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Abstract

This thesis focuses on resistance of fast displacement catamarans, with the purpose of
developing an empirical residuary resistance estimation method based on artificial neural
networks. The study builds on work carried out by Rambech [1998], where resistance data
from model trials carried out by MARINTEK from 1990 to 1997 was analysed and an
empirical resistance prediction method was made. This method, named CatRES, produces
conservative resistance estimations for newer designs, and SINTEF Ocean has proposed
the task of including model trials carried out from 1997 to 2017, and develop an improved
empirical resistance estimation method. The total data set consists of 2313 samples.

After doing an extensive parameter study of neural network design and training the input
parameters in Table 1 gave the best performing network with model input parameters:
Fn, B/T , L/Ò1/3, S/Ò2/3, s2/Lwl and Sb/S. The parameter range of the training data,
and therefore the validity range of the empirical model is presented in Table 4.1. The best

Table 1: Optimal neural network training parameters, found through parameter study.

Parameter Best Alternative
Training function trainbr
Node distribution in hidden layers [10-11-11-10]
Dataset Full available dataset
Best number of training epochs 19

performing neural network found through the study was trained for 996 epochs. Through
validation analysis, carried out using an independent data from Molland et al. [1995],
signs of significant overtraining was observed. Training for fewer epochs yielded better
generalisation ability as the prediction error for the independent data set decreased, and
19 epochs proved to be the best number of training epochs. Prediction ability was assessed
by calculating mean squared error (MSE) between predicted and correct results. MSE of
0.1135 was obtained for the SINTEF Ocean dataset, and an MSE of 0.2072 was obtained
for the independent data set.

Overtraining and overfitting were avoided using built-in tools in Matlab and analysis with
the independent data set. The consequence of exceeding parameter validity range was
analysed, where the model predicted the general behaviour, but fails to predict residuary
resistance perfectly. A missing input analysis was also carried out, where setting missing
input equal to SINTEF Ocean sample mean yields the best prediction ability.
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Sammendrag

Denne oppgaven fokuserer p̊a motstand hos hurtigg̊aende katamaraner, der hensikten er å
utvikle en empirisk mostandsmodell for å estimere restmostand ved hjelp av kunstige nev-
rale nettverk. Studiet bygger p̊a arbeidet gjort av Rambech [1998], der modellforsøk gjort
av MARINTEK fra 1990 til 1997 ble benyttet til å utvikle en empirisk motstandsmodell.
Metoden, kalt CatRES, har begynt å gi konservative estimater for nyere katamaran design,
og SINTEF Ocean har derfor foresl̊att oppgaven med å inkludere slepeforsøk gjort fra 1997
til 2017, for å utvikle en forbedret empirisk motstandsmodell. Det totale datagrunnlaget
er p̊a 2313 datapunkter.

Etter et grundig parameterstudie av nevralt nettverksdesign i Matlab, ble den optimale
kombinasjonen av designparametre presentert i Tabell 2 funnet. Den optimale paramet-
erkombinasjonen for input-verdier til nettverket er: Fn, B/T , L/Ò1/3, S/Ò2/3, s2/Lwl

og Sb/S. Parameteromr̊adet, som ogs̊a er det nevrale nettverkets validitetsomr̊ade, er
presentert i Tabell 4.1 Det best presterende nettverket funnet gjennom parameterstudier

Table 2: Optimale treningsparametre funnet gjennom parameterstudiet.

Parameter Beste Alternativ
Treningsfunksjon trainbr
Node distribusjon i skjulte lag [10-11-11-10]
Datasett Fullt tilgjengelig datasett
Optimalt antall treningsepoker 19

ble trent i 996 epoker. Gjennom verifiseringsanalyser gjort med et uavhengig datasett fra
Molland et al. [1995], ble tegn p̊a overtrening hos nettverket observert. Trening i færre
epoker ble gjennomført for å øke generaliseringsevnen til nettverket. Prediksjonsevnen for
det uavhengige datasettet økte drastisk ved trening i færre epoker, og en bedre general-
iseringsevne ble oppn̊add. Trening i 19 epoker viste seg å gi best ytelse. Prediksjonsevnen
ble validert ved mean squared error (MSE), som ga en MSE p̊a 0.1135 for datasettet gitt
av SINTEF Ocean og en MSE p̊a 0.2072 for det uavhengige datasettet.

Overtrening og over-tilpassing har blitt unng̊att ved bruk av innebygde verktøy i Matlab, og
ved verifisering og validering med uavhengig datasett. E�ekten av å g̊a utenfor nettverkets
gyldighetsomr̊ade har blitt analysert, hvor modellen klarte å predikere generell oppførsel,
men ikke klarte å gjengi perfekte resultater. En analyse p̊a konsekvens av manglende
input-verdier ble ogs̊a gjennomført, hvor det å sette manglende verdier lik gjennomsnittlig
verdi hos modellene fra datasettet hos SINTEF Ocean ga best resultater.
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Chapter 1
Introduction

1.1 Background and Motivation

Getting a rough estimate of a ships resistance without doing high-cost model trials or
complicated computational fluid dynamics (CFD) analysis, is desirable in the early phase
of a ship design process. Even before the hull lines are designed, there is a need for quick
resistance estimation methods which require little input. An empirical resistance model
for fast catamarans named CatRES was constructed based on the database of model trials
performed by MARINTEK up to about 1997. Several model trials have been carried out
in the last twenty years, and SINTEF Ocean has experienced CatRes to give conservative
resistance predictions. They have therefore expressed a desire to update CatRES, with
the new resistance data, and look for possibilities to enhance the current method.

In his project thesis, the author carried out a literature study in the field of empirical
resistance prediction models for catamarans. The di�erent aspects of resistance on
catamarans were presented together with established methods for resistance estimation.
Two of these methods; CatRES [Rambech, 1998] and Molland et al. [1995] method was
presented in detail, while the empirical and semi-empirical methods of Sahoo et al. [2007]
and Xuan et al. [2001] were briefly discussed. CatRES is a fourth order polynomial where
the slenderness-ratio L

Ò1/3
is used to estimate the resistance coe�cient. The method was

developed using regression on model trials carried out from 1990-1997 by MARINTEK,
where the models are mainly car- and passenger ferries, and cargo catamarans with a few
models being fishing vessels for line fishing. Many new designs have been tested in the
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period from 1997 to 2017, and several of these are of the same vessel types. By including
recent model trials from ferries and some other vessels, 1231 trials are added to the original
dataset of 1082 trials, creating a sample of 2313 data points. New designs appear to
have lower slenderness-ratio and higher Lwl/Bwl-ratio than the older designs. Higher
displacement is a characteristic for planing vessels, as the hull is lifted partly out of the
water when travelling at higher speeds. When screening the models together with SINTEF
Ocean, planing vessels was however filtered out, as displacement and semi-displacement
catamarans were desired. CatRES and Molland et al. [1995] method are both polynomial
fitted models, using the dimensionless parameters: L

B
, B

T

L

Ò1/3
and s

L
multiplied to Froude

number dependent coe�cients, to calculate resistance. The Froude number dependent
coe�cients are calculated for discrete Froude numbers, making an interpolation between
adjacent Froude numbers necessary when used for non-discrete Froude numbers.

Machine learning, with emphasis on artificial neural networks (ANNs), was proposed as a
feasible way of developing an empirical resistance prediction method for fast catamarans
in the project thesis. Machine learning has gained serious momentum in the past couple of
years as the available computer power has increased and computer cost has decreased, and
therefore it is applicable to several fields of engineering. In marine applications, ANNs
have been used in performance and cavitation estimation for propellers [Shora et al., 2017],
analysis of spread mooring configurations for floating production systems [de Pina et al.,
2016] and performance prediction of hydrofoil supported catamarans [Najafi et al., 2018].

One of the strengths of machine learning and artificial neural networks is their ability to
find patterns in data, without the need of physical relationships or ”logic” relationships.
Both CatRES and Molland et al. [1995] method used regression for discrete Froude numbers
and uses these coe�cients to further estimate resistance. By looking at the regression lines
for the discrete Froude numbers for CatRES, coe�cients of determinations in the range
0.9630 ≠ 0.9855 are observed [Rambech, 1998, Appendix C.7]. These R-squared values
close to 1 indicates a good fit for the discrete Froude numbers, but how will the method
perform in between Froude numbers? Will the method lose its accuracy when adjacent
coe�cients are interpolated? CatRES is not evaluated in this thesis, but a qualified guess
is: probably.

Both CatRES and Molland et al. [1995] method were developed before the year 2000
and catamaran designs appear to have changed slightly since then. CatRES produces
conservative estimated when used on newer designs, indicating poor performance for
catamaran designs diverging from the designs between 1990-1997. Creating a new empirical
resistance estimation method, using data from both older and newer designs, is therefore
desired in order to find a model which yields good estimation for all designs. The use
of artificial neural networks on resistance data from catamarans appears to be absent
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CHAPTER 1. INTRODUCTION

in published literature, which is something the author finds strange. Artificial neural
networks appear to be applicable, but maybe the data available to other researchers is
too limited to obtain well trained neural networks. The focus of this thesis will be on
developing an empirical resistance prediction method for fast catamarans, using machine
learning trained on data from model trials carried out by SINTEF Ocean. The intention
is to find a method with high generalisation ability, which is suitable for estimating the
resistance of both old and new designs. In the next sections, the objectives and scope of
work are presented.

1.2 Objectives and Scope

The objective of this master thesis is to build on the preliminary work carried out in
the project thesis and develop an improved empirical resistance prediction method for
fast catamarans. The method shall be implemented in a computer tool suitable for
implementation in a larger software system.

In order for the resistance model to be accurate, several tasks had to be carried out
such as; extensive pre-processing of data from model trials, data validation, parameter
study, training of the di�erent neural networks, performance comparison, network validity
confirmation and exportation of finished model. Lots of time have been put into digitisation
of the resistance data, as most of the resistance data are found in reports in PDF-format,
and therefore numbers had to be manually written into electronic format. Then comes
the questions; which vessel parameters should be included in the empirical model? Which
vessel parameters has the most impact on the performance of the neural networks? What
is the validity range of the empirical model and how does it behave outside its validity
range? These questions found the basis of this thesis, which have been broken down into
the following objectives:

• The procedure of how to predict resistance for fast catamarans from model tests
will be outlined.

• An overview of the established empirical resistance prediction models will be presen-
ted, representing the current state of knowledge in the field.

• Artificial neural network theory is presented.

• A catamaran parameter study is carried out, based on the available model resistance
data from SINTEF Ocean. Ranges of the di�erent model and ship parameters are
presented.

• A parameter study of the neural network input-parameters in Matlab is carried out,
and the best combination of parameters for this case is found.

3



1.3. THESIS OUTLINE

• Results from artificial neural network training and validation will be presented, and
a most feasible solution is proposed.

• The range of validity and limitations of the proposed method are tested, presented
and discussed.

1.3 Thesis Outline

The rest of the thesis is structured as follows.

• Chapter 2 presents a review of theory related to the topics in this thesis. Ship
resistance with an emphasis on resistance of catamarans, a review of current empirical
resistance prediction methods and theory of machine learning with emphasis on
artificial neural networks are presented. Some of the material is based on the
literature study carried out by the author last fall, but the text has been modified
and topics have been added.

• Chapter 3 contains results from this study. The data is presented, with available
model data and its ranges, before a parameter study of input parameters when using
Neural Network Toolbox in Matlab for designing artificial neural networks, is carried
out. Then the optimal parameters are combined into training an optimal neural
network. Lastly, this network is evaluated, by assessing the generalisation ability
and parameter studies.

• Chapter 4 presents a discussion of the results, and how the choices made in this
study a�ects the validity, accuracy and usage of this empirical resistance prediction
method.

• Chapter 5 contains the final conclusion on the work that has been carried out, with
a summary of remarks and limitations found through this study.

• Chapter 6 is the last chapter, presenting recommendations for further work with
this method in order to develop and evaluate its abilities even further.
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Chapter 2
Theory

In this chapter theory concerning resistance of catamarans, established empirical resistance
prediction methods and machine learning, with emphasis on artificial neural networks,
will be presented. Some of the material is based on the literature study carried out by
the author in the project report last fall, but the text has been modified to fit this thesis.
Theory of neural network training has been extended, pitfalls have been added and the
workflow of designing neural networks in Matlab has been added as well.

2.1 Resistance

The di�erent resistance components for any object travelling through water can be broken
down into forces acting on the object. The consensus of calculating vessel hull resistance
today is based on Froude scaling, which is represented with dimensionless coe�cients as
in Equation 2.1. And the total resistance coe�cient for a ship is calculated as shown in
Equation 2.2 [Fathi et al., 2012, page 56].

CX = RX

1
2 · fl · S · V 2 (2.1)

CT = CR + (1 + k0)(CF + �CF ) + CAA + CBD + CA (2.2)

CX : resistance coe�cient of force RX .

RX : resistance force X.
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fl: fluid density.

S: surface the force is acting on (wetted surface for forces from water, projected
area for air forces).

V : relative velocity between object and fluid.

CT : total resistance coe�cient.

CR: residuary resistance coe�cient.

(1 + k0): form factor.

CF : frictional resistance coe�cient.

�CF : hull roughness allowance.

CAA: air resistance coe�cient.

CBD: base drag coe�cient.

CA: resistance correlation coe�cient (correlating the result against full-scale trials).

An illustration of the di�erent resistance components can be seen in Figure 2.1

Figure 2.1: Illustration of catamaran resistance components.

The total resistance coe�cient for a model scale catamaran is expressed in Equation 2.3
[Steen and Minsaas, 2013, equation 9.1]. The interaction between hulls is an important
factor for catamarans, which is taken into account by the factors: “ and —.

CT m = “ · CW (FN ) + CF m(1 + k · —) + CAAm + CBDm (2.3)

CT m: total resistance coe�cient for the model.

“ · CW (FN ) = CR: residuary resistance coe�cient.

“: correction of wave resistance due to the presence of the other hull.

k: form factor without the presence of another hull.
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—: correction of form factor due to the presence of other hulls.

CF m: frictional coe�cient for the model.

CAAm: air resistance coe�cient for the model.

CBDm: transom stern resistance coe�cient for the model.

The residuary resistance coe�cient, presented in Equation 2.2 and 2.3, is the di�erence
between the measured total resistance and the calculated viscous resistance for a ship. It
is assumed to be identical for full scale and model scale vessel at the same Froude number,
and therefore it can be found by doing model trials of desired designs at desired speeds.
The coe�cient can be found as stated in Equation 2.4.

CR = CT ≠ CV iscous = CT m ≠
#
CF m(1 + k · —) + CAAm + CBDm

$
(2.4)

2.1.1 Frictional Resistance

The frictional force is the sum of all tangential shear forces acting on the hull surface
due to the hull moving through water. ITTC [1987] recommends estimating the friction
resistance using the ITTC’57 friction correlation line which can be expressed by Equation
2.5.

CF = 0.075
(log(Rn) ≠ 2)2 (2.5)

Equation 2.5 is valid for smooth surfaces, and because a ship hull has roughness an
additional friction coe�cient must be added. Roughness will for practical applications be
most significant at high-speeds, and because catamarans typically operate at high speeds,
this must be accounted for. An empirical expression for calculating roughness allowance is
presented in Equation 2.6 [Steen, 2014, section 1.2.2].

�CF =
#
110 · (H · V )0.21 ≠ 403

$
· C

2
F

(2.6)

H: roughness of the hull (typically 50-150 µm for newly docked vessels).

Equation 2.5 is describing the frictional resistance coe�cient-model-ship correlation line,
so in order to describe the friction coe�cient for a specific hull it needs to be multiplied
with a form factor to find the correct viscous resistance component. The hull of a model
is assumed to be ”smooth” and therefore the roughness allowance, presented in Equation
2.6, is neglected.

CV M = (1 + k) · CF (2.7)

7



2.1. RESISTANCE

To make this expression for wave making resistance, and residuary resistance, valid for a
multi-hulled vessel, a parameter — is included to correct the form factor for the presence
of other hulls [Insel and Molland, 1992].

