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Abstract

The project, Coastal Highway E39, introduces the concept of Submerged Floating
Tube Bridge (SFTB). The bridge is simplified as tandem cylinders with longitudinal
length-diameter ratio L/D = 3.2, diameter D = 1.0 and span-wise length l = 6D.
The tandem cylinders are subjected by a linearly varying profile called Shear Flow,
with a shear rate K = 0.2, gradient G = 0.1 1/s and center-line velocity Uc = 0.5.
The flow problems are analyzed numerical with OpenFOAM, for two-dimensional
(2D) domains with Reynolds number (Re) 100, 300 and 500, and three-dimensional
(3D) domains with Reynolds number (Re) 100 and 500.

The numerical analysis is performed with a laminar solver, where mean values for
drag - and lift coefficients are found with root mean square values. The oscillation
periods Tv [s], frequencies fv [1/s] and Strouhals numbers (St) are found behind each
cylinder, with use of Power Spectral Density (PSD) curves. ParaView is used to
visualize the distribution of velocity U, pressure P and vorticity in z-direction ωz.

Results obtained for flow problem with Reynolds number 100 are approximately iden-
tical for both 2D and 3D domains, since there are no 3D effects occurring for this
Reynolds number. When increasing the Reynolds number Re, one must take in ac-
count the 3D effects occurring span-wise. The thesis discusses the effects of a shear
flow versus a uniform flow, and the effect of having tandem configurations versus a
single cylinder.

Tandem cylinders will experience drag forces on each cylinder, with oscillating lift
forces close to zero. A uniform - or shear flow will move around the tandem cylin-
ders, with some vorticity and approximately no velocities in-between the cylinders.
Turbulent behaviour is observed downstream, when a shear flow is subjected on the
tandem configuration. When subjecting a flow towards a single cylinder, the alternat-
ing vortex sheddings will occur for an earlier time instant, compared to tandem flow
problems. Pressure distribution around tandem cylinders follows the same pressure
curve, when subjected either to a shear - or a uniform flow. The pressure magnitude
and fluctuation values are larger around the cylinders, when subjected to shear flow.

Designing Submerged Floating Tube Bridges (SFTB), one must understand the flow
behaviour in-between the tandem configuration and flow phenomena downstream
when subjected to a shear flow versus a uniform flow.
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Sammendrag

Ferjefri E39 introduserer rørbrokonseptet som skal erstatte ferjeovergangene langs
Vestlandet. Rørbroen er forenklet som tandem sylindere med lengde-diameter ratio
L/D = 3, 2, diameter D = 1, 0 og sylinderlengde p̊a l = 6D. Sylinderne blir p̊aført
en linear varierende skjærstrøm, med skjærrate K = 0.2, gradient G = 0.1 1/s og
normalhastighet p̊a Uc = 0.5.

Dette strømningsproblemet er analysert numerisk ved bruk av OpenFOAM. Analysen
blir utført p̊a todimensjonale (2D) domener ved Reynolds tall 100, 300 og 500, mens
ved tredimensjonale (3D) domenene utføres analysen ved Reynoldstall 100 og 500.
Det blir brukt en laminær kode for å løse problemet, hvor middelverdier for drag-og
løftekoeffisienter med oscillerende amplitude via minste kvadraters metode er funnet.
Oscillasjonsperioder Tv [s], frekvenser fv [1 / s] og Strouhals-tall (St) er funnet bak
hver sylinder, ved bruk av spektralanalyse. ParaView brukes til å visualisere fordeling
av hastighet U, trykk P og virvling i z-retning ωz.

Resultatene ved Reynolds nummer 100 er omtrent identiske for b̊ade 2D og 3D-
domener, siden det ikke forekommer 3D-effekter ved Reynoldstall 100. Økes Reynold-
stallet Re, m̊a man ta hensyn til 3D-effektene som forekommer langs sylinderaksen.
Masteravhandlingen diskuterer effektene av en skjærstrøm og uniform strømning, og
effekten av å ha tandemkonfigurasjon og en enkel sylinder.

Tandem sylindere vil oppleve dragkrefter p̊a hver av sylinderne, med oscillerende
løftekrefter lik null. En uniform- eller skjærstrøm vil bevege seg rundt sylinderne, slik
at man f̊ar noe virvling og omtrent ingen hastigheter imellom sylinderne. Virvelavløsningen
ved skjærstrøm p̊a tandemkonfigurasjon vil oppføre seg turbulent ettersom 3D ef-
fektene p̊avirker strømningen. Virvelavløsningsfenomenet vil oppst̊a for et tidligere
tidssteg for en enkel sylinder, sammenliknet med tandem sylindere.

Trykkfordelingen rundt tandem sylindere vil følge lik trykkurve, ved p̊aført skjær-og
uniformstrømning. Ved skjærstrømning, vil trykkfordelingen vil være større for den
første sylinderen, mens den andre sylinderen vil oppleve større trykkendringer.

N̊ar man skal utforme og prosjektere rørbroene, m̊a man ta hensyn til strømningsprofilet,
f.eks en skjærstrøm kontra en uniform strømning. I tillegg m̊a man forst̊a kon-
sekvensene av å ta i bruk tandem sylindere i stedet for en enkel sylinder.
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Nomenclature

α Angle between the cylinders with a staggered configuration

δ Boundary Layer Thickness

δ(x) Boundary layer

∆t Time step

∆x Cell size in x-direction

∆y Cell size in y-direction

∆z Cell size in z-direction

θ The angle around the circular cross-section presented in Chapter 6

λ Blockage ratio, ratio between cylinder diameter and tunnel diameter in exper-
imental set-up

µ Dynamic viscosity

ν Kinematic viscosity

ρ Fluid density

τw Shear wall stress

φ Angle around the circular cross-section [Igarashi, 1981]

ωz Vorticity in z-direction

Re Reynolds number

Tv Vortex shedding period or oscillation period

fv Vortex shedding frequency or oscillation frequency

St Strouhals number

Lc Characteristic length, defined in Reynolds number & Strouhals number

P Pressure

U Incoming freestream velocity
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U0 Stream-wise velocity component

U(y) Planar shear flow

U(z) Axial shear flow

Ux Velocity in x-direction

Uy Velocity in y-direction

Uz Velocity in z-direction

Umag Velocity magnitude

Uy=−5.0 Inlet velocity at bottom boundary of computational domain

Uy=5.0 Inlet velocity at top boundary of computational domain

Fx Drag force

Fy Lift force

CD Drag force coefficient

CL Lift force coefficient

C̄D Mean drag force coefficient

C̄L Mean lift force coefficient

C̄dp Drag force with pressure contribution

C̄df Drag force with frictional contribution

Cp Pressure coefficient

Aref Projected area of cylinder, defined as cylinder length l times diameter D

D Diameter

L Longitudinal length, the length between cylinders in tandem configuration

l Span-wise length of cylinder in z-direction

T Transverse length, the length between cylinders in side-by-side configuration

P Length between two cylinders in staggered configuration

L/D Longitudinal length - diameter ratio between tandem cylinders

l/D Ratio between span-wise length and diameter of a cylinder

T/D Transverse length - diameter ratio between side-by-side cylinders

K Shear rate

G Shear flow gradient

Uc Center-line velocity, velocity normal on cylinder

t Time or time instant
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2D Two-dimensions or two-dimensional

3D Three-dimensions or three-dimensional

NTNU Norwegian University of Science and Technology

NPRA Norwegian Public Road Administration

SFTB Submerged Floating Tube Bridge

CFD Computational Fluid Dynamics

RMS Root mean square

PDE Partial Differential Equations

FVM Finite Volume Method

OpenFOAM Open Field Operation And Manipulation

PISO Pressure Implicit with Splitting of Operators

MEGA Mesh generating program

CFL Courant-Friedrichs-Levy condition

PSD Power Spectral Density

m meter, SI unit for length

s seconds, SI unit for time

1/s frequency [Hz], SI unit for number of periods pr. time

m/s meters pr. second, SI unit for velocity
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Chapter 1

Introduction

Marine engineering and offshore technology have found it’s potential in the infrastruc-
tural project of Coastal Highway E39, or better known as Ferry Free E39. The goal
of this project is to replace every ferry connections along Kristiansand to Trondheim,
with fixed links. The proposed fixed links are existing and new bridge structures,
which are to be built in fjord conditions with vast distances and environmental con-
ditions. The final thesis TMR 4930 Master Thesis in Marine Technology, studies the
concept of the Submerged Floating Tube Bride (SFTB), where the thesis approaches
the problem numerically with Computational Fluid Dynamics’ (CFD) tool, Open-
FOAM.

The Master Thesis has title Numerical Simulation of Viscous Shear Flow Around
Tandem Cylinders. The concept of Submerged Floating tube Bridge (SFTB) is simpli-
fied as tandem cylinders with a chosen longitudinal length (L) between the cylinders,
a diameter and a span-wise length. The inlet velocity is a linearly varying current
profile, which is subjected on the tandem cylinders. This current profile is called
Shear Flow.

Introduction to the Coastal Highway E39 and the proposed concept Submerged Float-
ing Tube Bridge (SFTB) is described in Chapter 2. Chapter 3 explains the fluid
properties, assumptions and hydrodynamic phenomena. The chapter also contains
literature review about uniform - and shear flow around single and tandem cylinders.

Chapter 4: Numerical Methods in Fluid Dynamics and Computational Domain de-
scribes the numerical methods used to solve the fluid flow problems, description of the
computational domain used for the numerical simulation and the implemented bound-
ary conditions. Chapter 5 presents the results obtained for both two-dimensional (2D)
and three-dimensional (3D) shear flow problem around tandem cylinders with shear
rate K = 0.2 for various Reynolds number. The solutions are obtained with laminar
solvers.
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Chapter 6 discusses the main difference between the results obtain for the 2D and
3D shear flow problems. The chapter also analyzes the main differences and effects
of a shear flow versus a uniform flow subjected on a single cylinder versus tandem
cylinders.

Chapter 7 presents the final conclusion and present the crucial factors of having a
shear flow subjected on tandem cylinders. The chapter also presents the possibility of
future work in terms of extending the numerical simulation by taking use of turbulence
models, larger computational domain and longer time simulation.

There are several flow problems analyzed for different Reynolds number with both
shear flow and uniform flow around single and tandem cylinders. These results are
presented in Appendix.
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Chapter 2

Background Motivation

2.1 Coastal Highway: Ferry Free E39

The Coastal Highway Route E39 is a national infrastructural project, where the goal
is to replace ferry connections with fixed links across the fjords of coastal areas in
Western Norway.

Western Norway is known for its scenic terrain of vast fjords, mountains and hills,
therefore the use of ferries are required. The ferry itself represent the transportation
culture in several areas in Western Norway. Unfortunately, the travelling time is
time-costly, as the ferries are restricted to a schedule and capacity.

The project of a fixed Coastal Highway E39 is planned and executed by the Norwegian
Public Road Administration (NPRA). The challenge lies in creating a Ferry Free E39
of 1100 km from Kristiansand to Trondheim.

The coastal highway will reduce travel time from 21 hours to 11 hours by replacing
6 ferry connections with fixed roads, through tunnels and bridges presented in figure
2.1 [Reinertsen et al., 2016].
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Figure 2.1: Planned route for the Coastal Highway E39 [Dunham, 2016].

Challenges regarding planning and executing the project, is to implement new con-
cepts and new technology. One must understand the environmental loads from wind,
waves and current, but also solving challenges that comes with extreme fjord crossing
as distance and depth. The challenges regarding risks, safety and how the road will
impact society must be evaluated and taken into account [Larsen and Jakobsen, 2010]
& [Tveit, 2010].

This project is executed with the goal of creating both local and regional interaction
from south of Norway towards mid region, through the western coast. The Coastal
Highway Route E39 will connect industries that are found along the route, predicting
an increase in both labour, living and service within the industries of oil, gas, fisheries
and shipping [Dimmen et al., 2016], [NPRA and NVF, 2017] & [Dunham, 2016].
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2.1.1 Submerged floating tunnel bridge (SFTB)

The Norwegian Public Road Administration (NPRA) have proposed the following
concepts for the extreme fjord crossings of Coastal Highway E39:

• Suspension bridge

• Floating bridge

• Tension Leg Platforms (TLP) with suspension bridge

• Gravity Based Structures (GBS)

• Submerged floating tunnel/tube bridge (SFTB)

The bridge concept evaluated in the present study is the Submerged Floating Tube
Bridges (SFTB). The concept takes the land based concrete tunnels, and submerges
the tunnels under water, thereby the name Submerged Floating Tube Bridge with
either two - or three lane crossings for each direction, presented in figure 2.2 and 2.3.

Figure 2.2: Cross-section of floating
tube bridge with three driving lanes,
with outer-diameter OD = 15.0 m
[Minoretti et al., 2016].

Figure 2.3: Cross-section of floating
tube bridge with two driving lanes,
with outer-diameter OD = 12.6 m
[Minoretti et al., 2016].

The advantages regarding the Submerged Floating Tube Bridge (SFTB) are low
environmental impact, such as visibility, noise and almost no wind loading on the
structure. Challenges regarding Submerged Floating Tube Bridges (SFTB) are the
hydrodynamic loads as waves and current in a fjord [Myhr et al., 2016].

The Coastal Highway E39 project faces challenges when combining existing structural
bridge technology with offshore technology in a fjord crossing environment. The
proposed bridge structure is a new system, which will experience different global
response and behavior. The structure itself will impact the environment and society
in Western Norway.
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The fjord bottom introduces challenges regarding ground conditions as unstable sed-
iment areas. The existing ship traffic will experience larger risk in collision and
interaction between a vessel and a proposed bridge structure [Johansen, 2016].

2.1.2 Pontoons and Tethers as Vertical Stiffness

The Submerged Floating Tube Bridges (SFTB) are designed to float under the free
surface. Vertical stiffness’ elements as pontoons or mooring systems are used to
prevent the Submerged Floating Tube Bridge (SFTB) from drifting. The principles
of Submerged Floating Tube Bridge (SFTB) is to immerse concrete tubes, which are
to be connected to pontoons floating at surface, illustrated in figure 2.4. Tethers
are used as mooring systems between the bridge structure and the fjord bottom,
illustrated in figure 2.5. The two concrete tunnels are connected in-between for every
200 meter, which is designed as emergency exits [Reinertsen et al., 2016].

Figure 2.4: Submerged Floating
Tube Bridge (SFTB) with pontoons
[Minoretti et al., 2016].

Figure 2.5: Submerged Floating
Tube Bridge (SFTB) with tethers
[Minoretti et al., 2016].

The advantages by using pontoons as vertical stiffness are the low visual impact in the
environment. Challenges with pontoons are the risk of collision between ship traffic
and the floating pontoons. The pontoons are also subjected to larger wave loads,
compared to tethers.

The tethers have no visual impact, but the disadvantages are the risk of collision
between the tethers and submarines. Tethers are connected to sea bed, where in
a fjord have more varying underwater terrain than ocean floor. A fjord will also
contain current velocities, which will effect the layout and strength of the tethers
[Johansen, 2016], [Minoretti et al., 2016] & [Reiso et al., 2015].
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2.2 Simplification of
Submerged Floating Tube Bridge Concept

Analyzing hydrodynamic loads from currents on a proposed fjord crossing concept,
there is a need for assumptions and simplifications. In this study the Submerged
Floating Tube Bridge (SFTB) are simplified in terms of geometry as two parallel or
tandem circular cylinders.

The dimensions are chosen to obtain desired longitudinal length-diameter ratio of
L/D = 3.2. The outer diameter for the simplified geometry is OD = 12.6m, as shown
in figure 2.3 for the proposed ’two driving lane’ tunnels. The horizontal or longitu-
dinal length between the tandem cylinders are: L = 40m. The L/D-ratios becomes
important when analyzing tandem cylinders in current flow. Flow phenomena and
wake interference will vary for different L/D-ratios and different Reynolds number.

The underwater view of the Submerged Floating Tube Bridge (SFTB) is shown in
figure 2.6, while an inside layout is presented in figure 2.7.

Figure 2.6: General underwater view of the Submerged Floating Tube Bridge with
pontoons [NPRA and NVF, 2017].

Figure 2.7: Inside view of the Submerged Floating Tube Bridge
[NPRA and NVF, 2017].
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Table 2.1: Current velocities in Bjørnafjord for various depth and return period
[Reinertsen et al., 2016].

Depth 10 year 100 year 10000*
Surface 1.13 [m/s] 1.33 [m/s] 1.69 [m/s]
30 [m] 0.46 [m/s] 0.54 [m/s] 0.69 [m/s]

The hydrodynamic loads are simplified to a shear current profile. The wave and wind
loads are neglected in this study, and the current velocity profile is analyzed as a linear
varying shear current along the circular cross-section. Assumption and limitations for
the current flow are presented in section 3 which describes the properties of the fluid,
assumptions and limitations of the model, and shear flow properties and behaviour.

Project report Bjørnafjord Submerged Floating Tube Bridge [Reinertsen et al., 2016]
gives the extreme current velocity for a given return period at Bjørnafjord. The
current velocities are presented in table 2.1 and are the extreme current velocities
given for return period of 10, 100 and 10000* years, where the 10000*year value is
extrapolated from the 10 year and 100 year values.

Many studies have been performed on tandem cylinders with uniform current flow,
while studies with shear current flow are mostly performed on single circular cylin-
ders. A study of tandem cylinders in shear current flow will be performed in this
thesis, simplifying the Submerged Floating Tube Bridge (SFTB) as tandem cylinders
subjected by a linearly varying current flow.

The extreme current value Uc will be the magnitude which hits the cylinder surface
as the centre-line. The Submerged Tube Bride is to be placed 30 m under free surface
and the computation domain will initially be chosen as infinite fluid.

The analysis is performed to understand how shear flow will effect tandem cylinders,
especially in-between the tandem cylinders and downstream flow behaviour. The
analysis is motivated by the concept of Submerged Floating Tube Bridges (SFTB) as
a fjord-crossing, and the effect of the local current loads on the bridge-formation.
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Chapter 3

Background Theory

Theory regarding fluid properties and fluid flows are described in this chapter. De-
scription of a uniform flow versus a shear flow and different cylinder configurations
are presented.

3.1 Properties of Fluid Dynamics

3.1.1 Assumptions and Limitations of the Fluid

A fluid flow is described as a moving fluid. Analyzing fluid problems, assumptions and
limitations are used to simplify the flow problem. The assumptions and limitations
are:

• Single-component fluid

• Newtonian fluid: fluid can obtain friction and shear stresses, when the fluid acts
against a solid surface or on another fluid. The shear stress leads to deformation,
and the deformation rate is linearly proportional to the shear stress.

• In compressible: assuming constant fluid density ρ (mass per unit volume).

• Constant viscosity ν
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3.1.2 Fluid Properties and Flow Regimes

A moving fluid or a fluid flow can either be described as: laminar, transient or turbu-
lent. The laminar flow regime is described as a stable and well-ordered state of fluid
flow. The fluid particles appear to move along each other, in contrast to a turbulent
flow where there is no form of stability in the movement of fluid particles.

Turbulence flow regime is characterized as unstable, unsteady with vorticities, large
mixing rate and shear stress. Transient flow regime is defined as the flow regime
between laminar and turbulent regimes.

Figure 3.1: Laminar, transient and turbulent flow [Bejan and Kraus, 2003].

Figure 3.1 illustrates how the flow acts in laminar, transient and turbulent regimes for
a flat-plate problem. The difference between a laminar and a turbulent flow regimes is
characterized by the Reynolds numbers, which includes the fluid flow velocity, density
and dynamic viscosity. In theory, low Reynolds numbers describe laminar flow regime,
and high Reynolds numbers describe turbulent flow regime.

The definition of the Reynolds number is given by equation (3.1), where U is the fluid
velocity and Lc is the characteristic length in the fluid domain. In this study, the
characteristic length will be considered as the diameter D. The kinematic viscosity ν
is defined with both the dynamic viscosity µ and density of a fluid ρ.

Re =
ρULc
µ

=
UD

ν
ν =

µ

ρ

[
m

2

s

]
(3.1)

Figure 3.7 presents the flow-body interacting between an incoming flow and a circular
cylinder. A laminar flow is observed for Reynolds number 40 < Re < 200, and
turbulent flow is observed in the wake region behind the circular cylinder for 300 <
Re < 105. Above Re > 105 the boundary layer on the cylinder is also turbulent.

10



3.2 Classification of Fundamental Equations

The fundamental equations describing fluid dynamic problems are the conservation of
mass, better known as the (1) continuity equations and (2) the momentum equation,
which is further derived as the Navier-Stokes equation.

3.2.1 Conservation of Mass

A fundamental principle in nature is conservation of mass. In fluid flow problems,
conservation of mass describes how the mass flows enters and leaves a control volume.
The conservation law requires a net mass flow in and out of a control volume, for a
given time interval.

The conservation of mass can be expressed by the continuity equation. This expression
can be modified to fit a fluid flow with different properties. The equation (3.2)
describes the mass conservation for a three-dimensional steady and in-compressible
flow problem of a Newtonian fluid.

[
∂u

∂x
+
∂v

∂y
+
∂w

∂z

]
= 0 (3.2)

3.2.2 Conservation of Momentum

The second fundamental conservation law is conservation of momentum, and is derived
from Newtons 2nd law. The general equation for conservation of momentum is given
by equation (3.3), where i = 1, 2, 3 and j = 1, 2, 3 for each direction of x, y, z.

∂ui
∂t

+ uj

[
∂ui
∂xj

]
= −1

ρ

∂p

∂xi
+ ν

[
∂2ui
∂xjxj

]
(3.3)

The conservation of the fluid momentum equation consist of components, where they
describes the flow properties. Left-hand side consist of the time-dependant compo-
nent, which describes the change in velocity. The second component on the left hand
side describes the fluid velocity in each direction.

At the right-hand side of the momentum equation, the pressure gradient and the
kinematic viscosity term with the second derivative are presented. The momentum
equation can be written with the general formula (3.4). Further, the general momen-
tum equation (3.4) is expressed as the well known Navier-Stokes equation (3.5):

ρ
DU

Dt
= −∇P + µ∇2U + ρf (3.4)

DUi
Dt

= −1

ρ

∂P

∂xi
+ ν

[
∂2Ui
∂xjxj

]
+ fi (3.5)
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3.3 Flow Phenomena

A fluid flow will experience different flow phenomena. The fluid flow is described with
fluid velocity, viscosity, Reynolds number, and be characterized as laminar, transient
or turbulent based on the flow behaviour and Reynolds number. Observing a fluid
flow interacting with a fixed body, different flow phenomena will occur, as stagnation
point, flow separation, vortex shedding and boundary layer.

Figure 3.2 illustrates how an incoming flow hits a fixed body, as a two-dimensional
circular cross-section. The figure shows a boundary layer close to the fixed body,
a stagnation point in-front of the body and the wake region behind the separation
point.

Figure 3.2: Definitions of flow phenomena [Sumer, 1997].

3.3.1 Stagnation Point

A stagnation point is defined as the point where the flow obtains zero velocity, as
the incoming flow hits normal on a fixed body. Stagnation points have also high
pressure zones located in-front of the stagnation point, as the velocity becomes zero,
the pressure increases at stagnation point [Cengel and Cimbala, 2014].
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3.3.2 Flow Separation

Flow separation is a phenomenon which occurs between a fluid flow and a fixed body.
When a fluid is forced to flow over a curved body, the flow will no longer be attached
to the fixed surface and will separate. The flow separation comes from the no-slip
condition between the fluid flow and the fixed surface, where the fluid is assumed to
have direct contact with the solid surface [Cengel and Cimbala, 2014].

For the two-dimensional flow problem, the momentum equation will be simplified at
the wall y = 0 to expression (3.6), with only the pressure gradient and the viscous
term left.

ν
∂2u

∂y2 y=0

= −U dU

dx
=

1

ρ

dP

dx
(3.6)

Figure 3.3 presents the different stages from (a) to (e) of interaction between fluid flow
and solid surface. The stages illustrated how the flow and solid surface are dependant
on a balance between the pressure gradient and the viscous term from expression 3.6.
Illustrated in figure 3.3 presents the velocity profile U(x) and the boundary layer δ(x)
in the axis-system of x and y.

Figure 3.3: Illustration of flow separation [Cengel and Cimbala, 2014]

• (a): Fluid flow interaction where dU
dx > 0, such that ∂2u

∂y2 < 0 & 1
ρ
dP
dx < 0.

• (b): Linear growth of u(y), such that ∂2u
∂y2 = 0 & 1

ρ
dP
dx = 0.

• (c): Obtaining mild adverse boundary layer profile: dU
dx < 0, such that ∂2u

∂y2 > 0

& 1
ρ
dP
dx > 0. Shear wall stress is still present at this point.

• (d): Critical adverse boundary layer, such that separation occurs as wall stress
τw = µ∂u∂y y=0

= 0 or ∂u
∂y y=0

= 0. The pressure gradient is 1
ρ
dP
dx > 0 and the

second derivative of the velocity ∂2u
∂y2 > 0.

• (e): Obtaining reverse flow. Shear wall stress will be negative, as µ∂u∂y y=0
< 0.
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Separation as a flow phenomenon between a current and a circular cylinder have been
analyzed with both numerical tools and by experiments. Figure 3.4 presents how the
separation angles on a circular cylinder will vary with Reynolds number.

The figure presents separation angles for different experimental measurements and
numerical computations. For the experimental measurements, the experiments are
performed in a tunnel with a given diameter. Therefore the figure presents the results
with a given blockage ratio λ, which is the ratio between the cylinder diameter D and
the tunnel diameter in the experiment.

The differences in blockage ratio λ, and how the experiments and numerical compu-
tations are performed will give errors in the results presented in figure 3.4.

Figure 3.4: Separation angle with respect to Reynolds number for 2D computation
for Rajanu er al. (2009), measurements from Cautanceau (1976), Hormann (1936)
and Grove et al. (1964) [Rajani et al., 2009].
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A comparison between experimental and numerical studies of separation angle for
flow around circular cylinder are performed. In experiments, the results obtained are
averaged values of measurements. Averaged separation angles are obtained directly
from finite-time-exposed photographs or time-averaged images for the separation,
where as the actual separation occurs when the wall-shear stress becomes zero.

A numerical analysis is performed by Wu et al. (2004) where a comparison is per-
formed. The experimental results are gathered from literature about time-averaged
separation angle with results obtained by Wu et al. (2004). These results are pre-
sented in figure 3.5 [Wu et al., 2004].

Figure 3.5: Separation angle with respect to Reynolds number for numerical results
from Wu et al. (2004), measurements from Thom (1933), Hormann (1936), Tanda
(1956), Grove et al. (1964) and Dimopoulos & Hanratty (1968) [Wu et al., 2004].
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3.3.3 Vortex Shedding

Vortex shedding is a phenomena that occurs when the Reynolds number reaches value
of 48 or higher, and is a common feature for all flow regimes. At 5 < Re < 40, a
pair of vortices or twin vortices are formed in the near wake of the cylinder and
stays there for a steady flow. When the Reynolds number increase, the vortices begin
to shed alternately from each side of the cylinder, as the wake becomes more and
more unstable with a varying pressure field [Braza et al., 1986], [Rajani et al., 2009]
& [Pettersen, 2007].

