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Summary

The Norwegian National Public Road Administration is working on a project to
improve the coastal road E39, connecting the cities along the west coast of Norway.
Today, this road has seven ferry crossings which are to be replaced by permanent
connections, to a total expected cost of 340 billion NOK.

Several of these fjords are wider and deeper than what existing designs can
manage, such that new technology needs to be developed. For some of the fjord
crossings, floating bridge concepts have been developed and concluded to be feasible
solutions. For the about 4500 meters wide Bjørnafjorden, south of Bergen, there
are two floating bridge concepts which are in the process of being further assessed.

One of these concepts is a straight bridge, laterally supported by pre-tensioned
mooring lines. This concept was modelled in the software SIMO-RIFLEX, where
a static, eigenvalue and dynamic analysis were performed in order to illustrate
modelling aspects and calculation procedures. Panel models of the pontoon were
modelled in GeniE and imported into HydroD where hydrodynamic analyses were
carried out in Wadam.

From the eigenvalue analysis, a significant limitation was identified in the eigen-
value calculation codes in SIMO-RIFLEX, as the catenary mooring lines were not
properly accounted for. Therefore, a second model was made where the mooring
system was replaced by a linearised implementation. For this model, the eigen
periods and mode shapes were coinciding well with those obtained by the NPRA.
The first 30 eigen periods were differing with a mean value of 3.9 % when only the
infinite-frequency added mass matrix was considered. By updating the added mass
for a selected set of modes, differences of less than about 2 % were found.

The eigenvalue calculations revealed several modes that can be triggered by
environmental loads. Laterally dominated modes at high periods with negligible
damping, which can be important for the response in slowly varying wind, and
laterally dominated modes close to the peak period for the 100-year wind waves,
were identified. Additionally, modes dominated by pontoon motions along the
bridge girder close to this period were found, possibly important for the dynamic
weak axis bending moments in the high bridge.

From the dynamic analyses in regular waves, response patterns related to the
identified modes were present when the bridge was subjected to waves from different
directions, respectively. The maximum weak axis bending moment in the bridge
girder for the conditions examined was found in the high bridge for a response
pattern related to the mentioned modes dominated by pontoon motions along the
bridge girder. This moment had a magnitude of 9.1 · 105 kNm, where the dynamic
moment only contributed with 15 %. The results from the analyses performed were
therefore seen to give indications on possible room for girder length to girder height
ratio optimisation and should be further assessed based on analyses performed for
the actual environmental conditions in the fjord.

v



vi



Sammendrag

Statens vegvesen har startet et prosjekt for å forbedre Europavei E39, veien som
knytter sammen byene langs vestkysten av Norge. I dag har E39 syv fergekrys-
ninger, og målet er at disse skal erstattes av faste forbindelser, til en total forventet
kostnad på 340 milliarder kroner.

Flere av disse fjordene er bredere og dypere til at eksisterende bro- eller tunnel-
løsninger kan brukes. Derfor må ny teknologi utvikles. For noen av fjordkrysnin-
gene har flytebro-konsepter blitt utviklet og fastslått til å være mulige løsninger.
Statens vegvesen har nå to flytebro-konsepter som de holder på å videreutvikle for
den omtrent 4500 meter lange krysningen over Bjørnafjorden.

Et av disse konseptene er en rett flytebro som bruker forspente forankringsliner
til å sikre tilstrekkelig tverrgående stivhet. Dette konseptet ble modellert i pro-
gramvaren SIMO-RIFLEX, hvor en statisk-, egenverdi- og dynamisk analyse ble
utført for å illustrere modelleringsaspekter og beregningsmetoder. Panelmodeller
av pongtongen ble modellert i GeniE og importert til HydroD hvor hydrodynamiske
analyser ble utført i modulen Wadam.

Fra egenverdi-analysen ble det funnet en betydelig begrensning i beregningsal-
goritmene for egenverdi-analyse i SIMO-RIFLEX, da forankringslinene ikke ble
korrekt inkludert. Det ble derfor laget en ny modell hvor forankringssystemet ble
linearisert. Denne modellen ga egenperioder og svingeformer som stemte godt ov-
erens med resultatene til Statens vegvesen. De første 30 egenperiodene hadde et
gjennomsnittlig avvik på 3,9 % ved å kun inkludere tilleggsmassen for uendelig
frekvens. Differanser på mindre enn omlag 2 % ble oppnådd ved å inkludere den
korrekte tilleggsmassen for noen utvalgte moder.

Egenverdi-analysen identifiserte flere svingeformer som kan trigges av miljølaster.
Lateralt dominerte svingeformer ved høye perioder hvor dempningen er neglisjer-
bar, som kan være viktige for responsen i langsomt varierende vind, og lateralt
dominerte svingeformer nær toppperioden for 100-års vindbølger, ble identifisert.
I tillegg ble det funnet svingeformer dominert av pongtongbevegelser langs brob-
jelken nær denne perioden, som muligens kan føre til store bøyemomenter om svak
akse i høybroen.

Fra de dynamiske analysene i regulære bølger var responsmønstre relatert til de
identifiserte svingeformene tilstede da broen ble utsatt for bølger fra ulike retninger.
Det maksimale bøyemomentet i brobjelken om svak akse ble funnet i høybroen for et
responsmønster relatert til svingeformene som var dominert av pongtongbevegelser
langs brobjelken. Dette momentet hadde en størrelse på 9,1 · 105 kNm, hvor det
dynamiske momentet kun bidro med 15 %. Resultatene fra analysene som ble utført
ga derfor indikasjoner på at avstanden mellom pongtongene burde reduseres. Dette
bør vurderes ytterligere ved å kjøre analyser hvor de faktiske sjø- og vindforholdene
i fjorden inkluderes.
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Chapter 1

Introduction

1.1 Motivation and Background

European route E39 is a road starting just south of Trondheim, running along the
west coast of Norway, all the way to Kristiansand. The total distance of the route
today is around 1100 km, including 7 ferry connections, and has the corresponding
travel time of 21 hours. A map of the road, with its fjord crossings marked, is
shown in figure 1.1.

The Ferry Free E39 project is led by the National Public Road Administration
(NPRA) and has the purpose of improving this road, in terms of replacing the ferry
connections by tunnels, cable-stayed bridges, floating bridges or submerged tunnels
and upgrading parts of the existing road sections on land [1]. By these measures,
the goal is to reduce the travel time to around 11 hours. Moreover, the ambitions
of the supreme legislature of Norway is that the project shall be finished by 2035,
and the total project is expected to have a cost of 340 billion NOK.

Bjørnafjorden, south of Bergen, is one of the ferry connections which shall
be replaced in this project. The fjord has a width of about 4500 metres and
a maximum depth of 580 metres at the location planned for the crossing [2]. In
comparison, the current world’s longest floating bridge has a length of 2350 metres,
crossing Lake Washington in the USA [3]. Several concepts have been considered for
the Bjørnafjorden crossing, i.e. a submerged floating bridge concept, cable-stayed
bridges with towers on TLP foundations concept and floating bridge concepts.
Today, two concepts are chosen for further assessment by the NPRA: a straight
floating bridge which is laterally supported by mooring lines and a curved end-
anchored floating bridge [4]. The straight bridge concept is chosen as a basis for
the work performed in this thesis.
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Chapter 1. Introduction

Figure 1.1: Map of the Norwegian part of E39 and its fjord crossings [5]

1.2 Objective

The objective of the thesis work is to perform global response analyses on a floating
bridge model, which is to be modelled as a coupled SIMO-RIFLEX model in SIMA,
in order to illustrate modelling aspects and calculation procedures. The analyses
to be included are a static analysis due to permanent loads, an eigenvalue analysis
and dynamic analyses in regular waves. The results of the eigenvalue analysis are
to be compared with the results obtained on behalf of the NPRA.

1.3 Limitations

Several limitations were introduced in the thesis work and can be divided into
three main categories: simplifications done in modelling, limitations in the analyses
performed and software limitations.

In the first category, it should be mentioned that the vertical curvature of the
bridge girder was not included and the tower in the cable-stayed bridge was sim-
plified. For the pontoons only first order forces due to wave loading were included,
hence no second order nor viscous forces were considered.

The dynamic analyses performed were limited to harmonic wave loading, mean-
ing that realistic implementations of the environmental loads were not done.
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In the last category, it should be mentioned that the catenary mooring sys-
tem was not properly accounted for in the eigenvalue calculation codes in SIMO-
RIFLEX. These codes did also not consider frequency dependent added mass.

1.4 Structure of the Report

• Chapter 1: Introduction to the Ferry Free E39 project, objective and limita-
tions

• Chapter 2: Characteristics of floating bridges and examples of floating bridges,
both concepts for the Ferry Free E39 project and existing bridges

• Chapter 3: Presenting the bridge concept used as a basis for the bridge model

• Chapter 4: Describing the main steps done in the modelling of the floating
bridge and relevant simplifications and assumptions. The modelling included
making a panel model of the pontoon in GeniE, running hydrodynamic anal-
yses on this model in Wadam in HydroD, alterations of hydrodynamic results
in SIMO and modelling the bridge structure and mooring lines in RIFLEX.

• Chapter 5: Presenting and discussing results from the hydrodynamic analy-
ses of the pontoon and the results from the static, eigenvalue and dynamic
analyses of the complete coupled bridge model in SIMO-RIFLEX

• Chapter 6: Conclusion

• Chapter 7: Recommendations for further work
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Chapter 2

Background on Floating
Bridges

The advantage of floating bridges is that they can be cost-efficient solutions to lake
or fjord crossings where conventional bridges or subsea tunnels are not suited [6].
This can be the case for deep sea, wide crossings or soft bottom conditions.

2.1 Characteristics of Floating Bridges

Floating bridges are bridges where the bridge girder is supported in the vertical
direction by floating elements, commonly called pontoons. The pontoons can be
placed continuously, where the pontoons are linked directly together, or placed
separately.

General considerations for the pontoons are that they should consist of wa-
terproof compartments in order to ensure redundancy in case of accidents, and
the material should be suited for the corrosive environment. Furthermore, the
pontoons and the bridge itself should be built lightweight and thereby reduce the
necessary buoyancy. In this way, the volume of the pontoons can be reduced in
order to reduce the environmental loads acting on the bridge [7].

In any case, the bridge girder will be subjected to relatively large lateral loads
due to current and waves acting on the pontoons and wind acting on the whole
system. Consequently, there are two traditional ways of ensuring satisfying stiffness
in the lateral direction: by use of mooring systems or by placing the bridge in a
curve.

By use of mooring systems the bridge can be placed straight, with the mooring
lines attached directly to the pontoons. The mooring lines are placed in an angle
to the sea bottom by use of anchors.
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Chapter 2. Background on Floating Bridges

The other main option used by existing bridges is placing the bridge in a curve
in the horizontal plane with its two ends as the only connections, hence no use of
mooring systems. The curved design enables the bridge girder to carry the lateral
loads from wind, currents and waves to its two land abutments as axial forces.

Another challenge by use of floating bridges is that they can be a restriction
for marine traffic. Several methods are used to mitigate this problem, such as an
elevation of the bridge beam for smaller boats and movable spans or a navigational
channel for larger ships.

2.2 Existing Floating Bridges

Throughout the study of floating bridges, bridges of special attributes were sought
for. In general, it was found that existing bridges are limited to locations with
calm wave conditions. This is not the case for some of the crossings considered for
the Ferry-Free E39 project, in which the crossings are significantly wider and with
more challenging environmental conditions. A selection of these concepts will be
further described in section 2.3.

The following review of existing floating bridges is therefore limited to three
bridges: the two and only Norwegian floating bridges and the world’s longest float-
ing bridge. These bridges highlight several of the characteristics presented in section
2.1, where the latter mentioned differ significantly from the Norwegian bridges.

2.2.1 Bergøysund Bridge

Bergøysund Bridge was built in 1992 and was the first Norwegian floating bridge,
and the world’s first permanent floating bridge without any side anchoring [7]. The
bridge was a part of the National Public Road Administration’s project Krifast for
a section of the road E39 in the county of Møre og Romsdal, where it is one of the
mainland connections for the city of Kristiansund. The crossing has a maximum
depth of about 320 metres.

The bridge has a total length of 931 metres, a span of 845 metres and is placed
in a curve of radius 1300 metres. Furthermore, the bridge has 7 pontoons of
high strength lightweight concrete and has a maximum vertical water clearance
of 6 metres. From figure 2.1 it can be seen that the superstructure of the bridge
consists of tubular steel trusses and pipe junctions.
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Figure 2.1: Bergøysund Bridge [8]

2.2.2 Nordhordaland Bridge

The Nordhordaland bridge was opened for traffic in 1994 and became the longest
floating bridge in the world without side anchoring [9]. This is a record which still
holds since the mentioned bridges are the only permanent floating bridges of the
curved end-anchored type. The main reason for this type of end-anchoring was
because the existing mooring techniques at the time of construction could not be
used, due to the crossing’s maximum depth of about 500 metres.

The Norhordaland bridge is also a part of the road E39 and is connecting
Bergen- and Meland municipality. In 1994 the bridge replaced the most heavily
used ferry service in Norway at the time, which in 1993 carried 1.68 million cars
across the fjord [9].

The bridge has a total length of 1615 metres and consists of a cable-stayed
bridge and a floating bridge, as can be seen in figure 2.2. The floating bridge has
a length of 1246 metres, is placed in a curve with a radius of 1700 metres and has
a total of 10 pontoons equally spaced along its length. Its cross section is a steel
box, which has a width of 15.9 metres and height of 5.50 metres.

The pontoons are made of lightweight concrete and have a length and width of
42.0 and 20.5 metres, respectively. The heights of the pontoons are in the range of
7.0 to 8.6 metres and differ mainly due to the differences in the span lengths at the
respective ends. Furthermore, the bridge can be trimmed by use of solid ballast in
the pontoons, whereas each pontoon consists of 9 waterproof compartments, where
two neighbouring compartments can be filled with water without endangering the
bridge [9].
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The high bridge has a length of 369 metres and a maximum span of 99.3 metres,
which provides a minimum navigation channel of 32 metres vertical clearance and
width of 50 metres [9]. The floating bridge has a vertical clearance of 5.5 metres.

Figure 2.2: Nordhordaland Bridge [10]

2.2.3 Govenor Albert D. Rosellini Bridge

The Governor Albert D. Rosellini Bridge is the world’s longest floating bridge,
and also the widest, with its length and maximum width of 2350 and 35 metres,
respectively [3]. The bridge is crossing Lake Washington, from Medina to Seattle,
in the USA, and was opened for traffic in 2016 as a replacement for the 53 years old
previous world’s longest floating, which was 40 meters shorter. This was done as
a consequence of its increasing age, due to two main reasons: its approaches were
increasingly vulnerable to earthquakes and the pontoons vulnerable to windstorms
[3].

The current bridge has a total of 77 box-shaped concrete pontoons, where 21
of these are longitudinal pontoons and 54 supplementary pontoons. The former
pontoons have a weight of about 11 000 tons and length, width and draft of about
110, 23 and 8.5 metres, respectively [3]. These are placed continuously and linked
directly together along the bridge, except at the bridge’s two ends. The supplemen-
tary pontoons have a weight of about 2 700 tons and are attached to the outermost
sides of the aforementioned pontoons in order to increase the stability of the struc-
ture. These can be seen in figure 2.3. Due to the continuous placements of the
longitudinal pontoons, the bridge has one navigational channel at each end in order
to allow passage of marine traffic. The highest of these gives a vertical clearance
of about 21 metres [3].
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Furthermore, the bridge is supported in the lateral direction by 58 mooring
lines, where every longitudinal pontoon has at least two cables attached. These are
anchored to the up to 61 metres deep lake bottom, leading to mooring line lengths
of maximum 300 metres. Despite the small water depth, a floating bridge was
considered to be the optimal solution for the crossing, as a result of the lake bottom
consisting of an about 61 metres thick layer of soft lake sediments. Conventional
fixed bridges were expected to be more expensive, as well as their massive support
towers out of character with the surroundings [3].

Figure 2.3: The Governor Albert D. Rosellini Bridge [3]

2.3 Bridge Concepts in the Ferry Free E39 Project

On December 1st, 2017, the ferry crossing replacement project Rogfast was signed,
as the first of the ferry replacements in the Ferry Free E39 project. Rogfast is the
name of the Boknafjorden ferry replacement project as shown in figure 1.1. This
will be the world’s longest and deepest subsea tunnel [11].

