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work was carried out in the spring semester of 2018.

The Thesis investigates the hydroelastic response of a floating solar island in different

sea-conditions using an experimental method. The concept of a floating solar island

originated from Professor Bruce Patterson at the University of Zürich who suggested

producing methanol from CO2 in sea water using solar power. The design of the island is

proposed by Professor Trygve Kristiansen at the Department of Marin Hydrodynamics,

who also suggested this as a research topic.

The reader of this thesis should have some prior knowledge of naval architecture and

hydrodynamics.
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Abstract

Future energy demand are expected to increase substantially in the next decades, and

there is a real need to consider new ways of supplying the energy market with cost-

efficient, dependable and green sources of energy. The ocean is vast and large proportions

of it are continually exposed to sunlight. Floating solar islands that are capable of carrying

photovoltaic solar panels in offshore sea conditions could supply solar power directly onto

power grids or could be used in an electrochemical process that produces liquid methanol

from CO2 in sea water, an energy source that can be stored for later use.

A few designs of floating solar islands exists already, but none that can operate in

offshore sea conditions. There are considerable challenges in designing such a structure,

and this thesis investigates the potential of a large floating structure consisting of multiple

slender floating tori elastically connected. For this purpose, an experimental study into

the governing behavior and response of the proposed structure have been performed. The

deck has been omitted, and the structure in this study consists of five elastic tori enclosing

each other that are connected through trusses. The trusses are elastic, creating motions

that are hard to predict but that avoids snap loads and jerky motions, and enables the

structure to move with the waves.

Previous theoretical and experimental studies involving a single semi-submerged slen-

der torus have been used as a basis for this study. A model with multiple tori and one

with a single torus have therefore been built and tested in scale 1:50. The testing was

conducted at the Small Towing Tank at the Centre of Marine Technology at NTNU. Dur-

ing the experiments the structures were moored to the walls of the tank and the wave

elevation, mooring-line tensions and the vertical and horizontal responses were measured.

The models were tested in regular waves with full scale wave period varying from 2.0−14s

and wave steepness varying from 1/100 − 1/10. The multi-torus was tested in irregular

waves as well, with peak wave periods of 8− 12s and significant wave heights of 2− 5m.

The experimental results from the multi-torus were compared to those from the single-

torus in addition to a low-frequency linear slender-body theory for vertical radiation loads

on an elastic semi-submerged torus and a zero-frequency theory. The experiments with the

single-torus showed good agreement with the theoretically predicted linear responses. The

experiments with the multi-torus also approximated the theoretical response for very long

wave periods. However, for smaller wave periods the vertical motion was lower relative

to the wave amplitude than predicted by the theoretical response for a single-torus. This

was expected as a results of the trusses that are connecting the tori. The mass and added

mass of each torus will affect the motion of the tori in question in addition to all the other

tori. These interacting forces seems to be larger relative to the wave force for smaller
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waves, than when the waves are large.

Overtopping waves were identified as the main concern for the structure and the

solar panels, threatening the integrity of both. Overtopping in regular waves occurred

predominantly at the aft of the outermost tori for longer wave periods with relatively low

wave steepness, and at the fore for high wave steepnesses and shorter wave periods. In

irregular waves, overtopping waves occured at random locations on the multi-torus, with

a tendency of occuring more often at the fore of the structure and on the two outer tori.

However, it did not follow the pattern observed for regular waves, where there was a clear

tendency for where overtopping would occur. Overtopping was registered at relatively

low peak wave periods and significant wave heights compared to regular waves.

The results from the multi-torus shows potential, but more work and research are

needed for further development of a functioning floating solar island.
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Sammendrag

Framtidig energietterspørsel forventes å øke betraktelig de neste ti̊arene, og det er et reelt

behov for å vurdere nye måter å forsyne energimarkedet med kostnadseffektive, p̊alitelige

og grønne energikilder. Havet er stort og store deler av det er kontinuerlig eksponert

for sollys. Flytende soløyer som er i stand til å bære fotovoltaiske solceller i offshore

sjøforhold kan levere solenergi direkte til kraftnett eller kan benyttes i en elektrokjemisk

prosess som produserer flytende metanol fra CO2 i sjøvann, en energikilde som kan bli

lagret for senere bruk.

Noen f̊a modeller av flytende soløyer eksisterer allerede, men ingen som kan operere i

offshore sjøforhold. Det er store utfordringer i utformingen av en slik struktur, og denne

oppgaven undersøker potensialet til en stor flytende struktur som best̊ar av flere slanke

flytende toruser som er elastisk knyttet sammen. Med dette som formål har det blitt

utført en eksperimentell undersøkelse av den styrende bevegelsen og responsen til den

foresl̊atte strukturen. Dekket har vært utelatt, og strukturen i dette studiet best̊ar av

fem elastiske toruser som omslutter hverandre og som er koblet sammen med tau. Tauene

er elastiske, og skaper bevegelser som er vanskelig å forutsi, men som unng̊ar snap loads

og rykkete bevegelser og gjør at strukturen beveger seg med bølgene.

Tidligere teoretiske og eksperimentelle studier som involverer én enkelt semi-nedsenket

slank torus har blitt brukt som grunnlag for denne studien. En modell med flere toruser

og en med én enkelt torus ble derfor bygget og testet i skala 1:50. Testene ble utført i Lil-

letanken p̊a Marinteknisk Senter ved NTNU. Under forsøkene ble konstruksjonene fortøyd

til tankens vegger, og bølgehøyde, fortøyningsline-krefter og de vertikale og horisontale

responsene ble målt. Modellene ble testet i vanlige bølger med fullskala bølgeperiode

varierende fra 2, 0 − 14s og bølgesteilhet varierende fra 1/100 − 1/10. Multi-torusen ble

ogs̊a testet i uregelmessige bølger, med topp bølgeperioder p̊a 8 − 12s og signifikante

bølgehøyder p̊a 2− 5m.

De eksperimentelle resultatene fra multi-torusen ble sammenlignet med de fra den en-

kle torusen, i tillegg til en lav-frekvens lineært slank-legeme teori for vertikale radiation

loads p̊a en elastisk semi-nedsenket torus, og med en null-frekvens teori. Forsøkene med

singel-torusen viste tilfredstillende og sammenlignbare resultater med de teoretisk forut-

sette lineære responsene. Resultatene fra forsøkene med multi-torusen var ogs̊a tilnærmet

like den teoretiske responsen for svært lange bølgeperioder. For mindre bølgeperioder var

imidlertid den vertikale bevegelsen lavere i forhold til bølgeamplituden enn antatt av den

teoretiske responsen for en singel-torus. Dette var forventet som et resultat av tauene

som forbinder torusene. Massen og tilleggsmassen av hver torus vil p̊avirke bevegelsen av

b̊ade seg selv og de andre torusene. Denne kraften mellom torusene ser ut til å ha større
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effekt i forhold til bølgekraften for mindre bølger, enn n̊ar bølgene er store.

Overtoppende bølger ble identifisert som hovedproblemet for strukturen og solpane-

lene, og kan potensielt true integriteten til begge. Overtopping i regulære bølger oppsto

hovedsakelig i akter av den ytterste torusen for lengre bølgeperioder med forholdsvis lav

bølgesteilhet, og i forkant av torusen for høye bølgesteilheter og kortere bølgeperioder. I

irregulære bølger, oppsto overtoppende bølger p̊a tilfeldige steder p̊a multi-torusen, med

en tendens til å forekomme oftere i forkant av strukturen og p̊a de to ytre torusene. Det

fulgte imidlertid ikke mønsteret som ble observert for regulære bølger, der det var en klar

tendens til hvor overtopping ville oppst̊a. Overtopping ble registrert ved relativt lave topp

bølgeperioder og signifikante bølgehøyder sammenlignet med regulære bølger.

Resultatene fra multi-torus viser potensiale, men mer arbeid og forskning er nødvendig

for å videreutvikle designet til å bli en fungerende flytende soløy.
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Nomenclature

Greek Letters

βn Radial Position of Accelerometer

η̈3 Heave Acceleration [m/s2]

δ Deflection

η̇3 Heave Velocity [m/s]

η Wave Elevation [m]

η3 Heave Motion [m]

λ Wave Length [m]

µ Dynamic Viscosity [kg/(m·s)]
ω Rotational Frequency [rad/s]

ρ Density [kg/m3]

ρF Density of full scale model

ρM Density of model scale model

ζa Incident Wave Amplitude [m]

Roman Letters

sk Tangential unit vector of truss k

x End of truss-node

an Accelerometer Position n [-]

an Generalized coordinate of vertical motion of mode n [-]

bn Generalized coordinate of radial motion of mode n [-]

c Radius of cross-section of the torus

D Diameter

EI Bending Stiffness [Mpa]

F Full Scale [-]

f Frequency [1/s]

f
(n)
j Force acting on node

g Gravitational Constant [m/s2]

H Wave Height [m]

h Water Depth [m]
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H(ω) Transfer Function

HS Significant Wave Height [m]

k Wave Number [-]

l
(n)
k Truss length

M Model Scale [-]

m Mass [kg]

S(ω) Power Spectral Density

Sj(ω) Power Spectral Density of the JONSWAP Spectrum

Syy(ω) Power Spectral Density of Input

Syy(ω) Power Spectral Density of Response

T Wave Period [s]

TP Peak Wave Period [s]

w Vertical Motion

ks Mooring-line Spring Stiffness

kt Truss Spring Stiffness

Abbreviations

2D Two-dimensional

3D Three-dimensional

CFD Computational Fluid Dynamics

FFT Fast Fourier Transform

FPS Frames per second

LST Low-frequency slender-body theory

RAO Response Amplitude Operator

ZFT Zero-frequency theory
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Chapter 1

Introduction

Energy is what drives human societies forward. We, as a species, have always been limited

by our physical strength when it comes to energy production, which in prehistoric times

lead us to start burning wood, taming animals and building sail boats, enabling us to keep

warm, produce more food and travel longer distances. Over the course of thousands of

years, our rising population and ever increasing demand for necessities and luxuries have

lead us to start burning oil, taming rivers and building nuclear power plants instead.

The International Energy Outlook 2017 (IEO2017) published by the U.S. Energy In-

formation Administration EIA (2017) projects that the world energy consumption will rise

from 19.2 TW in 2015 to 24.6 TW in 2040, a total increase of 28%. The Three Gorges

Dam in China, the world’s largest dam, produced 0.011 TW in 2017 GBtimes (2017),

and the nuclear power plant with the highest energy production in the world, Bruce in

Canada, produced 0.0054 TW in 2015 BPS (2017). To put this projected increase in

energy consumption in perspective, a new dam of this size would have to be opened every

19 days, or a nuclear power plant of this capacity built every 9 days until 2040 to keep

up with the world’s energy needs.

There is a growing international consensus that it is not possible to satisfy this grow-

ing appetite for energy through traditional energy sources alone. There are not enough

oil, gas, rivers, or uranium on earth to meet the demand in the future, and perhaps more

importantly, it would not be possible without wreaking havoc on the planet and its in-

habitants, including ourselves. In other words, it is necessary, and desirable, to consider

other energy sources.
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1.1 Solar Energy

By 2050 renewable energy is predicted to make up nearly half of global energy supply

DNVGL (2017). In 2016, renewable energy accounted for two-thirds of new power added

to the world’s power grids, with solar power being the fastest-growing source of new

energy, even overtaking the net growth of coal, previously the biggest new source of

power generation IEA (2017). The cost of solar power are set to decrease by 18% per

the doubling of capacity and the current energy efficiency of the photovoltaic cells is at

around 22% DNVGL (2017) and is expected to keep rising. This indicates a future where

solar power is going to take a prominent place as a source of energy.

Figure 1.1: Example of Photovoltaic (PV) panels.

The promising aspects of solar power; predictability, limitlessness, cost and relative

ease by which solar energy can be harvested, makes this power source highly competitive

with the other energy sources, but there are still considerable challenges that needs to

be overcome for it to take the role as the foremost power source in human society, the

biggest of which are storage and distribution of the energy produced. Fossil fuels have

high energy density, are easy to store, can be transported long distances efficiently, can

be utilized for all purposes, are relatively safe, predictable and most importantly, cheap.

There are, as of now, no other energy source which can compete with fossil fuels when it

comes to versatility, safety and cost. However, technological advances may hold the key

to unlocking the potential of renewable energy sources and dethrone fossil fuels as the

king of energy.
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1.2 PV panels, electrochemical storage and methanol

Photovoltaic cells produce electricity, a power source that traditionally have been supplied

directly to a power grid and through that transferred to wherever it is needed. There

are several ways of storing electrical power for later use, the main alternatives include

mechanical storage and electrochemical storage, where the latter includes batteries which

has been the most prevalent solution of storage up until now. The problems with storing

electrical power in batteries are the limitations of battery capacity compared to their

size and weight, the recharge time, ageing and cost. These limitations make batteries

unsuitable as an energy source when large amounts of energy are needed or when reliability

is important. This means that current batteries are unable to become a real alternative

to liquid carbon-based energy carriers, especially when it comes to the ship and airplane

industries.

An alternative to batteries is to use electricity to drive an electrochemical process of

creating liquid methanol, which can be utilized as an energy source at convenience and

can be implemented in current infrastructure as an alternative to fossil fuels. Methanol

fuel is comparable to diesel fuel, but with half the energy density. In order to keep the

production of methanol CO2-neutral it has been suggested to create methanol from the

CO2 contained in ocean water. This technology is already in place for creating methanol

from CO2 in air, but as the concentration of CO2 is 120 times higher in water, the potential

for large scale production is much larger using the ocean. However, this chemical process

would require large amounts of energy, preferably harnessed cheaply in the ocean which

will be the source of the CO2. A solution can be to generate power with floating islands

of photovoltaic systems that transforms the sun’s energy into electricity, which then gets

stored as methanol, available for usage at any time.

1.3 Floating Solar Islands

In this regard, it has been suggested that the photovoltaic systems must float above

water far offshore, where the currents create a steady supply of CO2. Such a structure

must therefore withstand certain oceanic conditions, including strong winds, waves and

currents. At the same time, this construction would need to be practical and affordable

to make the methanol production competitive with the rest of the market. One type

of a large stable platform that has been proposed is a marine structure, consisting of

concentric elastic floating tori supporting a membrane type of deck to support the solar

panels. A torus is a doughnut-shaped surface generated by a circle rotated about an axis

in its plane that does not intersect the circle, tori is the plural form of torus and concentric
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means that they have a common center Merriam-Webster. A multitude of these platform

can then be connected to create an array of solar islands moored together that would

occupy much less space than an offshore wind park, as seen in Figure 1.2. Placing the PV

panels on water will also increase the power generated, as light reflecting from the ocean

will increase the amount of light hitting the PV panels, it will also simplify any rotation

of the structure with the sun’s azimuth, increasing the efficiency of the PV panels. In

addition, the potential of such a structure is not only limited to the creation of methanol

far offshore, but can be positioned in close proximity to over-crowded cities supplying

electricity through traditional cables, or function as recharge stations for electrically driven

ships.

