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Abstract

The maritime activity in the Arctic Ocean is ever increasing, as the reduced ice extent reveals new
resources and new shipping routes. Ice loading processes due to ship-ice interaction are highly
complex and yet not fully understood. Many probabilistic methods for describing the ice loading
process and its extreme values are proposed in the literature. However, all of them seem to have flaws
or weaknesses, thus no universal method is verified. The purpose of this thesis is to compare di�erent
methods for estimation of short-term extreme loads, with a focus on revealing their strengths
and weaknesses. Full-scale measurements from KV Svalbard are used for analyses. The applied
probabilistic methods are; the classical approach, the asymptotic approach, application of a three-
parameter exponential distribution, and the average conditional exceedance rate (ACER) method.

A review of sea ice and ice formation is performed. Mechanical and physical properties of ice are
described, i.e., strength, ductility, fracture toughness and Young’s modulus. The most critical pa-
rameters for the properties were found to be porosity, strain rate, temperature and macrostructure.
Moreover, the ice-breaking process is described with associated pressures and loads.

Many of the applied methods are based upon the assumption of stationarity. However, since the
ice loading process is highly complex, it is not straightforward which conditions and characteristics
that must be stationary to provide stationarity for the measured ice load peaks. Previous works
on the same subject present di�erent requirements when stationarity is strived for. Therefore, a
brief study on how ice thickness and vessel speed a�ect the estimated extreme ice load is carried
out. The study provides strong indications that the ice thickness has a significant impact on the
estimated extreme load, whereas no correlation was found for the vessel speed.

The applied probabilistic methods for estimating extreme loads are described and implemented in
MATLAB. Several time series for analyses were identified based on the study related to stationarity.
Di�erent categories of load patterns were observed for the data sets. Four of the data sets were
selected for comparison of the methods, where the most frequently observed load patterns were
represented; one set containing an outlier, one set where two load populations were identified, one
set with scattered loads in the upper tail, and a set that exhibited a highly stationary load pattern.

Most of the applied methods provide good fits and estimates of extreme loads if the data sets are
selected with some care. Thus, the selection of method should depend on what kind of data that is
being analyzed, and what the purpose of the application is. The exponential and Weibull distribu-
tions provide good fits to data collected during stationary ice conditions. However, stationary ice
conditions are rarely encountered in Arctic waters, which makes these methods unsuitable for live
estimation of extreme loads. The three-parameter exponential distribution is more flexible than
the regular exponential distribution, by means of the ability to capture a more extensive variety
of load patterns. The ACER method provides inconsistent results when applied to time series of
short duration (less than 30 min), which made it di�cult to compare with the other methods.
The asymptotic approach using type I extreme value distribution, i.e., the Gumbel, was found to
be the most robust method, in the sense of providing satisfactory fits and estimates of extreme
loads for a wide range of load patterns. It was also found to be better than the ACER method for
6 hours non-stationary time series. However, none of the methods were able to capture outliers,
which were found for several data sets. It is questionable whether the outliers are actual loads or
measuring errors. This should be investigated to be able to develop accurate models for extreme
load estimation.
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Sammendrag

Den marine aktiviteten i Arktis øker stadig, da den reduserte isutbredelsen frigjør nye ressurser
og nye transportruter. Isbelastninger som følge av skip-is-interaksjon er svært komplekse og ennå
ikke forstått fullt og helt. En rekke statistiske metoder for å beskrive isbelastningsprosesser og
tilhørende ekstremverdier er foreslått i litteraturen, men alle synes å ha feil eller svakheter, og det
eksisterer ingen verifisert universell modell. Formålet med denne oppgaven er å sammenligne ulike
metoder for estimering av korttids ekstrembelastninger, med fokus på styrker og svakheter ved de
ulike metodene. Fullskala målinger fra KV Svalbard er brukt til analyser. De anvendte metodene er;
klassisk tilnærming, asymptotisk tilnærming, anvendelse av en tre-parameter eksponentialfordeling,
og ”average conditional exceedance rate” (ACER) metoden.

En litteraturstudie av sjøis og isdannelse er gjennomført, og mekaniske og fysiske egenskaper
ved is er beskrevet. De viktigste parametrene for isegenskapene ble funnet å være porøsitet,
belastningsrate, temperatur og makrostruktur. Videre er isbryting beskrevet, med tilhørende
trykkfordelinger og belastninger.

Mange av de anvendte metodene er basert på antagelsen om stasjonæritet. Siden islaster er kom-
plekse kan det være vanskelig å si hvilke betingelser og egenskaper som må være stasjonære for å
oppnå en stasjonær isbelastningsprosess. Tidligere arbeider på det samme emnet presenterer ulike
krav når stasjonæritet er etterstrebet. Det er derfor utført en kort studie på hvordan istykkelse
og skipshastighet påvirker den estimerte ekstremlasten. Studien gir sterke indikasjoner på at
istykkelsen har stor innvirkning på den estimerte ekstremlasten, mens det ikke ble funnet noen
sammenheng mellom fartøyets hastighet og den beregnede ekstremlasten.

De anvendte statistiske metodene for estimering av ekstremlaster er beskrevet og implementert i
MATLAB. Flere tidsserier for analyser ble identifisert basert på studien relatert til stasjonæritet.
Ulike kategorier av islastfordelinger ble observert for datasettene. Fire datasett ble brukt for å
sammenligne de probabilistiske metodene, der de hyppigst observerte lastfordelingene var represen-
tert; ett sett med en "outlier", ett sett hvor to lastpopulasjoner ble identifisert, ett sett med spredte
laster i den øvre halen, og ett sett som utviste meget stasjonær lastfordeling.

De fleste av de anvendte metodene gir gode tilpasningskurver og estimater av ekstremlaster dersom
datasettene velges med omhu. Valg av metode bør derfor avhenge av hvilken type data som analy-
seres, og hva formålet med analysen er. Eksponential- og Weibull-fordeling gir gode tilpasninger til
datasett som stammer fra stasjonære isforhold. Imidlertid finner man sjelden stasjonære isforhold i
arktiske farvann, noe som gjør disse metodene uegnede for live-estimering av ekstremlaster. Ekspo-
nentialfordelingen med tre parametre er mer fleksibel enn den ordinære eksponentialfordelingen, i
form av evnen til å fange opp et større spekter av underliggende fordelinger. ACER-metoden gir
inkonsekvente resultater for tidsserier med kort varighet (mindre enn 30 min), hvilket gjorde det
vanskelig å sammenligne metoden med de andre metodene. Den asymptotiske tilnærmingen ved
bruk av type I ekstremverdifordeling, det vil si Gumbel-fordeling, viste seg å være den mest robuste
metoden, i form av å gi gode estimater av ekstremlaster for et bredt spekter av underliggende
fordelinger. Den var også bedre enn ACER-metoden ved analyse av 6 timers ikke-stasjonære
tidsserier. Imidlertid var ingen av metodene i stand til å fange opp outliere, som ble funnet i
flere datasett. Det kan stilles spørsmål ved om outliere er faktiske laster eller målefeil. Dette bør
undersøkes nærmere for å kunne utvikle gode statistiske modeller for ekstreme islaster.
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1 Background

1 Background

Over the past years, activities related to exploitation of natural resources, such as oil and gas,
minerals and biological resources in the Arctic areas have increased. Decreasing ice extent has
revealed the Northeast Passage open for longer periods, which opens up for transportation of goods
and commodities in the Arctic areas. The number of transit voyages has increased the last ten
years, and the trend is expected to continue.

For ships operating in ice-infested waters, the presence of ice is a challenge, both in a design
perspective and an operational perspective, as the ice induces large local loads on the hull. Moreover,
the loading process and its extreme values are di�cult to describe by probabilistic methods, although
several models are proposed in the literature. As a response to these challenges, DNV (now DNV
GL) has performed measurements during full-scale trials on the Norwegian coast guard vessel KV
Svalbard in 2006, 2007, 2011 and 2012. The measurements are a part of an Ice Load Monitoring
(ILM) project. The measurements provide valuable data, including strains in the bow region during
ice loading.

Accurate probabilistic models for describing ice loads are valuable, both from a design point of view
and for navigation purposes. This thesis provides a review and a comparative study of state of the
art existing methods for estimation of short-term extreme ice loads, using the measurements from
KV Svalbard to reveal their strengths and weaknesses.
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2 Ice

2 Ice

2.1 Ice Infested Areas

Sea ice is found in the Arctic and Antarctic areas. The ice conditions are somewhat di�erent in the
two areas, mainly because Antarctica is a continent surrounded by a sea, whereas the Arctic is a
sea surrounded by continents (Riska, 2017a). On average, almost half of the area that is covered
with sea ice during winter in the Arctic survives the summer (Arctic vs. Antarctic, 2017). Ice that
survives the summer will continue to grow the following winter, forming multi-year ice. Multi-year
ice has di�erent properties than first-year ice, which will be discussed later on. Ice properties will be
discussed in Section 2.3. In the Antarctic, most of the sea ice melts during the Antarctic summer,
making the presence of multi-year ice limited to only a few areas. Figure 1 shows the ice extent
in the Arctic between 1979 and 2012 measured in March and September. The September trend
indicates that Arctic oceans may be completely ice-free during summer in a relatively near future,
which opens up for more activity. An important consequence for ice-going vessels is that there
will be less multi-year ice, some years maybe not any at all. The decrease in ice extent during
winter does not show the same dramatic trend, and the trend indicates that there will be sea ice
during winter in the Arctic in the foreseeable future. However, the low decrease rate in ice extent
during winter may be explained by more factors than the climate alone. Whereas in summer the
ice edge is somewhere at sea, the ice edge in winter is bordered in many places by land (Russian
Siberia, Canadian Arctic islands, Alaska, Greenland and Spitsbergen). In truth, there are only
three locations where the ice edge is at sea in winter: the Labrador Sea, the Barents/Greenland
Sea and the Bering Sea. This is a small fraction of the total ice edge length, and a slightly warmer
climate will only a�ect the location of the ice border in these areas. Thus, the measurements may
not fully reflect an increasing temperature.

Figure 1: Ice extent in the Arctic (Je�ries et al., 2013).
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2.2 Formation of Ice and Ice Features

Sea ice forms when seawater reaches the freezing temperature, which depends on the salinity of the
water. For salinity of 35 [ppt], which is typical for seawater, the freezing temperature is -1.8 ¶C
(Salinity and Brine, 2017). When ice crystals are formed, they are oriented in random directions,
and these needle formed crystals start to grow perpendicular to their so-called c-axis. If the sea is
calm, these needles develop very rapidly at low temperatures and change to plate crystals (Zubov,
1963). These thin ice sheets, called nilas, will develop in the horizontal plane, resulting in vertical
c-axes. With all c-axes pointing in the same direction, the ice becomes anisotropic. As the layers
continue to grow, they are pushed on top of each other, see Figure 3 (a). For thin ice, the two
layers will alternately be on top of each other, a phenomenon called finger rafting.

As long as the air temperature is colder than the freezing temperature, Tf , and the water tem-
perature is su�ciently low, heat will conduct from the water to the air, through the ice, causing
the ice to grow thicker. Since the heat must be transferred through the ice, thick ice grows slower
than thin ice. Ice covered with snow is also growing slower, as snow is a good insulator. There
are many suggested formulas for how to describe the growth rate of the ice thickness. Many of
them are variants of Stefan’s formula, developed by the Slovenian physicist Josef Stefan in 1891.
Stefan’s formula says that the ice thickness is proportional to


t · (Tf ≠ Tair), where t is the time

and Tair < Tf (Weber, 2009). In the Arctic, first-year level ice is typically 1.5 - 2.0 meters thick at
the end of winter. Multi-year ice can be several meters thick.

When seawater freezes, the salt is rejected by the ice. Solutions with very high salinity, called
brine, get trapped inside of the ice, making it porous and weak. Over time, brine is drained out by
gravity drainage and flushing (Understeiner, 1968), making the salinity in top layers of multi-year
ice reduced to less than 10 % compared to newly formed ice (Wettlaufer, 2011).

Icebergs are formed when ice breaks o� from glaciers, and its properties are somewhat di�erent
compared to sea ice. The glacier ice is created when snow is compressed under its own weight.
In the upper layers, the ice crystals are randomly oriented, because the snowflakes have settled
randomly. The ice is deforming by gliding along its basal planes, which are perpendicular to the
c-axis. As the ice deforms, the c-axes rotate towards the axis of compression, making the crystals
no longer randomly oriented (Ice crystal structure, 2017). However, glacier ice is often considered
as an isotropic material (Sanderson, 1988). Since icebergs are not made out of seawater, there is no
brine in the ice, making it less porous and stronger than sea ice formed at sea. Ice-going vessels are
not designed for collisions with large icebergs, and impacts are characterized as accidents. While
icebergs are easily avoided by ships, they are a bigger issue for o�shore installations. However,
growlers that are trapped inside the sea ice may be hard to detect, and can cause substantial
damages to ships.

Winds and currents induce drifting and stresses in the ice layers (Eriksson et al., 2007). When ice
layers are compressed against each other, the ice is crushed and piled up, and ice ridges are formed
(see Figure 3 (b)). Ice ridges with keel depths of up to 50 meters have been measured (Johnsten et
al., 2009). There is no consensus on how deep such ridges can be, or if there is a limit at all. An
asymptotic value of 25 times the ice thickness has been suggested (Riska, 2017a). Although the keel
depth of an ice ridge can be very large, the sail height is rarely higher than a few meters, making
them di�cult to detect. Young ice ridges have a porosity of approximately 30 % due to the void
between the crushed ice (Riska, 2017e). As the time goes, the water filling up the voids may freeze,
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2.2 Formation of Ice and Ice Features

forming consolidated ridges. Multi-year ice ridges tend to be wider, but less deep than younger
ridges, with a typical angle between the keel and the horizontal plane of 25¶, as indicated in Figure
3 (e) (Riska, 2017e). Ice ridges usually form perpendicular to the direction of compression, making
them more or less parallel to each other. A typical pressure ridge is shown in Figure 2.

Figure 2: Typical pressure ridge in the Arctic Ocean (Alexander & Alexander, n.d.).

Figure 3: Formation of ice ridges (Riska, 2017b).
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2.3 Mechanical Properties

2.3 Mechanical Properties

The properties of ice come along with great variations, depending on many parameters. Accurate
models have turned out to be challenging to develop, even inside the laboratories. Most of the
research, data and models are on freshwater ice, which may not always be applicable for saline sea
ice due to di�erences in microstructure (Schapery, 1997). As explained in section 2.2, ice is often
anisotropic, thus many mechanical properties are dependent on the direction considered.

It is convenient to divide the parameters a�ecting the mechanical properties into material type and
state type parameters. The most important parameters are discussed below.

2.3.1 Porosity and Density

One of many anomalies with water is the fact that it is less dense as a solid than as a liquid.
The density of ice varies from less than 600 kg

m3 to about 930 kg
m3 , depending on, among others, air

pockets, brine content, microstructure and temperature (Riska, 2017b). The porosity is the sum of
the fractions of brine pockets and air pockets, although the latter is usually much lower than the
former (Schulson & Duval, 2009). Porosity is an important material type parameter. The strength
and Young’s modulus decrease with increased porosity, as seen in Figure 4, and the same applies
for reduced density (Langleben & Pounder, 1961). Figure 5 shows that the porosity has a great
impact on the fracture toughness for sea ice (Sammonds et al., 1999).

Figure 4: Youngs modulus plotted against porosity for arctic sea ice, based on measurements
(Langleben & Pounder, 1961).
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Figure 5: Fracture toughness plotted against porosity based on experiments on fresh water ice
(Sammonds et al., 1999).

2.3.2 Strain Rate

The strain rate, Á̇, which is defined as the change in strain per second, is an important state type
parameter for the mechanical properties. Tensile and compression strength are highly dependent
on the strain rate (Jones (1997); Schulson and Duval (2009); and more). For low strain rates, the
ice behaves in a more ductile manner than for higher strain rates. This is illustrated in Figure
6 (Schulson & Duval, 2009). As seen in the figure, stress relaxation occurs before failure at low
strain rates. As the strain rate increases, a ductile to brittle transition takes place. In Figure
7, compressive strength is plotted against a variation of strain rates for three di�erent data sets
(Jones, 1997). Figure 6 indicates that there is a slight reduction in peak stress in the brittle regime.
This is partly in compliance with two of the data sets in Figure 7, while the third (+) data set
shows that the strength continues to increase for high strain rates, or at least remain steady. Thus,
there is some discrepancy about this topic, which is found for other data sets as well. For ice-going
vessels, high strain rates will dominate the impacts between ice and the hull, resulting in high peak
stresses. One should note that the data shows greater scatter in the brittle range (Jones, 1997).
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2.3 Mechanical Properties

Figure 6: Stress-strain curves for di�erent strain rates (Schulson & Duval, 2009).

Figure 7: Compressive strength plotted against strain rate for three di�erent data sets; • , ⌃ and
+ (Jones, 1997).

2.3.3 Temperature

The temperature T is another important state type parameter for the mechanical properties of sea
ice, both during the formation of the ice and afterwards. The surrounding temperature a�ects the
growth rate of the ice, which has an impact on the brine and air content. Fast-growing ice will be
more porous, as more brine and air are trapped.

The temperature also has a direct e�ect on the mechanical properties of the ice. As for most other
materials, both brittleness and strength increase for decreasing temperatures. Young’s modulus E
is also dependent on the temperature. Several models relating E and T have been suggested. Sinha
(1989) presented the following relation between Young’s modulus and the temperature:
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2.3 Mechanical Properties

E(T ) = 9.61 + 1.1 · 10≠2 · (Tm ≠ T ) (1)

where Tm is the melting temperature, and T is the temperature of the ice, both taken in Kelvin or
Celsius.

For ship-ice interactions, the temperature dependency on the mechanical properties is relatively
low compared to the dependency of other parameters, e.g., indention rates. The dependency is
also low compared to the large uncertainties related to the properties and material models for sea
ice in general. Schulson and Duval (2009) found that the tensile strength of columnar-grained
freshwater ice increase by only 10 % when the temperature was reduced from 0 ¶C to ≠30 ¶C. For
constant air and water temperature, the temperature varies linearly through the ice sheet, with
the temperature Tm closest to the water. Thus, the variation of the average temperature of the ice
sheet is significantly lower than for air temperatures.

2.3.4 Macrostructure

The macrostructure refers to the grain size and whether the ice has a granular or columnar type of
structure. The tensile strength of ice shows great dependency on grain size, which is a material type
parameter. As seen from the data in Figure 8, the tensile strength is proportional to d≠0.5, where d
is the grain size (Schulson & Duval, 2009). By comparing the data in the two plots in Figure 8, one
can see that the strain rate a�ects the dependency on the grain size. This illustrates the complexity
of ice mechanics, and why it is so di�cult to obtain good models. Timco and Frederking (1983)
showed that the confined compressive strength is extremely sensitive to the structure of the ice.

Figure 8: Tensile strength for di�erent grain sizes, at indention rates of 10≠7 s≠1 (a) and 10≠3 s≠1

(b) (Schulson & Duval, 2009).
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3 Ship-Ice Interaction and Ice Loads

Icebreaking vessels are experiencing di�erent types of ice loads, caused by di�erent scenarios. The
scenarios can be coarsely divided into three types of ice-ship interactions:

• Breaking of level ice. Main pressure loads act in the bow region, and on the outer side aft
of the ship when the ship is turning.

• Collisions with ice features, such as glacial ice, ice ridges or multi-year ice. These types
of ice-ship interactions are characterized by large and concentrated forces, thus denting and
minor deformations are expected. Heavy collisions occasionally result in larger deformations
and sometimes also critical damages, as seen in Figure 9.

• Ships in compressive ice. With ice being pushed into the ship sides, large frictional forces
develop, and the ship may get stuck. Compressive ice may also cause damage to the ship
sides.

Figure 9: Damage from collision with ice features (Riska, 2017d).

The ice loads on ships are often characterized by high load pressures and non-uniform pressure
fields. High velocities govern ice-ship impacts, resulting in high strain rates. High confinement
pressures are, in addition to high strain rates, important for the occurrence of high-pressure zones,
with local pressures of up to 70-100 MPa (Soares & Garbatov, 2015). As ice is compressed against
the hull, pressure builds up. Cracking, spalling and crushing take place, resulting in a constantly
changing pressure distribution, both in time and space. For relatively low indention rates, and thus
low strain rates, ice will spall o� with a regular time interval, giving an oscillating force (O’Rourke
et al., 2015). This is not considered as an issue for ships, since they are subjected to higher strain
rates, resulting in a more irregular and frequent crushing. Figure 10 shows the response for di�erent
indention speeds, increasing from (a) to (d).
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Figure 10: Deformation of structure plotted against time for di�erent indention rates, increasing
from (a) to (d) (O’Rourke et al., 2015).