The remaining fjord crossing sub-projects are still in the planning or develop-
ment phase. For some of the crossings existing technology can be used, namely
regular subsea tunnels or cable-stayed bridges, but for the deepest and widest
crossings new technology needs to be developed. There are mainly four categories
of bridge concepts which have been considered for these crossings: cable-stayed
bridges, floating bridges, submerged tunnels, cable-stayed bridges on TLP founda-
tions and combinations of these.

The Sognefjorden crossing is considered as the most challenging crossing because
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of its maximum depth of 1250 metres, width of 3.7 km and its environmental
conditions. However, a feasibility study from 2012 concluded that all the mentioned
solutions are feasible [5].

2.3.1 Hordfast

Hordfast is the name of the ferry replacement project for the Bjørnafjorden crossing.
As already mentioned, Bjørnafjorden is located just south of Bergen and has a
maximum depth of around 580 metres and a width of around 4.5 km on the planned
site of crossing.

Initially, all the categories of bridge concepts have been considered, but there are
now two floating bridge concepts which will be further developed: a straight floating
bridge with pre-tensioned lateral mooring lines and a curved floating bridge only
connected at its two ends. Both of these are developed on behalf of the NPRA by a
project group consisting of COWI, Aas-Jakobsen, Johs Holt and Global Maritime
as the main contributing companies.

Curved Bridge Concept

The curved floating bridge concept consists of a cable-stayed bridge at one end and
a floating bridge, and has a straight line distance between its abutments of about
4600 metres. The bridge girder is placed in a curve of radius 5000 metres in the
horizontal plane, in order to carry lateral loads through arc action [12]. To let larger
ships pass, it is planned a cable-stayed bridge with a height of approximately 50
metres and a main span of 490 metres, providing a navigational channel of minimum
400 m x 45 m. The floating part of the bridge consists of 19 identical pontoons
with an equal horizontal spacing of 197 m [12]. All pontoons are faced in the same
direction.

Figure 2.4: Illustration of the end-anchored curved floating bridge concept across
Bjørnafjorden [13]
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The pontoon is made of lightweight concrete and has a cigar shape, with a
length, width and height of 68, 28 and 14 metres, respectively. It has a flange in its
bottom in order to increase added mass in heave and is the same pontoon as will
be used in the straight bridge alternative. The bridge girder is a Vierendel Beam,
consisting of two parallel steel boxes, a smaller steel box where the pedestrian lane
is placed, and cross beams [12]. The cross-sections are different in the high bridge
and low bridge, as well as the bridge girder being re-enforced at the girder-tower
and girder-column intersections. A visual representation of the expected design is
illustrated in figure 2.4.

Updated Designs

The straight bridge concept will be used as an example model in the analysis
in this thesis and will therefore be described in detail in chapter 4. However,
it should be mentioned that according to the NPRA improved versions of both
designs presented in this section have been made [4]. The main changes are that
the number of pontoons has been doubled and the concrete pontoons have been
replaced by steel pontoons. The end-anchored bridge has also been curved in the
opposite direction and the bridge girder reduced from a Vierendel Beam to a single
steel box. For the side anchored bridge further work have been done regarding the
mooring system. An illustration of the updated design on this bridge is shown in
figure 2.5. Technical reports have not been made publicly available on the updated
designs, consequently, the previous design on the straight bridge concept will be
used as a basis for the continued work in this thesis.

Figure 2.5: Illustration of the updated design on the straight bridge concept [13]
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Chapter 3

Theory

In this section, important theory regarding global static- and dynamic response
analysis of floating bridges will be revised. First, a list of the structural loads will
be given, followed by a description of the first five items, including how they can
be implemented in the analyses. The remaining items will not be further assessed
in this report.

3.1 Structural Loads

The loads acting on a floating bridge can be summarised as:

• Permanent loads

• Traffic loads

• Wind loads

• Wave loads

• Current loads

• Loads due to tidal variations

• Accidental loads

• Marine growth

• Water absorption in concrete

• Other environmental loads (temperature, snow and ice, earthquake, etc.)
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Chapter 3. Theory

3.1.1 Permanent Loads

By permanent loads it is referred to the self-weight of the complete structure and
includes the weight of all components, equipment, railings, asphalt, pontoons and
permanent ballast.

3.1.2 Traffic Loads

Traffic loads are by nature dynamic but can be simplified as uniformly distributed
and concentrated loads as described by Eurocode 1 [14], which is the same set of
technical rules as used by the NPRA for the bridge concept to be studied. In the
following, a short description of determining the traffic loads according to the load
case Load Model 1 (LM1) is described. This is the governing load case for elements
with influence lengths up to 500 m [14].

The first step is to divide the carriageway into notional lanes and remaining
area according to figure 3.1.

Figure 3.1: Excerpt from Eurocode 1: dividing carriageway into notional lanes [14]

For the respective parts of the carriageway characteristic values for the loads are
defined for the Load Model 1 as given in figure 3.2. These values are representing
a traffic scenario of heavy industrial international traffic, such that scaling factors
can be used to represent a realistic scenario for the given bridge to be designed [14].
In the case of the straight bridge concept, the design team has chosen a scaling
factor of 0.6 on the distributed load for notional lane number 1 and unity for the
others. By multiplying the distributed loads by their mentioned factors and their
respective widths, equivalent line loads are obtained. Finally, these line loads can
be summed in order to implement the distributed traffic loads in the analyses of
the bridge model as force or mass per meter acting on the bridge girder. In global
analyses, the axle loads given by the Tandem System in figure 3.2 are to be applied
in pairs centrally on the notional lanes, with two axles in each notional lane.
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Figure 3.2: Excerpt from Eurocode 1: characteristic traffic loads [14]

3.1.3 Wind Loads

Wind-induced loads are also by nature dynamic loads, due to the fluctuations in the
wind velocity. The wind forces can thereby be stated in terms of a time-averaged
wind force and a gust force [15]. The time-averaged wind force per meter can be
expressed as:

Fm(z) =
1

2
ρaV

2
m(z)CD(α)H (3.1)

where Vm is a time-averaged wind velocity at a given height z, ρa the air density
and CD a shape or drag coefficient. This coefficient is dependent on the angle of
the wind direction, α, relative to the projected area, H. According to DNV [15]
commonly used averaging times for the wind speed are 1 minute, 10 minutes and
1 hour for each given height. The wind speed is generally increasing with height
above sea level.

Furthermore, the lift force due to wind should be considered for a bridge struc-
ture, as it can induce weak axis bending moments and accelerations. The time-
averaged lift force can be expressed in a similar manner as the time-averaged drag
force:

FL,m(z) =
1

2
ρaV

2
m(z)CL(α)HL (3.2)

where CL is a shape or lift coefficient. This coefficient is dependent on the angle
of the wind direction, α, relative to the chosen reference area, HL, for which this
coefficient was calculated for. Both the drag and lift coefficients can be determined
through tabular values or empirical formulas for simple geometries. For complex
cross-sections and structures, these can be obtained through Computational Fluid
Dynamics (CFD) or preferably model tests [15].

For simplified static calculations a gust drag force can be expressed in terms of
the time-averaged wind force as [2]
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Fq(z) = [1 + 7 · Iu(z)] · Fm(z) (3.3)

where Iu is a turbulence intensity.

Finally, for a floating bridge also the time dependency of the wind is expected to
be of importance, as the structure will exhibit considerable dynamic response. Since
the natural frequencies of the bridge structure can be in the range of frequencies
containing significant energy in the wind field frequency spectrum, this should be
included as a part of the dynamic analyses [15].

3.1.4 Current Loads

The tidal current velocities in narrow points in fjords can be high, but usually float-
ing bridges are not used for these types of crossings as other options are cheaper.
According to Larsen [2], the current forces acting on the pontoons in the Bjør-
nafjorden bridge concept can be neglected for simplicity, due to their relative sizes
compared to the first order wave forces.

For slender structures, such as mooring lines, the forces acting from current,
which mainly are viscous forces, can be calculated by the drag term from the
Morison’s equation. When assuming negligible velocities of the mooring lines it
can be written as

Fc(z) =
1

2
ρCDDv|v| (3.4)

where CD is the drag coefficient, D is a typical cross-section dimension and v
is the current velocity.

In general, the current velocity is a sum of current components, where the most
common types of currents are wind-generated currents, tidal currents, circulational
currents, loop and eddy currents, soliton currents and longshore currents [15]. The
current velocity depends on the position, water depth and time. The latter because
of flow fluctuations due to turbulence. However, for most applications, the current
can be assumed to only be dependent on the water depth [15].

3.2 Description of Regular Waves

In order to determine the forces acting from waves on the pontoons and mooring
lines, a general description of regular waves will be given.
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3.2.1 Use of the Velocity Potential

According to linear wave theory, often called Airy theory, the velocity potential for
a long-crested regular wave in finite water depth in two dimensions can be written
as [16]

Φ =
gζa
ω

cosh(k(h+ z))

cosh(kh)
cos(ωt− kx) (3.5)

where z is the distance from the sea surface, defined positive in the vertical direc-
tion, h the average water depth, g the gravitational acceleration and ω the circular
wave frequency. The conditions for the velocity potential are given in section 3.2.2.
The velocity potential is useful in order to obtain water particle velocities, accel-
erations and dynamic pressure, which are necessary for the calculations of wave
loads as will be described in section 3.3.

For waves propagating in the x-direction, the surface elevation can be expressed
as

ζ = ζa sin(ωt− kx) (3.6)

where ζa is the wave amplitude, equal to half the wave height H, k is the wave
number, defined as k= 2π/λ. From equation 3.6 it can be seen that the wave is
propagating with a repetitive motion such that a constant wave period T = 2π/ω
and wavelength λ can be obtained.

The relation between the wave number, or the wavelength, and the wave fre-
quency, known as the dispersion relation can be expressed as

ω2 = kg · tanh(kh) (3.7)

The expressions presented for finite water depths can be simplified when assum-
ing deep water. This assumption is in mathematical terms a consideration of when
the corresponding depth dependent term from the velocity potential goes toward
the term from the deep water velocity potential with sufficient accuracy. The same
applies for the dispersion relation.

These approximations can be expressed as

cosh(k(h+ z))

cosh(kh)
→ ekz (3.8)

tanh(kh)→ 1 (3.9)

such that the velocity potential and dispersion relation for infinite water depth
can be written as
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Φ =
gζa
ω
ekzcos(ωt− kx) (3.10)

ω2 = kg (3.11)

As a rule of thumb, it is reasonable to assume deep water when h > λ/2 [16]. By
using the dispersion relation for deep water, this rule of thumb can be re-written
in order to relate the water depth to the wave period.

T < 2 ·

√
πh

g
(3.12)

In the hydrodynamic analyses performed on the pontoons in this thesis, a water
depth of 500 metres has been assumed for all pontoons when analysed in the hy-
drodynamic solver Wadam. According to the Design Basis [17] for Bjørnafjorden,
the minimum depth for any of the pontoon locations in the straight bridge concept
is about 55 meters and is found for the first pontoon in the northern end of the
bridge. By the use of equation 3.12, it is reasonable to assume deep water for this
pontoon at wave periods lower than 8.4 seconds. For the sea states analysed in this
thesis, the assumption of a water depth of 500 meters for all pontoons is therefore
expected to be of negligible significance for the results. Further considerations on
this topic were not done.

3.2.2 Conditions for the Velocity Potential

In short, the velocity potential is obtained based on the assumption that sea water
is incompressible and inviscid, hence satisfying the Laplace equation.

∇2Φ = 0 (3.13)

In addition, the velocity potential has to satisfy a boundary, a kinematic and a
dynamic condition, respectively, as presented in the following [16, 18].

Impermeability condition at the sea bottom, i.e. no fluid velocity into the sea
bottom:

(
∂Φ

∂z

)
z=−h

= 0 (3.14)

where h is the water depth of the flat sea bottom.
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3.3. Wave Induced Forces

At the free surface the fluid particles are assumed to stay at the free surface.
By further assuming the wave heights to be small this can be expressed by the
kinematic condition as

∂ζ

∂t
=

(
∂Φ

∂z

)
z=0

(3.15)

Finally, the dynamic condition is set by demanding the pressure at the free
surface to be equal to the ambient pressure, as well as still assuming the wave
heights to be small.

gζ +

(
∂Φ

∂t

)
z=0

= 0 (3.16)

3.3 Wave Induced Forces

In the following section, the forces due to regular waves by use of linear theory
will be described. In order for linear theory to give a realistic approximation, the
waves’ steepness has to be small, thus, the waves are far from breaking [18].

The consequence of linear theory is that the load amplitude is linearly propor-
tional to the wave amplitude. Furthermore, this means that the response frequency
of the structure is the same as for the wave loads acting on it. This applies to a
steady state condition, i.e. no transient effects due to initial conditions [18]. There-
fore, the response in irregular sea can be found by superimposing regular waves,
and the irregularity is hence obtained due to the combinations of the individual
amplitudes, periods and wave directions.

For a regular wave acting on a structure in a steady state condition, the hydro-
dynamic forces and moments can be divided into two sub-problems [18]:

• Wave excitation loads

• Added mass, damping and restoring forces and moments

3.3.1 Wave Excitation Loads

When the structure of consideration is restrained from oscillating, the forces and
moments induced by incident regular waves are called wave excitation forces. These
can further be divided into two components, namely Froude-Kriloff and diffraction
forces and moments. Physically the former term can be related to the force due
to the undisturbed pressure field and the latter term because the presence of the
structure is changing the pressure field.

The wave excitation load acting on a body can be given by [18]:
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F = F1i + F2j + F3k (3.17)

where

Fi = −
∫∫

S

pnids +Ai1a1 +Ai2a2 +Ai3a3 (3.18)

where ni is the unit vector normal to the body surface, S is the wet surface and
Aij is an added mass coefficient as will be described in the next subsection. The
first term in equation 3.18 is the Froude-Kriloff force and p is therefore as stated
the undisturbed pressure field, which can be calculated by finding the dynamic
pressure from the velocity potential as

p = −ρ∂φ
∂t

(3.19)

Furthermore, the acceleration terms can be found from the velocity potential
as

a1 =
∂2φ

∂x∂t
, a2 =

∂2φ

∂y∂t
, a3 =

∂2φ

∂z∂t
(3.20)

3.3.2 Added Mass, Damping and Restoring Forces and Mo-
ments

Added mass, damping and restoring forces and moments are the hydrodynamic
loads acting on the structure when there are no incident waves, but the structure
is forced to oscillate in any rigid body motion with the wave excitation frequency
[18]. Due to the forced excitations, the structure generates outgoing waves and
thereby oscillating fluid pressure on the body surface. The forces and moments
acting on the structure can then be obtained by integration of the fluid pressure
forces on the surface. When the structure is forced to move in a harmonic motion
mode nj the linear part of the added mass, damping and restoring forces can be
expressed as

Fk = −Akj
d2ηj
dt2
−Bkj

dnj
dt
− Ckjnj (3.21)

Where Akj , Bkj and Ckj are added mass-, damping- and hydrostatic restoring
force coefficients, respectively. The indices k and j refers to the coordinate axis
such that η1, η2 and η3 refers to rigid body modes in the x-, y- and z-directions,
respectively, and η4, η5 and η6 to the corresponding rotational rigid body modes.
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3.3. Wave Induced Forces

The mentioned coefficients are all dependent on the shape of the body. The
added mass and damping coefficients are also dependent on the oscillation frequency
and the speed of the body. The latter due to the occurrence of an encounter
frequency.

The hydrostatic restoring coefficients can be found from geometry and mass
considerations. For a freely floating body the vertical stiffness coefficient can simply
be expressed as

C33 = ρgAwp (3.22)

where Awp is the body’s water plane area.

The restoring coefficients in roll and pitch are given by [18]:

C44 = ρg∇zb −mgzg + ρg

∫∫
AWP

y2ds = ρg∇GMT (3.23)

C55 = ρg∇zb −mgzg + ρg

∫∫
AWP

x2ds = ρg∇GML (3.24)

where zb and zg are the vertical coordinates of the centre of buoyancy and centre
of gravity, respectively. ∇ is the body’s displacement and finally, GMT and GML

are the transverse and vertical metacentric heights, respectively. From the latter
equations, it should be stressed that the respective integrals are recognised as the
roll and pitch area moments of inertia as given by equation 3.25 and 3.26.

