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Problem description

Background:
Over the past few years the maritime sector has witnessed an increasing interest in the use
of autonomous ships, and in particular Autonomous Surface Vehicles (ASV) in complex
applications with high associated risks. The development of autonomous ships provides
more cost-effective and environmentally friendly vessel types. One important aspect in the
design and operation of ASVs, is guidance and navigation in congested waterways.

The objective of this thesis is to contribute to the development of a new generation of path
planning, that incorporates in its formulation the dynamics of the vehicle, and extra data
made available by on board sensors about obstacle and other vehicles in its vicinity. The
Bézier curve will be used as the basis in the path generation and, differential flatness will
be used to incorporate the dynamics of the vehicle.

Work description:

1. Perform background research and provide relevant information on:

(a) The Bézier curve and its formulation.

(b) Modeling of surface vessels.

(c) The differential flatness property.

2. Develop a path planning algorithm for an underactuated surface vessel that:

(a) Enables the generation of a path between two points.

(b) Utilizes the differential flatness property of the vehicle to assign a cost to each
path.

(c) Generates a path with continuous unit tangent vector and curvature.

(d) Incorporates information about obstacles and maximum curvature.

3. Implement the proposed path planning algorithm in MATLAB.

4. Explore the behavior of the suggested path planning algorithm through numerical
simulations. Present and discuss the results.

Supervisor: Vahid Hassani





Summary

The maritime sector have over the last few years witnessed a growing demand for the de-
velopment of Autonomous Surface Vehicles (ASV), capable of performing complex tasks
with high associated risk. Central in this development is the need for a new generation
of advanced guidance, navigation and control (GNC) systems, enabling the ASV to work
in any unstructured environment without human supervision. To that end, the availability
of efficient and intelligent path planning algorithms are of paramount importance. The
present thesis aims to contribute to this development, and proposes a path planning algo-
rithm incorporating in its formulation, the dynamics of the vehicle and information about
obstacles and other vehicles in its vicinity.

The proposed path generation algorithm is formulated within the framework of optimiza-
tion, exploiting Bézier curves as the basis for the generation of a rich set of paths. Further,
by the use of the differential flatness property of the vehicle, a cost is assigned to each path,
reflecting the dynamic capabilities of the vehicle on that path. The proposed algorithm is
capable of generating geometric and parametric continuous paths, while accounting for
environmental constraints such as obstacles. Furthermore by constraining the curvature of
the path, the algorithm ensures that the turning radius never exceeds the physical limita-
tions of the the vehicle. The present thesis includes a description of the implementation of
the proposed algorithm in MATLAB®, commenting on the some of the decisions made in
this process.

Finally, a series of numerical simulations are presented, illustrating the efficacy and ca-
pabilities of the proposed algorithm. The simulation results presented, differ in boundary
conditions and environments, thus highlighting some of the versatility of the proposed al-
gorithm. In the obtainment of results, an issue related to the reliability of the algorithm
were reveled, thus further revealing a direction for future work. On this remark, albeit with
some persisting challenges, it is concluded that the Bézier curve is a worthy candidate for
future considerations, offering a vast amount of possibilities and versatility.
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Sammendrag

Den maritime sektoren har i løpet av de siste årene vært vitne til en økende interesse
for utvikling av autonome overflate fartøy (ASV), som er i stand til å utføre komplekse
operasjoner med en høy tilknyttet risiko. Sentralt i denne utviklingen er behovet for en
ny generasjon av avanserte veilednings-, navigasjons- og kontrollsystemer (GNC), som
muliggjør for ASVen å arbeide i et ustrukturert miljø uten menneskelig tilsyn. I denne
sammenheng er det et pressende behov for utvikling av effektive og intelligente baneplan-
leggingsalgoritmer. Denne avhandling har som hensikt å bidra til denne utviklingen, og
foreslår en baneplanleggingsalgoritme som i sin formulering inkorporerer fartøyets dy-
namikk, og informasjon om hindringer og andre fartøy i nærheten.

Den foreslåtte baneplanleggingsalgoritmen er formulert innenfor rammen av optimaliser-
ing, og tar i bruk Bézier kurver i genereringen av et rikt sett av baner. Videre ved bruk av
fartøyets differensiell flathetsegenskap tildeles en kostnad til hver bane, som reflekterer de
dynamiske egenskapene til fartøyet på denne banen. Den foreslåtte algoritmen er i stand til
å generere geometriske og parametriske kontinuerlige baner, samtidig som miljømessige
begrensninger som hindringer taes i betraktning. Videre sikrer algoritmen at svingradiusen
til banen aldri overskrider fartøyets fysiske begrensninger, ved å begrense krumningen til
banen. Denne avhandling inneholder også en beskrivelse av implementeringen av den
foreslåtte algoritmen i MATLAB®, inkludert noen kommentarer til beslutninger som ble
fattet.

Til slutt presenteres en rekke numeriske simuleringer som illustrerer effektiviteten og
nytteverdien til den foreslåtte algoritmen. Resultatene som fremlegges er utformet slik
at problembeskrivelsen varierer for simuleringene, både i forhold og miljø, og dermed
fremheves noe av allsidigheten til den foreslåtte algoritmen. Under innhenting av resul-
tatene ble et problem relatert til påliteligheten til algoritmen tydeliggjort, og dermed ble
også en fremtidig arbeids retning funnet. På denne bemerkningen, til tross for de ved-
varende utfordringene, konkluderes det med at Bézier kurven er en verdig kandidat for
bruk i fremtidens baneplanleggingsalgoritmer.
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Chapter 1
Introduction

1.1 Motivation
In today’s commercial, scientific, and military communities there exists an ever growing
interest for the development of Unmanned Surface Vehicles (USVs), also known as Au-
tonomous Surface Vehicles (ASVs). These unmanned vehicles are defined through their
capability of performing tasks and missions, in a variety of cluttered environments without
any human intervention. The possible applications for these vehicles are many and include
scientific research, environmental missions, transportation and ocean resource exploration.
The further development of USVs are expected to provide several benefits, as compared
to other manned vehicles, such as lower development and operational costs, improved per-
sonal safety, and extended operational range. USVs are also expect to be able to perform
more hazardous missions and exhibit enhanced maneuverability in sophisticated environ-
ments. Despite these benefits, most USVs today does only exhibit semi-autonomy, owing
to numerous challenges faced in the development of full-autonomy. The further develop-
ment of fully-autonomous USVs depends on the development of effective, accurate, and
reliable USV systems. This includes the development of advanced guidance, navigation
and control (GNC) systems. (Liu et al., 2016)

The GNC system can be divided into three subsystems, which in accordance with Fossen
(2011) can be described as follows. The guidance system is used to continuously compute
the reference position, velocity and acceleration of the marine craft, to be used in the
motion control system. The data computed by the guidance system will further be provided
to a human operator. The navigation system is used to direct the craft by determining its
position, course and distance traveled. In some cases the velocity and the acceleration of
the craft is also determined. This is normally achieved by the use of a global navigation
satellite system in combination with motion sensors, such as accelerometers and gyros.
The control system is used to determine the necessary control forces and moments to be
provided to the craft, in order to satisfy certain control objectives. These control objectives
are often seen in conjunction with the guidance system.

1



Chapter 1. Introduction

A fundamental part of the USV guidance system, is the path planning system. This sys-
tem can be viewed as module of the GNC system, as described in Lekkas (2014). The
path planning system is used to design and generate a path, which if followed without
deviations, will be both safe and feasible. The path that is generated must satisfy several
desirable properties, which takes both physical constraints and workspace constraints into
account. The system must therefore ensure that the path which is generated takes the dy-
namics of the vehicle into account, and that the path stays at a safe distance from obstacles
at all times. Temporal assignments can also be included in the path planning system, in
such cases the system will specify where on the path the craft should be at any time in-
stant. In the world of robotics the term motion planning is used to describe such a system.
Motion planning does however differ in the way that it often involves both the design of a
suitable path, and the actions that should be taken in order to accomplish the mission.

The path planning system is of great significance when it comes to performance and mis-
sion accomplishment. The path that this system creates and the properties associated with
this path, will have a direct influence on the guidance system, especially when it comes
to underactuated vehicles. The path planning system and the guidance system is related
in the way that they specify what one wants to achieve, and how one should act in order
to achieve it. Figure 1.1 shows how the different modules of GNC system interacts. Due
to the interconnection between these modules, it can often be difficult to determine the
stability of the total system. In stability studies it is therefore often convenient to view the
entire system as a cascade system, where the output of one module is the input to another.

Figure 1.1: Interaction between the modules of the GNC system.

In later years a tremendous amount of effort has been dedicated to making USVs more au-
tonomous, however there does still exist some significant challenges in this development.
Some of these challenges are related to the modules of the GNC system. In relation to path
planning there is a need for more computational effective global planners, global converg-
ing local planners, and more effective, accurate and reliable methodologies for obstacle
avoidance.
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1.2 Scope of work

1.2 Scope of work
This thesis aims to contribute to the development of a new generation of path planning
algorithms, that incorporates in its formulation the dynamics of the vehicle, and informa-
tion about obstacles and other vehicles in its vicinity. In this algorithm, the Bézier curve
will be exploited in the generation of a rich set of paths. The differential flatness property
of the vehicle will further be used to assign a cost to each path, reflecting the dynamic
capabilities of the vehicle on that path.

To this end, the thesis begins with a presentation of relevant background information and
theory. This includes the topics of parametric curves, the Bézier curve, system modeling
and differential flatness. The topic of differential flatness is given special attention, and
is viewed in conjunction with underactuated surface vessels. The thesis further proposes
a path planning algorithm that is formulated within the framework of optimization. This
algorithm is developed with basis in the theory presented in the thesis. The proposed path
planning algorithm is capable of generating C2 and G2 continous paths, taking static ob-
stacle constraints into consideration. The algorithm also enables the generation of paths
between two points, and further constrains the curvature of the path. The thesis further de-
scribes the implementation of this algorithm, before it finish off by reviewing the proposed
algorithm through a series of numerical simulations.

1.3 Limitations
The main limitation of this thesis has been the availability of a good optimization solver,
that were suited for the optimization problem that has been formulated. The utilized solver
exhibits a sensitivity to the initial guess provided. This has served as an issue in the re-
trieval of results, and it has also disallowed studies on for instance computational time.

The dynamics of the vessel is included in the path planning through the use of the differ-
ential flatness property. In order to be able to utilize this property, the mathematical model
of the surface vessel had to be simplified. This implies that the developed path planning
algorithm does not incorporate all the dynamics that was initial intended.

1.4 List of publications
The following conference paper has been submitted, reviewed and accepted for publica-
tion, and is the outcome of the work related to this thesis:

Vahid Hassani and Simen V. Lande. Path Planning for Marine Vehicles using Bézier
Curves. In: 11th IFAC Conference on Control Applications in Marine Systems, Robotics,
and Vehicles, Opatija, Croatia, 2018.

The paper is attached in the appendix.
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1.5 Thesis outline
This thesis is organized in the following way:

Chapter 2: This chapter gives an overview of some mathematical notations and defini-
tions that are used throughout this thesis, as well as some commonly used abbreviations.

Chapter 3: This chapter introduces the concept of path parameterization, continuity, arc
length and curvature. It further focuses on the Bézier curve, including a historical remark,
formulations and other useful concepts.

Chapter 4: Explores the fundamentals of vehicle modeling, including kinematics and ki-
netics. It also provides a mathematical model for an underactuated surface vessel. The
concept of differential flatness is also introduced, with an elaboration on how this prop-
erty can be used in path planning.

Chapter 5: The main focus of this chapter is the development of a path generation algo-
rithm with basis in the theory presented in the preceding chapters. An extensive analysis
on the Bézier curve is presented, along with the formulation of an optimization problem
that is used in order to generate paths.

Chapter 6: This chapter presents a series of numerical simulation, that is used to show
the efficacy of the proposed path generation algorithm.

Chapter 7: Presents a discussion on the overall results obtained in this thesis, and some
implementational challenges encountered.

Chapter 8: This chapter presents the conclusion of this thesis, and the most relevant ideas
for further development on the results presented.
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Chapter 2
Preliminaries

2.1 Mathematical notations and definitions
In this thesis all vectors and matrices are written in boldface, while scalars are not. Time
derivatives of x(t) are given as ẋ, ẍ,x(3), . . . ,x(i). Derivatives with respect to other vari-
ables are given as x′,x′′,x3′

, . . . ,xi
′
. The index set In ⊂ N>0 are all natural numbers

from 1 to n given as: In = {1, 2, ..., n}. The norm |x| is the Euclidean norm
√
xTx, and

|x| is the absolute value of x ∈ R.

2.2 Abbreviations
ASV Autonomous Surface Vehicle
CAD Computer Aided Design
CG Center of Gravity
DOF Degree Of Freedom
ECEF Earth-Centered, Earth-Fixed
ECI Earth-Centered Inertial
GNC Guidance, Navigation and Control
NED North East Down
SQP Sequential Quadratic Programming
UAV Unmanned Aerial Vehicle
USV Unmanned Surface Vehicle

5





Chapter 3
Path parameterization

3.1 General path parameterization

3.1.1 Parametric curves
In mathematics a parametric curve in the plane is a curve described by a set of parametric
equations that defines the coordinates of each point on the curve, as functions of a scalar
parameter $ ∈ R. Considering a planar path, where the position of a point belonging
to the path is represented by pp($) = [xp($), yp($)]T ∈ R2, the path will be a one-
dimensional manifold that can expressed by the set (Breivik and Fossen, 2009)

P :=
{

p ∈ R2 | p = pp($) ∀ $ ∈ R
}
. (3.1)

The parameter $ is typically restricted to some interval $ ∈ [$0, $1]. The terms path
and curve will be used interchangeably in this thesis.

3.1.2 Piecewise parametric curve
The representation of complex shapes are most often achieved by piecing together smaller
curve segments with a limited validity interval. In comparison with a representation of the
same shape by a single higher order curve, one achieves lower function complexity and one
avoids ill-conditioned parameters. The piecewise parametric curve does however demand
consideration at the transition points between the subpaths. For planar paths consisting
of a number of curve segments, each single curve segment can be expressed by the set
(Lekkas, 2014)

Pi :=
{

pi ∈ R2 | pi = pi,p($) ∀ $ ∈ Ii = [$i,0, $i,1] ⊂ R
}
, (3.2)

and the path can be written as a superset of the m curve segments

Ps =
m⋃
i=1
Pi. (3.3)

7



Chapter 3. Path parameterization

3.1.3 Continuity
In the context of planar curves the concept of continuity is of importance, and it is used
to describe smoothness. For a parametric curve, one distinguish between parametric and
geometric continuity. This section will present definitions for both types of continuity, and
elaborate on the differences.

Parametric continuity

Parametric continuity is related to the derivatives of the parametric curve, and is given by
the notation Cn, for which n denotes the degree of continuity. In this thesis the following
definition for parametric continuity will be used (Barsky and DeRose, 1984)

Definition 3.1. Cn and regularity

• A scalar function f($) belongs to the class Cn on the interval [$0, $1] if it is
n-times continuously differentiable on [$0, $1]. It is regular on [$0, $1] if

df

d$
6= 0 ∀$ ∈ [$0, $1]. (3.4)

• A parameterization pp($) = [xp($), yp($)]T , $ ∈ [$0, $1] is Cn if each of the
coordinate functions xp($) and yp($) is Cn on [$0, $1]. It is regular if

dpp
d$
6= 0 ∀$ ∈ [$0, $1]. (3.5)

• A curve is regular if it can be generated by a regular parameterization.

