
Advanced Mission Planner for
Cooperative Underwater Vehicles

Stephanie Buadu

Master of Science in Engineering and ICT

Supervisor: Ingrid Schjølberg, IMT
Co-supervisor: Tore Mo-Bjørkelund, IMT

Department of Marine Technology

Submission date: June 2018

Norwegian University of Science and Technology

 NTNU Trondheim

 Norwegian University of Science and Technology

 Department of Marine Technology

MSC THESIS DESCRIPTION SHEET

Name of the candidate: Stephanie Buadu

Field of study: Marine cybernetics

Thesis title (Norwegian): Avansert oppdragsplanlegger for samarbeidende

undervannsfarkoster

Thesis title (English): Advanced mission planner for cooperative underwater vehicles

Background

The increasing complexity of underwater missions in both military and civil applications has

led to an increase in the importance of cooperative and coordinated behavior between single

autonomous vehicles. It becomes beneficial to deploy multiple vehicles simultaneously to

obtain fault tolerance and time, space, and functional distributions, flexibility, and adaptability

that is unachievable with a common single vehicle approach.

However, with new applications and higher complexity, new questions are introduced

including; how can a team of multiple vehicles be programmed to complete a set of tasks

without colliding, while at the same time taking advantage of their simultaneous presence?

Mission planning and formation control in underwater environments entails many challenges.

Research within formation control for autonomous vehicles is lagging behind multi-vehicle

formation control in general, and most of the available research is purely theoretical.

The primary goal of this thesis is to develop an application for operating a cooperative

autonomous vehicle system. The application should include mission planning capabilities and

formation control for surface missions.

Work description

1. Literature study on mission planners and cooperative underwater systems with emphasis

on the following:

• Basic concepts and challenges within mission planning for AUV.

• State-of-the-art cooperating systems including AUVs.

• Central approaches to formation control including their advantages and

disadvantages.

2. Develop a formation control method for a cooperative AUV system based on existing

approaches within formation control.

3. Develop an application for a cooperative AUV system with the following properties

• Functionality for operating a cooperative system of up to three LAUVs.

• A user interface that enables a user to define, monitor and control simple

missions for cooperative systems.

• Formation control of the cooperating system using the developed formation

control method.

• The application should work both standalone, and as an integrated part of the

command and control software in the LSTS toolchain.

Abstract

In later years, the complexity of underwater missions has increased, resulting in a growing
interest in cooperative Autonomous Underwater Vehicle (AUV) systems. When executing a
complex mission, cooperative systems are superior to a single vehicle, and mission planning and
formation control are two components that contribute to this superiority. Despite the growing
interest in the field, published literature on formation control of AUVs is for the most part based
on theoretical research, and there is a lack of published experiments and practices.

A literature study on mission planning and cooperative underwater systems was conducted to
gain knowledge about the fields. Basic concepts of mission planning and the challenges associ-
ated with mission planning for AUV were reviewed in addition to state-of-the-art applications
for cooperative systems, and the formation control problem. The motivation for this thesis was
to contribute to the research in the fields of cooperative AUV systems, and this was achieved by
implementing a desktop application with mission planning and formation control functionality
for a cooperative AUV system.

The application is named the MCS (Mission Control System) and provides an operator with a
user interface for connecting to a system of Light Autonomous Underwater Vehicles (LAUVs),
defining a mission plan, and monitoring and controlling mission execution. The application
also functions as a framework for testing formation control methods. The MCS functions both
standalone and as an integrated part of the command and control software offered in the Un-
derwater System and Technology Laboratory (LSTS) toolchain. Verification of the software
included evaluating system requirements and comparison to existing command and control soft-
ware. Simulations and field tests demonstrated the application’s performance and proved it to
be robust in both environments. Based on observations made during verification and testing,
suggestions were made to enhance the application.

An algorithmic formation control method with properties from leader-follower systems, virtual
structures, and behavior-based formation control was designed. Each vehicle in the team is
assigned as either master or slave, and the method further relies on the vehicles maneuvering
predetermined paths simultaneously. Four cooperative strategies are in place to restore the for-
mation if deviations occur. The method was verified through simulations and field experiments.

The experimental verification method entailed controlling a cooperative system consisting of
LAUV Fridtjof in combination with LAUV simulators, and field tests were conducted on the
surface in the Trondheim Fjord. Simulation and field test results proved the designed formation
control method to be valid. The vehicle teams were able to complete missions and restore the
formation when constraint violations occurred. Based on the observations made, suggestions for
improving the method and making it more robust against external forces acting on the vehicles
were given. Results imply that further testing should be carried out to validate the method’s
performance on a larger scale and with multiple physical vehicles. Before this can be done,
collision avoidance should be implemented.

iii

iv

Sammendrag

I de senere år har kompleksiteten til undervannsoperasjoner økt, noe som har resultert i en
økende interesse for systemer av samarbeidende autonome undervannsfarkoster (Autonomous
Underwater Vehicles, AUVer). Når det gjelder å utføre komplekse oppdrag er et samarbeidende
system overlegent i forhold til en enkelt farkost. Oppdragsplanlegging og formasjonskontroll er
to komponenter som bidrar til denne overlegenhet. Til tross for den økende interessen i feltet, er
publisert litteratur om formasjonskontroll av AUVer for det meste basert på teoretisk forskning,
og det er mangel på publiserte eksperimenter og praksis.

Et litteraturstudie om oppdragsplanlegging og samarbeidende undervannssystemer ble utført for
å få kunnskap om fagfeltene. Grunnleggende begreper innen oppdragsplanlegging og utfordrin-
gene knyttet til oppdragsplanlegging for AUV ble gjennomgått i tillegg til dages løsninger for
samarbeidende systemer, og formasjonskontrollproblemet. Motivasjonen for denne oppgaven
var å bidra til forskningen innen samarbeidende AUV-systemer. Dette ble gjort ved å utvikle en
skrivebords applikasjon med funksjonalitet for oppdragsplanlegging og formasjonskontroll for
et samarbeidende AUV-system.

Applikasjonen heter MCS (Mission Control System) og tilbyr en operatør et brukergrensesnitt
for å koble seg til et system av lette autonome undervannsfarkoster (Light Autonomous Un-
derwater Vehicles, LAUVer), definere oppdrag, og overvåke og kontrollere oppdragsutførelsen.
MCS fungerer også som et rammeverk for å teste formasjonskontroll. Applikasjonen kan kjøres
som en frittstående applikasjon eller som en integrert del av kommando- og kontrollprogram-
varen som tilbys av Underwater System and Technology Laboratory (LSTS) ved Universitetet i
Porto. Verifisering av applikasjonen ble gjort ved evaluering av systemkrav og sammenligning
med eksisterende kommando- og kontrollprogramvare. Applikasjonens ytelse ble demonstrert
under simulasjoner og felttester, og den viste seg å være robust i begge miljøer. Basert på obser-
vasjoner gjort under verifisering og testing ble det gitt forslag til forbedring av applikasjonen.

En algoritmebasert formasjonskontrollmetode ble utformet med egenskaper fra leder-følger sys-
tem, virtuelle strukturer og oppførsel-basert formasjonskontroll. Hver farkost i systemet de-
fineres som mester eller slave, og videre bygger metoden på at farkostene manøvrerer forhåndsbestemte
baner samtidig. Fire samarbeidsstrategier er på laget for å gjenopprette formasjonen dersom
avvik oppstår. Metoden ble testet gjennom simuleringer og eksperimenter i felt.

Den eksperimentelle verifikasjonsmetoden innebar å kontrollere et samarbeidende system bestående
av LAUV Fridtjof i kombinasjon med LAUV-simulatorer. Simuleringer og feltforsøk ble utført
i overflaten, og resultatene viser at den konstruerte formasjonskontrollmetoden fungerer. Sys-
temet av farkoster klarte å fullføre oppdrag og gjenopprette formasjonen når avvik oppsto.
Basert på observasjoner ble det gitt forslag til forbedring av metoden for å gjøre den mer robust
mot ytre krefter som virker på farkostene. Resultatene tilsier at ytterligere testing av formasjon-
skontrollen bør utføres for å validere metoden ytelse i en større skala og med flere fysiske
farkoster. Før dette kan gjøres, bør kollisjonsunngåelse implementeres.

v

vi

Preface

This master thesis has been written to conclude a five year integrated masters program in En-
gineering and ICT, with specialization within marine cybernetics, at the Norwegian University
of Science and Technology. The underlying research was partly conducted during the author’s
project thesis carried out in the fall of 2017. Development and remaining research was carried
out during the spring semester of 2018. It is assumed that the reader of this report retains basic
knowledge within engineering science.

Acknowledgements
I would like to thank my supervisor Ingrid Schjølberg for guidance and encouragement during
this work. Not to mention, for helping me make this thesis reflect my interests within both
software engineering and control of underwater vehicles. To my co-supervisor Tore, thanks for
great discussions, motivation when I was stuck, and assistance during field tests. I would also
like to thank the Applied Underwater Robotics laboratory (AUR-lab) for letting me use LAUV
Fridjof.

Finally, to my family and closest friends, thank you for all the support and motivation you have
given me throughout my years of study.

My mother always wanted a doctor and an engineer. I just picked the cooler subject.

Stephanie Buadu
Trondheim, June 2018

vii

viii

Table of Contents

MSc Thesis Description i

Abstract iii

Sammendrag v

Preface vii

List of Tables xiii

List of Figures xvi

Abbreviations xvii

1 Introduction 1
1.1 Background . 1

1.1.1 Cooperative versus Coordinated System 2
1.2 Objectives and Scope . 2
1.3 Contributions . 3
1.4 Structure of Thesis . 3

2 Literature Review 5
2.1 UUVs . 5

2.1.1 AUVs . 5
2.1.2 ROVs . 6

2.2 Mission Planning . 6
2.2.1 Basic Concepts . 6
2.2.2 Challenges . 9

2.3 Cooperative Underwater Systems . 10
2.3.1 State-of-the-art . 10
2.3.2 Formation Control . 11

2.4 Summary . 15

ix

3 System Description 17
3.1 LAUV . 18

3.1.1 LAUV Simulator . 19
3.2 The MCS . 19
3.3 Additional Hardware and Software . 20

3.3.1 DUNE . 20
3.3.2 Neptus . 21
3.3.3 Manta Communications Gateway . 22

3.4 Communication . 24
3.4.1 Inter-Module Communication Protocol 24

3.5 Formation Control . 26
3.5.1 Formation . 26
3.5.2 Path Generation and Guidance . 28
3.5.3 Control Algorithm . 29
3.5.4 Verification . 32

4 The MCS 35
4.1 Previous Work . 35
4.2 Description . 36

4.2.1 Purpose . 36
4.2.2 Application Requirements. 36
4.2.3 Application Code . 37
4.2.4 Technology . 38

4.3 Application Components . 39
4.3.1 MCSlib . 39
4.3.2 View 1 . 42
4.3.3 View 2 . 44
4.3.4 View 3 . 47

4.4 Verification . 49
4.4.1 Evaluation of Application Requirements 49
4.4.2 Comparison to Neptus . 51
4.4.3 Additional Requirements . 53

5 Simulations 55
5.1 Slave B Falls Behind Mission . 56
5.2 Master Falls Behind Mission . 59
5.3 Slave Catches up to Master Mission . 61
5.4 Master Catches up to Slave Mission . 63
5.5 Unsuccessful Mission . 65
5.6 Discussion . 67

6 Field tests 71
6.1 Organization . 71

6.1.1 Objectives . 71
6.1.2 Method of Approach . 72

6.2 L Mission . 73

x

6.3 Stop Master Fridtjof Mission . 75
6.4 U Mission . 77
6.5 Discussion . 80

7 Discussion 83
7.1 Uncertainties . 83
7.2 The Experimental Verification Procedure . 84
7.3 Formation Control . 85
7.4 Mission Planning and the MCS . 86

8 Conclusions and recommendations for further work 87
8.1 Conclusions . 87
8.2 Recommendations for Further Work . 88

Bibliography 89

A Attachments 99
A.1 LogFiles . 99
A.2 Poster . 99
A.3 Source . 99

A.3.1 dune . 99
A.3.2 MCS . 100
A.3.3 MCSlib . 100

B Abstract Submitted to 2018 IEEE OES Autonomous Underwater Vehicle Sympo-
sium 101

C IMC Message Specifications 105
C.1 Vehicle State . 105
C.2 Estimated State . 106
C.3 Plan Control State . 107
C.4 Plan Control . 107
C.5 Plan Specification . 108

D Additional information about the vehicle and simulators 109
D.1 Simulator Modifications . 109
D.2 Vehicle Specification . 110
D.3 Connecting to LAUV Fridtjoft and Simulators 111

E Video from the First Day of Field Testing 113

xi

xii

List of Tables

3.1 Team constraints in the formation control method. 30
3.2 Cooperative strategies for handling TC1 violations. 30

4.1 Application requirements. 37
4.2 Evaluation of application requirements. 50
4.3 Additional requirements for the MCS comprised after verification and testing. 53

5.1 Overview of vehicle team and formation in Slave B falls behind mission. 56
5.2 Mission progress during execution of Slave B falls behind mission. 57
5.3 Overview of vehicle team and formation in Master falls behind mission. 59
5.4 Overview of vehicle team and formation in Slave catches up to master mission. 61
5.5 Mission progress during execution of Slave catches up to master mission. . . . 61
5.6 Overview of vehicle team and formation in Master catches up to slave mission. 63
5.7 Mission progress during execution of Master catches up to slave mission. . . . 64

6.1 Overview of vehicle team and formation in L mission. 73
6.2 Mission progress during execution of Stop master Fridtjof mission. 75
6.3 Overview of vehicle team and formation in U mission. 77
6.4 Mission progress during execution of U mission. 78

D.1 Overview over required duplications and modifications to enable several LAUV
simulator on the same PC. 109

D.2 Configuration of LAUV Fridtjof during field tests. 110
D.3 Overview of server addresses and ports for LAUV Fridtjof and simulators. . . . 111

xiii

xiv

List of Figures

2.1 Visualization of centralized and decentralized architectures. 13

3.1 System overview including software and hardware components and communi-
cation links. 17

3.2 LAUV Fridtjof ready for deployment in the Trondheim Fjord. 18
3.3 Command for starting an LAUV simulator in the terminal. 19
3.4 Screenshot of Neptus’ LAUV console during an active mission with three sim-

ulators. 22
3.5 The Manta prepared for mission execution. 23
3.6 The Manta up close. 23
3.7 The use of IMC messages between the MCS and LAUV, and within the LAUV

system. 25
3.8 Illustration of displacements, distance, and constraint for a two-vehicle team in

formation. 27

4.1 Class diagram depicting all public functions and variables in the LAUV class. . 40
4.2 Screenshot of view 1. 42
4.3 Select vehicle module for a two-vehicle team showing dropdown menu for slave

A. 43
4.4 Warning dialog prompted when the MCS is unable to connect to a vehicle. . . . 43
4.5 Warning dialog prompted if the mission details are attempted confirmed before

connections to the vehicles are established. 44
4.6 Screenshot of view 2. 45
4.7 Path modification when a waypoint is deleted from the mission plan. 46
4.8 Notification dialogs prompted after a path collision check. 46
4.9 Screenshot of view 3. 48
4.10 Vehicle overview for a single vehicle depicting a connected vehicle in a ready

state. 48
4.11 Warning dialog prompted when the connection to a vehicle is lost. 48
4.12 Verification of marker placement in the MCS by comparison to Neptus. 51
4.13 Verification of mission details for a mission defined in the MCS by comparison

to Neptus. 52
4.14 Visualization of the implemented and suggested maximum deviation functionality. 54

xv

5.1 Vehicle trajectories in Slave B falls behind mission. 56
5.2 Speed and distance data from Slave B falls behind mission. 58
5.3 Speed, distance, and progress data from Master falls behind mission. 60
5.4 Vehicle trajectories in Slave catches up to master mission. 62
5.5 Speed and distance data from Slave catches up to master mission. 62
5.6 Vehicle trajectories in Master catches up to slave mission. 64
5.7 Speed and distance data from Master catches up to slave mission. 64
5.8 Speed, distance, and progress data from an unsuccessful mission. 66

6.1 Vehicle trajectories in L Mission. 74
6.2 Distance and progress data from L mission. 74
6.3 Vehicle trajectories in Stop master Fridtjof mission. 76
6.4 Speed and distance data from Stop master Fridtjof mission. 76
6.5 Vehicle trajectories in U mission. 77
6.6 Speed and distance data from U mission. 79

C.1 The structure of a vehicle state message. 105
C.2 The structure of an estimated state message. 106
C.3 The structure of a plan control state message. 107
C.4 The structure of a plan control message. 107
C.5 The structure of a plan specification message containing two maneuvers and a

transition. 108

D.1 A successful communication link between a simulator and the MCS visualized
in the terminal running the simulator. 112

xvi

Abbreviations

AUR-lab = Applied Underwater Robotics Laboratory
AUV = Autonomous Underwater Vehicle
CADRE = Cooperative Autonomy for Distributed Reconnaissance and Exploration
CCU = Central Control Unit
IDE = Integrated Development Environment
IMC = Inter-Modudule Communication
LAUV = Light Autonomous Underwater Vehicle
LSTS = Underwater System and Technology Laboratory

(Laboratório de Sistemas e Tecnologia Subaquática)
MCS = Mission Control System
ML = Mission Language
MORPH = Marine Robotic System of Self-Organizing, Logically Linked Physical Nodes
MRA = Missio Review and Analysis
ROV = Remotely Operated Vehicle
TCP = Transmission Control Protocol
UUV = Unmanned Underwater Vehicle
XML = Extensible Markup Language

xvii

xviii

Chapter 1
Introduction

1.1 Background

The increasing complexity of underwater missions, in both military and civil applications, has
led to an increase in the importance of cooperative and coordinated behavior between single au-
tonomous vehicles. By simultaneously deploying multiple vehicles, fault tolerance, flexibility,
adaptability, and time, space, and functional distribution that is unachievable with a common
single vehicle approach, is obtained, and new applications emerge.

However, with new applications and higher complexity, new questions are introduced such as;
how can a team of multiple vehicles be programmed to complete a set of tasks without colliding,

while at the same time taking advantage of their simultaneous presence?

The question is answered by defining a high-level mission plan that each vehicle is subject to,
rather than defining individual mission plans. Defining individual mission plans may result in
a messy overall mission which is difficult to maintain, and more importantly, they are error-
prone (Madureira et al., 2013). Instead, a high-level mission plan is defined, broken down, and
specified to compute lower-level mission plans for the individual team members.

If the mission objective allows, a way to ensure that the vehicles do not collide is to arrange
them in a formation. Formation control then becomes a central component of the high-level
mission plan as it ensures that the vehicles complete the mission objective while preserving the
formation.

This approach to organizing cooperative systems is not only seen in subsea applications, but also
within aerial vehicles and ground mobile robots. However, due to the complexity of underwater
environments, research within formation control of Autonomous Underwater Vehicles (AUVs)
is lagging behind. Li et al. (2014) stated that many of the existing results within formation

1

Chapter 1. Introduction

control of multi-AUV systems were based on pure theoretical research without sufficient ex-
periments and practices. Now, years have passed since the survey was conducted, and although
the amount of literature referring to experiments and practices in relation to formation control
of AUVs has increased, the number fades in comparison to the number of literature available
within comparable fields.

1.1.1 Cooperative versus Coordinated System

Cooperative and coordinated are two words used about a team of vehicles working together to
complete a mission, and often they are used inconsistently. In this thesis, definitions adapted
from Sariel (2007) are applied.

A cooperative system refers to a team of vehicles working in common with com-

monly agreed-upon goals instead of working separately in competition.

Coordination refers to the process by which a vehicle reasons about its local actions

and the (anticipated) actions of the other vehicles to try and ensure that the team

acts coherently.

Please note that this thesis focuses on cooperative systems.

1.2 Objectives and Scope
The primary goal of this thesis is to develop an application with mission planning and formation
control capabilities for operating cooperative AUV systems. The motivation behind this thesis
is to contribute to the research in the fields of cooperative AUV systems and formation control
by documenting the design, implementation, and results of simulations and experiments.

In order to reach this goal, the following tasks should be performed.

1. Literature study on mission planners and cooperative underwater systems with emphasis
on the following:

• Basic concepts and challenges within mission planning for AUV.

• State-of-the-art cooperating systems including AUVs.

• Central approaches to formation control including their advantages and disadvan-
tages.

2. Develop a formation control method for a cooperative AUV system based on existing
approaches within formation control.

2

1.3 Contributions

3. Develop an application for a cooperative AUV system with the following properties

• Functionality for operating a cooperative system of up to three LAUVs.

• A user interface that enables a user to define, monitor and control simple missions
for cooperative systems.

• Formation control of the cooperating system using the developed formation control
method.

• The application should work both standalone, and as an integrated part of the com-
mand and control software in the LSTS toolchain.

4. Use Neptus and application requirements to verify and validate the application.

5. Test and verify the software and formation control method in a simulated environment
based on existing modules.

6. Test and verify the software and formation control method through field tests on the sur-
face by combining LAUV Fridtjof and simulators in the Trondheim Fjord.

7. Discuss and compare the results obtained from simulation and field tests.

8. Discuss the experimental verification method of combining simulated and real vehicles.

1.3 Contributions
The main contributions made in this thesis is an application for operating cooperative LAUV
systems that provides a framework for testing formation control and a formation control method.
The application provides an operator with a user interface for planning, monitoring and control-
ling missions for cooperative LAUV systems, and the thesis demonstrates the applications func-
tionality and how the application in addition to working standalone may be integrated with the
command and control software in the LSTS-toolchain. The designed formation control method
based on properties from leader-follower systems, behavior-based formation control, and vir-
tual structures is defined and later verified through extensive testing. Results from simulations
and field tests are presented.

