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Preface

Isogeometric analysis is an alternative approach to the established finite element method

for structural analysis of complex structures. Moreover, the general concept can be applied

to all fields of engineering mechanics, including computational fluid dynamics and fluid-

structure interactions. Since the concept was introduced, several papers has been published

on the topic, which implies that researchers finds the topic very interesting. This Master’s

thesis is written during the spring semester of 2018 as a part of the study program marine

technology at NTNU. This thesis was proposed by Assoc Prof Josef Kiendl, and provides the

reader an introduction to isogeometric structural analysis and shell structures in general. A

wind turbine model designed for offshore sitings is under consideration, and will be super-

vised by Assoc Prof Erin Bachynski.

For this thesis it is assumed that the reader have some background in marine technology and

basic structural engineering. It is also assumed that the reader has knowledge of mathemat-

ical formulations.

Trondheim, June 11, 2018

David Vågnes
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Abstract

Isogeometric analysis, IGA, seeks to bridge the gap between engineering design and compu-

tational analysis by using spline functions as finite element bases in the analysis framework.

NURBS has become the standard technique for representing geometrical shapes like spheres

and cones, as well as free-form curves and surfaces. In this thesis, theory on the subject

is presented and a NURBS-based Kirchhoff-Love shell formulation is utilized for structural

analysis of the DTU 10MW RWT blade. Rhino is used as a tool for modelling of the NURBS

model and an IGA research code in Matlab performs IGA. Two different methods for multi-

patch coupling is investigated, where the first is coupling by penalty method and the second

is bending strip method. A procedure for defining the regions of the blade is added to the

code, and classical laminate theory is used to model the composite laminate material of the

structure under consideration. Finally, a corresponding FEM analysis in Abaqus with two

different load cases is compared to the IGA model in terms of accuracy and efficiency.
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Executive Summary

Isogeometric analysis, IGA, seeks to bridge the gap between engineering design and compu-

tational analysis by using spline functions as finite element bases in the analysis framework.

The general concept can be applied to all fields of engineering mechanics, and has proven to

perform with great accuracy and efficiency. In computer-aided design, CAD, NURBS has be-

come the standard technique for representing exact geographical shapes like circles, spheres

and cones, as well as free form curves and surfaces, which are fundamentals in geometry

modelling. In the finite element method, FEM, the geometry model is typically represented

by small finite element in a mesh, which is analyzed several sub-problems. The basis func-

tions used in the analysis is typically based on simple Lagrange polynomials, whereas the de-

sign framework utilizes smooth spline functions. For awkward shaped structures, this con-

flict accounts for more than 80% of the overall design-analysis time. By utilizing the same

NURBS basis functions in analysis, the meshing procedure is omitted and the exact geome-

try model created in CAD can be subject for analysis.

The use of wind turbines for electricity generation is increasingly common, and offshore

wind turbines has become an attractive solution in the industry. Due to the large areas avail-

able and cost related to offshore installation, there has been a continuous upscaling of wind

turbines. This has created a need for the DTU 10MW reference wind turbine, which has the

scope of acting as benchmark for new wind turbine designs. In this thesis, one of the DTU

10MW RWT blades will be modelled subject for structural IGA.

The mathematical formulation of NURBS is presented, where important features to its de-

velopment is pointed out. In finite element analysis, mesh refinement is used to converge

and validate the solution by resolving the model with successivly finer and finer mesh. The-

ory behind a unique method for refining the NURBS model with respect to IGA is presented

as a solution to FEM mesh refinement. Data is retrieved from the repository accompanying

the reference wind turbine, and the commercial NURBS-based software Rhino is used as a

tool for modelling of the NURBS model. A procedure is obtained to import a coarsen multi-

patch model to the IGA research code in Matlab.

In this thesis, a NURBS-based Kirchhoff-Love shell formulation is utilized for structural anal-

ysis of the blade model in IGA. Important features about the rotation-free shell formulation

is pointed out, where two methods for multi patch coupling is used. Two different methods

for multipatch coupling is investigated, where the first is coupling by penalty method for

unmatching patches and the second is bending strip method. Furthermore, classical lami-

nation plate theory is used to obtain the laminate stiffness matrix in the analysis.

The origin of the material parameters for the plies in the reference wind turbine blade is pre-

sented through the micromechanics equations, together with composite lamination theory.
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Regional layup for the blade is presented, and a procedure for defining the regions is added

to the code. Also, a stiffness function is adapted to compute the stiffness of the evaluated

points in the analysis, where classical laminate theory is used to model the composite lami-

nate material of the structure under consideration.