CV M = (1 + k · —) · CF (2.8)

2.1.2 Determining the Form Factor k

The form factor k in Equations 2.3, 2.7 and 2.8 can be found using di�erent methods.
In the following sub-sections the Prohaska’s method for high Froude numbers and an
empirical method are presented.

Prohaska’s Method for High-Speed Towing Tests

In the Prohaska’s method for low-speed monohulls, the model is towed at low speed and
the form factor is found by linear regression of the resistance data [Steen, 2014, chapter
1.2.1]. However, it has been shown that the wave resistance reaches its maximum at a
Froude number of FN = 0.5, while most catamarans operate at FN > 0.5. By increasing
FN further the wave resistance decreases, and at very high FN the total resistance is due
to dynamic lift, frictional resistance and air resistance only.

The form factor can be found by the original Prohaska’s method, but there is a major
problem regarding low speed towing test due to the transom stern resistance - which will
be discussed later. The resistance due to wetted stern at low speeds will be dominating
at FN < 0.2 and must therefore be subtracted if the method is used. As an alternative,
the form factor can be found by doing high-speed towing tests, where the wave resistance
becomes small. The Prohaska’ method can be applied to high-speeds by plotting:

CT m ≠ CAA

CF m

= (1 + k) + m · CW (FN )
CF m

= (1 + k) + m · F
n

N

CF m

(2.9)

Then n can be changed until a linear relation is obtained between CT m≠CAA
CF m

and F
n
N

CF m
.

The form factor k is given by the intersection with the y-axis, and now the wave or pressure
resistance is expressed as:

CW = m · F
n

N
(2.10)

m: a constant in which gives a linear behaviour of F
n
N

CF m
.

The linear tendency is normally obtained when 4 < n < 6 for FN < 0.5, while n = ≠1.25
for FN > 1.0. An example of this high FN Prohaska’s method can be seen in Figure 2.2.

8



CHAPTER 2. THEORY

Figure 2.2: Form factor of a high-speed catamaran determined from high-speed towing
tests. [Steen and Minsaas, 2013, figure 9.1].

Empirical Methods

The form factor k can also be found through empirical methods, which are based on model
test and curve fit to data. SINTEF Ocean are using the formula presented in Equation
2.11. This expression is based on experimental data for conventional displacement hulls,
together with some analytically based expressions [Fathi et al., 2012, Chapter 4.1]. The
model is fit to give slightly lower form factor than the experimental data, making it an
empirical model which to a large extent excludes the viscous pressure resistance from the
form factor. Therefore, the model presented in Equations 2.11 and 2.12 will normally give
a lower form factor than obtained from experiments.

k = 0.6Ï + 145Ï
3.5 (2.11)

Ï = CB

LW L


(TAP + TF P ) · B (2.12)

CB : block coe�cient.

LW L: length of waterline.

TAP : draught at aft perpendicular.

TF P : draught at front perpendicular.

B: breadth.
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2.1.3 Resistance due to a Transom Stern

For high-speeds, which is the typical operating condition for high-speed-catamarans, the
water behind the stern separates along the edge between the transom stern and the hull
in such a way that the entire transom is dry. In this case, the hydrostatic pressure is lost
and the hull is experiencing a force due to the lower pressure behind the hull. This may
be a significant contribution for high-speed catamarans.

For a completely dry stern this loss of hydrostatic force will be felt as a resistance, and
can be expressed as:

RT ransom = flg

⁄
HD

0
z · B(z)dz (2.13)

g: gravitational acceleration.

HD: maximum depth of transom, which varies with the trim angle and sinkage.

B(z): width of transom at di�erent draughts.

When the stern is not entirely dry a base drag is introduced. This force is due to still
water behind the stern being dragged behind the vessel when it travels at low speeds.
SINTEF Ocean have found an empirical expression for estimating the base drag, which is
presented in Equation 2.14 [Fathi et al., 2012, Chapter 4.1].

CBD = RT ransom

1
2 flSV 2 = CT ransom ¥ 0.029 ·

( SB
S

)3/2
Ô

CF

(2.14)

SB : transom stern area.

S: the wetted surface of the hull in front of the transom.

The transom becomes dry approximately when FN > 0.2, however, this value is depending
strongly on the depth of the transom. A Froude number for the transom is a better way
of defining the limit of dry transom [Robards and Doctors, 2003]:

FNT = VÔ
g · HD

(2.15)

Robards and Doctors [2003] showed through experiments, that the transom is dry when
FNT > 2.5.
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2.1.4 Air Resistance

Air resistance is highly dependent on the relative speed between the vessel and the wind
or still air in the area where it travels. This resistance component can be significantly
high for high-speed catamarans due to the second order dependence on relative speed,
seen in Equation 2.16. The air resistance coe�cient is presented in Equation 2.17.

RAA = 1
2 · V

2
0 · AP · Cair (2.16)

CAA = RAA

1
2 flSV

2
0

= flAir

fl
· CAir · AP

S
(2.17)

AP : projected area above the waterline, normal to the direction of motion.

V0: relative velocity between ship and air.

flair: density of air.

CAir: air resistance coe�cient for the superstructure of the vessel.

Figure 3.29 in Molland et al. [2011] shows that the air resistance coe�cient for fast
catamaran ferries normally is in the range of 0.50 < CAir < 0.88.

2.1.5 Resistance Correlation Coe�cient

In order to correlate the model scale results against full-scale trials, a correlation coe�cient
is introduced. This usually varies for di�erent towing facilities. The procedure at SINTEF
Ocean towing facility is to apply CA = ≠0.228·10≠3 for single-screw ships, and ≠0.2·10≠3 Æ
CA Æ ≠0.23 · 10≠3 for twin-screw ships [Fathi et al., 2012, page 59].

2.2 Empirical Resistance Prediction Methods

Over the years several empirical models for estimating resistance on displacement cata-
marans have been developed. Following is a presentation of established methods, such as
the CatRES method developed by SINTEF Ocean (MARINTEK) and other acknowledged
resistance prediction schemes.
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2.2.1 CatRES Method

CatRES method is an empirical method based on data from models tested in the MARIN-
TEK towing facility from 1990 to 1998. The models are mostly of passenger catamarans
with speeds of 30 to 40 knots and lengths of approximately 40 meters in full scale. In
this model, the main parameter is the length-displacement ratio (or slenderness para-
meter): L/Ò1/3. The total resistance is calculated through Equation 2.18, where the total
resistance coe�cient CT s are dependent on the applied method. All methods presented
below have resistance coe�cients which are calculated for five discrete values of the Froude
number; Fn=0.6, 0.7, 0.8, 0.9, 1.0. For each of these Froude numbers, the resistance
coe�cient is calculated from an empirical expression. If the method is applied to a design
where the Froude number is not exactly the same as the Fn indicated above, interpolation
between resistance coe�cients for the two adjacent Froude numbers must be carried out.

In the following subsections, the di�erent methods for calculating CT s are presented.
All expressions in this section are taken from the ShipX manual where CatRES is a
plug-in [Fathi et al., 2012, Chapter 4.10]. This model is known for producing conservative
resistance calculations as the model data, which the resistance model is based upon, are
of older designs. The resistance model will therefore be less accurate when used on newer
designs.

RT s = CT s · fls

2 · V
2

s
· Ss (2.18)

Method 1: Correlation on CT s

In this method the total resistance coe�cient can be expressed as:

CT s = C emp
T s + CAAs (2.19)

Where CAAs is the air resistance coe�cient, and C
emp

T s
is found from the fifth order

polynomial:

C emp
T s = CT s0 + CT s1

! L

Ò1/3

"
+ CT s2

! L

Ò1/3

"2 + CT s3
! L

Ò1/3

"3 + CT s4
! L

Ò1/3

"4 + CT s5
! L

Ò1/3

"5

(2.20)
The coe�cients CT s0 to CT s5 are Froudes number dependent.
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Method 2: Correlation on CR

In this method the total resistance coe�cient can be expressed as:

CT s = C emp
R + (CF s + �CF ) + CA + CAAs (2.21)

Where C
emp

R
is found from the fifth order polynomial:

C emp
R = CR0 + CR1

! L

Ò1/3

"
+ CR2

! L

Ò1/3

"2 + CR3
! L

Ò1/3

"3 + CR4
! L

Ò1/3

"4 + CR5
! L

Ò1/3

"5 (2.22)

CR0 to CR5 are Froudes number dependent coe�cients.

Ò: volume of displacement.

s: distance between hulls.

Method 3: Correlation on CR With Correction

In this method the e�ect of draught, beam and wetted area is included in the calculation
of the total resistance coe�cient. Equation 2.21 is corrected to include the mentioned
parameters:

CT s = C emp
R

!
k1 + k2

S

Ò2/3

"
·
!
k3 + k4

B demi
T

"
·
!
k5 + k6

s
L

"
+ (CF s + �CF ) + CA + CAAs (2.23)

k1 to k6 are empirically calculated coe�cients, which are Froudes number independ-
ent.

B demi: beam of the demi hulls.

C
emp

R
: from Equation 2.22.

Method 4: Correlation on CW

In this method, the correlation between the residuary resistance with viscous pressure
resistance subtracted, CW , is done. Here the viscous pressure resistance is expressed by
the form factor k, which is found through a similar way as presented in Section 2.1.2. the
factor m in Equation 2.9 is assumed to be equal to 1, which yields:

CT m ≠ CAAm

CF m

= (1 + k) + Fn
≠n

CF m

(2.24)

n is found through least-squares-fit of the experimental data in order to find a linear
relation in Equation 2.24, and then k can be found. The total resistance coe�cient can
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then be expressed as:

CT s = C emp
W + (CF s + �CF ) · (1 + k) + CAAs (2.25)

Where C
emp

W
is the Froudes number dependent, empirically calculated wave resistance

coe�cient found from:

C emp
W = CW 0 + CW 1

! L

Ò1/3

"
+ CW 2

! L

Ò1/3

"2 + CW 3
! L

Ò1/3

"3 + CW 4
! L

Ò1/3

"4 + CW 5
! L

Ò1/3

"5

(2.26)
Again, the coe�cients: CW 0 to CW 5 are Froudes number dependent coe�cients.

Method 5: Correlation on CW With Correction

Again the e�ect of draught, beam and wetted area are taken into account, which corrects
Equation 2.25 into:

CT s = C emp
W

!
k1 +k2

S

Ò2/3

"
·
!
k3 +k4

B demi
T

"
·
!
k5 +k6

s
L

"
+(CF s +�CF ) · (1+k)+CAAs (2.27)

Coe�cients k1 to k6 are Froudes number independent, and empirically calculated. They
are however, not equal to the ones presented in method 2. C

emp
W

is calculated using
Equation 2.26.

2.2.2 Molland et al. Method (1994)

Molland et al. [1995] continued the work done by Insel and Molland [1992], by including
resistance model data for ten more models into their original database of four models.
The authors proposed that the total resistance of a catamaran could be expressed as:

CT CAT = (1 + —k)CF + ·CW (2.28)

Where CW can be calculated by the equation:

CW = b0 + b1
L
B

+ b2
B
T

+ b3
L

Ò1/3 + b4
s
L

+ b5
L
B

B
T

+ b6
L
B

L

Ò1/3 + b7
B
T

L

Ò1/3 + b8
L
B

s
L

+ b9
B
T

s
L

+ b10
L

Ò1/3
s
L

+ b11
L
B

B
T

L

Ò1/3 + b12
L
B

B
T

s
L

+ b13 L
B

L

Ò1/3
s
L

+ b14
B
T

L

Ò1/3
s
L

+ b15
L
B

B
T

L

Ò1/3
s
L

(2.29)
Where the coe�cients: b0 to b15 are found from regression [Sahoo et al., 2007]. The

form factor in Equation 2.28 is also calculated through an empirical expression which is
dependent on several hull form characteristics, as presented in Equation 2.30. Figure 2.3
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shows how the method predicts CW for round bilge catamarans.

(1 + —k) = f
!B

T
; L

Ò1/3 ; s
L

; (1 + k)
"

(2.30)

T : characteristic draught.

Figure 2.3: Predicted wave resistance coe�cients for round bilge catamarans using Molland
et al. [1995] method, [Sahoo et al., 2007, Figure 7].

2.2.3 Other Empirical Methods

There are more empirical methods for resistance estimations of catamarans than the two
presented earlier in this section. Sahoo et al. [2007] presents several other methods in
their paper, which is an overview of empirical, and semi-empirical methods for predicting
catamaran resistance. Two of the presented methods by Xuan et al. [2001], and Sub-
ramanian and Joy [2004] are based on the software SHIPFLOW. SHIPFLOW divides the
domain around the object into three areas which can be solved by either: potential flow
method, boundary layer method or Navier-Stokes method; which makes it a combined
computational fluid dynamics and 3D potential theory program [Sahoo et al., 2007]. By
doing regression analysis on the obtained results from SHIPFLOW, Subramanian and Joy
[2004], and Xuan et al. [2001] have developed their empirical models. The methods are
not available online and are therefore di�cult to evaluate, but according to Sahoo et al.
[2007], the results are accurate.
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2.3 Regression Models

Regression is based on developing models to predict future outcomes by finding logical
patterns in known data. This could be looking at resistance data from catamaran model
tests, wanting to predict the resistance for a new design. In order to find a model, which
describes the relationship between desired parameters in a satisfactory manner, di�erent
concepts of regression models can be utilised. Regression models are often divided into
three groups: white, grey and black box models. Where a white box model is an analytic
mathematical model describing the physical problem, a black box model is when there is
no physical relationship between the phenomena and the mathematical model describing
the phenomena, and a grey box model has empirical coe�cients combined with expressions
based on physical considerations.

When describing the resistance of a fast displacement catamaran, there is no obvious
linear relationship between resistance and a given variable. The problem is complex,
being dependent on parameters such as hull spacing, length/beam rations, hull separation,
velocity, stern characteristics, wetted area ratios and trim. When the physical phenomena
in question are depending on a significant number of parameters, which are di�cult to
relate by using physical relationships, black box models are more favourable. An ANN
algorithm is free to find patterns unrelated to physical parameters, which makes it able
to find more accurate resistance prediction models. Artificial neural networks and deep
learning algorithms will, however, demand large amounts of training data and computer
power, in order to construct an algorithm which predicts resistance accurately.

In the following sections, two di�erent types of regression models are presented; models
based on polynomial curve fitting and machine learning.

2.3.1 Models Based on Polynomial Curve Fitting

Polynomial curve fitting is based on fitting a ntn order polynomial to a given data set.
The order of the polynomial is varied in order to obtain the lowest possible error between
proposed model and actual data. This error can be expressed as the mean squared error
(MSE), which can be seen in Equation 2.31.

MSE = 1
N

Nÿ

i=1

(Ŷi ≠ Yi)2 (2.31)

N : number of points.

Ŷi: predicted target value.
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Yi: target value.

Figure 2.4, shows a data set and four proposed polynomials to describe the data. Table
2.1 shows the mean squared error between the sample and the polynomials, as presented
in Equation 2.31, indicating which one are better suited to describe the sample.

Figure 2.4: Polynomials of various order fitted to an example data sample. MSE presented
in Table 2.1.

Table 2.1: Mean squared error for polynomial fit to sample data.

Polynomial MSE
Poly 1st 1.3134
Poly 3rd 0.4566
Poly 6th 0.2249
Poly 9th 0.2246

By looking at the polynomials describing the sample in Figure 2.4, and the characteristic
values for mean squared errors, one can see that the higher order polynomials are best
describing the sample in this example.
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2.3.2 Polynomial Curve Fitting used in Empirical Resistance Mod-

els for Catamarans

As presented in Section 2.2, empirical models for predicting resistance of fast displacement
catamarans are commonly based on polynomial curve fitting to data from model trials.
The CatRES method presented in Section 2.2.1, is a fifth order polynomial fit, based on the
variable L

Ò1/3
. In the project thesis by Hans Jørgen Rambech [1998] the original polynomial

fitted resistance model was a fourth order polynomial, which can be seen in Figure 2.5.
The fourth order polynomial seems to describe the total resistance (CTS ≠ CAAS) in a
satisfying way.