Figure 1.2: Depiction of the floating solar island concept. The illustration to the left shows
the proposed design of a multi-torus, where multiple slender tori supports a membrane
deck. The middle illustration shows a potential mooring-arrangement of an array of
floating solar islands. The illustration to the right shows the area occupied by an array of
solar islands compared to the area occupied by four offshore wind turbines, approximately
producing the same amount of energy.

1.4 Challenges

Challenges related to designing a floating solar platform can mostly be attributed to wave

loads and their effect on the structure. In order to build a reliable platform capable of

withstanding realistic wave conditions, the different effects of waves on mooring-lines and

the general motion of the structure needs to be investigated. As the platform is large, it is
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desirable that the structure moves flexibly in motion with the waves rather than working

against them as this will alleviate the forces acting on the structure. In order to achieve

this, it is important to consider the elasticity of the rings, how they are connected to

one another and how they are moored in the sea. If mooring-lines are exposed to large

forces they may break, therefore it is important that they are flexible with relatively low

stiffness, enabling the structure to move in phase with the waves, but at the same time

avoiding strong resonance.

Overtopping is also a considerable challenge, if parts of the structure is unable to move

in phase with larger waves they might become submerged or waves can crash over the

deck, exposing the area to large forces for short periods of time, potentially causing large

amounts of damage to both the structure but also the PV panels on deck. A platform

consisting of several concentric rings carrying a deck means that parts of the structure is

out of water and that parts of the structure will potentially be lifted out of water during

certain wave conditions. The air-pockets between the deck and the ocean surface and

parts being lifted out of water can lead to the structure and waves slamming in to one

another, an effect knows as slamming. This can lead to fatigue damage and potentially

cause fracture of the deck, rings or PV panels. The number of suitable locations for a

floating platform will increase if it can withstand larger wave forces, thus the design of the

platform must be tested in a wide range of waves to find potential limits of the structure.

Figure 1.3 shows the wide range of potential locations for a floating solar island if it is

able to withstand 100 year significant wave height < 7m, and that satisfies other criteria,

such as water depth < 600m, enough exposure to sunlight and no tropical storms.

Figure 1.3: Illustration of potential locations of floating solar islands that is exposed to
enough sunlight, where there are no tropical storms, with 100 year significant wave height
< 7m and a water depth < 600m
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1.5 Previous studies on tori and Solar Islands

There are a number of studies on floating tori and their motions in different wave con-

ditions, and most of them are concerned with a semi-submerged single slender torus. A

broad description of the main studies and theories is presented to give an overview over

the development on this topic and the background for the present study.

Newman (1977) investigated the motions of a floating slender torus in incident waves

by using slender-body theory for the case where the incident wavelength is comparable

to the radius of the body section and small compared with the larger radius of the torus.

He also used matched asymptotic expansion between a far field and near field description

of the torus, and he used it to describe the oscillating motions in heave, surge and pitch.

Faltinsen (2011) considered the hydroelasticity of a single torus and derived a slender-

body theory by using the limiting case where the forcing frequency ω → 0 based on a rigid

free-surface condition. In order to take 3D effects into account, he also used asymptotic

matching between a far field and near field description of the torus.

Li and Faltinsen (2012) derived a low-frequency slender-body theory for the vertical

added mass, damping and wave excitation loads on an elastic semi-submerged single

torus by matched asymptotic expansions with a near-field and far-field solution. This

was valid for the classical free-surface condition. The results showed that 3D effects

caused important frequency-dependent hydrodynamic interaction on the scale of the torus

diameter, and the limitations of a strip-theory approach to wave-induced loads on tori.

Li et al. (2014) used numerical simulations and experiments on a moored elastic single

torus in regular deep-water waves of different steepnesses and periods without current to

measure the vertical accelerations in different conditions. From their comparison against

the measurements, a strong 3D and frequency dependency effects as well as flexible floater

motions was shown to matter.

Li (2017) described and compared the low-frequency linear slender-body theory for

vertical radiation loads on an elastic semi-submerged torus based on matched asymptotic

expansions with results from WAMIT. He found reasonable agreement between experi-

ments and theoretically predicted linear response, but the agreement between numerical

methods and experiments were generally deemed unsatisfactory for the nonlinear response.

Borvik (2017) investigated the dynamical behavior of a floating solar island in waves

and currents. The solar island consisted of a torus covered with a membrane posing as a

deck that was upheld by applying air-pressure between the deck and the water, creating

an uplifting force. This solution was found to be unsuitable for its purpose, and he

recommended investigating other ways of carrying the weight of a deck of solar panels.

This suggestion lead to the present study with multiple tori supporting the deck.
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1.6 Objective and Scope

This master thesis explores the governing hydroelastic response of a structure consisting

of five elastic concentric circular cylinders attached to each another by flexible ropes in

different wave conditions, including both regular and irregular waves. Hydroelasticity is

a term that describes the mutual interaction between inertial, hydrodynamic and elastic

forces Heller and Abramson (1959) and Bishop et al. (1979). The proposed structure

will in this study be referred to as a multi-torus, compared to a single elastic concentric

cylinder that will be referred to as a single-torus. Due to the many studies on the response

of a single-torus, it has also been a goal in this study to understand how results and

theory for a single-torus compares to the behavior of a multi-torus, and to identify the

main challenges such a structure will face in different wave conditions. The vertical and

the horizontal RAO in different modes will be investigated, in addition to the forces

acting in the mooring-lines. Both accelerometers and a motion capture system will be

used to measure the vertical motions of the multi-torus. A motion capture system have

not been used to measure the response of a structure in the Small Towing Tank before.

Thus, the results from these will be compared to find the advantages and limitations of

using a motion capture system for experiments on a floating solar island. The work is a

continuation of a preliminary study performed from August to December 2017. The main

objectives of this Master’s thesis can be summarized as:

1. Design and build a physical model of a multi-torus and a single-torus that withstands

offshore-conditions

2. Perform an experimental study on a model of a single-torus and a multi-torus in

regular and irregular waves whilst measuring important structure-wave interactions.

3. Investigate the potential for overtopping

4. Compare results between the two different models, and compare this to existing

theory for slender circular cylinder structures in waves.

5. Compare results from accelerometers and a motion capture system.

6. Further analyze the results in order to identify and discuss the governing behaviour

of the structure in different wave-conditions.
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1.7 Outline of Master Thesis

Chapter 2 describes the main theories and equations regarding regular waves, irregular

waves, , response-theory, modal analysis, truss-forces and overtopping.

Chapter 3 outlines the experiments with the models in the wave tank and the methods

used to acquire the relevant data.

Chapter 4 presents and discusses the results from the experiment with regular waves

and compares it with theory described in Chapter 2 and Appendix A.

Chapter 5 presents and discusses the results from the experiment with irregular waves

and compares it with theory described in Chapter 2.

Chapter 6 draws conclusions from the study and gives suggestions for further work

and research topics.



Chapter 2

Theory

This chapter presents the general theories and assumptions utilized for performing the

study on the multi-torus. They have all been derived by others, and have been essential

to the different stages of the experiment.

2.1 Regular Waves

When describing wave-induced motions and loads on floating structures, it will often

suffice to utilize linear theory Faltinsen (1993). Since it is possible to obtain results in

irregular seas by linearly superposing results from regular wave components, it is also

sufficient from a hydrodynamical point of view to analyze a structure in incident regular

sinusoidal waves of small wave steepness. In severe sea states, non-linear effects becomes

important, but as this study considers non-breaking regular waves of relatively low wave

steepness, linear theory will be utilized for parts of the study. For a multi-torus structure

in incident regular waves of amplitude ζa, where the wave steepness is small, linear theory

means that the wave-induced motion and load amplitudes are linearly proportional to ζa.

Also, a steady state condition is assumed, which means that there are no transient effects

present due to initial conditions. It implies that the linear dynamic motions and loads on

the structure are harmonically oscillating with the same frequency as the wave loads that

excite the structure.

Figure 2.1 illustrates the shape and main parameters of a regular sinusoidal wave,

where T = 2π/ω is the time dependent wave period, λ = 2π/k is the time dependent

wavelength, H is the wave height, and H/λ is the wave steepness.

9
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Figure 2.1: Illustration of the shape and main parameters of a regular sinusoidal wave.
T is the wave period, H is the wave height, λ is the wavelength and H/λ is the wave
steepness.

2.1.1 Experimental RAO for Regular Waves

Based on the aforementioned assumption it is possible to use regular wave tests to acquire

the RAOs (Response Amplitude Operators) of motions and loads. The waves generated

must then be close to sinusoidal and at the same time stable and stationary for a long

enough time to obtain steady-state structure motions. The RAO is defined as the ratio

between the fundamental component of the measured response amplitude an,a and the

input wave amplitude ζa, RAO = |an,a/ζa| Steen and Aarsnes (2014).

2.1.2 Theoretical RAO for Regular Waves

Two possible ways to model the theoretical RAO in regular waves for a single-torus are

both briefly presented in this section. They were used as a basis of comparison for the

experimental results and to investigate how well they predicted the motions of a multi-

torus. The limitations of the RAO derived from what is referred to as the Zero-frequency

theory (ZFT) in this study, meant that it was only once to compare it to the more accurate

Low-frequency slender-body theory (LST) to emphasize the difference between the two.

Zero-frequency theory

The wave-induced vertical motion of an elastic torus can be derived for the limiting case

where ω → 0 and the rigid free surface condition is used Faltinsen (2011). The resulting

RAO in heave, i.e. the mode n = 0, is described in the following equation
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∣∣∣∣a0,aζa
∣∣∣∣ =

∣∣∣∣∣∣ ρgbw − ω2a
(0)
33
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m+ a

(0)
33

)
− iωb(0)33
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∣∣∣∣∣∣ (2.1)

The RAO for the other modes, where n = 1 is pitch, n = 2 is the first flexible mode

and n = 3 is the second flexible mode, can be found by

∣∣∣∣an,aζa
∣∣∣∣ =
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(n)
33
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(n)
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∣∣∣∣∣∣ (2.2)

Low-frequency slender-body theory

A frequency dependent study on the vertical motion of an elastic torus is described in

Li and Faltinsen (2012) and Li (2017). This theoretical model have been utilized sub-

stantially in this study, and therefore a comprehensive description of it is included in

Appendix A. There, the different terms and variables included in both the Zero-frequency

theory and the Low-frequency slender-body theory are derived and explained. The RAO

in heave is found from
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∣∣∣∣∣∣
[(
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4
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(0)
33

)
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∣∣∣∣∣∣ (2.3)

and the RAO for the other modes can be found using the following expression
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2.2 Irregular Waves

This section is based on Faltinsen (1993) and is meant to give a brief overview over why

and how the response are tested in irregular waves. Results from irregular waves give a

close approximation to the results in realistic sea states. These results can be obtained

by adding together results from regular waves of different amplitudes, wavelengths and

propagation directions. By representing a time domain solution of the waves in the

frequency domain, the sea spectrum S(ω) can be used to describe an irregular sea. This

can be modelled as a summation of sinusoidal wave components, where the simplest

random wave model is the linear long-crested wave model given by
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ζ =
N∑
j=1

Aj sin(ωjt+ εj) (2.5)

Here Aj is the wave amplitude and εj is the random phase angle, and where

1

2
A2
j = S(ωj)∆ω (2.6)

The response to each wave component in 2.5 can be analyzed separately because of

linearity. This can thus be used for studying and representing the actual responses in the

frequency domain, including non-linear phenomena as high frequency and low frequency

responses, impact loads and survivability in extreme sea states. However, to produce

realistic wave frequency responses during model-testing, the energy spectrum of the input

waves have to be accurate Steen and Aarsnes (2014). To check if the generated input

Figure 2.2: Connection between a frequency domain and time domain for waves in a
long-crested short term sea state Faltinsen (1993).

waves are comparable to realistic sea conditions, the spectral density of the input wave

field can be compared to the JONSWAP spectrum. The JONSWAP wave spectrum Sj(ω)

gives a theoretical description of irregular waves and can be applied for fully developed,

fetch limited wind seas, and is thus able to describe wind sea conditions that often occur

for the most severe sea states DNV (2011). This was used to check the experimental

irregular sea states, and the formula can be found in Appendix B
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2.2.1 Response Amplitude Operator for Irregular Waves

In irregular waves, the transfer function H(ω) is the equivalence to RAO in regular waves

Steen and Aarsnes (2014). The measured response spectrum Syy(ω) is divided by the

input wave spectrum Sxx(ω), both of which are found through spectral analysis, and the

transfer function is thus found by

|H(ω)|2 =
Syy
Sxx

(2.7)

2.3 Modal Analysis

The experimental wave-induced elastic response of a torus is found through modal anal-

ysis. The total periodic response of the torus are determined by superposition of the

response from single points distributed over the torus. Figure 2.3 shows a single-torus

where an for n = 1, 2, .., 8 are the positions of the accelerometers used to measure the

local position, and βn for n = 1, 2, ..., 8 gives the radial fixed position of the corresponding

accelerometers on the torus.

Figure 2.3: Accelerometers an and their corresponding radial position βn, for n=1,2,..8.
R is the radius from the center of the torus to the centerline of the torus.

The accelerations aexpn (t) measured at each point are differentiated to find the vertical

motion wexpn (t). The response is assumed symmetric about the x-axis for waves propa-

gating in the negative x-direction, thus the measured motion wexpn can be expressed as a
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Fourier Series on the following form

wexp1 (t) =
N∑
n=0

bn(t)cos(nβ1) = b0 + b1cos(β1) + b2cos(2β1) + b3cos(3β1)

wexp2 (t) =
N∑
n=0

bn(t)cos(nβ2) = b0 + b1cos(β2) + b2cos(2β2) + b3cos(3β1)

...

wexp8 (t) =
N∑
n=0

bn(t)cos(nβ8) = b0 + b1cos(β8) + b2cos(2β8) + b3cos(3β1)

(2.8)

Here, cos(nβ) is the mode n. Superposition of eight points makes it possible to

calculate the four first modes of the torus, where n = 0 is in the heave direction, n = 1

is in the the pitch direction and n = 2 and n = 3 are the first and second flexible modes

respectively. Figure 2.4 illustrates how the motions of the center line of the torus for the

different modes.

Figure 2.4: Modes

To find the equation of motion for each mode amplitude bn(t), the following system of

equations are used
1 cos(β1) cos(2β1) cos(3β1)

1 cos(β2) cos(2β2) cos(3β2)
...

...
...

...

