frame’s origin is fixed on an arbitrary point on the vessel, however, it is normally
placed on the vessel’s centerline or at intersections of symmetry planes. The body-
fixed origin is denoted as Center of Origin (CO). BODY frame is used along with an
inertial frame (e.g. NED frame) to determine its position and orientation relative
to the inertial frame, while the linear and angular velocities are purely defined in
the BODY frame.

Figure 7 illustrates how BODY and NED frames are fixed at their respective placed
in the environment.

47

Figure 7: Overview of relation between BODY frame and NED frame. Fossen
(2011) [25].

The reference frame used in the test basin at MC-laboratory, where the practical
experiments are tested, is defined by the Qualisys Motion Tracking system (QMT) .
QTM will be further detailed in section 6.2. While the BlueROV2 has its predefined
conventional BODY frame, QMT system is an underwater positioning system which
is used as NED frame during experiments. The origin in the basin is situated at
the middle in the bottom of the tank.

3.1.2 ROV kinetics

The mathematical model of the ROV is based on Newtons 2nd law. This approach
assumes a perfect model when all the forces acting upon the ROV are accounted for.
However, obtaining an accurate detail on each of the forces is a challenging task, and
is consequently remedied by making some simplifications. One of which is that the
ROV is considered to be a rigid body, thus no bending and geometrical deformations
are assumed. By this reasoning, the front part, can not rotate or move faster or
slower than its counter part, and vice versa. The equations of motion implemented
in the simulator are based on Fossen (2011, p. 110). The original equations of
motions are shown in equation 3.1.

48

Mν̇r + C(νr)νr +D(νr)vr + g(η) + g0 = τthrust + τwind + τwave (3.1)

While in the test basin, both wave and wind disturbances are negligible as they are
non-existent there. Since the ROV will be operating in 2D plane in this thesis, only
the xy-coordinates are of interest and the parameters concerning any other DOFs
that are not surge, sway and yaw are negligible in equation 3.1. As a result, the
restoring forces g(η) and g0 are thereby eliminated as they only affect the DOFs of
heave, roll and pitch, and have no effect in a planar environment. The subsequent
equations of motion which are utilized in the simulation becomes as following.

Mν̇r + C(ν)rνr +D(νr)νr = τthrust (3.2)

The mass matrix M = MRB +MA is the system inertia matrix included with
the added mass matrix. MRB is the rigid body mass matrix of the ROV in air, in
addition to the moments and products of inertia. This matrix is highly dependant
on the ROV’s mass and is subject to change if equipment on the ROV is replaced or
removed. While MA is the added mass matrix that represents the resistance force
which is proportional to the ROV’s acceleration. Depending om the vessel’s shape,
the added mass matrix can be assumed to be constant.

TheCoriolis and centripetal matrixC = CRB + CA includes the Coriolis effect
into the ROV’s equations of motion. They are fictional forces that accounts for the
Earth’s rotational nature. Myrhaug (2006) [50] highlights that the deflection of
an object, as it moves in a rotating reference frame, causes the Coriolis effect.
Hence, there is no real force affecting the ROV, however, since the reference frame
is rotating relative to the moving object, it suggests that the object deviates from
its path. As Newtons 2nd law is only applicable in inertial reference frames, the
Coriolis and centripetal forces must be included.

CRB(ν) is the Coriolis and centripetal matrix for the ROV’s rigid body. This term
considers the fictional force which causes the relative movement between the ROV
and NED reference frame due to Earth’s rotation. CRB(ν) is dependant on the
ROV’s added mass and is a function of the relative velocity to the NED reference
frame.

CA(νr) is the Coriolis and centripetal matrix for the ROV’s added mass. This term
is also dependant on the ROV’s added mass and its relative velocity to the NED
frame’s rotation while CA(ν) takes the current effects into consideration.

49

D(νr)νr = DLνr +DQ(νr)|νr| is the damping matrix whereDLνr is the linear vi
damping coefficient. While DQ(νr)|νr| correspond to the nonlinear viscous damping
force in water stemming from the the ROV’s velocity. The damping matrix is an
estimated parameter found by model testing.

All of the matrices are listed in the appendix and defined in line with the formu-
lations described in Fossen (2011). The exact hydrodynamic coefficient values are
used from Stian Sandøy (2016) [57]. While those coefficients are specified for the
BlueROV1, it is in this thesis with large certainty applied on the BlueROV2 as well
since it is very comparable in design.

The thrust force τ is the control input in this simulator, which directly assigns the
velocity of the ROV. Reformulating equation 3.2, equation 3.3 is obtained, which
correspond to the relation between the ROV acceleration ν̇ and the thrust force
input.

ν̇ = M−1[C(νr)νr +D(νr)νr + τthrust] (3.3)

From the acceleration vector, the velocity in x- and y-direction is obtained respec-
tively through time-step integration. Since the calculation procedures are taking
place on a digital platform (i.e. computer), the equation 3.3 must presented in
discrete form with respect to time-step tk. The resulting equation of motion is
formulated as following.

ν̇(tk) = M−1[C(νr)(tk)νr(tk) +D(νr(tk))νr(tk) + τthrust(tk)] (3.4)

The simulator estimates the ROV’s velocity in the BODY reference frame from the
acceleration attained by equation 3.4. The BODY velocity is then converted to NED
reference frame, hence, the resulting position is obtained by time-step integration.
The integration method is of Runge-Kutta approach and will be further detailed in
subsection 4.1.2.

50

4 Implementation of RL algorithm and simulator

The RL algorithm utilized for training the BlueROV2 is PPO. This recent algo-
rithm, which was discussed in subsection 2.6.8, has a large variety of publicly avail-
able implementations which was easily accessible online, and ready for modification
before implementation in this thesis. As stated in subsection 2.6.8, while being
state-of-the-art within RL, PPO is also impeccable for usage in continuous robotic
systems such as vehicular locomotion. By this reasoning, the PPO algorithm is an
ideal match for ROV control. This line of thought was also followed by Henderson
et al. (2017) [31] where the authors used publicly available implementations in their
work, proving such common practise.

In this thesis, the PPO algorithm was implemented in Python programming lan-
guage with Keras as ML-tool using Tensorflow as backend. A simulator was
developed in the same programming language to verify the performance of the RL
algorithms before conducting experiments in the real-world test basin. Several ex-
periments were performed with various reward functions as an effort to obtain the
most promising tracking performance. Subsequently, in this chapter, the impor-
tance of reward functions is also highlighted.

This chapter aims to present an overview of the simulator composition and the
structurization of the employed RL algorithm. The reward functions of interest are
presented along with an explanation of the hyperparameters related to the PPO
algorithm.

4.1 Simulator configuration

As explained in chapter 2, the simulation process is a key element to speed the
learning process prior to applying it on the real-world test basin. When the model
is trained to a desired level in the simulator, it is then exported to the BlueROV2
to be applied in the MC-lab test basin.

The simulation setup used in this thesis is a non-graphical Python software based
on a OpenAI architecture [12]. The latter is a non-profit AI organization which
promotes research and development in AI technology. OpenAI aspire to collaborate
with other institutions and researchers by making its patents open to the public.
Most notable founders are Elon Musk, which is the founder of Tesla and SpaceX,
and Sam Altman which is a renowned entrepreneur. OpenAI provides various agents

51

operating in various environments so that researchers can access a large range of
different testing ground. The environments stretches from basic discrete systems,
such as an inverted pendulum, to complex anthropomorphic systems, such as a half
cheetah. Many of the aforementioned articles in section 2.6 have been using OpenAI
environments as testing ground for their works.

The simulator utilizes the implemented kinematic and kinetic ROV models as pre-
sented in chapter 3. The parameters used in the models were specified for BlueROV2
and can be found in appendix B. A designed 2D area for test basin was defined with
the dimensions of 40 m and 6.45 m in x- and y-directions respectively. The aruco
marker’s position is used as reference coordinates, which is situated in the basin’s
origin at (x, y) = (0, 0). As the aruco marker is fixed at the basin’s origin, the
simulator-ROV is tasked to travel to the aruco marker’s location based on it’s rela-
tive state feedback. Figure 8 shows the simulator environment, that is the test basin
along with its dimensions. Positive x-direction points toward right, while positive
y-direction is downwards in figure 8.

Figure 8: Test basin as defined in simulator.

At the very beginning of each simulation episode, initial ROV deployment position
is determined randomly by the simulator. In such case, it is important to avoid
defining a too large area for initial ROV states. This is because it would require
a longer training time before a convergence in performance would appear. Hence,
the curse of dimensionality becomes an issue since the ROV is prompted to probe
a large area for solutions. Yet, a too small deployment area for the ROV would
render the trained model to be an optimized at that specific small area, while being
unskilled when deployed outside that area during real-life experiments. Evidently,
determining the initializing area requires accounting for both training time during
simulations and real-world performance.

52

In addition, it is also essential to mind the practical aspect of state initialization as
the computer vision performance can only be reliable in a certain range of distance
and orientation. This was found out to be maximum of 5 meters away from the
aruco marker and the limit for relative yaw was found to be 90 degrees. For practical
purposes, the real-life aruco marker should maintain a "safety-zone" of 1 meter
radius. Subsequently, a suitable configuration for initial ROV deployment for the
simulator would be −5 ≤ x ≤ −1.5 meters, and −3 ≤ y ≤ 3. The deployment area
is visualized in figure 9 and its parameters are summarized in table 2.

Figure 9: Area of random ROV deployment (blue) in the simulator.