1.4 Structure of Thesis
Chapter 2 presents a literature study on mission planning and cooperative underwater systems.
Basic concepts of mission planning and the challenges of mission planning for AUVs are dis-

3

Chapter 1. Introduction

cussed. Further, state-of-the-art cooperative systems are presented, before the formation control
problem and three central approaches for formation control are discussed.

Chapter 3 gives an overview of the hardware and software components required to operate the
cooperative AUV system and the designed formation control methods is presented.

Chapter 4 gives an overview of the developed application, the MCS (Mission Control Sys-
tem). The requirements and application modules are presented, and the chapter concludes with
verification of the application.

Chapter 5 covers the simulations conducted in this thesis. Simulation results are presented,
and the chapter concludes with a discussion of the results.

Chapter 6 covers the field tests conducted in this thesis. The organization of the field tests and
the results are presented before the chapter concludes with a discussion of the results.

Chapter 7 analyses and discusses the overall results obtained in this thesis.

Chapter 8 concludes the thesis and suggests further work that could improve and extend the
work proposed in this thesis.

Appendix A presents the attachments to this thesis, and gives an overview of the code files.

Appendix B contains a two-page abstract submitted to the 2018 IEEE OES Autonomous Un-
derwater Vehicle Symposium.

Appendix C includes the structure of the IMC messages presented in this thesis through exam-
ples of messages sent and received during testing.

Appendix D provides addition information bout LAUV Fridtjof and the simulators. The infor-
mation includes the modifications done in the simulator files, vehicle specifications, and how to
connect to the vehicles.

Appendix E includes a link to a video from the first day of field testing.

4

Chapter 2
Literature Review

In this chapter, findings from a literature study are presented. Parts of the study was conducted
during the fall of 2017 for the author’s project thesis; Buadu (2017). Section 2.1 gives an intro-
duction to Unmanned Underwater Vehicles (UUVs) and their applications. Mission planning
with the main focus on AUVs and vehicle teams are discussed in Section 2.2, and section 2.3
presents cooperative underwater systems and the formation control problem.

2.1 UUVs
UUVs are often divided into two categories: Remotely Operated Vehicles (ROVs) and AUVs,
the main difference being a physical link to a surface vessel, i.e., an umbilical that delivers
power and control commands. ROVs have an umbilical while AUVs do not (Ruud, 2016). A
description of the vehicle categories and their applications is presented in the following sections.

2.1.1 AUVs

AUVs often have a hydrodynamical shape which combined with the absence of an umbili-
cal, allows the vehicles to be flexible, reach high speed and operate in complex environments.
AUVs carry their power supply on board and are often underactuated, i.e., not controllable in
all degrees of freedom. These properties limit the duration and geographical extension of oper-
ations and exclude operations that require high precision, i.e., control of all degrees of freedom.
However, the vehicle may be equipped with a variety of sensors making it suitable for environ-
mental monitoring, hydrography, search, and recovery (Kongsberg, 2016). Current applications
for AUVs include tracking marine life (Lin et al., 2017), monitoring water quality in and around
oil and gas facilities (Karimanzira et al., 2014), structural inspections (Jacobi, 2015), and coun-
tering the threat from sea mines (FFI, 2013).

5

Chapter 2. Literature Review

2.1.2 ROVs

The umbilical connected to an ROV restricts the spatial movement of the vehicle and increases
the drag and resistance, making the vehicle less flexible compared to an AUV. An advantage
of the umbilical is that there is no restriction on the duration of operation as the vehicle, in an
ideal setting, has an unlimited power supply. In addition to delivering power, the umbilical may
transfer video and data signals, which creates a link between the operator on the surface and the
vehicle (Rist-Christensen, 2016). ROVs may be fully actuated and equipped with sensors, lights
and a variety of manipulators, making the vehicles well suited for high precision and heavy
operations including dynamic positioning operations. Current applications for ROVs include
sea bottom and pipeline surveys, cable maintenance as well as installation, maintenance and
mooring of subsea structures and equipment (Henriksen, 2014).

2.2 Mission Planning
A definition of a mission and mission plan is given by Kothari et al. (2012):

”A mission for a fleet of vehicles is a set of objectives to be achieved. A mission

plan is a schema for achieving the objectives of the corresponding mission.”

Mission objectives in marine applications can be divided into five groups; data transportation
and communication, mapping, tracking, monitoring and search (Kothari et al., 2012). Each
objective can be accomplished in several manners, and for it to be clear which is the correct
one, a mission plan must be in place. The mission plan states what the vehicle should do at
different stages of a mission. There are several approaches to mission planning depending on
the type of mission and vehicles involved. In the following section, basic concepts of mission
planning and challenges associated with mission planning for a single and multiple AUVs are
introduced.

2.2.1 Basic Concepts

Vehicle primitives1 are often the basis of a mission plan, and a vehicle primitive is a simple
task that the vehicle can perform autonomously. If a mission is executed by multiple vehicles
team constraints and cooperative strategies might be set onto the vehicles during mission exe-
cution. A mission language (ML) is used to state and communicate the mission plan, and the
approach to mission planning says something about how the mission plan was generated. Vehi-
cle primitives, team constraints and cooperative strategies, mission languages, and approaches

1Vehicle primitives are often referred to as vehicle commands or vehicle behavior.

6

2.2 Mission Planning

to mission planning are four central concepts of mission planning that were studied, and this
section discusses each of these concepts.

Vehicle primitives

Vehicle primitives for UUVs range from basic sensor enabling to complex behavior as naviga-
tion towards a 3D waypoint. Which primitives a vehicle provides depends on its autonomous
abilities, meaning that also ROVs may have primitives allowing them to operate at a semi-
autonomous level. Kothari et al. (2012) presents four categories of primitives essential to mis-
sion planning: motion, communication, sensor, and payload primitives.

Motion primitives are called maneuvers and include dynamic controllers and control strategies.
Path following, trajectory tracking and go to waypoint are three examples of motion primitives.
There are also motion primitives for vehicle teams, and these are referred to as team maneuvers,
where the team, as a whole, maneuvers autonomously. Communication primitives entail the ve-
hicle being able to broadcast, accept, and decode messages. The sensor and payload primitives
turn on and off hardware and set the sensor parameters.

Team constraints and cooperative strategies

The cooperative strategy (Glotzbach et al., 2015; Lin et al., 2017) for a mission tackles the
cooperative behavior which is not covered in the individual vehicle’s mission plan and must
ensure two things:

1. That vehicles do not collide.

2. That the vehicles’ simultaneous presence is exploited.

Among other things, the cooperative strategy can contain team constraints, which are rules of
how the vehicles should relate to one another. A team constraint could be that vehicle A must be
within a distance r of vehicle B at all times. Given a path following maneuver, this would mean
that the team follows the path subject to this constraint. Say vehicle A has a thruster malfunction
and cannot keep the desired velocity. Vehicle B then has two choices; slow down in order not
to violate the constraint or continue at the assigned velocity. Which choice is the right one is
defined in the cooperative strategy and varies depending on the nature of the mission. A team
constraint can apply to the team as a whole or only parts of the team.

Mission languages

To communicate the mission plan and cooperative strategies between the mission control system
and one or more vehicles the mission plan must be written down or specified in some way. The

7

Chapter 2. Literature Review

solution is to use an ML to describe the sequence of tasks to undertake when carrying out the
mission. Some languages introduce verification capabilities, others introduce planning skills,
and the right choice when picking an ML for a system will vary (Palomeras et al., 2012). No
single ML fits all types of missions, and often one will see that different actors have tailored
MLs for their vehicles and missions. In the following section, some examples of MLs are
presented.

A mission can be specified in a regular language2 by abstracting the mission elements. The
benefits of regular languages as MLs are discussed in McMahon and Plaku (2016). When using
a regular language, the risk of error on a human operator’s part is significantly reduced due to
the rules imposed by the regular language. There are three additional properties making regular
languages suitable as MLs. The first being that regular languages have logical operators which
enable definition of hierarchical tasks. Secondly, regular expressions may be expressed via
several computational models, and finally, the variety of regular languages and the possibility
of converting from one language to another gives the user an increased when defining a mission.

Using a human-readable and writable ML makes it easier for the operator to understand the
mission plan. Eckstein et al. (2013) evaluated Python3 as an ML, and concluded that Python
was not suited as an ML. The most significant shortcoming of Python was the complexity when
checking the mission plan. A check to identify deadlocks must be run whenever a mission plan
is received or updated. Python as an ML introduces the cumbersome process of checking every
”if” and ”switch” statement to verify all possible outcomes.

Fortunately, there are other options when a human readable ML is to prefer. Description lan-
guages, as Extensible Markup Language (XML)4 are good candidates. The extensive use of
XML is an advantage because it means there are parsers available in most programming lan-
guages for the mission handler to translate the mission plan. However, there is an overhead with
XML when wanting to update a mission, which has to be handled, despite this, Eckstein et al.
(2013) deemed that XML is a suitable ML.

Another option could be to use a high-level ML and compile the plan into a Petri Net5. This
process is described in detail and discussed in (Palomeras et al., 2008).

2A regular language is a formal language used in formal language theory and theoretical computer science. For
a more detailed description of regular languages see https://goo.gl/f4SLQY

3Python is a widely used high-level programming language
4XML is a markup language used to describe data. The format of the XML file is quite flexible and is both

human-readable and machine-readable.
5A Petri net is a mathematical modeling language. See https://goo.gl/Hmvrpg for a detailed descrip-

tion.

8

https://goo.gl/f4SLQY
https://goo.gl/Hmvrpg

2.2 Mission Planning

Approaches to generating a mission plan

Kothari et al. (2012) define three ways that a mission plan for specified objectives and a fixed
set of maneuvers can be generated:

1. Directly by a human operator.

2. By solving a control problem on a fixed discrete/hybrid graph containing the set of pos-
sible environment and vehicle actions.

3. By using constraint problem-solving algorithms.

Which approach is the most suitable will vary with the mission objective, computational power
available, and environmental conditions. This thesis gives an example of a mission plan gen-
erated by a human operator, and Bloem et al. (2012) and Py et al. (2010) presents two mission
planners based on the second and third approach, respectively.

2.2.2 Challenges

There are several challenges associated with mission planning for AUVs, and the number of
issues grows when several vehicles are added to the mix. A common denominator for many
of the challenges is unreliable communication. On the surface, some vehicles use cellular and
satellite communication, but this has high latency and limits the size of the data being trans-
ferred. When subsea, not all types of signals can be conducted, e.g., GPS signals, limiting the
communication abilities even further. Acoustic communication is utilized for passing messages
subsea, but this is prone to interference, disruption and unpredictable delays (Madureira et al.,
2013).

As a consequence of the unreliable and restricted communication, missions with AUVs are
prone to lacking reliable position measurements subsea, spatial restrictions between vehicles to
preserve communication links, and challenges in how to handle large volumes of data. Also,
mission planners and cooperative algorithms, in these types of missions, must be robust for
communication faults.

Changing dynamics in mission environments pose a challenge if a vehicle’s dynamics are al-
tered as a result. McMahon and Plaku (2016) discuss how not considering this possibility in the
initial planning phase may render certain tasks infeasible if a vehicle’s dynamics are changed.
In the case of unknown or uncertain environment dynamics, a solution could be to estimate the
next state of the environment based on the current state and use this to conclude on the impact
on the vehicle’s dynamics in-situ. However, this approach is not without its challenges, and the
following discussion is made in MahmoudZadeh et al. (2016):

9

Chapter 2. Literature Review

”In large-scale operations, accurate estimation of the next state of the operating field
(e.g., obstacles’ behavior, etc.), far beyond a vehicle’s current position and sensor
coverage, is computationally hard and experimentally impractical.”

Obstacle avoidance is essential during mission execution as the mission environment may have
both stationary and moving obstacles. The challenge is deciding where in the architecture the
obstacle avoidance should be placed. It can be integrated into the maneuvers or placed in the
mission planner. Some obstacle avoidance is necessary for the maneuvers, but placing too
much obstacle avoidance here would mean increasing the level of control in the maneuvers.
Placing the majority of the obstacle avoidance in the mission planner could lead to an overly
complicated plan. Examples of how this has been solved are presented in Kothari et al. (2012).

2.3 Cooperative Underwater Systems

The introduction to this thesis sheds light on the need for cooperative systems to conduct the
complex applications that are subsea, and which benefits deploying multiple vehicles rather than
a single vehicle entails. Research on the problem of cooperative and coordinated multi-vehicle
systems began in the nineteen-eighties, and the interest in the field has grown as the multi-agent
technology and complexity and diversity of undersea tasks have evolved (Yao, 2013).

The following sections present state-of-the-art cooperating and coordinated underwater sys-
tems, successful applications, and the formation control problem.

2.3.1 State-of-the-art

At the beginning of the 2000’s the Iraqi Freedom mine countermeasure action was conducted.
A task that would have taken 21 days was conducted in just 16 hours by a team of REMUS
small UUVs (Yao, 2013). This action exemplifies the superiority of a system of multiple UUVs
when it comes to time and space resolution.

A large part of the research in the field has been driven by the military’s interest and needs.
The US Navy’s UUV Master Plan was completed in the year 2000 and detailed the need, vi-
sion, and approach for the US Navy’s development of UUVs (Fletcher, 2000). As a result,
the Cooperative Autonomy for Distributed Reconnaissance and Exploration (CADRE) system
was developed. The CADRE system is a framework for the coordination of heterogeneous col-
lections of unmanned vehicles for autonomous execution of goal-oriented missions. Among
the needs specified in the master plan were; communication and navigation aids, and undersea
search and survey, and the CADRE system addressed both of these needs (Willcox et al., 2006).

10

2.3 Cooperative Underwater Systems

The CADRE system was developed within the context of undersea mine countermeasures mis-
sions and consists of a network of AUVs and unmanned surface vessels that conduct undersea
mine countermeasures surveys while remaining in constant contact with each other via a multi-
modal communication architecture (Bibuli et al., 2015; Willcox et al., 2006).

Another approach for networked vehicles was proposed by the GREX project, a European re-
search and development project, which studied coordination and control of cooperating hetero-
geneous unmanned systems in uncertain environments. The result of the project was a concep-
tual framework and middleware systems for coordinating a swarm of pre-existing heterogeneous
vehicles cooperating to achieve a well defined practical goal (Kalwa, 2010). The final sea trial
was conducted in 2009, where a network of two AUVs and two catamarans completed a mission
using the GREX-system.

A framework with a similar purpose as the GREX system is the MORPH (Marine Robotic
System of Self-Organising, Logically Linked Physical Nodes) concept (Kalwa et al., 2012).
In addition to the existing abilities of the GREX framework, the vehicles executing a mission
based on the MORPH concept maneuver in predefined formations. Karimanzira et al. (2014)
present simulation results based on the MORPH concept where several vehicles equipped with
various sensors and cameras are deployed in a formation to map an ocean structure.

Sujit and Saripalli (2013) present a theoretical approach to coordinating an AUV and Unmanned
Areal Vehicle (UAV) in the tracking of visible ocean features, e.g., oil spills. By exploiting the
UAVs ability to cover large areas in a short period and the AUVs local coverage and capability
to take measurements with high accuracy. The mission is planned in-situ based on the values of
the AUVs measurements.

Successful applications of cooperative underwater systems in the field include 3D modeling of
a water lagoon’s salinity by executing four AUVs simultaneously (González et al., 2012) and
tracking fish using a team of homogeneous AUVs to improve the estimated position of the target
and pursuing it (Lin et al., 2017).

2.3.2 Formation Control

Formation control describes the task of controlling a group of robots to complete a mission
and at the same time keep a desired shape. It is considered a fundamental problem in the field
of cooperating systems in the air, on the ground, and at sea (Cui et al., 2010; Essaouari and
Turetta, 2016). A solution to the problem should manage the robots in the team to ensure that
they all are spaced appropriately and do not collide with their neighbors. Compared with aerial
vehicles and ground mobile robots, studies on multi-AUV formation control are lagging behind.

11

Chapter 2. Literature Review

However, as some of the approaches to formation control on the ground and in the air can be
modified for subsea applications, it is a natural starting point for a study on formation control of
AUVs (Li et al., 2014). Existing methods within formation control can be divided into two main
categories; algorithmic and analytic. Methods that fall into the analytic category can be verified
using mathematical tools, while algorithmic methods are studied through simulation. There
are three central approaches to formation control; behavior-based formation control, virtual
structures and leader-follower systems. The first one falls into the algorithmic category, and the
remaining are defined as analytic methods (Breivik et al., 2008).

In addition to an approach for formation control, an architecture which decides where the for-
mation control is placed in the system architecture must be in place. Two architecture types
are commonly used in formation control; centralized and decentralized. A description of both
based on Essaouari and Turetta (2016) and Pantelimon et al. (2018) follows. In a centralized ar-
chitecture (illustrated in Figure 2.1a), decisions are made by a Central Control Unit (CCU) and
communicated to the individual vehicles to be executed. The CCU can communicate with each
vehicle and exercise control over it. Advantages of this architecture are that a vehicle does not
need to be aware of the other agents in the network, control algorithms in this architecture can
often be simplified, and relieving the individual agent of control increases their capacity for sen-
sory infrastructure and payload. A disadvantage is that a failure in the CCU disables the whole
system. A limitation of the centralized architecture is that the maximum number of agents is
decided by the processing and communication capabilities of the CCU. Also, the spatial ex-
tension of the mission is limited by the communication range of the CCU. In a decentralized
architecture, the control is placed with the individual agents and the agent share information
as illustrated in Figure 2.1b. All decisions are made based on local information, i.e., feedback
from the vehicle and its neighbors. By decentralizing the control system, fault tolerance is in-
troduced into the system, and a fault in a single vehicle does not disable the whole system, only
the vehicle in question. Another advantage of the decentralized architecture is that the number
of vehicles is widely scalable. What limits the architecture is the communication capabilities of
the whole network.

12

2.3 Cooperative Underwater Systems

(a) Centralized architecture. (b) Decentralized architecture.

Figure 2.1: Visualization of centralized and decentralized architectures. The arrows represent commu-
nication links.

Behavior-based formation control

Behavior-based methods are often implemented in a decentralized architecture (Cosic et al.,
2013), and the idea is to prescribe a set of desired behaviors for each vehicle based on different
factors during mission execution. Behavior in this context is synonym with vehicle primitive,
and basic behaviors include formation maintenance, obstacle avoidance, collision avoidance,
and goal seeking. The basic behaviors are given a relative priority, and a resulting control action
for the vehicle is obtained as a weighted average of the desired behaviors in each iteration (Cosic
et al., 2013; Beard et al., 2001; Li et al., 2014). Formation behavior is naturally found in nature,
like flocking of birds and schooling of fish, and early research in the field of behavior-based
control was in the context of simulating flocks of birds for computer graphics (Balch and Arkin,
1998). Since then, several approaches to formation control using the behavioral approach have
been developed. A brief review of a few of these follows.

In McColgan and McGookin (2016), the schooling behavior of fish is used to coordinate multi-
ple biomimetic AUVs 6. In Jia and Li (2007), a behavioral approach is combined with potential
functions to control multiple AUVs in a predefined formation while avoiding obstacles. The
application of the behavioral approach in a mission planner for target searching and recognition
in formation with AUVs is described in Sorbi et al. (2012).

Behavior-based methods inherit advantages such as explicit feedback on control actions and
fault tolerance from the decentralized architecture. Another advantage is that it is natural to
derive a control strategy despite competing objectives. Disadvantages include the lack of a
way to explicitly define group behavior and the difficulty of mathematically guaranteeing the
stability of a solution. When competing objectives are combined, occasionally strange and
unpredictable things might occur. Given these realities, behavior-based approaches are often
associated with other formation control methods. (Beard et al., 2001; Li et al., 2014)

6 A biomimetic AUV is an AUV that employs similar propulsion and steering principles as real fish.

13

Chapter 2. Literature Review

Virtual structures

Another solution to the formation control problem is to organize the vehicle team as a virtual
structure. A virtual structure consists of a collection of elements, e.g., AUVs that make up nodes
in a rigid virtual structure. The elements maintain their shape through constraints preserving the
geometric relationship between the individual elements and to a frame of reference (Lewis and
Tan, 1997; Cosic et al., 2013; Essaouari and Turetta, 2016). The method entails three repeating
phases. First, the desired dynamics of the virtual structure is established, then the dynamics are
translated to the individual vehicles, and finally, a control action is calculated for the individual
vehicles (Beard et al., 2001; Lewis and Tan, 1997). The virtual structure approach can be
structured in both a centralized and decentralized architectures (Pantelimon et al., 2018).

There are many examples of virtual structures in formation control, but few related to AUVs
and only in two dimensions. Cooperating AUVs in formation observing and predicting ocean
processes are reported in Fiorelli et al. (2006). Reports of virtual structures being combined
with other methods for formation control, such as potential fields (Pan et al., 2017; McIntyre
et al., 2016) and leader-follower methods (Yan et al., 2016; Rout and Subudhi, 2016; Zhang
et al., 2016) are more frequent.

Advantages and disadvantages of the architecture will be inherited by the virtual structure
method. Other advantages include that feedback to the virtual structure is naturally defined
and that it is fairly easy to prescribe a coordinated behavior for a group. A disadvantage is that
the rigid constraints of a virtual structure may limit the potential applications for the vehicle
team. (Beard et al., 2001)

Leader-follower

In leader-follower formation control, a vehicle in the group is designated leader, and the vehicles
designated as followers track the leader’s movement in a given geometric formation or with a
time offset (Cosic et al., 2013; Beard et al., 2001). Variations of leader-follower methods include
multiple leaders in a team, chaining the vehicles, i.e., each vehicle follows the vehicles in front
and leads the vehicle behind, and many more. Leader-follower methods can be organized in
both a centralized and decentralized architecture (Pantelimon et al., 2018).