The vortex shedding will at a time instant 0 have a vortex that is being cut off by
a second vortex, shown in figure 3.7. The first vortex will then be free to travel
downstream, where a clockwise circulation (A) around the cylinder is created. A
third vortex will form where the first vortex took place, and it will cut off the second
one at a time instant 1. The second vortex will then travel downstream and cause an
anti-clockwise circulation (B). This process will continue in an alternating manner.
An illustration of clockwise (A) and anti-clockwise (B) circulation is shown in figure
3.6, and it is often referred to Von Kárman vortices [Sumer, 1997].

Figure 3.6: Vortex shedding: clock wise (A) and anti-clock wise (B), [Sumer, 1997]

Vortex shedding can be measured as vortex shedding frequency fv, which is expressed
dimensionless by the Strouhals number, given in equation (3.7). Lc is the character-
istic length, diameter D, and U is the incoming current velocity.

St =
Lcfv
U

=
Dfv
U

(3.7)
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Figure 3.7 illustrated the wake pattern behind a circular cross-section for different
Reynolds numbers.

Figure 3.7: Vortex Shedding phenomena [Sumer, 1997]
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3.3.4 Relationship between Strouhals number St

and Reynolds number Re

Both Reynolds number Re and Strouhals numbers St are dimensionless, and the
relation between Strouhals- and Reynolds number is shown in figure 3.8.

Figure 3.8: Relation between Strouhals number and Reynolds number
[Pettersen, 2007]

For Reynolds number 40 − 48, two fixed pair of vortices behind the circular cross-
section will occur. The Strouhal number will therefore be around 0.1. For increasing
in Reynolds number, the Strouhals number will increase and stabilize around 0.2. For
very large Reynolds numbers (≤ 1000000), St is dependent on a smooth or rough
body.

Friehe (1980) obtained experimental data from a laminar flow on cylinders with
various diameters and cylinder lengths. The quantitative relationship between the
Strouhals number and the Reynolds number is presented, where the Strouhals num-
ber is changing for different Reynolds numbers.
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In experiments, the vortex shedding frequency will be affected by the interference
of freestream velocity U. Therefore Friehe (1980) measures Strouhals number and
Reynolds number for experiments by jet flows and wind tunnels. The results are
presented in figure 3.9 where the results follows a certain curve. The results are
presented for different cylinder with diameter D (notation for diameter: d in figure
3.9) and cylinder length l [Friehe, 1980].

Figure 3.9: Relationship between Strouhals number and Reynolds number for different
cylinders with diameter d and length l. (a) Experiment in jet flow, and (b) experiment
in wind turbine [Friehe, 1980].
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From experiments performed by the American Institute of Physics presents a graph-
ical display of various Reynolds numbers in figure 3.10. The figure shows how the
Strouhals number will vary for a cylinder with different diameters D and lengths l,
where the results are approximately equal for the performed experiments [Fey et al., 1998].

Figure 3.10 presents the experimental data with the Strouhals number along the
vertical axis (with notation Sr) and Reynolds number Re on the horizontal axis. The
upper axis represent the true Reynolds number Re, while the lower horizontal axis
represents the value: 1√

(Re)
. The slopes of Strouhals - Reynolds number will vary as

instabilities in the flow will occur near the wake region for the cylinder.

The laminar regime will dominate for lower Reynolds numbers. For increasing Reynolds
number at laminar regime will give increasing Strouhals number towards Re = 180.
Further the Strouhals number will reach a peak around St = 0.22 as vortex shed-
ding continuous in shear layer regime. The Strouhals number will slowly decrease as
Re ≥ 2 ∗ 104 for turbulence flow regime.

Figure 3.10: Relation between Strouhals number and Reynolds number. The various
changes in slope are due to the different instabilities occurring in the near wake region.
The different cylinder dimensions are not presented in the figure, but cylinder length
l and diameter D ratio l/D varies from 50 to 400 [Fey et al., 1998].
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Figure 3.11 presents how the Strouhals number will vary for different Reynolds num-
ber with comparison of a two-dimensional (2D) numerical computation from Ra-
jani et al. (2009) and measurements from Norberg (1993) and Williamson (1992)
[Rajani et al., 2009].

Figure 3.11: Relation between Strouhals number and Reynolds number
[Rajani et al., 2009].

The figures 3.9, 3.10 and 3.11 presents results from numerical computations and
experimental measurements, and shows a correlation between the Strouhals number
St and the Reynolds number Re.
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3.3.5 Vorticity

The vorticity is a measure of the rotational effect in a fluid, and can be defined in
equation (3.8) [White, 2006].

~ω = ∇× ~u = (
∂w

∂y
− ∂v

∂z
)~i+ (

∂u

∂z
− ∂w

∂x
)~j + (

∂v

∂x
− ∂u

∂y
)~k (3.8)

The vorticity is not a primary variable in flow analysis, but it is an important aspect
when examining the impact of Navier-Stokes equation. In general, vorticity is gen-
erated by the relative motion near solid walls, i.e. solid cylinder surface. Vorticity
and turbulence are often referred about to one and another. Many vortices or vortex’
are often included in the definition of a turbulent flow, such that the existence of
vortices will determine a turbulent flow [White, 2006], [Tennekes and Lumley, 1972]
& [Hussain, 1995].

3.3.6 Boundary Layer

The boundary layer δ(x) is defined with a boundary layer thickness δ, which is defined
as the point where streamwise velocity component is 99 percent of the freestream
velocity. The boundary layer thickness is then referred to as δ99, where u(y) =
0.99U(x), and is estimated roughly with the expression (3.9) [White, 2006].

δ =
D√
Re

(3.9)

A thin boundary layer should exist for large Reynolds numbers. How large the
Reynolds number should be, is dependent on the geometry of the fixed body. Bound-
ary layers are characterized by high shear with large velocities away from the surface.
Frictional force, viscous stress, and vorticity do occur in the boundary layers.

The figure 3.12 presents the stream-wise velocity component U0, where the boundary
layer thickness is illustrated in the gray region with thickness δ. The illustration
shows vorticity, where vortex shedding is occurring.

Figure 3.12: Boundary layer, separation and occurrence of vorticity [Sumer, 1997].
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3.4 Drag - and Lift Forces

Vortex shedding phenomena creates instabilities in the flow. The alternating vortex
shedding will give oscillating forces in cross-flow direction and in-flow direction. A
lift force, Fy, will act normal to the incoming flow (cross-flow direction) and oscillates
harmonically around zero. A drag force, Fx, will act in the flow direction and oscillates
at twice the frequency of the lift force.

3.4.1 Force Coefficients

Drag force is the force which is excited in the inflow direction, while the lift force is
normal to the incident flow direction. Both drag- and lift force can be expressed with
the force coefficients, CD and CL, presented in equation (3.10). The uniform current
velocity is given by U , while the projected area is given as Aref , which is simplified
as the cylinder length times the cylinder diameter [Faltinsen, 1990].

CD =
Fx

1
2ρU

2Aref
CL =

Fy
1
2ρU

2Aref
(3.10)

3.4.2 Root Mean Square of fluctuations

The Root Mean Spquare (RMS) or typically called quadratic mean, is based on having
a set of data values, where the RMS is the square root of the mean value of x2i .

The RMS is given by:

xrms =

√∑n
i=1 x

2
i

n
. (3.11)

Finding the Root Mean Square for the drag coefficient and lift coefficient is a method
to find the level of fluctuation around the mean value, or the mean amplitude for drag
and lift forces. The value of fluctuation presents how much the mean is oscillating
between a maximum and minimum [Cengel and Cimbala, 2014].
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3.4.3 Relationship between mean drag C̄D and Reynolds num-
ber Re

Analyzing flow around circular cylinders, the relation between the mean drag force
coefficient C̄D with respect to Reynolds number Re is compared. Figure 3.13 present
data of mean drag coefficient C̄D including pressure drag part and viscous drag part in
a function of Reynolds number Re. The figure presents how the drag force coefficients
stabilizes at a constant value for higher Reynolds number.

Figure 3.13: Graphical presentation of the relation between the mean drag coefficient
C̄D and the Reynolds number Re for 2D numerical analysis. The comparison presents
different data: Black dot C̄d: presents the total drag force from the 2D computation.
Red square C̄dp: drag force with pressure contribution. Blue triangle C̄df : drag force
with frictional contribution. The straight line are the data compiled from Zdravkovich
(1997), [Rajani et al., 2009].
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3.5 Uniform Flow around a Circular Cylinder

Section 3.3 introduces to flow phenomena for two-dimensional (2D) flow problems.
Analyzing a three-dimensional (3D) circular cylinder, the cross-sectional diameter D
and cylinder length l are important parameters. The ratio between the cylinder length
l and cylinder diameter D are important when discuss the effects of cylinder-ends,
cylinder roughness and flow behaviour for a three-dimensional (3D) flow problem.

Vortex shedding phenomena for a 3D problem will occur for the same Reynolds num-
bers as presented in figure 3.7. Flow problems with Reynolds number 40 < Re < 200,
Von Kárman vortices will occur with alternating clockwise and anti-clockwise vor-
tices. The figure 3.14 presents a three-dimensional illustration of alternating vortex
shedding for steady flow case with 40 < Re < 200.

Figure 3.14: Three-dimensional illustration of alternating vortex shedding with 40 <
Re < 200 [Williamson, 1996].

For increased Reynolds number, instability modes will arrive in the fluid. Around
Re = 180− 190 or extended to Re = 194− 200 the three-dimensional instabilities in
the wake will appear. Figures 3.15 and 3.16 present how instabilities occur as shear
layers. The transition to turbulence exists in the separating shear layers, just before
the vortices are formed and shedded.

Figure 3.15: Illustration of unsteady flow and vortex shedding in 2D
[Williamson, 1996].
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Figure 3.16: Illustration of unsteady flow and vortex shedding in 3D
[Williamson, 1996].

In three-dimensional (3D) flow problems, vortex shedding phenomena can be de-
scribed with two different modes of shedding. A three-dimensional (3D) wake will
comprises into two distinct instabilities of Mode A and B. These modes describes the
secondary instabilities behaviour. While the primary instabilities are described as the
occurrence of the twin vortices between 5 < Re < 40.

The appearance of mode A is due to elliptical instability, which is characterized by a
vortex core during shedding process. Mode A comprises streamwise vortices, where
instabilities will occur as Re > 180. There will be irregular drag - and lift force
on the cylinder, with changing vortex shedding frequency fv. Mode B will occur
due to instability in scale of thickness of vorticity on each alternating braid. Mode
B will have an in-line arrangement, and will occur for fluid cases with Re > 270
[Williamson, 1996] & [Cao and Wan, 2010].

Figure 3.17: Illustration of modes A and B [Williamson, 1996].

For Reynolds number close to 300, observations of a period-doubling bifurcation oc-
curs, as it may lead to turbulence. A bifurcation in fluid problems are described as a
change in flow behavior due to a change of a fluid parameter, as the Reynolds num-
ber. One has not discovered the true origin of Mode A and B. The flow phenomena
are observed for both numerical and experimental flow problems, but still there are
unsolved mysteries which are not explained of flow behaviour and change of Reynolds
number [Williamson, 1996], [Behara and Mittal, 2010], [Aarnes and Haugen, 2018] &
[Barkley and Henderson, 1996].
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3.6 Shear Flow around a Circular Cylinder

Several numerical and experimental fluid problems are analyzed for uniform flow
around circular bodies. These analysis are performed to understand the flow phe-
nomena in engineering challenges at sea. Unfortunately, many fluid problems are not
uniform. Therefore shear flow would be more representative for currents flows at sea
and in fjords.

Analyzing cylindrical structures, the analysis can be performed with an axial shear
flow or a planar shear flow. The illustration in figure 3.18 and 3.19 presents an axial
shear flow with a velocity U(z) which varies along the cylinder length with the z-axis,
while the planar shear has velocity varying along the defined diameter with y-axis,
U(y).

Figure 3.18: Circular cylinder in axial shear flow U(z) [Akosile and Sumner, 2003].

Figure 3.19: Circular cylinder in planar shear flow U(y) [Akosile and Sumner, 2003].
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To be able to observe flow phenomena described in section 3.3, the planar shear flow
analysis of an immersed cylindrical structure is preferable. The planar shear flow is
defined as a varying shear current with respect to y, expressed for U(y) in equation
(3.12). The expression consist of the current velocity at center-line Uc, where the
velocity Uc acts normal on the cylinder. The linearly varying component Gy consists
of y and G, where y is the cross-flow coordinate and G is the velocity gradient.

U(y) = Uc|y=0 +Gy G =
dU

dy
=
UA − UB

D
[
1

s
] (3.12)

The schematic illustration given in figure 3.20, presents a varying shear flow in planar
direction on a two-dimensional (2D) circular cross-section. The cross-section is defined
with the axis system of x and y.

Figure 3.20: Schematic illustration of planar shear flow over a two-dimensional circular
cross-section [Cao et al., 2010]

Figure 3.20 illustrated point A on the high-velocity side of the cross-section, while
point B is on the low-velocity side. The difference in high - and low - velocity is due
to the planar shear. This property of the shear flow will give new flow phenomena
due to varying velocity over the cylinder, and varying Reynolds number.

Shear flow problems, introduces new dimensionless parameters which are used to
compare measured results and describe the properties of the shear flow. The dimen-
sionless shear parameter, or shear rate K is presented in equation (3.13). The shear
rate is defined with cross-section diameter D, velocity gradient G, and the centre-line
velocity Uc. The shear rate is a measure for the shear magnitude of a flow.

K =
GD

Uc
=
UA − UB

Uc
(3.13)
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A flow will experience low shear, when the shear parameter is identified between
0.02 ≤ K ≤ 0.07. A flow experience large shear, when the shear rate is around
K = 0.2 [Akosile and Sumner, 2003].

Twin vortices and alternating vortex shedding are analyzed for the Reynolds num-
bers 40 ≤ Re ≤ 80 and shear rates 0 ≤ K ≤ 0.20 in the numerical analysis by
[Tamura et al., 1980].

The shear parameter K, Reynolds number Re can be used to describe vortex shedding
with frequency fv and Strouhals number St [Kang, 2006].

Comparing the shear rate K with Reynolds number Re and Strouhals number St,
one can observe a strong correlation between the dimensionless parameters. The
Strouhals number will experience to decrease for K = 0.2, compared to uniform flow
and smaller shear rate values of 0.02 ≤ K ≤ 0.07 [Lei et al., 2000], [Kiya et al., 1980]
& [Kwon et al., 1992].

Lei et al. (2000) concludes that the stagnation point in a shear flow problem occurs
on the high velocity side of the circular cross-section. Wu & Chen (1999) analyzes
separation point at the laminar boundary-layer separation, where separation occurs
at windward side of cylinder. Shear flow will also give periodic velocity, drag - and
lift fluctuations which occur for larger Reynolds number in shear flow, compared to
uniform flow [Kiya et al., 1980], [Lei et al., 2000] & [Wu and Chen, 1999].

The observations, comparison of dimensionless parameters and discussions regard-
ing vortex shedding for shear flow problem, are all to be considered when further
performing analysis of 3D tandem cylinders in a shear current flow.
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3.7 Configuration of Circular Cylinders

”When more than one bluff body is placed in a fluid flow, the resulting
forces and vortex shedding pattern may be completely different from those
found on a single bluff body at the same Reynolds number”- [Zdravkovich, 1987].

Explaining the difference in a flow problem with a single cylinder to configurations
of two cylinders, will give new flow phenomena. Phenomena as stagnation point,
separation and vortex shedding will now be observed with respect to the interaction
of the fluid flow and two cylinders with a given configuration.

From Zdravkovich (1987) and Sumner (2010), the arrangements of two cylinders are
illustrated in figure 3.21 [Zdravkovich, 1987] & [Sumner, 2010]:

• (a) Tandem arrangement : are two cylinders with a longitudinal length L be-
tween the two cylinder centre, and gap G is the closest distance between the
cylinder surface.

• (b) Side-by-Side arrangement : are two cylinder with a transverse distance T
between the two cylinder centre.

• (c) Staggered arrangement : are two cylinders placed with an angle α and dis-
tance P .

Figure 3.21: Configuration of circular cylinders [Sumner, 2010].
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3.7.1 Tandem Cylinders

Tandem configuration arranges two cylinders in-line and parallel to the mean flow.
This configurations places one cylinder in immediate upstream, while the second
cylinder is placed downstream. This arrangement is further to be studied regarding
the Submerged Floating Tube Bridge (SFTB) analysis subjected to a planar shear
flow.

The important factors regarding the interaction between two circular cylinders, are
Reynolds number, longitudinal length (L) between the circular cylinders L and the
cylinder diameter D. The flow phenomena discussed in section 3.3 can be analyzed
and observed with respect to cylinder configuration and length-diameter-ratio L/D.

Figure 3.22 presents the regions of wake interference and proximity interference for a
circular cross section in uniform flow. The horizontal axis presents the cylinder ratio
of length L and diameter D. Along the vertical axis the ratio of vertical spacing T
and diameter D. It is assumed that both cylinders have the same diameter size.

Figure 3.22: Illustration of the regions of wake interference and proximity interference
for a circular cross-section subjected to a uniform flow [Zdravkovich, 1987].

Wake interference is when one cylinder is partially or completely submerged in the
wake of the other cylinder for tandem configurations. Wake interference is observed
as the wakes from one cylinder is transported immediately upstream of the second
cylinder. The vortex shedding from the first cylinder will be suppressed when meeting
the second cylinder. Proximity interference is when the two cylinders are located close
to one another in side-by-side configurations, but will not be affected by each others
wake [Sumner, 2010].
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Wake Interference

Flow patterns occurring when a uniform flow is subjected on cylinders in tandem
configuration are sensitive to changes in Reynolds number and ratio of L/D. Flow
patters are described in three different types of wake interference [Xu and Zhou, 2004]
& [Zhou and Yiu, 2006]:

• (i) Single bluff-body behaviour is also called ”extended-body regimes as 1.0 <
L/D < 1.2− 1.8 [Zdravkovich, 1987] or 1.0 < L/D < 2.0 [Zhou and Yiu, 2006].
The cylinders are sufficiently close, and will behave as a single structure im-
mersed in the fluid problem.

• (ii) Shear layer re-attachment behaviour or the re-attachment regime: Occurs
at intermediate ratio of around 1.2−1.8 < L/D < 3.4−3.8 [Zdravkovich, 1987]
or 2.0 < L/D < 5.0 [Zhou and Yiu, 2006], where the shear layers from the
upstream cylinder will reattach on the downstream cylinder. There may be
vortices occurring in-between the cylinders.

• (iii) Von Kármãn vortex shedding from each cylinder or the co-shedding regime:
Occurring for ratios of L/D > 3.4 − 3.8 [Zdravkovich, 1987] or L/D > 5.0
[Zhou and Yiu, 2006].

Flow separation occurs as the fluid detaches from the solid surface as no shear stress
is present τw = µ∂u∂y y=0

= 0 or ∂u
∂y y=0

= 0.

Reattachment will describe the phenomenon when the fluid attaches to a solid sur-
face, during adverse pressure gradient only. Reattachment occurs when the flow
separate from the upstream cylinder, and further be reattached to the downstream
cylinder as the static pressure increases in the direction of the flow: ∂P

∂x y=0
> 0

[Xu and Zhou, 2004] & [Zhou and Yiu, 2006].

Figure 3.23 presents the different wake interference levels with respect to L/D ratio
and Reynolds number [∗104] from (A) - (G). The map presents the regions of when
vortex shedding, stable flow, unstable flow or reattachment will occur [Sumner, 2010],
[Xu and Zhou, 2004] & [Zhou and Yiu, 2006].

• (A) Over shot : presents the wake interference case as (i) with Single bluff-body
behaviour.

• (B) Alternate reattachment : increase in longitudinal length, such that alternate
reattachment from upstream cylinder roll up behind the downstream cylinder.
Similar to case (ii) Reattachment regime.

• (C) Quasi-Steady reattachment with symmetric vortices between tandem cylin-
ders. Similar to case (ii) Reattachment regime.

• (D) Quasi-Steady reattachment with asymmetric vortices between tandem cylin-
ders.

• (E) intermittent reattachment, where 2.0 < L/D < 5.0 [Zhou and Yiu, 2006].
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• (F ) Co-shedding : clearly presents the Von Kármán vortex shedding for case
(iii) with vortex shedding for cylinder upstream and downstream.

• (G) Describes an unstable wake between region A, B and C.

Figure 3.23: Wake interference map: Comparing ratio L/D and Reynolds number
with wake pattern [Sumner, 2010].
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Tandem configuration will consist of an upstream and a downstream cylinder with
a distance L between the cylinder centres. The upstream cylinder will experience
the incoming current velocity. The downstream cylinder will experience different flow
phenomena, as the incoming flow on the downstream cylinder is affected by the wake
of the upstream cylinder. The observed flow phenomena on the downstream cylinder
are dependant on the Reynolds number and the ratio between the longitudinal length
of diameter L/D of the tandem cylinders.

Kalvig et al. (2016) performs a numerical analysis with the computational fluid dy-
namics tool, OpenFOAM with Large Eddy Simulations of tandem cylinders with
L/D = 5 and turbulent flow with Re = 13100. The lift forces for the upstream and
downstream cylinder have phase shift, as a result of the vortices shedding from up-
stream cylinder and travels towards downstream cylinder. The total lift force is also
larger on the downstream cylinder, compared to the upstream cylinder. The down-
stream cylinder will be effected by the vortices travelling from the upstream cylinder
and the formation of vortices around the downstream cylinder, which will induce lift
force. Measurements of drag force, presents irregular root mean square (RMS) am-
plitudes for both upstream and downstream cylinder. This is due to various strength
in vortices which are shedded from upstream cylinder, and how vortices interact with
the downstream cylinder as a part of the co-shedding regime [Kalvig et al., 2016].

Meneghini et al. (2001) and Ding et al. (2007) presents how the mean value of drag for
the downstream cylinder changes from negative magnitude value, C̄D < 0, to positive
magnitude value, C̄D > 0, as the longitudinal length is three times larger than the
cylinder diameter, L > 3D. The downstream cylinder will only shed vortices for
L < 3D where negative mean drag force is measured. When L > 3D, the upstream
cylinder will shed vortices too, with a positive mean drag force. This is described as
the co-shedding regime.

A longitudinal length of L = 3D gives an equal lift amplitude for the downstream
cylinder and a single cylinder subjected to the same flow. The upstream cylinder,
will obtain a lower lift amplitude. This observation occurs for the drag force in
both upstream and downstream cylinder. This phenomena can be described as the
reattachment regime, where shear layers from the cylinder upstream will reattach on
the downstream cylinder [Meneghini et al., 2001] & [Ding et al., 2007]

The figures 3.24 and 3.25 presents the drag and lift force coefficient with given time
history for simulation with Reynolds number 200. The results are presented for both
upstream and downstream cylinder for (a) L = 1.5D, (b) L = 2D, (c) L = 3D and
(d) L = 4D [Meneghini et al., 2001].
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Figure 3.24: Force coefficient for drag and lift for Re = 200 with time history. (a)
L = 1.5D, (b) L = 2D. Index 1: Upstream circular cylinder, index 2: downstream
circular cylinder [Meneghini et al., 2001].
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Figure 3.25: Force coefficient for drag and lift for Re = 200 with time history. (c)
L = 3D, (d) L = 4D. Index 1: Upstream circular cylinder, index 2: downstream
circular cylinder [Meneghini et al., 2001].
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Pressure Distribution

Pressure distribution is an important scalar in studying flow phenomena. Pressure
distribution and the velocity profiles reveals how the fluid behaves and how velocity
and pressure interacts. The pressure coefficient is given by equation (3.14), where p
is static pressure at chosen point and p0 is static pressure at freestream. u0 is the
freestream velocity with the fluid density ρ.

Cp =
p− p0
1
2ρu

2
0

(3.14)

Pressure distribution around upstream and downstream cylinders are measured for
different longitudinal length-diameter ratio L/D. Figure 3.26 shows the tandem con-
figuration with corresponding freestream velocity u0, angle φ, longitudinal length L
and cylinder diameter D (diameter will be referred as: d) [Igarashi, 1981].

Figure 3.26: Tandem configuration with longitudinal length (L) L and circumference
angle φ and diameter d [Igarashi, 1981].

The pressure distribution for five different ratios L/D = 1.03, 1.18, 1.91, 3.09, 3.97 are
presented in figure 3.27 and 3.28 for upstream and downstream cylinder respectively.
The pressure distribution is presented by the coefficient Cp around the cylinder surface
for φ degrees.

Upstream cylinder experience a drop in pressure along the cylinder surface. For all
ratios, there is a low peak at φ = 70. Comparing the results to a single cylinder, the
single cylinder experience lower pressure distribution than the upstream cylinders in
tandem configuration.
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There is one remark to point out considering ratio L/D = 3.97. At this ratio shear
layers are separated from the upstream cylinder and travels in-front of the downstream
cylinder. The pressure distribution at L/D = 3.97 for upstream cylinder in figure 3.27
will therefore be similar to the single cylinder, while the downstream cylinder will
experience a negative pressure drop from stagnation point towards φ = 90. Figure
3.28 presents the pressure distribution for the downstream cylinders with different
L/D-ratios.

Figure 3.27: Pressure distribution Cp around upstream cylinder for different L/D-
ratios [Igarashi, 1981].
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Figure 3.28: Pressure distribution Cp around downstream cylinder for different L/D-
ratios [Igarashi, 1981].
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Chapter 4

Numerical Methods in Fluid
Dynamics and Computational
Domain

4.1 Computational Fluid Dynamics (CFD)

Fluid dynamic problems can be analyzed by experimental testing or numerical sim-
ulations. Using numerical methods to solve fluid flow problems, one must introduce
mathematical models to solve partial differential equations (PDE). The fundamental
equations as the Continuity equation (3.2) and the generalized Momentum equation
(3.4) will describe the fluid dynamics in a flow problem.

The generalized Momentum equation, can further be written as the well known PDE,
Navier-Stokes equation (3.5). This equation is implemented in Computational Fluid
Dynamics solvers. Computational Fluid Dynamics (CFD) is a method to solve viscous
fluid problems in marine industry. Experimental solutions regarding model testing
have dominated the industry in testing and validating structures at sea. The devel-
opment in computer power gives CFD the advantage of analyzing fluid and hydrody-
namic problems with respect to computational domain and for desired time intervals,
which would not be visible with use of experimental methods.

The ideal solution from computational fluid dynamics is to solve the Navier-Stokes
equation (3.5) for unsteady and three-dimensional (3D) flow with direct simulation of
turbulence. Several assumptions are used to simplify the fluid problem, and boundary
conditions are introduced to simulated the fluid problem in a computational domain.
Taking use of computer methods to solve real life phenomena, computer power and
computational time are limiting factors. Limitation regarding costs occurs when
taking use of super computers and the cost of running time.
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Numerical models are simplified by discretizing fundamental equations and choos-
ing numerical methods to obtain converged solution. When discretizing equations,
approximated results are obtained with respect to tolerance level, residual and error.

There are limitations with use of numerical methods as discretization - and iteration
errors. Creating a fine enough mesh and large enough domain are crucial factors when
analyzing fluid flow problems numerically. Today many numerical solutions are used
to compare and validate experimental analysis and model testing, since experimental
results are still preferable in industrial fluid flow problems.

4.2 OpenFOAM

OpenFOAM stands for Open Field Operator And Manipulation, and is an open source
code for different engineering and science problems, i.e. CFD-problems. OpenFOAM
is based on the programming language C++, such that the user can modify files with
respect to the desired fluid flow problem.