3.1 Pressure Distributions

Both small and full-scale tests have shown that the pressure often distributes like a line (although the
load varies along the line). Figure 11 shows the spatial pressure distribution during sea ice impact
for di�erent indentation rates. One can clearly see the e�ect of strain rates. High indentation rates,
and thus high strain rates, cause brittle failure with a large spatial variation of the pressure. At low
strain rates, the ice behaves in a more ductile manner, resulting in a more evenly distributed pressure
along the line. Thus, pressure distributions associated with bow impacts and those associated with
compressive ice may not behave equally, as the indention rates are di�erent. Higher indention rates
often cause higher local pressures, but the total force tends to be smaller than for lower indention
rates.
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3.1 Pressure Distributions

(a) Indentation rate = 502 mm
s . (b) Indentation rate = 0.33 mm

s .

Figure 11: Spatial pressure [MPa] distributions for sea ice impact with di�erent indentation rates
(Sodhi, n.d.).

Measurements performed on ice-going vessels, as well as experiments, show a clear trend of decreas-
ing average pressure with increasing contact area. Figure 12 shows a collection of data for contact
area and pressure from ship measurements and experiments. Although the scatter is significant,
there is a clear trend in the data for contact areas up to about 10 m2. Average contact pressures
are commonly expressed as a function of the contact area on the form:

P = C1 · AC2 (2)

where P is the average pressure, C1 and C2 are fitted constants, and A is the contact area. For
the data sets in Figure 12, C1 and C2 are found to be 8.1 and -0.572 respectively. Equations on
the same form are used when the load is considered as a line load instead of a pressure, using
the length of the contact line instead of the area and load line intensity instead of pressure. This
concept, which was introduced by Riska et al. (I. J. Jordaan, 2001), is suitable for describing loads
induced by interaction between level ice and ship hulls. High-pressure zones are found to occur
more frequently near the center of the cross-section of ice sheets. For di�erent specimen geometry,
high-pressure zones tend to be distributed in certain patterns. Some concepts are seen in Figure
13.

The reason for the pressure-area relationship is widely discussed in the literature. Sanderson (1986)
uses the Weibull-e�ect to explain the relation; the ice is not stronger than the weakest point within
the contact area. A large contact area has a higher probability of having a weak point, resulting in
a lower expected average pressure.
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Figure 12: Average pressure plotted against contact area for seven di�erent data sets. ≠ ·≠ is fitted
to the mean of all data, solid line is 2STD. (Masterson & Frederking, 1993).

Figure 13: The figures show high-pressure zones for various ice geometries. Dotted lines indicate
where high-pressure zones tend to be concentrated. (I. J. Jordaan, 2001).
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3.2 Breaking of Level Ice

Icebreakers are designed to break the ice by bending rather than crushing, as it requires less energy.
Thus, small buttock angles and large frame angles are beneficial. The breaking of level ice is
associated with di�erent forces, and the forces on the hull can be divided into normal forces (due to
pressure) and frictional forces. An illustration is seen in Figure 14. The forces can be decomposed to
a vertical and a horizontal force. The vertical force induces a bending moment in the ice. Crushing
and spalling take place in the initial phase of the ice-hull interaction, causing the contact area -
and the forces - to increase. The forces will increase until the flexural strength, ‡f , of the ice sheet
is reached, and an ice floe breaks o�. When the ice breaks due to bending, it fails in tension. The
tensile strength of ice is in the range 0.5-2 MPa, which is only a fraction of the compressive strength
(Riska, 2017b).

Ships with vertical (or close to vertical) sides in the bow region will induce small vertical forces,
and the ice will fail by crushing instead of bending. Thus, the geometry of the bow is essential for
the resistance.

The most important parameters for the bending capacity of the ice are the ice thickness hi and the
flexural strength. A model for the critical vertical force is presented in Equation 3 (Riska, 2017e):

FV,crit = C · ‡f · h2
i (3)

where C is a constant, depending on the geometry of the boundary of the ice. By applying Newton’s
third law, it can be shown that the ice breaking resistance also is proportional to ‡f · h2

i .

Figure 14 illustrates the breaking as a 2D problem, in the xz-plane. Seen from above, the cracks are
propagating as a curve. This is illustrated in Figure 15a. In Figure 15b one can see both crushing
and the breaking pattern. It is important that the channel created by bending failure is wider than
the beam of the ship in order to avoid so-called shoulder crushing. Shoulder crushing occurs when
the unbroken ice sheet is compressed against the shoulder of the ship - the foremost part of the ship
with full width. At this part of the ship, the sides are usually vertical, thus no bending is induced.
The ice must fail by crushing, which is very energy demanding. The phenomenon is illustrated in
Figure 16. The increase in resistance due to shoulder crushing is so large that the design will be
considered as unsuccessful if it occurs (Riska, 2017e).
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3.2 Breaking of Level Ice

Figure 14: Illustration of forces related to ice-ship interaction (Riska, 2017d).

(a) Illustration of breaking pattern.
(b) Ice crushing and breaking pattern. The picture is
from an icebreaker in the Gulf of Bothnia.

Figure 15: Both Figures: (Riska, 2017c).
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Figure 16: Illustration of a ship without and with shoulder crushing (Riska, 2017c). Note that the
created channel have almost perfectly straight lines when shoulder crushing is present.
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4 Measurements from KV Svalbard

In 2006 DNV (now DNV GL) launched an ice load monitoring program (Chai et al., 2018). KV
Svalbard was equipped with sensors and measurement instruments for collecting various data, e.g.,
speed over ground, direction, position, propulsion power, ice conditions, ice loading and accelera-
tions. Since 2006, several research expeditions have been performed where data have been collected.
Measured data from an expedition carried out during March 2007 in the vicinity of Svalbard are
used in this thesis. Information and technical data about KV Svalbard are found in Appendix A.

Fiber optic strain sensors were installed on local hull structure. A total of nine locations were
investigated, which of eight of them were in the bow region, and one was located amidships on
the starboard side. Only the sensors in the bow region are of interest in this thesis, see Figure
17 for arrangement. Figure 18 shows how the strain sensors were mounted. The measured strains
are transformed into stresses. The total force acting between two locations can be found as the
di�erence between the shear stress at the two locations. Therefore, a pre-assumed shear stress
distribution is integrated over the cross-section in order to get the total load. For details about
how the strains measured on KV Svalbard are converted into loads, see Leira and Børsheim (2008).
As discussed in Section 3.1, is it convenient to express ice loads as line loads, which is obtained by
dividing the total load on the frame spacing.

The data used in this work is processed by Suyuthi et al. (2013a). He identified the ice load
peaks and other relevant data from the original, continuous time series. A threshold of 31.25 kN/m
(corresponding to 25 kN acting on one frame) was applied in order to identify the ice load peaks, and
yet void other noise (Espeland, 2008). Compared to other works, this is a relatively high threshold.
As an example, Kujala et al. (2009) used 10 kN/m. However, for extreme value estimations, the
lower loads are not important. If fatigue is considered, the results will be more sensitive to the
selection of the lower threshold, since most of the fatigue damage is due to the low, but many, load
cycles. For further reading about how the data is processed, see Suyuthi et al. (2013a).

Figure 17: Locations of strain sensors (Suyuthi et al., 2014).
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4 Measurements from KV Svalbard

Figure 18: Sensors mounted on hull structure (Leira & Børsheim, 2008).
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5 Ice Load Peak Statistics

5 Ice Load Peak Statistics

The ice-breaking process, which is described in Section 3.2, is very complex, and the associated
pressures and loads vary significantly, even for tests constructed to be carried out under identical
conditions. As discusses in Section 2.3 and Section 3, the ice properties come along with great
variations, which are a�ecting the loading to a large extent. Even small and unavoidable variations
in ice properties (e.g., porosity, density, temperature, macrostructure, etc.) are sources to great
variations in the ice-induced loads. The ice conditions that a vessel encounters in the Arctic Oceans
are constantly varying. Winds, currents and weather change the composition of the ice, which
makes it non-stationary. Broken ice-fields are common, which can consist of level ice, ice floes,
ridges, re-frozen ice, open water and sometimes also multi-year ice. This was experienced when
data sets for analyses were selected. From 6 days of constant measurements, it was di�cult to
find stable conditions, even for periods of just a few minutes. In addition, the ship-ice interaction
itself is a source to randomness in the ice-breaking process and the associated loads. The crushing,
bending and breaking pattern of the ice are so complex that they for all practical applications can
be considered as random by nature (Chai et al., 2018).

With such large variations and degree of randomness, probabilistic models for describing the loads
are important, both for tactical navigation purposes (short-term statistics) and for design purposes
(long-term statistics). Full-scale trials, such as DNV’s ice load monitoring project, provide valuable
data for statistical analyses. Other full-scale measurements have been performed, and the collected
data have been used for statistical analyses, e.g., Kujala and Vuorio (1986), Lensu and Manninen
(2003), Suominen and Kujala (2010). Kujala and Vuorio (1986) used measurements from 1979 to
1985 from the icebreaker Sisu operating in the Baltic waters. They applied a classical approach,
and found that the exponential distribution gave the best fit to their data. The classical approach
is described in Section 5.3. Suominen and Kujala (2010) also used a classical approach, and found
that a Weibull distribution with shape parameter 0.75 was the most suited distribution for the
measurements performed on MS Kemira during the winters of 1987 and 1988. The measurements
from KV Svalbard have been subject for previous works related to ice load statistics, e.g., Suyuthi
et al. (2013a) and Chai et al. (2018). Suyuthi et al. (2013a) applied both a classical method and a
non-parametric approach using kernel functions (described in Section 5.6.1). He also came up with
a novel approach using a three-parameter exponential distribution, which is an unequally weighted
sum of two di�erent exponential distributions. The three-parameter exponential distribution, which
is described in Section 5.5, was found to give a better fit than both the one-parameter exponential
and the Weibull distribution. Chai et al. (2018) used a quite novel approach known as the average
conditional exceedance rate (ACER) method for estimating extreme loads. The ACER method has
several advantages compared to the classical methods; it is applicable to non-stationary as well as
stationary time series, it accounts for dependencies in the data set, and it puts more weight on the
more reliable measurements. The method was also found to perform better than the asymptotic
method. The ACER method is described in Section 5.6.2.

5.1 Stationarity

In its strictest form, stationarity is achieved if the moments of all orders (i.e., the mean, variance,
skewness, etc.) are constant, independent of time. Many of the methods applied in this thesis, e.g.,
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5.1 Stationarity

the classical approach and the asymptotic approach, are based upon the assumption of stationarity
in the data set being analyzed. If the parameters influencing the ice loads behave stationary, one
can expect that the ice loads in the same data set will be stationary as well. Suyuthi et al. (2013b)
were mainly concerned about stationarity regarding propulsion power when data sets were selected.
Suyuthi et al. (2012b) selected time series that showed stationarity for measured propulsion power
and vessel speed, and ice thickness was not even mentioned when the selection of time series was
discussed. Nevertheless, the combination of stationary propulsion power and vessel speed is most
likely achieved in stationary ice conditions. Chai et al. (2018) mentioned stationarity in terms of
the measured ice load peaks. However, the variance of the measured peaks is very large, and it is
di�cult to say whether they are stationary or not. Due to the discrepancies discussed above related
to requirements for selecting time series, a study on the e�ect of ice thickness and vessel speed on
the ice loading is carried out in Section 7.1.

For broken ice fields, stationarity as defined above is impossible to have. A less strict requirement
can be applied, known as "weak stationarity". For a weak form of stationarity, the n first moments
are required to be independent of time, where n is typically a low number, e.g. 1 or 2. In Figure
19, vessel speed and ice thickness are plotted on the left y-axis, and the propulsion power is plotted
on the right y-axis for a data set used later on (set 6). In Figure 20, the same data set is plotted
together with an averaged ice thickness (blue line) for the same data set. We can see that for
�T = 5, the averaged ice thickness can be considered as constant for practical applications.
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5.2 Selected Data Sets
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Figure 20: Averaged ice thickness over �t = 1 min, 2 min, 3 min and 5 min, respectively.

5.2 Selected Data Sets

Possible sets for analyses are extracted from the measurements, and presented in Table 1 below.
It was strived for finding sets with a low as possible relative standard deviation (RSD) for the ice
thickness and speed over ground, prioritized in that order.
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5.3 Classical approach

Table 1: Possible sets for statistics.

Set Elements in the Duration Ice thickness Speed over ground
matrix "data" [min] µ [m] ‡ [m] RSD [%] µ [m/s] ‡ [m/s] RSD [%]

1 7680-7743 31.5 0.42 0.12 28.5 6.08 0.19 3.2
2 7770-7830 30 1.13 0.36 31.5 4.92 0.81 16.4
3 8167-8203 18 0.37 0.10 26.3 7.06 0.12 1.8
4 8311-8340 14.5 0.65 0.16 24.2 3.24 0.46 14.3
5 10942-11002 30 0.82 0.24 29.0 5.06 0.54 10.7
6 11002-11032 15 0.51 0.14 28.4 5.90 0.16 2.6
7 11056-11086 15 0.99 0.20 20.7 4.87 0.54 11.1
8 11090-11130 20 0.98 0.28 28.5 5.33 0.49 9.1
9 15482-15542 30 0.51 0.15 28.5 2.68 0.61 22.7
10 15618-15678 30 0.72 0.23 31.6 5.58 0.47 8.7
12 15720-15762 21 0.46 0.09 20.3 6.93 0.09 1.4
13 11058-11123 32.5 1.00 0.22 21.9 5.07 0.55 10.8
14 11058-11108 25 1.04 0.20 19.2 4.87 0.41 8.4

5.3 Classical approach

Suyuthi et al. (2013b) defines the term "classical approach" as "any statistical approach which
requires the random process to be presented by a distribution model". The classical approach is a
well established method. Several others have used this approach in an attempt to describe ice-
induced loads on ship hulls, e.g., Kujala and Vuorio (1986), Suominen and Kujala (2010), Suyuthi
et al. (2013b). Since the method have been applied several times before and is well known, it
is useful for comparison purposes and as a reference when other methods are evaluated. Thus,
the classical approach is used as a benchmark. The probability density function (PDF) and the
cumulative distribution function (CDF) for the applied probability distributions are given in Table
2 and Table 2, respectively.

Table 2: Probability density functions.

Probability distribution Probability density function
Exponential f(y) = ⁄ exp(≠⁄y)

Log-normal f(y) = 1
y‡

Ô
2fi

exp
3

≠ (ln y ≠ µ)2

2‡2

4

Gumbel f(y) = 1
—

exp
3

≠y ≠ –

—

4
exp

3
≠ exp

3
≠y ≠ –

—

44

Weibull f(y) = k

◊

1y

◊

2k≠1
exp

3
≠

1y

◊

2k
4
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5.3 Classical approach

Table 3: Cumulative distribution functions.

Probability distribution Cumulative distribution function
Exponential F (y) = 1 ≠ exp(≠⁄y)

Log-normal F (y) = �
3

ln y ≠ µ

‡

4

Gumbel F (y) = exp
3

≠ exp
3

≠y ≠ –

—

44

Weibull F (y) = 1 ≠ exp
3

≠
1y

◊

2k
4

5.3.1 Extreme Value Prediction

The main objective for this thesis is to perform a comparative study of di�erent methods for
estimating short-term extreme loads. In order to be able to compare the estimated extreme values
with the measured ones, the most probable largest value during the evaluated time series, ŷmax,
is defined as the extreme value. This applies for all the evaluated methods in this thesis. ŷmax is
the value for which the probability density function for the extreme value reaches its peak. This
corresponds to the load that has the cumulative probability F (y) = 1 ≠ 1

N
, where N is the number

of measured loads during the analyzed time series, and F (y) is the CDF for the fitted distribution.
Thus, ŷmax can be found by rearrange the expression for F , and applying F (y) = 1 ≠ 1

N
. y is

defined as the measured load subtracted the applied threshold: y = x ≠ 25. The extreme value for
the probability distributions presented in Table 3 is given in Table 4 below:

Table 4: Most probable largest values.

Probability distribution Most probable largest value

Exponential ŷmax = ≠ ln(1/N)
⁄

Log-normal ŷmax = exp
3

µ + ‡ · �≠1
3

1 ≠ 1
N

44

Gumbel ŷmax = – ≠ — · ln
3

≠ ln
3

1 ≠ 1
N

44

Weibull ŷmax = ◊

3
≠ ln

3
1
N

44 1
k

5.3.2 Graphical Methods for Finding Underlying Distribution

There exist several methods for identifying the underlying distribution of a random process. Quantile-
Quantile plot (Q-Q plot) and percentile-percentile plot (P-P plot) can be used to determine the
match between the sample data and a known probability distribution. The P-P plot is better to
detect discrepancies in the middle of the distribution than in the tails. Contrary, the Q-Q plot is
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5.3 Classical approach

more sensitive to discrepancies in the tails, and is therefore more suitable for applications related
to extreme value statistics. Consequently, P-P plots are not applied in this thesis.

In a Q-Q plot, equal quantiles from two di�erent data sets are plotted against each other. The two
data sets can be two sets of sampled data, or one set of sampled data and a set of quantiles taken
from the cumulative distribution function of a known distribution. If the two data sets are taken
from the same distribution, the plotted points will lie on a straight line with slope 1, starting at
the origin. For a finite sample collected from a real-life experiment, there will always be deviations
from the line. This will be the case even if the data are taken directly from the distribution. How
well the scatter fit the line indicates how similar the underlying distributions of the data sets are.
By comparing Q-Q plots using di�erent distributions, one can find out which of the evaluated
distributions that in the best manner describes the data. A disadvantage of this method is that the
distribution parameters must be determined in advance. Figure 21 show Q-Q plots for set 14, load
sensor L1.
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Figure 21: Q-Q plots for set 14 L1.

Another commonly applied graphical method is to plot the data points in a probability paper.
Here, the cumulative distribution function F (y) is rearranged such that a function of the cumulative
probability F is proportional to a function of the variable y; g(F ) Ã h(y). In the probability paper,
g(pi) is plotted against h(yi). i is the index number and pi is the empirical cumulative probability,
given by Equation 4.
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5.3 Classical approach

pi = i

N + 1 . (4)

Here, N is the number of data points in the data set. Abscissa and ordinate transformations for
the applied probability distributions are given in Table 5. After plotting the data in a probability
paper, a straight line is fitted to the data. If the data set can be well described by the underlying
distribution that the probability paper is based upon (and the number of data points is su�ciently
large), all the plotted data should appear close to and randomly scattered around the line. If the
data does not fit the line, the data cannot be well described by the distribution evaluated. An
advantage of this method is that the distribution parameters do not have to be known in advance.
Examples of probability papers are seen in Figure 22.

Table 5: Abscissa and ordinate transformations for probability papers.

Probability distribution Abscissa Ordinate
Exponential y ≠ ln(1 ≠ F )
Log-normal ln(y) �≠1(F )

Gumbel y ≠ ln(≠ ln(F ))
Weibull ln(y) ln(≠ ln(1 ≠ F ))
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Figure 22: Probability paper for set 14 L1.

5.3.3 Distribution Parameters Estimation

When a data set is plotted in a probability paper, a line is fitted using the least square method. The
probability distribution parameters can be expressed by the slope m, and the interception point c
with the ordinate. The expressions for the parameters calculated based on the probability paper
are given Table 6.
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Table 6: Distribution parameters estimated from probability paper.

Distribution Parameters
Gumbel —̂ = 1

m
–̂ = ≠—̂ · c

Log-normal ‡̂ = 1
m

µ̂ = ≠‡̂ · c

Weibull k̂ = m ◊̂ = exp

3
c

k̂

4

Exponential ⁄̂ = m -

Besides, there are two non-graphical methods for estimating the distribution parameters, i.e., the
method of moments (MoM), and the maximum likelihood estimate (MLE). When applying MoM,
the population moments µi are derived, where µi is the i’th moment, which will be functions of
the distribution parameters ◊1, ◊2 ... ◊n, where n is the number of parameters. Estimates for the
parameters are found by solving the equations µi = f(◊1, ◊2 ... ◊n) for ◊. For many distributions,
the solutions for ◊ is easily found and applied.

The maximum likelihood estimate method finds the parameters that are most probable given the
selected data, using a so-called likelihood function. For further reading about MLE and MoM,
reference is made to Walpole et al. (2012). In this thesis, parameters are estimated based on
probability paper and by MLE.

Table 7: Distribution parameters calculated using maximum likelihood estimation.

