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Summary

In the past decades, autonomy has gone from a technology of the future to an
inevitability. Driver-less cars are already on the roads, and autonomous surface
vessels (ASVs) are well within range. With this increase in autonomy, follows a
demand for robust path planning and collision avoidance methods. Further, ASVs
have to share their working environment with other manned vessels. This calls for
an additional element of the motion planning problem, in that the ASVs should
follow the traffic rules outlined by the International Regulations for Preventing
Collisions at Sea (COLREGS).

This thesis investigates how a stochastic approach, in the form of the Path-of-
Probability (POP) algorithm, can be used within a motion planner to avoid mul-
tiple static and dynamic obstacles. Moreover, a feasibility design by the means of
a simulator is completed, in which the simulator consists of a vessel model that is
fitted with a guidance and control system. With these systems in place, a range of
scenarios are used to assess the motion planner.

It was found that merging the POP algorithm with an A* search was needed
to obtain decisive results, as the POP algorithm struggled in the encounter with
multiple, static obstacles. For collision avoidance, the motion planning algorithm
performed better. Much of this improvement is credited to the addition of virtual
target points, which ensured that the ASV adhered to COLREGS in three separate
collision scenarios.

Even though the POP algorithm endures flaws, its stochastic approach is still
considered as one of its strengths. This, as the working environment for all ASVs
is stochastic by nature. It is therefore vital to incorporate these uncertainties into
a motion planner.





Sammendrag

I de siste tiårene har autonomi gått fra å være en teknologi som tilhører fremti-
den til å bli en uunngåelighet. Førerløse biler befinner seg allerede på veiene, og
autonome skip ligger godt innenfor rekkevidde. Med en slik økning i autonomi,
fører det med seg et behov for ruteplanleggingsmetoder som kan håndtere en stor
mengde scenarier. Ettersom de autonome skipene ser seg nødt i å dele havene med
bemannede farkoster, er det og nødvendig at ruteplanleggeren følger de marine
trafikkreglene som er skissert i ”International Regulations for Preventing Collisions
at Sea” (COLREGS).

Denne oppgaven undersøker hvordan en stokastisk tilnærming, i form av Path-
of-Probability (POP) algoritmen, kan brukes i en ruteplanlegger for å unngå flere
statiske og dynamiske hindringer. Videre er gjennomførbarheten til ruten sikret ved
hjelp av en simulator, hvor simulatoren består av en fartøysmodell som er utstyrt
med et navigerings- og styringssystem. Med disse systemene på plass, brukes en
rekke scenarier for å vurdere ruteplanleggeren.

Det ble funnet at sammenføyning av POP-algoritmen med et A*-search var nød-
vendig for å oppnå endelige resultater, da POP-algoritmen slet i møte med flere
statiske hindringer. I kollisjonsunngåelse scenariene viste ruteplanleggeren seg fra
en bedre side. Mye av denne forbedringen krediteres til den tilføyede metoden som
brukte virtuelle målpunkter i POP-algoritmen. Dette sørget og for at det autonome
skipet fulgte COLREGS i tre separate kollisjonsscenarier.

Selv om POP-algoritmen er utsatt for mangler, er dens stokastiske tilnærming
fortsatt ansett som en av dens styrker. Dette, ettersom arbeidsmiljøet for autonome
skip er stokastisk av natur. Det er derfor viktig å innlemme disse usikkerhetene i
en enhver ruteplanlegger.
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Chapter 1

Introduction

1.1 Background and Motivation

In the past decade, autonomy has become an integrated part of our daily lives.
Take the robotic vacuums and lawn mowers, which are suddenly considered reg-
ular household commodities. An equivalent development is inevitable for both
ground and seagoing vehicles, where driver-less cars have already started hitting
the roads of California, Paris, Singapore and Beijing. The DARPA Grand Chal-
lenge, hosted by the U.S. Department of Defense’s research arm, has been a key
factor in propelling the level of autonomy forward. Since 2004, the participating
autonomous ground vehicles have shown staggering improvements. None of the ve-
hicles managed to successfully navigate through a desert roadway in 2004, whereas
four vehicles were able to navigate in an urban environment hardly three years
later [1].

At sea, the development of autonomous surface vessels (ASVs) has not followed
the rapid pace of the automobile industry. Nevertheless, research is moving in
the right direction and large scale ASVs are in the making. Take Yara Birkeland,
broadcasted as "the world’s first zero emission, autonomous container feeder" and
set to be fully autonomous by 2020 [4]. Figure 1.1a reveals the current state of
the vessel, accentuating that most ASVs are of a smaller scale. Figure 1.1b on the
other hand, shows the full-scale version set to be completed in 2020.

The development of ASVs requires a wide array of technologies, spanning from
guidance, navigation and control (GNC) systems to sensors. The vessels require
sufficient and accurate sensor information to comprehend its surrounding environ-
ment. Further, GNC systems must be in place to process the sensor information,
generate paths and determine control signals such that the ASV’s main objectives
are achieved. This thesis will focus on the guidance part of the GNC system, and
investigates motion planning for ASVs.
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CHAPTER 1. INTRODUCTION

(a) Small-scale version of Yara
Birkeland at an autonomous testing
site in late 2017 [43].

(b) Illustration of the full-scale Yara Birke-
land, set to be completed in 2020 [4].

Figure 1.1: Development of Yara Birkeland, from testing phase to finished product.
Credit: Kongsberg.

The ocean presents a dynamic and uncertain environment, enabling a need for
robust motion planning methods for ASVs. Further, as ASVs are launched, they
will be operating in an environment with other manned vessels. This calls for
another dimension of the path planning problem, in that the autonomous vessel
must behave in a manner that the manned vessel can interpret and predict. For
this reason, adhering to the International Regulations for Preventing Collisions at
Sea (COLREGS) is a factor ASVs must consider.

1.2 Research Question and Objectives

This thesis aims to incorporate stochastic theory into the motion planner, sub-
sequently accounting for stochastic effects originating from environmental distur-
bances, imperfect modelling and uncertainties in the system. It is by means of the
Path-of-Probability (POP) algorithm that this task is completed.

At present, the POP algorithm has only been used to solve simple motion planning
problems. Further, the algorithm has not been developed for ASVs. In [34], the
POP algorithm is used for motion planning of a spherical, rolling robot. In the
study, only one static obstacle is included in the test scenario. With this in mind,
the research question for this thesis is as follows:

How can the Path-of-Probability (POP) algorithm be enhanced, such that
it can generate paths that can avoid multiple static obstacles and follow
COLREGS in a collision scenario with dynamic obstacles?

2



1.3. MAIN CONTRIBUTIONS

The specific actions required to answer the aforementioned question are listed be-
low.

1. Design the POP algorithm according to surface vessel models.

2. Incorporate POP in a global path planner1.

3. Design an algorithm to decide the applicable COLREGS rule in a collision
situation.

4. Incorporate POP in a local path planner2, such that the resulting path follows
the traffic rules outlined by COLREGS.

5. Evaluate the performance of the global and local path planners by the means
of simulations.

1.3 Main Contributions

The main contributions from this thesis include:

- A detailed literature review concerning the current level of motion planning
algorithms for ASVs.

- An alteration of the POP algorithm such that it can generate paths for ASVs.

- A global and a local path planner, where POP has been merged with an A*
search to determine feasible paths in an environment with multiple static and
dynamic obstacles.

- A feasibility design using the T-neighbourhood from [5], which ensures that
the generated path is achievable for the ASV model in question.

- A set of global and local path planning scenarios are created and used to test
the motion planning algorithm. Simulation results are provided for each sce-
nario, along with an in depth discussion that pin-points the motion planner’s
weaknesses caused by the POP algorithm.

1.4 Limitations

The implemented motion planner is developed within this thesis and has not been
subjected to testing previously. Therefore, the reader should note that the results
obtained here are preliminary results, and the algorithm should be further enhanced
in future works. The current limitations of the planning algorithm are outlined
below.

1Global path planning is explained in section 3.1.1
2Local path planning is explained in section 3.1.1, and refers to collision avoidance
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CHAPTER 1. INTRODUCTION

In reality, collision avoidance can be achieved via two possibilities. The first is to
adjust the velocity of the vessel such that the obstacle is avoided, and the second
is to alter the course of the vessel. This thesis will focus on the second approach,
where a collision free path is created by altering the course of the vessel. However,
the restriction to a constant speed offers a limitation to the local path planner.

The cases used to verify the local planning algorithm are quite simple. First of all,
the vessels that are on collision course with the ASV are simulated as non-reactive
vessels. This entails that the vessels do not change their course to avoid the possible
collision, an aspect that does not mirror practical collision situations. Second of all,
the current level of the algorithm does not incorporate the environmental aspects
of motion planning. Weather routing [20] is an additional factor that should be
included in a sophisticated motion planner, such that the optimality of the resulting
path is increased.

1.5 Thesis Outline

The thesis will first take a look at the state of the art methods for motion planning
of ASVs in the literature review in chapter 2. Next, important background and
theory will be presented in chapter 3, where each section outlines various aspects of
the implemented motion planner. As the main contribution of this thesis regards
the Path-of-Probability (POP) algorithm and its extension into a dynamic environ-
ment, chapter 4 has been dedicated to shed some light on how the algorithm is used
for motion planning. In chapter 5, the implementation details for the simulator,
global path planner and local path planner are explained in detail. The results and
discussion are presented in chapters 6 and 7, whereas the concluding remarks and
recommendations for further work are detailed in chapters 8 and 9 respectively.
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Chapter 2

Literature Review

This chapter presents a literature review covering various motion planning ap-
proaches for ASVs. With the Path-of-Probability (POP) algorithm as the prime
focus of this thesis, a literature review is presented to gain more insight as to how
POP compares to other motion planning approaches. It aims to take a holistic view
on some of the state of the art methods used for motion planning of ASVs. The
review is an abbreviated version of the literature review presented in [17], which is
the project thesis used as a preparation for this master’s thesis.

Solving the problem of safe motion planning for ASVs is a multi-criteria optimiza-
tion problem. In other words, it is a complex task that can be solved by numerous
methods. The available research on the topic mirrors this, presenting a variety of
approaches rooted in different methodological areas. With this in mind, this liter-
ature review will take a methodological approach to categorize the methods. The
focus will be on the following three approaches: stochastic, deterministic and com-
puter intelligence, as shown by figure 2.1. Before the review of each method, the
common assumptions used in research for motion planning are outlined in section
2.1.

Motion
Planning

Deterministic
Approach

Stochastic
Approach

Computer
Intelligence
Approach

Figure 2.1: Division of the various approaches to motion planning
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The reader should note that the methods for global and local motion planning1 are
reviewed simultaneously, such that there is no division between algorithms that
may be suited for collision avoidance or global planning. This set-up is justified
as global and local planning both have the same objective,; to determine a safe
and feasible path for the ASV. For the remainder of this chapter, the vessel that
is subjected to control will be referred to as the own vessel (OV), whereas the
vessels that are treated as obstacles are called target vessel (TV). According to
COLREGS terminology, in a collision situation there is a stand-on vessel and a
give-way vessel. The stand-on vessel is set to follow its current path without the
use of evasive maneuvers, whereas the give-way vessel is set to "keep out of the
way" of the other vessel and "keep well clear" [25].

2.1 Common Assumptions

In motion planning, it is often assumed that the navigation system in figure 3.1
provides the vessel with satisfactory information regarding its own behaviour, i.e
its position, orientation and velocities. Further, sufficient data information regard-
ing the surrounding environment and other vessels is also assumed, such that the
guidance system has an accurate view of the environment when the path is planned
and re-planned.

A second common assumption that unites the various collision avoidance methods,
is that the own vessel carries out the evasive maneuver to avoid collision; implying
that the target vessel(s) does not change its course or speed when a collision risk
is present. Keeping in line with the COLREGS terminology, this means that the
own vessel will typically act as the give-way vessel in the collision scenarios. This
assumption is valid in most cases, as the aim of the research is often to determine
how the guidance system of the ASV is able to cope with a collision situation. How-
ever, in a real scenario, the target vessels are likely to carry out evasive maneuvers.
This is especially important for situations with multiple target vessels present.

2.2 Stochastic Approaches

A human navigator will use his/her intuition and continuously update the current
trajectory such that the probability of reaching the desired position is maximized.
This also applies in a collision situation, where a human navigator will use an
intuition based on probability to determine an evasive trajectory that is least likely
to collide with a target vessel. Stochastic approaches to motion planning for ASVs
try to mimic this behaviour.

The main contribution from stochastic methods, compared to deterministic meth-
ods, is that they address the uncertainties that originate from the surrounding

1The definition of global and local motion planning is outlined in section 3.1.1
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environment, including uncertain target vessel motions and uncertainties in the
own vessel motions caused by environmental factors; and sensor measurements. In
recent research, probabilistic approaches have been used for handling and detecting
obstacles but also as a basis for the choice of a trajectory. We will first take a look
at how probability has been used to track obstacles and then look into how it has
shaped planning algorithms.

2.2.1 Handling Obstacles with Probability

The probabilistic obstacle handling introduced in [6] allows the guidance system to
closely follow the behaviour of an experienced navigator, in that the own vessel will
stay on its initial path until the probability of a collision exceeds a given threshold.
Only then will the collision avoidance module be triggered, and the own vessel
will perform an evasive trajectory. Thus, resulting in a reduced number of evasive
maneuvers completed. The guidance system in [6] goes about predicting a target
vessel’s position using a modified version of the constant velocity (CV) and constant
turn rate and velocity (CTRV) models. Instead of assuming that the estimate of
the target vessel’s position is certain, as is the case for the deterministic version
of the CV model in equation (2.1), the modified version in equation (2.2) has an
added random variable εt to account for the unpredictability of a target vessel’s
position.

xt+T = xt + ẋtT (2.1)
xt+T = xt + ẋtT + εt (2.2)

Using these stochastic models, [6] creates an occupancy grid over the state-space
that maps the obstacles; each cell in the grid has a probability of containing an
obstacle. In a collision situation, the evasive trajectory is found by completing
an A*-search over a two dimensional grid (x,y) of cells in the state-space. The
occupancy grid guides the search by applying a penalty to the cells with a high
probability of containing an obstacle. Resulting in a set of waypoints that are least
likely to collide with the target vessel.

2.2.2 Motion Planning with Probability

Unlike [6], where stochastic models are used in the preliminaries to the actual
motion planning, [34, 30] use stochastic approaches to choose the path that is most
likely to reach the target. [34] uses a method called the Path-of-Probability (POP)
algorithm, whereas [30] uses a version of the velocity obstacle (VO) method called
probabilistic velocity obstacle (PVO). First, PVO is examined, followed by a more
detailed look at POP’s role in research.
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Probabilistic Velocity Obstacle

PVO stems from the popular velocity obstacle (VO) method, which is a motion
planning method that has been used on unmanned aerial vehicles (UAVs) in [12]
and on ASVs in [51]. The gist of VO lies in defining a set of relative velocities that
will ultimately lead to a collision. This velocity space, which is often referred to
as a collision cone, represents a geometric region that the mobile robot must not
enter to avoid a collision. VO is explained in further detail in section 2.3.1.

[30] points out that a drawback to the VO algorithm is that it typically assumes
that the moving obstacles have no perceptions or motion goals. So, if mobile robots
are to successfully navigate in an environment with for instance humans, that will
perceive the mobile robot and may adjust their velocity therein, it must account for
uncertainties in the obstacle velocities. This is what [30] achieves by introducing
the probabilistic velocity obstacle (PVO) method, where the uncertainties related
to object tracking techniques are addressed. PVO differs from VO in that the
collision cone is defined according to the probability of colliding with an obstacle,
which includes the uncertainty in the velocity measurement of the obstacle. The
addition of a probabilistic approach to VO means that the motion planner now has
two objectives: reaching a goal and minimizing the probability of a collision.

These two objectives are reached by maximizing a relative utility factor, called RUi
in [30] and shown in equation (2.3). Here Ui is a function representing the utility
of velocities vi for a set goal, Di represents the dynamic feasibility of vi and PV Oi
represents the PVO function for the same velocities. From the definition of RUi,
it is clear that by navigating with PVO by maximizing RUi, we are minimizing
the value of PV Oi. This means that the PVO algorithm will choose velocities
that are least likely to collide with obstacles, making the PVO method a stochastic
approach to motion planning.

RUi = Ui ·Di · (1− PV Oi) (2.3)

Path-of-Probability

Path-of-Probability (POP) was first introduced to solve the inverse kinematics
problem of discretely actuated manipulators in [16]. Since then, it has been de-
veloped to work for a variety of circumstances; ranging from motion planning of
flexible needles in medical applications in [44, 3] to path planning for rolling robots
in [34, 35].

The method is based on models of stochastic differential equations and their so-
lutions. For each intermediate step, the next point in the path, shown as gi in
figure 2.2, is chosen such that the probability of reaching the target position ggoal
is maximized. In figure 2.2, the optimal choice for gi with respect to probability is
the red path, where the probability of reaching the goal is larger than if choosing
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Figure 2.2: Illustration of POP algorithm from [34]. The candidate point gi in the
blue path is less likely to reach the target point ggoal, as illustrated by the surrounding
probability density function with center in gm.

gi in the blue path. The details of the algorithm are explained in greater detail in
section 4.1.

In [34], Lee and Park first confirm that the rolling robot exhibits uncertain be-
haviour and then create a stochastic model to simulate the rolling robot’s motion.
To ensure feasibility of the resulting path from the POP algorithm, [34] discretizes
the input velocities to obtain a set of candidate points. This discretization lim-
its the algorithm, in that each intermediate path must be selected from a finite
set of candidate points originating from a pre-defined set of discrete inputs. This
discretization means that there is a chance that the final path will fail to reach
the target position. However, [35] addresses this limitation by using fuzzy logic to
transform the discrete inputs into a set of continuous candidate points. [35] proves
that this approach greatly improves the POP algorithm by reducing the roughness
of the final path and obtaining a global path closer to the target position. This
approach shows that the POP algorithm is adaptable to fit with other methods in
order to overcome its drawbacks.

As for collision avoidance with POP, research only shows to simple collision sit-
uations; such as avoiding a single static obstacle. Even though [34] show that
the algorithm is successful, the scenario is too simple to conclude that the POP
algorithm can efficiently handle all types of collision scenarios. Therefore, more
research is needed on this topic.

2.3 Deterministic Approaches

A deterministic model is used to indicate how the vessel will behave whereas
stochastic models predict how the vessel is likely to behave. Deterministic models
will therefore typically not account for the uncertainty in each output from the
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model. In this section, methods for motion planning that do not directly consider
the uncertainty in the vessel’s states, both the own vessel and target vessel, will be
discussed.

2.3.1 Collision Avoidance with Velocity Obstacle

The velocity obstacle (VO) method is used in collision avoidance maneuvers, i.e
local path planning, and constructs a set of relative velocities between the own
vessel and the target vessels that will ultimately lead to a collision. This velocity
space, referred to as a collision cone by [19], sets up a geometric region in the shape
of a cone that signifies a risk of collision. This cone is can be seen in figure 2.3. If
the vessel is to avoid a collision with the target vessel, it must select a velocity that
lies outside the collision cone and then steer its course to follow the chosen velocity.
From figure 2.3, the own vessel (A) must choose a velocity that does not lie within
the collision cone, i.e the area shaded in purple (V OA|B). This guarantees that a
collision-free path is chosen, though under the assumption that the target vessel
maintains its current shape and speed [19].

VO subtly ensures that the avoidance maneuver is dynamically feasible by inter-
secting the set of achievable velocities with the set of avoidance velocities [19],
which is the set of velocities outside the collision cone. In the generation of the
achievable velocities, the actuator dynamics are considered alongside the feasible
accelerations of the vessel. Incorporating the imperfections in the actuator in the
collision avoidance is a strategy that many motion planning algorithms neglect,
whereas VO considers it effortlessly. This simple and straightforward approach
is one of the strengths of the VO method. However, as [39] points out, VO as-
sumes linear and constant velocities to predict the target vessels behaviour. This
assumption may be invalid, especially if the target vessel also responds to the own
vessel’s presence and performs an evasive maneuver to avoid collisions. Noteably,
this issue has been addressed by [30], with the probabilistic velocity obstacle (PVO)
method. However, the simplicity of the VO algorithm renders the results some-
what unrealistic. Further, relying on models in this manner also signifies one of
the drawbacks of the method. As inconsistencies or inaccuracies in the model will
lead to unfavourable results, which could end up causing a collision.

In order to create a safe and feasible trajectory, a sequence of avoidance maneuvers
must be selected based on the VO algorithm. This can be completed by searching
over a tree of feasible maneuvers at discrete time intervals [19]. In order to reduce
the computational complexity of the method, which is especially important for
on-line applications such as reactive avoidance collision, heuristics can be used
to reduce the search space. These heuristics can be designed to include multiple
criteria, thus the method can be used to allow for optimization based on a wide
variety of criteria. Another option to reduce the computational complexity is by
discretizing the velocity field and then using a cost-function for each of the possible
finite velocities. [51] designed a cost-function such that COLREGS compliance
was one of the criteria for choosing the velocity. VO worked well with COLREGS
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Figure 2.3: Visualization of the collision cone in the Velocity Obstacle collision avoidance
algorithm, where A is the own vessel and B is the target vessel. Image is obtained from
[29].

according to [51], although the simple use of a Boolean operator for COLREGS
compliance in the cost function made the method struggle once the vessel was in
between COLREGS rules. Still, the amount of research on VO in motion planning
reflects that the algorithm shows promise.

2.3.2 Switching between Set-Based Tasks with Set-Based
Guidance

The set-based guidance (SBG) approach is a more holistic approach to designing a
motion planning system for ASVs, as it allows for any combination of guidance laws
in path following and collision avoidance. Therefore, SBG does not have a specific
path planning or collision avoidance approach, rather it provides a strategy for
how the motion planner can be split between global and local path planning. The
heart of the method lies in the switching mechanism, where the planner switches
between a path following mode and a collision avoidance mode once a certain
criteria is satisfied. SBG suits the collision avoidance problem for ASVs as collision
avoidance can be considered as a set-based task [40], where the collision avoidance
task is prioritized over the global path following task.

Set-based tasks are tasks that are valid within an interval of values rather than just
at an exact value, meaning that the switching between the path following mode and
the collision avoidance mode occurs once a defined criteria variable is reached. [41]
experimentally proved the use of SBG and set-based tasks by solving the inverse
kinematics problem of a 6 DOF robotic arm. The switching mechanism between
the pre-defined tasks in [41], described by σ(q) where q is the joint angles of the
robotic arm, differ from the switching mechanism for a motion planner of an ASV.

The extension from the inverse kinematics problem to motion planning for ASVs
has been investigated by, among others, [40] and [42]. Their switching mechanism
σ, shown in equation (2.4), calculates the distance between the own vessel and the
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target vessel. Here it is assumed that the position and behaviour of the obstacle
is perfectly known. It is in this step that the stochastic models would typically
implement an uncertainty, such that the switching criteria σ becomes a stochastic
variable. Therefore, to represent the real world uncertainties in sensors and math-
ematical models, the method would have to include some notion of uncertainty.
However, [40] and [42] aim to extend SBG from fully actuated vehicles to under-
actuated vehicles operating in a dynamic environment, not to extend the method
to incorporate uncertainty.

σ =
√

(x− xo)2 + (y − yo)2 (2.4)

In the event that an obstacle is detected, the implemented collision avoidance
mode will be triggered once the ASV reaches a safety radius around the obstacle.
However, as the ASV is not supposed to enter the safety radius, the collision
avoidance mode must be triggered before the ASV’s position intersects with the
safety radius. Thus, [42] uses two safety radii; one that contains the forbidden
area and on that triggers obstacle avoidance. The resulting collision avoidance
behaviour from the ASV is convincing, [40] proves how the ASV successfully avoids
three vessels moving in different directions. Also the smooth convergence to the
original straight path is impressive. According to [40], the method is robust, as the
own vessel was able to avoid collision following COLREGS even though the target
vessels did not follow the rules. [42] brings forth how SBG is not able to handle
multiple obstacles in close proximity to each other, as it runs a risk of getting stuck
between them. This drawback originates from the collision avoidance method used,
where both [42] and [40] track a safe radius around each obstacle in order to avoid
them. It is therefore possible to extend the SBG system such that it can handle
overlapping obstacles.