In the case where a curve is constructed by joining several smaller curve segments together,
the continuity at the joint must be considered. The following definition can be used to
established the degree of parametric continuity in such cases (Barsky and DeRose, 1984)

Definition 3.2. Let pp($) and qp($) be regularCn parametrizations such that pp($1) =
qp($0) = J. That is, the "right" endpoint of pp agrees with the "left" endpoint of qp.
They meet with n-th order parametric continuity (Cn) at J if

dkpp
d$k

∣∣∣∣
$1

= dkqp
d$k

∣∣∣∣
$0

k = 1, ..., n. (3.6)

Geometric continuity

Geometric continuity is a relaxed form of parametric continuity, that place less emphasis
on the particulars of the parameterization. This type of continuity is of importance, as para-
metric continuity often disallows many parameterizations that are visually smooth. Mean-
ing that parametric continuity does not necessarily reflect the smoothness of the curve, but
rather the smoothness of the parameterization.

8



3.1 General path parameterization

Definition 3.3. Geometric continuity (Barsky and DeRose, 1984, 1989)
Let pp($) and qp($) be regular Cn parametrizations such that pp($1) = qp($0) = J,
where J is a simple point. They meet with n-th order geometric continuity, denoted Gn,
at J if there exist a parameterization q̃p($) to qp($) such that pp($) and q̃p($) meet
with Cn continuity at the point J.

For a piecewise parametric curve, the following interpretation of geometric continuity up
to the second degree can be adopted:

G0: The curve is connected.

G1: The unit tangent vector is continuous.

G2: The curvature is continuous.

Example 3.1. Let

pp($) =
[
$
$

]
, $ ∈ [0, 1], (3.7)

qp($) =
[

sin($ − π
4 ) + sin(π4 ) + 1

cos($ − π
4 )− cos(π4 ) + 1

]
, $ ∈ [0, π], (3.8)

be two parametrizations joined together in order to create one curve, see Figure 3.1.

0 0.5 1 1.5 2 2.5

0

0.5

1

1.5

2

2.5

Figure 3.1: Two parametric curves with G1 continuity.

It is obvious from Figure 3.1 that the curve is C0 continuous, since they share a common
endpoint J. To verify if the curve is C1 continuous we can use Definition 3.2, which
demands that the first derivatives are equal at the joint endpoint. The derivatives are

dpp
d$

∣∣∣∣
$1

=
[
1
1

]
dqp
d$

∣∣∣∣
$0

=
[√

2/2√
2/2

]
, (3.9)

revealing that the curve is not C1 continuous. However, if we normalize the vectors given
by Eq. (3.9) we see that the unit tangent vectors are equal, which implies that the curve is
G1 continuous.
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Chapter 3. Path parameterization

3.1.4 Arc length

The arc length of a parametric curve is described as the distance a particle has to travel
along the curve from one end to the other. This positive scalar value is derived from
Pythagoras’ rule, and is given as

s =
∫ $1

$0

∣∣p′p(τ)
∣∣ dτ =

∫ $1

$0

√
x′p(τ)2 + y′p(τ)2 dτ, (3.10)

where τ is the integration variable. The arc length between two points on the curve can be
found by changing the bounds of the integral.

Approximated arc length

The expression for the arc length given by Eq. (3.10) does not necessarily have a closed
form, and as a consequence it may be necessary to find the arc length through some other
means. In such cases, one could turn to numerical methods or approximations in order to
estimate the arc length. The accuracy of the estimation is dependent upon the method used.
In this thesis the arc length will be approximated by flattening the curve and calculating
the linear distance from point to point, as:

sn =
n∑
i=1
|pp($i)− pp($i−1)| , (3.11)

where n is the segment count and i is used to denote specific values of $ ∈ [$0, $1].
This approach does come with an error, but this error could be made arbitrarily small by
increasing the segment count.

3.1.5 Path curvature

Curvature is a measure for the rate at which a curve is turning, away from its tangent line,
at any point along the curve. In the case where the curve is parameterized with respect to
arc length pp(s), the curvature will be defined as (Adams and Essex, 2013)

κ(s) =
∣∣∣∣dT
ds

∣∣∣∣ , (3.12)

where T = dpp/ds is the tangent. Further, the radius of curvature is the reciprocal of the
curvature, given as

R(s) = 1
κ(s) . (3.13)

The radius of curvature is the radius of the circle through pp(s) that most closely approx-
imates the curve near that point. This circle is know as the osculating circle, see Figure
3.2.
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3.1 General path parameterization

Figure 3.2: Osculating circle at pp($).

The formulas given above are not so useful when the curve is not parameterized in terms
of the arc length. If the curve is given by a general parameterization, the curvature can be
found as

κ($) =
∣∣p′p($)× p′′p($)

∣∣∣∣p′p($)
∣∣3 =

∣∣x′p($)y′′p ($)− x′′p($)y′p($)
∣∣

(x′p($)2 + y′p($)2) 3
2

. (3.14)

Signed curvature

In some cases it is convenient to know the direction for which the curve is turning, in such
cases one can use the signed curvature, given as

κ($) =
p′p($)× p′′p($)∣∣p′p($)

∣∣3 = x′($)y′′($)− x′′($)y′($)
(x′($)2 + y′($)2) 3

2
. (3.15)

The sign of the curvature will indicate the direction for which the unit tangent vector
rotates, as a function of the parameter $ along the curve. For κ > 0 the unit tangent will
rotate counterclockwise, and for κ < 0 rotate clockwise.
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Chapter 3. Path parameterization

3.2 Bézier curves
The Bézier curve is a polynomial parametric curve, which can be utilized in order to
create smooth paths and shapes. They have a wide range of different applications, and
are established as a common tool in computer aided design (CAD), computer graphics,
animation, path planning and other related fields. A piecewise parametric curve consisting
of Bézier curves, are refereed to as the Bézier spline. This section will present a short
historical remark on the Bézier curve, as well as a mathematical formulations, in addition
to some important function operations. The mathematical formulations in this section are
based off of Bartels et al. (1986) and Sederberg (2016).

3.2.1 History and background
The mathematical basis for the Bézier curve are the Bernstein polynomials, named after
the Russian mathematician Sergei Natanovich Bernstein. These polynomials were first
introduced and published in 1912, as a means to constructively prove the Weierstrass theo-
rem. In other words, as the ability of polynomials to approximate any continuous function,
to any desired accuracy over a given interval. The slow convergence rate and the techno-
logical challenges in the construction of the polynomials at the time of publication, led to
the Bernstein polynomial basis being seldom used for several decades to come.

The Bernstein polynomials resurfaced during the 1960s in which coincidentally two french
automobile engineers of different companies, started to search for ways of representing
complex shapes using digital computers. The motivation for finding a new way to repre-
sent free-form shapes, was due to the expensive process of sculpting such shapes at the
time, which was done using clay.

The first engineer concerned with this matter was Paul de Faget de Casteljau working for
Citroën, who did his research in 1959. His findings lead to what is known as de Casteljau’s
algorithm, a numerically stable method to evaluate Bézier curves. De Casteljau’s work
were only recorded in Citroën’s internal documents, and remained unknown to the rest of
the world for a long time. His findings are however today, a great tool for handling Bézier
curves. The person who lends his name to the Bézier curves, and is principally respon-
sible for making the curves so well known, is the engineer Pierre Ètienne Bézier. Bézier
worked at Renault, and published his ideas extensively during the 1960s and 1970s. Both
Bézier’s and de Casteljau’s original formulations did not explicitly invoke the Bernstein
basis, however the key features are unmistakably linked to it, and today the Bernstein basis
is a key part in the formulation. This section has been inspired by the work presented in
Farouki (2012), the interested reader is therefore refereed to this article for further reading
on the history of Bernstein polynomials and Bézier curves.

3.2.2 General definition
A Bézier curve is defined by a set of control points p0 to pn for which n denotes the
degree of the curve. The number of control points for a curve of degree n is n+ 1, and the
first and last control points will always be the end points of the curve. The intermediate
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3.2 Bézier curves

points does not necessarily lay on the curve itself. The Bézier curve can be express on a
general form as

pp($) =
n∑
i=0

Bni ($)pi, $ ∈ [0, 1], (3.16)

where $ defines a normalized time variable and Bni ($) denotes the blending functions of
the Bézier curve, which are Bernstein polynomials defined as

Bni =
(
n

i

)
(1−$)n−i$i, i ∈ {0, 1, . . . , n}. (3.17)

The binomial coefficient is given as(
n

i

)
= n!
i! (n− i)! . (3.18)

The polygon formed when connecting the control points by straight lines, from p0 through
pn, creates what is know as the control polygon. The convex hull of the control polygon
contains the Bézier curve.

Matrix representation

In some applications it might be more sensible to express the Bézier curve in terms of
matrix operations. This can be achieved by expressing the parameters, the coefficients and
the control points separately (Joy, 2000):

pp($) =
[
1 $ . . . $n

]

b0,0 0 . . . 0
b1,0 b1,1 . . . 0

...
...

. . . 0
bn,0 bn,1 . . . bn,n




p0
p1
...

pn

 , (3.19)

where the coefficients can be found as

bi,j = (−1)i−j
(
n

i

)(
i

j

)
. (3.20)

The advantage of using the matrix representation is that it simplifies the computation of
any derivatives, as only the parameter vector needs derivation.

Example 3.2. Lets consider a fourth order Bézier curve, with the Bernstein polynomials
given as

B4
0($) = (1−$)4 B4

1($) = 4(1−$)3$

B4
2($) = 6(1−$)2$2 B4

3($) = 4(1−$)$3

B4
4($) = $4.
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Chapter 3. Path parameterization

These functions are shown in Figure 3.3.

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

Figure 3.3: The Bernstein polynomials.

Further, lets define the following control points

p0 = [1, 1]T , p1 = [2, 4]T , p2 = [7, 5]T ,
p3 = [10, 3]T , p4 = [10, 1]T .

The Bézier curve created by these control points, are shown in Figure 3.4.

0 1 2 3 4 5 6 7 8 9 10 11
0

1

2

3

4

5

6

Figure 3.4: A fourth order Bézier curve with the control polygon.

In the figure above, we can see that the Bézier curve is contained within the convex hull
(control polygon and dotted line).
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3.2 Bézier curves

3.2.3 Extension to arbitrary interval
In the general definition of the Bézier curve, the parameter of the curve is defined on the
unit domain. While this interval is the most commonly used, it might in some cases be
more useful to define the curve parameter on another interval. This could be especially
useful when fitting several Bézier curves together. An arbitrary interval may be defined as

$ ∈ [$0, $1]. (3.21)

This corresponds to the end points pp($0) = p0 and pp($1) = pn. By modification of
Eq. (3.16) one then obtains the following expression

pp($) =
n∑
i=0

(
n

i

)(
$1 −$
$1 −$0

)n−i(
$ −$0

$1 −$0

)i
pi, $ ∈ [$0, $1]. (3.22)

3.2.4 Subdivision of Bézier curves
A useful algorithm when dealing with the Bézier curve is the subdivision algorithm, also
know as de Casteljau algorithm. This algorithm can be used to subdivide a Bézier curve
defined on the unit domain, into two new Bézier curves, the first of them defined on [0, τ ]
and the second on [τ, 1]. This is accomplished by creating a set of new control points

pji = (1− τ)pj−1
i + τpj−1

i+1 , j ∈ {1, . . . , n}, i ∈ {0, . . . , n− j}. (3.23)

By the use of these new control points the two new Bézier curves can be represented by
the following equations

pp,1($) =
n∑
i=0

Bni ($
τ

)pji , $ ∈ [0, τ ], (3.24)

pp,2($) =
n∑
i=0

Bni ($ − τ1− τ )pn−ji , $ ∈ [τ, 1]. (3.25)

The subdivision algorithm can be used for curves of any degree, and is extremely valu-
able when computing the coordinates and tangent vector of any point along the curve. A
Bézier curve that is repeatedly subdivided will create a collection of control polygons that
converge towards the curve. The algorithm therefore yields a simple way of plotting the
Bézier curve.

3.2.5 Degree elevation
An interesting property of the Bézier curve is that any curve of degree n, can be exactly
represented by a curve of degree n+ 1 or higher. The degree elevation of the Bézier curve
is performed by giving the higher order curve specific control points. By denoting these
new control points as p∗i , they can be computed as

p∗i = αipi−1 + (1− αi)pi, αi = i

n+ 1 . (3.26)
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Chapter 3. Path parameterization

The degree elevation works for any Bézier curve and it can be applied repeatedly to raise
the degree to any desired level. It is a process that is especially useful when it is necessary
to express a curve of a specific degree.

3.2.6 Derivatives
The derivative of any Bézier curve of degree n, is a Bézier curve of degree n − 1. As
the control points are constant and independent of the curve parameter $, the derivative is
found by computing the derivative of the Bernstein polynomials. With basis in Eq. (3.17),
the derivatives of the Bernstein polynomials can be given as

Bn′i ($) = n
(
Bn−1
i−1 ($)−Bn−1

i ($)
)
. (3.27)

The derivative of the Bézier curve then takes the following form

p′($) = n

n−1∑
i=0

Bn−1
i ($)(pi+1 − pi), $ ∈ [0, 1]. (3.28)

To further simplify this expression one can define the control points of the first derivative
as, qi = pi+1 − pi, resulting in the following expression

p′($) = n

n−1∑
i=0

Bn−1
i ($)qi, $ ∈ [0, 1]. (3.29)

The first derivative curve is referred to as the hodograph of the original Bézier curve. To
determine higher order derivatives, one could easily use Eq. (3.29), and then apply the
same approach as previously presented in this section. However, it is possible to derive a
general expression for the k-th derivative of any Bézier curve. As the control points of the
derivative are defined by the difference between the control points of the previous step, we
can derive a general expression for this as

qki = qk−1
i+1 − qk−1

i , i ∈ {0, 1, . . . , n− k}, (3.30)

where n denotes the degree of the original curve, and k denotes the derivative. Further, qki
gives the control point for the k-th derivative and qk−1

i are the control points of the (k−1)-
th derivative. Note that to find the control points of the k-th derivative, it is necessary to
find the control points of all the derivative before k. After the control points are determined
one can express the k-th derivative of the Bézier curve as

p(k′)($) = n(n− 1)(n− 2)...(n− k + 1)
n−k∑
i=0

Bn−ki ($)qki , $ ∈ [0, 1]. (3.31)

Example 3.3. Consider a fifth order Bézier curve, then the first and second derivatives
evaluated at the endpoints will be given as

p′(0) = 5(p1 − p0) p′(1) = 5(p5 − p4) (3.32)
p′′(0) = 20(p2 − 2p1 + p0) p′′(1) = 20(p5 − 2p4 + p3). (3.33)
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Chapter 4
System modeling and properties

4.1 Vehicle modelling
This section will cover some fundamentals in vehicle modeling, including kinematics and
kinetics. A horizontal plane model for a surface vessel will also be presented.

4.1.1 Kinematics

Kinematics treats only the geometrical aspects of motion and is used to describe the posi-
tion, velocity and acceleration of the body. Kinetics are used to describe the forces causing
these motions.

Reference frames

In kinematics one distinguish between global and local reference frames. The global refer-
ence frames have their origin in the center of Earth, and they are used for global navigation.
Examples of such frames are the Earth-centered inertial- (ECI) and the Earth-centered
Earth-fixed (ECEF) reference frames. The local reference frames have their origin placed
on a geographically stationary point or on the vehicle itself. Only local reference frames
will be used in this thesis, and a short summary of these frames are given below (Fossen,
2011)

NED: The North-East-Down coordinate system {n} = (xn, yn, zn) with origin on is
defined relative to the Earth’s reference ellipsoid. For this system the x axis
points towards true North, the y axis points towards East, and the z axis points
downwards normal to the Earth’s surface. The location of the frame’s origin is
determined by using the angles for longitude and latitude.

BODY: The body-fixed reference frame {b} = (xb, yb, zb) with origin ob is a moving
coordinate frame that is fixed to the craft. The position and orientation of the
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craft are described relative to an inertial reference frame, while the linear- and
angular velocities are expressed in the body-fixed coordinate system.

For marine crafts operating in a local area, the longitude and latitude can be approximated
as constant. This is usually referred to as flat Earth navigation, and it allows one to assume
that {n} is an internal frame.