The OpenFOAM package contains run folders with following items:

• 0: Contains information of zero time instant. The folder contains definitions of
boundary conditions for the quantities of velocity U and pressure P .

• system: Contains files that defined solver techniques, numerical schemes and
controlDict. The controlDict contains information for solver, time step, start
time, end time and write interval.

• constant : Contains files that described the mesh and defines the physical fluid
properties, i.e. water density, viscosity, turbulence model etc.

The OpenFOAM analysis is performed with fluid assumption of in-compressible,
where the partial differential equations (PDEs) are discretized with the Finite Vol-
ume Method (FVM). The solution is found by using the solver Pressure Implicit with
Splitting of Operators (PISO) algorithm, where the pressure and velocity components
are found for the fluid problem [Kalvig, 2015] & [Greenshields, 2015].

The results are visualized by using the tool ParaView. The program is used to obtain
velocity-, pressure - and vorticity distribution.
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4.2.1 Finite Volume Method (FVM)

OpenFOAM uses the fvSchemes, where Finite Volume Method is used to solve partial
differential equations (PDEs). The numerical scheme, Finite Volume Method is an
iterative method which discretizes the PDE with respect to desired variables. For
the fluid flow problem, the Navier-Stokes equation is discretized with respect to the
variables, velocity U and pressure P .

The Navier-Stokes equation is transformed into discrete equations over a finite vol-
ume. The volume is considered as hexahedronal elements or cells that build up the
computational domain. These variables are solved for each cell centre for the grid
system [Moukalled and Darwish, 2015].

Conservation principles are applied for each cell or element, which represents a fixed
region or space in our control volume. OpenFOAM uses Finite Volume Method to
calculate desired values for each cell. The total result for the computational domain
is obtained by integrating over the chosen control volume or computational domain
[Müller, 2017] & [Pletcher et al., 2013].

4.2.2 PISO Algorithm as Solver

The PISO algorithm is chosen to perform the numerical analysis with respect to Finite
Volume Method. PISO stands for Pressure Implicit with Splitting of Operators, which
calculated the pressure-velocity coupling.

PISO algorithm contains one (1) predictor and two (2) corrector steps, where the
predictor step guesses a value for the pressure field. The momentum equations are
used, since the pressure term is expressed. The pressure distribution is found by with
use of the continuity equation.

The first corrector step introduces the velocity fields to the discretized continuity equa-
tion, while the other corrector step introduces the velocity field into the discretized
momentum equations. Both corrector steps finds pressure correction, where this pro-
cess is performed in iterations until desired convergence is obtained [Kalvig, 2015] &
[Greenshields, 2015].
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4.2.3 Time Step Analysis

In a numerical analysis, the time step ∆t represents what time interval the analysis
is performed for each cell. It is required that time step ∆t is large enough to give
sufficient results without instabilities, but small enough to avoid heavy computational
time.

OpenFOAM has a built-in break function, where the numerical analysis stops, if
the computational stability criterion of Courant-Friedrichs-Levy (CFL) condition is
not satisfied for time step ∆t. The Courant-Friedrichs-Levy (CFL) condition is a
stability condition used for advection problems, which describes transportation of
a physical quantity as fluid with properties as temperature, velocity and pressure
[Pletcher et al., 2013].

The criterion can be defined with the condition below, where Ux is velocity in x-
direction, Uy is velocity in y-direction and Uz is the velocity in z.-direction. ∆x, ∆y
and ∆z are the size of an element in the mesh in each direction x, y and z:

CFL =
Ux∆t

∆x
+
Uy∆t

∆y
+
Uz∆t

∆z
≤ 1.0 (4.1)

OpenFOAM calculates the Courant-Friedrichs-Levy (CFL) number for each time step
analysis. The solution will break if the CFL number exceeds it’s limitation. The
Courant-Fredrichs-Levy condition is not measured for the performed analysis, but it
discussed for simulations which breaks.
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4.3 Set-up of Computational Domain
& Fluid Flow Problem

4.3.1 Computational Domain Size

The computational domain determines how the fluid will act in a chosen control vol-
ume. The domain size has to be large enough, to produce results which are not
affected by the given boundary conditions, but small enough to get sufficient results
with respect to computational time. Too small computational domain can give inac-
curate results, since the boundary conditions will give undesired effects in fluid flow
analysis.

Table 4.1 presents the size of the computation domain and cylinder dimensions. The
axis system is located between the tandem cylinders, where the cylinders have a
longitudinal length (L) of 3.2 times the diameter length (D). The cylinder will have
a span-wise length (l) of 6 times the diameter.

Table 4.1: Domain size and Cylinder dimensions.

Domain Range and Dimensions:
Xrange: −6.0 < x < 15.0
Yrange: −5.0 < y < 5.0

Zrange, 3D: 0.0 < z < 6.0
Diameter D 1

Upstream cylinder origo: (x,y,z)= (-1.6, 0, 0)
Downstream cylinder origo: (x,y,z)= (1.6, 0, 0)

longitudinal length (L) 3.2D

The 2D set-up of the computational domain is presented in figure 4.1, with range in
x-direction and y-direction, diameter D of cylinders and longitudinal length (L).

Figure 4.1: Set-up of computational domain with dimensions and sizes.
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Figure 4.2 presents the shear flow problem which is analyzed. The shear flow will
begin at bottom boundary, where Uc is the inlet velocity normal on the cylinders.
The Reynolds number is defined with the inlet velocity normal on the cylinder Uc,
such that a flow problem will have larger Reynolds number at the upper boundary, and
Reynolds number approximately to zero at the bottom boundary. The dimensions
given in the figure are the dimensions proposed for the Submerged Floating Tube
Bridge (SFTB) concept in section 2.

Figure 4.2: Set-up of shear flow problem around tandem cylinders. Dimensions are
from section 2.

Figure 4.3 presents the location of the probes in the computational domain. Probe 1
is located at (x, y, z) = (−1.0, 0.354, 3.0), probe 2 at (x, y, z) = (0.0, 0.354, 3.0), probe
3 at (x, y, z) = (2.2, 0.354, 3.0) and probe 4 at (x, y, z) = (3.5, 0.354, 3.0). The probes
are only placed along the x-range and measures values for velocities Ux, Uy and Uz
and pressure at the probe location.

Figure 4.3: Illustration of probe location, which measures values for velocity and
pressure.
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4.3.2 Mesh and Grid refinement

Analyzing a flow problem where a current is subjected on a solid body, the flow
phenomena occurring are of interest. Designing the computational domain, mesh and
grid size, one has to determining the critical regions of a flow problem.

The mesh generator MEGA is used to generate a mesh with respect to number of
elements, patches and domain size. The computational domain is constructed by
defining all nodes, lines and patches, before the mesh is applied, such that the domain
obtains a stable and consistent solution.

It is desired to have a finer mesh close to the fixed body, in terms of boundary layer
resolution and to get sufficient simulation of flow phenomena close to the immersed
body. A more coarse mesh is used to simulate the wake far downstream. The number
of elements or cells will effect the computational time, as larger number of elements
will give increased computational time.

Figure 4.4 presents the computational domain and how the domain is constructed
with different patches around the tandem cylinders and in the wake region.

Figure 4.4: Illustration of patches in computational domain.
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Table 4.2 presents the number of element in each patch, and around the important
areas in the domain. The upstream cylinder has a total of 300 elements around the
body, while the downstream cylinder has 310 elements. The span-wise length of the
cylinder is 6 timer the diameter with 180 elements.

Table 4.2: Number of elements in each patch and total in the computational domain.

Number of Elements:
Patch nr. Elements Patch nr. Elements Cylinders & Totals Elements

p0 5100 p11 5100 Upstream Cylinder 300
p1 3600 p12 4200 Downstream Cylinder 310
p2 5100 p13 5950 Span-wise: z- direction 180
p3 4900 p14 4200 Total 2D 111900
p4 5950 p15 4200 Total 3D 20 142 000
p5 4200 p16 4200
p6 3600 p17 5950
p7 4200 p18 8400
p8 5950 p19 8400
p9 5100 p20 8400
p10 4200

Figure 4.5 presents the 2D mesh used to simulate shear flow around tandem cylinders.
The tandem cylinders are places close to the inlet, such that the domain is larger
downstream to simulate the flow phenomena occurring behind flow-body interaction.

Figure 4.5: 2D Mesh generated in MEGA of Tandem Cylinders.
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Figure 4.6 presents a close-up of grid around and in-between the cylinders. Figure
4.7 presents the grid system closed to the fixed upstream cylinders for the upper right
quarter.

Figure 4.6: Close-up of mesh around the tandem cylinders.

Figure 4.7: Close-up of mesh around upper right quarter of upstream cylinder.
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4.3.3 Boundary Conditions

Defining a computational domain, the boundary conditions must be defined in order
to create a fluid flow problem. The boundary conditions sets the restrictions for the
flow, in terms of geometrical constraints, characteristics in velocity U and pressure P
in the computational domain.

The boundaries are set to simulate the domain as infinite fluid with submerged cylin-
ders. The analysis is performed for two-dimensional (2D) and three-dimensional (3D)
circular cylinders, where the inflow boundary simulates a shear current moving to-
wards the fixed body. The outflow will simulate how the current flow past the cylin-
der. The computational domain must therefore be large enough behind the body to
visualize the interaction between flow and fixed body.

The computed boundaries for the domain are inlet - and outlet boundary, topAndBot-
tom boundary and the circular cylinders as upstreamCyl and downstreamCyl within
the domain. The front - and back boundary patches are marked as empty for a 2D
analysis. For a 3D analysis, the cyclic boundary condition is used for both front and
back boundaries to create the 3D effects along the tandem cylinders.

Table 4.3 presents the notation used in OpenFOAM to describe the boundary condi-
tions and restrictions.

Table 4.3: Defining boundary conditions in OpenFOAM [Greenshields, 2015].

Defined boundaries: Geometric constraint: Velocity U: Pressure P:
front empty (2D) empty (2D) empty (2D)

cyclic (3D) cyclic (3D) cyclic (3D)
back empty (2D) empty (2D) empty (2D)

cyclic (3D) cyclic (3D) cyclic (3D)
upstreamCyl wall fixedValue zeroGradient

downstreamCyl wall fixedValue zeroGradient
inlet patch fixedValue zeroGradient

outlet patch zeroGradient fixedValue
topAndBottom slip slip slip
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Description of OpenFOAM’s boundary conditions used to analyze 2D and 3D flow
problems around tandem cylinders:

• Wall boundary condition: Define the cylinder as a fixed rigid body.

• Cyclic boundary condition: is a geometric constraint for the domain and prop-
erties of pressure and velocity. A cyclic boundary condition is set in pairs,
where the end effects for the cylinder is set to be periodic or cyclic, such that
the boundaries front and back are treated as they were physically connected.

• Empty boundary condition: is applied on the front - and back boundaries, where
the boundary conditions ensures 2D domain.

• Patch boundary condition: is set on boundaries with no geometric information
about the grid and domain boundaries.

• Slip boundary condition: The topAndBottom boundary are the critical bound-
aries, which restrict the domain width and how the flow will move around the
fixed circular cylinder. The slip condition is defined for the topAndBottom
boundaries where it is desired a slip constraint on velocity and pressure, where
the conditions allows change in both properties along the boundaries.

• zeroGradient boundary condition: sets the normal gradient of velocity U and
pressure P equals to zero. Zero pressure gradients (zeroGradient) which is
defined as: ∂P

∂n = 0.

Further for inlet and outlet, the same notations are used to describe velocity and
pressure at inlet and outlet. At outlet, the zeroGradient in velocity is defined as:

∂~U
∂n = ∂u

∂x = ∂v
∂y = ∂w

∂z = 0,

such that change of each velocity component in ~U is equal to zero:

~U = ~ui + ~vj + ~wk

• FixedValue boundary condition: is chosen for the properties to simulate inlet
velocity or pressure at outlet.

4.3.4 Grid Verification

The computed grid presented in figure 4.5 is verified for the Boundary layer resolution
above the cylinder surfaces for upstream and downstream cylinder. The top and
bottom boundaries are verified for the slip conditions. The validation is performed
for the shear flow problem with Reynolds number 100 presented in section 5 and
Appendix .4.

Grid verification is performed to check if the used grid gives results without significant
deviation. The boundary layer resolution and TopAndBottom slip boundary condition
are validated for the section at z = 3.0. This section is at the middle point of the 3D
cylinder.
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Boundary Layer Resolution

Figure 4.8 presents the velocity in x-direction Ux and y-direction Uy along an arc with
range 0.5 < y < 5.0. The velocity above the upstream and downstream cylinder are
measured at the cylinder surface towards the top boundary at time instant t = 500s.

The wall boundary condition is implemented at upstream and downstream cylinder
at surface to simulate no velocities at the solid surface. The velocity in x-direction Ux
at the surface is close to zero, but not zero. This could be due to few elements around
the cylinder surfaces. The velocity in y - direction Uy is zero at cylinder surface, and
is close to zero towards the top boundary. The velocity in z-direction Uz is zero along
the arc and is not plotted in figure 4.8.

The velocity magnitude Umag has it’s contribution from the velocity in x-direction Ux:

Umag =
√
U2
x + U2

z + U2
z

Velocities Ux at top boundary y = 5.0 are approaching absolute value of 1.0, which
is the inlet velocity at at top boundary.

Figure 4.8: Validation of Boundary Layer Resolution on Upstream and Downstream
Cylinder in Shear Flow K = 0.2 and Re = 100.
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Top and Bottom Slip Boundary Condition

Figure 4.9 and 4.10 presents the velocities Ux, Uy and pressure P along the top
boundary y = 5.0 and bottom boundary y = −5.0 for the x-range of −6.0 < x < 15
at z = 3.0.

The top boundary experiences a velocity Ux approximately around 1.0, as expected
due to the inlet velocity at top boundary. The velocity in y-direction Uy is approxi-
mately zero along the top boundary, the same applies for the velocity in z-direction
Uz. Pressure along the top boundary is fluctuating close to zero.

Figure 4.9: Validation of Top Boundary y = 5.0 for Slip Condition in Shear Flow
K = 0.2 and Re = 100.
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The bottom boundary experiences jump in the velocity Ux and pressure P. The ve-
locity in y-direction Uy and z-direction Uz are zero along the bottom boundary. The
inlet velocity is close to zero at the bottom boundary, such that the peak value of Ux
occur as the flow moves around the tandem cylinders.

Figure 4.10: Validation of Top Boundary y = −5.0 for Slip Condition in Shear Flow
K = 0.2 and Re = 100.
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Chapter 5

Results

5.1 Shear Flow and Tandem Cylinder Characteris-
tics

The fjord crossing concept of Submerged Floating Tube Bridges (SFTB) described
in section 2 is simplified to tandem cylinder with both cylinder diameter equals to 1,
and a longitudinal length (L) of 3.2 times the diameter. The tandem cylinders are
modelled with a span-wise length (l) of 6 times the diameter length, to simulate the
three-dimensional (3D) effects along the cylinder.

The tandem cylinders are subjected to a planar shear flow U(y) described with a
gradient G and the velocity normal to the tandem cylinders, Uc. The Reynolds
number given in equation 3.1 uses the inlet velocity Uc, normal on the cylinders.

Numerical analysis with a shear inlet flow described with shear rate K = 0.2 is
performed for two-dimensional (2D) flow problem with Reynolds number 100, 300
and 500, and three-dimensional (3D) flow problem with Reynolds number 100 and
500.
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Table 5.1 presents the properties of the planar shear flow and the dimensions of the
tandem cylinders. The computational domain is described in table 4.1 in section 4.

Table 5.1: Flow and cylinder properties.

Properties of Shear Flow:
Shear Flow K = 0.2
Inlet origin y = −5.0

G 1/10
Uc (MagUInf) 0.5
Uy=−5.0, bottom 0.0
Uy=5.0, top 1.0

Cylinder dimensions:
Diameter (D) 1

Span-wise cylinder length 6D
Longitudinal length (L) 3.2D

Kinematic viscosity ν:
Re = 100 ν = 1/200
Re = 300 ν = 1/600
Re = 500 ν = 1/1000

The results include oscillation of force coefficients, velocity fluctuation behind up-
stream and downstream cylinders, Power Spectral Density curves and visualization
of velocity -, pressure - and vorticity distribution. The results are presented in ap-
pendices .1, .2, .3 for the 2D shear flow problems and appendices .4 and .5 for the 3D
shear flow problems.
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5.2 Results obtained for 2D Shear Flow
Around Tandem Cylinders

Table 5.2 presents the values for the 2D Shear Flow problem for given Reynolds
numbers.

Table 5.2: Shear Flow Around 2D Tandem Cylinders for K = 0.2.

Desired values for 2D Shear Flow problem:
Re Re = 100 Re = 300 Re = 500

Cylinder Upstream Downstream Upstream Downstream Upstream Downstream
mean CL -0.19738 -0.07390 -0.12246 0.00254 -0.08031 0.11545
mean CD 1.23694 0.01960 1.44934 0.40348 1.54587 0.60668
RMS CL 0.01247 0.10647 0.86768 1.49092 1.04621 1.60544
RMS CD 0.00382 0.03073 0.10777 0.39394 0.16791 0.73532
Tv[s] 16.67 16.67 5.32 & 10.6 5.32 & 10.6 5.05 & 10 10 & 20
fv[Hz] 0.06 0.06 0.19 & 0.09 0.19 & 0.09 0.2 & 0.1 0.1 & 0.05
St 0.12 0.12 0.37 & 0.19 0.37 & 0.12 0.4 & 0.2 0.2 & 0.1

5.3 Results obtained for 3D Shear Flow
Around Tandem Cylinders

Table 5.3 presents the values obtained for the 3D shear flow problem with Reynolds
number 100 and 500. The results for the 2D and 3D shear flow problem with Re = 100
are approximately identical. Comparing the results between 2D and 3D analysis for
higher Reynolds number, the 3D simulations will allow the flow to obtain three-
dimensional (3D) effects span-wise (l) along the cylinder, while the 2D simulations
will restrict this to occur.

Table 5.3: Shear Flow Around 3D Tandem Cylinders for K = 0.2

Desired values for 3D Shear Flow problem:
Re Re = 100 Re = 500

Cylinder Upstream Downstream Upstream Downstream
mean CL -0.19737 -0.07394 -0.12319 -0.07862
mean CD 1.23695 0.01960 1.02754 -0.15829
RMS CL 0.01248 0.10656 0.01325 0.39875
RMS CD 0.00383 0.03075 0.00838 0.14509
Tv[s] 16.67 16.67 (5 & 9.804) 13.89
fv[Hz] 0.06 0.06 (0.2 & 0.102) 0.072
St 0.12 0.12 (0.4 & 0.204) 0.144
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Chapter 6

Discussion

This chapter discusses and compares the results obtained for the two-dimensional
(2D) and three-dimensional (3D) analysis with shear flow. The 2D flow problems
are analyzed with Reynolds number 100, 300 and 500, and the 3D flow problems are
analyzed with Reynolds number 100 and 500. The properties of the shear flow and
the dimensions of tandem cylinders are given in table 5.1.

The difference and deviations between 2D and 3D shear flow problems are discussed
with respect to restrictions in the 2D plane and the occurrence of 3D effects along
the span-wise direction. Further, the 3D shear flow problem with Reynolds number
500 is compared to the flow problems: a Shear Flow around a Single Cylinder and
a Uniform Flow around Tandem Cylinders. These flow problems are both analyzed
with Reynolds number 500. The results obtained for the shear flow problem around a
single cylinder is presented in Appendix .9, and results obtained for the uniform flow
problem are presented in Appendix .11.

Plots of velocity distribution and pressure distributions are compared for each flow
problem. The vorticity distributing in z-direction is compared with respect to vortex
shedding behavior downstream and flow behavior in-between the tandem cylinders.
The pressure distribution around upstream and downstream cylinders are measured
for both shear - and uniform flow around the tandem configuration.

The tandem cylinders experience stable flow at the last time step t = 500s. For the
shear flow problem around a single cylinder, the plots present the last time step, as
the flow problem breaks it’s simulation at time instant t = 142− 143s. The velocity-,
pressure- and vorticity distribution are plotted for the last time step of the simulation.

The values for mean drag -and lift coefficients, root mean square values, oscillation
period, frequency and Strouhals number are presented in table 5.2 for the 2D shear
flow problem and in table 5.3 for the 3D shear flow problem in section 5. The mean
values are calculated for the 65 % last stable values for the simulation. For the shear
flow problem around a single cylinder, the results are obtained for the stable values,
right before the simulation breaks.
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6.1 Comparison between the 2D and 3D simulation
of Shear Flow Around Tandem Cylinders

The 2D shear flow problem with Reynolds number 100, 300 and 500 obtains a lift
coefficient oscillating close to zero for both upstream and downstream cylinder. The
drag coefficient for the upstream cylinder is increasing with Reynolds number from
C̄D = 1.237 to C̄D = 1.545. The downstream cylinder obtains a mean drag coefficient
which is oscillating close to zero, but increasing from C̄D = 0.00196 to C̄D = 0.6066
with Reynolds number 100 to 500.

Oscillation periods and frequencies for the velocity behind upstream and downstream
cylinders are stable withRe = 100, and obtains a value for Strouhals number St = 0.12
for both tandem cylinders. For 2D shear flow with Reynolds number 300 and 500,
there are obtained two oscillation periods and frequencies. This is due to the restric-
tion of 3D effects in a 2D domain. The shear flow problem with Reynolds number
300 has the same oscillation period and frequency between upstream and downstream
cylinder, with Strouhals numbers St = 0.376 and St = 0.188. At Reynolds number
500, the Strouhals number for the downstream cylinder is almost half the value for
the upstream cylinder. An increase in Reynolds number will give different oscillation
periods and frequencies between the upstream and downstream cylinder.

Analyzing three-dimensional (3D) shear flow problems, one must take in account the
3D effects along the span-wise length of the cylinder. Comparing the 2D and 3D
results for the shear flow problem at Reynolds number 100, one can observe that
the results are approximately identical. The same applies for the oscillation of force
coefficients, and distribution of velocity and pressure around the domain. This implies
that there are no 3D effects occurring for flow problems with Reynolds number 100.

Comparing the 2D and 3D shear flow problem with Reynolds number 500, the 3D
upstream cylinder has obtained a smaller mean drag coefficient at C̄D = 1.02754,
compared to the mean drag coefficient obtained for the 2D upstream cylinder C̄D =
1.54587. The mean drag coefficient obtained for the 2D downstream cylinder is close
to zero with C̄D = 0.606, while the 3D downstream cylinder obtains C̄D = −0.158.
The inlet velocity will obtain it’s stagnation point as the flow is subjected normal on
the upstream cylinder. The flow will continue around the downstream cylinder with
some wake interference shedded from the upstream cylinder. The upstream cylinder
will obtain a larger mean drag force, than the cylinder downstream.

The Strouhals number is obtained for upstream and downstream cylinders with re-
spect to velocity in x-direction Ux. By using Fourier Transform, one can obtain the
oscillation periods and frequencies with Power Spectral Density curves. The velocity
fluctuation behind the upstream cylinder is oscillating close to zero with irregular
peaks and amplitudes, such that the obtained periods and frequencies are not an
ideal representation of the flow behind the upstream cylinder. The velocity fluctu-
ation behind the downstream cylinder will oscillate periodically for the shear flow
problem. The velocity fluctuation will give oscillation period of Tv = 13.89, frequency
of fv = 0.072 and a Strouhals number equals to St = 0.144.
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6.2 Comparison of the Shear Flow Around
Tandem Cylinders with Other Flow Problems

Further, the results obtained for the shear flow around tandem cylinders with Reynolds
number 500 are compared to flow problems: a Shear Flow around a Single Cylinder
and a Uniform Flow around Tandem Cylinders, where both flow problems are simu-
lated with Re = 500.

Table 6.1 presents the the domain size, cylinder dimensions and the properties of
inlet velocity for the different flow problems. All cylinders will have a span-wise (l)
length of 6 times the diameter length. The inlet velocity is normal on the cylinder
with Uc = 0.5 for all three flow problems. Else, the overall domain size will deviate
in x-and-y range.

Table 6.1: Domain size, cylinder dimensions and inlet velocity properties.

a Cylinder: Tandem Cylinder:
Shear K = 0.2: Uniform: Shear K = 0.2:

Xrange: −5 < x < 12.5 −6 < x < 12 −6 < x < 15
Yrange: −5 < y < 5 −6 < y < 6 −5 < y < 5

Zrange, 3D: 0 < z < 6 0 < z < 6 0 < z < 6
Diameter D 1 1 1

Origo (x,y,z): (0, 0, 0) - -
Upstream cylinder origo: - (-1.6, 0, 0) ((-1.6, 0, 0)

Downstream cylinder origo: - (1.6, 0, 0) (1.6, 0, 0)
longitudinal length (L) - 3.2xD 3.2xD

Shear Rate K = 0.2 K = 0.0 K = 0.2
G 1/10 G = 0.0 1/10

Uc (MagUInf) 0.5 0.5 0.5
inlet origin y = −5.0 −5.0 < y < 5.0 y = −5.0
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Table 6.2 presents the obtained values for the different flow problems with Reynolds
number 500. The oscillating drag - and lift force coefficients, velocity fluctuations
behind cylinders, Power Spectral Density curves and visualization plots for velocity
magnitude, pressure and vorticity are presented in Appendix .5, .9, and .11.

Table 6.2: Comparison of values for different 3D flow problems at Re = 500

a Cylinder: Tandem Cylinder:
Shear K = 0.2: Uniform: Shear K = 0.2:

Cylinder Single Upstream Downstream Upstream Downstream
mean CL -0.10392 0.00312 0.00505 -0.12319 -0.07862
mean CD 1.29849 1.05257 -0.17424 1.02754 -0.15829
RMS CL 0.43352 0.01562 0.35311 0.01325 0.39875
RMS CD 0.08907 0.00241 0.04071 0.00838 0.14509
Tv[s] 8.936 - 13.16 (5 & 9.804) 13.89
fv[Hz] 0.1119 - 0.076 (0.2 & 0.102) 0.072
St 0.2238 - 0.152 (0.4 & 0.204) 0.144

Subjecting an inlet velocity with shear rateK = 0.2 and Reynolds number 500 towards
a single circular cylinder, the mean force coefficients obtained are C̄D = 1.298 and
C̄L = −0.104. The oscillation period and frequency of the velocity behind the cylinder
are Tv = 8.936 and fv = 0.1119, with a Strouhals number of St = 0.2238.

Subjecting the same shear flow around 3D tandem cylinder, one must analyze at the
effects of having tandem cylinders instead of a single cylinder. The upstream cylinder
obtains mean force coefficients of C̄D = 1.02754 and C̄L = −0.123. The drag coeffi-
cient obtained for the upstream cylinder in a tandem formation is smaller, compared
to the mean drag coefficient obtained for the single cylinder. The downstream cylin-
der will experience mean force coefficients of C̄D = −0.158 and C̄L = −0.0786, where
the drag force is oscillating close to zero. The lift coefficients around the tandem
cylinders and for the single cylinder are all oscillating close to zero.

The upstream cylinder subjected to a shear flow will obtain two oscillation periods
and frequencies, even though the velocities are fluctuating close to zero. These values
are not ideal as the velocities are fluctuating unstable and close to zero.