2.3.3 Motion Planning with Model Predictive Control

model predictive control (MPC) is an example of a method that relies on de-
terministic models yet addresses uncertainties in the prediction of the obstacles’
trajectories. It has been used for collision avoidance for ships by [27] and [22], and
has been developed for controlling autonomous cars by [47]. The method is, in its
essence, based on using a range of control methods that explicitly use a process
model to determine which control signal minimizes an objective function [9]. This
can be translated into collision avoidance, where the control inputs that produce
the optimal trajectory with the smallest hazard are chosen as the final control
action.

MPC is quite computationally complex, involving numerical optimization tech-
niques that may fall into local minima, such that the true minimum value for the
optimization problem is not found. In order to veer from these issues, [27] presents
a simplified version of the method. Simulation-based MPC uses a ship model to
simulate the resulting trajectories of the ship based on varying control inputs. [27]
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has reduced the set of possible control inputs to a discrete set, where the only
parameters that can be varied are the nominal speed and the course offset. The re-
sulting trajectory of each control input is then evaluated in a simulated environment
over a finite prediction horizon. The hazard of each trajectory is evaluated with a
cost function, where [27] accounts for COLREGS compliance, risk of collision and
penalizes additional control effort to alter the trajectory. The cost function allows
for multiple constraints to be regarded in the optimization problem; highlighting
the flexibility of the method.

[27] shows that with a few alterations, MPC is able to solve the path planning
problem with a low computational time. Further, the incorporation of COLREGS
compliance in the cost function is effective, as results show how an additional cost
due to violation of a COLREGS rule reduce the optimality of a trajectory and
leads to it being discarded. The method is also shown to handle multiple dy-
namic obstacles. The credibility of the results is high, with as much as 12 different
scenarios evaluated with multiple obstacles. One of these scenarios incorporates
environmental disturbances in the form of wind and current forces acting on the
vehicle, [27] presents a disturbance-sensitive algorithm that is able to predict how
drift will affect the trajectory. By using a standard 3 DOF model of the own ves-
sel, wind and ocean forces are incorporate in the kinematic equation and in the
vehicle’s equation of motion in the BODY-fixed reference frame. As MPC finds the
optimal speed and course offset based on simulations of a deterministic model, the
dynamic feasibility of the chosen trajectory is then secured. Although, using an
incorrect model will obviously lead to trajectories that may not be feasible. Hence,
the method suffers from some lack of robustness as an accurate model is necessary.
The modelling of the obstacle’s trajectories however, stand out. As the uncertain-
ties of using a straight line prediction is considered by applying the method to a
set of velocities and bearings, rather than one constant value for the velocity and
bearing for each obstacle. [27] then incorporates a degree of uncertainty without
the use direct use of stochastic models. All in all, the results with simulation-based
MPC are impressive and show promise.

2.4 Computer Intelligence Approaches

Computer intelligence, commonly referred to as soft computing, is a broad topic
with no clear definition. According to [57], the main difference between hard and
soft computing is their tolerance of precision and certainty. The traditional hard
computing methods rigorously value precision and certainty in their outcome. Soft
computing on the other hand, mimics the human brain in its reasoning and com-
putation, as the difficulty of complex problems is reduced by softening the degree
of precision and certainty of the outcome. The human brain is able to rational-
ize and make decisions in uncertain and chaotic environments. Take deciphering
handwriting, we encounter numerous ways of writing each letter, yet we are able to
read and fully comprehend most handwritten texts. If a computer were to under-
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Figure 2.4: The two approaches within computer intelligence that will be covered in
this review.

stand handwritten notes, it would have to reduce its constraints on the precision
of classifying, say the letter "a". This is where soft computing enters, and makes
computer intelligence imitate human intelligence.

Figure 2.4 shows the different approaches within computer intelligence that will be
covered in this literature review. In the sections below, their relation to path fol-
lowing and collision avoidance will be presented. Note that the various approaches
to computer intelligence span much wider than that given by the overview in figure
2.4.

2.4.1 Graph and Search Tree Algorithms

In this section the popular A* search algorithm will be covered, which falls under
the tree search category. It has typically been used to plan paths for mobile robots
based on a known and static environment, although it has been extended to ASVs
operating in a dynamic environment. One such example, [6], has been reviewed in
section 2.2.1. According to [10], this heuristic approach is well suited for motion
planning for marine crafts as the problem will be two-dimensional in nature. A*
motion planning has been introduced by [11], where a suitable collision avoidance
maneuver is obtained by searching over a map that includes dynamic obstacles.
This method has been extended by [10] to include COLREGS compatibility, re-
sulting in a heuristic Rule-based Repairing A* (R-RA*) algorithm. Further, the
notion of target tracking using the A* algorithm is introduced in [2]. These two
papers, [2, 10], will be investigated in further detail below.

The main objective in [2] is to track a marine craft autonomously all the while
evading dynamic obstacles. In order to set up a search space suitable for the A* al-
gorithm, the motion of the target vessel must first be predicted. This is completed
using Monte Carlo sampling, where fuzzy weights are used to give the trajectories
that follow human-like steering a larger probability. The Monte Carlo sampling
is based on perfect knowledge of the target vessel’s current states. However, the
uncertainty regarding the target vessel’s future behaviour is addressed in the out-
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(a) The brown indicates the artificial ter-
rain costs added to the search space, ensur-
ing that the resulting evasive maneuver in [2]
satisfies COLREGS.

(b) USV domain split into vari-
ous segments to classify which COL-
REGS rule applies to the approach-
ing target vessel, this approach is
used in [10].

Figure 2.5: Two different approaches for incorporating COLREGS compliant behaviour
using A* search.

puts of the Monte Carlo sampling, as it outputs the most probable path the target
vessel is likely to take. Thus, [2]’s approach with the A* search is aware of the
uncertainties related to tracking target vessels. Further, the next move in the A*
iterative search is chosen under a constraint such that it is in line with a 3 DOF
dynamical model, as specified in [20]. This then secures dynamic feasibility of the
resulting path to follow the target vessel. As for the computational complexity
of the method, it will depend upon the method used for estimating the target’s
trajectory and the size of the search space for the A* algorithm. [2] mentions how
the computational time increases when using Monte Carlo sampling rather than
the traditional target tracking methods, such as pure-pursuit and constant-bearing.
However, with Monte Carlo sampling the resulting estimation of the target’s tra-
jectory is shorter and thus minimizes the time the own vessel uses to catch up
with the target. The results in [2] show that the A* motion planning successfully
follows the trajectory of the target vessel in the presence of dynamic obstacles in
a simulated environment. Also, experimental results are used to show the validity
of the procedure, and how it is able to operate in a real environment.

The COLREGS compliance of the resulting maneuver is secured in both [2] and
[10], though the two approaches differ. As figure 2.5a shows, [2] merely adds an
artificial terrain cost to the paths that will disobey COLREGS. This means that
the A* search will deem these path as less suitable, and therefore not choose them.
The approach in [10], is to split the domain of the USV into sectors that represent
the various COLREGS situations. Suppose a target vessel approaches the USV at
an angle between 15-45°, as shown in the example in figure 2.5b (assuming there
is a mistake in the graphics from [10] where 354° is supposed to be 45°). Then the
paths that disobey COLREGS, such as the paths going to the starboard side of
the target vessel in a head-on situation, will not be searched over. This is done by
adding the paths that go through the closed nodes in figure 2.5b to the closed list
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in the A* search.

Unlike [2], the objective of the path planning algorithm in [10] is to extended the
regular A* algorithm such that it can account for COLREGS in a collision sit-
uation. This is completed by introducing the R-RA* algorithm, which will give
a COLREGS compatible path. The way in which this is completed is described
above and shown in figure 2.5b. The collision avoidance module will first create a
global path from the initial position to the goal position, completed offline. Next,
the R-RA* algorithm searches through a path segment of this global path, and
then checks for possible target vessels. If a target vessel is present, then its velocity
is determined, and the decision maker assesses the COLREGS situation and adds
the paths that are out of bounds to the closed list. This step involving R-RA*
is completed for each time-step that the map is updated. The resulting evasive
maneuver will be given by a set of waypoints. As for the uncertainty of the target
vessel’s position, [10] does not consider it. However, it was shown in [6] how prob-
abilistic obstacle handling could be merged with an A* search to find an optimal
evasive trajectory. Thus, there are possibilities in research to account for obstacle
and environmental uncertainties.

2.4.2 Nature-Inspired Programming

Nature-inspired programming is a kind of computational intelligence that uses bi-
ological processes to model and solve global optimization problems. The various
methods are further categorized in figure 2.6, where a distinction is made between
swarm intelligence and evolutionary computation. The two methods fall under the
population-based metaheuristic category, in that they use problem-independent
algorithms to approximate a solution to the global optimization problem. This
approach contrasts to heuristics, in that the metaheuristics algorithms do not have
to deeply adapt to each problem at hand [7]. As a result, metaheuristics is often
used to solve hard optimization problems, such as motion planning in a dynamic
environment.

Both of the aforementioned approaches mimic nature’s way of continuously opti-
mizing by evolution and selection, though swarm intelligence is more related to
nature’s collective intelligence than to its evolutionary process. The evolutionary
computation algorithms are, as the name suggests, more closely related to opti-
mization through evolution. Only the fittest survive in nature’s evolution through
selection, which in an optimization problem translates to that only the most opti-
mal solutions proceed to the next round of the solution process.

Ant Colony Optimization

ant colony optimization (ACO) is a kind of swarm intelligence approach, and has
been used for motion planning for marine crafts. ACO has been studied extensively
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Figure 2.6: A further division of the approaches within nature-inspired programming
that are covered in this paper

in the path planning problem for ships, [53, 32, 18] all use versions of ACO to find
the optimal collision avoidance strategy for an ASV.

Lazarowska has presented numerous studies of how to integrate ACO into collision
avoidance and trajectory planning for a ship. In the papers [32, 33], the own vessel
is able to successfully navigate in an environment with static and dynamic obsta-
cles, where some of the simulations were run with as much as 12 target vessels.
However, Lazarowska does not account for uncertainties, in that the behaviours of
the target vessels are perfectly known and there are no environmental disturbances
in the results. This limits the credibility of the results, and should be accounted
for in further research. Although the computational complexity and real-time im-
plementation of the trajectory planning with ACO shows a brighter side of the
research. With a limit on the computational time of 60 seconds, the procedure is
close to determining safe paths in real-time. However, as simple models are used
in [32], the computational complexity will be reduced. This allows the procedure
to find a sub-optimal solution in less time than if more accurate models were used.
Therefore, it is predicted that an implementation accounting for these missing
factors would suffer from a longer computational time. Further, the dynamic feasi-
bility of the study is limited, as the feasibility of a constructed path is determined
by simply checking the time of the intended maneuver. It is not guaranteed that a
vessel will be able to follow a specific maneuver to avoid dynamic obstacles, even
though it may get from one waypoint to the next in a specified amount of time.
Take for instance a sharp turn, a large vessel is limited in its turning radius.

An extension of ACO for motion planning for marine crafts is presented in [18],
where a new algorithm called ant colony extended (ACE) is used to find a sub-
optimal path. The aim of this research is to investigate how ACE improves the
flaws of ACO in motion planning, which include falling into local minima and a
lowered dynamical feasibility of the search space. Therefore, [18] merely simulates
the algorithm with static obstacles.
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Figure 2.7: The discrete cell-like environ-
ment with the continuous state-space of the
vessel. Image collected from [18].

Unlike ACO, ACE does not search for
solutions through a node-like search
space. Rather, it creates a discretized
map consisting of cells. Within each
cell, the ants will choose a heading and
speed that will remain constant within
that cell. Thus, resulting in different
trajectories for each choice of heading
and speed, as illustrated in figure 2.7.
A discrete set of possible set-points for
the heading and speed are set, and the
ants choose a heading and speed ei-
ther using heuristics, previous knowl-
edge or an existing pheromone trail.
The heuristic choice is used when there
is no prior knowledge, where the heuris-
tic for the heading accounts for the ves-

sel dynamics ensuring that the constructed trajectory is dynamically feasible. As a
result, the ants are not searching for the optimal route along fixed nodes but rather
searching for the optimal sequence of set-points to go from the initial state to the
target state. This increases the feasibility of the resulting trajectory compared to
the approach in [32]. As for the local minima issue, ACE disregards a solution
only if it exceeds a certain time-limit. According to [18], this technique will ensure
that the algorithm will not get stuck in local minima. The simulation results pre-
sented are convincing, as the algorithm successfully maneuvers in an environment
cluttered with static obstacles. However, the simulation environment is a simpli-
fied version of reality as no environmental disturbances and dynamic obstacles are
incorporated.

Genetic Algorithm

The use of genetic algorithms to motion planning was first introduced in 1994
by [37], applying the techniques to mobile robots. For surface vessels, [48] first
introduced the use of evolutionary algorithms for trajectory planning. Since then
the use of evolutionary computing has increased and gained popularity, as the level
of research shows. In this section, three examples of how evolutionary computing
has been used in solving the path planning problem for ASVs will be investigated.

The first use of evolutionary computing comes in the form of a genetic algorithm
in [54], where an assistant navigator is created. By assistant, it means that the
algorithm will find a solution and then propose the evasive maneuver to a human
navigator. This then reduces the need for understanding the solutions originating
from the genetic algorithm, as a human operator will interpret and decide if the
resulting path is safe. [54] chooses to optimize the new path with regard to an
economic viewpoint, where the distance of the new path and the deviation from
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the original path is minimized within the optimization problem. As a result, the
fitness function in [54] depends on these two variables, and only a course change
is used to plan the collision avoidance route. When that is said, [54] assumes
perfect knowledge in tracking the target vessel’s position, velocity and attitude.
Hence, uncertainties in observational measurements are not accounted for. As
for COLREGS compliance, [54] runs simulations to mirror COLREGS situations.
However, the way in which the genetic algorithm adheres to COLREGS is not
detailed within the paper. Though the resulting simulations, that notably only
include one dynamic obstacle, manage to adhere to the COLREGS rules. Further,
the dynamic feasibility of the resulting trajectory is secured. This, as the course
changes to perform the evasive maneuver are minimized in the algorithm and will
most likely be within a possible turning range for the vessel.

The second use of evolutionary computing is in [14], where an evolution-based
path planning system is introduced to plan missions for multiple ASVs. [54] uses
a binary gene coding to represent each path within the population, whereas [14]
has a population consisting of waypoints used to represent a possible path. This
means that in the mixing step of the algorithm, the most fit paths are either
mutated or reconfigured to create new paths that are evaluated by a fitness function.
The dynamical feasibility of the resulting path from the waypoints is secured, as
[14] includes constraints in the fitness function to represent the vehicle’s turning
rate constraints. An increase in path feasibility could have been introduced by
using the vessel dynamics as constraints as well, although [14] points out that
the vessel will not make aggressive maneuvers thus only incorporating the turning
rate is justified. Further, a reduced fitness is given to the paths that disobey
COLREGS, resulting in simulations that show COLREGS compliance. Rather
than projecting the behaviour of the target vessels ahead in time, the evolution-
based path planner regularly updates the planned path based on sensor information.
If this interval is short enough, and the sensor information is accurate, then the
uncertainty regarding the final path and the positions of the target vessels will be
reduced. Although, re-planning the path in small time intervals will increase the
computational time of the algorithm. However, the resulting simulations show that
the path planner based on an evolutionary approach is able to successfully navigate
in a multi-dynamic vehicle environment.

Finally, the use of NSGA-II to solve the motion planning problem is presented.
This is an extension of the genetic algorithm, called non-dominated sorting ge-
netic algorithm (NSGA). [56] presents a version of NSGA, called NSGA-II, which
is commonly used for multi-objective optimization. Thus, making it suitable for
the multi-objective optimization problem that is ASV motion planning. In [56],
the optimization is carried out to find the optimal rudder angle that results in
the optimal trajectory, taking a different approach than [14, 54]. Like [54], [56]
incorporates economical and safety factors to evaluate the fitness of the solutions.
Specifically, [56] has three objectives, (i) security, (ii) economic factor and (iii)
smoothness factor. The Nomoto model is used to simulate the yaw motion caused
by a change in the rudder angle, the resulting trajectory is then evaluated for safety
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with regard to the target vessels. The use of a Nomoto model, will ensure that
the evaluation of the paths from various rudder angles reflect the vehicle’s dynam-
ics. However, the accuracy will depend upon the degree and parameters within
the Nomoto model. Also, incorporating a smoothness factor ensures that rudder
commands that give non-smooth trajectories will be given a reduced fitness value,
and thus means that their chance of being used to create offspring is limited. With
this in mind, the dynamic feasibility of the resulting path will most likely secured.
In [56], COLREGS compliance is also considered, and is included in the fitness
function under the safety criteria. Though, the research presented by [56] only
considers the mechanism of using NSGA-II for collision avoidance. Thus, further
work should be completed where sensor uncertainties, environmental disturbances
and multiple targets are considered. Yet, the preliminary results are promising.

The examples mentioned above show the versatility of the genetic algorithms. How-
ever, the method has its disadvantages. The mutation step within the algorithm
introduces a randomness to the solution, as a random solution from the parents is
mutated to create a new solution in the offspring set. This makes the algorithm a
non-deterministic method and thus results in different results for the optimal solu-
tion for each run. For motion planning of ASVs, this can be a drawback. If human
operators are to rely on an autonomous navigation system, then consistency of the
results and an understanding of how the results come about is important. However,
the issue of falling into local minima is somewhat reduced by using evolutionary
computation. This reduction stems from the use of a population of solutions rather
than the classical approach of maintaining a single best solution found so far. This
will then increase the chances of finding global optimum solution [21]. Finally,
genetic algorithms have a trade-off between optimality and computational time. A
larger population in each generation means there is a larger span of solutions, and
thus increases the chance of obtaining an optimal solution. Yet, larger populations
increase the computational time.

2.5 Summary of Reviewed Work

This literature review presented an outtake of motion planning methods for ASVs,
including deterministic, stochastic and computer intelligence approaches. Each
approach has its advantages and disadvantages.

Take deterministic models, these are often quite accurate but rely on complex
models that increase computational time. If ASVs are to operate at sea, they must
be able to quickly respond to a collision situation, making it preferable that the
methods can be completed in real-time. This is where computation intelligence
enters. Rather than using complex models to mimic reality, algorithms that mimic
nature’s selective behaviour are used. Further, the working environment of the
ASVs constitutes stochastic variables, in that oceans, weather and the behaviour
of other vessels is not certainly known. Motion planning methods that rely on
stochastic models try to handle this issue, where the optimal collision avoidance
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behaviour of the ASV is selected based on the most-probable optimal behaviour.
The stochastic approaches are more fit for practical use than their deterministic
counterparts, in that it is important to incorporate the environmental and sensor
uncertainties.

In research, all the methods show promising results. Although, incorporating the
uncertainties in sensor measurements and the surrounding environment is an im-
portant criteria for the realization of the ASVs. Further, the computational time
for re-planning a path must be close to real-time if the ASVs are to be consid-
ered safe. With these two criteria in mind, a combination of the stochastic models
and the computer intelligence algorithms stand out as the better choice. How-
ever, if accuracy is valued highly, the mathematical models will stand out. Also,
as computational power increases, the possibility of employing complex models
in an optimization problems seems more attainable. Currently, more research is
needed. Yet, based on the insights gained in this literature review, the research
looks promising.
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Chapter 3

Background and Theory

This chapter presents relevant theory for this thesis’ main contribution, namely
motion planning. Further, some background information regarding guidance, nav-
igation and control (GNC) systems and COLREGS is also introduced, as these are
crucial for the simulation environment and an overall understanding of autonomous
surface vessel (ASV)s.

3.1 Guidance, Navigation and Control systems

GNC is used to describe systems that automatically control moving vehicles [20].
If autonomous vehicles are to safely navigate in their respective environments, one
such system is needed. This section will cover GNC systems for a marine craft,
illustrated in figure 3.1, and will take a deeper look into a marine craft’s guidance
system; as that is the main focal point of this thesis. For the remainder of this
chapter "craft" will be used to refer to a marine craft. But first, some terminology
regarding motion planning is covered.
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Figure 3.1: GNC system.

3.1.1 Motion Planning Terminology

This section considers some of the terminology used in motion planning, where the
various kinds of motion planning and the terminology used in collision avoidance
is covered.

Global and Local Motion Planning

The motion planning problem for ASVs can be divided into two sub-problems,
global path planning and local path planning. Local and global algorithms differ
in the area that the guidance system considers.

Global path planning refers to the motion planning that is completed in a fixed and
known environment, where the path is generated from the vessel’s initial position
to its target position. With this global perspective, static obstacles are accounted
for. Dynamic obstacles on the other hand, are not considered as the locations
of these obstacles are subjected to uncertainties. The distance covered in global
path planning is typically quite large, which entails that the estimated locations of
the dynamic obstacles is subjected to correspondingly large uncertainties. Thus,
including dynamic obstacles in the global path planner becomes futile. This is
where local path planning enters.

Local path planning considers a bounded area around the ASV, typically in the
range of the sensor measurements. This means that the local algorithm will update
its view of the surrounding environment and plan the route thereof. It is often used
for collision avoidance, and will therefore be referred to as such throughout this
thesis. The task of the local path planner is to account for unforeseen events in
the global path, in that the global path may collide with an approaching dynamic
obstacle.

24



3.1. GUIDANCE, NAVIGATION AND CONTROL SYSTEMS

Own Vessel and Target Vessel

In a collision scenario between two vessels, a distinction between the own vessel
(OV) and the target vessel (TV) is made.

The vessel that is subjected to control is called the own vessel, and will be referred to
as the "ASV" throughout this thesis as the aim is to control an ASV in a static and
dynamic environment. Alternatively, the vessels that are treated as obstacles are
called target vessels. According to COLREGS terminology, in a collision situation
there is a stand-on vessel and a give-way vessel. The stand-on vessel is set to follow
its current path without the use of evasive maneuvers, whereas the give-way vessel
is set to "keep out of the way" of the other vessel and "keep well clear" [25].

3.1.2 Guidance Systems

The implementation of the guidance system will depend upon the craft’s objective.
Were it to track another moving craft, follow a pre-determined path or converge
to a fixed set-point; then the guidance laws would differ. According to [20], these
objectives can be classified into the following categories: trajectory tracking, path
following and setpoint regulation. The main difference between the three lies in
the constraints, where both path following and trajectory tracking have spatial
constraints but trajectory tracking has added temporal constraints. Setpoint regu-
lation has the simplest constraints, in that it concerns maintaining constant target
positions and orientations.

No matter the objective, the guidance system’s goal is to determine a safe trajectory
for the vessel. This problem can be extended to a multi-objective optimization
problem, where the different methods used in research are discussed in chapter 2.
There are numerous criteria that may be considered in the optimization problem;
examples include time, fuel efficiency, COLREGS compliance, safety, and so on.
Nevertheless, once the trajectory is determined, the guidance system must use a
suitable steering law to convert the desired trajectory into suitable commands to
the control system. This output is included in figure 3.2, where the guidance system
provides the desired velocity (νd) and desired positions and orientations (ηd) as
the reference values to the control system. The control system will then ensure
that the vessel follows the given trajectory.

Figure 3.2 shows how there are multiple ways of setting up a guidance system. It
may for instance be open-loop or closed-loop, where the open-loop guidance system
does not consider the craft’s current states (outputted from the navigation system).
A closed-loop guidance system on the other hand, uses the craft’s current states
to update the trajectories. This thesis will mainly focus on closed-loop guidance
systems, which will be used in collision avoidance. However, the open-loop design
will also be implemented for completeness, as this is used for global path planning.

The guidance system’s task of determining a safe trajectory can be divided into
the following sub-problems:
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Figure 3.2: Basic outline of how the guidance system is used in a practical manner, where
guidance systems can either be closed-(dotted line) or open-loops. Figure is obtained from
[20, p. 242].

Step 1: Global path planning
Plan a path from given start position to an end position, where static and
known obstacles are considered. This step outputs a complete sequence of
states from start to end, and can be computed offline. Unlike its counterpart,
(step 3) collision avoidance, which is a local path planner.