Systems using leader-follower methods involving AUVs are described in Yao (2013), where
the vehicle with the highest accuracy navigation system in a heterogeneous team is set as the
leader and the rest as followers; in Lapierre et al. (2003), where a team of two AUVs orga-
nized as leader and follower maneuver parallel paths and the follower adapts its speed based
on the leader; in Paliotta et al. (2015), where a constant bearing controller is developed, and
the followers successfully track the leader in simulation using the leaders velocity data; and

14

2.4 Summary

in Soares et al. (2013), where a three-vehicle team of AUVs has two designated leaders and a
single follower.

Comparing virtual structures and leader-follower methods, a clear advantage of the latter is
the possibility of time-varying formations, allowing for maneuvering in complex environments
(Cosic et al., 2013). Other advantages include that it is relatively straightforward to implement
and understand, easy communication structures due to only one way broadcast being required,
and scalability (this is conditioned of a decentralized architecture). Disadvantages of a leader-
follower method are that a failure in the leader means the mission fails and that there is no
explicit feedback from the followers to the leader. (Pantelimon et al., 2018; Li et al., 2014)

2.4 Summary
The following section outlines which of the concepts and approaches discussed in the literature
review have been used in the implementation of the MCS and formation control method. In the
case of several options, an argument is made to support the choice.

To avoid developing a translator for translating the mission plan generated by the mission plan-
ner, the mission language implemented on board the vehicle has been used in the MCS. Inter-
Module Communication (IMC) messages are XML based, and a closer presentation of IMC
messages and the communication protocol is given in Section 3.4.

The mission plan is generated directly by a human operator. This approach was selected due
to the low complexity of the missions and the limited amount of maneuvers and constraints
required to reach the goal. The author deemed all three approaches to generating a mission plan
satisfactory, but this as the most straightforward to implement.

A centralized architecture was chosen first and foremost for its decoupled properties. The ar-
chitecture makes it trivial to exchange a simulated vehicle for a real one without affecting the
performance of the remaining team members. Also, the vehicles’ payload and sensory capaci-
ties are preserved to allow for later expansions of the mission planner.

Finally, the formation control method was designed based on various properties from both al-
gorithmic and analytic methods, with the goal of creating a method that would work based on
the vehicle, field conditions, and time at the author’s disposal. The behavioral properties were
deciding, causing the formation control to be categorized as an algorithmic method.

15

Chapter 2. Literature Review

16

Chapter 3
System Description

This chapter is dedicated to presenting the software and hardware in the system used to operate
the cooperative AUVs. The central components and their purpose in the greater system are
discussed. Figure 3.1 gives an overview of the system components. Green components are
essential for the system functionality, while the blue may be removed without loss of system
performance. The arrows represent communication links.

Figure 3.1: System overview including software and hardware components, and communication links.
The arrows represent the communication links, and the blue component may be excluded without loss of
system functionality, while the green components may not.

17

Chapter 3. System Description

3.1 LAUV
The vehicle used for testing the MCS and formation control is Fridtjof, an LAUV owned by
NTNU. The LAUV is developed by the Underwater System and Technology Laboratory (LSTS)
at Porto University in cooperation with OceanScan-MST. The LAUV was developed for security
and surveillance, oceanography, and hydrography purposes, and is easily launched, operated,
and recovered with minimal operational setup (Madureira et al., 2013). The vehicle is oper-
ated with software developed by LSTS; DUNE for on board operations and IMC messages for
communication, and a presentation of these is given in Section 3.3. The vehicle is operated
with LAUV Remote1 close to shore, and a desktop command and control software like Neptus
(Section 3.3.2) or the MCS (Section 3.2) once it is a safe distance from shore. Figure 3.2 shows
the vehicle ready for deployment.

Figure 3.2: LAUV Fridtjof ready for deployment in the Trondheim Fjord.

LAUV Fridtjof supports twelve motion primitives, but the system only requires one; the go

to maneuver. The motion primitive maneuvers the vehicle to a waypoint defined by latitude,
longitude, and depth or altitude, at a specified speed. The desired attitude at the destination can
also be defined, but this property is not enabled by the system.

There is little documentation on how the maneuver is implemented. However, based on the
author’s observations and code review it is assumed that the go to maneuver generates a straight
path between the vehicles current position and the desired waypoint. The vehicle then uses
line-of-sight guidance to maneuver onto the path with the right heading and continues straight
forward.

The vehicle uses GPS for positioning on the surface, the propeller’s revolutions per minute

1LAUV Remote is an application developed by OceanScan-MST for steering an LAUV from a smartphone.
The application is free and available for download in Google Play.

18

3.2 The MCS

to estimate its velocity, and AHRS (Attitude and Heading Reference System) to measure its
attitude. The communication system on LAUV Fridtjof consists of a Wi-Fi system, a global
system for mobile communication, and an acoustic modem. The vehicle was on the surface
for the duration of the field tests in this thesis, and only the Wi-Fi system was used. The
vehicle acts as a wireless client and interfaces with other clients via a router, such as the Manta
Gateway (Section 3.3.3). In optimal conditions, the LAUVs Wi-Fi range may exceed 1000
meters. (OceanScan-MST, 2016).

3.1.1 LAUV Simulator

The LAUV simulator runs on DUNE and is also developed by LSTS. It is open source, and
available for download in the DUNE repository on GitHub2. An LAUV simulator is accessed
in the build folder in the DUNE directory and started using the command shown in Figure 3.3.
All simulations in this thesis have been performed with this simulator. To enable simulation
of several vehicles simultaneously the simulator files were duplicated and renamed, and unique
variables were modified. An overview of the modifications is given in Appendix D.1.

Figure 3.3: Command for starting an LAUV simulator in the terminal.

3.2 The MCS
The MCS is an application for mission planning, control, and monitoring for a fleet of up to three
LAUVs. The application may support other vehicles running on DUNE, such as autonomous
surface vehicles, but this has not been tested. Through the user interface an operator may
generate a mission and send it to the vehicles. The MCS handles formation control and allows
the operator to monitor and intervene during mission execution. The application runs on Linux
and is written in C++. A detailed description of the MCS’ user interface, functionality and
implementation is given in Chapter 4.

2The DUNE repository can be accessed via https://goo.gl/EkJ4jZ.

19

https://goo.gl/EkJ4jZ

Chapter 3. System Description

3.3 Additional Hardware and Software

3.3.1 DUNE

DUNE (LSTS, 2017; OceanScan-MST, 2015; LSTS, 2013a) is an embedded software for un-
manned vehicles with modules for control, navigation, simulation, networking, sensing, and
actuation. The software is developed by LSTS, and in addition to running on AUVs, DUNE
supports UAVs, ROVs, and autonomous surface vehicles. DUNE is written in C++ and com-
patible with many operating systems including, but not limited to, Linux, Microsoft Windows,
and Mac OS X.

Control logic

DUNE tasks make up the control logic for any running instance of DUNE. There are seven cate-
gories of DUNE tasks; actuator, sensor, estimator, controller, monitor, supervisor, and transport
tasks. These tasks handle the logic for separate parts of the vehicle and are separated into
threads that communicate by passing IMC messages.

For each category, there is a set of predefined methods that can be executed. The implemen-
tation of each method is empty and should be overridden to suit the vehicle in question. For
example, the implementation of a sensor task calling the method onActivation() should differ
for an LAUV and a UAV. For this thesis, the default implementation for LAUVs has been used.

Configuration

There are three profiles available in DUNE; simulation, hardware, and hardware-in-the-loop.
Simulation means the system is not connected to any hardware and data is produced by sim-
ulated hardware components. The hardware profile requires there to be a connection to the
vehicle. Hardware-in-the-loop will have a connection to the hardware, but some, or all of the
sensors and actuators will have simulated input and output.

All DUNE instances share the same code base but have different configurations. An LAUV
running with the hardware profile shares a code base with a UAV in a simulation, and this
versatile application of DUNE is enabled by its modularity. A DUNE instance can run any of the
predefined profiles; the profile need only be specified by the user in the configuration file. When
initializing a new instance of DUNE a configuration file is run. The configuration file enables
and initializes or disables DUNE tasks for the vehicle and profile in question. Configuring a
vehicle is very simple because all that is needed is a single file and a specification of which
profile it is to run.

20

3.3 Additional Hardware and Software

3.3.2 Neptus

Neptus (LSTS, 2013b) is a software in the LSTS toolchain for command and control of un-
manned vehicles. Neptus supports all the phases of a typical mission life cycle; planning,
execution, and review and analysis (Madureira et al., 2013). It is possible to exclude Neptus
from the presented system architecture without loss of the command and control functionality
demonstrated in this thesis. There are two primary interfaces for Neptus; the operator console
and Neptus Mission Review and Analysis (MRA).

Operator console

The operator console is the Neptus application an operator would use to plan and execute a
mission. The needs of an operator differ when working with a UUV or UAV, and Neptus allows
for these variations by having a configuration file for each console. The configuration file states
which add-ons, both custom and open-source, should be active and not in the various profiles.
In Neptus, a profile specifies the layout of a console and each console can have several profiles.
Which profile to run is specified during configuration.

Figure 3.4 shows the operator console for an LAUV during mission execution for a team of three
LAUVs. It is not possible to say whether or not the vehicles are simulated or real by looking
at the interface. Neptus does not have functionality for planning team missions but supports
monitoring all the vehicles simultaneously and send them commands individually. The LAUV
operator console has a toolbar for mission planning and map interactions to the left. Mission
commands can also be generated by clicking directly on the map. To the right, there are buttons
for plan control, an overview of the current plan, and a list of the previous mission sent to the
vehicle.

Neptus MRA

Neptus MRA is an application for inspecting and analyzing mission data (Holsen, 2015). All
vehicles running on DUNE create a log file during execution of a mission containing all sent
and received IMC messages. Neptus MRA has functionality for loading and decompressing the
logs into text files for further visualization, processing and export (Pinto et al., 2012).

21

Chapter 3. System Description

Figure 3.4: Screenshot of Neptus’ LAUV console during an active mission with three simulators.

3.3.3 Manta Communications Gateway

The Manta Communications Gateway, commonly referred to as ”the Manta”, is developed by
LSTS and integrates several capabilities including Wi-Fi, acoustic modem, and GPS (OceanScan-
MST, 2016). Only Wi-Fi is required for the presented system to function, but the acoustic mo-
dem was enabled in case of emergency during field tests. The Manta’s Wi-Fi signal has a range
of up to 4.5 km and the acoustic modem a range of up to 1 km (LSTS, n.d.b). The Manta routes
signals interfacing a vehicle with clients, e.g., a PC running the MCS or Neptus, or a mobile
telephone running LAUV Remote. Figure 3.5 shows the Manta prepared for mission execution.

The Manta can connect to different vehicles, but only one at a time and this is set by the operator
before mission execution. During a field test, one Manta would be required for each vehicle.
Figure 3.6 shows the Manta close up. The information screen gives the operator information
about which system the Manta is connected to and displays short messages from the system. A
switch and three buttons are placed beneath the information screen. The switch to the far left is
used to power the system on and off. The black button next to the switch is used to specify the
vehicle. The green button pings the vehicle and the distance to the vehicle is displayed on the
information screen when an answer is received. This functionality was used during field tests to
ensure that the vehicle was still within the Wi-Fi-range of the Manta. The red button sends an
abort message via all available channels to the vehicle which then stops all current actions and
goes into standby mode.

22

3.3 Additional Hardware and Software

Figure 3.5: The Manta prepared for mission execution.

Figure 3.6: The Manta up close depicting the information screen and switched and buttons available.

23

Chapter 3. System Description

3.4 Communication
Communication in the system is enabled by IMC messages, and the Transmission Control Pro-
tocol (TCP)3 is used to establish the communication links. Depending on which components
are communicating with the MCS, the messages are routed via Wi-Fi or through local ports on
the PC. In which manner an individual message is routed is handled by the TCP protocol, as the
MCS cannot distinguish between simulated and real vehicles. The following sections describe
the IMC protocol and some essential message types passed within the system.

3.4.1 Inter-Module Communication Protocol

The IMC protocol (Martins et al., 2009; LSTS, n.da) is an XML-based message-oriented com-
munication protocol developed by LSTS that defines a common control message set understood
by all types of vehicles and computers running DUNE. The protocol comprises seven logical
message groups; (1) mission control, (2) vehicle control, (3) maneuver, (4) guidance, (5) navi-
gation, (6) sensor and (7) actuator. Messages in groups (1) and (2) are passed between the MCS
and the vehicle’s units for mission and vehicle supervision. The remaining message groups
are utilized when messages are passed between the various on board vehicle components. Fig-
ure 3.7 shows the components on board the LAUV and how the communication is structured
between the components and the MCS.

3TCP is a standard protocol which defines how to establish and maintain a connection and allows for sending
an receiving data over a network in a reliable manner without loss of information.

24

3.4 Communication

Figure 3.7: The use of IMC messages between the MCS and LAUV, and within the LAUV system.
Adapted from Martins et al. (2009).

IMC Messages

All IMC messages begin and end with non-empty headers and footers that have the same struc-
ture for all message packets. The data fields in the message convey relevant information about
a given subject and may be in the format of an IMC message, integer, floating point num-
ber, or variable length bytes. An extensive description of the IMC protocol is published on
https://goo.gl/ANUUBw and the essential IMC messages passed between the MCS are
discussed in the following. IMC messages sent within the system demonstrating the message
structures are available in Appendix C.

Vehicle state is a message periodically sent from the vehicle to the MCS that summarizes the
overall state of the vehicle. Data fields of interest are; operation mode, current maneuver, and
any field conveying information about errors.

Estimated state is a message periodically sent from the vehicle to the MCS containing the
estimated states of the vehicle. Data fields of interest are; lat, lon, x, y, depth, and psi.

Plan control state is a message periodically sent from the vehicle to the MCS containing the
overall state and progress of the current and last mission. If no plan is being executed, default
values are used in the data fields concerning the current mission.

Plan control is a message sent from the MCS to the vehicle with a request regarding a plan.
The request could be to start, load, stop, or get a mission plan. The message does not contain

25

https://goo.gl/ANUUBw

Chapter 3. System Description

the mission plan, just an identifier so it can be linked to a mission plan received in a plan

specification message.

Plan Specification is a message sent from the MCS to the vehicle containing a mission plan.
The mission plan is described by some general parameters, a list of maneuvers, and a list of
transitions to be executed between the maneuvers.

3.5 Formation Control

The formation control method designed in this thesis has properties from existing formation
control methods and is defined as an algorithmic method. Team members are categorized as ei-
ther master or slave, and only one master is assigned per vehicle team. The method is described
in three parts; formation, path generation and guidance, and maneuvering, and control algo-
rithm. All equations in this section relating WGS 84 coordinates4 to a displacement in meters
are based on the assumption that the earth is spherical.

3.5.1 Formation

The formation of the team is inspired by virtual structures, and the vehicles are placed in a
coordinate system where the master’s position defines origin. The position of each slave i is
defined as a displacement δxi on the x-axis and δyi on the y-axis, from the master’s position.
The structure does not rotate, and the attitude of the individual vehicle is not taken into account.
Figure 3.8 visualizes the displacements and constraints for a team consisting of a master and
slave. A constraint (3.1) is set onto the distance d between the master and slave to preserve the
geometrical relationship between the vehicles. Some deviation ε is allowed before the slave is
considered to violate the constraints and counteractive measures are taken.

4The coordinate origin of WGS 84 is meant to be located at the Earth’s center of mass and is used as a standard
in navigation.

26

3.5 Formation Control

Figure 3.8: Illustration of displacements, distance, and constraint for a two-vehicle team in formation.

d ∈
[√

∆x2 + ∆y2 − ε,
√

∆x2 + ∆y2 + ε
]
. (3.1)

The vehicles’ positions are defined in WGS 84 coordinates in the MCS and require conversion
before the constraint can be checked. The Haversine formula (3.2), given in Calculate distance,

bearing and more between Latitude/Longitude points (n.d.), is used to relate two latitude/longi-
tude coordinates to a displacement in meters.

a = sin(∆φ/2)2 + cos(φS) · cos(φM) · sin(∆λ/2)2,

c = 2 · atan2(
√
a,
√

1− a),

d = R · c,

(3.2)

where ∆φ is difference latitude, ∆λ is difference longitude, R is the earth’s radius, and d is the
distance between the two coordinates in meters.

27

Chapter 3. System Description

3.5.2 Path Generation and Guidance

The master’s path is generated by the operator selecting waypoints, and these being connected
by straight lines. The waypoints are later displaced to generate paths with the same shape and
length for the slaves. The equation for displacing the waypoints is given in Calculate distance,

bearing and more between Latitude/Longitude points (n.d.) and stated in (3.3).

φS = asin(sinφM · cos δ + cosφM · sin δ · cos θ),

λS = λM + atan2(sin θ · sin δ · cosφM , cos δ − sinφM · sinφS),

where

θ = atan2(∆x,∆y),

d =
√

∆x2 + ∆y2,

δ = d/R,

(3.3)

and φ is latitude, λ is longitude, ∆x and ∆y are displacements in meters, and R is the earth’s
radius.

Before the MCS accepts the paths, they are checked for potential collisions. The paths are
parameterized, and the distance between points on the parameterized lines are checked against
a threshold set by the operator. The piecewise parametrization of the path is given in (3.4),
where A, B are two waypoints. The distance d between points on the path is given by (3.2) and
checked to satisfy d > dmin. dmin is set by the operator and is the minimum distance allowed
between two vehicles in the team.

φ(t) = φA +
»

ABφ · t,

λ(t) = λA +
»

ABλ · t,
t ∈ [0, 1],

»

AB = [φB − φA, λB − λA], (3.4)

where φ is latitude, λ is longitude, t is the parameterization variable.

The guidance in the formation control method stands out from other leader-follower approaches
because there is no explicit synchronization of path variables or direct feedback of the master’s
position to the slaves during guidance. Instead, all vehicles start execution of their predeter-
mined path at the same time, with the same desired speed set onto the speed controller, and
no external actions are taken unless team constraints are violated. The team constraint are pre-
sented in Section 3.5.3.

28

3.5 Formation Control

A prerequisite for this strategy to work is that the vehicles are in formation before mission
execution begins, and this is achieved by commanding the vehicles to the first waypoint before
mission execution. To ensure that the vehicles have the right heading before starting the mission
their path includes a waypoint X before reaching the first waypoint. X is generated based on
the two first waypoints on the path A and B. Starting in A, X extends the line between A and
B by 20 meters. The coordinates of X are given by (3.5).

φX = φA − α ·∆φ,

λX = λA − α ·∆λ,

where

∆φ = φB − φA,

∆λ = λB − λA,

α =
20

l
,

(3.5)

and φ is latitude, λ is longitude, and l is the straight line distance between A and B.

3.5.3 Control Algorithm

The formation control is placed in the MCS, resulting in a centralized control architecture. A
control algorithm that checks the team constraints, and takes action if any are violated, is looped
during mission execution. The algorithm falls into the category of behavior-based control, and
three behaviors are available for the vehicles; path following, collision avoidance, and formation

preservation. However, the vehicle’s resulting behavior is not a weighted combination, as the
regular practice, but rather a single behavior. Path following is the default behavior, and the
cooperative strategies activate the two remaining behaviors.

Team constraints and cooperative strategy

Two team constraints have been defined in the formation control method, and they are presented
in Table 3.1. TC2 is in place to ensure that the vehicles do not collide, and violation of this
constraint should result in one or more vehicle switching behaviors from path following or
formation preservation to collision avoidance. Cooperative strategies for handling the violations
have not been implemented and is left as further work. To preserve the formation, TC1 is set
onto each vehicle, and five cooperative strategies, presented in Table 3.2, are designed to handle
violations of this constraint. The cooperative strategies define which vehicle should switch

29

Chapter 3. System Description

behaviors if different situations. CS1 and CS4 state that the master waits, i.e., take on formation
preservation behavior, once for each slave if it falls behind, and once if the master catches up to
it. A consequence of this is that a master will stop considering a slave as a team member if it has
previously taken action not to violate the constraint. The master switches back to path following
behavior once the constraint is satisfied or when the waiting period, currently set to 30 seconds,
is over, whichever comes first. CS2 and CS3 state that a slave must always wait if the master
falls behind or the slave catches up to the master. There is no waiting period, and therefore the
slave must wait until the constraint is satisfied before switching to path following behavior. To
avoid producing of additional constraint violations, C5 ensures that all slaves satisfying TS1
wait while the master waits.

Table 3.1: Team constraints in the formation control method.

ID Description

TC1 A slave must always be within a radius of ε from it’s desired position.
TC2 The distance between two vehicles must always be greater than dmin.

Table 3.2: Cooperative strategies for handling TC1 violations.

ID Situation Action

CS1 A slave falls behind during mission execution. Master must wait once.
CS2 Master falls behind during mission execution. A slave must always wait.
CS3 A slave catches up to master during mission execution. A slave must always wait.
CS4 Master catches up to a slave during mission execution. Master must wait once.
CS5 Master waits for a slave. All remaining slaves must

always wait.

30

3.5 Formation Control

Control loop

The control algorithm is looped five times per second for each slave and has conditions in place
to catch and identify constraint violations. The conditions are given in (3.6).

Condition 1: d /∈ [dMS ± ε],

Condition 1.1: d > (dMS + ε) & %S < %M ,

Condition 1.2: d > (dMS + ε) & %S > %M ,

Condition 1.3: d < (dMS − ε) & %S > %M ,

Condition 1.4: d < (dMS − ε) & %S < %M ,

Condition 2: d < dmin,

(3.6)

where d is the distance between two vehicles, dMS is desired distance between a master and
slave, % is mission progress, dmin is minimum allowed distance between two vehicles, and ε is
the maximum allowed deviation for a slave. Subscripts M and S represent master and slave.