1 cos(β8) cos(2β8) cos(3β8)


︸ ︷︷ ︸

A


b0(t)

b1(t)

b2(t)

b3(t)


︸ ︷︷ ︸

b

=


wexp1 (t)

wexp2 (t)

wexp8 (t)


︸ ︷︷ ︸

a

(2.9)

from which the response for the different modes b(t) can be found by the least squares

method

b(t) = [(ATA)−1AT ]w(t) (2.10)
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2.4 Overtopping

Wave overtopping occurs when a wave hits the top of the torus, and is a nonlinear phe-

nomenon not described by linear potential flow theory Faltinsen et al. (2004) and Kris-

tiansen (2010). This can significantly influence the vertical forces and the relative motions

of the torus and the waves, and can lead to viscous flow separation. Figure 2.5 shows how

overtopping over a cross-section of the torus looks.

Figure 2.5: Cross-section of torus during overtopping Kristiansen (2010).

Overtopping occuring between the tori will strike the deck from below and potentially

cause serious damage to the integrity of the structure or damage any solar panels. If

waves are overtopping on the sides of the tori, the deck will become subjected to large

wave forces and be partly submerged for a period of time, also possibly damaging both

the structure and the solar panels. Overtopping is considered as the main concern of the

multi-torus, as its freeboard is quite low. It is therefore desirable that the structure is

relatively flexible and that it moves in motion with the waves.

2.5 Truss model

This section briefly presents a possible way to model the behavior of the trusses between

the tori of the structure and the mooring-lines. The theory was originally presented

by Marichal (2003), and then developed by Kristiansen and Faltinsen (2015). In the

latter paper, the truss model and theory for the floater was implemented in an integrated

manner. This means that the solver was implicit, such that the motions for both the

floater and trusses were solved for simultaneously. A different approach could have been

to solve iteratively for the floater and the trusses, but that is in general not desirable

due to inherent numerical instabilities. Only a few details are provided in the paper, and



16 CHAPTER 2. THEORY

since the truss model was not implemented in the present study, only an outline of the

procedure is presented here. Figure 2.6 shows an example on a possible distribution of

truss-nodes on a multi-tori consisting of three tori.

Figure 2.6: Example of how truss-nodes and mooring-line-nodes can be distributed on a
multi-tori consisting of three tori. The black dots are the position of the truss-nodes, xj
and xi are the end-nodes of a truss and lk is the constant length of a truss.

First, the hydrodynamic forces acting on the floater are calculated followed by solving

a linear system of equations for the tensions in all the trusses and the mooring-lines.

Having obtained the tensions, the positions of the truss-nodes, mooring-line nodes and

floater nodes are time-stepped according to Newton’s second law, using a lumped-mass

approach for the truss-nodes. The trusses are assumed inelastic but it is possible to

include elasticity, as seen in Marichal (2003). The length of the trusses must be constant,

which can be expressed as

l
(n)
k = l

(n+1)
k (2.11)

where l is the truss length, n is the time-step number and k is the truss-number. The

ends of the trusses are given by the nodes xi and xj, such that lnk = |xnj −xni |, where i and

j refers to nodes. Then, a first-order time marching scheme is used to evolve the nodes

according to Newton’s second law

x
(n+1)
j = x

(n)
j + ∆tu

(n)
j , u

(n+1)
j = u

(n)
j + ∆ta

(n)
j (2.12)
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where

Mja
(n)
j = f

(n)
j (2.13)

Here, ∆t is time step size, and uj and aj are the three-dimensional velocity and

acceleration vectors of the floater, respectively. Mj is the mass and added mass of the

tori surrounding the node. fnj is the force that acts on the node, and consists of the

tensions in the trusses connected in the node, and the hydrodynamic forces acting on the

tori surrounding the node. Inserting Equation 2.12 and 2.13 into 2.11 yields an equation

which is nonlinear in anj , and therefore also in the tension T . The nonlinear higher order

terms can be neglected as they are of the order (∆)3, and the following expression is

obtained

sk ·
(
a
(n)
j − a

(n)
i

)
= − 1

2lk
|u(n)
j − u

(n)
i |2 −

1

∆t
sk ·

(
u
(n)
j − u

(n)
i

)
(2.14)

sk =
(
x
(n)
j − x

(n)
i

)
/lk is the tangential unit vector of truss number k. On the left hand

side the accelerations are substituted with the forces according to 2.13. On the right hand

side are the known, pre-calculated hydrodynamic forces, while the unknown tensions are

kept on the left hand side. WithN trusses, and as each truss provides an equation, aN×N
system of equations Ax = b, for the unknown tensions is obtained,. Solving this, yields

the node positions according to 2.12 and 2.13. Modelling the mooring-lines as trusses,

the same procedure can be applied. The accelerations anj , are given by the equation of

motion for the multi-torus, and all parts of the system is solved for simultaneously. This

gives a strong coupling between the tori, the trusses and moorings.
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Chapter 3

Model Tests

The purpose of testing a model of the suggested structure was to acquire reliable data to be

examined and compared in order to gain a understanding of the structures hydrodynamical

properties in different sea-states. The models were tested in the Small Towing Tank at the

Norwegian University of Science and Technology, in Trondheim, Norway in February and

March of 2018. A single-torus model was tested in regular waves and a multi-torus model

was tested in both regular and irregular waves. The only environmental loads applied on

the models were those from waves generated by a wave-maker and those from four springs

acting as mooring-lines evenly attached to the outer-most torus of the structure. Forces

acting on the mooring-lines, wave-elevation, accelerations of the structure in response to

the waves and the over-all movement of it were measured and post-processed. This chapter

presents a description of how experimental results from a model test can be utilized to

predict behavior of a full scale structure, the design and dimensions of the models, the

test setup, the test conditions and the post-processing of the data.

3.1 Modelling and Scaling Laws

The data acquired from the model testing are transmissible to full-scale structures by uti-

lizing a set of scaling-laws when designing the model and setting up the test-conditions.

According to Steen and Aarsnes (2014), the similarity in forces can be achieved by ap-

plying these three conditions:

• Geometrical Similarity: The model and the full-scale must have the same

shape where all the length dimensions must have the same scale ratio λ = LF/LM .

• Kinematic Similarity: The velocities and accelerations have to be equal for

model and full-scale for both the structure and the flow acting on it.

19
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• Dynamic Similarity: The relative ratios of the different force components out of

the total force are the same for full-scale and model-scale.

As it is difficult to satisfy all these conditions during model testing, Froude-scaling can

be applied to ensure similarity between inertia forces and gravity forces for the different

scales, and as surface waves are gravity driven, this will ensure that wave resistance and

other wave-forces are correctly scaled. Froude-scaled parameters utilized for the model

testing can be seen in table 3.1

Table 3.1: Froude-scaled parameters where λ = LF/LM , and ρF and ρM are the fluid
density for the full scale and model scale structure, respectively.

Physical Parameter Unit Multiplication Factor
Length [m] λ
Structural Mass [kg] λ3 · ρF/ρM
Force [N] λ3 · ρF/ρM
Moment [Nm] λ4 · ρF/ρM
Acceleration [m/s2] aF = aM
Time [s]

√
λ

Pressure [Pa=n/m2] λ · ρF/ρM

3.2 The Models

The single-torus and the multi-torus were built in scale 1 : 50 and scaling of all di-

mensions were done according to Froude-scaling. Figure 3.1 shows the two models fully

instrumented in the towing tank. The coordinate system used for the models, is the same

as previously seen in Figure 2.3. The fore of the models are at β = 0o and the aft is at

β = 180o.

The tori are made of corrugated tubes with water-repellent tape wrapped around to

increase the bending stiffness of the tubes and to make them smoother, see Figure 3.2.

The bending stiffness EI of a torus was found by using cantilever beam theory, where

a force Fc was applied at the end of torus-section of length Lc and the resulting deflection

δc was measured. The bending stiffness was then calculated from

EI =
FcL

3
c

3δc
(3.1)

The trusses consists of a rubber core with polyester silk enclosing them. The elongation

relative to the force on the trusses were small and were therefore assumed linear for

simplicity, meaning that they can be modelled as springs with a constant spring stiffness.

The mooring-line spring and truss spring stiffness were found by applying a force F to a
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Figure 3.1: two different models tested, with instrumentation and mooring lines.

Table 3.2: Main parameters of both models and the corresponding full scale structure.

Description Parameter Model scale Full scale
Cross-sectional diameter of tori 2c 32 mm 1.6 m
Torus mass per unit length m 0.257 kg/m 642.5 kg/m
Torus bending stiffness EI 0.8467 Nm2 2.65 ×108

Mooring-line spring stiffness ks 25.9 N/m 64.8 kN/m
Truss spring stiffness kt 45 N/m 112.5 kN/m

spring and a truss and then measuring the resulting elongation x, from which the spring

stiffnesses k were found from

k =
F

x
(3.2)

For both the trusses and the mooring-line springs several measurements were made,

and the average value of the spring-stiffness were used. In Table 3.2 the model and full

scale parameters for both models are shown.
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Figure 3.2: Corrugated tube enclosed by water repellant tape.

Table 3.4: Main dimensions of the model and the full scale structure for the multi-torus
where Torus 1 is the outermost and Torus 5 is the innermost.

Torus Model diameter Full diameter Model weight Full weight
Torus 1 1.020 m 50 m 0.83 kg 103.8 ×103kg
Torus 2 0.825 m 40 m 0.70 kg 87.5 ×103kg
Torus 3 0.620 m 30 m 0.55 kg 68.8 ×103kg
Torus 4 0.423 m 20 m 0.40 kg 50.0 ×103kg
Torus 5 0.228 m 10 m 0.23 kg 28.8 ×103kg

(3.3)

3.2.1 Single-torus Model

The single-torus consists of one ring with dimensions as seen in Table 3.3.

Table 3.3: Main dimensions of the model consisting of a single-torus and the corresponding
full scale structure.

Torus Model diameter Full scale diameter Model weight Full scale weight
single-torus 1 m 50 m 0.83 kg 103.8 ×103kg

3.2.2 Multi-torus Model

The multi-torus model consists of five rings with dimensions as seen in Table 3.4. On each

ring there are eight plastic strips where elastic trusses are tied between the rings, each

truss have a length of 10.2mm and a diameter of 4.0mm. There are 8 trusses between

each ring, and in total there are 32 elastic trusses, and the same amount of strips.
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3.3 Experimental Setup

The experimental setup for both models were the same with an exception for some of the

instruments. Figure 3.3 shows the experimental setup for the multi-torus which includes

the motion-capture cameras.

Figure 3.3: In the left figure the experimental setup is seen from the wave direction. The
mooring-lines and some of the wave probes can be seen, as well as the two motion capture
cameras on the left and right side of the tank. In the right figure the model is seen
towards the wave direction. The accelerometers, the force rings and the cables connecting
the instruments to the work station are visible.

Figure 3.4 illustrates the setup with some of its main dimensions. The towing tank is

25m long, 2.5m wide and 1.2m deep, and the waves are generated by a flap-piston wave

maker that creates waves in the negative x-direction. There is also a damping beach at

the end of the tank to increase the energy dissipation of the waves and make the surface

calm in between tests.
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Figure 3.4: Experimental setup of the multi-torus model. The upper figure shows the top
view, and the lower figure shows the side view.

The models were attached to four mooring-lines symmetrically distributed around the

models at β = 45o, β = 135o, β = 225o and β = 315o. The mooring-lines were subjected

to a pre-tension Tp = 5N to keep the springs from slacking and becoming submerged

when the models moved in the horizontal motion with large waves.

3.3.1 Instrumentation

Different instruments recorded the wave height, flap motion, accelerations, motions and

forces acting on the model. Each of the instruments were calibrated and in total, 130

channels recorded at 200 Hz, creating a large amount of data. In this section a brief

overview over the instruments is presented.

Force rings

Each of the four mooring-lines were equipped with a force ring to measure the forces they

were exposed to, and were thus positioned symmetrically around the models at β = 45o,

β = 135o, β = 225o and β = 315o.
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Wave probes

Nine wave probes were placed around the tank to measure the wave elevation at sites of

interest. Results from wave probe 9 showed a large deviance from the other wave probes

and were thus not included in post-processing.

Cameras

At times, a camera was used to record the motions of the torus and different phenomenons

of interest, such as overtopping.

Accelerometers

The vertical accelerations were measured by eight accelerometers evenly distributed around

a torus with an interval of β = 37.5o, as seen in Figure 2.3. To measure the movements

of each torus the accelerometers had to be re-positioned on the torus of interest. As

the fourth torus and fifth torus, the two innermost, were almost rigid, their vertical ac-

celerations were not measured with accelerometers. However, the accelerations for the

outermost torus, the second torus and the third torus were measured for different wave

series. Two different types of accelerometers were used. Three smaller ones with a weight

of 10g, corresponding to 1.25tons in full scale, and five larger accelerometers with a weight

of 30g corresponding to 3.75tons in full scale. The weight of these accelerometers are large

enough to have had an effect on the motion of models.

Motion capture

By utilizing two motion-capture cameras it was possible to measure the motions of the

multi-torus in the x,y,z-direction (3D), in addition to the error of margin related to that

position. A camera and some of the markers can be seen in Figure 3.5.

The multi-torus was equipped with a total of 24 reflexive markers and the position of

the markers before starting a wave series can be seen in Figure 3.6. The local coordinate

system had to be re-calibrated almost every day. This involved covering all the markers

and using a set of calibration tools familiar to the software. Then, the position of each

marker was registered in the motion capture software before starting the measurements

to make sure that the markers were correctly placed. The flat shape of the multi-torus

confused the software. When the water in the tank was lying still, the markers existed

in the x, y-plane only and this gave the software some trouble registering the correct

positions in 3D. This further increased the need for doing re-calibration, and for every

re-calibration, the positions of the markers and the channel they fed data into, changed. It
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Figure 3.5: The Oqus Camera, used for measuring the x,y,z-position of the 24 motion cap-
ture markers at 200 Hz. Equipment and instruments used to measure movement, force and
acceleration of the model.

therefore became necessary to create a system to organize the markers and the channels

they fed data into. This was done by first plotting the markers original position and

setting up a script that identified their position, and then placed the data in the correct

order.

Figure 3.6: Position of markers before starting the wave-maker. 8 markers were placed on
the outer and second ring, 4 markers were placed on the third ring, and 2 markers were
placed on the fourth and inner ring.
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To be sure that each marker were correctly registered for the duration of each test,

the positions of each marker were plotted over time as well. An extract of plots from one

of the movies created for this purpose can be seen in Figure 3.7. It shows the positions

of the markers during one regular wave period. To be able to differentiate between the

markers, orange lines are added between the markers of the two outermost tori and yellow

lines between the markers where the trusses are located.

Figure 3.7: Marker positions for one regular wave period with T = 12s, H/λ = 1/25.
Orange lines are added between the markers of the two outermost rings to illustrate the
global behavior of the tori. Yellow lines are also added to illustrate the trusses between
the different rings at positions where the markers are.