Figure 2.5: Regression on CT S ≠ CAAS [x1000] with fourth order polynomials from [Ram-
bech, 1998, figure 6.2].

Other empirical resistance prediction models are based on other types of polynomials.
The model proposed by Molland et al. [1995], presented in Section 2.2.2, was based on the
combination of the parameters: ( L

B
), ( B

T
), ( L

Ò1/3
) and ( s

L
).

When using polynomial curve fitting the relationships between output: resistance, and
input: dimensions, speed or other parameters are important. Figure 2.5, indicates a
smooth descending relationship between the parameter L

Ò1/3
and the resistance, for a

constant Froude number. But this method does not show how other dimensional changes
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such as; transom area, propulsion system or hull separation will a�ect the resistance. As
mentioned earlier, one of the advantages of artificial neural networks or deep learning
algorithms is that they can take in large amounts of inputs and find out how they a�ect
the output.

2.3.3 Machine Learning

Machine learning is defined as a set of methods that can automatically detect patterns in
data, and then use the uncovered patterns to predict future data, or to perform other kinds
of decision making under uncertainty [Murphy, 2012, chapter 1.1]. By using probability
theory the machine learning methods are detecting which methods will predict the most
accurate results, based on some past data, and how the tested models are performing
in relation to each other. The di�erence from other disciplines within computer science
is that the programs are designed to ”learn” to perform a task without being explicitly
programmed to perform that task. Machine learning is based on the ”learning by doing”
principle, where the program is given large amounts of training data and is let to find
the best possible algorithm to describe the phenomena. There are mainly two di�erent
learning approaches in machine learning:

Supervised learning: is when some input data and the related output data is fed
into the algorithm. The algorithm will then train the program to generate output
data which is consistent to the given output data.

Unsupervised learning: is when there is no output data provided. The algorithm
will then try to discover hidden structures in the data.

Supervised learning is the most common approach in problems concerning classification
and regression. This is because the desired output from a certain combination of inputs
is known for the training set. Unsupervised learning is, on the other hand, better for
clustering, when data such as strings, images and sounds should be grouped. Unsupervised
learning does not require labelled data for training, which limits the resources required for
pre-processing data.

When creating and training a machine learning algorithm, the goal is to make a function
f which accurately predicts an output y from a set of input parameters x. Mathematically
this can be described as in Equation 2.32.

y = f(x) (2.32)
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When training the algorithm using supervised learning, y and x are known, and an optimal
function f is desired.

2.4 Artificial Neural Networks

Artificial neural networks are a famous sub-group of machine learning. Inspired by an
animal brain, the method tries to emulate how the neurons are communicating in order
to solve problems. As in a biological brain, the network will consist of a large number
of neurons interconnected in a great network. When the network is given a sensor input,
the first layer in the network ”fires”, triggering actions in the next connected layers with
neurons, which ultimately gives an output. Next, the main building blocks in an ANN are
presented.

2.4.1 The Neuron in Artificial Neural Networks

The main building block in an artificial neural network is the neuron. A simple model of
an input-neuron can be seen in Figure 2.6.

Figure 2.6: Graphical and mathematical formulation of a simple neuron [Beale et al.,
2017].

The neuron in Figure 2.6 is receiving one or more inputs p, which is multiplied with
weights w (producing the product wp). Then a bias b is added to the product in the
SUM-function. Next the input, weight and bias are put through the transfer function f ,
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creating the output a. The process is described in Equation 2.33.

a = f(wp + b) (2.33)

In this neuron, the parameters w and b needs to be assigned characteristic values. This is
the basis of the training process for the neural network, which will be described later.

The transfer function, denoted as f in Equation 2.33, needs to be chosen for the neuron.
A simple transfer function is the linear transfer function, presented in Equation 2.34.

f(x) = x (2.34)

This will give an infinite output range, and as the output a often is desired to be within
a unit range: ≠1 Æ a Æ 1, this transfer function is not optimal. Other functions are
therefore used, such as the hyperbolic tangent function: tanh(x), and di�erent types of
Sigmoid functions. These functions are also di�erentiable, which is an important feature
for the transfer functions [Nielsen, 2015]. In the next section, the assembly of multiple
neurons into one network is presented and how these layers can be put together to form
an advanced structure.

2.4.2 Neurons Combined in Layers Making Advanced Structures

By combining multiple neurons as shown in Figure 2.6, a structure called a layer of neurons
can be constructed. By using multiple neurons, a layer with n neurons can be constructed
having di�erent biases (b) and weigh parameters (w). During training, these biases and
weigh functions are found, so the network gives the desired outputs. By expanding the
structure using multiple layers, an advanced structure can be created. If one layer, as
presented in Figure 2.7, is drawn as a circle - the total architecture of a relatively simple
neural network can be visualized as in Figure 2.8. When designing neural networks, as
the one presented in Figure 2.8, it is desirable to design the structure for a specific task.
For example, the number of input layers in Figure 2.8 should be equal to the number of
input parameters. Then one layer will describe one input variable. The number of interior
layers or hidden layers should be varied in order to find which structure is showing the
best ability to give correct outputs. And at last, the number of output layers should be
equal to the number of possible outcomes.

2.4.3 Performance of an Artificial Neural Network

As mentioned in the last section, the mean squared error is often used as a performance
indicator often called cost function, for the network [Beale et al., 2017, Page 3-17]. The MSE
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Figure 2.7: Graphical and mathematical formulation of a layer made out of neurons [Beale
et al., 2017].

is calculated in the same way as presented in Equation 2.31, in Section 2.3.1. Having a low
MSE is desirable for an algorithm, as this indicates a high level of consistency between the
actual value and the predicted value. The MSE is also used as the benchmark-parameter
for ANNs in Matlab [Beale et al., 2017, Page 4-46].

When training a neural network, the training and validation MSE are important perform-
ance parameters. When the network is trained, training MSE decreases as the network
learns to reproduce the correct output from the given input. Next, the steps in training a
neural network are presented, while concepts of over- and under training are discussed
later in this paper.

2.4.4 Training a Neural Network

When training neural networks or a machine learning algorithm in general, the objective
is to find an algorithm which fits the training data in a best possible way. Training means
getting input parameters and systematically changing the biases and weight parameters
in each neuron in order for the final output to coincide with the results from the training
data. When the neural network structure is complex, containing several layers, possibly in
parallel, the number of biases and weight parameters to train can be significantly high.
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Figure 2.8: Visualisation of an artificial neural network structure. Multiple layers (circles)
are put together.

In order to train all parameters, significant amounts of training data and time are also
required. The general procedure of training a machine learning algorithm is presented
in Figure 2.9 [Abu-Mostafa et al., 2012, Figure 1.2]. By assuming there is an optimal
algorithm f which is perfectly describing the observed phenomena, the training is trying
to find this algorithm. The training is, therefore, a large number of hypothesis tests where
the algorithm decides which one of the proposed candidate formulas in hypothesis set
H, which most accurately describes the phenomena. In order to check this, the learning
algorithm tries the proposed model on the training examples and compares the output to
the given results. In the end, an optimal model g is proposed as the best-fit formula for
describing the data.

A common way of training and validation of a neural network is to divide the available
dataset into three groups: a training set, a validation set and a test set. The training set is
typically the largest data set, being the data which is used in training the algorithm. After
one round of training with the training set, called an epoch, the algorithm is tested using
the test data. So the MSE for both training and testing is calculated for each epoch. An
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Figure 2.9: Basic steps of training a machine learning algorithm [Abu-Mostafa et al., 2012,
Figure 1.2].

algorithm can show fantastic performance with low training MSE, but poor performance
with high test MSE. This is called overtraining and will be presented in the next section.

Training a machine learning algorithm can be highly timeconsuming, so one of the main
focus area for researchers in artificial intelligence developing training schemes. In the
podcast Talking Machines, the expert on intelligent systems Ryan Adams mentions
backwards propagation as a training method superior to other training schemes [Adams
and Gorman, 2015].

Early Stopping, Regularisation and Backpropagation

When training neural networks one strives to find the best-suited network, trained for
an optimal number of epochs. Three central topics in training neural network are early
stopping, regularisation and backpropagation, which will be presented below.

Early Stopping

Early stopping is a way to avoid over-trained networks, by controlling the e�ective
complexity of the network. The training of non-linear network models corresponds to
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an iterative reduction of the error function, for example, the mean squared error. For
many optimisation algorithms, the error is a non-increasing function of the iteration index
[Bishop, 2006]. The blue training performance curve in Figure 2.11, is such a non-increasing
function. However, the error measured with respect to independent data, is indeed not
non-increasing. It often decreases at first, but increases as the networks start to over-train.
This can be seen for the red test performance curve in Figure 2.11. Both Bishop [2006] and
Tzafestas et al. [1996] recommends using early stopping which is the principle of breaking
of the training at the point where the error of the test data set is at its lowest.

Regularisation

Regularisation is another way of preventing over-fitting. The number of input- and output
parameters to and from a neural network is generally determined by the available data set
and its dimensions. The number of hidden layers and neurons is, on the other hand, a
free parameter. When applying regularisation in training, a penalty term is introduced
to the performance function (MSE). The penalty increases together with the complexity.
The simplest reguliser is the quadratic one, known as the weight decay, shown in Equation
2.35 [Bishop, 2006].

ÂE(W ) = E(W ) + ⁄

2 wT w (2.35)

The e�ective model complexity is then determined by the regularised performance function
( ÂE(W )), and the regularisation coe�cient ⁄ [Bishop, 2006]. The performance of the
network will increase (poorer performance) for networks with large weight vectors w.

Another regularisation scheme is Bayesian regularisation backpropagation. In this
method the performance or loss function is determined as in Equation 2.36, and after the
loss function is introduced the resulting loss function is as in Equation 2.37 [Foresee and
Hagan, 1997]. Where the term EW is the sum of all network weights shown in Equation
2.38.

ED =
nÿ

i=1
(ti ≠ ai)2 (2.36)

ÂE = —ED + –EW (2.37)

EW =
ÿ

i,j

||wij ||2 (2.38)

The key to optimal training is finding the best regularisation parameters — and –. MacKay
[1992] presents this situation as multiple ”Occam’s razor” problems. An ”Occam’s razor”
problem-solving principle is such that when presented with competing answers to a problem,
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one should select the answer based on fewest assumptions. In science, the principle is used
as a heuristic guide [Gauch, 2003]. The parameters — and – are known as hyperparameters
which are a�ecting the loss function. MacKay [1992] has shown that the error decreases
when – << —. If – >> — the training algorithm will emphasise weight reduction at the
expense of network errors, which produce smoother network response [Foresee and Hagan,
1997].

After each training epoch, the posterior distribution of the weights in the neural network
can be updated according to Bayes’ rule, as in Equation 2.39.

P (w|D, –, —, M) = P (D|w, —, M) · P (w|–, M)
P (D|–, —, M) æ P osterior = Likelihood · P rior

Evidence
(2.39)

w: weights.
D: training set with input-target pairs.
M : characteristic neural network architecture.

In Equation 2.39 the prior distribution of weights is defined as in Equation 2.40.

P (w|–, M) = ( –

2fi
)m/2 · exp(≠–

2 w
Õ
w) (2.40)

In this Bayesian framework the optimal weights should be found by maximising the
posterior probability: P (w|D, –, —, M) of w. This is equal to minimizing the regularized
loss function in Equation 2.37. According to MacKay [1992] one can write the joint
posterior density as in Equation 2.41, where the term P (D|–, —, M) can be expressed as
in Equation 2.42.

P (–, —|D, M) = P (D|–, —, M) · P (–, —|M)
P (D|M) (2.41)

P (D|–, —, M) = P (D|w, —, M) · P (w|–, M)
P (w|D, –, —, M) = ZE(–, —)

( fi

—
)n/2( fi

–
)m/2 (2.42)

ZE : integral to evaluate – and —.
n: number of observations.
m: total number of network parameters.

MacKay [1992] have shown that the following expression is valid:

ZE(–, —) Ã |HMAP |≠1/2 · exp(≠F (wMAP )) (2.43)

Where H
MAP is the Hessian matrix of the objective function, and MAP = maximum a

posteriori. The Hessian matrix can be approximated as:

H
MAP = J

Õ
J (2.44)
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And where the J is the Jacobian matrix which contains the first derivatives of the network
errors, with respect to the network parameters. This is why having di�erentiable transfer
functions is important, as stated before. By finding the Jacobian matrix of the network
errors, the weights can be updated as presented in Equation 2.45.

w
l+1 = w

l ≠
#
J

T
J + µI

$≠1 · J
T

e (2.45)

In Equation 2.45 w
l+1 is the proposed weights in next iteration, w

l is the weights in the
current iteration, µ is the Levenberg’s damping factor and e is the error vector.

Backpropagation

The gradient of the cost function is important in the optimisation problem as indicated
in the previous section. In neural network training schemes, the gradient descent and
evaluation of ÒE is needed - therefore having an e�cient way of evaluating the gradient
is important. The error backpropagation is one of these ways.

For a standard feed-forward neural network, the output yk are a linear combination of the
input xi and weights. A general activation can be expressed as in Equation 2.46.

yk =
ÿ

i

wki · xi (2.46)

Then the sum in Equation 2.46 is transformed by a nonlinear activation function h(·) to
give the activation zj of unit j:

zj = h(aj) (2.47)

For a multi-layer neural network, the output from the first layer is the input to the
next and so on. For each training sample the unit values are calculated to create the
forward-propagation-information-flow from input to output. This propagation leads to
the hopthesis function hw(x) which is used to calculate the cost function in Expression
2.48 [Bishop, 2006].

En(w) = 1
2

#
hw(xn) ≠ y

n
$2 (2.48)

So by taking the gradient of the cost function, one can obtain Expression 2.49.

ˆEn

ˆwij

=
#
hw(xn) ≠ y

n
$
xin (2.49)

Which by the chain rule can be expressed on general form as:

ˆEn

ˆwij

= ˆEn

ˆaj

ˆaj

ˆwij

(2.50)
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For convenience the notation in Equation 2.51 is often used.

”j © ˆEn

ˆaj

(2.51)

The ” in Equation 2.51 is often referred to as a errors, and when it is introduced to
Equation 2.50, the Expression can be written as:

ˆEn

ˆwij

= ”jzi (2.52)

Which is due to the fact that ˆaj

ˆwij
= zi when di�erentiating Equation 2.46. Equation 2.52

indicates that the derivatives can be found by multiplying the unit output ” by the unit
input z. For the output layer, this yields:

”k = x
k ≠ y

n (2.53)

An finally for any unit in the network passing information to another unit indexed k,
yields:

”j = h
Õ(aj)

ÿ

k

wkj”k (2.54)

Expression 2.54 is known as the bacpropagation formula, where the value ” for a particular
hidden unit can be obtained by propagating the ”’s backwards from units higher up the
network.

Bishop [2006] proposes the following backpropagation procedure:

1. Let some input vector xn propagate through the network and use Expressions 2.46
and 2.47 to find the activation of all hidden units and output units.

2. Calculate output ”k’s from Equation 2.53.

3. Backpropagate the ”’s using Expression 2.54 to obtain ”j for each hidden unit in the
network.

4. Use Expression 2.52 to evaluate the required derivatives.

2.4.5 Pitfalls when Designing Neural Networks

There are several pitfalls when designing artificial neural networks. Below is a presentation
of a selection of these, focusing on over- and under-fitting, and over- and undertraining.
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Over- and Underfitting

Overfitting is defined as the phenomena when fitting the observed data with an increasing
number of layers, no longer indicates that we will get a decent out-of-sample error, and
may lead to the opposite e�ect [Abu-Mostafa et al., 2012, Chapter 4]. This is observed for
overly complex network layer structures. Figure 2.10 visualises an example where four
polynomials of di�erent orders, are fitted to a set of points. The bottom right image is an
example of an overfitted function. The polynomial predicts the ten blue points perfectly,
but in between points errors are introduced. Especially between the two rightmost-, and
the two leftmost points, significant errors are observed.