The stiffness function adapted in the IGA code is compared to a benchmark of a multistack

and multidirectional laminate. Furthermore, the two coupling methods are compared for a

simplified analysis, which in addition to controlling the unmatching patches challenge, also

shows one of the advantages of IGA, where a modified geometry does not need a new mesh-

ing procedure. Finally, a corresponding FEM analysis in Abaqus with two different load cases

is compared to the full IGA model in terms of accuracy and efficiency. The displacement pat-

tern in general and tip deflection particularly for the two analyzes, shows that the IGA model

performs with great accuracy and efficiency. With significantly fewer degrees of freedom, the

tip displacement in IGA deviates with only 0.34% from the reference solution.
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Sammendrag

Isogeometrisk analyse, IGA, prøver å kartlegge gapet mellom industrielt design og beregn-

ingsanalyse ved bruk av splinefunksjoner som formulering i elementmetode. Det generelle

konseptet kan bli brukt på alle ingeniørfelt som involverer mekanikk, og har vist seg å være

både effektivt og nøyaktig. I databasert design, CAD, har NURBS blitt den standardiserte

teknikken for fremstilling av geometriske former som sirkler, sfærer og kjegler, samt frie

formkurver og flater, som er grunnleggende geometrisk modellering. I elementmetoden er

den geometriske modellen representert av flere mindre elementer i et mesh, som igjen blir

analysert som flere mindre problemer. Basisfunksjonene som blir brukt i analysen er typisk

basert på enkle Lagrange-polynomer, mens den geometriske modellen er basert på glatte

splinefunksjoner. For kompliserte strukturer står denne geometriske konflikten for over 80%

av hele analyseringsprosedyren.

For produksjon av elektrisk energi blir bruken av vindturbiner stadig mer populært, og da

spesielt løsninger offshore vindturbin. På grunn av store tilgjengelige områder og kostnader

relatert til installasjon, har det forekommet en trend mot stadig større vindturbiner. Dette

har skapt et behov for DTU 10MW RWT, en referansevindturbin med mål om å være en ret-

ningslinje for nye vindturbindesign. I denne oppgaven, skal ett av bladene fra rotoren bli

modellert og analysert med IGA.

Den matematiske formuleringen bak NURBS blir presentert, der viktige poeng knyttet teknikkens

egenskaper og utvikling blir pekt ut. Det medfølgende datalageret til referanse vindturbinen

er brukt for å importere informasjon om geometrien til bruk i modelleringsprogramvaren

Rhino. Fra dette lages en prosedyre til modellering av vindturbin rotorer med hensyn til IGA

i en Matlab-basert forskningskode.

I denne oppgaven benyttes en NURBS-basert Kirchhoff-Love skallformulering til struktur-

analyse av vindturbinbladet i IGA. I teorikapitlet presenteres to konvensjonelle metoder for

kobling av flere NURBS overflater i den rotasjonsfrie skallformuleringen. Videre presenteres

klassisk laminatteori for å kalkulere laminat stivhetsmatrisen i analysedelen.

Materialene brukt i komposittoppbygning av referanse vindturbinbladet blir presentert gjen-

nom mikromekanikk-ligninger sammen med klassisk laminatteori. Oppbygningen av bladet

presenteres, der en prosedyre for å definere bladets regioner blir supplert til koden. Videre

blir en stivhetsfunksjon tilpasset beregning av stivheten for hvert enkelt punkt produsert, der

klassisk laminatteori brukes til å modellere komposittlaminatmaterialet av strukturen.
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Stivhetsfunksjonen som er tilpasset IGA-koden blir sammenlignet med et referansepunkt

for et flerlags- og flerretningslaminat. Videre er de to koblingsmetodene sammenlignet i

en forenklet analyse, der utfordringer knyttet til overflater uten felles kant blir kontrollert.

Den samme testen viser frem en av de største fordelene knyttet til IGA, der en modifisert

geometri ikke trenger et nytt mesh. Til slutt sammenlignes IGA av en fullt utrustet modell

med to lastkondisjoner mot en referanseanalyse gjennomført med elementmetoden. Sam-

menligning av forskyvningsmønster mellom de to analysene viser at IGA er svært effektivt og

presist. I tillegg er avviket for bøyning av rotorens frie ende bare 0.34% fra referansen, selv

om mange færre frihetsgrader er benyttet.
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Nomenclature

CAD Computer-Aided Design

CC Cap centre

CPU Central Processing Unit

DTU Technical University of Denmark

FEA Finite element analysis

FEM Finite element method

IGA Isogeometric analysis

IPCC Intergovernal Panel on Climate Change

LC Load case

MW Mega Watt

NREAP National Renewable Energy Action Plans

NURBS Non-uniform rational B-splines

PA Pitch axis

RWT Reference Wind Turbine

USCS United states customary units

α Penalty parameter

δi
i Kronecker delta

εαβ Membrane strains, middle surface shell

εi j Strains in i j direction

γi j Shear strains in i j direction

καβ Curvature, middle surface shell

xi
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ρ Mass density

σi j Cartesian Cauchy stresses in i j direction

τi j Cartesian Cauchy shear stresses in i j direction

θi Surface coordinates

ε Strain

κ Curvature

ν Poisson’s ratio

ξ/η Knot

Ξ/H Knot vector

D̄k Laminate stiffness matrix of ply k

A Extensional stiffness matrix

aα Base vector on the middle surface p

B Coupling stiffness matrix

D Bending matrix

Dmat Material matrix

ei Standard basis vectors in i direction

Pi control point coordinates i

R Reuter’s matrix

S Compliance matrix

T Transformation matrix

u Deformation vector

X Position vector

bαβ Curvature tensor coefficient

Bi ,p Bernstein basis functions for i control points of degree p

c Chord length

C n Parametric continuity of n degree
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Ei Young’s modulus in i direction