Compared to the accelerometers, the motion capture markers are very light and can

be placed anywhere without requiring any cables. However, they have to be in view of the

two motion capture cameras at all times or else the data for the marker is lost for that

duration of time. This could happen for large waves that blocked the view, overtopping

that submerged the markers, or other instruments and cables that got in the way as the

multi-torus moves in motion with the waves.

3.4 Wave-series Characteristics

Both regular and irregular waves were used in the experiment, with several different wave

conditions in order to get a broad range of results on the models behavior. Here, a wave-
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series refers to a set of waves generated, where all the variables deciding the shape of the

wave are kept constant for a given amount of waves or time.

3.4.1 Regular waves

Incident waves propagating along the x-axis were used. The wave steepness H/λ and

the wave period T = 2π/ω were varied for each wave series. The wave-series that were

generated can be seen in full-scale in Table 3.5, and the corresponding waves-series in

model-scale can be seen in Appendix C. Both the multi-torus and the single-torus were

tested in regular waves. The length of each test depended on the amount of wave-series

to be tested. Each wave-series consisted of 5 ramp-waves preceding the generation of 60

waves of steady state. Between each wave-series there was a pause of 120 seconds to allow

the water in the tank to become still.

T [s] λ[m] H/λ = 1/60 H/λ = 1/40 H/λ = 1/30 H/λ = 1/20
H [m] H [m] H [m] H [m]

2.0 6.2452 0.1041 0.1561 0.2082 0.3123
2.5 9.7582 0.1626 0.2440 0.3253 0.4879
3.0 14.0518 0.2342 0.3513 0.4684 0.7026
3.5 19.1260 0.3188 0.4782 0.6375 0.9563
4.0 24.9810 0.4163 0.6245 0.8327 1.2490
4.5 31.6165 0.5269 0.7904 1.0539 1.5808
5.0 39.0319 0.6505 0.9758 1.3011 1.9516
5.5 47.2222 0.7870 1.1806 1.5741 2.3611
6.0 56.1672 0.9361 1.4042 1.8722 2.8084
6.5 65.8153 1.0969 1.6454 2.1938 3.2908
7.0 76.0710 1.2679 1.9018 2.5357 3.8036
7.5 86.8002 1.4467 2.1700 2.8933 4.3400
8.0 97.8525 1.6309 2.4463 3.2618 4.8926
8.5 109.0881 1.8181 2.7272 3.6363 5.4544
9.0 120.3954 2.0066 3.0099 4.0132 6.0198
9.5 131.6953 2.1949 3.2924 4.3898 6.5848
10.0 142.9379 2.3823 3.5734 4.7646 7.1469
10.5 154.0946 2.5682 3.8524 5.1365 7.7047
11.0 165.1515 2.7525 4.1288 5.5050 8.2576
11.5 176.1040 2.9351 4.4026 5.8701 8.8052
12.0 186.9532 3.1159 4.6738 6.2318 9.3477
12.5 197.7033 3.2951 4.9426 6.5901 9.8852
13.0 208.3599 3.4727 5.2090 6.9453 10.4180
13.5 218.9295 3.6488 5.4732 7.2976 10.9465
14.0 229.4186 3.8236 5.7355 7.6473 11.4709

Table 3.5: Test conditions for regular waves in full scale.
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3.4.2 Irregular waves

Irregular wave-tests were performed where the peak wave period Tp was kept constant and

the significant wave heights Hs varied for each wave-series. The different test conditions

used for irregular waves can be seen in full scale in Table C.2 and model scale in C.

Table 3.6: Test conditions for irregular waves in full scale.

Tp = 12s Tp = 10s Tp = 9s Tp = 8s
Hs[m] 1.0 2.0 2.0 0.5

2.0 3.0 3.0 1.0
3.0 4.0 4.0 1.5
4.0 - - 2.0
5.0 - - 2.5
6.0 - - 3.0
7.0 - - 3.5
8.0 - - 4.0

3.5 Post-Processing

In total, 43 tests produced usable data and were subsequently post-processed. Each

test consisted of a different setup and varying wave-conditions. For regular waves, the

wave-series came in intervals of 60 waves at a time, of which data from twenty waves in

steady-state were extracted and passed through a band-pass filter that transformed the

time-dependent data to frequency-dependent by the use of FFT . The time interval for

the twenty waves in steady state were utilized to extract the corresponding data from all

the instruments measuring the response as well, thus acquiring the input and the following

response. The accelerometers measured the accelerations of the models during testing.

These accelerations were integrated to acquire the positions of the models. Modal analysis

was used on all data acquired from the accelerometers and the motion capture system.

The upper figure in Figure 3.8 illustrates the raw data of wave elevation measured by

wave probes for a full test and the extraction of one wave series, the lower figure shows

the subsequent selection of twenty filtered waves in steady-state that was used.
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Figure 3.8: In the top figure the raw data from one wave series is extracted from all the wave
series. In the figure below, the extracted wave series is shown from which twenty waves in the
steady-state are extracted again and filtered.

A similar process was performed for the irregular waves, the difference being that there

was no steady-state to be reached so raw data was selected and cut manually before being

filtered through spectral analysis.
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3.6 Error Sources

There were several potential sources of error during the testing that might have affected

the final results. The largest and most probable error sources are presented in this section.

The models were close to circular and symmetric, but not perfectly so, producing a

potentially small error source. This imperfection was also increased due to the mooring-

lines pulling the outer torus in four directions. The size and relative size of the different

tori also varied slightly, which can give rise to slight deviations between the theoretical

and experiemental results. The simplistic approach to finding the bending stiffness of the

tori using the cantilever beam theory did not give the exact bending stiffness, but a close

approximation.

The mooring-lines, accelerometers and motion capture markers were not perfectly

symmetrically positioned, and there is a possibility that there were small variations in the

pre-tension of the springs. The cables connecting the instruments to the computer might

have affected the motions of the tori slightly. Temperature variations in the water affects

the waves and the measurements of the instruments. The instruments are also prone

to drift slightly over time, producing different measurements during a test, and between

different tests. The motion capture system is not as reliable as the accelerometers as

there are several factors that can disturb the measurements, and the distance between the

cameras and the motion capture markers might affect the precision of the measurements

for smaller motions. The wave probes were not reliable over time and had to be tested

and calibrated to make sure that the deviating measurements were not too large.

The wave maker generates waves that deviate slightly from the input-settings, pro-

ducing slightly smaller waves. The waves also dissipate slightly on their way from the

wave flap to the model, which is particularly true for smaller waves. This can mainly be

attributed to wave-reflections of the tank-walls. In addition, the waves with smaller wave

steepness have a tendency to be unstable and collapse slightly, creating lower wave ampli-

tudes. The waiting time between the tests, and the usage of a damping beach allowed the

water surface to calm before starting each test. However, the water surface never became

completely still between tests with waves radiating off the tank-walls, and thus affecting

the induced waves. There were water leakage on the sides of the wave flap, and water

was pumped into the tank at regular intervals. This means there were small variations in

water depth in the tank during the tests.
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Chapter 4

Results and Discussion - Regular

Waves

This chapter presents the results acquired from tests of a single-torus and the multi-

torus in regular waves, which are in turn compared to the existing theory for the vertical

response presented in Chapter 2 and explained in Appendix A. Results from different

wave-steepnesses are included, where most of the results in this chapter comes from tests

with wave steepness H/λ = 1/60. In Appendix D, the RAO-results from H/λ = 1/30 are

included. Data for tests with other wave steepnesses that show interesting phenomenon are

also presented. All the measurements plotted against the non-dimensional wave number

kR, where the torus outer radius R = 0.51 for all plots.

4.1 Wave Height

Experimental wave height measured by wave probe 1 are presented for different steepness.

Figure 4.1, gives an impression of how the wave elevation varies with kR for the different

wave steepnesses and shows how the wave elevation has a substantial increase for kR < 11,

corresponding to T > 3s in full scale, for all steepnesses. As there is a considerable

distance between the wave maker and wave probe 1 and even longer to the model, the

smaller waves, especially for T < 3s, are expected to dissipate slightly.

In Figure 4.2, the theoretical wave amplitudes are compared with the amplitude mea-

sured by wave probe 1. The input to the wave maker should have created waves with wave

steepnesses H/λ = 1/60 and H/λ = 1/30, instead the resulting measured wave ampli-

tudes closely resembled the wave amplitudes expected for H/λ = 1/65 and H/λ = 1/32,

respectively.

33
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Figure 4.1: Measured wave amplitude in model scale for regular waves as measured by
wave probe 1 for wave steepness H/λ = 1/70 to H/λ = 1/20. The wave elevations are
plotted against the frequency dependent non-dimensional wave number kR.
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Figure 4.2: Measured wave amplitude in model scale for regular waves with input wave
steepness H/λ = 1/60 and H/λ = 1/30, plotted together with its corresponding theoreti-
cal wave amplitude and the theoretical wave amplitude for H/λ = 1/65 and H/λ = 1/41.
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This indicates that the waves used during the study were smaller than they were

supposed to be. For simplicity and to avoid confusion, the waves are still referred to by

the wave steepness input, and not by the actual wave steepness measured.

The effect on the waves by the multi-torus can be seen in Figure 4.3, which shows the

wave height measured by wave probe 3 and 8 for steepness H/λ = 1/60 and H/λ = 1/30.

Wave probe 3 is situated in front of the multi-torus and wave probe 8 right behind it, thus

the effect of the multi-torus on the wave height can be compared. Interaction between

wave height and multi-torus is most visible between kR = 10 and kR = 2, where the wave

amplitude is reduced for the most part, except at kR ≈ 4.2. A peak can be seen there,

and the wave amplitude at wave probe 8 exceeds the wave amplitude at wave probe 3

for both steepnesses, indicating non-linear effects that increases the wave height in this

frequency range.
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Figure 4.3: Measured wave amplitude in model scale with wave steepness H/λ = 1/60
and H/λ = 1/30 for wave probe 3 and 8, where wave probe 3 is situated in front of the
multi-torus and wave probe 8 is situated behind the multi-torus.
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4.2 Time Series Examples

Figure 4.4 shows an example from a time-series with kR = 1.0061, corresponding to

T = 10s in full scale, of the measured accelerations and the corresponding vertical position

of the accelerometer at β = 180o plotted against the non-dimensional time t/T .
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Figure 4.4: Both figures show time-series examples of experimental results from a wave
series with H/λ = 1/60 and H/λ = 1/20 at kR = 1.0061. Upper figure shows the non-
dimensional acceleration ẅ at β = 180o. Lower figure shows a time-series example of the
non-dimensional motion w of the accelerometer at β = 180 relative to the incident wave
ζa.
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The accelerations seen in the top figure are made non-dimensional by the acceleration

of gravity g, and are not particularly sinusoidal. The vertical motion seen in the lower

figure are made non-dimensional by the incident wave amplitude ζa and are much more

harmonic.
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Figure 4.5: Multi-torus: Both figures show time-series examples of experimental results
from a wave series with H/λ = 1/60 and H/λ = 1/20 with kR = 0.5133. Upper figure
shows the non-dimensional acceleration ẅ at β = 180o. Lower figure shows a time-series
example of the non-dimensional motion w of the accelerometer at β = 180o relative to
the incident wave ζa.

The vertical motion is lower relative to the wave height for H/λ = 1/20 in the positive

direction, but approximates the vertical motion for H/λ = 1/60 in the negative direction-
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This means that the negative vertical motion of the multi-torus is larger than the wave

amplitude for both steepnesses, and that there is a possibility of submergence.

Another example of a time-series with kR = 0.5133, corresponding to T = 14s in full

scale, is included in Figure 4.5. The vertical motion in the negative direction is much

larger here for H/λ = 1/20, strongly suggesting overtopping and submergence. More

time-series are included in Appendix F, and are meant to demonstrate how the motion of

the multi-torus relative to the wave amplitude varies for different wave conditions.

4.3 Vertical Response Amplitude Operators

The wave-induced vertical response of the models was measured by accelerometers. In

addition, the multi-torus was also equipped with motion capture markers for some of the

tests, thus it was possible to measure the movements of the multi-torus in the x, y, z-

direction. In this section the results based on the vertical motion in the z-direction are

presented.

4.3.1 Single-Torus RAO

Figure 4.6 shows the numerical RAO of the Linear-Slender Body theory (LST) and the

Zero-Frequency theory (ZFT), compared to the experimental RAO for a single-torus in

heave, pitch, first flexible mode and second flexible mode in a wave steepness ofH/ = 1/60.

For lower frequencies there are good agreement between the theoretical predictions and

the experimental results. As ω → 0 for ZFT, the predictions deviate and for higher

frequencies ZFT fails to predict the motion of a single-torus. Between the LST and the

experimental results there are still agreement, even for higher frequencies, although they

are not completely in phase. The torus carried eight accelerometers, which are not enough

points to predict second flexible mode, n = 3, and are thus expected to deviate slightly

from numerical predictions, which is also evident in the figure.

4.3.2 Multi-torus

Figure 4.7 shows the numerical RAO of the LST compared to the experimental RAO

measured by the accelerometers and the motion capture markers for the outer torus of

the multi-torus in heave, pitch, first flexible mode and second flexible mode in a wave-

steepness of H/λ = 1/60.

In heave, there are good agreement between the numerical and the two experimental

RAOs for kR < 2.5, but for higher kR the deviation in the results increases. The experi-

mental RAO are seen to have less motion relative to the waves for smaller wave periods,
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Figure 4.6: Numerical RAO for the Linear-Slender Body theory and the Zero-Frequency theory
compared to the experimental RAO for the single-torus, in heave, pitch, first flexible mode and
second flexible mode for wave steepness H/λ = 1/60.

and the peaks are also out of phase compared to the RAO for a single-torus. This is

expected as the outer torus is attached to the other rings by trusses, which for waves with

lower energy will have a stronger effect on the relative motion between the different tori.

The results from the accelerometer and the motion capture markers also deviate slightly,

where the accelerometers have a tendency of predicting a higher RAO than the motion-

capture camera does. This is especially true for smaller waves where the movement in

x, y, z-direction is very small, indicating that the precision of the motion capture camera

is somewhat dependent on how large the movement of the motion capture markers are.

The results from the three other modes deviate even more from the numerical RAO. The

experimental RAO in second flexible mode is expected to be to deviate from the theoret-
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Figure 4.7: Numerical RAO for the Linear-Slender Body theory compared to the experimental
RAO results for the multi-torus using accelerometers and motion capture markers, in heave,
pitch, first flexible mode and second flexible mode for wave steepness H/λ = 1/60.

ical prediction, as the accelelerations were only measured at eight different points on the

torus, when more points are needed in order to be correctly predicted.