Underfitting, on the other hand, is when an insu�ciently simple network, with few hidden
layers and few neurons, is chosen to represent the data. The selected model does not have
enough neurons with biases and weight functions to describe the training data properly,
and low performance (high MSE) is observed. The top two images in Figure 2.10 shows
examples of under fitted polynomials.

For the data set in Figure 2.10, the bottom left polynomial of order three, is the one
best representing the trend in the data. However, for practical applications, the optimal
complexity is hard to find through visual observations and needs to be found through
trial and failure. By analysing the performance of both training data and the test data,
overfitted networks shows poor performance for the data set not used in training. Therefore
careful analysis has to be carried out to ensure optimal network structure.

Over- and Undertraining

Analysing the algorithm performance for both training and test data is essential to reveal
over- and undertraining. Tzafestas et al. [1996] describes overtraining as the phenomena
where the MSE of the test set starts to increase, while the network still improves its
performance in learning the training data. This is explained as the network ”memorising”
the training data but fails to find an accurate description of the phenomena. Figure 2.11
shows the learning curves of a neural network with 40 neurons distributed as 10-20-10 in
three hidden layers. At epoch 130 the test performance is at its lowest with an MSE of
0.0393, but after this point, the error increases drastically even though the net training
performance continues to decrease. Tzafestas et al. [1996] describes an overtrained network
as not useful, because it cannot recognise unknown patterns, and thus have a small
generalisation ability. They recommend stopping the training at the lowest point in the
test performance curve marked with a black vertical line in Figure 2.11, where it is known
to be a good balance between the approximation accuracy and the generalisation ability.
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Figure 2.10: Plots of polynomials (red) having various orders M, against data points (blue)
created by a sine function (green) plus some error [Bishop, 2006, figure 1.4].

2.4.6 Work Flow when Designing, Training and Validating Neural

Networks with Neural Network Toolbox in Matlab

When designing, training and validating neural networks in Matlab, several functions,
parameters and methods need to be chosen. Mathworks INC. [2018c] recommends the
following procedure:

1. Import pre-processed training data.

2. Divide the data sample into three subsets: training set, validation set and test set.

3. Set desired training algorithm, or training function, and characteristic parameters.

4. Train network.

5. Post-process the results, compare network performance and determine degree of
generalisation. Find best number of epochs.
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Figure 2.11: Training of a neural network for the full data set, training function: trainbr
and three hidden layers [10 20 10] - trained for 1809 epochs.

The first step in neural network training is to import training data. The format of the
input parameters can be as a vector with one parameter or as a matrix with multiple
parameters. The output is a vector with the matching outputs to the parameters in the
input matrix.

When training a neural network in Matlab the available data sample is divided into three
subsets. The training set is used for computing the gradient and update weights and
biases during training. When the network is trained for one epoch, the validation set is
used for validation of the model. The error between predicted values and actual values
in the validation set is used for determining the degree of over- and underfitting of the
network. These results are used for training during next epoch. The last set is the test
set. This test has the same function as the validation set, but the algorithm does not take
the error between the predicted values- and the correct values of the test set into account
during next epoch of training. Comparing training- and test performance is important
to detect overfitting and choose the optimal number of epochs for training the neural
network. There is no clear consensus on how the training/test-ratio of data should be to
obtain optimal results, other than it should be between 90/10 and 75/25. The training
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data set should be as large as possible to ensure a generalised model, but the test sample
should be large enough to reveal over-trained networks. Wanjawa and Muchemi [2014]
proposes to use a ratio of 80/20, which will be done in this thesis.

In the next step, the training algorithm and characteristic parameters are set. There are
several training algorithms available based on di�erent schemes in the Neural Network
Toolbox, some of them are presented in Table 2.2 [Mathworks INC., 2018a].

Table 2.2: Neural network training functions in the Neural Network Toolbox.

Algorithm Description
trainlm Levenberg-Marquardt method
trainrp Resilent Backpropagation
trainscg Scaled Conjugate Gradient
traincgb Conjugate Gradient with Powell/Beale Restarts
traincgf Fletcher-Powell Conjugate Gradient
traincgp Polak-Ribiére Conjugate Gradient
trainoss One Step Secant
traingdx Variable Learning Rate Backpropagation
trainbr Bayesian Regularisation Backpropagation

For data samples with noisy data the trainbr algorithm, based on the Bayesian Regularisa-
tion Backpropagation method presented in Section 2.4.4, is known to perform well. Next
the characteristic parameters of the chosen training function needs to be set. The default
values when using trainbr are presented in Table 2.3 [Mathworks INC., 2018b].

Table 2.3: Default values for the trainbr neural network training function.

Parameter Default Value Description
net.trainParam.epochs 1000 Maximum number of epochs to train
net.trainParam.goal 0 Performance goal
net.trainParam.mu 0.005 Marquardt adjustment parameter
net.trainParam.mu dec 0.1 Decrease factor for mu
net.trainParam.mu inc 10 Increase factor for mu
net.trainParam.mu max 1010 Maximum value for mu
net.trainParam.max fail 0 Maximum validation failures
net.trainParam.min grad 10≠7 Minimum performance gradient
net.trainParam.show 25 Epochs between displays (NaN for no displays)
net.trainParam.showCommandLine false Generate command-line output
net.trainParam.showWindow true Show training GUI
net.trainParam.time inf Maximum time to train in seconds

Finding the optimal values for the parameters in Table 2.3 should be done using trial and
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error method. In order to ”force” the network to train for a certain number of epochs,
the net.trainParam.mu value should be set artificially low in order for the training not
to finish due to early stopping as described earlier. When the data set is divided into
subsets, training function is chosen and training parameters are set, the desired network
structure needs to be chosen. The number of hidden layers and neurons in the hidden
layers are specified as a vector of length m, with ni neurons in each layer on the form:
[n1, n2, ..., nm≠1, nm]. One must also choose performance function, such as the mean
squared error presented in Equation 2.31.

The next step is to train the network and monitor the progress. The training process is
done with regards to the method in the chosen training function presented in Table 2.2.

The last step is to post-process the results. Performance is recorded for both training
and test datasets during training, and the results should be examined to reveal over- and
underfitting and over- and undertraining as described in Section 2.4.5. Then the network
should be trained again for the optimal number of epochs before it can be exported as a
Matlab function. If one wants to compare di�erent network structures, steps three, four
and five are typically set in a loop where parameters are changed before a new iteration.
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Chapter 3
Results

In this chapter, the available data-set is presented together with a parameter study of
neural network training parameters. The performance of tested networks with di�erent
parameter-sets is presented as well before fine-tuning of a most feasible neural network is
carried out.

3.1 Data Presentation and Parameter Range

A substantial and time-consuming phase in this data-driven research project is the data
pre-processing and preparation phase. The aim has been to digitise the data and make
preparations for the machine learning algorithm to work as e�ciently as possible when
training. A neural network will not be more accurate than its training data-set, so ensuring
correct data have been crucial to ensuring satisfactory quality of the empirical model. A
data sample can have multiple problems which reduces its quality and hence reduce the
quality of the method. Famili et al. [1997] presents the following common problems for
real-world data samples:

• Corrupt and noisy data.

• Irrelevant data in the data sample.

• Missing attributes and small amounts of data.

• Fractured data: incompatible data.
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Famili et al. [1997] proposes several methods for pre-processing data such as; data filtering,
data ordering, data visualisation and data elimination. In the next section available
parameters in the resistance data sample are presented.

3.1.1 Available Model Data

The data available per model can be divided into two sets: one set with dimensional
characteristics per waterline, and one set with resistance data for a certain model tested
at a certain waterline. Tables 3.1 and 3.2 presents the metadata for the two data-sets.
Some parameters in Table 3.1 are seldom measured for each model, and are marked as
Not available for most models in the table. The parameters in Table 3.2 are measured as
the models are tested for di�erent speed during the resistance tests. Some parameters are
hard to record during the trials, such as wetted surface, and are therefore seldom recorded.
These parameters, marked as: Not available per resistance test in Table 3.2, are on the
other hand recorded for each waterline as presented in Table 3.1.

Table 3.1: List of available model and ship parameters per waterline.

Parameter Abbreviation Unit Comment
Length overall Loa m -
Length waterline Lwl m -
Length between perpendiculars Lpp m -
Total breadth B m -
Total breadth waterline Bwl m -
Breadth single hull bwl m -
Distance between centerlines s1 m -
Distance between hulls (min) s2 or s m -
Draught aft perpendicular (AP) Tap m -
Draught front perpendicular (FP) Tfp m -
Initial trim at zero speed Trim degrees -
Tunnel height at AP Dtap m Not available for most models
Tunnel height at FP Dtfp m Not available for most models
Air gap tunnel at AP ftap m Not available for most models
Air gap tunnel at FP ftfp m Not available for most models
Volume of displacement Ò m3 -
Midship section coe�cient Cm - -
Prismatic coe�cient Cp - -
Block coe�cient Cb - -
Longitudinal centre of buoyancy LCB m -
Wetted surface S m2 -
Wetted surface of transom stern Sb m2 -
Transverse projected area above WL Atm or Atb m2 Not available for most models
Temp. tank or seawater ¶C -
Hull roughness H m -

Not all parameters presented in Tables 3.1 and 3.2 are used in the analysis, but all are
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Table 3.2: List of available resistance data recorded during tests. Data is available per
trial per design condition (waterline).

Parameter Abbreviation Unit Comment
Model speed Vm m/s -
Froude number Fn - -
Resistance of model in test Rtm N -
Residuary resistance coe�cient Cr - -
Full scale ship speed Vs m/s -
Length of waterline in full scale Lwl m Not available per resistance test
Wetted surface of full scale ship S m2 Not available per resistance test
Required power Pe kW -
Sinkage AP AP m Not available for all models
Sinkage FP FP m Not available all models
Running trim Trim degrees Not available all models

imported into the electronic format. This is because data storage capacity and available
memory can handle all data available in the resistance reports by SINTEF Ocean.

The most important feature of the data-set is its ability to represent the desired kind
of high-speed displacement catamarans. If the neural network should be able to predict
residuary resistance coe�cient of all kinds of catamarans, all types of catamarans should
be represented with the same amount of data. However, a network trained on data from
di�erent types of catamarans would not be able to predict accurately for all types, but
rather give a rough estimate. The available model data given by SINTEF Ocean can be
divided into two categories; old models which were used to develop CatRES and new models
tested in the towing facility from 1997-2017. The models tested in the period 1990-1997
consists of 1082 model tests of mostly passenger-, car ferries and cargo catamarans with
a few models being fishing vessels for line fishing. Most models designed with water-jet
propulsion system are tested for Froude number in the range: 0.2 ≠ 0.9, while some of the
latest tested designs are tested for Froude numbers between 0.5 ≠ 1.5. Models designed
with propeller propulsion system are tested in the range 0.2 ≠ 1.5 as well. The data-set
with new models consist of 1231 samples and are mostly ferries and some other vessels.
Models designed with propeller propulsion system are consequently tested for Froude
numbers in the range: 0.7 ≠ 1.4, while designs with water-jet are tested in the range:
0.2 ≠ 1.4.

Catamaran design has evolved from the first tests and hull characteristics have therefore
changed as well. The data sample from 1990-1997 consists of catamarans with lengths
between perpendiculars of 10m-96m, where most are about 40 meters. In the new data
sample, catamarans have Lpps between 19m-130m, where most are about 40 meters. The
design characteristics of the old models will be compared to the newer ones later in this
thesis, but for now, it is assumed that SINTEF Ocean has tested a representative selection
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of passenger- and cargo catamaran ferries, together with some other catamarans with
similar characteristics. It is also assumed that the data-sets represent these vessels in a
good manner.

3.1.2 Normalised Model Data

LeCun et al. [1998, chapter 4.3] have found normalisation of the inputs to a neural network,
to be a performance booster. The convergence is usually faster if the average of each input
variable over the training set is close to zero. The input layer in the neural network will,
however, map the input parameters to the desired format, as described in Section 2.4.1.
Normalised input parameters are not new in marine applications, and di�erent parameter
rations have been used to compare designs for a long time. Ships vary greatly with
design parameters such as dimensional size and speed, so finding dimensionless parameters
which a�ect resistance have been important to compare designs. When choosing which
normalised parameters to include in the training of neural networks, other considerations
have to be made as well. The parameters should be as ”simple” as possible, as the method
is to be used in an early phase of the design process - before detailed design is carried out.
Secondly, the parameters should be representative of the properties of the ship.

Dimensional coe�cients such as the block coe�cient and slenderness ratio are known
to have an impact on the resistance of catamarans. Hull separation and area of wetted
stern are also important for fast catamarans. The stern will be partly- or completely dry
for catamarans travelling at high Froude numbers as discussed in Section 2.1.3, and loss
of hydrostatic pressure at higher speeds yields a significant contribution to catamaran
resistance. The length/breadth-ratio is known to be an important parameter for ship
resistance and capabilities at sea [Amdahl et al., 2013], so this parameter should be
included in the neural networks. Table 3.3 shows which parameters that are included in
CatRES and the empirical resistance model by Molland et al. [1995]. The last column
indicates the parameters which are included as options for training the neural networks.
A short-list with di�erent parameter combination will be presented and tested later in
this report.

3.1.3 Parameter Range in Data Sample

The model data provided by SINTEF Ocean have been divided into four groups: Data
from models included in the data-set which CatRES was built upon and new models,
which again is divided into models with jet propulsion and propeller propulsion. Table 3.4
shows the range and mean value of the di�erent parameters in the four data-sets. Plots
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Table 3.3: Vessel parameters included in CatRes [Rambech, 1998], Molland et al. [1995]
method and the current work carried out in this thesis.

Parameter CatRes (Rambech [1998]) Molland et al. [1995] Method Current Work
Lwl/Bwl X X X
B/T X X X
L/Ò1/3 X X X
S/Ò2/3 X - X
s2/Lwl X X X
Sb/S - - X
Boolean (Jet/Prop) - - X

showing parameter range for the models are presented in Appendix A.1. The Froude
number ranges presented in Table 3.4, indicates some of the new catamaran design being
tested at low speeds. This is for one model only, which have been tested for the wide
Fn range: 0.092 ≠ 1.110. Keeping outliers like this vessel in the data sample gives an
illusion of wide parameter range, but because there are few samples with such low Froude
numbers, the training cases in this range are low, and hence accuracy will be poor as well.
All samples are however kept in the training sample, in order to have the largest training
foundation as possible.

Table 3.4: Parameter range in SINTEF Ocean data sample.

Parameter New: Jet New: Propeller Old: Jet Old: Propeller
Fn Range: [0.0920-1.3260] [0.6360-1.3800] [0.1940-1.4360] [0.1770-1.5540]

Mean: 0.7118 0.9659 0.6009 0.7693
Lwl/Bwl Range: [2.3800-14.8310] [4.7280-6.6130] [3.0100-3.9400] [1.9800-7.4074]

Mean: 8.3281 5.1281 3.7109 2.7940
B/T Range: [1.2815-12.0650] [1.9322-3.3813] [1.1700-2.9700] [1.1538-2.6037]

Mean: 3.0389 3.0602 1.7862 1.6574
L/Ò1/3 Range: [5.4187-9.7201] [6.4253-8.0024] [7.5700-10.8400] [5.3100-9.2400]

Mean: 6.8992 6.7285 9.4097 7.1257
S/Ò2/3 Range: [6.6137-12.2942] [10.1493-10.9816] [9.1000-11.5400] [7.8200-12.4000]

Mean: 10.6331 10.4815 10.6023 9.9036
Sb/S Range: [0.0035-0.0216] [0.0091-0.0185] [0-0.0200] [0-0.0106]

Mean: 0.0128 0.0144 0.0011 0.0015
s2/Lwl Range: [0.0969-0.3152] [0.1855-0.2696] [0.1339-0.2401] [0-0.3782]

Mean: 0.2061 0.2154 0.2027 0.2106
Cr · 103 Range: [0.4620-9.7160] [0.9890-3.8130] [0.1210-5.3810] [0.8630-18.3810]

Mean: 2.1981 1.7125 2.3204 4.6835
Samples: 978 253 751 331

As mentioned earlier, Famili et al. [1997] recommends data filtering, data ordering, data
visualisation and data elimination as methods of data pre-processing. For the data in
Table 3.4 data visualisation have been utilised to find anomalies and errors in the data.
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Outliers have been examined and the values were compared to the ones listed in the
resistance reports. All extreme values were found to be mistakes in calculations and typos,
and none remained unsolved. The total number of data points in the sample is 2313.