Step 2: Obstacle Detection
Once a complete trajectory is determined in step 1, one must be prepared
for possible obstacles that were unaccounted for by the global path planner.
Therefore, an obstacle detection unit is needed. This unit must continuously
check surrounding environment for either static or dynamic obstacles and will
call on the collision avoidance unit in the case of a newly detected obstacle.

Step 3: Collision Avoidance
Re-plan the path in a local area in order to avoid collisions with detected
obstacles, the method for re-planning may vary but should be computation-
ally effective as the re-planning is completed online. Once a new local path
is generated and the obstacle is avoided, the collision avoidance unit should
ensure that the path converges back to the global path from step 1.

The order in which the guidance system performs the aforementioned tasks will
vary, the listing given above is merely a review of how trajectory generation typ-
ically occurs. Figure 3.3 shows how step 1-3 in the guidance system may work
together. Within the global path planner and collision avoidance units, the meth-
ods used to generate the path will differ depending on the objective of the guidance
system. For the case of trajectory tracking, the output of the local and global path
planner will be a smooth time-varying trajectory [20]. For path following however,
where the path is independent of time, a set of waypoints is generated. Either way,
using the waypoints or the time-varying trajectory, the guidance system generates
the necessary control signals by using steering laws. These steering laws will be
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Figure 3.3: Trajectory generator within guidance system

referred to as guidance algorithms and are explained in the next section.

3.1.3 Guidance Algorithms

For the sake of this thesis, the line-of-sight (LOS) steering laws are relevant. The
theory is obtained from [20], and these steering laws are used to follow straight-line
paths without temporal constraints (path following).

The aim of the LOS steering law is to ensure that the craft tracks the straight
lines connecting the waypoints. This is achieved by assigning a suitable desired
course χd, in the presence of currents, or a suitable desired heading ψd, with no
currents present. Using an autopilot to control the craft’s heading towards the
desired heading will then ensure proper tracking.

Now to the implementation details, the reader is referred to figure 3.4 for an il-
lustration of the algorithm’s parameters. Path-following is achieved by aligning
the craft’s speed vector (U) with the LOS vector. This effectively means that
the craft is heading towards the straight-line path connecting the two waypoints,
pk = [xk, yk]T and pk+1 = [xk+1, yk+1]T . In order to quantify the craft’s current
position (p) with respect to the path between pk and pk+1, a path-fixed reference
frame is used. This frame has its origin in pk and is rotated at an angle αk (see
equation (3.2)) relative to the inertial frame. The position of the craft can then be
written with the coordinates ε(t) = [xe(t), ye(t)]

T , where xe(t) is the along-track
error and ye(t) is the cross-track error. Thus, the aim of the LOS steering law is to
bring limt→∞ ye(t) = 0; if temporal constraints were included then the along-track
error would also have to be considered [36]. For spatial constraints only, there
are two main guidance algorithms; namely lookahead-based steering and enclosure-
based steering. This thesis will use the lookahead-based steering approach as it is
valid for all values of ye(t); unlike its counterpart enclosure-based steering.
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Figure 3.4: Important parameters for the LOS guidance laws. Figure is obtained from
[36].

Assuming no currents, such that χ = ψ, the reference heading ψd set by the
lookahead-based steering law is:

ψd(e) = ψp + ψr(e) (3.1)

where the two parts are given by:

ψp = ψk := atan2(yk+1 − yk, xk+1 − xk) ∈ [−π, π] (3.2)

ψr(e) := arctan
(−ye

∆

)
∈ [−π/2, π/2] (3.3)

The two course angles represent the path-tangential angle and the velocity-path
relative angle respectively. Within ψr, ye is the current cross-track error and ∆ is
the lookahead distance. Considering the projection of the craft’s position in NED
(p) onto the path-fixed reference frame pp, ∆ is the distance ahead of pp that the
craft’s velocity vector will be directed towards by using ψd from equation (3.1) as
the reference value to the autopilot. See figure 3.4 for an illustrative explanation.

Once the lookahead-based algorithm is implemented, a switching mechanism is
needed. This mechanism switches the steering law’s attention from one section of
the path to the next; meaning that its focus switches to the straight line between
the next waypoints. If pk and pk+1 are currently considered, then the switching
mechanism will switch to consider pk+1 and pk+2. According to [20, p. 264], a
circle of acceptance Rk+1 can be used to check if the steering law should switch to
the next segment of the path. If the craft’s position satisfies equation (3.4), then
the switching is initiated and the craft starts to move towards the next waypoint.
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(xk+1 − x(t))2 + (yk+1 − y(t))2 ≤ Rk+1 (3.4)

3.2 COLREGS - The Marine Rules of the Road

The COLREGS are the International Regulations for Preventing Collisions at Sea,
and presents a comprehensive rule book for traffic schemes at sea. The rules were
introduced in 1972, and were a result of a revised version of the Collision Regula-
tions from 1960 [15].

This section investigates Part B of COLREGS, which covers steering and sailing
rules. It is assumed throughout this thesis that the all vessels, both the own vessel
and the target vessels, are power-driven vessels. This means that all vessels are
driven by some sort of machinery, sailing vessels are therefore not included. Further,
the quantification of COLREGS in a collision scenario is also covered. This part is
important for the collision avoidance algorithm outlined in section 4.3.

3.2.1 Steering and Sailing Rules

The most relevant parts of the steering and sailing rules are presented, as these
will make up the scenarios used to test the developed collision avoidance system.
The interested reader is referred to [25] for further details regarding COLREGS.
Note that all rules are collected from the source in [25], additionally rules 13-15
are illustrated in figure 3.5.

Rule 8: Action to avoid collision

(a). Any action to avoid collision shall be taken in accordance with the rules,
if the circumstances of the case admit, be positive, made in ample time and
with due regard to the observance of good seamanship.

(b). Any alteration of course and/or speed to avoid collision shall, if the
circumstances of the case admit, be large enough to be readily apparent to
another vessel observing visually or by radar; a succession of small alterations
of course and/or speed should be avoided.

Rule 13: Overtaking situation

(a). Notwithstanding anything contained in the Rules of part B, sections I
and II, any vessel overtaking any other shall keep out of the way of the vessel
being overtaken.
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(b). A vessel shall be deemed to be overtaking when coming up with another
vessel from a direction more than 22.5 degrees abaft her beam, that is, in
such a position with reference to the vessel she is overtaking, that at night
she would be able to see only the sternlight of that vessel but neither of her
sidelights.

Rule 14: Head-on situation

When two power-driven vessels are meeting on reciprocal or nearly reciprocal
courses so as to involve risk of collision each shall alter her course to starboard
so that each shall pass on the port side of the other.

Rule 15: Action by give-way vessel

Every vessel which is directed to keep out of the way of another vessel shall,
so far as possible, take early and substantial action to keep well clear.

Rule 16: Crossing situation

When two power-driven vessels are crossing so as to involve risk of collision,
the vessel which has the other on her own starboard side shall keep out of the
way and shall, if the circumstances of the case admit, avoid crossing ahead
of the other vessel.
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(a) Overtaking situation (b) Head-on situation

(c) Crossing situation

Figure 3.5: Collision avoidance routes adhering to COLREGS, where the yellow ASV
is the give-way vessel and the teal ASV is the stand-by vessel.

3.2.2 Quantifying COLREGS

If the aforementioned COLREGS rules are to be interpreted by software, each
collision situation must be categorized by some numerical means. Following the
procedure from [51], the relative bearing (β) is used to quantify COLREGS. The
value of β decides which COLREGS rules apply to a given collision scenario. How-
ever, before the COLREGS are applied, the software has to determine if there is
risk for a collision. This is completed using the closest point of approach (CPA)
method. Both definitions for β and CPA are presented below.

Closest Point of Approach (CPA)

The closest point of approach (CPA) uses the current position and velocity of the
ASV and target vessels to determine if there is a risk for a collision. The details of
the CPA method are obtained from [31], and are as follows.

31



CHAPTER 3. BACKGROUND AND THEORY

tcpa =

0 , if‖vA − vB‖ ≤ ε
(pA−pB)·(vA−vB)

‖vA−vB‖2
, otherwise

(3.5)

dcpa =
∥∥(pA + vAtcpa)− (pB + vBtcpa)

∥∥ (3.6)

The tcpa value is the time until the vessels reach their closes point of approach,
whereas dcpa is the distance between them at this point. In order to signal a risk
of an imminent collision, the following criteria for tcpa and dcpa must be satisfied
simultaneously.

0 ≤ tcpa ≤ tmax (3.7)
dcpa ≤ dmin (3.8)

Relative bearing

The relative bearing (β) represents the clockwise angle between the heading of the
vessel, which in this case is the target vessel, and a straight line drawn from the
target vessel onto the approaching vessel, which is the own vessel.

The value for β is calculated through equations (3.9)-(3.12), where "TV" refers to
the target vessel and "OV" refers to the own vessel. Equation (3.9) is the line-of-
sight vector between the two vessels, equation (3.10) is a vectorial representation
of the North direction, equation (3.11) is the true bearing of the obstacle (i.e the
target vessel); and finally, equation (3.12) is the relative bearing between the target
vessel and the own vessel.

LOS =

[
NTV

ETV

]
︸ ︷︷ ︸
pTV

−

[
NOV

EOV

]
︸ ︷︷ ︸
pOV

(3.9)

NORTH =

[
1

0

]
(3.10)

βTB = arccos
(

LOS ·NORTH
‖NORTH‖ ×‖LOS‖

)
(3.11)

β = βTB − ψTV (3.12)

Once β is calculated, the applicable COLREGS situation is determined by the
means of figure 3.6, where the zones for β are based on the procedure in [51]. From
this figure, the COLREGS rules are divided by the following values for β:
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Figure 3.6: The figure shows how the relative bearing, β, is used to classify which
COLREGS rules apply to a given collision situation. The green area identifies a head-on
situation, the orange area is crossing from the right, the red area represents an overtaking
situation, and finally, the blue area is crossing from the left.

Head-on:
β ∈ [−15°, 15°] ∪ ([345°, 0°] ∩ [0°, 15°]) ∪ ([−345°, 0°] ∩ [0°,−15°])

Crossing from the right:
β ∈ [15°, 112.5°] ∪ [−345°,−217.5°]

Overtaking:
β ∈ [112.5°, 217.5°] ∪ [−217.5°,−112.5°]

Crossing from the left:
β ∈ [217.5°, 345°] ∪ [−112.5°,−15°]

3.3 Modelling of Surface Vessels

Surface vessel modelling is needed to comprehend the motions of ASVs, which is
crucial in the generation of a feasible path. This section merely includes the basic
theory of these models, as [20] covers the modelling in great detail. The interested
reader is therefore referred to part one of [20] for more background theory.

3.3.1 Kinematic Model

The kinematic model considers only the geometrical aspects of the vessel’s motion
[20, p. 15]. This thesis will use a 3 DOF vessel model, where the horizontal motion
of the vessel is studied. The North-East-Down (NED) reference frame is the inertial
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frame, whereas the moving reference frame that is fixed to the vessel is referred to
as the BODY reference frame. This frame is used to consider how the velocities (ν)
affect the positions (η) in NED. The kinematic relationship between the BODY
and the NED frame is described by equation (3.13), where the Euler angles are
used to transform the BODY-fixed velocity vector into the NED frame. Note that
the only Euler angle needed for a 3 DOF surface vessel is the yaw angle (ψ), also
referred to as the vessel’s heading in subsequent chapters.

ṄĖ
ψ̇


︸ ︷︷ ︸
η̇

=

cos(ψ) −sin(ψ) 0

sin(ψ) cos(ψ) 0

0 0 1


︸ ︷︷ ︸

R(ψ)

uv
r


︸︷︷︸
ν

(3.13)

3.3.2 Kinetic Model

The kinetic model studies how the forces on the model affect its motion. There are
numerous representations for this model, all with varying degrees of accuracy. The
most general equation of motion is presented in equation (3.14), from [20, p. 15].
Note that τ refers to actuator forces, and τwind and τwave are environmental
forces. The left-hand side of the equation on the other hand, refers to hydrostatic
and hydrodynamic forces that affect the vessel.

Mν̇ + C(ν)ν + D(ν)ν + g(η) + g0 = τ + τwind + τwave (3.14)
Mν̇ + CRB(ν)ν + CA(ν)ν +D(ν)ν = τ + τwind + τwave (3.15)

Equation (3.15), from [20, p. 134], shows the kinetic model for a 3 DOF horizontal
plane model. This model is used to developed the implemented ASV model in
section 5.2.1. The subscripts "RB" and "A" refer to the rigid-body and the added-
mass kinetics respectively.

3.4 Modelling of Stochastic Processes

A deterministic system is completely predictable, whereas the outcome of a stochas-
tic system is uncertain. Karatzas and Shreve define a stochastic process as a math-
ematical model that portrays a random phenomenon [28], whereas Coleman de-
scribes it as a system that evolves over time while undergoing chance fluctuations
[13]. Nevertheless, central to the theory of a stochastic process, is the random
variable.
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Definition 3.1. A random variable, referred to by an upper case letter X, is a
function that associates a numerical value, referred to by a lower case letter x, with
each possible outcome of the stochastic process [55].

Using definition 3.1, a stochastic process can be described by a set of random
variables as shown in equation (3.16). In this case, t refers to the time at which the
numerical value of the random variable X is collected and can take any value in the
subset of {-∞,∞}. The values the random variable X can take are called its states,
and a change in X from one value to another is called a transition between the
states [13]. Further explanations regarding stochastic processes will assume that
the reader has basic knowledge of statistical measures, such as mean and variance.

X(t) =


X(t1)

X(t2)
...

X(tn)

 =


X1

X2

...
Xn

 (3.16)

3.4.1 Probabilistic Description of Stochastic Processes

In order to characterize various stochastic processes, one must use statistical prop-
erties. Probabilistic terms such as probability density functions, autocorrelation and
power spectral density functions will be explained as they are of relevance for the
topics to be covered in this thesis.

Probability Density Function

Definition 3.2. A probability density function (PDF) f(x), often referred to as a
density function, for a continuous random variable X has the following properties
[55]

1. f(x) ≥ 0, for ∀x ∈ R

2.
∫∞
−∞ f(x)dx = 1

3. P (a < X < b) =
∫ b
a
f(x)dx

Based on definition 3.2, a PDF is related to a stochastic process in that it describes
the likelihood of obtaining a numerical value x for a random variable X at each
time instance t.
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For stochastic processes, which is a series of random variables, it is possible that
each random variable Xi in equation (3.16), has a PDF unlike the other ran-
dom variables constituting the process [8]. Thus, the probability distribution for
X1 may differ from X2 even though they make up the same stochastic process.
Further, the notion of a stationary stochastic processes refers to a process where
its density functions remain unchanged by a translation in time. This means
that the density functions of the set of random variables given by the stochas-
tic process X(t) = {X(t1), ..., X(tn)} will be equal to the translated set given by
X ′(t) = {X ′(t1 + τ), ..., X ′(tn + τ)} [8].

Autocorrelation Function

Definition 3.3. The autocorrelation of a stochastic process is used to describe
how a process is correlated to itself at two different sampling times. The notation
and formal definition is given by:

RX(t1, t2) = E[X(t1)X(t2)] =

∫ ∞
−∞

∫ ∞
−∞

x1x2fx1x2
(x1, x2)dx1dx2 (3.17)

RX(τ) = E[X(t)X(t+ τ)] (3.18)

where E[...] refers to the expected value, X(ti) is the random variable of the
stochastic process at time ti, and equation (3.18) refers to a stationary stochastic
process [8].

The autocorrelation function described in equation 3.17 calculates the expected
value of the product of X1 and X2, which in turn gives the correlation between
the two random variables. In statistics, the term correlation is used to refer to
the numerical measure of the strength of a relationship between random variables.
Thus, a larger value for an autocorrelation at two time instances will imply that the
stochastic process has a stronger relationship with itself at various times. For the
stationary case in equation (3.18), if the autocorrelation function decreases once
τ decreases, it means that the stochastic process will change rapidly with time as
there is little correlation between two values taken in close proximity with regard
to time.

Power Spectral Density Function

Definition 3.4. The power spectral density function, also called the spectral den-
sity function, for a stationary process is formally defined as:

SX(jω) = F [RX(τ)] =

∫ ∞
−∞

RX(τ)e−jωτdτ (3.19)
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where F refers to the Fourier transform of the autocorrelation [8].

From definition 3.4, it is clear that the autocorrelation and spectral density function
are closely related. As they are Fourier transform pairs, they are equivalent. How-
ever, the spectral density function relates to the frequency content of the stochastic
process X(t) whereas the autocorrelation looks at the correlation between two sam-
ples. That is, the amplitude of the spectral density function will portray the power
contained in the process X(t) at each specified frequency. The relation between the
autocorrelation and spectral density function will be made clearer by investigat-
ing how they are related to the mathematical abstraction of white noise in section
3.4.3.

3.4.2 Normal Distribution

The normal distribution, also called a Gaussian distribution, is of great importance
in modelling natural phenomenon. Its importance is related to the Central Limit
Theorem, explained in definition 3.5, which ensures that it frequently appears in
nature. The most relevant properties of the normal distribution, for the sake of
this thesis, are listed in definition 3.6.

Definition 3.5. According to the Central Limit Theorem, the probability density
distribution of a set of sample means will approach a normal distribution as the
sample size grows. This fact will hold no matter the shape of the population
distribution, i.e the probability density distribution of the population the samples
originate from. For sample sizes over 30, the Central Limit Theorem is especially
accurate.

Definition 3.6. The normal distribution has the following properties:

1. The probability density function is symmetric about the mean, and is com-
pletely defined once the mean µ and the standard deviation σ are set.

2. For a random variable X, the normal distribution has a probability density
function n(x;µ, σ), plotted in figure 3.7. n(x;µ, σ) follows the general prop-
erties of probability density functions, as listed in definition 3.2, and is given
by equation (3.20).

n(x;µ, σ) =
1

σ
√

2π
exp
(−(x− µ)2

2σ2

)
(3.20)
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Figure 3.7: The probability density function of a normal distribution, highlighting how
the 68-95-99.7 rule relates to the distribution’s mean µ and standard deviation σ.

3.4.3 White Noise

A widely used stochastic process in the modelling of uncertainty is white noise.
It is a mathematical abstraction that is useful as many real processes can be ap-
proximated as white noise. In statistics, the term white noise is used to describe a
stochastic process with a constant spectral density. In physics on the other hand,
white noise refers to a signal that contains all frequencies with equal intensity.
These two descriptions of white noise may differ, but using definition 3.4, it is clear
that they are equivalent.

The statistical properties of white noise; mean, variance and covariance; are given
in equations (3.21)-(3.23) respectively. Here F (t) is used to refer to a white noise
process.

E[F (t)] = 0 ∀t (3.21)

V ar[F (t)] = σ2 ∀t (3.22)
Cov[F (t), F (s)] = 0 ∀t 6= s (3.23)

As white noise is a stationary stochastic process, its autocorrelation function is
given by equation (3.18). Using the statistical interpretation of white noise, equa-
tions (3.24) and (3.25) describe the spectral density and autocorrelation functions
respectively. The delta dirac function in equation (3.25) means that white noise
has an infinite autocorrelation at τ = 0, and zero autocorrelation at τ 6= 0. In
practice, this means that two samples of white noise at two different time instance
will be completely unrelated to each other.
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Swn(jw) = σ2 (3.24)

Rwn(τ) = σ2δ(τ) (3.25)

3.4.4 Wiener Process

The Wiener process, also known as Brownian motion, can be used to describe an
integrator driven by white noise. For this reason, the wiener process is often used
in the solution of stochastic differential equations where an uncertainty modelled
by white noise is present. In order to properly explain the Wiener process, it is
necessary to define the Markov property.

Definition 3.7. A discrete-time stochastic process, (Xn)n∈N , has the Markov
property if, for all n ≥ 1, the probability distribution of Xn+1 is solely determined
by the state of the process at time n, and is independent of previous states at times
k ≤ n−1 [46]. Written in terms of probabilities, the Markov property is as follows:

P (Xn+1 = xn+1|Xn = xn, ..., X1 = x1) = P (Xn+1 = xn+1|Xn = xn) (3.26)

The Wiener process stems from the notion of a random walk, where one starts at
the origin and takes a step either forward or backward, with an equal probability
of stepping in either direction. This means that the position after n steps will be
random and the direction of the walk will only depend upon the current direction
of the walk. Using definition 3.7, it is then clear that the Wiener process has the
Markov property.

The Wiener process is defined as the continuous analog of the discrete random
walk [8]; that is, the wiener process is the resulting path obtained by integrating
white noise over a time interval. Using F (t) to represent a white noise process, the
Wiener process (W (t)) is then as follows:

W (t) =

∫ t

0

F (u)du (3.27)

By using the statistical properties of white noise from equations (3.21)-(3.23), the
definition of the stationary autocorrelation function in equation (3.18), and the
mean-square value of the Wiener process in equation (3.28); the mean and variance
of the Wiener process are given by equations (3.29) and (3.30) respectively [8].
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E[W (t)2] = E
[ ∫ t

0

F (u)du

∫ t

0

F (v)dv
]

=

∫ t

0

∫ t

0

E[F (u)F (v)]dudv

=

∫ t

0

∫ t

0

RF (u− v)dudv =

∫ t

0

∫ t

0

σ2δ(u− v)dudv = σ2

∫ t

0

dv = σ2t (3.28)

E[W (t)] = E
[ ∫ t

0

F (u)du
]

=

∫ t

0

E[F (u)]du = 0 (3.29)

V ar[W (t)] = E[W (t)2]− E[W (t)]2 = E[W (t)2] = σ2t (3.30)

As the variance of the Wiener process in equation (3.30) depends upon the time (t),
it will change continuously; making the Wiener process a non-stationary stochastic
process. The previously listed statistical properties of the Wiener process have
been used to create the following definition of the process.

Definition 3.8. The Wiener process (W (t)) is defined over the continuous interval
t ∈ [0, T ] and satisfies the following conditions [24].

1. W (0) = 0

2. W (t) −W (s) ∼
√
t− sN(0, 1), where 0 ≤ s < t ≤ T and N(0,1) denotes a

normal distribution with zero mean and unity standard deviation

3. The two increments W (t)−W (s) and W (v)−W (u) are independent, where
0 ≤ s < t < u < v ≤ T

3.4.5 Stochastic Calculus

Stochastic calculus applies mathematical theories, such as integral and differential
calculus, on random processes. This enables us to study how a stochastic process
is set to change over time; a study that is of importance for this thesis.

Stochastic Differential Equations

When a stochastic process changes with time and is modelled mathematically,
the resulting equation is a stochastic differential equation (SDE). Contrasting to
an ordinary differential equation (ODE) and its solution, in equations (3.31) and
(3.32), the solution to a stochastic differential equation, in equations (3.33) and
(3.34), appears to be quite similar.
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dx

dt
= f(x), x(t0) = x0 (3.31)

x(t) = x0 +

∫ t

t0

f(s)ds (3.32)

In the SDE below, both X(t) and Y (t) are stochastic processes and X0 is a random
variable.

dX(t) = f(X(t))dt+ g(X(t))dY (t), X0(t0) = xo (3.33)

X(t) = X0 +

∫ t

0

f(X(s))ds︸ ︷︷ ︸
Deterministic integral

+

∫ t

0

g(X(s))dY (s)︸ ︷︷ ︸
Stochastic Integral

(3.34)

Despite the similarities between the solutions for x(t) and X(t), their behaviours
differ. First of all, the solution of the deterministic differential equation will remain
unchanged from each time it is solved; the stochastic solution on the other hand
will differ from time to time. This difference is rooted in the random variables
present in the solution for X(t). Further, the solution of the stochastic integral in
equation (3.34) must be solved differently than that of the deterministic integral
in equation (3.32). This will be explained further in the next sections.

Stochastic Integrals

A deterministic integral on the form in equation (3.35) can be approximately solved
by using the Riemann sum over the desired interval. There are two alternative forms
to the Riemann sum, given by equations (3.36) and (3.37). The exact solution to
the integral is obtained by allowing ∆t = ti+1 − ti → 0 for the Riemann sum,
where both alternatives to the Riemann sum will produce the same, and correct,
and answer.