Table 2: Configurations for initial random ROV deployment per episode.
Along x-axis −5 ≤ x ≤ −1.5 m
Along y-axis −3 ≤ y ≤ 3 m
Heading −20 ≤ ψ ≤ 20 degrees

Since the simulator is based on OpenAI’s architecture, it is thereby built in an
object-oriented manner. This means that logical subgroups are implemented as
classes and objects. Such design approach renders it simpler to structurize the
programming of such a large application. This approach of programming paves
way for easier further modification and software error handling.

Figure 10 is an effort to visualize a simulation time-step procedure. In this setup
the agent receives observation and calculated reward from the simulator followed
by an action initiation, and the process repeats itself for the next time-step.

53

Figure 10: Simulator-Agent interaction.

4.1.1 ROV state space

While there exists a global NED frame and a BODY frame on the ROV, in this
simulator however, a local frame is defined where a kinematic relation between the
ROV and aruco marker is defined. The local frame is based on the aruco marker’s
relative yaw orientation and relative position in x- and y-directions to the ROV
itself. As a results, the state feedback are relative pose of the aruco marker (i.e. xr,
yr and ψr). This is illustrated in figure 11 while the relevant states, which are also
denoted as "observations", are listed in the following table 3.

Table 3: Relevant ROV states.
States

Relative position in x-direction xr

Relative position in y-direction yr

Velocity in x-direction vx

Velocity in y-direction vy

Relative orientation in yaw ψr

54

Figure 11: Overview of the local reference frame. Credit: BlueLink.

While the essential translational state feedback is in the form of relative distance
in x- and y-directions, the simulator however uses the radial distance r when
calculating the reward. The calculation is shown in the following formula.

r =
√
x2
r + y2

r (4.1)

The radial distance can be useful when applying constraints on the ROV. For exam-
ple, in this thesis, an ideal area for the ROV to dwell is defined to be at an arbitrary
radial distance between 1 to 2 m away from the aruco marker. This makes it easier
to shape the ROV’s tracking behavior in such a way that it will most likely not
drift away from the aruco marker while avoid collision.

Use of such local frame relies on that the relative states are directly measurable,
which is where the ROV’s computer vision feature comes in to play during the
physical experiments. The main advantage with using this local frame is that a
lot of extra calculation steps are bypassed should an alternative NED-BODY based
frame be used instead.

4.1.2 ROV action space

When it comes to the action space, it is essential to mind the curse of dimensionality
as explained in section 2.7.2. This means that the action space needs to be carefully
designed so that it is not unnecessary large. This could potentially slow the learning
time significantly. However, since the ROV is tasked to track the aruco marker, the
set of actions is comprise of planar BODY velocities, that is vx and vy, and relative
yaw between the ROV and the aruco marker itself, which is ψr. This way the ROV

55

may freely move in the environment while being able to control the relative yaw
to be within the visibility range, which is −90 ≤ ψr ≤ 90. However, xr and yr

could also be included as desired setpoints, yet this would expand the action-space,
resulting in increased training time. The actions are presented in table 4 below.

Table 4: ROV actions set.
Actions

Velocity in x-direction vx

Velocity in y-direction vy

Desired body fixed yaw orientation ψr

Although the reward function, which will be discussed later, is reliant on relative
states, i.e. r, it is also reliant on the body-fixed ROV velocities vx and vy. In
reality, the BlueROV2 is designed to travel up to 2 m/s, though in the simulator,
the maximum velocities is limited to 1 m/s. This was done to minimize the curse of
real-world samples (see section 2.7.3), hazardous behavior when the trained model is
exported for real-world lab experiments. Furthermore, it is normally harder to cope
with due to real-world time-delays. The velocities are approximated using an im-
ported Python library function called scipy.integrate.ode.set_integrator(’dopri5’),
which is an explicit Runge-Kutta approximation method of 5th order put forward
by Calvo et al. (1990) [15]. Similar to the radial distance, the radial velocity is
used to determine the reward and is calculated in the same manner.

v =
√
v2
x + v2

y (4.2)

The radial velocity is taken into account because it is preferred that the ROV
minimizes its velocity when it is in close proximity to the aruco marker. That is
when 2 ≤ r ≤ 0 m, the radial velocity should be −0.1 ≤ v ≤ 0.1 m/s. Thus,
the ROV has a feasible time to react favourably should any urgent change in the
current state be desired, e.g. braking without time-delay effects.

4.1.3 Simulator annotations

Since this is a software-environment, an ensuing simplification exists, where the
simulator assumes that the ROV has continuous observability of the aruco marker.
In other words, the ROV in the simulation-environment knows about the aruco
marker’s whereabouts at all times, and the ROV enjoys continuous updates of its
relative position and orientation to the aruco marker at every time-step. This is

56

in heavy contrast to real-world case, where the state feedback is only accessible
whenever the aruco marker is in the line of sight of the ROV’s built-in camera.
Subsequently, it is expected that state feedback signals dropouts will occur due to
poor camera vision, light reflections causing disturbances on the aruco marker, or
when the ROV loose the sight of aruco marker due to large yaw movement.

While the simulator utilizes a very accurately measured parameter setting speci-
fied for the BlueROV2 dynamics, it is important, as discussed in section 2.7.4, to
consider the challenges related to under-modeling and model uncertainties. For ex-
ample, a too large predefined time-step will render the system’s state calculations
inaccurate due to time-integration. Also, the simulator does not take the real-world
time-delays into account during computer simulations. Subsequently, the ROV’s
behavior is optimized without this essential physical property. Subsequently, when
conducting real-world experiments, the timing of a desired action execution given
a state is expected to be slightly delayed, and is executed in a different state where
a different suitable action is rather preferred. In worst case, this may cause chain
of faulty action selections leading to poor performance.

4.2 PPO implementation

Python supports a large variety of ML libraries, which amongst other PyTorch,
Caffe, scikit-learn, Theano, Tensorflow and Keras. Subsequently, this renders
Python as one the most favored programming language used for data science and
ML purposes, while being largely supported by softwares that are designed for use
with robots.

A previous PPO implementation was found online on GitHub repository [19], which
is based on Keras library with Tensorflow backend. This implementation was origi-
nally designed for use with an OpenAI environment based on an Atari game called
Breakout-ram. The agent in this environment is trained to deflect incoming ball
toward the upper multi-layered wall (see figure 12), with the end-goal of breaking
through the wall.

57

Figure 12: Breakout-ram environment in which the original PPO implementation
was applied on. Credit: OpenAI.

In the GitHub repository, the author of the original PPO implementation stated
that the code is based on the works of OpenAI’s version of PPO by Schulman et al.
(2017) [64], which is presented in section 2.6.8. Before modification was done for
application in this thesis, it was made sure that the original implementation was
tested for performance, which proved to be satisfying.

However, the original code was designed to be operate in discrete action space as
the agent (i.e. the racket) took a single predefined action value for each time-
step. Consequently, the implemented PPO algorithm was customized according to
the original implementation, and was also designed to operate in a discrete action
space. Hence, the ROV agent initiates one set of predefined action command per
time-step. However, this required that action space being discretized into a total of
30 different actions to choose from. Each action set in thrust in x- and y-direction,
and desired yaw orientation, ranging from −1 at minimum to 1 at maximum, is
divided into 12 different intensities increasing with +0.1666... from lowest action
choice. While, not being fully continuous, the action space configuration yielded a
convergence in performance, which will be further detailed in section 5.

4.2.1 System architecture

In order to acquire deeper understand of the mechanism behind the model training
procedure, each algorithms employed in the simulator will be further elaborated in
this subsection. The following flowchart shows all the code files that comprise the
simulator, and how it is arranged according to each other.

58

gymbluerov.py

PPO.py

NoisyDense.py actionTransformer.py

32

1

The ROV’s properties, along with the environment dynamics and its physical bound-
aries, are defined in gymbluerov.py. This algorithm defines theBlueROVEnv-class,
which bases its design using OpenAI’s environment template. The BlueROVEnv-
class specifies the conditions for terminating episodes, calculates the next ROV state
based on the current state, applying action commands and specify the reward. All
of these functions are called upon in the step-method which in turn outputs the
calculated reward, next state of the ROV and any termination command. The
step-function manages the time-step motion in the simulator, and represents the
ROV’s feedback to the PPO algorithm defined in PPO.py.

The PPO.py file contains the RL mechanism in the architecture. Figure 14 shows
the classes used in PPO.py along with their respective member functions. The
Agent-class initiates the PPO algorithm by building the actor and critic models
separately. They are each based on two hidden-layered DNNs, and are activated
by Rectified Linear Unit (ReLu) activation functions. The reasoning behind the
choice of this activation function is due to it being less computational expensive,
which is critical for the training time. Another point worth mentioning is that the
other activation functions which were considered, that is sigmoid and tanh, are
better suited for classification problems. This means that they are often used in
supervised learning tasks as they have a convergence in both ends of their respective
graphs (see figure 13). This renders the gradient region to be small, hence, the
network either refuses to learn any further or becomes a very slow learner.

59

(a) (b) (c)

Figure 13: Plots of sigmoid, tanh and ReLu activation functions.

Since this is a RL problem, it is therefore favorable to apply an unbounded activation
function such as ReLu. However, it should also be asserted that playing with the
different activation function during training sessions did not affect the training time
significantly. Each session lasted in approximately 20 minutes mostly depending on
the arbitrary choice of actions the ROV agent made during the sessions. However,
it is imaginable that for agent that requires a large number of training episodes
will shorten its training time significantly with ReLu as opposed to sigmoid or tanh
activation functions.