Condition 1 is true if a slave deviates more than allowed from its desired position, violating
TC1. Conditions 1.1− 1.4 are used to categorize the deviation even further and identify which
cooperative strategy should be activated. Condition 1.1 is true if the slave is too far away from
the master, and the slave’s progress is lower than the master’s, indicating that the slave is falling
behind. Condition 1.2 is true if the slave is too far away from the master, but has higher mission
progress, indicating that the master is falling begin. Conditions 1.3 − 1.4 cover the situations
where a slave and a master are too close to each other due to lower mission progress in one of
the parties. Condition 2 is true if the distance between two vehicles is less than the minimum
allowed distance, violating TC2. This condition must be checked for each slave in relations to
the master, but also for each slave in relation to the other slaves.

Algorithm 1 shows how the team constraints, cooperative strategies, and conditions are placed
in relation to each other in a control loop for a team consisting of a single master and slave. Note
that CS5 is only activated if the number of slaves in the team exceeds one. The outer if-loop
must be repeated for each slave included in the team. Condition 2 is checked before condition
1 because collision avoidance has higher priority than keeping the formation.

31

Chapter 3. System Description

while formation control active do
if Condition 2 / TC2 violated then

//not implemented
else if Condition 1 / TC1 violated then

if Condition 1.1 then
CS1, CS5

else if Condition 1.2 then
CS3

else if Condition 1.3 then
CS4

else if Condition 1.4 then
CS2, CS5

end
end

end
Algorithm 1: Formation control algorithm loop.

3.5.4 Verification

The vehicles switching behavior based on what happens in real time makes it difficult to prove
the validity of the formation control method analytically. Therefore, simulations and field tests
have been conducted to test the method, and the results are presented in Chapters 5 and 6. The
logical reasoning behind why the implemented cooperative strategies should yield successful
formation control is presented in this section.

First, an argument is made for the validity of the formation control method in the case where
the vehicle team is exposed to equal current, wind, and wave forces. It has been established that
the path generated for each vehicle has the same length and shape and that the desired speed is
identical. Further assumptions are:

1. The vehicles are homogeneous with similar vehicle dynamics.

2. The motion controllers on the vehicles are equal.

3. The vehicles are in formation and have the same heading before mission execution.

4. The generated mission is feasible.

The conclusion to be drawn from this is; if the vehicle’s start mission execution at the same
point in time and respond equally to the forces they are exposed to, their mission progress will
be identical, and the vehicles will complete the mission while staying in formation.

32

3.5 Formation Control

The second case to consider is the case of the vehicle team being exposed to non-uniform
external forces causing a violation of TC1, and the following assumptions are made in addition
to the assumptions stated in the previous case:

1. The mission progress sent by the vehicle is continuously updated and gives an accurate
representation of the vehicle’s mission progress.

2. The master’s wait period is sufficient for a slave to get back into the formation in the
absence of extreme external forces or a fault with the vehicle.

Noting that the conditions stated in (3.6) catch all violations of TC1 and that a cooperative strat-
egy is in place to restore the vehicle formation the following conclusion is drawn; if a vehicle
violates TC1, it is given a chance to get back into formation, if it is within the cooperative
strategy, before mission execution resumes.

33

Chapter 3. System Description

34

Chapter 4
The MCS

In this chapter the application developed as a part of this thesis, the MCS, is presented. The
previous version of the MCS and the most significant modifications are discussed in Section
4.1, and section 4.2 gives an overall description of the system including requirements and the
technology used. System components are discussed in Section 4.3 and the MCS is verified in
Section 4.4.

4.1 Previous Work
The MCS was first developed as a web application supporting mission planning, execution, and
monitoring for a single LAUV during the fall of 2017. Then, the purpose of the MCS was to
create a high-level mission planner interfacing ROS, a framework for writing robot software,
and the on board control system on LAUV Fridtjof; DUNE. The MCS was a proof of concept
supporting ROS as a framework for integrating heterogeneous vehicle teams with different on
board systems. For a more detailed description see (Buadu, 2017).

The MCS has been significantly changed for this thesis, the main difference being that the
MCS is now based on the DUNE framework. When designing the new version of the MCS
a high priority was to ensure that the shortcomings of the previous version were dealt with
appropriately. The issue of communication failures that occurred due to waypoints in a mission
plan being sent gradually during mission execution was therefore addressed. In the current
version, the complete mission plan is sent to the vehicle before mission execution. The map
in the current version does not require an internet connection to render, and functionality for
removing a single action from a mission plan without having to replan the whole mission has
been implemented. Other changes from the previous to current version include:

• The application platform being changed from web browser to desktop.

35

Chapter 4. The MCS

• Additional views being added.

• The implementation of support for mission planning for up to three vehicles.

• The implementation of formation control.

• The mission language being changed from ROS to IMC.

• The programming language being changed from JavaScript to C++.

The way an operator defines the mission plan, how to visualize a mission plan, and some module
components are preserved from the previous versions, in addition to relevant functional and non-
functional requirements. Note that none of the code from the previous version has been utilized
in the application presented in this thesis. All development has taken place during the spring of
2018.

4.2 Description
The MCS is a desktop application for mission planning, execution, and monitoring for fleets of
up to three LAUVs. The following sections give a more detailed description of the purpose of
the application, functional and non-functional requirements, and the technology used to build
the application.

4.2.1 Purpose

The project background sheds light on the challenges of applying formation control methods to
underwater vehicles and the limited amount of research available. The MCS provides a frame-
work for testing the formation control method proposed in this thesis, enriching the research
within formation control for underwater vehicles. The purpose of the MCS is to provide an
operator with a user interface for defining and connecting to a vehicle team, defining a simple
mission, setting constraints, and monitoring and controlling ongoing missions. All this while
ensuring the right balance of abstraction and level of detail to limit the risk of human errors,
and allowing the operator to make informed decisions.

4.2.2 Application Requirements.

The requirements for the MCS were derived based on the review of the previous version of the
MCS and the thesis objectives. The requirements are specified in Table 4.1, and the priority
ranging from ’High’ to ’Low’ was determined by the author.

36

4.2 Description

Table 4.1: Application requirements.

Requirement ID Requirement Priority
R1 Communication between the system and the LAUV should

be enabled by DUNE and IMC messages.
High

R2 All system functionality should be available offline. Medium
R3 A user should be informed if the communication link to a

vehicle is lost.
High

R4 The system should automatically reconnect to a vehicle if
the communication link is lost.

High

R5 Functionality that requires communication with a vehicle
should not be displayed if the communication link is not
established.

Medium

R6 The system should automatically generate paths for the
team members based on a path generated by an operator.

High

R7 It should be possible to send a mission plan to the vehicle
and start the execution at a later point in time.

Medium

R8 A user should be able to review the mission plan at all times. Medium
R9 The system should enable the user to monitor an ongoing

mission.
High

R10 A user should be able to abort an ongoing mission. Medium
R11 A user should be to able to replan the most recent mission. Medium
R12 It should be possible to generate a path by marking the way-

points.
High

R13 The system should resend a message until a callback is re-
ceived.

Medium

4.2.3 Application Code

A large part of this thesis has been to design and implement the MCS. To simplify interfacing
DUNE with the MCS the backend components of the application were written in C++. Keep-
ing the MCS as a web application was considered, but linking the backend code in JavaScript
proved challenging. Several programming languages were unsuccessfully tested for the fron-
tend development before C++ proved successful. Qt Creator (discussed in Section 4.2.4) was
used as the Integrated Development Environment (IDE) for building the application.

The development has mainly taken place in two files; gui.cpp and mcslib.cpp. The user interface
was designed using drag-and-drop functionality in Qt Creator, and a .ui file was auto-generated.
The code for handling the TCP-connections in the application is developed by OceanScan-
MST and open source, and the code for handling incoming messages is developed by NTNU.
All copied code is marked in the code files. All code is attached to this thesis, and a description
of the code is given in Appendix A.3.

37

Chapter 4. The MCS

4.2.4 Technology

C++

C++ is one of the most popular programming languages primarily utilized with system/appli-
cation software, drivers, client-server applications and embedded firmware (Inc., n.d.). The
language embodies both high and low-level language features allowing the programmer a large
amount of control, and at the same time access to well defined high-level features.

There is a wide range of libraries available for C++, simplifying development as functions for
solving defined problems are already implemented. A quick search for ”C++ library” on Surge-
Force, an open source software platform, yields more than 6000 hits. One of the open source
libraries included in the MCS is QCustomPlot, which defines the functions used to handle the
map in the MCS.

Qt

Qt is a cross-platform application development framework for desktop, embedded and mobile.
In addition to offering Qt Creator, an IDE for C++, modules such as QtGui and QtWidgets,
provide graphical components for designing an application. The C++ library QCustomPlot
previously mentioned is developed in Qt using among other things QtWidgets. Qt is a fully
functioning ecosystem for software development and has functionality for building and deploy-
ing applications. However, applications developed in the environment can be compiled by a
standard C++ compiler and deployed outside of the Qt environment as well.

Development of Qt started in 1990 by the Norwegian company Trolltech. Since then, it has
been widely expanded, and currently, it is known as the Qt Project. The Qt Project is based on
a community principle and contributions to the development of Qt, such as writing code, docu-
mentation for the framework, and reporting bugs, are made by the Qt Community consisting of
both individuals and companies. (Community, n.d.)

QCustomPlot

QCustomPlot is a Qt C++ widget for plotting and data visualization. The library offers function-
ality for making 2D plots and graphs, visualizing real-time data, and handling user interaction
on the plots or graphs. (Eichhammer, n.d.)

38

4.3 Application Components

mapz

https://www.mapz.com/ is a web page that offers city, regional and country maps of the
entire world for immediate download based on open source geographical data (About mapz,
n.d.). The map in the MCS was generated in mapz and downloaded as a PNG-file. Other
formats are also available for download, and mapz also offers integration of interactive maps in
web applications.

4.3 Application Components
The MCS consists of four views and a library called MCSlib. MCSlib implements an LAUV
class with functionality for communicating with a vehicle. The first three views are dedicated
to a phase of mission planning or execution. In view 1, the user selects the vehicle team and
sets details for the mission. View 2 allows the user to plan a path and load it onto the vehicles.
View 3 enables the user to control mission execution and monitor the vehicles. The final view
enables the user to induce test scenarios for testing the formation control method. The following
sections describe the library and three first views in detail.

4.3.1 MCSlib

The LAUV class has functionality for handling three tasks; (1) connecting to a vehicle, simu-
lated or real; (2) receiving and handling messages from the vehicle; and (3) sending mission
plans and control commands. The library is categorized as a backend component because none
of the functions are directly accessible by the user but rather executed on behalf of another part
of the system. A brief description of the class and how the three tasks are handled follows.

LAUV

Each vehicle object in the MCS is an instance of the LAUV class, and Figure 4.1 shows a class
diagram with all the public functions and variables. The object holds three structs that sum-
marize the vehicle and mission state; Situation holds information about the vehicle’s position
and pose; VehicleState holds the mode the vehicle is operating in, and PlanControlState holds
information about mission execution.

39

https://www.mapz.com/

Chapter 4. The MCS

Figure 4.1: Class diagram depicting all public functions and variables in the LAUV class.

Task 1: Connecting to an LAUV

The application connects to a vehicle through a TCP-link by specifying the server address and
port during initialization of the LAUV object. Fifteen attempts are made to connect to the vehi-
cle in the course of as many seconds. An established connection means a successful initializa-
tion, and the system may begin to send and receive messages from the vehicle. The connection
is continuously monitored with the function isConnectedDetermined.

Task 2: Receiving and handling messages

All incoming messages are handled by the function messageIn which takes an IMC message as
its only input. Every IMC message contains an id identifying the message type, and information
about the source of the message, i.e., the name of the vehicle. Once the source is confirmed as a
match to the vehicle object, the message is handled by a switch-case. Three message types are
defined in the switch-case; estimated state, vehicle state, and plan control state, if the message
is any other type, nothing is done. For an overview of the contents of the message types, see
Section 3.4.

In the estimated state message the data concerning the vehicle’s depth, heading and speed are
stored in the Situation struct. The vehicle’s position in latitude and longitude is computed
based on the assumption that the earth is spherical using (4.1) given by Calculate distance,

bearing and more between Latitude/Longitude points (n.d.). The lat and lon variables are con-
stant through mission execution and represent the latitude and longitude where the vehicle was

40

4.3 Application Components

initially booted. x and y are the displacement in meters from the initial booting point, the dis-
placement is defined in the north-east-down frame.

φ = Φ + x/R,

λ = Λ + y/(R · cosφ),
(4.1)

where φ = latitude, λ = longitude, Φ =lat, Λ = lon, and R is the earth radius.

The only variable of interest in the vehicle state message is operation mode, which holds the
mode of the vehicle. Possible values are; service, calibration, error, maneuvering, external
control, and boot, and the mode is saved in the VehicleState struct. Data from the plan control
state message is used to update the PlanControlState struct. The data in both structs is visualized
in view 3.

Task 3: Sending mission plan and control commands

The tasks of sending a mission plan, and starting and stopping mission execution are imple-
mented in four functions; startCustomMission, loadCustomMission, startMissionExecution,
and stopMissionExecution.

startCustomMission and loadCustomMission differ only by the operation request sent to the
vehicle. The first function sends a start request in the plan control message, while the latter
sends a load request. Both functions take four input variables; mission name, request ID (au-
tomatically generated by the MCS), list of waypoints, and the number of waypoints. Based on
these inputs, plan control and plan specification messages are generated and sent to the vehicle.
The waypoints are augmented with depth and speed data, z = 0 and u = 1m/s, before go to

messages are generated. Plan transition messages are generated based on the number of way-
points. The generated go to and plan transition messages are included in the plan specification
message before it is sent to the vehicle.

startMissionExecution is used to start execution of a pre-loaded mission plan. The function
takes two input variables; mission name and requestID (automatically generated by the MCS),
and generates and sends a plan control message with a start request for the named mission.

stopMissionExecution is used when a user wishes to abort mission execution. It takes the same
input as startMissionExecution, and sends a plan control message with a stop request to the
vehicle.

41

Chapter 4. The MCS

4.3.2 View 1

View 1, shown in Figure 4.2, is the first an operator sees when the MCS starts. The view
consists of four modules; select vehicles, available vehicles, mission details, and formation

control, that allow the operator to review the available vehicles, set the vehicle team, formation,
and constraints.

Figure 4.2: Screenshot of view 1.

Select vehicles

The select vehicles module is placed in the top left of the view and is a module for selecting a
vehicle team of up to three vehicles, specifying them as either a master or slave and connecting
to the vehicles. A dropdown menu appears for the user to assign a vehicle as master or slave, and
once a vehicle is selected, it is removed from the other lists, as shown in Figure 4.3. Clicking
the connect to vehicles button initializes an LAUV object for each team member, the server
address and port for each vehicle is already stored in the system. The button text changes to
connected when a connection is established. However, if the system is not able to establish
a connection to a vehicle a warning (Figure 4.4) is prompted. In the case that the MCS only
connects successfully to parts of the team, these vehicles and team assignments are locked, and
the user is prohibited from changing these assignments. The only way to disconnect from a
vehicle is to close the MCS.

42

4.3 Application Components

Figure 4.3: Select vehicle module for a two-vehicle team showing dropdown menu for slave A.

Figure 4.4: Warning dialog prompted when the MCS is unable to connect to a vehicle.

Available vehicles

The available vehicles module is placed on the top right of the screen and has a frame for each
vehicle stored in the MCS, containing the vehicle’s name and picture. Space is reserved below
for listing vehicle properties such as equipment and technical specifications.

Mission details

The mission details module is placed in the bottom right of the view and is where the operator
sets the vehicle formation and mission name. The operator inputs the displacement of each slave
relative to the master and the formation is visualized in the plot generated with QCustomPlot.
Clicking the confirm mission details button saves the mission name and formation. If the user
wishes to change either the mission name or formation, the mission must be replanned. A button
enabling replanning is placed in view 3. A prerequisite for confirming the mission details is
that the vehicle team is confirmed, i.e., the system has successfully connected to the selected
vehicles. If this is not the case, a warning (Figure 4.5) is displayed to the user.

Formation control

The final module in this view is the formation control module. The formation control method for
the mission can be selected using the radio buttons in the module. As only one formation control
method has been implemented in this thesis, default is always selected. If other methods are
added at a point in time, the user can select the preferred method by changing the radio button

43

Chapter 4. The MCS

Figure 4.5: Warning dialog prompted if the mission details are attempted confirmed before connections
to the vehicles are established.

selection. Two constraint variables are inputted by the user in this view; minimum distance,
and maximum deviation. Minimum distance, dmin, is entered in meters, and the value is used
directly in the formation control loop. Maximum deviation, l, is inputted as a percentage and
can be understood as a slave being allowed to deviate by up to l % of the given distance to the
master. The value of ε used in the control loop is given by (4.2).

ε =
√
dx2 + dy2 · l

100
. (4.2)

4.3.3 View 2

Vuew 2 is shown in Figure 4.6, and is the view where the operator generates a path for the
mission and reviews the mission plan. The view has three modules; map, path waypoints and
mission details.

Map

The map module takes up a large part of this view and is implemented with QCustomPlot.
The map is an interactive plot with a background image which is placed so that the corner
coordinates of the map coincide with the corners of the plot. The map depicts parts of the
Trondheim Fjord where the field tests were conducted. Vehicles are represented by triangular
markers showing the vehicles’ positions and headings, and the markers are updated each time
an estimated state message is received. The user adds waypoints to the mission plan by clicking
the map, and the path is generated as straight lines between the waypoints. Only the master’s
path is visualized during this stage of the mission planning.

44

4.3 Application Components

Figure 4.6: Screenshot of view 2.

Path waypoints

A table listing the generated waypoints is available to the user in the path waypoints module
placed in the top right of the view. The table holds id, latitude, longitude, and depth for each
waypoint. The user may remove waypoints from the path by clicking the trash symbol in the
leftmost column of the table. The remaining waypoints will then be connected to form a new
path as seen in Figure 4.7.

If the operator wishes to remove all the waypoints, the reset path button has this function. Click-
ing the check for collision button starts a function that checks the minimum distance between
the vehicles’ paths, and the result is either a warning dialog (Figure 4.8a) stating that the min-
imum distance is breached or an information dialog (Figure 4.8b) indicating that the path is
safe.

45

Chapter 4. The MCS

(a) Initial path with four waypoints. (b) Modified path with three waypoints.

Figure 4.7: Path modification when a waypoint is deleted from the mission plan.

(a) Warning dialog prompted if a potential collision is detected.

(b) Information dialog prompted if no potential collisions are detected.

Figure 4.8: Notification dialogs prompted after a path collision check.

46

4.3 Application Components

Mission details

An overview of the mission is placed in the lower right part of the view and comprises the
data in view 1 and the path waypoint list. In addition to data copied from other modules, the
estimated duration of the mission is displayed. This number is computed by dividing the length
of the path by the desired speed. When the user clicks the load mission plan button, a series of
checks are run which may result in either one of the following warnings being prompted to the
user.

• Please connect to vehicle(s) before loading mission plan.

• Please confirm mission details before loading a mission plan.

• Please enter a safety distance.

• Please enter a maximum deviation.

• A potential collision is detected (..) Please replan path or change formation.

If all the checks are passed, the loadCustomMission function is called for each vehicle with the
required mission details as input. When this is done, the slaves’ paths are drawn on the map,
and view 3 is displayed.

4.3.4 View 3

View 3 (Figure 4.9) is where an operator monitors and controls mission execution. The previ-
ously discussed map module is also included in this view, the only change is that user interac-
tions are disabled in this view. Two modules are placed to the right of the map; vehicle overview

and mission control.

Vehicle overview

The operator may monitor each team member’s position, speed, depth and operation mode in
the vehicle overview module. The overview of a single vehicle is shown in Figure 4.10. This
component is copied from the previous version of the MCS, with slight modification. The state
field holds one of the following texts; ready, error, maneuvering, or busy. Busy represents
the operation modes calibration, boot and external control. The remaining are copied directly
from the vehicle state message. The green circle represents a connection to the vehicle, if the
connection to the vehicle is lost the user prompted with a warning (Figure 4.11) and the light
turns grey.

47

Chapter 4. The MCS

Figure 4.9: Screenshot of view 3.

Figure 4.10: Vehicle overview for a single vehicle depicting a connected vehicle in a ready state.

Figure 4.11: Warning dialog prompted when the connection to a vehicle is lost.

48

4.4 Verification

Mission control

The mission control module informs the operator about the mission progress and has four but-
tons for mission control. The mission information displayed to the user includes; mission name,
state, progress, and estimated time of arrival. The state of the mission can be one of two things;
executing or successful. If a mission is aborted, this field is cleared. The mission progress and
estimated time of arrival are set by comparing the data in the planControlState struct of each
vehicle and selecting the lowest and highest values, respectively.

The buttons from left to right represent; prepare mission execution, start mission execution,
replan mission, and abort. Clicking the prepare mission execution button generates a waypoint
list consisting of two waypoints, and sends this as input to the startCustomMission function.
How the two waypoints are generated is discussed in Section 3.5.2. Clicking the button ulti-
mately results in each team member maneuvering to their initial point on the path, i.e., getting
in formation. Clicking the start mission execution button sends a call to the startMissionExecu-
tion function. This button also starts the formation control loop enabling cooperative strategies
to be invoked if a constraint is violated. Clicking the replan mission button sends a call to the
stopMissionExecution function, stops the control loop, enables editing of the mission details
set in view 1, and clears the list of waypoints in view 2. The abort button sends a call to the
stopMissionExecution function and stops the control loop.

4.4 Verification
Once implementation of the MCS concluded, a verification process took place to ensure that the
application met the requirements and worked adequately. The process was split into two parts;
evaluation of application requirements and comparison to Neptus.

4.4.1 Evaluation of Application Requirements

Table 4.2 presents the evaluation of the application requirements. The evaluation column
presents the author’s justification of why a requirement is or is not attained, and the fulfill-

ment column states whether or not the requirement was attained. The requirements are stated in
Section 4.2.2.