I =

∫ T

0

h(t)dt (3.35)

I ≈
N−1∑
i=0

h(ti)(ti+1 − ti) (3.36)

I ≈
N−1∑
i=0

h
( ti + ti+1

2

)
(ti+1 − ti) (3.37)

This way of defining solutions to integrals is used in an equivalent manner for
stochastic integrals. The stochastic integral from equation (3.34) is expressed in
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equation (3.38), where g(X(s)) is replaced with h(t) to allow for consistency to the
notation in equation (3.35). In order to approximate a solution to this integral, it
is possible to use two different forms of the Riemann sum; much like the case for
deterministic integrals. Here equations (3.39) and (3.40) correspond to equations
(3.36) and (3.37) respectively. Recall that Y (t) is, in this case, a stochastic process.

I =

∫ T

0

h(t)dY (s) (3.38)

I ≈
N−1∑
i=0

h(ti)(Y (ti+1)− Y (ti)) (3.39)

I ≈
N−1∑
i=0

h
( ti + ti+1

2

)
(Y (ti+1)− Y (ti)) (3.40)

Unlike the deterministic case, the two approximations to the stochastic integral
will give rise to different answers as ∆t = ti+1 − ti → 0 [24]. Using the sum in
equation (3.39) to approximate a stochastic integral gives rise to the Itô integral,
and the sum in equation (3.40) gives rise to the Stratonovich integral.

The Euler-Maruyama Method

Much like the Euler method is used to numerically solve deterministic ordinary
differential equations (ODEs), the Euler-Maruyama method is used to numerically
solve stochastic differential equations (SDEs). It is assumed that the reader has
sufficient knowledge with numerics, hence, only the extension of numerics into
stochastic calculus will be covered in this section.

The Euler-Maruyama method can be used to solve a scalar, autonomous SDE; a
kind of SDE that is shown by equation (3.34). Here the term autonomous refers
to the mathematical sense of the word, meaning that an autonomous differential
equation is one that does not specifically depend on the independent variable. For a
differential equation used to portray a physical system, the independent variable is
typically time. Thus, a differential equation where time is not an explicit variable,
in the sense that the states portrayed in the differential equation change with time
but time is not present as a variable, is an autonomous differential equation.

According to [24], SDEs are generally portrayed in their differential form rather
than in their integral form, as shown by equations (3.33) and (3.34) respectively.
Therefore, the Euler-Maruyama method will be presented using the differential
form of the SDE.

As with any numerical method, the first step in solving the SDE is to discretize
the interval of interest. Working with mathematical models of physical systems,
this means that the time interval is discretized into N parts. Much like the Wiener
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process was defined over a specified time interval, the solution of the SDE will also
be over a time interval given by t ∈ [0, T ]. Using that ∆t = T/N , ti = i∆t and
i ∈ [0, N ]; the Euler-Maruyama solution of the SDE in equation (3.33) is given by
equation (3.41). Note that both X(t) and Y (t) represent stochastic processes.

Xi+1 = Xi + f(Xi)∆t+ g(Xi)(Y (ti+1)− Y (ti)) (3.41)

In order to determine Xi+1 using equation (3.41), the value of Y (ti+1) − Y (ti)
must be set. This value will depend on the type of stochastic process that Y (t)
represents. As this thesis will always use the Wiener processW (t) as Y (t), the value
that needs to be determined will beW (ti+1)−W (ti). As explained in section 3.4.4,
the random variable representing an increment in the Wiener process follows a
normal distribution with zero mean and a a variance equal to size of the increment.
For instance, if the Wiener process is discretized with an increment equal to ∆t =
ti+1 − ti, then the value of the random variable W (ti+1) −W (ti) can be sampled
from a normal distribution ∼ ∆tN(0, 1).

3.5 Network Representation

This section presents the basic concepts of network representation, and is provided
to shed some light on the terminology used to describe the A* search in section
3.6. The terminology used in this thesis is collected from [38].

Motion planning is an optimization problem, and its nature allows it to be presented
as a network that consists of nodes connected by arcs. The nodes will typically
represent positions in space, whereas the arcs can represent various aspects of the
motion planning problem. They may for instance represent the cost of moving
between two nodes, the distance between two nodes, the control input needed to
move the vehicle from one node to the next, and so on. The specific representation
used for this thesis will be covered in section 5.3.

Figure 3.8 shows how a simple graph can be presented using nodes and arcs. This
graph G = (N,A) consists of a set of nodes N = {A, B, ..., G} and arcs A = {a,
b, ..., j}, and is referred to as a network only when specific numerical values are
associated to the nodes and their arcs. The arcs in figure 3.8 are directed, meaning
that they only allow flow in the direction specified by the arrow. An undirected
graph on the other hand, allows flow in both directions along an arc.

3.6 A* search

The A* search is a popular computer algorithm for path finding and graph traver-
sals. Using a predefined graph, the algorithm finds the optimal set of nodes that
leads to the target node by introducing a heuristic. The heuristic represents an
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Figure 3.8: Basic network representation using nodes, shaded in green, and arcs, labelled
from a to j.

estimated cost of moving from a node towards the target node, and is included to
provide the A* search with some brains. The A* algorithm can be applied to a
wide variety of problems, but will be explained in the motion planning context as
that is the topic of this thesis.

Consider the problem of moving from start to goal in figure 3.9, figure 3.9a is able
to detect the obstacle before getting trapped, unlike the path finding algorithm
shown in figure 3.9b. The A* algorithm is typically of the kind in figure 3.9a, in
that a properly designed heuristic will be able to detect future traps. A simple
example is presented below to highlight the basic concepts of the A* algorithm.
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(a) (b)

Figure 3.9: The two figures show an algorithm that uses brains to determine the optimal
path in (a) and one that does not use brains in (b). Images collected from [26].

3.6.1 Introduction to A* search

Before using the A* search for path finding, a network has to be created. For motion
planning for ASVs, the network should represent the environment the search is to be
completed over. Once the network is created and the starting node and target node
are specified, the A* search can start. The goal of the algorithm is to determine
the lowest-cost path from start to target.

The cost of a node, say node n = E in figure 3.8, is determined by a cost-to-go term
h(n) and a cost-to-come term g(n). The cost-to-come term is the cost to go from
the starting node, node n = A in figure 3.8, to the current node n = E. For this
example, the cost to go from node A to E would be g(E) = a+e. The cost-to-go is
the heuristic, as it represents an estimate of the cost to go from the current node
n = E to the target node n = G. For this example, the cost to go from node E to
G would be h(E) = i. The total cost of node E is then equal to the sum of g(E)
and h(E), f(E) = g(E) + h(E). The total cost for a generic node n in a network
in an A* search is then given by:

f(n) = g(n) + h(n) (3.42)

The A* algorithm uses the total cost in equation (3.42) to expand the node with
the lowest cost. With a properly designed heuristic, this can lower the amount
of expanded nodes such that the time-complexity of the search is greatly reduced.
Using figure 3.8 as an example, if the current node is n = B, then the path can
either go to node n = D or n = E. The A* search chooses the next node, either
D or E, with the lowest total cost f(n). If node E has the lowest cost, and node
G is the target node, then the A* search will give the optimal path from A to G
as: {A, B, E, G}. As only the lowest-cost nodes are expanded, the search will then
only have opened nodes: {A, B, D, E, G}; effectively leaving out nodes {C, F} and
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thereby saving the amount of memory needed to complete the search and reducing
the time spent to find the optimal path.

The cost-to-come function g(n) is, as exemplified above, typically the length from
the start node ns to the current node n. This length can be calculated in numerous
ways, but will be calculated as the euclidean distance in this thesis. Making the
cost-to-come, for a node n with position (x,y) in a 2D-plane, equal to:

g(n) =
√

(x− xs)2 + (y − ys)2 (3.43)

where (xs, ys) represents the coordinates of the start node.

The design of a heuristic h(n), also called cost-to-go, is more complex. It is also a
key factor in the implementation of an A* search and is vital for the results of this
thesis. Therefore, it is explained in a separate section below.

3.6.2 Heuristics

The time complexity of the A* search is influenced by the design of the heuristic.
Note that the heuristic is an estimate of the minimum cost to go from a node n to
the target node nt. If the designed heuristic is length, then the heuristic of a node
n would be the minimum length to go from n to nt.

As the heuristic is an estimate, it can either underestimate, overestimate or per-
fectly estimate the true cost-to-go [23]. The effect of each these cases on the A*
search is as follows:

- If the heuristic underestimates the true cost, then A* has to expand more
nodes to reach the target, effectively making it slower. However, it is guar-
anteed to find the shortest path.

- If the heuristic overestimates the true cost, then the A* search will be faster
but it is not guaranteed to find the shortest path towards the target node.

- A perfect estimate of the heuristic means that the algorithm only expands
the nodes that lead to the shortest-path, resulting in a fast algorithm and an
accurate result. Although, obtaining a perfect estimate of the cost-to-go is
difficult to complete in practice.

A commonly used design for the heuristic function h(n) is the length to go from
the current node n to the target node n. Much like the distance calculation of
the cost-to-come g(n), this distance can be calculated in numerous ways. If the
euclidean length is used, h(n) would be equal to g(n) in equation (3.43), where
(xs, ys) is then replaced by the coordinates of the target node (xt, yt). This thesis
will use a different method to give an estimate of the cost-to-go, the explanation
of the implemented heuristic function is presented in sections 4.2.1 and 4.3.1.
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3.6.3 Pseudocode

An implementation of the A* search in any programming language requires the
system to keep track of two lists:

1. OPEN:
Contains the nodes that have been opened throughout the search. A node
is opened once its parent is chosen as the current node, which means that it
has been the node with the lowest total cost (f(n)) in the OPEN list.

2. CLOSED:
Contains the nodes that have been chosen as the current node due to their
minimum total cost value (f(n)).

The configuration of the OPEN list should contain the current node, its parent node
and its costs. It is important to keep track of the parent nodes as the algorithm
backtracks through the parent nodes once the target node is opened to find the
optimal path. An example of the set-up of an OPEN list is given in table 3.1, where
the first column is a boolean value used to indicate if the node is still in OPEN (open
= 1) or in CLOSED (open = 0). The CLOSED list on the other hand, requires less
information. It merely keeps track of the nodes that have already been explored,
and should only contain these nodes. An example of how a CLOSED list may look
like is shown in table 3.2.

Table 3.1: Example of an OPEN list

Open Node n Parent Node np g(n) h(n) f(n)

1/0
...

...
...

...
...

Table 3.2: Example of a CLOSED list

Node n
...

Once the set-up of the OPEN and CLOSED lists is defined, the coding of the
search can start. The implementation of the A* search can be represented by the
pseudocode in algorithm 1, presented with a MATLAB-like syntax.
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Algorithm 1: A* search

1 % Complete the search
2 Initialize OPEN to contain the start node
3 Initialize CLOSED to an empty list
4 while target node is not in OPEN do
5 find node with lowest f(n) value in OPEN
6 make said node the current node
7 if current node is target node then
8 end search
9 else

10 place current node in CLOSED and open its successor nodes
11 for each of the successor nodes do
12 if successor is in OPEN and it has a lower f(n) value than that

already listed in OPEN then
13 replace the successor’s f(n) value with the new, lower f(n)

value
14 replace the parent node of the successor in OPEN to the

current node
15 else if successor is in CLOSED and it has a lower f(n) value

than that already listed in OPEN then
16 replace the successor’s f(n) value with the new, lower f(n)

value
17 replace the parent node of the successor in OPEN to the

current node
18 else if successor is not in OPEN or CLOSED then
19 add successor to OPEN
20 end
21 end
22 end
23 % Backtrack from target node to start node to find optimal path
24 Initialize OPTIMAL to contain the target node
25 Make current node equal to the target node
26 while current node is not equal to start node do
27 find parent node of current node in OPEN
28 place parent node at the back of OPTIMAL
29 make current node equal to the parent node
30 end
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Chapter 4

Motion Planning using
Path-of-Probability

In order to properly distinguish the POP algorithm from the other theory and
background from chapter 3, this chapter is presented. Its aim is to clarify how
probability theory and an A* search can be combined to give a motion planner
with POP. First however, the general outline of the POP algorithm is presented
in a step-by-step manner. Then, its fusion with the A* search for global path
planning is outlined, closely followed by its extension into a dynamic environment.
Note that all implementation details regarding the POP algorithm are made clear
in section 5.3.3.

As mentioned in chapter 2, the POP algorithm has been used for a variety of
objectives, ranging from motion planning for a flexible needle to a rolling robot. As
this thesis will regard motion planning for an ASV, which draws more similarities
to a rolling robot than a flexible needle, the description of the algorithm will follow
the set-up for a rolling robot; as described by Wooram Park and Jaeyon Lee in
[34].

4.1 The POP Algorithm

The POP algorithm from [34] is adapted to an ASV and explained below. Sec-
tion 4.2 enhances the original POP algorithm by combining it with an A* search
approach for global path planning, which is further used in collision avoidance
according to section 4.3.

The general methodology of the POP algorithm for path planning is summarized
by the steps given below. A more thorough explanation of each step follows.
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Step 1: Create the SDE
Identify a suitable stochastic differential equation (SDE) that can be used
to portray the state transitions of the system at hand. In path planning for
ASVs, the states will be the position in the NED-plane.

Step 2: Discretize inputs
Discretize the inputs that are used in the SDE to alter the states. For an
ASV, the inputs can range from the actuator commands to the velocities,
where the chosen input depends on the SDE from step 1.

Step 3: Determine the candidate points
Using the discretized inputs from step 2, determine a set of candidate points
for the next segment of the path.

Step 4: Solve the SDE
For each candidate point, solve the SDE a number of times (NSDE) to obtain
a set of trajectories that move towards the target position. Remove the
trajectories that pass through or too close to a static obstacle.

Step 5: Build the PDF
Use the end-points from each trajectory generated in step 4 to estimate a
probability density function (PDF) for each candidate point. Each candidate
point will then have its respective PDF.

Step 6: Choose the optimal candidate point
Using the PDFs from step 5, the probability of reaching the target position
from each candidate point is calculated. The candidate point with the largest
probability of reaching the final position is chosen as the next waypoint in
the guidance system.

Step 7: Check the termination criteria
If the candidate point chosen as the next waypoint is sufficiently close to the
final position, terminate the algorithm. If not, return to step 3 and repeat
the process.

The theory regarding the SDE and its solution, mentioned in step 1 and 4, is
covered in section 3.4.5. Further, the creation of the SDE for an ASV, step 1,
is covered in chapter 5. Therefore, these steps are not explained in detail in this
section. Note that step 4, solving the SDE, can be completed in numerous manners.
In this thesis however, the Euler-Maruyama method from section 3.4.5 is used, and
therefore used in the description of the POP algorithm.

The discretization of the inputs in step 2 is required to obtain a finite set of candi-
date points for the upcoming section of the path. This discretization will depend
upon the system at hand, where its constraints and feasible motions will have to
be accounted for. This step can be completed by using a deterministic differential
equation of the system, and simulating the effect of each input on the system by
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Figure 4.1: An example of how a set of candidate points for the next segment of the
path may look like. The number of candidate points is, in this case, eleven, and will
depend upon the chosen discretization of the inputs in step 2 of the POP algorithm. The
trajectories in the figure are representative for a 3 DOF ASV with constant surge speed
and varying yaw speeds chosen from r = [−0.05 : 0.01 : 0.05] [rad/s].

numerically solving the deterministic differential equation. One will then obtain
respective candidate points for each possible input. Figure 4.1 exemplifies this no-
tion. In this case, an ASV has been modelled in accordance to section 3.3 and the
yaw speeds have been discretized to give a set of eleven possible candidate points.

The remaining steps rely on the creation of the PDFs that will output the prob-
ability of reaching a certain position, say (x, y), for each candidate point. Recall
that each candidate point corresponds to one of the discretized inputs. This part is
vital for the POP algorithm, as it is used to determine the probability of reaching
the target position (xtar, ytar) from a candidate point. Unlike the explanation of
a probability density function in definition 3.2, this density function will be two
dimensional and will therefore be referred to as p(x, y). However, the properties
listed in definition 3.2 still apply. In order to determine p(xtar, ytar), the PDF must
be built using the solutions of the SDEs from step 4.

The Euler-Maruyama method is used to solve the SDE NSDE times, exemplified in
figure 4.2 where three trajectories are shown with NSDE = 10. In order to generate
a trajectory for each candidate point, the initial value in the Euler-Maruyama
method is equal to the the candidate point under investigation. So, in equation
(3.41), Xi when i = 0 is set to the co-ordinates of the current candidate point
in NED. From there, the stochastic behaviour of the SDE will ensure that the
trajectories will vary for each of the solutions, a characteristic that is visible in
figure 4.2. Thus, a set of end-points (xk, yk) for each of the NSDE trajectories
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Figure 4.2: Following the example candidate points from figure 4.1, the corresponding so-
lutions to each SDE is visualized in this figure. In this example, NSDE = 10 and there are
three candidate points corresponding to one yaw speed chosen from r = {−0.05, 0, 0.05}
[rad/s].

originating from the candidate point at hand will be stored and used in step 5.

The creation of the PDF, in step 5, is based on the assumption that the vessel’s
position in NED, (N,E) = (y, x), follows a normal distribution. For each candidate
point, a PDF is built by summing up the normal distributions for each of the
trajectories generated by solving the SDE in step 4, as shown by equation (4.1).
The end-points (xk, yk) of each trajectory are used as the mean of the normal
distribution, evident by comparing the expression in equation (4.1) to (3.20). For
each solution of the SDE, the PDF is equal to that of a two-dimensional normal
distribution and is given by equation (4.2). In the equation, s refers to the standard
deviation.

p(x, y) =
1

NSDE

NSDE∑
j=1

gj(x, y) (4.1)

gj(x, y) =
1√

2πs2
exp
(
− (x− xk)2

2s2
− (y − yk)2

2s2

)
(4.2)

The resulting PDF (p(x, y)) is visualized using a heatmap over the state-space in
figure 4.3. The standard deviation (s) should be set to match how the vessel’s
positions tend to spread out due to the stochastic effects. For ASVs, the stochastic
effects include environmental disturbances, sensor noise and model uncertainty; all
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(a) (b)

Figure 4.3: The two PDFs show how the final density function p(x, y) changes as the
standard deviation s is altered, where s = 10 in (a) and s = 5 in (b)

causing the vessel’s response to deviate for the same set of inputs. These effects are
difficult to quantify without access to a model ship and experimental values, hence,
the standard deviation of the normal distribution in equation (4.2) is estimated.
The effect of varying the standard deviation (s) is evident in figure 4.3, where a
larger value for s, s = 10, results in a greater spread in the PDF and overall lower
probability values compared to s = 5.

Once the PDFs for each candidate point are created, the target position (xtar, ytar)
is input to the PDFs (p(xtar, ytar)) to give the probability of reaching the target for
each candidate point. This information is used in step 6, where the candidate point
with the largest probability is chosen as the next waypoint in the path. When this is
completed, only step 7 remains; to check whether or not the chosen candidate point
is in close proximity to the target point. If so, the POP algorithm is terminated
and the list of waypoints generated is used by the GNC system to steer the ASV.
If not, the procedure is repeated for a new set of candidate points.

As the global path planning problem involves static obstacles, POP needs to include
an approach to handle and steer away these obstacles. This procedure is outlined
in the next section.

4.1.1 The POP Algorithm with Static Obstacles

The procedure explained above works well in an environment without obstacles,
however, static obstacles must be considered in global path planning. In the POP
algorithm, this is completed by terminating the trajectories for each solution of the
SDE once they intersect with a static obstacle, as illustrated in figure 4.4. This
will then decrease the probability of reaching the target point for the respective
candidate point, as the end-points (xk, yk) are located further from the target
point. As a result, the chance that a candidate point on collision course with a
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Figure 4.4: Following the parameters in figure 4.2, the solutions of the SDE correspond-
ing to each yaw speed is visualized with the inclusion of static obstacles. It is clear how
the trajectories are cutoff once they reach an obstacle.

static obstacle is chosen as the next waypoint is reduced. This procedure was first
outlined in [34], where one static obstacle is considered. The performance of this
approach in an environment with multiple static obstacles is investigated in this
thesis, and results are presented in chapter 6.

4.2 Algorithm for Global Path Planning

This section covers how the POP algorithm can be used in combination with an
A* search to find a global path for an ASV. The reader is referred to section 3.6
and 3.5 to read up on the theory and implementation details of the A* search and
network representation.

The output of the POP algorithm is a set of waypoints, where each waypoint is
chosen from a set of candidate points such that the probability of reaching the target
is maximized. This result can be combined with an A* search by discretizing the
search environment such that it can be represented as a network. The A* algorithm
will then search through the nodes in order to find the path with the lowest cost.
Hence, by including the probability of reaching the target into the cost calculation
of each node, it is possible to merge POP with the A* search.

The total cost of each node f(n) is determined according to equation (3.42), where
the cost-to-come g(n) is an accurate description of the cost to reach the node from
the start node whereas the cost-to-go h(n) is an estimate of the minimum cost to
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reach the target node. As the probability of reaching the target is also an estimate,
the results from the POP algorithm are included in the heuristic function h(n),
also referred to as the cost-to-go h(n). However, the design of the heuristic has to
be completed with care. As mentioned in section 3.6.2, an overestimation of the
cost-to-go can lead to paths that are sub-optimal. When optimality is key, it is
therefore important to design the heuristic such that it is admissible; meaning that
it underestimates the cost to reach the target. The design of the total cost f(n)
such that it includes POP is explained in the section below.

4.2.1 Design of the Total Cost Function

The total cost function f(n) in the A* search depends upon the heuristic h(n) and
the cost-to-come function g(n). The g(n)-score of a node is set to the euclidean
distance from the initial position of the ASV to the position within the current
node, shown in equation (3.43). The main contribution to f(n) in this thesis
regards the design of h(n), where POP is among the attributes used to calculate
the heuristic cost for the nodes within a network.

The effects of a poorly designed heuristics are listed under section 3.6.2, where the
hazard of underestimating or overestimating the heuristic function will depend on
the problem at hand. If it is more important to have a short and efficient path
towards the target point, then underestimating the true cost is favourable. On the
other hand, if computational time is a key factor and the need for optimality is
relaxed, then overestimating the true cost of the heuristic is not as critical. These
two scenarios can be adapted to motion planning, where optimality is favoured
in global path planning whereas computational time is a key factor in collision
avoidance.

According to [23], the behaviour of the A* search can be controlled by the heuris-
tic function. The design of the heuristics in the motion planning problem can
take many forms, in this thesis however, the heuristic function is varied to have
contributions from the factors listed below.

Euclidean distance:
The heuristic is based on the Euclidean distance from the node position
towards the target position, shown in equation (4.3). All of the heuristic
functions tested in this thesis will include the Euclidean distance (eh(n)).

POP algorithm:
The POP algorithm outputs the probability of reaching the target (p) from a
given position, this measure is used to increase the Euclidean distance with
a penalty factor that is proportional to the probability of not reaching the
target.

Safety radius:
The vessel is equipped with a safety radius around its body, in which obstacles
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are not allowed to enter. If a node violates the safety radius, a penalty factor
is added to its heuristic.

In the design of h(n), the Euclidean distance (eh(n)) in equation (4.3) is the basis for
the cost-to-go. In order to reduce the optimality of a node, and thereby increasing
its cost, penalty factors are included. These penalty factors mirror the elements
listed above, i.e POP and the vessel’s safety radius. Each penalty factor will be
multiplied with eh(n), such that h(n) and g(n) both have the same units. The
heuristic function is shown in equation (4.4), where the effect of the penalty factors
p = [pPOP , pRAD] is made clear. All penalty factors are in the range between 0
and 1. Specifically, pPOP = (1−p(n)) where p(n) is the probability of reaching the
target position from a node n, such that 0 ≤ pPOP ≤ 1. As for pRAD, its value is
either pRAD = 0 or pRAD = 1, depending on if the safety radius is violated or not.
As a result, the maximum addition to the Euclidean length is equal to two times
eh(n).

eh(n) =
√

(x− xt)2 + (y − yt)2 (4.3)
h(n) = eh(n) + (pPOP + pRAD)eh(n) (4.4)

This addition of multiples of eh(n) to h(n) means that the heuristic cost influences
the value of the total cost f(n) to a much higher extent than the cost-to-come g(n).
[23] mentions how it is important that h(n) and g(n) are within the same scale,
such that there is an equilibrium in how each cost functions influences the total
cost. In order to increase the value of g(n) from equation (3.43) to the same level
as h(n), g(n) is re-defined according to:

β = {0, 1, 2} (4.5)

eg(n) =
√

(x− xs)2 + (y − ys)2 (4.6)
g(n) = eg(n) + βeg(n) (4.7)

where equation (4.5) shows the possible values for β in equation (4.7). The value
for β depends on the included penalty factors in h(n). The various design for
f(n) that are tested are listed in chapter 6, where the optimality of each design is
determined by the means of simulations of a global path planning scenario.

