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Abstract

Unmanned autonomous ships are a popular subject in recent maritime research and

innovation studies. Autonomy in shipping bears the potential to reduce the environ-

mental impact, increase safety and reduce costs. So far, minimal attention has been

devoted to the potential cost benefits of autonomous shipping. From a ship owner’s

perspective the main determinant of autonomous shipping rely on the economic vi-

ability. Ship acquisition involve a large capital investment, and the future operating

context is highly uncertain. The maritime industry is characterized by uncertain ex-

ogenous factors that affect operational costs.

The overall objective of this thesis is to compare autonomous container feeder fleets

to conventional feeder fleets in terms of costs. In order to investigate potential cost-

benefits of autonomy, the required infrastructure and technical systems are identi-

fied. The costs changes that occur for autonomous vessels are estimated using ap-

proximation methods with a conventional container vessel as reference. Operational

costs and voyage costs are determined by solving a multi-trip Vehicle Routing Prob-

lem for a specific regional Baltic container trade. Contextual uncertainties are consid-

ered using the Responsive Systems Comparison method together with Multi-Epoch

Analysis.

The results from the analysis show that autonomous container fleets have lower costs

than conventional container fleets in a variety of different contexts. In a base case

scenario the cost of the optimal autonomous fleet is USD 1.39 million lower than for

optimal the conventional fleet. However, the results from the analysis are related with

a high degree of uncertainty. The uncertainties are primarily due to the conceptual

state of autonomy in container shipping, and limited access to precise cost data for

autonomous vessels. It turned out to be challenging to capture the difference be-

tween autonomous and conventional vessels using the Responsive Systems Compar-

ison method. Eventually, the method acted more like a sensitivity analysis. However,

in a future scenario when autonomous shipping is more developed, the overall ap-

proach can serve as a powerful tool for fleet evaluation.
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Sammendrag

Ubemannende autonome skip er et populært tema i nyere maritim forskning og in-

novasjonsstudier. Autonomi i shipping har potensiale til å redusere miljøpåkjenninger,

øke sikkerheten og redusere kostnader. Så langt har det ikke vært viet vesentlig opp-

merksomhet til de potensielle kostnadsfordelene som autonomi kan innebære. Fra

ståstedet til en skipsreder er økonomisk levedyktighet den mest avgjørende faktoren.

Oppkjøp av skip innebærer store kapitalinvesteringer, hvor den fremtidige operative

konteksen er meget usikker. Karakteristisk for den maritime industrien er usikre ek-

sterne faktorer som påvirker operasjonelle kostnader.

Denne oppgavens overordnede mål er å sammenligne autonome container feeder-

flåter med konvensjonelle feeder-flåter når det gjelder kostnader. For å kunne un-

dersøke de potensielle kostnadsfordelene med hensyn til autonomi, må den nød-

vendige infrastrukturen og de tekniske systemene identifiseres. Kostnadsendringene

som oppstår ved autonome skip estimeres ved å bruke approksimeringsmetoder med

et kovensjonelt containerskip som referanse. Operasjonelle kostander og reisekost-

nader betemmes ved å løse et multi-trip Vehicle Routing Problem for en spesifikk re-

gional containerhandel (Baltic). Kontekstuelle faktorer blir tatt hensyn til ved å bruke

Responsive Systems Comparison-metoden sammen Multi-Epoch analyse.

Resultatene fra analysen viser at autonome containerflåter har lavere kostnader enn

kovensjonelle containerflåter i en rekke ulike kontekster. Kostnadene til den opti-

male autonome containerflåten i et base case scenario er 1.39 millioner USD lavere

enn den optimale konvensjonelle containerflåten. Derimot er resultatene av denne

analysen forbundet med stor grad av usikkerhet. Usikkerheten skyldes primært den

konseptuelle tilstanden innen autonomi i container-shipping, og begrenset tilgang

til nøyaktige kostnadsdata for autonome skip. Det viste seg å være utfordrene å iden-

tifisere forskjellene mellom autonome og konvensjonelle skip i Responsive Systems

Comparison-metoden. Metoden viste seg å fungere mer som en sensitivitetsanalyse.

I midlertid kan den overordnede tilnærmingen fungere som et nyttig verktøy for flå-

teevaluering i et fremtidig scenario hvor autonome skip er mer utviklet.
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Chapter 1

Introduction

1.1 Background

Shipping accounts for nearly 80% of global trade by volume, which in 2016 reached

about 10.6 billion tons of cargo (Brouer et al., 2016). Seaborne trade is certainly a

global industry, and is connected to almost every international supply chain. The

demand for seaborne cargo capacity is increasing as global population and standard

of living rise (Christiansen et al., 2012).

The shipping industry has seen several innovative solutions to improve efficiency

since the first cargoes were shipped by sea more than 5,000 years ago. The container-

ization of general cargo during the 1950s drastically decreased cargo handling time,

which resulted in improved efficiency and cost reductions (Stopford, 2009). In more

recent times, digital solutions and data analytics have made it possible to further im-

prove shipping efficiency, such as optimized weather routing and condition monitor-

ing. Operations research is common in the transportation industry to minimize costs

and obtain competitive logistic solutions. Containerized cargo constitutes about 60%

of all value shipped by sea, but in the last decades minimal attention has been devoted

to operations research within containerized shipping compared to other transporta-

tion modes (Ronen et al., 2004). However, in the past decade the research activity

within maritime transportation planning problems is increasing (Christiansen et al.,

2012).
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CHAPTER 1. INTRODUCTION 2

Thorough planning may have a significant impact on shipping costs and operational

efficiency. Seaborne transportation constitute about 2.7% of global CO2 emissions,

where 25% is accounted to container shipping alone (Løfstedt et al., 2010). Thus,

proper planning also has the potential to reduce emissions.

Autonomous vehicles are emerging in transportation fields such as aviation, the auto-

motive and train industry. Aircrafts have been semi-autonomous for several decades

by the use of the autopilot system. Leading companies like Google and Tesla have

invested significant amounts in fully autonomous cars for the everyday consumer. In

recent maritime research and innovation studies, unmanned and autonomous ships

have become a popular research subject. According to (Burmeister et al., 2014 & Rod-

seth et al., 2012) the incentive behind autonomous vessels in the maritime sector is

to contribute to all dimensions of sustainability; economic, ecological and social sus-

tainability.

Although the number of accidents in the maritime transportation is low compared

to other transportation modes, it is a necessity that autonomous vessels are at least

as safe, or even safer, than today’s manned vessels (Kretschmann et al., 2017). Sev-

eral studies show that the majority (from 64% to 96%) of maritime accidents are due

to human error (Sanquist, 1992, Blanding, 1987 and Rothblum, 2000). Autonomous

vessels have the potential to improve navigational safety by replacing the officer of

the watch (OOW) with automated onboard decision-making systems. Together with

the onboard systems, the autonomous vessels are operated by a onshore nautical of-

ficer from a so-called Shore Control Centre (Burmeister et al., 2014). This may also

attract seagoing professionals due to more attractive working conditions.

From an economic perspective the introduction of unmanned vessels has the poten-

tial to reduce operating costs by removing the majority of crew-related costs. The

absence of onboard crew may also lead to new innovative ship designs without the

need for superstructures to house life-support facilities. Losing the superstructure

means less air resistance and also a reduction in weight, which in turn may result in

reduced fuel consumption. According to Bertram (2016), so far minimum attention

has been devoted to the potential cost benefits of autonomous vessels in the maritime

transportation sector.

From a shipowner’s perspective, a potential procurement of autonomous vessels in-

volves a large capital investment. The shipping market is a highly uncertain market,
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characterized by unpredictable and exogenous factors affecting costs. It’s reasonable

to assume that in order for a ship owner to switch to autonomous vessels, the main

determinant factor would be potential cost benefits relative to conventional vessels.

As the world is constantly changing, it is crucial that new ships design are able to add

value throughout their lifetime. Ships designed using traditional design methods of-

ten rely on a static operating context. However, there is no guarantee that the ship

will stay optimal if the future operating context change (Ross et al., 2008b).

1.2 Objectives

The overall objective of this thesis is to compare conventional container feeder fleets

to autonomous feeder fleets. There are several ways to conduct a comparison study,

but from a potential shipowner’s point of view the most interesting measure is cost-

comparison. This thesis aims to answer the following research question:

Can the container shipping industry benefit of autonomous container feeder

fleets?

In order to investigate potential benefits of autonomous container vessels, it is nec-

essary to conduct a thorough assessment of the required frameworks for autonomous

operation. In addition, the cost changes that may occur due to innovative autonomous

ship designs are identified. To handle the uncertainties in the shipping market and

ensure value robust designs, a second research question is defined:

What configuration of autonomous container feeder fleets minimizes cost

and performs best in different contexts and needs?

1.3 Scope and Limitations

In this thesis the comparison study between autonomous and conventional vessels

is restricted to container feeder networks in liner shipping. The analysis deals with

technical and economical issues related to autonomous vessels, where legal and safety

issues are not considered. The possibility to retrofit conventional feeder vessels into

autonomous vessels is neglected in this analysis, and it’s assumed that a carrier would

prefer to acquire new autonomous vessels. It’s plausible that a retrofitting process

would be too extensive. The main focus of this thesis is seaborne transportation, thus
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intermodal logistics are not considered.

The main limitation in this thesis is related to the conceptual state of autonomous

shipping, and the associated uncertainties connected to costs. The results of the cost

assessment rely solely on the assumptions and estimates made, and the underlying

cost data for similar container vessels. Another limitation is the availability of cost

data, especially related to autonomous ships.

1.4 Structure of the Report

The rest of the thesis is structured as follows:

• Chapter 2 identifies the considered differences between conventional and au-

tonomous container vessels. The chapter starts out with a definition of an au-

tonomous vessel, and the required infrastructure and technical systems are in-

vestigated. Furthermore, a conventional reference vessel is presented, and the

cost differences that occur for an autonomous vessel are presented.

• Chapter 3 presents the structured approach for the analysis. Relevant theory

is explained to give the reader insight in the methodologies used. First, meth-

ods for solving Maritime Transportation Planning Problems (MTTP) are pre-

sented. Next, the focus shift towards the Responsive Systems Comparison (RSC)

method, Tradespace Exploration and Epoch-Era Analysis (EEA).

• Chapter 4 reviews relevant literature related to the approach and scope of this

thesis. This involves similar research topics on routing and scheduling, the RSC

approach and cost assessments of autonomous vessels.

• Chapter 5 presents the solving algorithm for the routing problem using a pipeline

flow chart. The mathematical optimization models used to solve the problem

are presented and explained.

• Chapter 6 presents a case study that involves a specific regional Baltic container

trade. The RSC method is applied and the results of the analysis are presented.

• Chapter 7 provides a discussion of the results and the methods used.

• Chapter 8 presents the conclusion of the thesis, and recommendations for fur-

ther work are proposed.



Chapter 2

Conventional vs. Autonomous

In this chapter the differences between conventional and autonomous container ves-

sels are identified and discussed. The first part of this chapter defines an autonomous

vessel, and presents existing research projects that investigate the commercial feasi-

bility of autonomous vessels in the maritime transportation sector. Furthermore, the

data used to estimate the costs of owning and operating a conventional container ves-

sel is presented. The differences that occur when switching to autonomous operation

are then discussed and structured.

2.1 What is an Autonomous Ship?

According to the European Waterborne Technology Platform Implementation Plan

(Waterborne TP, 2011) for 2020, the development of autonomous ships is one of the

key exploitation outcomes to strengthen Europe’s maritime sector. Waterborne TP

(2011) defines an autonomous ship as a vessel with:

Next generation modular control system and communications technology

[that] will enable wireless monitoring and control functions both on and

off board. These will include advanced decision support systems to provide

a capability to operate ships remotely under semi or fully autonomous con-

trol.

In order to bring the idea of autonomous ships to life, the research project Maritime

Unmanned Navigation through Intelligence in Networks (MUNIN) was established by

5
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the European Commission. MUNIN investigates the feasibility of autonomous ships,

and aims to develop required technology and business concepts (Kretschmann et al.,

2017). As outlined in the definition of an autonomous ship, the vessel should be able

to operate remotely under semi or fully autonomous control. The MUNIN project’s

core task is to develop and validate the required technology to achieve semi or fully

autonomous control (Rodseth et al., 2012). According to the MUNIN project a ship is

said to be autonomous if it is completely unmanned at least for parts of a particular

voyage (MUNIN, 2016).

2.1.1 Autonomous Infrastructure

Figure 2.1 illustrates the transition from manned vessels to autonomous vessels where

the resulting autonomous ship is a combination of a remote and an automated ship.

On a conventional manned ship, information from radars, navigation systems (ECDIS)

and visual observations are interpreted by the onboard Officer on Watch (OOW) to

take navigational actions. On the other hand, a remote ship transmits data to a nav-

igational operator ashore where the information is processed. Navigational instruc-

tions are then transmitted back to the ship to take actions. The next level is the auto-

mated ship, where all navigational decisions are made onboard by a computer with-

out any remote control. Finally, as defined by the MUNIN project, an autonomous

ship is a combination of a remote and automated ship, where the vessel is completely

unmanned for parts of the voyage. Navigational decisions are partially made by on-

board automated systems and by navigational operators that are capable of control-

ling the ship remotely ashore.

Figure 2.1: From manned to autonomous ships (Rodseth et al., 2012). Vector icons made by:
www.freepik.com

www.freepik.com
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In order to achieve safe unmanned and autonomous navigation it is necessary to

implement newly developed systems on-board the vessel, and remote monitoring

and control systems ashore (MUNIN, 2016). As proposed by the MUNIN project, au-

tonomous operation requires voyage planning, navigation and collision avoidance

systems that are constantly surveilled from a so-called Shore Control Centre (SCC)

(MacKinnon et al., 2015). The monitoring and controlling tasks are conducted by

a operator in the SCC, which is capable of operating up to six ships simultaneously

(MUNIN, 2016). The SCC communicates with the autonomous ship by using avail-

able technology such as GSM, satellite, VHF, etc. From a socio-technical perspective

the SCC can either be managed by officials such as the Vessel Traffic Services (VTS)

and port authorities, or ship management companies to attract seagoing profession-

als looking for jobs ashore (MacKinnon et al., 2015). This conceptual overview, as

proposed by MacKinnon et al. (2015), is illustrated in Figure 2.2.

Figure 2.2: Socio-technical overview of autonomous navigation (adapted from MacKinnon
et al., 2015). Vector icons made by: www.freepik.com

When necessary, it is possible to take direct control of the autonomous vessel from

the SCC by using a Remote Maneuvering Support System (RMSS). The idea is that

a team ashore directly operate the vessel from a replica of the ship’s bridge, and the

RMSS provide the team with situation awareness due to the actual distance between

the SCC and the vessel.

An Advanced Sensor Module (ASM) on-board the autonomous vessel replace the eyes

and ears of the OOW. The ASM is equipped with advanced cameras and radars to de-

tect and classify objects, and can be seen as the vessel’s perception unit (MUNIN,

www.freepik.com
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2016). A predefined voyage plan uploaded from the SCC is interpreted by an Au-

tonomous Navigation System (ANS) on-board the vessel. The ANS has some degrees

of freedom and can change the route if necessary, e.g., if harsh weather conditions

suddenly arise. Together with the ANS, an Autonomous Engine Monitoring and Con-

trol System (AEMCS) transmit engine and navigational data to the SCC so that op-

erators ashore can quickly identify hazards and threats. The AEMCS is an extension

to existing ship automation and control systems, where the goal is to add required

digital interfaces to allow for autonomous operation of technical systems on-board

(MUNIN, 2016).

These high-level systems and components are considered the most important ones in

order to capture the cost difference between autonomous and conventional vessels.

There are certainly more detailed technical systems and infrastructure needed in a

real-world situation, but as autonomous shipping is still in its conceptual phase, it’s

difficult to include all of the necessary elements. The link between the key systems

and infrastructure considered, as presented by the MUNIN project, are illustrated in

Figure 2.3.

Figure 2.3: Overview of technical autonomous systems (reproduced from MUNIN, 2016).

2.1.2 Autonomous Ship Design

The introduction of unmanned and autonomous ships attracts innovative design so-

lutions. Since the vessels are partially or fully unmanned, major parts of the super-

structure, if not all of it, are no longer needed. Conceptual and real autonomous ship
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designs have recently emerged.

Yara Birkeland, the world’s first electric driven autonomous container feeder, is ready

for operation by 2020. The vessel has cargo capacity of 120 TEUs, and is capable of re-

placing around 40,000 truck deliveries annually between Larvik, Brevik and Herøya in

Norway. Yara Birkeland is going to serve as a transportation "pendulum" between the

three ports, and berthing, loading and discharging are fully autonomous processes

using automatic mooring systems and electric cranes. Instead of using ballast tanks,

Yara Birkeland will use battery packs as permanent ballast. As depicted in Figure 2.4,

superstructure and crew facilities found on conventional vessels are completely elim-

inated from Yara Birkeland’s design. Due to these design solutions the building pro-

cess is promised to be less time consuming compared to conventional container ves-

sels (Stensvold, 2017b). Unfortunately, production cost and operating cost data are

not available at this point.