Figure 14: Class diagram of the PPO algorithm file.

In the Agent-class, the member function get_action() extracts the output action-

60

number from the actor-model in each time-step. The action-number, ranging from 1
to 30 represents the 30 discrete predefined action commands specified in the action-
Transformer.py. This function takes in the action-number, which the get_action()-
function passes down, and return an array of action commands of 3 elements. Each
elements in the array represents the actions in the action-space.

A fundamental challenge in ML is to make the algorithm to perform adequately, not
just on the training data, but also on new inputs during model testing phase. Many
strategies have been applied to reduce the test-error, maybe at the expense of the
training-error. These strategies are collectively known as regularization strategies.
Goodfellow et al. (2016) [26] argues that regularization strategies have been major
research endeavors in ML, emphasizing its importance. Adding noise to the DNN
is a type of regularization strategy, which is what NoisyDense.py does in the actor-
model. By adding noise to the DNN in the actor, it remedies the overfitting problem
and improve generalization properties for the RL. Overfitting is, as described by
Goodfellow et al. (2016), when the gap between the training-error and test-error
is too large. Subsequently, the trained model will be robust to other different,
or unaccustomed, data inputs. In physical aspect, this means that the trained
ROV will have an increased chance of taking the right action when in an seemingly
unknown state.

4.2.2 Reward function design

Reward function design has proven to be a significant factor when it comes to
the overall ROV performance. The process of designing a reward function proved
to be both challenging and a time consuming task. In order to see if the ROV
learns further, i.e. improves its policy, the evolution of the accumulated reward per
training episode needs to be studied. If it converges, this indicates that the ROV
does not learn anymore and has found a seemingly optimal solution according to
the reward function. If the reward does not converge over the training episodes,
it may indicate that the ROV still resides in exploring phase or that the reward
function is poorly designed as it does not properly guide the agent towards the
desired behavior.

Even though, the convergence-check is the primary indicator for improvement in the
agent’s policy. It does not however guarantee that the agent has reached a feasible
practical solution. Essentially, curse of goal specification (see section 2.7.5) is very
relevant in this case, which may lead the agent astray as it will exploit the poorly

61

designed reward function by taking nonsensical actions. Consequently, in order
to verify that the ROV’s solution is rational with respect to tracking behavior, a
trajectory plot is made to visualize the ROV’s motion over time.

The following subsections proposes two reward functions that are considered promis-
ing in terms of its potentials and resulting simulator performance. The first proposal
did not show a stable tracking behaviour in the simulator. Yet, it is nevertheless
included in this thesis as it can be improved by tuning. The second proposal, how-
ever, yielded a satisfying tracking behavior, and its resulting trained model is taken
to the physical experiments.

4.2.3 First proposed reward function

R = −ψ2
r − r2 (4.3)

Since equation 4.3 is negative with an upper boundary at ≤ 0, the ROV is fated to
be punished with negative rewards. The severity of the punishment is dependant on
the error on the relative state. The first term in the equation indicate that the ROV
will be punished quadratically with the relative yaw orientation to the aruco marker.
Likewise, the second term punishes the ROV quadratically with relative distance
to the aruco marker. Hence, with respect to the reward function, the most ideal
state for the ROV would be to reside as close to the aruco marker while pointing
straight towards it. However, the following if-conditions 1 accompanies the reward
function 4.3, which yields positive rewards in specified cases to hopefully guide the
ROV to a tracking behavior.

62

Algorithm 1 Accompanying reward conditions.
1: if ψr ≥ π

4 or ψr ≤ −π
4 then

2: Let Reward = -100
3: end if
4: if ψr ≤ 0.17 and ψ ≥ −0.17 then
5: Let Reward = Reward + 100
6: end if
7: if r ≥ rd and r ≤ 2.5 then
8: Let Reward = Reward + 100
9: if v ≤ 0.2 and v ≥ −0.2 then

10: Let Reward = Reward + 100
11: end if
12: end if
13: if Traveling out of boundaries in the basin then
14: Let Reward = -1000
15: And reset the environment and terminate the episode
16: end if

Algorithm 1 was implemented for reward shaping purposes. Lines 1-3 specify when-
ever the ROV has a ψr larger than 45 degrees, the ROV is punished by -100 reward.
This way the ROV is trained to maintain a line of sight towards the aruco marker,
which is a favorable practice when applied in real-world. Lines 4-6 highlight that
while maintaining a relative yaw displacement between 10 and -10 degrees the ROV
will be rewarded with 100 extra reward points. Lines 8-11 encourages the ROV to
position itself within an ideal range of distance, which is defined to between rd and
2.5 m. In this case rd is set to 1 m. In addition, while maintaining an ideal distance
to the aruco marker, the ROV will be rewarded with extra 100 reward by keeping a
velocity between −0.2 and 0.2 m/s. This if-condition is introduced so that the ROV
is encouraged to slow down its pace when in close proximity to the aruco marker.
This is to increase the ROV’s maneuverability when close to the aruco marker in
case of sudden emergency action is in order. The last if-conditions in the algorithm
punishes the ROV severely when it travels out of boundaries. Subsequently, the
ROV is trained to operate within the defined MC-lab boundaries. Physically, this
ensures that the ROV has a significantly lower chance for colliding with the edges
of the test basin, thus, avoiding hazardous situations.

63

4.2.4 Second proposed reward function

In contrast to the previous proposal, this proposal, however, is not based on a singe
reward function accompanied by guiding if-conditions. It is rather defined with a
mesh-grid based rewarding mapped on the 2D plane. In other words a 2D grid-
world divided is mapped into the test basin, which is divided in smaller mesh areas.
Each mesh area in the plane is assigned a reward value, which is defined by radial
distance r. Figure 15 visualize an example of how each position in the basin can be
assigned a reward with grid approach.

Figure 15: Example mesh-grid reward. Red indicate zero reward, while dark green
is the highest reward.

In this example the rewards are purely based on predefined radial distances in the
mesh-grid environment. Here, the closest interval yields highest reward (green),
while the further the position is from the origin, that is the aruco marker’s place-
ment, the lower the returned reward is.

However, in the case of ROV training, separate mesh-grid rewards were specified
when the ROV velocity is smaller than or equal to zero (v ≤ 0), and when the
velocity is larger than zero (v > 0). The setup is shown in the following algorithm.

64

Algorithm 2 Mesh-grid based reward function
1: if v ≤ 0 then
2: r < 0.3 → Reward = 100
3: r > 0.3 and r < 0.5 → Reward = 90
4: r > 0.5 and r < 0.75 → Reward = 80
5: r > 0.75 and r < 1 → Reward = 70
6: r > 1 and r < 1.5 → Reward = 60
7: r > 1.5 and r < 2 → Reward = 50
8: r > 2 and r < 2.5 → Reward = 0
9: r > 2.5 and r < 3 → Reward = 0

10: r > 3 and r < 3.5 → Reward = 0
11: r > 3.5 and r < 4 → Reward = 0
12: r > 4 → Reward = 0
13: end if
14: if v > 0 then
15: r < 0.3 → Reward = 400
16: r > 0.3 and r < 0.5 → Reward = 360
17: r > 0.5 and r < 0.75 → Reward = 320
18: r > 0.75 and r < 1 → Reward = 280
19: r > 1 and r < 1.5 → Reward = 240
20: r > 1.5 and r < 2 → Reward = 200
21: r > 2 and r < 2.5 → Reward = 160
22: r > 2.5 and r < 3 → Reward = 120
23: r > 3 and r < 3.5 → Reward = 80
24: r > 3.5 and r < 4 → Reward = 40
25: r > 4 → Reward = 10
26: end if

Also in this case, a set of accompanying if-condition guides the ROV during the
training sessions.

65

Algorithm 3 Accompanying reward conditions.
1: if ψr ≥ π

4 or ψr ≤ −π
4 then

2: Let Reward = -1000
3: end if
4: if Traveling out of boundaries in the basin then
5: Let Reward = -1000
6: And reset the environment and terminate the episode
7: end if

The the if-condition above is expressed with mesh-grids, and the resulting plots
shows the subsequent reward configurations for the ROV in the 2D simulator envi-
ronment.

(a) (b)

Figure 16: Mesh-grid reward when v ≤ 0 (a), and when v < 0 (b).

From figure 16 is it notable that the rewarding area of the test basin is much
higher while the ROV has a velocity higher than zero. This is so that the ROV
is encouraged to maintain a velocity rather than standing still far away from the
aruco marker, leading to an increased explorative behavior. As such, this increases
the chance for the ROV to probe in areas near the optimal solution, which in this
case is the green midpoint surrounding the aruco marker. By assigning a high
contrast in reward between the zero-reward area (i.e. r ≥ 4) and rewarding area
(r < 4), thwarts any chances for the ROV to get stuck in a poor local minimum.
For example, in earlier design attempts, the ROV would be rewarded even if it was
distant positioned (i.e. r ≥ 4). This would render the ROV to be stuck in that
position without moving as it would accumulate rewards anyways.

An important aspect worth noticing in this proposal, is that there are lesser effort on
guiding the relative yaw orientation, and desired interval of radial distance between

66

the ROV and aruco marker, as it is on the previous rewarding proposal. Algorithm
3 only specifies severe punishment (i.e. Reward = -1000) is specified whenever
the ROV looses its line of sight of the aruco marker, and likewise punishment if
the ROV should travel out of the basin’s physical boundaries. While no desired
radial distance is specified. This means that the ROV is freely to ”collide” with the
aruco marker, which is, in real-world application, a possibly dangerous behaviour.
However, it can easily be remedied with a kill-switch logic designed to stop the
ROV whenever a dangerous situation occurs.