Vortices will be shedded from the downstream cylinder in the shear flow problem,
where the cylinder experiences periodical velocity fluctuation with oscillation period
Tv = 13.89, frequency fv = 0.072 and Strouhals number St = 0.144. The frequency is
36 % smaller than for the single cylinder, such that vortices are shedded 36 % more
frequently from the downstream cylinder than the single cylinder.
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In tandem configuration, the upstream and downstream cylinder will experience the
flow travelling around both cylinders, with almost no velocity in-between the tandem
cylinder. The flow problem where a uniform flow is subjected on tandem cylinders,
the velocity behind the upstream cylinder is also fluctuating close to zero. The down-
stream cylinder will obtain an oscillation period and frequency of Tv = 13.16 and
fv = 0.076, which is approximately the same values obtained for the shear flow prob-
lem.

The Strouhals number for the uniform flow problem is St = 0.152, while the shear
flow problem is St = 0.144. Values for the force coefficients are also approximately
the same for the shear flow problem. The mean drag coefficient around the upstream
cylinder is C̄D = 1.0526, and C̄D = −0.174 for the downstream cylinder.

When tandem cylinders are subjected to shear - or uniform current flows, the down-
stream cylinder experience negative mean drag coefficient which is close to zero.
Meneghini et al. (2001) and Ding et al. (2007) explains how the mean drag changes
from negative mean value C̄D < 0 to positive mean value C̄D > 0 as the longitudinal
length - diameter ratio L/D > 3 in a uniform flow. For both shear and uniform flow
problem around tandem cylinder at Re = 500 and L/D = 3.2, the values for drag are
close to zero and are negative.

In Appendices .4 and .11, the flow problems around 3D tandem cylinders with Reynolds
number 100 and 300 presents a mean drag force coefficient oscillating close to zero.
It is expected that the downstream cylinder shed vortices when L/D < 3. When
L/D > 3, the upstream cylinder will shed vortices towards the downstream cylinder
[Meneghini et al., 2001] & [Ding et al., 2007].
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6.2.1 Comparison of Velocity Magnitude Umag and Velocity in
x-direction Ux

This section discusses the similarities and differences between the velocity magnitude
Umag and velocity in x-direction Ux for the flow problems: a Shear Flow subjected on
Tandem Cylinders, a Shear Flow subjected on a Single Cylinder and a Uniform Flow
subjected on Tandem Cylinders. These flow problems are also discussed with respect
to pressure distribution and vorticity distribution in z-direction.

The flow problems are analyzed for Reynolds number 500, where the shear flow is
described with a shear rate of K = 0.2 and velocity Uc = 0.5 normal on cylinder. The
shear inlet velocity ranges from Uy=−5.0 = 0.0 to value Ut=5.0 = 1.0 with gradient
G = 0.1 from equation 3.12. The Reynolds number is defined with use of velocity Uc,
such that the Reynolds number will also vary linearly within the domain.

The velocity distributions are presented with legend values that ranges from 0.0 <
U < 1.0 for Umag, Ux, Uy and Uz. The velocity magnitude Umag and velocity in
x-direction Ux are presented for the shear flow problem at time instant t = 500s in
figure 6.1 and 6.2. From the figures, one can observe the top boundary consisting of
velocities near 1.0, and bottom boundary consisting of approximately zero velocity.

Figure 6.1: Velocity magnitude Umag for shear flow around tandem cylinders for
Re = 500 & K = 0.2 at time instant t = 500s.

The velocity in x-direction Ux is dominating it’s contribution in the absolute velocity
magnitude Umag, as the figures 6.1 and 6.2 are similar in terms of flow details and
magnitude. Figure A.61 and A.62 in Appendix .5 presents the velocity distribution in
y - and - z - direction, which is approximately zero. This is due to the inlet velocity
is subjected along the x-direction, such that Ux becomes greater that Uy and Uz.
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The velocity distribution in x-direction Ux in-between the tandem cylinders are ap-
proximately zero, as the velocity fluctuation is oscillating irregular and close to zero.

Vortices are shedded from the downstream cylinder. The flow behaviour in-between
the tandem cylinders and downstream are visualized with the vorticity distributions
in z-direction.

Figure 6.2: Velocity in x-direction Ux for shear flow around tandem cylinders for
Re = 500 & K = 0.2 at time instant t = 500s.

The velocity magnitude Umag and velocity in x-direction Ux for the uniform flow
problem around tandem cylinders are presented in figure 6.3 and 6.4 with Reynolds
number 500 at time instant t = 500s.

The velocity in x-direction will dominate the absolute velocity magnitude in the do-
main, as there are approximately no velocities in y - and - z - direction. The velocity
distribution of Uy and Uz are presented in Appendix .11 in figure A.220 and A.221.

The velocity magnitude for the uniform flow around tandem cylinders, has a constant
inlet velocity of U(y) = 0.5 subjected in x-direction. The upper and lower domain have
velocities close to the inlet velocity, while alternating vortex shedding are visualized
as high and low velocity changes as vortices travel downstream.
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Figure 6.3: Velocity magnitude Umag for uniform flow around tandem cylinders for
Re = 500 at time instant t = 500s.

There is almost no velocity in x-direction Ux in-between the tandem cylinders, as the
flow moves around the tandem cylinders.

Figure 6.4: Velocity in x-direction Ux for uniform flow around tandem cylinders for
Re = 500 at time instant t = 500s.
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The tandem cylinders subjected by uniform flow will experience the flow phenomena
called Wake Interference for given longitudinal length - diameter ratio (L/D). The
illustration presented in figure 3.22 from section 3, describes the wake interference as a
Shear Layer Re-Attachment behaviour for intermediate ratios of L/D = 3.2. The Re-
attachment behaviour is characterized by one cylinder that is partially or completely
submerged in the wake of the other cylinder [Sumner, 2010], [Zdravkovich, 1987] &
[Zhou and Yiu, 2006].

The observations obtained for tandem cylinders subjected to a flow, illustrates how the
wake region consist of alternating vortices, which are shedded from the downstream
cylinder. The inlet velocity will first hit the upstream cylinder, where the stagnation
point occurs. The velocity will move around the tandem cylinders, and the upstream
cylinder will experience irregular and small velocities fluctuating close to zero. These
small velocities are visualized as the dark blue area between the cylinders at time
instant t = 500s in figure 6.1, 6.3 for the velocity magnitude Umag, and in figure 6.2
and 6.4 for the velocity in x-direction Ux. The illustration in figure 3.22 describes the
Wake Interference for uniform flow around tandem cylinders with Reynolds number
10000 to 50000, which is not suited in predicting wake interference and behaviour
downstream for the analyzed shear and uniform flow problem around tandem cylinders
with Reynolds number 500.

Figure 6.5 and 6.6 presents the velocity fluctuation in x-, y- and z - direction and the
pressure fluctuation behind the upstream cylinder at location (−1.0, 0.354, 3.0) for
the shear - and uniform flow around tandem cylinders. The figures present velocity
Ux, Uy and Uz which is oscillating irregular and close to zero for both shear - and
uniform flow.

The pressure is negative at fluctuating at a mean value of p̄ = −0.1 for both shear
- and uniform flow. The magnitude of velocity in-between the tandem cylinder is
approximately zero. One can conclude that there will be no clear oscillation periods
or frequencies behind the upstream cylinder when subjected to shear - or uniform
flow.
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Figure 6.5: Velocity Ux, Uy Uz and pressure P at Probe1 (-1.0, 0.354, 3.0) behind
upstream cylinder in tandem configuration subjected to shear flow with K = 0.2 and
Re = 500.

Figure 6.6: Velocity Ux, Uy Uz and pressure P at Probe1 (-1.0, 0.354, 3.0) behind
upstream cylinder in tandem configuration subjected to uniform flow with Re = 500.
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The shear flow problem around the single cylinder presents plots of velocity, pressure
and vorticity at time instant t = 140s, as the simulation breaks at time instant
t = 142− 143s.

Figure 6.7 presents the velocity magnitude Umag and figure 6.8 presents the velocity in
x-direction Ux. The flow has an inlet velocity which is distributed from Uy=−5.0 = 0.0
to Uy=5.0 = 1.0, with Uc = 0.5 and gradient G = 0.1, which is the same inlet shear
velocity subjected on tandem cylinders. This flow problem gives velocities close zero
at the bottom boundary, and velocities around 1.0 for the upper half of the domain.
The single cylinder will shed alternating vortices towards time instant t = 140s, before
becoming unstable.

Figure 6.7: Velocity magnitude for Shear flow at Re = 500 for K = 0.2 at time instant
t = 140s before breaking the simulation with ∆t = 0.002.
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Figure 6.8 presents the velocity in x-direction. Comparing the velocity distribution
Ux with the absolute velocity magnitude Umag, the velocity and flow details around
the domain are similar.

The velocity distribution in y-and-z-direction Uy and Uz are both close to zero, and are
presented in figure A.152 and A.153 in Appendix .9. Ux gives the largest contribution
of the velocity magnitude Umag. This applies also for the flow problems with tandem
cylinders, as the inlet velocity is subjected in x-direction.

Figure 6.8: Velocity in x-direction Ux for shear flow around a single cylinder for
Re = 500 & K = 0.2 at time instant t = 140s before breaking the time simulation.
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6.2.2 Comparison of Pressure Distribution P

This section presents the pressure distribution with range of −0.15 < P < 0.15. The
pressure distributions are presented in figure 6.9 and 6.10 for the shear flow - and
uniform flow around tandem cylinders.

Comparing the pressure distributions presented in figure 6.9 and 6.10, the details
show similar flow behaviour of the pressure. Both figures presents stagnation point as
a high pressure zone in-front of the upstream cylinder. Vortex shedding phenomena
occurs downstream, as alternating vortices are shedded from the downstream cylinder.
Vortex sheddings are visualized by the high and low pressure zones downstream, which
occurs for vortices travelling downstream.

From section 3.6, the stagnation point should occur at the high velocity area of the
upstream cylinder when subjected by a shear flow. The stagnation point occurs for
the upstream cylinder and single cylinders subjected to a shear low, and is visualized
with a high pressure zone in-front of the upstream cylinder. The pressure distribution
do not visualize in detail the actual location of the stagnation point, such that one
can’t conclude if the stagnation point is at the high velocity area [Lei et al., 2000].

Figure 6.9: Pressure distribution for shear flow around tandem cylinders for Re = 500
& K = 0.2 at time instant t = 500s
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Figure 6.10: Pressure distribution for uniform flow around tandem cylinders for Re =
500 at time instant t = 500s.

Pressure Distribution around the cylinder surface is found by taking use of the pressure
coefficient Cp from equation 3.14. The pressure distribution along the upper half of
the upstream and downstream cylinders are presented in figure 6.11 and 6.12 at time
instant t = 500s, when subjected to a shear flow and uniform flow.

Figure 6.11 presents the Cp around 0 < θ < 180 degrees of the upstream cylinder for
both uniform inlet flow and shear inlet flow. The pressure field for both upstream
cylinders follow the same curve, where the bottom peak pressure is at θ = 72 degrees.

Figure 6.12 presents the Cp for the downstream cylinder subjected to shear - and uni-
form inlet flow. The downstream cylinder will experience larger pressure fluctuations
when subjected to a shear flow, compared to a uniform inlet. The pressure around the
downstream cylinder is negative for the upper half of the cylinder from 0 < θ < 180
degrees.

The pressure distributions follows the same curve as in figure 3.27 and 3.28 for a
turbulent flow problem with various longitudinal lengths (L) [Igarashi, 1981].

70



Figure 6.11: Pressure distribution around the upper half 0 < θ < 180 degrees of the
Upstream Cylinder for Shear Flow K = 0.2 and Uniform Flow at Reynolds number
500 at t = 500s. The flow problems are presented in Appendices .5 and .11.

Figure 6.12: Pressure distribution around the upper half 0 < θ < 180 degrees of the
Downstream Cylinder for Shear Flow K = 0.2 and Uniform Flow at Reynolds number
500 at t = 500s. The flow problem is presented in Appendices .5 and .11.
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The shear flow problem around a single cylinder becomes unstable around time instant
t = 142 − 143s. The pressure distribution at three different probes are presented in
figure 6.13.

The simulation breaks due to large pressure jumps. At this time instant, the sta-
bility criterion of Courant-Friedrichs-Levy number exceeds it’s limit. The Courant-
Friedrichs-Levy number consists of the cell dimensions ∆x, ∆y and ∆z with velocities
in x-, y- and z-direction. The PISO algorithm calculates the pressure with use of the
velocity in a cell at each time instant.

Figure 6.13: Pressure fluctuation with respect to time simulation for Probe1 (0.354,
0.854, 3), Probe 2 (-1.0, 1.0, 3.0) & Probe 3 (1.0, 1.0, 3.0).
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The pressure distribution in figure 6.14 presents the pressure at time instant t = 100s.
At this time instant, the pressure distribution is oscillating stable at the measured
probe locations. Figure 6.15 presents the pressure distribution at time instant t =
140s, right before the numerical simulation breaks. At this time instant the pressure
distribution around the whole domain increases, such that the results obtained are
not corrects.

Figure 6.14: Pressure distribution for Shear flow at Re = 500 for K = 0.2 at time
instant t = 100s, when the pressure stable.

Figure 6.15: Pressure distribution for Shear flow at Re = 500 for K = 0.2 at time
instant t = 140s before breaking the simulation with ∆t = 0.002.
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6.2.3 Comparison of Vorticity in z-direction ωz

The vorticity distribution in z-direction ωz visualizes the level of vorticity in the com-
putational domain. The vorticity describes how the flow behaves and reveals vortex
sheddings, 3D effects span-wise and turbulent effects downstream. The magnitude of
vorticity will reveal how vortices are behaving in-between the tandem cylinders and
when travelling far downstream.

Figure 6.16 presents the vorticity in z-direction for the shear flow problem around
tandem cylinders at time instant t = 500s. The flow moves smoothly around the
tandem cylinders with 3D effects occurring in-between the tandem cylinders. The
grid system in z-direction consists of 180 elements, such that an increase of elements
could reveal more detailed 3D effects span-wise along the cylinder length.

Downstream in the wake region, vortices are shedded from the downstream cylinder,
and 3D effects makes the flow turbulent as it begins to move in z-direction. The grid
is coarser downstream, such that flow details may not be resolved as for the boundary
layer. There are negative vorticities occurring on the high velocity side, while there
are positive vorticities occurring on the low velocity side of the tandem cylinders.

Figure 6.16: Vorticity in z-direction ωz for shear flow around tandem cylinder for
Re = 500 & K = 0.2 at time instant t = 500s.
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Figure 6.17 presents the same vorticity distribution in z-direction as figure 6.16, where
the figure presents the development of ωz in x-y-plane. The figure presents the al-
ternating vortex shedding downstream, and how the vortices becomes irregular and
turbulent. The flow moves smoothly around the tandem cylinders, with some vor-
ticites in-between the cylinders.

Figure 6.17: Vorticity in z-direction ωz for shear flow around tandem cylinder for
Re = 500 & K = 0.2 at time instant t = 500s in x-y-plane.

Figure 6.18 is a close-up view of figure 6.17 of the area in-between the cylinders. One
can observe vortices in-between the cylinders, but no clear vortex shedding from the
upstream cylinder towards the downstream cylinder.

The expectation of the Shear layer re-attachment behaviour or the re-attachment
region for the tandem cylinders with a longitudinal length - diameter ratio L/D > 3.0
did not occur for Re = 500. Based on wake interference map in figure 3.23, the
re-attachment will occur for the intermediate longitudinal length - diameter ratio
(L/D) and for Reynolds number around 10 000 in turbulence regime [Sumner, 2010],
[Zdravkovich, 1987] & [Zhou and Yiu, 2006].

Figure 6.18: Vorticity in z-direction ωz for shear flow around tandem cylinder for
Re = 500 & K = 0.2 at time instant t = 500s. Close up of ωz in-between the tandem
cylinders.
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The vorticity distribution in z-direction is presented in figure 6.19 for the uniform flow
problem around tandem cylinders at time instant t = 500s. The flow moves smoothly
around the tandem cylinders, with vorticities in-between the tandem cylinders. At
Reynolds number 500, it is expected 3D effects occurring for the vortices shedded and
travelling downstream.

Comparing the distribution of ωz in figure 6.19 with figure 6.16, one can observe more
turbulent wake behaviour occurring downstream in figure 6.16.

Figure 6.19: Vorticity in z-direction ωz for uniform flow around tandem cylinder for
Re = 500 at time instant t = 500s.
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Figure 6.20 presents vorticity distribution in z-direction, where alternating vortex
sheddings are visualized in the x-and-y-plane.

Figure 6.20: Vorticity in z-direction ωz for uniform flow around tandem cylinder for
Re = 500 at time instant t = 500s in x-y-plane.

Figure 6.21 presents a close up view of the vortices in-between the tandem cylinders
in uniform flow. Observing the degree of vorticity in-between the tandem cylinders,
one could assume that there are some vortices shedded from upstream cylinder. This
corresponds with theory of Shear Layer Re-attachment for L/D > 3 from figure
3.22 from section 3 for turbulent flow regime [Sumner, 2010], [Zdravkovich, 1987] &
[Zhou and Yiu, 2006].

Figure 6.21: Vorticity in z-direction ωz for uniform flow around tandem cylinder for
Re = 500 at time instant t = 500s. Close up of ωz in-between the tandem cylinders.
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Figure 6.22 presents the vorticity distribution in z-direction for a shear flow subjected
on a single cylinder. The flow moves smoothly around the cylinder, and sheds alter-
nating vortices with 3D effects. As the vortices travel downstream, the 3D effects will
make the vortices behave with large irregularities and becomes turbulent.

Figure 6.22: Vorticity in z-direction ωz for Shear flow at Re = 500 for K = 0.2 at
time instant t = 140s right before simulation breaks.

The distribution of vorticity in z-direction ωz when a uniform flow is subjected on
a single cylinder are presented in figure A.86 and A.87 for Reynolds number 300 in
Appendix .6. The computational domain for the uniform flow around a single cylinder
described in table A.1, where single cylinder has span-wise length of 4D, while the
single cylinder subjected to a shear flow has 6D of span-wise length.

The numerical simulation is performed towards time instant t = 250s, where the
simulation is stable at this point. The flow problem sheds alternating vortices down-
stream with 3D effects along the span-wise length. The wake behavior downstream is
similar when a shear - or uniform flow is subjected on a single cylinder. For the shear
flow problem, the domain along the y-axis ranges from −5.0 < y < 5.0, while the
uniform flow problem has a domain range of −8.0 < y < 8.0. The top - and bottom
boundary is closer to the single cylinder in the shear flow problem, and would have
given large pressure distribution in the computational domain.
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Chapter 7

Conclusion

Western Norway introduces the idea of removing all ferry connections with fixed links.
This idea becomes a new infrastructural projects called Coastal Highway E39 or Ferry
Free E39. The Submerged Floating Tube Bridge (SFTB) is a proposed concept, where
two tunnels are submerged 30 m under the fjord surface. Combining technologies
from offshore industry and civil engineering, the proposed concepts of a Submerged
Floating Tube Bridge (SFTB) can be designed with respect to structural design and
hydrodynamic loads.

Analyzing the SFTB, the proposed concept is simplified as tandem cylinders. The
tandem configuration is subjected by a current velocity, with a linear varying profile
called shear flow. The title of the Master Thesis is: Numerical Simulation of a
Viscous Shear Flow Around Tandem Cylinders. Analysis’ are performed by numerical
simulation with use of the Computational Fluid Dynamic tool, OpenFOAM. The title
explains that a viscous shear flow is subjected on tandem cylinder configuration. The
cylinders are positioned with a longitudinal length - diameter ratio of L/D = 3.2,
which is obtained from the actual ratio of the proposed SFTB. Numerical simulation
gives observations of how the fluid flow will move around the tandem configuration,
behave in-between the cylinders and occurrence of flow phenomena downstream in
wake region.

The results obtained for the shear flow problem around tandem cylinders are discussed
with respect to deviation of 2D and 3D simulations. When analyzing the problem
of a shear flow subjected on tandem cylinders, one must evaluate the effects of shear
flow compared to a uniform flow, and the effects of having tandem cylinders instead
of a single cylinder.
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Uniform current profiles do not exist in the experimental world. A linear approxi-
mation of the current velocity will be a new approach, which is based on measured
current data at fjord surface and at 30 m depth. Using the current velocity at surface
level and the velocity subjected normal to the SFTB, Uc = 0.32 m/s, a linear gradi-
ent i found to be G = 0.0223 and a shear rate of K = 0.07. Numerical analysis’ in
OpenFOAM are performed with a velocity Uc = 0.5 and a gradient G = 0.1.

Performing numerical simulations, boundary conditions are chosen to simulate the
flow problem within the computational domain. Two-dimensional (2D) and three-
dimensional (3D) analysis are performed with a shear flow described with shear rate
K = 0.2 around tandem cylinders. The results obtained for the 2D and 3D shear flow
problems are presented in table 5.2 and 5.3 in section 5, while graphical visualization
plots are presented in Appendix.

The 2D shear flow problems are performed with Reynolds 100, 300 and 500, while
the 3D shear flow problems are performed with Reynolds number 100 and 500. Com-
paring the results from 2D and 3D flow problems with Reynolds number 100, the
obtained results are identical, such that no 3D effects occur when simulating a flow
with Reynolds number 100.

Results obtained for the 2D shear flow simulation at Re = 300 and Re = 500, presents
oscillations of velocity and force coefficients with two or more frequencies. When
simulating the 3D shear flow at Re = 500, the vorticity distribution in z-direction
ωz presents how the 3D effects occur along the span-wise length and how turbulent
effects occur downstream. The 2D shear flow problems will restrict flow behaviour in
span-wise direction, and the flow will oscillate with different frequencies and obtain
incorrect values of forces, velocity - and pressure distribution.

The 3D shear flow problem simulated with Re = 500 is compared to the flow problems
of a shear flow around a single cylinder and a uniform flow around tandem cylinders at
Re = 500. Comparing the effect of shear - and uniform flow around tandem cylinders,
one will observe that shear flow will give high velocities at the upper half of the
domain, and lower velocities at the lower half of the domain. The shear flow problem
around a single cylinders presents the same tendency. Stagnation point is suppose to
occur at the high velocity region on the first cylinder in a shear flow problem. For the
simulated shear flow problems, the stagnation point occurred in-front of the upstream
cylinder and for the single cylinder. Based on the pressure distributions, one can not
conclude that the stagnation points occur at the high-velocity side.

The pressure distribution for the shear flow problem around a single cylinder becomes
unstable, such that the simulation breaks at t = 140− 143. The pressure distribution
around the tandem cylinders with uniform and shear flow, follows the same pressure
distribution curve with some deviations. The upstream cylinder experience larger
pressure coefficient Cp around 0 < θ < 180 degrees. The downstream cylinder ex-
perience larger pressure fluctuations, when subjected to a shear flow than a uniform
flow. The downstream cylinder obtains negative pressure Cp when subjected by shear
- and uniform flow.
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The velocities behind the upstream cylinders in the tandem configuration are close to
zero, when subjected by a uniform - or shear flow. The tandem cylinders subjected
by uniform flow, will not obtain any oscillation periods or frequencies as velocity
fluctuation is close to zero. For the shear flow problem around tandem cylinders,
some period and frequencies are found, but the velocities are fluctuating so close to
zero, that the results are incorrect.

The vorticity distribution in z-direction ωz reveals 3D effects and how the flow behaves
downstream. The tandem configurations reveals that the flow moves smoothly over
the cylinders, but will gain 3D effects as vortices travel downstream. In the wake
region for the shear flow problem around tandem cylinder, the flow behaves more
turbulent, compare the uniform flow problem. The shear flow problem around a
single cylinder visualizes alternating vortex shedding with 3D effects occurring along
the span-wise length of the vortices.

Tandem configurations with longitudinal length (L) ratio of L/D = 3.2 in uniform
flow assumes some Shear Layer Re-attachment to occur, as the upstream cylinder
sheds vortices towards downstream cylinder. The distribution of vorticity in-between
the tandem configuration presents some re-attachment phenomena in the uniform
flow problem, shown in figure 6.21. In-between the tandem cylinders in the shear flow
problem, vortex shedding from upstream cylinder are not clearly visualized.

Comparing the tandem configuration to a single cylinder, the inlet velocity flow has to
move around the tandem configurations before shedding vortices downstream. The
flow problem around a single cylinder will therefore obtain vortex shedding for an
earlier time instant, than for tandem cylinder. The vortices downstream will obtain
3D effects when shedded from the single cylinder, while the tandem cylinders will
experience turbulent effects downstream when subjected to a shear flow.

Constructing the Submerged Floating Tube Bridge (SFTB), the inlet shear flow will be
the crucial factor as the pressure around the cylinder must be taken in account and the
effects of turbulence downstream in a fjord. The longitudinal length ratio L/D is 3.2
is also of importance, as one could expect re-attachment layers for turbulent regimes
and different oscillation period behind each cylinder. The analysis is performed with
shear rate of K = 0.2, which is much larger than the actual shear rate of K = 0.07
in the Bjørnafjord. One could assume that a uniform simulation is a good enough
approximation, or either take use of a higher order inlet profile.
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7.1 Future Work

The analysis performed, simplifies the SFTB as tandem cylinders with span-wise
length of 6D and diameter of D = 1. The numerical simulation is performed with
a laminar solver at Reynolds number 500. Future work is to create a computational
domain with finer grid. The elements could be more denser around the cylinders and
in-between the cylinders. The computational domain can be increased with wider
top and bottom boundary, and a longer wake region to visualize the flow phenomena
occurring far downstream. The comparison between shear flow and uniform flow
around single cylinder and tandem cylinders can be analyzed for higher Reynolds
number and with a computational domain of the same dimensions in x, - y - and z-
range.

The tandem cylinders can also be modelled with a larger span-wise length and with
more elements along the span-wise length, to visualize the three-dimensional (3D)
effects of vorticity distribution in z-direction. Changing the tandem configuration in
terms of longitudinal length (L) and vertical length (T) to analyze the changes in
velocity, pressure and vorticity for the tandem configuration, and understanding the
importance of the distance between tandem cylinders.

The concept of SFTB are underwater tunnels, where the tunnel-ends will be connected
to solid surfaces. Simulating tandem cylinders, where the ends are solid or fixed, will
give understanding in the flow behaviour of the tunnels as they become integrated
into the rock. Further, the analysis can be performed for turbulent inlet velocity with
turbulence models. Current velocities as sea and fjords are turbulent, and therefore
analyzing turbulent flows will give a better approximation of forces and flow behaviour
for a shear flow problem around tandem cylinders.

The current load can be changed in terms of amplitude and profile. Uniform flow
problems have been analyzed, and now linearly varying shear profiles are used. Fur-
ther, the profile can be changed to higher order inlet profiles. The Submerged Floating
Tube Bridge (SFTB) will have less effect of wind as it is submerged under water, but
the effects of waves can also be added with the current velocity.

Marine technology and the knowledge obtained from the department can be used in
several interdisciplinary project, as the Coastal Highway E39. The simulation and
results obtained can further be studied with a structural approach, and understanding
the forces subjected on tandem cylinders with respect to different materials, oscillation
and fatigue of the bridge structure. At last, one must understand the costs that will
involve creating a Submerged Floating Tube Bridge (SFTB) and the use of the bridge
as a solution replacing an existing ferry route.
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APPENDIX

.1 2D Shear Flow Around Tandem Cylinders
at Re = 100 and K = 0.2

The results obtained for the 2D shear flow around tandem cylinders, gives a lift coef-
ficients oscillating around zero. The downstream cylinders obtains larger oscillation
amplitudes or root mean square value for lift. The mean force coefficients are found
for the last 65 % of the results. The upstream cylinder will have a drag which oscillate
around C̄D = 1.236, while the downstream cylinder obtains C̄D = −0.0197.