49

Chapter 4. The MCS

Table 4.2: Evaluation of application requirements.

Requirement ID Evaluation Fulfillment
R1 All communication between the MCS and the LAUVs

is done via IMC messages.
Attained

R2 All system functionality works at it should when con-
nected to a network that does not provide an internet
connection, i.e., the network provided by the Manta.

Attained

R3 A warning is prompted to the user if the communica-
tion link to a vehicle is lost.

Attained

R4 The system automatically reconnects when a vehicle
comes back online. The user is not explicitly notified,
but the connection light in the vehicle overview mod-
ule goes from grey to green.

Attained

R5 Disabling control and command functionality when
the connection to a vehicle is lost has not been im-
plemented. The clear warning a user receives when
a connection is lost, caused this task to be less of a
priority.

Not attained

R6 The MCS generates a path for each slave by displacing
the master’s waypoints. The slave paths are visualized
when the mission plans are loaded onto the vehicles.

Attained

R7 Functionality for loading and sending a mission plan is
split into two buttons in view 2 and 3, respectively.

Attained

R8 The mission plan is available for the operator in view
2 in the form of a table displaying the waypoints. The
paths the vehicles are intended to follow are also visu-
alized on the map.

Attained

R9 Mission execution is monitored in view 3. Attained
R10 Clicking the abort button in view 3 aborts any ongoing

mission for all the vehicles in the team.
Attained

R11 Clicking the replan mission button enables editing of
the previously confirmed mission details, i.e., mission
name, formation, constraints, and waypoints.

Attained

R12 The path is automatically generated when the user de-
fines waypoints by clicking on the map.

Attained

R13 Handling the callbacks from the vehicle has not been
implemented in the MCS. This functionality was not
prioritized as the full mission plan is sent at once, elim-
inating the possibility of the vehicle only partly execut-
ing a mission due to communication failure.

Not attained

50

4.4 Verification

4.4.2 Comparison to Neptus

Neptus is a trusted command and control tool, and comparing the information given to an opera-
tor in the MCS to the information given by Neptus is a way to ensure that the implementation of
the MCS is satisfactory. The verification was in two parts; verifying the map and placement of
vehicle markers, and verifying the mission planning, monitoring, and control abilities through
three use cases.

The maps and placement of the markers were verified first. Figure 4.12 shows the vehicle
markers relative to the pier by the field test site in both Neptus and the MCS, and the placement
of the markers appear to coincide in the two applications. Tests were also conducted in the field
to confirm the observations made when comparing the two application. Before field tests, the
LAUV was moved around on land to check that the position relative to buildings marked on the
map was correctly visualized in the MSC. The marker was responsive, and the relative position
looked correct. Based on these two tests the markers were considered to have satisfactory
accuracy.

(a) Screenshot of the map in the MCS showing the
vehicle marker relative to the pier by TBS.

(b) Screenshot of the map in Neptus showing the
vehicle marker relative to the pier by TBS.

Figure 4.12: Verification of marker placement in the MCS by comparison to Neptus.

The first use case was defined as starting a mission in the MCS. Neptus was then used to verify
that the mission plan was received by the vehicle and that mission execution began. A mission
was defined in the MCS and named Validation test. Mission execution was started through the
application and Figure 4.13 shows the mission details in Neptus and the MCS in the early stages
of mission execution. The mission name, vehicle state and mission progress matched and the
test was considered successful.

51

Chapter 4. The MCS

(a) Screenshot of the mission control and vehicle
overview module in the MCS during mission exe-
cution.

(b) Screenshot of the mission control and vehicle
overview module in Neptus during mission execu-
tion.

Figure 4.13: Verification of mission details for a mission defined in the MCS by comparison to Neptus.

The second use case was to start a mission from Neptus and check if this was registered by the
MCS. The vehicle state changed to maneuvering and the vehicle marker followed the vehicle’s
position. The mission details, i.e., mission name, progress, and ETA were not possible to mon-
itor in the MCS, which was as expected. The use case was considered successful. The final use
case was to start a mission from either one of the control and command applications and abort it
from the other. Aborting mission execution was successful in both cases, and the use case was
considered a success. After completing the verification, the author is confident in saying that
the MCS performs as expected, fulfills most of the requirements, and is satisfactory as a control
and command software for its intended purpose.

52

4.4 Verification

4.4.3 Additional Requirements

A list of additional requirements was comprised based on experiences after completing verifi-
cation, field tests, and simulations. The additional requirements are stated in Table 4.3, and left
as further work. AR1 and AR2 specify how the system should handle a detected error in one of
the team members. Currently, an error in a vehicle would be depicted in the vehicle overview
module, but the user is not explicitly warned, and the system does not take any action. AR3
is motivated by the fact that it is not possible to change the vehicle team once all the vehicles
are connected. The only way to disconnect from a vehicle is to close the application, which
over-complicates the case of modifying a vehicle team for a defined mission.

AR4 addresses the conversion between the maximum deviation inputted by the user and the
deviation ε used in the formation control. The current implementation results in different devi-
ation boundaries ε for two slaves if they are not placed symmetrically about the master, which
may result in skewed vehicle formations. The new requirement states that the variable ε be
set directly by the user, yielding a more restricted formation than the current implementation.
Both cases are illustrated in Figure 4.14. AR5 specifies that the system should have function-
ality for detecting if a mission becomes infeasible during mission execution. This functionality
can be useful for an operator if the constraints are violated continuously due to external factors
deeming the cooperative strategies insufficient for handling the constraint violations.

There is a requirement omitted from Table 4.3, as it requires modification in the vehicle software
and not the MCS, however, it illustrates an important case. In the event of an unexpected failure
in the MCS during mission execution, the vehicles continue maneuvering, but the formation
control may be disabled. A system requirement addressing this case if formulated as follows;
The vehicles should abort mission execution and go into a safe mode if the MCS unexpectedly

powers off.

Table 4.3: Additional requirements for the MCS comprised after verification and testing.

Requirement ID Requirement
AR1 If an error is detected in a master, the system should abort any ongoing

mission, and set all vehicles in a safe mode.
AR2 If an error is detected in a slave, the system should put the vehicle out of

service and in a safe mode without interrupting any ongoing mission.
AR3 It should be possible to disconnect from a vehicle while still in the appli-

cation.
AR4 A user should be able to directly set the maximum allowed deviation, ε,

in meters.
AR5 The system should have functionality for identifying if a mission becomes

infeasible during mission execution.

53

Chapter 4. The MCS

(a) Current implementation of maximum deviation in a three-vehicle
team.

(b) Suggested modified implementation of maximum deviation in a three-
vehicle team.

Figure 4.14: Visualization of the implemented and suggested maximum deviation functionality.

54

Chapter 5
Simulations

Initial testing of the MCS and the formation control method, in particular, was performed
through simulations with the LAUV simulators. The simulations were conducted first and fore-
most to validate the cooperative strategies used in the formation control method in a controlled
environment before proceeding with field testing. In this section, results from four missions
created to demonstrate the cooperative strategies designed in Section 3.5.3 are presented. In
the case that the desired constraint violation did not occur naturally, vehicles were manually
stopped and started, i.e., mission execution was aborted or resumed. All missions were con-
ducted on the surface, without restrictions on the minimum distance between the vehicles. Each
mission was named based on the desired test scenario, and the missions relate to the cooperative
strategies in the following manner:

Section 5.1: Slave B falls behind mission; CS1 and CS5.

Section 5.2: Master falls behind mission; CS2.

Section 5.3: Slave catches up to master mission; CS3.

Section 5.4: Master catches up to slave mission; CS3 and CS4.

Additional simulations were performed where the number of slaves, formation, and constraints
varied. The results presented in this chapter are representative of the observations made in the
majority of these simulations, but there were exceptions where the system did not perform as ex-
pected. These cases are not considered representative of the system, but as isolated incidents.An
outlier in the results is presented in Section 5.5. The chapter concludes with a discussion of the
presented results.

55

Chapter 5. Simulations

5.1 Slave B Falls Behind Mission
Slave B falls behind mission was designed to demonstrate CS1 and CS5. The mission entailed
a three-vehicle team maneuvering north in parallel vertical lines, and the team and formation
are specified in Table 5.1. Maximum allowed deviation was set to 20 %, which translates to
± 5.7 m for both slaves. The vehicles’ paths and trajectories are depicted in Figure 5.1, and
the vehicles’ positions and headings at times of interest are represented by rectangular markers.
t = 0 marks the beginning of mission execution.

Table 5.1: Overview of vehicle team and formation in Slave B falls behind mission.

Assignment Vehicle ∆x ∆y
Master LAUV Simulator 1
Slave A LAUV Simulator 2 20 m −20 m
Slave B LAUV Simulator 3 −20 m −20 m

Figure 5.1: Vehicle trajectories in Slave B falls behind mission.

56

5.1 Slave B Falls Behind Mission

Slave B reaches its initial position in the formation at t = −71, and by the time mission ex-
ecution begins the slave has drifted from this position, and the heading has changed slightly.
Drifting is also observed in the master and slave A, who reach their initial positions at t = −69

and t = −54, respectively. Their change in heading is more significant compared to slave B.
The vehicles are able to follow their paths and preserve the formation up until t = 26, and one
can observe this in the trajectory plots.

Figure 5.2 shows the distance between the master and both slaves and the speed of all three
vehicles during mission execution. One can observe in Figure 5.2a that the distance between the
master and slave A lies within the constraints throughout mission execution, not activating any
cooperative strategies. Slave B is manually stopped fourteen seconds into mission execution,
and this is marked in all three plots. In Figure 5.2c it can be seen that there is a delay between
when the vehicle is stopped and when the vehicle’s speed begins to decrease. From this point
on, the distance between the master and slave, displayed in Figure 5.2b, starts to increase.

The constraint violation occurs in t = 26, twelve seconds after slave B is stopped. The vehicles’
progress’ at this point is given in Table 5.2, and it shows that slave B has lower mission progress
than the master at this time. The two conditions for activating CS1 are satisfied, and at t = 28,
two seconds after the constraint violation, the speed of the master and slave A start to decrease,
indicating that they switched behaviors from path following to formation preservation. Slave
A switches behaviors due to CS5 which is activated the moment the master needs to switch
behavior. The speed of the two vehicles picks back up 30 seconds later, which is the maximum
waiting period for a master. t = 58 marks the resumption of mission execution, and as one
can see in the trajectory plots, slave B is still at rest close to the position where it was initially
stopped.

During the waiting period both the master and slave A drift. Slave A experiences a significant
change of heading which results in a deviation from the path for the remainder of the mission.
The vehicles’ positions are marked at t = 85, moments before the mission is completed, and
shows that the master and slave A complete the mission while holding the formation, and that
slave B is left behind. The behavior of the master and slave A are in line with the actions defined
in CS1 and CS5.

The final thing to note in these results is depicted in Figure 5.2c. All the team members exceed
the desired speed of 1 m/s, but their speed profiles are quite similar.

Table 5.2: Mission progress during execution of Slave B falls behind mission.

Time Master progress Slave A progress Slave B progress
26 s 58.47 % 57.317 % 49.242 %

57

Chapter 5. Simulations

(a) Distance between master and slave A relative to constraints during execution of Slave B falls behind
mission.

(b) Distance between master and slave B relative to constraints during execution of Slave B falls behind
mission.

(c) Vehicle speed during execution of Slave B falls behind mission.

Figure 5.2: Speed and distance data from Slave B falls behind mission.

58

5.2 Master Falls Behind Mission

5.2 Master Falls Behind Mission
CS2 was demonstrated through Master falls behind mission, and the mission entailed a two-
vehicle team maneuvering east on straight parallel lines. The vehicle team and formation are
specified in Table 5.3, and the maximum allowed deviation was set to 15 %, which translates to
± 7.5 m.

Table 5.3: Overview of vehicle team and formation in Master falls behind mission.

Assignment Vehicle ∆x ∆y
Master LAUV Simulator 1
Slave A LAUV Simulator 2 50 m 0 m

Figure 5.3 shows the logged distance, speed and progress data from the mission, and t = 0

marks the beginning of mission execution. Before t = 0, the vehicles have maneuvered to their
initial position in the formation. To induce CS2, the master is stopped at t = 2, and this is
marked in all three plots. The slave keeps moving forward, and the distance between the two
vehicles increases, as can be observed in Figure 5.3a. The upper constraint for the distance
between the two vehicles is violated at t = 9, and the vehicles mission progress at that moment
is seen in Figure 5.3c. The plot of the progress shows that the slave’s progress is higher than
that of the master.

The conditions for activating CS2 are satisfied, and a moment later at t = 10, one can observe
in Figure 5.3b that the slave starts to reduce its speed. The reduction in speed indicates that
the slave has switched to formation preservation behavior, allowing the master to catch back up
and restore the formation. Although the master is still at rest, the distance between the vehicles
continues to increase after this point as it takes time for the slave to reduce its speed to 0 m/s.
The master is commanded to resume mission execution at t = 20, and the slave switched back
to path following behavior at t = 29, after the distance between the vehicles is back within the
boundaries.

Note how the mission progress of both vehicles does not grow uniformly but has one or two
growth spurts during mission execution. It can be observed that the vehicles are accelerating
each time a growth spurt occurs. Also, as in Slave B falls behind mission, the vehicles maneuver
at a higher velocity than specified, but the speeds seem to be converging towards 1 m/s, and the
profiles are similar.

59

Chapter 5. Simulations

(a) Distance between master and slave A relative to constraints during execution of Master falls behind
mission.

(b) Vehicle speed during execution of Master falls behind mission.

(c) Mission progress during execution of Master falls behind mission.

Figure 5.3: Speed, distance, and progress data from Master falls behind mission.

60

5.3 Slave Catches up to Master Mission

5.3 Slave Catches up to Master Mission
Slave catches up to master mission was defined as the vehicles maneuvering east in parallel
horizontal lines and designed to test CS3. The mission was conducted by a two-vehicle team,
and the team and formation are specified in Table 5.4. The maximum deviation was set to 15 %,
which translates to ± 4.2 m. t = 0 marks the point in time when mission execution began.
The vehicles’ paths and trajectories are depicted in Figure 5.4, and the vehicles’ positions and
headings at times of interest are represented by rectangular markers.

Table 5.4: Overview of vehicle team and formation in Slave catches up to master mission.

Assignment Vehicle ∆x ∆y
Master LAUV Simulator 1
Slave LAUV Simulator 2 −20 m −20 m

To induce the conditions for activating CS3 the master is manually stopped at t = 17, while
slave A continues mission execution, this results in the distance between the vehicles decreas-
ing. Up until t = 25, the vehicles are able to stay within the formation, but as can be seen in
Figure 5.5a this is when the constraint on the distance between the master and slave is violated.
Table 5.5 shows the mission progress at the time of the constraint violation, which indicates that
the slave has higher progress than the master.

Table 5.5: Mission progress during execution of Slave catches up to master mission.

Time Master progress Slave progress
25 s 42.59 % 43.852 %

The conditions for activating CS3 are satisfied, and slave A has a visible response the next
second when the vehicle’s speed decreases, this is observed in Figure 5.5b. The speed reduction
down to 0 m/s indicates that slave A switched behaviors and is now in formation preservation
mode. Except for some drifting, both vehicles are at rest until the master is restarted at t =

45. The constraint on the distance is again satisfied at t = 56, and slave A resumes mission
execution shortly after at t = 58, an action which is in accordance with the expected behavior of
slave A. Notice that both vehicles deviate even further from their path when mission execution
is resumed after a stop. However, both converge towards the path after a short while, and the
vehicles are able to keep the formation for the remainder of the mission.

61

Chapter 5. Simulations

Figure 5.4: Vehicle trajectories in Slave catches up to master mission.

(a) Distance between master and slave relative to constraints during execution of Slave
catches up to master mission.

(b) Vehicle speed during execution of Slave catches up to master mission.

Figure 5.5: Speed and distance data from Slave catches up to master mission.

62

5.4 Master Catches up to Slave Mission

5.4 Master Catches up to Slave Mission

Master catches up to slave mission was designed to demonstrate CS4, however, during mission
execution, CS3 was also activated. The mission objective was for two vehicles to maneuver
north in parallel vertical lines, and the mission team and formation is given in Table 5.6. Max-
imum allowed deviation was set to 15 %, which translates to ± 4.2 m. None of the constraint
violations that occurred during mission execution were induced.

Table 5.6: Overview of vehicle team and formation in Master catches up to slave mission.

Assignment Vehicle ∆x ∆y
Master LAUV Simulator 1
Slave LAUV Simulator 2 20 m 20 m

The generated paths for the vehicles and their trajectories are shown in Figure 5.6, and the
vehicles’ positions and headings at times of interest are represented by rectangular markers.
The slave deviates from the path nearly throughout mission execution, whereas the master is
able to converge after approximately forty seconds. The vehicles’ trajectories show that the
deviation from the path is more significant in the early stages of mission execution, and this is
also when the constraints are violated.

The two constraint violations occur at t = 6 and t = 12 and are due to the distance between
the vehicles being closer than allowed, and Figure 5.7a shows the distance between the master
and slave relative to the constraints. Table 5.7 shows the progress of the vehicles at the times
of constraint violation. At t = 6, the slave’s progress is higher than that of the master, which
means the conditions for activating CS3 are satisfied. The team behavior that follows is in
accordance with CS3. Figure 5.7b shows the vehicles’ speeds, and a decreasing speed indicated
a switch in behavior from path following to formation preservation. The slave stops and waits
while the master continues mission execution, which results in the formation being restored
and both vehicles taking on the path following behavior. The progress of the vehicles changes
significantly before the second constraint violation at t = 12, and the master now has the higher
progress. This time, the conditions for activating CS4 are satisfied, and the master switches
behavior as expected, allowing the slave to restore the formation. The master resumes mission
execution once the constraint is satisfied again at t = 18. The formation is upheld for the
remainder of the mission, and the vehicles complete mission execution four seconds apart.

63

Chapter 5. Simulations

Figure 5.6: Vehicle trajectories in Master catches up to slave mission.

Table 5.7: Mission progress during execution of Master catches up to slave mission.

Time Master progress Slave progress
6 s 17.906 % 19.131 %
12 s 48.538 % 27.337 %

(a) Distance between master and slave relative to constraints during execution of Master
catches up to slave mission.

(b) Vehicle speed during execution of Master catches up to slave mission.

Figure 5.7: Speed and distance data from Master catches up to slave mission.
64

5.5 Unsuccessful Mission

5.5 Unsuccessful Mission
During the simulations, there was a mission conducted by a three-vehicle team that did not go
as expected. Details such as formation and mission name are excluded, as relevant results are
the behaviors of the vehicle team illustrated through the data in Figure 5.8.

The master was stopped during mission execution to induce a constraint violation at t = 11

and started again at t = 30. The times of the start and stop are marked in all plots. The forced
stop induces a constraint violation for both slaves by t = 20, as can be seen in Figures 5.8a
and 5.8b. The progress of each team member is shown in Figure 5.8d, and at the times of
the constraint violation the progress of all three vehicles are nearly the same. However, the
master’s progress is the lowest, and the conditions for activating CS2 are satisfied. Both slaves
are observed to reduce their velocities in Figure 5.8c, indicating that they switched behavior
from path following to formation preservation.

Shortly after the master is started again, its mission progress suddenly increases and surpasses
the mission progress of the slaves, causing the conditions for activating CS1 to be satisfied. The
master switches behaviors from path following to formation preservation by reducing its speed,
and both the slaves switch behaviors from formation preservation to path following. These
actions cause the deviation from the desired distance to decrease, and up until now, the team
behavior has been by the book. Here on out, that changes. At t = 40 the master no longer has
the higher mission progress, causing the conditions for CS2 to be activated once again. The
master switches back to path following behavior, and the expected behavior of the slaves would
be to switch to formation preservation behavior. However, this is not the case, and both slaves
maintain the path following behavior and the deviation from the desired position increases.
The conditions for activating CS2 are satisfied for the remainder of the mission, but all team
members maintain their past behavior and maneuver the remainder of the path.

65

Chapter 5. Simulations

(a) Distance between master and slave A relative to constraints during execution of an unsuccessful
mission.

(b) Distance between master and slave B relative to constraints during execution of an unsuccessful
mission.

(c) Vehicle speed during execution of an unsuccessful mission.

(d) Mission progress during execution of an unsuccessful mission.

Figure 5.8: Speed, distance, and progress data from an unsuccessful mission.

66

5.6 Discussion

5.6 Discussion
The initial discussion of the simulation results disregards the results from the unsuccessful
mission presented in Section 5.5, as it is not considered to be representative of the system. A
separate discussion of these results is given toward the end of this section.

The simulation results are very promising, and the first part of the discussion will be based
on the initial conclusions drawn in Section 3.5.4 during the first verification of the formation
control method. The first point to be made was that if the vehicles began mission execution at
the same time, and were subject to the same external forces, their mission progress would be
identical and the formation would be preserved. A mission without constraint violations has
not been presented, but studying the formations before and after constraint violations points to
this being true. Master catches up to slave mission, presented in Section 5.4 exemplifies this.
The vehicles’ trajectories, shown in Figure 5.6, appears to have similar progression along the
path from t = 40, although some minor deviations are present, causing the vehicles to complete
mission execution four seconds apart. Depending on the mission objective and mission duration,
a four-second delay may very well be negligible.

The second case discussed in the initial verification of the formation control method was the
case where a vehicle team was exposed to non-uniform external forces causing a violation of
TC1. The four missions presented all demonstrate a violation of TC1, and the results point
to the system being able to pick up on constraint violations, correctly identifying the required
cooperative strategy, and the vehicles being able to switch behaviors and restore the formation
before resuming mission execution.