Figure 2.4: Yara Birkeland as designed by Marin Teknikk (Kongsberg, 2017).

SCCs deal with operational aspects including emergency and exception handling,

condition monitoring, decision support and monitoring of the surroundings. Yara

Birkeland is apparently ready for testing during 2018 with a captain and small crew

placed in a container-based bridge module (Kongsberg, 2017). The bridge is detach-

able and will be removed when the vessel is ready for autonomous operation.

Rolls-Royce Marine has taken the concept of a module based autonomous container

vessels to another level with their concept design called Electric Blue. The vessel is

a 1,000 TEU container feeder with a unique flexible design that can easily adapt to

changes in the market. Electric Blue’s propulsion can be diesel-electric, LNG-electric

or fully electric for specific routes or to meet future environmental regulations. This is

made possible by introducing modular container components such as battery packs,

fuel tanks, engine packs and even cabin packs (Stensvold, 2017a). This flexibility is

a huge advantage in the volatile shipping market characterized by unpredictable ex-
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ogenous factors such as environmental regulations and fluctuating fuel costs (Wil-

son, 2017). As depicted in Figure 2.5 the lean design with minimal superstructure

makes more room for container cargo, and as for Yara Birkeland, the control bridge

is housed in a container. Rolls-Royce Marine predicts that full autonomy is possible

by 2035 (Wilson, 2017).

Figure 2.5: Initial concept design drawing of Electric Blue. Source: Rolls-Royce.

2.2 Classification of Costs

In this section, an overall cost structure for owning and operating a conventional con-

tainer ship is presented. Further, a cost model for the conventional container vessel

is described, and then the cost differences that occur when owning and operating an

autonomous container vessel are discussed and structured.

The shipping industry has no internationally accepted standard for classifying costs,

but on a parent level there are three main factors that affect the cost of running a ship

(Stopford, 2009). The first factor involve the state of the vessel, namely its fuel con-

sumption, required crew number, age and physical condition. The latter will affect

the vessel’s need for repairs and maintenance. Second, external factors, such as the

price of equipment and bunkers, crew wages, repair and interest rates, are factors that

are considered to be outside the shipowner’s control. The last factor, management,

depend on how well the ship is managed, including administrative overheads and

operational efficiency (Stopford, 2009). The breakdown of factors that affect running

costs for a ship is illustrated in Figure 2.6.

A merchant ship’s ability to generate revenue rely on three main characteristics; cargo

capacity, productivity and freight rates. Autonomous vessels need to compete with

conventional vessels, so it is realistic to assume that same economical principals ap-

ply for autonomous vessels (Kretschmann et al., 2017). According to Stopford’s (2009)
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Figure 2.6: Breakdown of factors that affect the costs of running a ship (adapted from Stop-
ford, 2009).

cash-flow model for merchant ships, the revenue generated by the vessel creates free

cash flow after costs are deducted, as illustrated in Figure 2.7. The free cash flow is

then used to pay tax and dividends, and generate profit.

Figure 2.7: Adapted version of Stopford’s shipping cash flow model (adapted from Stopford,
2009).

In thesis, three main cost categories are considered, and the following cost categories

will be the basis for the cost models for the conventional and autonomous container

vessel:

Operating Costs

Operating costs, commonly referred to as OPEX, are the day-to-day running costs of a

vessel, such as crew, stores and maintenance. In other words, operating costs involve

all costs needed to maintain the ship in operation, except fuel costs. On a general

basis operating costs amount for about 14 % of total costs. Operating costs depend on

the crew size and the nationality of the crew, maintenance policy, and age and insured
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value of the ship (Stopford, 2009). Periodic maintenance that involve dry docking is

a major expense, and is considered as a fixed cost for the ship owner (Kretschmann

et al., 2017).

Voyage Costs

Voyage costs, or VOYEX, are variable costs only associated with a particular voyage.

The main elements are fuel costs, port call costs, tugging, canal charges and cargo-

handling costs. The most important element is fuel cost as it accounts for about 45%

of voyage costs (Stopford, 2009). Port charges are also considered a major expense,

and may vary according to area, volume of cargo and vessel size.

Capital Costs

Capital costs, or CAPEX, are all expenses associated with ship acquisition, and related

costs, such as interest (Kretschmann et al., 2017). Capital costs depend on how the

vessel is financed, but apposed to operating costs and voyage costs, capital costs have

no direct influence on the vessel’s physical operation.

2.3 Cost Data for Conventional Container Vessels

The cost estimates for conventional container vessels are based on three separate

data sources that serve as the input for the regression models presented later in chap-

ter 6.1. The first data set, Table 2.1, is based on annual operational costs presented

by Drewry (2010), and costs presented by Stopford (2009). The second data set, Table

2.2, provides cost data and power output for the main and auxiliary machinery. The

data set consists of 1045 vessels with capacity ranging from 300 TEU to 1500 TEU.

Table 2.1: Selection of conventional container vessel data from Stopford (2009) & Drewry
(2010).

Capacity
[TEU]

Speed
[kn]

Fuel consumption
[t/h]

OPEX
[USD/h]

CAPEX
[millUSD]

660 18.3 1.17 146.0 -
1,200 18.3 1.75 193.5 25
1,216 22.0 2.66 154.7 -
2,468 21.0 4.07 199.0 -
2,600 20.9 3.29 237.8 48
3,752 21.5 5.83 265.6 -
4,300 23.8 6.13 250.0 67
5,364 25.0 6.88 297.0 -
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Table 2.2: Selection of ship data from Sea Web. Source: www.maritime.ihs.com

Capacity
[TEU]

Length
[m]

Fuel
Consumption

[t/h]

Speed
[kn]

dwt
[t]

CAPEX
[millUSD]

Main Engine
[kW]

Aux. Engine
[kW]

378 118.6 0.33 12.0 6,300 - 2,500 240
411 111.2 0.65 14.3 6,273 9.0 3,360 -
658 118.3 1.04 17.5 6,850 - 6,100 540
698 132.4 1.34 17.5 8,672 13.0 5,000 -
750 134.7 1.42 18.3 9,167 - 7,300 400
797 133.2 1.35 18.0 9,865 17.0 7,500 -
812 140.6 1.54 18.0 9,322 18.0 8,400 470
907 145.1 1.50 17.8 12,601 18.3 7,988 -
957 139.1 1.54 18.8 11,846 16.8 9,600 1,000

1,085 157.9 1.63 18.5 14,220 24.5 9,960 1,360
1,114 147.8 1.71 19.6 13,684 23.0 9,730 810
1,432 182.9 2.00 19.1 24,244 24.0 11,768 1,350

2.4 Cost Changes for Autonomous Container Vessels

In this section the considered cost changes that occur for an autonomous container

vessel are presented and discussed. The cost estimates are structured according to

operating costs, voyage costs and capital costs. The following estimation methods are

primarily based on MUNIN’s quantitative analysis of the concept of an autonomous

vessel, where a panamax dry bulk carrier is used for reference (Kretschmann et al.,

2015). The methods are adjusted according to the conventional container vessel used

as a reference in this analysis.

The conventional container vessel considered in this thesis, hereafter referred to as

the reference vessel, is a small container feeder with capacity of 800 TEU. Feeders are

often categorized into three subcategories according to their capacity; small feeder

(up to 1,000 TEU), feeder (1,000-2,000 TEU) and feedermax (2,000-3,000 TEU), but

the term feeder can be used for all categories. The reference vessel is built by Damen

Shipyard Group, and the vessel’s main specifications are listed in Table 2.3. The main

specifications given in the vessel’s product sheet (Damen, 2017) are needed to con-

duct cost estimates for the autonomous vessel, which are presented in the following

sections.

The reference vessel’s main and auxiliary engines use marine gas oil (MGO) as fuel,

which is the main reason why this particular vessel was chosen. As opposed to small

feeders, ships used in intercontinental trades with larger capacity more commonly

www.maritime.ihs.com
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Table 2.3: Specifications of the conventional reference vessel (Damen, 2017).

Length Overall [m] 140.6
Length B.p.p. [m] 130.0
Beam [m] 21.8
Depth [m] 9.8
Draft [m] 7.33
Deadweight [t] 9,300.0
Main Engine [kW] 6,000.0
Auxiliary [kW] 850.0
Design speed [kn] 17.0

use heavy fuel oil (HFO) as their main fuel source. This is partially due to the lower

price of HFO compared to distillates such as MGO. For instance, in April 2016 the price

of MGO was nearly double the price of HFO (Marquard & Bahls, 2015). In addition,

merchant ships are governed by the International Maritime Organization’s (IMO) ma-

rine pollution (MARPOL) conventions, such as Sulphur Emission Control Areas (SE-

CAs). These areas include the Baltic Sea, the North Sea, the English Channel, the

United States Caribbean Sea and the coasts along the United States and Canada. As

of January 2015 the maximum allowed sulphur content in marine fuels in SECAs is

0.1% by mass (Saxton, 2016). MGO has a sulphur content of approximately 0.1% by

mass, and is thus allowed to use in SECAs. HFO on the other hand is not allowed,

with a sulphur content of about 1% by mass. Industry insiders claim that MGO will

be used more frequently in the coming years, mainly due to the environmental ben-

efits of MGO, and the falling production of residual fuel, or HFO (Marquard & Bahls,

2015).

2.4.1 Operating Costs

Crew Costs

As discussed in Chapter 2.1.1 it’s no longer necessary with a onboard crew on the

autonomous feeder. Although temporary onboard maintenance work may occur in

reality, it is assumed for simplicity that onboard crew costs are negligible. According

to operating cost data provided by Drewry (2010) the manning costs constitute 48%

of operating costs. These figures include crew wages and overtime payments. The

average crew cost share of daily operating costs for the TEU classes listed in Table 2.1

is 48%. This results in a reduction of operating costs by 52%, or USD 97.7 per hour on

average.
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Shore Control Centre

The Shore Control Centre (SCC) is still on a conceptual level, but the MUNIN project

has developed an organizational layout of a SCC capable of monitoring up to 90 ves-

sels simultaneously (Porathe et al., 2014). This layout serves as the basis for estimat-

ing costs associated with the SCC from a shipowners perspective. As discussed in

Section 2.1.1 the autonomous vessel requires around the clock monitoring from the

SCC by navigational operators. According to Kretschmann et al. (2015) the estimated

annual personnel cost per ship monitored by the SCC is estimated to be USD 116,000,

or USD 13.2 per hour.

2.4.2 Voyage Costs

Autonomous ships are probably not able to operate on HFO (Willumsen, 2018). This

is due to the required onboard heating and purifying process of HFO before it can

be used. Studies show that this process is inappropriate to automate, meaning that

autonomous vessels are restricted to use higher grade fuels such as MGO (MUNIN,

2016). Based on this reasoning it is assumed in this analysis that autonomous vessels

are restricted to only use MGO or even higher grade fuels, which will lead to increased

voyage costs.

Air Resistance

As presented in chapter 2.1.2, autonomous ships will probably lose major parts of the

superstructure, if not all of it. It’s conceivable that the autonomous vessel may have

some space for a small maintenance crew, but the space is not bound to have sight

restrictions like on the bridge on a conventional vessel. Losing the superstructure

will reduce the vessel’s air resistance. In calm weather air resistance constitute about

2% of total resistance, but is probably significantly higher when facing strong head

winds (MAN, 2014). The air resistance faced by the ship in the longitudinal direction

is basically a function of the ship’s speed and cross-sectional area above the waterline:

Rw =
1
2
⇢ Cd V 2

a p p Ac s [kN] (2.1)

where Rw is the air resistance force, ⇢ is the density of air, Cd is the wind resistance

coefficient, Va p p is the sum of the ship’s speed and true wind speed, and Ac s is the

cross-sectional area of the ship above the waterline. For simplicity the weather con-



CHAPTER 2. CONVENTIONAL VS. AUTONOMOUS 16

ditions are assumed to be calm, which corresponds to a wind speed of about 0.2 m
s .

Based on the dimensions of the reference vessel with capacity of 800 TEUs, Ac s was

estimated to be approximately 413.6 m2 (Damen, 2017). By losing the superstructure

the area reduced by 75.6 m2, as illustrated in Figure 2.8.

Figure 2.8: Estimated cross-sectional area above the waterline of the conventional and au-
tonomous vessel.

Blendermann (1996) suggests a wind resistance coefficient, Cd , of 0.8 for a typical

container vessel. Kretschmann et al. (2015) use a Cd of 0.45 specified for a car carrier

with closed fore section, to resemble their autonomous dry bulk carrier. In order to

compensate for the container load on deck, this figure is adjusted to 0.55. With an

assumed air density of 1.225 kg/m3, the resulting air resistance forces were calculated

according to Equation 2.1. The air resistance force acting on the autonomous vessel

decreased by approximately 44%, as summarized in Table 2.4.

Table 2.4: Comparison of wind resistance coefficients and air resistance forces for the con-
ventional and autonomous vessel.

Cd [�] Rw [kN]
Conventional 0.80 16.23
Autonomous 0.55 9.12

The reduced air force will reduce the propulsion power demand for the autonomous

vessel. The reduction in power can be estimated by using the following formula as

presented by Kristensen et al. (2013):

PE = Rw V [kW] (2.2)

where PE is the effective propulsion power demand due to air resistance, and V is the

vessel’s service speed. By using the air resistance values from Table 2.4 in Equation
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2.2, the reduction in propulsion power in loaded condition is estimated to be 63.6 kW

when the service speed is 17 kn. This corresponds to a total power reduction of about

1% as the reference vessel’s main engine has a power output of 6, 000 kW. According

to Kretschmann et al. (2017) the corresponding reduction in fuel consumption can

be assumed to be proportional. Estimating actual fuel consumption is a very com-

plex task as it depend on a range of uncertain and varying factors such as loading

condition, draft, speed, waves and currents (Løfstedt et al., 2010).

Light Ship Weight

New autonomous ship designs without superstructure and deckhouse will have re-

duced light ship weight. Naturally, the reduced light ship weight will influence fuel

consumption. Detailed weight information regarding individual sections of merchant

ships are rarely published, so in order to calculate the steel weight of the deckhouse

and superstructure, appropriate approximation formulas are necessary. Bertram et

al. (1998) propose the Müller-Köster method to calculate the steel weight of the deck-

house. As illustrated in Figure 2.9 the deckhouse is split into four separate layers. The

weight of each layer is calculated using the volumetric deckhouse weight and deck

area relationship proposed by the Müller-Köster method (Bertram et al., 1998). The

total steel weight of the deckhouse was estimated to be 252.5 tons.

Figure 2.9: Breaking down the deckhouse in individual layers using the Müller-Köster method.

Further, the weight of accommodation and outfitting area, including sanitary equip-

ment, kitchens, walls and inventory, was estimated to be 182 tons. The estimate is

based on a recommended density for the accommodation area of 70 m3 (Bertram et

al., 1998) and a approximated deckhouse volume of 2600 m3. Finally, Bertram et al.

(1998) recommend adding 20% of the superstructure and deckhouse steel weight to



CHAPTER 2. CONVENTIONAL VS. AUTONOMOUS 18

account for miscellaneous systems below the main deck.

In total the light ship weight reduction of the autonomous ship was estimated to be

485 tons. As the light ship weight of the reference vessel is approximately 7,700 tons,

the total reduction amounts to 6.3%. ABS (2014) suggests that fuel consumption will

decrease by approximately 0.32% if the steel weight of a container feeder vessel is re-

duced by 1% while the block coefficient is adjusted such that the deadweight is kept

constant. According to this estimation method the reduction in total fuel consump-

tion amounts to approximately 2%.

Electric Power Consumption

As discussed above, the accommodation areas on autonomous vessels are greatly re-

duced, if not removed completely. In addition to reduced light ship weight, this will

result in a reduction of required electrical power from auxiliary systems associated

with accommodation and the vessel’s hotel system. In order to estimate the impact

on total fuel consumption, it’s necessary to explore the electrical power balance for a

conventional vessel. Kretschmann et al. (2017) use an electrical power balance for a

container vessel as a basis for their analysis, as listed in Table 2.5. It’s assumed that

electrical power for air conditioning, galley and laundry is no longer required on the

unmanned vessel, while required power for lighting is reduced by 50%. As presented

in the last column, this sums to a total connected load reduction of 40%. This might

seem like a substantial reduction, but the impact on total fuel consumption is only

approximately 3%. To draw this conclusion it is estimated that auxiliary systems con-

stitute about 9% of total fuel consumption. This estimate is based on fuel consump-

tion data from a range of container feeder vessels with different cargo capacity.

Table 2.5: Electrical power balance from auxiliary systems for a container vessel
(Kretschmann et al., 2017 and Mau, 1984).

Power source Nominal power
Total [kW] At sea [kW] Unmanned [kW] Reduction [%]

Propulsion 1,168.0 403.9 403.9 -
Ship operation 142.8 76.6 76.6 -
Air conditioning 374.3 309.3 0 100
Galley and laundry 178.6 138.4 0 100
Deck machinery 609.5 137.5 137.5 -
Cargo ventilation 49.6 43.5 43.5 -
Lighting 91.0 81.0 40.5 50
Other 42.2 37.0 37.0 -
Total load 2,656.0 1,227.2 739.0 40
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2.4.3 Capital Costs

Production Costs

As discussed in Chapter 2.2, capital costs represent all expenses related to ship ac-

quisition. Capital costs essentially consist of the new building price of the ship, and

the production and assembly costs at the shipyard. Detailed newbuilding prices for

autonomous vessels are very difficult to determine as the concept is still in an early

stage. However, it is possible to obtain rough production cost estimates using empiri-

cal methods. These approximation methods are based on experience from construc-

tion of similar ship types, and the cost estimates are calculated by using unit costs.