Position and velocity variables

In order to describe the motion of the marine craft, the same notion as in SNAME (1950)
will be adopted in this thesis. The linear and angular velocities will be given in the BODY
frame, while the positions and Euler angles will be given in the NED frame. The notation
for all six degrees of freedom (DOF) are summarized in the table below

Table 4.1: Notation for motion variables.

DOF
Linear and
angular velocities

Positions and
Euler angles

1 motions in the x direction (surge) u x
2 motions in the y direction (sway) v y
3 motions in the z direction (heave) w z
4 rotation about the x axis (roll) p φ
5 rotation about the y axis (pitch) q θ
6 rotation about the z axis (yaw) r ψ

The quantities expressed in Table 4.1, will further be expressed in a vectorial setting as

η = [x, y, z, φ, θ, ψ]T , ν = [u, v, w, p, q, r]T , (4.1)

where η and ν are known as the generalized position- and generalized velocity vectors,
respectively. Note that the positions in the {n} frame often are denoted by [N,E,D], this
will however not be done in this thesis.

Rotation matrix

The horizontal motion of a ship is described by the motion components in surge, sway
and yaw, reducing the generalized position and velocity vectors to η = [x, y, ψ]T and
ν = [u, v, r]T respectively. This implies that all dynamics associated with heave, pitch
and roll are neglected. The kinematic equations of motion is in this case reduced to one
principal rotation about the z axis, and can be formulated in a vectorial setting as

η̇ = R(ψ)ν, (4.2)

where the rotational matrixR(ψ) describes the coordinate transformation from {b} to {n}
and is given as

R(ψ) =

cos(ψ) − sin(ψ) 0
sin(ψ) cos(ψ) 0

0 0 1

 . (4.3)
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Course, heading and sideslip

For marine crafts performing maneuvers in the horizontal plane the relationship between
the angular quantities course, heading and sideslip, is of importance. The relationship
between these variables are shown in Figure 4.1.

Figure 4.1: Relationship between course χ, heading ψ and sideslip β.

In this figure, the speed of the marine craft is denoted by U and is given as

U =
√
u2 + v2. (4.4)

Further, the course denoted by χ, is the angle between the xn axis of {n} and the velocity
vector of the craft. The sideslip denoted by β, is found as

β = sin−1
( v
U

)
, (4.5)

and the relationship between the three angular variables is expressed as

χ = ψ + β. (4.6)

Ocean currents

In the development of mathematical models for ships one often accounts for ocean cur-
rents. The current may be assumed as irrational and constant, in which case the relative
velocity of the ship νr, apposed to the velocity of the current νc is given as

νr = ν − νc, (4.7)

where the ocean current velocity are described through components in surge, sway and
heave, for six degrees of freedom.
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4.1.2 Vehicle dynamics
The equations of motion for a marine craft is derived by carefully studying the motions
of rigid bodies, hydrodynamics and hydrostatics. In Part 1 of Fossen (2011) an extensive
study on these topics are presented, and the equations are formalized in a vectorial setting.
The 6 DOF marine craft equations of motion are here given as

η̇ = J(η)ν (4.8)
Mν̇ +C(ν)ν +D(ν)ν + g(η) = τ + τwind + τwave, (4.9)

whereM is the mass and inertia matrix,C(ν) is the Coriolis and centripetal matrix,D(ν)
is the damping matrix, g(η) is the gravitational and buoyancy forces, and J(η) is a 6 DOF
kinematic transformation matrix. Further the control forces and moments are denoted τ ,
while wind and wave forces are denoted by τwind and τwave, respectively.

4.1.3 Vehicle models
The complexity of the vehicle model, and the number of differential equations needed
for a certain representation will vary depending on the purpose of the model. In general
one distinguish between three types of models; simulation model, control design model
and observer design model. (Fossen, 2011) These models are of different fidelity, which
indicates how accurately they describe the real system, whereas the simulation model is
of the highest fidelity. For any marine craft model the rigid body kinetics are derived by
applying Newtonian mechanics, while external forces and moments acting on the marine
craft are usually modeled by using either:

Maneuvering theory: The study of ships moving in calm water, with a positive constant
speed. It is assumed that the the hydrodynamic coefficients are frequency independent,
which implies no wave excitation. The maneuvering model might be both linear and
nonlinear, depending on the application. Maneuvering is associated with course keeping,
course changes, turning, and stopping.

Seakeeping theory: The study of ships moving in a seaway at zero or constant speed. The
hydrodynamic coefficients are computed as functions of the wave excitation frequency
using the hull geometry, and mass distribution. Seakeeping models are usually derived
within a linear framework.

Horizontal plane model

The horizontal plane model is described by the motions in surge, sway and yaw, and is
thereby a 3 DOF model. Through the use of maneuvering theory and by assuming zero
current, the equations of motion given by Eq. (4.8) and Eq. (4.9) can be reduced to

η̇ = R(ψ)ν (4.10)
Mν̇ +C(ν)ν +D(ν)ν = τ . (4.11)
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The system matrices are often derived under the assumption of homogeneous mass dis-
tribution and xz-plane symmetry, which allows for a decoupling of surge, from sway and
yaw. The system inertia matrix M includes both rigid body and added mass terms, and
has the following properties M = MT > 0 and Ṁ = 0. The inertia matrix can be
expressed as

M = MRB +MA =

m−Xu̇ 0 0
0 m− Yv̇ mxg − Yṙ
0 mxg − Yṙ Iz −Nṙ

 , (4.12)

where m is the mass of the ship, Iz is the moment of inertia in yaw and xg is the distance
between the center of gravity (CG) and the origin of {b}. The remaining terms describe
hydrodynamic coefficients for added mass, using SNAME (1950) notation. The Coriolis
and Centripetal matrix can be parameterized as a skew symmetric matrix, that is C(ν) =
−CT (ν). The Coriolis and Centripetal will also include both rigid body and added mass
terms, given as

C(ν) = CRB(ν) +CA(ν), (4.13)

where

CRB(ν) =

 0 0 −m(xgr + v)
0 0 mu

m(xgr + v) −mu 0

 , (4.14)

CA(ν) =

 0 0 Yv̇v + Yṙr
0 0 −Xu̇u

−Yv̇v − Yṙr Xu̇u 0

 . (4.15)

The total hydrodynamic damping matrix accounts for both linear and nonlinear terms, and
can be derived based on surge resistance and cross-flow drag, or second order modulus
functions. In the case of the latter, one can express the total damping as

D(ν) = D +Dn(ν), (4.16)

whereDn(ν) is the non-linear damping matrix andD denotes the linear damping matrix.
The linear damping matrix, using SNAME (1950) notation, is given as

D =

−Xu 0 0
0 −Yv −Yr
0 −Nv −Nr

 . (4.17)

The linear damping will be dominant for low-speed maneuvering and stationkeeping,
while non-linear damping will dominate at high speed. Due to this, one often neglects
linear damping when considering higher speeds. In Fossen (2011) a slightly different for-
mulation is used, where the added Coriolis and Centripetal matrix and the damping matrix
are collected into one matrix. This is of convenience as it is difficult to distinguish between
the terms of these matrices.
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4.2 Differential flatness
Differential flatness is a property of some controlled dynamic systems that allows for the
trivialization of the trajectory planning task, without solving differential equations, while
optionally simplifying the problem of feedback controller design to that of a set of de-
coupled linear time invariant systems. Differential flatness or flatness in short is roughly
speaking equivalent to controllability, and will thereby apply to most systems. The flatness
property allows for a complete parameterization of all system variables including states,
inputs and outputs, in terms of a finite set of fictitious independent variables, named flat
outputs, and a number of their time derivatives. (Sira-Ramírez and Agrawal, 2004)

4.2.1 Historical remark
The mathematicians E. Cartan and D. Hilbert can be considered as the forefathers of dif-
ferential flatness, in the context of underdetermined sets of differential equations. The
problem set by D. Hilbert in 1912, were that of the second-order Monge’s equation

d2y

dx2 = F (x, y, z, dy
dx
,
dz

dx
),

which describes a set of underdetermined differential equations. Hilbert sought a solution
to this equation, that is not based on the computation of integrals, but rather through a
group of transformations called invertible without integral. Cartan followed suit by a re-
work of the question set by Hilbert, and showed how calculations on the Pfaff systems,
permits a classification of the second-order Monge’s equation, that admits a solution with-
out integrals. Cartan also suggested the notion of absolute equivalence, but did not go as
far as to define it in precise terms. (Rigatos, 2015)

The precise formulation of differential flatness were introduced by Professor Michel Fliess
and his coresearcheres: Jean Levine, Philippe Martin and Pierre Rouchon. One of the first
fundamental articles written by this team is devoted to flatness of nonlinear systems and
the associated defect, which is the lack of flatness. (Fliess et al., 1992) The setting of this
article is that of differential algebra, and the idea of flatness appears as a natural outcome
of the equivalence problem. Some years later, the team published a complete exposition
on all developments concerning flatness and defect, including a set of physical examples.
(Fliess et al., 1995)

It soon became apparent that differential flatness could be recast in a purely differential
geometric setting involving infinite jet spaces, differential varieties and Cartan fields. This
idea did involve space and time coordinate transformation, thus bringing the Lie-Bäcklund
transformation into attention. The complete recast of differential flatness in this new set-
ting were published by the team in Fliess et al. (1999).

Today differential flatness is considered a great tool offering power, simplicity and gen-
erality in solutions to advanced control, state estimation and trajectory problems. For
further reading on the history of differential flatness the interested reader is refereed to
Sira-Ramírez and Agrawal (2004).
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4.2.2 Flat systems

A system is said to be differentially flat if one can find a set of outputs, equal in number to
the number of inputs, such that one can express all states and inputs as functions of these
outputs and their derivatives. In this thesis a somewhat informal definition of differential
flatness, based off of the description presented in Van Nieuwstadt and Murray (1998), will
be adopted

Definition 4.1. Consider a nonlinear system described as

ẋ = f(x,u) x ∈ Rn, u ∈ Rm (4.18)
y = h(x) y ∈ Rn, (4.19)

where x denotes the state vector, u denotes the control input vector and y denotes the
tracking output vector. Such a system is said to differentially flat if there exist a vector
z ∈ Rm, known as the flat output, of the form

z = ζ(x,u, u̇, . . . ,u(r)), (4.20)

such that the states and the inputs can be described as

x = φ(z, ż, . . . ,z(q)), (4.21)

u = α(z, ż, . . . ,z(q)), (4.22)

where ζ, φ and α are smooth functions, and r and q are finite.

There exist more formal ways of defining differential flatness, one such way is presented
in Rigatos (2015). In the case were the flat outputs are only described in terms of the states
of the system, the system is often refereed to as being 0-differentially flat. Determining the
flat outputs for a given system is in general difficult, as there does not exist any systematic
method for doing so, except for that of linear systems and affine nonlinear single input
systems. In such a way the determination of the flat outputs may resemble that of Lyapunov
functions, in that educated guessing and physical intuition is often necessary.

Non-differentially flat systems

There exist several mathematically challenging nonlinear systems that are know to be non-
differentially flat, some examples are the ball and beam and the inverted pendulum. The
lack of flatness is defined through the defect of the system, which usually is represented by
the set of state variables that are not expressible through the flat outputs, associated with
the largest flat subsystem. A special class of non-differentially flat systems are known as
Liouvillain systems. For these systems the defect variables can be expressed in terms of
quadratures of differential functions of the flat outputs. (Sira-Ramírez and Agrawal, 2004)
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4.2.3 Flatness and surface vessels
In trajectory problems and path planning the differential flatness property can be exploited
by assigning functions to the flat outputs, thus obtaining trajectories for all system vari-
ables. It is this specific trait of differential flatness that will be exploited in this thesis. The
obtained trajectories will also reflect the dynamics of the system.

The level of actuation is in the case of surface vessel detrimental in the process of proving
the system to be differentially flat. If the vessel is fully actuated then most model represen-
tations could quite easily be proven to be flat. The case is entirely different in the case of
underactuated surface vessels, for which most model representations are non-differentially
flat. The horizontal plane model presented earlier are among these models. Albeit most
underacted surface vessel models being non-differentially flat, it is possible to prove that
some models are Liouvillain, which can be done for the model presented in Pettersen and
Nijmeijer (1998). The proof is presented in Sira-Ramírez and Agrawal (2004).

One of the main objectives of this thesis is to design a path planning algorithm for an
underactuated surface vessel, that utilized the differential flatness property of the vehicle.
The model that will be used in the path planning algorithm, is a simplified version of the
horizontal plane model presented in Chapter 4.1.3. The simplification of the model must
be performed in order to obtain a differentially flat model. In any process where the com-
plexity of a model is reduced certain aspect of the dynamics are lost, this is unfortunate in
our case, but at the same time necessary. Some justification can be found if one considers
the fact that most path planning algorithms view the vehicle as a point mass. It is also
possible to assumed that the unmodeled dynamics are accounted for by the controller.

The following assumptions and simplifications to the horizontal plane model are done in
order to obtain a flat model:

• The ship is assumed to have fore/aft symmetry, which would mean that all off-
diagonal entries and couplings in the inertia and damping matrices can be elimi-
nated.

• The non-linear damping is also excluded, this assumption is valid if the speed of the
vessel is assumed low.

Under these assumption one obtains the following mathematical model

η̇ = R(ψ)ν (4.23)
Mν̇ +C(ν)ν +Dν = τ , (4.24)

where τ = [τ1, 0, τ3] and the system matrices takes on the following form

C(ν) =

 0 0 −m22v
0 0 m11u

m22v −m11u 0

 , M = diag{m11,m22,m33},
D = diag{d11, d22, d33}.

(4.25)
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The mathematical model for the surface vessel can be written on component form as

ẋ = u cos(ψ)− v sin(ψ) (4.26a)
ẏ = u sin(ψ) + v cos(ψ) (4.26b)

ψ̇ = r (4.26c)
u̇ = vr − β1u+ τu (4.26d)
v̇ = −ur − β2v (4.26e)
ṙ = −β3r + τr, (4.26f)

where the following change in notation has been applied

m11 = m22, β1 = d11

m11
, β2 = d22

m22
, β3 = d33

m33
, τu = τ1

m11
, τr = τ3

m33
.

This model is differentially flat by Definition 4.1, if the flat outputs of the system are
chosen as the coordinates of the vessel in the North-East plane, that is z = [x, y].