4.2.5 Hyperparameters

To successfully train a RL model, it often involves tuning the training hyperpa-
rameters of the RL algorithm. In this sense, the hyperparameters is understood
as the predefined parameters which manages the physical configuration of the RL
algorithm. This subsection introduces some well-renowned practices for tuning hy-
perparameters for the PPO algorithm.

Tuning the hyperparameters are typically performed when the default configura-
tions does not seems to yield the desired level of performance. However, the hyper-
parameter configurations in this thesis was used as default values originally defined
by the author of the implementation. However, for further works or later improve-
ments, knowledge of each of the hyperparameters physical influence on the training
may come in handy.

Gamma (γ) is the discount factor for future rewards. This can be viewed as how
far the agent should care about further rewards. If the agent ought to be prepared
for rewards in distant future by acting in the present, gamma should be high. While
in situations where rewards are more immediate, this value can be smaller. Typical
range is 0.8− 0.99, and in this implementation γ = 0.99 is used.

Batch size is the amount of experiences (i.e. obtained agent observations, actions
and rewards) is used in one iteration of a gradient decent update. The batch size
should always be a fraction of the buffer size. For continuous spaces, this value
should be large and in the order of thousands, typical range is 512 − 5120. While
for discrete spaces the value is far smaller, in the order of tens, with typical range
being 32− 512. For this implementation a batch size of 512 is used.

Buffer size coincides with the amount of experiences the agent should collect
before updating the model and learning is done. This is defined as a multiple of

67

the batch size. Typically, buffer size ranges between 2048 − 409600, while in this
implementation a size of 2048 is used which is exactly four times larger than batch
size.

Number of epochs is the number of entire dataset that passes through the ex-
perience buffer in the actor-critic model during a gradient iteration step. A larger
batch size allows for larger epoch number. Decreasing the epoch number will lead
to a stable updates, hence, stable learning process, but at the cost of learning speed
rendering it to a matter of trade-off balance. Typically range is 3− 10, and in this
implementation 10 is used.

Learning rate is related to the significance of the each gradient descent step.
Typically, this should be lowered if training is unstable, that is no convergence in
sight, and the reward does not consistently decrease. Typical range is 10−5 − 10−3.
In this thesis both the actor model and critic model uses learning rate at 10−4.

Loss clipping (epsilon) ε is the tolerable threshold for divergence between the
old and new policies during gradient descent updates. Small epsilon values results
in stable updates while at the expense of training speed. Hence, this parameter is
also a trade-off configuration. Typical range is 0.1− 0.3, and in this thesis ε = 0.2
is used.

68

5 Simulation results

In this section, the simulation results with both reward functions and trajectory
plots are presented. In addition, a discussion highlighting the performances of both
simulation instances is also covered.

The optimal number of training episodes is found be around 850 or so episodes,
while in this thesis 870 episodes was chosen. The reason for this choice of number is
because if ROV is trained with more than 900 or so episodes, it tend to exploit the
reward function and reach a poor solution while acquiring rewards. Typical poor
solution observed is when the ROV drifts away from the aruco marker rather than
converge toward it, or for instance maintain a fixed position while rotating with a
constant yaw rate. Hence, at the episodes range of 850-900, the ROV is considered
as it is "onto something" in terms of desired tracking behavior, and from then it
looses its track when it takes advantage of the reward function.

Results with reward proposal 1

Figure 17 shows the resulting evolution of rewards accumulated per episode when
employing the first proposed reward as described in subsection 4.2.3.

Figure 17: Growth of reward in throughout the episodes.

The following figures shows arbitrary trajectory plots per episode.

69

Figure 18: Trajectory plots of the ROV. Red dot is the starting point, green dot is
the aruco marker’s position, and blue is the ROV’s trajectory.

Results with reward proposal 2

The evolution of accumulated reward when using the mesh-grid rewarding approach
is shown in the following figure.

70

Figure 19: Growth of reward in throughout the episodes.

Following figures are arbitrarily selected trajectory plots for an episode.

Figure 20: Trajectory plots of ROV performance.

71

5.1 Discussion of simulation results

Each training sessions resulted in a great variety of quality of the tracking behavior.
Subsequently, an extensive number of simulations had to be done with each proposed
reward functions before retiring with the best obtained models with each respective
reward functions. More precisely, up to 60 trials were run. The evolution of rewards
in both simulation cases indicate that the agent’s policy is improving in terms of
reward accumulation.

Reward function proposal 1

In the case of reward proposal 1, it is noticeable in figure 17 that the reward
evolution graph is steep. This indicate that the learning speed is high and the agent
updates its policy continuously as new and seemingly better solutions are found.
This implies that the nature of the reward function results in a high explorative
behavior. Yet, the resulting trajectory plots in figure 18 shows that the ROV roughly
travels with 50 percent chance in the opposite direction of the aruco marker. A
reason behind such performance is that it is misguided to resolve that the most
subtask to optimize is to maintain a line of sight heading towards the aruco marker.
While at the same time neglect the other important subtask, which is reducing the
radial distance to the aruco marker. This explains why the ROV have a constant
heading orientation towards the aruco marker during the episodes, as it has learned
not to risk punishment from relative yaw error in function 4.3, hence, travelling in
straight line only.

Reward function proposal 2

While as for the second simulation case, the reward evolution graph resembles a
logarithmic function with a sudden increase at the of the training session. This
can be viewed as the agent has an extensive learning rate in the beginning of the
session, while reaching a long lasting convergence before suddenly obtaining an even
better solution. In contrast to the reward evolution in the previous case, this reward
function renders a far less explorative behavior with a greedy actions selection pol-
icy. However, even though both reward functions yields substantially high reward
(about 100000), the performance of the second proposed reward function is much
more stable. The trajectory plots in figure 20 shows how the heading motion is
not constrained to a constant value during the run, but is used reasonably. This

72

allows for a more flexible motion approaches which renders it easier for the ROV
to encroach the aruco marker from various positions. While being more reliable in
performance compared to the previous proposed reward function, the trajectory in
this case is not completely flawless. The figure shows that the ROV has a tendency
to take a irrational detour before converging towards the aruco marker. Subse-
quently, it is expected that in the real-world experiments the ROV will perform
such mistakes at times.

However, it should be specified that despite the latter reward function yielded a
much more promising performance, the ROV, however, showed to utilize only two
action commands. Which implies that the policy is stuck in a poor local minimum.
In detail, those actions are 0.33 m/s desired velocity in x-direction vx, and −1 m/s
desired velocity in y-direction vy. This implies that the ROV has a significantly
limited maneuverability as only two out of 30 action commands are used, and
may lead to poor real-world performance. This also explains the L-shaped form
of the trajectory plot, as it is able to travel only in positive x- and y-directions in
BODY frame. Figure 21 shows the velocity evolution in x- and y-direction during
a simulation run.

Figure 21: The x-axis show the instantaneous velocities, while y-axis records the
time in seconds.

Settling down with only 870 training episodes will yield a policy that is a local
solution, even if it still yields a feasible behavior. Hence, the resulting policy is not

73

robust to unexpected situations for the agent, as it is seen in the experiment results
where unwanted real-world issues come into play. However, while training with
more than 2000 episodes, and yet yield an even inferior policy solution indicates
that the problem is a matter of curse of goal specification.

74

6 Outline of the real-world experiments

To verify the trained model a real-world test was performed with a ROV to assess
its convergence property towards a fixed aruco marker. This is a simple method to
examine whether the tracking behavior is achievable if the aruco marker was in fact
moving.

All real-world experiments were conducted in the MC-lab at NTNU, which supports
underwater experiments. In this thesis, the experiments were executed with a ROV
of the type BlueROV2, which will be further detailed in the following subsection.

This chapter specifies the most essential lab components and how they were inter-
connected during the physical experiments. The configurations on the BlueROV2
used in the experiments are detailed and the positioning systems used for obtaining
the ROV’s states. The use of computer vision technology is also highlighted and its
challenges considering real-world performance. The MOOS-IvP framework is used
for ROV application is detailed, followed by an overview of the complete laboratory
setup.

6.1 BlueROV2

Figure 22 depicts the BlueROV2 which is developed by Blue Robotics, and is a
rather small research-class ROV with the main purpose of scientific use at NTNU,
Departement of Marine Technology (IMT). It’s thruster configuration allows for
motion in surge, sway, heave and yaw. It is also equipped with a small on-board
processing unit, Raspberry Pi 3 (RPI3). While being equipped with a full HD
resolution camera for observation purposes, the BlueROV2 can also be armed with a
manipulator for intervention tasks. The ROV contains a sensor suite of 4 units which
are gyroscope, accelerometer, magnetometer, and a pressure sensor. It can also be
manually steered by a Xbox controller or a topside PC, while in the experiments,
it is primarily used as a kill-switch whenever the ROV comes close to a hazardous
situation.

75

Figure 22: BlueROV2. Credit: Blue Robotics.

While in this thesis the experiments are taking place on a 2D plane, the ROV
is thereby required to maintain a fixed position in heave. This was achieved by
implementing an active heave controller. While desired depth was regulated by
placing four 2.5 kg weights symmetrically on the ROV, weighting it down to a
certain depth where ROV surfacing is infrequent.