The experimental RAO in heave and pitch for the three outermost tori in wave steep-

ness H/λ = 1/60 are compared with the LST for a single-torus in Figure 4.8, and in first

flexible mode and second flexible mode in Figure 4.9. There seems to be more agreement

between the numerical and experimental RAO for the outermost torus, ring 1, with a

slight increase in deviation for the second torus, ring 2, and with a larger increase for the

third torus, ring 3.
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Figure 4.8: Numerical RAO for the Linear-Slender Body theory compared to the exper-
imental RAO results using motion capture markers for ring 1, 2, 3 , in heave and pitch
for wave steepness H/λ = 1/60.
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Figure 4.9: Numerical RAO for the Linear-Slender Body theory compared to the experi-
mental RAO results using motion capture markers for ring 1, 2, 3 , in first flexible mode
and second flexible mode for wave steepness H/λ = 1/60.

In Figure 4.10, the experimental and numerical RAO in heave and pitch are plotted

for wave steepness H/λ = 1/60 for the two innermost tori are shown. There is very little

motion of the tori relative to the waves. The difference in the abilities of the different tori

to be predicted by LST can be attributed to at least four things; 1) That the truss-forces

keep the tori in place, and that the interaction effects are larger for tori connected on

both sides creating less motion relative to the wave. 2) That a decrease in circumferential
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size of the rings will increase their stiffness and thereforer their ability to move in motion

with the waves. 3) That the smaller mass and added mass of the smaller tori means they

are less able to resist the motions of the larger tori. 4) That the outer tori possibly shields

the inner ones from some the wave forces.
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Figure 4.10: Numerical RAO for the Linear-Slender Body theory compared to the exper-
imental RAO results using motion capture markers for ring 4 and 5, in heave and pitch
for wave steepness H/λ = 1/60.
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4.4 Horizontal Response Amplitude Operator

Using motion capture markers it was possible to measure the movements of the multi-

torus in the x, y, z-direction. This made it possible to calculate the RAO in the horizontal

plane. In this section the results based on the motion in the x-direction is presented.
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Figure 4.11: Experimental RAO-results using motion capture markers for ring 1, 2, 3, 4
and 5 in surge for wave steepness H/λ = 1/60. Upper figure provides the whole plot,
whilst the lower figure gives a close-up on the frequency range where the motions of the
tori diverge.
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4.4.1 Surge

The experimental RAO in surge are found by taking the mean position in the x−direction
of the markers on each torus and dividing them by the wave amplitude ζa. Figure 4.11

compares the RAO of the multi-torus in surge for all the tori in wave steepness H/λ =

1/60. The upper figure presents the response for all kR, while the lower figure gives a

close-up on a frequency of interest. There is clear indication of resonant behavior between

the natural frequency of the multi-torus and the wave frequency at kR ≈ 2. There seems

to be a larger relative motion for torus 3, 4 and 5, than for torus 1 and 2 in the range

kR = 3 − 7, where the outermost torus have the smallest relative motion and the inner

torus have the largest relative motion. This can possibly be attributed to the outer tori

amplifying the motions relative to the waves of the inner tori by the pull of the elastic

trusses.

4.4.2 Ovalizations

Utilizing modal theory on the x-position of the motion capture markers yields the oval-

ization of the tori in the horizontal plane. Figure 4.12 shows the experimental ovalization

as RAO for n = 2 for ring 1, 2 and 3 in the left figure and n = 3 for ring 1 and 2 in the

right figure.

4.5 Harmonic Accelerations

In order to compare the magnitudes of the harmonic accelerations, this section presents

the mean values of the steady-state amplitude of the non-dimensional first and second

harmonic accelerations ẅ(ω)/g plotted against the non-dimensional wave number kR. The

measurements of the accelerations are done on the outermost torus of the multi-torus for

different wave steepnesses. In this section only results from accelerometers placed on

β = 0o and β = 180o are shown, results from the rest of the accelerometers are included

in Appendix G.

4.5.1 First Harmonic Acceleration

Figure 4.13 shows the first harmonic accelerations for β = 0o and β = 180o on the single-

torus and the multi-torus for varying wave steepnesses. The first harmonic accelerations

increases for higher wave steepnesses, and there seems to be a higher relative increase

of accelerations at β = 180o compared to at β = 0o for both models, especially for
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wave steepness H/λ = 1/20. The multi-torus seems to be subjected to slightly larger

accelerations than the single-torus.
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Figure 4.12: Horizontal ovalization RAO of multi-tori for ring 1, 2 and 3 when n = 2 in
the left figure, and for ring 1 and 2 when n = 3 in the right figure. Wave steepness is
H/λ = 1/60.
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Figure 4.13: Experimental first harmonic accelerations for β = 0o and β = 180o at steepness
H/λ = 1/70, H/λ = 1/60, H/λ = 1/50, H/λ = 1/40, H/λ = 1/30, H/λ = 1/20. The two
uppermost figures show the results from the single-torus, and the two figures below show the
results from the outermost ring of the multi-torus.
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4.5.2 Second Harmonic Acceleration

Figure 4.14 shows the second harmonic accelerations for β = 0o and β = 180o on the

single-torus and the multi-torus for varying wave steepnesses. The peaks at kR ≈ 1

are much larger for the accelerometers at β = 180o, and the multi-torus have a peak at

kR ≈ 3.
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Figure 4.14: Experimental first harmonic accelerations for β = 0o and β = 180o at steepness
H/λ = 1/70, H/λ = 1/60, H/λ = 1/50, H/λ = 1/40, H/λ = 1/30, H/λ = 1/20. The two
uppermost figures show the results from the single-torus, and the two figures below show the
results from the outermost ring of the multi-torus.
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4.6 Mooring-line Forces

Figure 4.15 shows the difference F = F0o + F315o − F225o − F135o between the non-

dimensional mooring-line tension in the fore and aft of the single-torus and the multi-

torus, where F0o and F315o are tensions in the fore, and F225o and F135o are tensions in

the aft. This is thus the total force contribution on the models. The mooring-line tension

forces F are each made non-dimensional by mg, where m is the total mass of the model.

The relative forces acting on the single-torus are larger than those acting on the multi-

torus for both steepnesses. It is possible that this is due to the larger added mass of the

multi-torus absorbing some of the wave forces.
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Figure 4.15: Experimental mooring-line force difference between fore and aft of acting on
the mooring lines of the model for different wave steepnesses H/λ = 1/70, H/λ = 1/60,
H/λ = 1/50, H/λ = 1/40, H/λ = 1/30 and H/λ = 1/20

Figure 4.16 shows how the variations in the wave steepnesses increases the total

mooring-line forces by a large amount for kR < 3, which is expected as the wave forces

causes the mooring-line tensions in the fore as the multi-torus is forced backwards with

the wave, and the mooring-line tensions in the aft are caused by the restoring forces in

the springs as the multi-torus moves to its original position.
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Figure 4.16: Experimental mooring-line force difference between fore and aft of acting on
the mooring lines of the model for different wave steepnesses H/λ = 1/70, H/λ = 1/60,
H/λ = 1/50, H/λ = 1/40, H/λ = 1/30 and H/λ = 1/20

4.7 Overtopping in Regular Waves

Overtopping occured for wave periods T ≥ 10s with wave steepness H/λ ≥ 1/40. For

even higher wave steepness, H/λ = 20, there was some overtopping occuring for T ≥ 6s,

and for H/λ = 1/10 there was overtopping even for T = 4.5s. There was a clear tendency

for the aft of the multi-torus to be subjected to overtopping for high wave periods with

small wave steepness, this can be seen in Figure 4.17 where the wave is flowing over the

two rings in the aft.

A time-series plot of a wave-series with T = 14s and H/λ = 1/40 is presented in

Figure 4.18. The motion of the aft, β = 180o, of the multi-torus is slightly lower than the

waves in steady state, which possibly correlates with the observed overtopping. It is also
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Figure 4.17: Model seen from the aft in regular waves with T = 14s and H/λ = 1/40.
Barely visible overtopping occurs at the aft of the two outermost rings.

interesting to note that there was no observed overtopping for this wave-series at the fore,

β = 0o, and the measured relative motion of the multi-torus is higher than the steady

state waves.

Overtopping during waves with high wave steepness and low wave period showed a

clear tendency of overtopping occuring first at the front of the outermost ring. This is

the case for the wave-series with T = 4.5s and H/λ = 1/10, seen in Figure 4.19, where

overtopping only occured at the front. In Figure 4.20, a wave-series with T = 5s and

H/λ = 1/10 is shown. Here, wave overtopping occurs first at the front, then gradually it

moves with the wave backwards. It is also possible to see how the water rises very high in

the innermost ring for both these wave-series, but there are no sign of any strong sloshing

there, neither between any of the rings.

Figure 4.21 shows the time-series plots of the vertical motion for the wave-series cor-

responding to Figure 4.20 and Figure 4.19. The vertical motion of the fore of the torus

is lower than the wave amplitude for both wave periods, this suggests that the vertical

motion relative to the wave amplitude is somewhat dependent on the wave steepness, and

that by evaluating such a time-series one can get a pointer to whether or not there is a

probability of overtopping happening. This is not certain however, and should possibly

be further looked into. Appendix F shows multiple time-series. The correlation with

overtopping is slightly ambigous.

An example of full structural overtopping is included in Figure 4.22. With H/λ = 1/10

and T = 8s, this corresponds to a significant wave height Hs = 9.8, which is much higher

than this structure is supposed to withstand.
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Figure 4.18: Both figures show time-series examples of experimental results from a wave
series with H/λ = 1/40 at kR = 0.5133, i.e. T = 14s. Upper figure shows the non-
dimensional acceleration ẅ at β = 180o and β = 0o. Lower figure shows a time-series
example of the non-dimensional motion w of the accelerometer at β = 180 and β = 0o

relative to the incident wave ζa.
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Figure 4.19: Model seen from the front in regular waves with T = 4.5s and H/λ = 1/10.
Overtopping occurs at the front only.

Figure 4.20: Model seen from the front in regular waves with T = 5s and H/λ = 1/10.
Overtopping occurs over the whole outer torus.
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Figure 4.21: Time-series examples of the experimental non-dimensional motion w of the
accelerometer at β = 0o relative to the incident wave ζa, acquired from a wave series with
H/λ = 1/10 at kR = 4.968 and kR = 4.0244, corresponding to T = 4.5s and T = 5s
respectively.

Figure 4.22: Model seen from the fore in regular waves with T = 8 and H/λ = 1/10.
Overtopping occurs over the whole structure and it becomes partly submerged.



Chapter 5

Results and Discussion - Irregular

Waves

In this chapter the results from the tests on the multi-torus in irregular waves are pre-

sented. The variables that have been varied during the tests are the peak wave period Tp

and the significant wave height Hs, which are always referred to in the full-scale size. The

results are presented as power spectral densities S(ω) plotted against the angular wave

frequency ω. For results plotted against the non-dimensional wavenumber kR, the torus

outer radius is R = 0.51. In Appendix E more results from the irregular wave tests are

included.

5.1 Input Spectrum

The wave heights of the irregular waves generated were measured by the wave probes and

the input spectrum thus refers to the power spectral density of the irregular waves over a

time span.

5.1.1 Wave Spectrum

In Figure 5.1, the figure to the left shows the power spectral density of the irregular wave

height measured by wave probe 1 for the largest Hs for each Tp tested, and the figure to the

right shows the power spectral density of irregular waves with Tp = 10s with varying Hs.

The results are plotted together with the corresponding JONSWAP spectrums. There is

a noticeable difference between the experimental results and the JONSWAP spectrums

for larger significant wave heights, which is much less profound for irregular waves with

smaller significant wave height. This indicates that larger waves are harder to sustain in

55
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the small towing tank, possibly because of waves breaking and viscous effects due to tank

wall effects.
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Figure 5.1: Figure to the left shows the experimental power spectral density for wave heights
with peak wave period Tp = 8, 9, 10, 12s and Hs = 5m compared to the JONSWAP spectrum.
Figure to the right shows the experimental power spectral density peak wave period Tp = 10s
and Hs = 2, 3, 4, 5m with corresponding JONSWAP spectrum.

Figure 5.2 shows the power spectral density of the different wave probes in irregular

waves with Tp = 10s and Hs = 5m. For wave probe 3 and 5 the peaks are slightly lower,

indicating that these two probes have not measured the correct wave height during the

irregular wave tests.

5.1.2 Measured Significant Wave Height

For the different irregular wave series the input significant wave height Hsi is increased

linearly for each peak wave period. It is of interest to know if the measured significant

wave height Hs increases linearly as well, and if it follows the linearity of the input Hsi.

The relation between the two is illustrated in Figure 5.3. The input Hsi is compared to

the measured Hs in the left figure, where Hs from the irregular waves is found by taking

the standard deviation σ of the measured wave height and multiplying it by four. How

much Hs deviates from Hsi is then presented in right figure. It is seen that the measured

Hs is close to increasing linearly, but it deviates from Hsi in the range of 1.09 − 1.125 .

This means that the measured irregular significant wave height is 9 − 12.5% larger than

the input significant wave height, and does not increase linearly.
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Figure 5.2: Power spectral density of irregular wave elevation measurements with Tp = 10s
and Hs = 5m for different wave probes.
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Figure 5.3: In the left figure the input Hsi is compared to the measured Hs. In the right figure
the ratio of deviation between Hs and Hsi is compared to the case of full linearity for increase
of significant wave height. The data is collected during a a wave series with Tp = 12s and
Hs = 1, 2, 3, 4, 5, 6, 7, 8, 9m in full scale.
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5.2 Response Spectrum

This section presents the spectral analysis of the response of the model to the input

irregular waves.

5.2.1 Motion Spectrum

In Figure 5.4, the figure to the right shows the spectral densities of the z-positions of

different motion capture markers during in an irregular wave field with Tp = 10s and

Hs = 8m. In the picture to the left the z-position of the markers on the outer ring

of the multi-torus are shown. The results seems to indicate similarity of motion for

markers positioned at symmetrically the same position relative to the incoming waves.

At β = 0o and β = 180o the multi-torus is expected to be subjected to the largest amount

of motion, and as seen in the figure the markers at these positions have the highest peaks.

The markers at β = 90o and β = 270o are expected to be subjected to the least amount

of motion due to their location on the sides, which is also found in the figure as they

have the lowest peaks. The figure to the left shows the spectral densities of the motion

capture markers positioned at β = 180o for each tori. The inner torus, ring 5, have the

smallest peak. Ring 2 has the highest peak, which is 17% higher than the inner torus.

The outermost torus, ring 1, only have the third highest peak.
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Figure 5.4: Figure to the left shows the spectral densities of the z-position of different motion
capture markers in irregular waves with Tp = 10s and Hs = 8m. The figure to the right shows
the spectral densities of the z-position of motion capture markers placed at β = 180o for all the
tori on the multi-torus in the same irregular wave-series.
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5.2.2 RAO in Irregular Waves

The RAO measured by the accelerometers and the motion capture markers are shown

in Figure 5.5. There seems to be some deviation between the measurements for higher

significant wave height Hs = 2m as seen in the figure to the right, which is in contrast

to the results for the lower significant wave height Hs = 2m shown in the right figure.