Amdahl et al. (2014) state that it’s appropriate to divide production costs into three

main categories:

• Hull costs

• Machinery costs

• Outfitting costs

The unit costs presented in Table 2.6 cover the above production cost categories, ex-

pressed in terms USD per ton steel, USD per brake horsepower (BHP) and USD per

crew member onboard, where assembly and installation costs are included in the unit

costs. These costs are considered to be rough estimates, and in an actual contractual

agreement between the shipyard and shipowner, the building costs must be more

detailed and accurate (Amdahl et al., 2014). However, due to conceptual nature of

autonomous ships, these estimates seem like a sufficient starting point.

Table 2.6: Estimated ship production unit costs (Amdahl et al., 2014).

Cost per ton steel 1,900 - 4,300 [$/t]
Cost of main machinery
(installed)

306 - 430 [$/BHP]

Cost of auxiliary machinery
and machinery equipment

100 - 135 [$/BHP]

Fittings and equipment
for crew

62,000 [$/crew member]
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To estimate the total capital cost difference between the conventional and autonomous

vessel, the calculated change in required power and the reduced light ship weight

(chapter 2.4.2) are used. As shown in the last row in Table 2.7 the estimated total

building cost for the autonomous vessel is approximately USD 713,045 lower than

for the conventional manned vessel. It’s assumed that building costs related to crew

accommodation and equipment are zero for the autonomous vessel. This may not

be the case in reality, as the autonomous vessel might need some space for a short

stay maintenance crew. However, in the second last row costs related to autonomous

systems are added to the autonomous cost structure. These costs include the au-

tonomous systems presented in chapter 2.1.1, such as ASM, RMSS and AEMCS, and

additional costs for other redundant onboard systems (Kretschmann et al., 2015). It

is assumed that this figure constitutes 7% of total building costs, or USD 551,025.

Table 2.7: Estimation of capital costs for the conventional and autonomous vessel.

Conventional Autonomous
Cost category Unit cost Factor Cost [USD] Factor Cost [USD]
Steel weight 3,000 1,659 4,997,000 1,611 4,833,000
Main machinery 350 8,157 2,854,950 8,054 2,818,900
Auxiliary systems 110 3,331 366,410 1,999 219,890
Fittings and
equipment for crew

62,500 15 937,500 0 0

Autonomous
systems

- 0 0 - 551,025

Total 9,135,860 8,422,815

As highlighted in MUNIN’s quantitative assessment conducted by Kretschmann et

al. (2015) a detailed estimation of capital costs should be based on a full ship design,

which is not available at this time. Furthermore in the assessment it is assumed that

autonomous ship technology constitute about 10%, or USD 1,700,000, of total build-

ing costs. In their case with a panamax bulker, this leads to higher building costs for

the autonomous vessel than for the conventional vessel. However, it’s stated that this

might be a rather conservative estimate, and that the opposite case might actually be

the correct outcome. As presented in chapter 2.1.2, Rolls-Royce claims that their new

autonomous concept design, Electric Blue, is approximately USD 3,000,000 cheaper

to build than a conventional vessel (Wilson, 2017). According to Wilson (2017) this

figure is even verified by an independent third party. Having this in mind, a consid-

ered reduction of USD 713,045 in this analysis seems like reasonable estimate.



Chapter 3

Methodology for Fleet Evaluation in

Different Contexts and Needs

In this chapter the structured approach for the analysis is presented. The goal of this

chapter is to describe how conventional and autonomous container vessels are com-

pared and evaluated in different contexts and needs. In addition, relevant theory is

explained to give the reader insight in the methodologies used. The structured ap-

proach in this analysis can be divided into two distinct parts. The first part of the

analysis concerns the Maritime Transportation Planning Problem (MTPP), namely

the optimal assignment of ports and shipments to vessels in a particular fleet. Later,

in the case study in Chapter 6.1, the approach is applied to a specific trade with a

given number of ports with individual container cargo demands. The desired output

of this part of the analysis is operational and voyage costs for several fleet configura-

tions, both conventional and autonomous. The cost estimates presented in chapter

2.4 serve as the basis for the desired cost outputs, and the underlying cost regression

models are able to change when the context change.

The second part of the analysis focuses on how to quantify changeability, and aims

to answer the following questions:

• What happens to costs when the context change?

• What fleet configuration minimizes cost and performs best in different con-

texts?

21
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3.1 Maritime Transportation Planning Problem

The first part of the analysis deals with solving a Maritime Transportation Planning

Problem (MTTP) where the desired output is the optimal visiting sequence and as-

signment of shipments to the vessels in the fleet. This results in a total distance the

vessels have to travel to serve all ports and their respective demands. The total dis-

tance is used in the regression model to calculate capital costs, voyage costs and oper-

ating costs. Before the mathematical model is presented in Chapter 5, relevant theory

is presented in the following sections.

Merchant ships are mainly operated in three different shipping modes: liner, indus-

trial or tramp mode. In liner mode the vessels follow a fixed route according to a

schedule and a fixed tariff, just like a bus service (Fagerholt et al., 2012). Its itinerary

is published which attracts demand. The majority of the shipped cargo in liner mode

is containerized general cargo. The vessels follow pre-determined timetables pub-

lished several months ahead with a frequency of sailing that vary with season. The

routes may stay fixed for several years. Tramp ships do not follow fixed routes, but

follow the available cargo. Tramp ships typically engage in contracts of affreightment

where specified cargoes are to be transported to its destination within an agreed upon

time period. Tramp operation is therefore compareable to a taxi-service. In indus-

trial mode the operator owns the cargo and controls the ships, either by chartering or

owning the ships.

As an owner of a merchant cargo ship there are a variety of different scenarios or prob-

lems that you are likely to encounter. In the following the most relevant types of prob-

lems are defined. Routing is defined as the assignment of ports, i.e. which port to

visit, to a vessel. Often in conjunction with routing, scheduling is the process of as-

signing times, commonly called time-windows, to the port visits on a vessel’s route.

This is a common issue in shipping as perishable cargo need to be transported within

a certain time. A fleet size and mix problem involves to decide the optimal number of

vessels in a fleet (size), and the optimal mix of vessels in a fleet with equal or different

specifications (e.g. cargo capacity, length, draft). A fleet is said to be homogeneous if

all of the vessels have the same specifications, and inhomogeneous if the vessels have

differing specifications.
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MTTPs are traditionally divided into three main planning levels; strategic, tactical and

operational (Christiansen et al., 2007). The different planning levels are categorized

according to the planning horizon and by the desirable problem output. Even though

the planning problems are divided into separate categories, it’s important to note that

the planning levels can be highly interrelated. Strategic problems have a planning

horizon of 1 to 20 years and typically involve problems such as:

• Fleet size and mix decisions

• Contract evaluation

• Ship design

• Network design

Tactical problems have a planning horizon of 1 week to 1 year, and include problems

such as:

• Fleet deployment

– Assignment of vessels to routes

• Ship routing and scheduling

• Container stowage planning

• Distribution of empty containers

Operational decisions have a time frame of 1 day to 1 week, and typically involve:

• Environmental routing

– Weather routing

– Ocean currents

• Speed selection

• Cargo loading

• Single order bookings in liner shipping

The maritime transportation problem in this thesis is on a tactical and strategic level.

The tactical part of the problem is a routing problem, i.e. the assignment of a se-

quence of ports to a vessel (Christiansen et al., 2007). In addition, the problem in-

volves assigning vessels to specific shipments, which classifies as scheduling. The

strategic part of the problem is a fleet size and mix problem, i.e. to determine the

optimal capacity for each vessel and the optimal number of vessels in the fleet.
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3.1.1 Mathematical Optimization

Regardless of the planning level, the real world problem has to modeled in mathe-

matical terms. More specifically, the problem has to be modeled as an mathematical

optimization model. An optimization process consists of four distinct phases; iden-

tify, formulate, solve and evaluate. The real world problem is often complex, so the

first step in an optimization process is to identify the most relevant factors to simplify

the problem. In this case this would be to identify the elements in the MTTP that af-

fect autonomous and conventional container vessels. As visualized in Figure 3.1, the

outcome is a simplified version of the real world problem.

Real world problem

Simplified problem

Optimization model

Solution

Result

Identify

Formulate

Optimization method

Evaluate

Figure 3.1: The optimization process (reproduced from Lundgren et al., 2010).

The next step is to formulate the simplified problem as a mathematical optimization

model. Let’s say there are n decisions to be made in the problem, they are defined

as decision variables; x1, x2, . . . , xn . The decision variables are quantifiable, and the

goal of the problem is to determine their respective values (Hillier et al., 2001). The

objective function is an expression of the desired measure of performance, e.g. cost;

C = 2x1 + 5x2 + · · · + 8xn . The objective function is then maximized or minimized

subject to one or several constraints; e.g. x1+2x2  20.

In this analysis the objective is to minimize costs, which is reflected in the distance

travelled by all the vessels in the fleet. The coefficients and the right-hand side in
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the objective function and constraints are defined as the parameters of the optimiza-

tion model. This is the most basic form of an optimization model, but it can be far

more complex depending on to what extent the real world problem is simplified. The

mathematical optimization model in this analysis is presented and explained in in

detail Chapter 5.

A mathematical optimization model can be solved either analytically or numerically

by commercial computer solvers. An analytical solution provides the true optimal

solution since all possible solutions are compared. However, when the complexity

of the problem increases it can be extremely difficult to find the true optimal solu-

tion. To illustrate how complex the solution can get, the Travelling Salesman Prob-

lem (TSP) is used as an example. The TSP is a well known problem in operations

research, where the goal is to find the shortest path between a set of nodes such that

all nodes are visited exactly once, and the start and end node are the same. This is

called an Hamiltonian path, as illustrated in Figure 3.2. In a set of n = 7 nodes there

are (n �1)! = (7�1)! = 720 possible Hamiltonian paths to consider. If the computer

solver can compare 1 billion unique Hamiltonian paths per second the TSP is solved

in approximately 0.72 microseconds. However, if the number of nodes increases to

n = 20 it would take about 3.9 years for the computer to compare all possible solu-

tions.

1

2

3
4

5

6

7

n = 7

Figure 3.2: Hamiltonian path.

To save computational time the mathematical model can be solved numerically by

using rule based solutions algorithms called heuristics (Norstad, 2017). When using a

heuristic there is no guarantee that the solution is optimal, but hopefully it provides a

sufficient solution that is close enough to the optimal. Heuristics are case-sensitive,

meaning that the type of algorithm used must fit the actual problem at hand. The

routing problem in this analysis is called a vehicle routing problem (VRP), which is
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explained in the following section. The problem is partially solved by a method called

route generation, which involves to generate all feasible routes for each individual

vessel. The set of feasible routes are then used as input to solve an Integer Program-

ming (IP) model, i.e. determine the routes with lowest cost (distance). The model is

said to be an IP model if the solutions (variables) are restricted to be integers, which

is the case for the model in this analysis. An IP model is easier to solve because of its

simpler structure than the direct mathematical formulation. Furthermore, it’s eas-

ier to include practical constraints such as time-windows, capacity, etc. However,

the route generation method is a two step approach since all feasible routes must be

generated in advance to ensure optimal solutions. As the number of feasible routes

grows with problem size, the computational time will increase accordingly. The route

generation procedure and mathematical model in this analysis is explained in more

detail in Chapter 5.

3.1.2 Vehicle Routing Problem

The vehicle routing problem (VRP) is a generalization of the travelling salesman prob-

lem (TSP), or the multiple-TSP, meaning multiple ships in this case. More specifically,

a VRP is the assignment of routes from a depot, or several depots, to a set of nodes, or

ports. The VRP is applicable to a range of different scenarios different from maritime

transportation. The overall goal of the VRP is to determine the optimal visiting se-

quence, or route, for each vessel in the fleet, subject to vessel capacity constraints. As

illustrated in Figure 3.3, each port has an individual demand, denoted by a number

next to the respective node. The problem can be formulated as a pickup or delivery

problem. The former is the situation when the cargo is shipped from the nodes to

the depot, and the latter is the opposite situation. A delivery problem is equivalent to

a Hub & Spoke network structure where the hub is the depot, and the spokes repre-

sent the ports. The problem can also be formulated as a pickup and delivery problem

where the cargo flows between spokes and the hub. In the example shown in Figure

3.3 there are three vessels in the fleet, as the vessels are assigned to one route each.

The VRP model can be extended with several constraints to achieve a more realistic

model at the expense of higher complexity. Common VRP extensions are listed in Ta-

ble 3.1. The VRP model in this analysis is time constrained, i.e. all of the container

cargo must be shipped within a certain time period. As opposed to the example il-

lustrated in Figure 3.3, the VRP model in this analysis is classified as a Multi-Trip VRP,



CHAPTER 3. METHODOLOGY 27

Depot

Port

+7

+3

+4

+9

+11

+3

+4

+2

+2

Route 1

Route 2

Route 3

Figure 3.3: Example of a typical VRP.

meaning that each vessel in the fleet is allowed to make multiple trips. This may be

the case if a particular ship in the fleet has lower route cost, or if the remaining ships

are constrained by capacity for a particular route. The model is classified as a delivery

problem, meaning that the cargo is moved from the hub, or depot, to the respective

ports. The network consist of a single depot, and there are no compatibility or pre-

cendence constraints considered.

Table 3.1: Typical VRP extensions.

VRP extension Characteristics

Max. duration of a route Work day limitations

Compatibility Port compatibility, i.e. draft,

length and breadth constraints

Time windows A time interval when service is required

Precedence constraints Some customers must be visited before others

Pickup and delivery Each customer has one pickup node

and one delivery node

Multi-Depot Several depots

Multi-Trip More than one tour per vehicle allowed
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3.2 Contextual and Temporal Design Approach

The second part of the analysis focuses on the dynamic aspect of system design. The

goal of this part of the analysis is to measure the performance of autonomous and

conventional container vessels when the static context change. In traditional system

design the approach is to optimize a system according to a set of objectives in a static

context. The output of this design approach, namely the optimal system, is largely

dependent on that the assumptions made in the analysis stay static in operation. If

the parameters or variables that define the system change over time, there is no guar-

antee that the system will remain optimal (Ross et al., 2008b). As the real world is

dynamic, the traditional design approach may often fall short. Studies conducted by

Carlson et al. (2000) show that "over-optimized" systems are fragile in a dynamic con-

text. This may be a plausible claim as a system is traditionally designed for optimality

in the context it is designed for, and may not perform as well in other contexts.

To design for value robustness as highlighted by Ross (2006) is a system design ap-

proach where the main focus is to search for system solutions that will continue to

perform well in dynamic operational contexts. Value in this setting is a measure of

success defined by the system stakeholders, and the best design is the design that

creates most value over time. Ross et al. (2008) suggest that in order to design value ro-

bust solutions, it is necessary to move beyond traditional engineering and optimiza-

tion methods, and shift focus towards temporal factors affecting the system. In the

following sections, two such paradigms are presented; tradespace exploration and

epoch-Era analysis (EEA). Lastly, a step-by-step design method that utilizes tradespace

exploration and EEA, called the responsive systems comparison (RSC) method, is pre-

sented.

3.2.1 Tradespace Exploration

Tradespace exploration is a useful visual comparison method for evaluating possible

design solutions, formulated by Ross et al. (2005). A typical tradespace is a plot of a

substantial amount of different system designs. The system designs are commonly

assessed in terms of cost and utility. In this case, utility is a direct reflection of per-

ceived value, and is determined by the decision makers (Ross et al., 2006). Figure 3.4

illustrates a tradespace representation for the design space, i.e. all design solutions,

of an anchor-handling tug supply (AHTS) vessel. The scatter plot represent all pos-
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sible design solutions with corresponding cost on the horizontal axis, and utility on

the vertical axis.

Figure 3.4: Tradespace representation of several possible design solutions of an AHTS vessel.

Each point in the tradespace correspond to one unique design solution which is de-

fined by designer-specified metrics such as length, capacity, fuel consumption, etc.

As opposed to the designer, the decision maker will eventually decide between de-

sign solutions by using utility as the key metric. The points marked in red are said to

be on the Pareto Front, i.e. the best designs in this particular context. A set of pareto

designs has the highest utility for a particular cost. Choosing between these designs

involves making trade-offs between cost and utility. The designs that fall outside the

Pareto front are called dominated designs.

One of the key benefits with the tradespace approach is that any change that af-

fect cost or utility, can be quickly assessed in a new tradespace. Figure 3.5 shows

an example of a tradespace impact when the system utility functions have changed.