An issue experienced when working on data pre-processing was missing values. When
importing values to Matlab, the missing values are set to zero, before training and
validation starts. Especially for the older models, parameters such as the wetted area of
stern were seldom tabulated. Figure 3.1 shows how the ratio Sb/S is absent for older
models of both jet- and propeller type. This will introduce errors in the neural networks
and be an obstacle for the training.

Figure 3.1: Parameter range of Sb/S in data-sets. Missing values in the sample with ”old”
models (right) are set to zero.

Famili et al. [1997] mentions data elimination as a possible way of pre-processing data-sets.
However, excluding data samples with missing values means excluding large amounts of
data from training- and validation data-sets. Large data-sets are required when training
neural networks, and training with half the data samples may lead to poor performance.
Another consideration is how the validity range of the neural network is for a reduced
data-set. When limiting the data sample down to fewer models, the parameter-range is
limited as well, leading to an empirical model with a narrower field of application. Table
3.5 compares the validity range of the total data sample and the data sample with new
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model data only.

By taking away the old data, the data sample is reduced with 46.78%, which has an
impact on the data range. The relative di�erence for the Sb/S-ratio is however artificially
high as several of the data points are set to zero, as discussed earlier. The largest relative
di�erence for parameter range is seen for the slenderness-ratio L/Ò1/3 with a reduction of
22.22%. The mean value is reduced by 11.18%, and by looking at the parameter ranges in
Table 3.4, we can see that the older models have a tendency of higher slenderness-ration
than the new ones. The e�ect of removing data from the old models will be analysed later
in this thesis.

Table 3.5: Comparing parameter range for full data sample and sample with new models
only. Relative reduction presented in the right column

#
New≠F ull

F ull
· 100%

$
.

Parameter New Models Full Set Relative Reduction
Fn Range: [0.0920-1.3800] [0.0920-1.5540] -11.91%

Mean: 0.7640 0.711 7.33%
Lwl/Bwl Range: [2.3800-14.8310] [1.9800-14.8310] -16.05%

Mean: 7.6705 5.6870 34.877%
B/T Range: [1.2815-12.0650] [1.1538-12.0650] -1.17%

Mean: 3.0433 2.4368 24.89%
L/Ò1/3 Range: [5.4187-9.7201] [5.3100-10.8400] -22.22%

Mean: 6.8641 7.7280 -11.18%
S/Ò2/3 Range: [8.6137-12.2942] [7.8200-12.4000] -19.64%

Mean: 10.6020 10.5021 0.95%
Sb/S Range: [0.0035-0.0216] [0-0.0216] -16.14%

Mean: 0.0132 0.00764 73.31%
s2/Lwl Range: [0.0969-0.3152] [0-0.3782] -42.28%

Mean: 0.2080 0.2067 0.66%
Cr · 103 Range: [0.4620-9.7160] [0.1210-18.3810] -49.32%

Mean: 2.0983 2.5404 -17.40%
Samples: 1231 2313 -46.78%

3.1.4 Parameter-set Short List

When choosing which parameters to include in the network training data-sets, inspiration
was taken from the parameters used in CatRES and Molland et al. [1995] method, together
with the resistance theory presented in Section 2.1. This lead to the parameters in Table
3.3. When assembling the parameters into a short list of test sets, inspiration was again
taken from CatRES and Molland et al. [1995] method. The six proposed test sets are
presented in Table 3.6. Parameter-set one is the parameters used in CatRES, while set
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two is CatRES including the boolean value (Jet/Prop): false - catamaran with propeller
propulsion and true - catamaran with jet propulsion. Parameter-set three is same as
parameter-set one, where the wetted-stern-wetted-area-ratio Sb/S is included. The fourth
set are the parameters in set one, with both boolean value and Sb/S-ration included. The
fifth set is a typical neural network training set, where all available parameters are included.
This is to see whether the network shows better performance for as much data as possible.
The last parameter-set is inspired by the Molland et al. [1995] method, containing the
same parameters. The performance of the networks trained on the parameter-sets in Table
3.6 will be presented later in this thesis.

Table 3.6: Parameter combinations in the parameter-set-short-list.

Parameter Set 1 Set 2 Set 3 Set 4 Set 5 Set 6
Boolean Jet/Prop - X - X X -
Fn X X X X X X
Lwl/Bwl - - - - X X
B/T X X X X X X
L/Ò1/3 X X X X X X
S/Ò2/3 X X X X X X
s2/Lwl X X X X X X
Sb/S - - X X X -

3.2 Neural Network Parameter Study

The neural network design has a major impact on the performance of the model, and on
what kinds of complexity, the network can handle. There is a lot of literature on neural
network performance and how to determine overtraining and overfitting, but there are few
guidelines on how to structure the actual design parameters such as number of hidden
layers and neurons in hidden layers. The general consensus is to use trial-and-failure on
varied sets of networks, with di�erent model parameter-sets. By taking the pitfalls from
Section 2.4.5 into account, an optimal neural network is found.

Networks were trained using a desktop computer with the specifications presented in Table
3.7. This is not a high-performance computer, but it handled training the networks in a
satisfactory manner. As presented in Section 2.4.6, several parameters need to be set and
a training function must be chosen when training neural networks. In the next subsections
parameter studies of: training functions, parameter-sets from the shortlist in Table 3.6,
network structure and data-sets will be carried out in order to find the best combination,
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Table 3.7: Hardware and software used when training neural networks.

Hardware
CPU Model Intel Core i5-4440
CPU Speed 3.10 GHz
Memory (RAM) 8 GB

Software
Operating System Windows 10 Pro (v. 1709)
Matlab and Neural Network Toolbox v. R2018a

and hence the best performing neural network.

For the study carried out in the next subsections the default training values, presented in
Table 2.3 have been used, unless stated otherwise. Di�erent network structures have been
tested in this parameter study in order to find the best overall performing parameters.
The networks used are presented in Table 3.8 and are used for all tests, unless stated
otherwise. One should note that the performance is plotted with a logarithmic y-scale for
easier to compare similar results.
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Table 3.8: First test network layouts. Various network sizes and hidden layers are tested.

Net Number No. Hidden Layers Node Distribution Total Number of Nodes
1 1 15 15
2 1 20 20
3 1 30 30
4 1 40 40
5 1 50 50
6 1 60 60
7 1 100 100
8 2 20-20 40
9 2 30-30 60
10 2 20-30 50
11 2 30-20 50
12 3 15-15-15 45
13 3 20-20-20 60
14 3 10-15-20 45
15 3 20-15-10 45
16 3 20-30-20 70
17 3 30-15-30 75
18 4 10-10-10-10 40
19 4 15-15-15-15 60
20 4 20-20-20-20 80
21 4 20-30-30-20 100
22 4 30-40-40-30 140
23 4 10-40-50-30 130
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3.2.1 Comparing Training Functions

First, the training functions presented in Table 2.2 are compared in order to find which
one should be used together with the networks presented in Table 3.8. Figure 3.2 shows
the performance of the di�erent training functions. Trainbr and trainlm yields the best
performance (lowest mean square error) for both the training data-set and the test data-
sets. Training time is however significantly higher for the trainbr function, which can
be seen in Figure B.1 in Appendix B.1. Because accuracy is one of the most important
properties of an empirical method, the trainbr training function is used for the other test
in this section. Even though the elapsed time is 102 times higher than the other functions,
it is also 102 times more accurate. Trainbr shows a trend of being more accurate than
trainlm, and is therefore preferred of the two.

Figure 3.2: Results when testing training functions from Table 2.2 on networks in Table
3.8.
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3.2.2 Comparing Parameter-sets and Network Structure

Next, the parameter-sets presented in Table 3.6 are compared when training and testing
the networks in Table 3.8. Here the default training values are used and the networks are
tested on the full data-set. The results are presented in Figure 3.3. The performance of
the networks trained on the di�erent parameter-sets shows similar behaviour for networks
one to eight. As the complexity of the networks increases the test performance increases
(mean squared error decreases). For network eight and upwards there is a clear individual
di�erence for the network performance, which can be seen in the lower plot in Figure 3.3.
The test performance has the same behaviour for the most complex networks from net 19
to 23. The best test performance is observed for network number 16 with parameter-set
three. Plots for elapsed time in the training can be seen in Appendix B.1, Figure B.2.

Figure 3.3: Results when testing parameter-sets from Table 3.6 on networks in Table 3.8.
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3.2.3 Comparing Data-Sets: Full vs. New Models Only

As discussed in Section 3.1.3, inserting zeros for the missing values will lead to poor neural
network performance as the training algorithm tries to train networks on the missing
values. Figures 3.4 and 3.5 compares the performance of the networks in Table 3.8 and
the data-sets in Table 3.6, when the networks are trained on the total data-set and the
data-set with new models only. The best overall performance is observed for the trained
networks with the new data only, with a performance 10-times better than the full data-set.
The elapsed training time is presented in Figures B.3 and B.4 in Appendix B.1. One can
see the elapsed time being similar for the two data-sets, for the lower network numbers.
For network 19 and above, the results diverge and no particular tendency can be seen.
Best performance characteristics are presented in Table 3.9.

Figure 3.4: Results when comparing total data-set to new models only on networks in
Table 3.8, part 1.

The best combination of parameter-set and neural network characteristics di�ers between
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Figure 3.5: Results when comparing total data-set to new models only on networks in
Table 3.8, part 2.

the two data-sets. For the total data-set, parameter-set three in combination with network
number 16, gives the best test performance of 4.121 · 10≠3. For the data-set with new
models only, parameter-set two in combination with network number 18 gives the best
test performance of 4.082 · 10≠4. Hence the performance of the network trained on the
new model data only, perform ten times better than the network trained on the whole
data-set. This could be due to a more homogeneous data sample with narrower parameter
spans, as indicated in Table 3.5

Which of the data-sets to use in further analysis, needs to be considered carefully. One
needs to compare the loss of training data and loss of parameter validity range to the
performance of the neural network. After discussing this issue with co-supervisor Hans
Jørgen Rambech, the validity range was found to be most important, and therefore the
full data-set together with parameter-set three is used in further analysis.
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Table 3.9: Best performance characteristics for networks trained on full data-set and
data-set with new models only.

Data-set Optimal parameter-set Optimal Network Test MSE Train MSE Epoch
Total Set 3 [20-30-20] 4.121 · 10≠3 3.109 · 10≠4 680
New Models Set 2 [10-10-10-10] 4.082 · 10≠4 1.950 · 10≠3 656

3.3 Finding the Optimal Network

Through the parameter study carried out in the previous sections, the following knowledge
is gained, and the following parameters are used in the optimisation tests. In Section 3.2.1
the training function trainbr gave the best performance of the ones available. Therefore
this function is used for the optimised network as well. It was shown that networks 16 and
18 from Table 3.8 gave the best performance for training data-set. One can also observe
that the symmetrical networks appeared to perform best, and hence the focus will be on
symmetrical networks when finding the best one. Both larger three layer- and smaller four
layered neural networks is tested in this section. The node distributions for the tested
networks can be seen in Table 3.10.

The parameter-sets presented in Table 3.6, performed di�erently for the full data-set and
for the data-set containing new model data only. After the discussion in Section 3.2.3
parameter-set three was chosen to be used together with the full data-set, in order to get
the desired validity range for the empirical model.

It is important to remember that training neural networks is a generic training process,
which produces di�erent results for each training session. This is because initial weights
and biases are set randomly, and therefore the training sessions have di�erent starting
points. However, setting customised initial parameters introduces a risk of missing an
optimal network because wrong initial parameters are set. To account for this, each
network in Table 3.10 is trained 15 times, and the best network overall is kept. The results
can be seen in Figures 3.6 and 3.7.

By examining the results of test performance in Figure 3.6, one can see that the minimum
recorded mean squared error fluctuates significantly from run to run. This is due to the
generic training process of neural networks as discussed earlier. The test performance
varies between 10≠1 and 5 · 10≠3 with a concentration around 2 · 10≠2. There are a few
outliers with a performance around 2 · 100, and the best observed test performance is
3.461 · 10≠3 by network 28.

Training performance presented in Figure 3.7, varies greatly between runs. Network 27 has
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Table 3.10: Test network layouts in fine-tuning where various network sizes and hidden
layers are tested.

Net Number No. Hidden Layers Node Distribution Total Number of Nodes
1 3 15-25-15 55
2 3 16-25-16 57
3 3 16-26-16 58
4 3 17-26-17 60
5 3 17-27-17 61
6 3 18-27-18 63
7 3 18-28-18 64
8 3 19-29-19 67
9 3 19-30-19 68
10 3 20-30-20 70
11 3 21-30-21 72
12 3 21-31-21 73
13 3 22-31-22 75
14 3 22-32-22 76
15 3 22-33-22 77
16 3 23-32-23 77
17 3 23-33-23 79
18 3 24-34-24 82
19 3 24-35-24 83
20 3 25-35-25 85
21 4 7-7-7-7 28
22 4 7-8-8-7 30
23 4 8-8-8-8 32
24 4 8-9-9-8 34
25 4 9-9-9-9 36
26 4 9-10-10-9 38
27 4 10-10-10-10 40
28 4 10-11-11-10 42
29 4 11-11-11-11 44
30 4 11-12-12-11 46
31 4 12-12-12-12 48
32 4 12-13-13-12 50
33 4 13-13-13-13 52

the greatest di�erence, with the best performance of 4.5 · 10≠3 and a worst performance of
4.004 · 100. The best observed training performance is of network 12 with a performance
of 2.169 · 10≠3. The elapsed time, presented in Figure B.5 in Appendix B.1, appears to be
consistent between runs, except for a few outliers with higher and lower training time.
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Figure 3.6: Results for fine-tuned networks, test performance.

Figure 3.7: Results for fine-tuned networks, train performance.

The optimal network and its characteristics are presented in Table 3.11 and a visualisation
of the network with input and output layers, is presented in Figure 3.8. The visual present-
ation in Figure 3.8 indicates the desired properties of the six parameters in parameter-set
three going into the network, and one parameter: the residuary resistance coe�cient
Cr · 103, going out of the network.
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Table 3.11: Optimal network performance and characteristics.

Data-set Optimal parameter-set Optimal Network Test MSE Train MSE Best Epoch
Total Set 3 [10-11-11-10] 3.461 · 10≠3 3.725 · 10≠3 996

Figure 3.8: Visual presentation of the best performing network.

3.4 Evaluating the Optimised Network

In order to evaluate the optimised network found in the previous section, the validity range
and performance for an independent data-set will be evaluated. As stated before, the main
goal for a neural network is not to ”remember” which output to give for a given input
but to represent the patterns in the problem and therefore have a large generalisation
ability. This is why available data is divided into training and test data-sets as presented
before. In order to test the validity range and performance for an independent data-set,
the network is tested on data from resistance tests carried out by Insel and Molland [1992],
which is tabulated in their paper. The parameter range of their data, called Southampton
data, is compared to the data from SINTEF Ocean in Table 3.12. The parameter range of
the Southampton data is also visualised in Appendix A.2.

By comparing the parameter ranges in Table 3.12, some properties are visible. First of
all, the Sb/S-ratio is not available for the Southampton data, while most of the other
parameters are within the validity range of the SINTEF Ocean data, except Lwl/Bwl,
S/Ò2/3 and s2/Lwl. Out of the 719 data points in the Southampton sample, 75 points
are outside the Lwl/Bwl-range, 385 points are outside the s2/Lwl-range and none are
outside all.

In order to test the neural network with the Southampton data, and evaluate the e�ect
of exceeding the validation range, values must be set for the missing Sb/S-ratio. Two
feasible solutions will be compared: setting the parameter equal to zero, and using the
mean value of the SINTEF Ocean sample: Sb/S = 0.00764.