A weakness in the implementation of the formation control was revealed through the simu-
lations. Figures 5.3a, 5.5a, and 5.7a show the distance plots in the three missions where a
constraint is violated and later satisfied, notice the distance between two vehicles relative to
the constraints after a violation. As a general rule, once the constraint has been violated and
the system is able to restore the formation, the distance between the two vehicles lies close to
the previously violated constraint for the remainder of mission execution. The reason for this is
that the waiting vehicle resumes mission execution immediately when the constraint is satisfied,
meaning that little can be done to decrease or increase the distance as both vehicles are maneu-
vering from this point on. By changing the implementation of the formation control method,
and only allowing a waiting vehicle to resume mission execution once the distance between
the two vehicles satisfies a stricter constraint, the vehicle team would have better conditions
for completing the mission without further constraint violations. This property was not noticed
until after both simulations and field tests were conducted, the code is therefore left as is, and
the modification is proposed as further work.

67

Chapter 5. Simulations

In the introduction to this chapter, it was specified that the presented results are representative
of the majority of the simulation results. However, unexpected behavior did occur in a limited
number of the simulations, and for the most part, it could be explained by analyzing the mission
after it was completed. Note that the case presented in Section 5.5, is not included in this
category. It is the author’s understanding that it is a combination of factors that contribute to
most of the unexpected behavior, all of them present in the presented missions, but at a lower
extent and or as isolated incidents, resulting in the system being able to perform as expected.

The first factor that may contribute to an unsuccessful mission or abnormal behavior is that
the vehicles drift a lot. Drifting occurs in two scenarios; when the vehicle has reached its
initial position and remains idle before mission execution, and when a vehicle switches to the
formation preservation behavior, effectively stopping mission execution and remaining idle.
The behavior is natural, as the speed of the vehicle does not reach 0 m/s immediately when
the propeller stops, but slowly decreases due to friction. Currents in the water will also cause
drifting when the vehicle is idle, but this is a note for the field test as the simulations have
been run without a current present. A consequence of the vehicles drifting is that the heading
obtained before mission execution often changes. If the change is sufficiently large, the process
of restoring the correct heading causes the vehicle to deviate from the path, often resulting
in a constraint violation. A potential solution to the drifting problem can be to apply a loiter
maneuver each time the vehicle is idle, ensuring that it stays close to its position. The loiter
maneuver makes a vehicle circle a waypoint with a given radius. It is important to note that the
heading is not preserved in this case. Depending on the sea state and spatial distribution of the
mission the right way to approach this challenge may vary. The best solution would be to have
several approaches and being able to choose before mission execution. One suggestion for an
approach has been made, but more work should be put into suggesting additional approaches
for limiting or handling drifting.

The second factor contributing to unexpected behavior is the calculation of mission progress.
Figure 5.3c shows how the mission progress increases by more than 40 % within a few seconds
during mission execution. The large growth of progress over a limited period may cause the
wrong cooperative strategy to be activated, as the mission progress does not necessarily give
an accurate description of a vehicle’s mission progress relative to the other team members. An
explanation for the uneven development of the mission progress may be that it is designed for
missions of longer duration and that the scale of the simulated missions is too small to get
an accurate description of the progress. Longer duration missions have not been conducted to
confirm the author’s assumption, and if the assumption is wrong, an alternative way of defining
the vehicles’ progress should be designed to ensure consistency in the system’s performance. A
possibility could be to calculate the mission progress by taking the length of the path covered

68

5.6 Discussion

relative to the full path length. In the case of a vehicle deviating from the path, one would use
the closest point on the path and consider this as the vehicle’s position when calculating mission
progress.

During all four missions, the vehicles maneuvered at a higher speed than 1 m/s, and this is
brought forward as the third and final factor that may contribute to unexpected system behavior.
A prerequisite for the formation control method to work is that the vehicles maneuver at the
same speed, and specifying the speed in the mission plan was a way to ensure this. However, as
can be seen in Figures 5.2c,5.3b, 5.5b, and 5.7b the speeds of the vehicles exceed 1 m/s at some
point during the mission, if not for the full duration. Despite this, all presented missions have
been successful, and the explanation for this is that simulators have the same speed controller
producing similar speed profiles for each vehicle, which again causes the vehicles to maneuver
the path at approximately the same speed. This might not always be the case when utilizing
physical vehicles, and the speed controllers should be checked before mission execution.

The team behaviors observed in the unsuccessful mission presented in Section 5.5 cannot be
explained by any of the three factors mentioned above. Although maneuvering at speeds higher
than 1 m/s and sudden growth in the mission progress are present, it does not explain why
the slaves do not switch behavior as expected. Given that the formation control has picked up
on all constraint violations and proven to be successful in previous examples, not to mention
that cooperative strategies were activated twice during the mission in question, it is expected
that the observed behavior in this mission was due to a bug in the system. Another reason
for this assumption is that messages were successfully sent and received during the mission
and there is no indication of the system having sent messages that the slaves ignored or did not
receive, which means that stop requests were probably never generated. The case was attempted
replicated, without success, and the bug has therefore not been identified. It is the author’s firm
belief that this case does not affect the validity of the formation control or the MCS as the
functionality of both systems have been demonstrated in the previously presented missions.

Seeing the results in light of the various challenges related to mission planning, cooperative
systems, and formation control discussed in Chapter 2, many of the known challenges were
avoided due to the missions being simulated and the simulation environment being free of cur-
rents and obstacles. Also, the capabilities of the CCU in the centralized architecture did not
limit the systems ability to perform as desired. The PC used as the CCU was able to handle
all communications and computation required to plan and execute the missions, while also run-
ning the MCS and simulators. By only allowing one of the vehicle’s possible behaviors to be
active at a time, the possibility of unpredictable things happening due to unusual combinations
of behaviors was avoided. The only experienced challenge that can be related to the previously

69

Chapter 5. Simulations

discussed challenges is the drifting. Drifting was observed in all the missions, and it points to
the vehicle’s dynamics not being taken sufficiently into account when designing the formation
control method. The complications caused by drifting might become even more severe when
the system is exposed to a real environment.

To summarize the results confirm that the formation control method is able to pick up on con-
straint violations, and identify the correct cooperative strategy for restoring the formation. Fac-
tors causing unexpected system behavior have presented themselves, but the occurrences have
been few and far apart, and suggestions have been made on how to cope with some of the fac-
tors. There is believed to be a bug in the system, but the bug has not been identified as the
situation revealing the bug has not been possible to replicate. In large, many of the challenges
linked to mission planning and cooperative AUV systems were avoided as the missions were
simulated and conducted on the surface. Finally, the system has proven to be robust during
simulations, making field testing a natural next step in the process of testing the full system,
and the MCS and formation control in particular.

70

Chapter 6
Field tests

Field tests were carried out in the Trondheim Fjord close to the Applied Underwater Robotics
laboratory (AUR-lab) on 18th and 20th of April 2018 by the author and researcher Tore Mo-
Bjørkelund. The AUR-lab is part of the Institute of Marine Technology at NTNU and is the
laboratory that keeps and maintains LAUV Fridtjof. The system was set up according to the
description given in Chapter 3 and LAUV Fridjof operated with default vehicle configurations.
The configuration is specified in Appendix D.2.

6.1 Organization

6.1.1 Objectives

The objectives of the field tests are formulated below.

• Demonstrate the formation control in a field environment

• Confirm or discredit the findings from the simulation tests.

• Investigate the differences between LAUV Fridtjof and the simulators during mission
execution.

• Demonstrate the MCS’ ability to function in a field environment.

• Check the system integration between LSTS software and hardware, LAUV Fridtjof and
the MCS.

• Detect problems or possibilities regarding further work.

71

Chapter 6. Field tests

6.1.2 Method of Approach

Test missions were conducted with two or three vehicles in the team; LAUV Fridtjof in combi-
nation with one or two simulated vehicles. Two-vehicle team missions were conducted on the
first day of testing, and three-vehicle team missions on the second day. The sea state on both
days can be categorized as relatively calm. There were few waves, and no strong currents were
visible at the surface.

The simulators and the MCS ran on one PC, and Neptus on another. Neptus was used to com-
mand LAUV Fridtjof into station keeping between missions, and the remaining command and
control was executed by the MCS.

The Manta was placed at the edge of the pier outside the AUR-lab, and the acoustic modem
was lowered into the water. LAUV Fridtjof was launched from the beach 50− 60 m from the
pier. For safety measures, a rowboat was prepared by the beach in case the vehicle needed to be
retrieved.

All missions were conducted on the surface without restrictions on the minimum distance be-
tween the vehicles, and all constraint violations occurred naturally without interference from the
author. The results from three missions are presented in the following sections. The missions
names are based on the shape of the path or the intended test case, and relate to the cooperative
strategies in the following manner:

Section 6.2: L mission; No cooperative strategy activated.
Section 6.3: Stop master Fridtjof mission; CS3.
Section 6.4: U mission; CS1, CS4, and CS5.

The chapter concludes with a discussion of the presented results.

72

6.2 L Mission

6.2 L Mission
L mission was conducted by a two-vehicle team, and the objective was to maneuver a path in the
shape of an L. The mission demonstrates the formation control method without the occurrence
of constraint violations. Table 6.1 gives an overview of the vehicle team and formation, note
that LAUV Fridtjof is assigned as master. The maximum deviation was set to 30 %, which
translates to ± 8.5 m.

Table 6.1: Overview of vehicle team and formation in L mission.

Assignment Vehicle ∆x ∆y
Master LAUV Fridtjof
Slave LAUV Simulator 1 20 m −20 m

The generated paths and trajectories for both vehicles are shown in Figure 6.1. The slave is the
first to reach its initial position at t = −49 and drifts prior to mission execution. The master ap-
pears to drift an equal distance from the time when it reaches the initial position at t = −6 until
mission execution begins at t = 0. Both vehicles deviate from the path during mission execu-
tion but converge onto the path again, and the formation is kept throughout mission execution.
Figure 6.2a shows how the distance between the two vehicles evolve during mission execu-
tion. Although the upper constraint is never violated, the distance grows throughout mission
execution and is close to violating the constraint when the mission is completed.

The progress of both vehicles during mission execution is shown in Figure 6.2b. The progress
does not grow linearly throughout the mission but has some plateaus where the mission progress
is constant over a longer period. For the master these occur at t ∈ [2, 10] and t ∈ [33, 39].
In the same figure, one can also observe that the slave’s progress, in general, is higher than
the master’s and that the slave completes the mission eleven seconds before the master. The
vehicles complete mission execution at t = 38 and t = 49.

73

Chapter 6. Field tests

Figure 6.1: Vehicle trajectories in L Mission.

(a) Distance between master and slave relative to constraints during execution of L Mission.

(b) Mission progress for master and slave during execution of L Mission.

Figure 6.2: Distance and progress data from L mission.

74

6.3 Stop Master Fridtjof Mission

6.3 Stop Master Fridtjof Mission
Stop master Fridtjof mission was conducted with the same vehicle team, formation, and con-
straints as L Mission and the goal was to maneuver north in vertical parallel lines. The paths
and vehicle trajectories are shown in Figure 6.3. At t = 0, both vehicles have completed the
preparation mission where they maneuver to their initial formation, and mission execution be-
gins. Comparing the two vehicles at t = 0 it can be observed that the master deviates further
from the initial point than the slave, also the master’s heading is off by more than 90° whereas
the slave has less of a heading deviation.

The distance between the vehicles is shown in, Figure 6.4a, and it can be seen that the lower
constraint is violated at t = 10, meaning that the vehicles are closer than allowed. Studying
the vehicles’ positions at this point, we see that the master appears to be making a turn to
maneuver onto the path, while the slave is on the path. Table 6.2 shows the progress of the
vehicles at the same time, and the slave appears to have higher mission progress than the master.
The conditions for activating CS3 are satisfied, and the team switches behaviors as expected.
The master continues with path following, while the slave switches to formation preservation,
allowing the master to get back into the formation. The constraint is again satisfied at t = 25,
and the slave resumes mission execution.

No further constraint violations occur during the mission, and both vehicles converge to the
path and complete the mission while keeping the formation. Note that although the formation is
kept, the vehicles complete mission execution with eight seconds between them, and as can be
seen in Table 6.2 there is a significant difference in mission progress at t = 49 moments before
the slave completes the mission.

Figure 6.4b shows that both vehicles generally maneuver at a higher speed than 1 m/s which
is specified by the MCS throughout mission execution. Also, note that the master has a speed
of approximately 0.5 m/s at the start of the mission execution and that speed profiles of the
vehicles bear little resemblance.

Table 6.2: Mission progress during execution of Stop master Fridtjof mission.

Time Master progress Slave progress
10 s 8.894 % 38.848 %
49 s 87.000 % 98.247 %

75

Chapter 6. Field tests

Figure 6.3: Vehicle trajectories in Stop master Fridtjof mission.

(a) Distance between master and slave relative to constraints during execution of Stop master
Fridtjof mission.

(b) Vehicle speed during execution of Stop master Fridtjof mission.

Figure 6.4: Speed and distance data from Stop master Fridtjof mission.

76

6.4 U Mission

6.4 U Mission

U mission was conducted by a three-vehicle team, and the objective was to maneuver a path
in the shape of a U. Table 6.3 gives an overview of the vehicle team and formation, note that
LAUV Fridtjof is assigned as slave A. The constraint for maximum deviation was set to 30 %,
which translates to ± 12.7 m for both slaves.

Table 6.3: Overview of vehicle team and formation in U mission.

Assignment Vehicle ∆x ∆y
Master LAUV Simulator 1
Slave A LAUV Fridtjof −30 m 30 m
Slave B LAUV Simulator 2 30 m 30 m

The vehicles’ paths and trajectories are shown in Figure 6.5, and the vehicles’ positions and
headings at various times during the mission execution are marked. t = 0 marks the start of
the mission execution. The master and slave B are the first to reach their initial positions, at
t = −149 and t = −121, respectively. Slave A reaches its position at t = −11, and it can
be observed that slave, despite a shorter waiting period, drifts further than the remaining team
members.

Figure 6.5: Vehicle trajectories in U mission.

77

Chapter 6. Field tests

Figure 6.6 shows the distance between the master and two slaves relative to the constraints, and
the vehicles speeds. The distance between the master and slave B (Figure 6.6b) is relatively sta-
ble and satisfies the constraints throughout mission execution. The distance between the master
and slave A (Figure 6.6a) varies more and violates the constraint twice during the mission. Ta-
ble 6.4 shows the mission progress of each vehicle at various times during mission execution,
including the times when the constraints are violated.

Table 6.4: Mission progress during execution of U mission.

Time Master progress Slave A progress Slave B progress
62 s 61.669 % 47.536 % 60.883 %
97 s 83.627 % 70.95 % 85.375 %
120 s 99.335 % 81.942 % 99.835 %

The first constraint violation occurs at t = 62 after slave A maneuvers past the first 90° angle
in the path. One can observe in Figure 6.5 that the master and slave B maneuver past the
corner without significant deviation, however, slave A deviates significantly from the path and
the distance between the master and slave A grows greater than the constraints allow. At this
point, slave A’s mission progress is lower than the master’s, and the conditions required for
activating CS1 are satisfied. The master and slave B switch behaviors at t = 63, stopping
mission execution and waiting. Slave B stops due to CS5, which is activated when the master
needs to stop. Slave A get back into the formation, and when the constraints are again satisfied
at t = 79, the master and slave B switch back to path following behavior.

At t = 97 the second constraint violation occurs, once again it is when slave A is maneuvering
past a corner. This time the master and slave A are too close to each other, and the master’s
progress is still higher, satisfying the conditions for activating CS3. It can be observed from
the speed plot (Figure 6.6c) that the master and slave B, once again, switch behavior from path
following to formation preservation, and wait for approximately ten seconds until the constraint
is no longer violated. They then resume mission execution.

The distance between the master and slave A continues to lie close to the lower constraint,
but the remainder of the mission is completed without constraint violations. At t = 120 the
master and slave B are moments from completing the mission while slave A hangs behind. The
progress at this time is given in Table 6.4, and shows that slave A’s progress is significantly
lower than the remaining team members’ progress’. Slave A completes the mission at t = 143,
more than twenty seconds behind the rest of the team.

78

6.4 U Mission

(a) Distance between master and slave A relative to constraints during execution of U mission.

B
(b) Distance between master and slave B relative to constraints during execution of U mission.

(c) Vehicle speed during execution of U mission.

Figure 6.6: Speed and distance data from U mission.

79

Chapter 6. Field tests

6.5 Discussion
The results from the field tests are promising and support the findings in the simulations and ini-
tial conclusions drawn in Section 3.5.4 about the formation control method. L mission demon-
strated the case of a mission without constraint violations. The vehicles started mission execu-
tion at the same time and managed to keep the formation and complete the mission. In the two
remaining missions, all violations of TC1 were detected and handled by a cooperative strategy,
which resulted in the formation being restored. CS2 was not tested, but based on the available
results from the simulations and field tests, one can assume that the case would not be any
different for this cooperative strategy in particular. Hence, the formation control method has
proven able to control the formation of a vehicle team in both a simulated and real environment.

To ensure that the verification procedure used to test the formation control is valid the character-
istics and performance of the simulated vehicles and LAUV Fridtjof have been compared. Too
great of a difference between the entities might have affected the results in a way that makes any
conclusions drawn about the formation control method’s validity and capabilities only true for
these cases. The first thing to become apparent during field tests was the swing radius of LAUV
Fridtjof. Whereas the simulators made smooth turns and were able to maneuver relatively sharp
corners, LAUV Fridtjof was not as elegant. It is exemplified in all three missions, but Figure
6.5 depicting the vehicles’ trajectories during U mission very clearly shows the difference. The
difference in swing radius does not affect the test of the system. It merely introduced additional
constraint violations which were handled.

Another thing that was observed to differ between the simulators and LAUV Fridtjof was the
acceptance radius of a waypoint. Trajectory plots from all three missions show that LAUV
Fridtjof is further away from the initial point when compared with the slaves after the prepa-
ration mission is completed. The difference is most evident in Stop master Fridtjof mission,
Figure 6.3, where the positions of both vehicles deviate from the initial point at t = 0, but
LAUV Fridtjof has the most substantial deviation. The difference in acceptance radius does
not affect the performance of the formation control method, and the fact that all missions were
successful attest to the robustness of the method. However, checking the guidance controllers
prior to mission execution in the future and setting equal acceptance radius’ could improve the
performance even further.

Drifting was observed during simulation, and it is clear that the issue is also present during
field tests. It is pointed out in the results from L mission that LAUV Fridtjof drifts more than
the simulators. The drifting is most likely due to the currents and external forces that LAUV
Fridtjof is exposed to. Despite the water being relatively calm the results show that some drifting
is to be expected, and accentuates the importance of further studying the need to implement

80

6.5 Discussion

functionality to counteract the drifting.

The communication between LAUV Fridtjof and the MCS was routed through the Manta, and
the author expected that this might introduce some delays. However, the presented results
neither confirm or deny this assumption. In Stop master Fridtjof mission, Figure 6.4b shows
that both the simulator and LAUV Fridtjof start accelerating at the same time, indicating they
received a start request at approximately the same time. The results from U mission, on the other
hand, seen in Figure 6.6c, point to LAUV Fridtjof’s acceleration beginning at a considerably
later point in time, which might indicate that the vehicles did not receive the start request at
the same time. The observed delay was not decisive for the mission execution, and the results
seem unaffected by a potential delay. Concluding on whether or not there is a delay between
when a simulated and real vehicle receives a message sent from the system is not possible
based on these two cases, and further tests should be conducted. There is a possibility that
communication delays with greater significance are introduced when the scale of the mission
grows, i.e., the vehicle maneuvers further away from the Manta.

In the comparison of the simulators and LAUV Fridtjof, several properties seemed to be similar.
The progress of the vehicles in L mission is shown in Figure 6.2b, and as can be observed
they evolve in the same way with plateaus and growth spurts. It was previously pointed out
that the way the progress evolves is not beneficial for the formation control method, and the
author wishes to once again emphasize the importance of testing missions with greater spatial
distribution and considering an alternative way of calculating mission progress.

Another property that the simulators and LAUV Fridtjof shared was the high speed. The for-
mation control method is widely based on the vehicles dynamics being similar and the vehicles
maneuvering the path at the same speed. Figures 6.4b and 6.6c show that LAUV Fridtjof also
maneuvers at a higher speed than 1 m/s, but is able to converge when left to maneuver over
more extended periods of time. An explanation for the difference in the speed profiles is, of
course, the forces LAUV Fridtjof is exposed to during mission execution that are not present in
the simulated environment. However, the difference does not seem to affect the performance
of the system. What would be interesting to see is how the speed profiles of two or more real
vehicles compare, as it would be deciding for the formation control method if the team members
are not able to hold approximately the same speed.

Based on the observations made during the comparison of the simulators and LAUV Fridtjof,
two modifications are suggested to ensure better system performance and less deviation between
the two entities performance during mission execution. The implementation of the allowed de-
viation was discussed during the verification of the MCS, but L mission underlines once again
the importance of the user being able to explicitly set the allowed deviation. Figure 6.1 shows

81

Chapter 6. Field tests

a formation that is very skewed towards the end of the mission although still satisfying the
constraints. The second suggested modification is to the path generation. U mission demon-
strates that a physical vehicle is not able to maneuver, the generated path without significant
deviations. Given the current restrictions set on the cooperative strategies, a slave could be left
behind because the defined path is infeasible. Path generation has not been a central part of this
thesis, and therefore the behavior of LAUV Fridtjof was somewhat expected. By smoothing the
path and making it feasible for a real vehicle to maneuver the number of constraint violations
will reduce.