The decision-maker can now easily inspect the designs that are sensitive or insen-

sitive to the given change in preference. The marked points in Figure 3.5 represent

designs that shifted in opposite direction of the change in preference (utility), nor

with the same magnitude. Changes in design parameters can also be captured in the

tradespace, as any parameter change may affect cost and utility.
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Figure 3.5: Tradespace impact of change in utility (reproduced from Ross et al., 2005).

3.2.2 Epoch-Era Analysis

In EEA the system’s lifespan is divided into a sequence of different time periods, or

epochs. The contextual factors that form an epoch are static within each individual

epoch. Several epochs in a time-ordered sequence is defined as an Era, which repre-

sents a dynamic interval of time (Gaspar et al., 2012). Ross et al. (2008) use the analogy

of a movie composed of a series of static frames in sequence to describe the connec-

tion between static and dynamic time intervals. As illustrated in Figure 3.6 an epoch

represents a static frame, while several epochs in sequence, or an era, constitute a

dynamic perspective.

Figure 3.6: Epoch-Era Analysis (EEA) visualized as static time intervals in sequence.

The entire lifetime of system is referred the as the System Era. A change in contex-
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tual factors triggers the start of a new epoch, e.g. a change in oil price, a new market

condition or new environmental regulations. When the system experience change,

it may need to transform in order to meet expectations and sustain value, which is

visualized in Figure 3.6 where the tradespace shifts in each epoch.

3.2.3 Responsive Systems Comparison Method

The Responsive Systems Comparison (RSC) method is a system design method where

the purpose is to "guide a designer or system analyst (RSC practitioner) through a

step-by-step process of designing and evaluating dynamically relevant system con-

cepts" (Ross et al., 2009). The RSC method is appropriate when dealing with a sub-

stantial amount of possible system designs to consider, called the design space. Ulti-

mately, the RSC practitioner will have insight in the trade-off between different design

solutions, and the performance of the design space in different contexts. The original

RSC method consisted of seven steps as presented first by Ross et al. (2009) and Ross

et al. (2008). However, in more recent times the method has evolved to a nine step

process, as illustrated in Figure 3.7.

Figure 3.7: Steps of the Responsive Systems Comparison (RSC) method (adapted from
Schaffner et al., 2014).

An adapted version of the RSC method is used in the analysis in this thesis. The

method is appropriate because it deals with changes in needs, context and system

(Ross et al., 2009). The steps in the RSC as illustrated in Figure 3.7 are described in

the following paragraphs:
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Step 1: Value-Driving Context Definition

The idea behind the first step is to identify the problem statement, and create a value

proposition. The most important exogenous factors that might affect the problem

and the solution are identified. As pointed out by Pettersen et al. (2017) the value

proposition should act as the "link between the scope of the system design process

and the business strategy of the stakeholders".

Step 2: Value-Driven Design Formulation

In the next step the specific stakeholder’s needs are extracted from the value proposi-

tion, called attributes. These attributes are metrics that reflect system performance,

and are quantified in terms of utility functions. The utility functions describe the

stakeholder’s preference for each of the extracted attribute (Schaffner et al., 2014).

Step 3: Epoch Characterization

In the third step, contextual uncertainties are parameterized and defined according

to the stakeholder’s expectations (Schaffner et al., 2014). These discrete variables are

called epoch variables. Each combination of the epoch variables constitutes one par-

ticular contextual setting, or epoch. If the epoch variables are chosen to be oil price

and environmental regulations, a potential epoch would be a period with e.g. high

oil price and medium environmental regulations. Within each epoch the epoch vari-

ables are not allowed to alter, and an epoch is defined as a static short-run scenario

(Pettersen et al., 2017).

Step 4: Design-Epoch Tradespace Evaluation

All possible design solutions are plotted in terms of cost and utility, as previously

shown in Figure 3.4. This makes it possible for the RSC practitioner to easily observe

the trade-offs between utility and cost, and the Pareto frontier designs.

Step 5-9: Alternatives Analysis

The last steps of the process deal with construction of eras, and analysis of design

solutions across several epochs and eras. In step 5, Single-Epoch Analysis, individual

epochs are analyzed in a similar manner as in step 4 to identify the designs with best

performance.

Furthermore, in Multi-Epoch Analysis, multiple epochs are analyzed to identify de-

sign solutions with high performance when the context change. For instance, which

designs have high utility and low cost in epochs with low, medium and high oil price?
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In order to analyze the system’s lifetime performance, epochs are structured in se-

quence to construct eras in step 7. As opposed to epochs, eras represent the long-run

perspective of the system. As for the Single Epoch-Analysis, eras are analyzed individ-

ually before multiple eras are constructed to identify patterns across eras by analyzing

dynamic system properties (Pettersen et al., 2017).





Chapter 4

Literature Review

This chapter presents a review of relevant literature related to the approach and scope

of this thesis. In the first part of this chapter research concerning relevant routing and

scheduling problems are reviewed and discussed. Next, the focus shifts towards liter-

ature that utilize the RSC method, and consequently EEA, in maritime system design.

The last part is devoted to research concerning cost assessments of autonomous ships

and autonomous infrastructure.

4.1 Routing and Scheduling

In general, transportation planning is a commonly discussed subject, but the major-

ity involves research about transportation by air and road (Christiansen et al., 2007).

Other transportation modes, such as seaborne transportation, has been devoted far

less attention. As pointed out by Christiansen et al. (2007) the reasons for this might

be low visibility of ships (i.e. most people see trucks, planes etc.), the diversity of mar-

itime planning problems, and higher uncertainty in the shipping market compared to

other transportation modes. Historically, the shipping industry has a long tradition

and is fairly fragmented, due to strong ties in family owned companies. However,

there has been a large increase in research concerning maritime transportation the

last decade (Fagerholt et al., 2012).

Maritime routing and scheduling is a widely reviewed subject in recent literature. Ro-

nen (1983), Christiansen et al. (2004) and Fagerholt et al. (2012) are some notable

34
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publications that review the current research within the field of routing and schedul-

ing. The latter presents a thorough review of routing and scheduling problems in

the new millennium, where four basic models are presented. Fagerholt et al. (2012)

state that the research volume regarding routing and scheduling almost doubles ev-

ery decade. This recent trend is probably connected to the current market trends,

where advanced data analytics and optimization to support decision making have

gained attention. For instance, the increase in container trade has caused a similar

increase in liner network design research.

The review survey conducted by Fagerholt et al. (2012) classify the models according

to mode of transportation, namely liner, industrial and tramp shipping. Further, liner

shipping models with sets of routes without transshipment are reviewed. In this con-

text "models without transshipment" mean that transshipment costs are neglected,

which is the case for the model in this thesis.

Network Design Models with Sets of Routes without Transshipment

Fagerholt (2004) considers a network design problem where the goal is to design op-

timal weekly routes for a given heterogeneous fleet of container vessels. The network

is a feeder system consisting of several spoke ports and one hub located in Norway.

The problem is modeled as a Multi-Trip VRP, and solved by generating a set of feasible

routes for each vessels in the fleet. By feeding the feasible routes to an integer pro-

gramming (IP) model, the optimal routes for each individual vessel that minimize

total operational cost for the entire fleet are determined. The problem is modeled

with time constraints, i.e. the vessels may sail several routes unless the time con-

straint of one week is violated. The model was applied on a range of different test

problems, with the largest network size of 40 spoke ports and 20 vessels. Fagerholt

(2004) concludes that the proposed method works and that the problem is solved to

optimality.

Sigurd et al. (2005) formulate a network design model for a set of routes located in

Norway and Amsterdam. The problem is time constrained to one week, where several

visits each week are allowed. As opposed to this study, the fleet consists of high-speed

RoRo vessels. In addition, minimal time separations between port calls are consid-

ered. The model is solved by pregeneration of feasible weekly routes and column

generation.

Chen et al. (2010) formulate a mixed integer non-linear programming model for a
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container shipping network. The model is solved using a bi-level genetic algorithm.

In contrast to this thesis, Chen et al. (2010) consider fluctuating demand and empty

container re-positioning. The fluctuating demand is artificially generated, but Chen

et al. (2010) conclude that their model provide a more realistic solution compared to

models based on average demand.

Lun et al. (2009) investigate the impact of fleet mix on cost performance in container

shipping. In the first part of the analysis the optimal ship for a set of routes is deter-

mined. Then the impact of carrying capacity and ship size (fleet mix) is investigated

using path analysis. Lun et al. (2009) find that the cargo capacity has a stronger im-

pact than the actual ship size. The impact of fleet mix is studied in the same manner

in this thesis, where the impact on costs due to cargo capacity for individual vessels

is assessed.

As indicated by Fagerholt (2004) there are few studies that address feeder hub and

spoke networks. The majority of these studies only deal with determining the optimal

fleet size when the fleet is fixed, such as Bendall et al. (2001) and Fagerholt (1999).

4.2 Responsive Systems Comparison Method

Pettersen et al. (2017) demonstrate the use of the Responsive Systems Comparison

(RSC) method on the design of an industrial offshore construction vessel. The design

problem is referred to as an ill-structured decision problem since a value robust sys-

tem typically has properties such as flexibility, agility, scalability, etc. Pettersen et al.

(2017) find that the strength of the RSC method compared to classic design methods

is the ability to easily observe the trade-off between the cost and value. Furthermore,

it is stated that the design problem becomes more tangible as the assumptions are re-

duced to a minimum. In contrast to this thesis, Pettersen et al. (2017) apply the RSC

method on the design of single vessel rather than optimal fleet configuration and cost

comparison. The problem is of different nature as the aim in this thesis is to compare

fleet performance in different contexts, opposed to determine the most robust design

specifications.

Gaspar et al. (2012) utilize Epoch-Era Analysis (EEA) to handle contextual uncertainty

related to future contract and market opportunities in the design of non-transport

vessels. Similar to the approach in thesis, Gaspar et al. (2012) use epochs to capture
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the temporal and contextual design aspects. The performance of the vessel in differ-

ent epochs is measured by solving a Ship Design and Deployment Problem (SDDP) for

a set of possible contracts. The output of the SDDP is the optimal contract path that

maximize revenue, similar to the routing problem in this thesis. Gaspar et al. (2012)

conclude that SDDP combined with EEA is an appropriate and efficient method in

initial ship design.

4.3 Quantitative Assessment of Autonomous Vessels

The cost structure for the autonomous vessel presented in Chapter 2.4 is primarily

based on the quantitative assessment conducted by the MUNIN project. The assess-

ment is conducted by Kretschmann et al. (2017) and is published as a scientific pa-

per. However, the majority of the estimations and calculations in the paper refers

to an in-depth quantitative deliverable to the MUNIN project (Kretschmann et al.,

2015). The research compare estimated operating, voyage costs and capital costs of

an autonomous bulker to a conventional bulker. The costs are first estimated on an

annual basis, and then calculated for a 25-year period using expected present value

(EPV). The autonomous vessel is compared to the reference bulker in three different

scenarios:

• Scenario A

The first scenario considers the impact of a reduced crew and extra costs for

new port services.

• Scenario B

The same as scenario A but increased fuel efficiency is also considered.

• Scenario C

The final scenario is the same as scenario A and B, but now Marine Diesel Oil

(MDO) is used as main fuel instead of Heavy Fuel Oil (HFO).

In scenario A, Kretschmann et al. (2017) find that the EPV of costs for the autonomous

bulker is almost as the same as the conventional. Considering increased fuel effi-

ciency (scenario B) results in an EPV of costs of USD 4.3 million lower than the refer-

ence vessel. However, in scenario C the EPV of cost of the autonomous vessel is USD

19.1 million higher than the conventional vessel that uses HFO as main fuel. Based

on the results from these scenarios it’s concluded that autonomous vessels are ben-

eficial in terms of cost, if the fuel efficiency is increased. Kretschmann et al. (2017)
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emphasize that the results may be somewhat uncertain as autonomous vessels are

still in development.





Chapter 5

Model Description

In this chapter the route generation procedure and mathematical model for the multi-

trip VRP are presented. The approach is adapted from Kjetil Fagerholt’s work in De-

signing optimal routes in a liner shipping problem (2004). The only differences lie in

the route generation procedure and input data.

The pipeline solution algorithm in its entirety is illustrated in the flowchart in Figure

5.1. The input to the model is a set of fleets with individual capacities as indicated by

Fleet Input Data. The solving procedure is divided into two phases. The first phase

deals with route generation for each individual vessel with respect to time and ca-

pacity constraints. The output of this phase, namely a set of feasible routes, is fed

to an integer programming (IP) model in the second phase. The IP model finds the

optimal routes for each vessel that minimize transportation costs. In addition, the IP

model assures that all ports are visited at least once. In the following, each step in the

solution procedure is explained in detail.

5.1 Phase 1: Route Generation

The first step in the route generation phase is to generate all feasible routes with re-

spect to capacity and the time limitation of one week. This is achieved by calculating

all possible route combinations and the corresponding demand and time require-

ments for each route. Then all feasible routes for each vessel are selected. The route

generation procedure was conducted in MATLAB, and the reader is referred to

39
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Figure 5.1: Flowchart showing the pipeline solving procedure (adapted from Fagerholt, 2004).
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Appendix B.2 for the corresponding MATLAB-script. The following example illus-

trates the route generation algorithm for a particular vessel with capacity of 500 TEU:

Assume a network consisting of three spoke ports and one hub port as depicted in

Figure 5.2. The spoke ports have individual demand, and an associated sailing time

(days) represented by the numbers next to the arcs connecting the nodes. The maxi-

mum allowed sailing time is seven days.

Figure 5.2: Example network (adapted from Fagerholt, 2004).

Table 5.1 shows all feasible routes for the 500 TEU vessel. The route 1 - 3 - 2 - 1 is

infeasible because the total sailing time exceeds seven days. If the vessel sails route 1

- 4 - 3 - 1 the required demand is greater than the cargo capacity of 500 TEU, so this

route is also considered infeasible.

Table 5.1: Feasible routes for the example problem (adapted from Fagerholt, 2004).

Route ID Nodes Sailing time

1 1 - 4 - 2 - 1 7
2 1 - 3 - 1 4
3 1 - 4 - 1 6
4 1 - 2 - 1 6

The next step in phase 1 is to determine the optimal visiting for the feasible routes.

This is achieved by solving a TSP, as presented in Chapter 3.1.1. In this thesis all feasi-

ble routes with more than two spoke ports are fed into the TSP model and solved one

by one. As opposed to the procedure presented by Fagerholt (2004) where a feasible

route is extended by a port i, and then a TSP is solved with the initial nodes and node i.

The results of the procedures are essentially the same, but the procedure formulated

by Fagerholt (2004) may be more efficient in terms of computational time.
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The following mathematical model is used to solve the TSP. The model is implemented

and solved in FICO Xpress IVE, and the corresponding script written in Mosel code

can be found in Appendix C.1.

5.1.1 TSP Model

In order for the following model to work the distance matrix is restricted to be sym-

metric. The edges between all nodes are enumerated and indexed by e, and a binary

decision variable Ue is introduced:

Ue =

8
<
:

1, if edge e is used

0, otherwise
(5.1)

The following indices, sets and parameters are used in the model:

Indices

e Edges

i Nodes

Sets

E Set of edges

N Set of nodes

Parameters

ce Cost of sailing edge e

The aim of the model is to minimize sailing cost, so the objective function of the TSP

model becomes:

min
X

e2E

ce Ue (5.2)

Let �(i ) = {e 2 E | e is connected to i }, i.e. the set of undirected edges connected to

node i . Then the objective function, Equation (5.2), is subject to the following con-

straints:



CHAPTER 5. MODEL DESCRIPTION 43

X

e2�(i )
Ue = 2 for all i 2 N (5.3)

Ue 2 {0, 1} (5.4)

Subtour elimination constrains (5.5)

Constraint (5.3) says that the number of edges connected to each node must be equal

to two. This ensures that all nodes are visited exactly once. Constraint (5.4) specify

that the decision variable, Ue , is binary. The subtour elimination constrains (5.5) en-

sure that the solution is a true Hamiltonian tour (see Chapter 3.1.1). A subtour is a

tour where the start node and end node is correct, but not all nodes are visited. To

eliminate subtours the subsets W end E (W ) are introduced. W is a subset of N con-

taining at least two elements and at maximum n � 1 elements, where n is the total

number of nodes. E (W ) is defined as the set that contains the set of edges connected

to the nodes in W ; E (W ) = {e 2 E | both ends of e exists in W }. The subtour elimi-

nation constraint becomes:

X

e2E (W )

Ue  |W | � 1 for all W ⇢ N , 2  |W |  n � 1 (5.6)

where |W | is the cardinality of W , i.e. the number of elements in W .

Referring to the flowchart in Figure 5.1, the route generation (phase 1) is repeated for

all vessels in the fleet. The results from the TSP serve as the input for the IP model in

the second phase. The input data is processed in MATLAB and transmitted to Xpress

IVE via the MATLAB-Xpress interface. The reader is referred to the scriptFleetGen.m

in Appendix B.1 for processing of input data and the iterative execution of Xpress IVE

via MATLAB.