6.2 Qualisys Motion Tracking system

Qualisys Motion Tracking (QMT) is a motion observation system used in the MC-
lab, to obtain position and Euler orientation of an object of interest. This tracking
technology is set up by 6 high-speed infrared cameras fixed in the test basin which
detects markers mounted on a body in motion. In the experiments, four markers was
used on the ROV to uniquely determine the position, which also was the minimum
requirement. The camera recognizes the markers underwater and uses triangulation
principles to calculate position and orientation, which is then communicated trough
Wi-Fi in the MC-lab. The cameras are configured to produce measurements at a
frequency range of 100− 150 Hz.

A NED frame is defined by Qualisys based on the area covered by the 6 surrounding
cameras. While determining the orientation of the ROV, Qualisys also defines a
body-fixed frame on the detected body, which operates within the NED frame.
Figure 23 visualizes the lab environment in a simplistic manner.

76

Figure 23: BlueROV2 2D BODY frame in a 3D space. The local reference frame
are the same as shown in figure 11.

Since QMT position estimates are deemed accurate, these were then used as the
true ROV position in the test basin. The linear velocities were estimated by time
derivation with the position measurements as basis. However, since the position esti-
mates contained noise, this rendered the velocity measurements noisy and therefore
Kalman filter was employed. As a result, this caused a minor time-delay on the
reference, nevertheless, this trade-off for accurately measuring the velocity proved
to be favorable during experiment sessions.

6.3 OpenCV and Computer Vision functionality

Open Computer Vision) (OpenCV is an open source programming library developed
for use in applications that utilizes computer vision technology. Originally created
by Inter, but is currently developed at Willow Garage under a BSD licence (as of
2018). Its primary interface is based on C++ programming language, however,
an equally prominent Python wrapper is supported and used in this thesis. Other
programming languages are also supported such as Java and MATLAB.

OpenCV supports a large variety of functions for the capture, analysis and manip-
ulation of visual data. In addition, the library is widely favored by programmers
as it is stable in use and vigorously supported by its developers. A large portion
of the library also provides user interface and pattern recognition functions. The
latter is extensively used to detect aruco marker and calculate its relative pose
to the camera’s position and orientation. One of the most powerful functions the
library maintain is the many built-in functions designed for real-time image pro-
cessing. This renders OpenCV ready for use in self-piloting vehicles and other forms

77

of innovative digital applications.

In the physical experiments, an already available computer vision implementation
from GitHub [35] was employed with slight adjustments to render it ready for
use with BlueROV2. The computer vision implementation is an OpenCV based
script written in Python specifically designed to detect and calculate the 6 DOF
pose of predefined aruco markers. The original implementation was designed to be
used with the PC’s built-in web-camera or an external camera, and was tested for
performance and accuracy in measurements prior to being applied in this thesis.

While there was possibilities to apply the computer vision functionality directly
on the BlueROV2’s RPI3 computer, this would however render the RPI3 slow as
image processing tasks requires high CPU power. Consequently, leading to an
unstable communication line between the topside PC and the BlueROV2 itself.
Thus, the script was implemented on the topside PC instead, which is typically
more powerful. Then a pipeline functionality was used to stream the camera feed
from the BlueROV2 directly to the topside PC, such that the image processing
tasks could be conducted in the latter device. Figure 24 shows the in-action image
of the computer vision functionality implemented in the BlueROV2.

Figure 24: BlueROV2’s computer vision apparatus.

Despite yielding quite favorable measurements in both orientations and transla-
tions, this implementation does, however, sometimes struggle with sunlight reflec-
tions. Subsequently, this whitens parts of the the aruco marker, rendering it unde-
tectable for the computer vision apparatus. In practical sense, this means that the
BlueROV2 occasionally looses sight of the aruco marker, and will lead to decreased

78

real-life performance as compared to simulator performance. Hence, the light inten-
sity in the environment must be taken into consideration. However, this issue was
remedied by only using the BlueROV2’s headlights, while the rest of the test basin
facility was darkened. Hence, there is minimal chance of light reflections caused by
the ceiling lights.

6.4 MOOS-IvP framework

MOOS-IvP is an open-source project designed and developed for use with au-
tonomous unmanned marine vehicles. The project remedies and supports increased
mission complexity and duration, increased capability in on-board sensors process-
ing and computing power. In addition, it also supports a larger number of users and
owners of unmanned vehicles. The MOOS-IvP framework is an implementation of
an autonomous helm (known as steering wheel of a ship) with considerable support
applications that aspires to administer a feasible autonomy system.

MOOS-IvP comprises of two distinct software modules, that is MOOS (Mission Ori-
ented Operating Suite), and IvP Helm. The former is a work of University of Oxford
which furnishes core middleware capabilities in a publish-subscribe software archi-
tecture, including various applications commonly used on unmanned marine robotic
and land robotic applications using MOOS. The IvP (Interval Programming) Helm
module is a MOOS application that is, along with other MOOS applications, avail-
able in the MOOS-IvP project. While the IvP part specifies the multiobjective
optimization method used by IvP Helm for intervening between clashing behaviour
signals in its behavior-based architecture.

Over the course of its history, MOOS-IvP has been refined towards a less defined
mission structure with respect to sequence of tasks, but rather as a set of complete
autonomy modes. These modes are accompanied with conditions, field commands
and events that defines transition between the modes. Originally developed on a
C++ back-end, MOOS-IvP supports a Python wrapper and is therefore feasible to
employ in the experiments in this thesis. In Benjamin et al. (2010) [9], a detailed
explanation of how this framework is implemented for use in underwater robotics.

79

6.5 Lab setup

The diagram in figure 25, which is based on a similar diagram found in Sandøy [57],
highlights the essential components used in the lab and their respective communi-
cation lines.

Figure 25: Diagram showing the different communication lines between the compo-
nents. Courtesy of Sandøy [57].

The RPI3 on BlueROV2 runs Ubuntu 14.04 with the framework MOOS-IvP, while
the topside PC also runs MOOS-IvP with Ubuntu 16.04 as operating system. Pix-
hawk is another on-board circuit on the BlueROV2 which handles the signaling
to the motor controllers, that is the six thrusters. The communication line be-
tween the BlueROV2 and the topside PC is a 40 m umbilical cable with ethernet
connection. The BlueROV2 is powered by a rechargeable battery shown in figure
25, where the main cause of power drainage is the thruster workload. The thrust
signals obtained from Pixhawk are passed on to a component named Pulse Width
Modulation (PWM), which maps the signals to desired thrust values for the motor
controllers.

80

7 Real-world experiment results

7.1 Experiment remarks

The experiments conducted was mainly to evaluate the ROV’s ability to converge
towards the aruco marker. Such arrangement is a good way to examine the ROV’s
tracking capabilities in case of a moving aruco marker. Figure 26 shows the in-action
picture of an experiment procedure.

Figure 26: Experiment case of ROV convergence test.

This picture was captured with a GoPro camera mounted on the side of the test
basin. From the figure, it can be noticed that the underwater visibility is signif-
icantly reduced by the seemingly green contamination. This is a result of lack of
chlorine in the test basin. As a consequence, this tainted test basin rendered Qual-
isys inapplicable because its positioning cameras could not detect the underwater
markers. Subsequently, no logging data was obtained of the ROV’s position and
velocity estimation, hence, no direct trajectory plots were obtained from experiment
data.

However, since the ROV was trained to exploit only two action commands, as
discussed in subsection 5.1, the subsequent travel path of the ROV was easily sur-
veyed. As an effort to provide an impression on the ROV’s typical performance,
handcrafted plots were created based on various trajectory samples observed during
the experiments, and presented in the next section.

81

7.2 Experiment results

The GoPro camera mounted on the bridge in test basin, and at the side edge of
the basin, provided essential visualized information on the ROV’s behavior. Based
on this, a trajectory plot was carefully made. The following plots are some of
the example trajectories which the ROV executed during the experiments, and are
accurately representing the performance.

Figure 27: Sample 1: The ROV diverges backwards to the left.

82

Figure 28: Sample 2: The ROV moves forward while diverging towards right.

Figure 29: Sample 3: The ROV diverges directly towards the right.

83

Figure 30: Sample 4: The ROV diverges backwards to the right.

7.3 Discussion of the experiment results

From figures 27 - 30 it is apparent that the ROV struggles to travel to the aruco
marker. Similar to the simulation results, its trajectory path has a L-shaped form.
However, in this case the ROV turns away from the aruco marker, resembling an
avoidance behavior rather than a tracking behavior. In addition, there was no
pattern found at which cases the ROV would turn to a particular direction given a
state. Subsequently, the ROV behavior seemed unpredictable.

This behavior is to some extent as expected since the simulation-trained model
performance was not optimal in terms of action selection. In section 5.1 it was
explained that the maneuverability of the ROV was severely limited due to its
policy being stuck in a poor local minimum because only two action commands
were used. Consequently, this issue, which is related to curse of goal specification,
affects the real-world performance accordingly.

In addition, the issue of limited observability in real-world scenarios had a clear
presence in the experiment sessions, and was also discussed in subsection 4.1.3.
Considering that the ROV in the simulator assumes that the aruco marker’s where-
abouts is known at all times, this is however not the case in real-life as the line-
of-sight issue is an essential constraint. From figures 27 - 30 it is evident that the

84

ROV looses its sight on the aruco marker once it turns away and the relative yaw
exceeds 90 degrees. Hence, the ROV ceases to receive the relative state feedback
it requires to navigate itself towards the aruco marker. Subsequently, this issue
renders it harder for the ROV to recover to path when it first looses its sight of the
aruco marker.