The field test results introduced a potential challenge of communication delays, that was not
present during simulation, but except for this no new challenges were revealed. The reason for
the low number of complications and challenges experienced is the fact that the missions are
conducted on the surface and communication being enabled by Wi-Fi. Conducting tests on the
surface was an active choice made to ensure that the work of this thesis could include field tests.
If tests were to be conducted subsea, several challenges would have to be addressed and handled
beforehand; the most important being to implement functions for sending and receiving acoustic
messages, and to limit the information passed between the vehicles and the CCU. Currently,
the IMC messages are not stripped for information that is not essential for mission execution.
However, new IMC messages may be generated and passed through acoustics. Functionality
for re-sending messages and handling lost messages must be implemented as well.

In addition to testing the formation control method, the field tests gave a chance to test the full
system in a real environment with the software components running on separate hardware. All
the missions were successfully conducted, which attests to all the communication links being
consistent during the tests. The results point to the MCS being robust in a real environment, and
no changes to the application’s performance were detected when additional system components,
i.e., Neptus and the Manta, and a real vehicle was introduced. Two days in the field without any
unexpected behavior, loss of communication or system failure points to the system integration
between all software and hardware components working as it should.

To summarize, the field tests paint a picture of an application and a formation control method
that are robust in a real environment and able to plan, control and monitor missions and manage
the formation of a cooperative AUV system that consists of both real and simulated vehicles.
Most of the challenges associated with mission planning have been worked around by running
tests on the surface and using Wi-Fi for communication. Some deviation between the properties
of the simulated and real vehicles have been detected, and suggestions have been made on how
to enhance the system’s performance.

82

Chapter 7
Discussion

To recap, an application for operating a cooperative AUV system with mission planning and
formation control capabilities has been developed. The formation control method was designed
based on existing formation control approaches. Tests to verify the application and forma-
tion control were conducted through simulations and experiments in the field. The application
proved robust in both environments and was able to operate both as a standalone application
and as an integrated part of a greater ecosystem of software. The formation control also proved
successful in both test environments. Results from simulations and field tests are discussed in
Sections 5.6 and 6.5, respectively, and the latter also makes a comparison of the results.

In this chapter, the discussion addresses the uncertainties in the results and the experimental
verification method. A general discussion on the formation control follows before the chapter
concludes with a discussion of the mission planning demonstrated in this thesis and the MCS.

7.1 Uncertainties
Uncertainties influencing the formation control have been identified. Some of them are men-
tioned in Section 5.6 and a general overview of the uncertainties follows.

Despite the calm sea on the days of field testing, the results show that LAUV Fridtjof’s perfor-
mance was affected by external forces. The simulation environment is free of currents, and this
caused a significant difference in the performance of the simulators and LAUV Fridtjof during
mission execution, i.e., LAUV Fridtjof drifted a lot, and deviated greatly from the path when
sharp corners were maneuvered. The formation control was able to compensate for Fridtjof’s
performance, but it is uncertain how efficient the formation control is at controlling a system
when multiple vehicles are deployed in a sea state similar to the state during field tests, or a
single vehicle is deployed in large currents.

83

Chapter 7. Discussion

Applications for vehicle teams that require formation control are usually conducted over a much
larger area than the test cases were. The system’s ability to detect constraint violations and the
method’s ability to restore the formation will most likely remain unchanged when the scale is
increased, but there are uncertainties are related to communication over a larger area, and the
thirty-second maximum wait period for a master. Tests over a larger area should be conducted
to check if the waiting period should be extended and if the formation control is robust against
a potential delay in the communication.

The final uncertainty relates to measurement given by LAUV Fridtjof. Calibration of equipment
was not conducted prior to the tests, making it possible that some of the measurements used in
the results are inaccurate. However, the verification of the formation control does not rely
on accurate measurements, but rather how the system responds based on measurements and
processed data. This uncertainty is therefore deemed not to affect the validity of the results
presented.

Overall, the detected uncertainties demonstrate the need for further and more varied testing of
the formation control.

7.2 The Experimental Verification Procedure
The experimental verification procedure was designed to ensure that experiments could be con-
ducted despite a single vehicle being at the author’s disposal. The research on cooperative AUV
systems and formation control conducted in this thesis did not yield any examples of other
experiments being conducted in the same manner.

The reasons for this may be many, but from the author’s point of view that this is a useful
approach when testing new theories and functionality for cooperative systems. The approach
may be regarded as a fail-fast approach where the goal is to test a theory or new idea at an
early stage, regardless of the whole framework and all the details being in place, to confirm
or disprove the viability of the theory or idea. For this thesis, that meant that experiments
could be conducted to test the developed cooperative strategies before collision avoidance was
implemented. By deploying a single vehicle in the fjord and running two simulators on the
PC, the risk of collision was eliminated, while the team behavior could be studied and the
implemented parts of the formation control verified. An additional advantage of the procedure is
that fewer resources were required; only one vehicle needed to be booked, and the experiments
were easily conducted by two people.

The MCS does not differ between a simulated and real vehicle, and introducing the LAUV
into the system, therefore, became trivial. No modifications were required and once all system

84

7.3 Formation Control

components were set up and connected the components integrated as expected.

As previously pointed out in the discussion of the field test results, the field tests revealed things
that were not apparent in the simulations. Although, safety measures would have been taken
before field tests with multiple vehicles, properties like the unexpectedly large swing radius
may be dealt with at an early stage by modifying the generated paths.

Compensating for shorter communication routes by adding delays on the messages sent to and
from the simulators should be considered if a system using acoustic communication or with a
large spatial distribution is to be tested.

7.3 Formation Control

The greatest challenge of designing the formation control method was the underactuation of
the vehicles. Several of the reviewed approaches to formation control required explicit control
of the vehicle’s velocity vector, but for an AUV it is only possible to explicitly set the for-
ward speed u. Therefore, combining different approaches to produce a feasible method became
the solution. Another point to make in relation to the underactuation of the AUVs is that the
designed method is based on the vehicles stopping and holding their position at certain times
before and during mission execution. However, when controlling an AUV, stopping the vehicle
does not mean the position is held, and the underactuation makes dynamic positioning, i.e., the
vehicle holding its position despite external disturbances, difficult. The drifting experienced
during testing is a reflection of this.

The results presented are based on missions where the control algorithm was loop five times per
second, and the vehicles conveyed a large amount of information. It would be interesting run
tests where the control algorithm is looped at a lower frequency to check system performance,
as this might be the case for larger scaled missions, due to restrictions on the communication.

During the thesis, it has become evident that a significant reason for the lacking literature on
experiments and practices with formation control of AUVs is the communication barrier. The
developed method is applicable in three dimensions, but testing in three dimensions is not pos-
sible unless acoustic communication is implemented. As this has not been fully implemented
for the LAUVs, and it was too large a task to include in the thesis, the tests were conducted on
the surface.

To summarize the discussion on the formation control, many of the suggestions for improvement
of the method are related to the implementation of the formation control method in this thesis.
The method itself and the concepts presented in Section 3.5 have proven to be sufficient for

85

Chapter 7. Discussion

controlling the formation of a cooperative system in the surface. Nothing can be said for the
validity of the method subsea before tests have been conducted.

7.4 Mission Planning and the MCS
Choosing the same language as the LAUV uses for on board control for mission planning was an
advantage. Although the available documentation on IMC messages lacked some information,
the fact that it was XML based made it possible to understand how to compose the messages
the correct way by studying old mission logs. Using IMC messages also eliminated the need
for a translator, which again limited the number of components where an error could occur.

Focus during development was on creating a well-functioning user interface, and a choice was
therefore made to avoid complex mission planning components. This resulted in a very basic
mission planner without decision making or complex computations. Observations made dur-
ing the field tests indicate that the path generation should be made more advanced in order to
generate feasible paths. It is important to note that infeasible paths would have occurred de-
spite choosing another approach for generating the mission plan and that the mission plan may
continue to be generated directly by a human operator when the path generation is made more
advanced. Despite the generated paths not being optimal, the mission planning capabilities of
the MCS have been proven to be satisfactory through the conducted tests.

Much work has been put into developing the user interface and the functionality of the MCS,
and it has been developed in modules to allow for expansion of additional system functionality.
This thesis prioritized implementing functionality that would work both standalone and together
with Neptus, but if the MCS is considered solely as an addition to Neptus, the possibilities for
controlling cooperative systems or AUVs in general grows. By taking advantage of the offerings
of Neptus, and using the MCS to implement additional functionality, the time from an idea is
developed until tests can be conducted is considerably limited. Suggestions to improve the
existing functionality has been made throughout the thesis, but the most exciting developments
for the MCS, and applications like it, in the future will probably be in relation to exploring how
it can contribute with additional functionality to existing control and command software, like
Neptus.

86

Chapter 8
Conclusions and recommendations for
further work

In the final chapter, conclusions are drawn based on the all the work presented in the previous
chapters, and recommendations for further work are given.

8.1 Conclusions
This masters thesis has presented the MCS, an application for controlling a cooperative system
of LAUVs with mission planning and formation control capabilities. The application is a part
of a system for operating cooperative AUV systems that consists of software and hardware from
the LSTS. The MCS can function as the only command and control software in the system or
in cooperation with Neptus, the command and control software offered in the LSTS-toolchain.

Verification and testing of the MCS, show that the mission planning capabilities of the applica-
tion satisfy the application requirements and needs of a cooperative system. Although, the field
tests revealed that the path generation should be made more complex to obtain paths that are
better suited for physical vehicles.

The formation control capabilities in the MCS are enabled by a formation control method with
properties from leader-follower systems, virtual structures, and behavior-based formation con-
trol. The combination of properties from different types of existing formation control proved
successful for cooperative LAUVs, and results from simulations and field tests show that the ve-
hicle team’s formation was successfully maintained during mission execution. The experimen-
tal verification method allowed for testing before the for the formation method was completed,
and collision avoidance should be designed and implemented before experiments with multiple
physical vehicles are to be conducted.

87

Chapter 8. Conclusions and recommendations for further work

The MCS has proved robust during both simulations and field tests, and the integration with
the software and hardware in the LSTS-toolchain was effortless. By considering the additional
requirements and suggestions for altered implementation given in this thesis, the application’s
performance may be further enhanced.

8.2 Recommendations for Further Work
Before any further work can take place, cooperative strategies for handling violations of TC2,
i.e., two team member being closer than a set safety distance, must be designed.

The formation control method can be regarded as a separate entity, independent of the MCS.
Once completed, the formation control method provides an approach for formation control
that covers how to define a formation, generate paths for slaves and controlling team members
behaviors during mission execution. Stricter constraints for a waiting vehicle to resume mission
execution in order to better preserve the formation have been proposed. Beyond this point,
further work could take two main directions. One is more research on the formation control
method using cooperative AUV systems. Research could include implementing the method in
another framework for other types of AUVs, field experiments with more than one LAUV using
the MCS, or testing the method subsea. The other direction the work can be taken is into other
multi-vehicle fields. The formation control can be tested on cooperative systems consisting of
ground mobile robot or aerial vehicles.

The cause of the results in the unsuccessful simulated mission is not known as this thesis con-
cludes. If the current implementation of the formation control in the MCS is to be used in the
future, this should be further investigated. Regardless of which framework the formation con-
trol is implemented in, the suggested improvements discussed in Sections 5.6 and 6.5, should
be taken into consideration. The suggestions are listed in the following:

• Evaluation of the need for implementing a maneuver to keep a waiting vehicle close to a
waypoint through further simulation and field tests.

• Evaluation of the need for calculating mission progress in an alternative way, rather than
using data from the plan control state message from the vehicle.

Further work on the MCS was suggested in the additional requirements derived in Section
4.4. Regarding the two requirements that were not attained in the initial requirements list, it
is strongly suggested that R13 be implemented. The ultimate goal is to be able to use the
MCS for cooperative systems subsea, and therefore the importance of a stable and reliable
communication link remains. It was also suggested after the field tests that the path generation
be made more advanced to ensure feasible paths. Although the MCS has proved to work as a

88

standalone application, the author recommends that the application be used as an addition to
the LSTS toolchain. The reason for this being that the application can be used as a framework
to implement and test other formation control methods, functions for path generation, or other
features related cooperative systems or single AUVs running on DUNE. This way the time
between designing a method and field testing may be reduced because the remaining system
components can ensure a safe test environment and basic functionality that is time-consuming
to implement.

89

90

Bibliography

About mapz (n.d.). Available at:
https://www.mapz.com/en/about (Accessed: 14.05.2018).

AUR-lab (n.d.), LAUV Fridtjof. Available at:
https://www.ntnu.edu/aur-lab/lauv-fridtjof (Accessed: 07.05.2018).

Balch, T. and Arkin, R. C. (1998), Behavior-based formation control for multirobot teams, IEEE

Transactions on Robotics and Automation 14(6). pp. 926–939. doi: 10.1109/70.736776.

Beard, R. W., Lawton, J. and Hadaegh, F. Y. (2001), A coordination architecture for spacecraft
formation control, IEEE Transactions on Control Systems Technology 9(6). pp. 777–790.
doi: 10.1109/87.960341.

Bibuli, M., Bruzzone, G., Caccia, M., Ranieri, A. and Zereik, E. (2015), Multi-vehicle coopera-
tive path-following guidance system for diver operation support, IFAC-PapersOnLine 48(16).
10th IFAC Conference on Manoeuvring and Control of Marine Craft MCMC 2015, pp. 75 –
80. doi: 10.1016/j.ifacol.2015.10.261.

Bloem, R., Jobstmann, B., Piterman, N., Pnueli, A. and ar, Y. S. (2012), Synthesis of Reactive(1)
designs, Journal of Computer and System Sciences 78(3). In Commemoration of Amir Pnueli,
pp. 911 – 938. doi: 10.1016/j.jcss.2011.08.007.

Breivik, M., Hovstein, V. E. and Fossen, T. I. (2008), Ship formation control: A Guided Leader-
Follower Approach, IFAC Proceedings Volumes 41(2). 17th IFAC World Congress, pp. 16008
– 16014. doi: 10.3182/20080706-5-KR-1001.02706.

Buadu, S. (2017), Mission Planning for AUV, Project thesis, Norwegian University of Science
and Technology. Unpublished.

91

https://www.mapz.com/en/about
https://www.ntnu.edu/aur-lab/lauv-fridtjof

Calculate distance, bearing and more between Latitude/Longitude points (n.d.). Available at:
http://www.movable-type.co.uk/scripts/latlong.html

(Accessed: 08.05.2018).

Community, Q. (n.d.), About Qt. Available at:
http://wiki.qt.io/About_Qt (Accessed: 10.05.2018).

Cosic, A., Susic, M., Graovac, S. and Katic, D. (2013), An Algorithm for Formation Control of
Mobile Robots, Serbian Journal of Electrical Engineering 10(1). pp. 59–72. doi: 10.2298/S-
JEE1301059C.

Cui, R., Ge, S. S., How, B. V. E. and Choo, Y. S. (2010), Leader–follower formation control
of underactuated autonomous underwater vehicles, Ocean Engineering 37(17). pp. 1491 –
1502. doi: 10.1016/j.oceaneng.2010.07.006.

Eckstein, S., Glotzbach, T. and Ament, C. (2013), Towards innovative approaches of team-
oriented mission planning and mission languages for multiple unmanned marine vehicles in
event-driven mission, 2013 MTS/IEEE OCEANS - Bergen, pp. 1–8.

Eichhammer, E. (n.d.), QCustomPlot. Available at:
http://qcustomplot.com/index.php/introduction (Accessed: 11.05.2018).

Essaouari, Y. and Turetta, A. (2016), Cooperative underwater mission: Offshore seismic data
acquisition using multiple autonomous underwater vehicles, 2016 IEEE/OES Autonomous
Underwater Vehicles (AUV), pp. 435–438.

FFI (2013), HUGIN World Class Military AUV. Available at:
https://www.ffi.no/no/Publikasjoner/Documents/FFI-fakta%

202-sidig%20eng%20HUGIN.pdf (Accessed: 07.10.2017).

Fiorelli, E., Leonard, N. E., Bhatta, P., Paley, D. A., Bachmayer, R. and Fratantoni, D. M.
(2006), Multi-AUV Control and Adaptive Sampling in Monterey Bay, IEEE Journal of

Oceanic Engineering 31(4). pp. 935–948. doi: 10.1109/JOE.2006.880429.

Fletcher, B. (2000), UUV Master Plan: a Vision for Navy UUV Development, OCEANS 2000
MTS/IEEE Conference and Exhibition, Vol. 1, pp. 65–71.

Glotzbach, T., Eckstein, S. and Ament, C. (2015), An Approach for Planning a Safe Mission
Begin and End for Teams of Marine Robots, IFAC-PapersOnLine 48(2). 4th IFAC Workshop
onNavigation, Guidance and Controlof Underwater VehiclesNGCUV 2015, pp. 100 – 106.
doi: 10.1016/j.ifacol.2015.06.017.

92

http://www.movable-type.co.uk/scripts/latlong.html
http://wiki.qt.io/About_Qt
http://qcustomplot.com/index.php/introduction
https://www.ffi.no/no/Publikasjoner/Documents/FFI-fakta%202-sidig%20eng%20HUGIN.pdf
https://www.ffi.no/no/Publikasjoner/Documents/FFI-fakta%202-sidig%20eng%20HUGIN.pdf

González, J., Masmitjà, I., Gomáriza, S., Molino, E., del Rı́o, J., Mànuel, A., Busquets, J.,
Guerrero, A., López, F., Carreras, M., Ribas, D., Carrera, A., Candela, C., Ridao, P., Sousa,
J., Calado, P., Pinto, J., Sousa, A., Martins, R., Borrajo, D., Olaya, A., Garau, B., González,
I., Torres, S., Rajan, K., McCann, M. and Gilabert, J. (2012), AUV Based Multi-vehicle
Collaboration: Salinity Studies in Mar Menor Coastal Lagoon, IFAC Proceedings Volumes

45(5). 3rd IFAC Workshop on Navigation, Guidance and Control of Underwater Vehicles,
pp. 287 – 292. doi: 10.3182/20120410-3-PT-4028.00048.

Henriksen, E. H. (2014), ROV Control System for Positioning of Subsea Modules, Master’s
thesis, Norwegian University of Science and Technology. Available at:
https://brage.bibsys.no/xmlui/handle/11250/239244 (Accessed:
10.12.2017).

Holsen, S. A. (2015), DUNE: Unified Navigation Environment for the REMUS 100 AUV,
Master’s thesis, Norwegian University of Science and Technology. Available at:
https://brage.bibsys.no/xmlui/handle/11250/2350792 (Accessed:
10.12.2017).

Inc., T. (n.d.), C++ Programming Language. Available at:
https://www.techopedia.com/definition/26184/

c-programming-language (Accessed: 10.05.2018).

Jacobi, M. (2015), Autonomous inspection of underwater structures, Robotics and Autonomous

Systems 67(Supplement C). Advances in Autonomous Underwater Robotics, pp. 80 – 86.
doi: 10.1016/j.robot.2014.10.006.

Jia, Q. and Li, G. (2007), Formation Control and Obstacle Avoidance Algorithm of Multiple
Autonomous Underwater Vehicles(AUVs) Based on Potential Function and Behavior Rules,
2007 IEEE International Conference on Automation and Logistics, pp. 569–573.

Kalwa, J. (2010), Final results of the european project grex: Coordination and control of cooper-
ating marine robots, IFAC Proceedings Volumes 43(16). 7th IFAC Symposium on Intelligent
Autonomous Vehicles, pp. 181 – 186. doi: 10.3182/20100906-3-IT-2019.00033.

Kalwa, J., Pascoal, A., Ridao, P., Birk, A., Eichhorn, M., Brignone, L., Caccia, M., Alves,
J. and Santos, R. (2012), The European R&D-Project MORPH: Marine robotic systems of
self-organizing, logically linked physical nodes, IFAC Proceedings Volumes 45(27). 9th
IFAC Conference on Manoeuvring and Control of Marine Craft, pp. 226 – 231. doi:
10.3182/20120919-3-IT-2046.00039.

93

https://brage.bibsys.no/xmlui/handle/11250/239244
https://brage.bibsys.no/xmlui/handle/11250/2350792
https://www.techopedia.com/definition/26184/c-programming-language
https://www.techopedia.com/definition/26184/c-programming-language

Karimanzira, D., Jacobi, M., Pfuetzenreuter, T., Rauschenbach, T., Eichhorn, M., Taubert, R.
and Ament, C. (2014), First testing of an AUV mission planning and guidance system for
water quality monitoring and fish behavior observation in net cage fish farming, Information

Processing in Agriculture 1(2). pp. 131 – 140. doi: 10.1016/j.inpa.2014.12.001.

Kongsberg (2016), Autonomous Underwater Vehicles AUV/Marine Robots. Available at:
https://goo.gl/uiN4Gs (Accessed: 04.11.2017).

Kothari, M., Pinto, J., Prabhu, V. S., Ribeiro, P., de Sousa, J. B. and Sujit, P. (2012), Robust
Mission Planning for Underwater Applications: Issues and Challenges, IFAC Proceedings

Volumes 45(5). 3rd IFAC Workshop on Navigation, Guidance and Control of Underwater
Vehicles, pp. 223 – 229. doi: 10.3182/20120410-3-PT-4028.00037.

Lapierre, L., Soetanto, D. and Pascoal, A. (2003), Coordinated motion control of marine
robots*, IFAC Proceedings Volumes 36(21). 6th IFAC Conference on Manoeuvring and Con-
trol of Marine Craft (MCMC 2003), Girona, Spain, 17-19 September, 1997, pp. 217 – 222.
doi: 10.1016/S1474-6670(17)37810-2.

Lewis, M. A. and Tan, K.-H. (1997), High Precision Formation Control of Mobile Robots Using
Virtual Structures, Autonomous Robots 4(4). pp. 387–403. doi: 10.1023/A:1008814708459.

Li, X., Zhu, D. and Qian, Y. (2014), A Survey on Formation Control Algorithms for Multi-AUV
System, 2. pp. 351–359. doi: 10.1142/S2301385014400093.