Large MSE was observed when comparing the predicted and the actual values for residuary
resistance coe�cient for the Southampton data during validation. Figure 3.9 shows how
the network consequently over, and underpredict residuary resistance coe�cient. Results
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Table 3.12: Parameter range in Southampton data sample.

Parameter Southampton Data SINTEF Ocean Data
Fn Range: [0.2000-1.0000] [0.0920-1.5540]

Mean: 0.6227 0.711
Lwl/Bwl Range: [7.0000-15.1000] [1.9800-14.8310]

Mean: 10.8982 5.6870
B/T Range: [1.5000-2.5000] [1.1538-12.0650]

Mean: 2.0042 2.4368
L/Ò1/3 Range: [6.2700-9.5000] [5.3100-10.8400]

Mean: 8.3035
S/Ò2/3 Range: [6.6648-8.4609] [7.8200-12.4000]

Mean: 7.7378 10.5021
Sb/S Range: Not Available [0-0.0216]

Mean: Not Available 0.00764
s2/Lwl Range: [0.2000-0.5000] [0-0.3782]

Mean: 0.3606 0.2067
Cr · 103 Range: [1.1210-15.4170] [0.1210-18.3810]

Mean: 3.7914 2.5404
Samples: 719 2313

of both large positive and negative coe�cients are observed, where the worst predictions
are for Fn < 0.45. This is a general tendency for the models outside the parameter range
as well, presented in Figures B.11 to B.14 in Appendix B.3. Poor performance may be due
to the network being overtrained, so the network is trained again for fewer epochs in order
to minimise the mean squared error, and hopefully increase the generalisation ability for
the model. The focus was on minimising the mean squared error for the data-set within
parameter range, which gave 19 as the optimal number of training epochs. Mean squared
errors for within- and outside parameter range analysis, are presented in Table 3.13.

The network trained for fewer epochs than found to be optimal in the earlier analysis,
produces far lower mean squared errors for the Southampton data-set. Errors are on the
other hand higher than the ones found during network training with the SINTEF Ocean
data-set.

53



3.4. EVALUATING THE OPTIMISED NETWORK

Figure 3.9: Validation results for network tested on Southampton data within parameter
range, for the network trained for 996 epochs.

Table 3.13: Results for validation analysis with Southampton data-set.

Data-set Sb/S= No. samples No. training epochs Error (MSE)
Data within parameter range 0 102 996 72.4170
Data within parameter range 0.00764 102 996 115.8482
Data within parameter range 0 102 19 0.2298
Data within parameter range 0.00764 102 19 0.2072
Data outside Lwl/Bwl-range 0 75 996 72.3573
Data outside Lwl/Bwl-range 0.00764 75 996 55.2932
Data outside Lwl/Bwl-range 0 75 19 0.5110
Data outside Lwl/Bwl-range 0.00764 75 19 0.5560
Data outside S/Ò2/3-range 0 419 996 109.1139
Data outside S/Ò2/3-range 0.00764 419 996 126.8884
Data outside S/Ò2/3-range 0 419 19 0.6067
Data outside S/Ò2/3-range 0.00764 419 19 0.8517
Data outside s2/Lwl-range 0 385 996 84.7144
Data outside s2/Lwl-range 0.00764 385 996 65.4421
Data outside s2/Lwl-range 0 385 19 0.4975
Data outside s2/Lwl-range 0.00764 385 19 0.7644

3.4.1 Comparing Against Data Within Parameter Range

The number of data points within the valid parameter range of the neural network is 102,
therefore it should be possible to show what degree of generalisation the network has.
However, this requires the Southampton data to be representative of the same types of

54



CHAPTER 3. RESULTS

vessels included in the SINTEF Ocean data-set. The results when testing Southampton
data within parameter range are presented in Table 3.13 and in Figure 3.10. The neural

Figure 3.10: Validation results for Southampton data within network validity parameter
range.

network predicts the general behaviour of Cr, some errors are visible for 0.4 < Fn < 0.55
and for Fn = 0.85, 0.95 and 1.0. Especially the last three values are over predicted by
the network in Figure 3.10.

3.4.2 Comparing Against Data Exceeding Parameter Range

Next, the neural network is tested for vessels exceeding the parameter ranges of: Lwl/Bwl,
S/Ò2/3 and s2/Lwl. The mean squared error for the tests are presented in Table 3.13
and the predictions are compared to the correct residuary resistance coe�cients in Figures
3.11 to 3.13.

Both networks assuming Sb/S = 0.00764 and Sb/S = 0, tends to underpredict residuary
resistance coe�cient for models with Lwl/Bwl > 14.831. The network assuming Sb/S =
mean gives the best estimates for Fn < 0.75 but predicts lower Cr than the correct
one and the network assuming Sb/S = 0 at high Froude numbers. This can be seen in
Figure 3.11. At Fn = 1.0 both networks miss the tendency of Cr flatting out, causing
under-predicted results.

For models with S/Ò2/3
< 7.82 the same behaviour as before is observed in Figure 3.12.
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Figure 3.11: Validation results for Southampton data outside Lwl/Bwl network validity
range.

Figure 3.12: Validation results for Southampton data outside S/Ò2/3 network validity
range.

Both models predict the general behaviour of the data sample. For 0.45 < Fn < 0.65, the
four highest coe�cients are not predicted at all. By looking closer at the model data from
Molland et al. [1995], these extremes appears to be from model 3b. This model has a
wetted area 24% larger than model 4a, which has the second highest wetted area of these
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Figure 3.13: Validation results for Southampton data outside s2/Lwl network validity
range.

models. The L/Ò1/3 parameter is also 15% lower than for model 4a, indicating that model
3b is wider and with a larger wetted surface than the other models. Residuary resistance
is overall higher for this model, with especially high resistance around Fn = 0.55. The
neural network predicts Cr to a large extent for the other vessels, for both higher and
lower Froude numbers.

For models with s2/Lwl > 0.3782 presented in Figure 3.13, one can see the model predicting
the general behaviour of the vessels in the sample. Now the highest values appear to be
estimated by the model. For higher Fn both using Sb/S = 0 and Sb/S = mean yields
good performance and predicts Cr close to the measured ones.

3.4.3 Comparing Networks to SINTEF Ocean Data

In the evaluation process in the previous section, the optimal network had to be trained
for fewer epochs to gain better performance for the Southampton data-set. Now, the two
networks will be re-tested on the SINTEF Ocean data-set to evaluate performance and
hence the ability to reproduce residuary resistance coe�cients from model tests. The
performance is presented in Table 3.14 and in Figure 3.14. The full data sample with
residuary resistance coe�cients from SINTEF Ocean data sample and the predicted ones,
with the networks from Table 3.14, are presented in Figure B.10, in Appendix B.2.
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Table 3.14: Prediction error of the two trained networks to SINTEF Ocean data.

Network Structure Number of Training Epochs Error (MSE)
[10-11-11-10] 19 0.1135
[10-11-11-10] 996 0.0035

Figure 3.14: Network ability to predict Cr in SINTEF Ocean data, focused on samples
[1000-1350] and [2000-2313].

In Figure 3.14 the areas [1000-1350] and [2000-2313] in the sample have been put in focus
to better evaluate the ability to predict residuary resistance in the SINTEF Ocean data
sample. Both networks predict Cr to a large extent, but the network trained for 996 epoch
shows far better ability to predict correct results, than the network trained for 19 epochs.
The latter shows a correct representation of the general behaviour but has a tendency of
predicting too low or too high values for Cr. The network trained for 996 epochs does, on
the other hand, predict the residuary resistance coe�cient perfectly which can be seen in
Figure 3.14 where the black dots hit the centre of the blue circles for almost every sample
point.

The results presented above are as expected for the two networks. Training for 977 more
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epochs should have a significant e�ect on the ability to predict Cr, especially when the
tested data-set is the same as training and validation data-sets together. This is clearly
visible by the MSE values in Table 3.14, where the network trained for 996 epochs produce
a prediction error of only 0.0035. The network trained for 19 epochs yields an estimation
error of 0.1135, which is half the error obtained when doing validation analysis with the
Southampton data-set in Section 3.4. This network shows good generalisation abilities
and predicts both data-sets to a large extent.

3.4.4 Systematic Testing of Input Parameters

In this section, each of the input parameters is set equal to zero and SINTEF Ocean
sample means, to see which ones are most crucial for performance in the estimation of
residuary resistance coe�cients and if it is possible to replace unknown model parameters
and still get decent performance. The e�ect of setting Sb/S-ratio equal to zero and
SINTEF Ocean sample mean when predicting Southampton data, was checked in the
previous section but will be checked again for predicting SINTEF Ocean data. Detailed
evaluation of performance for the networks will be presented for two parts of the data
sample: samples 1000-1350 and 2000-2313. This is for illustration purposes and for easier
comparing performance of the networks, as presenting the whole result gets messy due
to large amounts of data. Comparison of the full data sample is however presented in
Appendix B.3. Mean squared errors between predicted- and actual Cr-values are presented
in Table 3.15.

Table 3.15: Mean squared error between predicted and correct Cr when di�erent input
parameters to the neural networks are set to zero and sample mean.

Missing Parameter Network Trained for 996 Epochs Network Trained for 19 Epochs
Param: 0 Param: mean Param: 0 Param: mean

F n 102.2505 2.0127 9.7834 1.9405
B/T 301.6845 33.7915 0.3252 0.1999
L/Ò1/3 1470.6 12.7429 726.9529 2.7699
S/Ò2/3 474.4336 7.8647 38.1246 0.3147
Sb/S 110.1305 14.7787 2.0901 0.8493
s2/Lwl 70.8783 3.7142 1.1424 0.1401

Testing Input Parameter: Fn

Figure 3.15 shows how the networks are behaving when Froude number are missing as an
input parameter. Table 3.15 indicated large estimation errors, which are reasonable as
the neural network does not know which speeds the design is experiencing. Speed and
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relative speed is an important factor when estimating resistance, as presented in Section
2.1, therefore poor estimation ability was expected.

Figure 3.15: Network ability to predict Cr in SINTEF Ocean data, when input parameter
Fn is missing. Results focused for illustration purposes.

Testing Input Parameter: B/T

Figure 3.16 shows how the neural networks are behaving when B/T is missing from
the input. The network trained for 996 epochs over- and under-estimated the residuary
resistance coe�cient for most data samples, which results in the large MSE values presented
in Table 3.15. The largest errors are observed for Fn > 0.5, while the network trained for
fewer epochs handles the missing parameter significantly better.

Testing Input Parameter: L/Ò1/3

Figure 3.17 shows how important the L/Ò1/3 input parameter is for the neural network,
and hence how important the parameter is for estimating resistance from these catamaran
models. Both networks miss the general behaviour of the residuary resistance coe�cient
and significant over-estimation is observed. Large mean squared errors are produced,
where the network trained for 19 epochs and L/Ò1/3 = mean shows the best prediction.

60



CHAPTER 3. RESULTS

Figure 3.16: Network ability to predict Cr in SINTEF Ocean data, when input parameter
B/T is missing. Results focused for illustration purposes.

Figure 3.17: Network ability to predict Cr in SINTEF Ocean data, when input parameter
L/Ò1/3 is missing. Results focused for illustration purposes.
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Testing Input Parameter: S/Ò2/3

Figure 3.18 shows how the networks react when correct S/Ò2/3 is missing from the input.
Especially the networks where S/Ò2/3 = 0 produces large prediction errors by both
networks, as indicated in Table 3.15. The network trained for 19 epochs predicts the
residuary resistance coe�cient significantly better than the network trained for 996 epochs,
especially when S/Ò2/3 = mean.

Figure 3.18: Network ability to predict Cr in SINTEF Ocean data, when input parameter
S/Ò2/3 is missing. Results focused for illustration purposes.

Testing Input Parameter: Sb/S

Figure 3.19 shows how missing the Sb/S-value a�ects the performance of the networks. The
network trained for 996 epochs creates significant under-estimations and over-estimations
of the residuary resistance coe�cient, especially when Sb/S = mean. The under-trained
network with s2/Lwl = mean appears to give the most accurate estimation for this sample,
which gives a mean squared error of only 0.8493. An MSE of 70.8783 is produced by the
network trained for most epochs when Sb/S = mean.
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Figure 3.19: Network ability to predict Cr in SINTEF Ocean data, when input parameter
Sb/S is missing. Results focused for illustration purposes.

Testing Input Parameter: s2/Lwl

Figure 3.20 shows how missing the s2/Lwl-value a�ects the performance of the networks.
Again, the network trained for 996 epochs creates significant over-estimations and shows
especially poor ability to predict Cr. The under-trained network with s2/Lwl = mean

produces the best predictions, with a mean squared error of only 0.1401. this is almost as
good as when it was tested on the whole data-set with all input parameters, seen in Table
3.14.

From the tests carried out in this Section, it is clear that the network trained for 996
epochs su�ers when input parameters are missing or estimated. Significant over-estimation
and under-estimation were observed, and mean squared errors in the range of 1470.6-2.0127
was produced. The network trained for fewer epochs performs best in all cases where
input parameters are missing. Setting missing values equal to the sample means appears
to yield the best performance for all situations. The network trained for 996 epochs should
be used with care, and the network trained for 19 epochs appears to be most suitable for
predicting residuary resistance for fast catamarans.
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Figure 3.20: Network ability to predict Cr in SINTEF Ocean data, when input parameter
s2/Lwl is missing. Results focused for illustrative purposes.
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Chapter 4
Discussion

In this chapter topics presented earlier in this thesis are discussed, and the possible
consequences of the actions taken and choices made on the produced empirical models
will be evaluated. An important topic is how well the available model data represents the
design of fast displacement catamarans over all, and if the validation model data is within
this category. The chosen method of constructing neural networks will be discussed and if
other available methods could yield even better empirical models. Lastly, the two optimal
neural networks are evaluated based on the results presented in the previous chapter.

4.1 Representability of the Available Model Data

The available model data given by SINTEF Ocean can be divided into two categories as
presented before; old models which was used to develop CatRES, tested by MARINTEK
from 1990 to 1997, and new models tested in the towing facility after from 1997 to
2017. The dataset with models tested before 1997 consists of 1082 samples from mostly
passenger-, car ferries and cargo catamarans with a few models being fishing vessels for
line fishing. The new models are mostly ferries and some other vessels, with Lpp between
19-130 meters and a concentration around Lpp = 40 meters.

The types of catamarans tested in the towing facility by SINTEF Ocean has not changed
dramatically over the years, as the vessels from 1990-1997 and 1997-2017 are of the same
types. Having an homogeneous sample concerning vessel types, yields trained neural

65



4.1. REPRESENTABILITY OF THE AVAILABLE MODEL DATA

networks specialised in predicting resistance for these types of vessels. The neural network
would however not be suitable for predicting residuary resistance for other types of
catamarans. Because most models tested by SINTEF Ocean are of ferry-catamaran-type
with some additional designs, it is reasonable to assume the models tested in the future will
be similar to these. By including recent model trials from ferries and some other vessels,
1231 data samples are added to the original dataset of 1082 samples, creating a dataset of
2313 data samples. By comparing vessel parameters for the vessels presented in Appendix
A.1, some tendencies are found. New designs appears to have lower slenderness-ratio and
higher Lwl/Bwl-ratio than the older designs. Higher displacement is a characteristic for
planing vessels, as the hull is lifted partly out of the water when travelling at higher speeds.
When screening the models together with SINTEF Ocean, planing vessels was however
filtered out, as displacement and semi-displacement catamarans was desired. Lower B/T

ratios are observed for some of the newer vessels designed with water-jet propulsion. This
indicates either wider- or shallower hulls in the new design, but the general tendency in
B/T value is similar for older and newer designs. Hull separation-ratio appears to be
consistent for older and newer designs. s2/Lwl are found to be in the range of [0.10≠0.37],
where most models regardless of old or new design, have a hull-separation-ratio around
0.2. The neural networks trained on SINTEF Ocean data, set consisting of 46.8% old

Table 4.1: Parameter validity range for neural networks.