Eαβ Strain corefficients

Eαβ Strains in the shell

Es Directional bending stiffness, bending strip

fa Magnitude area load

G Transverse shear modulus

g Gravity constant

g i Contravariant basis

gαβ Contravariant metric coefficient

gi Covariant basis

gαβ Covariant metric coefficient

i x Counting index circumeferential direction

i x Counting index side

i z Counting index redial direction

Ni ,p Normalized B-spline basis functions for i control points of degree p

Ri ,p Normalized rational basis functions for i control points of degree p

S Second Piola-Kirchhoff stresses

V Volume

W Work

zk Distance from ply k to neutral axis

a Metric coefficient

b Curvature coefficient

F ext External load vector

K i nt ,l i n Linearized internal stiffness matrix

p/q Polynomial Degree

C Curve representation



xiv NOMENCLATURE

m Bending moments

n Normal forces

S Surface representation

x Position Vector

N Basis functions

n Number of Control Points

R Rational basis functions

r Radial position

t Thickness
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Chapter 1

Introduction

Shell structures are curved surfaces that carries loads "through its shape" and is thus very

efficient in saving of material and weight. The term shell is often associated with structures

which process huge strength despite of being thin. Its appearance can often be seen in nature

through eggs, nuts, the human skull and the shell of a tortoise. The shell element differen-

tiates from the plate element due to its curvature, and are typically applied at aircrafts, ship

hulls, wind turbine blades and large roof structures at stadiums. A thin shell is defined as

a shell which has thickness relatively small compared to its other dimensions. Moan (2003)

states that thin shell theory can be applied for shells which has other dimensions at least ten

times its thickness. August E.H. Love presented a shell theory developed from the "classical

plate theory" of Gustav R. Kirchhoff. The theory is known as the Kirchhoff-Love shell theory,

and its applicability is related to thin shells.

With global climate change already having an observable effects on the environment, and

CO2 emission as the main contributor to the change, renewable energy sources have be-

come a major focus area. IPCC (2014) lists wind power as one of the key low-carbon options

for energy supply in their latest report on climate change. Modern wind turbines are devel-

oped to convert wind energy into electricity, through kinetic energy in the wind to mechan-

ical energy in the shaft, which subsequently converts into electrical energy in a generator.

Even though most wind turbines are located onshore, The European Wind Energy Associ-

ation (2017) points to a trend of rapidly increasing installed offshore wind capacity. This is

rooted in the fact that European member states are completing their National Renewable En-

ergy Action Plans,NREAPs, as an answer to the Renewable Energy directive of the European

Union (2009). With offshore wind, the structure adds low noise and visual impact, large ar-

eas are available at a low price and the wind is considered to be less turbulent, i.e. greater

efficiency and power production. However, offshore wind is in a wet and corrosive environ-

ment with difficult access for installation and maintenance. With this in mind, structural

integrity of offshore wind turbines is an important topic. In order to meet the huge demand

for renewable energy, it has been found more cost efficient to increase the wind turbine ro-

tor radius and thereby increase power production per wind turbine. The upscaling of wind

3
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turbines are challenging because the mass of the turbine increases with the cube of the rotor

radius. To address this challenge, wind turbine blades are optimized to increase stiffness and

overall performance.

Figure 1.1: Offshore wind turbine (The European Wind Energy Association, 2017)

The standard technology that is used by computer-aided design, CAD, to represent com-

plex geometries is the non-uniform rational B-Splines, NURBS. In a traditional engineering

design process the geometry is model in a CAD system. This model represents the exact

geometry of the structure, and is the foundation for the analysis model. With the finite ele-

ment method, FEM, the geometry model is represented by several finite elements in a mesh,

and then the model is analyzed as several sub-problems. For simple geometries, automatic

meshing procedures are very efficient. However, most structures has awkward geometries

like curvature in multiple directions, bad aspect ratios and are considered to be complex.

Here the meshing procedure can only be done semi-automatically, since the mesh has to

be repaired manually by the analyst to yield acceptable results. Lovadina et al. (2014) states

that mesh generation accounts for more than 80% of overall analysis time, meaning that this

process is looked upon as a bottleneck for the industry. The reason for this situation, is that

the mathematical description used in design is different from the ones used in analysis.

Hughes et al. (2005) introduced the idea of isogeometric analysis, IGA, which is to use the

smooth NURBS basis functions as the basis for analysis. As a result, the exact geometry is

introduced into the analysis without any further modifications. The general concept of IGA

can be applied to all fields of engineering, including structural analysis, computation fluid
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dynamics and fluid-structure interactions. Thanks to the high-regularity properties of its

basis functions, IGA has shown grate aaccuracy per degree of freedom and an enhanced ro-

bustness with respect to standard finite element analysis. In this thesis, the reference wind

turbine blade of Bak et al. (2013) is the subject for structural IGA, due to its shell characteris-

tics, complex shape and topicality. The thesis is outlined as follows:

• Chapter 2: The geometrical basics needed with respect to geometric modelling of curves

and surfaces with NURBS in this thesis is presented. Also, parametrization of the curve

and surface and NURBS refinement is reviewed.

• Chapter 3: NURBS-based IGA is explained and key differences to finite element anal-

ysis is pointed out. Equations related to differential geometry of surfaces used for the

shell formulation are reviewed. Furthermore, the NURBS-based Kirchhoff-Love shell

theory with a focus on linear analysis and orthotropic materials is presented. Finally,

two methods for coupling the rotations between NURBS patches is discussed.

• Chapter 4: Theory related to fiber-reinforced laminated plates are outlined, leading to

a computational scheme where classical lamination plate theory is applied to find the

composite laminate stiffness matrix.