Distribution Parameters

Gumbel —̂ = ȳ ≠

qn
i=1 yi exp

3
≠yi

—̂

4

qn
i=1 exp

3
≠yi

—̂

4 –̂ = ≠—̂ · ln
5

1
n

qn
i=1 exp

3
≠yi

—̂

46

Log-normal µ̂ =
qn

i=1 ln yi

n
‡̂2 =

qn
i=1(ln yi ≠ µ̂)2

n

Weibull ◊̂ =
3

1
n

qn
i=1 yk̂

i

41/k̂

k̂ = n
1
◊̂

qn
i=1 yk̂

i ln yi ≠
qn

i=1 ln yi

Exponential ⁄̂ = 1
ȳ

-

5.3.4 Confidence Intervals

When data from a time series is fitted to a specific distribution, the distribution parameters can be
calculated as described in the previous section. When a finite sample is drawn from a distribution,
we know that the underlying distribution is not perfectly recreated. Due to randomness, each
sample will have di�erent sample distribution parameters, known as sampling error. Each of the
measured data points provide some information about the underlying distribution, thus the bigger

37



5.3 Classical approach

the sample is, the more information we have. The estimated distribution parameters are calculated
for the measured data, but we are actually interested in saying something about the underlying
distribution. Thus, we want to know something about how accurate the estimates are, i.e., a
confidence interval (CI). Bootstrapping using Monte Carlo simulation is used for this purpose
(C. Davison & Hinkley, 1997).

The Monte Carlo simulations are performed by first generating a set of random numbers in the
range from 0 to 1. Next, the expression for the cumulative probability function for the evaluated
distribution is reworked to get an expression for the stochastic variable as a function of the cumu-
lative probability. Lastly, the new data set, also known as the bootstrapped data set, is estimated
by substituting the cumulative probability with the randomly generated numbers, and by using the
estimated distribution parameters. The generated sets should be of the same size as the original
data set (Haver, 2017), and can be treated as an individual data set from the same distribution.
The procedure is repeated to get more data sets, typically tens of thousands of times. New, boot-
strapped distribution parameters are calculated based on the new data sets. A confidence interval
for the estimated parameters for the measured data set can be found based on the bootstrapped
ones. The 1 ≠ – confidence interval is found by excluding the –/2 highest and lowest of the boot-
strapped parameters. The results can be plotted in a stem plot, which is illustrated by an example
in Figure 23. The bootstrapped parameters are divided into intervals of equal lengths, represented
by the stem plot. The black dashed line is the estimated parameter based on the measured data,
and the red dashed lines are the bounds of the 95 % confidence interval.

0

100

200

300

400

500

600

700

800

N
u

m
b

e
r 

o
f 

o
c
c
u

rr
e

n
c
e

s

Bootstrapped samples

10 12 14 16 18 20

Figure 23: Confidence interval calculated for ◊̂ (Weibull distribution) for set 9 L2. 10 000 boot-
strapped samples of size N=82.

5.3.5 Goodness of Fit

The Kolmogorov-Smirnov test is a goodness of fit test where the largest deviation D between the
empirical cumulative distribution function and the fitted CDF for the same load value y is identified.
The test is formulated as:
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D = max |Fempirical(yi) ≠ Ffitted(yi)| (5)

where Fempirical(yi) = i
N+1 . Here i is the number of events less than or equal to y, and N is the

number of events. If the test value D is less than a critical value Dcrit, which is dependent on the
sample size and the confidence level (1 ≠ –), the distribution is not rejected by the test. A table for
Dcrit is given in Appendix B. The method is quick and easy to implement and gives a good visual
impression of the fit. The Kolmogorov-Smirnov test is illustrated in Figure 24.
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Figure 24: Kolmogorov-Smirnov tests for exponential distribution for set 6 L5 and set 14 L1,
respectively. For set 6 L5 the exponential distribution is rejected by the KS-test. – = 0.05 for both
figures.

Another graphical goodness of fit test is to plot the bootstrapped data points together with the
measured data points from the time series, either in linear scale or in a probability paper. All
the measured data points should lie inside the range of the bootstrapped ones. If this is not the
case, the pre-assumed distribution is unlikely to be the true underlying distribution (Haver, 2017).
This test is suitable for checking whether a measured outlier can be explained by the evaluated
distribution.
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5.4 Asymptotic Method

The asymptotic approach is widely used for obtaining extreme values of natural phenomena. The
time series can be divided into sub-intervals of constant duration �t, where the maximum value
for each time interval is identified. The duration of the constant time intervals may vary depending
on the nature of the phenomenon investigated, the available data, and the time horizon of the
extremes. However, more data points give better estimates of the distribution parameters. Haver
(2017) proposes that at least 20-30 points are needed in order to capture the tails and to get
acceptable estimates of the distribution parameters.

Gumbel (1958) showed that the maximum value of a random process following an exponential
distribution converges to the Gumbel distribution as the sample size increases. As seen in Section
7.3, the exponential distribution is found to provide a good fit for several data sets, thus the
maximums within the sub-intervals are expected to be modelled well by the Gumbel distribution.
The cumulative Gumbel distribution function is given by the following expression:

Fy = exp

3
≠exp

3
≠y ≠ –

—

44
(6)

where – and — are distribution parameters. The load y corresponding to an exceedance probability
of ⁄ is found by applying F = 1 ≠ ⁄, and rearranging Equation 6:

y = – ≠ — ln(≠ ln(1 ≠ ⁄)) (7)

An example is shown in Figure 25, where 1 minute maximums for set 14 L1 are plotted in a Gumbel
probability paper. Although 30 data points are relatively few, they seem to fit the straight line
quite well. The Kolmogorov-Smirnov test gives D = 0.106 < Dcrit = 0.274, which implies that the
asymptotic approach using Gumbel distribution cannot be rejected by this goodness-of-fit test for
the evaluated data set. The Kolmogorov-Smirnov test is illustrated in Figure 26.
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Figure 25: 1 minute maximums plotted in Gumbel probability paper for set 14 L1.
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Figure 26: Kolmogorov-Smirnov test performed on the fitted distribution and the data points found
in Figure 25. D = 0.106 < Dcritical = 0.274 =∆ not rejected.
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5.5 Three-Parameter Exponential Distribution

Suyuthi et al. (2014) observed that ice-induced loads on ship hulls often tend to look like a com-
bination of two di�erent populations when they are plotted in an exponential probability paper,
with a less steep trend for the upper tail. For such cases, by applying a one-parameter exponen-
tial distribution, the overall fit is poor, and extreme values will be underestimated. A possible
explanation for the existence of more than one population is the varying ice thickness and presence
of ice features. Most of the loads are found in the lower range, which may be a result of, e.g.,
breaking of level ice. These loads represent one population. The loads in the upper range may be
a result of, e.g. interaction with ice-ridges and hummocks, representing another population. An
additional population may occur due to previously open waters that have been refrozen, and thus
have a di�erent thickness than the rest of the level ice. It is likely to believe that such varying
ice characteristics can lead to several populations acting simultaneously. However, the ice loading
process is very complex, and multiple populations may be caused by other factors and conditions
as well. In Figure 27 one can clearly see the presence of two populations.

The three-parameter exponential distribution is simply given as a weighted sum of two one-parameter
exponential distributions. The probability density function is given as:

f(y) = a⁄1 · exp{≠⁄1y} + (1 ≠ a) ⁄2 · exp{≠⁄2y} (8)

where a is a weight parameter, restricted by 0 Æ a Æ 1. ⁄1 and ⁄2 are the parameters of the two
one-parameter exponential distributions. The cumulative distribution function can be found by
integrating Equation 8, and can be written as:

F (y) = a(1 ≠ exp{≠⁄1y}) + (1 ≠ a) (1 ≠ exp{≠⁄2y}) (9)

The estimated extreme value, ŷmax, is found numerically, by requiring F (ŷmax) = 1
N

.

The fitted three-parameter distribution is seen in Figure 27. For both the upper and the lower
distribution the fit is acceptable. It should be noted that the data set used in the figure is selected
to demonstrate the benefit of using a three-parameter exponential distribution. For other data
sets, the improved fit by using a three-parameter exponential distribution instead of a regular
exponential distribution may be smaller. However, the fit is never worse for a three-parameter than
for a one-parameter exponential distribution. If a data set is perfectly described by one population,
the weight constant a will be zero (or one), which corresponds to a one-parameter exponential
distribution. Thus, the model will also work for stationary conditions, which is one of the main
advantages of the method.
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Figure 27: Two populations are observed in the exponential probability paper for set 2 L7.

5.5.1 Parameter Estimation

In their work, Suyuthi et al. (2014) investigated several methods for estimating the parameters, i.e.,
the method of moments, a non-linear least square method, a hybrid approach, and the maximum
likelihood estimation approach (MLE). The MLE was found to give the most stable results, by
means of always finding a desired and consistent solution. Unlike MLE, the other methods require an
initial value, or guess, and a bad initial guess may give invalid or non-converging results. Therefore,
Suyuthi et al. (2014) applied the MLE approach in their calculations. Consequently, the MLE
approach, which is described below, is used in this thesis as well.

The evaluated data set of size N is sorted and divided into two groups, n1 and n2, where n1+n2 = N .
n1 and n2 represent the two sub-populations. The likelihood function is given as:

L(y|⁄y1, ⁄y2, a) = N !
n1!n2!a

n1(1 ≠ a)n2⁄n1
y1⁄n2

y2 · exp
A

≠
n1ÿ

i=1
⁄y1y1i ≠

n2ÿ

i=1
⁄y2y2i

B
(10)

where nj and yji are the sample size and the member of the j’th sub-population, respectively.

The estimates of the parameters are given by Equation 11 to Equation 13:

â = n1
N

(11)

⁄̂y1 = n1qn1
i=1 y1i

(12)

⁄̂y2 = n2qn2
i=1 y2i

(13)

Since we don’t know the optimal size of n1 (and the corresponding size of n2), all possible sets of n1
and n2 must be evaluated, i.e. n1 = 0, 1, 2, · · · , N , with corresponding n2 = N, N ≠ 1, N ≠ 2, · · · , 0.
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5.5 Three-Parameter Exponential Distribution

This gives a total of N + 1 sets. The parameters presented in Equation 11 to Equation 13 are
calculated for all (N + 1) sets, and the root-mean-square error (RMSE), which is the square root
of the average of squared errors, are calculated for each of them. RMSE is defined as:

RMSE =

ÛqN
i=1(F̂ ú

i ≠ F ú
empirical,i)2

N
(14)

where F̂ ú
i is the ordinate value provided by the three-parameter exponential distribution, and

F ú
empirical,i is the ordinate value for the measured load. The star (*) indicates the cumulative

probability is transformed into a non-linear scale (see Table 5). Since the errors are squared, the
method favors solutions with many medium errors rather than some small and some large errors
(for equal total error

qN
i=1 |F̂ ú

i ≠ F ú
empirical,i| ). The set of parameters giving the smallest RMSE

is identified as the optimal solution.

MATLAB codes related to this section are found in Appendix D.
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5.6 Non-Parametric Methods

All of the previous methods have in common that they require stationary time series. As seen
in Section 5.1, defining stationarity related to ice-induced lads is not straightforward, neither is
it possible to obtain in its strictest form. In the Arctic Ocean, winds, currents and weather are
constantly changing the composition of the ice, which makes it non-stationary. Broken ice-fields are
common, which can consist of level ice, ice floes, ridges, re-frozen ice, open water and sometimes
also multi-year ice. The classical approach perform well when the time series are selected with some
care, e.g., where stationarity is satisfied to a certain level. However, for some data sets the fit is not
satisfactory in the upper tail, which is the important part for estimation of extreme values. Thus,
these methods may not be suited for e.g. live estimation of extreme values.

5.6.1 Using Kernel Functions

Suyuthi et al. (2012a) proposed a non-parametric probabilistic approach based on an application
of the Kernel density estimation. The idea of the method is that each point is represented by a
kernel function - or a local PDF -, where the expected value of the kernel function is at the data
point. The function can in principle be any pdf, but Suyuthi et al. (2012a) applied a Gaussian
kernel function. The total PDF is found by summarizing all the kernel functions. An illustration
of the concept is shown in Figure 28. The dashed lines are the Gaussian kernel functions, and the
black dots are the data points.

Figure 28: Illustration of the kernel density estimation. The figure is taken from Suyuthi et al.
(2012a).

The proposed method was found to give a better fit in the upper tail than the Weibull and one-
parameter exponential distribution. The method and its corresponding extreme loads rely solely on
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the evaluated data set, making it adequate for "live" estimation of short-term extreme loads onboard
the vessel. However, relating the results from this non-parametric method to the prevailing condi-
tions is di�cult, and the method is therefore inadequate for long-term statistics and generalization
of short-term statistics. For more details about this method, see Suyuthi et al. (2012a).

5.6.2 ACER Method

The main problem with the parametric models is that they require stationary processes. As a
consequence, the models perform badly for many of the time series, particularly in the tails, which
can lead to underestimation of the extreme values. The average conditional exceedance rate method,
shortened as the ACER method, is a method that is developed for estimating extreme values from
sampled time series. The ACER method was developed and used for the first time by Naess and
Gaidai (2009). Their goal was to establish a method for predicting extreme return levels based on
sampled time series which takes statistical dependence in the time series into account. Naess and
Gaidai (2009) demonstrated the method on measured wind speeds, and the novel method tended
to give more accurate results than traditional methods. The ACER method has later been adopted
for prediction of extreme value statistics associated with wind speeds (Karpa & Naess, 2013), roll
motion for a large container vessel (Gaidai et al., 2016), and ship ice loads (Chai et al., 2018).
Compared to the traditional methods, e.g. the peak over threshold and the asymptotic approach,
the ACER method have several advantages. Firstly, the method is applicable to both stationary
and non-stationary time series. The method also accounts for dependencies in the time series, thus
declustering of the data is avoided. There are no further requirements for the data, and all the data
are used in the analysis. These properties ensures that one does not have to be very careful when
the data set used for analysis is selected, which is the case when the classical approach is applied.
Another advantage is that the ACER method puts more weight on the empirical estimates when
they are more accurate. This makes the method adequate for real-time series of natural phenomena
such as ice-induced loads, which are rarely stationary.

The basic theory and concepts behind the ACER method are presented below. For a more detailed
derivation and explanation, see Naess and Gaidai (2009) and Chai et al. (2018). The ACER method
provides an extreme value distribution by constructing a set of non-parametric ACER-functions.

The extreme value distribution for a stochastic process X(t), where MN = max{X1, X2, · · · , XN }
and N is the number of data points, is given as:

P (÷) = P (MN Æ ÷) = P (X1 Æ ÷, X2 Æ ÷, · · · , XN Æ ÷) (15)

P (÷) = P (XN Æ ÷|XN≠1 Æ ÷, · · · , X1 Æ ÷) · P (XN≠1 Æ ÷, · · · , X1 Æ ÷) (16)

=
NŸ

j=2
P (Xj Æ ÷|Xj≠1 Æ ÷, · · · , XN Æ ÷) · P (X1 Æ ÷) (17)
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÷ [kN] is the actual load value, without an applied threshold. Hence, ÷ = y + threshold. If all
the data are assumed to be statistically independent, the extreme value distribution is given by the
first order approximation:

P (÷) ¥ P1(÷) =
NŸ

j=1
P (Xj Æ ÷) =

NŸ

j=1
(1 ≠ –1j(÷)) (18)

where –1j(÷) = P (Xj > ÷). For small values of r, it is known that 1 ≠ r ¥ exp(≠r) with a very
small error. Hence, Equation 18 can be rewritten as:

P (÷) ¥ P1(÷) =
NŸ

j=1
exp(≠–1j(÷)) ¥ exp

Q

a
Nÿ

j=1
≠–1j(÷)

R

b (19)

Statistical dependency can be investigated and accounted for to di�erent levels of extent. The second
level approximation P2(÷) is based on assuming that the value of each data point is dependent on
the previous data point:

P (Xj Æ ÷|Xj≠1 Æ ÷, · · · , X1 Æ ÷) ¥ P (Xj Æ ÷|Xj≠1 Æ ÷), j = 2, · · · , N (20)

From the previous equation it follows that:

P (÷) ¥
NŸ

j=2
P (Xj Æ ÷|Xj≠1 Æ ÷) · P (X1 Æ ÷) =

NŸ

j=2
(1 ≠ –2j(÷)) · (1 ≠ –11(÷))

¥
NŸ

j=2
exp(≠–2j(÷)) · exp(≠–11(÷)) ¥ P2(÷) = exp

Q

a
Nÿ

j=1
≠–1j(÷) ≠ –11

R

b

For an approximation of order k, the final expression in the last equation above can be generalized
to:

Pk(÷) = exp

Q

a≠
Nÿ

j=k

–kj(÷) ≠
k≠1ÿ

j=1
–jj(÷)

R

b , k Ø 2 (21)

where –kj(÷) is the probability of Xj exceeding the value ÷, given that the k ≠ 1 previous data
points have not exceeded the same value ÷. The expression for –kj(÷) then becomes:

–kj(÷) = P (Xj > ÷|Xj≠1 Æ ÷, Xj≠2 Æ ÷, · · · , Xj≠(k≠1) Æ ÷, j = k, · · · , N

For N ∫ k, which is the case for practical applications, the second term in the exponent in
Equation 21 becomes very small compared to the first term, and can therefore be neglected. Thus,
the expression can be approximated as:
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Pk(÷) ¥ exp

Q

a≠
Nÿ

j=k

–kj(÷)

R

b , k Ø 2 (22)

The average exceedance rate (the ACER function) Ák(÷) conditioning on k is introduced:

Ák(÷) = 1
N ≠ k + 1

Nÿ

j=k

–kj(÷), k Ø 2 (23)

where –kj can be written as:

–kj(÷) = E[Akj ]
E[Bkj ] , 2 Æ k Æ j Æ N (24)

where E[·] is the expected value operator, and Akj and Bkj are given as:

Akj =
;

1 when Xj > ÷, Xj≠1 Æ ÷, Xj≠2 Æ ÷, · · · , Xj≠(k≠1) Æ ÷
0 otherwise j = k, · · · , N ; k Ø 2

Bkj =
;

1 when Xj≠1 Æ ÷, Xj≠2 Æ ÷, · · · , Xj≠(k≠1) Æ ÷
0 otherwise j = k, · · · , N ; k Ø 2

If the data is assumed to be taken from an ergodic process, then the estimate of the ACER function
can be expressed as:

Á̄k(÷) = lim
÷æŒ

qN
j=k Akj(÷)

qN
j=k Bkj(÷)

(25)

When extreme values are predicted, ÷ will have a relatively high value. In addition, the sample size
N is in practical applications a high number. With that in mind, we can argue that

qN
j=k Bkj(÷) ¥

N , since

lim
÷æŒ

Nÿ

j=k

Bkj(÷) = N ≠ k + 1 ¥ N

A modified ACER function, Á̃k(÷), is introduced such that lim÷æŒÁ̃k(÷)/Á̄k(÷) = 1, where

Á̃k(÷) = lim
÷æŒ

qN
j=k Akj(÷)

N ≠ k + 1 (26)

In this thesis, the ACER method will be used to calculate extreme levels (high values of ÷), thus
any function that provides correct estimates of the ACER function may be used. Consequently, the
empirical ACER function Á̂k(÷) is introduced:
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Á̂k(÷) =
qN

j=k Akj(÷)
N ≠ k + 1 (27)

In Figure 29, Á̂k(÷) is plotted for di�erent values of k. As one can see, the order of Á̂k(÷) is not
important for medium and high values of ÷. This indicates that the data in the sample to a short
extent show statistical dependency. For small values of ÷, Á̂k(÷) is smaller for the same value of ÷
for higher values of k. Even for a statistically independent random process, this is expected due to
randomness in the data points. A 95% confidence interval for the ACER functions can be expressed
by Equation 28 (Naess and Gaidai (2009); Gaidai et al. (2016); Chai et al. (2018)).

CI± = Á̂k(÷)
A

1 ± 1.96
(N ≠ k + 1)Á̂k(÷)

B
(28)

The ACER function is used for prediction of extreme values for return periods which extends beyond
the data set by extrapolation of the created ACER functions. The extrapolation is based on the
assumption of an underlying asymptotic extreme value distribution of the Gumbel type. This proves
to be the case for most engineering applications (Gaidai et al., 2016). The ACER functions are in
general highly regular in the tail region ÷ Ø ÷0, and it is argued by (Naess & Gaidai, 2009) that
they follow a function on the form

Ák(÷) = qk · exp (≠ak(÷ ≠ bk)ck ) , ÷ Ø ÷0 (29)

Here qk, ak, bk and ck are dependent on the data set and k. Equation 29 is asymptotic of the
Gumbel type for any order of the ACER function. However, the requirements for an underlying
Gumbel extreme value distribution, i.e., stationarity, does not have to be fulfilled.