Figure A.1: Drag - and Lift Coefficients for Upstream Cylinder in Shear Flow at
Re = 100, K = 0.2 and ∆t = 0.002.

Figure A.2: Drag - and Lift Coefficients for Downstream Cylinder in Shear Flow at
Re = 100, K = 0.2 and ∆t = 0.002.
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The velocity in x-direction is found for a probe behind upstream cylinder at (x, y, z) =
(−1.0, 0.354, 0.0) and behind downstream cylinder at (x, y, z) = (2.2, 0.354, 0.0). The
origin is placed in-between the tandem cylinders The velocity behind the both cylin-
ders oscillates stable, but changes root mean square around t = 300s. The velocities
behind the upstream and downstream cylinders are used to compute the Power Spec-
tral Density curves.

Figure A.3: Ux velocity probe behind Upstream Cylinder (x, y, z) = (−1.0, 0.354, 0.0)
at Re = 100, K = 0.2 at ∆t = 0.002.

Figure A.4: Ux velocity probe behind Downstream Cylinder (x, y, z) = (2.2, 0.354, 0.0)
at Re = 100 at ∆t = 0.002.
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The Power Spectral Density curves for the upstream cylinder represents what period
the fluid is oscillation towards. The oscillation period is obtained from the figure,
and it Tv = 16.67. The frequency can be found by the relation: fv = 1/Tv[Hz]. The
frequency is fv = 0.06, with Strouhals number equals to St = 0.12. These values are
also obtained for the downstream cylinder.

Figure A.5: The power spectral density of probe velocity Ux with respect to vortex
shedding period Tv for: Upstream Cylinder at Re = 100, K = 0.2 and ∆t = 0.002.

Figure A.6: The power spectral density of probe velocity Ux with respect to vortex
shedding period Tv for: Downstream Cylinder at Re = 100, K = 0.2 and ∆t = 0.002.
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The velocity magnitude at time instant t = 250s presents the how the absolute value
for the velocities are within the domain. At this time instant the the force coefficients
are still oscillating with large root mean squares for both upstream and downstream
cylinder. At time instant t = 500s, the flow problem is stable and one can observe a
low velocities as a ribbon behind the tandem cylinders.

Figure A.7: Velocity magnitude for shear flow around tandem cylinders for Re = 100
& K = 0.2 at time instant t = 250s.

Figure A.8: Velocity magnitude for shear flow around tandem cylinders for Re = 100
& K = 0.2 at time instant t = 500s.
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The pressure distribution presents the stagnation point in front of the upstream cylin-
der with a high pressure zone, while there are pressure drops behind upstream cylin-
der, downstream cylinder and in the wake region. The low pressure zones on the
upstream cylinder could be due to the flow moving along the cylinder surface.

Figure A.9: Pressure distribution for shear flow around tandem cylinders for Re = 100
& K = 0.2 at time instant t = 250s.

Figure A.10: Pressure distribution for shear flow around tandem cylinders for Re =
100 & K = 0.2 at time instant t = 500s.
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.2 2D Shear Flow Around Tandem Cylinders
at Re = 300 and K = 0.2

Flow problems at Reynolds number 300 has oscillating drag - and lift coefficients. The
lift coefficient is oscillating around zero, with root mean square of ¯CL,RMS = 0.86768
for the upstream cylinder and ¯CL,RMS = 1.49092 for the downstream cylinder. These
values are larger than the results obtained for 2D shear flow with R100.

The upstream cylinder experience a mean drag force C̄D = 1.44934, while the down-
stream cylinder will experience a much smaller drag force of C̄D = 0.40348. The
upstream cylinder will experience a larger drag force.

Figure A.11: Drag - and Lift Coefficients for Upstream Cylinder in Shear Flow at
Re = 300, K = 0.2 and ∆t = 0.002.

Figure A.12: Drag - and Lift Coefficients for Downstream Cylinder in Shear Flow at
Re = 300, K = 0.2 and ∆t = 0.002.
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The velocities behind upstream and downstream cylinder will both oscillate with two
frequencies. This could be due the restrictions in the domain in z-direction, such that
3D effects are restricted to occur.

Figure A.13: Ux velocity probe behind Upstream Cylinder (x, y, z) = (−1.0, 0.354, 0)
at Re = 300, K = 0.2 at ∆t = 0.002.

Figure A.14: Ux velocity probe behind Downstream Cylinder (x, y, z) = (2.2, 0.354, 0)
at Re = 300 at ∆t = 0.002.
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The Power Spectral Density curves presents the main oscillation period and frequency
occuring right behind the upstream and downstream cylinder. Both cylinders are
experiencing a oscillation periods of Tv = 5.319 and Tv = 10.64 and frequencies of
fv = 0.188 and fv = 0.094. The Strouhals number are St = 0.376 and St = 0.188.

Figure A.15: The power spectral density of probe velocity Ux with respect to vortex
shedding period Tv for: 2D Upstream Cylinder at Re = 300, K = 0.2 and ∆t = 0.002.

Figure A.16: The power spectral density of probe velocity Ux with respect to vortex
shedding period Tv for: Downstream Cylinder at Re = 300, K = 0.2 and ∆t = 0.002.
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The velocity magnitude is presented at time instant t = 500s, where there are veloci-
ties moving in-between the tandem cylinders. The downstream cylinder will therefore
be affected by the wake from the upstream cylinder.

Figure A.17: Velocity magnitude for shear flow around tandem cylinders for Re = 300
& K = 0.2 at time instant t = 500s.

The pressure distribution illustrated low pressure zones around the upstream cylinder,
which represent the high velocities around the upstream cylinder. In the wake there
are several low pressure zones, which represents vortex sheddings.

Figure A.18: Pressure distribution for shear flow around tandem cylinders for Re =
300 & K = 0.2 at time instant t = 500s.
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.3 2D Shear Flow Around Tandem Cylinders
at Re = 500 and K = 0.2

Flow problems at Reynolds number 500 has oscillating drag - and lift coefficients.
The lift coefficient is still oscillating close to zero, with larger root mean square values
compared to the flow problems with Reynolds number 100 and 300. The root mean
square for the lift coefficients are ¯CL,RMS = 1.04621 for the upstream cylinder and

¯CL,RMS = 1.60544 for the downstream cylinder.

The upstream cylinder experience a mean drag force C̄D = 1.54587, while the drag
around the downstream cylinder is close to zero at C̄D = 0.60668. Comparing the drag
around upstream and downstream cylinder, the drag around the downstream cylinder
is close to zero, but is increasing with the Reynolds number. The drag around the
upstream cylinder is also increasing with Reynolds number for the flow problem with
a 2D domain. At Reynolds number 500, the flow wants to act in 3D, such that a 2D
domain will restrict the flow behaviour.

Figure A.19: Drag - and Lift Coefficients for Upstream Cylinder in Shear Flow at
Re = 500, K = 0.2 and ∆t = 0.002.

Figure A.20: Drag - and Lift Coefficients for Downstream Cylinder in Shear Flow at
Re = 500, K = 0.2 and ∆t = 0.002.
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The velocity in x-direction behind upstream and downstream cylinder is oscillating
periodically for the time simulation, but are oscillating with several periods and fre-
quencies.

Figure A.21: Ux velocity probe behind Upstream Cylinder (x, y, z) = (−1.0, 0.354, 0)
at Re = 500, K = 0.2 at ∆t = 0.002.

Figure A.22: Ux velocity probe behind Downstream Cylinder (x, y, z) = (2.2, 0.354, 0)
at Re = 500 at ∆t = 0.002.
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The upstream cylinder is oscillating with the periods Tv = 5.05 and Tv = 10, and
frequencies fv = 0.2 and fv = 0.1. The Strouhals numbers for the upstream cylinder
are St = 0.4 and St = 0.2.

Figure A.23: The power spectral density of probe velocity Ux with respect to vortex
shedding period Tv for: 2D Upstream Cylinder at Re = 500, K = 0.2 and ∆t = 0.002.

The downstream cylinder have to main peaks which gives oscillation periods Tv = 10
and Tv = 20, and frequencies fv = 0.1 and fv = 0.05. The Strouhals numbers for the
upstream cylinder are St = 0.2 and St = 0.1.

Figure A.24: The power spectral density of probe velocity Ux with respect to vortex
shedding period Tv for: Downstream Cylinder at Re = 500, K = 0.2 and ∆t = 0.002.
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Velocity magnitude illustrated the absolute velocities at time instant t = 500s for
a flow problem with Reynolds number Re = 500. There are velocities moving in-
between the tandem cylinder, such that the downstream cylinder will be effected by
the wake from the upstream cylinder. Downstream behind the downstream cylinder
there are vortex sheddings occurring as there are alternating vortices shedding from
each side of the downstream cylinder. This is also visalized in the pressure distribution
as low pressure zones.

Figure A.25: Velocity magnitude for shear flow around tandem cylinders for Re = 500
& K = 0.2 at time instant t = 500s.

Figure A.26: Pressure distribution for shear flow around tandem cylinders for Re =
500 & K = 0.2 at time instant t = 500s.
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.4 3D Shear Flow Around Tandem Cylinders
at Re = 100 and K = 0.2

The Shear flow problem with a shear rate K = 0.2 and Reynolds number Re = 100
around Tandem cylinder gives pscillating force dowfficients for the upstream and
downstream cylinder. The upstream cylinder experience an oscillation around the
mean value of C̄D = 1.236 and C̄L = −0.0197, while the downstream cylinder ex-
perience oscillation around the C̄D = 0.0196 and C̄L = −0.074. These mean force
coefficients with the root mean square values are identical to the 2D Shear flow prob-
lem at Reynolds number 100.

Figure A.27: Drag - and Lift Coefficients for 3D Upstream Cylinder in Shear Flow at
Re = 100, K = 0.2 and ∆t = 0.002.

Figure A.28: Drag - and Lift Coefficients for 3D Downstream Cylinder in Shear Flow
at Re = 100, K = 0.2 and ∆t = 0.002.
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Velocity fluctuation behind upstream and downstream cylinder is also oscillating with
the same period and frequency as for the 2D shear flow problem described in section
.1. The first values obtained for the time simulation are unstable, and could have
been removed for the graphical plot.

Figure A.29: Ux velocity probe behind 3D Upstream Cylinder (x, y, z) =
(−1.0, 0.354, 3.0) at Re = 100, K = 0.2 at ∆t = 0.002.

Figure A.30: Ux velocity probe behind 3D Downstream Cylinder (x, y, z) =
(2.2, 0.354, 3.0) at Re = 100 at ∆t = 0.002.
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The Spectral Density curves are found by Fourier Transform of the velocty fluctu-
ations, and will reveal the main oscillation periods and peaks behind upstream and
downstream cylinder. The periods and frequencies for the 3D shear flow problem
are the same for the 2D problem, where the values are TV = 16.67, fv = 0.06 and
Strouhals number St = 0.12 for both upstream and downstream cylinder.

Figure A.31: The power spectral density of probe velocity Ux with respect to vortex
shedding period Tv for: 3D Upstream Cylinder at Re = 100, K = 0.2 and ∆t = 0.002.

Figure A.32: The power spectral density of probe velocity Ux with respect to vortex
shedding period Tv for: 3D Downstream Cylinder at Re = 100, K = 0.2 and ∆t =
0.002.
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Figure A.33 and A.34 presents the velocity magnitude and pressure distribution for
the 3D Shear for problem at time instant t = 150s. At this time instant the velocity
behind the cylinders and the force coefficients are oscillating stable.

There are velocities in-between the tandem cylinder, and downstream there are vor-
tices shedded. This is also visualized in the pressure distribution.

Figure A.33: Velocity magnitude for shear flow around tandem cylinders for Re = 100
& K = 0.2 at time instant t = 150s.

Figure A.34: Pressure distribution for shear flow around tandem cylinders for Re =
100 & K = 0.2 at time instant t = 150s.
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Velocity magnitude is presented in figure A.35 and the pressure distribution is pre-
sented in figure A.36 at time instant t = 250s. At this time instant the velocity
behind the cylinders and the force coefficients decreases its root mean square while
oscillating stable. This means that the velocities behind the cylinders decreases.

Figure A.35: Velocity magnitude for shear flow around tandem cylinders for Re = 100
& K = 0.2 at time instant t = 250s.

Figure A.36: Pressure distribution for shear flow around tandem cylinders for Re =
100 & K = 0.2 at time instant t = 250s.
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The velocity magnitude and pressure distribution is presented at time instant t = 500s
in figure A.37 and A.38. The inlet current will flow around the tandem cylinders, and
there will occur a ribbon in the wake region with low velocities which is oscillating.
There are no vortex shedding occurring at this time instant in our domain. One could
increase the wake region to observe how the flow is evolving far downstream.

Figure A.37: Velocity magnitude for shear flow around tandem cylinders for Re = 100
& K = 0.2 at time instant t = 500s.

Figure A.38: Pressure distribution for shear flow around tandem cylinders for Re =
100 & K = 0.2 at time instant t = 500s.
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At time instant t = 150s the is observed vortices shedded in figure A.33 and A.34 for
velocity magnitude and pressure distribution. The Vorticity in z-direction presents
how the fluid behaves span-wise along the cylinder in terms of the degree of vorticity.

Figure A.39 presents the vorticity in z-direction ωz at time instant t = 150s where
there are vorticity occurring in-between the cylinders. The downstream cylinder will
experience the effect of vorticity from the upstream cylinder. Far downstream there
are vortex sheddings occurring. Figure A.40 presents ωz in a different angle for the
same time instant. Span-wise along the cylinder the flow moves smootly around the
cylinder. There are no three-dimensional effects occurring, due to the low Reynolds
number 100.

Figure A.39: Vorticity in z-direction ωz for shear flow around tandem cylinder for
Re = 100 & K = 0.2 at time instant t = 150s.

Figure A.40: Vorticity in z-direction ωz for shear flow around tandem cylinder for
Re = 100 & K = 0.2 at time instant t = 150s. Different angle.
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Figure A.41 presents the distribution of vorticity in z-direction ωz at time instant
t = 250s. At this time instant the oscillation decreases the root mean square value.
There are less vortices in-between the cylinders, compared to the time instant t =
150s. The flow must also flow more downstream before shedding vortices, and the
flow begins to act like more like ribbons downstream than shedded vortices.

Figure A.41: Vorticity in z-direction ωz for shear flow around tandem cylinder for
Re = 100 & K = 0.2 at time instant t = 250s.

Figure A.42 presents the vorticity distribution in z-direction ωz at time instant t =
250s in a different angle. There are no three-dimensional effects span-wise along the
cylinder.

Figure A.42: Vorticity in z-direction ωz for shear flow around tandem cylinder for
Re = 100 & K = 0.2 at time instant t = 250s. Different angle.
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At time instant t = 500s the flow downstream in the wake region begins to behave
like a ribbon. The vorticity distribution in z-direction ωz in figure A.43 presents how
the vorticity in the flow and how the flow behaves downstream. There are no vortex
shedding occurring in the domain, but if the domain far downstream is increased,
there would be possible vortex shedding occurring. Figure A.44 presents the vorticity
distribution for a different angle, where there are no three-dimensional effects along
the span-wise cylinders or the flow downstream.

Figure A.43: Vorticity in z-direction ωz for shear flow around tandem cylinder for
Re = 100 & K = 0.2 at time instant t = 500s.

Figure A.44: Vorticity in z-direction ωz for shear flow around tandem cylinder for
Re = 100 & K = 0.2 at time instant t = 500s. Different angle.
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.5 3D Shear Flow Around Tandem Cylinders
at Re = 500 and K = 0.2

For time first 100 s of the time simulation, the force coefficients will oscillate with a
certain root mean square value. Time simulation from t = 100− 500s, the forces will
oscillate with a different frequency and smaller root mean square as the 3D effects
occur. The mean values are obtained for the last 65 % of the time simulation.

The mean force coefficients are C̄D = 1.027 and C̄L = −0.123 for the upstream
cylinder. The downstream cylinder obtains mean values at C̄D = −0.158 andC̄L =
−0.078. The mean drag force for the 2D upstream cylinder from section .3 is C̄D =
1.545, where the flow problem is restricted for 3D effects.

Figure A.45: Drag - and Lift Coefficients for 3D Upstream Cylinder in Shear Flow at
Re = 500, K = 0.2 and ∆t = 0.002.

Figure A.46: Drag - and Lift Coefficients for 3D Downstream Cylinder in Shear Flow
at Re = 500, K = 0.2 and ∆t = 0.002.
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The velocity fluctuation behind the upstream cylinder is presented in figure A.47.
The velocity fluctuation has a stable oscillation towards t = 100s, before oscillating
unstable towards t = 500s and is oscillating close to zero with several local peaks.
The fluctuation seems unstable as the local peaks occur.

Figure A.47: Ux velocity probe behind 3D Upstream Cylinder (x, y, z) =
(−1.0, 0.354, 3.0) at Re = 500, K = 0.2 at ∆t = 0.002

The velocity fluctuation behind the downstream cylinder is presented in figure A.48,
where the velocity oscillated stable towards t = 500s, but changes its oscillation
amplitude (root mean square) and frequency around time instant t = 100s. The
downstream cylinder obtains a periodically fluctuating, but the velocity is close to
zero right behind the upstream cylinder.

Figure A.48: Ux velocity probe behind 3D Downstream Cylinder (x, y, z) =
(2.2, 0.354, 3.0) at Re = 500, K = 0.2 at ∆t = 0.002
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Far downstream the velocity fluctuation is measured at point (x, y, z) = (3.5, 0.354, 3.0)
and presented in figure A.49. The velocity at this point oscillated with the same period
and frequency as for the velocity right behind the downstream cylinder.

Figure A.49: Ux velocity probe far downstream (x, y, z) = (3.5, 0.354, 3.0) at Re =
500, K = 0.2 at ∆t = 0.002.

Pressure distribution at four different probes presents the fluctuation at the given
points, behind upstream cylinder (x, y, z) = −1.0, 0.354, 3.0), in-between tandem
cylinders (z, y, z) = (0, 0.354, 3.0), behind downstream cylinder (x, y, z) = (2.2, 0.354, 3.0)
and far downstream (x, y, z) = (3.5, 0.354, 3.0). The pressure is highly unstable for
the first 100 s of the time simulation, but is stable towards t = 500s.

Figure A.50: Pressure fluctuation with respect to time simulation for Probe1 (-1,
0.354, 3), Probe 2 (0, 0.354, 3), Probe 3 (2.2, 0.354, 3) and probe 4 (3.5, 0.354, 3) for
a Shear Flow around 3D Tandem Cylinders with Re = 500, K = 0.2 ∆t = 0.002.
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The velocity fluctuation behind the upstream cylinder is unstable, but the Power
Spectral Density gives out two peak value for oscillation periods and frequencies.
Due to the unstable velocity fluctuation presented in figure A.49, the periods and
frequencies obtained for the upstream cylinder is not ideal results.

Figure A.51: The power spectral density of probe velocity Ux with respect to vortex
shedding period Tv for: 3D Upstream Cylinder at Re = 500, K = 0.2 and ∆t = 0.002.

The downstream cylinder experience oscillation period of Tv = 13.89 and a frequency
of fv = 0.072. The Strouhals number for the downstream cylinder is St = 0.144.
Comparing these results with the results obtained for the uniform flow problem around
tandem cylinders with Re = 500 in section .11, the oscillation period, frequency and
Strouhals number are approximately the same.

Figure A.52: The power spectral density of probe velocity Ux with respect to vortex
shedding period Tv for: 3D Downstream Cylinder at Re = 500, K = 0.2 and ∆t =
0.002.
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Velocity magnitude in figure A.53 and pressure distribution in figure A.54 is at time
instant t = 50s, where the flow is oscillating with amplitude and frequency for the
2D shear flow problem with no 3D effects, while the pressure is unstable. There
are velocity fluctuation in-between the tandem cylinders, such that the downstream
cylinder will be effected by the wake of the upstream cylinders. There are alternating
vortex shedding occurring downstream.

Figure A.53: Velocity magnitude for shear flow around tandem cylinders for Re = 500
& K = 0.2 at time instant t = 50s.

Figure A.54: Pressure distribution for shear flow around tandem cylinders for Re =
500 & K = 0.2 at time instant t = 50s.
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At time instant t = 100s, the velocity fluctuations behind upstream and downstream
cylinder begins to oscillate with a different amplitude (root mean square). The pres-
sure begins to stabilize and oscillate periodically.

Figure A.55 presents the velocity magnitude, where there are velocity fluctuations
in-between the tandem cylinders. The upstream cylinder is shedding vortices towards
the downstream cylinder. Far downstream there will be vortex shedding, but now 3D
effects will effects the flow span-wise along the cylinder. The pressure distribution in
figure A.56 presents low pressure zones for the areas of alternating vortex shedding
in the downstream region.

Figure A.55: Velocity magnitude for shear flow around tandem cylinders for Re = 500
& K = 0.2 at time instant t = 100s.

Figure A.56: Pressure distribution for shear flow around tandem cylinders for Re =
500 & K = 0.2 at time instant t = 100s.
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At time instant t = 150s the flow problem has stabilized with a new oscillation period,
frequency and amplitude (root mean square).

Figure A.57 presents the velocity magnitude. At this time instant the velocity in-
between the cylinder is approximately zero, with small and irregular velocity fluctu-
ations. In the downstream wake region, there are vortex shedding occurring.

Figure A.57: Velocity magnitude for shear flow around tandem cylinders for Re = 500
& K = 0.2 at time instant t = 150s.

The pressure distribution in figure A.38 presents the stagnation point in-front of the
upstream cylinder with a high pressure zone, and lower pressure areas in-between the
tandem cylinders.

Figure A.58: Pressure distribution for shear flow around tandem cylinders for Re =
500 & K = 0.2 at time instant t = 150s.
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The velocity magnitude at time instant t = 500s is presented in figure A.59 visualize
the low velocities in-between the cylinders. Downstream wake area consist of alternat-
ing vortices. The pressure distribution is presented in A.60 presents the stagnation
point, and the low pressure areas around the tandem cylinders. The low pressure
zones in the wake region are due to high velocities due vortex shedding.

Figure A.59: Velocity magnitude for shear flow around tandem cylinders for Re = 500
& K = 0.2 at time instant t = 500s.

Figure A.60: Pressure distribution for shear flow around tandem cylinders for Re =
500 & K = 0.2 at time instant t = 500s.
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Figure A.61 and A.62 presents the velocities in y - direction and z-direction. The
figures presents approximately no velocities for Uy and Uz. The velocity magnitude
presented in figure A.59 consist of contribution from velocity in x-direction Ux.

Figure A.61: Velocity in y - direction Uy for Uniform Flow around tandem cylinders
with Re = 500 at time instant t = 500s.

Figure A.62: Velocity in z - direction Uz for Uniform Flow around tandem cylinders
with Re = 500 at time instant t = 500s.
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Figure A.63 presents ωz, where there are vorcities in-between the cylinder which are
shedded from the upstream cylinder towards the downstream cylinder. In figure A.64
the vorticity in z-direction is visualized for a different angle at time instant t = 50s.
The figure visualize no 3D effects along the cylinder or the alternating vortex shedding.

At time instant t = 50s the flow oscillates as in the 2D shear flow problem with
Re = 500, where there are no 3D effects occurring along the span-wise length. There
are several alternating vortex shedding occurring at this time step, which is visualized
downstream.

Figure A.63: Vorticity in z-direction ωz for shear flow around tandem cylinder for
Re = 500 & K = 0.2 at time instant t = 50s.

Figure A.64: Vorticity in z-direction ωz for shear flow around tandem cylinder for
Re = 500 & K = 0.2 at time instant t = 50s. Different angle.

119



Figure A.65 presents the vorticity in z-direction ωz, where the vortex sheddings down-
stream are effected by the 3D effects. The vortices downstream begin to obtain irreg-
ularities which is turbulence along the span-wise length presented in figure A.66.

In-between the tandem cylinders, there are vortices shedded from the upstream cylin-
der towards the downstream cylinder. The flow around the upstream cylinders seems
smooth over the span-wise length, while the turbulent behaviour occur as the flow
moves around the downstream cylinder and sheds vortices far downstream.

Figure A.65: Vorticity in z-direction ωz for shear flow around tandem cylinder for
Re = 500 & K = 0.2 at time instant t = 100s.

Figure A.66: Vorticity in z-direction ωz for shear flow around tandem cylinder for
Re = 500 & K = 0.2 at time instant t = 100s. Different angle.
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At time instant t = 150s the flow begins to move around both tandem cylinders,
but there are still small vortices in-between the cylinders which are shedded from
the upstream cylinder. Far downstream the downstream cylinder will shed vortices,
which experience 3D effects, as the fluid starts to move in z-direction. The vortices
no longer look like vortices as the flow contains turbulence behaviour downstream.

Figure A.67 presents the vorticity distribution, where one can observe hoe the flow
behaves downstream. Figure A.68 presents the vorticity distribution in a different
angle, where the flow around the tandem cylinders are smooth with almost no 3D
effects, until the fluid flow is shedded from the downstream cylinder far downstream.

Figure A.67: Vorticity in z-direction ωz for shear flow around tandem cylinder for
Re = 500 & K = 0.2 at time instant t = 150s.

Figure A.68: Vorticity in z-direction ωz for shear flow around tandem cylinder for
Re = 500 & K = 0.2 at time instant t = 150s. Different angle.
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The shear flow problem around 3D tandem cylinder with shear rate K = 0.2 and
Re = 500 is simulated towards t = 500s. The figure A.69 presents the vorticity in
z-direction ωz where vortex shedding occurs behind the downstream cylinder. Figure
A.70 presents ωz in a different angle, where one can observe no 3D effects of the flow
around the tandem cylinder.

The 3D effects will affect the vortex shedding downstream. The wake region consist
of shedded vortices with turbulent behaviour, such that the vortex shedding becomes
more unclear.

Figure A.69: Vorticity in z-direction ωz for shear flow around tandem cylinder for
Re = 500 & K = 0.2 at time instant t = 500s.

Figure A.70: Vorticity in z-direction ωz for shear flow around tandem cylinder for
Re = 500 & K = 0.2 at time instant t = 500s. Different angle.
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.6 Uniform Flow around a 3D Circular Cylinder

This section presents the uniform flow problem with Reynolds number 100, 200 and
300, analyzed around a single circular cylinder with time step ∆t = 0.005. The
domain size and cylinder dimensions are given in table A.1.

Table A.1: Domain size and Cylinder dimensions.

Domain Range and Dimensions:
Xrange: −3 < x < 12.5
Yrange: −8 < y < 8

Zrange, 3D: 0 < z < 4
Diameter D 1

Cylinder origo: (x,y,z)= (0, 0, 0)

Figure A.71 presents the mesh generated around a circular cylinder for the domain
presented in table A.1.

Figure A.71: Mesh generated in MEGA: 2D Single Cylinder with D = 1.
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Table A.2 presents the boundary constraint which are used to analyze a uniform flow
around a single circular cylinder for various Reynolds numbers.

Table A.2: Defining boundary conditions in OpenFOAM [Greenshields, 2015].