• Chapter 5: Terminology related to modelling wind turbine rotors is presented. The

geometry and structural properties of the wind turbine blade under consideration is

reviewed. Rhino is presented as a tool for modelling of the NURBS wind turbine blade

for IGA. The mechanical properties of the plies used in the structural analysis is de-

rived, and a method for assigning regions to the blade is obtained.

• Chapter 6: An adapted laminate stiffness function is tested on a benchmark example

for a multistack, multidirectional laminate. The results of the finite element method

reference model is presented and discussed. Two methods for patch coupling of the

internal structure for the wind turbine blade is investigated. All the presented methods

are applied to the structural analysis of the reference wind turbine blade, compared

and discussed.

• Chapter 7: Main findings are concluded and further work based on the thesis is pro-

posed.
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1.1 Background

Problem formulation from supervisor:

This thesis is based on a project work done during the autumn semester of 2017. The main

focus of the project thesis was to familiarize with NURBS modelling, NURBS-based Kirchhoff-

Love shell theory and modelling of wind turbine blades. This was mainly a literature study

where theoretical bases were covered. Judging by the number of publications, IGA has been

of increasing interest in among computational mechanics researchers since it first was in-

troduced by Hughes et al. (2005).

Problem Formulation

Within this thesis, isogeometric analysis shall be used for the modelling and structural anal-

ysis of a single blade of the DTU 10MW Reference Wind Turbine. A precise multi-patch

NURBS model of the blade, taking into account different materials and cross sections shall

be created. An IGA Matlab research code for performing the analyses is provided. Shell el-

ements will be used for analysis and classical laminate theory shall be used to model com-

posite laminate materials. The analyses to be performed shall include those described in

the DTU report and results shall be compared to those reported. Additionally, correspond-

ing FEM analyses in Abaqus (or similar) shall be performed for comparing IGA and FEM in

terms of accuracy depending on the mesh size.

The work is to be carried out as follows:

1. Create a detailed structural model (multi-patch, multi-material) of a single blade of

the DTU 10 MW reference wind turbine.

2. Apply the load cases, perform structural analyses, and compare to the results as de-

scribed in the DTU report.

3. Perform corresponding FEM analyses (in Abaqus or similar) with mesh refinement

studies and compare the accuracy of IGA and FEM.

The format of the thesis is carried out to be:

• The thesis should be organized in a rational manner to give a clear exposition of results,

assessments, and conclusions. The text should be brief and to the point, with a clear

language. Telegraphic language should be avoided.

• The thesis shall contain the following elements: A text defining the scope, preface, list

of contents, summary, main body of thesis, conclusions with recommendations for

further work, and references. All figures, tables and equations shall be numerated.
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• The supervisors may require that the candidate, in an early stage of the work, presents

a written plan for the completion of the work.

• The original contribution of the candidate and material taken from other sources shall

be clearly defined. Work from other sources shall be properly referenced using an ac-

knowledged referencing system.

Related work

The doctoral thesis of Kiendl (2011) on shape optimal shell structures with the NURBS based

Kirchhoff-Love shell element has been used as a basis in this thesis. The well known text-

books Piegl and Tiller (1995) and Rogers (2001) has created a great foundation on modelling

with NURBS, as well as offering deeper insight on the subject. Also, the report on the DTU

10MW reference wind turbine by Bak et al. (2013) has been a huge recource in this thesis.
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Chapter 2

Geometrical Description

Rogers (2001) states that curves and surfaces can be expressed explicitly, implicitly and para-

metrically. For an explicit representation of a curve a x-value can only represent one y-value,

whereas an implicit representation can have a x-value describing several y-values, e.g. a

circle. Parametric curves and surfaces is defined by parametric equations of one and two

variables, respectively. Moreover, the parametric representation is the most common way

of representing curves and surfaces in Computer Aided Design, or CAD, thus all methods

described in the next sections are based on the parametric representation. Flexible prop-

erties like axis independence, easy representation of multiple values for the same variable

and additional degrees of freedom makes the parametric representation perfect for defining

free from curves and surfaces. Furthermore, the standard mathematical description method

used in CAD are Non-Uniform Rational B-Splines, or NURBS. For working professionals and

students, the mathematics behind NURBS are looked upon as highly advanced and very the-

oretical. However, on a working-level, it is not necessary to understand the deep mathemat-

ics. In this chapter, the historical development from Bézier to NURBS, via B-spline curves

and their basis will be presented.

2.1 Curves and Surfaces

Rogers (2001) presents NURBS curves and surfaces with a historical perspective, where the

antecedents, Bézier and B-Spline are presented in order to understand NURBS. In this thesis,

the final mathematical description and distinguishing features of the three representation

will be the focus point.