The constants qk, ak, bk and ck are determined by minimizing the mean square error function

F (qk, ak, bk, ck) =
Mÿ

i=1
fli| ln Á̂k(÷i) ≠ ln q + a · (÷i ≠ b)c|2 (30)

where i = 1, ..., M are the data points that are empirically estimated by Á̂k(÷). fli is a factor that
puts more weight on the more accurate estimates, and it is defined as:

fli = (ln CI+(÷i ≠ ln CI≠(÷i))≠2 (31)

The purpose of fli is to put more weight on data with relatively smaller confidence interval on the
log level. However, the exact expression is somewhat arbitrary. For instance, the data points could
be more or less equally weighted by increasing or decreasing the exponent, respectively. The e�ect
of using di�erent expressions for fli have not been investigated in this thesis, and the expression is
taken from Naess and Gaidai (2009) and Chai et al. (2018).

The task of determining the constants in Equation 29 is an optimization problem. By looking at
Equation 30, one can see that with b and c fixed, the problem becomes a weighted linear regression
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problem yi = ≠axi + ln(q) (Karpa & Naess, 2013), where yi = ln(Á̂k(÷i)) and xi = (÷i ≠ b)c with
the solution

aú(bk, ck) = ≠Cov(x, y)
V ar(x) = ≠

qM
i=1 fli(xi ≠ x̄)(yi ≠ ȳ)
qM

i=1 fli(xi ≠ x̄)2

ln qú(b, c) = ȳ + aú(b, c) · x̄

Here x̄ and ȳ are the the sum of the weighted xi and yi, respectively. Cov(x, y) and V ar(x) are the
sample weighted covariance and variance.

A nonlinear optimization of the Levenberg-Marquardt type is applied to find the optimal values of
bú

k and cú
k by applying it to the modified mean square function

F̃ (b, c) = F (aú
k(b, c), b, c, qú

k(b, c)) = V ar(y) ≠ Cov2(x, y)
V ar(x)

The MATLAB code for the optimization can be found in the script "acer_fit.m" in Appendix D.

Finally, qú
k, aú

k, bú
k and cú

k are used in the extrapolation function given in Equation 29, and plotted
together with the empirical ACER function. An estimate of a 95% confidence interval for the
extrapolation function is obtained by adjusting the empirical confidence bands to the extrapolation
function, and perform a similar fitting procedure to them as for the empirical ACER function.
Figure 30 demonstrates the concept. The blue stair plot is the empirical ACER function, the solid
line is the extrapolation function, while the dashed and dotted lines are the 95% confidence interval
boundaries for the empirical ACER function and the extrapolation function, respectively.
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Figure 29: ACER functions k=1, ..., 5. Note that for the upper tail (large ÷), the ACER function
is independent of k.
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Figure 30: Extrapolation scheme for the ACER function (stairs). The dashed lines indicate the
95% confidence interval for the data points. The dotted lines represent the fitted CI.
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6 MATLAB Routines

Programming and implementing the di�erent methods using MATLAB has been a significant part
of the work in this thesis, both when considering time consumption and challenges during the
process. All scripts and codes used in the statistical analyses and plotting of data are developed by
the author. For some methods, e.g. for the ACER method (Section 5.6.2), existing programs and
scripts could have been used. However, scripts were programmed for these purposes as well, mainly
due to two reasons. The primary motivation has been that when a method is transformed from
theory to a code, every part of the theory behind the method is covered, and a deeper understanding
is required in order to get the code running correctly. Bugs and errors that may occur during the
development of the codes are sources for valuable learning and understanding of the theory. Thus,
the programming has been an essential part of the learning process, and a tool for getting the
theory into the fingertips. Another motivation for doing all the programming is to improve my
programming skills in general, which is an important skill to possess as an engineer.

The most important codes will be briefly explained and summarized below, while the scripts them-
selves are found in Appendix D.

6.1 separate.m

6.1.1 Inputs and Outputs

Table 8: Inputs and outputs for separate_s.m

Name Type Comment
Input peakDB Matrix Matrix containing loads and associated data.

Output Li Matrix Load matrix for each sensor i = 1, ..., 9.

6.1.2 Description

The file peakDB_2007.mat contains the matrix peakDB. The second column in the matrix gives
the measured loads. The corresponding time of occurrence, the duration of the load and at which
sensor the load is measured is found in column one, three and four, respectively.

separate_s.m creates a matrix for each of the load sensors named L1, L2, ..., L9. Each load incident
and its corresponding time of occurrence and load duration is presented in individual rows. The
loads and corresponding data are listed chronologically with respect to time of occurrence. The
matrices L1, L2, ..., L9 will be used for analyzes of load data, which always are performed for one
sensor at a time.
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6.2 prob_paper.m

6.2.1 Inputs and Outputs

Table 9: Inputs and outputs for prob_paper.m.

Name Type Comment

Input

ILMdata.mat File File containing (among others) the matrix "time".
separate_s.m Script Described in Section 6.1.

start Variable Start point in the file "data"/"time" (from ILM-
data.mat).

stop Variable Stop point in the file "data"/"time" (from ILMdata.mat).
LX Variable The load matrix for the desired load sensor.

distr Variable The distribution, given by the user, that is used for fit-
ting the measured data.

threshold Variable Lower threshold for the loads. 25 kN is default value,
but a higher threshold can be applied if desired.

Output

dataset Vector Sorted loads from the selected load sensor in the time
interval given by "start"/"stop".

p_i Vector Empirical cumulative distribution function for
"dataset".

figure Plot Plot of "dataset" in the desired probability paper with
fitted line.

m Variable Slope of the fitted line.
c Variable Ordinate interception for the fitted line.

R_squared Variable Coe�cient of determination.

6.2.2 Description

This script fits a distribution to the load data in a probability paper. ILMdata.mat is loaded
(containing the matrices "data", "sensors" and "time"), which contains measurements (speed over
ground, position, ice thickness, propulsion power, etc.) and the time at which each measurement
is collected. These data are given for every 30 seconds. These data are relevant since the selection
of time series is based on the ice conditions and operating characteristics. If desired, the user can
apply a higher threshold than the default threshold. The user must type in which element numbers
in the matrix "data" (or "time") the evaluated time series shall span over. The corresponding time
window is recognized in "LX", which is the load matrix for the selected load sensor. The script plots
the measured loads in a desired probability paper. The user can choose between five distributions
(exponential, log-normal, Gumbel, Weibull and the three-parameter exponential). The built-in
function "lsline" is used for fitting a line to the data points using the least square method, and the
slope and the ordinate interception are found. For the exponential distribution, the fitted line is
forced through the origin. The coe�cient of determination, R2, is also calculated.
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6.3 qq_plot.m

6.3.1 Inputs and Outputs

Table 10: Inputs and outputs for qq_plot.m

Name Type Comment

Input

ILMdata.mat File File containing (among others) the matrix "time".
separate_s.m Script Described in the Section ??

start Variable Start point in the file "data"/"time" (from ILMdata.mat)
stop Variable stop point in the file "data"/"time" (from ILMdata.mat)
LX Matrix The load matrix for the desired load sensor

method Variable
Desired method (maximum likelihood or by fitting to
the probability paper) for estimating the parameters of
the distribution

parameters.m Script Described in Section ??.

Output Figure Plot Quantile-Quantile plot of the measured loads and the
desired probability distribution.

6.3.2 Description

qq_plot.m is quite similar to prob_paper.m (see Section 6.2). Instead of plotting the data points
in a probability paper, x and corresponding y values for the same quantiles given by the evaluated
probability distribution function and the data set, respectively, are plotted.

6.4 parameters.m

6.4.1 Inputs and Outputs

Table 11: Inputs and outputs for parameters.m

Name Type Comment

Input
prob_paper.m Script Described in Section 6.2, see outputs.

method Variable User input: Desired method used for estimating the pa-
rameters; based on probability paper or MLE.

Output

lambda Variable Distribution parameter for exponential distribution.
mu Variable Distribution parameter for log-normal distribution.

sigma Variable Distribution parameter for log-normal distribution.
alpha Variable Distribution parameter for Gumbel distribution.
beta Variable Distribution parameter for Gumbel distribution.

k Variable Distribution parameter for Weibull distribution.
theta Variable Distribution parameter for Weibull distribution.

parameter1 Variable First parameter for the evaluated distribution.
parameter2 Variable Second parameter for the evaluated distribution.
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6.4.2 Description

The purpose of this script is to calculate the distribution parameters. The parameters are calculated
either based on the probability paper or by the maximum likelihood estimation method. For
the maximum likelihood estimation, some of the parameters are found using built-in functions in
MATLAB. The other estimates, both for MLE and estimation based on probability paper, are
calculated using the formulas given in Table 6 and Table 7.

6.5 asymptotic.m

6.5.1 Inputs and Outputs

Table 12: Inputs and outputs for asymptotic.m

Name Type Comment

Input

ILMdata File File containing (among others) the matrix "time".
separate_s.m Script Described in Section 6.1.

Dt Variable Time interval of which the maximum value is identified.

start Variable Start point in the file "data"/"time" (from ILM-
data.mat).

stop Variable Stop point in the file "data"/"time" (from ILMdata.mat).
LX Matrix The load matrix for the desired load sensor.

threshold Variable Lower threshold for the loads. 25 kN is default value,
but a higher threshold can be applied if desired.

Output

figure1 Plot Dt Plot of Dt maximas in probability paper, with least
square fit.

R_squared Variable Coe�cient of determination.

D Variable Result of the KS-test; maximum di�erence between em-
pirical and fitted CDF.

figure2 Plot Illustration of the Kolmogorov-Smirnov test.

6.5.2 Description

This script covers the asymptotic approach, described in Section 5.4. The user defines the time
series, the length of the sub-intervals and the load sensor. Another threshold than 25 kN can
be applied if desired. The matrix "peak_int" is created, where the measured loads for each sub-
interval are stored in individual rows. The maximum value for each row, or each sub-interval,
is identified and stored in the new vector "dataset". The vector is then sorted and plotted in a
Gumbel probability paper. A linear line is fitted by the least square method, and the coe�cient
of determination is calculated. The parameters are then estimated, either based on the probability
paper or by the maximum likelihood approach. Finally, the Kolmogorov-Smirnov test is applied,
as described in Section 6.11.
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6.6 three_param_exp.m

6.6.1 Inputs and Outputs

Table 13: Inputs and outputs for three_param_exp.m

Name Type Comment
Input dataset Variable Vector of measured loads being analyzed.

Output a Variable Weight parameter.
lambda1 Variable Rate parameter of the first distribution.
lambda2 Variable Rate parameter of the second distribution.

figure Plot

The data set and the fitted three-parameter exponential
distribution in a exponential probability paper. A least
square fit is also plotted for comparison with a regular
exponential distribution.

6.6.2 Description

The script estimates the parameters for all possible ways to split the data set, and calculate the
Root-Mean-Square Error (RMSE) for each set of parameters. The set providing the smallest RMSE
is identified, and they are used when the fitted line is plotted together with the data set in an
exponential probability paper. A linear fit is plotted for comparison with a regular one-parameter
exponential distribution.
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6.7 acer.m

6.7.1 Inputs and Outputs

Table 14: Inputs and outputs for acer.m.

Name Type Comment

Input

ILMdata.mat File File containing (among others) the matrix "time".
separate_s.m Script Described in Section 6.1.

start Variable Start point in the file "data"/"time" (from ILM-
data.mat).

stop Variable Stop point in the file "data"/"time" (from ILMdata.mat).
LX Variable The load matrix for the desired load sensor.

threshold Variable Lower threshold for the loads. 25 kN is default value,
but a higher threshold can be applied if desired.

N_k Variable Highest order of the acer function to be included.

Output

eta Vector Measured loads to be analyzed.
rho Vector Weight factor used in the fitting process.

dataset Vector Load vector.

ACER Matrix Containing the value of the ACER function for each data
point for ACER functions up to order N_k.

CIminus Matrix Lower bound of the confidence interval for each ACER
function up to order N_k.

CIplus Matrix Upper bound of the confidence interval for each ACER
function up to order N_k.

figure Plot All ACER functions up to order N_k plotted in loga-
rithmic scale on the y-axis and linear scale on the x-axis.

6.7.2 Description

The purpose of the script is to calculate and plot the ACER functions. The user defines the
start and end of the data set, the load sensor that shall be applied, and the highest order of the
ACER functions. Another threshold than 25 kN can be applied if desired. The number of elements
smaller or equal to eta, i, is calculated, and the ACER function and P (cumulative probability) are
calculated for k = 1, which is a special case. Then, the same matrices are calculated for k > 1,
which is the general case. Next, the weight factor, rho, and the bounds of the confidence intervals
used for fitting (later) are estimated. Finally, the ACER functions of the orders k = 1, ..., N_k are
plotted.
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6.8 acer_fit.m

6.8.1 Inputs and Outputs

Table 15: Inputs and outputs for acer_fit.m.

Name Type Comment

Input

acer.m Script Described in section 6.7.

eta_0 Variable The lower load limit from which the ACER function
shall be fitted.

target Variable The target exceedance probability.
dataset Vector Load vector.

rho Matrix Weight factors used in the fitting process.
eta Vector Load vector.

ACER Variable Containing the value of the ACER function for each data
point for ACER functions up to order N_k.

Output

a Variable Optimized parameter used for the extrapolation func-
tion.

b Variable Optimized parameter used for the extrapolation func-
tion.

c Variable Optimized parameter used for the extrapolation func-
tion.

q Variable Optimized parameter used for the extrapolation func-
tion.

a_minus Variable Optimized parameter used for the lower bound of the
confidence interval (CI) for the extrapolation function.

b_minus Variable Optimized parameter used for the lower bound of the
CI for the extrapolation function.

c_minus Variable Optimized parameter used for the lower bound of the
CI for the extrapolation function.

q_minus Variable Optimized parameter used for the lower bound of the
CI for the extrapolation function.

a_plus Variable Optimized parameter used for the upper bound of the
confidence interval (CI) for the extrapolation function.

b_plus Variable Optimized parameter used for the upper bound of the
CI for the extrapolation function.

c_plus Variable Optimized parameter used for the upper bound of the
CI for the extrapolation function.

q_plus Variable Optimized parameter used for the upper bound of the
CI for the extrapolation function.

figure Plot

Showing the ACER function plotted against the loads,
together with the the confidence interval bands, the ex-
trapolation function and the confidence bands for the
extrapolation function.
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6.9 bootstrapping.m

6.8.2 Description

The purpose of the script is to provide an extrapolation scheme for determining extreme loads
by the ACER method. The extrapolation function is a function of the parameters a, b, c and q.
Initially, the user must give the value of eta_0, which is the load level where the extrapolation
function starts, and the target exceedance probability. The start and end point in the load vector
that shall be used for estimating the extrapolation function are found (i and j). The objective
function and the optimization characteristics are given, before built-in optimization routines are
used for the optimization of a, b, c and q. The same optimization procedure is repeated for the
bounds of the confidence interval for the extrapolation function. A plot showing the ACER function
and the extrapolation function, with the confidence interval bounds for both functions is generated.

6.9 bootstrapping.m

6.9.1 Inputs and Outputs

Table 16: Inputs and outputs for bootstrapping.m.

Name Type Comment

Input
method Variable User input: Desired method used for estimating the pa-

rameters; based on probability paper or MLE.
parameters.m Script Described in Section 6.4

n_boot Variable Number of bootstrapped samples, given by the user.

Output

lambda_hat Variable Distribution parameter for exponential distribution.

mu_hat Variable Distribution parameter for log-normal distribution for
the measured data.

sigma_hat Variable Distribution parameter for log-normal distribution for
the measured data.

alpha_hat Variable Distribution parameter for Gumbel distribution for the
measured data.

beta_hat Variable Distribution parameter for Gumbel distribution for the
measured data.

k_hat Variable Distribution parameter for Weibull distribution for the
measured data.

theta_hat Variable Distribution parameter for Weibull distribution for the
measured data.

param Matrix Estimated distribution parameters for bootstrapped
samples.

Figure Plot Plot of bootstrapped data points together with mea-
sured data points in probability paper.
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6.10 confidence_int.m

6.9.2 Description

Initially, the script obtains the distribution parameters from parameters.m for the time series defined
in prob_paper.m. The number of bootstrapped samples is defined by the user. A set (of the
same size as the evaluated data set) of random numbers between 0 and 1 is generated, representing
cumulative probabilities for the bootstrapped sample. The parameters obtained from parameters.m
are used to transform the cumulative probabilities into loads. Distribution parameters for this data
set are calculated and stored in the matrix "param". The process is repeated "n_boot times, which
is defined by the user. The distribution parameters calculated for the measured loads are always
used for calculating the bootstrapped data sets. Finally, the bootstrapped data points are plotted
in a probability paper together with the measured loads.

6.10 confidence_int.m

6.10.1 Inputs and Outputs

Table 17: Inputs and outputs for confidence_int.m

Name Type Comment

Input

conf_int Variable User defined confidence interval.

par_inp Variable User input; which parameter a confidence interval shall
be estimated for.

param Matrix Matrix containing estimated distribution parameters for
bootstrapped data sets.

n_stem Variable User defined number of stems in stem plot of the boot-
strapped parameters.

Output

CI_min Variable Lower bound of the confidence interval.
CI_plus Variable Upper bound of the confidence interval.

figure Plot
Plot showing the distribution of the estimated parame-
ters, the bounds of the confidence interval and the esti-
mated parameter for the measured loads.

6.10.2 Description

The main objective of this script is to estimate a confidence interval for the distribution parameters
by using the estimated parameters from the bootstrapped samples. The confidence level "conf_int"
is defined by the user of the script. The bounds of the confidence interval, "CI_min" and "CI_plus",
are identified. Next, the bootstrapped parameters are sorted and divided into stems, where each
stem spans equally large intervals. The stems are plotted together with the confidence interval
bounds and the parameter estimated for the measured loads evaluated, µ̂.
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6.11 kolmogorov_smirnov.m

6.11.1 Inputs and Outputs

Table 18: Inputs and outputs for kolmogorov_smirnov.m

Name Type Comment

Input method Variable User input: Desired method used for estimating the pa-
rameters; based on probability paper or MLE.

parameters.m Script Described in Section 6.4

Output D Variable Result of the KS-test; maximum di�erence between em-
pirical and fitted CDF.

figure Plot Illustration of the Kolmogorov-Smirnov test.

6.11.2 Description

The script uses the estimated parameters obtained from parameters.m to generate and plot the
fitted distribution. The empirical CDF is plotted as a stair plot in the same figure. Finally, the
largest deviation between the empirical CDF and the fitted CDF is marked on the figure.
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7 Numerical Results

7 Numerical Results

In this section, the main results are presented. Relevant plots, e.g. selected probability papers,
Q-Q plots, Kolmogorov-Smirnov tests and plots of ACER functions are presented. The figures and
plots that are excluded from the main text can be found in Appendix C.

7.1 E�ects of Di�erent Conditions

As discussed in Section 5.1, which factors that a�ects the ice loads are not fully understood. In
their search for stationary time series, di�erent parameters are given attention by di�erent works
(Suyuthi et al. (2013b) Suyuthi et al. (2012b), Chai et al. (2018), Kujala and Vuorio (1986), etc).
To be able to say something about how the di�erent parameters, e.g. vessel speed, ice thickness and
propulsion power a�ect the ice loads is valuable, both from a design perspective and for navigation
purposes. In this thesis, the e�ects of ice conditions and vessel speed are investigated by pairwise
comparison of di�erent data sets where the ice conditions are similar, whereas the vessel speed
is di�erent, and vice versa. Table 1 is used to identify adequate sets, and the selected ones are
presented in Table 19 and Table 20. The relation between the most probable largest load during
one hour and ice thickness are also investigated for six of the sets in Table 1, and the same is done
for speed over ground.

Table 19: Pairwise similar sets with respect to ice conditions.

Set Elements in the Duration Ice thickness Speed over ground
matrix "data" [min] µ [m] ‡ [m] µi/µj µ [m/s] ‡ [m/s] µi/µj

i = 6 11002-11032 15 0.51 0.14 0.99 5.90 0.16 2.20
j = 9 15482-15542 30 0.51 0.15 2.68 0.61
i = 7 11056-11086 15 0.99 0.20 1.00 4.87 0.54 0.91
j = 8 11090-11130 20 0.98 0.28 5.33 0.49

Table 20: Pairwise similar sets with respect to speed over ground.