5.2 Phase 2: Integer Programming Model

The objective of the IP model is to determine the optimal routes for each vessel in the

fleet that minimize operational cost. In the selection of optimal routes, the IP model

also ensures that all ports are visited. The following indices, sets and parameters are

used in the IP model:
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Indices

k Ships

r Routes

i Nodes

Sets

Ak
r i A constant equal to 1 if route r for ship k services node i , or 0 otherwise

R k Set of candidate routes for ship k

C k
r Cost for ship k to sail route r

T k
r Elapsed time for ship k to sail route r

Parameters

Tma x Maximum allowed sailing time

Ak
r i , R k , C k

r and T k
r were determined in phase 1, and serve as the input to the model.

The binary decision variable x k
r is introduced:

x k
r =

8
<
:

1, if ship k use route r

0, otherwise
(5.7)

The objective function of the IP model becomes:

min
X

k2K

X

r2R k

C k
r x k

r (5.8)

The objective function is then minimized subject to the following constraints:

X

k2K

X

r2R k

Ak
r i x k

r � 1 8i 2 N (5.9)

X

r2R k

T k
r x k

r  Tma x 8k 2 K (5.10)

X

r2R k

x k
r � 1 8k 2 K (5.11)

x k
r 2 {0, 1} 8k 2 K , 8r 2 R k (5.12)
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The first constraint (5.9) assures that all ports are visited at least once. Constraint

(5.10) ensures that the total sailing time does not exceed the time restriction of one

week. The third constraint (5.11) says that all vessels in the fleet must be used. The

last restriction specifies that the decision variable is binary.

The output of the second phase is the operational cost for a particular fleet. Referring

again to the flowchart in Figure 5.1, the first and second phase are now repeated until

all of the fleets are executed. The IP programming model was solved in Xpress-IVE,

and the corresponding script is located in Appendix C.2. The output for each iteration

is stored in MATLAB by the use of the MATLAB-Xpress interface. The entire solving

procedure is executed by running FleetGen.m in MATLAB (see Appendix B.1).





Chapter 6

Case Study: Regional Baltic Trade

This chapter presents the case study in which autonomous and conventional con-

tainer fleets are evaluated and compared. The transportation network is presented

along with necessary data concerning ports and demand. The cost structures pre-

sented in chapter 2.3 and chapter 2.4 are applied to the case using appropriate re-

gression models. Furthermore, an adapted version of the RSC method presented in

chapter 3.2.3 is applied to the case. Finally, the results of the case study are presented.

The mathematical model presented in chapter 5 is written in Mosel code and solved

in FICO Xpress IVE version 1.24.22. The epoch analysis is conducted by the MATLAB-

Xpress interface, where Xpress is used to solve the mathematical TSP model and IP

model. MATLAB is primarily used for prepossessing, route generation, storing itera-

tive output data and plotting.

6.1 Case Description

A liner shipping company operating a conventional container feeder fleet considers

to renew their fleet. Due to the increasing attention towards autonomy in other trans-

portation segments, the company wants to consider autonomous fleets as an option.

Since autonomous vessels are in an early stage of development, the owner wishes

to include uncertain factors affecting the capital costs of autonomous vessels in the

assessment. The shipping company is particularly interested in cost performance.

Consequently, profit is neglected in this assessment. For the fleet to be viable the

46
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fleet must perform well, i.e. be cost efficient, in different contexts. In addition, the

shipping company is interested in the optimal fleet configuration, i.e. the capacity of

the vessels in the fleet, that minimizes cost.

Due to the uncertainty related to the cost of building autonomous vessels, the ship-

ping company is curious about the impact autonomous technological developments

have on production costs. In addition, the company is concerned about two eco-

nomic factors that might affect operating costs and voyage costs, namely manning

costs and oil price.

6.1.1 Regional Baltic Trade

The trade operated by the shipping company is based on data gathered from liner-lib,

which is a benchmark suite for liner shipping network design (Løfstedt et al., 2010).

Liner-lib consists of worldwide port and demand data, but the trade in this case study

is restricted to a particular regional trade in the Baltic region. The trade consists of

eight ports in total; seven spokes and one hub, or depot. The depot is located in Bre-

merhaven, Germany, which is the starting port for all vessels in the fleet. As discussed

in chapter 3.1.2, this is a delivery problem, so the container cargo is shipped from the

depot to the respective port of destination. The spoke ports have an individual weekly

container demand as listed in the second last column in Table 6.1. The weekly de-

mand originates from past data from Maersk Line which is from a given anonymous

year, and has been subject to reasonable random perturbation and anonymisation to

protect the confidentiality of Maersk Line data (Løfstedt et al., 2010). As stated by Løf-

stedt et al. (2010) the data does not represent a real business case, but it is encouraged

to use the data in different settings to perform strategic analysis.

The ports are enumerated, and abbreviated according to their unique UNLO Code

(United Nations Code for Trade and Transport Locations) as shown in the second col-

umn in Table 6.1. Liner-lib also provides port call costs for each individual port, as

listed in the last column. The port call cost is added to the individual voyage costs for

each port visit.

The distances between all of the ports are listed in Table 6.2. In this case study the dis-

tances are assumed to be symmetrical, meaning that the route distance to and from

two ports are identical. The distances between the ports are extracted from the Na-

tional Imagery and Mapping Agency (NIMA, 2001).
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Table 6.1: Port data for the regional Baltic trade (adapted from Løfstedt et al., 2010).

# UNLO Name Country Type Demand [TEU] Port call [USD]
1 DEBRV Bremerhaven Germany Depot - 11,795
2 RUKGD Kaliningrad Russia Port 536 1,062
3 FIKTK Kotka Finland Port 374 1,182
4 FIRAU Rauma Finland Port 36 18,552
5 NOAES Ålesund Norway Port 20 24,098
6 NOBGO Bergen Norway Port 34 17,435
7 NOKRS Kristiansand Norway Port 12 24,076
8 NOSVG Stavanger Norway Port 130 1,227

Table 6.2: Symmetric distance matrix given in nautical miles (Løfstedt et al., 2010).

DEBRV RUKGD FIKTIK FIRAU NOAES NOBGO NOKRS NOSVG

DEBRV - 832 1,075 1,060 545 447 292 366
RUKGD 832 - 475 678 962 817 604 733
FIKTK 1,075 475 - 541 1,178 1,060 847 976
FIRAU 1,060 678 541 - 1,190 1,045 832 961
NOAES 545 962 1,178 1,190 - 167 393 278
NOBGO 447 817 1,060 1,045 167 - 226 111
NOKRS 292 604 847 832 393 226 - 142
NOSVG 366 733 976 961 278 111 142 -

The location of the numbered ports are illustrated in Figure 6.1 according to latitude

and longitude coordinates provided by liner-lib. The hub port in Bremerhaven is in-

dicated by a square, and the remaining spoke ports are indicated by circles. Weekly

container demand given in TEUs is indicated by figures next to the spoke ports.

6.2 Cost Data

The cost data for the conventional and autonomous vessels was presented and dis-

cussed in Chapter 2. Operating costs, voyage costs and capital costs for the conven-

tional fleet are calculated by a regression model as discussed in Chapter 2.3. Capital

costs are solely determined by the capacity as input in the regression model, while

operating costs and voyage costs also depend on the route distance determined in

the multi-trip VRP model. The linear regression model for capital costs for the con-

ventional fleet is shown in Figure 6.2. Initially, the goodness of fit corresponded to an

R 2 of 0.44. To neglect the most extreme outliers from the regression model, the least

absolute residuals (LAR) method in MATLAB was applied. Although the LAR method

is applied, MATLAB does not remove the outliers from the regression plot. The good-

ness of fit increased accordingly, indicated by an R 2 of 0.97. The LAR method is ap-
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Figure 6.1: Actual location of the ports in the regional Baltic trade.

propriate when there are few outliers and when each data point is equally important,

like in this case.

Figure 6.2: Capital cost regression model for the conventional fleet.
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The regression models for the autonomous fleet are based on the regression models

for the conventional fleets, but the models are adjusted according to the considered

cost changes for autonomous vessels, as presented in Chapter 2.4.

6.3 Fleet Input Data

The multi-trip VRP model presented in chapter 5 is fed with fleet capacity data as

listed in Table 6.3. The size of the input fleets are 2, 3 and 4 vessels. In order to in-

vestigate the effect of increasing fleet size the capacity range decreases when the fleet

size is increased. The fleet list for a fleet size is determined by finding all unique com-

binations in the respective capacity range. For instance, for a fleet list of two vessels

and capacity range [300�1000] in increments of 50 TEUs, there are 105 unique fleet

combinations. Some of these fleets are infeasible due to capacity constraints, which

leads to a total number of 95 fleets, as shown in Table 6.3. The process is repeated for

the different fleet sizes, which amounts to 382 fleet combinations. Since autonomous

and conventional fleets are analyzed simultaneously, the total number of fleets con-

sidered amounts to 382 ⇥2 = 762.

Table 6.3: Initial fleet input data.

Fleet size Capacity Increment Nr. of fleets

2 300 - 1000 TEU 50 TEU 95
3 100 - 700 TEU 50 TEU 202
4 100 - 550 TEU 50 TEU 84

6.4 Responsive Systems Comparison Method

Step 1 - Value-Driving Context Definition

The first step in the RSC method is to identify the problem statement, as already pre-

sented by the liner shipping company in the case description in chapter 6.1. The liner

shipping company is interested in acquiring a fleet configuration that is cost efficient

in different scenarios. To the fleet owner, this is achieved by minimizing capital costs,

operating costs and voyage costs, and at the same time serving the weekly container

demand in time.

Step 2 - Value-Driven Design Formulation

In the RSC method presented in chapter 3.2.3 the second step is to quantify attributes

extracted from the value proposition in terms of utility functions. In this analysis util-
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ity functions are not used as a performance metric. Instead, capital cost is compared

to operating costs and voyage costs in the tradespace.

Step 3 - Epoch Characterization

The epoch variables reflect the shipping company’s expectations and concerns as

presented in the case description. The epoch variables are shown in Table 6.4 and

explained in detail in the following paragraphs.

Table 6.4: Epoch variables used in the case study.

Epoch
Variable

Category Scale Unit Range Increment Steps

Autonomous
Development

Technological Discrete Condition
Conservative

Moderate
Developed

- 3

Bunker
Index MGO

Economical Discrete [USD/ton] 500 - 750 125 3

Manning
Costs

Economical Discrete [-] 0.9 - 1.1 0.1 3

Autonomous Development

The autonomous development variable reflect the stakeholder’s concern regarding

the uncertain building costs of autonomous vessels. As shown in Table 6.4 the au-

tonomous development can be either conservative, moderate or developed. In the

moderate state the capital cost of the autonomous vessel is equal to the estimate pre-

sented in chapter 2.4.3. This implies a capital cost increase of 7% compared to the

capital costs of an conventional vessel. In a conservative scenario the capital cost is

increased by 15%, similar to the conservative estimate conducted by Kretschmann

et al. (2015). Similarly, in a developed scenario the capital cost is decreased by 15%.

Bunker Price

According to Løfstedt et al. (2010) the crude oil price is generally proportional to the

price of bunker. The Bunker Index for marine gas oil (BIX MGO) is the average bunker

price for a selection of global ports, and it provides an appropriate picture of the

volatility of the bunker price. The BIX MGO from May 2015 to May 2018 is shown

in Figure 6.3. The bunker price range is set from 500 USD/ton to 750 USD/ton in in-

crements of 125 USD/ton, and has a direct impact on voyage costs. The price range

is based on the minimum and maximum BIX from the past three years, as shown in

Figure 6.3.
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Figure 6.3: Bunker Index for MGO (BIX MGO) from May 2015 to May 2018. Source: www.
bunkerindex.com

Manning Cost

Manning costs may constitute up to 50% of operating costs, depending on the size of

the vessel, as discussed in chapter 2.4.1. In this analysis it is estimated that manning

costs constitute 48% of operating costs in the feeder class. Manning costs are difficult

to estimate since wages depend on the nationality of the crew, employment policies

and the vessel’s flag state (Stopford, 2009). The manning costs are either increased or

decreased by 10% from the base case of the conventional vessel, which is equivalent

to a 5% increase or decrease in operating costs. According to the evolution of the

manning cost index presented by Drewry (2010), fluctuations of 10% are normal from

year to year.

6.5 Results

Step 4-5: Tradespace Evaluation and Single Epoch Analysis

The three epoch variables lead to a total of 27 unique combinations of epochs. The

base case scenario, or E0, is characterized by a moderate autonomous development

and bunker price, and a manning cost factor of 1, as summarized in Table 6.5. The

tradespace for the base case scenario is depicted in Figure 6.4, where each point rep-

resents a particular fleet. The conventional and autonomous fleets are represented

by circles and crosses, respectively. The different colors indicate the fleet size, as ex-

www.bunkerindex.com
www.bunkerindex.com


CHAPTER 6. CASE STUDY 53

plained in Figure 6.4. The fleet configurations with minimum total costs are indicated

by purple circles.

Table 6.5: Epoch configuration for the base case scenario.

Epoch
Autonomous
Development

Bunker
Index

Manning
Costs

E0 Moderate 625 USD/ton 1

Figure 6.4: Tradespace for the base case scenario, denoted by E0.

The majority of the low cost fleets are autonomous, as illustrated in Figure 6.4. Only

six of the low cost fleets consist of conventional ships. The low cost fleets consist

mainly of two vessels, while the remaining fleets consist of three vessels. Table 6.6

shows a selection of the fleets with minimal total cost in the base case scenario. Fleet

96 is the optimal fleet consisting of two autonomous vessels with capacity 300 TEU

and 550 TEU. The total fleet cost, including capital costs, operational costs and voyage

costs, amounts to USD 17.92 million.

A change in one of the epoch variables in Table 6.4 triggers the start of a new epoch.

For instance, in the third epoch, E3, the autonomous development has changed from

moderate to conservative, while the bunker index and manning cost stay the same as

in E0. The epoch configuration for the third epoch is summarized in Table 6.7.
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Table 6.6: Selection of fleets with minimal total cost in E0.

Fleet ID Type
Capacities
[TEU]

CAPEX
[millUSD]

OPEX + VOYEX
[millUSD]

Total
[millUSD]

96 Aut. [300 550] 17.73 0.19 17.92
97 Aut. [350 550] 18.48 0.21 18.69

106 Aut. [300 600] 18.48 0.23 18.71
1 Conv. [300 550] 19.10 0.21 19.31

116 Aut. [300 750] 19.24 0.20 19.44

Table 6.7: Epoch configuration for the third epoch, E3.

Epoch
Autonomous
Development

Bunker
Index

Manning
Costs

E3 Conservative 625 USD/ton 1

The tradespace for E3 in Figure 6.5 shows that the autonomous fleets are now shifted

upwards due to increased capital costs. The effect of the autonomous development

is prominent, and now the top six of the fleets with minimal costs are conventional,

as listed in Table 6.8.

Table 6.8: Selection of fleets with minimal total cost in E3.

Fleet ID Type
Capacities
[TEU]

CAPEX
[millUSD]

OPEX + VOYEX
[millUSD]

Total
[millUSD]

1 Conv. [300 550] 19.10 0.21 19.31
11 Conv. [350 550] 19.88 0.22 20.10
2 Conv. [300 600] 19.88 0.24 20.12

21 Conv. [400 550] 20.70 0.22 20.92
3 Conv. [300 650] 20.70 0.26 20.96

191 Conv. [100 150 550] 20.86 0.23 21.09
96 Aut. [300 550] 21.28 0.19 21.47

The fleet with Fleet ID 1 is the best performing fleet in this epoch, with the same ca-

pacity configuration as the best performing fleet in the base case scenario. The au-

tonomous fleet with minimum cost (Fleet ID 96) is USD 2.16 million more expensive

than the best performing conventional fleet. Fleet 191 consists of three vessels, but

it still manages to outperform the best performing autonomous vessel by USD 0.38

million.

Step 6: Multi-Epoch Analysis

The process is repeated for all possible epoch combinations, and the fleets that min-

imize cost in the individual epochs are traced. Figure 6.6 shows the frequency of oc-
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Figure 6.5: Tradespace for the third epoch, E3.

currence of the optimal fleets in all possible epochs. The vertical axis represents the

Fleet ID, while the horizontal axis represents the number of times the respective fleet

is among the optimal fleets in an epoch. The autonomous fleets are marked in red

and the conventional fleets are marked in blue.

In total there are three fleets that are among the optimal fleets in all 27 epoch combi-

nations. As shown in Table 6.9, all of the optimal fleets are autonomous and consist

of solely two vessels. The capacity configurations are relatively small having in mind

that the capacity range in the input data (Table 6.3) was set to 300 - 1000 TEU for the

fleets consisting of two vessels.

Table 6.9: Overall optimal fleet configurations from the optimal fleet trace.

Fleet ID Type
Capacities
[TEU]

96 Aut. [300 550]
97 Aut. [350 550]

106 Aut. [300 600]
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Figure 6.6: Optimal fleet trace - frequency of occurrence for all possible fleets.





Chapter 7

Discussion

In the first chapter of this thesis two research questions were stated. The aim of

this chapter is to evaluate the results of the analysis, and to assess whether the re-

search questions have been answered with the methods used. The first objective

was to answer the research question: can the container shipping industry benefit of

autonomous container feeder fleets? Next, what configuration of autonomous con-

tainer feeder fleets minimizes cost and performs best in different contexts and needs?