2.1.1 Bézier Curves

In contrast to a interpolating polynomial, where the curve is approximated by passing through

control points, a Bézier curve is defined inside a control polygon, where only the first and the

last point is interpolated. The order of the curve is defined as p = n −1, where p is the order

9
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and n is the number of control points. Furthermore, the curve is defined by the normalized

parametric variable ξ as a function of the polygon control point coordinates and the Bern-

stein basis functions, which is given by Rogers (2001):

C(ξ) =
n∑

i=1
B i,p(ξ)Pi 0 ≤ ξ≤ 1 (2.1)

where Pi is the control point coordinates and Bi ,p is the Bernstein basis function defined as:

B i,p(ξ) = n!

i !(n − i )!
ξi(1−ξ)n-i (2.2)

An important property for Bézier curves with respect to design is that the starting point of

the curve has the same coordinates as the first control point C(0) = P0. Similarly, the ending

point of the curve has the same coordinates as the last control point C(1) = Pn. This ob-

viously gives more control of the curve for the designer, unlike to polynomial interpolated

curves, where one does not have the same control of start and ending points. Piegl and Tiller

(1995) states the shortcomings of Bézier curves; with respect to passing the curve through

n control points, one needs a (n −1)−degree polynomial curve. High order curves are inef-

ficient, as well as the algorithm gets numerically unstable. Furthermore, modification of a

control point has influence on the entire curve, i.e. no local changes to the curve can be done.

2.1.2 Bézier Surfaces

There exists several schemes for representing a surface, but the most common method is

the tensor product scheme. This method can shortly be explained as a bidirectional curve

scheme. The surface consists of basis functions and geometric coefficients. The basis func-

tions are multi variable functions of ξ and η, constructed as products of single variable basis

functions. A net constrains the arranged geometric coefficients in two directions. Piegl and

Tiller (1995) obtains the Bézier surface with a net of control points and the Bernstein basis

functions in two parametric directions:

S(ξ,η) =
n∑

i=1

m∑
j=1

Bi ,p (ξ)B j ,p (η)Pi , j (2.3)



2.1. CURVES AND SURFACES 11

Where Pi , j form the bidirectional control net and B j ,p (η) is the Bernstein basis functions in

η-direction, expressed nearly identically as in Equation 2.2:

B j ,p (η) = m!

j !(m − j )!
ηj(1−η)m-j (2.4)

2.1.3 B-Spline Curves

Schoenberg (1946) was the first to suggest theory on B-splines. The B-Spline curve originates

from the Bézier curve, and is built on the same basic principles, where the curve is a linear

combination of control points and basis functions through a parametric space. However, the

basis functions for B-spline curves are different and is called B-Spline basis. Rogers (2001)

states that this basis is generally non-global and each control point is associated to its own

unique basis function, i.e. the control points have local influence on the curve by giving

contribution only where the parameters of the basis function is non-zero. Another feature of

the B-spline basis, is that it allows changing the degree of the basis function, and hence the

degree of the resulting curve, without changing the number of control points.

Letting C(ξ) be the parametric curve, with ξ as the normalized variable, the B-spline curve is

given as:

C(ξ) =
n∑

i=1
N i,p(ξ)Pi 0 ≤ ξ≤ 1 (2.5)

where Ni,p is the normalized B-spline function generally and specially defined by the Cox-

deBoor recursion formula. The special case, where the degree p of the basis function is equal

to zero is defined as:

N i,0 =
1 if ξi ≤ ξ≤ ξi+1

0 otherwise
(2.6)

where ξi are elements of a knot vector, which will be described in more detail in Section 2.1.5.

Then the general definition of B-spline basis function with p ≤ 1 is given as:

Ni ,p (ξ) = (ξ−ξi )Ni ,p−1(ξ)

ξi+p −ξi
+ (ξi+p+1 −ξ)Ni+1,p−1(ξ)

ξi+p+1 −ξi+1
(2.7)

The resulting plot for cubic B-spline basis functions can be seen in Figure 2.1. Some impor-

tant properties about the B-spline basis functions are deduced:

• For all basis function of higher order than p=1, each basis function has exact one ver-

tex.

• The values for the basis function is either zero or positive, i.e. Ni ,p (ξ) ≥ 0.
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• de Boor (1972) claims that the sum of B-spline basis functions for any parameter ξ is

one, expressed mathematically as:

n∑
i=1

Ni ,p (ξ) ≡ 1 (2.8)

• Piegl and Tiller presents the linear independence of each respective basis function, i.e.∑n
i=1αiN i,p(ξ) = 0
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Figure 2.1: Quadratic B-spline basis functions with the open knot vectorΞ= [0,0,0,0.5,1,1,1]

Continuity, C , is defined as the "smoothness" inside or in the join between curves and sur-

faces. The orders of continuity, C 0, C 1 and C 2, refers to join, equal tangent and equal cur-

vature in a point on a curve, respectively. An example of a B-spline curve, with illustrative

control points are shown in Figure 2.5. The blue crosses, marks the knots on the curve from

the parametric space. Examining the the knots reveals that the curve is tangent to the con-

trol polygon in these points. The reason for the tangency is that the curve drops down to C 1-

continuous at the knot, which makes the knot a tangent point. In addition, the C 0-continuity

can be seen from the kink at the point (4,−1). It is also worth noting that the curve is inter-

polated at both the first and last control point.

Hughes et al. (2005) summarizes the important properties of B-spline curves with respect to

IGA:

• The curve has continuous derivatives of order p−1, except where it has repeated knots.

• The curve is Cp −1-continuous at a single knot and C∞-continuous inside a knot span.

• By applying an affine transformation to the control points, one obtains the transfor-

mation of the curve, i.e translations, rotations, scaling and shear.
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Figure 2.2: B-spline curve inside a control polygon with p=2 and Ξ =
[0,0,0,0.2,0.4,0.6,0.8,0.8,1,1,1], where the blue crosses marks the knot spans of the
curve.