Set Elements in the Duration Speed over ground Ice thickness
matrix "data" [min] µ [m] ‡ [m] µi/µj µ [m/s] ‡ [m/s] µi/µj

i = 5 10942-11002 30 5.06 0.54 1.00 0.82 0.24 0.82
j = 13 11058-11123 32.5 5.07 0.55 1.00 0.22
i = 2 7770-7830 30 4.92 0.81 1.01 1.13 0.36 1.14
j = 7 11056-11086 15 4.87 0.54 0.99 0.20

For each pair, i and j, of sets with similar conditions, several characteristics and outputs are
compared. The data sets are plotted in a Weibull probability paper, a line is fitted by the least square
method, and the coe�cient of determination is calculated. The Weibull distribution parameters,
k and ⁄, are estimated by the maximum likelihood approach. The Weibull distribution is chosen
because it has, together with the exponential distribution, proved to give the best fit for ice-induced
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7.1 E�ects of Di�erent Conditions

loads on ships (Kujala and Vuorio (1986), Suominen and Kujala (2010), Suyuthi et al. (2013b)). In
addition, the number of measured loads larger than the threshold (per hour) is identified, and the
most probable largest load during one hour, x̂max,1h, is calculated. Note that x = y + 25kN . The
results are presented in tables 21 to 24 below. Unfortunately, finding adequate time series for this
purpose was di�cult. Only two pairs for each of the two categories (similar ice thickness properties
and similar speed over ground) were found. When the pairs were selected, it was required that
the mean of either the speed over ground or the ice thickness were close to equal, and that their
standard deviations, given in Table 1, were relatively small and similar to each other. The time
series must also provide enough data points to get reliable results. Since few pairs of similar sets
were found, measurements from all the strain sensors, L1, ..., L8, are analyzed. Some of the load
incidents may be registered more than one sensor, thus the data sets from di�erent sensors may not
be completely independent. On the other hand, they are exposed to the same conditions and give
therefore a good indication of the randomness within the data.

For similar ice thickness:

Table 21: Ice thickness: µi = 0.51, µj = 0.51. Speed over ground: µi = 5.90, µj = 2.68. For more
data, see Table 19.

i = 6 Sensor
j = 9 L1 L2 L3 L4 L5 L6 L7 L8

k
i 0.902 1.192 1.148 0.951 0.880 0.870 1.028 0.788
j 1.121 1.133 0.822 0.938 0.828 0.923 0.932 0.808

◊
i 20.11 17.18 20.25 14.96 11.71 11.30 13.98 12.40
j 17.17 14.27 13.87 20.55 14.12 20.42 15.80 12.28

R2 i 0.986 0.983 0.988 0.993 0.973 0.984 0.991 0.981
j 0.987 0.974 0.983 0.988 0.987 0.989 0.992 0.989

Loads/h
i 144 154 148 180 220 380 344 156
j 48 164 32 180 290 568 304 338

x̂max,1h
i 144.0 91.8 107.2 109.5 104.4 112.5 102.9 121.8
j 82.4 85.1 87.9 144.1 139.8 176.2 127.5 133.7
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Table 22: Ice thickness: µi = 0.99, µj = 0.98. Speed over ground: µi = 4.87, µj = 5.33. For more
data, see Table 19.

i = 7 Sensor
j = 8 L1 L2 L3 L4 L5 L6 L7 L8

k
i 0.914 0.893 0.828 0.829 0.972 0.942 0.779 0.803
j 0.958 0.937 0.960 0.917 0.845 0.851 1.034 0.876

◊
i 25.68 20.71 24.21 27.05 19.23 18.28 18.84 14.42
j 25.31 26.07 31.31 23.09 19.3 19.78 24.47 15.35

R2 i 0.984 0.978 0.972 0.970 0.988 0.978 0.989 0.979
j 0.994 0.982 0.964 0.989 0.988 0.994 0.992 0.952*

Loads/h
i 248 172 228 204 488 500 244 216
j 294 228 270 315 552 618 450 258

x̂max,1h
i 191.4 154.8 211.9 227.9 150.4 152.1 206.6 142.0
j 180.3 183.7 213.4 180.7 195.7 201.1 166.0 133.6

* Too bad fit to be included in the work

For similar speed over ground:

Table 23: Speed over ground: µi = 5.06, µj = 5.07. Ice thickness: µi = 0.82, µj = 1.00. For more
data, see Table 20.

i = 5 Sensor
j = 13 L1 L2 L3 L4 L5 L6 L7 L8

k
i 1.004 1.055 0.909 0.903 0.833 0.886 0.854 0.800
j 0.968 0.945 0.901 0.908 0.896 0.892 0.930 0.839

◊
i 20.41 23.81 20.73 22.40 15.10 18.22 17.79 17.25
j 25.51 24.94 27.86 25.74 19.17 19.65 23.27 15.16

R2 i 0.990 0.993 0.996 0.988 0.995 0.990 0.988 0.989
j 0.996 0.985 0.978 0.992 0.995 0.997 0.994 0.973

Loads/h
i 234 214 206 244 388 482 382 174
j 277 214 258 270 567 585 426 257

x̂max,1h
i 135.6 142.1 155.6 172.8 153.7 167.3 168.6 159.0
j 176.9 172.6 211.7 196.7 175.6 181.8 186.3 141.8
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Table 24: Speed over ground: µi = 4.92, µj = 4.87. Ice thickness: µi = 1.13, µj = 0.99. For more
data, see Table 20.

i = 2 Sensor
j = 7 L1 L2 L3 L4 L5 L6 L7 L8

k
i 0.801 0.954 0.888 0.872 0.789 0.782 0.695 0.714
j 0.914 0.893 0.828 0.829 0.972 0.942 0.779 0.803

◊
i 20.17 20.54 20.69 32.03 24.67 22.47 20.05 12.59
j 25.68 20.71 24.21 27.05 19.23 18.28 18.84 14.42

R2 i 0.976 0.985 0.947 0.985 0.978 0.995 0.982 0.931
j 0.984 0.978 0.972 0.970 0.988 0.978 0.989 0.979

Loads/h
i 104 122 86 110 276 372 298 322
j 248 172 228 204 488 500 244 216

x̂max,1h
i 162.3 131.4 136.2 214.0 245.1 243.3 270.3 171.9
j 191.4 154.8 211.9 227.9 150.4 152.1 206.6 142.0

As seen from tables 21 to 24, there are large variations in the provided data, and some results are
counter-intuitive. This may be explained by that the ice-loading process is highly random by nature,
and that not all of the data sets provides equally good fits to the Weibull distribution. Considering
the limited amount of data, it is di�cult to detect clear patterns in the analyzed data. However,
an attempt is made to say something about how the ice thickness and vessel speed influence the
most probable largest load during one hour, x̂max,1h. In Figure 31, x̂max,1h,i

x̂max,1h,j
is plotted against µi

µj

for all eight sensors, where µ is the mean of the ice thickness when data sets with similar speed over
ground are analyzed, and vice versa. The plots show great scatter, and for all four pairs of i and j,
x̂max,1h,i

x̂max,1h,j
occurs both above and below 1. However, for the pairs with similar speed over ground and

di�erent ice thicknesses (left plot), a trend of higher x̂max,1h is found for thicker ice, as expected.
The mean (X) of the values from the first pair (+) has a two-sided 95% confidence interval (CI)
equal to [0.796 0.96], whereas the second pair (*) has a 95% CI for the mean of [0.95 1.45]. However,
it is not possible to tell how the ice thickness is related to x̂max,1h based on these data, other than
that they are likely to be positively correlated. Contrary, no positive trend is found for the pairs
with similar ice conditions and di�erent speed over ground. In fact, the means of both pairs are
very close to one, pointing towards that x̂max,1h is independent of the vessel speed. For the first
pair (*) on the right side figure, µi

µj
is close to one, thus it is expected that the mean is close to one,

also if x̂max,1h is dependent of the vessel speed. For the other pair (+), µi

µj
= 2.20, and a mean(X)

close to one indicates no correlation between x̂max,1h and the vessel speed. It should be noted that
the means (X) are associated with large uncertainties (95 % CI = [0.862 1.14], [0.739 1.24] for the
first (*) and second (+) pair, respectively), thus no trend can be concluded.
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Figure 31: Similar speed over ground and di�erent ice thickness (left), and vice versa (right).
Showing data for all eight sensors. 95% confidence intervals for the means (X) are; [0.796 0.96],
[0.95 1.45], [0.862 1.14] and [0.739 1.24] from left to right, respectively.

Figure 32 (a) shows x̂max,1h plotted against µice as a scatter plot for all sensors L1 to L8, for
the time series in Table 1. Each scatter (*) represent a specific sensor for a specific data set. If
a sensor has measured less than 25 loads above the applied threshold during the time series, its
most probable largest value is not included in the plot. For each sensor, a least square line is fitted
(grey lines). One can see that all the fitted lines show a significant trend of increasing x̂max,1h

for increasing ice thickness. It should be noted that other parameters, such as speed over ground
and standard deviation of the ice thickness, may vary between the sets and a�ect x̂max,1h. A
negative correlation is observed between x̂max,1h and the speed over ground. As a first thought,
this is counter-intuitive, but by looking at Figure 33, one can see that there is a significant negative
correlation between the speed over ground and the ice thickness. This is probably due to increased
total resistance when sailing in thicker ice, and it also explains why it is di�cult to find time series
with one of the parameters similar and the other di�erent. In order to get an idea about how much
of the trend in Figure 32 (b) that is due to the correlation in the data between speed over ground
and ice thickness, a similar plot as in Figure 32 (a) is plotted using only the pairs from Table 20
(similar speed). A least square fitted line is plotted for each pair, providing an indication of the
trend between x̂max,1h and the ice thickness. The plot can be seen in Figure 34. A brief estimate
of the expected correlation between the speed over ground and x̂max,1h (Figure 32 (b)) due to the
correlation between the vessel speed and the ice thickness (Figure 33) is obtained by dividing the
slopes of the fitted lines from Figure 34 on the slope from Figure 33: [142,121]

≠2.26 = [≠63, ≠54]. This
is close to the actual slope in Figure 32 (b), which is -53 kN/(m/s), indicating that the vessel
speed has small, or maybe even none, e�ect on x̂max,1h in the evaluated range of vessel speeds.
Few and widely scattered data are used for this brief estimate, thus it should be considered as an
indication rather than a scientific estimate. However, the result is supported by the findings in
Figure 31, which indicated that x̂max,1h is independent of the vessel speed. Stationarity in terms
of ice thickness is therefore preferred when selecting time series in this thesis.
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(a) Least square fitted lines (grey) to x̂max,1h esti-
mated from each sensor for all the sets in Table 1
plotted against the mean ice thickness, µice, for the
time series. The black line shows the least square fit
to all of the extreme values.
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(b) Least square fitted lines (grey) to x̂max,1h esti-
mated from each sensor for all the sets in Table 1
plotted against the mean speed over ground, µspeed,
for the time series. The black line shows the least
square fit to all of the extreme values.

Figure 32
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Figure 33: A significant negative correlation between speed over ground and ice thickness. The
slope of the fitted line is -2.26 (m/s)/m.
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Figure 34: x̂max,1h from two pairs with similar vessel speeds are shown. The first pair has mean
ice thicknesses of 0.83 m and 1.00 m, and the second pair has mean ice thicknesses of 0.99 m and
1.13 m. A least square line is fitted for each pair. Their slopes are 142 kN/m and 121 kN/m,
respectively.

7.2 Selection of Data Sets

For di�erent time series and for di�erent sensors, the measured loads can vary significantly in
terms of both magnitude and load pattern. This can be observed by plotting di�erent data sets in
probability papers or Q-Q plots. Some of the di�erences may be due to the internal randomness of
the ice-loading process, but in other cases, di�erent underlying distributions govern the ice loads.
For some data sets, more than one population seem to exist, while others have outliers. The
selection of sets is therefore crucial for how well a method performs. In this study, the goal is to
reveal both strengths and weaknesses of the applied methods for describing the load pattern, with a
focus on extreme loads. Thus, data sets are selected with the intention of illustrating both strengths
and weaknesses. This also means that the selected data sets are not a representative selection for
all measurements during the expedition. However, load patterns that were found most frequently
when working with the data are represented. A selection of sets used for comparing the di�erent
methods is given in Table 25. In addition, other sets may be applied for some of the methods.
Relevant plots, e.g. selected probability papers, Q-Q plots, Kolmogorov-Smirnov tests and plots of
ACER functions are presented. The figures and plots that are excluded from the main text can be
found in Appendix C.
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Table 25: Sets for comparison of extreme value estimation methods.

Set Sensor Duration Ice thickness Number ymax [kN] Load pattern[min] µ ‡ [m] RSD [%] of loads
5 L5 30 0.82 0.24 29.0 194 253.8 Outlier
6 L5 15 0.51 0.14 28.4 55 71.2 Two populations
9 L2 30 0.51 0.15 28.5 82 50.5 Scattered
14 L1 25 1.04 0.20 19.2 103 140.5 Stationary

7.3 Classical Approach

Figures 35 to 38 show the sets given in Table 25 plotted in probability papers for exponential,
log-normal, Gumbel and Weibull distributions. For the Gumbel distribution, the parameters are
fitted based on a least square fitted line. The same method is applied for the exponential distri-
bution, except that the fitted line is forced through the origin, since the exponential distribution
by definition starts at the origin. It was experienced that the least square fitted lines gave better
fit in the upper tails than when the maximum likelihood estimation (MLE) is applied when the
x-axis is given in linear scale, which is the case for the exponential and Gumbel probability papers.
MLE is applied for the log-normal distribution and the Weibull distribution. In their probability
papers, the x-axis has a logarithmic scale, which can lead to very large scatter in the lower parts
(see Figures 37 (b) and (d)). Thus, a least square fitted line will be significantly a�ected by the
lower "outliers", which are solely dependent on the applied threshold on a very accurate level. The
MLE is less sensitive to the "outliers" in the lower parts, and is therefore preferred for probability
papers with logarithmically scaled x-axis. The selection of parameter estimation methods is made
in order to get more accurate results for extreme loads. For other applications, e.g. for fatigue
analyses, other methods may be preferred. Tables 26 to 29 present some key statistics related to
the probability papers. Confidence intervals (CI) are given if there is a satisfactory visual match
between the fitted distribution and the data set.
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Figure 35: Probability papers for set 5, sensor L5.

Table 26: Set 5, sensor L5.

Set 5, L5. ymax = 253.8 kN Exponential Log-normal Gumbel Weibull
Parameter ⁄ = 0.043 ‡ = 1.42 — = 23.26 k = 0.83
CI–=0.05 0.75 ≠ 0.93

Parameter ≠ µ = 2.05 – = 3.59 ◊ = 15.10
CI–=0.05 12.58 ≠ 17.90

ŷmax [kN] 123.5 294.8 126.1 111.0
R2 0.687 0.964 0.721 0.993

KS-test, D 0.189 0.065 0.307 0.030
D–=0.05 = 0.098 Rejected Not rejected Rejected Not rejected
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Figure 36: Probability papers for set 6, sensor L5.

Table 27: Set 6, sensor L5

Set 6, L5. ymax = 71.2 Exponential Log-normal Gumbel Weibull
Parameter ⁄ = 0.064 ‡ = 1.26 — = 14.26 k = 0.88
CI–=0.05

Parameter ≠ µ = 1.85 – = 4.71 ◊ = 11.71
CI–=0.05

ŷmax [kN] 62.4 88.4 61.7 56.7
R2 0.896 0.971 0.862 0.972

KS-test test, D 0.204 0.070 0.237 0.098
D–=0.05 = 0.183 Rejected Not rejected Rejected Not rejected
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Figure 37: Probability papers for set 9, sensor L2.

Table 28: Set 9, sensor L2

Set 9, L2. ymax = 50.5 Exponential Log-normal Gumbel Weibull
Parameter ⁄ = 0.075 ‡ = 1.24 — = 9.58 k = 1.13
CI–=0.05 0.055 ≠ 0.090 8.21 ≠ 12.98 0.97 ≠ 1.33

Parameter ≠ µ = 2.12 – = 8.34 ◊ = 14.27
CI–=0.05 5.94 ≠ 10.44 11.63 ≠ 17.25

ŷmax [kN] 59.0 135.4 50.5 52.8
R2 0.976 0.873 0.978 0.938

KS-test, D 0.107 0.143 0.093 0.065
D–=0.05 = 0.150 Not rejected Not rejected Not rejected Not rejected
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Figure 38: Probability papers for set 14, sensor L1.

Table 29: Set 14, sensor L1

Set 14, L1. ymax = 140.5 Exponential Log-normal Gumbel Weibull
Parameter ⁄ = 0.034 ‡ = 1.33 — = 24.37 k = 0.93
CI–=0.05 0.026 ≠ 0.040 0.81 ≠ 1.10

Parameter ≠ µ = 2.65 – = 13.52 ◊ = 26.28
CI–=0.05 20.79 ≠ 32.40

ŷmax [kN] 136.2 320.3 126.4 136.7
R2 0.987 0.950 0.943 0.993

KS-test, D 0.087 0.061 0.168 0.042
D–=0.05 = 0.134 Not rejected Not rejected Rejected Not rejected
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7.3 Classical Approach

From Figure 35 one can see that the measured data from set 5, L5, are not well captured by any
of the probability papers. Although the fitted Weibull distribution fits most of the data points,
the estimated extreme value during the measurement is underestimated by 56%. The log-normal
distribution is the only one that overestimates the extreme value, despite the outlier in the measure-
ments. Although the distribution is not rejected by the Kolmogorov-Smirnov test, the data points
are not scattered randomly around the fitted line, but tend to follow another curve, which indicates
that the underlying distribution is not the log-normal. The Q-Q plot in Figure 39 illustrates the
poor fit as well.

For set 6 L5 (Figure 36), the probability paper for the exponential distribution indicates that two
populations exist, which is further discussed in Section 7.5. The fitted exponential distribution
provides a poor fit, and is rejected by the KS-test. Both the log-normal and Weibull distribution
give acceptable fits on their probability papers, but one must remember that their load axes are
logarithmic. When the actual loads are read o�, one can observe that the points are coarsely
scattered in the log-normal probability paper, while the fitted Weibull distribution underestimates
the values in the upper tale. This is easier to observe in Q-Q plots (Figure 40), which are more
sensitive to deviations in the upper tail. It is also noted that the data points behave close to linearly
in the Gumbel probability paper for values higher than approximately 10 kN.

Also for set 9 L2 (Figure 37), the data points exhibit linear behavior in the Gumbel probability
paper, except for the lower tail. Despite the poor fit in the lower tail, the fit is good for y > 5 kN.
The fitted Weibull distribution provides a good fit for the data (except for the lower tail), whereas
the fitted exponential distribution somewhat overestimates the extreme value. It is noted that the
fitted log-normal distribution, which provides a rather poor fit, is not rejected by the KS-test on a
95% significance level. This is discussed in Section 8.

The exponential distribution is able to capture the measured loads in a satisfactory way for set
14 L1 (Figure 38). Since the exponential distribution is a special case of the Weibull distribution,
this also applies for the Weibull distribution. Set 14 was the most stationary of all identified sets,
with a relative standard deviation (RSD) for the ice thickness of 19.2 %. This supports previous
works (Kujala and Vuorio (1986), Suominen and Kujala (2010), Suyuthi et al. (2013b)), who found
that the exponential and/or the Weibull distribution provide best fits to ice-loads when stationary
conditions are strived for. Also for this set, it should be noted that the data points can be fitted
by a linear line in the Gumbel probability paper above a certain load level.
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Figure 39: Q-Q plot for set 5, L5, for the log-normal distribution.
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(a) Log-normal distribution.
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Figure 40: Q-Q plots for log-normal and Weibull distributions for set 6, sensor L5.

7.4 Asymptotic Approach

Figures 41 (a) to (d) show the one minute maximums from the data sets given in Table 25 plotted
in Gumbel probability papers. Even though the data sets become quite small (since only one load is
included in the plotted data set for each minute), the fitted type I extreme value distributions, i.e.,
the Gumbel, provide satisfactory fits for three of the sets ((b) to (d)). As for the other methods,
the outlier in set 5 L5 is not captured by the asymptotic approach.
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(b) Set 6, L5.
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(c) Set 9, L2.
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Figure 41: Fitted type I extreme value distribution to 1 min maximas plotted in Gumbel exponential
probability papers.

Table 30: Set 14, sensor L1.

Asymptotic approach Set 5, L5 Set 6, L5 Set 9, L2 Set 14, L1
— 48.07 21.93 12.60 36.12
– 20.32 16.78 10.41 33.87

ymax [kN] 253.8 71.2 50.5 140.5
ŷmax [kN] 181.3 73.8 52.6 147.9

R2 0.754 0.938 0.967 0.979
Kolmogorov-Smirnov test, D 0.227 0.133 0.122 0.106

D–=0.05 0.246 0.354 0.246 0.274
Rejected / Not rejected Not rejected Not rejected Not rejected Not rejected
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7.5 Three-Parameter Exponential Distribution

7.5 Three-Parameter Exponential Distribution

Fitted distributions and the data sets are plotted in exponential probability papers in Figure 42.
The fit provided by the three-parameter exponential distribution is better for set 5 L5 than for the
other methods. However, from Table 31 it can be seen that the estimated extreme value is 16%
on the non-conservative side compared to the measured one, thus also this method fails to capture
the outlier. Similar as for the asymptotic approach, and contrary to the classical approach, the
three-parameter exponential distribution provides a good fit for set 6 L5. For set 9 L2, the weight
parameter a is 0, which means that the fitted distribution, in fact, is a one-parameter exponential
distribution. The performance is therefore identical as found for the exponential distribution in
Section 7.3, where the extreme value is overestimated by 19%. For set 14 L1, both the overall fit
and the estimated extreme value are very good.
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Figure 42: Fitted three-parameter exponential distributions plotted in exponential probability pa-
pers.
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7.6 ACER Method

Table 31: Three-parameter exponential distribution.