This is the opposite observation as made in Chapter 4 for regular waves, where the

motion capture camera seemed to have a difficulty observing the smaller movements of

the markers created by smaller waves.
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Figure 5.5: Experimental RAO results in heave for irregular waves for accelerometers and
motion capture with peak wave period Tp = 10s. In the figure to the left Hs = 2m and in the
figure to the right Hs = 5m.

In Figure 5.6 the experimental RAO in irregular waves are compared to the experi-

mental RAO in regular waves using accelerometers in heave, pitch, first flexible mode and

second flexible mode. The wave-series for irregular waves had a Tp = 9 and a Hs = 4m,

and the wave-series for regular waves had a T = 9s and H/λ = 1/40, corresponding

to Hs = 4.21m. The responses are somewhat in agreement, but the highs and lows of

the RAO in irregular waves are reduced compared to the regular waves. The smoothing

parameters used when analyzing the irregular wave tests are probably the main reason

for this. However, it might be slightly related to the different frequencies of the irregu-

lar waves and the different natural frequencies of the different sized tori cancelling each

other out and amplifying each other since the tori can interact through the elastic trusses,

creating a motion closer to the mean without the more peaked highs and lows as seen in

regular waves.
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Figure 5.6: Experimental RAO in irregular waves compared to the experimental RAO in regular
waves for the multi-torus using accelerometers in heave, pitch, first flexible mode and second
flexible mode. Peak wave period Tp = 9 and Hs = 4m for irregular waves. Wave period T = 9s,
Hs = 4.21m and wave steepness H/λ = 1/40 for regular waves.

Figure 5.7 shows how the RAO looks with a lower smoothing parameter in irregular

waves with Tp = 10s and Hs = 5m. The RAO is close to zero at kR ≈ 2.6 in heave

and kR ≈ 4 in pitch. This indicates that the smoothing parameter has a large effect on

the RAO-plots. In this study, it is the relative RAO-difference in different irregular wave

conditions that have been the focus. Thus, smoother RAO-plots are preferred as these

are easier to use for comparisons between plots.
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Figure 5.7: Unsmoothed experimental RAO results in heave, pitch, first flexible and second
flexible mode measured with motion capture system in irregular waves with peak wave period
Tp = 10s and Hs = 2, 3, 4, 5m.

Figure 5.8 presents the RAO in the different modes for Tp = 10s with Hs = 2m,

Hs = 3m, Hs = 4m and Hs = 5m, measured by the motion capture camera. The

difference between the different significant wave heights are largest for smaller kR and for

kR ≈ 4.8, where the peak is slightly higher for Hs = 2m and Hs = 3m.
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Figure 5.8: Experimental RAO results in heave, pitch, first flexible and second flexible mode
measured with motion capture system in irregular waves with peak wave period Tp = 10s and
Hs = 2, 3, 4, 5m.

The RAO in irregular waves for the different tori are compared in Figure 5.9. The

heave and pitch RAO of the two inner tori, ring 4 and ring 5, have very small peaks for

kR ≈ 5 compared to the other tori. The RAO in heave for Ring 3 also seems to be slightly

reduced around this wavenumber. Ring 3, 4 and 5 have less motion capture markers than

ring 1 and 2, which might explain this, but most likely this is an indication of how the

motions of the inner tori are determined by motions of the outer tori through the elastic

trusses for reasons previously mentioned in Chapter 4.
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Figure 5.9: Experimental RAO results in heave, pitch, first and second flexible mode in using
motion capture markers on ring 1, 2, 3, 4 and 5, in irregular waves with Tp = 10s and Hs = 5m
.

5.2.3 Force Spectrum

The power spectral density of the forces measured at the mooring-lines fixed at β = 135o,

β = 225o and β = 315o on the multi-torus are given in Figure 5.10, 5.11 and 5.12,

respectively. The force spectrum are given for irregular waves with Tp = 12s and Hs =

1, 2, 3, 4, 5, 6, 7, 8m. The relative force in the fore and aft of the structure can then be

seen. The mooring-line located at β = 45o is not included as its force ring was defect

during the irregular tests. However, if symmetry in the force-distribution is assumed, the

mooring-lines in the fore is exposed to much larger forces than the aft, creating a large

total force, as was seen in the regular wave tests.
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Figure 5.10: Power spectral density of forces in the mooring-line at β = 135o in irregular
waves with Tp = 12s and Hs = 1, 2, 3, 4, 5, 6, 7, 8m
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Figure 5.11: Power spectral density of forces in the mooring-line at β = 225o in irregular
waves with Tp = 12s and Hs = 1, 2, 3, 4, 5, 6, 7, 8m



CHAPTER 5. RESULTS AND DISCUSSION - IRREGULAR WAVES 65

0 5 10 15 20
0

0.5

1

1.5

2

S
xx

(
) 

[m
2
s]

Irregular Force =315° Tp = 1/12s, Hs = 1-8m

Hs = 1m
Hs = 2m
Hs = 3m
Hs = 4m
Hs = 5m
Hs = 6m
Hs = 7m
Hs = 8m

Figure 5.12: Power spectral density of forces in the mooring-line at β = 315o in irregular
waves with Tp = 12s and Hs = 1, 2, 3, 4, 5, 6, 7, 8m

5.3 Overtopping in Irregular Waves

Overtopping in irregular waves occured at random locations on the multi-torus, with a

tendency of occuring more often at the fore of the structure and on the two outer tori.

However, it did not follow the pattern observed for regular waves, where there was a clear

tendency for where overtopping would occur. Overtopping was registered at relatively low

peak wave periods and significant wave heights compared to regular waves, in Figure 5.13

it is shown how overtopping occurs at several different locations in waves with Tp = 9s

and Hs = 3m, corresponding to H/λ ≈ 1/43. Overtopping occured for even lower peak

wave periods and significant wave heights as well, but no systematic study on this was

performed.
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Figure 5.13: Overtopping occuring randomly on the multi-torus in irregular waves with
Tp = 9s and Hs = 3m

Figure 5.14 shows how overtopping occurs for Tp = 9s and Hs = 5m from an angle

where a wave can be seen flowing over the side of the fore of the outer torus.

Figure 5.14: Overtopping waves seen flowing over the fore of the multi-torus in irregular
waves with Tp = 9s Hs = 5m



Chapter 6

Conclusion and Further Work

6.1 Summary of results

The RAO calculation based on the low-frequency slender-body theory and zero-frequency

are in good agreement with the experimental RAO for the first three modes; heave, pitch

and 1. flexible mode, for a single-torus for longer wave periods, i.e. with kR < 10. The

fourth mode deviates the most, caused by the limited amount of eight measurement-points

on the torus. The experimental RAO from the multi-torus also approximates the low-

frequency slender-body theory for very long wave periods, i.e. kR < 3.5, when considering

the first three modes. Comparing the different tori with the low-frequency theory, it was

seen that the outer torus, ring 1, had the closest approximation to this theory, and that

this agreement gradually decreased for the tori when moving towards the innermost torus,

that thus had the least amount of agreement. This is most likely caused by the trusses

between the tori, pulling the tori in different directions, slightly reducing their relative

motion to the wave. The smaller tori are more vulnerable to this due to their lower mass

and position between larger tori. The experimental RAO in surge showed that the relative

motions of the smaller tori were larger than that of the two largest tori for kR ≈ 5.8.

The first harmonic accelerations were smaller for the multi-torus than the single-torus

for lower wave periods, kR > 4. For 2 ≤ kR ≤ 3, the accelerations of the multi-torus

were slightly larger. There was some tendency for both models to have a higher first

harmonic acceleration at the aft than at the fore. The second harmonic accelelerations

exhibited the same tendencies as the first harmonic accelerations, where accelerations for

the multi-torus have peaks between 2 ≤ kR ≤ 3.

The total mooring-line tension force in both regular and irregular increased for larger

waves, and as expected, the force in the fore of the multi-tori was much larger than at

the aft.

67
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The instrumentation that was used to measure the vertical and horizontal response

produced results that deviated slightly from one another. Accelerometers had more precise

measurements for smaller waves than the motion capture system in regular waves, were

more reliable, and easier to calibrate and use. However, the accelerometers weighed more

than the motion capture markers, needed to be attached to cables and are much more

expensive to acquire. Once the motion capture cameras are in place, any number of

motion capture markers can be added at relatively low cost, and they are able to measure

the motion in any direction, not just in one direction, like the accelerometers. The loss

of data when a motion capture marker is submerged can also possibly be used to register

the occurrence of overtopping.

Overtopping in regular waves occurred predominantly at the aft of the outermost tori

for longer wave periods with relatively low wave steepness, and at the fore for high wave

steepnesses and shorter wave periods. Time-series plot with the motions of the outer torus

relative to the wave amplitude can possibly be used to predict overtopping, however not

decisively. If the motions of the torus is smaller than the wave-amplitude in the positive

z-direction, or if the motions of torus is larger than the wave-amplitude in the negative

z-direction, this will indicate a chance for overtopping. There were no measurements on

the forces in the overtopping waves. These forces is of high interest as they will be a

determining factor when considering whether the forces are of such magnititude that they

can threaten the integrity of the structure, and what counter-measures to overtopping

can be considered. If the force are deemed small, overtopping on the sides can perhaps be

avoided by encircling the structure with a water-stopping fence. If the forces are deemed

large, it will perhaps be necessary to consider locating the structure at sites with calmer

sea-conditions, or improving the structure somehow.

The experimental RAO in irregular waves deviated slightly from the RAO in regular

waves, mainly by having smaller peaks and lows. This was attributed to the interactions

between the tori due to the trusses and to the smoothing parameter ued when calculating

the input and output spectrums. The RAOs were in good agreement for different signifi-

cant wave heights for longer waves, with smaller variations for shorter waves. The RAO

of the smaller tori showed that they had larger relative motions for shorter wave periods

in heave, but smaller motions in pitch.

The RAO of the multi-torus showed satisfactory response relative to the waves. In

both regular and irregular waves the multi-torus are able to move with the waves without

exhibiting too many nonlinear effects.
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6.2 Conclusion

The hydroelastic response of a semi-submerged multi-torus in different wave conditions

have been investigated. Development of a floating solar island requires a platform capa-

ble of withstanding large wave motions, preferably by being sufficiently elastic to move

in motion with the waves to minimize the wave-forces acting on the platform, and at the

same time sufficiently rigid to carry the required weight and withstand the wave-forces.

An elastic multi-torus have the desired properties to solve that problem, with the main

concern being overtopping. No complete systematic study on overtopping was performed

in regular and irregular waves, which registered every wave period, wave steepness and

significant wave height overtopping occured in. However, there seemed to be little over-

topping occuring within sea-conditions that the multi-torus can be expected to be located

in. Slamming was not observed.

The elasticity of the tori and the trusses are decisive variables for the response of the

structure, and thus far only one set of variables have been investigated. The results are

also limited by not placing a deck on top of the multi-torus, which most likely will have

a great effect on the response as well. However, this study on a more basic structure will

hopefully alleviate any further work on developing a large floating solar island capable of

operating in conditions offshore. The results from the multi-torus shows potential, but

more work and research are needed to secure an additional steady supply of renewable

energy from floating solar islands.

6.3 Recommendations for further work

There are a multitude of different aspects of the multi-torus that needs to be investigated

to further develop a floating solar island based on the current design. Deriving a theo-

retical model of the multi-torus, possibly by expanding the low-frequency slender-body

theory to include elastic trusses, is of great interest. A first step in that direction would

be to build and test a numerical model of the multi-torus in a program based on the lin-

ear and second-order potential theory, such as WAMIT. The complexity of the structure

and its motion in incident waves are difficult to recreate numerically. Modelling five tori

where each have twenty flexible modes will result in a total of 205 modes when they are

connected. A more comprehensive theoretical study on the trusses should be considered

as well.

Further experimental studies where a deck is included are necessary. A flexible deck

is the preferred option as this will not inhibit the flexible motion of the multi-torus.

Most solar panels existing today are rigid, and placing rigid solar panels on a flexible
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deck will lead to certain complications. These might be overcome either by ingenious

design, or by using flexible printed solar panels that are relatively new to the market. A

large step in the right direction would also be to build a prototype of the floating solar

island, and test it in the ocean. A more complete study on overtopping is also of interest.

For both regular and irregular waves, the wave-sizes causing each overtopping should be

systematically registered, preferably also registering the exact location on the multi-torus

where it occurs. The forces in the overtopping waves should also be measured as they

pass over the torus, to determine how critical the overtopping actually is. Depending on

the forces, different counter-measures should be investigated.
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Appendix A

Theoretical Model of the Vertical

Response

This appendix presents the theoretical model of the vertical response of a single-torus

that was derived in Li and Faltinsen (2012) and later in its entirety in Li (2017), it is

referred to as the Low-frequency slender-body theory. The theoretical model was plotted

in MATLAB and was used to compare different experimental results. It is also presented

in order to give a theoretical understanding of the wave-induced hydroelastic response of

a torus.

A.1 Low-frequency slender-body theory

Low frequency corresponds to a wave length that is long relative to the cross-dimension

of the torus. The low-frequency linear slender-body theory combined with a curved beam

equation with tension for the floater shows that hydroelasticity is important and that 3D

effects cause pronounced frequency-dependent hydrodynamic interaction on the scale of

the torus diameter. The latter fact means that a strip theory and Morison’s equation are

not applicable.

A.1.1 Far-field flow description due to forced vertical motions

By utilizing potential theory, it is possible to represent the geometry of different bodies by

a combination of sources, sinks and point dipoles within the body. In the far-field view the

effects of the motion of the torus is seen from a distance, which means the details of the

cross-section are not seen and the torus can be represented by a source distribution on the

center-line of the torus Newman (1977).The velocity potential ϕF in the far field satisfies

I
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Figure A.1: Far field coordinates

the 3D Laplace equation with radiation conditions and the classical linear free-surface

condition. The governing equation and the free-surface condition are

∇2ϕF = 0 (A.1)

−kϕF +
ϕF

∂z
= 0 on z = 0, k = ω2/g (A.2)

The far-field view and coordinate system of a single torus can be seen in Figure A.1. It

is a Cartesian axis system with z = 0 at the mean free surface where the z-axis is pointing

up, out of the water. (x, y, z) is the field point and (ξ, η, 0). R is the torus radius, β is

the angle and ρ is the distance to the field point from the origin. The field points x and

y are defined by

x = ρcos(β)

y = ρsin(β)
(A.3)

The coordinates (ξ, η, 0) on the center line of the torus are given by

ξ = Rcos(α)

η = Rsin(α)
(A.4)
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n 0 1 2 3
Kn 0 2.0000 2.6667 3.0667

Table A.1: Values for Kn

Considering the forced vertical tour for each Fourier mode separately, the associated

source density varies as Q cos(nα) exp(−iωt) along the center line of the torus, and thus

the far-field velocity potential can be described as

ϕF =
Q exp(−iωt)

4π
R

∫ 2π

0

cos(nα)G(x, y, z; ξ, η, 0)dα (A.5)

Here, Q is the density of the source distribution, i is a complex unit, n is the Fourier

mode and G(x, y, z; ξ, η, 0) is the Green function which can be divided into three parts.