4.3 Algorithm for Collision Avoidance

The problem formulation in a collision avoidance scenario differs from that in global
path planning. In global path planning, the target position is well defined and the
obstacles are static, as a result it is not necessary to consider the time-variable in
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the planning process. It is however possible to do so, but this thesis is operating
with an ASV that maintains a constant forward speed. Contrarily, time is an
important aspect in collision avoidance. Further, the target position is not a well-
defined constant once a collision situation occurs. The ASV has to deviate from its
global path, and follow an evasive maneuver generated by the collision avoidance
path planner. This section investigates how POP and the A* algorithm are used
in unison to generate a COLREGS compliant evasive maneuver.

Currently, the POP algorithm has only been tested with one static obstacle. Thus,
the extension to handle dynamic obstacles is developed in this thesis and has not
been tested before. It is a preliminary method, that focuses on generating a pro-
cedure for incorporating POP into the A* search when a collision situation is
detected.

The general outline of the proposed collision avoidance technique is as follows:

Step 1: Use CPA to determine risk of collision
Once a target vessel is detected, the closest point of approach (CPA) is used
to calculate if there is a risk for a collision. If that is the case, the algorithm
proceeds to step 2.

Step 2: Determine the COLREGS situation
The relative bearing (β) is used to classify which COLREGS rules apply to
the current collision situation.

Step 3: Generate an evasive maneuver
The A* search with the POP algorithm is used to generate an evasive ma-
neuver. The local path is created such that it lasts until the collision is
successfully avoided.

Step 4: Converge back to the global path
Once the target vessel is avoided, the ASV should return to its original, global
path.

With steps 1 and 2 previously outlined in section 3.2, steps 3 and 4 are explained
in further detail in this section.

In step 3, A* and POP are used in the same manner as in the global path planning
problem, outlined in section 4.2. However, the design of the total cost function f(n)
differs. Further, even though the POP algorithm remains unchanged, the location
of the target point used in each POP iteration is altered. This adjustment of the
target points will be referred to as the virtual target point (VTP) method. In step
4 of the procedure, an A* search with the POP algorithm is initiated towards the
original waypoint. The cost functions of this A* search are the same for step 4 and
3, and are explained in the section below. The VTP method is then outlined in the
final section of this chapter. The implementation details of the collision avoidance
algorithm are described in chapter 5.
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4.3.1 Design of Total Cost Function

Rather than repeating much of the information regarding the design aspect of the
total cost function f(n), the reader is referred to the preliminary paragraphs of
section 4.2.1; where the considerations in the cost function design are explained.

The expression for f(n) is presented in equation (3.42), and is repeated in equation
(4.8) for reference. As for the cost-to-come g(n) and cost-to-go h(n) functions in
the A* search for a collision avoidance scenario, the final expressions are shown in
equations (4.9) and (4.10).

f(n) = g(n) + h(n) (4.8)
g(n) = 0 (4.9)
h(n) = (1− p(n)) = pPOP (n) (4.10)

The definition of pPOP in equation (4.10) is the same as previously explained in
global path planning, such that the heuristic function in collision avoidance is equal
to the probability of not reaching the virtual target point.

Notice that the Euclidean distances are removed from the g(n) and h(n) functions,
compared to the global path planning cost functions. This is implemented as the
aim of this thesis is to investigate how the POP algorithm can generate collision
avoidance paths. In the global path planning problem however, the addition of
Euclidean distances were necessary to obtain conclusive results.

4.3.2 Virtual Target Points (VTPs)

The POP algorithm relies heavily on a well-defined target point to guide the pro-
cedure in the correct direction. The method of virtual target points (VTPs) is
therefore created to ensure that the collision avoidance algorithm with POP gen-
erates safe paths, where the term "safe" refers to adhering to COLREGS and
maintaining a safe distance between the ASV and the target vessel. As mentioned
in the general outline of the collision avoidance algorithm on page 57, CPA and
relative bearing (β) are used to determine if there is a collision risk and classify
which COLREGS rules apply. The reader is referred to section 3.2, where the steer-
ing and sailing rules applicable to an ASV are listed. Below is an explanation of
how the VTP placement proceeds for each COLREGS scenario where the ASV is a
give-way vessel, i.e crossing from the right, head-on, and overtaking. Each of these
scenarios are later combined to test the developed collision avoidance algorithm.
The results are presented in chapter 6.

Note that the target vessels follow a constant velocity model with a turn rate equal
to zero. Further, the positions and velocities of the target vessels are assumed to be
perfectly known. Such that no uncertainties are incorporated into their projected
positions and velocities.
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Rule 16: Crossing from the Right

In order to obey rule 16 in COLREGS, the VTPs have to placed to ensure that the
ASV passes behind the target vessel in a crossing from the right situation. Figure
4.5 shows the general procedure for placing the VTPs once the collision risk is
detected at time t = t0. In a crossing from the right situation, the VTPs move as
time passes. This detail is included as the motion of the target vessel, labelled as
"B" in the figures, means that placing the VTP behind vessel B in t = t0 would
lead to an unnecessarily large avoidance maneuver.

As each collision situation differs, two variables called α and γ are included to
ensure that the placement of the VTPs is optimal. Figures 4.5a and 4.5b show
how α and γ affect the VTP placement. The value of α decides the placement of
the initial VTP, and which projected position of the target vessel it should follow.
Two examples of different values for α are included in figure 4.5a, where α = 1
means that the initial VTP is placed behind vessel B at the time instance t = t0.
Whereas an α = 0.5, means that the initial VTP is placed behind vessel B at time
t0 ≤ t ≤ tcpa, where the relative velocities of A and B decide the exact positioning.
If the two vessel have the exact same velocity, then α = 0.5 coincides with halfway
between t = 0 and t = tcpa, exemplified in figure 4.5b. The exact location of the
initial VTP is given by equation (4.12), where pB,1 from equation (4.11) is the
projected position of pB and rB is the safety radius around vessel B.

pB,1 = pB,t0 + α(vB × tcpa) (4.11)
V TP1 = pB,1 + rB (4.12)

The variable γ on the other hand, decides how the VTPs are moved back towards
the original waypoint of the global path. In figure 4.5b, "TP" refers to the global
waypoint. When γ = 1, the VTPs move back towards TP such that the final VTP
is equal to the global TP when t = tcpa. If γ is reduced, and γ = 0.5 as exemplified
in figure 4.5b, then the VTPs move towards the TP in half the speed they would
have moved with if γ = 1. The final set of VTPs throughout the collision scenario
in a crossing from the right situation are defined recursively, as shown by equation
(4.14), where ∆V TP represents the necessary increments to move V TP1 towards
the global waypoint TP = WPA.

∆V TP =
WPA − V TP1

Nt − 1
(4.13)

V TPi+1 = V TPi + γ ×∆V TP (4.14)

Note that the effect of increasing both α and γ means that the ASV, labelled as "A"
in figure 4.5, passes the vessel "B" at a shorter distance. Further, both variables
are defined in the range between 0 and 1.
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(a)

(b)

Figure 4.5: Placement of the VTPs in a crossing from the right situation, where (a) shows
how the parameter α affects the VTP placement whereas (b) shows how the parameter γ
affects the VTP placement.
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Rule 14: Head-on

According to rule 14, both vessels are to change their course to starboard. This
behaviour is achieved by the following placement of the VTPs.

Unlike the VTPs in a crossing situation, the VTP in a head-on situation is constant.
This approach is used as the two vessels are on reciprocal courses, such that moving
the VTP to the right of the target vessel, labelled as vessel "B" in figure 4.6, is
sufficient for making the ASV changes its course to starboard. As for the exact
location of the VTP, it is defined relative to the projected position of vessel B at
time t = tcpa, shown in equation (4.15). The placement of the VTP is calculated
according to equation (4.16), where rB refers to the safety radius around the target
vessel.

Much like the previous VTP placement, the positioning of the VTP can be adjusted
with a variable, called κ in a head-on situation. The value of κ decides how far to
starboard the ASV should alter its course, such that a large value for κ creates a
larger evasive maneuver than smaller values. Further, κ should not be lower than 1,
as this places the virtual target point within the safety radius of the target vessel.

pB,t=tcpa = pB,t=t0 + vb × tcpa (4.15)
V TP = pB,t=tcpa + κ× rB (4.16)

Rule 13: Overtaking

Unlike the head-on and crossing situations, the overtaking rule in COLREGS allows
for course changes to port and starboard. In figure 4.7, the course change of the
ASV is set to the starboard side. However, it could just as well pass vessel B on
the port side.

By comparing figures 4.7 and 4.6, it appears that the placement of the VTP in an
overtake situation is almost identical to that in a head-on situation. This is the
case, the only difference is that the sign of κ can be altered, depending on which
side of vessel B the ASV wishes to pass. Other than that, the placement of the
VTP is constant, and follows the set-up provided by equations (4.15) and (4.16).
The variable κ has the same interpretation in overtaking as in head-on collision
scenarios.
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Figure 4.6: Placement of the VTPs in a head-on situation. The only parameter affecting
the VTP placement is κ.

Figure 4.7: Placement of the VTPs in an overtaking situation. The only parameter
affecting the VTP placement is κ.
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Chapter 5

System Implementation

This chapter will cover how the total system, consisting of a motion planning system
and a GNC system, is implemented in MATLAB and Simulink. The simulator is
created with the intention to study the limitations and feasible motions of an ASV.
These simulations are then used to ensure that the generated path in the global
and local path planner is feasible. This point is stressed throughout this thesis, as
it is vital to incorporate the vessel’s dynamics into the motion planning algorithms.

First, an overview of the general assumptions are listed. These are then followed
by an outline of the details concerning the simulator development. The remaining
sections cover the implementation of the motion planning algorithm, first detailing
global path planning and then moving on to collision avoidance. These implemen-
tation details are important to understand the contributions and limitations of this
work.

5.1 General Assumptions

In order to comprehend the design of the motion planning algorithm, the basic
assumptions used to simplify the problem are stated.

With regard to the ASV model, two main assumptions are made. First, it is
assumed that the ASV has a constant forward speed U , where the velocity in sway
is negligible such that U =

√
u2 + v2 ≈ u. Next, the possible movements of the ASV

are discretized according to three yaw speeds, rk = [r1, r2, r3]T . The numerical
value for forward speed is summarized in table 5.1, whereas the discretized values
for the yaw speeds depend upon the map representation and the feasibility design.
The relevant rk values are therefore given in section 5.3.1.

As for other assumptions, it is assumed that the there are no environmental dis-
turbances. This is completed in order to simplify the motion planning algorithm,
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Table 5.1: Constant speed (U) used within this thesis.

Parameter Value

U [m/s] 1

such that the performance of the motion planner is measured in accordance to
how it calculates a new path, not as to how it handles environmental disturbances.
Handling environmental loads is obviously a criteria for any motion planner, but
is left for further work in this thesis.

As for the collision avoidance module, it is assumed that the target vessels are
non-reactive; meaning that the target vessels follow predicable paths. Further,
the information about the target vessels is assumed to be perfectly known. This
differs from the static obstacles, where the uncertainty from the environment and
sensor information is integrated into the global path planning algorithm. For the
collision avoidance algorithm however, focus was kept on creating an algorithm
that uses POP such that evasive maneuvers adhering to COLREGS are created.
The addition of target vessel uncertainties is left for further work, and discussed in
chapter 9.

5.2 Simulator Development

A simulator is created in MATLAB and Simulink to analyze the set of feasible
motions the ASV model can follow. This section takes a look at the ASV model,
and development of its guidance and control systems.

5.2.1 The Model ASV

In recent years, plans regarding large, battery powered ASVs have been launched.
These include DNV GL’s ReVolt and Yara Birkeland, which is a collaboration
between Yara, Kongsberg, DNV GL, Marin Teknikk, SINTEF Ocean and the Nor-
wegian maritime authorities. ReVolt is intended to have a length of 60 [m] in full
scale [52], and Yara Birkleand is set to be 79.5 [m] [4]. However, before ASVs of
this scale can be launched at sea, testing is required. For this reason, most current
ASVs are of a smaller scale. Take the small scale models for ReVolt and Yara
Birkeland, with lengths of 3m and 6m respectively.

With this in mind, the model ASV used in the simulator is of a smaller scale. It
has a length of 2 [m], and the following 3 DOF system matrices:
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M =

76.6539 0 0

0 149.4620 −1.0319

0 −1.0319 34.0793

 (5.1)

D =

12.2033 0 0

0 11.8710 0.5852

0 0.5852 4.3710

 (5.2)

The parameters were estimated using MCSim CyberShip 3.

As motion planning is a high-level task, the model used for the ASV is kept as simple
as possible. Hence, the rigid-body and added-mass Coriolis-centripetal matrices are
neglected, along with the non-linear damping terms. This simplification reduces
the 3 DOF model in section 3.3 to the one presented in equations (5.3) and (5.4),
where η = [N, E, ψ]T and ν = [u, v, r]T . As the simulator is created with no
environmental disturbances, then the dynamical model presented in section 3.3 is
simplified by τ env = τwave + τwind = 0. The actuator forces are represented by τ ,
and are explained in the next section.

η̇ = R(ψ)ν (5.3)
Mν̇ + Dν = τ (5.4)

5.2.2 Actuator Models

The actuators for the ASV model include a rudder and a propeller, where both are
located at the stern of the vessel at the center line. The reader should note that
the actuator models are developed from a control perspective, thereby lowering the
need for detailed modelling. As a result, only the main physical aspects of the
actuators are captured by the following models.

From [20, p. 398], the control force from a propeller or a rudder can be written as:

F = ku (5.5)

where u represents the control input, which is shaft speed n [rad/s] for a propeller
and rudder angle δ [rad] for a rudder; and k is the force coefficient for the actuator
in question.

For the propeller model, the generated thrust F = τprop is affected by many pa-
rameters. Using the notation and theory from [49], the thrust can be formulated
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as a function depending on shaft speed n, in rotations-per-seconds [rps]; time-
varying states (xp), such as pitch ratio, advance velocity and submergence; and
fixed thruster parameters (θp), such as propeller diameter, geometry and position:

τprop = fT (n,xp,θp) (5.6)

Keeping in line with [49], a quadratic relationship can be used to model the rela-
tionship between the shaft speed n and the thrust force; resulting in the expression
in equation (5.7). KT is the thrust coefficient, ρ is the density of water and D is
the propeller diameter.

τprop = KT ρD
4sign(n)n2 (5.7)

For the sake of the ASV model in Simulink, all the constants, i.e ρ, KT and D,
are collected in one constant, called Kprop. The conversion of n from rps to rad/s,
n [rps] = 2πn [rad/s], is also included in Kprop. With this in mind, the resulting
expression for the thrust is given by:

τprop = Kpropsign(n)n2 (5.8)

For the rudder, foil theory from [50, p. 44] is used to develop the actuator model.
The rudder on the ASV model is a conventional rudder, which is a foil connected to
the hull of the vessel. Using linear foil theory. the sway force F = τrud generated
by the rudder can be formulated as a function of U , the forward speed; ρ, the water
density; c, the cord length; and δ; the rudder deflection (angle of attack for the
foil) in radians:

τrud = πδρU2c (5.9)

Much like the actuator model of the propeller, the constants in the expression for
τrud are collected in one constant, called Krud. Unlike τprop in equation (5.8),
the relationship between the control input δ and the control force τrud is linear,
evident in equation (5.10). Note, it is assumed that the sway velocity component
is approximately zero, v ≈ 0, as the ASV will have a heading autopilot to keep
the vessel on its course. Therefore, U =

√
u2 + v2 ≈ u in equation (5.10). The

numerical values of the Kprop and Krud are summarized in table 5.2, along with
the saturation levels of the propeller and rudder.

τrud = KrudU
2δ (5.10)

Using the geometry of the ASV model, the locations of the actuators, and the
actuator models described above; the resulting force vector in each DOF is shown
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Table 5.2: Actuator model parameters and saturation levels.

Parameter Value

Kprop 2
Krud 6

nmax [rps] 85
δmax [°] 15

in equation (5.11). This is also the vector represented by τ in (5.4), and is imple-
mented within the ASV model in Simulink.

τ =

 FxFy
Mψ

 =

 Fx

Fy

Fylx − Fxly

 =︸︷︷︸
ly=0

 τpropτrud

τrudlx

 (5.11)

5.2.3 Low-Level Controllers

In order to properly follow the path from the guidance system, a surge and a
heading controller is implemented. To view the details of the tuning process and
theory behind each of the controllers, the reader is referred to appendix A. The
outputs from the heading and surge controllers are given below, in equations (5.12)
and (5.13) respectively. The controller parameters are listed in table 5.3.

δc = −Kp,ψψ̃ −Kd,ψ r̃ −Ki,ψ

∫ t

0

ψ̃(τ)dτ (5.12)

nc = −Kp,uũ−Ki,u

∫ t

0

ũ(τ)dτ (5.13)

Table 5.3: The low-level controller parameters.

Parameter Value

Kp,ψ 3.656
Kd,ψ 8.576
Ki,ψ 0.284
Kp,u 1.00
Ki,u 0.100
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5.2.4 Guidance Controller

Within the simulator, a guidance controller in the form of a line-of-sight (LOS)
controller is implemented. This controller is based on the LOS guidance laws,
whose theory is explained in section 3.1.3.

The specific LOS guidance law implemented is the lookahead-based steering ap-
proach. This approach relies on two parameters, the lookahead distance ∆ and
the radius of the circle of acceptance Raccept, shown in equations (3.3) and (3.4)
respectively. According to [20], a rule of thumb is to use the ship’s length to set
these parameter values, where ∆ ≈ 1.5Lpp− 2.5Lpp and Raccept ≈ 2Lpp. Following
this advice for ∆ and Raccept results in the guidance parameter presented in table
5.4. For Raccept on the other hand, its value is set to a lower value than the sug-
gestion from [20]. If the guidance controller is going to follow a set of close-spaced
waypoints, which will typically occur in a collision avoidance maneuver, the radius
of the circle of acceptance must be smaller. Its final value is also presented in table
5.4. Further, an example run with a set of waypoints is presented in appendix B
to demonstrate the capability of the guidance controller.

Table 5.4: The guidance controller parameters

∆ [m] Raccept [m]

1.5Lpp Lpp

= 3 = 2

Note that the effect of currents is neglected within the simulator, as environmental
factors are not considered within the motion planner. Therefore, the steering law
outputs the necessary heading ψd to follow a set of waypoints rather than the
necessary course χd. As a zero sideslip angle β leads to χd = ψd. Further, it
is assumed that the ASV model is equipped with a sensor measuring its velocity,
enabling the steering law to align the vessel’s velocity vector and the LOS vector.
However, with no currents implemented, the velocity vector of the ASV is perfectly
aligned with its body x-axis. So, in principle, the guidance controller aligns the
ASV’s body x-axis with the LOS vector, but as there are no currents to disrupt
the motion of the ASV, it will also align its velocity vector with the LOS vector.
As a result, the ASV will travel in the correct direction towards the given path.

5.3 Global Path Planning Algorithm

The global path planning problem is solved using an A* search in combination
with the POP algorithm. This section explores the implementation details of the
planning algorithm; focusing on network representation, handling static obstacles
and how the POP algorithm is designed to fit to an ASV.
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5.3.1 Network Representation

Before the A* search can commence, the search environment has to be represented
by a network. This section covers how such a network is designed with nodes and
arcs, such that the environment and feasible motions of the ASV are accurately
portrayed. First, the set-up of the nodes with regard to discretizing the surrounding
environment of an ASV is explained, followed by a feasibility design. This design
decides how the arcs are set to connect the nodes within the network. The reader is
referred to sections 3.5 and 3.6 for theory regarding networks and the A* algorithm.

Defining the Nodes

The nodes of the network make up the search map. For global path planning, this
search map covers the area between the initial position of the ASV and its target po-
sition. Each node represents a position in NED for a 3 DOF ASV, p = [N, E, ψ]T ,
therefore the term node is used to refer to a position in NED throughout this thesis.
The nodes define a squared area, in which the center of the node corresponds to a
position (p). Note that time is not an aspect that is considered here, as the world
model does not consist of any moving obstacles in global path planning.

Once the positions (p) in the search map are defined according to the nodes, the
ASV’s heading (ψ), must also be incorporated into the network. This is completed
by defining the heading in each node according to the heading of the current node,
an idea that is visualized in figure 5.1. The current node in the figure has ψ = 0°,
whereas its successor nodes can have ψ = {0, −45°, 45°}. The value of ψ in the
successor nodes depends on the placement of the successor node relative to the
current node. The vessels colored in red in figure 5.1 all have the same heading as
the current node, whereas the blue and green vessels are turned an additional ±45°
relative to the current node. This pattern is repeated throughout the search map.
Next, follows an explanation of how the successor nodes are placed relative to the
current node, i.e how the arcs in the network are defined.

Defining the Arcs

In order to ensure that the path generated by the A* search is feasible, the reacha-
bility of the ASV has to be defined. Reachability refers to the nodes the vessel can
reach from its current node, i.e the successor nodes in figure 5.1. An ASV’s reacha-
bility will depend on its dynamic behaviour and other parameters, such as forward
speed U . With an assumption of constant forward speed, the arcs in the network
are defined according to a set of discretized yaw speeds. In order to keep a relatively
low computational time, three possible yaw speeds are used: rk = [r1, r2, r3]. The
values for rk are assigned such that the the motions are feasible for the ASV model
defined in section 5.2.1. Further, the arcs in the network are design according to a
T-neighbourhood, an idea used to incorporate vessel constraints into an A* search
from [5].
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Figure 5.1: The successor nodes from the current node span into the NED-frame in the
shape of a T, thus, giving rise to the name T-neighbourhood [5]. The heading ψ of the
vessel within each successor node depends where in the T-neighbourhood the successor
is located and on the heading in the current node. The green vessel represents a turn to
right, and an additional 45° on the heading; whereas the blue vessel represents a turn to
the left, and a reduction of −45° in the heading-
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The T-neighbourhood is defined according to figure 5.2a, where the successor nodes
are shaded in green. [5] defines the T-neighbourhood according to three parameters,
the head, body and node distance, all visualized in figure 5.2a. The size of the
head length is normalized to three nodes, and its length in meters will therefore
depend upon the chosen node distance (nd) for the network. The body on the
other hand, is adjusted to match the feasible motions of the particular ASV model
used in the research. Once the A* search commences, the reachable nodes are
continuously defined by the T-neighbourhood. This aspect is presented by figure
5.2b, where two steps into the A* search are shown. From the initial node, the first
T-neighbourhood is shaded in green, whereas the second level of the search and its
reachable nodes are shaded in yellow.

(a)

(b)

Figure 5.2: (a) Visual representation of the T-neighbourhood. Original figure is obtained
from [5]. (b) In the network in the A* search, the successor nodes from each node are
defined according to the T-neighbourhood. Here, two steps ahead are visible from the
current position. For this example the size of the body is equal to two nodes, whereas the
size of the head is three nodes.

The numerical values for the discretized yaw speeds (rk) are closely related to
the design of the T-neighbourhood, as each node in the head represent one yaw
speed. Therefore, the size of the body in the T-neighbourhood and the values
of the yaw speeds have to carefully chosen. In order to secure that the successor
nodes are actually reachable by the ASV defined in section 5.2.1, a simulation using
the developed simulator is run with four test cases. Each test case represents one
design of the T-neighbourhood, and are summarized in table 5.5. The test case
that fits to the ASV’s behaviour best, is used as the design of the T-neighbourhood
and its yaw speed value is used to set the values for r1 and r3 in rk. Note that
r2 = 0 [rad/s], as the successor nodes straight ahead from the current node in the
T-neighbourhood have zero turning rate.