Three-parameter exponential Set 5, L5 Set 6, L5 Set 9, L2 Set 14, L1
⁄1 0.0722 0.3445 - 0.5323
⁄2 0.0084 0.0481 0.0731 0.0317
a 0.969 0.455 0 0.1456

ymax [kN] 253.8 71.2 50.5 140.5
ŷmax [kN] 213.2 70.7 60.3 141.2

R2 0.982 0.976 0.975 0.994
Kolmogorov-Smirnov test, D 0.051 0.153 0.100 0.084

D–=0.05 0.098 0.183 0.150 0.134
Rejected / Not rejected Not rejected Not rejected Not rejected Not rejected

7.6 ACER Method

Comparison of ACER functions of di�erent orders can be used as a tool to investigate the depen-
dency of the data. The value of the ACER function is a function of how many of the measured data
points that are larger than ÷, where the k ≠ 1 previous measured loads are smaller or equal to ÷.
Thus, if the ACER functions of di�erent orders are coalescing in the upper tail, it means that the
highest loads are spread in time. In general, higher order of k gives lower (or similar) value of the
ACER function, since a higher order k is a stricter requirement. ACER functions of order k =1,
...,5 are plotted for set 14 L1 in Figure 43. The plot indicates that the data set is independent, at
least for the upper tail. The same applies to the other sets investigated, which justifies the use of
the first order ACER function for extreme value estimation.

The first order ACER functions and the extrapolation functions for the sets in Table 25 are plotted
in Figure 44. It should be noted that the confidence interval (CI) for the ACER function stops
earlier than the ACER function. For the largest loads in many of the data sets, the lower confidence
band becomes negative, which does not make sense, nor is it possible to plot on a logarithmic scale.
In addition, the weight factor fli used in Equation 30 becomes negative for the same high values of
÷, thus they are not used for estimating the extrapolation function. However, these data points are
included in the figure for comparison with the extrapolation function. The optimized parameters
for the extrapolations function are presented in Table 33. ÷max and ÷̂max are also presented in the
table. Note that ÷max and ÷̂max are equivalent to ymax and ŷmax corrected for the threshold used
for the other methods. In addition, ÷0 is given in the table, which is the lower load level from which
the extrapolation function starts, selected by the user. In their study, Chai et al. (2018) found that
the predicted extreme values were not very sensitive to the selection of ÷0. This was the case for
most, but unfortunately not all, of the data sets analyzed in this thesis. A sensitivity study was
carried for set 5 L5 and set 9 L2. The results are presented in Table 32.
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7.6 ACER Method

Table 32: ACER method.

Set 5, L5 ÷0 [kN] 40 45 50 55
÷̂max [kN] 133.5 133.3 121.2 131.7

Set 14, L1 ÷0 [kN] 35 40 45 50
÷̂max [kN] 95.9 143.6 75.5 73.9
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Figure 43: The ACER functions of di�erent orders k plotted for set 14 L1.
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Figure 44: ACER functions with fitted extrapolation function for estimation of extreme loads.

Table 33: ACER method.

ACER method Set 5, L5 Set 6, L5 Set 9, L2 Set 14, L1
÷0 [kN] 50 32 45 45

a1 0.123 0.377 0 0.004
b1 25.91 27.48 -1425 -2.45
c1 0.802 0.522 48.40 1.415
q1 1.00 1.00 1.00 1.00

÷max [kN] 278.8 96.2 75.5 165.5
÷̂max [kN] 133.3 115.9 75.5 151.8
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8 Discussion

The findings regarding the e�ects of ice thickness and vessel speed on the estimated extreme values
are partly in line with what one can expect. As discussed in Section 3.2, the ice thickness is
important for the bending capacity of the ice. However, the critical vertical force that is required
to break level ice by bending, FV,crit, is proportional to the ice thickness squared (Riska, 2017e),
whereas x̂max,1h seems to vary linearly with the ice thickness for the analyzed data. Also, contrary
to what is indicated by the analyses above, one could expect that increased hydrodynamic support
forces from the water due to greater accelerations will result in a positive correlation between the
vessel speed and x̂max,1h. On the other hand, higher indention rates are associated with lower total
forces (although higher local pressures occur), see Section 3.1. In addition, previous works (Jones
(1997), Schulson and Duval (2009), and more) have showed that the indention rate have great
impact on both tensile and bending strength, see Section 2.3. However, the ice-loading process is
fairly complex, and many e�ects that are not considered here may have an impact on the relation
between extreme loads and ice thickness and vessel speed. In order to investigate these e�ects in
detail and provide good estimates for their correlation with the ice loads and its extreme values,
more data is needed. Nevertheless, there are strong indications of that the ice thickness is a much
more important parameter for the ice loads than the vessel speed. Stationarity in terms of ice
thickness is therefore preferred when selecting time series in this thesis.

As observed in Section 7, the applied methods for estimating extreme loads provide various results
for the same data sets. For the most stationary data set, set 14 L1, the exponential and the
Weibull distributions are able to fit the data in the whole range of measured loads. This supports
previous works (Kujala and Vuorio (1986), Suominen and Kujala (2010), Suyuthi et al. (2013b)),
who found that the exponential and/or the Weibull distribution provide best fits to ice loads when
stationary conditions are strived for. Also for set 9 L2, the fit is good (for y > 3 kN) for the Weibull
distribution. The same partly applies for the exponential distribution (Figure 37), although the
highest loads are somewhat overestimated. For the classical approach, other combinations of data
sets and distributions are not found to give satisfactory results for both overall fit and in terms of
extreme value prediction. Despite this, 11 of 16 of the fitted distributions are not rejected by the
Kolmogorov-Smirnov test (KS-test) for – = 0.05. As an example, the log-normal distribution is not
rejected for set 9 L2 (Figure 37 (b)) although the fit is obviously bad, particularly in the upper tail.
The poor fit is confirmed in the Q-Q plot in Figure 45. All the cumulative distribution functions for
the distributions applied in the analyses are steep for low values of y, and almost flat in the upper
tail. Since the KS-test evaluates the di�erence in cumulative probability for the same value y, and
not the other way around, the test is not sensitive to outliers in the upper tail. This is exemplified
by the KS-test for the data set and fitted distribution shown in Figure 35 (d). The measure D
(which is very low for this example) is not a�ected by the extreme value, which is underestimated
by 56 %. The KS-test is seen in Figure 46.

Figure 38 (c) illustrates one of the disadvantages of the classical approach for extreme value appli-
cations. The data points exhibit close to linear behavior for y > 20. However, the vast amount of
data points in the lower load range has a substantial impact on the fitted distribution compared
to the few loads in the upper load range. As discussed in Section 7.3, this e�ect can be reduced to
some extent by selecting the method for parameter estimation with care, but the e�ect will still be
an issue. When plotted in Gumbel probability paper, the data points show linear behavior above
a certain, although not constant, value y for most of the data sets.
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Figure 45: Q-Q plot for set 9 L2 for log-normal
distribution.
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Figure 46: KS-test (– = 0.05) for the fitted
Weibull distribution for set 5 L5.

This may explain why the asymptotic approach provides good fits and extreme value estimates
for the data sets (except for set 5 L5, which in fact is not well fitted by any of the methods).
When only the one-minute maximums are included, most of the lower loads are excluded. If the
highest loads are spread randomly in time, which yields for a stationary process, most of them
are likely to be included in the analysis. However, randomness will ensure that some low loads are
included, and some high loads are excluded. Thus, it is not the same as applying a higher threshold,
which doesn’t give satisfactory results. In this thesis, the asymptotic approach is found to be more
robust in the sense of being able to predict extreme values for a wider range of load patterns and
underlying distributions compared to the classical approach and the ACER method. This was also
the impression when other sets from Table 1 were analyzed.

The three-parameter exponential distribution also avoids the problem with the lower loads having
a large e�ect on the fit in the upper tail. As seen in Figure 42, the method is able to capture
a bend in the load pattern when plotted in an exponential probability paper, and the estimated
extreme values are close to the measured ones (except for set 5 L5). It should be noted the fitted
curve cannot have a positive second derivative, i.e., the slope must be constant or decreasing for
increasing values of y. In Figure 42 (c) an "ideal" fit will have a positive second derivative. The con-
sequence is that the weight parameter a becomes zero, meaning that the fitted distribution, in fact,
is a one-parameter exponential distribution. However, this ensures that the fitted three-parameter
exponential distribution is never less conservative than the fitted one-parameter exponential distri-
bution. From a design point of view, there may be a challenge to generalize the method. Linking
three di�erent parameters to physical quantities (e.g. level ice thickness, vessel speed, the presence
of ice ridges, ice features, etc.) is di�cult. For such a task one needs to know which phenomena
that are causing the di�erent populations. In Figure 47 two di�erent types of two-populated data
sets are shown, resulting in very di�erent distribution parameters.
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Figure 47: Fitted three-parameter exponential distribution. [a, ⁄1, ⁄2] = [0.766, 0.049, 0.248] and
[0.1456, 0.0145, 0.6846] for (a) and (b), respectively.

Various results are obtained by the ACER method, and the results are found to be highly dependent
on the tail maker ÷0. This is an issue because ÷0 has to be chosen, and is therefore a somewhat
arbitrary value. The findings are in contrast to what was found by Chai et al. (2018): "... the
predicted value is not very sensitive to the tail maker ÷0, provided it is chosen with some care".
The main di�erence between the analyses performed by Chai et al. (2018) and the analyses in this
thesis is the duration of the time series. Chai et al. (2018) applied time series with duration of
6 hours, containing 545 and 1501 data points. The time series used in this thesis are between 15
and 30 minutes, and contain correspondingly fewer data points. Few data points give an irregular
ACER function, whereas more data points will result in a smoother ACER function. Figures 48
(a) and (b) show typical ACER functions for small and large data sets. In the fitting process, the
weight factor fli, given in Equation 31, tends to be strongly decreasing for increasing ÷, thus the
fitted curve is mainly a�ected by the data points in a relatively short range after ÷0. With Figure
48 in mind, this explains why Chai et al. (2018) found that the fitted extrapolation function was
not very sensitive to ÷0, whereas this thesis came to the opposite conclusion.
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Figure 48: Di�erence between ACER function for a large (a) and a small (b) data set.

Since the ACER method is found to be inadequate for the data sets applied for the other methods
(due to short duration), a brief comparison study is performed between the asymptotic approach
and the ACER method for the same time series as applied by Chai et al. (2018). A comparison is
performed for all load sensors L1 to L8, and the results are found in Table 34 below. If the sensors
L4 and L5 are ignored (due to outliers), the asymptotic approach using �t = 5 min gives the best
fit for four of six data sets, and the remaining two are fitted best when �t = 1 min. The ACER
method underestimates the extreme value by more than 9% for four of six data sets. In comparison,
the asymptotic approach using �t = 5 min underestimates the extreme value by more than 2.5%
only once. It should also be noted that the estimated extreme value by the asymptotic approach
applying �t = 1 min is on the conservative side for only one of the sets. To summarize the brief
study; the asymptotic approach applying �t = 5 min provides a better fit for these data sets than
the ACER method.

Table 34: Comparison between ACER method and the asymptotic approach using type I extreme
value distribution (Gumbel). ** indicates that the largest load in the data set was a significant
outlier.

Sensor L1 L2 L3 L4 L5 L6 L7 L8
÷max [kN] 141 148 147 210** 224** 193 144 165

÷̂max [kN] Asymptotic �t = 1min 132 131 145 159 165 159 160 118
�t = 5min 140 148 163 189 190 188 170 142

ACER ÷0 = 55 kN 128 128 158 145 202 170 168 130

None of the methods are able to estimate the outliers. This was expected, which is the reason why
it is included in the study. Outliers were identified in several data sets, and their presence cannot
be ignored. Assumed that the outliers are valid measurements, extreme load estimation is di�cult
by application of the methods applied in this thesis, at least if not a significantly larger amount
of data are analyzed. One of DNV’s superior goals for the ILM project was to develop models for
live estimation of loads, mainly for navigation purposes. Such a model is impossible to develop if
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unpredictable outliers occur from time to time. In Figure 49, a plot of 10 000 bootstrapped samples
based on the Weibull distribution fitted to set 5 L5 (estimated by MLE) is shown together with
the measured data. The outlier from the data set (the top blue star) is exceeded 36 times by the
bootstrapped data points (yellow stars), with the highest bootstrapped load being 56% higher than
the outlier. Thus, it is not impossible to have such a high load based on the Weibull distribution.
On the other hand, we know that it is not correct to assume that the data points can be explained
solely by a Weibull distribution, due to non-stationary conditions. For further work, it should be
addressed whether the outliers are actual loads or not. If they appear to be actual loads, it is,
particularly from a navigation point of view, valuable to identify which impacts that are causing
them.

Figure 49: 10 000 samples (yellow stars) bootstrapped to the fitted Weibull distribution. The blue
stars represent the data set.
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9 Conclusion

Few adequate data sets were identified and used for the study on the e�ects of ice thickness and
vessel speed on the estimated extreme values. The results from the study are widely scattered,
particularly for the vessel speed. However, there are strong indications of that the ice thickness has
a great impact on the estimated extreme value, whereas no correlation is found for the vessel speed.

Most of the applied methods provide good fits and estimates of extreme values if the data sets
are selected with some care. Thus, the selection of method should depend on what kind of data
that is being analyzed, and what the purpose of the application is. For stationary ice conditions,
the exponential and Weibull distributions provide good fits to the data. However, stationary ice
conditions are rarely encountered in the Arctic Oceans, which makes these methods unsuitable for
live estimation of extreme loads. On the other hand, they may be adequate for design purposes,
such as predicting loading due to level ice.

Contrary to the exponential and Weibull distributions, the asymptotic approach and the three-
parameter exponential distribution provide good fits to data sets where two populations seem to
exist, which was found for several data sets. They also performed well for the stationary data sets,
making them more robust than the exponential and Weibull distributions.

The ACER method has several advantages compared to traditional methods, as described in Section
5.6.2. However, the user must select a lower load level, ÷0, from which the extrapolation function
is fitted. It was found that the predicted extreme value is very sensitive to ÷0 for small data sets
(15-30 min), which made it di�cult to compare the ACER method to the other approaches, as
stationary conditions are not obtained for long time series. However, the sensitivity to ÷0 decreases
for increasing data set sizes. For non-stationary time series of 6 hours, the asymptotic approach
provided more accurate and conservative estimates of extreme values than the ACER method.
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10 Recommendations of Further Work

During the work with this thesis, several tasks have arisen that have not been investigated in detail
due to limited data sets or lack of information, time or knowledge. The tasks are presented below.

Investigate which properties and conditions that a�ect the ice loading.

It was discovered that previous works (e.g. Suyuthi et al. (2013b) Suyuthi et al. (2012b), Chai
et al. (2018), Kujala and Vuorio (1986)) applied di�erent requirements to identify stationary time
series. Some of the requirements are partly in contrast to the theory found in the literature as well.
This is briefly discussed in Section 5.1, and a brief study on e�ects of ice thickness and vessel speed
is carried out in Section 7.1. The results indicated that the ice thickness has a great impact on
the estimated extreme values, while no correlation was found for the vessel speed. However, very
limited appropriate data were found, thus further work on the subject is needed. Other physical
properties, conditions or characteristics may also be investigated.

Relate physical quantities to probabilistic methods.

If the previous topic is addressed, it is useful to relate physical quantities to the probabilistic
methods, i.e., the distribution parameters. This is particularly interesting from a design/class
point of view, both related to fatigue and extreme loads.

Linear fit in the upper tail in Gumbel probability paper.

J. Jordaan et al. (1993) suggested that in most cases, ice loads exhibit linear behavior in the tail
region when plotted in exponential probability paper. The data sets in figures 36 (c), 37 (c) and
38 (c) show similar behaviour in Gumbel probability papers. The linear behavior in the tail may
be the explanation for why the asymptotic approach gave good results, but this relation is not
investigated in this thesis.

Investigate outliers.

Several outliers were found among the measured loads on KV Svalbard. Whether they are actual
loads or measuring errors is crucial to know to be able to develop good extreme load estimation
models, both for live estimation and for use in design. Thus, it is recommended that a study is
carried out to clarify the issue.
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A KV Svalbard

KV Svalbard is a Norwegian icebreaking coastguard vessel. She was built at "Langstein Slip &
Båtbyggeri AS", and delivered in 2002. With a displacement of 6375 tonnes (KV Svalbard, 2014),
she is the largest ship in Norway’s military force measured by tonnage. KV Svalbard is the only
ice-going vessel in the Norwegian military force, and her main operating areas are in the Arctic part
of Norwegian territory; Northern parts of Norway, Barents Sea and the areas around Svalbard. She
is designed to operate in 1 meter thick level ice and 4 meter thick ice features. Main dimensions
and technical data are given in Table 35.

Table 35: KV Svalbard.

Built 2001

Class (DNV, July 1999) +1A1, Icebreaker Polar-10 RPS F-A,
E0, Heldk-SH, Deice, Firefighter 1

Deplacement 6375 [t]
Length o.a. 103.7 [m]
Length p.p 88.7 [m]

Breadth, moulded 19.1 [m]
Draught 6.5 [m]

Propulsion 10 000 [kW]
Speed 18 [kn]
Crew 48 +
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B Critical Values for the Kolmogorov-Smirnov Test

Critical values for the Kolmogorov-Smirnov test, Dcrit, are given for data set size n and confidence
level (1 ≠ –) below:

Table 36: Table of Dcrit for the Kolmogorov-Smirnov test.

n\– 0.2 0.10 0.05 0.01
5 0.45 0.51 0.56 0.67
10 0.32 0.37 0.41 0.49
15 0.27 0.30 0.34 0.40
20 0.23 0.26 0.29 0.36
25 0.21 0.24 0.27 0.32
30 0.19 0.22 0.24 0.29
35 0.18 0.20 0.23 0.27
40 0.17 0.19 0.21 0.25
45 0.16 0.18 0.20 0.24
50 0.15 0.17 0.19 0.23

> 50 1.07/
Ô

n 1.22/
Ô

n 1.36/
Ô

n 1.63/
Ô

n
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C Figures

In this appendix, plots and figures that are excluded from the main text are found.

C.1 Q-Q Plots
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Figure 50: Q-Q plots for set 5 L5.
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Figure 51: Q-Q plots for set 6 L5.
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Figure 52: Q-Q plots for set 9 L2.
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Figure 53: Q-Q plots for set 14 L1.
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C.2 Asymptotic Approach
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Figure 54: �t = 5 min. Sensor L1 to L8 for the 6h time series used by Chai et al. (2018).
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C.3 Kolmogorov-Smirnov Tests
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Figure 55: Kolmogorov-Smirnov tests for set 5 L5.
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Figure 56: Kolmogorov-Smirnov tests for set 6 L5.
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Figure 57: Kolmogorov-Smirnov tests for set 9 L2.
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Figure 58: Kolmogorov-Smirnov tests for set 14 L1.
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Figure 59: Kolmogorov-Smirnov tests for the three-parameter exponential distribution.