2.1.4 B-Spline Surfaces

The tensor product of B-spline basis functions in two parametric dimensions ξ and η will

compute a B-spline surface, and is expressed mathematically by Rogers (2001) as:

S(ξ,η) =
n∑

i=1

m∑
j=1

N i,p(ξ)M j,q(η)Pi , j (2.9)

where Ni ,p (ξ) and M j ,q (η) are the corresponding basis functions to the definition space as

a net of control points, the basis functions knot vectors Ξ and H , and the two polynomial

degrees p and q, respectively. Ni ,p (ξ) is defined as before in Equation 2.6-2.7 and M j ,q (η) is

defined similarly as:

M j,q(η) = (η−ηj)M j,q-1(η)

ηj+q −ηj
+ (ηj+q+1 −η)M j+1,q-1(η)

ηj+q+1 −ηj+1
(2.10)
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2.1.5 Knot Vector

Piegl and Tiller (1995) defined the knot vector as Ξ = [ξ1,ξ2, ...,ξn+p+1], where ξi are knots in

the parametric space. The knots are a non-decreasing sequence of real numbers, i.e. ξi ≤
ξn+p+1. A B-spline representation of a curve with the knot vector:

Ξ= [0, ...0︸ ︷︷ ︸
p+1

,1, ...,1︸ ︷︷ ︸
p+1

]

is a generalization of the Bézier representation of a curve.

The term multiplicity refers to the number the same knot is repeated. There are two types

of knot vectors. The open knot vector, as its commonly called, has multiplicity of p + 1 at

the first and the last knot. This knot vector may also referred to as non-periodic or clamped

in other textbook. According to Piegl and Tiller (1995), the open knot vector is the standard

in CAD, due to its ability to decide the exact starting and ending point of a curve. The knot

vector type is periodic otherwise. The periodic knot vectors basis functions is described by

Rogers (2001) to be a translate of each other. However, only open knot vectors will be used in

this thesis, meaning periodic knot vectors will only be mentioned once here. The knot vector

types are divided into two flavours; a knot vector is uniform if the interior knots are equally

spaced, which means there exists a real number d = ξi+1−ξi for all knots, with p ≤ i ≤ n−p−1,

and non-uniform otherwise.

Figure 2.3a shows a free form B-spline surface where the knot vectors are equal and open in

both parametric directions. Rogers (2001) states that the shape and character of a B-spline

surface, as with a B-spline curve, is highly dependant on the knot vectors Ξ and H, which

not necessarily need to be equal. He mentions the cylinder as an example, where the knot

vectors are unequal, where H has multiplicity k = 2 at ξ = 0.25, ξ = 0.5 and ξ = 0.75, which

creates a kink in the respective points. The knot vector Ξ is open with no internal knots.

This is the way of expressing a perfect cylinder with a B-spline surface, as can be seen in

Figure 2.3b. As a result, one will have C 0-continuity of the surface at the multiple knots.

However, since these knots also are the tangential points between the surface and control

polygon, the geometry is still smooth due to the unique position of its control polygon.

2.1.6 Non-Uniform Rational B-Spline Curves

Versprille (1975) was the first to present work on Non-Uniform Rational B-Splines, or NURBS.

The acronym refers to the knot vector, which is not uniform, and the basis functions, which

are piecewise rational polynomials. Technically, NURBS is the special case of rational B-

splines, with an open knot vector. The control points that defines the control polygon has

in addition to its coordinates an individual weight, wi . This yields the control point Pi =
(xi , yi , zi , wi ), which also can be given in projective coordinates P w

i = (wi xi , wi yi , wi zi , wi )
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(a) Representation of a free form B-Spline sur-
face with knot vectors Ξ = [0,0,0,0.5,1,1,1] and
H = [0,0,0,0.5,1,1,1].

(b) Representation of a perfect cylin-
der as a B-spline surface with knot
vectors Ξ = [0,0,0,1,1,1] and H =
[0,0,0,0.25,0.25,0.5,0.5,0.75,0.75,1,1,1].

Figure 2.3: B-Spline surfaces with equal and unequal knot vectors in both directions.

in a four-dimensional space. The NURBS curve becomes the projection of a B-spline curve in

the four-dimensional space with projective coordinates, onto the three-dimensional space,

which yields the "rational" part of the NURBS acronym. Piegl and Tiller (1995) derives the

NURBS representation of a curve as:

C(ξ) =

n∑
i=1

Ni ,p (ξ)wi Pi

n∑
i=1

Ni ,p (ξ)wi

0 ≤ ξ≤ 1 (2.11)

where wi is assumed positive for all i. The rational basis functions in Equation 2.11 are then

given as:

Ri ,p (ξ) = Ni ,p (ξ)wi
n∑

i=1
Ni ,p (ξ)wi

(2.12)
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The rational basis functions are piecewise rational functions on ξ ∈ [0,1], and rewrites the

NURBS curve formulation in Equation 2.11 on the common form as a sum of the respective

rational basis functions times the control point coordinates:

C(ξ) =
n∑

i=1
Ri ,p (ξ)Pi (2.13)

The combination of deciding where the curve should both start and end, position of knots

and the individual weight of control points, makes the NURBS curve highly adaptable for

design purpose. These properties are illustrated in Figure 2.4.
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Figure 2.4: NURBS curve with start and end point at (0,0) and (6,1) respectively, kink at (4,-1)
and weighted control points at (0,2)