We know that the Green function can be divided into three parts that can be solved

separately.

G(x, y, z; ξ, η, 0) = G1 + G2 +G3 (A.6)

As this function and the derivations of it are long and complex, they are left out but the

details can be seen in Li (2017).

By solving the first term G1(x, y, z; ξ, η, 0) of the Green function, an expression φFI for

the limiting case of ω → 0, also known as the zero-frequency theory, is obtained, as seen

in Faltinsen (1993). The expression for the wave potential from the first term is as follows

ϕFI1 =
Q exp(−iωt)cos(nβ)

π

[
ln

(
8R

r′

)
−Kn

]
Kn =

1

2
√

2

∫ 2π

0

1 − cos(nµ)√
1 − cos(µ)

dµ

= 2

(
1 +

1

3
+

1

5
+ ...+

1

2n − 1

)
, n ≥ 1

(A.7)

Here R is the radius of the torus, r is the radius of the cross-section of the torus and

µ = α − β is used for simplification. Values for Kn can be seen in Table A.1. This

solution gives an approximate solution to the response of the torus, but it does not include

the wave radiation from the torus, thus the other terms of the Green function must also

be solved.

By solving the second term G2(x, y, z; ξ, η, 0) the following equation is obtained
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ϕFI2 =
Q exp(−iωt)cos(nβ)

π
(1 + kz)kRπ2

×
{
−Jn(kR)Yn(kR)− 1

πR
|y′|+ i[Jn(kR)]2

} (A.8)

The variables Jn(kR) and Yn(kR) are the first and second kind Bessel function respec-

tively and y′ = ρ − R. The third and last term G3(x, y, z; ξ, η, 0) is then solved and we

find the following expression

ϕFI3 =
Q exp(−iωt)

π
cos(nβ)

×
{
−kπR

4
(1 + kz)

∫ 2π

0

H0(kc)|ρ=Rcos(nµ) dµ

+
π2

2
(1 + kz)kR

[
Jn(kR)Yn(kR) +

1

πR
|y′|
]

− k|z|
[
ln

(
8R

r′

)
−Kn + 1

]
+ k

(π
2
|y′| − θy′

)
(A.9)

Here H0 is the Struve function of zero order. Having solved all three terms of the

Green function it is now possible to combine them in a expression for the total far-field

velocity potential, i.e.

ϕFI =
Q exp(−iωt)

π
cos(nβ)

×
{

(1− k|z|)
[
ln

8c

r′
)−Kn

]
− k|z| − kθy′

+ (1 + kz)kRπ2

{
−1

2
Jn(kR)Yn(kR) + i[Jn(kR)]2

}
− kπR

4
(1 + kz)

∫ 2π

0

H0(kc)|ρ=Rcos(nµ)dµ

(A.10)

A.1.2 Near-field solution and matching with far-field solution

In the near-field view the details of the cross-section of the torus are seen. The draught

of the section is assumed to be equal to the radius c of the cross-section. For the near-

field velocity potential ϕN the governing equation is the 2D Laplace equation in the

cross-sectional plane, with linearized boundary conditions, and where the free-surface

and body-boundary condition are
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Figure A.2: Near field coordinates

− kϕN +
∂ϕN

∂z′
= 0 on z′ = 0 (A.11)

∂ϕN

∂r′
= −ȧncos(nβ)cos(θ) on r′ = a, z ≤ 0 (A.12)

The near-field view and coordinate system of a single torus can be seen in Figure A.2.

r is the radial distance from the center of the section and a local Cartesian and a local

polar coordinate system with the coordinates (y′, z′) and (r, θ) are defined as

y′ = r sin(θ)

z′ = r cos(θ)
(A.13)

To obtain the near-field velocity potential a series of infinite fluid multipoles are com-

bined in order to satisfy the linearized free-surface condition and the symmetry condition.

Due to a source singularity at the center of the circular cylinder, the Green function rep-

resenting a 2D wave source, is also added. These equations are given in greater detail in

Li (2017). The velocity potential can then be described as
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φN = ȧn cos(nβ)

×
{
A0

{
(1 + kz′)

[
ln

(
8R

r′

)
− Kn + Cn

]
+ kz′ − ky′θ

}
+

∞∑
m=1

A2m

[
cos(2mθ)

r′2m
+

k cos(2m− 1)θ

(2m− 1)r′2m−1

] (A.14)

The constant Kn and Cn are introduced to match the near-field solution with the

far-field solution. Cn is found by setting the expression for the far-field potential equal to

the near-field potential, which results in the following expression

Cn = π kR
{
− π

2
Jn (kR) Yn (kR) + i π [ Jn (kR) ]2

− 1

4

∫ 2π

0

H0 kR
√

2(1 − cosµ) ) cos(nµ) dµ}
(A.15)

Furthermore, A0 and A2m are complex unknowns that can be determined from the

body boundary conditions seen in Eq. A.12, resulting in the following equation

A0

{
k cosθ

[
ln

(
8R

c

)
− Kn + Cn

]
− (A.16)

This can be solved by numerical methods at given values of θ when 0 ≤ θ ≤ π/2.

Compared to the aforementioned zero-frequency theory, the results are consistent for low

frequencies. However, due to the additional terms in the equation, it is applicable to a

broader frequency range, but it is not valid for high frequencies.

Added mass and damping

To find the 2D added mass an33 and damping bn33 for mode n, the linearized hydrodynamic

pressure force due to the pressure term −ρ∂ϕN/∂t is integrated over the mean wetted

surface of the cross-section. This pressure term is found by differentiating the near-field

velocity potential ϕN for vertical motion mode n with respect to t. The forcing motion

is the harmonic velocity of the cross-section ȧncos(nβ) for mode n. The hydrodynamic

pressure is found by multiplying it with the cross-section radius c and the negative z′-

component of the body normal vector cosθ, and then integrated over θ = −π/2 to θ = π/2.

This leads to a expression for added mass and damping loads in z′-direction per unit length

on the torus due to the forced motion of mode n. The 2D vertical force thus becomes
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f3 = −ρ
∫ π/2

−π/2

∂ϕN

∂t
cos(θ)c dθ = fN3 än cos(nβ) (A.17)

Integrating the equation analytically yields the following expression

fN3 = −ρa
{
A0

{(
2− 1

2
πkc

)[
ln

(
8R

c

)
−Kn + Cn

]
− 3

4
πkc

}
+ A2

πk

2c
−
∞∑
m=1

A2m
2cos(mπ)

a2m(4m2 − 1)

(A.18)

From formal definition of the 2D vertical added mass and damping coefficients we

know that

faddedmass+damping3 = −a(n)33 äncos(nβ) − b
(n)
33 ȧncos(nβ) (A.19)

Thus, it is shown that

faddedmass+damping3 = fN3 äncos(nβ)(
iωa

(n)
33 − b

(n)
33

)
ȧncos(nβ) =

[
iωRe

(
fN3
)

+ ωIm
(
fN3
)]
ȧncos(nβ)

(A.20)

Which leads to the following expressions for 2D vertical added mass and damping

a
(n)
33 = −Re(fN3

)
(A.21)

b
(n)
33 = −ωIm(fN3

)
(A.22)

In turn, these expressions can be used to determine the generalized added mass and

damping coefficients of the torus associated with mode n by

A
(n)
33 = a33(n) R

∫ 2π

0

cos2(nβ) dβ

B
(n)
33 = b33(n) R

∫ 2π

0

cos2(nβ) dβ

(A.23)
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A.1.3 Wave potential

Using linear wave theory for deep water gives k = ω2/g. Deep water implies h > λ/2,

where h is the water depth and λ = 2π/k is the wave length. We also assume long wave

theory where the waves are assumed to be much longer than the cross-sectional diameter

of the torus, λ/c >> 1. Since mode superposition will be used to calculate the response

of the torus, it is possible to express the wave forces as a Fourier sum involving Besssel

functions. Therefore, utilizing a complex wave potential is preferable, which is expressed

as

ϕ0 =
gζa
ω

exp(kz + ikx − iωt) (A.24)

The wave elevation is found by differentiating φ0 with respect to time and inserting

the expression in the dynamic linear condition gζ + ∂
∂t

on z = 0. The wave elevation ζ

is then expressed as

ζ = iζa exp(ikx − iωt) (A.25)

It is the real part of the expression that has physical meaning, which also applies for

later complex expressions in this text.

A.1.4 Generalized vertical excitation forces and Response Am-

plitude Operators

The vertical excitation force f excit3 consists of the linear Froude-Kriloff force fFK and

the linear diffraction force fD. The linear Froude-Kriloff force is due to the undisturbed

dynamic pressure over the wetted surface and can be found be integrating the undisturbed

dynamic pressure over the exact wetted surface where both the torus motion and wave

elevation are accounted for. The diffraction force is due to the to added mass and water

particle acceleration and can be calculated according to linear theory.

Linear Froude-Kriloff force

The undisturbed incident dynamic pressure is calculated from

pFK = −ρ∂φ0

∂t
= ρgζai exp( + ikx + oωt), where x = Rcos(β) (A.26)

Since mode superposition will be used to calculate the response of the torus, it is

practical to express the wave forces as a Fourier sum involving Bessel functions, as seen
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below

exp(ikR cos(β) = J0(kR) +
∑
m=1

2imJm(kR) cos(mβ) (A.27)

Denoting the mean wetted cross-sectional surface of the torus SC , and given that for

one torus the following expression can be used

−
∫
SC

(1 + kz)n3 ds = c

∫ π/2

−π/2
(1 − kc cosθ)cosθ dθ) = 2c(1 − πkc/4) (A.28)

the integration of the dynamic pressure over the wetted surface to find the Froude-

Kriloff force is approximated as

fFK3 = −
∫ π/2

−π/2
pFKn3c dθ = iρgζ

[
J0(kR) +

∞∑
m=1

2imJm(kR)cos(mβ)

]
= ×bw(1 − πkc/4) exp(−iωt)

(A.29)

Linear Diffraction force

The linear diffraction force can be found by solving a boundary value problem with forced

oscillations minus the vertical wave particle velocity and acceleration, Newman (1977).

The 2D diffraction force is then a3ζa
(m)
33 + wζb

(m)
33 at z = zm. Here, zm is a weighted

z-coordinate of the torus which can be approximated at zm = −4c/3π. wζ and az are the

vertical velocity of the incident waves and vertical particle acceleration found from the

following equations

wζ =
∂ϕ0

∂z
= − ωζa exp(kzm + ikxCL − iωt)

= − ωζa exp(kzm − iωt)

[
J0(kR) +

∑
m=1

2imJm(kR) cos(mβ)

]
(A.30)

and

a3ζ =
∂2ϕ0

∂z∂t
= iω2ζa exp(kzm + ikxCL − iωt)

= iω2ζa exp(kzm − iωt)

[
J0(kR) +

∑
m=1

2imJm(kR) cos(mβ)

] (A.31)
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The vertical diffraction force per unit length are thus given as

fD3 = ζa exp(zm − iωt)
[
J0(kR)

(
−iω2a

(0)
33 + ωb

(0)
33

)
+

∞∑
m=1

2imJm(kR)
(
−iω2a

(m)
33 + ωb

(m)
33

)
cos(mβ)]

(A.32)

A.1.5 Curved beam equation with axial stiffness

The generalized Euler-Bernoulli beam equation can be used to predict the vertical motion

w of the torus. Accounting for curvature and axial stiffness and inserting the restoring

coefficient, wave excitation forces and forces due to added mass and damping , the equation

can be expressed as

m
∂2w

∂t2
+ ρgbw + EI

∂4w

∂s4
+
EI

R2

∂2w

∂s2
− ∂

∂s

(
Tas

∂w

∂s

)
= f3(s)

addedmass+damping + f3(s)
waveexcit + fmoorings3

(A.33)

where the vertical velocity and acceleration are ∂2w
∂t2

and ∂2w
∂s2

, respectively. The unit

for each term in the equation is N/m. m is the mass of the torus per unit length, EI

is the bending stiffness, t is the time and s is the spatial coordinate that goes along the

center line of the torus. The term ρgbw, where bw = 2c, is the general 2D hydrodynamic

restoring term for one torus and is caused by the change of the buoyancy force due to

the motion w. The bending stiffness term EI
R2

∂2w
∂s2

is a consequence of curvature effect of

the torus, and is needed in addition to EI ∂
4w
4 in order to describe a rigid torus when

EI → ∞. fwaveexcit3 = fFK3 + fD3 is the vertical wave excitation force on the torus per

unit length of the torus. faddedmass+damping3 is the vertical added mass and damping force

because of vertical acceleration of the torus. fmoorings3 denotes the vertical component of

the mooring line forces that formally must be expressed in terms of Dirac delta functions

since it is not uniformly distributed along the torus and Tas is the axial stiffness following

from a static analysis of the moored torus.

The solution w is assumed to be a Fourier-series with orthogonal shape functions

defined by cos nβ, where n = 1, 2, 3, ..∞.

w(β, t) = a0(t) +
∞∑
n=1

an(t)cos nβ =

(
a0,a +

∞∑
n=1

an,acos nβ

)
e−iωt (A.34)

ẇ = ȧ0 +
∞∑
n=1

ȧncos nβ (A.35)
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ẅ = ä0 +
∞∑
n=1

äncos nβ (A.36)

since ∂
∂s

= ∂
R∂β

we can rewrite and find

∂2w

∂s2
=

1

c2
∂2w

∂β2
=
∞∑
n=1

n2

c2
an,acos nβ (A.37)

∂4w

∂s4
=

1

c4
∂4w

∂β4
=
∞∑
n=1

n4

c4
an,acos nβ (A.38)

Here, a0(t) and an(t) are the time dependent Fourier coefficients, and a0,a(t) and an,a(t)

are the amplitudes of the Fourier coefficients which can be complex numbers, thus taking

care of the phase angle between the load and the response. By substituting the expressions

for the derivatives into the beam equation, and multiplying each term with the orthogonal

function cos mβ where m = 1, 2, ..∞, and then integrating the equation around the center

line of the torus, which is done by multiplying the equation with the torus radius R and

integrating from β = 0 to β = 2π, we now obtain the following expression

∫ 2π

0

m2D

(
ä0 +

∞∑
n=1

äncos nβ

)
cos(mβ)R

+ ρgbw

(
a0 +

∞∑
n=1

ancos nβ

)
cos(mβ)R

+
EI

R4

(
∞∑
n=1

(n4 − n2)an,acos nβ

)
cos(mβ)R

+
Tas
R2

(
∞∑
n=1

n2an,acos nβ

)
cos(mβ)Rd dβ

=

∫ 2π

0

(
fFK3 + fD3 + faddedmass+damping3 +

8∑
i=1

Tp,3δ(β − βi)

)
cos(mβ)Rdβ

(A.39)

∫ 2π

0

cos nβ cos mβdβ


= 0, n 6= m

= 2π, n = m = 0

= π, n = m = 1, 2, ..