Defined boundaries: Geometric constraint: Velocity U: Pressure P:
front empty (2D) empty (2D) empty (2D)

cyclic (3D) cyclic (3D) cyclic (3D)
back empty (2D) empty (2D) empty (2D)

cyclic (3D) cyclic (3D) cyclic (3D)
cylinder wall fixedValue zeroGradient

inlet patch fixedValue zeroGradient
outlet patch zeroGradient fixedValue

topAndBottom slip slip slip

Table A.3 presents the mean values and the root mean square values of drag - and
lift coefficient. The values are found for the last 80 % results for the time simulation
towards t = 180s with time step ∆t = 0.005.

Oscillation period Tv, frequency fv and Storuhals number St are found for the flow
problem with Reynolds number 100, while for Reynolds number Re = 200 and Re =
300 the values are obtained for time simulation towards t = 250s with time step
∆t = 0.005.

To increase the Reynolds number for each flow case, the inlet velocity is changed,
while the kinematic viscosity ν is set to 0.01. In further simulations the viscosity
will be changes to obtain the desired Reynolds number, while the inlet velocity is
unchanged for the various flow problems.

Table A.3: Values for test case: Uniform flow around a circular cylinder for t = 180s.

Re 100 200 300
U 1 2 3

magUInf 1 2 3
viscosity ν 0.01 0.01 0.01

∆t 0.005 0.005 0.005
mean CL -0.01231 0.00027 0.00323
mean CD 1.46210 1.37041 1.36400
RMS CL 0.25080 0.41337 0.47233
RMS CD 0.00737 0.04764 0.04694
Tv[s] 5.80 - -
fv[Hz] 0.1722 - -
St[−] 0.1722 - -
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The mean vales and root mean square values for drag - and lift coefficient for Reynolds
number 200 and 300 are presented in table A.4, for time simulation towards t = 250s
with time step ∆t = 0.005.

Table A.4: Values for test case: Uniform flow around a circular cylinder for t = 250s.

Re 200 300
mean CL 0.00030 0.00314
mean CD 1.36486 1.39338
RMS CL 0.40231 0.53586
RMS CD 0.05103 0.04704
Tv[s] 2.5 & 2.632 1.623
fv[Hz] 0.38 & 0.4 0.616
St[−] 0.19 & 0.2 0.20533
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PLOTS: Single Cylinder in Uniform Flow at Re = 100

The figure A.72 presents how the drag - and lift coefficient oscillates. The flow stabilize
around t = 20− 30s, where the oscillation is stable towards t = 180s.

Figure A.72: Drag - and Lift Coefficients at ∆t = 0.005 for Re = 100.

The Power Spectral Density (PDS) curves are found by Fourier Transform of the lift
coefficient CL. The PDS’s curve presented the period Tv = 5.806s for the 65 % last
values for the time simulation, where the frequency fv = 1/Tv = 0.1722Hz. The
Strouhals number for this flow problem is St = 0.1722.

Figure A.73: The power spectral density of lift coefficients CL with respect to vortex
shedding period Tv at Re = 100.
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Figure A.74 presents the velocity magnitude at the stable time instant t = 180s. The
plot presents vortex shedding in the wake region, and low velocity regions behind the
wake.

Figure A.74: Velocity magnitude for uniform flow at Re = 100 at time instant t =
180s.
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Figure A.75 presents the pressure distribution at the stable time instant t = 180s as
vortex shedding occurs. There is a high pressure zone located in-front of the cylinder
due to stagnation point.

Figure A.75: Pressure distribution for uniform flow at Re = 100 at time instant
t = 180s.
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Figure A.76 presents the vorticity distribution in z-direction ωz. The figure presents
how the vortex shedding occurs for each side of the cylinder. For the flow problem
at Reynolds number 100, the flow is two-dimensional, such that there are no three-
dimensional effects along the span-wise length of the cylinder.

Figure A.76: Vorticity in z-direction ωz for uniform flow at Re = 100 at time instant
t = 180s.
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PLOTS: Single Cylinder in Uniform Flow at Re = 200

The figure A.77 presents how the drag - and lift coefficient oscillates. The flow seems
stable towards t = 130s, where the flow begins to oscillate with various root mean
square values. The simulation is run to time instant t = 250s.

Figure A.77: Drag - and Lift Coefficients at ∆t = 0.005 for Re = 200.

The Power Spectral Density curves presents two peaks for oscillation period and
frequency found by Fourier Transform of the lift coefficient CL. The two peaks occur
due to the flow will have one oscillation frequency towards t = 130s , but also an
alternating oscillation frequency with different root mean square values between t =
130s and t = 250s.

Figure A.78: The power spectral density of lift coefficients CL with respect to vortex
shedding period Tv at Re = 200.
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The figures A.79 and A.80 present the velocity magnitude and pressure distribution at
time instant t = 250s. Vortex shedding is presented clearly for the velocity magnitude
plot and in with low pressure zones in the wake region.

Figure A.79: Velocity magnitude for uniform flow at Re = 200 at time instant t =
250s.

Figure A.80: Pressure distribution for uniform flow at Re = 200 at time instant
t = 250s.
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The vorticity distribution in z-direction ωz in figure A.76 presents the vorticity distri-
bution from −5.0 < ωz < 5.0, where the vortex sheddings have alternating vorticity
value. For Reynolds number 200 there are some 3D effects occurring along the span-
wise length.

Figure A.81: Vorticity in z-direction ωz for uniform flow at Re = 200 at time instant
t = 250s.
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PLOTS: Single Cylinder in Uniform Flow at Re = 300

Figure A.82 presents the drag - and lift oscillation for the flow problem. The Os-
cillation has variying root mean square value, but it stable for the time simulation
towards t = 250s.

Figure A.82: Drag - and Lift Coefficients at ∆t = 0.005 for Re = 300.

The Power Spectral Density presents the Fourier transformation of the lift coefficient
CL, where the Strouhals number is St = 0.205.

Figure A.83: The power spectral density of lift coefficients CL with respect to vortex
shedding period Tv at Re = 300.
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The figures A.84 and A.85 present the velocity magnitude and pressure distribution
at time instant t = 250s for the uniform flow problem with Reynolds number 300.
As for the uniform flow problem with Reynolds number 200, one can observe vortex
shedding for both velocity magnitude plot and pressure distribution plot.

Figure A.84: Velocity magnitude for uniform flow at Re = 300 at time instant t =
250s.

Figure A.85: Pressure distribution for uniform flow at Re = 300 at time instant
t = 250s.

134



The vorticity distribution of ωz at time instant t = 250s are presented in figure A.86
and in a different angle for figure A.87. One can observe the 3D effects occurring
span-wise along the cylinder for each vortex shedding.

Figure A.86: Vorticity in z-direction ωz for uniform flow at Re = 300 at time instant
t = 250s.

Figure A.87: Vorticity in z-direction ωz for uniform flow at Re = 300 at time instant
t = 250s. Different angle.
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.7 Uniform Flow around a 3D Circular cylinder with
Boundary conditions for Slip and Symmetry

An analysis is performed with uniform flow and Reynolds number 300 around a three-
dimensional cylinder, where the boundary conditions for front and back patches are
changed to slip and symmetric. The boundary conditions are presented in table A.5
for slip-condition, and in table A.6 for symmetry-condition.

Table A.5: Boundary conditions: Slip

Defined boundaries Geometric constraint Velocity U Pressure P
front slip slip slip
back slip slip slip

cylinder wall fixedValue zeroGradient
inlet patch fixedValue zeroGradient

outlet patch zeroGradient fixedValue
topAndBottom slip slip slip

Table A.6: Boundary conditions: Symmetric

Defined boundaries Geometric constraint Velocity U Pressure P
front symmetric symmetric symmetric
back symmetric symmetric symmetric

cylinder wall fixedValue zeroGradient
inlet patch fixedValue zeroGradient

outlet patch zeroGradient fixedValue
topAndBottom slip slip slip

The flow properties are presented in table A.7, where the three-dimensional domain
is presented in table A.1 in section .6.

Table A.7: Flow properties at Re = 300

Properties of Uniform Flow:
inlet velocity U 1

viscosity ν 0.003333
Cylinder diameter 1
Span-wise length 4D

∆t 0.005
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The results obtained for the slip-condition and symmetry-condition are almost equiv-
alent to the results in the values for drag - and lift compared to the results obtained
for the three-dimensional flow problem for Reynolds number 300 in section .6.

The mean values for drag and lift coefficients as well as the root mean square for the
last 80 % for the analysis are presented in table A.8.

The differences is the value for the mean drag coefficient, where the slip - and -
symmetric condition gave a value CD = 1.37, while from table A.4 in section .6 with
cyclic-condition gave CD = 1.39. The Strouahls number roughly the same.

Table A.8: Values for test case: Uniform flow around a circular cylinder with different
boundary conditions Re = 300

Boundary condition slip symmetric
mean CL -0.00806 0.01082
mean CD 1.37633 1.37791
RMS CL 0.47349 0.47124
RMS CD 0.04088 0.03807
Tv[s] 4.717 4.762
fv[Hz] 0.212 0.21
St[−] 0.212 0.21
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Figure A.88: Drag - and Lift Coefficients for slip condition at boundaries topAndBot-
tom, front and back at ∆t = 0.005 for Re = 300.

Figure A.89: Drag - and Lift Coefficients for symmetry condition at front and back
boundaries at ∆t = 0.005 for Re = 300.
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The figures below presents the Power Spectral Density curves for the Slip-condition
with respect to oscillation period and frequency, by taking the Fourier Transform of
the lift coefficient.

Figure A.90: The power spectral density of lift coefficients CL with respect to vortex
shedding period Tv with slip BC at Re = 300.

The figures below presents the Power Spectral Density curves for the Symmetry-
condition with respect to oscillation period and frequency, by taking the Fourier
Transform of the lift coefficient.

Figure A.91: The power spectral density of lift coefficients CL with respect to vortex
shedding period Tv with symmetry BC at Re = 300.
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.8 Shear Flow around a 2D Circular Cylinder

Flow problems with Shear Flow is performed for different shear rate K. The Shear
Flow is subjected on a single circular cylinder with dimensions and domain size pre-
sented in table A.1 in section .6. The analysis is performed with Reynolds number
100 and time step ∆t = 0.002, with boundary constraint given in table A.2 in section
.6.

The domain size spans for y = −8.0 to y = 8.0, such that some shear cases will have
their shear flow inlet at different origins.

Table A.9: Properties of Shear Flow.

2D Shear Flow Re = 100 Uc G origin
K = 0.125 0.25 1

32 y = −8.0
K = 0.2 1.0 1

5 y = −5.0
K = 0.5 0.25 1

8 y = −2.0
K = 1.0 0.125 1

8 y = −1.0
K = 2.0 0.125 1

4 y = −0.5

The table A.10 presents the mean force coefficients, root mean square and the oscil-
lation period, frequency and Strouhals number for flow problem with different Shear
rate K. The values are found for the last 65 % results for the time simulation. The
flow problems with shear rate K = 0.5, K = 1.0 and K = 2.0 do not show any results
as the flow problem becomes unstable during the simulation.

Table A.10: Shear flow around a 2D cylinder at Re = 100 for various Shear Rates K.

K = 0.125 K = 0.2 K = 0.5 K = 1.0 K = 2.0
mean CL -0.14555 -0.22123 - - -
mean CD 1.43570 1.28658 - - -
RMS CL 0.26600 0.39034 - - -
RMS CD 0.01708 0.05908 - - -
Tv[s] 23.08 7.317 - - -
fv[Hz] 0.04333 0.1367 - - -
St[−] 0.17332 0.1367 - - -
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PLOTS: Shear Flow around a Cylinder: Re = 100 & K = 0.125

This shear flow problem has origin at y = −8.0, which is at the bottom boundary.
This flow problem is stable during the simulation time towards time instant t = 300s.
The presented plots for velocity magnitude and pressure are presented for this time
instant.

Figure A.92: Drag - and Lift Coefficients for: 2D Shear flow with Re = 100, K = 0.125
and ∆t = 0.002

Figure A.93: Ux velocity probe at (x, y, z) = (0.354, 0.854, 0) with respect to time for:
2D Shear flow with Re = 100, K = 0.125 and ∆t = 0.002
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Figure A.94: The power spectral density of probe velocity Ux with respect to vortex
shedding period Tv for: 2D Shear flow with Re = 100, K = 0.125 and ∆t = 0.002.
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The figures below present the velocity magnitude at time instant t = 5s and t = 250s.
At time instant t = 5s the flow will be unstable, before becoming stable as alternating
vortices occur.

Figure A.95: Velocity magnitude at time instant t = 5s for shear current on a 2D
cylinder at Re = 100, K = 0.125 and ∆t = 0.002.

Figure A.96: Velocity magnitude at time instant t = 250s for shear current on a 2D
cylinder at Re = 100, K = 0.125 and ∆t = 0.002.
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The pressure distribution is also presented for time instant t = 5s and t = 250s.

Figure A.97: Pressure distribution at time instant t = 5s for shear current on a 2D
cylinder at Re = 100, K = 0.125 and ∆t = 0.002.

Figure A.98: Pressure distribution at time instant t = 260s for shear current on a 2D
cylinder at Re = 100, K = 0.125 and ∆t = 0.002.
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PLOTS: Shear Flow around a Cylinder: Re = 100 & K = 0.2

This shear flow problem with shear rate K = 0.2 has origin at y = −5.0 while the
domain span begins at y = −8.0, which can give incorrect values. Therefore a new
domain is created to analyze flow problems with shear rate K = 0.2. The domain
will have a span of y = −5.0 to y = 5.0.

The force coefficients and the velocity in x-direction behind the cylinder are both
stable, and oscillates with a constant period and frequency. This can indicate that
the results are fairly correct, but not ideal due to shear flow inlet origin.

Figure A.99: Drag - and Lift Coefficients for: 2D Shear flow with Re = 100, K = 0.2
and ∆t = 0.001

Figure A.100: Ux velocity probe at (x, y, z) = (0.354, 0.854, 0) with respect to time
for: 2D Shear flow with Re = 100, K = 0.2 and ∆t = 0.001
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Figure A.101: The power spectral density of probe velocity Ux with respect to vortex
shedding period Tv for: 2D Shear flow with Re = 100, K = 0.2 and ∆t = 0.001.
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Since the inlet velocity begins at y = −5.0, there will be large jumps velocity in the
domain, as as the lower boundary will not have any inlet velocity.

Figure A.102: Velocity magnitude at time instant t = 5s for shear current on a 2D
cylinder at Re = 100, K = 0.2 and ∆t = 0.001.

At time instant t = 300s the velocity magnitude presents no velocity behind the
cylinder in the wake region and along the bottom boundary.

Figure A.103: Velocity magnitude at time instant t = 300s for shear current on a 2D
cylinder at Re = 100, K = 0.2 and ∆t = 0.001.
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PLOTS: Shear Flow around a Cylinder: Re = 100 & K = 0.5

This shear flow problem with K = 0.5 has origin at t = −2.0 while the domain span
begins at y = −8.0. This gives incorrect values, as the values of force coefficients are
highly unstable (even though it simulated the shear flow problem towards t = 300).

Figure A.104: Drag - and Lift Coefficients for: 2D Shear flow with Re = 100 &
K = 0.5

The velocity magnitude at time instant t = 300s is varying around the domain, as
there are approximately no velocity in- front and behind the cylinder.

Figure A.105: Velocity magnitude at time instant t = 300s for shear current on a 2D
cylinder at Re = 100, K = 0.5 and ∆t = 0.002.
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PLOTS: Shear Flow around a Cylinder: Re = 100 & K = 1.0

This shear flow problem with K = 1.0 has origin at t = −1.0 while the domain span
begins at y = −8.0. The results are unstable and the simulation breaks at time
instant t = 66.5, where the time step ∆t is reduced from 0.001 to 0.0001.

Figure A.106: Drag - and Lift Coefficients for: 2D Shear flow with Re = 100 &
K = 1.0

The velocity distribution is highly unstable and the whole domain consist of almost
no velocity, while there are high velocity zones at the bottom boundary. It is not sure
why and how this occurs, but the inlet flow seems to be the factor in obtaining an
unstable flow as it breaks at t = 66.5s.

Figure A.107: Velocity magnitude at time instant t = 66.5s for shear current on a 2D
cylinder at Re = 100 & K = 1.0.
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PLOTS: Shear Flow around a Cylinder: Re = 100 & K = 2.0

This shear flow problem with K = 2.0 has origin at t = −0.5 while the domain span
begins at y = −8.0. The results are unstable and the simulation breaks at time
instant t = 66.5, where the time step ∆t is reduced from 0.001 to 0.0001.

Figure A.108: Drag - and Lift Coefficients for: 2D Shear flow with Re = 100 &
K = 2.0

The velocity distribution for this shear flow problem visualizes approximately no
velocity in the domain at time instant t = 66.5s as the flow breaks. There are high
velocity zone close to the bottom boundary. It is not sure why this occurs, but mainly
due to inlet velocity.

Figure A.109: Velocity magnitude at time instant t = 66.5s for shear current on a 2D
cylinder at Re = 100 & K = 2.0.
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.9 Shear Flow with Shear Rate K = 0.2 around a 2D
& 3D Circular Cylinders

Shear flow problems are analyzed for shear rate K = 0.2 with Reynolds number 100,
200 and 300. The domain size is changed, such that the inlet shear flow will have
origin at bottom boundary y = −5.0.

The domain size and cylinder dimensions are presented in table A.11 and boundary
constraints are presented in table A.2. The flow problems are analyzed for both two-
dimensions (2D) and three-dimensions (3D), where the span-wise length Zrange the
cylinder is 6 times the diameter length.

Table A.11: Domain size and Cylinder dimensions.

Domain Range and Dimensions
Xrange: −5 < x < 12.5
Yrange: −5 < y < 5

Zrange, 3D: 0 < z < 6
Diameter D 1

Cylinder origo: (x,y,z)= (0, 0, 0)

Figure A.110 presents the mesh used to analyze the shear flow problem with shear
rate K = 0.2 for various Reynolds numbers.

Figure A.110: Mesh generated in MEGA: 2D Single Cylinder with domain and cylin-
der dimensions given in table A.11.
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Table A.12 presents the shear flow properties for a shear flow problem with shear rate
K = 0.2.

Table A.12: Shear Flow properties: Shear Rate K & Reynolds numbers

Shear Flow K = 0.2
G 1/10
Uc 0.5

inlet origin y = −5.0
Re = 100 ν = 0.005
Re = 300 ν = 1/600
Re = 500 ν = 1/1000

Table A.13 below presents the properties adn resulting values for uniform flow problem
at Re = 100 for both domain sizes: −8.0 < y < 8.0 and −5.0 < y < 5.0.

The comparison is performed to clarify that the new domain with y-axis span of
−5.0 < y < 5.0 is large enough to obtain correct results. As we reduce the y-axis
span, the cylinder will take 10 % domain span in y-axis with a diameter of 1 while the
total span is 10. The mean drag coefficient increases to C̄D = 1.491 with a domain
of −5.0 < y < 5.0, compared to C̄D = 1.462 with a domain −8.0 < y < 8.0.

Table A.13: Uniform flow around a Cylinder K = 0.0: Comparing domain sizes.

Re = 100 domain: −8.0 < 8.0 3D & t = 180s domain: −5.0 < 5.0 2D & t = 300
U 1 1

magUInf 1 1
viscosity ν 0.01 0.01
mean CL -0.01231 0.00468
mean CD 1.46210 1.49089
RMS CL 0.25080 0.25250
RMS CD 0.00737 0.00763
Tv[s] 5.80 5.66
fv[Hz] 0.1721 0.1767
St[−] 0.1721 0.1767
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Table A.14 presents the mean values for drag - and lift coefficients, with the root
mean square. Oscillation periods and frequencies are found from Power Spectral
Density curves of x-direction velocity Ux behind the cylinder. Strouhals number is
also presented. The values are found for the last 65 % results for the time simulation.

Table A.14: Shear flow K = 0.2 a around a 2D and 3D Cylinder.

- 2D 3D
Reynolds Number Re = 100 Re = 300 Re = 500 Re = 100 Re = 300 Re = 500

mean CL -0.18199 -0.13409 -0.15547 -0.18198 -0.16091 -0.10392
mean CD 1.42987 1.44789 1.50445 1.42981 1.33070 1.29849
RMS CL 0.28235 0.73430 0.92095 0.28227 0.45317 0.43352
RMS CD 0.02563 0.07812 0.12751 0.02561 0.06140 0.08907
Tv[s] 11.54 9.375 8.823 11.54 9.516 8.936
fv[Hz] 0.08667 0.1067 0.1133 0.08667 0.1051 0.1119
St[−] 0.17334 0.2134 0.2266 0.17334 0.2102 0.2238

PLOTS: Uniform Flow around a 2D Cylinder: Re = 100 & K = 0.0

Analysis is performed for K = 0.0, which is equivalent to uniform flow with domain
size −5.0 < y < 5.0.

Figure A.111: Drag - and Lift Coefficients for: 2D Uniform flow with Re = 100 and
K = 0.0.
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Figure A.112: Ux velocity probe at (x, y, z) = (0.354, 0.854, 0) with respect to time
for: Uniform flow with Re = 100 and K = 0.0.

Figure A.113: The power spectral density of probe velocity Ux with respect to vortex
shedding period Tv for: Uniform flow with Re = 100 and K = 0.0.
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Figure A.114: Velocity magnitude for uniform flow at Re = 100 for K = 0.0 at time
instant t = 300s.

Figure A.115: Pressure distribution for uniform flow at Re = 100 for K = 0.0 at time
instant t = 300s.
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PLOTS: Shear Flow around a 2D Cylinder: Re = 100 & K = 0.2

Figure A.116: Drag - and Lift Coefficients for: 2D Shear flow with Re = 100 and
K = 0.2.

Figure A.117: Ux velocity probe at (x, y, z) = (0.354, 0.854, 0) with respect to time
for: Shear flow with Re = 100 and K = 0.2.
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Figure A.118: The power spectral density of probe velocity Ux with respect to vortex
shedding period Tv for: Shear flow with Re = 100 and K = 0.2.
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Figure A.119: Velocity magnitude for Shear flow at Re = 100 for K = 0.2 at time
instant t = 300s.

Figure A.120: Pressure distribution for Shear flow at Re = 100 for K = 0.2 at time
instant t = 300s.
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PLOTS: Shear Flow around a 2D Cylinder: Re = 300 & K = 0.2

Figure A.121: Drag - and Lift Coefficients for: 2D Shear flow with Re = 300 and
K = 0.2.

Figure A.122: Ux velocity probe at (x, y, z) = (0.354, 0.854, 0) with respect to time
for: Shear flow with Re = 300 and K = 0.2.
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Figure A.123: The power spectral density of probe velocity Ux with respect to vortex
shedding period Tv for: Shear flow with Re = 300 and K = 0.2.
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Figure A.124: Velocity magnitude for Shear flow at Re = 300 for K = 0.2 at time
instant t = 300s.

Figure A.125: Pressure distribution for Shear flow at Re = 300 for K = 0.2 at time
instant t = 300s.
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PLOTS: Shear Flow around a 2D Cylinder: Re = 500 & K = 0.2

Figure A.126: Drag - and Lift Coefficients for: 2D Shear flow with Re = 500 and
K = 0.2.

Figure A.127: Ux velocity probe at (x, y, z) = (0.354, 0.854, 0) with respect to time
for: Shear flow with Re = 500 and K = 0.2.

162



Figure A.128: The power spectral density of probe velocity Ux with respect to vortex
shedding period Tv for: Shear flow with Re = 500 and K = 0.2.
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Figure A.129: Velocity magnitude for Shear flow at Re = 500 for K = 0.2 at time
instant t = 300s.

Figure A.130: Pressure distribution for Shear flow at Re = 500 for K = 0.2 at time
instant t = 300s.
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PLOTS: Shear Flow around a 3D Cylinder: Re = 100 & K = 0.2

Values for mean drag, lift and Strouhals number for this 3D flow problem are equiv-
alent to the 2D flow problem with Reynolds number 100 and shear rate K0.2. The
velocity magnitude plot and pressure distribution will be identical for the 2D flow
problem for the same time instant.

Figure A.131: Velocity magnitude for Shear flow at Re = 100 for K = 0.2 at time
instant t = 300s.

Figure A.132: Pressure distribution for Shear flow at Re = 100 for K = 0.2 at time
instant t = 300s.
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The vorticity in z-direction ωz presents the vortex shedding with respect to vorticity
−1.0 < ωz < 1.0. A shear problem at Reynolds number 100 will not have 3D effects
along the span-wise cylinder, such that the flow will move smoothly around the span-
wise cylinder.

Figure A.133: Vorticity in z-direction ωz for Shear flow at Re = 100 for K = 0.2 at
time instant t = 300s.

Figure A.134: Vorticity in z-direction ωz for Shear flow at Re = 100 for K = 0.2 at
time instant t = 300s. Different angle.
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PLOTS: Shear Flow around a 3D Cylinder: Re = 300 & K = 0.2

The drag force for the first 150s is similar to the results obtained for the 2D shear
flow case K = 0.2 with Reynolds number 300. After t = 150s the 3D effects will effect
the drag of the cylinder. One can observe changes in velocity of Ux at the same time
instant, and change in oscillation frequency.

The mean drag coefficient C̄D for the equivalent flow problem is C̄D = 1.44789, but
is decreased to C̄D = 1.33070 for the 3D flow problem . This change in mean root
square of the drag coefficient is fairly similar.

Figure A.135: Drag - and Lift Coefficients for: 3D Shear flow with Re = 300 and
K = 0.2.

Figure A.136: Ux velocity probe at (x, y, z) = (0.354, 0.854, 3.0) with respect to time
for: Shear flow with Re = 300 and K = 0.2.
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The Strouhals number St is found from the oscillation period and frequency. The
oscillation periods and frequency are approximately similar for the 2D and 3D flow
problem with Reynolds number 300 with shear rate K = 0.2.

Figure A.137: The power spectral density of probe velocity Ux with respect to vortex
shedding period Tv for: Shear flow with Re = 300 and K = 0.2.
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The plots below presents the velocity magnitude at time instant t = 160s and t =
300s. At time instant t = 160s the drag - and lift coefficient will oscillate with a
different frequency and with smaller amplitude before stabilizing before time instant
t = 300.

Figure A.138: Velocity magnitude for Shear flow at Re = 300 for K = 0.2 at time
instant t = 160s.

Figure A.139: Velocity magnitude for Shear flow at Re = 300 for K = 0.2 at time
instant t = 300s.
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The pressure distributions below are presented at time instant t = 160s and t = 300s.

Figure A.140: Pressure distribution for Shear flow at Re = 300 for K = 0.2 at time
instant t = 160s.

Figure A.141: Pressure distribution for Shear flow at Re = 300 for K = 0.2 at time
instant t = 300s.
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The plots below presents vorticity in z-direction ωzfor time instant t = 160s, where
there observed a sudden change in oscillation frequency. The Vortex sheddings are
shown, with the corresponding 3D effects along the span-wise length.

Figure A.142: Vorticity in z-direction ωz for Shear flow at Re = 300 for K = 0.2 at
time instant t = 160s.

Figure A.143: Vorticity in z-direction ωz for Shear flow at Re = 300 for K = 0.2 at
time instant t = 160s. Different angle.
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The plots below presents vorticity in z-direction ωz for time instant t = 300s. The
flow problem at this point is stable, and one can observe the vortex shedding with
disturbances. The 3D effects along the span-wise length and the vortex shedding
downstream have clearly changed since time instant t = 160s.

Figure A.144: Vorticity in z-direction ωz for Shear flow at Re = 300 for K = 0.2 at
time instant t = 300s.