Proof. In order to prove that the ship model is differentially flat, we will first express the
derivatives of Eq. (4.26a) and (4.26b)

ẍ = (u̇− vψ̇) cos(ψ)− (v̇ + uψ̇) sin(ψ), (4.27)

ÿ = (v̇ + uψ̇) cos(ψ) + (u̇− vψ̇) sin(ψ). (4.28)

Using these equations it can easily be proven that the following relations hold

ẍ+ β2ẋ = (u̇− vψ̇ + β2u) cos(ψ)− (v̇ + uψ̇ + β2v) sin(ψ), (4.29)

ÿ + β2ẏ = (v̇ + uψ̇ + β2v) cos(ψ) + (u̇− vψ̇ + β2u) sin(ψ). (4.30)

The expressions inside the parentheses can be simplified by inserting Eq. (4.26d) and
(4.26e), resulting in

u̇− vψ̇ + β2u = vr − β1u+ τu − vr + β2u = (β2 − β1)u+ τu, (4.31)

v̇ + uψ̇ + β2v = −ur − β2v + ur + β2v = 0, (4.32)

by defining βu := β2 − β1, Eq. (4.29) and (4.30) can be expressed as

ẍ+ β2ẋ = (βuu+ τu) cos(ψ), (4.33)
ÿ + β2ẏ = (βuu+ τu) sin(ψ). (4.34)

Using these two expressions we obtain the following relation
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ÿ + β2ẏ

ẍ+ β2ẋ
= (βuu+ τu) sin(ψ)

(βuu+ τu) cos(ψ) = tan(ψ) ⇐⇒ ψ = tan−1
(
ÿ + β2ẏ

ẍ+ β2ẋ

)
. (4.35)

Thus Eq. (4.35) proves that ψ can be written as a function of the flat outputs and their
derivatives. It is further possible to prove that the following relations hold

ẋ(ẍ+ β2ẋ) = (τu + βuu)(u cos(ψ)− v sin(ψ)) cos(ψ), (4.36)
ẏ(ÿ + β2ẏ) = (τu + βuu)(u sin(ψ) + v cos(ψ)) sin(ψ). (4.37)

If the two expressions above are added together one obtains the following

ẋ(ẍ+ β2ẋ) + ẏ(ÿ + β2ẏ) = u(τu + βuu). (4.38)

Further, the following can be proven to hold

(ẍ+ β2ẋ)2 + (ÿ + β2ẏ)2 = (τu + βuu)2. (4.39)

Dividing Eq. (4.38) by the square root of Eq. (4.39) one obtains the following

u = ẋ(ẍ+ β2ẋ) + ẏ(ÿ + β2ẏ)√
(ẍ+ β2ẋ)2 + (ÿ + β2ẏ)2

. (4.40)

Thus Eq. (4.40) proves that u can be written as a function of the flat outputs and their
derivatives. Further, it can be proven that the following holds

ẋÿ = (u cos(ψ)− v sin(ψ))((uψ̇ + v̇) cos(ψ) + (u̇− vψ̇) sin(ψ)), (4.41)

ẏẍ = (u sin(ψ) + v cos(ψ))((u̇− vψ̇) cos(ψ)− (uψ̇ + v̇) sin(ψ)). (4.42)

Subtracting Eq. (4.41) from Eq. (4.42) and through some intermediate calculations the
following expression is obtained

ẏẍ− ẋÿ = v(τu + βuu). (4.43)

Now dividing this expression by the square root of Eq. (4.39), one can derive the following
expression for the sway velocity

v = ẏẍ− ẋÿ√
(ẍ+ β2ẋ)2 + (ÿ + β2ẏ)2

. (4.44)

Thus proving that v can be expressed as a function of the flat outputs and their derivatives.
The derivative of Eq. (4.35) can be expressed as

ψ̇

cos2(ψ) = (y(3) + β2ÿ)(ẍ+ β2ẋ)− (x(3) + β2ẍ)(ÿ + β2ẏ)
(ẍ+ β2ẋ)2 . (4.45)

To simplify this expression one can use the following identity
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1
cos2(ψ) = tan2(ψ) + 1, (4.46)

which implies that

cos2(ψ) = (ẍ+ β2ẋ)2

(ẍ+ β2ẋ)2 + (ÿ + β2ẏ)2 . (4.47)

Inserting this expression into Eq. (4.45) and using the relation given in Eq. (4.26c) one
obtains

r = (y(3) + β2ÿ)(ẍ+ β2ẋ)− (x(3) + β2ẍ)(ÿ + β2ẏ)
(ẍ+ β2ẋ)2 + (ÿ + β2ẏ)2 . (4.48)

Thus proving that r can be expressed as a function of the flat outputs and their derivatives.
As we now have proved that all states can be written as functions of the flat outputs, the
task of proving the inputs to be flat becomes trivial. To prove that the τu is flat we will
write Eq. (4.26d) as

τu = u̇− vr + β1u. (4.49)

Now finding the derivative of Eq. (4.40) and inserting the expressions for the remaining
states into this equation, yields the following

τu = (ẍ+ β1ẋ)(ẍ+ β2ẋ) + (ÿ + β1ẏ)(ÿ + β2ẏ)√
(ẍ+ β2ẋ)2 + (ÿ + β2ẏ)2

. (4.50)

Thus proving that τu is indeed flat. To further prove that τr is flat, we will write Eq. (4.26f)
as

τr = ṙ + β3r. (4.51)

Finding the derivative of Eq. (4.48) and inserting this into the expression above one obtains

τr = (y(4) + β2y
(3))(ẍ+ β2ẋ)− (x(4) + β2x

(3))(ÿ + β2ẏ)
(ẍ+ β2ẋ)2 + (ÿ + β2ẏ)2

−
2
(
(y(3) + β2ÿ)(ẍ+ β2ẋ)− (x(3) + β2ẍ)(ÿ + β2ẏ)

)
((ẍ+ β2ẋ)2 + (ÿ + β2ẏ)2)2

(
(ẍ+ β2ẋ)(x(3) + β2ẍ)

+ (ÿ + β2ẏ)(y(3) + β2ÿ)
)

+ β3

(
(y(3) + β2ÿ)(ẍ+ β2ẋ)− (x(3) + β2ẍ)(ÿ + β2ẏ)

(ẍ+ β2ẋ)2 + (ÿ + β2ẏ)2

)
.

(4.52)

Thus proving that τr can be written as a function of the flat outputs and their derivatives,
and that the system is flat.
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Chapter 5
Path planning and optimization

This chapter will deal with the main objective of this thesis, which is to propose a path
planning algorithm that utilizes Bézier curves. The theory presented in the previous chap-
ters will serve as the basis for the development of this algorithm.

Problem description

The path planning algorithm that has been developed and that will be presented in this
chapter, can be used to generate a path for "A-to-B moves". This means that the path is
generated between two predetermined waypoints, indicating the initial and final position
of the craft. The path is further generated in the North-East plane.

In order to generate complex paths, while taking both physical and workspace constraints
into consideration, a Bézier spline will be used to represent the path. This means that the
path will be piecewise parametric, and described by m Bézier curve segments. This will
further allow us to represent the path as a superset, as presented in Chapter 3.1.2. The
parameter interval will be chosen equal for the m curve segments as $ ∈ [0, 1]. This is
done to lessen the complexity of the formulation, and due to implementational aspects.
An alternative approach would be to use an increasing parameter interval for the different
curve segments, by using the procedure presented in Chapter 3.2.3.

The developed path planning algorithm is intended to be used for an underactuated surface
vessel, but might also be used for wheeled robots and fully actuated vessels. The mathe-
matical model used to represent the ship in the proposed algorithm, is differentially flat,
and presented in Chapter 4.2.3. The path tangential will further be used as the course for
the vessel, this can be expressed as

χp,i($) = atan2(x′p,i($), y′p,i($)), i ∈ Im, (5.1)

where atan2(x, y) is the four-quadrant version of arctan(y/x).
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5.1 Related work
When designing a path planning algorithm there exist a large variety of different ap-
proaches that could be considered. Utilizing Bézier curves would fall into the field of
spline based path planning. The term spline refers to a mathematical function that is
piecewise defined by polynomials. Splines will therefore refer to a wide class of different
functions. Among some of the types of splines that exist one will find B-splines, Hermite-
splines, Cubic splines and Bézier splines. This section will present some related work, for
which Bézier curves has been used in path planning. The most interesting articles within
this field stems from the robotics community, and will as such be presented here.

Choi et al. (2010) presents two path planning algorithms utilizing Bézier curves for au-
tonomous vehicles, with waypoints and corridor constraints. Both approaches presented
in this paper joines Bézier curve segments together in order to achieveC2 continuity, while
satisfying the corridor constraints. The paper further describes the algorithm used in order
to obtain the results. This paper resembles the work done in this thesis, in the aspect of
continuity. It does however differ when it comes to the implementation of constraints. In
the paper by Choi et al., the path is bounded by the corridor constraint, which is a bounded
area that the path is constructed within. Another difference is that they use several way-
points in order to describe the path.

Ingersoll et al. (2016) presents a path planning system for a unmanned aerial vehicle, uti-
lizing quadratic Bézier curves to model the UAV path. In this paper, the path planning
has been modeled as a single objective optimization problem, utilizing a receding horizon
approach. They have further constrained the path, such that obstacle collision is avoided,
and they have also accounted for flight aerodynamic constraints. The system that has been
developed in this paper includes both dynamic and static obstacles, and the results shows
that the system is capable of generating a near optimal solution. This paper bear some sim-
ilarities to the work done in this thesis, in the way they have accounted for static obstacles
and how they use several curve segments in order to generate the path.

An interesting paper by Wu and Snášel (2014), describes how Bézier curve base path
planning can be used in robot soccer. The paper combines the functions of path planning,
obstacle avoidance, path smoothing and posture adjustment together. This paper describes
an approach were the obstacles are considered as control points for the Bézier curve, and
further describes how a path can be planned in real time. They also describe the construc-
tion of a new curve, which optimizes the shape of the Bézier curve. This paper showcase
some of the possibilities that exist when utilizing Bézier curves in a path planning, and
how they can be used in real time planning.

In Mehdi et al. (2015) a collision prediction and avoidance algorithm for multi-vehicle
time-critical cooperative missions is presented. The path replanning utilizes Bézier curves,
and the algorithm presented changes the shape of the vehicles already planned trajectory,
by adding an appropriated detour. The algorithm presented allows for safe operations in
a wide range of different collision scenarios. This paper further describes the possibilities
Bézier curves has to offer in a path planning system.
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5.2 Path description
In order to fully utilize the versatility the Bézier spline has to offer, it is important to
analyze the behaviour of this type of spline. In order to do so, a set of desirable properties
that is to be imposed on the path will be defined. Further, with a basis in these properties
an analysis on the degrees of freedom the Bézier curve has to offer will be performed.

5.2.1 Desirable properties
The desirable properties can be divided into two categories, those related to the continu-
ity of the path, and those who facilitates the process of planning. All properties will be
presented in this section.

Continuity in course

A minimum requirement when generating a path consisting of several path segments
should be that all segments are connected at their endpoints, which would imply that the
path is C0 continuous. Another fundamental property in path planning is continuity in
course, which is achieved by imposing either G1 or C1 continuity. If one were to not
impose this restriction, it would imply that the vehicle is able to execute infinite rotational
acceleration.

Continuity in curvature

For a marine craft following a path, a curvature discontinuity entails a discontinuity in the
desired lateral acceleration of the vehicle, due to the relationship (Lekkas et al., 2013)

|α|= κ|u|2, (5.2)

whereα is the lateral acceleration vector, u is the velocity vector and κ is the curvature. A
discontinuity will affect the input to the heading controller and the vehicle performance in
general. Curvature discontinuities could also imply strong and abrupt forces to the vehicle
itself. This encourages the design of a path with continous curvature, which is achieved
by imposing either G2 or C2 continuity.

Locality

Locality is a property that defines how far along the spline the effect of a small local
change in the position of one control point, still can be seen.(Levien and Séquin, 2009)
When dealing with a single curve segment, a perturbation in a single control point would
lead to a change of that entire segment. This is unavoidable when designing a path using
Bézier curves, it is therefore of greater interest to study the locality property of the spline.
Normally when generating a path there will be a trade off between locality and continuity,
this is due to the continuity setting certain restrictions on the neighbouring curve segments.
The locality property can be viewed as a measure for how far a change in a single control
point will ripple throughout the entire spline. So in order to effectively plan a path, it
is preferable that a change in one curve segment will only induce changes in a closed
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neighbourhood of that segment. When designing a path with C2 continuity, it is only
possible to restrict the ripple effect to one of the adjoining segments.

Boundary conditions

A property that is further going to facilitate effective planning is related to the boundary
conditions of the path. These conditions would normally include the position, heading
angle, steering angle and speed for the vehicle in the endpoints of the path. Through
incorporation of these conditions in the path generation, the vehicle should be able to
follow the path without major deviations. Including these conditions in the path planning
would also facilitate updates of paths that are already being carried out. In this thesis only
conditions for the position and heading angle in the endpoints are included.

5.2.2 Analysis of the Bézier spline
The desirable properties presented in the previous section defines a set of constraints that
affect the Bézier spline. In order to fulfill all these requirements, it is necessary to perform
an analysis on the degrees of freedom available for each Bézier curve segment, and the
spline as a whole. This is done in order to determine the degree of the Bézier curve seg-
ments that will grant all the desirable properties. It is also of interest to keep the degree as
low as possible, such that numerical instabilities are avoided. (Skrjanc and Klancar, 2007)

A single Bézier curve of the n-th degree will by Definition 3.1 be Cn continuous, and as
such a discontinuity in the spline will be in one of the joints. The focus of the following
discussion will therefore be on the continuity in the joints, and it will be assumed that
parametric continuity is to be imposed. The Bézier curve is defined by two polynomial
parametric equations, and as such for simplicity reasons, a general polynomial will be
used in the following discussion. If the coordinate equations are of the n-th degree, they
will yield n+ 1 degrees of freedom, and they can be expressed as

fi($) = a1$
n + a2$

n−1 + ...+ an$ + an+1, $ ∈ [0, 1], (5.3)

where i ∈ Im is used to denote the curve segment. If the path consists of m segment there
will be a total of (n + 1)m degrees of freedom available. To ensure that the endpoints of
the different curve segments coincide, the following condition must be met

fi(1) = fi+1(0), i ∈ Im−1. (5.4)

Further by using Definition 3.2, the following conditions can be formulated to ensure that
the path is C2 continous

f ′i(1) = f ′i+1(0), i ∈ Im−1, (5.5)

f ′′i (1) = f ′′i+1(0), i ∈ Im−1. (5.6)

Imposing these continuity conditions will reduce the available degrees of freedom by
3(m − 1), resulting in a total of (n − 2)m + 3 degrees of freedom available. To be
able to specify the position of the endpoints the following constraint can be formulated
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f1(0) = WP0, fm(1) = WPf , (5.7)

where WP0 and WPf denotes the initial and final position of the vehicle. Imposing these
constraints means that the degrees of freedom are reduced by two. The heading in the
endpoints can be restricted by imposing the following constraint on the first derivatives

f ′1(0) = t0, f ′m(1) = tf , (5.8)

where t0 and tf denotes vectors with the same direction as the heading in the initial and
final position respectively. Imposing the constraints related to the boundary conditions
will result in (n − 2)m − 1 degrees of freedom available for the spline. Assuming that
the spline is constructed by using two or more curve segments, the lowest order curve that
would yield any available degrees of freedom is a curve of the third order.

The degrees of freedom in this discussion gives the number of parameters one can indepen-
dently place for the polynomial. The remaining parameters will then be given directly by
the constraints previously presented, in order to achieve the continuity requirements. For
a Bézier spline one can view the degrees of freedom as the number of control points one
can individually place in the plane. If one were to regard the x any y position of the con-
trol points independently, one would get twice the amount of degrees of freedom. As an
example lets regard a Bézier spline consisting of two cubic curves. In this case one would
have one degree of freedom available. This means that after fulfilling the constraints set
by the boundary conditions, one would be able to place one control point freely in order
to achieve C2 continuity.

Cubic and Quartic Bézier splines

If the path is constructed by a single cubic Bézier curve, one would be able to fulfill the
requirements for C2 continuity, and boundary conditions. However, using a single lower
degree curve would subsequently mean that one is not be able to represent complex shapes.
In the case where the spline is construed using several cubic Bézier curves, one would
have m − 1 degrees of freedom available. Simple deduction then dictates that by raising
the number of curve segments, one would be able to create a complex path, however at
the cost of having to use many segments. Cubic Bézier curves also introduces a drawback
related to the locality property, in that a small perturbation in a single curve segment might
propagate throughout the entire spline.

The quartic Bézier spline offers all the same properties as the cubic Bézier spline, while
also introducing the possibility of freely setting the second derivative at the endpoints of
the spline, with additional degrees of freedom available. Being able to freely set the second
derivative at the endpoints of the spline, would allow one to specify the curvature in these
points. The quartic Bézier spline introduces 2m− 1 degrees of freedom, meaning that for
a spline consisting of m ≥ 2 segments one would introduce more degrees of freedom per
parameter, which also is beneficial. The quartic Bézier spline also lack the same locality
property as the cubic Bézier spline.
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Quintic Bézier splines

The quintic Bézier spline offers the same properties as the quartic Bézier spline, while also
introducing the much desired locality property. By using Bézier curves of the fifth degree
each segment will be C5 continous. One will also achieve C2 continuity in the joints,
while avoiding a small change in one segment from propagating further then to one of
the adjoining segments. Since the quintic Bézier spline offers all the desirable properties,
this type of spline will be used in the path planning algorithm. The quintic Bézier spline
will also introduce more degrees of freedom per parameter, than the corresponding quartic
spline.