Another noteworthy challenge was the BlueROV2’s excessive pitch motion follow-
ing an initial forward acceleration motion. This resulted in the ROV’s camera-end
pointing upwards and above the aruco marker, missing the sight. This was at-
tempted to be remedied by placing weights on the ROV symmetrically in both
ends, such that a heavier ROV would be more stable in terms of motion in pitch.
Subsequently, the pitch orientation was to some extent stabilized, yet not fully desir-
able stable. As a result of acceleration done by the ROV, an initial exceeding jump
in pitch motion did occur, which resulted in inadequate relative state observability,
and is a significant contributing factor in the ROV’s poor performance.

A minor issue encountered was light reflection occurring on the aruco marker as a
result of powerful ceiling-lights in the laboratory. However, this issue was neglected
as it only resulted in short-lived signal dropout in relative states to the aruco marker.
Hence, no significantly negative impact on the performance of the ROV was noticed.
However, this could be attended by lowering the ceiling lights’ intensity or turning
them of, while conducting the experiments with the ROV’s head lights only.

85

8 Conclusion and further work

8.1 Conclusion

The objective of this thesis was to design a model-free RL based tracking behavior
for underwater vehicles, with computer vision technology as a key feature. This was
carried out by creating a RL algorithm based on an existing online implementation.
The RL method chosen for tracking task is a PPO algorithm, which was suitable for
training a vehicular robotic system like a ROV. The ROV chosen for the physical
experiment is the BlueROV2 due to its easy modification properties.

A simulator was created for model training and performance verification purposes.
An approximate underwater environment for a BlueROV2 was implemented in the
simulator such that the model training is close as possible to the real-world dy-
namics. The training of the ROV was done with the PPO algorithm where the
hydrodynamic environment is based on the BlueROV2’s model. The hydrodynamic
parameters were acquired from Sandøy (2016), which are originally obtained from
BlueROV1. However the latter’s hydrodynamic properties are approximately the
same as for BlueROV2 and any difference in physical parameters is thus trivial.
During the training phase, different variants of reward functions were investigated,
where two of them were highlighted in this thesis. While only the mesh-grid based
reward function was further employed in the real-world experiments. To verify the
performance of the model, the evolution of accumulated rewards in each training
session, and trajectory plots of the ROV, were evaluated. The challenge related
to exploration-exploitation during the simulation based training were highlighted
along with the importance of a proper reward function design. While the resulting
policy did prove to yield a tracking behavior, it did not, however, succeed to utilize
all of the available action space in the robotic system.

In preparation for real-world experiments, a computer vision module was employed
for detecting aruco markers with the BlueROV2’s RPI-camera. This was also based
on an online implementation, but slightly modified for use with BlueROV2. This
algorithm takes use of the popular OpenCV module for the computer vision process.
This implementation also calculates the aruco marker’s relative pose to the camera,
which proved to be convenient for use in the real-world experiments since the ROV is
trained with the relative states as principal parameters. A MOOS-IvP framework
is used for rendering an eazy communication line between the topside PC and
BlueROV2 during the experiments.

86

In comparison to simulation results shown in section 5, the experimental results
evidently shows an inferior tracking behavior. There are clear signs of challenges
related to real-world issues and goal specification, while these two issues in combi-
nation would naturally render a more troublesome resulting tracking performance.
Due to the scope of this thesis, a limited amount of reward shaping effort was avail-
able. A more focus on further reward design should be done in further works, as
reward shaping proved to be a key factor for successful simulation results. The
real-world issues in the experiments are mainly due to poor physical configurations
on the BlueROV2.

8.2 Further work

Both the simulation and real-world experiment results indicates that there is room
for future work. The simulation results did not yield an optimal behavior which
is confirmed by the trajectory plots in chapter 5. Essentially, the reward function
could be further improved due to its significant impact on the agent’s intended
behavior as explained in section 4.2.2. It was further deduced in chapter 5, that the
current reward function used in this thesis suffers from curse of goal specification. A
proposed way to counter such problem is by reducing the action space even further.
This could be done by, for example, only defining relative yaw in the action space,
or with only V x and V y comprising the action space. Subsequently, a smaller action
space would render the exploration-exploitation issue a less significant concern, and
hopefully result in a rewarding pattern that would be less complicated for the agent
to grasp.

Another approach that is yet to be attempted, is to tune the hyperparameters,
and examine the subsequent training approaches. Especially is the exploration-
exploitation dilemma important to keep track of. In this case, a training approach
with increased exploration would be desirable as it would increase the chance of
finding a global optima for the policy.

While the simulator defines a steady-state aruco marker in the environment, a more
tracking-specific training environment for the ROV could be a slightly moving aruco
marker. This would be more inline with the real-world situation as the aruco marker
is continuously in motion, resulting a harder training objective, but more robust
tracking properties.

In section 4.2 it was explained that the action space was discretized into 30 different

87

action commands. A further improvement here could be to maintain a continuous
action space. This would, however, increase the action space significantly, but also
increase the much needed maneuverability for the ROV. Consequently, unlike in
this thesis, there is less likelihood of ending up with a policy solution that only
utilizes only two predefined action commands. Hence, a foreseeable ROV behavior
in the simulator performance test would not be limited to a L-shaped movement
like in the case in this thesis.

In this case, further work on the ROV’s design itself would also be reasonable to
conduct Especially, the initial overshoot in pitch as a result of sudden acceleration.
This could be remedied by either experimenting with various weight placement on
the ROV, or by implementing an algorithm such that the acceleration gradually
increases to its desired level. Consequently, it will reduce the real-world challenge
of pitch overshoot, and ideally render a stable planar environment for the ROV to
operate a tracking task without loosing the sight of the aruco marker.

While RL is a powerful tool which has the potential of outperforming human ex-
pertise, it is however, a time demanding endeavor to successfully design a working
model. In the case of underwater tracking behavior, SL is worth exploring. With
the DNN as a basis, SL could be an equally powerful tool which has the human
supervision as groundwork during its training phase. Other vehicular systems, such
as Google’s self-driving cars [18], have achieved successful results. Consequently, it
should be fully possible to render a tracking system for underwater vehicles in the
same manner.

88

Bibliography

[1] Abbeel, P., Coates, A., Quigley, M. and Ng, A. Y. [2007], An application of
reinforcement learning to aerobatic helicopter flight, in ‘Advances in neural
information processing systems’, pp. 1–8.

[2] Ahmadzadeh, S. R., Kormushev, P. and Caldwell, D. G. [2013], Autonomous
robotic valve turning: A hierarchical learning approach, in ‘Robotics and Au-
tomation (ICRA), 2013 IEEE International Conference on’, IEEE, pp. 4629–
4634.

[3] Andrychowicz, M., Wolski, F., Ray, A., Schneider, J., Fong, R., Welinder,
P., McGrew, B., Tobin, J., Abbeel, O. P. and Zaremba, W. [2017], Hindsight
experience replay, in ‘Advances in Neural Information Processing Systems’,
pp. 5053–5063.

[4] Bagnell, J., Chestnutt, J., Bradley, D. M. and Ratliff, N. D. [2007], Boosting
structured prediction for imitation learning, in ‘Advances in Neural Informa-
tion Processing Systems’, pp. 1153–1160.

[5] Barto, A. G. and Mahadevan, S. [2003], ‘Recent advances in hierarchical rein-
forcement learning’, Discrete Event Dynamic Systems 13(4), 341–379.

[6] Beard, R. W. and McLain, T. W. [2012], Small unmanned aircraft: Theory
and practice, Princeton university press.

[7] Bengio, Y., Lamblin, P., Popovici, D. and Larochelle, H. [2007], Greedy layer-
wise training of deep networks, in ‘Advances in neural information processing
systems’, pp. 153–160.

[8] Bengio, Y. et al. [2009], ‘Learning deep architectures for ai’, Foundations and
trends® in Machine Learning 2(1), 1–127.

[9] Benjamin, M. R., Schmidt, H., Newman, P. M. and Leonard, J. J. [2010],
‘Nested autonomy for unmanned marine vehicles with moos-ivp’, Journal of
Field Robotics 27(6), 834–875.

[10] Bhatnagar, S., Ghavamzadeh, M., Lee, M. and Sutton, R. S. [2008], Incremen-
tal natural actor-critic algorithms, in J. C. Platt, D. Koller, Y. Singer and S. T.
Roweis, eds, ‘Advances in Neural Information Processing Systems 20’, Curran
Associates, Inc., pp. 105–112.

[11] Boyd, S., Parikh, N., Chu, E., Peleato, B. and Eckstein, J. [2011], ‘Distributed

89

optimization and statistical learning via the alternating direction method of
multipliers’, Foundations and Trends® in Machine Learning 3(1), 1–122.

[12] Brockman, G., Cheung, V., Pettersson, L., Schneider, J., Schulman, J., Tang,
J. and Zaremba, W. [2016], ‘Openai gym’, arXiv preprint arXiv:1606.01540 .

[13] Buesing, L., Weber, T. and Mohamed, S. [2016], ‘Stochastic gradient estima-
tion with finite differences’.

[14] Busoniu, L., Babuska, R., De Schutter, B. and Ernst, D. [2010], Reinforcement
learning and dynamic programming using function approximators, Vol. 39,
CRC press.

[15] Calvo, M., Montijano, J. and Randez, L. [1990], ‘A fifth-order interpolant for
the dormand and prince runge-kutta method’, Journal of computational and
applied mathematics 29(1), 91–100.