Figure A.145: Vorticity in z-direction ωz for Shear flow at Re = 300 for K = 0.2 at
time instant t = 300s. Different angle.
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PLOTS: Shear Flow around a 3D Cylinder: Re = 500 & K = 0.2

The 3D flow problem with Reynolds number 500 and shear rate K = 0.2 simulated
until t = 145s before breaking du large pressure fluctuations. This is due to large
jumps in pressure in the flow domain. The 3D flow problem becomes unstable, while
the equivalent 2D flow problem was stable for the whole time simulation towards
t = 300s.

The mean drag coefficient C̄D for the flow problem is C̄D = 1.29849 for the last 65 %
of the time simulation towards breaking point t = 145s. The stable 2D flow problem
has a mead drag coefficient of C̄D = 1.50445.

Figure A.146: Drag - and Lift Coefficients for: 3D Shear flow with Re = 500 and
K = 0.2.

Figure A.147: Ux velocity probe at (x, y, z) = (0.354, 0.854, 3.0) with respect to time
for: Shear flow with Re = 500 and K = 0.2.
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The oscillation periods, frequency and Strouhals number are remaining the same for
both 2D and 3D flow problem at Reynolds number 500 and shear rate K = 0.2.

Figure A.148: The power spectral density of probe velocity Ux with respect to vortex
shedding period Tv for: Shear flow with Re = 500 and K = 0.2.

The graph below presents the pressure fluctuation for three different probes around
the cylinder. The pressure is fluctuating with an irregular frequency, and at time
instant t = 140 − 143 the pressure rapidly increases and the flow becomes unstable
and breaks simulation.

Figure A.149: Pressure fluctuation with respect to time simulation for Probe1 (0.354,
0.854, 3), Probe 2 (-1, 1, 3) & Probe 3 (1, 1, 3).
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The plots below presents the velocity magnitude at time instant t = 70s and t = 140s.
At time instant t = 70s the drag - and lift coefficient will oscillate with a stable
frequency before changing amplitude around t = 100. At time instant t = 140 the
simulation for this flow problem will crash/break due to large pressure jumps.

Figure A.150: Velocity magnitude for Shear flow at Re = 500 for K = 0.2 at time
instant t = 70s.

Figure A.151: Velocity magnitude for Shear flow at Re = 500 for K = 0.2 at time
instant t = 140s before breaking the simulation with ∆t = 0.002.
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Figure A.152 and A.153 presents the velocity distribution in y-and-z-direction Uy and
Uz. The velocities are approximately zero, such that the absolute velocity magnitude
consist for the distribution from the velocity in x-direction Ux.

Figure A.152: Velocity in y - direction Uy for Shear Flow at Re = 500 for K = 0.2 at
time instant t = 140s.

Figure A.153: Velocity in z - direction Uz for Shear Flow at Re = 500 for K = 0.2 at
time instant t = 140s.
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The pressure distributions below are presented at time instant t = 70s and t = 140s.
At time instant t = 70s, one can observe pressure drops for areas with vortex shedding,
but for time instant t = 140s the domain has an absolute value of larger pressure
distribution.

Figure A.154: Pressure distribution for Shear flow at Re = 500 for K = 0.2 at time
instant t = 70s.

The plot below presents absolute values for pressure distribution around the domain
for time instant t = 140s, which is right before the simulation breaks.

Figure A.155: Pressure distribution for Shear flow at Re = 500 for K = 0.2 at time
instant t = 140s before breaking the simulation with ∆t = 0.002.
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The plots below presents vorticity in z-direction ωzfor time instant t = 70s where the
flow problem is shedding vortices with a stable frequency. The vortex shedding are
clearly visualized with smooth surfaces with little disturbances.

Figure A.156: Vorticity in z-direction ωz for Shear flow at Re = 500 for K = 0.2 at
time instant t = 70s.

Figure A.157: Vorticity in z-direction ωz for Shear flow at Re = 500 for K = 0.2 at
time instant t = 70s. Different angle.
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The plots below presents vorticity in z-direction ωZ for time instant t = 140s. The
flow problem at this time instant will break due to large pressure jumps, and the
vortices downstream are effected by large 3D effects in span-wise direction.

Figure A.158: Vorticity in z-direction ωz for Shear flow at Re = 500 for K = 0.2 at
time instant t = 140s right before simulation breaks.

Figure A.159: Vorticity in z-direction ωz for Shear flow at Re = 500 for K = 0.2 at
time instant t = 140s right before simulation breaks. Different angle.
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.10 Uniform Flow around 2D Tandem Cylinder

When analyzing tandem cylinders, a new domain and mesh is generated with tandem
cylinders presented in figure A.160. The analysis is performed with uniform flow with
Reynolds number 100, 200 and 300 presented in table A.15.

Table A.15: Properties for Uniform flow for different Reynolds numbers.

Properties of Uniform Flow:
Re 100 200 300
U 1 1 1

magUInf 1 1 1
viscosity ν 0.01 0.005 0.003333

∆t 0.002 0.002 0.002

Table A.16 presents the domain size and cylinder dimensions for the tandem flow prob-
lem. The flow problems are analyzed for both two-dimension and three-dimensions,
there the span-wise length of the cylinder is 6 times the diameter length.

Table A.16: Domain size and Cylinder dimensions.

Domain Range and Dimensions:
Xrange: −6 < x < 12
Yrange: −6 < y < 6

Zrange, 3D: 0 < z < 6
Diameter D 1

Upstream cylinder origo: (x,y,z)= (-1.6, 0, 0)
Downstream cylinder origo: (x,y,z)= (1.6, 0, 0)

Longitudinal gap 3.2xD

Table A.17 presents the boundary constraint which are used to analyze a uniform
flow around a single circular cylinder for various Reynolds numbers.

Table A.17: Defining boundary conditions in OpenFOAM [Greenshields, 2015].

Defined boundaries: Geometric constraint: Velocity U: Pressure P:
front empty (2D) empty (2D) empty (2D)

cyclic (3D) cyclic (3D) cyclic (3D)
back empty (2D) empty (2D) empty (2D)

cyclic (3D) cyclic (3D) cyclic (3D)
upstreamCyl wall fixedValue zeroGradient

downstreamCyl wall fixedValue zeroGradient
inlet patch fixedValue zeroGradient

outlet patch zeroGradient fixedValue
topAndBottom slip slip slip
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Figure A.160: Mesh generated in MEGA: 2D Tandem Cylinders with D = 1.

Table A.18 presents mean force coefficients, root mean square values, oscillation pe-
riod, frequency and Strouhals number behind both upstream and downstream cylin-
der. The values are found for the last 65 % results for the time simulation. It is
performed analysis for Reynolds number 100, 200 and 300.

Table A.18: Values for test case: Uniform flow around 2D tandem cylinders for
t = 500s.

Properties of Uniform Flow:
- Re = 100 Re = 200 Re = 300

Values Upstream Downstream Upstream Downstream Upstream Downstream
mean CL 0.00006 0.00202 0.00046 -0.00701 .005080 0.08367
mean CD 1.30039 -0.0042 1.13620 -0.13492 1.50550 0.94505
RMS CL 0.00965 0.09697 0.01770 0.23108 0.86000 1.73471
RMS CD 0.00008 0.00160 0.00039 0.00931 0.10338 0.46961
Tv[s] 7.936 8.064 7.353 7.353 5 & 2.488 -
fv[Hz] 0.126 0.124 0.136 0.136 0.2 & 0.402 -
St 0.126 0.124 0.136 0.136 0.2 & 0.402 -
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PLOTS: Tandem Cylinders in Uniform Flow at Re = 100

The figures below presents the oscillation of the force coefficient for upstream and
downstream cylinder. The upstream cylinder is oscillating with small root mean
square, such that the axis could have been scaled to visualized the oscillation.

Figure A.161: Drag - and Lift Coefficients for Upstream Cylinder in uniform flow at
Re = 100 and ∆t = 0.002.

Figure A.162: Drag - and Lift Coefficients for Downstream Cylinder in uniform flow
at Re = 100 and ∆t = 0.002.
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Figure A.163: Ux velocity probe behind Upstream Cylinder (x, y, z) = (−1.0, 0.354, 0)
at Re = 100 at ∆t = 0.002.

Figure A.164: Ux velocity probe behind Downstream Cylinder (x, y, z) =
(2.2, 0.354, 0) at Re = 100 at ∆t = 0.002.
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Figure A.165: The power spectral density of probe velocity Ux with respect to vortex
shedding period Tv for: Upstream Cylinder at Re = 100 and ∆t = 0.002.

Figure A.166: The power spectral density of probe velocity Ux with respect to vortex
shedding period Tv for: Downstream Cylinder at Re = 100 and ∆t = 0.002.
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Figure A.167: Velocity magnitude for uniform flow at Re = 100 at time instant
t = 1000s.

Figure A.168: Pressure distribution for uniform flow at Re = 100 at time instant
t = 1000s.
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PLOTS: Tandem Cylinders in Uniform Flow at Re = 200

The figures below present the oscillation of force coefficients. The oscillations have
small root mean square, such that the axisis could have been scales to visualize the
oscillation, espectially for the drog force oscillation.

Figure A.169: Drag - and Lift Coefficients for Upstream Cylinder in uniform flow at
Re = 200 and ∆t = 0.002.

Figure A.170: Drag - and Lift Coefficients for Downstream Cylinder in uniform flow
at Re = 200 and ∆t = 0.002.
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Figure A.171: Ux velocity probe behind Upstream Cylinder (x, y, z) = (−1.0, 0.354, 0)
at Re = 200 at ∆t = 0.002.

Figure A.172: Ux velocity probe behind Downstream Cylinder (x, y, z) =
(2.2, 0.354, 0) at Re = 200 at ∆t = 0.002.
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The oscillation period for the upstream and downstream cylinder is both at Tv =
7.353, with frequency fv = 0.136 Hz.

Figure A.173: The power spectral density of probe velocity Ux with respect to vortex
shedding period Tv for: Upstream Cylinder at Re = 200 and ∆t = 0.002.

Figure A.174: The power spectral density of probe velocity Ux with respect to vortex
shedding period Tv for: Downstream Cylinder at Re = 200 and ∆t = 0.002.
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Figure A.175: Velocity magnitude for uniform flow at Re = 200 at time instant
t = 500s.

Figure A.176: Velocity magnitude for uniform flow at Re = 200 at time instant
t = 1000s.
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Figure A.177: Pressure distribution for uniform flow at Re = 200 at time instant
t = 500s.

Figure A.178: Pressure distribution for uniform flow at Re = 200 at time instant
t = 1000s.
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PLOTS: Tandem Cylinders in Uniform Flow at Re = 300

Figure A.179: Drag - and Lift Coefficients for Upstream Cylinder in uniform flow at
Re = 300 and ∆t = 0.002.

Figure A.180: Drag - and Lift Coefficients for Downstream Cylinder in uniform flow
at Re = 300 and ∆t = 0.002.
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The 2D flow problem gives stable probe velocity behind the upstream cylinder around
time instant 180, but is oscillating with two frequencies. The velocity in x-direction
behind the downstream cylinder is close to zero (1x10−300), such that there is hardly
any velocity or oscillation frequency to find. To obtain the oscillation frequency a
probe must be places further downstream behind the downstream cylinder wake.

Figure A.181: Ux velocity probe behind Upstream Cylinder (x, y, z) = (−1.0, 0.354, 0)
at Re = 200 at ∆t = 0.002.

The velocity fluctuation behind the upstream cylinder is oscillating with a period of
Tv = 2.488s and Tv = 5s. The frequencies obtained are fv = 0.402 and fv = 0.2.

Figure A.182: The power spectral density of probe velocity Ux with respect to vortex
shedding period Tv for: Upstream Cylinder at Re = 300 and ∆t = 0.002.
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Figure A.183: Velocity magnitude for uniform flow at Re = 300 at time instant t = 5s.

Figure A.184: Velocity magnitude for uniform flow at Re = 200 at time instant
t = 175s.
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Figure A.185: Velocity magnitude for uniform flow at Re = 300 at time instant
t = 200s.

Figure A.186: Velocity magnitude for uniform flow at Re = 300 at time instant
t = 500s.
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Figure A.187: Pressure distribution for uniform flow at Re = 300 at time instant
t = 500s.

Figure A.188: Vorticity in z-direction ωz for uniform flow at Re = 300 at time instant
t = 500s.
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.11 Uniform Flow around a 3D Tandem Cylinder

An analysis of how tandem cylinders will behave in uniform flow is performed for three-
dimensional flow problems with a span-wise cylinder length of 6 times the diameter
length, where the domain size and cylinder properties are presented in table A.16.
The analysis is performed for Reynolds number 100, 300 and 500 with ∆t = 0.002,
where the flow properties are presented in table A.19.

Table A.19: Properties for Uniform flow for different Reynolds numbers.

Properties of Uniform Flow:
Re 100 300 500
U 1 1 0.5

magUInf 1 1 0.5
viscosity ν 0.01 0.003333 0.001

The results obtained are given in table A.20 for uniform flow around 3D tandem
cylinders. The values presented are found for the last 65 % of time simulation up to
t = 500s.

Table A.20: Uniform flow around tandem cylinders towards t = 500s.

Properties of Uniform Flow:
Re = 100 Re = 300 Re = 500

Values Upstream Downstream Upstream Downstream Upstream Downstream
mean CL 0.00009 -0.00166 0.00033 -0.00137 0.00312 0.00505
mean CD 1.30024 -0.00503 1.07441 -0.11942 1.05257 -0.17424
RMS CL 0.00946 0.09483 0.03816 0.33021 0.01562 0.35311
RMS CD 0.00012 0.00162 0.00495 0.05064 0.00241 0.04071
Tv[s] 8.133 8.002 - 7.143 - 13.16
fv[Hz] 0.123 0.125 - 0.14 - 0.076
St 0.123 0.125 - 0.14 - 0.152
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PLOTS: Uniform Flow around 3D Tandem Cylinders at Re = 100

The 3D uniform flow problem at Re = 100 around tandem cylinders presents stable
oscillation for both upstream and downstream cylinders (the results from the 2D and
3D cases for Re = 100 are accurate, check appendix .10).

The upstream cylinder has a mean drag coefficient at 1.3, while the 3D uniform flow
problem around a Single cylinder (presented in appendix .6) has a drag coefficient at
1.46. The downstream cylinder has a lift coefficient oscillating around 0 (zero), while
the drag coefficient is close to zero too. The upstream cylinder will therefore obtain
a larger drag force than the downstream cylinder.

Figure A.189: Drag - and Lift Coefficients for 3D Upstream Cylinder in uniform flow
at Re = 100 and ∆t = 0.002.

Figure A.190: Drag - and Lift Coefficients for 3D Downstream Cylinder in uniform
flow at Re = 100 and ∆t = 0.002.
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The Strouhals number for a 3D single cylinder in uniform flow at Re = 100 will be
at 0.172, while both upstream and downstream cylinder will have Strouhals number
close to 0.12. Such that both upstream and downstream will shed for equal period
and frequencies.

Figure A.191: Ux velocity probe behind 3D Upstream Cylinder (x, y, z) =
(−1.0, 0.354, 3.0) at Re = 100 at ∆t = 0.002.

Figure A.192: Ux velocity probe behind 3D Downstream Cylinder (x, y, z) =
(2.2, 0.354, 3.0) at Re = 100 at ∆t = 0.002.
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The oscillation period behind upstream cylinder is Tv = 8.113s, which is close to the
oscillation period behind the downstream cylinder at Tv = 8.002s,

Figure A.193: The power spectral density of probe velocity Ux with respect to vortex
shedding period Tv for: 3D Upstream Cylinder at Re = 100 and ∆t = 0.002.

Figure A.194: The power spectral density of probe velocity Ux with respect to vortex
shedding period Tv for: 3D Downstream Cylinder at Re = 100 and ∆t = 0.002.
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The plots for velocity magnitude and pressure distribution are at time instant t =
500s, where the flow problem is stable. These plots are similar for the 2D flow problem
with Reynolds number 100.

Figure A.195: Velocity magnitude for uniform flow around tandem cylinders for Re =
100 at time instant t = 500s.

Figure A.196: Pressure distribution for uniform flow around tandem cylinders for
Re = 100 at time instant t = 500s.
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OmegaZ gives a view of how the fluid is behaving and the degree of vorticity. One
can observe how a fluid flow acts around solid objects to vortex shedding phenomena
in the wake area. The 3D uniform problem around a single cylinder (appendix .6)
presents vortex shedding and layered vortices at time instant 180s, where the flow is
stable.

For the 3D uniform problem around tandem cylinders, one must simulate for almost
400-500 second for the wake behind the downstream cylinder to become stable. For
low Reynolds number as 100, there will not be observed any vortex shedding phe-
nomena, such that OmegaZ around tandem cylinders will only show how the uniform
flow is behaving behind the upstream and downstream cylinder.

Figure A.197: Vorticity in z-direction ωz for uniform flow around tandem cylinder for
Re = 100 at time instant t = 500s.

Figure A.198: Vorticity in z-direction ωz for uniform flow around tandem cylinder for
Re = 100 at time instant t = 500s.
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PLOTS: Uniform Flow around 3D Tandem Cylinders at Re = 300

The 3D uniform flow problem around tandem cylinders at Re = 300 presents os-
cillating force coefficients around upstream and downstream cylinder. The results
obtained for the 3D flow problem with Re = 300 differs from the results obtained for
the equivalent 2D flow problem. The mean lift coefficient is oscillating around zero
for upstream and downstream cylinder for both 2D and 3D flow problem. The root
mean square or the oscillation amplitude is larger for the 2D flow problem, as it is
restricted for three-dimensional effects.

The drag coefficients for the 2D flow problem is C̄D = 1.50550 for the upstream
cylinder and C̄D = 0.94505 for the downstream cylinder. For the 3D flow problem
the mean drag coefficients are reduced to C̄D = 1.07441 for the upstream cylinder,
while the downstream cylinder obtains a negative value at C̄D = −0.11942.

Comparing the upstream cylinder with the flow problem for a single cylinder subjected
to a uniform with Reynolds number 300, one can observe that the upstream cylinder
for the tandem for problem will have smaller oscillation amplitudes (root mean square
values) than for the flow problem with a single cylinder in section .6.

Figure A.199: Drag - and Lift Coefficients for 3D Upstream Cylinder in uniform flow
at Re = 300 and ∆t = 0.002.
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Figure A.200: Drag - and Lift Coefficients for 3D Downstream Cylinder in uniform
flow at Re = 300 and ∆t = 0.002.
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The probe velocity for the upstream cylinders is unstable with varying local tops.
These probe data cannot be used to find the value for oscillation period and frequency.
There will be velocities fluctuating around zero right behind the upstream cylinder,
as the inlet velocity flows around the tandem cylinders as one whole solid object.

Figure A.201: Ux velocity probe behind 3D Upstream Cylinder (x, y, z) =
(−1.0, 0.354, 3.0) at Re = 300 at ∆t = 0.002.

The probe velocity behind the downstream cylinder is oscillating with one top and
bottom within a period, such hat the oscillation period and frequencies are found.
Comparing to the equivalent 2D fluid problem, the oscillation period and frequency
are not found for the downstream cylinder (appendix .10).

Figure A.202: Ux velocity probe behind 3D Downstream Cylinder (x, y, z) =
(2.2, 0.354, 3.0) at Re = 300 at ∆t = 0.002.
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The vortex shedding period is not easy to find with the given figures.

Figure A.203: The power spectral density of probe velocity Ux with respect to vortex
shedding period Tv for: 3D Upstream Cylinder at Re = 300 and ∆t = 0.002.

The vortex shedding period is found for the downstream cylinder for the 3D tandem
flow case, with a oscillation period of Tv = 7.143, frequency and Strouhals number of
0.14.

Figure A.204: The power spectral density of probe velocity Ux with respect to vortex
shedding period Tv for: 3D Downstream Cylinder at Re = 300 and ∆t = 0.002.
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The plots for velocity magnitude and pressure distribution at time instant 500s. Dur-
ing the simulation the Force coefficients are oscillating with irregular amplitudes with
with a frequency for both upstream and downstream cylinder for all time instants.

Figure A.205: Velocity magnitude for uniform flow around tandem cylinders for Re =
300 at time instant t = 500s.

Figure A.206: Pressure distribution for uniform flow around tandem cylinders for
Re = 300 at time instant t = 500s.
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The omegaZ ωz visualizes how the uniform flow at Reynolds number 300 behaves
around tandem cylinders. The plots are given for time instant t = 500s. The fluid
acts all smooth around both cylinders, where the two solid surfaces acts as one large
body.

There are vortices acting behind the upstream cylinder (in-between the tandem cylin-
ders), which could be why it was unable to find the oscillation periods and frequencies
for the upstream cylinder. There are no clear vortex sheddings, and the wake region
becomes unclear. In the wake region the shedding occurs with 3D effects along the
cylinder.

Figure A.207: Vorticity in z-direction ωz for uniform flow around tandem cylinder for
Re = 300 at time instant t = 150s.
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The plots below presents the flow problem of a uniform flow at Re = 300 around a
single cylinder with span-wise length of 4 diameters (appendix .6), while the tandem
cylinders have a span-wise length of 6 diameters. For the flow problem around a single
cylinder, there are several vortex shedding presented in the plot, with 3D effects along
the span-wise length. The flow problem with tandem cylinders shows the two cylinders
acting almost as a single object, where the fluid moves around the tandem cylinders.
There will be vortices and velocities between the upstream and downstream cylinder,
but no clear 3D effects along the span-wise length.

Figure A.208: Vorticity in z-direction ωz for uniform flow around tandem cylinder for
Re = 300 at time instant t = 500s.

Figure A.209: Vorticity in z-direction ωz for uniform flow at Re = 300 at time instant
t = 250s. Different angle.
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PLOTS: Uniform Flow around 3D Tandem Cylinders at Re = 500

The 3D uniform flow problem around tandem cylinders at Re = 500 gives oscillating
drag - and lift coefficients around upstream and downstream cylinder. The mean
value of drag around upstream cylinder is C̄D = 1.05257. while the lift coefficient
oscillated around zero.

Figure A.210: Drag - and Lift Coefficients for 3D Upstream Cylinder in uniform flow
at Re = 500 and ∆t = 0.002.

The downstream cylinder will experience a negative drag coefficient of C̄D = −0.17424.
The lift coefficient will still oscillate around mean value of zero, but the root mean
square (oscillation amplitude) is larger than for the upstream cylinder. One can
observe that the flow is stable around t = 100s.

Figure A.211: Drag - and Lift Coefficients for 3D Downstream Cylinder in uniform
flow at Re = 500 and ∆t = 0.002.
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The velocity behind the upstream cylinder is unstable, as the figure below presents the
velocity with varying local tops. The probe velocity is also varying around the mean
value of zero, which means that there are small velocities behind the upstream cylin-
der. One can therefore not obtain the oscillation period, frequency or the Strouhals
number for the upstream cylinder. The 3D uniform flow problem with Re = 300 also
experiences small fluctuating velocities behind the upstream cylinder.

Figure A.212: Ux velocity probe behind 3D Upstream Cylinder (x, y, z) =
(−1.0, 0.354, 3.0) at Re = 500 at ∆t = 0.002.

The probe velocity behind the downstream cylinder oscillates with one top and bottom
within a period, such that the oscillation period, frequency and Strouhals number is
found.

Figure A.213: Ux velocity probe behind 3D Downstream Cylinder (x, y, z) =
(2.2, 0.354, 3.0) at Re = 500 at ∆t = 0.002.
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The velocity fluctuation far downstream at probe (3.5, 0.354, 3.0) is presented in the
figure below. The oscillation of the velocity in x-direction Ux is similar to the oscilla-
tion right behind the downstream cylinder.

Figure A.214: Ux velocity probe far downstream (x, y, z) = (3.5, 0.354, 3.0) at Re =
500 at ∆t = 0.002.

The figure below presents the pressure fluctuation for four different probes around
the cylinder. Time simulations before t = 100s is unstable as the pressure is varying.
The flow problems stabilizes and the pressure fluctuation oscillates periodically.

Figure A.215: Pressure fluctuation with respect to time simulation for Probe1 (-1,
0.354, 3), Probe 2 (0, 0.354, 3), Probe 3 (2.2, 0.354, 3) and probe 4 (3.5, 0.354, 3) for
Uniform Flow around 3D Tandem Cylinders with Re = 500 & ∆t = 0.002.
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The Power Spectral Density curves are presented for the upstream cylinder. There are
no obvious periods or frequencies which are dominated the flow behind the upstream
cylinder. This is due to the velocity behind the upstream cylinder is fluctuating
irregular around zero.

Figure A.216: The power spectral density of probe velocity Ux with respect to vortex
shedding period Tv for: 3D Upstream Cylinder at Re = 300 and ∆t = 0.002.

The downstream cylinder experiences fluctuating velocities with a period Tv = 13.61
and a frequency of fv = 0.076. The Strouhals number is St = 0.152, which is close
to the the value obtained for flow problem with Reynolds number 300. The periods
and frequency are deviating from the 3D flow problem with Re = 300 due to different
inlet velocity. All results for 3D uniform flow are presented in table A.20.

Figure A.217: The power spectral density of probe velocity Ux with respect to vortex
shedding period Tv for: 3D Downstream Cylinder at Re = 300 and ∆t = 0.002.
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Velocity magnitude is presented in the plots below at time instant t = 100s and
t = 500s. At time instant t = 100s the flow problem has stabilized and continue to
stay stable towards time instant t = 500s.

The velocities behind the upstream cylinders as close to zero, such that the inlet cur-
rent velocity is moving around the tandem cylinders as a single solid body. Velocities
behind the downstream cylinder and far downstream oscillated periodically due to
the vortex shedding phenomena in the wake region.

Figure A.218: Velocity magnitude for uniform flow around tandem cylinders for Re =
500 at time instant t = 100s.

Figure A.219: Velocity magnitude for uniform flow around tandem cylinders for Re =
500 at time instant t = 500s.
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Figure A.220 and A.221 presents the velocity distribution in y - and z - direction Uy
and Uz, which is approximately zero. The velocity in x-direction will dominate the
absolute velocity magnitude in the domain.

Figure A.220: Velocity in y - direction Uy for Uniform Flow around tandem cylinders
with Re = 500 at time instant t = 500s.

Figure A.221: Velocity in z - direction Uz for Uniform Flow around tandem cylinders
with Re = 500 at time instant t = 500s.
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Pressure distribution at time instant t = 100s and t = 500s looks similar as the
flow is stable at both time instants. One can observe a stagnation point in the area
in-front of the upstream cylinder with a high pressure zone. There is low pressure
zones in-between the tandem cylinders, and far downstream in the wake region due
to vortex shedding phenomena.

Figure A.222: Pressure distribution for uniform flow around tandem cylinders for
Re = 500 at time instant t = 100s.

Figure A.223: Pressure distribution for uniform flow around tandem cylinders for
Re = 500 at time instant t = 500s.
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Vorticity distribution in z-direction ωz is presented at time instant t = 100s. The
fluid motion is moving around the tandem cylinders, with vorticities close to zero in-
between the tandem cylinders. The fluid around the tandem cylinders have little 3D
effects as the flow moves smoothly over the tandem cylinders a a single solid surface.
Downstream in the the wake area consist of vortex shedding with 3D effects along the
vortex downstream.

Figure A.224: Vorticity in z-direction ωz for uniform flow around tandem cylinder for
Re = 500 at time instant t = 100s.