ρgI44 = ρg

∫∫
AWP

y2ds (3.25)

ρgI55 = ρg

∫∫
AWP

x2ds (3.26)

For a double symmetric body, such as the pontoons, the remaining restoring
coefficients are zero.

As presented, the stiffness matrix comprises of two effects: a moment arm effect
due to the difference in locations of the centre of buoyancy and centre of gravity and
the change in load due to the change in the submerged volume of the body. This
matrix is in general non-linearly related to the body’s position and orientation. For
small changes, it is commonly assumed to be constant.

In analyses, the exact shape of the outer surface of the body has to be accounted
for if non-linear changes in the area moments of inertia and centre of buoyancy
should be included. Moreover, for a coupled model, the mass properties of the
structure will contribute to the moment arm effect. A non-linear change in the
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location of the centre of gravity can be captured in a coupled model if the mass
properties of the body and the structure are accounted for in their instantaneous
positions.

3.3.3 Morison’s Equation

The horizontal force acting on a strip, dz, of a small volume rigid vertical cylinder
can be expressed by Morison’s equation as [18]

dF = ρ
πD2

4
dz Cma1 +

ρ

2
CDDdz|u|u (3.27)

where D is the diameter, Cm is a mass coefficient, a1 the horizontal acceleration
and u the horizontal velocity.

The first term of the equation represents the wave excitation force. By assuming
no viscous forces it can be shown from potential theory that Cm is 2 for a circular
cylinder, where the Froude-Kriloff force and the diffraction force, as presented in
3.3.1, contribute equally [18].

The second term is the viscous force, as used to estimate the drag force due
to wind in section 3.1.3. Morison’s equation is therefore commonly used in order
to calculate the forces acting on small volume cylindrical members where viscous
forces matter. This is also the case for RIFLEX, where a generalisation of Morison’s
equation is used to calculate the forces acting on the mooring lines [19]. The formula
is then re-written in order to account for the velocities of the mooring lines, as well
as their inclines.

3.4 Static Analysis

In this section methods for obtaining the static response will be presented and
discussed.

3.4.1 Simplified Approach

For the floating bridge spans the self-weight and the girder properties are symmetric
about the girder-column intersections, such that the span ends can be simplified
as fixed. When further neglecting the cross-sectional differences at the support
sections close to the girder-column intersections and averaging the self-weight as
evenly distributed, the floating spans can be approximated as in figure 3.3a.

In this figure, s is the span length of a bridge section in the floating part of the
bridge and q is the assumed evenly distributed force per meter of the section due to
self-weight. This simplified approach will give an approximation of the magnitudes
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3.4. Static Analysis

of the bending moments and shear forces, as well as their respective distributions,
but is a too simple approach to obtain the exact representation when taking the
cross-sectional differences into account.

(a) Fixed beam subject to a uniform load

(b) Moment diagram (c) Shear force diagram

Figure 3.3: Approximation of the bridge girder for a span section in the floating
part of the bridge [20]

3.4.2 Static Linear Analysis

For the linear case, the static response of the structure can be found by solving

Kr = R (3.28)

where R is the global load vector, K the global stiffness matrix and r the
global nodal displacement vector. Equation 3.28 is based on the assumptions that
the material is behaving linearly and elastic and that the displacements are small,
such that the equilibrium equation can be based on the initial configuration [21].

3.4.3 Static Non-Linear Analysis

For the non-linear case, these assumptions are no longer valid due to the geomet-
ric, material or non-linearities due to changes of the boundary conditions. Conse-
quently, the global stiffness matrix is then dependent on the nodal displacements
such that the new relation becomes

KI(r)dr = dR (3.29)
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where KI is the incremental stiffness. Equation 3.29 can be solved by the use of
load incremental methods, iterative methods or a combination of these. RIFLEX
uses a combination of Euler Cauchy method and Newton-Raphson iteration [19].

Euler-Cauchy Method

This is a load incremental method, thus based on a stepwise application of external
loading, starting from the unloaded condition [21]. The new displacement at a step
can then be found by adding the displacement increment obtained by the given
load step by use of the previous incremental stiffness in equation 3.29.

As the previous incremental stiffness is used, this leads to an approximation,
thus the true relation is not obtained as can be seen in figure 3.4. The latter implies
that a smaller deviation can be obtained by reducing the size of the load increments
at regions where the incremental stiffness is non-linear.

Figure 3.4: Euler Cauchy method [21]

Newton-Raphson Method

Newton-Raphson method is an iterative method and applied to the structural non-
linear problem it can be written as [21]:

rn+1 = rn −K−1I (rn)(Rint −R) (3.30)

Where n is the iteration step andRint is the internal load vector. The procedure
for a single degree of freedom system is illustrated in figure 3.5.
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3.4. Static Analysis

Figure 3.5: Newton-Raphson iteration for a single degree of freedom system [21]

From figure 3.5 it can be seen that the incremental stiffness is updated for
each iteration step. The advantage of this method is a high convergence rate,
but the updating of the incremental stiffness can be time-consuming. A modified
version of Newton-Raphson can thereby be obtained by the choice of how often the
incremental stiffness is updated. This method leads in general to a computational
more efficient method where the convergence rate is somewhat slower [19].

In both cases, the iteration is stopped when the demanded accuracy is achieved
and can be expressed by

||rn+1 − rn|| < ε (3.31)

where ε is the demanded maximum absolute difference between the change of
displacement from one iteration to the next [21].

3.4.4 Combined Method

RIFLEX uses a combination of Euler Cauchy method and Newton-Raphson iter-
ation in an incremental-iterative procedure in order to find the static equilibrium
[19]. The number of load steps, the maximum number of iterations and the accu-
racy are all user-specified for each load type in the static calculation procedure. The
relevant load types for the bridge model were volume forces, body forces, initially
pre-stressed segments and specified displacements. Figure 3.6 shows an example of
the mentioned method whereas a modified Newton-Raphson iteration procedure is
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used. According to the RIFLEX Theory Manual [19] a full Newton-Raphson pro-
cedure is generally preferred. The number of iterations is commonly in the range of
5 to 15 iterations, where few load steps normally increase the number of iterations
needed.

Figure 3.6: Euler-Cauchy incrementation with modified Newton-Raphson iteration
[21]

3.5 Eigenvalue Analysis

Finding the natural frequencies and the corresponding mode shapes are of great im-
portance for floating bridges due to the numerous loads acting on the total system.
If an oscillating load acting in a given direction coincides with a natural frequency
and the associated mode shape, the result can be large dynamic amplifications.

3.5.1 The General Eigenvalue Problem

The natural frequencies and the corresponding mode shapes can be obtained by
solving the general eigenvalue problem, which can be derived by evaluations of the
dynamic equilibrium equation given as [22]

Mr̈ + Cṙ + Kr = Q(t) (3.32)
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3.5. Eigenvalue Analysis

where M, C and K are the mass, damping and stiffness matrices, respectively.
Q(t) is the time dependent external load vector and r is the nodal displacement
vector, such that ṙ corresponds to the nodal velocity vector and r̈ to the nodal
acceleration vector.

For free and un-damped vibration the damping term and the external load
vector are zero and equation 3.32 is simplified to

Mr̈ + Kr = 0 (3.33)

When assuming harmonic vibration the nodal displacement and acceleration
vectors can be expressed as

r = φ · sin(ωt) (3.34)

r = −ω2φ · sin(ωt) (3.35)

where φ is the displacement amplitude vector, ω the circular frequency and t
the time. Finally, the eigenvalue problem on general form can be written as

(K− ω2M)φ = 0 (3.36)

For the non-trivial solutions of equation 3.36, ω is called the eigenfrequency, ω2

the eigenvalue and φ the corresponding eigenvector. Furthermore, the mode shape
gives a description of the shape of the vibration of all parts of the system in terms
of relative amplitudes, as given by the eigenvector [22]. The number of each of
the mentioned properties is equal to the total number of degrees of freedom of the
system.

3.5.2 Implementation in Analyses

The eigenvalue problem on general form, equation 3.36, can be re-written in order
to describe the contributions in analyses performed in SIMO-RIFLEX:

((K + k)− ω2(M + A∞))φ = 0 (3.37)

where A∞ is the infinite-frequency added mass matrix, as will be described in
section 3.6.1, and k is the hydrostatic stiffness matrix. It should be noted that
the mass matrix, M, will include the mass properties of the complete system,
including the pontoons and mooring lines. Furthermore, the stiffness properties of
the mooring system are included in the stiffness matrix K.
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The implementation of non-linear catenary mooring systems in solution algo-
rithms are dependent on some sort of linearisation of the stiffness terms, as the
magnitudes of the vibrations are not known [22]. This is also the case for the sys-
tem stiffness matrix. The incremental mooring stiffness in the static condition is
a possible method, however, the calculation procedures used by RIFLEX are not
included in the RIFLEX Theory Manual [19]. Therefore, also further descriptions
of possible solution algorithms will not be given.

The following items should be stressed about the eigenvalue calculation codes
used by SIMO-RIFLEX:

• There is great uncertainty on how catenary mooring systems are implemented
in the calculations

• The calculations do not include frequency dependent added mass

These will be addressed in more detail throughout the report.

3.6 Dynamic Analysis

When the external loads are no longer applied in a very slow manner, dynamic
effects are present and need to be accounted for.

When subject to dynamic loading, there will also be developed inertia forces,
damping forces and external time-dependent forces as given by the dynamic equi-
librium equation [22]:

Mr̈ + Cṙ + Kr = Q(t) (3.38)

Where the terms are the same as described for equation 3.32. For a floating
system the damping matrix, C, can be written as

C = Cs + Ch (3.39)

where Cs and Ch are the structural and hydrodynamic damping matrices,
respectively.

3.6.1 Dynamic Modelling of the Pontoons

In SIMO, which is used for modelling the pontoons in the coupled SIMO-RIFLEX
model, the dynamic equation of motion is solved in the time domain by use of
convolution integrals. By this technique the dynamic equation of motion for the
pontoon can be expressed as [23]:
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(M + A∞)ẍ(t) + D1ẋ(t) +

∫ t

0

h(t− τ)ẋ(τ)dτ + Kx(t) = F(t) (3.40)

where M is the pontoon’s mass matrix, A∞ the added mass infinite frequency
matrix, x, ẋ and ẍ are the displacement, velocity and acceleration vectors of the
pontoon, respectively. K is the stiffness matrix for the pontoon, which consists of
the hydrostatic stiffness matrix and stiffness contributions from the bridge girder.
F(t) is the excitation force vector and D1 is the linear damping matrix. For the
case of the modelling done in this thesis, the excitation force vector only includes
the first order wave force transfer functions. The last term in equation 3.40, i.e.
h(t-τ), is the retardation function matrix, where t is the time and τ the time lag.

The infinite-frequency added mass matrix is used in the eigenvalue calculations
in the coupled SIMO-RIFLEX model and is defined as [23]

A∞ = A(ω =∞) (3.41)

and can therefore physically be understood as the pontoon’s instantaneous re-
sponse to acceleration. The same type of definition yields for the infinite frequency
damping matrix.

C∞ = C(ω =∞) = 0 (3.42)

The matrices presented in equation 3.41 and 3.42 are related to the frequency
dependent added mass and damping matrix as

A(ω) = A∞ + a(ω) (3.43)

C(ω) = C∞ + c(ω) (3.44)

The relation between the retardation functions and the frequency dependent
added mass and damping can then be expressed as [23]

h(τ) =
1

π

∫ ∞
0

(c(ω) cos(ωτ) + ωa(ω) sin(ωτ))dω (3.45)

and is the way frequency dependent added mass and damping are included in
the dynamic analyses of the coupled model in the time domain.

By investigating the convolution integral in equation 3.40, it can be seen that
the retardation functions represent a fluid memory effect. For every time step this
integral will be solved from the start of the simulation until the given time, t.

29



Chapter 3. Theory

This means that the simulation will be increasingly slower as the simulation time
progresses.

In SIMO, the user has to specify a cut factor for the retardation functions,
but the SIMO Theory Manual [23] does not specify how this factor is included in
these functions. However, the cut factor is expected to be a way of truncating
the retardation functions in the mentioned convolution integral. This can be done
with small errors for a large cut factor as the retardation functions are seen to go
towards zero as the time lag, τ , goes to infinity.

For the case of the modelling, the details on this truncating procedure are of
secondary interest. This is because the effect of the choice of the cut off factor can be
evaluated by comparing the re-calculation of the frequency dependent added mass
and damping with the corresponding values used as input in SIMO. This trade-off
between approximation and simulation time is further discussed in section 5.2.1.
The mentioned re-calculations are done in SIMO based on equations 3.46 and 3.47
[23].

a(w) = − 1

ω

∫ ∞
0

h(τ) sin(ωτ)dτ (3.46)

c(w) = −
∫ ∞
0

h(τ) cos(ωτ)dτ (3.47)

3.6.2 Structural Damping

Structural damping is according to Langen [22] mainly damping related to friction
and sliding within the material, called material damping, and damping related to
the connections between different members in the structure. The material damping
is therefore proportional to the deformation of the material.

The Global Rayleigh Damping Model

The global Rayleigh damping model is widely used, and also used by RIFLEX, in
order to model structural damping in fixed structures [19]. The Rayleigh damping
formulation is expressed as a linear combination of the global structural mass and
stiffness matrix, as given in equation 3.48.

C = αM + βK (3.48)

The damping proportionality coefficients α and β are related to the critical
damping ratio, ξ, as
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ξ =
1

2
(
α

ω
+ βω) (3.49)

where ω is the response frequency.

For two damping ratios known at their respective response frequency, equation
3.49 can be used to express the damping coefficients as

α = 2 (ξ1ω2 − ξ2ω1)
ω1ω2

ω2
2 − ω2

1

(3.50)

β =
2 (ω2ξ2 − ω1ξ1)

ω2
2 − ω2

1

(3.51)
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Chapter 4

Bridge Concept

In this section, the straight floating bridge concept used as a basis for the modelling
will be presented, with focus on relevant aspects. The concept chosen was made in
cooperation by COWI, Aas-Jakobsen, Johs Holt AS and Global Maritime, released
19.02.2016 [2]. This work was done on behalf of the NPRA as a part of the Ferry-
Free E39 project. All data used in the modelling in the thesis are presented in this
chapter and are gathered from the mentioned report [2], referred to as the reference
report, and the separate appendix Bilag B [24].

Figure 4.1: Illustration of the straight bridge concept [26]
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4.1 Coordinate System

The definition of the rigid body motion modes of the pontoon and the global
coordinate system are given in figure 4.2, and are the coordinate systems used
throughout this thesis. All pontoons are placed in the west-east direction, such
that pontoon surge motion is positive along the global x-axis and sway motion
along the y-axis. The origin of the pontoon’s local coordinate system is placed at
the centre of its waterplane area. Also the origin of the global coordinate system
is placed at the waterplane, with its horizontal reference at the south end of the
bridge, and positive z-direction upwards. Finally, the incoming wave directions are
defined by the blue arrows as shown in figure 4.2b.

(a) Rigid body motion modes of the
pontoon

(b) Global coordinate system and directions

Figure 4.2: Definition of the rigid body motion modes of the pontoon and the
global coordinate system. The blue arrows define the direction convention used for
incoming waves.

4.2 Main Dimensions

The concept is a 4454 metres long straight floating bridge across Bjørnafjorden and
has 18 pre-tensioned mooring lines supporting the bridge in the lateral direction.
The bridge consists of a cable-stayed bridge and a floating bridge, where the latter
has a total of 18 identical pontoons, with an equal spacing of 203 metres. The
cable-stayed bridge has a side span of 350 metres and a main span of 450 metres,
ensuring a navigational channel of minimum 400 m x 45 m. An overview of the
concept and a definition of its components are presented in figure 4.3.
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Figure 4.3: Side and top view of the bridge concept, including a nomenclature [2]

4.3 Bridge Girder

The bridge girder consists of a steel mono box girder, where a total of four cross-
sections are used. Two are used in the high bridge and are denoted H1 and H2,
where the latter is used at the tower intersection. Similarly, for the low bridge S1
is at the intersections with the columns from the pontoons and F1 in the spans.
H2 and S1 are re-enforced versions of H1 and F1, respectively. The exact way the
cross-sections are distributed is shown in table 4.1.