Throughout this study, several indicators that the container shipping industry can

benefit of autonomous vessel have been identified. The cost model for the autonomous

vessel revealed a reduction in capital costs, operational costs and voyage costs com-

pared to the conventional container vessel. The quantitative assessment of an au-

tonomous dry bulk carrier conducted by the MUNIN project (Kretschmann et al.,

2015), presented similar results with the exception of capital costs. The MUNIN project

proposed an increase in capital costs of 10% compared to the conventional bulker,

while the analysis in this thesis estimated a decrease of approximately 7.8%.

The fuel efficiency of the autonomous container vessel is estimated to decrease by

approximately 6%, which is equal to the estimate proposed by the MUNIN project.

It’s plausible that this estimate is rather conservative as Arnsdorf (2014) proposes an

estimate of potential fuel savings of 12-15%. As discussed in Chapter 2.4.2 the au-

tonomous vessel in this analysis is restricted to only use MGO or higher grader fuels.

This may be the reality since the required preparation process of HFO is difficult to

automate (Willumsen, 2018). The use of higher grade fuels contribute to the greening
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of shipping.

The estimated cost changes for the autonomous vessel are associated with a high de-

gree of uncertainty. First of all, the estimates are based on approximation methods

meant for conventional vessels. The majority of the methods are based on historical

data. It is conceivable that future innovative autonomous ship designs are so radi-

cally different from conventional designs that traditional approximation methods do

not hold. For instance, innovative ships designs may lead to even more fuel efficient

designs. The underlying cost data in the regressions models used in the case study

originate solely from conventional manned vessels.

The required autonomous systems proposed in this thesis are primarily suggestions

presented by the MUNIN project. The costs related to the technical systems are based

on rough estimates. As stated by Kretschmann et al. (2017) autonomous ships may

need additional systems and sensors onboard, which adds to the uncertainty of the

cost assessment. The cost associated with the Shore Control Centre (SCC) is assumed

to only affect the operating costs of the vessel; where the considered cost simply in-

volve personnel cost at the SCC. It is not yet determined who is going to manage the

SCC or pay for the acquisition. In a real world scenario the liner shipping company

may be the owner and operator of the SCC, which in turn will contribute to increase

costs.

The biggest challenge in the assessment of costs has been the very limited access to

precise data. It has been difficult to obtain results with practical consequences when

the underlying predictions are at a high level of uncertainty. However, it is shown

in the cost assessment that autonomous container vessels have the potential to re-

duce costs. The final answer rely on the cost of required technology, and the fuel ef-

ficiency and newbuilding price of a potential new ship design. Future development

of autonomous ship designs and concepts will eventually lead to greater insight in

required systems, and hopefully provide more detailed cost data.

In this analysis the first six steps of the Responsive Systems Comparison (RSC) method

was applied to the case study. The results from the final step, the multi-epoch analy-

sis, showed that mainly three fleets consistently were among the fleets with minimal

costs in each epoch. As shown in Table 6.9 all of the optimal fleets are autonomous.
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Kretschmann et al. (2017) conclude that the autonomous dry bulk carrier is less ex-

pensive only if it is more fuel efficient than the conventional vessel. However, if the

autonomous bulker uses marine diesel oil (MDO) while the reference bulker still uses

HFO, the autonomous bulker is far more expensive. This is the opposite of the results

in the analysis in this thesis; the cost of the optimal autonomous fleet in the base case

scenario is USD 1.39 million less than the optimal conventional fleet. Referring to Ta-

ble 6.6 the autonomous fleet (Fleet ID 96) and the conventional fleet (Fleet ID 1) have

the same capacity configuration of 300 TEU and 500 TEU, which allows for the fleets

to be compared. It’s interesting that the autonomous fleet minimizes cost although

the container ships use MGO as main fuel.

The most challenging part of the analysis was to capture the difference between the

autonomous and conventional fleets using the RSC approach. It turns out that the re-

sults from the RSC method are rather deterministic and self-evident. With the choice

of epoch variables and CAPEX as performance measure, the multi-epoch analysis

(MEA) acts more like a sensitivity analysis. The tradespace exploration loses its main

purpose when CAPEX is used instead of utility. It is difficult for the RSC practitioner

to evaluate the "trade-off" between CAPEX, and OPEX and VOYEX. Well-defined util-

ity functions were difficult to formulate due to the conceptual nature of autonomous

shipping, especially when the aim is the compare two systems with different techni-

cal requirements.

Against this background, it is not likely that the results from the MEA have significant

practical consequences. The uncertainty associated with costs and the lack of ran-

domness makes it difficult to compare fleets in different contexts in the MEA. How-

ever, the analysis conducted in this thesis may serve as a suitable framework for fur-

ther consideration. When autonomous shipping is more developed, it is easier to

map the stakeholder’s needs and consequently define robust utility functions.

The RSC method combined with a multi-trip VRP is an interesting evaluation ap-

proach because both dynamic and static aspects are considered. With well-defined

utility functions and epoch variables that affect the routing decisions in every epoch,

the approach can be a powerful tool for a potential ship investor. The results will in-

fluence both strategic and tactical decisions. The key challenge is to delimit the rout-

ing model and find the right balance between complexity and simplification of the

real world problem. Gaspar et al. (2012) are successful in the use of a similar approach
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to handle contextual uncertainty in the design of an anchor handling tug supply ves-

sel. The approach combines EEA and Ship Design and Deployment Problem (SDDP)

to determine the performance of the vessel in different epochs. The key difference

lies in the use of well-defined utility functions and contextual routing decisions to

produce useful results.



Chapter 8

Conclusion

8.1 Concluding Remarks

This thesis compares conventional and autonomous container feeder fleets in terms

of costs, taking contextual uncertainties into account. The costs changes that oc-

cur for autonomous container vessels are estimated using approximation methods

with a conventional container vessel as reference. The required infrastructure and

technical systems for autonomous operation are identified by investigating existing

research projects on the topic. A model for a multi-trip Vehicle Routing Problem was

developed to obtain operational costs and voyage costs for a set of conventional and

autonomous fleets. The model was solved using a route generation algorithm and

an IP model. The fleets were compared in different contexts by applying the Respon-

sive Systems Comparison method for Multi-Epoch Analysis. The output of the model

served as the input for the epoch analysis; following an iterative pipeline procedure.

It’s safe to argue that the shipping industry can benefit from autonomous container

feeder fleets on several levels. Autonomous shipping has the potential to reduce costs

and contribute to the greening of shipping. New innovative autonomous ship designs

may further increase fuel efficiency, and autonomy opens up the door for alternative

fuels. This thesis shows that autonomous container fleets have lower costs than con-

ventional container fleets in a variety of different contexts. However, the results from

the analysis are related with a high degree of uncertainty. The uncertainties are pri-

marily due to the conceptual state of autonomy in container shipping, and limited
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access to precise cost data for autonomous vessels.

The results from the case study revealed that the optimal configuration of an au-

tonomous fleet in the regional Baltic trade consisted of two vessels with capacity of

300 TEU and 550 TEU. This result is case-specific and should not be interpreted as a

general result. However, the approach can easily be adapted to a different case, and

the model can be adjusted accordingly.

The results from the contextual analysis have minimal impact on the development

of autonomous ships in liner shipping. The way the epoch analysis was applied to

the case problem failed to give results of practical consequence. However, the overall

approach can serve as a powerful tool for further research when autonomous ships

are more developed.

8.2 Recommendations for Further Work

The RSC method combined with routing is an interesting approach that is encour-

aged to use in further research of autonomous vessels. However, more detailed cost

data and vessels specifications should be available to achieve interesting results. Fu-

ture physical autonomous ship designs would hopefully provide insight to more de-

tailed fuel consumption estimates and production costs. In a developed scenario it

may also be more convenient to formulate well-defined utility functions from the

stakeholder’s needs. The approach can then potentially be used as a design tool in

a consulting process.

One of the benefits of innovative autonomous ship designs is the additional space for

cargo. It would be interesting to investigate the potential impact of increased revenue

due additional cargo space. The analysis in this thesis is restricted to liner shipping,

but other shipping modes may also benefit from autonomy. In tramp mode, fleets of

fully autonomous vessels with smaller capacity could potentially be used in a point-

to-point network structure.
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Appendix A

List of Abbreviations

AEMCS Autonomous Engine Monitoring and Control System

ASM Autonomous Sensor Module

BHP Brake Horse Power

BIX Bunker Index

CAPEX Capital Expenditure

EEA Epoch-Era Analysis

EPV Expected Present Vale

HFO Heavy Fuel Oil

IMO International Maritime Organization

IP Integer Programming

MARPOL Marine Pollution

MEA Multi-Epoch Analysis

MDO Marine Diesel Oil

MGO Marine Gas Oil

MTTP Maritime Transportation Planning Problems

OOW Officer on Watch

OPEX Operating Expenditure

RMSS Remote Maneuvering Support System

SCC Shore Control Centre

SDDP Ship Design and Deployment Problem

TSP Travelling Salesman Problem
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VOYEX Voyage Expenditure

VRP Vehicle Routing Problem

VTS Vessel Traffic Servce
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Appendix B

MATLAB Code

B.1 Fleet Generation

%= Written by Harald Ulvestad Salvesen, Spring 2018

%= Norwegian University of Science and Technology

%Load network of nodes (ports) and distances between each node

graphPlot2;

%Determine number of ports in transportation network

nNodes = size(FullMap.Nodes.NodeID,1);

%Total number of vessels in a fleet

nVessels = 2;

%Load regression analysis

getReg;

%Bunker Price

bunkerPrice = 641; %[$/tons]

%Port demands [TEUs]

Demand = FullMap.Nodes.Demand(2:end)';

%Capacity range [TEUs] - set range

CapacityRange = [300:50:1000];
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Steps = size(CapacityRange,2);

cCap = combntns(CapacityRange,nVessels);

%Delete fleets that can't ship the largest demand of 536 TEUs

pp = 1;

for cc = 1:size(cCap,1)

if cCap(cc,2) > 536

combsCap(pp,:) = cCap(cc,:);

pp = pp + 1;

end

end

%Determine number of iterations (number of fleets)

nIterations = size(combsCap,1);

for ts = 1:nIterations

Capacity = combsCap(ts,:);

%Load routegeneration for specified fleet

RouteGen();

t = 1;

for pp = 1:nVessels

nRoutes = size(FeasibleRoutes{1,pp},1);

for jjj = 1:nRoutes

SelectRoute = FeasibleRoutes{1,pp};

Ports = SelectRoute(jjj,:);

%Delete "zero-ports"

D = find(Ports > 0);

clear Delta;

clear demandNodes;

%Identify the NodeID based on demand from RouteGen.m

for i = 1:D(end)

demandNodes(1) = 1;

demandNodes(i+1) = .....

FullMap.Nodes.NodeID(find(FullMap.Nodes.Demand...

== Ports(i)));

end

for ii = 1:size(demandNodes,2)
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remNodes = find(demandNodes ~= demandNodes(ii));

remNodes = demandNodes(remNodes);

conEdges = edgeList{2,demandNodes(ii)};

for jj = 1:size(remNodes,2)

conNodes(jj) = ...

find(edgeList{1,demandNodes(ii)} ==.....

remNodes(jj));

end

for jj = 1:size(conNodes,2)

Delta(ii,jj) = conEdges(conNodes(jj));

end

end

Distance = FullMap.Edges.Distance';

nDist = size(Distance, 2);

EdgeSet = unique(Delta)';

nEdgeSet = size(EdgeSet,2);

nEdge = size(Delta,2);

%Crate E and W for subtour constraints:

i = 1;

for gg = 2:size(demandNodes,2)

utfall{i,1} = nchoosek(demandNodes,gg);

node = utfall{i,1};

[rows cols] = size(node);

mm = 1;

for k = 1:rows

for s = 2:cols

nodeStart = node(k,1);

nodeList = edgeList{1,nodeStart};

loc = find(nodeList == node(k,s));

edgeTempList = edgeList{2,nodeStart};

edge(mm) = edgeTempList(loc);

W{i,1} = edge';

mm = mm + 1;

end

end

clear edge

i = i + 1;

end
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Wsize = size(W,1);

for j = 2:Wsize

if j < 6

edge = W{j,1};

edge = vec2mat(edge,j);

W{j,1} = edge;

else

edge = W{j,1};

W{j,1} = edge';

end

end

%Determine dimension of each entry of W

for i = 1:Wsize

[nrW(i) ncW(i)] = size(W{i,1});

end

%Write input data to TSP model

writeFleetTSP();

%Run TSP model (Xpress IVE)

moselexec('TSPmod3.mos');

clear W

clear edge

clear utfall

%Save optimal routes and distance to array in ...

MATLAB workspace

for nn = 1:numel(FullMap.Nodes.NodeID)

comp = find(demandNodes == ...

FullMap.Nodes.NodeID(nn));

T = isempty(comp);

if T == 1

nodeTSP(nn) = 0;

else

nodeTSP(nn) = 1;

end

end

distTSP(jjj) = objval;

%Save opt. distances to MATLAB

solTSP{1,pp} = distTSP';

flowTSP{jjj} = nodeTSP';

%Save opt. routes(flow) to MATLAB
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solTSP{2,pp} = flowTSP';

end

clear flowTSP; clear distTSP; clear nodeTSP;

end

%VRP - Parse candidate routes and corresponding route cost to ...

Xpress IVE

%Determine total of number of routes for this particular instance

countRoute = 0;

for v = 1:nVessels

countRoute = countRoute + numel(solTSP{1,v});

end

%Write fleet data to VRPData.txt for interpretation in Xpress ...

IVE;

writeFleetVRPtest2();

%Run VRP-model (Xpress) from MATLAB

moselexec('VRPmodTIME.mos');

%Structure TSP data to fit VRP data

for v = 1:nVessels

solTSP{1,v} = solTSP{1,v}';

A{v} = solTSP{1,v};

end

cntr = 1;

for v = 1:nVessels

nR = numel(solTSP{2,v});

for bb = 1:nR

B{cntr} = solTSP{2,v}{bb};

cntr = cntr + 1;

end

end

B = B';

distTSPVRP = cell2mat(A)';

vrpflow = vrpflow';

%Interpret solutions from Xpress (VRP model) - find ...

individual cost

for v = 1:nVessels

optRoutes = find(vrpflow(:,v) == 1);

vesselDist = distTSPVRP(optRoutes);
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vesselDist = sum(vesselDist);

routingSol{ts,v} = B(optRoutes);

%Extract port call cost

nOR = numel(optRoutes);

for pc = 1:nOR

OR = B{optRoutes(nOR)};

visitPorts = find(OR == 1);

PortCall = FullMap.Nodes.PortCall(visitPorts);

PortCall = sum(PortCall);

end

%Determine design speed for each vessel

dSpeed = Speed_reg(Capacity(v)); %[kn = nm/h]

%Determine sailing time

timeAtSea = (vesselDist/dSpeed); %[hours]

%Calculate deisgn fuel cost

fuelCost = ...

FC_Conv_Reg(Capacity(v))*timeAtSea*bunkerPrice; %[tons]

%Calculate OPEX

OPEX = RegOPEX(Capacity(v))*timeAtSea*24;

Cost(v) = fuelCost + OPEX + PortCall;

%Calculate CAPEX

CAPEX(v) = NB_Price_Reg(Capacity(v));

%Save route distance

resultDist(ts,v) = vesselDist;

resultPC(ts,v) = PortCall;

clear optRoutes;

end

Cost = sum(Cost);

CAPEX = sum(CAPEX);

Cost = Cost/10^6;

tsCost(ts) = Cost;

tsCAPEX(ts) = CAPEX;

clear Cost; clear CAPEX;

end

%Plot results
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sz=13;

scatter(tsCost,tsCAPEX,sz,'blue')

grid on

grid minor

xlabel('OPEX & VOYEX [millUSD]')

ylabel('CAPEX [millUSD]')

xlim([0 max(tsCost)+0.02]);

ylim([0 max(tsCAPEX)+1]);
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B.2 Route Generation

%================================================

% RouteGen.m - Route generating script

%================================================

% Algorithm description:

% - All feasible routes with respect to capacity

% constraints are generated

%================================================

%= Written by Harald Ulvestad Salvesen, Spring 2018

%= Norwegian University of Science and Technology

%================================================

%clear all;clc;

[e numPorts] = size(Demand);

%Generate all route combinations

%1 port-trip

Routes = [Demand'];

Routes(:,2:numPorts) = zeros;

%2 port-trip

twoPort = combntns(Demand,2);

[twoPortSize n] = size(twoPort);

Routes(numPorts+1:numPorts+twoPortSize,:) = zeros;

Routes(numPorts+1:numPorts+twoPortSize,1:n) = twoPort;

%3 port-trip

threePort = combntns(Demand,3);

[threePortSize n] = size(threePort);

[last h] = size(Routes);

Routes(last+1:last+threePortSize,:) = zeros;

Routes(last+1:last+threePortSize,1:n) = threePort;

%4 port-trip

fourPort = combntns(Demand,4);

[fourPortSize n] = size(fourPort);

[last h] = size(Routes);

Routes(last+1:last+fourPortSize,:) = zeros;

Routes(last+1:last+fourPortSize,1:n) = fourPort;

%5 port-trip
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fivePort = combntns(Demand,5);

[fivePortSize n] = size(fivePort);

[last h] = size(Routes);

Routes(last+1:last+fivePortSize,:) = zeros;

Routes(last+1:last+fivePortSize,1:n) = fivePort;

%6 port-trip

sixPort = combntns(Demand,6);

[sixPortSize n] = size(sixPort);

[last h] = size(Routes);

Routes(last+1:last+sixPortSize,:) = zeros;

Routes(last+1:last+sixPortSize,1:n) = sixPort;

%7 port-trip

[last h] = size(Routes);

Routes(last+1,1:numPorts) = Demand;

%Calculate total route load

[last h] = size(Routes);

for i = 1:last

Routes(i,numPorts+1) = sum(Routes(i,1:6));

end

%Find all possible routes where the sum is <= Capacity(i)

for qq = 1:nVessels

for k = 1:last

if Routes(k,numPorts+1) <= Capacity(qq)

Cand(k,:) = Routes(k,1:numPorts);

end

end

%Delete zero-rows

Cand( ~any(Cand,2), : ) = [];

%Extract feasible routes for vehicle qq to a cell array

FeasibleRoutes{qq} = Cand;

end
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B.3 Regression Models

%=========================================================

%= getReg.m - Regression models

%= Written by Harald Ulvestad Salvesen, Spring 2018

%= Norwegian University of Science and Technology

%=========================================================

% %Import and structure regression data

regRead = csvread('regdata3.csv');

TEUClassAll = regRead(1,:);

OpEx = regRead(4,:); % [$/hour]

TEUClassStop = regRead(5,:);

RegOPEX = fit(TEUClassAll', OpEx', 'poly1');

% Conventional Fleet

%=========================================================

%Newbuilding price

%=========================================================

%Read newbuilding price data

num = xlsread('nb.xlsx');

TEUclass = num(:,1);

NB_Price = num(:,2);

[xData, yData] = prepareCurveData( TEUclass, NB_Price );

% Set up fittype and options

ft = fittype( 'poly1' );

opts = fitoptions( 'Method', 'LinearLeastSquares' );

opts.Robust = 'LAR';

% Fit model to data.