The properties that each of the different spline types has to offer is summarized in Ta-
ble 5.1. In this table the best combination of locality and continuity is presented, other
combinations are also possible.

Table 5.1: Properties of Bézier splines of different degrees.

Cubic Quartic Quintic
C1 continuous X X X
C2 continuous 7 X X
Locality X 7 X
Freely set first derivative at endpoints X X X
Freely set second derivative at endpoints 7 X X

In addition to the desired properties presented in the previous section, Bézier curves also
provides another set of properties. One of them is the convex hull property, which has
been mentioned previously. There is also a strong correlation between the parameters of
the Bézier curve and its shape. This property is especially useful as it facilitates effective
planning. If there were to be a weak correlation between the shape and the parameters,
inverse math would often be involved.
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Figure 5.1: A fifth order Bézier curve with the control polygon.
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5.3 Path optimization

There exist several approaches to path generation, some are given by a set of parameters,
others use optimization. In this thesis an optimization problem will be formulated in order
to generate an optimal path. This section will present the approach used in order to do so.

Optimization is an important tool in decision science and in the analysis of physical sys-
tems, and it is widely used in sciences, engineering, management and economics. This
tool takes use of an objective, which is a quantitative measure of the performance of the
system under study. The objective will further depend upon certain characteristic of the
system, called variables or unknowns. The goal of the optimization is then to optimize
the objective, with respect to the variables. These variables are often restricted, or con-
strained in some way. The process of identifying the objective, variables and constraints
for a given problem, is know as modeling. The process of modeling is often viewed as the
most important step in the optimization process, as the complexity of the model will affect
solution time and the insight the results may offer. Once the model has been formulated,
the next step is to choose an optimization algorithm, such that the problem may be solved.
During this process special care must be taken. (Nocedal and Wright, 2006) A general
formulation for an optimization problem is as follows

min
x
J subject to

ci(x) = 0, i ∈ E ,
ci(x) ≥ 0, i ∈ I,

where J is the objective function, and E and I are sets of indices for equality and inequality
constraints, respectively. The optimization problem in this thesis can be classified as non-
linear, due to the nature of the objective function and the constraints.

5.3.1 Decision variables

The shape of a Bézier curve or a Bézier spline is dependent upon the placement of the
control points, and as such it is natural to choose these control points as decision variables
for the optimization problem. These decisions variables can be gathered in a vector as

x1 = {p0,1, . . . ,pn,1,p0,2, . . . ,pn,2, . . . ,p0,m, . . . ,pn,m}, (5.9)

where n is the degree of the curve and m is the number of curve segments. In addition to
these decision variables, as later will show, it becomes necessary to include another set of
decision variables. These variables will be presented as they are introduced in conjunction
with the constraint. For the optimization problem all decision variables can be gathered in
a single vector as

x = {x1,x2,x3}, (5.10)

where x2 is given by Eq. (5.21) and x3 is given by Eq. (5.25). Note that x2 is only
included if geometric continuity constraints are used.
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5.3.2 Objective function
The objective function is in a minimization problem such as this often known as the cost
function. The goal of the optimization is to find the lowest value of the cost function, while
satisfying the constraints. In trajectory or path optimization the goal is often to create a
path where one of the following is minimized; fuel consumption, energy usage, time con-
sumption or length. Sophisticated features such as collision avoidance, formation control
and synchronization can also be included. The cost function can also be designed with
several of these goals in mind.

The cost function in this thesis takes use of the differential flatness property of the vehicle,
and assigns a cost to each path reflecting the dynamic capabilities of the vehicle on that
path. In this process the model and calculated states presented in Chapter 4.2.3 are used.
The flat outputs are as previously presented the coordinates of the vehicle in the North-
East plane. Thus by creating a path in the same plane, it is possible to use the x and y
coordinates of the Bézier curves as functions for the flat outputs. The derivatives of the
Bézier curve can easily be obtained by using the approach presented in Chapter 3.2.6.

The cost function is further designed to optimize the path with respect to the associated
energy. A fundamental assumption in the derivation of this cost function is that the time
dependent flat outputs, can be directly substituted with the corresponding Bézier curve
equivalents. It is further assumed that there is no sideslip along the path, which implies
that surge is the only nonzero velocity component. This also implies that the heading,
course and speed vectors are parallel, and that they coincide with the unit tangent of the
path. Under these assumptions Newton’s second law of motion, and the force and work
relation can be describe only in surge, as

∑
F = mu̇, Wab =

∫ b

a

F (s) ds, (5.11)

where Wab denotes the work performed between the points a and b, and s denotes length.
With basis in these equations it can be stated that the integral of a well defined function of
acceleration, can be related to energy. This allows the formulation of the following cost
function

J =
∫ b

a

g(u̇) ds, g(u̇) =
√
|u̇|. (5.12)

The absolute value in this function is included to avoid positive and negative terms from
canceling each other out. In the further derivation of the cost, it is assumed that ds =
d$. Now by substituting u̇(t) with u′($), and by accounting for all curve segments, the
following cost function can be derived

J =
m∑
i=1

[∫ 1

0

√
|u′i($)|d$

]
, (5.13)

where i denotes the curve segment number, and u′($) is found by differentiating Eq.
(4.40) and inserting the Bézier curve equivalents of x and y.
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5.3 Path optimization

5.3.3 Constraints

The constraints are included in the optimization problem in order to create a path, for
which the vehicle is able to follow. These constraints must be formulated in such a way
that they are dependent upon the decision variables. Constraints can in general be divided
into two categorize; soft constraints and hard constraint. Soft constraint are penalized in
the objective function, while hard constraints sets conditions for the variables, which are
required to be satisfied. This section will present all constraints that are included in the
optimization problem.

Parametric continuity

To ensure that the path is continues, or have C0 continuity, it is required that the last
control point of any curve segment is equal to the first control point of the next segment.
For a fifth order Bézier spline these constraints can be formulated as

p5,i = p0,i+1, i ∈ Im−1, (5.14)

where i denotes the curve segment number and the numerals denote the control point of
that respective curve segment. Further, by using Definition 3.2 and the derivatives given
by Eq. (3.32), the C1 continuity constraints can be formulated as follows

p5,i − p4,i = p1,i+1 − p0,i+1, i ∈ Im−1. (5.15)

This expression can further be simplified by using Eq. (5.14), which yields

p1,i+1 + p4,i = 2p5,i, i ∈ Im−1. (5.16)

Imposing these constraint will ensure that the tangent of the path remains continues. Fur-
ther, to ensure that the path will have C2 continuity and thus have a continues curvature,
the following constraints will be imposed

p2,i+1 − 2p1,i+1 + p0,i+1 = p5,i − 2p4,i + p3,i, i ∈ Im−1, (5.17)

where Definition 3.2 and the second derivatives given by Eq. (3.33) have been used. This
expression can also be simplified by using the relation described in Eq. (5.14), which
yields

p2,i+1 − 2p1,i+1 = −2p4,i + p3,i, i ∈ Im−1. (5.18)

The continuity constraints given above can be classified as linear equality constraints, and
will yield a total of 6(m− 1) constraints if one views the x and y positions of the control
points independently. All these constraint can easily be extended to any Bézier spline of
degree n ≥ 2, by noting that the constraints only include the three first and three last
control points of any curve.
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Geometric continuity

To ensure that the course and curvature of the path remains continues, it is also possible to
formulate a set of constraints using geometric continuity. These constraints will be more
relaxed, and put less emphasis on the particulars of the parameterization. To ensure that
the path isG2 continuous the following constraints must be imposed (Barsky and DeRose,
1989)

p′i(1) = aip′i+1(0), i ∈ Im−1, (5.19)

p′′i (1) = a2
ip′′i+1(0) + bip′i+1(0), i ∈ Im−1, (5.20)

where the derivatives for a fifth order spline are given by Eq. (3.32) and (3.33). Further, ai
is some strictly positive constant and bi is some constant of arbitrary value. To fully utilize
the additional freedoms the geometric continuity entails, it is necessary to include ai and
bi as decision variables, this can be formulated as

x2 = {a1, . . . , am−1, b1, . . . , bm−1}, (5.21)
a1, . . . , am−1 > 0. (5.22)

Note that the bounds for ai must be included in the optimization.

Boundary conditions

The initial and final conditions can be formulated as a set of linear equality constraints. To
ensure that the path begins and ends in certain points, it is possible to use Eq. (5.7), which
will give the following constraints

p0,1 = WP0, p5,m = WPf . (5.23)

Further, to ensure that the heading in the endpoints of the path, corresponds with some
predetermined desired value. A set of constraints related to the tangent of the path in these
points must be formulated. These constraints will be given as

l0

[
sin(ψ0)
cos(ψ0)

]
= 5(p1,1 − p0,1), lf

[
sin(ψf )
cos(ψf )

]
= 5(p5,m − p4,m), (5.24)

where ψ0 and ψf denotes the heading angle in the first and last waypoint, respectively.
Further, l0 and lf are introduced as strictly positive decision variables, representing the
length of the tangents in their respective endpoints. These constraints closely resembles
that of Eq. (5.19), as they only restrict the direction of the tangents and not the magnitude.
The additional decision variables and bounds are given as

x3 = {l0, lf}, (5.25)
l0, lf > 0. (5.26)
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Turning radius

One of the maneuvering characteristics of a surface vessel is its turning circle, which
describes the ship’s steady turning radius and how well the steering machine performs
under course-changing maneuvers. (Fossen, 2011) When a surface vessel is moving with
a constant speed and a maximum rudder deflection, it will eventually begin to move in a
circle with a constant radius, representing the smallest turn the vessel is able to perform.
This encourages the design of a path with no turns smaller than this minimum turning
radius. By taking note of the inverse proportionality of Eq. (3.13), the minimum turning
radius of the vessel can be related to the curvature as

κmax = 1
Rmin

, (5.27)

where Rmin is the minimum turning radius and κmax is the corresponding maximum
curvature. Using this relation, it is possible to formulate the following constraint for the
curvature of the path

κi($) < κmax, i ∈ Im, (5.28)

where the curvature of the path is found by using Eq. (3.14). This constitutes a non-linear
inequality constraint.

Static obstacles

Environmental constraints will be included in the optimization as static obstacles, rep-
resenting forbidden zones that the ship should not sail through. Each obstacle will be
represented by a circle with radius rj , and center in cj = (xj , yj) in the North-East plane.
If one considers an obstacle field consisting of l elements, the following constraint can be
formulated

rj ≤ |pi($)− cj | , i, j ∈ Im × Il. (5.29)

This constraint should hold for any pair of i and j in order to deem the path feasible.

While implementing these constraints enables the generation of paths circumventing a
large set of different obstacles, it requires that it is verifiable for all $ ∈ [0, 1]. An al-
ternative approach exist where one takes advantage of the convex hull property of the
Bézier curve. Using this property one could independently of the internal parameter of the
Bézier curve segments, verify whether the path is feasible or not, by for instance verify-
ing whether the area of an obstacle and the convex hull overlaps. A drawback with this
approach does however exist, in that while the areas of the convex hull and the obstacles
overlap, the path in itself might not cross the boundaries of the obstacles. This drawback
can be worked around by using de Casteljau algorithm presented in Chapter 3.2.4. Using
this algorithm a single segment can be divided into smaller parts, with a new set of convex
hulls. Thus allowing for a more accurate description of the area containing the curve. This
approach is only presented as a concept, and has not been implemented.
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5.4 Implementation
This section focuses on the implementation of the proposed path generation algorithm, and
is intended to give some insight in the decisions made in this process.

5.4.1 Simulation environment
The proposed optimization problem has been implemented in the MathWorksTM envi-
ronment MATLAB®. The optimization solver utilized in this implementation is called
fmincon and is provided by the Optimization ToolboxTM. This solver provides several
different algorithms, where the SQP (Sequential Quadratic Programming) algorithm is
used.

5.4.2 Initialization
In the implementation of the proposed path generation algorithm, effort was put into mak-
ing the program capable of running a large variety of different scenarios, without having
to change the formulation of the problem. In the initialization of the program the user is
able to specify the degree of the Bézier curve segments, the number of curve segments and
the type of continuity. All constraints are then constructed based on this information. This
gives the implemented program some versatility, in that one is able to construct paths at a
fast pace for a wide range of different environments. The parameters that the user is able
to specify in the initialization is summarized in the table below:

Table 5.2: Parameters for initialization.

Initial conditions (x0, y0, ψ0) Min. Turning radius Rmin
Final conditions (xf , yf , ψf ) Number of Obstacles l
Number and Degree of
Curve segments (n,m) Min. and Max radius of

Obstacles (rmin, rmax)

The decision variable vector for the optimization is generated based on the degree of the
Bézier curve segments, the number of segments, and the choice of continuity. In order
to reduce the size of this vector, the first control point for all segments where m ≥ 2 is
omitted. This simplification reduces the complexity of the problem, and is based on the
constraint give by Eq. (5.14). This does however demand some consideration in the imple-
mentation of the objective and constraints, and in post processing. The optimization solver
also requires that an initial guess to the values of the decision variables are made. In the
current implementation a generic initial guess is provided, taking the boundary conditions
into consideration, this is done such that all constraints have a numerical value.

A simple script that generates random obstacles has also been developed. The user is
able to specify the number of obstacles, and the minimum and maximum radius of these
obstacles, an obstacle field is then generated within some bounded area specified by the
position of the endpoints of the path. This script has been used a lot in the testing phase of
the algorithm, as it allows for a fast generation of different environments.
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5.4 Implementation

5.4.3 Path representation

In the current implementation the path and all relevant information about the path is de-
scribed through the use of vectors. In this chosen approach the curve parameter is repre-
sented by a vector containing values within the unit domain, as

$ = [$0, $1, . . . , $i−1, $n$
], i ∈ [0, n$], (5.30)

where i is an index. The values of this vector is calculated as follows

$i = iδ$, δ$ = 1
n$

, (5.31)

where δ$ describes the incremental change in the parameter when dividing the interval
into n$ different parts. Using this approach the most accurate representation of the path is
achieved when choosing n$ sufficiently small. This approach allows the representation of
all curve segments, and the associated information in terms of a database. The information
associated with the path used in the optimization and in the post processing is presented in
the table below

Table 5.3: Relevant path information for a single curve segment.

$ xp($) yp($) . . . xi
′

p ($) yi
′

p ($) s($) κ($) χ($)
$0 xp($0) yp($0) . . . xi

′($0) xi
′($0) s($0) κ($0) χ($0)

...
...

...
...

...
...

...
...

$f xp($f ) yp($f ) . . . xi
′($f ) xi

′($f ) s($f ) κ($f ) χ($f )

The information given by the database includes position, derivatives, arc length, curvature
and course angle for the different values of the curve parameter. The arc length is found
through approximation using Eq. (3.11), and describes the length of the path from the
initial position up till the given value of the curve parameter. Further, the curvature used in
the optimization is given by Eq. (3.14), while in the post processing the signed curvature
is used.

5.4.4 Constraints and objective

The continuity constraints are generated dependent upon the choice of parametric or ge-
ometric continuity set by the user, and only one set of constraints are included in the
optimization. The parametric continuity constraints are represented in terms of matrix op-
erations, where the size of the matrices are determined by the number and degree of the
curve segments. The boundary conditions are also included in the same way.

Since all the information about the path is represented in terms of a database, the curvature
constraint can not be implemented as earlier presented. The curvature is in the implemen-
tation represented as a vector of values, and the constraint must therefore be reformulated
for this purpose. The curvature constraint is therefore implemented by demanding that all
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Chapter 5. Path planning and optimization

values of the curvature vector, is below the value set by the maximum curvature.