Table 4.1: Distribution of the cross-sections in the bridge girder [24]

Cross-section Longitudinal location

Abutment south X=0m to X=40m
H1 X=40m to X=340m
H2 X=340m to X=360m
H1 X=360m to X=770m
S1 X=770m to X=800m
S1 (25 m) - F1 (153m) - S1 (25m) X=800m to X=4454m

The cross-section used in the spans in the low bridge, F1, can be seen in figure
4.4. The height of F1 and S1 is 6.5 metres, while the height of the cross-sections in
the high bridge is 3.5 metres. Their remaining relevant cross-sectional properties
are given in table 4.2. The Young’s modulus used for the steel in the bridge girder
was 2.1 · 108 kN/m2.
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Table 4.2: Cross-sectional properties of the bridge girder [2]

Parameter Unit H1 H2 S1 F1

Area m2 1.41 2.55 2.21 1.55
Iy (weak axis) m4 3.35 6.09 18.06 12.77
Iz (strong axis) m4 114.94 212.36 184.60 126.31
It (torsion) m4 11.63 21.24 57.02 39.62
Total steel weight tons/m 12.3 21.2 19.4 14.2
Asphalt, railings, etc. tons/m 5.54 5.54 5.54 5.54
Total permanent weight tons/m 17.8 26.7 24.9 19.7

Figure 4.4: Low bridge cross-section, F1 [2]

4.4 Columns

From each pontoon, there is a single column of diameter 10 metres supporting the
bridge girder. These are made of steel and are placed centrally on the pontoons and
intersect the bridge girder in its neutral axis. The columns’ relevant cross-sectional
properties are given in table 4.3, whereas their lengths vary as given in table 4.4.

Table 4.3: Cross-sectional properties of the columns [2]

Parameter Unit Axis 3-6 Axis 7-20

Area m2 2.1 1.6
I (bending) m4 26.31 20.03
It (torsion) m4 52.62 40.06
Weight tons/m 19.0 14.3
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Table 4.4: Column lengths [2]

Axis 3 Axis 4 Axis 5 Axis 6 Axis 7 Axis 8 Axis 9-20

Length [m] 43.27 38.37 31.97 23.85 15.73 8.59 7.56

4.5 Abutments and the Girder-Tower Connection

Both the northern and the southern abutments consist of concrete caissons which
are filled with sand ballast. The southern abutment is 40 metres long and is a part
of the side span of the high bridge, leaving this span to a free length of 310 metres.
The bridge girder is connected to this abutment through shear stud connections.

The northern abutment is not considered a part of the first span of 203 metres,
is 48 metres long and also wider and deeper than the southern. The forces from
the bridge girder are transferred to this abutment by the use of two vertical and
horizontal bearings with a spacing of 40 metres, allowing the bridge girder to move
in the longitudinal direction. Within the 48 metres caisson, the bridge girder is
filled with 5000 m3 rock ballast.

The bridge girder is connected to the tower in the cable-stayed bridge by the use
of four multi-directional elastomeric pot bearings. Two are supporting the girder
in the vertical direction and two in the lateral direction. The girder is allowed to
move freely in the longitudinal direction in order to avoid large bending moments
in the tower due to changes in temperature.

4.6 Pontoons

Figure 4.5: Pontoon main geometry [2]
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As mentioned in section 4.2, the bridge has 18 pontoons which are equal with
respect to dimensions and material. All pontoons are spaced with a distance of 203
metres. The main geometry is shown in figure 4.5.

Furthermore, the pontoons are built up by compartments, such that flooding of
one or two compartments should not be critical. In normal operation, solid ballast
is planned to be used. As seen in figure 4.5, a flange has been added to the pontoon,
which was done in order to increase the added mass in heave. The main relevant
pontoon parameters are given in table 4.5.

Table 4.5: Main relevant pontoon parameters [2]

Parameter Unit Value

Displacement tons 18 300
Mass tons 11 300
Roll inertia tons·m2 4 900 000
Pitch inertia tons·m2 1 360 000
Yaw inertia tons·m2 5 700 000
Roll water plane stiffness MNm/rad 5700
Pitch water plane stiffness MNm/rad 1000
Heave stiffness MN/m 17.5
COG∗z m -4.2
COB∗z m -5.37
Draft m 10.5
Height m 14.5
Length m 28.0
Width m 68.0
Flange width m 5.0
*Relative to the waterline

4.7 Mooring System

The mooring system consists of a total of 18 mooring lines, whereas three sets of
6 mooring lines are attached to pontoon number 3, 9 and 15, respectively. The
anchors for the mooring lines for the two first pontoons are placed at a depth of
500 metres and for pontoon number 15 they are placed at a depth of 350 metres.
The anchor locations are visualised in figure 4.6 together with the mooring spread.
The exact anchor locations are given in table 4.6. The anchors are assumed to be
fixed, as limited information on the soil conditions is known at this stage.
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Figure 4.6: Overview of the mooring system [2]

Table 4.6: Anchor locations [2]

Mooring line no [-] Pontoon [-] X-coordinate [m] Y-coordinate [m]

1 3 1153.7 -597.7
2 3 1206.0 -600.0
3 3 1258.3 -597.7
4 3 1258.3 597.7
5 3 1206.0 600.0
6 3 1153.7 597.7
7 9 2371.7 -597.7
8 9 2424.0 -600.0
9 9 2476.3 -597.7
10 9 2476.3 597.7
11 9 2424.0 600.0
12 9 2371.7 597.7
13 15 3554.8 -996.2
14 15 3642.0 -1000.0
15 15 3729.2 -996.2
16 15 3729.2 996.2
17 15 3642.0 1000.0
18 15 3554.8 996.2

The fairlead positions for the pontoons are identical for the three pontoons.
They are placed at the waterline, z=0. The locations in the horizontal plane can
be seen in figure 4.7. The fairleads are not placed at the pontoon ends in the
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analyses. The black lines in the figure do not show the outer skin of the pontoon,
only the shape of the pontoon, since the width is 68 metres.

Figure 4.7: Fairlead positions [2]

The mooring lines consist of 20 metres of top chain of grade R5 studless and
100 metres of bottom chain of grade R4 studless. Pontoon 3 and 9 have mooring
lines consisting of 641 metres of wire and pontoon 15 has lines of 920 metres of
wire. This leads to a total mooring line length of 761 metres for the lines connected
to pontoon 3 and 9 and a length of 1040 metres for those connected to pontoon 15.
The mooring line component properties are given in table 4.7.

Table 4.7: Mooring line component properties [2]

Parameter Unit Bottom chain Wire Top chain

Nominal diameter mm 175 175 175
Axial stiffness kN 2.41·106 1.59·106 2.41·106
Minimum breaking load kN 25 200 24 300 27 900
Marine growth mm 40 60 80
Weight in air* kg/m 685 203 783
Normal drag coefficient* - 3.5 3.0 4.6
Axial drag coefficient* - 1.7 0.01 2.2

* Including the contribution from marine growth.

4.8 Cable-Stayed Bridge

The cable-stayed bridge consists of a side span of 350 metres, a main span of 450
metres, a tower with a height of 215 metres and 2x18 cable stays for each span. The
road line’s height above sea level decreases from about 56.5 metres at the southern
abutment to 52.5 metres above the first pontoon. The stay cables consist of high
strength steel strands and are pre-tensioned in order to minimise the weak axis
bending moments in the bridge girder. Their relevant properties and pre-tensions
are given in table 4.8 and 4.9. Furthermore, the tower is made of concrete and
is fixed on an island 5 metres above sea level. Its cross-sectional properties and
geometry will not be modelled in detail.
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Table 4.8: Stay cable properties, side span [24]

No Dist. tower Length Mass Area Axial Stiffness Force
[−] [m] [m] [tons] [mm2] [kN] [kN]

1 350 385.0 26.6 8790 1.71 · 106 4753
2 340 374.8 25.0 8494 1.66 · 106 4557
3 330 364.8 23.4 8187 1.60 · 106 4358
4 320 354.7 21.9 7869 1.53 · 106 4157
5 310 344.6 20.4 7539 1.47 · 106 3953
6 290 325.6 18.9 7389 1.44 · 106 3851
7 270 306.8 17.0 7076 1.38 · 106 3682
8 250 288.1 15.3 6758 1.32 · 106 3523
9 230 269.7 13.6 6433 1.25 · 106 3366
10 210 251.5 12.1 6104 1.19 · 106 3210
11 190 233.7 10.6 5771 1.13 · 106 3051
12 170 216.3 9.2 5436 1.06 · 106 2890
13 150 199.3 8.0 5102 9.95 · 105 2727
14 130 183.1 6.9 4773 9.31 · 105 2568
15 110 167.6 5.9 4453 8.68 · 105 2415
16 90 153.3 5.0 4151 8.09 · 105 2272
17 70 140.4 4.3 3877 7.56 · 105 2139
18 50 129.3 3.7 3643 7.10 · 105 2011

Table 4.9: Stay cable properties, main span [24]

No Dist. tower Length Mass Area Axial Stiffnes Force
[−] [m] [m] [tons] [mm2] [kN] [kN]

1 50 129.8 3.7 3641 7.10 · 105 2011
2 70 141.0 4.3 3871 7.55 · 105 2139
3 90 154.0 5.0 4141 8.07 · 105 2272
4 110 168.5 5.9 4437 8.65 · 105 2415
5 130 184.0 6.9 4749 9.26 · 105 2568
6 150 200.3 8.0 5070 9.89 · 105 2727
7 170 217.3 9.2 5394 1.05 · 106 2890
8 190 234.8 10.5 5718 1.12 · 106 3052
9 210 252.7 12.0 6040 1.18 · 106 3211
10 230 270.9 13.5 6358 1.24 · 106 3367
11 250 289.4 15.2 6671 1.30 · 106 3523
12 270 308.1 16.9 6977 1.36 · 106 3683
13 290 326.9 18.7 7277 1.42 · 106 3851
14 310 346.0 20.6 7569 1.48 · 106 3952
15 330 365.1 22.5 7855 1.53 · 106 4156
16 350 384.3 24.5 8133 1.59 · 106 4358
17 370 403.7 26.6 8405 1.64 · 106 4556
18 390 423.1 28.8 8669 1.69 · 106 4744
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Chapter 5

Modelling

The bridge model was made as a coupled SIMO-RIFLEX model in SIMA. The
goal was to make the model as close as possible to the drawings and parameters as
given in the reference report by Larsen [2] on behalf of the NPRA.

In this chapter the whole procedure of making the model will be described.
This includes how the hydrodynamic analysis was done in order to provide input
for the pontoons modelled as SIMO bodies, the modelling of the bridge structure
and mooring lines in RIFLEX and how these were merged to a SIMO-RIFLEX
model.

5.1 Hydrodynamic Analysis of the Pontoon

The pontoons were implemented in SIMA as SIMO bodies. These were in turn
based on the hydrodynamic results obtained by analysing the pontoon separately
in the module Wadam in HydroD. This analysis perquisites a panel model of the
pontoon and its mass properties. The mentioned steps will be described in detail
in the following sections.

5.1.1 Panel Model

The panel model was made in GeniE by making one-quarter of the outer skin of the
pontoon. Only one-quarter was made as Wadam can utilise the double symmetry
in order to save computational time and disk space resources, both when running
the hydrodynamic analysis in Wadam and also when running analyses in SIMA
[27]. The geometry was made in accordance with the parameters given in table
4.5. The origin of the coordinate system was set at the centre of the waterplane
area, which also was the origin used in the hydrodynamic analysis. The thickness
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of the flange was not specified in the reference report. A thickness of 0.5 metres
was chosen based on comparisons of the converged results obtained in Wadam with
the hydrodynamic results obtained by the NPRA.

After the outer skin of the pontoon had been made in GeniE, wet sides had
to be defined, a dummy hydrodynamic pressure applied and the mesh size chosen.
The mesh size applied in GenieE is also the mesh size used by Wadam. In order to
determine the mesh size to be used in the final model, a convergence analysis was
carried out. This is described in section 6.1. Finally, the pontoon was exported
from GeniE as a SESAM Finite Element File.

Figure 5.1: Panel model with an element size of 0.5 m x 0.5 m made in GeniE

5.1.2 Hydrodynamic Analysis in Wadam

In order to perform the hydrodynamic analysis, Wadam was run from the HydroD
workbench and the option to use a Wadam wizard was chosen. The setup for the
first and second order 3D potential theory for large volume structures was used.

The analysis was executed in the frequency domain, where the corresponding
periods were chosen in a range from 0.2 seconds and up to 1000 seconds. At the
lowest periods the frequency dependent results are changing most rapidly, hence
small intervals were chosen. The intervals were made increasingly coarser with
increasing periods. Both the computational time and memory usage increase with
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the number of periods chosen, such that the number was held well within the
permitted 200. In retrospect, it was clear that for the analyses carried out, periods
up to the first eigen period would have been sufficient.

The wave propagating directions were chosen from 0 to 90 degrees with an
interval of 5 degrees. Due to the double symmetry, the direction set was only
chosen in the first quadrant. The pontoon was analysed at its design draft and
with the origin at the waterline. For all pontoons, the water depth was assumed
to be 500 metres.

The mass model part of the wizard was filled based on the pontoon mass prop-
erties as given in table 4.5. Finally, the Hydrodynamic Results Interface File from
Wadam was exported as a formatted sequential file (SIF) [27]. Also the Wadam
print file (LIS) was saved in order to be used in the convergence analysis of the hy-
drodynamic results and to read added mass coefficients in the eigenvalue analysis,
as described in 6.3.

5.2 Alteration of Hydrodynamic Results in SIMO

The hydrodynamic results were imported to SIMA as a SIMO body, in which was
copied within SIMA to obtain the correct number of initially equal pontoons. The
unaltered SIMO body contained:

• Mass properties

• Linear damping matrix

• Hydrostatic stiffness matrix

• First order motion transfer functions

• First order wave force transfer functions

• Frequency dependent added mass and damping and retardation functions

• Added mass zero and infinite-frequency matrix

To ensure realistic modelling of the pontoons in the global model, some modi-
fications of the data imported from Wadam had to be done due to the calculation
methods within SIMO, as well as the fact that only the pontoon itself was analysed
in Wadam.

5.2.1 Retardation Functions

The retardation functions were calculated in SIMO based on the frequency depen-
dent added mass and damping obtained in Wadam. A cut factor and the time
step were given as user input in SIMO. The retardation functions were used in the
time domain analyses in the coupled model, consequently, the frequency dependent
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added mass and damping were not used directly. The time step specified for the
retardation functions had to be smaller than the time step chosen for the time
domain analysis [23].

The cut factor was chosen in an iteration procedure where the trade-off between
approximation and time was considered. The approximation was evaluated by
comparing the diagonal terms of the recalculation of added mass and damping
from the retardation functions with the values obtained in Wadam.

5.2.2 Buoyancy Force

Initially, as the pontoons are imported to SIMA, but not yet connected to the
bridge, SIMO assumes the bodies to be placed at their stiffness references, respec-
tively [23]. When specifying include gravity the pontoon will carry its weight by
the restoring forces, hence no buoyancy force is automatically applied. Therefore,
the displacement of the pontoon at its design draft was applied manually by means
of a specified force acting at the pontoon’s vertical centre of buoyancy, -5.37 m, as
calculated in Wadam.

Figure 5.2: Pontoon attached to the global model

Finally, as the pontoons were connected to the global model, see figure 5.2, they
were ballasted such that the weight of the bridge girder, the columns, the mooring
lines and the self-weight of the pontoons, including the ballast, were carried by
these buoyancy forces at the pontoons’ design draft.
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5.2.3 Ballasting

The amounts of ballast which were required to obtain the design draft for all
pontoons are seen in table 5.1. A margin of 2 mm was used, such that the freeboard
of all pontoons was within 4 m ± 0.002 m. The amounts of ballast needed proved
to be in accordance with the amounts specified by the separate appendix, Bilag B
[24], of the reference report. Therefore, the vertical centre of gravity of the added
ballast for each pontoon was chosen as specified by the same document.