XII



Appendix

C.4 ACER Functions
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Figure 60: ACER functions.
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Figure 61: ACER functions for sensor L1 to L8 for the 6h time series used by Chai et al. (2018).
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Figure 62: Sensor L1 to L8 for the 6h time series used by Chai et al. (2018).
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D MATLAB Scripts

For a list of inputs/outputs and a description of each script, see Section 6. The most important
scripts are included. Scripts used for plotting, checking things, and trivial calculations are not
presented.

separate.m

1 % Start separate.m --------------------------------------------------------
2

3 load(’peakDB_2007’); %Load vector
4 n=length(peakDB);
5

6 %index variables for each load sensor:
7 c1=1;
8 c2=1;
9 c3=1;

10 c4=1;
11 c5=1;
12 c6=1;
13 c7=1;
14 c8=1;
15 c9=1;
16

17 %
18 for i=1:n
19 if peakDB(i,4)==1 %If the sensor is L1
20 L1(c1,:)=[peakDB(i,1),peakDB(i,2),peakDB(i,3)];%Add load data to L1
21 c1=c1+1;
22 elseif peakDB(i,4)==2 %If the sensor is L2
23 L2(c2,:)=[peakDB(i,1),peakDB(i,2),peakDB(i,3)];%Add load data to L2
24 c2=c2+1;
25 elseif peakDB(i,4)==3 %If the sensor is L3
26 L3(c3,:)=[peakDB(i,1),peakDB(i,2),peakDB(i,3)];%Add load data to L3
27 c3=c3+1;
28 elseif peakDB(i,4)==4 %If the sensor is L4
29 L4(c4,:)=[peakDB(i,1),peakDB(i,2),peakDB(i,3)];%Add load data to L4
30 c4=c4+1;
31 elseif peakDB(i,4)==5 %If the sensor is L5
32 L5(c5,:)=[peakDB(i,1),peakDB(i,2),peakDB(i,3)];%Add load data to L5
33 c5=c5+1;
34 elseif peakDB(i,4)==6 %If the sensor is L6
35 L6(c6,:)=[peakDB(i,1),peakDB(i,2),peakDB(i,3)];%Add load data to L6
36 c6=c6+1;
37 elseif peakDB(i,4)==7 %If the sensor is L7
38 L7(c7,:)=[peakDB(i,1),peakDB(i,2),peakDB(i,3)];%Add load data to L7
39 c7=c7+1;
40 elseif peakDB(i,4)==8 %If the sensor is L8
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41 L8(c8,:)=[peakDB(i,1),peakDB(i,2),peakDB(i,3)];%Add load data to L8
42 c8=c8+1;
43 elseif peakDB(i,4)==9 %If the sensor is L9
44 L9(c9,:)=[peakDB(i,1),peakDB(i,2),peakDB(i,3)];%Add load data to L9
45 c9=c9+1;
46 end
47 end
48

49 % End separate.m ----------------------------------------------------------
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prob_paper.m

1 % Start prob_paper.m ------------------------------------------------------
2

3 if exist(’bootstr’, ’var’)==0 %True if script is not ran by bootstrapping.m
4 close
5 clearvars -except method start stop LX
6 load(’ILMdata’) %Ice load monitoring data
7 run(’separate’);
8

9 % User inputs:
10 start=; %Start row in the matrix "data"/"time"
11 stop=; %End row in the matrix "data"/"time"
12 LX=; %Load (strain) sensor
13

14 prompt = ’Input: 1 for exponential distribution, 2 for Log-normal,’,...
15 ’3 for Gumbel, 4 for Weibull, 5 for 3-parameter-exponential ’;
16 distr = input(prompt);
17

18 % Threshold:
19 threshold=25; %[kN] >= 25. 25 is default in the data set
20 if threshold>25
21 a=1;
22 LX_copy=LX;
23 clearvars LX
24 for i=1:length(LX_copy)
25 if LX_copy(i,2)>threshold
26 LX(a,:)=LX_copy(i,:);
27 a=a+1;
28 end
29 end
30 end
31

32 i=1;
33 % Find start point "i" for time series in "time":
34 while LX(i,1)<time(start)
35 i=i+1;
36 end
37 j=i;
38 l_LX=length(LX);
39 % Finds end point "j" for time series in "time":
40 while LX(j,1)<time(stop) && j<l_LX
41 j=j+1;
42 end
43

44 dataset=LX(i:j,2);
45 end %If the script is not ran by bootstrapping.m
46 dataset=sort(dataset);
47

48 N=length(dataset);

XVIII



Appendix

49 % Empirical CDF:
50 p_i=1:N;
51 p_i=p_i/(N+1);
52

53 if exist(’bootstr’,’var’)==0 %True if script is not ran by bootstrapping.m
54 dataset=dataset-threshold; %For fitting in probability papers
55 end
56

57 if distr==1 %Exponential
58 %Abscissa and ordinate transformations (x and y):
59 x=dataset;
60 y=-log(1-p_i);
61 hold on
62 xlabel(’y’)
63 ylabel(’Cumulative Probability’)
64 title(’Exponential distribution’)
65 scatter(x,y,’x’)
66

67 elseif distr==2 %Log-normal
68 hold on
69 xlabel(’y’)
70 ylabel(’Cumulative Probability’)
71 title(’Log-normal distribution’)
72 x=log(dataset);
73 y=norminv(p_i); %Normal inverse cumulative distribution function
74 scatter(x,y,’x’)
75

76 elseif distr==3 %Gumbel
77 x=dataset;
78 y=-log(-log(p_i));
79 hold on
80 xlabel(’y’)
81 ylabel(’Cumulative Probability’)
82 title(’Gumbel distribution’)
83 scatter(x,y,’x’)
84 hold off
85

86 elseif distr==4 %Weibull
87 x=log(dataset);
88 y=log(-log(1-p_i));
89

90 hold on
91 xlabel(’y’)
92 ylabel(’Cumulative Probability’)
93 title(’Weibull distribution’)
94 scatter(x,y,’x’)
95

96 elseif distr==5 %Three-parameter exponential
97 run(’three_param_exp’);
98 return
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99 end
100

101 % Fitted distribution:
102 if distr==1 %Exponential
103 c=0; %The exponential distribution is by def. starting at the origo
104 m=x\y.’; %solve for slope, zero intercept
105 yhat=[0 y(end)]; %evaluate over same range from origin
106 plot([0 y(end)/m],yhat,’k-’) %plot fitted line
107 elseif distr==2 %Log-normal. Fitted line based on MLE parameters
108 mu=sum(log(dataset))/N;
109 sigma=sqrt(sum((log(dataset)-mu).^2)/N);
110 xx=[logninv(1/length(x),mu,sigma) , logninv((length(x)+1)/(length(x)...
111 +2),mu,sigma)];
112 xx=log(xx);
113 yy=[norminv(1/length(x)) , norminv((length(x)+1)/(length(x)+2))];
114 scatter(xx,yy,’.w’)%create two points based on the MLE parameters to...
115 %create the fitted line
116 l=lsline; %plot least square fitted line
117 set(l(1),’color’,0.0*[1 1 1]) %Color of the fitted line
118 m_c = polyfit(xx,yy,1);
119 m=m_c(1); %slope
120 c=m_c(2); %ordinate interception
121 elseif distr==3 %Gumbel
122 l=lsline; %plot the fitted line
123 set(l(1),’color’,0.0*[1 1 1]) %Color of the fitted line
124 m_c = polyfit(get(l,’xdata’),get(l,’ydata’),1);
125 m=m_c(1); %slope
126 c=m_c(2); %ordinate interception
127 elseif distr==4 %Weibull. Fitted line based on MLE parameters
128 thetak=wblfit(dataset); %Parameter estimation for Weibull using MLE
129 k=thetak(2); %Weibull
130 theta=((1/N)*sum(dataset.^k))^(1/k); %Weibull
131 xx=[wblinv(1/length(x),theta,k) ,...
132 wblinv((length(x)+1)/(length(x)+2),theta,k)];
133 xx=log(xx);
134 yy=[log(-log(1-(1/length(x)))) ,...
135 log(-log(1-((length(x)+1)/(length(x)+2))))];
136 scatter(xx,yy,’.w’)%create two points based on the MLE parameters...
137 %to create the fitted line
138 l=lsline; %plot the fitted line
139 set(l(1),’color’,0.0*[1 1 1]) %Color of the fitted line
140 m_c = polyfit(xx,yy,1);
141 m=m_c(1); %slope
142 c=m_c(2); %ordinate interception
143 end
144

145 if exist(’bootstr’,’var’)==0 %True if script is not ran by bootstrapping.m
146 % Coefficient of Determination (R^2):
147 f=m*x+c;
148 y_bar=mean(y);
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149 SSres=sum((y-f.’).^2);
150 SStot=sum((y-y_bar).^2);
151 R_squared=1-(SSres/SStot);
152 end
153

154 % End prob_paper.m --------------------------------------------------------
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qq_plot.m

1 % Start qq_plot.m ---------------------------------------------------------
2

3 clear all
4 load(’ILMdata’) %Ice load monitoring data
5 run(’separate’);
6

7 start=;
8 stop=;
9 LX=;

10

11 % Threshold:
12 threshold=25; %[kN] >= 25. 25 is default in the data set
13 if threshold>25
14 a=1;
15 LX_copy=LX;
16 clearvars LX
17 for i=1:length(LX_copy)
18 if LX_copy(i,2)>threshold
19 LX(a,:)=LX_copy(i,:);
20 a=a+1;
21 end
22 end
23 end
24

25 i=1;
26 % Find start point "i" for time series in "time":
27 while LX(i,1)<time(start)
28 i=i+1;
29 end
30 j=i;
31 l_LX=length(LX);
32 % Finds end point "j" for time series in "time":
33 while LX(j,1)<time(stop) && j<l_LX
34 j=j+1;
35 end
36

37 dataset=LX(i:j,2);
38 dataset=sort(dataset);
39 % Empirical CDF:
40 p_i=1:length(dataset);
41 p_i=p_i/(length(dataset)+1);
42

43 prompt = ’User input: 1 for parameters estimated from probability’,...
44 ’paper, 2 for maximum likelihood estimate (MLE) ’;
45 method = input(prompt);
46

47 % Estimate distribution parameters:
48 run(’parameters’)
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49 close all
50

51 % Calculate load value for each quantile for fitted distribution
52 if distr==1 %Exponential
53 X=-log(1-p_i)/lambda;
54 elseif distr==2 %Log-normal
55 X=exp(sigma*norminv(p_i) + mu);
56 elseif distr==3 %Gumbel
57 X=alpha - beta*log(-log(p_i));
58 elseif distr==4 %Weibull
59 X=theta*(-log(1-p_i)).^(1/k);
60 end
61

62 % Q-Q plot:
63 scatter(X,dataset)
64 hold on
65 % Plot line with slope 1 through origin (line of perfect match):
66 plot([0,max(max(dataset,X))],[0,max(max(dataset,X))])
67 xlabel({’$\hat{y}$’},’Interpreter’,’latex’)
68 ylabel(’y’)
69 if distr==1
70 title(’Q-Q plot Exponential distribution’)
71 elseif distr==2
72 title(’Q-Q plot Log-normal distribution’)
73 elseif distr==3
74 title(’Q-Q plot Gumbel distribution’)
75 elseif distr==4
76 title(’Q-Q plot Weibull distribution’)
77 end
78 hold off
79

80 % End qq_plot.m -----------------------------------------------------------
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parameters.m

1 % Start parameters.m ------------------------------------------------------
2

3 if exist(’no_plot’,’var’)==0 %False if bootstrapped samples are analyzed
4 run(’prob_paper’)
5 end
6 N=length(dataset);
7 if distr==5 %For Kolmogorov-Smirnov test. Parameters not calculated here
8 return
9 end

10

11 % Based on probability paper:
12 if method==1
13 lambda=m; %Exponential
14 sigma=1/m; %Log-normal
15 mu=-sigma*c; %Log-normal
16 beta=1/m; %Gumbel
17 alpha=-beta*c; %Gumbel
18 k=m; %Weibull
19 theta=exp(-c/k); %Weibull
20

21 % Maximum Likelihood Estimate (MLE):
22 elseif method==2
23 lambda=1/mean(dataset); %Exponential
24 mu=sum(log(dataset))/N; %Log-normal
25 sigma=sqrt(sum((log(dataset)-mu).^2)/N); %Log-normalexp
26 alphabeta=evfit(-dataset); %Parameter estimation for Gumbel using MLE
27 alpha=-alphabeta(1); %Gumbel
28 beta=alphabeta(2); %Gumbel
29 thetak=wblfit(dataset); %Parameter estimation for Weibull using MLE
30 k=thetak(2); %Weibull
31 theta=((1/N)*sum(dataset.^k))^(1/k); %Weibull
32 %***********************************************************
33 end
34

35 %Relevant for bootstrapped samples:
36 if distr==1 %Exponential
37 parameter1=lambda;
38 parameter2=0;
39 %Most probable largest value during the evaluated time series:
40 x_max=(-log(1/N)/lambda) +25; %Corrected for the threshold
41 elseif distr==2%Log-normal
42 parameter1=sigma;
43 parameter2=mu;
44 x_max=exp(sigma*norminv(1-1/N) + mu) + 25;
45 elseif distr==3%Gumbel
46 parameter1=beta;
47 parameter2=alpha;
48 x_max=alpha - beta*log(-log(1-1/N)) + 25;
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49 elseif distr==4%Weibull
50 parameter1=k;
51 parameter2=theta;
52 x_max=theta*(-log(1/N))^(1/k) + 25;
53 end
54

55 % End parameters.m --------------------------------------------------------
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asymptotic.m

1 % Start asymptotic.m ------------------------------------------------------
2

3 clear all
4 load(’ILMdata’)
5 run(’separate’);
6

7 % User inputs:
8 Dt=; %length of applied sub-interval [min]
9 start=; %in the file "data"/"time"

10 stop=; %in the file "data"/"time"
11 LX=; % define strain sensor
12

13 % Threshold:
14 threshold=25; %[kN] >= 25. 25 is default in the data set
15 if threshold>25
16 a=1;
17 LX_copy=LX;
18 clearvars LX
19 for i=1:length(LX_copy)
20 if LX_copy(i,2)>threshold
21 LX(a,:)=LX_copy(i,:);
22 a=a+1;
23 end
24 end
25 end
26

27 % Extract and create data set:
28 peak_int=[];
29 dataset=[];
30 start_time=time(start);
31 stop_time=time(stop);
32 a1=1; %Evaluated element in LX
33 a2=1; %Sub-interval nr
34 a3=1; %Element nr in sub-interval
35 while start_time>LX(a1,1) %Finds start point in LX
36 a1=a1+1;
37 end
38

39 while LX(a1,1)<=stop_time
40 int=floor((LX(a1,1)-start_time)/(Dt*60)); %
41 if int>a2
42 if a3>1
43 dataset(a2)=max(peak_int(a2,:)); %Max in subinterval a2 stored
44 a2=a2+1; %New sub-interval is created
45 a3=1;
46 end
47 end
48 peak_int(a2,a3)=LX(a1,2);
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49 a1=a1+1;
50 a3=a3+1;
51 end
52

53 dataset(a2)=max(peak_int(a2,:)); %Data set applied in analysis
54 dataset=sort(dataset);
55 if exist(’bootstr’,’var’)==0 %True if script is not ran by bootstrapping.m
56 dataset=dataset-threshold; %Subtracted the threshold for fitting purposes
57 end
58

59

60 % Empirical CDF:
61 p_i=1:length(dataset);
62 p_i=p_i/(length(dataset)+1);
63

64 % Plot in Gumbel probability paper:
65 x=dataset;
66 y=-log(-log(p_i));
67 hold on
68 figure(1)
69 scatter(x,y,’x’)
70 xlabel(’$y_{max,1min}$’,’Interpreter’,’latex’)
71 ylabel(’Cumulative Probability’)
72 title(’Asymptotic approach, Gumbel distribution’)
73 hold off
74

75 % Least square fit:
76 l=lsline; %plot the fitted line
77 set(l(1),’color’,0.0*[1 1 1]) %Color of the fitted line
78 m_c = polyfit(get(l,’xdata’),get(l,’ydata’),1);
79 m=m_c(1); %slope of fitted line
80 c=m_c(2); %ordinate interception for fitted line
81

82 if exist(’bootstr’,’var’)==0 %True if script is not ran by bootstrapping.m
83 % Coefficient of Determination (R^2):
84 f=m*x+c; %Fitted line
85 y_bar=mean(y);
86 SSres=sum((y-f).^2);
87 SStot=sum((y-y_bar).^2);
88 R_squared=1-(SSres/SStot);
89 end
90

91 % Parameter estimation based on probability paper:
92 beta=1/m;
93 alpha=-beta*c;
94

95 % Parameter estimation by MLE:
96 % alphabeta=evfit(-dataset);
97 % alpha=-alphabeta(1);
98 % beta=alphabeta(2);

XXVII



Appendix

99

100 % Kolmogorov-Smirnov test:
101 X_cdf=0:1:max(dataset)*1.1; %For fitted distribution
102 Y_cdf=exp(-exp(-(X_cdf-alpha)/beta)); %For fitted distribution
103 ks_cdf=exp(-exp(-(dataset-alpha)/beta)); %For fitted distribution
104

105 % Plot empirical and fitted CDF:
106 figure(2)
107 fitted=plot(X_cdf,Y_cdf,’-’,’color’,0.3*[1 1 1]); %Plot fitted CDF
108 hold on
109 empirical=stairs(dataset,p_i,’-k’); %Plot empirical CDF
110

111 %Finding the measure "D":
112 ks=abs(ks_cdf-p_i);
113 D=max(ks);
114

115 i=1;
116 while D>ks(i)
117 i=i+1;
118 end
119 % Plot "D":
120 D_plot=plot([dataset(i),dataset(i)],[ks_cdf(i),p_i(i)],’-r’,’LineWidth’,3);
121

122 title(’Kolmogorov-Smirnov test’)
123 xlabel(’$y_{max,1min}$’,’Interpreter’,’latex’)
124 ylabel(’Cumulative Probability’)
125 legend([empirical,fitted,D_plot],{’Empirical CDF’,’Fitted CDF’,’D’});
126

127 % Identify extreme loads and other characteristics:
128 N=length(dataset);
129 n_hour=60*N/((stop-start)*0.5)
130 max_data=max(dataset)+25; %Largest measured load in the data set
131 x_max=alpha - beta*log(-log(1-1/N))+25; %Estimated largest for the data set
132

133 % End asymptotic.m --------------------------------------------------------
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three_param_exp.m

1 % Start thhree_param_exp.m ------------------------------------------------
2

3 % !!!This plot is always ran by another script!!!
4

5 RMSE=zeros(N+1,1); %creating vector for Root-Mean-Square Error
6 a_i=zeros(N+1,1); %Vector of weight parameters a
7 l1=zeros(N+1,1); %Vector of lambda_1 parameters
8 l2=zeros(N+1,1); %Vector of lambda_2 parameters
9 l2(1)=N/(sum(dataset)); %Creating first element. a_i(1)=l1(1)=0

10

11 for i=1:N
12 a_i(i+1)=i/N;
13 l1(i+1)=i/(sum(dataset(1:i)));
14 l2(i+1)=(N-i)/(sum(dataset(i:end)));
15 end
16

17 F=zeros(N,N+1); %Fitted cumulative probability for each element in
18 %dataset for all possible divisions of the dataset
19 for i=1:N
20 %Each column represent one "set" of parameters. Each row gives F for
21 %the same element in "dataset" represented by different parameters.
22 F(i,:)=a_i.*(1-exp(-l1*dataset(i)))+(1-a_i).*(1-exp(-l2*dataset(i)));
23 end
24

25 y1=-log(1-F); %Value in probability paper for estimated points
26 y2=-log(1-p_i); %Value in probability paper for measured points
27

28 for i=1:N+1
29 RMSE(i)=sqrt(sum((y2’-y1(:,i)).^2)/N); %Root-Mean-Square Error
30 end
31

32 target=min(RMSE); %Lowest value in RMSE
33 for i=1:N+1
34 if RMSE(i)==target %Find where the lowest RMSE is located
35 nr=i;
36 break
37 end
38 end
39

40 % The set of parameters that give the lowest RMSE:
41 a=a_i(nr);
42 lambda1=l1(nr);
43 lambda2=l2(nr);
44

45 % Plotting the 3 parameter exp. distr and the dataset in exp. prob. paper:
46 x=0:1:max(dataset)*1.2;
47 F_fit=a*(1-exp(-lambda1*x))+(1-a)*(1-exp(-lambda2*x));
48 yy=-log(1-F_fit);
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49 scatter(dataset,y2,’x’)
50 hold on
51 plot(x,yy,’Color’,0.0*[1 1 1])
52 title(’3-parameter exponential distribution’)
53 xlabel(’y’)
54 ylabel(’-ln(1-p)’)
55

56 % Least square line (1 parameter exponential, for comparison):
57 m=dataset\y2.’; %solve for slope, zero intercept
58 yhat=m*[0 dataset(end)]; %evaluate over same range from origin
59 plot([0 dataset(end)],yhat,’k-’) %plot fitted line
60

61

62 % Most probable largest value during the time series:
63 n_data=length(dataset);
64 n_hour=60*n_data/((stop-start)*0.5);%loads per hour
65

66 %Initial values. Could have been set higher, but the script is fast anyways
67 F=0;
68 x=0;
69

70 while F<1-(1/n_data)
71 x=x+0.1;
72 F=a*(1-exp(-lambda1*x))+(1-a)*(1-exp(-lambda2*x));
73 end
74

75 % Coefficient of Determination:
76 F_fit=a*(1-exp(-lambda1*dataset))+(1-a)*(1-exp(-lambda2*dataset));
77 yy=-log(1-F_fit);
78 y_bar=mean(y2);
79 SSres=sum((y2-yy.’).^2);
80 SStot=sum((y2-y_bar).^2);
81 R_squared=1-(SSres/SStot);
82

83 % Estimated most probable largest value during the analyzed time series:
84 x_max=x;
85

86 % End thhree_param_exp.m --------------------------------------------------
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acer.m

1 % Start acer.m ------------------------------------------------------------
2

3 clear all
4 load(’ILMdata’)
5 run(’separate’);
6

7 % User inputs:
8 start=;
9 stop=;