The obstacle constraint most also be reformulated in the same manner as the curvature
constraint. However, since the obstacle constraint demands that one verifies that it holds
for all pairs of curve segments and obstacles, this will create a large set of constraints. In
order to reduce the amount of constraints that this would constitute, a different approach
has been implemented. In this approach only the minimum distance between the obstacles
and the curve segments are considered. This effectively reduces the amount of constraints,
and it proved to be more effective then verifying whether all points along the curve where
within the allowed region. This can be formulated as

rj ≤ min{|pi($)− cj |}, i, j ∈ Im × Il (5.32)

The integrals of the cost function is in the implementation approximated using the trape-
zoidal rule. This is done since it drastically lessens the complexity of the implementation,
and since there might not exist any explicit solution to these integrals. Using the trape-
zoidal rule the values of the integrals will be given as

∫ 1

0
u′($) d$ ≈ δ$

2 (u′($0) + 2u′($1) + · · ·+ 2u′($n$−1) + u′($n$
)). (5.33)

5.4.5 Solver and options
The optimization solver used in the implementation were chosen after investigation of
which solvers were capable of solving the given problem. During this process an attempt
on using the genetic algorithm were performed, but this algorithm did not succeed in find-
ing any solutions within reasonable time. The chosen solver also provides other options
to which algorithms that could be used, among which the SQP algorithm proved to be
the most reliable and consistent among them. The SQP algorithm is a gradient based
optimization method and the gradients are, if not provided, found by the use of finite dif-
ference. The solver has an option that allows the user to specify the finite difference step
size (FDSS), this option has been exploited in the current implementation. This is due to
the current implementation being somewhat lacking in consistency, and as such it is not
always straight forward to find a solution. This will be further discussed in Chapter 7.
The process for which the results have been obtained can be summarized in three steps as
follows:

Step 1: The problem is solved with default options. If a solution is found one proceeds
directly to Step 3.
Step 2: The problem is solved with a higher value for the FDSS or without an objective
function. When the objective function is discarded the solver puts larger emphasis on the
constraints.
Step 3: The problem is solved with an increasing lower FDSS, until a satisfactory result
is obtained. For each time the problem is solved anew, the decision variables from the
previous iteration are used as the initial guess.
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Chapter 6
Numerical simulations and results

This chapter presents a series of numerical simulations, that is used to evaluate the efficacy
of the proposed algorithm. The different scenarios are designed to show how the Bézier
spline can be effectively used in a wide range of different environments. Effort has there-
fore been put into using different boundary conditions and parameters.

6.1 Preliminary comments
In what follows a total of four simulation scenarios will be presented. The problem state-
ment for each scenario is summarized in a table, with the same outline as that of Table
5.2. The first figure of all scenarios depicts the path in the North-East plane, for these fig-
ures different colors are used to indicate the different path segments. Figures depicting the
course angle and curvature along the path are also included, for these figures the transition
point between the different segments are indicated by a red circle.

It should further be mentioned that the obstacle constraint has been implemented as previ-
ously presented, without enforcing any additional clearing between the obstacles and the
path. This means that any path that is not in contact with the obstacles are deemed feasi-
ble, if all other constraints are satisfied. This combined with the scale used in the figures,
explain why the path is so close to the obstacles. So to clarify, the paths that are presented
constitutes feasible solutions to the given problems.

The cost function has not been explicitly given, it will however be described through the
derivatives of the flat outputs and a coefficient. This coefficient where in Chapter 4.2.3
denoted β2, and is further dependent upon the inertia and linear damping in sway. The
numerical value for this coefficient, used in the simulations is 0.0238. This value has been
derived with basis in the modelling of Cybership II presented in Skjetne et al. (2004).
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6.2 First simulation scenario

The environment in this scenario has been constructed such that it might resemble that of
a passage near a port. The intention of this scenario is to show how the Bézier spline can
be effectively used in path planning, for a realistic environment. The passage has further
been made large enough for the generation of a path between the initial and final posi-
tions, going through the passage without exceeding the curvature constraint. The path is
constructed with parametric continuity.

The problem specification is summarized in the table below:

Table 6.1: Parameters for initialization in the first scenario.

Initial conditions (0, 0, 90◦) Min. turning radius 100
Final conditions (1400, 1200, 45◦) Number of obstacles 12
Degree and number of
curve segments (5, 4) Min. and Max. radius

of obstacles (75, 75)

The following figures shows the result obtained for this simulation scenario:
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Figure 6.1: Graphical representation of the generated path and obstacles in the first scenario.
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Figure 6.2: Graphical representation of the calculated course angle along the path for the first sce-
nario.
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Figure 6.3: Graphical representation of the calculated curvature along the path for the first scenario.

The results shown in this scenario has been obtained through three iterations, using the
approach presented in Chapter 5.4.5. The path is depicted in Figure 6.1, and is seemingly
straight with two major course changes. Figure 6.2 is more descriptive in terms of the
course changes, and shows how the course change from 90◦ to approximately 50◦ during
the first segment. The path goes through the passage during the later part of the third
segment and the fourth segment. During this turn, the course changes from approximately
50◦ to 5◦ and then back to 45◦. The curvature shown in Figure 6.3, can be used to describe
how straight path is, and through inspection of this figure it can be verified that the second
segment of the path is straight. The figure further shows how the curvature is quite low
during the second course changing maneuver, indicating that the turning radius is low
during this maneuver.
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6.3 Second simulation scenario
The environment in this scenario, as with the previous, has been constructed to resemble
a realistic environment. The obstacles has been placed with the intention of creating an
environment resembling that of a ship passage. To further make the construction of the
path a bit more difficult, some minor obstacles has been included in the passage. The path
is constructed with parametric continuity.

The problem specification is summarized in the table below:

Table 6.2: Parameters for initialization in the second scenario.

Initial conditions (0, 0, 10◦) Min. turning radius 200
Final conditions (2000, 2000, 70◦) Number of obstacles 9
Degree and number of
curve segments (5, 5) Min. and Max. radius

of obstacles (100, 1000)

In this scenario the obstacles in the middle have a radius of 100 meters, while the obstacles
centered in the corner of the figure have a radius of 1000 meters. The following figures
shows the result obtained for this simulation scenario:
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Figure 6.4: Graphical representation of the generated path and obstacles in the second scenario.
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Figure 6.5: Graphical representation of the calculated course angle along the path for the second
scenario.
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Figure 6.6: Graphical representation of the calculated curvature along the path for the second sce-
nario.

The results shown in this scenario has been obtained through two iterations. Through
inspection of Figure 6.5, it can be confirmed that the path has one major course change,
and two minor. The major course change is during the first segment, and the first part of
the second segment. This change corresponds to a turn, which can be observed in Figure
6.4. The three last segments are seemingly straight, as can be confirmed by inspection of
the curvature given in Figure 6.6. The curvature reaches its highest value in the endpoint
of the path, for which it is equal to the bound set by the curvature constraint.
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6.4 Third simulation scenario

The environment in this scenario has been construed at random and contains a large num-
ber of obstacles. The intention of this scenario is to show the efficiency of the proposed
algorithm, and the versatility the Bézier curve has to offer in path planning. The envi-
ronment could be stated to be highly congested, and does not closely resemble a realistic
environment. The path is constructed with parametric continuity.

The problem specification is summarized in the table below:

Table 6.3: Parameters for initialization in the third scenario.

Initial conditions (0, 0, 45◦) Min. turning radius 75
Final conditions (2000, 2600, 45◦) Number of obstacles 100
Degree and number of
curve segments (5, 8) Min. and Max. radius

of obstacles (50, 80)

The following figures shows the result obtained for this simulation scenario:
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Figure 6.7: Graphical representation of the generated path and obstacles in the third scenario.

48



6.4 Third simulation scenario

0 500 1000 1500 2000 2500 3000

40

50

60

70

80

Figure 6.8: Graphical representation of the calculated course angle along the path for the third
scenario.

0 500 1000 1500 2000 2500 3000

-5

0

5

10

10
-3

Figure 6.9: Graphical representation of the calculated curvature along the path for the third scenario.

The results obtained in this scenario has been found through three iterations. The path in
this scenario have two major course changes, one during the first segment, and the second
during the third and fourth segment, see Figure 6.8. The second major course change
corresponds to the part of the path, going through a cluster of obstacles, as can bee seen
in Figure 6.7. The path never becomes completely straight in this scenario, and have some
minor course changes all along the path. These changes corresponds to the path having to
circumvent some obstacles, as can be verified in Figure 6.7 and Figure 6.8. The curvature
depicted in Figure 6.9, verifies that the path is not completely straight, it does however
show that it comes close. This figure also shows that the curvature has its largest value
in the initial point, where it is almost of the same magnitude as the bound set by the
constraint.
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6.5 Fourth simulation scenario

This scenario is included with the intention of highlighting some of the versatility and ca-
pabilities of the implemented algorithm. To that end two simulations are shown, both with
the same problem description, however different in the choice of continuity constraints.

The problem specification is summarized in the table below:

Table 6.4: Parameters for initialization in the fourth scenario.

Initial conditions (0, 0, 55◦) Min. turning radius 150
Final conditions (1500, 1200, 20◦) Number of obstacles 25
Degree and number of
curve segments (−,−) Min. and Max. radius

of obstacles (50, 80)

Geometric continuity:
The path in this scenario is generated by the use of three, fifth order curve segments. The
following figures shows the result obtained for this simulation scenario:
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Figure 6.10: Graphical representation of the generated path and obstacles in the fourth scenario (1).
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Figure 6.11: Graphical representation of the calculated course angle along the path for the fourth
scenario (1).
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Figure 6.12: Graphical representation of the calculated curvature along the path for the fourth sce-
nario (1).

The results obtained for parametric continuity will follow after this discussion. The results
for both cases has been found through three iterations. The paths generated in these two
simulations are quite different, as can be observed through inspect of Figure 6.16. The
main difference between these paths, are how they pass through the first cluster of obsta-
cles. The path obtained with the geometric continuity constraints progress more towards
north, while the parametric path progress more towards east. The length of the paths are
approximately equal, with only two meters in difference, in favor of the parametric path.
The objective value is however drastically different, with the geometric path having an
objective value of approximately 50 % of the parametric path. The course angle depicted
in 6.11 and 6.14, also shows a lot of differences. The geometric path changes course more
slowly and have less deflection points then the parametric path. The curvature of the geo-
metric path also has less changes then the parametric path. Both of the paths do however
have a maximum curvature close to the bound set by the constraint.
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Parametric continuity:
The path in this scenario is generated by the use of four, sixth order curve segments. The
following figures shows the result obtained for this simulation scenario:
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Figure 6.13: Graphical representation of the generated path and obstacles in the fourth scenario (2).
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Figure 6.14: Graphical representation of the calculated course angle along the path for the fourth
scenario (2).
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Figure 6.15: Graphical representation of the calculated curvature along the path for the fourth sce-
nario (2).

The following figure shows the geometric and parametric paths, and can be used for com-
parison between the two.
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Figure 6.16: Graphical representation of the geometric and parametric paths in the fourth scenario.
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Chapter 7
Discussion

The results presented highlight some of the capabilities and effectiveness of the proposed
path generation algorithm. Showing that it is possible to combine Bézier curves, differen-
tial flatness and optimization in path generation, thus allowing the construction of paths
incorporating the dynamics of the vehicle. The results also show that the current imple-
mentation allows the generation of paths for a large number of obstacles, this is especially
apparent in Figure 6.7. The curvature and course angle are continuous for all scenarios,
further implying that the generated paths should be easy to follow by the vessel. Thus it is
reasonable to claim that the results are satisfactory.

The fourth simulation scenario is especially interesting, as it shows the differences be-
tween geometric and parametric continuity. It was mentioned that the geometric path had
a much lower objective value, as compared to the parametric path. The reason for this is
most likely due to how the paths differ in shape, and how they pass through the obstacle
field. These differences results in the geometric path having less drastic changes in course
and curvature along the path, thus affecting the cost. It should further be mentioned that
an attempt were made to obtain some results, in which the parametric path passed by the
obstacles in the same manner as the geometric path. This attempt failed, and it is therefore
reasonable to assume that it would be impossible to obtain a parametric path passing by
the obstacles, in the same manner as the geometric correspondence. That is at least under
the condition of the degree and the number of curve segments not being increased any
further then what presented. In the end, this scenario truly highlights the added freedoms
the geometric continuity constraints entail, and how the parametric continuity constraints
put to much emphasis on the specifics of the parameterization. This might rise the ques-
tion of why parametric continuity constraints are used in this thesis, and not geometric
continuity constraints. The answer to this question, is that the implemented program did
perform more consistently while using parametric continuity constraints. The reason for
this is most likely due to the increase in complexity, which is followed by using non-linear
constraints as compared to linear constraints.
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Chapter 7. Discussion

To take the discussion on parametric continuity a step further, lets consider the last seg-
ment of the path in Figure 6.13. This segment exhibits some weird behaviour in which
it turns towards the nearby obstacle, and does not proceed in a straight fashion from the
preceding segment. This behaviour might seem somewhat odd, and could be explained
through the curvature constraints and the boundary conditions. However, if one considers
the geometric path presented in Figure 6.10, this doesn’t seem to explain everything. It
could therefore be assumed that the locality property and the continuity constraints are
the main contributors to this weird behaviour. To further explain this, it is important to
note that the shape of a single curve segment is influenced by the placement of all control
points, for that segment. A small perturbation in a single control point of one segment
will therefore lead to a change of that entire segment. The perturbation might however not
inflict major shape changes in all parts of the curve. Combining the locality property with
the parametric continuity constraints, does therefore set certain restrictions to the shapes
that can be represented. Thus it is possible to assume that the weird behavior is a result
of this, and that the shape one observes in Figure 6.13 is optimal under these restrictions.
This assertion might also be used to explain some of the behaviour exhibited in the other
simulation scenarios as well. An example could be made of the first simulation scenario,
in which the curvature of the first segment increases, passing zero, before it is decreased
back to zero. This means that the path is turning in one direction before turning in the
other direction, while this in reality might be obsolete. It might seem from this discussion
that parametric continuity is inferior to geometric continuity, and this might be true for
the purpose of this thesis, where the only demand is that the path is continuous in course
and curvature. It might however be necessary to use parametric continuity in the future, if
for instance speed assignment would require the derivatives of the parameterization to be
continous.

The remaining part of this discussion will address some of the issues the current imple-
mentation faces, and to that end it is sensible to clarify a couple of things related to the
behaviour of the utilized solver, and nonlinear optimization in general. For nonlinear op-
timization one distinguish between local and global solutions, where the local solution is
a minimum in a closed neighbourhood, and the global solution describes the point with
the lowest function value among all feasible points. This means that there might exist
several local solution, but only one global solution. In most applications it is very difficult
to recognize whether a solution is global, or even locate it. The solver utilized is only able
to recognize whether a solution is local, and no effort has been put into verifying whether
these solutions are global. This is due to the share complexity of the problem presented.
It should further be mentioned that the utilized solver also exhibits a sensitivity to the ini-
tial guess provided. When running a simulation with the current implementation only two
possible outcomes has been encountered. The first is that a solution is found constituting
a local minimum, the other is that the solver has converged to an infeasible point. It is
related to these two outcomes the main issue of the current implementation lays. During
any first simulation for a given problem, there are no guarantee of the solver finding a
solution, even though a solution might exist. The current implementation is therefore a bit
inconsistent when it comes to obtaining results. The size of a given problem in terms of
variables and constraints does affect this inconsistency. That is, for a smaller problem the
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possibility of the solver finding a solution is greater then in the case of a larger problem.
To make things easier in the following discussion, the term reliability will be used to refer
to the current implementations ability to produce feasible solutions consistently, for any
given problem specification.