[16] Carreras, M., Yuh, J., Batlle, J. and Ridao, P. [2005], ‘A behavior-based scheme
using reinforcement learning for autonomous underwater vehicles’, IEEE Jour-
nal of Oceanic Engineering 30(2), 416–427.

[17] Carreras, M., Yuh, J., Batlle, J. and Ridao, P. [2007], ‘Application of sonql
for real-time learning of robot behaviors’, Robotics and Autonomous Systems
55(8), 628–642.

[18] Cheruvu, R. [n.d.], ‘Google self-driving car’.

[19] Clouâtre, L. [2018], ‘Octthe16th/ppo-keras’.
URL: https://github.com/OctThe16th/PPO-Keras

[20] Cybenko, G. [1989], ‘Approximation by superpositions of a sigmoidal function’,
Mathematics of Control, Signals, and Systems (MCSS) 2(4), 303–314.

[21] Deisenroth, M. P., Neumann, G., Peters, J. et al. [2013], ‘A survey on policy
search for robotics’, Foundations and Trends® in Robotics 2(1–2), 1–142.

[22] Delalleau, O. and Bengio, Y. [2011], Shallow vs. deep sum-product networks,
in ‘Advances in Neural Information Processing Systems’, pp. 666–674.

[23] Deng, Y., Bao, F., Kong, Y., Ren, Z. and Dai, Q. [2017], ‘Deep direct reinforce-
ment learning for financial signal representation and trading’, IEEE transac-
tions on neural networks and learning systems 28(3), 653–664.

[24] El-Fakdi, A. and Carreras, M. [2013], ‘Two-step gradient-based reinforcement
learning for underwater robotics behavior learning’, Robotics and Autonomous
Systems 61(3), 271–282.

90

[25] Fossen, T. I. [2011], Handbook of marine craft hydrodynamics and motion con-
trol, John Wiley & Sons.

[26] Goodfellow, I., Bengio, Y. and Courville, A. [2016], Deep Learning, MIT Press.
http://www.deeplearningbook.org.

[27] Gu, S., Holly, E., Lillicrap, T. and Levine, S. [2016], ‘Deep reinforcement
learning for robotic manipulation with asynchronous off-policy updates’, arXiv
preprint arXiv:1610.00633 .

[28] Hansen, N., Müller, S. D. and Koumoutsakos, P. [2003], ‘Reducing the time
complexity of the derandomized evolution strategy with covariance matrix
adaptation (cma-es)’, Evolutionary computation 11(1), 1–18.

[29] Heidrich-Meisner, V. and Igel, C. [2009], ‘Neuroevolution strategies for episodic
reinforcement learning’, Journal of Algorithms 64(4), 152–168.

[30] Heidrich-Meisner, V., Lauer, M., Igel, C. and Riedmiller, M. A. [2007], Rein-
forcement learning in a nutshell., in ‘ESANN’, pp. 277–288.

[31] Henderson, P., Islam, R., Bachman, P., Pineau, J., Precup, D. and
Meger, D. [2017], ‘Deep reinforcement learning that matters’, arXiv preprint
arXiv:1709.06560 .

[32] Ijspeert, A. J., Nakanishi, J. and Schaal, S. [2003], Learning attractor land-
scapes for learning motor primitives, in ‘Advances in neural information pro-
cessing systems’, pp. 1547–1554.

[33] Ioffe, S. and Szegedy, C. [2015], Batch normalization: Accelerating deep net-
work training by reducing internal covariate shift, in ‘International Conference
on Machine Learning’, pp. 448–456.

[34] Jens Kober, J. Andrew Bagnell, J. P. [2013], ‘Reinforcement learning in robtics:
A survey’, The International Journal of Robotics Research .

[35] Khosla, S. [2018], ‘sahilkhoslaa/augmentedreality-arucoposeestimation’.
URL: https://github.com/sahilkhoslaa/AugmentedReality-
ArucoPoseEstimation

[36] Kim, H. J., Jordan, M. I., Sastry, S. and Ng, A. Y. [2004], Autonomous he-
licopter flight via reinforcement learning, in ‘Advances in neural information
processing systems’, pp. 799–806.

[37] Kirk, D. [1970], ‘Optimal control theory, englewood clifs’.

[38] Kober, J., Bagnell, J. A. and Peters, J. [2013], ‘Reinforcement learning

91

http://www.deeplearningbook.org

in robotics: A survey’, The International Journal of Robotics Research
32(11), 1238–1274.

[39] Laud, A. D. [2004], Theory and application of reward shaping in reinforcement
learning, Technical report.

[40] Li, K. and Malik, J. [2016], ‘Learning to optimize’, arXiv preprint
arXiv:1606.01885 .

[41] Li, Y. [2017], ‘Deep reinforcement learning: An overview’, arXiv preprint
arXiv:1701.07274 .

[42] Liang, S. and Srikant, R. [2016], ‘Why deep neural networks?’, arXiv preprint
arXiv:1610.04161 .

[43] Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., Silver, D.
and Wierstra, D. [2015], ‘Continuous control with deep reinforcement learning’,
arXiv preprint arXiv:1509.02971 .

[44] Lin, L.-J. [1993], Reinforcement learning for robots using neural networks,
Technical report, Carnegie-Mellon Univ Pittsburgh PA School of Computer
Science.

[45] Lin, L., Xie, H., Zhang, D. and Shen, L. [2010], ‘Supervised neural q_learning
based motion control for bionic underwater robots’, Journal of Bionic Engi-
neering 7, S177–S184.

[46] Mayne, D. Q., Seron, M. M. and Raković, S. [2005], ‘Robust model predictive
control of constrained linear systems with bounded disturbances’, Automatica
41(2), 219–224.

[47] Miller, W. T., Glanz, F. H. and Kraft, L. G. [1990], ‘Cmas: An associa-
tive neural network alternative to backpropagation’, Proceedings of the IEEE
78(10), 1561–1567.

[48] Mnih, V., Badia, A. P., Mirza, M., Graves, A., Lillicrap, T., Harley, T., Silver,
D. and Kavukcuoglu, K. [2016], Asynchronous methods for deep reinforcement
learning, in ‘International Conference on Machine Learning’, pp. 1928–1937.

[49] Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra,
D. and Riedmiller, M. [2013], ‘Playing atari with deep reinforcement learning’,
arXiv preprint arXiv:1312.5602 .

[50] Myrhaug, D. [2006], Oceanography: wind, waves, vol, Technical report, UK-
2006-78. Institutt for marin teknikk, Trondheim.

92

[51] Nagabandi, A., Kahn, G., Fearing, R. S. and Levine, S. [2017], ‘Neural network
dynamics for model-based deep reinforcement learning with model-free fine-
tuning’, arXiv preprint arXiv:1708.02596 .

[52] Ng, A. Y. [2003], Shaping and policy search in reinforcement learning, PhD
thesis, University of California, Berkeley.

[53] Ng, A. Y., Russell, S. J. et al. [2000], Algorithms for inverse reinforcement
learning., in ‘Icml’, pp. 663–670.

[54] Perkins, T. J. and Barto, A. G. [2002], ‘Lyapunov design for safe reinforcement
learning’, Journal of Machine Learning Research 3(Dec), 803–832.

[55] Peters, J. and Schaal, S. [2008], ‘Reinforcement learning of motor skills with
policy gradients’, Neural networks 21(4), 682–697.

[56] Russell, S. J. and Norvig, P. [2002], ‘Artificial intelligence: a modern approach
(international edition)’.

[57] Sandøy, S. S. [2016], System identification and state estimation for rov udrone,
Master’s thesis, NTNU.

[58] Santamaría, J. C., Sutton, R. S. and Ram, A. [1997], ‘Experiments with re-
inforcement learning in problems with continuous state and action spaces’,
Adaptive behavior 6(2), 163–217.

[59] Sardag, A. and Akin, H. L. [2006], ‘Kalman based finite state controller for par-
tially observable domains’, International Journal of Advanced Robotic Systems
3(4), 45.

[60] Schaal, S., Peters, J., Nakanishi, J. and Ijspeert, A. [2005], ‘Learning movement
primitives’, Robotics Research pp. 561–572.

[61] Schaul, T., Quan, J., Antonoglou, I. and Silver, D. [2015], ‘Prioritized experi-
ence replay’, arXiv preprint arXiv:1511.05952 .

[62] Schjølberg, I. and Utne, I. B. [2015], ‘Towards autonomy in rov operations’,
IFAC-PapersOnLine 48(2), 183–188.

[63] Schulman, J., Levine, S., Abbeel, P., Jordan, M. and Moritz, P. [2015], Trust
region policy optimization, in ‘International Conference on Machine Learning’,
pp. 1889–1897.

[64] Schulman, J., Wolski, F., Dhariwal, P., Radford, A. and Klimov, O. [2017],
‘Proximal policy optimization algorithms’, arXiv preprint arXiv:1707.06347 .

93

[65] Silver, D., Lever, G., Heess, N., Degris, T., Wierstra, D. and Riedmiller, M.
[2014], Deterministic policy gradient algorithms, in ‘Proceedings of the 31st
International Conference on Machine Learning (ICML-14)’, pp. 387–395.

[66] Strens, M. J. and Moore, A. W. [2002], ‘Policy search using paired compar-
isons’, Journal of Machine Learning Research 3(Dec), 921–950.

[67] Sutton, R. S. [1996], Generalization in reinforcement learning: Successful ex-
amples using sparse coarse coding, in ‘Advances in neural information process-
ing systems’, pp. 1038–1044.