Table 5.1: Ballast required and its effect on the vertical centre of gravity

Pontoon no Mass VCG*ballast VCG*pontoon
[−] [tons] % of pontoon mass [m] [m]

1 3639 32.2 -10.1 -5.62
2 2412 21.3 -10.2 -5.24
3 (mooring) 1012 9.0 -10.4 -4.69
4 2845 25.2 -10.2 -5.39
5 2982 26.4 -10.1 -5.43
6 3079 27.2 -10.1 -5.46
7-8, 10-14, 16-18 3096 27.4 -10.1 -5.46
9 (mooring) 1286 11.4 -10.4 -4.81
15 (mooring) 1655 14.6 -10.3 -4.96

*Relative to the waterline

Table 5.2: Mass moment of inertia of the pontoons, including ballast, relative to
the waterline

Pontoon no Roll inertia Pitch inertia Yaw inertia
[−] [106 tons·m2] [106 tons·m2] [106 tons·m2]

1 6.46 1.94 7.11
2 5.94 1.75 6.64
3 (mooring) 5.34 1.53 6.09
4 6.13 1.82 6.80
5 6.19 1.84 6.86
6 6.23 1.86 6.90
7-8, 10-14, 16-18 6.23 1.86 6.90
9 (mooring) 5.46 1.57 6.20
15 (mooring) 5.62 1.63 6.34

From table 5.1 it can be seen that the pontoons have a significant amount
of excess buoyancy. This is because the pontoons were originally designed for the
curved bridge alternative [12]. The mass moment inertia terms of the ballast about
the ballast vertical centre of gravity as specified in Bilag B [24] were added to the
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mass moment inertia terms for the un-ballasted pontoons as specified in table 4.5
by the use of Steiner’s Theorem. The resulting mass moment inertia terms of the
pontoons, including ballast, about the waterline are given in table 5.2.

Finally, all changes of the mass properties of the pontoons due to ballast were
implemented in the SIMO-RIFLEX model by modifying the structural mass in the
SIMO bodies according to the tables presented.

5.2.4 Hydrostatic Stiffness Matrix

As only the pontoon itself, or specifically only the mass properties of the pontoon
itself, were included in the analysis in Wadam, the hydrostatic stiffness matrix
obtained had to be modified. The moment arm terms due to the difference in
locations of the centre of buoyancy and gravity are calculated automatically by
RIFLEX, including the contributions from the RIFLEX elements. Consequently,
only the roll and pitch area inertia terms should be specified in the SIMO bodies.
These are given by table 4.5. Alternatively, these can be calculated by excluding
the displacement and mass dependent terms from the equations for the roll and
pitch hydrostatic stiffness:

CSIMA
44 = CWadam

44 − ρg∇zb +mgzg = ρgI44 (5.1)

CSIMA
55 = CWadam

55 − ρg∇zb +mgzg = ρgI55 (5.2)

where zg is COGz and zb is COBz of the pontoon when analysed separately
in Wadam. The heave stiffness, C33, is unaltered, as it is only dependent on the
water plane area of the pontoons.

5.2.5 Body Specification

As a consequence of the modifications of the stiffness matrix, the first order motion
transfer functions obtained in Wadam are not correct, as these are dependent on
the mentioned coefficients. Additionally, when the 6 DOF - time domain body
type is chosen in SIMO, the first order motion transfer functions are not used
[23]. Another important characteristic of this body type is that it uses the infinite-
frequency added mass matrix in the eigenvalue analysis. SIMO does not support
using frequency dependent added mass in the eigenvalue analysis.

When the eigenvalue analyses were carried out this problem was partly bypassed
by running several eigenvalue analyses. For each analysis a MATLAB-script was
used to read added mass coefficients from the Wadam print file (LIS), for a selected
frequency, to replace the original infinite frequency added mass matrix. However,
this led to a time-consuming procedure and was only included for a few frequencies
for illustration purposes.
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5.2.6 Final SIMO Properties

Eventually, the pontoon properties defined in SIMO, which were used in the coupled
SIMO-RIFLEX model, were reduced to:

• Modified mass properties

• Modified hydrostatic stiffness matrix

• Linear damping matrix

• First order wave force transfer functions

• Retardation functions

• Infinite-frequency added mass matrix

It should be recalled that the hydrodynamic results were obtained in Wadam
by analysing the pontoon with the origin of the coordinate system at the waterline,
such that the results in SIMO were given for the same coordinate system. The
SIMO bodies were therefore connected to the respective columns of the bridge
structure made in RIFLEX at the waterline.

5.3 RIFLEX: Bridge Structure and Mooring Lines

Modelling the RIFLEX part of the model, which only excludes the pontoons, was
done by defining supernodes, which are the basis for the creation of lines. All lines
were set as straight, whereas the original design has some slightly curved girders in
the vertical plane in the transition from the high bridge to the lower floating part
of the bridge.

Figure 5.3: The complete model in SIMA
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There was placed one supernode in every intersection, both bridge ends, land
connection of the tower and at each pontoon top and at z=0 in the pontoons. It
was also used supernodes to define the anchors and the fairleads for the mooring
system, as well as an extensive amount of supernodes to model the cable-stayed
bridge, as will be described in section 5.3.5. All supernodes in the bridge girder,
except its ends, were set as free. The tower foundation was set as fixed. The
complete model can be seen in figure 5.3

5.3.1 Abutments

A simplification of the modelling of the abutments described in section 4.5 was
performed. In the south end of the bridge, the first five supernodes in the bridge
girder were set to fixed in all translations and rotations. These were placed at the
longitudinal intersections with the first four stay cables, i.e. each 10 metre, and
were therefore a part of the abutment of 40 metres length as specified.

At the northern bridge end, the abutment was modelled by fixing all degrees of
freedom, except translation in the longitudinal direction, for the supernode defined
as the end of the last floating bridge span.

5.3.2 Girder-Tower Connection

The bridge girder was connected to the tower in the vertical and lateral direction,
as well as for longitudinal rotation about the bridge girder. This was done in a
similar procedure as described and visualised in Bilag B [24] in the reference report,
i.e. by use of approximate methods. RIFLEX does not have a specific connection
joint or supernode for this purpose.

Two 10 metres long bars and a 1 metre long beam were added, providing a
lateral and vertical stiffness of 1.0·109 kN/m and rotational stiffness. The beam was
defined along the bridge girder, with each end 0.5 metres away from the intersection.
The ends of the beam were slaved to the tower at the connection point and the
midpoint was connected to the bridge girder. The torsional stiffness was set to 1.0
· 1012 kNm2 in order to fix the longitudinal rotation of the bridge girder at the
intersection.

For each bar, one end was connected to the bridge girder at the girder-tower
intersection location. The other end was set 10 metres laterally for one bar and
10 metres vertically for the other, relative to this location. These ends were set as
slaved, whereas the supernode in the tower at the intersection point was modelled
as a master degree of freedom. The axial stiffness for both bars was set to 1.0 ·1010

kN/m
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5.3.3 Assigning Cross-Sectional Properties

After the main geometry had been established, the lines, i.e. the respective girders,
cable stays, columns and mooring lines were assigned cross-sectional properties,
according to table 4.2 for the bridge girder, table 4.8 and 4.9 for the cables stays
and table 4.7 for the mooring system. To do this, first the line types had to be
defined. These are essentially defining the unstressed length of the corresponding
lines, the number of segments, elements and have a cross-section attached. Thereby,
a unique line type had to be defined for each line which had a unique length or
cross-sectional property. This was the case for each pair of stay cables.

5.3.4 Mooring System

The eigen periods obtained from the eigenvalue analysis of the complete coupled
model, which includes the catenary mooring system, proved to give large deviations
compared to those obtained by the NPRA. As a part of the troubleshooting process
a model with a linearised mooring system was made and included in the eigenvalue
analyses. This model was identical to the original model except for its mooring
system.

Catenary Mooring System

For the original model, the mooring lines were modelled in RIFLEX, where the
pre-tensions were implemented by specifying the stress-free lengths of the mooring
lines relative to the respective distances between the anchors and the fairleads. In
order to account for the stiffness contributions from the mass of the mooring lines,
an iteration procedure was needed to obtain the correct pre-tensions.

The fairlead positions were set by defining supernodes in their global coordinates
by the use of master-slave supernode connections, whereas the fairlead supernodes
were set as slaves and the respective pontoon supernodes as master. This ensured
the fairleads to be rigidly connected to the respective pontoons.

Linearised Mooring System

When the model with the linearised mooring system was used in the eigenvalue
analyses, the catenary mooring lines from the original model were de-selected in
SIMA and replaced by a linear implementation. This was done by modifying the hy-
drostatic stiffness matrices for the pontoons originally holding the catenary mooring
lines. The stiffness terms presented in table 5.3 were added to the original stiffness
matrix given for pontoon 3 and 9, and matrix 5.4 to pontoon 15. The mentioned
stiffness terms were gathered from the mooring characteristics as given in Bilag B
[24] in the reference report.
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Table 5.3: Linearised mooring stiffness terms for pontoon 3 and 9 [24]

Surge Sway Heave Roll Pitch Yaw

Surge 0 0 0 0 0 0
Sway 0 1013 kN/m 0 0 0 0
Heave 0 0 827 kN/m 0 0 0
Roll 0 25800 kN 0 696300 kNm 0 0
Pitch 0 0 0 0 0 0
Yaw 0 0 0 0 0 0

Table 5.4: Linearised mooring stiffness terms for pontoon 15 [24]

Surge Sway Heave Roll Pitch Yaw

Surge 0 0 0 0 0 0
Sway 0 826 kN/m 0 0 0 0
Heave 0 0 133 kN/m 0 0 0
Roll 0 8690 kN 0 116800 kNm 0 0
Pitch 0 0 0 0 0 0
Yaw 0 0 0 0 0 0

5.3.5 Cable-Stayed Bridge

Stay Cable Arrangements

The cable-stayed bridge was also modelled by use of master-slave supernode con-
nections. For each pair of stay cable intersections at the bridge girder, three su-
pernodes were defined. Slaved supernodes were modelled in the actual stay cable
intersections, i.e. 13.8 meters east and west of the bridge girder neutral axis, re-
spectively. For each pair of intersections, a master supernode was modelled in the
bridge girder at the same longitudinal coordinate, ensuring the stay cable intersec-
tions to be rigidly connected to the bridge girder. The mentioned supernodes can
be seen in figure 5.4.

In the tower it was done in a similar manner, except the top of the tower was
set as the master node, hence simplifying the stay cables to be rigidly connected
to the tower top. The arrangement can be seen in figure 5.5. The simplifications
of the tower are further described in the following subsection.

The pre-tensions in the cables were set according to table 4.8 and 4.9. This
was done in an iteration procedure where the stress-free lengths of the cables were
changed. Iterations were needed mainly due to the change in deflection of the
bridge girder. Some adjustments were needed in order to account for the mass of
the cables.
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Figure 5.4: Side view of the cable stayed bridge showing the supernodes in the
bridge girder

Figure 5.5: The arrangement of the stay cables in the tower

Tower

The placements of the stay cables in the tower and bridge girder, as well as the
cable properties and tensions, were modelled based on the geometry and values
specified for the bridge concept as given in Bilag B [24]. However, the tower was
simplified due to its complex geometry. In the original concept, the tower has an
A-shape, with varying cross-sectional properties along its height.

In the modelling performed in this thesis, the tower was simplified as a single
beam with cross-sectional properties as given in table 5.5. These values were derived
based on rough estimations from the detailed tower cross-sections presented in Bilag
B [24]. The consequences of these simplifications are not assessed in detail in this
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report, as the response in the floating part of the bridge was considered to be of
highest importance.

Table 5.5: Assumed cross-sectional properties of the tower

Parameter Unit Value

Axial stiffness kN 1.0 · 109

Bending stiffness kNm2 5.0 · 1010

Torsion stiffness kNm2 5.0 · 1010

Weight tons/m 89.9

5.3.6 Structural Damping

According to the Design Basis [25] used by the design team for the concept, the
values for the structural damping ratio for the steel parts of the bridge, i.e. the
complete RIFLEX part of the model, should be between 0.5% and 0.8%.

The structural damping was as mentioned in 3.6.2 implemented in RIFLEX
in terms of the Rayleigh-damping model. Consequently, a constant value for the
structural damping ratio was not feasible. Therefore, the values of the proportional
damping coefficients, α and β, in the Rayleigh formulation were chosen such that
the damping ratio for a largest possible part of the expected response frequencies
was held within the specified values of 0.5% and 0.8%.
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Figure 5.6: Rayleigh damping as included in the coupled SIMO-RIFLEX model
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The damping coefficients were calculated by equation 3.50 and 3.51 at the ends
of an increasingly larger frequency interval. This iteration procedure was stopped
when the lower bound proposed for the damping ratio of 0.5% was the minimum
value within this frequency interval.

This resulted in damping coefficients to be used in the time domain analyses of
α = 0.0056 and β = 0.0045, where α is the global mass proportional damping factor.
As seen in figure 5.6, this ensured the structural damping ratio to be between 0.5%
and 0.8% for response frequencies between 0.39 rad/s and 3.14 rad/s, oppositely
corresponding to periods of 2 s and 16 s. By this procedure, the structural damping
ratio at the period used in the regular wave analyses, T=6s, is 0.51%. For periods
outside this range, the system will be over-damped.
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Chapter 6

Results

In this chapter, first the hydrodynamic results of the pontoons will be presented,
followed by a static, eigenvalue and dynamic analysis of the complete bridge model.
Emphasis will be put on the response of the pontoons and the bridge girder. For all
results plotted along the bridge girder, the vertical grid lines are placed such that
each line goes through an initial pontoon location, except for the first line which
goes through the tower in the cable-stayed bridge.

Results will be presented, described and discussed consecutively in order to ease
referrals to figures and tables.

6.1 Hydrodynamic Results for the Pontoons

The properties of the pontoons play an important role when designing a floating
bridge, not at least for a bridge of this record-breaking size when considering the
environmental conditions in this specific fjord.

In order to ensure realistic results of the hydrodynamic analysis performed for
the pontoon in Wadam, a convergence analysis was carried out, as presented in
the next section. More results from the hydrodynamic analysis with the final mesh
size are found in appendix A. This includes the diagonal terms of the frequency
dependent added mass and damping and first order wave force transfer functions
in all six rigid body modes for a wave direction of 225 degrees.

6.1.1 Convergence of Hydrodynamic Results

The convergence analysis was carried out by considering some of the characteristic
frequency dependent coefficients since the non-frequency dependent results have
been altered in SIMO. The coefficients chosen were the added mass and damping in
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surge, sway and heave, respectively, and the first order wave force transfer function
in sway for the direction 90 degrees relative to the pontoon local x-axis, i.e. normal
to the bridge.

The convergence analysis was performed by running four separate hydrody-
namic analyses on panel models in Wadam with element sizes of 0.5 m x 0.5 m, 1
m x 1 m, 2 m x 2 m and 4 m x 4 m. Comparisons of the results for the chosen
mesh sizes are shown in the following figures.
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Figure 6.1: The added mass in surge and sway for four choices of mesh size
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(a) Damping in surge, B11
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(b) Damping in sway, B22
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(c) Damping in heave, B33
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(d) First order wave force transfer function in
sway for waves normal to the bridge

Figure 6.3: The radiation damping in surge, sway and heave and a first order
transfer function in sway for four choices of mesh size

From figure 6.1, 6.2 and 6.3 it is seen that the results for all mesh sizes coincide
well for periods above 7 seconds. The largest difference between the results for
the coarsest and finest mesh size above this period is 5 %, and was found for the
damping in heave.

For lower periods the results are seen to be far more sensitive on the mesh
size, as the results for the coarser mesh sizes are fluctuating considerably due to
irregular frequencies [27]. Also the results for the 1 m x 1 m mesh are fluctuating.
The results for the finest mesh are fluctuating negligibly and are considered to be
converged, except for at the period 4.2 s for added mass in sway. This leads to
an underestimation of added mass of 22 % at this particular period. However, as
frequency dependent added mass and damping are implemented in the time do-
main analyses by use of retardation functions, the deviations due to a few irregular
frequencies are small. For the added mass in sway, the approximation errors intro-
duced in general by the retardation function for the given choice of cut factor of
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200 are larger than the error at the peak for the irregular period 4.2 second. This
is shown in figure 6.4.

Figure 6.4: Added mass in sway as obtained in Wadam for the mesh size 0.5 m x 0.5
m and by the re-calculation in SIMO from the corresponding retardation function

In retrospect, it was discovered that Wadam has an option to remove these
irregular frequencies which cause the mentioned local extreme values, and possibly
the 1 m x 1 m mesh size would have been sufficient to ensure convergence. New
analyses were not run due to the previous arguments and the fact that a small
mesh size used by Wadam do not increase the simulation time in SIMO-RIFLEX.