The reliability issue essentially boils down to whether the current implementation is ca-
pable of finding a solution, to a given problem on the first attempt. In some cases it do
and others not, and it has therefore been necessary to use the approach presented in Chap-
ter 5.4.5, in order to obtain the results. The issue is not that the current implementation
is incapable of producing satisfactory results, it is how these results are obtained. There
might exist several reasons for why the current implementation behaves the way it does,
and only speculations can be made as to why. The most reasonable explanation is that the
solver used in the implementation is not the best suited for the problem. The complexity
of the problem in terms of nonlinearities in constraints, and the simplifications that has
been done, is also going to have an impact. The simplifications would involve how the
constraints and the objective has been implemented, and how approximations are utilized.
These simplifications have been justified before, and it could be further mentioned that
they have been necessary in order to complete the work within the allotted time. Another
reasonable explanation to the existence of the reliability issue, is the share size of the
problems used in the simulations. The simulations accounts for a large number of obsta-
cles, which could be claimed to far exceed what would be realistic. Thus the existence
of the issue might be a result of pushing the simulations to the extreme. Taking this into
consideration, might therefore reduced the extent of the issue, however since the current
implementation never fully guarantees that a solution is found it does not completely elim-
inate it.

The utilized solver also exhibits a dependency on the initial guess provided, thus it is
reasonable to assume that a poor initial guess is going to affect the reliability. This is at
least apparent when utilizing the program, as a change in the initial guess often results in
the solver finding a solution. It is especially during the first step of the approach presented
in Chapter 5.4.5, the possibility of the solver converging to an infeasible solution is highest.
The second step of this approach serves as way of finding a feasible initial guess, and does
in almost all cases succeed. The third step use the solution found in the second step as the
initial guess, and the simulations performed during this step does most often produce good
results. This information should indicate that the initial guess is linked to the reliability, as
when provided a feasible initial guess the solver is capable of solving problems it initial
weren’t capable of. It should further be mentioned that the utilized solver most often
searches for a solution in the neighbourhood of the initial guess. Thus it is very unlikely
that one would obtain a path drastically different from the path given by the initial guess.
This does at least seem to be the case in the way the path passes by the obstacles. All of this
suggests that the reliability issue could to some extent be resolved by finding a better way
of assigning the initial guess. The issue could also be resolved by providing the solver with
several initial guesses. This would require that more simulations are performed, however
it could increase the possibility of at least finding one feasible solution.
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Chapter 7. Discussion

Another factor which might affect the reliability of the current implementation are the gra-
dients. These gradients are as previously mentioned found through finite difference, and
they are essential in the determination of a search direction for the solver. The assumption
of these gradients affecting the reliability, is made with a basis in the behaviour of the de-
veloped program. Through usage it has been apparent that the chosen finite different step
size, has had an impact on the solutions that has been found. The solver seem to give more
leeway to larger changes when the step size is chosen large, however it does not produce
satisfactory results. A smaller step size would most often yield good results, however only
under the condition of the initial guess being feasible. These observations does therefore
substation the assumption of the gradients affecting the reliability. This is further affirmed
when considering how essential the gradients are to the progress of the solver. Therefore
to improve the reliability of the current implementation, a study on the accuracy of the
gradients should be performed. This could include derivation of analytic expressions for
the gradients, or finding a better way of approximating them.
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Chapter 8
Conclusion and further work

The overall purpose of this thesis has been to develop a path generation algorithm for ma-
rine vehicles, that utilize Bézier curves in order to describe the path. The thesis has dealt
with the mathematical formulation of Bézier curves, as well as the properties that are as-
sociated with these curves. Through an analysis of the properties of the Bézier curve and
some desirable properties related to path planning, it were established that the fifth order
Bézier curve were the most suited for the path generation algorithm. A study on the dif-
ferential flatness property has also been presented, accompanied with a proof of flatness
for a simplified underactuated ship model. The thesis has further described how a path
generation algorithm can be formulated within the framework of optimization.

The proposed path generation algorithm is able to construct both G2 and C2 continu-
ous paths, while taking both curvature and static obstacle constraints into consideration.
Furthermore, it is shown how the differential flatness property can be utilized in order to
assign a cost function, minimizing the energy associated with the path, while also taking
the dynamics of the vehicle into consideration.

As far as results go, we have seen that Bézier curves can be effectively used in path plan-
ning, taking several environmental and physical constraints into consideration. The pro-
posed path generation algorithm has produced satisfactory results, and it is shown capable
of generating paths for a large number of obstacles. The implemented program does how-
ever not produce results consistently, and the term reliability has been used to address this
issue. The reliability issue has been described, and some possible reasons for its exis-
tence has been presented. Albeit the persistence of this issue, the results have shown great
promise, and the effectiveness of using Bézier curves in path planning is clear. On this
basis it can be concluded that the Bézier curve is a worthy candidate for future considera-
tions, offering a vast amount of possibilities and versatility.
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Chapter 8. Conclusion and further work

8.1 Further work
The investigations performed during the work of this thesis has given rise to several ideas
for future improvements and extensions. These ideas involve possible solutions to the
reliability issue, and aspects that should be considered in order to improve the overall
applicational value of the system. These ideas will be presented in this section.

Current implementation

The reliability issue of the current implementation should be further investigated in fu-
ture work. Resolving this issue would enable studies on for instance computational time
and it would improve the overall performance of the program. This issue could be resolved
through a change of optimization solver, it is therefore natural to investigate different types
of solvers in the future. The current implementation can also be improved upon while still
using the same solver, in which case providing a better initial guess could resolve the issue.
An idea could be to use Voroini diagrams in this process. This would allow the construc-
tion of a set of waypoints through the obstacle field. Strategically using these waypoints
could enable the construction of several initial guesses for the solver, thus increasing the
possibility of obtaining a feasible solution. Using Voroini diagrams, the endpoints of the
Bézier curves could be chosen equal to the waypoints. If the initial guess also consists of
straight line segments, one would ensure that the obstacle constraints would be satisfied
for the initial guess.

This thesis has focused on using the differential flatness property of the vehicle. This
disallowed the representation of some dynamics in the path generation algorithm. In the
future it could be interesting to look into the Liouvillain nature of the surface vessel, and
whether this would allow the representation of more dynamics.

Future directions

A major improvement for the applicational value of the proposed path generation algo-
rithm is temporal assignment, or in other words time assignment. This could be achieved
by assigning a speed profile to the path, thus allowing a description of the ship in both time
and space. This would allow the inclusion of moving obstacles, as long as the paths of the
obstacles are known, thus giving the algorithm some basic obstacle avoidance capabilities.
Temporal assignment will also allow the study of path planning for multiple vehicles.

Once the reliability issue of the current implementation is resolved, a natural direction for
future work would be to investigate the possibilities of online path planning. This would
involve studies on the computational time required to solve a given problem, and whether
this would yield sufficient safety margins to be used in real world applications. Online
path planning would also allow the study of collision avoidance capabilities.

Future work should also include model tests, this would allow one to study how well the
generated paths can be followed by a real ship. These tests could be performed with a
simulation model or with a model in a laboratory.
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Appendix

A: Conference paper
The current version of the submitted conference paper can be viewed on the following
pages. The general appearance of this paper has been changed to fit the format of this
thesis.
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Abstract: Over the past few years maritime sector has witnessed an increasing interest in
use of autonomous ships and in particular Autonomous Surface Vehicles (ASV) in complex
applications with high associated risks. There is an uprising interest in the development of
advanced path planning algorithms for marine vehicles in congested waterways. Availability of
an efficient path planning technique that considers the dynamic capabilities of the vehicle is of
paramount importance in the implementation of these algorithms. This article reports an early
work which aims to contribute to the development of a new generation of path planning that
incorporates in its formulation the dynamics of the vehicles and extra data made available by
on board sensors about obstacles and other vehicles in vicinity. To this end, Bézier Curves are
exploited as the basis for generating a rich set of paths. Then, differential flatness property of
the vehicle is used to assign a cost function to each path that reflects the dynamic capabilities of
the vehicle on that path. The efficacy of the proposed algorithm is shown by help of numerical
simulations.

Keywords: Bézier curve, path planning, differential flatness

1. INTRODUCTION

One of the earliest path planning algorithms goes back
to the early 1950s, where Claude Shannon and his wife,
Betty Shannon, built a three wheel magnetic mouse that
could find its path through an electro-mechanical maze
(MIT Museum, 1952). Theseus maze was a visual display
of path planing in dial telephone systems. It showed how
information would travel to find the right target telephone
to ring when a phone call is made. The problem of
connecting two points on the map in presence of obstacles
and forbidden zones found many industrial applications.
Different techniques were developed to address the path
planning problem. The literature on path planning is
vast and interested reader is referred to (Laumond, 1998;
McLain and Beard, 2000; LaValle, 2006; Kaminer et al.,
2006; Dadkhah and Mettler, 2012; Bhushan Mahajan,
2013; Lekkas, 2014) and references therein. Furthermore,
assessing the efficacy of path planning algorithms for
different applications is a challenging task and out of the
scope of this article; see (Dadkhah and Mettler, 2012;
Lekkas, 2014) for some guideline on evaluating different
path planning algorithms.

(Hausler et al., 2009) gives an introductory application
example where a group of autonomous marine vehicles,
spread at arbitrary positions and headings, are to per-
form a cooperative mission at sea that requires adopting
? This work was supported by Centre for autonomous marine
operations and systems (AMOS); the Norwegian Research Council
is acknowledged as the main sponsor of AMOS.
1 Corresponding author, (e-mail: Vahid.Hassani@ntnu.no).

a predefined geometrical formation pattern. The vehicles
should sail from their initial position and arrive at the
final formation pattern at the same time. They call this
as "Go-To-Formation" maneuver which, due to existence
of obstacles, restricted areas, and required safety distance
from other vehicles, needs an advanced path planning al-
gorithm. The different challenges that should be addresses
in course of solving Go-To-Formation problem are listed
in (Hausler et al., 2009) and later in (Häusler et al., 2010).

Path planing for marine vehicles inherits an increasingly
complexity and challenging requirements. Development of
autonomous ships and increasing applications for multiple
vehicle coordination have created a widespread interest in
the development of advanced path planning algorithms for
marine vehicles in congested waterways LaValle (2006);
Hausler et al. (2009); Häusler et al. (2009, 2010).

Hausler et al. (2009); Ghabcheloo et al. (2009), borrowing
the tools introduced by Yakimenko (2000); Kaminer et al.
(2006), used a group of 5th order polynomial paths as basis
for their path generation algorithm. The coefficient of the
polynomials were computed such that the boundary con-
ditions such as initial and final position and heading were
met. Their methodology generates paths that completely
govern spatial profile of the vehicles. A second temporal
problem is solved to address the de-confliction in time
to reduce the risk of collision between vehicles and speed
assignment for simultaneous arrival of all the vehicles to
their final formation pattern.

Motivated by the above considerations, this article reports
results of an early work which aims to contribute to the



development of a new generation of path planning that
incorporates in its formulation the dynamics of the vehicles
and extra data made available by on board sensors about
obstacles and other vehicles in vicinity. In this paper,
Bézier Curves are used as the basis for generating a rich set
of paths that determines spatial and temporal profile of the
vehicles. Using differential flatness property of the vehicle,
we are able to reconstruct all the states of the vehicles
during the maneuver. The calculated states are then used
to assign a cost function to each path that reflects the
dynamic capabilities of the vehicle on that path.

The rest of the article is organized as follows. Section 2
presents a brief introduction to Bézier curves. Section 3
describes the key idea behind the proposed path genera-
tion technique. It also provides a summary of differential
flatness theory and studies how one can assign a cost to
each path such that it reflects the dynamic behaviour
of the vehicle. In section 4, a short description of the
optimization algorithm is presented. Numerical simulation
results of the proposed technique are presented in Section
5. Conclusions and suggestions for future research are
summarized in Section 6.

2. BÉZIER CURVE

The mathematical basis for the Bézier curve are the Bern-
stein polynomials, named after the Russian mathemati-
cian Sergei Natanovich Bernstein Farin (2014). In 1912
the Bernstein polynomials were first introduced and pub-
lished as a means to constructively prove the Weierstrass
theorem. In other words, as the ability of polynomials
to approximate any continuous function, to any desired
accuracy over a given interval. The slow convergence rate
and the technological challenges in the construction of the
polynomials at the time of publication, led to the Bernstein
polynomial basis being seldom used for several decades to
come. Around the 1960s, independently, two French auto-
mobile engineers of different companies, started searching
for ways of representing complex shapes, such as auto-
mobile bodies using digital computers. The motivation
for finding a new way to represent free-form shapes at
the time, was due to the expensive process of sculpting
such shapes, which was done using clay. The first engineer
concerned with this matter was Paul de Faget de Casteljau
working for Citroën, who did his research in 1959. His
findings lead to what is known as de Casteljau’s algorithm,
a numerically stable method to evaluate Bézier curves. De
Casteljau’s work were only recorded in Citroën’s internal
documents, and remained unknown to the rest of the world
for a long time. His findings are however today, a great tool
for handling Bézier curves Farin (2014). The person who
lends his name to the Bézier curves, and is principally
responsible for making the curves so well known, is the
engineer Pierre Ètienne Bézier. Bézier worked at Renault,
and published his ideas extensively during the 1960s and
1970s. Both Bézier’s and de Casteljau’s original formula-
tions did not explicitly invoke the Bernstein basis, however
the key features are unmistakably linked to it and today
the Bernstein basis is a key part in the formulation Farouki
(2012).

A Bézier curve is defined by a set of control points P i

(i = 0 . . . n) for which n denotes the degree of the curve.

The number of control points for a curve of degree n is
n + 1, and the first and last control points will always be
the end points of the curve. The intermediate points does
not necessarily lay on the curve itself. The Bézier curve
can be express on a general form as

P (t) =
n∑

i=0

Bn
i (t)P i t ∈ [0, 1] (1)

here t defines a normalized time variable andBn
i (t) denotes

the blending functions of the Bézier curve, which are
Bernstein polynomials defined as

Bn
i =

(
n

i

)
(1− t)n−iti, i = 0, 1, 2..., n (2)

2.1 Derivatives

The derivative of any Bézier curve of degree n is a Bézier
curve of degree n − 1. As the control points are constant
and independent of the curve parameter t, the derivative is
found by computing the derivative of the Bernstein poly-
nomials. The first derivative for the Bernstein polynomials
given by Eq.(2) are

Ḃn
i (t) = n(Bn−1

i−1 (t)−Bn−1
i (t)). (3)

The derivative of the Bézier curve then takes the following
form

Ṗ (t) = n

n−1∑

i=0

Bn−1
i (t)(P i+1 − P i) t ∈ [0, 1]. (4)

To further simplify this expression we can define the
control points of the first derivative as Qi = P i+1 − P i,
the expression then takes the following form

Ṗ (t) = n
n−1∑

i=0

Bn−1
i (t)Qi t ∈ [0, 1]. (5)

Higher order derivatives can be found by repeated use of
the relation described in Eq.(3) and Eq.(5).

2.2 Curvature

The curvature of a Bézier curve, given by P (t) =
(x(t), y(t)), can be expressed in the following form

κ(t) =
ẋ(t)ÿ(t)− ẍ(t)ẏ(t)
(ẋ(t)2 + ẏ(t)2)

3
2

. (6)

This expression is known as the signed curvature as it
takes both positive and negative values. The sign of the
curvature will indicate the direction in which the unit
tangent vector rotates, as a function of the parameter t
along the curve.



3. DIFFERENTIAL FLATNESS

In this section, using the description of differential flatness
presented in Van Nieuwstadt and Murray (1998), an
informal definition of differential flatness will be presented.
A system is said to be differentially flat if one can find
a set of outputs, equal in number to the number of
inputs, such that one can express all states and inputs
as functions of these outputs and their derivatives. This
can be formulated mathematically for a nonlinear system,
as follows. Consider a nonlinear system

ẋ = f(x, u) x ∈ Rn, u ∈ Rm (7)
y = h(x) y ∈ Rm, (8)

where x denotes the state vector, u denotes the control
input vector and y denotes the tracking output vector.

Such a system is said to be differentially flat if there exist
a vector z ∈ Rm, known as the flat output, of the form

z = ζ(x, u, u̇, ..., u(r)), (9)
such that

x = φ(y, ẏ, ..., y(q)) (10)
u = α(y, ẏ, ..., y(q)), (11)

where ζ, φ and α are smooth functions.