From an initial position in the origin and a maximum rudder deflection δmax = 15°,
the resulting response of the ASV is shown by figure 5.3. It is clear that tests 1
and 4 are most suitable for the ASV model. In order to keep the size of the body
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as small as possible, such that the reachability of the ASV is maximized, test case
1 is chosen as the basis for the T-neighbourhood. Using a node distance of 1 [m],
results in the design summarized in table 5.6. Note that the discretized yaw speeds
r1 and r3 represent the ASV’s yaw speed once it reaches the position specified by
test case 1.

0 0.5 1 1.5 2 2.5
0

1

2

3

4

5

6

7

Trajectory

Test 1

Test 2

Test 3

Test 4

Figure 5.3: The resulting behaviour of the
ASV with δ = δmax. Test cases 1 and 4 are
most suitable for the ASV model.

Test # ∆x ∆y

1 1 5
2 2 5
3 1 6
4 2 6

Table 5.5: The four tests used to de-
termine the value for the discretized yaw
speeds.

Table 5.6: The design of the T-neighbourhood and the discretized yaw speeds rk =
[r1, r2, r3]

Parameter Value

Body nodes 5
Head nodes 3
r1 [rad/s] -0.05
r3 [rad/s] 0.05

The chosen design of the T-neighbourhood is verified by a test-run with the way-
points in table 5.7, where each waypoint is placed to match the set-up of the
T-neighbourhood. The low-level and guidance controllers in the simulator are used
to steer the vessel on the right course. Based on the resulting trajectory in figure
5.4, the ASV clearly manages to follow the waypoints in a satisfying manner. It
can therefore be concluded that the arcs in the network, which are defined by the
T-neighbourhood, secure feasible paths for the ASV model from section 5.2.1.
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Table 5.7: The waypoints used to test the design of the T-neighbourhood.

North [m] East [m]

0 0
5 1
10 2
15 1

-10 -5 0 5 10

0

5

10

15

Figure 5.4: The waypoints from table 5.7 are used to test the design of the T-
neighbourhood. The resulting trajectory of the ASV supports the chosen design of the
T-neighbourhood. Note that Raccept refers to the radius of the circle of acceptance from
the guidance controller, for reference view section 3.1.2.
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5.3.2 Static Obstacles

In the global path planning problem, the world model merely consists of static
obstacles. For a real-life ASV however, the world model should also include in-
formation regarding water depth, currents and so on; as these are environmental
factors the motion planner should consider to create an optimal path. Although,
that is not within the scope of this thesis.

The generated static obstacles in the simulated environment include uncertainties
to reflect the stochastic nature of the ASV’s surrounding environment. Take for
instance floating obstacles at sea, their position estimates are bound to contain
uncertainties due to the effects of varying sea states. Each obstacle is therefore
generated by sampling integers from a uniform discrete distribution and is modelled
as a circle. Due to the added uncertainties, the location of each static obstacle
follows a normal distribution with a mean (µ) equal to the circle’s center in the
NED-frame, and a standard deviation (σ) proportional to the obstacle’s radius.
This entails that each obstacle follows a two-dimensional normal distribution ∼
N(µ = N,E|σ = αR), where α determines the relationship between the radius and
the obstacle’s PDF standard deviation. α is tuned accordingly, where figure 5.5
shows how the distribution is altered for α = 1 and α = 2. For the sake of this
example, a one-dimensional distribution is showed, but the effect of increasing or
decreasing α will have the same effect on a two-dimensional distribution. Once α
is set, the distribution of each obstacle is defined according to figure 5.6, where the
one-dimensional distribution is again used for simplicity. The probability (p(x)) in
the PDF represents an occupancy probability for a position x in the NED-frame,
in that it measures the probability of being in proximity to a static obstacle. This
procedure is based on a similar approach from [35].

The PDF is useful in the POP algorithm as it can represent a safety margin applied
to avoid static obstacles. A threshold probability value (pt) is used to define the
margin. For instance, if a path moves too close to the static obstacle and its
occupancy probability exceeds pt then the paths are discarded. This is merged
into step 4 of the POP algorithm1, by terminating the SDE solutions once it hits
an obstacle, resulting in a lower probability of reaching the target position for
the respective candidate point. With the probabilistic approach for representing
obstacles, "hitting" an obstacle means obtaining a probability larger than the set
probability threshold in the obstacle’s PDF. By using the probability threshold (pt),
it is possible to increase the cost of certain nodes in the A* search and thereby steer
away from paths that pass too close to the obstacle.

1See page 50
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Figure 5.5: The probability distribution for the static obstacles change as α changes.
Here exemplified with two values for α in σ = αR, namely α = 1 and α = 2.

Figure 5.6: An example of how a probability density function (PDF) around static
obstacles may look like. The mean of the of the distribution is constant across the space
the static obstacle is set to occupy.
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5.3.3 Implementation of POP Algorithm

Chapter 4 describes the outline of the POP algorithm for a general path planning
problem. This section on the other hand, will clarify how POP has been designed
to solve the path planning problem for an ASV. The reader is referred to section
3.4.5 to brush up on the stochastic theory used to develop POP. Following the list
of steps on page 50, the implementation details of the POP algorithm are explained
one-by-one.

The first step in the POP algorithm is to determine a suitable SDE for the problem
at hand. Keeping in line with the idea that motion planning is a high level task, the
SDE for the ASV is based on the kinematic relationship in equation (5.3) rather
than the kinetics in equation (5.4). The resulting kinematic model of the ASV
is therefore given by equation (5.14), which is the kinematic model from equation
(5.3) driven by a process noise term (w) that represents the stochastic effects acting
on the system. The modelling of w is completed according to [20, p.294] and is a
zero-mean Gaussian white noise processes, and it represents imperfect modelling,
disturbances and uncertainties in the system and environment. The addition of
the stochastic process (w) results in a solution, η in equation (5.15), that is also a
stochastic process. As explained in section 3.4.5, a SDE can be represented by an
integral and differential form. The resulting SDE based on the stochastic model in
equation (5.14) is presented in equations (5.15) and (5.16), representing the integral
and differential forms respectively.

η̇ = R(ψ)ν + Ew (5.14)

η(t) = η0 +

∫ t

0

R(ψ(s))ν(s)ds+

∫ t

0

Ew(s)ds, 0 ≤ t ≤ T (5.15)

dη(t) = R(ψ(t))ν(t)dt+ EdW(t), 0 ≤ t ≤ T (5.16)

Note that the integral form in equation (5.15) contains an integral with w, this
term is replaced by an increment of the Wiener process (dW(t)) in the differential
form of the SDE in equation (5.16). This conversion is completed according to the
definition of the Wiener process as an integrator driven by white noise2. Therefore,
the Wiener process related to the integral of the process noise (w) in equation (5.14)
is given by:

W(t) =

∫ t

0

w(s)ds (5.17)

⇒ dW(t) = w(t)dt (5.18)

where equation (5.18) is the increment of the Wiener process used in the differential
form of the SDE in equation (5.16).

2Refer to section 3.4.4
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Being on the topic of SDEs, the implementation details of step four in the POP
algorithm is presented before steps two and three. Step four is to solve the SDE
in equations (5.15)-(5.16), and is completed using the Euler-Maruyama method
described in section 3.4.5. The SDE in the differential form from equation (5.16)
is expanded and input into the Euler-Maruyama method from equation (3.41),
resulting in the expression in equation (5.19). The labels are used to indicate how
the SDE relates to the Euler-Maruyama method in equation (3.41).

xi+1

yi+1

ψi+1


︸ ︷︷ ︸
Xi+1

=

xiyi
ψi


︸ ︷︷ ︸
Xi

+

cos(ψi) −sin(ψi) 0

sin(ψi) cos(ψi) 0

0 0 1


uivi
ri


︸ ︷︷ ︸

f(Xi)

∆t +

cos(ψi) −sin(ψi) 0

sin(ψi) cos(ψi) 0

0 0 1


σu 0 0

0 σv 0

0 0 σr


︸ ︷︷ ︸

g(Xi)

dWu

dWv

dWr


︸ ︷︷ ︸

W (ti+1)−W (ti)

(5.19)

The first part of the equation, Xi+1 = Xi + f(Xi)∆t, is merely the Euler-method
which is used to solve ODEs on the form Ẋ = f(X(t)). In this case, f(X(t))
corresponds to the right-hand side of the kinematic model in equation (5.3). The
second part however, g(Xi)(W (ti+1) − W (ti)), represents the stochastic effects
that disturb the ASV and are modelled using Wiener process increments dWi =
(W (ti+1)−W (ti)).

Definition 3.8 defines the Wiener process, and explains how increments of the
Wiener process follow a normal distribution according toW (t)−W (s) ∼

√
t− sN(0, 1).

The Wiener process term in equation (5.19) can therefore be sampled from a normal
distribution in MATLAB using the function randn, explained below. The incre-
ment δt = t−s in the Wiener process relates to the step-size in the Euler-Maruyama
method ∆t by an integer multiple R ≥ 1, such that ∆t = Rδt. According to [24],
this ensures that the simulated Wiener process contains points at which the Euler-
Maruyama solution in equation (5.19) is computed. The values for the step-sizes
of the Wiener process and the Euler-Maruyama method are summarized in table
5.8.

MATLAB function: randn

X = randn
The randn function in MATLAB is used to generate a random scalar (X)
drawn from a standard normal distribution ∼ N(0, 1).

As for the g(Xi)-term in equation (5.19), the rotation matrixR(ψ) from the BODY-
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Parameter Value

∆t 0.1
δt 0.01
⇒ R 10

Table 5.8: Step-size of Euler-Maruyama method and Wiener process increments.

frame to the NED-frame is included as the process noise (w) acts on the velocities
of the ASV. This is evident in equation (5.14), where w influences the position (η)
of the ASV by affecting its velocities (ν). As a result, the Wiener process terms
[dWu dWv dWr]

T and its strength matrix σ = diag[σu σv σr] in equation (5.19)
affect the velocities.

The strength of the Wiener process is portrayed by the matrix σ in the g(Xi)-term
in equation (5.19). In chapter 3, the calculation of the Wiener process’ variance is
presented and equation (3.30) shows that V ar[W (t)] = σ2t. Here, σ stems from the
integrated white noise and is its standard deviation, as shown by equation (3.22).
This entails that a larger spread in the process noise results in a larger perturbation
on the ASV by the stochastic effects, and therefore a larger strength in the Wiener
process. Note that it is assumed that there is no correlation between the noise
affecting each of the velocities, as the σ matrix is a diagonal matrix. To increase
the accuracy of the stochastic model, it is possible to neglect this assumption and
have a non-diagonal σ matrix. However, in order to maintain a degree of simplicity,
the diagonal σ matrix in equation (5.19) is chosen to represent the Wiener process
strength. The values within the matrix are estimated according to the system
at hand, and are explained in further detail in section 5.3.4 regarding parameter
estimation within the POP algorithm. Once the values for σ are set, the SDE used
to portray the state transitions for the ASV model and their solutions is complete
and the remaining steps of the POP algorithm are initiated.

The second and third steps of the POP algorithm regard discretizing inputs to
the SDE and determining the respective candidate points for the next segment
of the path. However, as the POP algorithm in the motion planner is combined
with an A* search, these steps are already completed. The A* search requires the
surrounding environment of the ASV to be represented as a network. Therefore
creating the network with a set of nodes, representing the search map in MATLAB
and explained in section 5.3.1; and arcs, where each arc is one of three discretized
yaw speeds and explained in section 5.3.1, entails that the discretization of the
inputs and determining candidate points is already completed in the design of the
network of the A* search.

Moving on to step 5, which is the creation of the probability density function
(PDF) used to calculate the probability that a candidate point will reach the target
position. Based on the solutions of the SDE from step 4, where a total of NSDE =
10 solutions for each candidate point are included, the resulting PDF is then created
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using equations (4.1) and (4.2). As evident by equation (4.2), the estimate of the
PDF requires the variance s2 to be set. The estimate of the variance is explained in
detail in section 5.3.4. By inputting the co-ordinates of the target position (xt, yt)
into the PDF (p(x, y)) from equation (4.1), the probability of reaching the target
position from each candidate point is determined. Note that each candidate point
has its respective PDF.

Step six concerns choosing the optimal candidate point with regard to the estimated
probability. However, as the POP algorithm in the global path planner is used
within an A* search, the optimal candidate point is not necessarily based on the
largest probability of reaching the target. Other factors such as path length and the
vessel’s safety radius will also affect the optimality of the candidate point. Section
4.2.1 goes through how the heuristic function in the A* search is defined such
that the POP algorithm has an effect on the optimality of each node (also called
candidate point). Finally, the termination criteria will also follow the set-up of the
A* search presented in algorithm 1. Now, moving on to the parameter estimation
that is necessary to design the POP algorithm for ASVs.

5.3.4 Parameter Estimation for the POP Algorithm

Numerous parameters must be set in the POP algorithm to ensure accurate and
realistic results. The parameters that are estimated in the implementation are the
following:

Standard deviation (s) in p(x,y):
The probability density function (PDF), p(x, y), gives the probability of
reaching a position (x, y) in the NED-frame for a candidate point of the
final path. Its standard deviation is tuned according to stochastic behaviour
of the system at hand.

Strength of the Wiener process (σ):
The Wiener process represents stochastic effects that disturb the ASV’s mo-
tion. Its strength is given by the matrix σ, and is tuned according to the
stochastic effects pertruding the system at hand.

Table 5.9 presents the final values for the estimated parameters of the POP algo-
rithm for an ASV. The remainder of this section explains the reasoning behind the
listed values.

Table 5.9: The estimated parameters used in the POP algorithm.

Parameter Value

s 2
σu 0.01
σv 0.01
σr 0.01
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Setting accurate values for s and σ should be done experimentally, as completed
by [45, 34] in the modelling of a flexible needle and a rolling robot respectively. In
[45], numerous experiments are run to collect data of the stochastic effects and the
covariance (Σ) of the needle behaviour. Along with an analytical equation for a
covariance matrix3, [45] uses samples from various runs with the flexible needle to
find an accurate model and covariance matrix. [34] on the other hand, aims to find
an optimal path for a rolling spherical robot using the POP algorithm. In order to
verify and determine the strength of the stochastic behaviour of the rolling robot,
[34] runs tests to record and study the rolling motion of the robot. In order to
accurately determine the strength of the stochastic effects on the ASV, a real-life
model is needed to run various tests and then observe how the trajectories vary for
the same set of yaw speed inputs. The same goes for the standard deviation (s) of
the PDF in equation (4.2) that represents the spread in the final positions of each
of the trajectories obtained by solving the SDE NSDE = 10 times. However, as
this thesis is completed without experimental results, the model parameters s and
σ must be estimated.

The PDF (p(x, y)) gives the probability of reaching a position (x, y) in the NED-
frame from a candidate point. Its standard deviation (s) alters the spread of
this distribution, and therefore affects the probabilities. As shown by figure 4.3,
increasing s means that the overall values for the probabilities at each position
(x, y) decreases but the reach of the PDF is increased, in that positions located
further from the mean will be given a non-zero probability value due to the increased
spread. This is also evident in the equations for p(x, y), (4.1) and (4.2). In [35], the
value of s is estimated such that the resulting probability distribution is smooth.
A similar approach is used here, resulting in s = 2; which is the same value used
in [34] and provides reasonable results in the global path planner.

The Wiener process is explained in detail in 3.4.4, and is used in the Euler-
Maruyama method from section 3.4.5. The strength of the process is determined by
the values in the σ matrix, shown in the numerical solution of the SDE in equation
(5.19). As no experimental values are available, the values have to be estimated
such that they accurately portray the level of stochastic effects on each velocity
(ν = [u, v, r]T ).

As previously stated, the stochastic effects affecting the positions of the ASV in
equation (5.14) represent model uncertainties and unknown disturbances. Accord-
ing to [20], the process noise covariance matrix is complex to estimate as it depends
on the current sea state, the ASV’s heading relative to the environmental forces and
the level of uncertainty within the model. Note that the process noise covariance
is equal to the strength of the Wiener process σ. As the simulation environment is
created without modelling environmental disturbances, such as waves and currents,
it is assumed that the strength of the Wiener process is the same in all DOFs. This
entails that σ = σu = σv = σr. The numerical value for σ is now set such that
the response of the ASV is feasible. Figure 5.7 shows how the response of the ASV
is altered as σ is altered. From figures 5.7a and 5.7b, it is clear that the strength

3Which is the same as the variance s2 for p(x, y)
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(a) Generated trajectories with σ = 0.1.
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(b) Generated trajectories with σ = 0.05.
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(c) Generated trajectories with σ = 0.025.
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(d) Generated trajectories with σ = 0.01.

Figure 5.7: The graphs show how the behaviour of the ASV is affected by a set of values
for σ. Here simulated with three possible yaw speeds and NSDE = 5.

of the Wiener process is too large as the trajectories do not accurately portray an
ASV’s dynamic behaviour. The trajectories are too random and therefore unreal-
istic. Figures 5.7c and 5.7d on the other hand, show more realistic trajectories for
an ASV. As σ = 0.025 shows a larger deviation from an expected behaviour of an
ASV, the chosen value for σ is 0.01.

5.4 Collision Avoidance Algorithm

The general set-up of the collision avoidance algorithm is quite similar to the global
path planning algorithm described above. The motion planning is completed using
an A* search, such that the network representation, which includes the feasibility
design in the form of the T-neighbourhood; and the implementation of the POP
algorithm, which includes the parameter estimation, is unaltered. The methodology
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of the collision avoidance algorithm is outlined in section chapter 4, whereas this
section focuses on the implementation details of the algorithm.

To avoid repetition, only the key adjustments needed to transform the global path
planner to the collision avoidance module are explained in this section. These
adjustments are as follows:

Time:
The presence of dynamic obstacles requires the algorithm to keep track of
the time. In the A* search, time is included as an additional dimension in
the search map. The nodes will then contain information regarding position
in NED (N,E), heading (ψ) and time (t).

Dynamic obstacles:
The target vessels are represented as dynamic obstacles, and are modelled
according to a constant velocity model with zero turning rate.

Each of these alterations are outlined in further detail below.

5.4.1 Including Time in the A* Search

The search network remains unaltered with regard to the reachability of the ASV,
i.e the successor nodes are the same, but time is also included. Much like the
heading (ψ), the time (t) of a successor node is defined according to the time of the
current node. This recursive definition of the time is depicted in figure 5.8, where
turning motion requires more time than motion straight ahead. The example is
quite simple, where the node distance is nd = 1 [m], ASV speed is U = 1 [m/s]
and the initial time is t0 = 0 [s]. With these variables defined, the time increment
between each node is calculated according to equation (5.20).

∆t =
nd
U

(5.20)

Once each node has its respective time value (t(n)), then the aspect of time must
be incorporated into the A* search. Further, the search termination criteria from
the global path planner cannot be used, as there is no well-defined target node in a
collision avoidance scenario. This is solved by using time as a termination criteria,
where the time until the closest point of approach (CPA) (tcpa) is used to terminate
the search for a minimum cost evasive maneuver. This criteria ensures that the
resulting path continues until the collision is avoided. With the target vessels
following a constant velocity model and an assumption that they are non-reactive,
the target vessel’s position in t = tcpa remains equal to its projected position for the
CPA. Therefore, by ensuring that the ASV deviates from its respective projected
position for the CPA, it is assured that the generated path avoids a collision.

The time of each node is additionally a key parameter to determine its cost, by
means of the POP algorithm. Refer to section 4.3.1 to review the cost function
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Figure 5.8: Time development in the search map, here exemplified for an ASV at t = 0
with a speed U = 1 [m/s] and the node distance nd = 1 [m].

of the A* search for collision avoidance. As previously mentioned, the method of
virtual target points (VTPs) is used to guide the POP algorithm in the desired
direction, ensuring that the final evasive maneuver adheres to COLREGS. Each of
the generated VTPs are associated to a time instance, such that the probability
calculations in POP for a node with time t(n) are completed using the VTP cor-
responding to the time of the node. This approach ensures that each node is given
an accurate cost estimate with regard to the desired target position at each time
instance. With accurate cost estimates, a collision avoidance path that follows the
VTPs is generated.

In contrast to the global path planner, where static obstacles were represented with
an uncertainty, the modelling of the dynamic obstacles in the collision scenario is
simplified. This is the subject of the following section.

5.4.2 Dynamic Obstacles

The dynamic obstacles within the collision avoidance module are not directly rep-
resented within the search-space for the A* search. Contrarily, the static obstacles
in the global path planner were put in the CLOSED list4 in the initial stages of
the search. The dynamic obstacles on the other hand, are indirectly avoided by
the incorporation of the VTPs in the cost calculations. The limitations caused by
this configuration are further discussed in chapter 7.

As for the motion of each target vessel, it follows a constant velocity model. Equa-
tion (5.21) gives its projected position (pTV |t) at time t based on a measurement at
time t0 that estimated the vessel’s position at pTV |t0 . Further, each target vessel

4Refer to section 3.6 for definition of CLOSED list
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is assumed to have a zero turning rate, such that each vessel follows a straight-line
motion. This is an oversimplification of real events, yet a necessary adaption to
develop the collision avoidance method with POP, outlined in section 4.3.

pTV |t = pTV |t0 + vTV × (t− t0) (5.21)
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Chapter 6

Simulation Results

This chapter presents the results from an array of motion planning scenarios. The
first contribution regards global path planning, where the scenario includes only
static obstacles; and the second contribution is collision avoidance, where the ASV
is set to avoid other vessels in motion. The implementation details of the global
path planner and the collision avoidance algorithm is explained in detail in sections
5.3 and 5.4 respectively.

The information for the simulation platform is presented in table 6.1, this platform
is used for global path planning and collision avoidance.

Table 6.1: Information regarding the simulation platform.

Computer MacBook Air (2015)
Operating system macOS High Sierra
Processor 1,6 GHz Intel Core i5
Memory 8 GB 1600 MHz DDR3
MATLAB version R2017b
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6.1 Global Path Planning

6.1.1 The Scenario

The scenario used to test the path planning algorithm is summarized in table
6.2. In addition to the parameters clarified in section 5.3, two extra parameters
were necessary to modify the global path planning algorithm. The first is the safety
radius (rs) around the vessel, this radius defines the area in which obstacles are not
allowed to enter and is related to the safety radius penalty factor (pRAD) explained
in section 4.2.1. Second, a separate detection radius for the POP algorithm (rPOP )
was also needed. The rPOP radius defines a circle around the vessel where the
static obstacles within are accounted for by the POP algorithm. The detection
circle is a modification to the POP algorithm, as it was found that the method for
handling static obstacles had a tendency of considering too many obstacles. For
instance, the POP algorithm would lower the probability of reaching the target
from a node if it had an obstacle between its position and the target position, even
though this obstacle was located far away. Therefore, the detection radius was
introduced, securing that the POP algorithm only steers away from obstacles that
are in proximity and make up a danger for the ASV and its current position. The
values for rs and rPOP are 2 [m] and 12 [m] respectively.

Table 6.2: Global Path Planning Scenario

Initial Position Target Position
North [m] East [m] North [m] East [m]

0 0 30 -43

The target position defined in table 6.2 is located ≈ 52 [m] from the initial position.
This distance does not do the global path planning problem justice, as this offline
path planning is typically completed over large distances. However, the computa-
tional time on the simulation platform becomes too large to be able to modify and
test the procedure multiple times if the search is completed over longer distances.
Further, the algorithm has been tested with a target position located further away,
≈ 500 [m], and the overall behaviour of the planner was similar to its behaviour
over shorter distances. Therefore, the relatively short path is used as the scenario
to test the ability of the planner in a global perspective.

Implementing the scenario in table 6.2 results in the scenario shown by figure 6.1.
The next section shows how the global path planning algorithm outputs an array
of paths as the designs of the cost functions in the A* search change.
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Figure 6.1: The figure shows the map in NED that defines the scenario used to test the
path planning algorithm.