(A.40)

Tp,3 is the vertical component of pre-tension of the mooring lines, βi describes the

attachment positions between the mooring lines and torus and δ is the Dirac-delta func-
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tion. The modal equations for the first mode, n = 0 and the n-th mode then have to be

described to be able to find the vertical motion w of the torus, leading to the following

expressions

(
m+ a

(0)
33

)
ä0 + b

(0)
33 ȧ0 + ρgbwa0 =

1

2π

∫ 2π

0

8∑
i=1

Tp,3δ(β − βi)dβ+[(
1− πkc

4

)
ρgbw − (ω2a

(0)
33 + iωb

(0)
33

)
exp(kzm)ζaJ0(kR)i exp(−iωt)

(A.41)

(m + a
(m)
33 äm + b

(m)
33 ȧm +

[
ρgbw +

EI

R4
(m4 −m2)

]
am

+
1

πR2

∞∑
n=1

8∑
i=1

n2T (i)
as

∫ βi+1

βi

cos(nβ)cos(mβ)dβan =

1

π

∫ 2π

0

8∑
i=1

Tp,3δ(β − βi)cos(mβ)dβ

+

[(
1− πkc

4

)
ρgbw −

(
ω2a

(m)
33 + iωb

(m)
33

)
exp(kzm)

]
× ζa2Jm(kR)im+1 exp(iωt),m = 1, 2,

(A.42)

∫ βi+1

βi

cos(nβ)cos(mβ)dβ
=

(βi+1 − βi)[m sin(m)cos(n)− n cos(m) sin(n)]

m2 − n2
, n 6= m

=
sin(2mβi+1 − sin(2mβi) + 2m(βi+1 − βi)

4m
, m = n

(A.43)

The vertical displacements can now be obtained by inserting the solutions for a0 and

an in Eq. A.34. To solve the equations the solutions of a0 and an are assumed to be

harmonic with the same circular frequency ω as the incident waves

a0 = a0,ae
iωt (A.44)

an = an,ae
iωt (A.45)

The expressions for a0 and an are then substituted into Eq. A.41 and A.42, and the

equations are solved with respect to a0,a and an,a, that are complex values taking the
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phase angle between the waves and the response into account. Thus, when finding the

response w by inserting the expressions for a0 and an into equationA.34, the phase angle

between the total response w and the waves will be accounted for. The expressions for

the linear transfer functions for each mode is found by taking the absolute value of a0,a/ζa

and an,aζa. The transfer functions, giving the normalized response amplitudes for each

wave circular frequency ω are

∣∣∣∣a0,aζa
∣∣∣∣ =

∣∣∣∣∣∣
[(

1− πkc
4

)
ρgbw −

(
ω2a

(0)
33 + iωb

(0)
33

)
exp(kzm

]
iJ0(kR) + TA

−ω2
(
m+ a

(0)
33

)
− iωb(0)33 + ρgbw

∣∣∣∣∣∣ (A.46)

∣∣∣∣an,aζa
∣∣∣∣ =

∣∣∣∣∣∣
[(

1− πkc
4

)
ρgbw −

(
ω2a

(n)
33 + iωb

(n)
33

)
exp(kzm

]
2in+1Jn(kR) + TB

−ω2
(
m+ a

(n)
33

)
− iωb(n)33 + ρgbw + EI

R4 (n4 − n2 + TC

∣∣∣∣∣∣ (A.47)

where the expressions of TA, TB and TC are as seen below

TA =
1

2π

∫ 2π

0

8∑
−=1

Tp,3∂(β − βi) dβ

TB =
1

π

∫ 2π

0

8∑
−=1

Tp,3∂(β − βi)cos(mβ) dβ

TC =
1

πR2

∞∑
n=1

8∑
i=1

n2T (i)
as

∫ βi+1

βi

cos(nβ)cos(mβ) dβ

(A.48)
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Appendix B

JONSWAP Spectrum

The equation for the JONSWAP spectrum Sj(ω) is given by DNV (2011)

Sj(ω) =
5

16
AγH

2
sω

4
p exp

(
−5

4

(
ω

ωp

)−4)
γ
exp

(
−0.5

(
ω−ωp
σωp

)2
)

(B.1)

The deciding variables are the significant wave height Hs and the peak wave period

Tp, from which the rest of the variables are found as follows

Aγ = 1− 0.287ln(γ) normalizing factor

γ = non-dimensional peak shape parameter

γ = 5 for Tp/
√
Hs ≤ 3.6

γ = exp (5.75− 1.15Tp/
√
Hs) for 3.6 ¡ Tp/

√
Hs ≤ 5

γ = 1 for 5 ≤ Tp/
√
Hs

Hs = significant wave height

ωp = 2π/Tp angular spectral peak frequency

σ = spectral width parameter

σ = σa for ω ≤ ωp

σ = σb for ω > ωp

where average values for the JONSWAP experiment data are σa = 0.07, σb = 0.09 can

be used as average values

XV
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Appendix C

Wave-Series in Model Scale

Table C.1: Test conditions for regular waves in model scale

T [s] λ[m] H/λ = 1/60 H/λ = 1/40 H/λ = 1/30 H/λ = 1/20
H [m] H [m] H [m] H [m]

0.2828 0.1249 0.0021 0.0031 0.0042 0.0062
0.3536 0.1952 0.0033 0.0049 0.0065 0.0098
0.4243 0.2810 0.0047 0.0070 0.0094 0.0141
0.4950 0.3825 0.0064 0.0096 0.0128 0.0191
0.5657 0.4996 0.0083 0.0125 0.0167 0.0250
0.6364 0.6323 0.0105 0.0158 0.0211 0.0316
0.7071 0.7806 0.0130 0.0195 0.0260 0.0390
0.7778 0.9444 0.0157 0.0236 0.0315 0.0472
0.8485 1.1233 0.0187 0.0281 0.0374 0.0562
0.9192 1.3163 0.0219 0.0329 0.0439 0.0658
0.9899 1.5214 0.0254 0.0380 0.0507 0.0761
1.0607 1.7360 0.0289 0.0434 0.0579 0.0868
1.1314 1.9571 0.0326 0.0489 0.0652 0.0979
1.2021 2.1818 0.0364 0.0545 0.0727 0.1091
1.2728 2.4079 0.0401 0.0602 0.0803 0.1204
1.3435 2.6339 0.0439 0.0658 0.0878 0.1317
1.4142 2.8588 0.0476 0.0715 0.0953 0.1429
1.4849 3.0819 0.0514 0.0770 0.1027 0.1541
1.5556 3.3030 0.0551 0.0826 0.1101 0.1652
1.6263 3.5221 0.0587 0.0881 0.1174 0.1761
1.6971 3.7391 0.0623 0.0935 0.1246 0.1870
1.7678 3.9541 0.0659 0.0989 0.1318 0.1977
1.8385 4.1672 0.0695 0.1042 0.1389 0.2084
1.9092 4.3786 0.0730 0.1095 0.1460 0.2189
1.9799 4.5884 0.0765 0.1147 0.1529 0.2294

XVII
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Table C.2: Test conditions for irregular waves in model scale

Tp = 1.679s Tp = 1.4142s Tp = 1.2728s Tp = 1.1314s
Hs[m] 0.02 0.04 0.04 0.01

0.04 0.08 0.08 0.02
0.06 0.10 0.10 0.03
0.08 - - 0.04
0.10 - - 0.05
0.12 - - 0.06
0.14 - - 0.07
0.16 - - 0.08
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Figure D.1: Numerical RAO for the Linear-Slender Body theory compared to the experimental
RAO for the single-torus, in heave, pitch, first flexible mode and second flexible mode for wave
steepness H/λ = 1/30.
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Figure D.2: Numerical RAO for a single torus using the Linear-Slender Body theory, compared
to the experimental RAO for ring 1 of the multi-torus, in heave, pitch, first flexible mode and
second flexible mode for wave steepness H/λ = 1/30
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Figure D.3: Numerical RAO for a single torus using the Linear-Slender Body theory, compared
to the experimental RAO for ring 2 of the multi-torus, in heave, pitch, first flexible mode and
second flexible mode for wave steepness H/λ = 1/30
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Figure D.4: Numerical RAO for a single torus using the Linear-Slender Body theory, compared
to the experimental RAO for ring 3 of the multi-torus, in heave, pitch, first flexible mode and
second flexible mode for wave steepness H/λ = 1/30
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Figure D.5: Numerical RAO for a single torus using the Linear-Slender Body theory, compared
to the experimental RAO for ring 4 of the multi-torus, in heave and pitch for wave steepness
H/λ = 1/30
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Figure D.6: Numerical RAO for a single torus using the Linear-Slender Body theory, compared
to the experimental RAO for ring 1 of the multi-torus, in heave and pitch for wave steepness
H/λ = 1/30
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Figure D.7: Experimental RAO in surge for ring 1,2,3,4 and 5 of the multi-torus for wave
steepness H/λ = 1/30
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H/λ = 1/30.
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Figure E.1: Experimental RAO for ring 3 of the multi-torus, in heave, pitch, first flexible mode
and second flexible mode with peak wave period Tp = 8s and Hs = 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4m
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Figure E.2: Experimental RAO for ring 1 of the multi-torus, in heave, pitch, first flexible mode
and second flexible mode with peak wave period Tp = 9s and Hs = 2, 3, 4, 5m
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Figure E.3: Experimental RAO for ring 3 of the multi-torus, in heave, pitch, first flexible mode
and second flexible mode with peak wave period Tp = 12s and Hs = 1, 2, 3, 4, 5, 6, 7, 8m
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Figure E.4: Experimental RAO for ring 1,2,3 of the multi-torus, in heave, pitch, first flexible
mode and second flexible mode with peak wave period Tp = 9s and Hs = 5m
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Figure E.5: Experimental RAO for ring 1,2,3 of the multi-torus, in heave, pitch, first flexible
mode and second flexible mode with peak wave period Tp = 9s and Hs = 2m
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Figure F.1: Multi-torus: Both figures show time-series examples of experimental results
from a wave series with H/λ = 1/60 and H/λ = 1/20 with kR = 0.5133. Upper figure
shows the non-dimensional acceleration ẅ at β = 0o. Lower figure shows a time-series
example of the non-dimensional motion w of the accelerometer at β = 0o relative to the
incident wave ζa.
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Figure F.2: Multi-torus: Both figures show time-series examples of experimental results
from a wave series with H/λ = 1/60 and H/λ = 1/20 with kR = 1.0061. Upper figure
shows the non-dimensional acceleration ẅ at β = 180o. Lower figure shows a time-series
example of the non-dimensional motion w of the accelerometer at β = 180 relative to the
incident wave ζa.
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Figure F.3: Multi-torus: Both figures show time-series examples of experimental results
from a wave series with H/λ = 1/60 and H/λ = 1/20 with kR = 1.0061. Upper figure
shows the non-dimensional acceleration ẅ at β = 0o. Lower figure shows a time-series
example of the non-dimensional motion w of the accelerometer at β = 0o relative to the
incident wave ζa.
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Figure F.4: Multi-torus: Both figures show time-series examples of experimental results
from a wave series with H/λ = 1/10 with kR = 4.0244. Upper figure shows the non-
dimensional acceleration ẅ at β = 180o and β = 0o. Lower figure shows a time-series
example of the non-dimensional motion w of the accelerometer at β = 180 and β = 0o

relative to the incident wave ζa. ORIGINAL
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Figure F.5: Multi-torus: Both figures show time-series examples of exper-
imental results at β = 180 from a wave series with H/λ = 1/10. Up-
per figure shows the non-dimensional acceleration ẅ with kR = 0.8315
and kR = 4.0244.Lowerfigureshowsatime − seriesexampleofthenon −
dimensionalmotionwoftheaccelerometerrelativetotheincidentwaveζa.
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Figure F.6: Multi-torus: All figures show time-series examples of experimental results of
the non-dimensional motion w of the accelerometer relative to the incident wave ζa at
β = 180o and β = 0o. Upper figure shows a time-series example from a wave series with
H/λ = 1/40 with kR = 0.5133. Middle figure shows a time-series example from a wave
series with H/λ = 1/40 with kR = 1.0061. Lower figure shows a time-series example from
a wave series with H/λ = 1/10 with kR = 4.0244
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G.1 Single torus
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Figure G.1: Single-torus: Experimental first harmonic accelerations at β = 0o, β = 180o,
β = 90o and β = 270o in waves with steepness H/λ = 1/70, H/λ = 1/60, H/λ = 1/50,
H/λ = 1/40, H/λ = 1/30, H/λ = 1/20.
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Figure G.2: Single-torus: Experimental first harmonic accelerations at β = 45o, β = 315o,
β = 135o and β = 225o in waves with steepness H/λ = 1/70, H/λ = 1/60, H/λ = 1/50,
H/λ = 1/40, H/λ = 1/30, H/λ = 1/20.
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Figure G.3: Single-torus: Experimental second harmonic accelerations at β = 0o, β = 180o,
β = 90o and β = 270o in waves with steepness H/λ = 1/70, H/λ = 1/60, H/λ = 1/50,
H/λ = 1/40, H/λ = 1/30, H/λ = 1/20.
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Figure G.4: Single-torus: Experimental second harmonic accelerations at β = 45o, β = 315o,
β = 135o and β = 225o in waves with steepness H/λ = 1/70, H/λ = 1/60, H/λ = 1/50,
H/λ = 1/40, H/λ = 1/30, H/λ = 1/20.
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G.2 Multi-torus
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Figure G.5: Multi-torus: Experimental first harmonic accelerations at β = 0o, β = 180o,
β = 90o and β = 270o in waves with steepness H/λ = 1/70, H/λ = 1/60, H/λ = 1/50,
H/λ = 1/40, H/λ = 1/30, H/λ = 1/20.
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Figure G.6: Multi-torus: Experimental first harmonic accelerations at β = 45o, β = 315o,
β = 135o and β = 225o in waves with steepness H/λ = 1/70, H/λ = 1/60, H/λ = 1/50,
H/λ = 1/40, H/λ = 1/30, H/λ = 1/20.
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Figure G.7: Multi-torus: Experimental second harmonic accelerations at β = 0o, β = 180o,
β = 90o and β = 270o in waves with steepness H/λ = 1/70, H/λ = 1/60, H/λ = 1/50,
H/λ = 1/40, H/λ = 1/30, H/λ = 1/20.
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Figure G.8: Multi-torus: Experimental second harmonic accelerations at β = 45o, β = 315o,
β = 135o and β = 225o in waves with steepness H/λ = 1/70, H/λ = 1/60, H/λ = 1/50,
H/λ = 1/40, H/λ = 1/30, H/λ = 1/20.
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