The hydrodynamic results for the mesh size 0.5 metres x 0.5 metres were there-
fore used in the SIMO bodies in the coupled SIMO-RIFLEX model. The run times
of the hydrodynamic analyses in Wadam are presented in table 6.1.

Table 6.1: Run time of hydrodynamic analyses performed in Wadam

Mesh size Run time [s]

4 m x 4 m 71
2 m x 2 m 280
1 m x 1 m 630
0.5 m x 0.5 m 10600
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6.2 Static Analysis

In the following section, the static results obtained for the bridge structure will be
presented and discussed consecutively. Emphasis will be put on the results for the
bridge girder due to its permanent loads, which as mentioned comprise of its steel
weight and weight due to asphalt, railings, equipment, etc. The displacement of
the bridge girder due to 70 % of the characteristic traffic load will be compared to
criteria specified for the concept by its design team. Finally, the mooring system
characteristics due to west-east displacement will be presented in order to justify
the linearisation procedures used for the second model in the eigenvalue analysis.

6.2.1 Vertical Displacement

Figure 6.5 shows the displacement of the bridge girder relative to its initial position,
whereas the initial position is the position of the structure as if it was infinite stiff.
Therefore, it can be seen that the pontoons are ballasted such that the actual
pontoon drafts differ from their design draft of 10.5 meters with a maximum of 2
mm.
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Figure 6.5: The vertical displacement of the bridge girder due to self weight

The maximum displacements of the bridge girder in the part of the bridge with
a constant initial girder height, i.e. from x = 1815 m, are as expected seen to
be equal, and with a magnitude of 27 cm. The overall maximum displacement is
found in the first floating bridge span with a magnitude of 45 cm. This can be
explained by the uplifting of the bridge girder at the end of the main span of the
cable-stayed bridge, leading to less rotational stiffness at the first girder-column
intersection about the girder weak axis, as well as a slight initial angle.
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6.2.2 Bending Moments

The weak axis bending moments in the low part of the bridge, as seen in figure
6.6, are somewhat different than what one could expect by simplifying each girder
span as a fixed beam with evenly distributed mass. The magnitude of the moments
at the midspans is found to be 3.0 ·105 kNm, whereas the absolute value of the
moments at the girder-column intersections is 7.1 ·105 kNm. This corresponds to
2.4 times the magnitude of the midspan moments, which is considered reasonable
as the stiffest and heaviest cross-section of the bridge girder is located at these
intersections.
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Figure 6.6: Weak axis bending moments in the bridge girder

The maximum moment is found at the end of the first floating bridge span, at
the girder-column intersection above pontoon 2, with an absolute value of 7.9 ·105

kNm. The reason why the largest moment is found here is as explained for the
displacement pattern, due to the reduced rotational stiffness about the opposite
girder-column intersection, as a consequence of the uplifting of the bridge girder.

The weak axis bending moments in the high bridge are seen to not be perfectly
minimised, which is because the pre-tensions in the stay cables were not fully opti-
mised accordingly. However, it should be noted that due to the previous arguments
the main span is seen to affect the bending moments in the first few floating bridge
spans, in which perfect main span moment minimisation would further increase the
absolute value of the current maximum bending moment.

The bending moments about the bridge girder strong axis are negligible when
the bridge is only subjected to self-weight. The same applies for the horizontal
shear forces and the torsional moments in the bridge girder.
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6.2.3 Shear Forces

The vertical shear forces in the bridge girder are seen to correspond to the distri-
bution of the weak axis bending moments presented. The largest absolute value of
the shear force in the low bridge is 2.0 · 104 kN and is found at the girder-column
intersections. At the midspans, the shear forces are zero.
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Figure 6.7: Vertical shear forces in the bridge girder

The largest absolute value of the shear force is as expected found at the same
girder-column intersection as the largest bending moment, with an absolute value
of 2.2 ·104 kN. When comparing the two graphs it should be noted that the y-axis
for the bending moments is reversed.

6.2.4 Axial Forces

The axial force in the floating part of the bridge is negligible, as seen in figure 6.8,
which means that the self-weight is carried by bending action. This was expected
by investigating the shape of the bending moment graphs, as well as considering
the relatively small vertical girder deflections.

In the cable-stayed bridge compression forces in the bridge girder are arising
due to the horizontal components of the stay cables. Furthermore, it is seen that
the tower is not absorbing any of the axial loads from the girder, as intended with
the girder tower connection described in section 5.3.2.
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Figure 6.8: Axial forces in the bridge girder

6.2.5 Deflection due to Traffic

A motion criterion specified by the design team for the straight bridge concept is
that the maximum displacement of the pontoons due to 70 % of the characteristic
traffic load should be less than approximately 1 m. The distributed traffic load
for the concept, found based on the Eurocodes presented in section 3.1.2, is 58.7
kN/m [2].
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Figure 6.9: Vertical deflection of the bridge girder due to 70 % of the characteristic
distributed traffic load

In figure 6.9 the maximum additional pontoon deflection is seen to be 0.51
metres, and is found for pontoon 17 at x = 4048 m. By simplifying the loads to
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be evenly carried by the pontoons in the floating bridge, the expected pontoon
deflections are found to be similar from hand calculations.

Displacement =
Load

C33
=

70% · 58.7kN/m · 203m

17 477kN/m
= 0.48m (6.1)

From the figure and hand calculations, it is clear that this criterion was not
governing the design of the pontoon. According to Larsen [12], the pontoon was
optimised with respect to the heave response for the curved bridge alternative.

6.2.6 Mooring Line Characteristics

As will be seen in the eigenvalue analysis, the complete coupled model, which
includes the catenary mooring system as modelled in RIFLEX, proved to give
large deviations in the eigenvalues compared to those obtained by the NPRA for
the modes above number six.

Consequently, some of the mooring line characteristics are analysed in this
section in order to verify that the mooring system has been implemented as specified
in the original bridge concept.

Mooring Line Tensions
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Figure 6.10: Individual mooring line tension due to east-west pontoon displacement

65



Chapter 6. Results

Figure 6.10 shows the individual mooring line tensions at the fairleads due to east-
west pontoon displacement. It is seen that the pre-tensions at the design offset are
3800 kN and 4200 kN, respectively, as specified by the NPRA [2].

Resulting System Stiffness

By including the mooring line angles at the fairleads, the horizontal and vertical
mooring forces can be calculated. Figure 6.11 shows the resulting mooring sys-
tem force for the respective pontoons in the east-west direction due to east-west
pontoon displacement. It is seen that the mooring system characteristics are non-
linear. This is quantified by table 6.2, which shows the resulting mooring stiffness
calculated at intervals of 0.5 metres and 1 metre for pontoon 3 and 9. The stiffness
for the first metre, 1066 kN/m, is differing by 5 % compared to the value obtained
by the NPRA, 1013 kN/m.

The stiffness term for the first metre of offset for pontoon 15 is seen to be
872 kN/m, compared to the value of 827 kN/m obtained by the NPRA [24]. The
stiffness terms obtained by the NPRA were as mentioned used in the linearisation
of the mooring system. The small differences obtained by RIFLEX might be due
to the number of elements chosen in the analysis, which the mooring lines’ vertical
angle at the fairleads, as well as the tension forces, are dependent on.
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Figure 6.11: Resulting mooring force in the east-west direction due to east-west
pontoon displacement
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Table 6.2: Resulting mooring stiffness for pontoon 3 and 9 in the east-west direction
due to east-west displacement

Step Stiffness [kN/m]

0-0.5 m 1061
0.5-1 m 1071
0-1 m 1066
1-2 m 1131
2-3 m 1264
3-4 m 1436
4-5 m 1727
5-6 m 2084
6-7 m 2466
7-8 m 2865
8-9 m 3154
9-10 m 3395

The resulting mooring moments about the bridge girder longitudinal axis due
to east-west pontoon displacement, see figure 6.12, were found by summing the
vertical mooring force components multiplied by the respective lateral distances
from the pontoon centre to the fairleads. The mooring moment stiffness for the
first metre of offset for pontoon 3 and 9 and pontoon 15 are found to be 27541
kNm/m and 9074 kNm/m, respectively.
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Figure 6.12: Resulting mooring moments about the girder longitudinal axis due to
east-west pontoon displacement
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Also the mooring moments are seen to be non-linearly related to the offset. In
general, the non-linear characteristics of the mooring system can be explained by
the catenary shapes of the mooring lines, caused by the large self-weight.
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6.3 Eigenvalue Analysis

In this section, the results from the eigenvalue analyses performed for the model
with the catenary mooring system and the model with the linearised mooring sys-
tem will be presented and discussed. It should be stressed that these models are
identical, except for their mooring systems.

As shown in table 6.4, the original model, which includes the catenary mooring
system as modelled in RIFLEX, proved to give large deviations in the eigen periods
compared to those obtained by the NPRA for mode 7 and higher. As part of a
troubleshooting process, a linearised mooring system was implemented in a second
model, as described in section 5.3.4, which gave eigen periods considerably closer
to those obtained by the NPRA.

The reason why the two models gave significantly different results was not
identified. A possible reason is that RIFLEX is not able to fully account for the
catenary mooring lines in the calculation procedures in the eigenvalue analysis.
However, the eigenvalue analysis chapter in the RIFLEX Theory Manual [19] is
not written, such that further details were not found.

Additionally, since SIMO-RIFLEX does not consider frequency dependent added
mass in the eigenvalue calculations, the eigen periods for the models, as given in
the columns Cat. mooring and Lin. mooring in table 6.4, were obtained by the use
of the infinite-frequency added mass matrix as calculated by SIMO. This matrix is
given in table 6.3, where te is tons.

Table 6.3: The infinite-frequency added mass matrix as calculated by SIMO

Surge [te] Sway [te] Heave [te] Roll [te·m] Pitch [te·m] Yaw [te·m]

Surge 12049 0 0 0 -1.08·105 0
Sway 0 3252 0 40979 0 0
Heave 0 0 40706 0 0 0
Roll [m] 0 40992 0 1.17·107 0 0
Pitch [m] −1.08 · 105 0 0 0 3.22 · 106 0
Yaw [m] 0 0 0 0 0 1.86·106

The added mass iterated eigen periods were calculated in SIMO-RIFLEX by the
use of the model with the linearised mooring system, where the added mass infinite
frequency matrix was manually changed for each eigenvalue analysis specifying a
new TA. This procedure is a time-consuming process, such that it was only included
for a few periods for illustration purposes. For each TA the added mass coefficients
were read from the Wadam result file by a MATLAB script. These coefficients are
as mentioned also plotted in appendix A.

The eigen periods presented in the NPRA column are those obtained in the
reference report and include the contribution from frequency dependent added
mass [28].
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6.3.1 Eigen Periods and Dominating Mode Motions

Table 6.4: The first 35 eigen periods compared with the values obtained by the
NPRA

NPRA[a] Cat. mooring[b] Lin. mooring[b] Added mass iterated[c]

Mode T [s] T [s] Diff [%] T [s] Diff [%] T [s] Diff [%] TA[s]

1 78.25 74.66 −4.7 74.83 −4.5 77.52 −0.9 78.25
2 71.21 68.23 −4.3 68.48 −3.9 70.92 −0.4 78.25
3 40.78 39.85 −2.3 38.94 −4.6 40.32 −1.1 78.25
4 32.48 31.51 −3.0 30.91 −5.0 31.95 −1.6 78.25
5 23.44 22.72 −3.1 22.49 −4.1
6 17.69 16.95 −4.3 16.90 −4.6
7 14.09 16.24 14.2 13.16 −6.8 14.22 0.9 14.09
8 14.09 16.23 14.1 12.33 −13.3 13.82 −2.0 14.09
9 13.06 16.23 21.6 12.15 −7.3
10 11.45 16.22 34.5 11.59 1.2
11 11.32 16.22 35.6 11.57 2.2
12 10.92 16.22 39.1 11.54 5.5 11.09 1.5 10.88
13 10.89 13.33 20.1 11.54 5.8 11.06 1.5 10.88
14 10.88 13.10 18.5 11.49 5.4 11.03 1.4 10.88
15 10.87 13.08 18.5 11.45 5.2 11.01 1.3 10.88
16 10.87 13.08 18.4 11.29 3.8 10.99 1.1 10.88
17 10.84 13.08 18.7 11.11 2.4 10.97 1.2 10.88
18 10.76 13.07 19.4 11.04 2.6 10.85 0.8 10.88
19 10.66 13.07 20.3 11.01 3.3 10.83 1.6 10.88
20 10.50 13.07 21.8 10.84 3.2 10.72 2.1 10.88
21 10.32 13.06 23.5 10.55 2.2
22 10.02 13.06 26.4 10.26 2.4
23 9.79 13.06 28.6 10.23 4.4
24 9.73 13.06 29.2 9.84 1.2
25 9.51 13.06 31.5 9.51 0.0
26 9.08 12.66 32.9 9.50 4.5
27 8.85 12.13 31.2 9.10 2.8
28 8.61 11.73 30.7 8.70 1.0
29 8.33 11.68 33.5 8.64 3.7
30 8.21 11.63 34.4 8.30 1.1
31 7.84 11.58 38.6 8.16 4.0
32 7.62 11.54 40.9 8.02 5.2
33 7.45 11.48 42.6 7.65 2.7
34 7.08 11.35 46.3 7.52 6.1
35 6.49 11.25 53.7 7.08 8.7

[a]Frequency dependent added mass considered
[b]Only the infinite-frequency added mass matrix considered
[c]Added mass considered at periods specified by TA for the model with the linearised
mooring system. See appendix A for the diagonal added mass coefficients.
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As seen in table 6.4, the eigen periods for the linearised mooring system where
the added mass coefficients were updated, yield small deviations from the values
obtained by the NPRA. The significance of added mass is especially obvious for
mode 8. As expected from the former observations and as seen in table 6.5, also
the dominant motions and mode shapes are dependent on the added mass. The
small deviations obtained when updating added mass give implications that the
stiffness and mass properties of the bridge structure and pontoons, as well as the
boundary conditions, were modelled correctly.

In the dominant motions calculations, only the translational motions of the
bridge girder were considered for the motions obtained for the catenary mooring
system and linearised mooring system columns. Rotations were not included due to
uncertainty regarding the choice or choices of a or several characteristic lengths to
multiply with the rotational motions, given in radians per second, when comparing
to the translational motions in metres. The determination of the rotational motions
for the added mass iterated column was done by visual inspection of the mode
shapes in SIMA, and are seen to coincide well with the dominant motions obtained
by the NPRA, which also considered rotational motions.

As shown in the table containing the first 75 eigen periods in appendix B.1, the
differences between the eigen periods calculated for the model with the linearised
mooring system and the NPRA increase from 10 % at mode 56 and up to 46.4
% at mode 75. Only differences of a few percentages can be explained by the
implementation of added mass, as tested by setting the added mass to zero. Higher
values of the added mass yield larger differences, as expected from equation 3.37.

Sensitivity tests to most parameters defining the model in SIMO-RIFLEX were
performed, however, the reason for the differences at higher modes was not found.
As seen in the appendices [28] for the reference report, these modes are coupling
of motions in at least two degrees of freedom. A possible reason can be that some
stiffness terms were neglected for the linearised mooring system, whereas only the
terms specified in section 5.3.4 were included. In addition, the linearisation of the
catenary mooring system in the eigenvalue calculation codes in the software used
by the NPRA could possibly lead to some differences.
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Table 6.5: Comparison of dominant motions for the first 35 modes

Mode NPRA[a] Cat. mooring sys.[b] Lin. mooring sys.[b] Added mass it.[c]

1 Y Y Y Y
2 Y Y Y Y
3 Y Y Y Y
4 Y Y Y Y
5 Y Y Y Y
6 Y Y Y Y
7 X X Y X
8 Y Y Y Y
9 RX X Z RX
10 Z Y Z Z
11 RX Y Z RX
12 Z Y Z Z
13 Z Y Z Z
14 Y Z Z Z
15 Z Z Z Z
16 Z Y Z Z
17 Z Y Z Z
18 Z X Z Y
19 Z Z Y Z
20 Z Y Z Z
21 Z Y Z Z
22 Z Y Y Z
23 Z Y Z Z
24 RX Y Z Z
25 Z Y Y RX
26 Z Y Z Z
27 Y Z Z Y
28 Z Z Z Z
29 RX Z Y Z
30 Z Z Z RX
31 Z Z Y Z
32 Z Z Z Y
33 Y Z Z Z
34 RX Z Y Z
35 Y Y Y RX

[a]Frequency dependent added mass considered
[b]Only the infinite-frequency added mass matrix and the translational motions of the
bridge girder were considered
[c]The model with the linearised mooring system. Added mass for each mode were
considered at a period equal to the closest period specified by TA in table 6.4
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6.3.2 Important Modes for Wind and Wind-Driven Sea

In this section, some of the modes that are important for the 100-year wind waves
and 100-year wind will be plotted and presented. The former is specified by a sea
state with a significant wave height of 3 metres and peak period of 6 seconds, with
the main direction from west, 270 degrees [2]. The wind is described as slowly
varying and has the same direction as the wind-driven waves. Emphasis will be
put on presenting the modes important for dynamic amplifications of the strong
and weak axis bending moments, respectively.