[NB_Price_Reg, gof] = fit(xData, yData, ft, opts );

% Plot fit with data.

figure( 'Name', 'Newbudiling Price - Conventional');

h = plot(NB_Price_Reg, xData, yData );

legend( h, 'Newbuilding price vs. Capacity', ...

'Newbudiling Price - Conventional', 'Location', 'NorthEast' );
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%Label axes

xlabel('Capacity [TEU]')

ylabel('Newbuilding price [USD]')

grid on

grid minor

set(gca,'FontName','Utopia');

set(gca,'FontSize', 16);

%=========================================================

%Fuel consumption

%=========================================================

FC = xlsread('seaweb.xls',2,'A1:B92');

TEUclass = FC(:,1);

FC_conv = FC(:,2);

[xData, yData] = prepareCurveData( TEUclass, FC_conv );

% Set up fittype and options

ft = fittype( 'poly1' );

opts = fitoptions( 'Method', 'LinearLeastSquares' );

opts.Robust = 'LAR';

% Fit model to data.

[FC_Conv_Reg, gof] = fit(xData, yData, ft, opts );

% Plot fit with data.

figure( 'Name', 'Fuel Consumption - Conventional');

h = plot(FC_Conv_Reg, xData, yData );

legend( h, 'Fuel Consumption vs. Capacity',...

'Fuel Consumption - Conventional', 'Location', 'NorthEast' );

% Label axes

xlabel('Capacity [TEU]')

ylabel('Fuel Consumption [t/h]')

grid on

grid minor

set(gca,'FontName','Utopia');

set(gca,'FontSize', 16);

%=========================================================

%Speed
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%=========================================================

SP = xlsread('seaweb.xls',3,'A2:B1033');

TEUclass = SP(:,1);

Speed = SP(:,2);

[xData, yData] = prepareCurveData( TEUclass, Speed );

% Set up fittype and options

ft = fittype( 'poly1' );

opts = fitoptions( 'Method', 'LinearLeastSquares' );

opts.Robust = 'LAR';

% Fit model to data.

[Speed_reg, gof] = fit(xData, yData, ft, opts);

% Plot fit with data.

figure( 'Name', 'Speed - Conventional');

h = plot(Speed_reg, xData, yData );

legend( h, 'Speed vs. Capacity', 'Speed - Conventional', ...

'Location', 'NorthEast' );

% Label axes

xlabel('Capacity [TEU]')

ylabel('Speed [kn]')

grid on

grid minor

set(gca,'FontName','Utopia');

set(gca,'FontSize', 16);

%=========================================================

% Autonomous Fleet

%=========================================================

%Newbuilding price

%=========================================================

%Considered decrease in newbuilding price of 7%

NB_Price_Aut = NB_Price * (1-0.07);

num = xlsread('nb.xlsx');

TEUclass = num(:,1);

81



[xData, yData] = prepareCurveData( TEUclass, NB_Price_Aut );

% Set up fittype and options

ft = fittype( 'poly1' );

opts = fitoptions( 'Method', 'LinearLeastSquares' );

opts.Robust = 'LAR';

% Fit model to data.

[NB_price_aut_reg, gof] = fit(xData, yData, ft, opts );

% Plot fit with data.

figure( 'Name', 'Newbudiling Price - Autonomous');

h = plot(NB_price_aut, xData, yData );

legend( h, 'Newbuilding price vs. Capacity', ...

'Newbudiling Price - Autonomous', 'Location', 'NorthEast' );

% Label axes

xlabel('Capacity [TEU]')

ylabel('Newbuilding price [USD]')

grid on

grid minor

set(gca,'FontName','Utopia');

set(gca,'FontSize', 16);

%=========================================================

%Fuel consumption

%=========================================================

%Considered decrease in newbuilding price of 6.3%

FC_Aut = FC_conv * (1-0.063);

FC = xlsread('seaweb.xls',2,'A1:B92');

TEUclass = FC(:,1);

[xData, yData] = prepareCurveData( TEUclass, FC_Aut );

% Set up fittype and options

ft = fittype( 'poly1' );

opts = fitoptions( 'Method', 'LinearLeastSquares' );

opts.Robust = 'LAR';

% Fit model to data.

[FC_aut_reg, gof] = fit(xData, yData, ft, opts );

82



%Plot fit with data.

figure( 'Name', 'Fuel Consumption - Conventional');

h = plot(FC_Conv_Reg, xData, yData );

legend( h, 'Fuel Consumption vs. Capacity',....

'Fuel Consumption - Conventional', 'Location', 'NorthEast' );

% Label axes

xlabel('Capacity [TEU]')

ylabel('Fuel Consumption [t/h]')

grid on

grid minor

set(gca,'FontName','Utopia');

set(gca,'FontSize', 16);

%=========================================================

%OPEX

%=========================================================

OpEx_Aut = OpEx * (1-0.52);

RegOPEX_Aut = fit(TEUClassAll', OpEx_Aut', 'poly1');
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B.4 Multi-Epoch Analysis

% mea.m - Multi-Epoch Analysis

%= Written by Harald Ulvestad Salvesen, Spring 2018

%= Norwegian University of Science and Technology

clear all;clc;

%E0

bunkerPrice = 625; %[USD/ton]

%Load regression models

getReg();

%============================================

% 2 Vessel Fleet

%============================================

%Load results

load('2v300501000.mat');

Capacities2v = combsCap;

Distances2v = resultDist;

PortCall2v = resultPC;

fleetResults2v.Capacities = Capacities2v;

fleetResults2v.Distances = Distances2v;

fleetResults2v.PortCall = PortCall2v;

[nFleets nVessels] = size(fleetResults2v.Capacities);

%Conventional

%Calculate fleet cost

t = 1;

for f = 1:nFleets

for v = 1:nVessels

%Determine design speed for each vessel

dSpeed = Speed_reg(fleetResults2v.Capacities(f,v)); ...

%[kn = nm/h]

%Determine sailing time

timeAtSea = (fleetResults2v.Distances(f,v)/dSpeed); ...

%[hours]

%Calculate deisgn fuel cost

fuelCost = ...

FC_Conv_Reg(fleetResults2v.Capacities(f,v))......
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*timeAtSea*bunkerPrice; %[tons]

%Calculate OPEX

OPEX = RegOPEX(fleetResults2v.Capacities(f,v))*timeAtSea;

Cost(v) = fuelCost + OPEX + fleetResults2v.PortCall(f,v);

%Calculate CAPEX

CAPEX(v) = NB_Price_Reg(fleetResults2v.Capacities(f,v));

end

OPEXVOYEX2v_conv(f) = sum(Cost)/10^6;

CAPCOST2v_conv(f) = sum(CAPEX)/10^6;

traceFleet(t,1) = OPEXVOYEX2v_conv(f) + CAPCOST2v_conv(f);

traceFleet(t,2) = t;

traceFleet(t,3) = OPEXVOYEX2v_conv(f);

traceFleet(t,4) = CAPCOST2v_conv(f);

t = t + 1;

clear Cost; clear CAPEX;

end

hold on

sz=85;

scatter(OPEXVOYEX2v_conv,CAPCOST2v_conv,sz,'blue');

%Autonomous

%Calculate fleet cost

for f = 1:nFleets

for v = 1:nVessels

%Determine design speed for each vessel

dSpeed = Speed_reg(fleetResults2v.Capacities(f,v)); ...

%[kn = nm/h]

%Determine sailing time

timeAtSea = (fleetResults2v.Distances(f,v)/dSpeed); ...

%[hours]

%Calculate deisgn fuel cost

fuelCost = FC_aut_reg(fleetResults2v.Capacities(f,v))*...

timeAtSea*bunkerPrice; %[tons]

%Calculate OPEX

OPEX = ...

RegOPEX_Aut(fleetResults2v.Capacities(f,v))*timeAtSea;
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Cost(v) = fuelCost + OPEX + fleetResults2v.PortCall(f,v);

%Calculate CAPEX

CAPEX(v) = ...

NB_price_aut_reg(fleetResults2v.Capacities(f,v));

end

OPEXVOYEX2v_aut(f) = sum(Cost)/10^6;

CAPCOST2v_aut(f) = sum(CAPEX)/10^6;

traceFleet(t,1) = OPEXVOYEX2v_aut(f) + CAPCOST2v_aut(f);

traceFleet(t,2) = t;

traceFleet(t,3) = OPEXVOYEX2v_aut(f);

traceFleet(t,4) = CAPCOST2v_aut(f);

t = t + 1;

clear Cost; clear CAPEX;

end

scatter(OPEXVOYEX2v_aut,CAPCOST2v_aut,sz,'blue','x')

clear combsCap; clear resultDist; clear resultPC;

%=====================================

% 3 Vessel Fleet

%=====================================

%Load results from fleets with 3 vessels

load('3v10050700.mat');

Capacities3v = combsCap;

Distances3v = resultDist;

PortCall3v = resultPC;

fleetResults3v.Capacities = Capacities3v;

fleetResults3v.Distances = Distances3v;

fleetResults3v.PortCall = PortCall3v;

[nFleets nVessels] = size(fleetResults3v.Capacities);

%Conventional Container Vessels

%Calculate fleet cost

for f = 1:nFleets

for v = 1:nVessels
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%Determine design speed for each vessel

dSpeed = Speed_reg(fleetResults3v.Capacities(f,v)); ...

%[kn = nm/h]

%Determine sailing time

timeAtSea = (fleetResults3v.Distances(f,v)/dSpeed); ...

%[hours]

%Calculate deisgn fuel cost

fuelCost = ...

FC_Conv_Reg(fleetResults3v.Capacities(f,v))*....

timeAtSea*bunkerPrice; %[tons]

%Calculate OPEX

OPEX = RegOPEX(fleetResults3v.Capacities(f,v))*timeAtSea;

Cost(v) = fuelCost + OPEX + fleetResults3v.PortCall(f,v);

%Calculate CAPEX

CAPEX(v) = NB_Price_Reg(fleetResults3v.Capacities(f,v));

end

OPEXVOYEX3v_conv(f) = sum(Cost)/10^6;

CAPCOST3v_conv(f) = sum(CAPEX)/10^6;

traceFleet(t,1) = OPEXVOYEX3v_conv(f) + CAPCOST3v_conv(f);

traceFleet(t,2) = t;

traceFleet(t,3) = OPEXVOYEX3v_conv(f);

traceFleet(t,4) = CAPCOST3v_conv(f);

t = t + 1;

clear Cost; clear CAPEX;

end

scatter(OPEXVOYEX3v_conv,CAPCOST3v_conv,sz,'red')

%Autonomous

%Calculate fleet cost

for f = 1:nFleets

for v = 1:nVessels

%Determine design speed for each vessel

dSpeed = Speed_reg(fleetResults3v.Capacities(f,v)); ...

%[kn = nm/h]

%Determine sailing time
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timeAtSea = (fleetResults3v.Distances(f,v)/dSpeed); ...

%[hours]

%Calculate deisgn fuel cost

fuelCost = ...

FC_aut_reg(fleetResults3v.Capacities(f,v))*.....

timeAtSea*bunkerPrice; %[tons]

%Calculate OPEX

OPEX = ...

RegOPEX_Aut(fleetResults3v.Capacities(f,v))*timeAtSea;

Cost(v) = fuelCost + OPEX + fleetResults3v.PortCall(f,v);

%Calculate CAPEX

CAPEX(v) = ...

NB_price_aut_reg(fleetResults3v.Capacities(f,v));

end

OPEXVOYEX3v_aut(f) = sum(Cost)/10^6;

CAPCOST3v_aut(f) = sum(CAPEX)/10^6;

traceFleet(t,1) = OPEXVOYEX3v_aut(f) + CAPCOST3v_aut(f);

traceFleet(t,2) = t;

traceFleet(t,3) = OPEXVOYEX3v_aut(f);

traceFleet(t,4) = CAPCOST3v_aut(f);

t = t + 1;

clear Cost; clear CAPEX;

end

scatter(OPEXVOYEX3v_aut,CAPCOST3v_aut,sz,'red','x')

clear combsCap; clear resultDist; clear resultPC;

%=============================

%Load results from fleets with 4 vessels

load('4v10050550.mat');

Capacities4v = combsCap;

Distances4v = resultDist;

PortCall4v = resultPC;

fleetResults4v.Capacities = Capacities4v;

fleetResults4v.Distances = Distances4v;

fleetResults4v.PortCall = PortCall4v;
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[nFleets nVessels] = size(fleetResults4v.Capacities);

%Conventional Container Vessels

%Calculate fleet cost

for f = 1:nFleets

for v = 1:nVessels

%Determine design speed for each vessel

dSpeed = Speed_reg(fleetResults4v.Capacities(f,v)); ...

%[kn = nm/h]

%Determine sailing time

timeAtSea = (fleetResults4v.Distances(f,v)/dSpeed); ...

%[hours]

%Calculate deisgn fuel cost

fuelCost = ...

FC_Conv_Reg(fleetResults4v.Capacities(f,v))*....

timeAtSea*bunkerPrice; %[tons]

%Calculate OPEX

OPEX = RegOPEX(fleetResults4v.Capacities(f,v))*timeAtSea;

Cost(v) = fuelCost + OPEX + fleetResults4v.PortCall(f,v);

%Calculate CAPEX

CAPEX(v) = NB_Price_Reg(fleetResults4v.Capacities(f,v));

end

OPEXVOYEX4v_conv(f) = sum(Cost)/10^6;

CAPCOST4v_conv(f) = sum(CAPEX)/10^6;

traceFleet(t,1) = OPEXVOYEX4v_conv(f) + CAPCOST4v_conv(f);

traceFleet(t,2) = t;

traceFleet(t,3) = OPEXVOYEX4v_conv(f);

traceFleet(t,4) = CAPCOST4v_conv(f);

t = t + 1;

clear Cost; clear CAPEX;

end

scatter(OPEXVOYEX4v_conv,CAPCOST4v_conv,sz,'green')

%Autonomous

%Calculate fleet cost
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for f = 1:nFleets

for v = 1:nVessels

%Determine design speed for each vessel

dSpeed = Speed_reg(fleetResults4v.Capacities(f,v)); ...

%[kn = nm/h]

%Determine sailing time

timeAtSea = (fleetResults4v.Distances(f,v)/dSpeed); ...

%[hours]

%Calculate deisgn fuel cost

fuelCost = ...

FC_aut_reg(fleetResults4v.Capacities(f,v))*....

timeAtSea*bunkerPrice; %[tons]

%Calculate OPEX

OPEX = ...

RegOPEX_Aut(fleetResults4v.Capacities(f,v))*timeAtSea;

Cost(v) = fuelCost + OPEX + fleetResults4v.PortCall(f,v);

%Calculate CAPEX

CAPEX(v) = ...