6.1.2 The Generated Paths

Various designs for the total cost function are generated and are listed in table 6.3,
each of which is tested in an A* search on the scenario in figure 6.1. The total
cost function f(n) for the A* search is re-written in equation (6.1) for reference.
The aim of these tests is to determine the ideal combination of h(n) and g(n), and
investigate how the POP algorithm can be combined with the A* search to solve
the global path planning problem.

f(n) = h(n) + g(n) (6.1)

Note that cases seven and eight in table 6.3 are used as reference values. Case
8 is Dijkstra’s Algorithm and is a special case of the A* search, the algorithm is
guaranteed to find the shortest path but at a much larger computational time. As
for case 7, using h(n) = eh(n) and g(n) = eg(n) are the typical function definitions,
and are therefore included to see if the penalty factors can improve these results.
Further, the cases with the same h(n) functions but different g(n) functions are
generated to see the effect of scaling g(n). Thus, ensuring that the contributions
from the two cost functions are within a similar scale; where the maximum value
for h(n) is set to occur when both pPOP = pRAD = 1, effectively tripling the
Euclidean distance (eh).
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Table 6.3: The various designs of the cost functions, h(n) and g(n), used in the A*
search for global path planning.

Case Heuristic h(n) Cost-to-come g(n)

1 eh(n) + (pPOP + pRAD)eh(n) eg(n) + 2eg(n)

2 eh(n) + (pPOP + pRAD)eh(n) eg(n) + eg(n)

3 eh(n) + pPOP eh(n) eg(n) + eg(n)

4 eh(n) + pPOP eh(n) eg(n)

5 eh(n) + pRADeh(n) eg(n) + eg(n)

6 eh(n) + pRADeh(n) eg(n)

7 eh(n) eg(n)

8 0 eg(n)

Case 1 and 2

Both trajectories, with g(n) = 3eg(n) for case 1 and g(n) = 2eg(n) for case 2,
manage to safely avoid the static obstacles in the map. Therefore, based on the the
results in figures 6.2a and 6.2b, the scaling of g(n) in case 1 is unnecessary as the
g(n) function in case 2 provides equally ideal results. Note that "ideal" refers to
path length and risk, where a path that violates the ASV’s safety radius is given a
larger risk. Further, the vessel’s safety radius (rs) is maintained throughout both
paths. However, this does come at a cost of path length, where it is evident that the
path planner takes a large turn around the obstacle at (N,E) ≈ (37,−10) in NED.
However, this turn is a necessity to maintain a safe distance to the obstacles and
is a direct result of the feasibility design in section 5.3.1. As both penalty factors,
pPOP and pRAD, are included in the heuristic, it is not possible to conclude whether
it is the POP algorithm or if it is the safety radius that is responsible for the ideal
global path. The next cases however, case 3 and 4, sheds some light on this.

Case 3 and 4

Case 3 and 4 both only use POP to set the heuristic function. As for case 3, with
β = 2 in g(n) from equation (4.7), it is clear that the path planner mainly considers
the length of the path. This is the same results that was obtained in case 1, but
as the safety radius penalty factor is not included here, the resulting trajectory
tends to pass the static obstacles at a shorter distance than in case 1. This, as the
A* search now only accounts for the obstacles by placing the nodes containing the
obstacles directly in the CLOSED list1. Thereby making those nodes inaccessible
to the ASV, although their neighbouring nodes are still accessible. This is visible
in figure 6.3a. Even though this is an effective approach, it passes the obstacles
too close such that the safety of the path is lowered. One solution to overcome this

1Refer to section 3.6 for definition of CLOSED list
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Figure 6.2: The resulting trajectory from the path planner with the total cost function
f(n) defined according to (a) case 1 and (b) case 2 in table 6.3.
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Figure 6.3: The resulting trajectory from the path planner with the total cost function
f(n) defined according to (a) case 3 and (b) case 4 in table 6.3.
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Figure 6.4: The resulting trajectory from the path planner with the total cost function
f(n) defined according to (a) case 5 and (b) case 6 in table 6.3.

issue, could be to enlarge the static obstacle’s representation within the map used
for the A* search (see section 5.3.1), however, this solution is too banal and not
useful in practice.

For case 4, where g(n) is defined with β = 1, the resulting path still passes the
obstacles too close, thus giving rise to the idea that the POP algorithm handles
static obstacles poorly and it is the pRAD penalty factor that is to thank for the
safe path in cases 1 and 2. Also, based on figure 6.3b, the resulting path in case 4 is
longer than the one obtained in case 3. Therefore, the POP algorithm is inefficient
in guiding the A* search towards an optimal and adept global path. The reasons
for this inefficiency are investigated further and discussed in chapter 7.

Case 5 and 6

The heuristic functions for cases 5 and 6 rely only on the safety radius penalty factor
(pRAD). Much like the previous cases, the two paths for different g(n) functions
are almost identical. It is noted that the paths in figure 6.4 are quite like the paths
in figure 6.2b, deducing that the contribution from pRAD in h(n) in case 1 affects
the A* search to a larger extent than pPOP . This explains why the path in case
4 differs from case 2, in that pPOP is the deciding factor in case 4 and not in case
2. Seeing as the path in case 2 is favourable compared to case 4, this result is not
encouraging for the POP algorithm.

Case 7 and 8

In order to provide the results from cases 1-6 with some reference values, cases 7
and 8 are included. From figure 6.5a it is clear that simply using the Euclidean
distance for the cost-to-come and the heuristic results in similar paths to cases 1,
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Figure 6.5: The resulting trajectory from the path planner with the total cost function
f(n) defined according to (a) case 7 and (b) case 8 in table 6.3.

3 and 5, where g(n) made up the majority of the f(n) value. The path is efficient,
although its main flaw is the proximity to the static obstacles. In a real-life scenario,
passing static obstacles in this manner can be a highly risky maneuver.

As for case 8, also called Dijkstra’s algorithm, the resulting trajectory is quite
similar to case 7. The only difference between the two is that case 8 is a marginally
shorter path and takes considerably longer computational time to give a resulting
path, summarized in table 6.4. As Dijkstra’s algorithm is guaranteed to find the
shortest path, the path length obtained in case 8 is used as a measure of how the
heuristic can decrease computational time but also decrease optimality with regard
to path length. This is explained further in the following section.

6.1.3 Summary of Results

In order to compare and contrast the various approaches for the total cost function
in cases 1-8, the final path lengths and computational times are summarized in
table 6.4.

It is clear from case 8 that Dijkstra’s algorithm provides the shortest path, as
expected, but with the expense of a long computational time of 2332 seconds.
Using the path length in case 8 as a measure for how the heuristic estimates the
cost-to-go, it is clear that cases 3 and 7 both have relatively short paths and
therefore have accurate heuristic functions. The POP algorithm’s path length
however, in case 4 in table 6.4, is one of the longest paths. This entails that the
cost estimate provided by the the POP algorithm is too inaccurate to provide a
proper guide towards the target position for the A* search. The remaining cases
all have similar path lengths, where the additional length in cases 1-2 and 5-6 is
caused by the penalty factor pRAD that secures a path that passes static obstacles
at a distance. As for the computational time, it is clear that the POP algorithm
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Table 6.4: Total path lengths and computational times for various design of total cost
function f(n) according to table 6.3. These results are for nd = 1 [m].

Case Path length [m] Computational time [s]

1 78.27 305.77
2 77.76 72.52
3 71.20 58.75
4 78.17 12.78
5 77.69 602.89
6 77.76 85.02
7 71.20 67.30
8 71.04 2331.98

heuristic produces a final path in the shortest amount of time. Therefore, if short
computational time is favoured over short path length, then the POP algorithm
does show some potential. It should however be noted that the trajectory for case
4 in figure 6.3b is too close to the static obstacles to be rendered as safe.

Nevertheless, the POP algorithm is taken a step further and used within the heuris-
tic function in three collision avoidance scenarios. The results are presented in the
following section.
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6.2 Collision Avoidance

6.2.1 The Scenarios

In a collision avoidance scenario, the ASV is set to avoid the target vessels at a
safe distance all the while adhering to COLREGS. After some research, the most
common COLREGS scenarios to test are the following:

- Crossing from the right

- Overtaking

- Head-on

Three scenarios with these COLREGS situations were therefore created. In each,
the ASV encounters two target vessels (TVs) on its way to the designated waypoint.
Each of the target vessels are simulated using a constant velocity model and zero
turning rate. These scenarios are summarized in tables 6.5 to 6.7, where the results
for each scenario are presented and commented in the following sections. For the
remainder of this chapter, TV will be used to refer to the target vessels.

It should be noted that all simulations were completed with a slightly altered POP
algorithm than the one outline in section 5.3.4. Rather than using the standard
deviation s = 2, which had previously been used by [34], the standard deviation was
set to s = 5 in all collision avoidance maneuvers. It was found that this generated
better results with regard to COLREGS, in that the ASV took earlier action to
avoid the collision when s was increased to a value of five. More on this in the
discussion, in chapter 7.

Table 6.5: Scenario 1: Crossing from the right and head-on

Initial Position Waypoints Speed
Vessel North [m] East [m] North [m] East [m] U

ASV 0 0 50 0 1.0
TV 1 16 32 16 -32 2.0
TV 2 55 7 0 7 1.0

Table 6.6: Scenario 2: Head-on and overtaking

Initial Position Waypoints Speed
Vessel North [m] East [m] North [m] East [m] U

ASV 5 5 55 25 1.0
TV 1 38 12 1 2 0.82
TV 2 30 21 42 21 0.20
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Table 6.7: Scenario 3: Overtaking and crossing from the right

Initial Position Waypoints Speed
Vessel North [m] East [m] North [m] East [m] U

ASV 0 0 38 -15 1.0
TV 1 7 -2 21 34 0.60
TV 2 45 7 20 -18 1.41

6.2.2 Scenario 1: Crossing from the Right and Head-On

The first test of the motion planner in a dynamic environment considers TV 1
crossing from the right, followed by TV 2 that approaches the ASV head-on.

In a crossing situation, the avoidance maneuver the ASV must make is to change its
course to starboard and pass behind the TV 1, thereby adhering to the COLREGS
rules. This action is visible in figure 6.6 from time t = 0 to t = 16. Based on the
ASV’s response, it is clear that it follows COLREGS well in a crossing situation.
Especially as it starts to make a turn already at t = 5, indicating that it "takes
early and substantial action to keep well clear"2 of TV 1. The results are therefore
encouraging with regard to the procedure for placing the virtual target points
(VTPs) in a crossing situation, as described in section 5.4.

Once TV 1 is passed, the ASV must quickly generate a new collision avoidance
path to avoid a collision with TV 2. In a head-on situation, COLREGS state that
both vessels are to change their course to starboard, such that the vessels pass on
the port side of each other. However, as this thesis assumes all other vessels are
non-reactive, TV 2 follows its constant course throughout the simulation. As for
the ASV, it reacts quickly to the imminent collision, visible in figure 6.6 in t = 21,
and generates a path that obeys COLREGS and leads to a smooth path onwards
to its waypoint.

In both scenarios, the safety radius (rs) around each vessel is maintained. Although
with rs = 2 [m] for all vessels, the ASV passes TV 1 and TV 2 quite close in both
collision situations. However, this can be tackled by moving the virtual target
points (VTPs) further away from the target vessels, resulting in a more intensive
evasive maneuver for the ASV. The implemented tuning parameters used to gen-
erate the VTPs for the crossing and head-on situation in this scenario are listed in
table 6.8. By, for instance, decreasing γ in a crossing situation, the motion of the
VTPs as time passes can be slowed down. Thus, resulting in the ASV changing its
course to starboard for a longer period of time than with the current value of γ.

2Rule 15 from section 3.2
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Figure 6.6: Scenario 1: Crossing from the right and head-on. The coloured cross
indicates the respective vessel’s waypoint, as listed in table 6.5, and t indicates the time
of the avoidance maneuver in seconds.
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Table 6.8: Scenario 1: Tuning parameters affecting the placement of the virtual target
points

Crossing Head-on
Parameters α γ α κ

Value 0 0.8 1 5

6.2.3 Scenario 2: Head-on and Overtaking

In the second scenario, the ASV is met by TV 1 head-on and must overtake TV 2
to reach its waypoint from table 6.6.

In figure 6.7, the ASV shows that it adjusts its course early to avoid the head-on
collision. Repeatedly keeping inline with COLREGS Rule 15, mentioned in scenario
1. The tuning regarding the placement of the VTPs in this head-on situation
differ from that in scenario 1, evident by comparing table 6.9 to 6.8. With TV
1 approaching the ASV at an angle, it is necessary to place the VTP further to
the right than what was completed in scenario 1. Therefore, κ is increased to
κ = 15 from scenario 1. Using κ = 5 in this scenario resulted in a less safe and
clear avoidance maneuver completed by the ASV. More on this in the discussion,
in chapter 7.

In the overtaking situation with TV 2, the ASV has little time to avoid the collision.
Based on COLREGS, it can choose which side to pass the overtaking vessel on.
In this scenario, the ASV passes TV 2 on the starboard side. From t = 25 it
generates an evasive maneuver and starts to turn to starboard at t = 30. With a
T-neighbourhood where the body is equal to five nodes3 and a constant speed of
U = 1 [m/s], it is clear that the algorithm chooses to alter its course to starboard in
the first stage of the search. This, as the right-most node in the T-neighbourhood
is reached after five seconds with these parameters. Therefore, it is apparent that
the placement of the VTP in this overtaking situation is well-defined. The tuning
parameters are summarized in table 6.9.

Table 6.9: Scenario 2: Tuning parameters affecting the placement of the virtual target
points

Head-on Overtaking
Parameters α κ α κ

Value 1 15 1 10

3See table 5.6
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Figure 6.7: Scenario 2: Head-on and overtaking. The coloured cross indicates the
respective vessel’s waypoint, as listed in table 6.6, and t indicates the time of the avoidance
maneuver in seconds.
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6.2.4 Scenario 3: Overtaking and Crossing from the Right

In the final collision avoidance scenario, the ASV overtakes one target vessel before
it handles a second target vessel approaching from the right. In order to avoid a
second collision with TV 1, this vessel makes a turn to the right at t = 24 in figure
6.8. This is completed as the collision avoidance algorithm has not been created to
handle multiple dynamic obstacles, this is left for further work.

The overtaking of TV 1 violates the safety radii around the vessels, evident by
t = 7 in figure 6.8. Though, it should be noted that the initial positions for the
ASV and TV 1 in table 6.7 are positioned close. This is done to test the collision
avoidance algorithm in challenging scenarios, and see how fast it can react. Unlike
scenario 1 and 2, where the ASV immediately changed its course to starboard once
a head-on or overtaking situation was discovered, the ASV uses more time to react
in this scenario. In t = 1, the A* search has chosen the second node in the body of
the T-neighbourhood as the optimal node. It would have been better, with regard
to COLREGS and maintaining a safe distance to TV 1, to immediately turn and
therefore go to the right-most head node in t = 5. This is done in scenario 2, from
t = 25 to t = 304. The reason the motion planner goes to the second body node in
t = 1, is that all the nodes in the first T-neighbourhood from the initial position
have zero probability of reaching the first virtual target point. This limitation is
caused by the discretization of the yaw speed, and is further discussed in chapter
7. Nevertheless, the ASV manages to avoid the collision successfully.

The ASV generates an evasive maneuver according to COLREGS in order to avoid
TV 2 crossing from the right. Like the overtaking situation with TV 1, the ASV
passes TV 2 in a manner such that the safety radii are violated. This is caused
by the placement of the VTPs in a crossing from the right situation. As explained
in section 5.4, the VTPs are placed at the far-most position of the TV when α =
0. However, for a TV approaching at an angle compared the ASV in a crossing
situation, as TV 2 does in figure 6.8, this placement is inefficient in securing a
safe passing distance between the ASV and TV 2. The VTP placement is further
discussed in chapter 7, where its limitations are investigated.

Table 6.10: Scenario 3: Tuning parameters affecting the placement of the virtual target
points

Overtaking Crossing
Parameters α κ α γ

Value 1 15 0 0.8

4Refer to figure 5.8 to brush up on the time definitions within each node in the T-
neighbourhood
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Figure 6.8: Scenario 3: Overtaking and crossing from the right. The coloured cross
indicates the respective vessel’s waypoint, as listed in table 6.7, and t indicates the time
of the avoidance maneuver in seconds.
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Chapter 7

Discussion

This chapter presents a further look into the simulation results for the global path
planner and the collision avoidance algorithm. Emphasis is placed on investigating
the POP algorithm, as the main contribution from this thesis regards the enhance-
ment of POP such that it can handle multiple static obstacles and dynamic obsta-
cles. Therefore, the results from the global path planner that are investigated more
closely, includes the POP algorithm in the heuristic design. Further, the pitfalls of
using the POP algorithm in collision avoidance are examined in detail.

7.1 Global Path Planning

The global path planner was able to provide a suitable path from the ASV’s initial
positions to its target position. However, the most optimal paths with regard to
computational time and maintaining a safe distance to the static obstacles, were
generated without the POP algorithm. All in all, cases 2 and 6 provide the best
results in a low computational time. The fact that the A* search with the heuristic
function solely dependent on the Euclidean distance and the POP algorithm, case 4,
does not result in an equally optimal path is discouraging. In order to comprehend
why the A* search leads to produce this sub-optimal path, case 4 is investigated
in the discussion below. The remaining cases are not discussed in further depth,
as their purpose is to provide a comparison to case 4.

7.1.1 POP Algorithm and the A* search

Using the POP algorithm as the main influence on the heuristic function results in
an inadequate path, in that the path in figure 6.3b moves too close to the static
obstacles. An interesting comparison to case 4 is case 6, where h(n) is mainly
affected by the penalty factor (pRAD) from the safety radius around the ASV.
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With this heuristic, the trajectory in figure 6.4b is more optimal with regard to
avoiding obstacles. The POP algorithm on the other hand, fails to provide the
A* search with accurate information regarding future costs and obstacles, and
therefore generates a path that passes the static obstacles too close. As listed in
table 6.3, the heuristic function used in this case is h(n) = eh(n) + pPOP eh(n).
Hence, it is clear that using solely information from the POP algorithm results in
inefficient paths toward the final position. This section will investigate where the
current version of the POP algorithm goes wrong.

POP Parameters

As outlined in section 5.3.4, the parameters used in the POP algorithm are esti-
mates and are therefore subjected to some uncertainty. The effects of altering the
standard deviation (s) in the POP algorithm is analyzed; as its value was deter-
mined based on separate research in [34]. It is recognized that this research was for
a rolling spherical robot, whereas this thesis focuses on developing POP for ASVs.
Hence, the standard deviation (s) in the probability density function (PDF) used
in POP is tied to doubts. In conjunction with this examination, comes a look at
the POP penalty factor (pPOP ) and how it affects the A* search in the global path
planner. First a look at pPOP , and how it alters throughout the search.

The POP algorithm’s contribution to the global path planner in the form of pPOP
shows little to no effect in the early stages of the search, a fact made clear by
figure 7.1. Plotting pPOP from the final path shows how it remains equal to one
throughout most of the search. This is equivalent to providing a zero probability
of reaching the target node (p) for all nodes in the preliminary stages of the search
space, made evident by the plot of p in figure 7.1. In order to investigate how POP
is affected by its standard deviation (s), a value which was estimated to s = 2 in
section 5.3.4, figure 7.1 includes results for both s = 2 and s = 10. It is interesting
to see if altering this estimate, to s = 10, changes the results from the A* search
in case 4.

The standard deviation (s) affects the probability density function (PDF) in (4.1),
which is used to determine the probability of reaching the target node. The effect of
increasing the spread in this PDF is visualized in figure 4.3, where a larger value for
s entails that the probabilities surrounding the target point have a greater spread
throughout the search space. Based on the first plot with s = 2, the contribution
from the POP algorithm in the form of pPOP does not have an effect until the
search is ≈ 18 [m] from the target. When the standard deviation is increased, the
POP algorithm has an effect much earlier, at ≈ 35 [m] from the target. Noteably,
this effect is quite small and converges towards s = 2 until the distance to the
target position is ≈ 18 [m]. Nevertheless, it is speculated that using s = 10 will
lead to better guidance of the A* search by POP at earlier stages of the search in
case 4. However, figure 7.2 shows that that is not the case. The resulting paths
are the same for s = 10 in figure 7.2a and s = 100 in figure 7.2b, where s = 100
is included as an extreme value to see how s can affect the search. Comparing
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Figure 7.1: The penalty factor from the POP algorithm pPOP alters as the search
moves close to the target node, the same effect can be seen in the bottom plot with the
probability of reaching the target p from the POP algorithm.

these trajectories with figure 6.3b, shows that the trajectory is also the same when
s = 2. Hence, altering the spread of the probability density function for the POP
algorithm does not aid the A* search towards a better global path. The cause for
POP’s shortcomings in case 4 must therefore originate from a different factor than
inaccuracies in the parameter estimates.

Static Obstacles

The discussion above brings forth that it is not the s-value that make the A* search
with POP fail compared to case 6. Examining the trajectory in figure 6.3b more
closely, reveals how the path starts to turn towards the target point at a much
earlier point than the more optimal path generated in case 6. This is shown in
figure 7.3, where the plotted waypoints are summarized in table 7.1 along with
their respective POP penalty factors. From the figure, it is clear that the motion
from point (N,E) = (22,−1) towards (N,E) = (25,−4) causes the path to get
too close to the static obstacle and forces the large detour the path experience in
case 4. Based on the waypoints in table 7.1, and considering the design of the
T-neighbourhood in section 5.3.1, a question as to why the algorithm does not
go to (N,E) = (28,−5) where the heading (ψ) would change to ψ = 0° arises.
This would have caused a turn away from the static obstacle at an earlier stage
than that shown in figure 7.3. However, examining the generated successor nodes
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Figure 7.2: Even though the standard deviation in the PDF for reaching the target
position is altered from (a) s = 10 to (b) s = 100, the final path from the A* search using
the heuristic function h(n) from case 4 remains unaltered.

at the point (N,E) = (22,−1) showed that this choice is justified. The node in
(N,E) = (28,−5) is in the CLOSED list in the A* search, which means that it
contains an obstacle. The motion from (N,E) = (22,−1) to (N,E) = (25,−4)
is visualized in figure 7.4, where the nodes shaded in grey are closed nodes that
contain static obstacles.
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Figure 7.3: The area in case 4 in which the POP algorithm makes an early turn towards
the target point but ends up getting too close to the static obstacle.
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Table 7.1: Outtake of the final path in case 4, with the path in NED and its respective
penalty factors (pPOP ) listed

North [m] East [m] ψ [°] pPOP

17 0 0 1
22 -1 -45 1
25 -4 -45 1
31 -8 0 1
36 -9 -45 0,9897

Looking one step further back, at position (N,E) = (17, 0) with ψ = 0°, reveals
where the A* search with the POP algorithm makes the mistake that initiates
the detour visible in the resulting path in figure 6.3b. Figure 7.5 shows the T-
neighbourhood along with the successor nodes from this position. Rather than
choosing to go straight ahead, and choose the node shaded in green, the algorithm
chooses to go to the blue node in (N,E) = (22,−1) with ψ = −45°. It is this choice
that traps the path in front of the static obstacle, shown in figure 7.4, and results
in the sub-optimal path for case 4.

With this investigation in mind, it can be hypothesized that the fault in the POP
algorithm lies in how it handles static obstacles. The heuristic in case 6 results
in a path that keeps clear of the obstacles, due to the penalty factor pRAD for
violating the safety radius around the ASV, and therefore results in a path without
the detour experienced in case 4. The trajectory from POP on the other hand,
moves too close to the obstacle. Thus, forcing it to diverge from the optimal path
and almost hit a second obstacle on its route towards the target position.

The method for handling static obstacles is collected from [34]. However, this
method is based on a single static obstacle where the target position lies straight
ahead of the current position, as shown in figure 7.6. Once the target position
deviates from the current position in a manner such that none of the trajectories
generated from solving the SDE1 are within the PDF for the target position, then all
candidate points will have a zero probability of reaching the target. This situation
is illustrated in figure 7.7a, where it is clear that using POP in this manner does
not mark any of the candidate points as more optimal than the rest. Further, figure
7.7b illustrates how the same situation can occur if the target point is blocked from
the ASV’s line of sight by too many obstacles. When all successive nodes, i.e the
candidate points for the next segment of the path, are given a zero probability of
reaching the target, then the search is not given sufficient information to continue
towards the target in an optimal manner. Therefore, the turn in figure 7.5 is
not caused by the POP algorithm in that it actively selects the blue node as the
more optimal choice; evident by pPOP = 1 in table 7.1 for (N,E) = (22,−1),
which means that all the successor nodes from (N,E) = (17, 0) were given zero

1Step 4 of the POP algorithm on page 50
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Figure 7.4: The node selection in the T-neighbourhood in case 4 when the ASV is
located in (N,E) = (22,−1) with a heading ψ = −45°. The best choice with regard to
the target point and the static obstacles in the global path planning scenario, would be to
move to the grey node located in (N,E) = (28,−5), however this node contains a static
obstacle and is therefore unreachable. This is the reason that the choice falls on the node
in (N,E) = (25,−4), shaded in blue in this figure.