10 LX=;
11 N_k=; %Highest order of the acer function to be included
12

13 % Threshold:
14 threshold=25; %[kN] >= 25. 25 is default in the data set
15 if threshold>25
16 a=1;
17 LX_copy=LX;
18 clearvars LX
19 for i=1:length(LX_copy)
20 if LX_copy(i,2)>threshold
21 LX(a,:)=LX_copy(i,:);
22 a=a+1;
23 end
24 end
25 end
26

27 i=1;
28 while LX(i,1)<time(start) %finds start point "i" of interval
29 i=i+1;
30 end
31 j=i;
32 l_LX=length(LX);
33 while LX(j,1)<time(stop) && j<l_LX %finds stop point "j" of interval
34 j=j+1;
35 end
36 dataset=LX(i:j,2);
37

38 eta=sort(dataset); %load vector eta
39 N=length(dataset);
40 ACER=zeros(N,N_k); %acer function values
41 P=zeros(N,N_k); %extreme value distribution for large values of eta
42 rho=zeros(N,N_k); %Weight factor used in optimization of fitted curve
43 plusminus=zeros(N,N_k); %half of the length of the confidence interval
44

45

46 for k=1:N_k %each order of the ACER function
47 for r=1:N %Calculating points for element in "dataset"
48
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49 if k==1
50 q=sort(dataset); %Used for calculating P(etta)
51

52 i=round(N/2); %i: number of elements in "dataset" <= eta
53 numerator=0.5;
54 step=2;%Given a number >1
55 while N*numerator>1 %Continues as long as the step length is > 1
56 numerator=numerator/2;
57 if q(i)<eta(r)
58 i=round(i+N*numerator);
59 elseif q(i)>eta(r)
60 i=round(i-N*numerator);
61 else %q(i)==etta(r)
62 break
63 end
64 end
65 if q(i)>eta(r) %Correctin for possible numerical errors
66 i=i-1;
67 end
68 alpha_1j=(N-i)/N;%1-i/(N+1);
69

70 ACER(r,k)=alpha_1j; %=(1/(N-k+1))*N*alpha_1j
71 P(r,k)=exp(-N*alpha_1j);
72

73

74 % Calculate a_kj for each element:
75 else %if k is larger than 1
76 a_kj=zeros(N,1);
77 check=1;
78 for j=k:N
79 for i=(j-k+1):j-1
80 if dataset(i)>eta(r) %Requirement: the previous loads...
81 %being smaller than eta
82 check=0; %fails
83 break
84 end
85 end
86 if dataset(j)<=eta(r) %Requirement: load is larger than eta
87 check=0; %fails
88 end
89 if check==1 %All requirements are fulfilled.
90 a_kj(j)=1;
91 end
92 check=1;
93 end
94

95 epsilon_hat=(1/(N-k+1))*sum(a_kj(k:end));
96 ACER(r,k)=epsilon_hat;
97 P(r,k)=exp(-sum(a_kj(k:end)));
98 end
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99 plusminus(r,k)=(ACER(r,k)*1.96)/sqrt((N-k+1)*ACER(r,k));
100 rho(r,k)=(log(ACER(r,k)+plusminus(r,k))-log(ACER(r,k)-plusminus(r,k)))^-2;
101 end
102 end
103

104 %Confidence interval (lower and upper bound)
105 CIminus=ACER-plusminus;
106 CIplus=ACER+plusminus;
107

108 figure1 = figure;
109 % Create axes
110 axes1 = axes(’Parent’,figure1);
111 hold(axes1,’on’);
112

113 % Create multiple lines using matrix input to stairs
114 stairs(eta,ACER,’Parent’,axes1);
115

116 xlabel({’$\eta$ [kN]’},’Interpreter’,’latex’)
117 ylabel({’ACER($\eta$,k)’},’Interpreter’,’latex’)
118 legend({’k=1’,’k=2’,’k=3’,’k=4’,’k=5’});
119

120 box(axes1,’on’);
121 % Set the remaining axes properties
122 set(axes1,’YMinorTick’,’on’,’YScale’,’log’);
123

124 % End acer.m --------------------------------------------------------------
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acer_fit.m

1 % Start acer_fit.m --------------------------------------------------------
2

3 run(’acer’);
4

5 eta_0=; % [kN], Load value from where the extrapolation function starts
6 b0=mean(dataset); %Initial value for optimized constant b
7 c0=2; %Initial value for optimized constant c
8 x0=[b0,c0];
9 k=1; %Order of ACER function used for fitting of the extrapolation function

10

11 i=1;
12 % Find from which element number in dataset a function shall be fitted:
13 while eta(i)<eta_0
14 i=i+1;
15 end
16 i=i+1; %Start point in data set for extrapolation function
17

18 rho_opt=real(rho(:,k)); %Some imaginary parts due to numerical errors
19 for j=i:(length(rho_opt)-1)
20 if rho_opt(j)<0 %Only positive wheight factors are included
21 j=j-1; %End point in load vector for extrapolation function
22 break
23 end
24 end
25

26 % For the fitting purpose (spanning from i to j):
27 rho_opt=rho_opt(i:j);
28 ACER_opt=ACER(i:j,k);
29 eta_opt=eta(i:j);
30 ln_acer=log(ACER_opt);
31

32 % Objective function:
33 F = @(x) sqrt(rho_opt).*(ln_acer - sum(rho_opt.*ln_acer)-((sum(rho_opt.*...
34 ((eta_opt - x(1)).^x(2).*ln_acer)) - sum(rho_opt.*(eta_opt - x(1))...
35 .^x(2))*sum(rho_opt.*ln_acer))/(sum(rho_opt.*((eta_opt-x(1)).^x(2).*...
36 (eta_opt - x(1)).^x(2))) - (sum(rho_opt.*(eta_opt - x(1)).^x(2)))...
37 ^2))*((eta_opt - x(1)).^x(2) - sum(rho_opt.*(eta_opt - x(1)).^x(2))));
38

39 %Optimization characteristics:
40 ObFun_log_LS_NLINFIT_LM = optimset(’Display’,’off’,’Algorithm’,...
41 ’levenberg-marquardt’,’MaxFunEvals’, 10000, ’MaxIter’, 10000,’TolX’,...
42 1e-12, ’TolFun’, 1e-12);
43

44 %Optimization:
45 x = lsqnonlin(F, x0, [], [], ObFun_log_LS_NLINFIT_LM);
46 inp = (eta_opt - x(1)).^x(2);
47 A = (sum(rho_opt.*(inp.*ln_acer)) - sum(rho_opt.*inp)*sum(rho_opt.*...
48 ln_acer))/(sum(rho_opt.*(inp.*inp)) - (sum(rho_opt.*inp))^2);
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49 B = sum(rho_opt.*ln_acer) - A*sum(rho_opt.*inp);
50 sol(1:4) = [-A x(1) x(2) exp(B)];
51 a=-A; %Parameter used for extrapolation function
52 b=x(1); %Parameter used for extrapolation function
53 c=x(2); %Parameter used for extrapolation function
54 q=exp(B); %Parameter used for extrapolation function
55

56 % Upper band of CI, Same procedure as for the extrapolation function:
57 ln_CIplus=log(CIplus(i:j,k));
58 b0plus=mean(CIplus);
59 c0plus=2;
60 x0plus=[b,c];
61 Fplus = @(xplus) sqrt(rho_opt).*(ln_CIplus - sum(rho_opt.*ln_CIplus) - ...
62 ((sum(rho_opt.*((eta_opt - xplus(1)).^xplus(2).*ln_CIplus)) - sum...
63 (rho_opt.*(eta_opt - xplus(1)).^xplus(2))*sum(rho_opt.*ln_CIplus))/(sum...
64 (rho_opt.*((eta_opt - xplus(1)).^xplus(2).*(eta_opt - xplus(1)).^...
65 xplus(2))) - (sum(rho_opt.*(eta_opt - xplus(1)).^xplus(2)))^2))*...
66 ((eta_opt - xplus(1)).^xplus(2) - sum(rho_opt.*(eta_opt - xplus(1)).^...
67 xplus(2))));
68

69 ObFun_log_LS_NLINFIT_LM = optimset(’Display’,’off’,...
70 ’Algorithm’, ’levenberg-marquardt’, ...
71 ’MaxFunEvals’, 10000, ’MaxIter’, 10000,...
72 ’TolX’, 1e-12, ’TolFun’, 1e-12);
73

74 xplus = lsqnonlin(Fplus, x0plus, [], [], ObFun_log_LS_NLINFIT_LM);
75 inp = (eta_opt - xplus(1)).^xplus(2);
76 A = (sum(rho_opt.*(inp.*ln_CIplus)) - sum(rho_opt.*inp)*sum(rho_opt.*...
77 ln_CIplus))/(sum(rho_opt.*(inp.*inp)) - (sum(rho_opt.*inp))^2);
78 B = sum(rho_opt.*ln_CIplus) - A*sum(rho_opt.*inp);
79 solplus(1:4) = [-A xplus(1) xplus(2) exp(B)];
80 a_plus=-A;
81 b_plus=xplus(1);
82 c_plus=xplus(2);
83 q_plus=exp(B);
84

85 % Lower band of CI, Same procedure as for the extrapolation function:
86 ln_CIminus=log(CIminus(i:j,k));
87 b0minus=mean(CIminus);
88 c0minus=2;
89 x0minus=[b,c];
90 Fminus = @(xminus) sqrt(rho_opt).*(ln_CIminus - sum(rho_opt.*ln_CIminus)...
91 -((sum(rho_opt.*((eta_opt - xminus(1)).^xminus(2).*ln_CIminus))-sum...
92 (rho_opt.*(eta_opt - xminus(1)).^xminus(2))*sum(rho_opt.*...
93 ln_CIminus))/(sum(rho_opt.*((eta_opt - xminus(1)).^xminus(2).*...
94 (eta_opt-xminus(1)).^xminus(2))) - (sum(rho_opt.*(eta_opt-xminus(1))...
95 .^xminus(2)))^2))*((eta_opt - xminus(1)).^xminus(2) - sum(rho_opt.*...
96 (eta_opt - xminus(1)).^xminus(2))));
97

98 ObFun_log_LS_NLINFIT_LM = optimset(’Display’,’off’,...
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99 ’Algorithm’, ’levenberg-marquardt’, ...
100 ’MaxFunEvals’, 10000, ’MaxIter’, 10000,...
101 ’TolX’, 1e-12, ’TolFun’, 1e-12);
102

103 xminus = lsqnonlin(Fminus, x0minus, [], [], ObFun_log_LS_NLINFIT_LM);
104 inp = (eta_opt - xminus(1)).^xminus(2);
105 A = (sum(rho_opt.*(inp.*ln_CIminus)) - sum(rho_opt.*inp)*sum(rho_opt.*...
106 ln_CIminus))/(sum(rho_opt.*(inp.*inp)) - (sum(rho_opt.*inp))^2);
107 B = sum(rho_opt.*ln_CIminus) - A*sum(rho_opt.*inp);
108 solminus(1:4) = [-A xminus(1) xminus(2) exp(B)];
109 a_minus=-A;
110 b_minus=xminus(1);
111 c_minus=xminus(2);
112 q_minus=exp(B);
113

114 % Calculate estimated most probable largest value:
115 N=length(dataset);%length(dataset);
116 n_hour=60*N/((stop-start)*0.5);%loads per hour
117 P=((N-1)/N)^N;%Probability of exceeding most probable largest
118 eta_max_hat=b+((-1/a)*log(-(log(P))/(N*q)))^(1/c);
119

120 % For plotting:
121 x=eta_0:max(eta)*1.1;
122 y=q.*exp(-a.*(x-b).^c); %Extrapolation function
123 yplus=q_plus.*exp(-a_plus.*(x-b_plus).^c_plus); %Upper bound for CI
124 yminus=q_minus.*exp(-a_minus.*(x-b_minus).^c_minus); %Lower bound for CI
125

126 figure1 = figure;
127 % Create axes
128 axes1 = axes(’Parent’,figure1);
129 hold(axes1,’on’);
130 xlim(axes1,[25 , max(eta)*1.25]); %Limits z-axis
131 ylim(axes1,[min(ACER(1:(end-1),k))*0.1 , 1]);%yplus(1)]); %Limits y-axis
132 title(’Extrapolation scheme’)
133 xlabel({’$\eta$ [kN/m]’},’Interpreter’,’latex’)
134 ylabel({’ACER($\eta$,k=1)’},’Interpreter’,’latex’)
135

136 dataset=sort(dataset);
137

138 % Plotting:
139 % ACER function
140 acer=stairs(eta(1:end),ACER(1:end,k),’Parent’,axes1,’color’,[0 0 1]);
141 % Extraploation function:
142 fit=semilogy(x,y,’-k’);
143 % Upper confidence band for extrapolation function:
144 CIfit=semilogy(x,yplus,’:k’);
145 %Lower confidence band for extrapolation function:
146 semilogy(x,yminus,’:k’);
147 %Confidence interval bands for ACER function:
148 CIacer=semilogy(dataset(1:j),CIminus(1:j,k),dataset(1:end-1),...
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149 CIplus(1:end-1,k),’LineStyle’,’--’,’Color’,[0 0 1]);
150

151 box(axes1,’on’);
152 % Set the remaining axes properties:
153 set(axes1,’YMinorTick’,’on’,’YScale’,’log’);
154 legend([acer,fit,CIacer(1),CIfit],{’ACER function’,...
155 ’Extrapolation function’,’95% CI band for ACER function’,...
156 ’95% CI band for extrapolation function’});...
157 annotation(’textbox’,[0.18 0.18 0.1 0.07],’String’,...
158 {[’\eta_{0} = ’,num2str(eta_0)]},’FontSize’,12.6,’EdgeColor’,’k’);
159

160 % End acer_fit.m ----------------------------------------------------------
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kolmogorov_smirnov.m

1 % Start kolmogorov_smirnov.m ----------------------------------------------
2

3 prompt = ’User input: Enter "1" for parameters estimated from’,...
4 ’probability paper, "2" for maximum likelihood estimate (MLE) ’;
5 method = input(prompt);
6

7 % Estimate distribution parameters for set defined in prob_paper.m:
8 run(’parameters’)
9 close

10

11 % Calculating points in CDF for fitted distribution:
12 X_cdf=0:1:max(dataset)*1.1;
13 if distr==1 % Exponential
14 Y_cdf=expcdf(X_cdf,1/lambda);
15 ks_cdf=expcdf(dataset,1/lambda);
16 elseif distr==2 %Log-normal
17 Y_cdf=logncdf(X_cdf,mu,sigma);
18 ks_cdf=logncdf(dataset,mu,sigma);
19 elseif distr==3 %Gumbel
20 Y_cdf=exp(-exp(-(X_cdf-alpha)/beta));
21 ks_cdf=exp(-exp(-(dataset-alpha)/beta));
22 elseif distr==4 %Weibull
23 Y_cdf=wblcdf(X_cdf,theta,k);
24 ks_cdf=wblcdf(dataset,theta,k);
25 elseif distr==5
26 Y_cdf=a*(1-exp(-lambda1*X_cdf))+(1-a)*(1-exp(-lambda2*X_cdf));
27 ks_cdf=a*(1-exp(-lambda1*dataset))+(1-a)*(1-exp(-lambda2*dataset));
28 end
29

30 % Plot empirical and fitted CDF:
31 empirical=stairs(dataset,p_i,’-k’);
32 hold on
33 fitted=plot(X_cdf,Y_cdf,’color’,0.3*[1 1 1]);
34

35 ks=abs(ks_cdf-p_i’);
36

37 % Finding the measure "D":
38 D=max(ks);
39 % Calculate critical value of "D":
40 D_crit=1.36/sqrt(length(dataset)); %For alpha=0.05, n>50
41

42 if D>D_crit
43 disp(’KS-test: Rejected’)
44 else
45 disp(’KS-test: Not rejected’)
46 end
47

48 i=1;
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49 while D>ks(i)
50 i=i+1;
51 end
52

53 % Plot "D" and add labels, titles, legend, textbox
54 D_plot=plot([dataset(i),dataset(i)],[ks_cdf(i),p_i(i)],’r-’,’LineWidth’,3);
55 title(’Kolmogorov-Smirnov test’)
56 xlabel(’y’)
57 ylabel(’Cumulative Probability’)
58 legend([empirical,fitted,D_plot],{’Empirical CDF’,’Fitted CDF’,’D’});
59 annotation(’textbox’,[0.7 0.65 0.15 0.11],’String’,...
60 {[’D = ’,num2str(D,’%.3f’)],[’D_{crit} = ’,num2str(D_crit,’%.3f’)]},...
61 ’FontSize’,11,’FitBoxToText’,’off’,’EdgeColor’,’none’);
62

63 % End kolmogorov_smirnov.m ------------------------------------------------
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bootstrapping.m

1 % Start bootstrapping.m ---------------------------------------------------
2

3 clear all
4 tic %This script may run for a while!
5 prompt = ’User input: Enter "1" for parameters estimated from’,...
6 ’probability paper, "2" for maximum likelihood estimate (MLE) ’;
7 method = input(prompt);
8

9 % Number of bootstrapped samples:
10 n_boot=10000;
11

12 % Estimate distribution parameters for set defined in prob_paper.m:
13 run(’parameters’)
14

15 % Matrix for estimated parameters for each bootstrapped sample:
16 param=zeros(n_boot,2);
17

18 % Estimates of parameters from original dataset:
19 lambda_hat=lambda; %Exponential
20 sigma_hat=sigma; %Log-normal
21 mu_hat=mu; %Log-normal
22 beta_hat=beta; %Gumbel
23 alpha_hat=alpha; %Gumbel
24 k_hat=k; %Weibull
25 theta_hat=theta; %Weibull
26

27 % For plotting later: original (measured) dataset stored:
28 dataset_orig=dataset;
29

30 % Bootstrapping:
31 for i=1:n_boot
32 % Generate N (sample size) random numbers between 0 and 1 (cum. prob):
33 u=rand(N,1);
34

35 % Generate bootstrapped datasets from distribution with parameters
36 % calculated from the original data set:
37 if distr==1 %Exponential:
38 dataset=-(log(1-u))/lambda_hat;
39 elseif distr==2 %Log-normal:
40 dataset=exp(sigma_hat*norminv(u) + mu_hat);
41 elseif distr==3 %Gumbel:
42 dataset=alpha_hat - beta_hat*log(-log(u));
43 elseif distr==4 %Weibull:
44 dataset=theta_hat*(-log(1-u)).^(1/k_hat);
45 end
46

47 % Bottstrapped sample (dataset):
48 dataset=sort(dataset);
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49

50 % Abscissa and ordinate transformations:
51 if distr==1 %Exponential:
52 x=dataset;
53 y=-log(1-p_i);
54 elseif distr==2 %Log-normal:
55 x=log(dataset);
56 y=norminv(p_i); %Normal inverse cumulative distribution function
57 elseif distr==3 %Gumbel:
58 x=dataset;
59 y=-log(-log(p_i));
60 elseif distr==4 %Weibull:
61 x=log(dataset);
62 y=log(-log(1-p_i));
63 end
64

65 % Plot (all) bootstrapped points in same figure:
66 hold on
67 scatter(x,y,’y*’)
68

69 %Calculate new parameters based on the bootstrapped data.
70 bootstr=1; %Variable used to maintain the present dataset as "dataset" in
71 no_plot=1; %Used for avoiding new plots of dataset in prob_paper.m
72 %figure(2)
73

74 if method==1 % Parameter estimation based on probability paper:
75 if distr==1 %Exponential distribution
76 c=0; %The exponential distribution is by def. starting at origo
77 m=x\y.’; %solve for slope, intercept=0
78 else
79 m_c = polyfit(x,y’,1);
80 m=m_c(1); %slope
81 c=m_c(2); %ordinate interception
82 end
83 end
84

85 % Estimate distribution parameters for bootstrapped samples
86 run(’parameters’);
87 param(i,1)=parameter1;
88 param(i,2)=parameter2;
89 end %bootstrapping process
90

91 % Plot the orsginal data set in the same figure as the bootstrapped ones:
92 if distr==1
93 %************EXPONENTIAL************
94 x=dataset_orig;
95 y=-log(1-p_i);
96

97 elseif distr==2
98 %************LOGNORMAL************

XLI



Appendix

99 x=log(dataset_orig);
100 y=norminv(p_i); %Normal inverse cumulative distribution function
101

102 elseif distr==3
103 %*************GUMBEL**************
104 x=dataset_orig;
105 y=-log(-log(p_i));
106

107 elseif distr==4
108 %*************WEIBULL*************
109 x=log(dataset_orig);
110 y=log(-log(1-p_i));
111 end
112 hold on
113 scatter(x,y,’bx’)
114

115 toc
116 % End bootstrapping.m -----------------------------------------------------
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