The mode shape plots are either presented in the vertical plane, xz, or the
horizontal, xy. This is because one of these directions is significantly dominant
relative to the other for the mentioned modes. Consequently, when plotted in
relative size for each mode, only motion in one direction is visually seen. In the
mode shape plots, the pontoons are held fixed in their initial configuration in order
to better visualise the motions of the bridge girder and columns. The mode shapes
are obtained for the model having the linearised mooring system where added mass
coefficients are updated according to table 6.4. For the modes where a TA value is
not specified, the added mass were considered at the closest specified value.

Mode shape plots for the first 75 modes are given in appendix B.2. From these
it can be seen that the first 11 mode shapes are coinciding with those obtained by
the NPRA. Mode 12 and 13 have switched place. For higher modes, not all mode
shapes are coinciding with those obtained by the NPRA.

Strong Axis Bending Moments

The mode shapes given in figure 6.13 are for modes important for the strong axis
bending moments due to wind, or more specifically slowly varying gusts. At the first
four of these periods, the radiation damping of the pontoons in sway is negligible, as
shown in figure 6.3. Especially the same four modes are expected to be dominated
by response due to wind because of their high periods, i.e. above those expected
for wave loads.

Figure 6.14 shows two modes which are important for the strong axis bending
moments due to wind-driven waves, as they are dominated by lateral motions at
periods close to the peak period. By studying appendix B.2 it can be seen that
several modes around 6 seconds are dominated by roll motion of the bridge girder.
These are important for the torsional moments in the bridge girder.
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(a) Mode 1, xy-plane

(b) Mode 2, xy-plane

(c) Mode 3, xy-plane

(d) Mode 4, xy-plane

(e) Mode 5, xy-plane

(f) Mode 6, xy-plane

Figure 6.13: Modes important for strong axis bending moments due to wind. Dom-
inated by motion in the lateral direction. The latter three also have some torsional
motion of the bridge girder
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(a) Mode 39, T = 6.01 s, xy-plane

(b) Mode 41, T=5.43s, xy-plane

Figure 6.14: Two of the important modes for strong axis bending moments due
to wind-driven waves. Dominated by motion in the lateral direction. Also some
torsional motion of the bridge girder.

Weak Axis Bending Moments

In this section, some of the important modes for the weak axis bending moments
in the bridge girder are presented. Figure 6.15 shows the initial configuration of
the bridge structure in the xz-plane and is included in order to fully understand
the following plots. As previously stressed, the model with the linearised mooring
system was used for all mode shape plots presented in the thesis.

Figure 6.15: Bridge without the catenary mooring system in the initial condition
in the xz-plane

Weak axis bending moments in the bridge girder are mainly induced due to
surge and heave motions of the pontoons. This is shown in section 6.4.2. Figure
6.16 shows important modes in wind-driven sea dominated by surge motion of the
pontoons. These motions are as expected largest for the pontoons attached to the
longest columns. Also some heave motions of the pontoons are present.
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(a) Mode 36, T = 6.71 s, xz-plane

(b) Mode 38, T = 6.07 s, xz-plane

(c) Mode 42, T = 5.63 s, xz-plane

Figure 6.16: Three of the important modes for weak axis bending moments due
to wind-driven waves. Dominated by surge motion of the pontoons. Secondary
motion in the vertical direction.

Figure 6.17 shows the shortest modes dominated by heave motions. These
modes are seen to be outside the range of periods containing the most energy in
the Jonswap spectrum for the 100-year wind-driven sea. The first mode dominated
by heave motions is mode 12 at a period of 11.09 seconds. This mode is given
in figure 6.18. The latter period is below the corresponding period ranges for the
100-year swell sea state, specified by a significant wave height of 0.4 metres and
peak periods of 12-14 seconds [2]. The heave dominated eigen periods obtained by
the NPRA [28] are in the range of 7.5 to 10.95 seconds compared to 7.52 to 11.09
seconds obtained for the model with the linearised mooring system.

(a) Mode 33, T = 7.65 s, xz-plane

(b) Mode 34, T = 7.52 s, xz-plane

Figure 6.17: The shortest modes dominated by heave motions
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Figure 6.18: Mode 12, T=11.09s. The first mode dominated by heave motions
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6.4 Response in Regular Waves

In this section, the global response of the bridge girder and the pontoons in reg-
ular waves will be presented and discussed. Analyses in irregular waves were not
included due to extremely long simulation time, as a result of the coupled bridge
model’s complexity. First, the bridge will be subjected to waves at several wave
heights for a given period. The focus will be on examining for linearity in response
for the given condition. This is done because it can possibly reveal errors done in
the modelling, as well as give an impression of the significance of the non-linearity
of the mooring system and the total system stiffness. This analysis is done as a
screening, not a complete sensitivity analysis.

In the next section the bridge will be subjected to waves at three directions,
respectively, and the response described in detail. All dynamic analyses in this
thesis were run for the model containing the catenary mooring system in regular
waves at a period of 6 seconds.

6.4.1 Linearity in Response

In order to check for linearity in response for a certain set of conditions, the bridge
was subjected to regular waves at several wave heights for a given period and
direction. The period was chosen to 6 seconds, which according to Larsen [2] is the
peak period for wind-driven sea for the 100-year storm. The wave direction was
correspondingly set to 270 degrees. The wave heights were chosen with equal steps
of 2 metres, from 1 to 9 metres.

Strong Axis Bending Moments

Due to the waves coming from west, i.e. normal to the bridge, the dynamic strong
axis bending moments in the bridge girder were checked for linearity for the chosen
wave heights. This was expected to be the dominating bending moment, as well as
the most sensitive to non-linearity in response due to the catenary mooring system.

Figure 6.19 shows the dynamic maximum and minimum bending moments in
the bridge girder after the responses have reached a steady state condition. This
will be illustrated in the next section. It should be recalled that the strong axis
bending moment is negligible in the static condition. From the mentioned figure it is
seen that the moments for all wave heights follow the exact same pattern, implying
linearity in response. This is proved by figure 6.20 which shows the dynamic range
in strong axis bending moments for two locations for the bridge girder. The chosen
locations were the girder-column intersection above pontoon 15 at x = 3642 m and
at the northern abutment, i.e. the locations with the most significant peaks in the
bending moments.
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Figure 6.19: Dynamic maximum and minimum strong axis bending moments in
the bridge girder due to regular waves with T= 6s, direction = 270 degrees and
heights 1, 3, 5, 7 and 9 metres, respectively
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Figure 6.20: Range of dynamic strong axis bending moments in the bridge girder
at the northern abutment and above pontoon 15, at x = 3642 m, in regular waves
with T= 6s and direction = 270 degrees

Pontoon Motions

In order to justify the linearity in the strong axis dynamic bending moments, as
well as checking for linearity in the vertical direction, corresponding plots for the
pontoon motions in the lateral and vertical directions were made. Only the odd-
numbered wave heights were included in the plots in order to maintain readability.
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From figure 6.21 the total lateral motion ranges are visually seen to be linearly
related to the wave heights. This is proved in figure 6.23a for the pontoons holding
the mooring lines, as well as for pontoon 17 which has the largest dynamic motion
range.
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Figure 6.21: Lateral pontoon motions in regular waves with T= 6s, direction =
270 degrees and heights 1, 5 and 9 metres, respectively

By comparing the motions of the pontoons holding the mooring lines, which
have a maximum horizontal motion of about 0.9 metres for pontoon 3, with the
resulting mooring system forces and moments as presented in figure 6.11 and 6.12,
the linearity in the lateral pontoon motions seems reasonable.

Both the mentioned resulting mooring stiffness terms are seen to be close to lin-
ear for the first two metres of lateral pontoon displacement. For the first metre, this
can be quantified by comparing the mooring stiffness terms in the east-west direc-
tion due to east-west pontoon displacements in steps of half a meter, as presented
in table 6.2. This yields a difference in stiffness of only 0.9 %. The linearity in the
lateral pontoon motion ranges also implies that the significance of the quadratic
drag forces on the mooring lines is of small importance for this given case.

In figure 6.22 the vertical pontoon maximum and minimum motions are seen
to not be symmetric about the design draft. A possible reason can be due to the
way the hydrostatic stiffness terms are implemented in the software. The stiffness
references of the pontoons are specified by global coordinates, i.e. the restoring
forces are not directly a function of the change in submerged volume of the pontoon.
However, as shown in figure 6.23b the total motion ranges are close to linear for
the examined wave heights, whereas the ranges increase slightly above linear for
the higher wave heights.
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Figure 6.22: Vertical pontoon motions in regular waves with T= 6s, direction =
270 degrees and heights 1, 5 and 9 metres, respectively

Due to the asymmetry in the pontoon motions, non-linearity in the total mo-
tion ranges is reasonable. Since the pontoons were moving in phase for the wave
direction 270 degrees, as shown in figure 6.24b, the vertical stiffness contributions
due to bending of the bridge girder will only be dependent on the relative differ-
ence in magnitude of pontoon motions for nearby pontoons. These contributions
will therefore also be asymmetric about the design draft. The non-linearity in the
vertical mooring stiffness is not expected to be the reason, due to the small mag-
nitudes relative to the vertical hydrostatic stiffness and because this in case should
increasingly restrict positive vertical motion with motion amplitude.
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Figure 6.23: Total lateral and vertical motions of pontoons 3, 9, 15 and 17, respec-
tively, in regular waves with T = 6 s and direction = 270 degrees
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6.4.2 Global Response in Different Wave Directions

In the following section characteristic global responses of the bridge structure are
analysed in regular waves from the directions 270, 240 and 225 degrees, respectively.
The period and wave height were chosen to 6 seconds and 3 metres, respectively,
which as mentioned correspond to the peak period and the significant wave height
for wind-driven waves for the 100-year storm [2]. In addition, the directions 255
and 210 degrees were analysed, but the former directions were chosen as these
show some of the characteristic response patterns, and to maintain readability of
the graphs. First, the pontoon motions will be presented, followed by the dynamic
equivalent of the plots given in the static analysis.

The plots in this section will be on the same form as in section 6.4.1, i.e. as
envelope plots. This means that the graphs show the maximum and minimum
response magnitudes subtracted for the static value. Consequently, information on
the time dependency is lost. The minimum and maximum values are found after
the responses have reached steady state, which for all responses are seen to occur
within 200 seconds. Examples of responses as function of time are given in figure
6.24a and 6.24b.

All values related to the bridge girder are found at the nodes located at the
girder-column intersections and at the mid-spans. This will be commented on for
the plots where this lead to significant underestimations or if the exact shapes of
the responses are of importance.

Pontoon Motions

In this section, the pontoon motions will be briefly described. These will primarily
be used as a tool in order to describe the responses in the bridge girder.
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Figure 6.24: Vertical pontoon motions as function of time in regular waves with H
= 3 m, T = 6 s and direction = 270 degrees
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Figure 6.24a shows the vertical motions of pontoon 1 plotted as function of
time. For this case, the transients effects are seen to be dominant in about the
first 60 seconds. From figure 6.24b it is seen that all pontoons move in phase with
the response period equal to the wave period, i.e. 6 seconds, when the bridge is
subjected to the mentioned waves from west. The former is expected since the
waves hit the pontoons simultaneously. For the other wave directions the pontoons
are moving out of phase, but with the response period equal to the wave period of
6 seconds.

0 2 4 6 8 10 12 14 16 18

Pontoon number

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

V
e
rt

ic
a
l 
d
is

p
la

c
e
m

e
n
t 
[m

]

270° 240° 225°

Figure 6.25: Vertical pontoon motions in regular waves with H = 3 m, T = 6 s and
directions 225, 240 and 270 degrees, respectively
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Figure 6.26: Lateral, west-east, pontoon motions in regular waves with H = 3 m,
T = 6 s and directions 225, 240 and 270 degrees, respectively
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Figure 6.27: Pontoon motions along the bridge girder (surge) in regular waves with
H = 3 m, T = 6 s and directions 225, 240 and 270 degrees, respectively

Figure 6.25, 6.26 and 6.27 show the maximum and minimum pontoon displace-
ments in the vertical, lateral and longitudinal directions, respectively. Some char-
acteristic motion patterns are seen.

Waves from 225 degrees led to the highest vertical displacements of the pon-
toons despite the first order wave force transfer functions in heave being about 530
kN/m, 400 kN/m and 460 kN/m for the wave directions 270, 240 and 225 degrees,
respectively. The out off phase and surge motions induced by the direction 225
degrees are therefore seen to be of importance, as the pontoons are exited in a
motion pattern similar as for the pendulum modes 36 and 38, as shown in figure
6.16.

For the lateral pontoon displacements in the wave direction 240 degrees, every
second pontoon from number 7 to 17 are seen to have significantly larger displace-
ment ranges. For the two other directions, there are wave-like patterns in the
displacement. These observations will be commented on in the Bending Moments
section.

Bridge Girder Motions

The maximum and minimum bridge girder motions are identical to the correspond-
ing magnitudes of the bridge girder accelerations when subjected to regular waves.
This is because the girder motions are sine functions with constant period equal to
the wave load period. These plots are given in figure 6.34 and 6.35 in the Bridge
Girder Accelerations section and will therefore be referred to when the bridge girder
motions are used to describe responses.
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Bending Moments

In this section, both the dynamic weak and strong axis bending moments in the
bridge girder are presented.

The weak axis bending moments, as given in figure 6.28, are seen to increase
as the wave direction is put closer to the bridge longitudinal axis. By comparing
these moments with the pontoon motions, it is observed that the vertical motions
for the direction 270 degrees are larger than for the direction 240 degrees, despite
the latter direction inducing larger bending moments. Therefore, it is evident that
the surge motions of the pontoons, i.e. pontoon motions along the bridge girder
longitudinal axis, give a significant contribution to the weak axis bending moments.
This is seen clearly for the direction 240 degrees: the vertical motions of pontoon
2, at x=1003m, are larger than for the adjacent pontoons while the longitudinal
smaller, leading to the weak axis bending moment being smaller in this girder-
column intersection.
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Figure 6.28: Dynamic max and min weak axis bending moments in regular waves
with H = 3 m, T = 6 s and directions 225, 240 and 270 degrees, respectively

From figure 6.28 it is also seen that the largest dynamic moments occur at the
girder-column intersections, which are at the same locations as the maximum static
weak axis bending moments. The maximum dynamic weak axis bending moment
for the bridge girder is found to be 1.5 ·105 kNm for the examined wave conditions.
This corresponds to 19 % of the largest static bending moment, which in section
6.2.2 was found to be 7.9 · 105 kNm. However, these maxima are not at the same
location. The largest combined weak axis bending moment is 9.1 · 105 kNm, and is
found at the girder-column intersection above pontoon 2, i.e. at x=1003m. For this
intersection, the dynamic bending moment consists of 15 % of the total moment.
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Figure 6.29: Dynamic max and min strong axis bending moments in regular waves
with H = 3 m, T = 6 s and directions 225, 240 and 270 degrees, respectively

As for the characteristic patterns observed for the lateral pontoon motion
ranges, also corresponding patterns are present for the strong axis bending mo-
ments, as given in figure 6.29. The largest bending moments are found in the
northern end of the bridge for the wave direction 240 degrees. For this direction,
the pontoons have the previously mentioned displacement pattern where every sec-
ond lateral pontoon displacement is significantly larger, which induces large strong
axis bending moments. The magnitudes of the lateral pontoon motions for the
waves from 240 degrees are smaller than those for 270 degrees. However, for the
latter, the bridge girder moves more evenly in the same direction, thus resulting in
smaller bending moments. This is seen in figure 6.35.

The direction 225 degrees is observed to impose large strong axis bending mo-
ments in the part of the bridge holding the first 6 pontoons. This is reasonable as
it corresponds to the pontoons having the largest lateral movements at this part
of the bridge.