Parameter Valid Data Range
Fn [0.0920-1.5540]
Lwl/Bwl [1.9800-14.8310]
B/T [1.1538-12.0650]
L/Ò1/3 [5.3100-10.8400]
S/Ò2/3 [7.8200-12.4000]
Sb/S [0-0.0216]
s2/Lwl [0-0.3782]
Cr · 103 [0.1210-18.3810]

data samples and 53.2% new data samples, would be able to predict residuary resistance
coe�cients for both elder and newer designs. The validity range of the trained networks
are presented in Table 4.1.

An evaluation of the trained networks was carried out using model data from Southampton
presented in Appendix A.2. The purpose was to evaluate the generalisation ability of
the neural networks and how they performed outside their valid parameter range. When
using independent datasets for validation purposes of neural networks, one must be sure
of the validity of the independent dataset as well. The Southampton model are of round
bilge form with transom sterns, and are derived from the National Physical Laboratory
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(NPL) round bilge series. These mono-hulls was mounted together at desired s2/Lwl ratio,
into catamaran form [Molland et al., 1995]. The round bilge hull form is characterised
by straight entrance waterlines, rounded afterbody sections and straight buttocks line
terminating sharply at a transom [Bailey, 1976]. By looking at the hull lines for the
models in the SINTEF Ocean data sample, most models appears to have round bilge
hulls. However, assembling two mono-hulls together to make a catamaran design, may
yield other flow characteristics than a modern catamaran design, made for the purpose of
being an optimal catamaran. This dataset is on the other hand, one of the few datasets
available to the public, and hence one of the few available dataset for verification of the
neural networks. Therefore the performance of the neural network on the SINTEF Ocean
dataset is prioritised, while the performance on the Southampton dataset is used as a
guideline to reveal overtraining.

The e�ect of erroneous data in neural network training, would be severe if the amount
of erroneous data is significant in the sample. In this work unknown parameters are set
equal to zero, which mislead the network during training, breaking patterns in the data
and creating noise. When the parameter range in the SINTEF Ocean data sample was
presented in Section 3.1.3, the possibility of using data samples without any missing values
was evaluated. This lead to a reduction in sample size of 46.78%, and exclusion of most
resistance tests of older catamarans. Significantly better performance was observed of the
network trained on the reduced dataset, as presented in Section 3.2.3, where the best test
mean squared error was ten times better than for the network trained on the full dataset.
However, after discussing with co-supervisor Hans Jørgen Rambech, it was decided to
use the network with largest validity range and lower performance. One must bear in
mind that the empirical residuary resistance estimation method is to be used in the early
stage of the design process. The model should therefore be applicable for a wide range of
model parameters with as large validity range as possible, even if this goes on expense of
accuracy.

The dataset provided by SINTEF Ocean appears to be representative for fast displacement
catamarans designed as ferries and transport catamarans. By looking at the parameter
ranges, the design has evolved from the tests carried out from 1990 to 1997, to the ones
carried out from 1997 to 2017. A total number of 52 vessels are included, making several
parameter combinations and designs present in the dataset. Independent resistance tests
carried out by Molland et al. [1995] was on the other hand tested for the sake of testing the
e�ect of design parameters on catamaran resistance. Generalisation ability can, however,
be assessed using this dataset, which has been done in this thesis.
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4.2 Neural Networks Compared to Polynomial Curve

Fitting

In Section 2.3, empirical models based on polynomial curve fitting was presented together
with models based on machine learning. The opacity concept of di�erent empirical models
was outlined, where the white box model is a model based on an analytic mathematical
expression describing the phenomena, and the black box model is a model without a
physical relationship between the phenomena and the mathematical model describing the
phenomena.

Most current empirical resistance prediction models are of the polynomial curve fitting-
type, such as CatRES and Molland et al. [1995] method. When choosing to fit polynomials
to resistance data, coe�cients can be found through regression based on model parameters,
while the ”driving” parameter in the model can be another parameter. This is the case
in CatRES method presented in Section 2.2.1. The driving parameter is the slenderness
ratio L/Ò1/3, and correlation on CR and CW can be used for correction. Methods 1 to 5
makes it possible to estimate resistance both for designs where L/Ò1/3 is the only known
parameter, but also if other parameters such as S/Ò2/3, Bdemi/T and s/L are known.

When neural networks are used to develop empirical methods, the input parameters to
the finished model needs to be the same as the input parameter used during training.
However, during the first stage of the design process of catamarans parameters such as
wetted area and area of wetted stern may not be known. A way of bypassing this problem
is to estimate unknown input-parameters to the empirical model. This was analysed in
Section 3.4.2, where the missing Sb/S-ratio in the Southampton dataset was set equal
to zero and equal to mean of the training data sample. Both solutions gave reasonable
estimates, but variation between the estimated values was significant at times. This would
be a defect in the empirical resistance estimation model, as stable performance is desired.

4.3 Matlab Compared to Other Available Tools

Throughout this work Matlab has been used for data validation, neural network training
and post-processing, but there are other suitable software available. Yegulalp [2017] did a
short review on available deep learning libraries and how the larger technology companies
are developing their software to take the growing market, and a selection of these are
presented next.
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Microsoft Cognitive Toolkit is developed by Microsoft and provides a Java application
programming interface (API), allowing more direct integration with other processing
framework. The framework supports both Python and C++, and claims to be both faster
and more accurate than the Google flagship: TensorFlow. Microsoft are also o�ering
cloud-based computing and user friendly software, which makes the methods available to
other users than experienced machine learning specialists [Microsoft Research, 2018].

TensorFlow is the open source software library for high performance numerical computa-
tion, developed by the Google Brain team [TensorFlow, 2018]. The framework is more
low-level programming-vise, and can be used with Python. In order to make TensorFlow
and other machine learning frameworks more user-friendly the Keras high-level neural
networks API was developed. Keras lowers the required programming knowledge to use
TensorFlow significantly, and has made advanced machine learning available to the public
[Keras, 2018].

There are multiple advantages of choosing one of the frameworks mentioned above, as
both are in continuous development, testing and use of some of the largest technology
companies in the world. Another advantage is the ability of cloud computing, in Azure
Cloud Platform and Google Cloud Platform respectively. Cloud computing makes it
possible to buy computational power from high performance computing facilities when
needed, instead of investing in expensive hardware. EY (former Ernst and Young) made a
survey on the maturity of cloud computing with focus on Norway for 2018, and made the
following conclusion: cloud computing is too immature today, but will play an important
role in the future. Machine learning is a relative small part of cloud computing with 17%
only, but it is expected to increase drastically in the future [Mjaanes and Slaata, 2017].

By choosing Matlab over the frameworks presented above, better performing networks
may have been missed. The author feels a lot more comfortable with programming in
Matlab, as this tool have been frequently used throughout his study. Getting on the
required programming level in either Python or C++ to make use of the mentioned tools,
would have been time consuming and profit was not guaranteed. Conducting an extensive
parameter study of neural network design in Matlab was prioritised over learning other
software in this project.

4.4 E�ect of Training and Chosen Parameters

Training is an important part of neural network design as presented in Section 2.4.4.
Pit-falls when designing and training neural networks were presented in Section 2.4.5, with
emphasis on over- and undertraining and over- and underfitting. To address these issues,
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the available dataset was divided into training-, validation- and test datasets and the
performance of the network tested on these datasets was monitored during training. Some
measures for optimising network training is included in Matlab such as early-stopping,
regularisation and backpropagation, which was presented in Section 2.4.4. Additionally, the
generalisation ability of two networks was checked by comparing their predicted residuary
resistance coe�cient against the measured residuary resistance from model tests carried
out in Southampton.

The network performing best is the one presented in Section 3.3, with four hidden layers,
a node distribution if [10-11-11-10] and trained for 996 epochs. The number of training
epochs is large, and indicates the network being overtrained. Test performance was however
best at 996 epochs with a mean squared error of 3.461 · 10≠3 and a training performance
of 3.725 · 10≠3. Because best test performance is observed at this point, 996 should be
the point where this model is at its most generalised. When testing the model to the
Southampton dataset, significantly high mean squared errors was observed. During the
study of missing input parameters in Section 3.4.4, the ”overtrained” network produced
significant prediction errors, and proved to be practically unusable. This would be a clear
sign of overtraining and lack of generalisation ability.

When training the same network for fewer epochs and looking for the lowest error when
comparing with Southampton data, a network trained for 19 epochs performed best. The
results presented in Table 3.13 indicates a better ability of predicting the Southampton
dataset. When testing the ”undertrained” network on the whole SINTEF Ocean dataset,
a mean squared error of 0.1135 is found between the predicted and the correct Cr values.

The gain of training the network 977 more epoch was clearly visible in Figure 3.14, where
the ”overtrained” network predicted the residuary resistance coe�cients perfectly, and
the ”undertrained” network found the general behaviour, but generally missed the correct
values in the sample. However, the ”undertrained” network performed better overall, than
the ”overtrained” network which missed the data in the Southampton data sample entirely.

Another issue, which is often addressed when designing neural networks is correlation
within the dataset. The optimal parameter-set for input values was found to be set three
from Table 3.6. Table 4.2 shows the linear correlation between the parameters in SINTEF
Ocean data sample used for training, validation and testing.

The highest positive correlation is between Sb/S and Fn of 0.3230, and the highest negative
correlation is between L/Ò1/3 and Sb/S of ≠0.6721, which is a strong negative correlation.
Positive linear correlation is on the other hand rather low, but the parameter in the
dataset cannot be categorised as uncorrelated. When the short list with input-parameters
was presented in Section 3.1.4, a comment was made on parameter-set five in Table 3.6
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Table 4.2: The linear correlation between parameters in SINTEF Ocean data sample.

Fn B/T L/Ò1/3
S/Ò2/3

Sb/S s2/Lwl Cr · 103

Fn 1 0.2868 -0.3352 -0.1109 0.3230 0.1456 -0.3869
B/T Sym 1 -0.1414 0.2388 0.3183 -0.0618 -0.2555
L/Ò1/3 Sym Sym 1 0.2598 -0.6721 -0.2155 -0.2864
S/Ò2/3 Sym Sym Sym 1 0.1209 -0.1981 -0.2135
Sb/S Sym Sym Sym Sym 1 0.1310 -0.1761
s2/Lwl Sym Sym Sym Sym Sym 1 0.1476
Cr · 103 Sym Sym Sym Sym Sym Sym 1

being a typical neural network test set which is given all available data. These kinds
of sets often yield good performance as the network gets lots of data for training. This
parameter-set did however not perform best of the proposed ones. By looking at the linear
correlation of the boolean value (Jet/Prop) and Lwl/Bwl to the residuary resistance
coe�cient Cr, correlations of ≠0.2486 and ≠0.1789 are observed respectively. It would
have been interesting to make an additional parameter-set study, where parameter-set five
from Table 3.6 are used as a basis, and the parameters are excluded from the set in order
of lowest correlation to Cr. So the order of exclusion would be: s2/Lwl, Sb/S, Lwl/Bwl,
S/Ò2/3, (Jet/Prop), B/T and lastly L/Ò1/3. Maybe a better performing parameter-set
would be found through this analysis.

The e�ect of correlation between input parameters, and between input- and output
parameters, on neural networks, have been analysed by researchers. Halkjær and Winther
[1997] found a correlation between input parameters to increase the time to convergence
for the neural networks. Wendemuth et al. [1999] found a significant increase in required
capacity when there was a correlation between patterns in the network, but also a decrease
in the error and then also an increased performance of the networks. Cook [1995] states
that neural networks, in general, are ”smart” enough to detect the linear correlation
between parameters, and hence take this into account when trained. He also finds the
e�ect of correlation between input parameters and output to a�ect the network for severely
strong correlation. The correlation seen in this data sample cannot be categorised as the
latter, and the neural network training function is assumed to find and act on correlation.
Acceptable performance has been shown through training, and poor performance due to
correlation appears to be absent.

The two input parameters which a�ected the networks ability to predict Cr the most,
from Section 3.4.4, are also the two with the highest negative correlation to Cr from
Table 4.2, namely Fn and L/Ò1/3. The networks appear to have the ability to predict
the linear correlation between parameters, or it may be a coincidence that missing the
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most correlated parameters creates the largest prediction errors.

The e�ect of setting missing values in the datasets equal to zero when training neural
networks have been discussed earlier. An important consideration is how this has a�ected
the parameter study, and how the optimal parameter-set and algorithm was found. Even
though almost half the samples have Sb/S set equal to zero due to missing data, parameter-
set three from Table 3.6 was performing best in the analysis. In theory, this is also the
noisiest dataset. When data samples with Sb/S was excluded from the data sample in
Section 3.2.3, parameter-set two performed far better than parameter-set three, even
though parameter-set three was made less noisy. For the tests with reduced datasets,
parameter-set five was expected to be the best as more data often yield the best performance
in machine learning. This was however not the result, even though the overall performance
of dataset five is good which can be seen in Figure 3.5. A significant amount of networks
have been tested in this study, and the optimal parameter-set and network, presented in
Table 3.11 was found.

4.5 Evaluating the Two Optimal Neural Networks

Two networks presented in Table 3.14, was trained and tested on the independent dataset
from Southampton. The results from the verification tests carried out in Section 3.4,
indicated poor validation performance for the network trained for 996 epochs, while the
network trained for 19 epochs performed far better. In the Southampton dataset, the
wetted-stern-wetted-surface-area-ratio Sb/S was not recorded for the models. Comparing
the e�ect of estimating the missing input for this dataset was carried out, setting Sb/S = 0
and Sb/S = sample mean to find which gave the best prediction ability for the network.

The Southampton dataset contains models with parameters outside the validity range of
the networks trained on SINTEF Ocean data, as presented in Table 3.12. For data samples
inside the validity range and data samples exceeding the validity range, using Sb/S = 0
gave the best performance, which can be seen in Table 3.13. The results presented in
Figures 3.10 to 3.13, shows how the ”undertrained” network performs good for analysis
when data is within and outside network validity range. It is capable of predicting the
general behaviour in the independent data sample but is not able to predict the residuary
resistance perfectly. The ”overtrained” network performed poorly, which can be seen
in Figures B.3. Mean squared error between predicted and actual residuary resistance
coe�cient was in the range of 55.29 ≠ 126.89 for the ”overtrained” network as presented in
Table 3.13, while it was between 0.21 and 0.85 for the ”undertrained” network. Indicating
a far better generalisation for the latter.
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After the analysis of the Southampton data sample, the two networks were tested on the
SINTEF Ocean data sample. Good performance was expected as this is the training,
validation and test datasets combined. The ”overtrained” network predicted the SINTEF
Ocean data perfectly as visible in Figure 3.14 giving a mean squared error of 0.0035, while
the ”undertrained” network gave a prediction error of 0.1135.

A missing parameter analysis was carried out in Section 3.4.4 to simulate the case when
input-variables are unknown in the early design stage. Setting missing input values equal
to SINTEF Ocean sample mean yielded far better estimation ability for both networks,
than setting missing input-parameters equal to zero. Considering the result of the analysis
carried out in this thesis, using SINTEF Ocean sample mean is recommended in cases
where input values are unknown. This requires the tested design to be similar to the
vessels in the SINTEF Ocean dataset, of course.

Through verification tests, the network trained for 996 epochs shows signs of being signi-
ficantly overtrained. Overtrained networks are characterised by their lack of generalisation
ability and low accuracy for data samples except for the training dataset, which leads to
an unpredictable and poor empirical model. In order to decide on which model to use,
SINTEF Ocean could use both models for some time when carrying out new resistance
tests for model catamarans, and compare the predicted residuary resistance coe�cient
from the empirical models to the results from the towing tests. After the testing period,
one can find which yields the better prediction of Cr from fast catamarans. If this is not
possible, using the network trained for 19 epochs is recommended.
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Chapter 5
Conclusion

In this thesis theory concerning resistance of fast catamarans, machine learning and artificial
neural networks have been presented, before two currently used empirical resistance
prediction methods for fast catamarans was reviewed. The main task in this thesis has
been to develop a new empirical resistance prediction method for fast catamarans, as the
current method used by SINTEF Ocean, named CatRES, yields conservative estimates.
This method was presented in Section 2.2.1 and is of polynomial curve fitting type. In this
thesis, machine learning have been investigated, in order to see whether such an approach
would give an even better performing empirical resistance prediction method.