2.1.7 Non-Uniform Rational B-Spline Surfaces

As mentioned earlier, dealing with NURBS curves yields excellent local and global control

due to the knots. The same applies for NURBS surfaces. Also, the NURBS surface has open

knot vectors in the two parametric directions which defines the surface. The NURBS surface

is expressed by Piegl and Tiller (1995) as

S(ξ,η) =
n∑

i=1

m∑
j=1

Rp,q
i , j (ξ,η)Pi , j 0 ≤ ξ,η≤ 1 (2.14)

where Rp,q
i , j (ξ,η) is the rational basis functions of a surface:

Rp,q
i , j (ξ,η) = Ni ,p (ξ)M j ,q (η)wi , j

n∑
i=1

m∑
j=1

Ni ,p (ξ)M j ,q (η)wi , j

(2.15)
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With knot vectors:

Ξ= [0, ...0︸ ︷︷ ︸
p+1

,up+1, ...,ur−p−1 1, ...,1︸ ︷︷ ︸
p+1

]

H = [0, ...0︸ ︷︷ ︸
q+1

,uq+1, ...,us−q−1 1, ...,1︸ ︷︷ ︸
q+1

]

The important properties of Rp,q
i , j (ξ,η) are roughly the same as N p,q

i , j (ξ), mentioned in Sec-

tion 2.1.3. Piegl and Tiller (1995) summarizes these properties for the piecewise rational

basis functions:

• Non-negativity for all i, j, ξ and η, i.e Ri , j (ξ,η) ≥ 0

• Partition of unity for all (ξ,η) ∈ [0,1]× [0,1], i.e.
n∑

i=1

m∑
j=1

Ri , j = 1

• Local support if (ξ,η) outside the rectangle given by [ξi ,ξi+p+1)×[η j ,η j+q+1), i.e. Ri , j (ξ,η) =
0 outside this rectangle.

• If p > 0 and q > 0, only one maximum value exist for each basis function Ri , j (ξ,η)

• The First and last basis function starts and ends at the value 1, i.e R0,0(0,0) = Rn,0(1,0) =
R0,m(0,1) = Rn,m(1,1) = 1

• Inside the rectangles formed by the ξ and η knots, all partial derivatives of Ri , j (ξ,η)

exist. At a ξ and η knot, the function is p − k and q − k differentiable in the ξ and η

direction, respectively.

The properties of piecewise rational basis functions yields some important geometric prop-

erties of NURBS surfaces:

• The corner points of the surface are interpolated, i.e. S(0,0) = P1,1, S(1,0) = Pn,1, S(0,1) =
P0,m and S(1,1) = Pn,m

• As long as wi , j ≥ 0 for all i,j and (ξ,η) ∈ [ξi ,ξi+p+1)× [η j ,η j+q+1), then S(ξ,η) is inside

the convex hull of the control points Pi , j , i1 −p ≤ i ≤ i1 and j1 −q ≤ j ≤ j1

• Local influence to the curve, if the coordinates of Pi , j or weight of wi , j is changed, the

shape of the surface only inside the rectangle [ξi ,ξi+p+1)× [η j ,η j+q+1) is changed.

• Bézier and B-spline surfaces are special cases of NURBS surfaces.

The control net that forms the surface in Figure 2.3a is shown in Figure 2.5 as a NURBS sur-

face with increased weight of control point P2,1.
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Figure 2.5: NURBS surface with open knot vectors Ξ = [0,0,0,0.5,1,1,1] and H =
[0,0,0,0.5,1,1,1], highlighted control point in blue P2,1 and individual w2,1=10.

2.2 NURBS Refinement

Rogers (2001) presents two methods for increasing flexibility, or refinement to a NURBS sur-

face. The two common types of refinement are:

• Knot insertion, corresponding to FEM h-refinement

• Order elevation, corresponding to FEM p-refinement

Common for the two methods is that they both add control points to the grid which defines

the surface, without changing the geometry. Knot insertion adds a knot to the curve or sur-

face, where each knot adds one control point. When adding control points to the surface

description, other control points are recomputed as described in the algorithm by Boehm

and Prautzsch (1985). Like before, adding a knot to the curve reduces continuity by one

where the knot is added. Moreover, order elevation increases polynomial degree of the basis

function, while keeping the knot interval constant before and after the refinement. This al-

lows the curve to be of same differentiable degree. Figure 2.6 shows an example of a cylinder,

where the algorithm from Piegl and Tiller (1995) is used to refine the surface. The example

illustrates a surface where the degree of the basis functions in both directions are elevated

with one degree. In addition to elevate the order, all knots in the knot vector increases its

multiplicity to maintain the same continuity and thereby geometric shape of the surface. As

can be seen, more control points are added along the edge of the surface in both parametric

directions.

Hughes et al. (2005) introduces k-refinement, where one combines order elevation and knot

insertion for the refinement. Remembering that order elevation preserves continuity at all
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(a) Surface of a cylinder with polynomial degrees
p=2 and q=2. Knot vectorsΞ= [0,0,0, ,1,1,1] and
H = [0,0,0,0.25,0.25,0.5,0.5,0.75,0.75,1,1,1]
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(b) Refined surface: Unchanged geometry, dif-
ferent coordinates for control points, and new
polynomial degrees p=3 and q=3. More control
points and all knots in both directions has in-
creased their multiplicity with one.