Shear Forces

The maximum and minimum shear forces are as expected distributed along the
bridge girder in similar patterns as the bending moments. For the vertical shear
forces, figure 6.30, it is seen that the largest values for the direction 225 degrees
and some values in the southern end for the direction 240 degrees are found at the
midspans.

Since the forces are stored only for the nodes at the midspans and the girder-
column intersections, the true largest values can be slightly shifted towards one
side. This can be the case for the spans which have large differences between the
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shear forces in the given span’s intersections, such that small underestimations of
the maxima can be present.
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Figure 6.30: Dynamic max and min vertical shear forces in regular waves with H
= 3 m, T = 6 s and directions 225, 240 and 270 degrees, respectively

For the shear forces in the lateral direction, as given in figure 6.31, the non-
linear shape of the shear forces in the spans are less obvious, since the gravitational
acceleration does not contribute in this direction. On the other hand, the steps of
the shear forces in the girder-column intersections are larger. This is because the
relative magnitudes of the lateral pontoon motions are larger than for the vertical
direction.
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Figure 6.31: Dynamic max and min shear forces transverse to bridge axis in regular
waves with H = 3 m, T = 6 s and directions 225, 240 and 270 degrees, respectively
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Axial Forces

From figure 6.32 it is seen that the tower is not absorbing axial forces from the
bridge girder. By also studying the plots of the vertical and lateral bridge girder
motions and strong and weak axis bending moments, the approximate boundary
conditions are proved to function as intended.

For the wave direction 270 degrees, it is clear that the axial forces are small com-
pared to the other directions, as well as close to evenly distributed along the bridge
girder. This can be explained by the fact that the surge motions of the pontoons
are small, as well as due to the pontoons moving in phase and the displacements
of the bridge girder being small compared to its dimensions.
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Figure 6.32: Dynamic max and min axial forces in regular waves with H = 3 m, T
= 6 s and directions 225, 240 and 270 degrees, respectively

For the other two directions, the axial forces are seen to vary significantly
along the bridge girder. This is because the pontoons do not move in phase for
these directions, but with constant relative phase. By running several waves with
different directions, respectively, and thereby changing the phase of the pontoon
motions, the average maximum and minimum values would be more continuous
along the bridge.

Torsional Moments

Also for the maximum and minimum torsional moments, large differences are
present between the respective wave directions. It should be recalled that the
torsional moment is negligible in the static configuration. Common for the re-
sponses is that the torsional moments are small in the cable-stayed bridge for all
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wave directions, due to the large lateral distances of the stay cable intersections in
the bridge girder.
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Figure 6.33: Dynamic max and min torsional moments in regular waves with H =
3 m, T = 6 s and directions 225, 240 and 270 degrees, respectively

The direction 240 degrees proves to induce the largest torsional moments in
the northern half of the bridge, despite the lateral pontoon motions being larger
for the normal direction. This is reasonable due to the large differences between
the maximum and minimum displacements for the adjacent pontoons for this wave
direction.

Also the wave direction 225 degrees induces larger extreme values of the tor-
sional moments in the northern end than the wave direction normal to the bridge.
This can be explained by examining the extremes of the lateral girder motions
relative to the pontoon motions. For the normal wave direction, these motions are
closer in magnitude.

The lateral motions of the pontoons relative to the motions of the bridge girder
are therefore seen to drive the torsional moments in the bridge girder. This is
clearly the case for the largest torsional moments, i.e. for the wave direction 225
degrees in the southern part of the bridge. For this part, the pontoons have large
lateral motions and the girder small lateral motions.

Bridge Girder Accelerations

The final set of properties to be included in the directional screening analysis are
the bridge girder accelerations in the horizontal and vertical directions.

For all figures presented in the dynamic results section, the responses have
been obtained for the nodes located in the girder-column intersections and in the
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midspans. For the other properties investigated the maxima and minima have
been located at the girder-column intersections. The exceptions are the shear
forces, but here the potential underestimations from the values at the midpoints
or intersections are small.

For the bridge girder accelerations, significant underestimations are present for
the main span in the cable-stayed bridge. This is because of the reduced rotational
stiffness about the first girder-column intersection, as discussed in section 6.2.1.
This allows larger deflections of the girder, as well as the extreme value being
closer to the mentioned girder-column intersection.

For the floating bridge spans the underestimations are minimal because of the
close to evenly distributed loads, including inertia effects, about the girder-column
intersections. From both figure 6.34 and 6.35 it is seen that the highest possible
accelerations of the main span in the cable-stayed bridge are lower than the overall
largest acceleration in the respective directions, such that re-running analyses with
increased details of the main span accelerations were not deemed necessary.
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Figure 6.34: Dynamic max and min vertical accelerations of the bridge girder in
regular waves with H = 3 m, T = 6 s and directions 225, 240 and 270 degrees,
respectively

From figure 6.34 there are seen different patterns in the maximum and mini-
mum vertical accelerations for the different directions. For the direction 225 degrees
most of the maximum accelerations for the floating bridge spans are found at the
girder-column intersections, while for all spans for the direction 240 degrees, the
maxima are found at the midspans. This can be explained by the phase differences
for the pontoon motions, where the former implies that adjacent pontoons oscil-
late at least one-quarter period out of phase and the latter that adjacent pontoons
oscillate less than one-quarter period out of phase. This can be verified by geomet-
rical considerations. For the direction 270 degrees, the maximum and minimum
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accelerations are close to constant along the bridge, which can be explained by the
pontoons moving perfectly in phase and with small deviations in amplitude.

The girder lateral accelerations, as given in figure 6.35, can also be explained by
comparing relative phase and amplitudes of the pontoon motions and will therefore
not be done in further detail.
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Figure 6.35: Dynamic max and min lateral accelerations of the bridge girder in
regular waves with H = 3 m, T = 6 s and directions 225, 240 and 270 degrees,
respectively

In table 6.6 the largest accelerations of the bridge girder for the wave directions
examined are compared with criteria specified by the NPRA. The criteria are given
for a 1-year storm, defined by a significant wave height of 1.5 metres, a peak period
of 6 seconds, wave direction 270 degrees and wind from the same direction [2].
The results can therefore not be directly compared, but quantifies the magnitudes
observed.

Table 6.6: Maximum girder accelerations compared to criterion specified by the
NPRA [2]

Motion Criterion Max NPRA Max direction screening
[m/s2] [m/s2] [m/s2]

Vertical acceleration 0.5 0.7 0.089
Lateral acceleration 0.3 0.44 0.50

For the examined wave directions, the extreme values of the vertical accel-
erations are seen to be small compared to the criterion. This is reasonable since
dynamic wind was found to govern the vertical accelerations in the reference report
[2].
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The extremes of the lateral accelerations are larger than both the criterion and
the value obtained by the NPRA. For the direction 270 degrees, the extremes are
within the criterion when the accelerations are calculated at mid-spans and girder
column intersections. From the shape of this plot, the largest value is expected to
be slightly underestimated.
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Conclusion

From the analyses carried out in this thesis, it is clear that a large number of aspects
have not been included, as the purpose has been to illustrate modelling aspects and
calculation procedures, hence not verifying the bridge concept in detail. However,
during this procedure several characteristics of the response have been found.

From the static analysis, it was shown that the vertical displacements of the
pontoons due to 70 % of the characteristic distributed traffic loads were well within
the criterion specified by the project team for the concept. The pontoons also
proved to have significant excess buoyancy, where the pontoons not holding the
catenary mooring lines needed a minimum of 21.3 % of their self-weight in ballast
to obtain their design draft. Additionally, the self-weight of the pontoon is a large
fraction of the pontoon displacement, i.e. 11 300 tons/18 300 tons ≈ 62 %. The
former results and observations make it clear that from a hydrodynamic point of
view, the pontoons are not fully optimised with respect to the global response in
the structure.

In the eigenvalue analyses, an important limitation was identified in the calcula-
tion codes in SIMO-RIFLEX. The fact that the catenary mooring systems were not
properly included in the eigenvalue calculations introduced challenges in the eval-
uations of the original bridge model. However, the implementation of a linearised
mooring system for a second model led to good agreement for the eigen periods and
mode shapes compared to those obtained by the NPRA, where the first 30 eigen
periods were differing with a mean value of 3.9 % when only the infinite-frequency
added mass matrix was considered. By updating the added mass at the periods
specified, differences of less than about 2 % were obtained, implying that the stiff-
ness and mass properties of the bridge girder and pontoons, as well as the boundary
conditions, were modelled correctly. This also implies that the simplification of the
tower mainly affects the response locally.

Furthermore, the eigenvalue calculations revealed several modes that can be
triggered by environmental loads. Laterally dominated modes at high periods with
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negligible damping, which can be important for the response in slowly varying wind
and second order difference frequency wave forces, and laterally dominated modes
close to the peak period for the 100-year wind waves were identified. Additionally,
modes dominated by longitudinal pontoon motions close to this period were found,
possibly important for dynamic weak axis bending moments in the high bridge.
These findings make it evident that thorough assessments of the bridge in the
actual environmental conditions must be performed to fully evaluate the concept.

However, the results from the dynamic analyses in regular waves showed impor-
tant response patterns, where some were seen to be related to the modes identified.
As the wave directions were put closer to the bridge longitudinal axis, displacement
patterns related to the pendulum dominated modes were present. This led to large
weak axis bending moments in the high bridge relative to the remaining part of the
bridge. Despite this, the magnitudes of the dynamic weak axis bending moments
were found to be small compared to the static bending moments, i.e. less than
about 15 % for the wave conditions examined, implying possible room for girder
height to span length ratio optimisation.
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Chapter 8

Recommendations for Further
Work

To fully assess the bridge concept there are a lot of aspects that need to be ac-
counted for, such as stress analyses, fatigue, accidental loads, etc. Within the
aspects examined in this thesis, the model is considered a good starting point for
further analyses.

Firstly, the differences between the eigen periods for higher modes for both
models in SIMO-RIFLEX and those obtained by the NPRA should be further
evaluated.

Furthermore, extensive analyses for examining for linearity in response should
be done if linear time domain analyses are to be performed. Care should be taken
for which conditions this is reasonable to assume, especially regarding the effect
of the non-linear mooring system. The reason for the asymmetry in the vertical
pontoon motions should also be further assessed.

The main recommendation for further work is to perform dynamic analyses in
the actual environmental conditions for Bjørnafjorden. This will include analyses in
wind-driven waves and swell waves, both long- and short-crested. These should also
be evaluated in combination with wind. Emphasis should be put on further studies
of the items stated in the conclusion, where dynamic amplification of the response
related to the identified modes should be thoroughly assessed. Due to extremely
long simulation time, the dynamic analyses were limited to regular waves in this
thesis.

In addition, the modelling of the pontoons can be done in more detail by in-
cluding second order forces and quadratic drag forces. These can be important
for resonance in response for the first laterally dominated modes. Finally, also the
modelling of the bridge structure could have been done in more detail: the exact
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properties of the tower and the vertical curvature of the bridge girder in the high
bridge were not included.
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Figure A.1: Radiation added mass for pontoon at mesh size 0.5 m x 0.5 m
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A.2. Radiation damping

A.2 Radiation damping
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Figure A.2: Radiation damping for pontoon at mesh size 0.5 m x 0.5 m
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A.3 First Order Wave Force Transfer Functions
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Figure A.3: First order wave force transfer functions for a wave direction of 45
degrees for pontoon at mesh size 0.5 m x 0.5 m
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Appendix B

Eigenvalue Analysis

B.1 The first 75 eigen periods compared to values
obtained by the NPRA

NPRA Cat. mooring Lin. mooring Added mass iterated

Mode T [s] T [s] Diff [%] T [s] Diff [%] T [s] Diff [%] TA[s]

1 78.25 74.66 −4.7 74.83 −4.5 77.52 −0.9 78.25
2 71.21 68.23 −4.3 68.48 −3.9 70.92 −0.4 78.25
3 40.78 39.85 −2.3 38.94 −4.6 40.32 −1.1 78.25
4 32.48 31.51 −3.0 30.91 −5.0 31.95 −1.6 78.25
5 23.44 22.72 −3.1 22.49 −4.1
6 17.69 16.95 −4.3 16.90 −4.6
7 14.09 16.24 14.2 13.16 −6.8 14.22 0.9 14.09
8 14.09 16.23 14.1 12.33 −13.3 13.82 −2.0 14.09
9 13.06 16.23 21.6 12.15 −7.3
10 11.45 16.22 34.5 11.59 1.2
11 11.32 16.22 35.6 11.57 2.2
12 10.92 16.22 39.1 11.54 5.5 11.09 1.5 10.88
13 10.89 13.33 20.1 11.54 5.8 11.06 1.5 10.88
14 10.88 13.10 18.5 11.49 5.4 11.03 1.4 10.88
15 10.87 13.08 18.5 11.45 5.2 11.01 1.3 10.88
16 10.87 13.08 18.4 11.29 3.8 10.99 1.1 10.88
17 10.84 13.08 18.7 11.11 2.4 10.97 1.2 10.88
18 10.76 13.07 19.4 11.04 2.6 10.85 0.8 10.88
19 10.66 13.07 20.3 11.01 3.3 10.83 1.6 10.88
20 10.50 13.07 21.8 10.84 3.2 10.72 2.1 10.88
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NPRA Cat. mooring Lin. mooring

Mode T [s] T [s] Diff [%] T [s] Diff [%]

21 10.32 13.06 23.5 10.55 2.2
22 10.02 13.06 26.4 10.26 2.4
23 9.79 13.06 28.6 10.23 4.4
24 9.73 13.06 29.2 9.84 1.2
25 9.51 13.06 31.5 9.51 0.0
26 9.08 12.66 32.9 9.50 4.5
27 8.85 12.13 31.2 9.10 2.8
28 8.61 11.73 30.7 8.70 1.0
29 8.33 11.68 33.5 8.64 3.7
30 8.21 11.63 34.4 8.30 1.1
31 7.84 11.58 38.6 8.16 4.0
32 7.62 11.54 40.9 8.02 5.2
33 7.45 11.48 42.6 7.65 2.7
34 7.08 11.35 46.3 7.52 6.1
35 6.49 11.25 53.7 7.08 8.7
36 6.42 11.22 54.4 6.71 4.4
37 6.18 11.19 57.6 6.23 0.8
38 5.65 10.85 63.1 6.07 7.2
39 5.41 10.60 64.8 6.01 10.6
40 5.04 10.44 69.8 5.54 9.5
41 4.80 10.25 72.4 5.43 12.2
42 4.73 9.94 71.0 5.33 11.9
43 4.54 9.79 73.3 4.98 9.3
44 4.31 9.56 75.7 4.76 9.9
45 4.18 9.17 74.8 4.69 11.6
46 4.11 8.76 72.2 4.59 11.0
47 4.04 8.71 73.3 4.35 7.5
48 3.85 8.69 77.2 4.27 10.3
49 3.78 8.69 78.7 4.16 9.5
50 3.76 8.69 79.2 4.07 7.9
51 3.68 8.69 81.0 4.07 10.0
52 3.46 8.66 85.8 3.94 12.9
53 3.43 8.65 86.4 3.82 10.8
54 3.36 8.36 85.4 3.76 11.3
55 3.30 8.32 86.4 3.67 10.7
56 3.20 8.32 88.9 3.54 10.0
57 3.01 8.32 93.7 3.48 14.4
58 3.00 8.32 94.0 3.39 12.2
59 2.84 8.32 98.2 3.39 17.6
60 2.67 8.32 102.8 3.20 18.1
61 2.65 8.21 102.4 3.19 18.5
62 2.54 8.08 104.3 3.18 22.3
63 2.40 7.80 105.9 3.07 24.5
64 2.35 7.68 106.3 3.06 26.4
65 2.25 7.60 108.6 3.06 30.4
66 2.18 7.60 110.8 3.06 33.5
67 2.09 7.60 113.7 3.03 36.7
68 2.06 7.60 114.7 3.02 37.7
69 2.04 7.59 115.3 2.95 36.3
70 2.02 7.59 116.0 2.94 37.2
71 1.94 7.59 118.6 2.93 40.7
72 1.93 7.59 118.9 2.92 41.0
73 1.93 7.59 118.9 2.91 40.3
74 1.86 7.57 121.1 2.90 43.6
75 1.77 7.45 123.2 2.84 46.4
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