[68] Sutton, R. S. and Barto, A. G. [1998], Reinforcement learning: An introduction,
Vol. 1, MIT press Cambridge.

[69] Sutton, R. S. and Barto, A. G. [2012], Reinforcement Learning, The MIT Press,
Cambridge, Massachusetts.

[70] Sutton, R. S., Maei, H. R., Precup, D., Bhatnagar, S., Silver, D., Szepesvári, C.
and Wiewiora, E. [2009], Fast gradient-descent methods for temporal-difference
learning with linear function approximation, in ‘Proceedings of the 26th An-
nual International Conference on Machine Learning’, ACM, pp. 993–1000.

[71] Sze, V., Chen, Y.-H., Yang, T.-J. and Emer, J. [2017], ‘Efficient processing of
deep neural networks: A tutorial and survey’, arXiv preprint arXiv:1703.09039
.

[72] Theocharous, G., Thomas, P. S. and Ghavamzadeh, M. [2015], Personalized
ad recommendation systems for life-time value optimization with guarantees.,
in ‘IJCAI’, pp. 1806–1812.

[73] Timmer, S. and Riedmiller, M. [2007], Fitted q iteration with cmacs, in ‘Ap-
proximate Dynamic Programming and Reinforcement Learning, 2007. ADPRL
2007. IEEE International Symposium on’, IEEE, pp. 1–8.

[74] Todorov, E., Erez, T. and Tassa, Y. [2012], Mujoco: A physics engine
for model-based control, in ‘Intelligent Robots and Systems (IROS), 2012
IEEE/RSJ International Conference on’, IEEE, pp. 5026–5033.

[75] Tsitsiklis, J. and Van Roy, B. [1996], An analysis of temporal-difference learning
with function approximation, Technical report, Report LIDS-P-2322). Labo-
ratory for Information and Decision Systems, Massachusetts Institute of Tech-
nology.

[76] Van Hasselt, H. and Wiering, M. A. [2007], Reinforcement learning in con-
tinuous action spaces, in ‘Approximate Dynamic Programming and Reinforce-

94

ment Learning, 2007. ADPRL 2007. IEEE International Symposium on’, IEEE,
pp. 272–279.

[77] Watkins, C. J. C. H. [1989], Learning from delayed rewards, PhD thesis, King’s
College, Cambridge.

[78] Wu, H., Song, S., You, K. and Wu, C. [2017], ‘Depth control of model-free
auvs via reinforcement learning’, arXiv preprint arXiv:1711.08224 .

[79] Xia, C. and El Kamel, A. [2016], ‘Neural inverse reinforcement learning in
autonomous navigation’, Robotics and Autonomous Systems 84, 1–14.

[80] Yamaguchi, J. and Takanishi, A. [1997], Development of a biped walking
robot having antagonistic driven joints using nonlinear spring mechanism, in
‘Robotics and Automation, 1997. Proceedings., 1997 IEEE International Con-
ference on’, Vol. 1, IEEE, pp. 185–192.

[81] Young, T., Hazarika, D., Poria, S. and Cambria, E. [2017], ‘Recent
trends in deep learning based natural language processing’, arXiv preprint
arXiv:1708.02709 .

[82] Zhang, S. and Sutton, R. S. [2017], ‘A deeper look at experience replay’, arXiv
preprint arXiv:1712.01275 .

[83] Zhang, T., Kahn, G., Levine, S. and Abbeel, P. [2016], Learning deep con-
trol policies for autonomous aerial vehicles with mpc-guided policy search, in
‘Robotics and Automation (ICRA), 2016 IEEE International Conference on’,
IEEE, pp. 528–535.

[84] Ziebart, B. D., Maas, A. L., Bagnell, J. A. and Dey, A. K. [2008], Maximum
entropy inverse reinforcement learning., in ‘AAAI’, Vol. 8, Chicago, IL, USA,
pp. 1433–1438.

[85] Zimmer, M., Boniface, Y. and Dutech, A. [2016], Neural fitted actor-critic, in
‘European Symposium on Artificial Neural Networks, Computational Intelli-
gence and Machine Learning (ESANN 2016)’.

95

A Nomenclature

A3C Asynchronous Off-Policy Updates

AC3 Asynchronous Advantage Actor-critic

ACLA Actor-Critic Learning Automation

BODY Body-fixed frame

CACLA Continuous Actor-Critic Learning Automation

CG Conjugate Gradient

CMA-ES Covariance Matrix Adaption - Evolutionary Strategy

CO Center of Origin

DNN Deep Neural Network

DOF Degrees of Freedom

DPG Deterministic Policy Gradient

IMR Inspection Repair Maintenance

IMU Inertial Measurement Unit

MDP Markov Decision Process

ML Machine Learning

MOOS Mission Oriented Operating Suite

MPC Model Predictive Control

NED North-East-Down frame

NFAC Neural Fitted Actor-Critic

POMDP Partially Observable Markov Decision Process

PPO Proximal Policy Optimization

PPO Proximal Policy Optimization

i

PWM Pulse Width Modulation

QMT Qualisys Motion Tracking

ReLu Rectified Linear Unit

RL Reinforcement Learning

RPI3 Raspberry Pi 3

SGD Stochastic Gradient Method

SL Supervised Learning

TRPO Trust Region Policy Optimization

UAV Unmanned Aerial Vehicle

ii

B BlueROV2 hydrodynamic parameters

B.1 Mass matrices

B.1.1 Rigid body mass matrix

MRB =

m 0 0
0 m 0
0 0 Iz

 =

7.31 0 0

0 7.31 0
0 0 0.16

 (B.1)

B.1.2 Added mass matrix

MA =

Xu̇ 0 0
0 Yv̇ 0
0 0 Nṙ

 =

2.6 0 0
0 18.5 0
0 0 0.28

 (B.2)

B.2 Coriolis matrices

B.2.1 Coriolis rigid body matrix

CRB(ν) =

0 0 −mv
0 0 mu

mv −mu 0

 =

0 0 −7.31v
0 0 7.31u

7.31v −7.31u 0

 (B.3)

B.2.2 Coriolis added mass matrix

CA(ν) =

0 0 Yv̇v

0 0 −Xu̇u

−Yv̇v Xu̇u 0

 =

0 0 18.5v
0 0 −2.6u

−18.5v 2.6u 0

 (B.4)

iii

B.3 Damping matrices

B.3.1 Linear damping matrix

DL =

Xu 0 0
0 Yv 0
0 0 Nr

 =

0 0 0
0 0.26 0
0 0 4.64

 (B.5)

B.3.2 Quadratic damping matrix

DQ =

Xu|u| 0 0

0 Yv|v| 0
0 0 Nr|r|

 |ν| =

34.96 0 0

0 103.25 0
0 0 0.43

 |ν| (B.6)

Where ν =
[
u v r

]
.

iv

	Preface
	Acknowledgement
	Summary
	Sammendrag
	Contents
	List of Figures
	List of Tables
	Introduction
	Subsea underwater robotic operations
	Underwater robotic operations in oil and gas industry
	Underwater robotic operations related to aquaculture

	Underwater robotic control
	State of underwater vehicle operations
	Introducing Machine Learning in robotic control
	Related work

	Thesis objective
	Overview of the thesis

	Machine Learning: A Literature Review
	An intuitive approach to Reinforcement Learning
	Markov Decision Process
	Tabular approaches of solving MDPs
	Dynamic Programming Methods
	Temporal Difference Methods

	Function approximation approaches for solving MDPs
	Linear Function Approximation
	Nonlinear Function Approximation

	Reinforcement Learning in Large State and Action Spaces
	Policy search method
	Model-free and Model-based Policy Search
	Actor-Critic Methods

	Suitable methods for robotic navigation control
	Partially Observable Markov Decision Processes
	DDPG - Deep Deterministic Policy Gradient
	Covariance Matrix Adaption - Evolutionary Strategy
	Model Predictive Control with Guided Policy Search
	Asynchronous Off-Policy Updates - A3C
	CACLA - Continuous Actor Critic Learning Automation
	Trust Region Policy Optimization - TRPO
	Proximal Policy Optimization - PPO` 12`12`$12`&12`#12`12`_12`%12`12PPOProximal Policy Optimization, OpenAI version

	Challenges related to Reinforcement Learning in robotic systems
	Exploration-Exploitation dilemma
	Curse of Dimensionality
	Curse of Real-World Samples
	Curse of Under-Modeling and Model Uncertainty
	Curse of Goal Specification

	Modeling ROV dynamics
	Mathematical model of a ROV
	ROV kinematics
	ROV kinetics

	Implementation of RL algorithm and simulator
	Simulator configuration
	ROV state space
	ROV action space
	Simulator annotations

	PPO implementation
	System architecture
	Reward function design
	First proposed reward function
	Second proposed reward function
	Hyperparameters

	Simulation results
	Discussion of simulation results

	Outline of the real-world experiments
	BlueROV2
	Qualisys Motion Tracking system
	OpenCV and Computer Vision functionality
	MOOS-IvP framework
	Lab setup

	Real-world experiment results
	Experiment remarks
	Experiment results
	Discussion of the experiment results

	Conclusion and further work
	Conclusion
	Further work

	Bibliography
	Nomenclature
	BlueROV2 hydrodynamic parameters
	Mass matrices
	Rigid body mass matrix
	Added mass matrix

	Coriolis matrices
	Coriolis rigid body matrix
	Coriolis added mass matrix

	Damping matrices
	Linear damping matrix
	Quadratic damping matrix