NB_price_aut_reg(fleetResults4v.Capacities(f,v));

end

OPEXVOYEX4v_aut(f) = sum(Cost)/10^6;

CAPCOST4v_aut(f) = sum(CAPEX)/10^6;

traceFleet(t,1) = OPEXVOYEX4v_aut(f) + CAPCOST4v_aut(f);

traceFleet(t,2) = t;

traceFleet(t,3) = OPEXVOYEX4v_aut(f);

traceFleet(t,4) = CAPCOST4v_aut(f);

t = t + 1;

clear Cost; clear CAPEX;

end

scatter(OPEXVOYEX4v_aut,CAPCOST4v_aut,sz,'green','x')

grid on

grid minor

xlabel('OPEX & VOYEX [millUSD]')

ylabel('CAPEX [millUSD]')

ylim([15 50]);

set(gca,'FontName','Utopia');

set(gca,'FontSize', 24);
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LH(1) = plot(nan, nan, 'ob');

L{1} = 'Conv. - 2 vessels';

LH(2) = plot(nan, nan, 'or');

L{2} = 'Conv. - 3 vessels';

LH(3) = plot(nan, nan, 'og');

L{3} = 'Conv. - 4 vessels';

LH(4) = plot(nan, nan, 'xb');

L{4} = 'Auto. - 2 vessels';

LH(5) = plot(nan, nan, 'xr');

L{5} = 'Auto. - 3 vessels';

LH(6) = plot(nan, nan, 'xg');

L{6} = 'Auto. - 4 vessels';

legend(LH,L,'Location','northeast')

hold off

hold on

%Trace designs with min. costs

sortFleet = sort(traceFleet(:,1));

top = sortFleet(1:25);

for j = 1:numel(top)

paretoFleets(j) = find(traceFleet(:,1) == top(j));

end

paretoFleets = sort(paretoFleets)'

xlswrite('pareto.xls',paretoFleets,'I1:I25')

sz=160;

scatter(traceFleet(paretoFleets,3),....

traceFleet(paretoFleets,4),sz,'m')

hold off
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B.5 Baltic Trade Network

%= Baltic Trade Network data

%= Written by Harald Ulvestad Salvesen, Spring 2018

%= Norwegian University of Science and Technology

edgeList = {[2 3 4 5 6 7 8] [1 3 4 5 6 7 8] [1 2 4 5 6 7 8]...

[1 2 3 5 6 7 8] [1 2 3 4 6 7 8] [1 2 3 4 5 7 8] [1 2 3 4 ...

5 6 8] ...

[1 2 3 4 5 6 7];[1 2 3 4 5 6 7] [1 8 9 10 11 12 13]...

[2 8 14 15 16 17 18] [3 9 14 19 20 21 22] [4 10 15 19 23 ...

24 25]...

[5 11 16 20 23 26 27] [6 12 17 21 24 26 28] [7 13 18 22 ...

25 27 28]};

FullMap = graph({'DEBRV','DEBRV','DEBRV',...

'DEBRV','DEBRV','DEBRV','DEBRV'...

},{'RUKGD','FIKTK','FIRAU','NOAES','NOBGO','NOKRS','NOSVG'});

FullMap.Edges.Var2(1,1) = 832;

FullMap.Edges.Var2(2) = 1075;

FullMap.Edges.Var2(3) = 1060;

FullMap.Edges.Var2(4) = 545;

FullMap.Edges.Var2(5) = 447;

FullMap.Edges.Var2(6) = 292;

FullMap.Edges.Var2(7) = 366;

FullMap.Edges.Properties.VariableNames{2} = 'Distance';

FullMap = addedge(FullMap, ...

{'RUKGD','RUKGD','RUKGD','RUKGD','RUKGD','RUKGD'},{'FIKTK',...

'FIRAU','NOAES','NOBGO','NOKRS','NOSVG'});

FullMap.Edges.Distance(8) = 475;

FullMap.Edges.Distance(9) = 678;

FullMap.Edges.Distance(10) = 962;

FullMap.Edges.Distance(11) = 817;

FullMap.Edges.Distance(12) = 604;

FullMap.Edges.Var3(12,1) = 733;

FullMap.Edges.Var3(12) = 0;

FullMap.Edges.Distance(13) = 348;

FullMap = addedge(FullMap, ...

{'FIKTK','FIKTK','FIKTK','FIKTK','FIKTK',},{'FIRAU','NOAES'...
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,'NOBGO','NOKRS','NOSVG'});

FullMap.Edges.Distance(14) = 541;

FullMap.Edges.Distance(15) = 1178;

FullMap.Edges.Distance(16) = 1062;

FullMap.Edges.Distance(17) = 847;

FullMap.Edges.Distance(18) = 976;

FullMap = addedge(FullMap, ...

{'FIRAU','FIRAU','FIRAU','FIRAU',},{'NOAES','NOBGO',.......

'NOKRS','NOSVG'});

FullMap.Edges.Distance(19) = 1190;

FullMap.Edges.Distance(20) = 1045;

FullMap.Edges.Distance(21) = 832;

FullMap.Edges.Distance(22) = 961;

FullMap = addedge(FullMap, ...

{'NOAES','NOAES','NOAES',},{'NOBGO','NOKRS',.....

'NOSVG'});

FullMap.Edges.Distance(23) = 167;

FullMap.Edges.Distance(24) = 393;

FullMap.Edges.Distance(25) = 278;

FullMap = addedge(FullMap, {'NOBGO','NOBGO'},{'NOKRS','NOSVG'});

FullMap.Edges.Distance(26) = 226;

FullMap.Edges.Distance(27) = 111;

FullMap = addedge(FullMap, {'NOKRS'},{'NOSVG'});

FullMap.Edges.Distance(28) = 142;

for i = 1:8

FullMap.Nodes.Var2(i) = i;

end

for i = 1:28

FullMap.Edges.Var3(i) = i;

end

FullMap.Nodes.Var3(2,1) = 536;
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FullMap.Nodes.Var3(3) = 374;

FullMap.Nodes.Var3(4) = 36;

FullMap.Nodes.Var3(5) = 20;

FullMap.Nodes.Var3(6) = 34;

FullMap.Nodes.Var3(7) = 12;

FullMap.Nodes.Var3(8) = 130;

FullMap.Edges.Properties.VariableNames{3} = 'EdgeID';

FullMap.Nodes.Properties.VariableNames{2} = 'NodeID';

FullMap.Nodes.Properties.VariableNames{3} = 'Demand';

FullMap.Edges.Var4(1,1) = 1;

FullMap.Edges.Var4(2) = 1;

FullMap.Edges.Var4(3) = 1;

FullMap.Edges.Var4(4) = 1;

FullMap.Edges.Var4(5) = 1;

FullMap.Edges.Var4(6) = 1;

FullMap.Edges.Var4(7) = 1;

FullMap.Edges.Var5(1,1) = 2;

FullMap.Edges.Var5(2) = 3;

FullMap.Edges.Var5(3) = 4;

FullMap.Edges.Var5(4) = 5;

FullMap.Edges.Var5(5) = 6;

FullMap.Edges.Var5(6) = 7;

FullMap.Edges.Var5(7) = 8;

FullMap.Edges.Var4(8) = 2;

FullMap.Edges.Var4(9) = 2;

FullMap.Edges.Var4(10) = 2;

FullMap.Edges.Var4(11) = 2;

FullMap.Edges.Var4(12) = 2;

FullMap.Edges.Var4(13) = 2;

FullMap.Edges.Var5(8) = 3;

FullMap.Edges.Var5(9) = 4;

FullMap.Edges.Var5(10) = 5;

FullMap.Edges.Var5(11) = 6;

FullMap.Edges.Var5(12) = 7;

FullMap.Edges.Var5(13) = 8;

FullMap.Edges.Var4(14) = 3;

FullMap.Edges.Var4(15) = 3;

FullMap.Edges.Var4(16) = 3;

FullMap.Edges.Var4(17) = 3;

FullMap.Edges.Var4(18) = 3;
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FullMap.Edges.Var5(14) = 4;

FullMap.Edges.Var5(15) = 5;

FullMap.Edges.Var5(16) = 6;

FullMap.Edges.Var5(17) = 7;

FullMap.Edges.Var5(18) = 8;

FullMap.Edges.Var4(19) = 4;

FullMap.Edges.Var4(20) = 4;

FullMap.Edges.Var4(21) = 4;

FullMap.Edges.Var4(22) = 4;

FullMap.Edges.Var5(19) = 5;

FullMap.Edges.Var5(20) = 6;

FullMap.Edges.Var5(21) = 7;

FullMap.Edges.Var5(22) = 8;

FullMap.Edges.Var4(23) = 5;

FullMap.Edges.Var4(24) = 5;

FullMap.Edges.Var4(25) = 5;

FullMap.Edges.Var5(23) = 6;

FullMap.Edges.Var5(24) = 7;

FullMap.Edges.Var5(25) = 8;

FullMap.Edges.Var4(26) = 6;

FullMap.Edges.Var4(27) = 6;

FullMap.Edges.Var5(26) = 7;

FullMap.Edges.Var5(27) = 8;

FullMap.Edges.Var4(28) = 7;

FullMap.Edges.Var5(28) = 8;

FullMap.Edges.Properties.VariableNames{4} = 'Start';

FullMap.Edges.Properties.VariableNames{5} = 'End';

%Add port call cost

FullMap.Nodes.Var4(1,1) = 0;

FullMap.Nodes.Var4(2) = 1062;

FullMap.Nodes.Var4(3) = 1182;

FullMap.Nodes.Var4(4) = 18552;

FullMap.Nodes.Var4(5) = 24098;

FullMap.Nodes.Var4(6) = 17435;

FullMap.Nodes.Var4(7) = 24076;

FullMap.Nodes.Var4(8) = 1227;

FullMap.Nodes.Properties.VariableNames{4} = 'PortCall';

plot(FullMap);
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B.6 Optimal Fleet Trace

%= Optimal Fleet Trace from the Multi-Epoch Analysis

%= Written by Harald Ulvestad Salvesen, Spring 2018

%= Norwegian University of Science and Technology

paretodata = xlsread('pareto.xls');

paretodata = paretodata(:);

paretodata = sort(paretodata);

[a,b] = hist(paretodata,unique(paretodata));

fleetIDs = unique(paretodata);

h = histogram(paretodata, 1:95);

h.EdgeColor = 'b';

grid on

xlabel('Fleet ID')

xlim([1 762])

ylim([0 28])

xticks([0:50:762])

yticks([0:2:28])

ylabel('Frequency of Occurence')

set(gca,'FontName','Utopia');

set(gca,'FontSize', 24);

view([90 -90])

hold on

g = histogram(paretodata, 96:190)

g.EdgeColor = 'r';

hold off

hold on

g = histogram(paretodata, 191:392)

g.EdgeColor = 'b';

hold off

hold on

g = histogram(paretodata, 393:594)

g.EdgeColor = 'r';

hold off
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hold on

g = histogram(paretodata, 595:678)

g.EdgeColor = 'b';

hold off

hold on

g = histogram(paretodata, 679:762)

g.EdgeColor = 'b';

hold off
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Appendix C

Xpress-IVE Code

C.1 TSP Model

The Xpress code for the TSP model starts on the next page.
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! Written by Harald Ulvestad Salvesen, Spring 2017 
! Norwegian University of Science and Technology 
 
model TSPmod2 
uses "mmxprs"; !gain access to the Xpress-Optimizer solver 
options explterm   !Line breaks is not an expression separator. Each expression 
must end with a ; 
options noimplicit !Everything except indices must be declared BEFORE it is used 
 
!Load parameters from file 
parameters 
    DataFile = "TSPData.txt"; 
end-parameters 
 
declarations 
   nNodes: integer; 
   nEdge: integer; 
   nEdgeSet: integer; 
   nDist: integer; 
   nCombs: integer; 
end-declarations 
 
initializations from DataFile 
    nNodes; 
    nEdge; 
    nEdgeSet; 
    nDist; 
    nCombs; 
end-initializations 
 
declarations 
    W: set of integer; 
    Combs: set of integer; 
end-declarations 
 
W := 2..nNodes; 
Combs := 1..nCombs; 
 
finalize(W); 
finalize(Combs); 
 
declarations 
    EdgeSet: set of integer; 
    E: array(W, Combs) of set of integer; 
end-declarations 
 
initializations from DataFile 
    EdgeSet; 
    E; 
end-initializations 
 
forall(ii in W, jj in Combs) finalize(E(ii,jj)); 
 
!Declaring sets: 
declarations 
    Nodes: set of integer; 
    Edges: set of integer; 
    DistIndex: set of integer; 
end-declarations 
 
Nodes := 1..nNodes; 
Edges := 1..nEdge; 
DistIndex := 1..nDist; 
 
finalize(Nodes); 
finalize(Edges); 
finalize(EdgeSet); 
finalize(DistIndex); 
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declarations 
    Distance: array(DistIndex) of integer; 
    Delta: array(Nodes, Edges) of integer; 
end-declarations 
 
initializations from DataFile 
    Distance; 
    Delta; 
end-initializations 
 
!Declaring indexed decision variable as dynamic array 
declarations 
    flow: dynamic array(EdgeSet) of mpvar; 
end-declarations 
 
forall (ee in EdgeSet) do 
  create(flow(ee)); 
  flow(ee) is_binary; 
end-do 
 
declarations 
    TotalDist: linctr; 
    C1: array(Nodes) of linctr; 
    C2: array(W,Combs) of linctr; 
end-declarations 
 
!Obj. function 
!======================== 
TotalDist := 
  sum(ee in EdgeSet) Distance(ee)*flow(ee); 
   
!C1 
!======================== 
forall (ii in Nodes) do 
  C1(ii) := sum(jj in Edges) flow(Delta(ii,jj)) = 2; 
end-do 
 
!C2 - Subtour constraint 
!======================== 
forall (i in W) do 
    forall (j in Combs)  
        C2(i,j) := sum(k in E(i,j)) flow(k) <= i - 1; 
end-do 
 
minimize(TotalDist); 
 
initializations to "matlab.mws:" 
    evaluation of getobjval as "objval"; 
    evaluation of array(ii in EdgeSet) flow(ii) .sol as "flow"; 
end-initializations 
 
end-model 
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C.2 VRP - IP Model

The Xpress code for the IP model starts on the next page.
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! Written by Harald Ulvestad Salvesen, Spring 2017 
! Norwegian University of Science and Technology 
 
model VRPMod 
uses "mmxprs"; !gain access to the Xpress-Optimizer solver 
options explterm   !Line breaks is not an expression separator. Each expression 
must end with a ; 
options noimplicit !Everything except indices must be declared BEFORE it is used 
 
 
parameters 
    DataFile = 'VRPData.txt'; 
end-parameters 
 
declarations 
    nNodes: integer; 
    nVessels: integer; 
    nRoutes: integer; 
    maxTime: integer; 
end-declarations 
 
initializations from DataFile 
    nNodes; 
    nVessels; 
    nRoutes; 
    maxTime; 
end-initializations 
 
declarations 
    Nodes: set of integer; 
    Vessels: range; 
    Routes: set of integer; 
end-declarations 
 
Nodes := 1..nNodes; 
Vessels := 1..nVessels; 
Routes := 1..nRoutes; 
 
finalize(Nodes); 
finalize(Vessels); 
finalize(Routes); 
 
declarations 
    R: dynamic array(Vessels) of set of integer; 
    C: dynamic array(Vessels, Routes) of real; 
    T: dynamic array(Vessels, Routes) of integer; 
    A: dynamic array(Vessels, Routes, Nodes) of integer; 
end-declarations 
 
initializations from DataFile 
    C; A; R; T; 
end-initializations 
 
forall(vv in Vessels) finalize(R(vv)); 
 
declarations 
    x: dynamic array(Vessels, Routes) of mpvar; 
end-declarations 
 
forall(vv in Vessels, rr in R(vv) | exists(T(vv,rr)) and T(vv,rr)<>0 and 
exists(C(vv,rr)) and C(vv,rr)<>0 and  
                (or(nn in Nodes | exists(A(vv,rr,nn))) true) ) do 
    create(x(vv,rr)); 
    x(vv,rr) is_binary; 
end-do 
 
declarations 
    Obj: linctr; 
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    C1: array(Nodes) of linctr; 
    C2: array(Vessels) of linctr; 
    C3: array(Vessels) of linctr; 
end-declarations 
 
Obj := sum(vv in Vessels, rr in R(vv) | exists(x(vv,rr))) (C(vv,rr)*x(vv,rr)); 
 
!Constraint 1 
forall (nn in Nodes) do 
    C1(nn):= sum(vv in Vessels, rr in R(vv) | exists(x(vv,rr))) 
A(vv,rr,nn)*x(vv,rr) >= 1; 
end-do 
 
!Constraint 2 
forall (vv in Vessels) do 
    C2(vv):= sum(rr in R(vv)) x(vv,rr) >= 1; 
end-do 
 
!Constraint 3 
forall (vv in Vessels) do 
    C3(vv) := sum(rr in R(vv) | exists(x(vv,rr))) T(vv,rr)*x(vv,rr) <= maxTime; 
end-do 
 
!Minimize objective function 
!==================================================================== 
minimize(Obj); 
 
!Parse optimal distance to MATLAB 
!================================================================== 
initializations to "matlab.mws:" 
    evaluation of getobjval as "vrpsol"; 
    evaluation of array(vv in Vessels, rr in R(vv)) x(vv,rr) .sol as "vrpflow"; 
end-initializations 
 
end-model 
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