Lin, Y., Hsiung, J., Piersall, R., White, C., Lowe, C. G. and Clark, C. M. (2017), A Multi-
Autonomous Underwater Vehicle System for Autonomous Tracking of Marine Life, Journal

of Field Robotics 34(4). pp. 757–774. doi: 10.1002/rob.21668.

LSTS (2013a). Available at:
https://github.com/LSTS/dune (Accessed: 25.05.2018).

LSTS (2013b), Neptus source code repository. Available at:
https://github.com/LSTS/neptus (Accessed: 25.05.2018).

LSTS (2017), DUNE Unified Navigation Environment. Available at:
http://lsts.fe.up.pt/toolchain/dune (Accessed 01.06.2018).

LSTS (n.da), IMC Inter-Module Communication Protocol. Available at:
https://lsts.fe.up.pt/toolchain/imc (Accessed: 05.06.2018).

LSTS (n.d.b), Manta Communications Gateway. Available at:
https://lsts.fe.up.pt/support_systems/manta (Accessed 02.05.2018).

94

https://goo.gl/uiN4Gs
https://github.com/LSTS/dune
https://github.com/LSTS/neptus
http://lsts.fe.up.pt/toolchain/dune
https://lsts.fe.up.pt/toolchain/imc
https://lsts.fe.up.pt/support_systems/manta

Madureira, L., Sousa, A., Braga, J., Calado, P., Dias, P., Martins, R., Pinto, J. and Sousa, J.
(2013), The light autonomous underwater vehicle: Evolutions and networking, OCEANS -

Bergen, 2013 MTS/IEEE . pp. 1 – 6. doi: 10.1109/OCEANS-Bergen.2013.6608189.

MahmoudZadeh, S., Powers, D. M., Sammut, K. and Yazdani, A. (2016), Toward efficient task
assignment and motion planning for large-scale underwater missions, International Journal

of Advanced Robotic Systems 13(5). pp. 1–13. doi: 10.1177/1729881416657974.

Martins, R., Dias, P. S., Marques, E. R. B., Pinto, J., Sousa, J. B. and Pereira, F. L. (2009), Imc:
A communication protocol for networked vehicles and sensors, OCEANS 2009-EUROPE,
pp. 1–6.

McColgan, J. and McGookin, E. W. (2016), Coordination of Multiple Biomimetic Autonomous
Underwater Vehicles Using Strategies Based on the Schooling Behaviour of Fish, Robotics

5. p. 2. doi: 10.3390/robotics5010002.

McIntyre, D., Naeem, W., Ali, S. S. A. and Anwer, A. (2016), Underwater surveying and map-
ping using rotational potential fields for multiple autonomous vehicles, 2016 IEEE Interna-
tional Conference on Underwater System Technology: Theory and Applications (USYS),
pp. 77–82.

McMahon, J. and Plaku, E. (2016), Mission and motion planning for autonomous underwa-
ter vehicles operating in spatially and temporally complex environments, IEEE Journal of

Oceanic Engineering 41(4). pp. 893–912. doi: 10.1109/JOE.2015.2503498.

OceanScan-MST (2015), LAUV System - Guidelines for Software Development, OceanScan
MST.

OceanScan-MST (2016), LAUV Operator Manual - Release 2.4-rc0, OceanScan MST.

Paliotta, C., Belleter, D. J. and Pettersen, K. Y. (2015), Adaptive Source Seeking with
Leader-Follower Formation Control, IFAC-PapersOnLine 48(16). 10th IFAC Confer-
ence on Manoeuvring and Control of Marine Craft MCMC 2015, pp. 285 – 290. doi:
10.1016/j.ifacol.2015.10.294.

Palomeras, N., El-Fakdi, A., Carreras, M. and Ridao, P. (2012), Cola2: A Control Ar-
chitecture for AUVs, IEEE Journal of Oceanic Engineering 37(4). pp. 695–716. doi:
10.1109/JOE.2012.2205638.

Palomeras, N., Ridao, P., Carreras, M. and Silvestre, C. (2008), Towards a Mission Control Lan-
guage for AUVs, IFAC Proceedings Volumes 41(2). 17th IFAC World Congress, pp. 15028 –
15033. doi: 10.3182/20080706-5-KR-1001.02543.

95

Pan, W.-W., Jiang, D.-P., Pang, Y.-J., Li, Y.-M. and Zhang, Q. (2017), A multi-AUV formation
algorithm combining artificial potential field and virtual structure, 38. pp. 326–334. doi:
10.3969/j.issn.1000-1093.2017.02.017.

Pantelimon, G., Tepe, K., Carriveau, R. and Ahmed, S. (2018), Survey of Multi-agent Commu-
nication Strategies for Information Exchange and Mission Control of Drone Deployments,
Journal of Intelligent & Robotic Systems . doi: 10.1007/s10846-018-0812-x.

Pinto, J., Calado, P., Braga, J., Dias, P., Martins, R., Marques, E. and Sousa, J. (2012), Im-
plementation of a Control Architecture for Networked Vehicle Systems, IFAC Proceedings

Volumes 45(5). 3rd IFAC Workshop on Navigation, Guidance and Control of Underwater
Vehicles, pp. 100 – 105. doi: 10.3182/20120410-3-PT-4028.00018.

Py, F., Rajan, K. and McGann, C. (2010), A Systematic Agent Framework for Situated Au-
tonomous Systems, Proceedings of the 9th International Conference on Autonomous Agents
and Multiagent Systems: Volume 2 - Volume 2, AAMAS ’10, International Foundation for
Autonomous Agents and Multiagent Systems, Richland, SC, pp. 583–590. Available at:
http://dl.acm.org/citation.cfm?id=1838178.1838183 (Accessed
01.12.2017).

Rist-Christensen, I. (2016), Autonomous Robotic Intervention using ROV, Master’s thesis,
Norwegian University of Science and Technology. Available at:
https://brage.bibsys.no/xmlui/handle/11250/2440564 (Accessed:
01.12.2017).

Rout, R. and Subudhi, B. (2016), A backstepping approach for the formation control of mul-
tiple autonomous underwater vehicles using a leader–follower strategy, Journal of Marine

Engineering & Technology 15(1). pp. 38–46. doi: 10.1080/20464177.2016.1173268.

Ruud, F. J. (2016), Autonomous Homing and Docking of AUV REMUS 100, Master’s thesis,
Norwegian University of Science and Technology. Available at:
https://brage.bibsys.no/xmlui/handle/11250/2410753 (Accessed:
01.12.2017).

Sariel, S. (2007), An integrated planning, scheduling and execution framework for multi-robot

cooperation and coordination, PhD thesis, Istanbul technical university. Available at
http://web.itu.edu.tr/sariel/thesis/sariel_PhD_Thesis_2007.

pdf (Accessed: 01.06.2018).

96

http://dl.acm.org/citation.cfm?id=1838178.1838183
https://brage.bibsys.no/xmlui/handle/11250/2440564
https://brage.bibsys.no/xmlui/handle/11250/2410753
http://web.itu.edu.tr/sariel/thesis/sariel_PhD_Thesis_2007.pdf
http://web.itu.edu.tr/sariel/thesis/sariel_PhD_Thesis_2007.pdf

Soares, J. M., Aguiar, A. P., Pascoal, A. M. and Martinoli, A. (2013), Joint asv/auv range-based
formation control: Theory and experimental results, 2013 IEEE International Conference on
Robotics and Automation, pp. 5579–5585.

Sorbi, L., De Capua, G., Fontaine, J.-G. and Toni, L. (2012), A Behavior-Based Mission
Planner for Cooperative Autonomous Underwater Vehicles, 46. Available at:
https://infoscience.epfl.ch/record/182865/files/5.Manuscript_

Sorbi_et_al.pdf (Accessed: 23.01.2018).

Sujit, P. B. and Saripalli, S. (2013), An Empirical Evaluation of Co-ordination Strategies for
an AUV and UAV, Journal of Intelligent & Robotic Systems 70(1). pp. 373–384. doi:
10.1007/s10846-012-9728-z.

Willcox, S., Goldberg, D., Vaganay, J. and Curcio, J. A. (2006), MULTI-VEHICLE COOP-
ERATIVE NAVIGATION AND AUTONOMY WITH THE BLUEFIN CADRE SYSTEM.
Available at:
https://www.researchgate.net/publication/241654294_

MULTI-VEHICLE_COOPERATIVE_NAVIGATION_AND_AUTONOMY_WITH_THE_

BLUEFIN_CADRE_SYSTEM (Accessed: 02.04.18).

Yan, Z., Liu, X., Jiang, A. and Wang, L. (2016), Formation control of multiple uuvs based on
virtual leader, 2016 35th Chinese Control Conference (CCC), pp. 4621–4626.

Yao, Y. (2013), Cooperative Navigation System for Multiple Unmanned Underwater Vehicles,
IFAC Proceedings Volumes 46(20). 3rd IFAC Conference on Intelligent Control and Automa-
tion Science ICONS 2013, pp. 719 – 723. doi: 10.3182/20130902-3-CN-3020.00127.

Zhang, L. C., Wang, J., Tonghao, W., Liu, M. and Gao, J. (2016), Optimal formation of mul-
tiple AUVs cooperative localization based on virtual structure, OCEANS 2016 MTS/IEEE
Monterey, pp. 1–6.

97

https://infoscience.epfl.ch/record/182865/files/5.Manuscript_Sorbi_et_al.pdf
https://infoscience.epfl.ch/record/182865/files/5.Manuscript_Sorbi_et_al.pdf
https://www.researchgate.net/publication/241654294_MULTI-VEHICLE_COOPERATIVE_NAVIGATION_AND_AUTONOMY_WITH_THE_BLUEFIN_CADRE_SYSTEM
https://www.researchgate.net/publication/241654294_MULTI-VEHICLE_COOPERATIVE_NAVIGATION_AND_AUTONOMY_WITH_THE_BLUEFIN_CADRE_SYSTEM
https://www.researchgate.net/publication/241654294_MULTI-VEHICLE_COOPERATIVE_NAVIGATION_AND_AUTONOMY_WITH_THE_BLUEFIN_CADRE_SYSTEM

98

Appendix A
Attachments

Appendix A contains the attachments to this thesis, which are stored in a ZIP-file delivered
electronically together with the thesis. The file includes the following folders:

A.1 LogFiles
For each simulation and field test, the results are computed based on logged measurement data.
This folder includes the complete log files, scripts for reading the files, process the data, and
create figures.

A.2 Poster
The A2 poster (2xA3) has been included in .pdf-format, and is found in this folder.

A.3 Source
All code required to run both the simulators and the MCS are included in this folder. The
contents of each subfolder are described briefly, and the most important files are named in the
following subsections.

A.3.1 dune

The dune folder contains all the code files required to run the simulators. Files of interest are
the initialization files; backseat1.ini, backseat2.ini, and backseat3.ini. These files link to all the
remaining files, and how to run the simulator is discussed in Section 3.1.1.

99

A.3.2 MCS

All developed code for the MCS, the qcustomplot library, and images used in the application are
included in this folder. Files of interest are gui.cpp and gui.h. The user interface is defined in the
auto-generated file gui.ui in XML-format. To study the project as a whole, Qt is recommended
as the IDE.

A.3.3 MCSlib

All developed code for MCSlib is included in this folder. Files of interest are mcslib.cpp and mc-

slib.hpp, the remaining files were auto generated by Qt when the library was compiled and built.
The library also includes two header files, which are placed in a folder named include within
this folder. imcDefs.h stores the id number of relevant IMC message typesn, and TcpLink.hpp

is developed by OceanScan, and defines all the functions that handle the TCP connection.

100

Appendix B
Abstract Submitted to 2018 IEEE OES
Autonomous Underwater Vehicle
Symposium

101

Mission planner for AUV swarms: A verification procedure combining

simulation and experiments

Stephanie Buadu

Dept of Marine Technology

NTNU

Trondheim, Norway

stephaniebuadu@gmail.com

Tore Mo-Bjørklund

Dept of Marine Technology

NTNU

Trondheim, Norway

toremobjo@gmail.com

Ingrid Schjølberg

Dept of Marine Technology

NTNU

 Trondheim, Norway

Ingrid.Schjolberg@ntnu.no

Keywords: AUV, mission planning, formation control, cooperative system.

Introduction

Among the current applications for AUVs, both civil and military many require time, space, and

functional distribution which is impossible to obtain with a common single vehicle approach. Multi-

vehicle application introduces new challenges that must be addressed, such as formation control; the

task of controlling multiple vehicles to complete mission objectives while keeping a formation.

Formation control becomes a central part of the high-level mission plan which is broken down and

specified to compute lower-level mission plans for the individual team members.

In 2014 a survey conducted by (Li, Zhu, & Qian, 2014) stated that the literature on formation control of

AUVs is much fewer than those on mobile robots and aircraft. Also, most of the available research was

pure theoretical without sufficient experiments and practices. The current situation within the field has

not changed significantly, although there are more examples of literature referring to experiments and

practice in connection with formation control of AUVs the number fades in comparison to other fields

such as ground robots and aerial vehicles. In other words, the applications are ready, and there is a need

for well tested and functioning approaches to formation control for AUVs, but the current research does

not cover the need.

In this paper, we propose a cooperative AUV system based on the LSTS toolchain (Pinto, et al., 2013)

that includes a newly developed application for mission planning, execution, and monitoring of multi-

vehicle missions, the MCS (Mission Control System). Within the application, a proposed algorithmic

formation control method designed by adapting existing multi-vehicle mission theory from other fields

is implemented. The system has been tested in simulation, and experiments with simulated and

physical vehicles in cooperation were conducted. The motivation behind this paper is to contribute to

the research in the field by documenting the experiences during implementation and testing and

sharing the experimental results.

System description and results

gives an overview of the proposed system including hardware and software components. Starting at

the top left, the Light Autonomous Underwater Vehicle (LAUV) Fridtjof is the physical vehicle used

during field tests. The Manta Communications Gateway enables communication between LAUV

Fridtjof and the remaining software components by routing WiFi-signals. Neptus is the mission

command and control software offered in the LSTS toolchain, and in this system, it is utilized first and

foremost for commanding LAUV Fridtjof between missions and as a backup control application.

There is no explicit functionality for cooperative systems in Neptus, hence the need for the additional

functionality that the MCS introduces next to the toolchains offerings. The MCS may be run both

standalone and in combination with Neptus. During simulations for instance, Neptus can be left out of

the system architecture, as there is no risk of damaging the vehicle, and the extra security and single

vehicle control functionality that Neptus offers is not required.

The LAUV simulators used for testing run on the same computer as the MCS, and all communication

throughout the system was enabled by Inter-Module Communication (IMC) messages, which are also

included in the LSTS toolchain.

Figure 1-4 show the MCS’ user interface in which an operator may generate a high-level mission plan

which is decomposed and sent to the individual vehicles. The MCS handles formation control and

allows the operator to monitor and intervene during mission execution.

The designed formation control method includes elements from virtual structures, leader-follower, and

behavioral methods. Each vehicle implements three behaviors; path following, obstacle avoidance, and

formation preservation. Path following is the default behavior. Five cooperative strategies were

implemented to handle constraint violations and set the right behavior onto each vehicle.

Summary

The system was extensively tested through simulations before experiments were conducted in the

Trondheim Fjord with a cooperative system consisting of two simulators and LAUV Fridtjof. The

results were promising, the MCS performed in accordance with its requirements, and the formation

control proved able to control the formation during mission execution.

References

Li, X., Zhu, D., & Qian, Y. (2014, 10). A Survey on Formation Control Algorithms for Multi-AUV

System. Unmanned Systems.

Pinto, J., Dias, P. S., Martins, R., Fortuna, J., Marques, E., & Sousa, J. (2013). The LSTS toolchain for

networked vehicle systems. 2013 MTS/IEEE OCEANS - Bergen, (pp. 1-9). Bergen.

Figure 1: Illustration of system overview.

Figure 2: View 1 of the MCS. For defining the vehicle

team, formation, and constraints.

Figure 3: View 2 of the MCS. Enables defining and

reviewing the path for the team and loading the mission

plan onto the individual vehicles.

Figure 4: View 3 of the MCS. The view for starting

mission execution and monitoring mission execution.

104

Appendix C
IMC Message Specifications

The presented messages are messages extracted from vehicle logs after field tests and simula-
tions and visualized in the Neptus mission review and analysis module. Each section below
presents a message type, but the headers are not included. The messages, their relevance to the
system, and fields of interest are discussed in Section 3.4.

C.1 Vehicle State

Figure C.1: The structure of a vehicle state message.

105

C.2 Estimated State

Figure C.2: The structure of an estimated state message.

106

C.3 Plan Control State

Figure C.3: The structure of a plan control state message.

C.4 Plan Control

Figure C.4: The structure of a plan control message.

107

C.5 Plan Specification

Figure C.5: The structure of a plan specification message containing two maneuvers and a transition.

108

Appendix D
Additional information about the vehicle and
simulators

D.1 Simulator Modifications
Table D.1 gives an overview of the files duplicated and modified to enable simulation of multiple
vehicles simultaneously.

Table D.1: Overview over required duplication and modification to enable several LAUV simulator on
the same PC. All files are named relative to the ’dune/etc’ folder.

File Duplicated Modified variables

backseat.ini Yes Port, required files
lauv-simulator.ini Yes Vehicle, required files
auv/basic.ini Yes Required files
common/imc-adresses.ini No IMC adress for new vehicles
common/transports.ini Yes HTTP port
transports.ini Yes UDP local port, TCP Server local

port
simulator.ini Yes Initial position

109

D.2 Vehicle Specification
The configuration and equitment on LAUV Fridtjof during testing is stated in Table D.2.

Table D.2: Configuration of LAUV Fridtjof during field tests. Copied from AUR-lab (n.d.)

Technical specification

Vehicle length 180 cm
Weight 25.8 kg
Max operational depth 100 m
Battery Li-ion
Speed [0.5, 2] m/s
Endurance up to 8 h
Data storage capacity 16 Gb and 64 Gb

Communication

WLAN up to 1 km
GSM within 3g coverage
Underwater acoustic up to 1 km
Irdium SBD module
Emergency acoustic pinger up to 2 km
Directional hydrophone up to 2 km
Attitude and heading reference system
(AHRS)

aided by DVL

Equiptment

Downward looking camera Lumenera Le165
Lighting LED lighting
Doppler velocity logger Nortek DVL 1MHz
USBL acoustic modem Evologics S2CR 18/34
Forward looking sonar Imagenex 852
User computer Nvidia Jetson TX1

110

D.3 Connecting to LAUV Fridtjoft and Simulators
Table D.3 gives an overview of the server addresses and ports utilized for LAUV Fridtjof and
the simulators. Note that the simulators are run on the PC running the MCS and that the server
addresses refer to the local PC. To understand how the connection is established, review the
start function in mcslib.cpp. If the simulators should run on a separate PC, simply modifying
the server address in the gui.cpp file and copying the required simulator files in the DUNE
folder would be sufficient. For the simulators, all their connections can be monitored through
the terminal they run in, and Figure D.1 shows how a successful connection between the MCS
and a simulator is represented in the terminal.

Table D.3: Overview of server addresses and ports for LAUV Fridtjof and simulators.

Vehicle Server address Server port

LAUV Fridtjof 10.0.10.70 32603
LAUV Simulator 1 127.0.0.1 32603
LAUV Simulator 2 127.0.0.1 32604
LAUV Simulator 3 127.0.0.1 32605

111

Figure D.1: A successful communication link between a simulator and the MCS visualized in the termi-
nal running the simulator.

112

Appendix E
Video from the First Day of Field Testing

A short video (45 sec) showing how the field tests were conducted with LAUV Fridtjof and how
it could be monitored in the MCS is available at https://goo.gl/8wSXSZ. The shots of
LAUV Fridtjof in the water were taken by a drone.

113

https://goo.gl/8wSXSZ

	MSc Thesis Description
	Abstract
	Sammendrag
	Preface
	List of Tables
	List of Figures
	Abbreviations
	Introduction
	Background
	Cooperative versus Coordinated System

	Objectives and Scope
	Contributions
	Structure of Thesis

	Literature Review
	UUVs
	AUVs
	ROVs

	Mission Planning
	Basic Concepts
	Challenges

	Cooperative Underwater Systems
	State-of-the-art
	Formation Control

	Summary

	System Description
	LAUV
	LAUV Simulator

	The MCS
	Additional Hardware and Software
	DUNE
	Neptus
	Manta Communications Gateway

	Communication
	Inter-Module Communication Protocol

	Formation Control
	Formation
	Path Generation and Guidance
	Control Algorithm
	Verification

	The MCS
	Previous Work
	Description
	Purpose
	Application Requirements.
	Application Code
	Technology

	Application Components
	MCSlib
	View 1
	View 2
	View 3

	Verification
	Evaluation of Application Requirements
	Comparison to Neptus
	Additional Requirements

	Simulations
	Slave B Falls Behind Mission
	Master Falls Behind Mission
	Slave Catches up to Master Mission
	Master Catches up to Slave Mission
	Unsuccessful Mission
	Discussion

	Field tests
	Organization
	Objectives
	Method of Approach

	L Mission
	Stop Master Fridtjof Mission
	U Mission
	Discussion

	Discussion
	Uncertainties
	The Experimental Verification Procedure
	Formation Control
	Mission Planning and the MCS

	Conclusions and recommendations for further work
	Conclusions
	Recommendations for Further Work

	Bibliography
	Attachments
	LogFiles
	Poster
	Source
	dune
	MCS
	MCSlib

	Abstract Submitted to 2018 IEEE OES Autonomous Underwater Vehicle Symposium
	IMC Message Specifications
	Vehicle State
	Estimated State
	Plan Control State
	Plan Control
	Plan Specification

	Additional information about the vehicle and simulators
	Simulator Modifications
	Vehicle Specification
	Connecting to LAUV Fridtjoft and Simulators

	Video from the First Day of Field Testing