Figure A.225: Vorticity in z-direction ωz for uniform flow around tandem cylinder for
Re = 500 at time instant t = 100s. Different angle.
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Vorticity in z-direction ωz is presented at time instant t = 500s. The vorticity will
describe the fluid motion around the tandem cylinder, in-between the cylinders and
behaviour far downstream. Fluid moves smoothly around the tandem cylinders, will
fluid motions in-between the tandem cylinders. Downstream the flow will gain vortex
sheddings and 3D effects occur. At time instant t = 500s the 3D effects downstream
follow the vortex shedding. The vortex shedding seems more periodically for this time
instant, compares to time instant t = 100s where the downstream flow is chaotic and
irregular.

Figure A.226: Vorticity in z-direction ωz for uniform flow around tandem cylinder for
Re = 500 at time instant t = 500s.

Figure A.227: Vorticity in z-direction ωz for uniform flow around tandem cylinder for
Re = 500 at time instant t = 500s. Different angle.
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.12 MATLAB SCRIPTS:

%CALCULATING MEAN VALUES OF DRAG AND LIFT
%Plo t t i ng f o r c e c o e f f i c i e n t s with r e s p e c t to time s imu la t i on
c l e a r a l l ;
c l c ;

% Reading dat .− f i l e , & conver t ing in to matrix
f i d=fopen ( ’ forceCoef fs downstream3D uniRe500 . dat ’ , ’ r ’ ) ;
d a t a c e l l=text scan ( f id , ’% f%f%f%f%f%f ’ , ’ Header l ines ’ , 10 , ’ c o l l e c t ’ , 1 ) ;
f c l o s e ( f i d ) ;
datamat = ce l l 2mat ( d a t a c e l l ) ;

% c o l l e c t i n g data from matrix
Cl = datamat ( : , 4 ) ;
Cd = datamat ( : , 3 ) ;
time = datamat ( : , 1 ) ;

f i g u r e (1 )
p l o t ( time , Cl , ’ b ’ , time , Cd, ’m’ )
a x i s ( [ min ( time ) max( time ) −1.0 1 . 0 ] )
t i t l e ( ’ Force C o e f f i c i e n t s f o r Uniform f low around ’
’3D downstream c y l i n d e r : Re=500 , dt = 0 . 0 0 2 ’ ) ;
x l a b e l ( ’ Time ’ ) ;
y l a b e l ( ’ Force c o e f f i c i e n t s : C {L} and C {D} ’ ) ;
l egend ( ’ C L ’ , ’ C D ’ ) ;

%Finding mean and max/min va lues o f c o e f f i c e n t s
%Taking the mean o f 80 % l a s t va lue s

meanCl = mean( Cl ( end ∗0 . 6 5 : end ) ) ;
meanCd = mean(Cd( end ∗0 . 6 5 : end ) ) ;

%RMS − root mean square
RMS Cd = rms (Cd( end ∗0 .65 : end)−meanCd ) ;
RMS Cl = rms ( Cl ( end ∗0 .65 : end)−meanCl ) ;

f p r i n t f ( ’ The mean Cl i s %4.5 f \n ’ , meanCl )
f p r i n t f ( ’ The mean Cd i s %4.5 f \n ’ , meanCd)
f p r i n t f ( ’ The RMS of Cl i s %4.5 f \n ’ , RMS Cl)
f p r i n t f ( ’ The RMS of Cd i s %4.5 f \n ’ ,RMS Cd)
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%FINDING VORTEX FREQUENCY AND STROUHALS NUMBER
c l e a r a l l ; c l c ;

% Reading dat .− f i l e , & conver t ing in to matrix
f i d = fopen ( ’ Utot 3Dtandem uniRe500 . dat ’ , ’ r ’ ) ;
d a t a c e l l = text scan ( f id , ’% f (% f %f %f ) (% f %f %f ) (% f %f %f ) ’
’ ’(% f %f %f ) ’ , ’ Header l ines ’ , 6 ) ;
f c l o s e ( f i d ) ;
datamat = ce l l 2mat ( d a t a c e l l ) ;

time = datamat ( : , 1 ) ;
ux p1 = datamat ( : , 2 ) ; %Ux at probe1 : (−1.0 , 0 . 354 , 0)
ux p2 = datamat ( : , 8 ) ; %Ux at probe2 : ( 2 . 2 , 0 . 354 , 0)
ux p3 = datamat ( : , 1 1 ) ; %Ux at probe3 : ( 3 . 5 , 0 . 354 , 3)
dt = 0.002 ; %Sampling per iod , time step
Fs = 1/ dt ; %Sampling f requency
L = length ( time ) ; %Length o f s i gna l , s imu la t i on

%Plot o f l i f t c o e f f i c i e n t with r e s p e c t to time s imu la t i on :
f i g u r e (1 )
p l o t ( time , ux p1 , ’b ’ )
a x i s ( [ min ( time ) max( time ) −0.3 0 . 3 ] )
t i t l e ( ’ Probe v e l o c i t y u {x} behind 3D upstream cy l inde r , Re=500 ’)
x l a b e l ( ’ time ( s ) ’ )
y l a b e l ( ’ u {x} ’ )
l egend ( ’ u {x} at (−1.0 , 0 . 354 , 3 . 0 ) ’ )

f i g u r e (2 )
p l o t ( time , ux p2 , ’b ’ )
a x i s ( [ min ( time ) max( time ) −0.2 0 . 5 ] )
t i t l e ( ’ Probe v e l o c i t y u {x} behind 3D downstream cy l inde r , Re=500 ’)
x l a b e l ( ’ time ( s ) ’ )
y l a b e l ( ’ u {x} ’ )
l egend ( ’ u {x} at ( 2 . 2 , 0 . 354 , 3 . 0 ) ’ )

f i g u r e (3 )
p l o t ( time , ux p3 , ’b ’ )
a x i s ( [ min ( time ) max( time ) −0.4 0 . 8 ] )
t i t l e ( ’ Probe v e l o c i t y u {x} f a r downstream : Re=500 ’)
x l a b e l ( ’ time ( s ) ’ )
y l a b e l ( ’ u {x} ’ )
l egend ( ’ u {x} at ( 3 . 5 , 0 . 354 , 3 . 0 ) ’ )

%Power Spec t r a l Density with r e s p e c t to vortex shedding per iod
Y p1 = f f t ( ux p1 ) ;
prob1 P2 = abs ( Y p1/L ) ;
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prob1 P1 = prob1 P2 ( 1 : L/2+1);
prob1 P1 ( 2 : end−1) = 2∗prob1 P1 ( 2 : end−1);

Y p2 = f f t ( ux p2 ) ;
prob2 P2 = abs ( Y p2/L ) ;
prob2 P1 = prob2 P2 ( 1 : L/2+1);
prob2 P1 ( 2 : end−1) = 2∗prob2 P1 ( 2 : end−1);

fv = Fs ∗ ( 0 : ( L/2))/L ;
Tv=1./ fv ;

%Power Spec t r a l Density with r e s p e c t to vortex shedding per iod
f i g u r e (4 )
p l o t (Tv , prob1 P1 , ’ r ’ )
a x i s ( [ min ( time ) 40 0 0 . 0 2 ] )
t i t l e ( ’PDS o f u {x}(Tv) f o r 3D upstream cy l inde r , Re=500 ’)
x l a b e l ( ’ Vortex shedding per iod f o r upstream c y l i n d e r : T {v} ( s ) ’ )
y l a b e l ( ’ |PSD {ux} , upstreamCyl | ’ )

%Power Spec t r a l Density with r e s p e c t to vortex shedding f requency
f i g u r e (5 )
p l o t ( fv , prob1 P1 , ’ r ’ )
a x i s ( [ 0 0 . 2 0 0 . 0 2 ] )
t i t l e ( ’PDS o f u {x}( fv ) f o r 3D upstream cy l inde r , Re=500 ’)
x l a b e l ( ’ Vortex shedding frquency f o r upstream c y l i n d e r : f {v} (Hz ) ’ )
y l a b e l ( ’ |PSD {ux} , upstreamCyl | ’ )

%Power Spec t r a l Density with r e s p e c t to vortex shedding per iod
f i g u r e (6 )
p l o t (Tv , prob2 P1 , ’ r ’ )
a x i s ( [ min ( time ) 25 0 0 . 1 ] )
t i t l e ( ’PDS o f u {x}(Tv) f o r 3D downstream cy l inde r , Re=500 ’)
x l a b e l ( ’ Vortex shedding per iod f o r downstream c y l i n d e r : T {v} ( s ) ’ )
y l a b e l ( ’ |PSD {ux} , downstreamCyl | ’ )

%Power Spec t r a l Density with r e s p e c t to vortex shedding f requency
f i g u r e (7 )
p l o t ( fv , prob2 P1 , ’ r ’ )
a x i s ( [ 0 0 . 2 0 0 . 1 ] )
t i t l e ( ’PDS o f u {x}( fv ) f o r 3D downstream cy l inde r , Re=500 ’)
x l a b e l ( ’ Vortex shedding frquency f o r downstream c y l i n d e r : f {v} (Hz ) ) ’ )
y l a b e l ( ’ |PSD {ux} , downstreamCyl | ’ )
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%PLOT OF PRESSURE MEASURES AT PROBES

c l e a r a l l ;
c l c ;

% Reading dat .− f i l e , & conver t ing in to matrix
f i d = fopen ( ’ Ptot 3Dtandem uniRe500 . dat ’ , ’ r ’ ) ;
d a t a c e l l = text scan ( f id , ’% f%f%f%f%f%f ’ , ’ Header l ines ’ , 6 ) ;
f c l o s e ( f i d ) ;
datamat = ce l l 2mat ( d a t a c e l l ) ;

%e x t r a c t i n g d e s i r e d data f o r time and ux f o r a l l th ree probes :
time = datamat ( : , 1 ) ; %t imestep
p1 = datamat ( : , 2 ) ; %Probe 1 : (−1 , 0 . 354 , 3)
p2 = datamat ( : , 3 ) ; %Probe 2 : (0 , 0 . 354 , 3)
p3 = datamat ( : , 4 ) ; %Probe 3 : ( 2 . 2 , 0 . 3543 , 3)
p4 = datamat ( : , 5 ) ; %Probe 4 : ( 3 . 5 , 0 . 3543 , 3)

%Plot o f l i f t c o e f f i c i e n t with r e s p e c t to time s imu la t i on :
f i g u r e (1 )
p l o t ( time , p1 , ’b ’ , time , p2 , ’ r ’ , time , p3 , ’ g ’ , time , p4 , ’ y ’ )
a x i s ( [ min ( time ) max( time ) −0.3 0 . 1 5 ] )
t i t l e ( ’ Pres sure : Uniform f low on 3D Tandem Cyl inder s at Re=500 ’)
x l a b e l ( ’ time ( s ) ’ )
y l a b e l ( ’ Pressure ’ )
l egend ( ’ Pres sure at (−1 , 0 . 354 , 3 ) ’ , ’ Pres sure at (0 , 0 . 354 , 3 ) ’ ,
’ Pres sure at ( 2 . 2 , 0 .3543 , 3 ) ’ , ’ Pres sure at ( 3 . 5 , 0 .3543 , 3 ) ’ ) ;
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%PRESSURE DISTRIBUTION AROUND CYLINDERS
c l e a r a l l ; c l c ;

%Upstream Cyl inder in Shear Flow : Reading csv .− f i l e
data up shear=csvread ( ’ ups t r eam s l i c e shea rRe500 t500 . csv ’ , 1 , 0 ) ;

%Downstream Cyl inder in Shear f low : Reading dat .− f i l e
data down shear=csvread ( ’ downst ream s l i c e shearRe500 t500 . csv ’ , 1 , 0 ) ;

%Upstream Cyl inder in Uniform Flow : Reading csv .− f i l e
data up uni=csvread ( ’ ups t r eam s l i c e un iRe500 t500 . csv ’ , 1 , 0 ) ;

%Downstream Cyl inder in Uniform Flow : Reading dat .− f i l e
data down uni=csvread ( ’ downstream s l i ce un iRe500 t500 . csv ’ , 1 , 0 ) ;

%Extract ing value o f p r e s su r e f o r Upstream Cyl inder Shear Flow Problem
p1 up shear = data up shear (117 :146 , 5 ) ;
p2 up shear = data up shear ( 1 : 8 6 , 5 ) ;
p3 up shear = data up shear (232 :266 , 5 ) ;
p up shear= [ p1 up shear ; p2 up shear ; p3 up shear ] ;

%Extract ing value o f p r e s su r e f o r Downstream Cyl inder Shea Flow Problem
p1 down shear = data down shear (276 :310 , 5 ) ;
p2 down shear = data down shear ( 1 : 1 2 1 , 5 ) ;
p down shear = [ p1 down shear ; p2 down shear ] ;

%Extract ing value o f p r e s su r e f o r Upstream Cyl inder Uniform Flow Problem
p1 up uni = data up uni (117 : 146 , 5 ) ;
p2 up uni = data up uni ( 1 : 8 6 , 5 ) ;
p3 up uni = data up uni (232 : 266 , 5 ) ;
p up uni= [ p1 up uni ; p2 up uni ; p3 up uni ] ;

%Extract ing value o f p r e s su r e f o r Downstream Cyl inder Uniform Flow Problem
p1 down uni = data down uni (276 : 310 , 5 ) ;
p2 down uni = data down uni ( 1 : 1 2 1 , 5 ) ;
p down uni = [ p1 down uni ; p2 down uni ] ;

%p tot up c o n s i s t o f 151 e lements
theta up = (180/ p i )∗ t ranspose ( l i n s p a c e (0 , pi , 1 5 1 ) ) ;
theta down = (180/ p i )∗ t ranspose ( l i n s p a c e (0 , pi , 1 5 6 ) ) ;

%Plot o f Pressure c o e f f i c i e n t around upper halv o f c y l i n d e r s
f i g u r e (1 )
p l o t ( theta up , p up shear , ’b ’ , theta up , p up uni , ’ r ’ )
a x i s ( [ 0 180 −0.15 0 . 2 ] )
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t i t l e ( ’ Pres sure D i s t r i b u t i o n Cp around Upstream c y l i n d e r at z =3.0 : Uniform Flow & Shear Flow Re=500 ’)
x l a b e l ( ’\ theta [ degree s ] , upper h a l f f o r Upstream Cylinder ’ )
y l a b e l ( ’ Pressure C o e f f i c i e n t Cp {Upstream } ’ )
l egend ( ’Cp in Shear Flow ’ , ’Cp in Uniform Flow ’ ) ;

f i g u r e (2 )
p l o t ( theta down , p down shear , ’b ’ , theta down , p down uni , ’ r ’ )
a x i s ( [ 0 180 −0.12 0 . 0 2 ] )
t i t l e ( ’ Pres sure D i s t r i b u t i o n Cp around Downstream c y l i n d e r at z =3.0 : Uniform Flow & Shear Flow Re=500 ’)
x l a b e l ( ’\ theta [ degree s ] , upper h a l f f o r Downstream Cylinder ’ )
y l a b e l ( ’ Pressure C o e f f i c i e n t P {Downstream } ’ )
l egend ( ’Cp in Shear Flow ’ , ’Cp in Uniform Flow ’ ) ;

223



%VALIDATION OF TOP AND BOTTOM BOUNDARY CONDITION
c l e a r a l l ; c l c ;

%Upstream Cyl inder : Reading dat .− f i l e , & conver t ing in to matrix
data bottom = csvread ( ’ bottomBC ShearRe100 t500 . csv ’ , 1 , 0 ) ;

%Downstream Cyl inder : Reading dat .− f i l e , & conver t ing in to matrix
data top = csvread ( ’ topBC ShearRe100 t500 . csv ’ , 1 , 0 ) ;

%Extract ing va lue s f o r bottom boundary
P bottom = data bottom ( : , 1 ) ;
Ux bottom = data bottom ( : , 2 ) ;
Uy bottom = data bottom ( : , 3 ) ;
Uz bottom = data bottom ( : , 4 ) ;
arc bottom = data bottom ( : , 1 0 ) ;
x bottom = data bottom ( : , 1 1 ) ;

%Extract ing va lue s f o r top boundary
P top = data top ( : , 1 ) ;
Ux top = data top ( : , 2 ) ;
Uy top = data top ( : , 3 ) ;
Uz top = data top ( : , 4 ) ;
a r c top = data top ( : , 1 0 ) ;
x top = data top ( : , 1 1 ) ;

%Values f o r bottom boundary
f i g u r e (1 )
p l o t ( x bottom , Ux bottom , ’b ’ , x bottom , Uy bottom , ’ r ’ ,
x bottom , P bottom , ’m’ )
a x i s ( [ min ( x bottom ) max( x bottom ) −0.05 0 . 2 3 ] )
t i t l e ( ’Ux and P at Bottom Boundary f o r −6.0<x<15 ’)
x l a b e l ( ’ X { range } ’ )
%y l a b e l ( ’ ’ )
l egend ( ’Ux at Bottom Boundary ’ , ’Uy at Bottom Boundary ’ ,
’P at Bottom Boundary ’ ) ;

%Values f o r top boundary
f i g u r e (2 )
p l o t ( x top , Ux top , ’b ’ , x top , Uy top , ’ r ’ , x top , P top , ’m’ )
a x i s ( [ min ( x top ) max( x top ) −0.1 1 . 3 ] )
t i t l e ( ’Ux and P at Top Boundary f o r −6.0<x<15 ’)
x l a b e l ( ’ X { range } ’ )
%y l a b e l ( ’ ’ )
l egend ( ’Ux at Top Boundary ’ , ’Uy at Top Boundary ’ , ’P at Top Boundary ’ ) ;
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%VALIDATION OF BOUNDARY LAYER RESOLUTION
c l e a r a l l ; c l c ;

%Upstream Cyl inder : Reading dat .− f i l e , & conver t ing in to matrix
data up = csvread ( ’ upstream ShearRe100 t500 . csv ’ , 1 , 0 ) ;

%Downstream Cyl inder : Reading dat .− f i l e , & conver t ing in to matrix
data down = csvread ( ’ downstream ShearRe100 t500 . csv ’ , 1 , 0 ) ;

%Extract ing va lue s f o r upstream c y l i n d e r
Ux up = data up ( : , 2 ) ;
Uy up = data up ( : , 3 ) ;
Uz up = data up ( : , 4 ) ;
y up = data up ( : , 1 2 ) ;

%Extract ing va lue s f o r downstream c y l i n d e r
Ux down = data down ( : , 2 ) ;
Uy down = data down ( : , 3 ) ;
Uz down = data down ( : , 4 ) ;
y down = data down ( : , 1 2 ) ;

%Values f o r upstream c y l i n d e r
f i g u r e (1 )
p l o t ( y up , Ux up , ’b ’ , y up , Uy up , ’ g ’ , y down , Ux down , ’ r ’ ,
y down , Uy down , ’m’ )
a x i s ( [ min ( y up ) max( y up ) −0.2 1 . 4 ] )
t i t l e ( ’Ux and Uy above Upstream and Downstream Cyl inder f o r 0.5<y<5.0 ’)
x l a b e l ( ’ Y { arch } , ranging 0 .5 < y < 5 . 0 ’ )
%y l a b e l ( ’ ’ )
l egend ( ’Ux above Upstream Cylinder ’ , ’Uy above Upstream Cylinder ’ ,
’Ux above Downstream Cylinder ’ , ’Uy above Downstream Cylinder ’ ) ;
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.13 BASH SCRIPTS:

Bash scripts performs gmshToFoam on Vilje:

#!/bin/bash

#PBS -N mesh

#PBS -l walltime=01:00:00

#PBS -l select=4:ncpus=32:mpiprocs=16

#PBS -A nn9191k

cd $PBS_O_WORKDIR

module load gcc/6.2.0

module load mpt/2.14

module load openfoam/5.0

gmshToFoam 4_tandem3D_6dia.msh

Bash scripts performs decomposePar, checkMesh and pisoFoam on Vilje:

#!/bin/bash

#PBS -N name

#PBS -l walltime=68:00:00

#PBS -l select=4:ncpus=32:mpiprocs=16

#PBS -A nn9191k

cd $PBS_O_WORKDIR

module load gcc/6.2.0

module load mpt/2.14

module load openfoam/5.0

decomposePar

mpiexec_mpt checkMesh -parallel

mpiexec_mpt pisoFoam -parallel

Bash scripts deletes undesired time steps for the performed analysis in each processor
folder from 0 to 63:

#!/bin/bash

#PBS -N deleting

#PBS -l walltime=01:00:00

#PBS -l select=1:ncpus=32:mpiprocs=16

#PBS -A nn9191k

cd $PBS_O_WORKDIR

for i in {0..63}

do

cd processor\$i

rm -rf 5 10 15 20 25 30 35 40 45 55 60 65 70 75 80

cd ..

done
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.14 OpenFOAM SCRIPTS

.14.1 OpenFOAM: boundary

/*--------------------------------*- C++ -*----------------------------------*\

| ========= | |

| \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

| \\ / O peration | Version: 5.0 |

| \\ / A nd | Web: www.OpenFOAM.org |

| \\/ M anipulation | |

\*---------------------------------------------------------------------------*/

FoamFile

{

version 2.0;

format binary;

class polyBoundaryMesh;

location "constant/polyMesh";

object boundary;

}

// * * * * * * * * * * * * * * * * * * * * * * * * * //

7

(

upstreamCyl

{

type wall;

physicalType wall;

nFaces 36000;

startFace 39451400;

}

back

{

type cyclic;

physicalType cyclic;

nFaces 110200;

startFace 39487400;

neighbourPatch front;

}

front

{

type cyclic;

physicalType cyclic;

nFaces 110200;

startFace 39597600;

neighbourPatch back;

}
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topAndBottom

{

type slip;

physicalType slip;

nFaces 98400;

startFace 39707800;

}

inlet

{

type patch;

physicalType patch;

nFaces 24000;

startFace 39806200;

}

downstreamCyl

{

type wall;

physicalType wall;

nFaces 37200;

startFace 39830200;

}

outlet

{

type patch;

physicalType patch;

nFaces 25200;

startFace 39867400;

}

)

// *************************************** //
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.14.2 OpenFOAM: velocity U

/*--------------------------------*- C++ -*----------------------------------*\

| ========= | |

| \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

| \\ / O peration | Version: 4.1 |

| \\ / A nd | Web: www.OpenFOAM.org |

| \\/ M anipulation | |

\*---------------------------------------------------------------------------*/

FoamFile

{

version 2.0;

format ascii;

class volVectorField;

object U;

}

// * * * * * * * * * * * * * * * * * * * * * * *

dimensions [0 1 -1 0 0 0 0];

internalField uniform (0 0 0);

boundaryField

{

front

{

type cyclic;

}

back

{

type cyclic;

}

topAndBottom

{

type slip;

}

upstreamCyl

{

type fixedValue;

value uniform (0 0 0);

}

downstreamCyl

{

type fixedValue;

value uniform (0 0 0);

}

inlet

{

type fixedProfile;
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profile polynomial

(

( (0.1 0 0) (1 0 0) )

);

direction (0 1 0);

origin -5.0;

}

outlet

{

type zeroGradient;

}

}

// ********************************************** //
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.14.3 OpenFOAM: pressure P

/*--------------------------------*- C++ -*----------------------------------*\

| ========= | |

| \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

| \\ / O peration | Version: 4.1 |

| \\ / A nd | Web: www.OpenFOAM.org |

| \\/ M anipulation | |

\*---------------------------------------------------------------------------*/

FoamFile

{

version 2.0;

format ascii;

class volScalarField;

object p;

}

// * * * * * * * * * * * * * * * * * * * * * * * * * * //

dimensions [0 2 -2 0 0 0 0];

internalField uniform 0;

boundaryField

{

front

{

type cyclic;

}

back

{

type cyclic;

}

upstreamCyl

{

type zeroGradient;

}

downstreamCyl

{

type zeroGradient;

}

topAndBottom

{
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type slip;

}

inlet

{

type zeroGradient;

}

outlet

{

type fixedValue;

value uniform 0;

}

}

// ************************************************ //
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.14.4 OpenFOAM: vorticity

/*--------------------------------*- C++ -*----------------------------------*\

========= |

\\ / F ield | OpenFOAM: The Open Source CFD Toolbox

\\ / O peration |

\\ / A nd | Web: www.OpenFOAM.org

\\/ M anipulation |

-------------------------------------------------------------------------------

Description

Calculates the vorticity field, i.e. the curl of the velocity field.

\*---------------------------------------------------------------------------*/

type vorticity;

libs ("libfieldFunctionObjects.so");

field U;

executeControl writeTime;

writeControl writeTime;

// ************************************************************************* //
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.14.5 OpenFOAM: controlDict

/*--------------------------------*- C++ -*----------------------------------*\

| ========= | |

| \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

| \\ / O peration | Version: 4.1 |

| \\ / A nd | Web: www.OpenFOAM.org |

| \\/ M anipulation | |

\*---------------------------------------------------------------------------*/

FoamFile

{

version 2.0;

format ascii;

class dictionary;

location "system";

object controlDict;

}

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

application pisoFoam;

startFrom latestTime;

startTime 0;

stopAt endTime;

endTime 500;

deltaT 0.002;

writeControl timeStep;

writeInterval 2500;

purgeWrite 100;

writeFormat binary;

writePrecision 6;

writeCompression off;

timeFormat general;

timePrecision 6;
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runTimeModifiable no;

\newpage

functions

{

Probes

{

type probes;

functionObjectLibs ("libsampling.so");

enabled true;

writeControl timeStep;

writeInterval 1;

probeLocations

(

( -1.0 0.354 3)

( 0 0.354 3)

( 2.2 0.354 3)

( 3.5 0.354 3)

);

fields

(

p U

);

}

forceCoeffs_upstreamCyl

{

type forceCoeffs;

functionObjectLibs ( "libforces.so" );

writeControl timeStep;

writeInterval 1;

patches ( upstreamCyl );

pName p;

UName U;

rho rhoInf;

rhoInf 1000;

magUInf 0.5;

log true;

liftDir (0 1 0);

dragDir (1 0 0);

CofR (0 0 0);

pitchAxis (0 0 1);

lRef 1;

Aref 6;
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}

forceCoeffs_downstreamCyl

{

type forceCoeffs;

functionObjectLibs ( "libforces.so" );

writeControl timeStep;

writeInterval 1;

patches ( downstreamCyl );

pName p;

UName U;

rho rhoInf;

rhoInf 1000;

magUInf 0.5;

log true;

liftDir (0 1 0);

dragDir (1 0 0);

CofR (0 0 0);

pitchAxis (0 0 1);

lRef 1;

Aref 6;

}

#includeFunc singleGraph

#includeFunc Q

#includeFunc vorticity

}

// **************************************************************** //
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.14.6 OpenFOAM: decomposeParDict

/*--------------------------------*- C++ -*----------------------------------*\

| ========= | |

| \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

| \\ / O peration | Version: 4.1 |

| \\ / A nd | Web: www.OpenFOAM.org |

| \\/ M anipulation | |

\*---------------------------------------------------------------------------*/

FoamFile

{

version 2.0;

format ascii;

class dictionary;

location "system";

object decomposeParDict;

}

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

numberOfSubdomains 64;

method scotch;

simpleCoeffs

{

n (8 8 1);

delta 0.001;

}

hierarchicalCoeffs

{

n (8 8 1);

delta 0.001;

order xyz;

}

manualCoeffs

{

dataFile "";

}

distributed no;

roots ( );

// ************************************************************** //
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