After digitising model resistance data provided by SINTEF Ocean, empirical models made
with artificial neural networks were designed and tested. The resistance data could be
divided into two categories: ”old data” which is the data-set CatRES is based on tested
by MARINTEK in the period 1990-1997, and ”new models” which consists of model
trials carried out in the period 1997-2017. The vessels can be divided into two categories:
vessels designed with propeller- and water jet propulsion system. Data range was a central
issue, as the data range in the training sample of machine learning algorithms defines
the validity range for the empirical model. The validity range is presented in Table 4.1.
Applying artificial neural networks proved to be a suitable approach and good prediction
abilities were found. In Section 3.2 a parameter study was carried out to find the optimal
input-parameters to neural network training in Matlab using the Neural Network Toolbox.
The optimal input parameters proved to be; Training function trainbr, four hidden layers
with a node distribution of [10-11-11-10] and parameter set tree from Table 3.6.
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The optimal neural network training epochs were 996, but the network showed clear
signs of overtraining during the evaluation process. An independent data-set with model
parameters and measured residuary resistance coe�cients from Molland et al. [1995], was
used to verify the performance of the networks. A significant mean squared error was
produced between the predicted residuary resistance coe�cient Cr, and measured ones
for the best performing network from the parameter study. A new network was trained
for fewer epochs with same network characteristics as before, being continuously validated
with the Southampton data sample to see the true generalisation ability of the network.
The optimal number of training epochs proved to be 19, as shown in Section 3.4. Both
networks were thoroughly tested to evaluate generalisation ability, performance when
validity parameter range is exceeded and how the performance is when input parameters
are missing. These tests provided more evidence of the network trained for 996 epochs
being overtrained. When simulating missing inputs and setting the missing values equal
to zero and SINTEF Ocean sample mean, the network produced high estimation errors,
as presented in Table 3.15.

By carrying out an input-parameter correlation analysis in Section 4.4, the e�ect of
correlation between inputs and between input- and output parameters were presented and
discussed. Research indicated that linear correlation between parameters did not a�ect
the networks ability to obtain good performance, and because good performance has been
observed for the networks, problems with a linear correlation between parameters are
assumed to be unexciting. Input parameters Fn and L/Ò1/3 was also found to be the
most important input parameters to the model to obtain accurate residuary resistance
estimations.

After designing, training and evaluating the two neural networks, the network trained
for 19 epochs is found to give the best prediction of residuary resistance. The network
is converted into a Matlab function and delivered to SINTEF Ocean together with this
report. The author recommends testing the empirical resistance model to future model
tests in order to verify the generalisation ability of the empirical model. Actual model
data and the actual working Matlab function is not enclosed to this thesis, due to the
non-disclosure agreement between the author and SINTEF Ocean. An example of how
the function would look like is presented in Appendix C, where weights and biases are
made anonymous. After a certain test period, the empirical model can be implemented
into a larger software system.
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Chapter 6
Recommendations for Further Work

Throughout this thesis, several neural networks and network parameters have been tested
to find the optimal network. Below are some thoughts on how the method can be improved
and validated further.

Increasing training- and validation data-sets. “In machine learning, is more data
always better than better algorithms?” is one of the most famous quotes and questions in
machine learning, by Google’s Research Director Peter Norvig. The e�ect of increasing
a data-set several times, but with low-quality data, is discussed in an article by Halevy
et al. [2009]. The concrete example is of the Brown Corpus containing one million English
words, where Google have made a corpus with an increased number of words to trillions
from unfiltered web pages. This data-set is significantly larger, but it is also unfiltered and
contains spelling errors and grammatical errors. Halevy et al. [2009] says unsupervised
learning will be better with larger data-sets, even if the data contains errors. For the
case investigated in this thesis, high-quality data is essential. This is because supervised
learning is used, and the network is misguided during training if the data-sets contains
lots of poor data samples. Research by Shaikhina and Khovanova [2017] shows on the
other hand how ”similar” data can be added to the training data-set to obtain better
performing neural networks. By adding large amounts of fracture data for concrete, to
their data-set with fracture characteristics for human bones, they obtained a significantly
better performance for their model describing fracture in bones. Adding model trial data
from monohulls could yield a better performing model, or this could at least be tested
and compared to the model presented in this thesis.
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Another possibility is to contact other test facilities and ask for their resistance data for
fast catamaran models. This may, however, be a non-feasible proposal, as the resistance
data bank is one of their most valuable and precious items, built up over years of testing
models. This has been done in marine applications before, such as when NCE Seafood
[2017] managed to get data from seven fish farming companies in their project on sea lice
management. If the industry is interested in a common empirical residuary resistance
estimation method, is another discussion.

Comparing the proposed empirical model from this thesis to models developed
with other software as discussed in Section 4.3, is desirable to find out whether the
proposed model is the optimal one. Several tools are available as open source frameworks
continuously developed by some of the finest technology companies in the world, and
using these could provide better performing empirical models. Regardless whether other
empirical models are developed or not, the proposed empirical resistance prediction method
should be tested, in order to verify its validity in day-to-day-use before it is implemented
into a larger software system.
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Appendix A
Model Parameter Ranges

A.1 Parameter Range: SINTEF Ocean Data

Figure A.1: Parameter range of Fn in data sets.
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Figure A.2: Parameter range of Lwl/Bwl in data sets

Figure A.3: Parameter range of B/T in data sets

II



APPENDIX A. MODEL PARAMETER RANGES

Figure A.4: Parameter range of L/Ò1/3 in data sets

Figure A.5: Parameter range of S/Ò2/3 in data sets
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A.1. PARAMETER RANGE: SINTEF OCEAN DATA

Figure A.6: Parameter range of Sb/S in data sets

Figure A.7: Parameter range of s/Lwl in data sets
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Figure A.8: Parameter range of Cr · 103 in data sets
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A.2. PARAMETER RANGE: SOUTHAMPTON DATA

A.2 Parameter Range: Southampton Data

Table A.1: Model parameters in Southampton data set Molland et al. [1995]. All models
are tested for hull separations s/Lwl = 0.2, 0.3, 0.4 and 0.5.

Model L[m] L/B B/T L/Ò1/3 CB CP CM S[m2] LCB[% from centre]
3b 1.6 7.0 2.0 6.27 0.397 0.693 0.565 0.434 -6.4
4a 1.6 10.4 1.5 7.40 0.397 0.693 0.565 0.348 -6.4
4b 1.6 9.0 2.0 7.41 0.397 0.693 0.565 0.338 -6.4
4c 1.6 8.0 2.5 7.39 0.397 0.693 0.565 0.340 -6.4
5a 1.6 12.8 1.5 8.51 0.397 0.693 0.565 0.282 -6.4
5b 1.6 11.0 2.0 8.50 0.397 0.693 0.565 0.276 -6.4
5c 1.6 9.9 2.5 8.49 0.397 0.693 0.565 0.277 -6.4
6a 1.6 15.1 1.5 9.50 0.397 0.693 0.565 0.240 -6.4
6b 1.6 13.1 2.0 9.50 0.397 0.693 0.565 0.233 -6.4
6c 1.6 11.7 2.5 9.50 0.397 0.693 0.565 0.234 -6.4

Figure A.9: Parameter range of Lwl/Bwl in additional data set.
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Figure A.10: Parameter range of B/T in additional data set.

Figure A.11: Parameter range of L/Ò1/3 in additional data set.
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A.2. PARAMETER RANGE: SOUTHAMPTON DATA

Figure A.12: Parameter range of S/Ò2/3 in additional data set.

Figure A.13: Parameter range of s/Lwl in additional data set.
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Appendix B
Additional Results

B.1 Additional Results from Parameter Study

Note: The elapsed time is plotted with a logarithmic y-scale. This makes it easier to
compare results with similar time consumption, but the elapsed time does also seem more
similar for the networks.

Figure B.1: Elapsed time during parameter study of training functions.
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B.1. ADDITIONAL RESULTS FROM PARAMETER STUDY

Figure B.2: Elapsed time during parameter study of parameter sets.

Figure B.3: Elapsed time during parameter study of data sets, part 1.
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Figure B.4: Elapsed time during parameter study of data sets, part 2.

Figure B.5: Elapsed time during fine-tuning of networks.

XI



B.2. ADDITIONAL RESULTS FOR FINE TUNED NETWORKS

B.2 Additional Results for Fine Tuned Networks

Figure B.6: Error histogram for net-
work trained for 19 epochs.

Figure B.7: Regression plot for net-
work trained for 19 epochs.

Figure B.8: Error histogram for net-
work trained for 996 epochs.

Figure B.9: Regression plot for net-
work trained for 996 epochs.
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Figure B.10: Network ability to predict Cr for SINTEF Ocean data, full set.
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B.3. OVER-TRAINED NETWORK TESTED ON SOUTHAMPTON DATA SET

B.3 Over-trained Network Tested on Southampton Data

Set

Figure B.11: Validation results for data within parameter range - ’over-trained’ network.

Figure B.12: Validation results for data exceeding Lwl/Bwl parameter range - ’over-
trained’ network.
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Figure B.13: Validation results for data exceeding S/Ò2/3 parameter range - ’over-trained’
network.

Figure B.14: Validation results for data exceeding s2/Lwl parameter range - ’over-trained’
network.
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B.4. MISSING INPUT ANALYSIS, PRESENTATION OF FULL DATA SET

B.4 Missing Input Analysis, Presentation of Full Data

Set

Figure B.15: Network ability to predict Cr in SINTEF Ocean data, when input parameter
Fn is missing. Results for full data set.

Figure B.16: Network ability to predict Cr in SINTEF Ocean data, when input parameter
B/T is missing. Results for full data set.
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Figure B.17: Network ability to predict Cr in SINTEF Ocean data, when input parameter
L/Ò1/3 is missing. Results for full data set.

Figure B.18: Network ability to predict Cr in SINTEF Ocean data, when input parameter
S/Ò2/3 is missing. Results for full data set.

Figure B.19: Network ability to predict Cr in SINTEF Ocean data, when input parameter
Sb/S is missing. Results for full data set.
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B.4. MISSING INPUT ANALYSIS, PRESENTATION OF FULL DATA SET

Figure B.20: Network ability to predict Cr in SINTEF Ocean data, when input parameter
s2/Lwl is missing. Results for full data set.
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Appendix C
Exported Empirical Resistance
Function

The weights and biases in the function below are made anonymous as mentioned in Chapter
5, due to the non-disclosure agreement between the author and SINTEF Ocean.
function [y1] = CatRES2 anonymous(x1)

%CATRES2 neural network simulation function.

% NOTE: ONES INSERTED FOR ANONYMISATION OF TRAINED MODEL.

%

% Generated by Neural Network Toolbox function genFunction, 05≠Jun≠2018 11:22:32.

%

% [y1] = CatRES2(x1) takes these arguments:

% x = 6xQ matrix, input

% x(1,Q) = Froude number Fn

% x(2,Q) = B/T ratio

% x(3,Q) = L/(volumeDisplacementˆ(1/3))

% x(4,Q) = S/(volumeDisplacementˆ(2/3))

% x(5,Q) = s2/Lwl

% x(6,Q) = Sb/S

% and returns:

% y = 1xQ matrix, output

% y(1,Q) = Predicted residuary resistance coe�cients (x1000)

%

% where Q is the number of samples.

%

% Example:

% innEX = [0.71;

% 2.43;

% 7.73;

% 10.50;

% 0.01;

% 0.21]

%

% CatRES2([innEX) = 1.71

%

%#ok<�RPMT0>

% ===== NEURAL NETWORK CONSTANTS =====

% Input 1

x1 step1. xo�set = [1;1;1;1;1;1];

x1 step1.gain = [1;1;1;1;1;1];
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x1 step1.ymin = ≠1;

% Layer 1

b1 = [1;1;1;1;1;1;1;1;1;1];

IW1 1 = [1 1 1 1 1 1; 1 1 1 1 1 1; 1 1 1 1 1 1; 1 1 1 1 1 1; 1 1 1 1 1 1; 1 1 1 1 1 1; 1 1 1 1 1 1; 1 1 1 1 1 1; 1 1 1 1 1 1;

1 1 1 1 1 1];

% Layer 2

b2 = [1;1;1;1;1;1;1;1;1;1;1];

LW2 1 = [1 1 1 1 1 1 1 1 1 1; 1 1 1 1 1 1 1 1 1 1; 1 1 1 1 1 1 1 1 1 1; 1 1 1 1 1 1 1 1 1 1; 1 1 1 1 1 1 1 1 1 1; 1 1 1 1 1 1

1 1 1 1; 1 1 1 1 1 1 1 1 1 1; 1 1 1 1 1 1 1 1 1 1; 1 1 1 1 1 1 1 1 1 1; 1 1 1 1 1 1 1 1 1 1; 1 1 1 1 1 1 1 1 1 1];

% Layer 3

b3 = [1;1;1;1;1;1;1;1;1;1;1];

LW3 2 = [1 1 1 1 1 1 1 1 1 1 1; 1 1 1 1 1 1 1 1 1 1 1; 1 1 1 1 1 1 1 1 1 1 1; 1 1 1 1 1 1 1 1 1 1 1; 1 1 1 1 1 1 1 1 1 1 1; 1

1 1 1 1 1 1 1 1 1 1; 1 1 1 1 1 1 1 1 1 1 1; 1 1 1 1 1 1 1 1 1 1 1; 1 1 1 1 1 1 1 1 1 1 1; 1 1 1 1 1 1 1 1 1 1 1; 1 1 1

1 1 1 1 1 1 1 1];

% Layer 4

b4 = [1;1;1;1;1;1;1;1;1;1];

LW4 3 = [1 1 1 1 1 1 1 1 1 1 1; 1 1 1 1 1 1 1 1 1 1 1; 1 1 1 1 1 1 1 1 1 1 1; 1 1 1 1 1 1 1 1 1 1 1; 1 1 1 1 1 1 1 1 1 1 1; 1

1 1 1 1 1 1 1 1 1 1; 1 1 1 1 1 1 1 1 1 1 1; 1 1 1 1 1 1 1 1 1 1 1; 1 1 1 1 1 1 1 1 1 1 1; 1 1 1 1 1 1 1 1 1 1 1];

% Layer 5

b5 = 1;

LW5 4 = [1 1 1 1 1 1 1 1 1 1];

% Output 1

y1 step1.ymin = ≠1;

y1 step1.gain = 1;

y1 step1. xo�set = 1;

% ===== SIMULATION ========

% Dimensions

Q = size(x1,2); % samples

% Input 1

xp1 = mapminmax apply(x1,x1 step1);

% Layer 1

a1 = tansig apply(repmat(b1,1,Q) + IW1 1�xp1);

% Layer 2

a2 = tansig apply(repmat(b2,1,Q) + LW2 1�a1);

% Layer 3

a3 = tansig apply(repmat(b3,1,Q) + LW3 2�a2);

% Layer 4

a4 = tansig apply(repmat(b4,1,Q) + LW4 3�a3);

% Layer 5

a5 = repmat(b5,1,Q) + LW5 4�a4;

% Output 1

y1 = mapminmax reverse(a5,y1 step1);

end

% ===== MODULE FUNCTIONS ========

% Map Minimum and Maximum Input Processing Function

function y = mapminmax apply(x,settings)

y = bsxfun(@minus,x,settings.xo�set);

y = bsxfun(@times,y,settings.gain);

y = bsxfun(@plus,y,settings.ymin);

end

% Sigmoid Symmetric Transfer Function

function a = tansig apply(n,˜)

a = 2 ./ (1 + exp(≠2�n)) ≠ 1;

end

% Map Minimum and Maximum Output Reverse≠Processing Function

function x = mapminmax reverse(y,settings)

x = bsxfun(@minus,y,settings.ymin);

x = bsxfun(@rdivide,x,settings.gain);

x = bsxfun(@plus,x,settings.xo�set ) ;

end

XX
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