Figure 7.5: The node selection in the T-neighbourhood in case 4 when the ASV is
located in (N,E) = (17, 0) with a heading ψ = 0°. The best choice with regard to the
target point and the static obstacles in the global path planning scenario, would be to
move to the green node located in (N,E) = (22, 0). However, due to the aim to keep
a short path, the algorithm in case 4 chooses the blue node in (N,E) = (22,−1) with
ψ = −45° and starts to move towards one of the static obstacles.
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probability of reaching the target. Rather, this turn is caused by the fact that
the distance towards the target, i.e eh(n), is lowest for the node that is closer to
the static obstacle. Hence, the turn is not directly caused by the POP algorithm,
rather it is indirectly caused by the POP’s lacking ability to determine the node
that is most likely to reach the target in a complex environment.

It is therefore established that the way in which POP handles multiple static ob-
stacles should be reconsidered. Too often, the nodes are given zero probability of
reaching the target, which is also evident in figure 7.1 where p remains equal to
zero throughout large parts of the search space. If the A* search is to be properly
guided by the POP algorithm, it will need to be able to provide nonzero proba-
bilities for all candidate points in challenging cases, such as the ones presented by
figure 7.7.

One possible solution for handling a more complex environment in the global path
planner, is to use the same approach that has been developed for dynamic obstacles;
where the target points are moved to virtual target points (VTPs) that secure that
the POP algorithm is effective. Nevertheless, this approach did also suffer from
difficulties and is discussed in the following section.
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Figure 7.6: The scenario used to demonstrate POP’s capability of handling one static
obstacle in [34].
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Figure 7.7: The trajectories generated from solving the SDEs from three candidate
points can give zero probability of reaching the target for all candidate points if (a) the
target point is not directly reached by one of the values for the yaw speed, or if (b) too
many static obstacles prevent the SDE trajectories to reach the target.
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7.2 Collision Avoidance

All in all, the POP algorithm in a collision avoidance scenario outperforms its
counterpart in global path planning. Even though the heuristics of the A* search
in collision avoidance and global path planning differ, the search is still solely guided
by the POP algorithm in case 4 from global path planning and the scenarios for
collision avoidance. Based on the discussion for the global path planner, it is clear
that the POP algorithm performs well when it has a target point that is within
its line of sight. This occurs when the search environment is not cluttered with
numerous obstacles, which is not the case for the global path planning scenario in
section 6.1, where 10 static obstacles are present. Then a situation like the one
depicted in figure 7.7b may occur, where all candidate points have zero probability
of reaching the target due to inadequate handling of static obstacles. Contrarily, the
approach developed by this thesis for collision avoidance is more tailored towards
the POP algorithm. The target point is now placed such that it is within the ASV’s
line of sight; secured by using virtual target points (VTPs).

The algorithm for placing the VTPs depend on the collision situation at hand,
and is constructed to ensure COLREGS compatibility. Based on the results for
the three collision avoidance scenarios, it is possible to extend the POP algorithm
to handle dynamic obstacles and adhering to COLREGS. However, there are still
numerous enhancements that can be made. These are investigated in the following
sections. It should also be noted that POP has been merged with an A* search,
and is therefore not a complete collision avoidance method on its own.

7.2.1 VTP Placement

As of now, the algorithm for placing the virtual target points (VTPs) for each
COLREGS situation is in need of tuning variables, such as γ, κ and α. Even though
the results in section 6.2 are promising, the algorithm’s dependence on these tuning
parameters presents a challenge. If ASVs are to become truly autonomous, then
they must be able to handle a dynamic environment that is in constant change. This
is difficult if the collision avoidance algorithm relies on tuning variables. Therefore,
a method that does not have to be tuned according to each collision scenario is
preferred. Take for instance the velocity obstacle (VO) approach, examined in the
literature review in chapter 2.

The limitation of the tuning variables is evident in scenario 2, where κ = 15 in
the head-on situation, whereas κ = 5 in the head-on situation in scenario 1. If
the same tuning from scenario 1 is used in scenario 2, then the resulting behaviour
of the ASV does not adequately follow COLREGS. Based on figure 7.8, the ASV
initiates an early course change to starboard in t = 5, but alters its course back
towards the approaching TV 1 in t = 13. This behaviour does not fall in line with
COLREGS, where avoidance maneuvers are supposed to be "large enough to be
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readily apparent to another vessel observing"2. Further, say TV 1 is a manned
vessel, then the ASV’s maneuver in t = 13 is certainly set to confuse any human
navigator.

The reason for the course change in t = 13 is due to inaccurate placement of the
VTPs. The current VTP placement algorithm for a head-on situation, outlined in
section 5.4, does not incorporate enough parameters to skillfully place the VTPs
for all sorts of collision scenarios. This counts for overtaking and crossing situ-
ations as well. Nevertheless, the focus of this thesis has been to developed the
method of the moving VTPs and merge it with the POP algorithm in a collision
scenario. Therefore, it was prioritized to make the algorithm work adequately for
a set of scenarios. Further work should be to enhance the algorithm by making it
handle general collision situations, where tuning of the VTP placements is avoided.
Though, the tuning is required at this stage; exemplified by comparing the properly
tuned scenario 2 in figure 6.7 versus figure 7.8.

2COLREGS Rule 15, see section 3.2
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Figure 7.8: The resulting path with κ = 5 in the head-on situation in scenario 2. The
resulting behaviour of the ASV differs from that in figure 6.7.
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7.2.2 Limitations caused by the Yaw Speed Discretization

Even though the algorithm for placing the VTPs needs improving, it is put to a
challenging task due to the discretization of the yaw speeds. To save memory and
allow for a low computational time in the simulations and the A* search, the set
of possible yaw speeds is set to r = [−0.05, 0, 0.05] [rad/s]. This discretization
however, raises the demand for accurate positioning of the VTPs.

For instance, figure 7.8 showed that decreasing κ in scenario 2 caused the overall
behaviour of the ASV to change for the worse. Figure 7.9 shows why. Using κ = 5
places the VTP such that it should initiate a course change to starboard. However,
with only three yaw speeds to choose from, none of the trajectories manage to hit
the VTP in figure 7.9b. The situation is quite similar for κ = 15 in figure 7.9a, but
here it is clear that the first VTP is placed closer to the resulting SDE trajectories
for r = 0.05 [rad/s]. Therefore, the node that signifies a course change to the right,
i.e r = 0.05 [rad/s], is set to get a nonzero probability of reaching the target from
the POP algorithm with κ = 15. That same node with κ = 5 on the other hand,
will receive a zero probability of reaching the target, just like the nodes that signify
going straight and altering the course to the left, i.e r = 0 and r = −0.05 [rad/s]
respectively. Therefore, the POP algorithm is inefficient in figure 7.9b, giving all
the successor nodes a zero probability of reaching the target and thereby failing to
guide the A* search in the correct direction. This causes the A* search to simply
move to the next node in the OPEN list, which is the node directly ahead of the
current position of the ASV. This is what occurs in scenario 3, from t = 0 to t = 1.

-40 -30 -20 -10 0 10 20 30 40 50

0

10

20

30

40

50

60

70

ASV

VTP

(a)

-40 -30 -20 -10 0 10 20 30 40 50

0

10

20

30

40

50

60

70

ASV

VTP

(b)

Figure 7.9: The placement of the first VTP with, (a) κ = 15 and (b) κ = 5, in the
head-on situation in scenario 2.

In order to relax the need for accuracy in the positioning of the VTPs, the standard
deviation (s) of the POP algorithm from equation (4.2) is increased. In all the
collision avoidance scenarios, s = 5, unlike the global path planning scenario where
s = 2. It has been discussed that increasing s in the global path planning problem
yielded no improvements to the overall algorithm, for the collision avoidance cases
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however, it did. The effect of increasing the standard deviation meant that the
resulting SDE trajectories from r = 0.05 [rad/s] in figure 7.9a resulted in a nonzero
probability of reaching the VTP. Whereas an s = 2, for that very same scenario,
resulted in a zero probability of reaching the VTP for r = 0.05 [rad/s]. Therefore,
the standard deviation of POP was maintained at a larger value for the collision
avoidance algorithm.

An improvement to the overall collision avoidance algorithm that includes POP
and the A* search, would therefore be to increase the spectrum of the yaw speeds.
Increasing the amount of possible yaw speeds would mean that some of the issues
regarding the placements of the VTPs could be overcome as the need for accuracy is
lowered. This could not be completed on the current simulation platform however,
as the memory needed to complete this would be too large to handle. The required
amount of memory would drastically increase as the node distance would have
to be lowered once the amount of possible yaw speeds increase. This is caused
by the feasibility design provided by the T-neighbourhood3, where each of the
nodes in the head represent one yaw speed. Further, each node in the head of
the T-neighbourhood is separated by a distance equivalent to the node distance.
Therefore, to fit more yaw speeds within the range of rmin = −0.05 and rmax =
0.05 [rad/s] into the T-neighbourhood, the node distance would have to decrease
correspondingly. This improvement is left for further work.

7.2.3 Handling Dynamic Obstacles

Currently, the method for handling dynamic obstacles with the POP algorithm is
quite simple. Rather than terminating the SDE trajectories once they are projected
to hit a moving obstacle and thereby lowering the probability of reaching the target,
which is the method used with static obstacles, the moving obstacles are avoided
using the virtual target point (VTP)s.

In the future, the POP algorithm should include the moving obstacles in a more
direct manner, such that it is ensured that the nodes that are destined to cause
a collision are never chosen. As of now, there is a tendency for the safety radii
of the vessels to be violated, as exemplified by scenarios 2 and 3. A solution
could be to incorporate a time-dependant CLOSED list within the A* search. This
entails placing the nodes that are estimated to contain an obstacle at time t1 in the
CLOSED list at time t1. Once a time-step has been endured and t2 = t1 + δt, the
lists in the A* search are updated such that the nodes that are estimated to contain
obstacles at time t2 are put in the CLOSED list and the CLOSED nodes from t1
are re-evaluated and possibly moved from the CLOSED list into the OPEN list.
This step could not be tested within this thesis, as too much time was spent trying
to perfect the global path planner such that little time was left for enhancing the
collision avoidance algorithm any further than that presented here. Nevertheless,
the adjustments are possible and within range.

3Explained in section 5.3.1
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Chapter 8

Conclusion

To summarize, a motion planning algorithm for ASVs based on a relatively un-
common approach has been developed throughout the course of this thesis. The
Path-of-Probability (POP) algorithm has previously been used for path planning of
flexible needles and rolling robots, but not for autonomous surface vessels (ASVs).
As for the research question1, the enhancement made to POP such that it could
handle multiple static obstacles was brought about by merging POP with the A*
algorithm. Thus, the procedure of the POP algorithm was not directly altered.
Rather, the use of POP in a cost function was an enhancement which secured that
POP could be used in an environment with multiple static obstacles. The set-up of
POP was however modified to fit for ASVs. The enhancement of POP for collision
avoidance scenarios was completed to a greater extent, in that the virtual target
points (VTPs) were used to efficiently overcome the issues from the global path
planner. Nevertheless, the procedure of the POP algorithm still remained equal to
that within the global path planner2.

The results for the global path planner brought attention to POP’s inefficient han-
dling of multiple static obstacles; POP had a tendency of producing indecisive
results in the form of zero probabilities of reaching the target for all successor
nodes once the environment was scattered with multiple obstacles. A different ap-
proach was used in the collision avoidance module, where the virtual target point
(VTP) method was included to ensure decisive results from the POP algorithm.
The results were encouraging and showed that POP had the capability of gen-
erating COLREGS compliant paths. Nonetheless, the loss of generality that was
introduced by the tuning variables in the placement of the VTPs, lowered the cred-
ibility of the results. A motion planner must be able to cope with any scenario
without the need for human intervention, therefore the VTP method should be
enhanced such that the need for tuning variables is removed in the future.

1See page 2
2Refer to section 4.1
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CHAPTER 8. CONCLUSION

Despite some unconvincing results, particularly evident in the global path planner,
the POP algorithm should still be subjected to further research regarding motion
planning for ASVs. The ocean presents a dynamic and uncertain environment,
enabling a need for collision avoidance and global path planning methods that
incorporate these stochastic effects into their calculations. As of now, it is the
method for handling obstacles that is the main flaw within the algorithm. The
VTP method is one suggestion to overcome these flaws, though further research
can choose to go in other directions.
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Chapter 9

Recommendations for Further
Work

9.1 Altering Speed

As of now, the collision avoidance algorithm is generated under the assumption
that the ASV maintains a constant forward speed of U = 1 [m/s]. This entails that
the evasive maneuvers generated by the motion planner is solely based on altering
the heading of the vessel. In order to bring another dimension into the motion
planner and generate more realistic results, the collision avoidance algorithm should
incorporate an altering speed.

Take for instance the avoidance maneuver in the crossing situation in scenario 3,
rather than immediately altering its course to starboard, the vessel could also slow
down and then change its course to starboard. It is speculated that this sort of
maneuver would cause the ASV to pass TV 2 with a greater margin than that
presented in figure 6.8.

9.2 Model Parameter Estimation

The results presented in chapter 6, all use a version of the POP algorithm with
estimated parameters. The results were not perfect and showed that there is room
for improvements, discussed in chapter 7. It would therefore be profitable to prop-
erly estimate the POP parameters σ and s, in order to rule out that it is the
estimates that are to blame for the POP algorithm’s flaws. The values for σ and
s can be properly assigned with an experimental study of how an ASV behaves in
its working environment, thus allowing the stochastic behaviour of the ASV to be
studied. The estimation methods from [34] can be used as an inspiration.
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9.3 Dynamic Obstacles

9.3.1 Reactive Target Vessels

In the literature review, it was mentioned how most of the current research as-
sumes that the ASV meets target vessels that are non-reactive; meaning that the
approaching vessels do not complete evasive maneuvers to avoid a prospective col-
lision. This simplification aligns with COLREGS when the ASV is the give-way
vessel, such as in a crossing from the right situation. On the other hand, in a
head-on situation both vessels are to generate evasive maneuvers, which makes
this simplification unrealistic in practice.

Future work regarding motion planning for ASVs should therefore incorporate this
added dynamic into the collision avoidance algorithm, such that an accurate por-
trayal of collision scenarios is used to test the algorithm.

9.3.2 Handling Dynamic Obstacles in POP

The level of the current collision avoidance algorithm using POP can be raised by
effectively handling the dynamic obstacles. As of now, it is assumed that the motion
and position of each target vessel is perfectly known. However, these measurements
are subjected to uncertainties. Therefore, the representation of the dynamic obsta-
cles should mirror the static obstacle representation, where a probabilistic approach
is used. This idea is presented in [6], where the probability density function (PDF)
used to represent the uncertainty in the target vessel measurements grows as time
since the measurement was attained increases.

In the future, the collision avoidance algorithm with POP and an A* search should
be enhanced by incorporating the approach outlined by [6]. This can be completed
by increasing the costs of the nodes that have a large probability of containing a
dynamic obstacle at a given time, thus, the POP algorithm should reduce the prob-
ability of reaching the target from that node. The way in which this combination
is completed is left for further work.

9.4 Network Complexity

The current set-up of the network used in the A* search, i.e the network that
is used to represent the ASV’s surrounding environment, is an oversimplification
in that only three possible yaw speeds are possible. The ASV can choose from
either r = [−0.05, 0, 0.05] [rad/s]. However, in order to portray a more realistic
path choice, this discretization should be altered such that it properly covers the
spectrum of the true yaw speeds the ASV can have. This notion is discussed in
section 7.2 where the limited motions caused by the current discretization present
a challenge to the collision avoidance algorithm.
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9.4. NETWORK COMPLEXITY

Future work should therefore include a greater array of possible yaw speeds, and
investigate how this can alter the overall behaviour of the ASV with the current
collision avoidance algorithm.
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Appendix A

Low-Level Controllers

This appendix goes thorough the design of the low-level controllers within the
simulator developed in section 5.2. It is included to provide a complete picture of
the simulator used to test the motion planning algorithm.

A.1 Heading Controller

The design of the heading controller follows the procedure outlined in [20, p. 374]
and therefore starts with a look at the Nomoto model. The Nomoto model is
developed from a linearized maneuvering model, as shown in equation (A.1) for
the ASV from section 5.2.1, and gives the relationship between the rudder angle
(δ) and the yaw rate (r). Note that ν = [v, r]T in equation (A.1). From the
actuator models in section 5.2.2, the b-matrix in equation (A.1) is given by the
expression in equation (A.2). Note that the surge speed u, is kept at a constant
value equal to u0.

Mν̇ +Dν = bδ (A.1)

b =

[
Fy

Mψ

][
Krudu

2
0

lxKrudu
2
0

]
(A.2)

As the heading controller aims to control the yaw rate, r, the Nomoto model is
obtained by investigating the dynamic equation for r from equation (A.1) and
then transforming the resulting equation to the Laplace plane. This results in
two possible Nomoto models, one of first-order and one of second-order. These
are shown by equations (A.3) and (A.4) respectively, where the first-order Nomoto
model is obtained by setting T := T1 +T2−T3 in the second-order Nomoto model.
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Figure A.1: The yaw rate response of the implemented ASV model after step-inputs
in the rudder command. The yaw rate response for the same rudder commands are also
shown for the first- and second-order Nomoto models.

Table A.1: The resulting coefficients for the first- and second-order Nomoto models after
curve-fitting in MATLAB.

δ [deg] K T T1 T2 T3

2 1.3040 7.2406 7.5029 7.5102 7.5405
6 1.3040 7.2406 15.7921 15.5064 14.3291
12 1.3040 7.2406 16.1447 15.8654 14.7145

r

δ
(s) =

K

(1 + Ts)
(A.3)

r

δ
(s) =

K(1 + T3s)

(1 + T1s)(1 + T2s)
(A.4)

Now, in order to determine which of the two Nomoto models that are best suited
for the ASV model presented in section 5.2.1, the ASV’s yaw rate response as a
function of rudder input is compared to the yaw rate response of the two Nomoto
models. The coefficients in equations (A.3) and (A.4) are determined using a
least-square curve-fit to the ASV’s simulated yaw rate time-series. The resulting
yaw rates are shown in figure A.1 and the coefficients from the curve-fitting are
presented in table A.1.

From figure A.1 it is clear that the first-order Nomoto model can be used to repre-
sent the vessel dynamics of the modelled ASV. Further, as each of the coefficients
for K and T in table A.1 are equal for all step-inputs in the rudder command
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(which makes sense as the actual model is linear), these values are used in the
development of the heading controller.

With a linear ASV model, it is not necessary to create an overly complicated
heading controller. Therefore, the standard proportional-integral-derivative (PID)
controller is used. The controller output is given by equation (A.5), where ψ̃ :=

ψ − ψd and r̃ =
˙̃
ψ := ψ̇ − ψ̇d.

δc = −Kpψ̃ −Kdr̃ −Ki

∫ t

0

ψ̃(τ)dτ (A.5)

The controller gains are determined by following the pole-placement algorithm in
[20, p. 374]. The first step is to set the bandwidth of the controller (ωn) and
the desired relative damping ratio (ζ). As the needed bandwidth of the heading
controller will depend upon the trajectory generated by the guidance system, its
value was set quite high; ensuring that the controller can follow most input signals.
Specifically ωb = 0.15 [rad/s] and ζ = 1 to secure a smooth response. The gains
are then determined by equations (A.7)-(A.9), where the natural frequency of the
closed-loop system is determined using ωb and ζ in equation (A.6).

ωn =
ωb√

1− 2ζ2 +
√

4ζ4 − 4ζ2 + 2
(A.6)

Kp =
ω2
nT

K
(A.7)

Ki =
ω3
nT

10K
(A.8)

Kd =
2ζωnT − 1

K
(A.9)

Using the equations above and the coefficients from table A.1, the gains for the ASV
model were calculated and implemented within the simulator. The controller was
tested for various input signals, one sinus-curve with a frequency of 0.01 [rad/s]
and amplitude of 20 [°]; and one step-input with an amplitude of 20 [°]. It was
found that reducing the Nomoto gain K produced more responsive results when
it came to the sine-input, but the calculated K value worked well with a step-
input. Therefore, two sets of gains were used, where the nature of the input signal
decided which of the two sets of gains were used. The resulting controller values
are given in table 5.3, where the K value from table A.1 was used to calculate the
gain values as the nature of the LOS laws is more similar to a step-input than a
sine-input. The heading response and commanded rudder angle for each of the two
input signals are shown in figures A.2 and A.3, where the saturation level of the
rudder and propeller shaft speed are set to δmax = ±15 [°] and nmax = ±8.9[rad7s]
respectively.
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Figure A.2: The heading response of the ASV model implemented in the simulator with
a PID controller, here following a sine-input in the desired heading angle ψd.

A.2 Surge Speed Controller

Much like the heading controller, the surge speed controller is implemented us-
ing the linearized maneuvering equation. However, as the ASV model is already
linear and decoupled in a surge and sway-yaw sub-system, this is not technically
needed. Nevertheless, neglecting environmental disturbances gives the surge model
in equation (A.10), where m11 and d11 refers to the mass- and damping-matrix
values in equations (5.1)-(5.2). As the ASV only has one propeller located at the
stern, the resulting force in the surge direction τ1, is given according to equation
(A.11); where n is the shaft speed in rad/s. The propeller coefficient Kprop = 2,
by recommendation of my supervisor.

m11u̇− d11u = τ1 (A.10)
τ1 = Kpropn|n| (A.11)

With a linear system in equation (A.10), the choice for a controller falls on a
simple PI controller; neglecting the derivative term to avoid derivating the surge
speed measurements. The derivative term could easily be implemented, say if
a navigation system were to be implemented to filter the measurements, but as
the PI controller proved to worked well with little tuning, there is no need for
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Figure A.3: The heading response of the ASV model implemented in the simulator with
a PID controller, here following a step-input in the desired heading angle ψd.

it. The resulting output from the PI controller is given in equation (A.12), where
ũ := u − ud and the controller gains were tuned manually according to equation
(A.13). The resulting behaviour of the model ASV is shown in figure A.4, where
the quick response of the vessel is evident and the fact that the shaft speed avoids
saturation is a plus.

nc = −Kpũ−Ki

∫ t

0

ũ(τ)dτ (A.12)

Kp = 1 Ki =
Kp

10
= 0.1 (A.13)

It should be noted that the propeller force in equation (A.11) makes the closed-
loop system nonlinear when the surge controller outputs a shaft speed nc, shown
by equation (A.14). However, as the main contribution from this thesis regards the
guidance system, simplicity is a key factor in the design of the low-level controllers.
Therefore, the PI controller in equations (A.12) and (A.13) remains implemented
in the simulator.

m11

Kprop
u̇− d11

Kprop
u = nc|nc| (A.14)
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Figure A.4: The ASV model’s surge response following the implementation of a surge
speed controller. Here, the desired surge speed is set to ud = 8 [m/s] and the saturation
level of the shaft speed is set to nmax = 8.9 [rad/s].
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Appendix B

Guidance Controller

In order to show the capability of the guidance controller and its parameters dis-
cussed in section 5.2.4, a run with a set of waypoints given by table B.1 is shown
in this chapter.

Table B.1: Waypoints used to the test the guidance controller

North [m] East [m]
0 0

-3500 -2500
-7000 -500
-12000 -3500
-15000 -500
-18000 -4000

The resulting behaviour of the ASV is shown in figure B.1, where figure B.1a shows
how the guidance controller keeps the ASV model on the correct course. Further,
figure B.1b shows how the cross-track error e(t) is quickly reduced to zero, and has
peaks once the guidance scheme switches to the following waypoint - which is to
be expected. Hence, the guidance controller proves to be effective.
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Figure B.1: (a) The guidance controller manages to follow the set of waypoints. (b)
Cross-track error e(t) during the track following.
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