3.1 Model of Surface Vessel

The mathematical model of the surface vessel motion is
described by the kinematics and the dynamics as (Fossen
(2011))

η̇ = R(ψ)ν

Mν̇+C(ν)ν +Dν = τ , (12)

where η = [x, y, ψ]T denotes the position and orientation
in the earth fixed coordinates, ν = [u, v, r]T denotes the
generalized velocity given in the body-fixed frame and
τ = [τ1, 0, τ3] represents the control forces. Further, R(ψ)
is the rotation matrix, M is constant positive-definite
matrix representing the inertia of the vessel, and C(ν) is
the Coriolis and centripetal matrix. The termD represents
the linear damping matrix. Specifically, these matrices are
given as

R(ψ) =

[
cos(ψ) − sin(ψ) 0
sin(ψ) cos(ψ) 0

0 0 1

]
, (13)

C(ν) =

[
0 0 −m22v
0 0 m11u

m22v −m11u 0

]
, (14)

M = diag{m11,m22,m33}, (15)
D = diag{d11, d22, d33}. (16)

This paper will consider a simplified version of the under-
actuated ship model, by enforcing the following simplifi-
cations

m11 = m22, β1 =
d11
m11

, β2 =
d22
m22

,

β3 =
d33
m33

, τu =
τ1
m11

, τr =
τ3
m33

.

Rearranging the vehicle dynamics in (12), the state space
representation of the underactuated surface vessel follows
the following form

ẋ = u cos(ψ)− v sin(ψ) (17)
ẏ = u sin(ψ) + v cos(ψ) (18)
ψ̇ = r (19)
u̇ = vr − β1u+ τu (20)
v̇ = −ur − β2v (21)
ṙ = −β3r + τr. (22)

In what follows, we show that the model described above
is differentially flat. we furthermore, calculate the flat
outputs of the system.

Choosing the flat outputs for the system model as the
coordinates of the vessel in the North-East plane, we show
that all the states can be found using the selected flat
outputs.

z = [z1, z2] = [x, y]. (23)

In order to prove flatness for the system, we will first
express the derivatives of Eq. (17) and Eq. (18) as

ẍ = (u̇− vψ̇) cos(ψ)− (v̇ + uψ̇) sin(ψ) (24)
ÿ = (v̇ + uψ̇) cos(ψ) + (u̇− vψ̇) sin(ψ). (25)

Furthermore, by the use of Eq. (20) and Eq. (21), we can
prove that the following holds

ẍ+ β2ẋ = (βuu+ τu) cos(ψ) (26)
ÿ + β2ẏ = (βuu+ τu) sin(ψ), (27)

where βu := β2 − β1. By using these two expressions, we
obtain the following relation

ψ = tan−1

(
ÿ + β2ẏ

ẍ+ β2ẋ

)
. (28)

Thus, Eq. (28) proves that ψ can be written as a function
of the flat output and its derivatives.

From Eq. (17) and Eq. (18), we obtain

u = ẋ cos(ψ) + ẏ sin(ψ) (29)
v = ẏ cos(ψ)− ẋ sin(ψ). (30)

Using the above equations, and Eq. (28) we obtain

u =
ẋ(ẍ+ β2ẋ) + ẏ(ÿ + β2ẏ)√
(ẍ+ β2ẋ)2 + (ÿ + β2ẏ)2

(31)

and



v =
ẏẍ− ẋÿ√

(ẍ+ β2ẋ)2 + (ÿ + β2ẏ)2
. (32)

Using Eq. (22) and Eq. (28) it can be shown that the
following holds

r =
(y(3) + β2ÿ)(ẍ+ β2ẋ)− (x(3) + β2ẍ)(ÿ + β2ẏ)

(ẍ+ β2ẋ)2 + (ÿ + β2ẏ)2
. (33)

Thus proving that all the states can be written as functions
of the flat output. The task of proving that the control
inputs can be written as functions of the flat output
becomes trivial, as they can be expressed as functions of
the states and the derivatives of the states. Through the
use of Eq. (20) and Eq. (22), and the expressions for the
states we obtain

τu =
(ẍ+ β1ẋ)(ẍ+ β2ẋ) + (ÿ + β1ẏ)(ÿ + β2ẏ)√

(ẍ+ β2ẋ)2 + (ÿ + β2ẏ)2
(34)

and

τr = ṙ + β3r (35)

where r is given by Eq.(33) and ṙ is given as

ṙ =
(y(4) + β2y

(3))(ẍ+ β2ẋ)− (x(4) + β2x
(3))(ÿ + β2ẏ)

(ẍ+ β2ẋ)2 + (ÿ + β2ẏ)2

− 2
(
(y(3) + β2ÿ)(ẍ+ β2ẋ)− (x(3) + β2ẍ)(ÿ + β2ẏ)

)

((ẍ+ β2ẋ)2 + (ÿ + β2ẏ)2)
2

(
(ẍ

+ β2ẋ)(x
(3) + β2ẍ) + (ÿ + β2ẏ)(y

(3) + β2ÿ)
)

(36)

Before taking the next step in formulating our path plan-
ning algorithm, let us take the discussion stage further.
Showing the differentially flatness property of the vehicle,
allows us by using any Bézier curve and flatness property
of the system, assign a cost function to each path using
the calculated states of the system along the path. Our
formulation at the current stage assumes that there is no
side-slip along the path.

4. OPTIMIZATION

In what follows, we formulate our path planning algo-
rithm in an optimization framework. The proposed path
planning technique, utilizes optimization in order to gen-
erate a feasible path, that accounts for both physical- and
workspace constraints. The workspace constraints refers
to obstacle and forbidden zones that ship should not sail
through. Furthermore, the ship dynamics are accounted
for by the use of differential flatness and assigning a cost
function to each path based on the computed states of the
system along the path.

The path planning program generates a path between
two predetermined waypoints, by stitching a set of Bézier
curves together such that the heading and curvature along
the path remains continuous. Ultimately, this means that
the path that is generated is C2 continuous. Further, we

account for workspace constraints, by including a set of
static obstacles in the optimization.

In order to successfully generate a reference path for the
vehicle we have used 5th-order Bézier curves. This is due to
the fact that lower order curves are not able to offer all the
properties that we desire such as C2 continuity.One should
note that increasing the degree of the Bézier curves, could
also lead to numerical instability (Skrjanc and Klancar
(2007)).

The proposed path planing technique uses the control
points of the Bézier curves as design variables, and allows
one to specify the number of Bézier curves segments m
that is to be stitched together in order to generate the
path.

4.1 Optimization Constraints

In what follows we briefly describe the set of constraints
that are imposed in the optimization problem.

Continuity constraints: In order to obtain continuity in
position, heading and curvature the following constraints
will be imposed on the path

P 5,i = P 0,i+1, i ∈ [1, m− 1] (37)
P 1,i+1 + P 4,i = 2P 5,i, i ∈ [1, m− 1] (38)

P 2,i+1 − 2P 1,i+1+ = P 3,i − 2P 4,i, i ∈ [1, m− 1] (39)

where the numerals denote the control points and i denotes
the curve segment number.

Initial and final conditions: The initial and final condi-
tions for the position can be formulated as constraints as
follows

P 0,1 =WP0, P 5,m =WP1, (40)

whereWP0 andWP1 denotes the position of the endpoints
in the north-east plane. The constraint for the initial and
final conditions for the heading in these endpoints can be
formulated as follows

l0

[
sin(ψ0)
cos(ψ0)

]
= 5(P 1,1 − P 0,1), (41)

l1

[
sin(ψ1)
cos(ψ1)

]
= 5(P 5,m − P 4,m), (42)

where ψ0 and ψ1 denotes the heading angle in the first
waypoint and the second waypoint, respectively. Further-
more, l0, l1 ∈ R+ are some positive constants, determining
the length of the vector in the two waypoints, respec-
tively. Note that these equations will only constrain the
direction of the heading vector in the endpoints, and not
the magnitude of the vector. These constraint requires the
introduction of l0 and l1 as design variables.

Turning radius: To ensure that the path has no turns
smaller than the minimum turning radius of the ship, we
will impose a constraint on the curvature along the path.
This could be formulated as



|κ(t)|< κmax =
1

Rmin
, (43)

where κ(t) is the curvature of the path, Rmin is the
minimum turning radius and κmax is the corresponding
maximum curvature.

Static obstacles: Environmental constraints will be in-
cluded in the optimization as static obstacles. Each obsta-
cle will be represented by a circle with radius r and center
in (x, y) in the North-East plane. These constraints will
take on the following form

r ≤
√
(x(t)− x)2 + (y(t)− y)2, (44)

where x(t) and y(t) denote the coordinates of the path.

4.2 Objective function:

Using the differential flatness property, we will define an
objective function that minimizes the energy associated
with each of the path segments. This is formulated as

J =
m∑

i=1

[∫ 1

0

u̇i(t)dt

]
(45)

where i denotes the curve segment number and u̇ is found
by differentiating Eq.(31). Since we are using the the
flatness property of the system, this objective function will
include the ship dynamics.

We would like to highlight that in this article the main
contribution is formulating the path generation problem
in an optimization framework and not solving the problem
itself. Throughout this article, the overall optimization
problem is solved using a general nonlinear programming
solver in MATLAB R©.

5. SIMULATION RESULTS

In what follows we present a series of numerical simulation
to evaluate the efficacy of the proposed algorithm.

First scenario:
Fig. 1 shows the results of the generated path for the
following problem:

Initial condition (x0, y0, ψ0) = (0, 0, 40); Final condition
(x1, y1, ψ1) = (1800, 2600, 15); Nr. Obstacles = 65; Mini-
mum Radius= 50 (m) and Maximum Radius 80 (m); Min
turning radius= 100 (m); Nr. Bézier curves= 8.
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Fig. 1. Graphical representation of the generated path and
obstacles in the first scenario

Second scenario:
Fig. 2 shows the results of the generated path for the
following problem:

Initial condition (x0, y0, ψ0) = (0, 0, 35); Final condition
(x1, y1, ψ1) = (2000, 2300, 55); Nr. Obstacles = 25; Mini-
mum Radius= 70 (m) and Maximum Radius 100 (m); Min
turning radius= 100 (m); Nr. Bézier curves= 8.
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Fig. 2. Graphical representation of the generated path and
obstacles in the second scenario

Third scenario:
Fig. 3 shows the results of the generated path for the
following problem:

Initial condition (x0, y0, ψ0) = (0, 0, 90); Final condition
(x1, y1, ψ1) = (2000, 2600, 15); Nr. Obstacles = 25; Mini-
mum Radius= 70 (m) and Maximum Radius 100 (m); Min
turning radius= 100 (m); Nr. Bézier curves= 8.
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Fig. 3. Graphical representation of the generated path and
obstacles in the third scenario

The numerical simulations shows effectiveness of the pro-
posed path planning technique.

6. CONCLUSION

. The problem of path generation for a marine vehicle
was addressed in a systematic way. To this end, a class of
Bézier curves was used to provide a rich class of potential
paths. Using the flatness property of ship, all the states
and inputs of the ship along the path was computed
from which a cost value was assigned to each candidate
path. Finally, an optimization problem was formulated
that would give birth to a path that would satisfy all
the required properties. The presented work is in its
early stage and far from being complete. Future work
will include the application of the method developed to
multiple vehicles case and development of an efficient
optimization technique tailored for the above mentioned
problem.

REFERENCES

Bhushan Mahajan, P.M. (2013). Literature review on
path planning in dynamic environment. International
Journal of Computer Science and Network, 2(1).

Dadkhah, N. and Mettler, B. (2012). Survey of
motion planning literature in the presence of
uncertainty: Considerations for uav guidance.
Journal of Intelligent & Robotic Systems, 65(1),
233–246. doi:10.1007/s10846-011-9642-9. URL
https://doi.org/10.1007/s10846-011-9642-9.

Farin, G. (2014). Curves and surfaces for computer-aided
geometric design: a practical guide. Elsevier.

Farouki, R.T. (2012). The bernstein polynomial basis:
A centennial retrospective. Computer Aided Geometric
Design, 29(6), 379–419.

Fossen, T.I. (2011). Handbook of marine craft hydrody-
namics and motion control.

Ghabcheloo, R., Kaminer, I., Aguiar, A.P., and Pascoal,
A. (2009). A general framework for multiple vehicle

time-coordinated path following control. In American
Control Conference, 2009. ACC’09., 3071–3076. IEEE.

Hausler, A.J., Ghabcheloo, R., Kaminer, I., Pascoal, A.M.,
and Aguiar, A.P. (2009). Path planning for multiple
marine vehicles. In OCEANS 2009-EUROPE, 1–9.
IEEE.

Häusler, A.J., Ghabcheloo, R., Pascoal, A.M., and Aguiar,
A.P. (2010). Multiple marine vehicle deconflicted path
planning with currents and communication constraints.
IFAC Proceedings Volumes, 43(16), 491–496.

Häusler, A.J., Ghabcheloo, R., Pascoal, A.M., Aguiar,
A.P., Kaminer, I.I., and Dobrokhodov, V.N. (2009).
Temporally and spatially deconflicted path planning for
multiple autonomous marine vehicles. IFAC Proceedings
Volumes, 42(18), 376–381.

Kaminer, I., Yakimenko, O., Pascoal, A., and Ghabch-
eloo, R. (2006). Path generation, path following and
coordinated control for timecritical missions of multiple
uavs. In American Control Conference, 2006, 4906–
4913. IEEE.

Laumond, J.P. (ed.) (1998). Robot motion planning and
control. Springer.

LaValle, S.M. (2006). Planning algorithms. Cambridge
university press.

Lekkas, A.M. (2014). Guidance and Path-Planning Sys-
tems for Autonomous Vehicles. Ph.D. thesis, Depart-
ment of Engineering Cybernetics, Norwegian University
of Science and Technology.

McLain, T. and Beard, R. (2000). Trajectory planning
for coordinated rendezvous of unmanned air vehicles.
In AIAA Guidance, navigation, and control conference
and exhibit, 4369.

MIT Museum (1952). Theseus Maze.
http://museum.mit.edu/150/20. Accessed: 2018-
03-30.

Skrjanc, I. and Klancar, G. (2007). Cooperative col-
lision avoidance between multiple robots based on
bézier curves. In 29th International Conference on
Information Technology Interfaces, 451–456. doi:
10.1109/ITI.2007.4283813.

Van Nieuwstadt, M.J. and Murray, R.M. (1998). Real-
time trajectory generation for differentially flat sys-
tems. International Journal of Robust and Nonlin-
ear Control, 8(11), 995–1020. doi:10.1002/(SICI)1099-
1239(199809)8:11<995::AID-RNC373>3.0.CO;2-W.

Yakimenko, O.A. (2000). Direct method for rapid proto-
typing of near-optimal aircraft trajectories. Journal of
Guidance, Control, and Dynamics, 23(5), 865–875.


	Summary
	Sammendrag
	Preface
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	Motivation
	Scope of work
	Limitations
	List of publications
	Thesis outline

	Preliminaries
	Mathematical notations and definitions
	Abbreviations

	Path parameterization
	General path parameterization
	Parametric curves
	Piecewise parametric curve
	Continuity
	Arc length
	Path curvature

	Bézier curves
	History and background
	General definition
	Extension to arbitrary interval
	Subdivision of Bézier curves
	Degree elevation
	Derivatives


	System modeling and properties
	Vehicle modelling
	Kinematics
	Vehicle dynamics
	Vehicle models

	Differential flatness
	Historical remark
	Flat systems
	Flatness and surface vessels


	Path planning and optimization
	Related work
	Path description
	Desirable properties
	Analysis of the Bézier spline

	Path optimization
	Decision variables
	Objective function
	Constraints

	Implementation
	Simulation environment
	Initialization
	Path representation
	Constraints and objective
	Solver and options


	Numerical simulations and results
	Preliminary comments
	First simulation scenario
	Second simulation scenario
	Third simulation scenario
	Fourth simulation scenario

	Discussion
	Conclusion and further work
	Further work

	Bibliography
	Appendix