Figure 2.6: NURBS surface of a cylinder with displayed control points, before and after re-
finement algorithm.

knots, while knot insertion reduces continuity at the point where it is inserted, it is impor-

tant to note that the two refinement sequences are not interchangeable. An example in Fig-

ure 2.7 shows that combining the two methods of refinement will give two different out-

comes for the basis functions. The example shows the linear basis functions, p = 1, elevated

to quadratic basis functions, p = 2, together with knot insertion of two knots.
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Original Configuration

(a) Ξ= [0,0,1,1], p = 1

⇓
Order Elevation

Ξ= [0,0,0,1,1,1], p = 2

Knot Insertion

Ξ= [0,0,1/3,2/3,1,1], p = 1

↓

Knot Insertion

(b) Ξ= [0,0,0,1/3,2/3,1,1,1], p = 2

↓

Order Elevation

(c) Ξ= [0,0,0,1/3,1/3,2/3,2/3,1,1,1], p = 2

Figure 2.7: Two cases of order elevation and knot insertion. (a) shows the original configura-
tion for the basis functions that is to be refined. (b) is the sequence where the basis functions
is order elevated first, then the knot is inserted. This is what one referrers to as k-refinement.
(c) is the sequence when the basis functions has a knot insertion first, then order elevated.



Chapter 3

Isogeometric Analysis

Hughes et al. (2005) defined the term "isogeometric analysis" as a model who utilizes the

same mathematical description in both the analysis and geometry. In traditional finite ele-

ment analysis, FEA, one typically has basis functions of lower order, mostly linear, Lagrange

polynomials, whereas techniques involving higher order, spline functions, are applied in

CAD. This creates a barrier between the modelling in the two platforms, which is solved in

the meshing process, where the geometry model is divided into a mesh of finite elements.

Now the finite element model only becomes an approximation of the true model, which may

cause problems if the geometry has small imperfections that governs structural behaviour

like buckling of thin shells. Another aspect is the time consumption of the meshing, Smith

(2012) states that automatic meshing techniques is limiting with respect to element types, es-

pecially for complex geometries. Also, the process needs to be redone every time the model

is modified. With an analysis method who uses the same basis functions as the geometry,

the meshing process is omitted and the design and analysis is merged into the same model.

3.1 NURBS-Based Isogeometric Analysis

In order to be applicable as basis functions in isogeometric analysis, conditions like parti-

tion of unity and linear independence needs to be fulfilled (Hughes et al., 2005). NURBS

basis functions, who also is the standard in CAD, acts according to these conditions and is

thereby adoptable in analysis. Similarly to the FEA formulation, one utilizes elements in

isogeometric analysis. However, the definition of the boundary between elements can be

interoperated in two ways. The first is to define the full NURBS patch as a single element.

This thesis will use the same definition of Kiendl (2011), which is between knot spans in the

parametric space of each patch. This division of elements can be seen in Figure 3.1. The rea-

son for this definition is that inside a knot span, the B-spline basis functions polynomials,

implying that gauss quadrature can be used on element level. NURBS basis functions are

rational polynomials, meaning gauss quadrature is only an approximation for NURBS basis

functions. However, in a conventional FEM formulation with mapped elements one always

end up with integrating rational polynomials, due to the inverse of the Jacobian. This im-
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plies that using gauss quadrature for NURBS elements are reliable as well, which is stated by

Hughes et al. (2010). Similarly to finite element, NURBS are defined by a set of nodes and

corresponding basis functions. However, for NURBS the control points acts as nodes. This

means that translations in x-, y- and z-direction, as well as boundary conditions are carried

in the control points.

Figure 3.1: Division of elements in NURBS basis functions (Kiendl, 2011).

Furthermore, it is important to note that the basis functions are not confined to one element,

but extends over a series of elements. As stated in Equation 2.12, the basis functions inside

a knot span is defined by the Cox-deBoor recursion formula and depended on neighbouring

knot spans. This implies that it is not possible to define a single element of a NURBS curve

without knowing the complete patch. The stiffness matrix is shown as an example to state

why an element formulation is important. In classical FEM, the stiffness matrix for each

element is defined and then assembled to a global stiffness matrix. The same method can

be applied on a NURBS patch, where the stiffness matrix can be evaluated on element level

and then assembled to a global level. This enables the NURBS-elements to be treated the

same way as in a finite element code. The only difference is the use of basis functions, who

in NURBS-elements has higher-order continuities between elements. Also, locking effects

from low-order basis functions can be precluded ab initio.

With respect to refinement, NURBS-based isogeometric analysis uses the method of knot

insertion and order elevation. In classic finite element analysis, the two refinement meth-

ods corresponds to h-refinement and p-refinement, respectively. Unless low continuities

are desired, k-refinement referred to in Section 2.2 is applied in NURBS based isogeometric

analysis. In contrast to FEA, the geometry is not changed when refinement of NURBS ge-

ometries are involved. This means that further refinement does not need reference in the

original geometry. Moreover, Hughes et al. (2005) states that in contrast to finite element

analysis, NURBS-refinement follow patches, i.e. a knot insertion in Ξ- or H-direction at one

edge, would imply knot insertion at the opposing edge, as can be seen in Figure 3.2. This
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illustrates the challenge of local NURBS refinement.

(a) Original plate geometry (b) Refined plate geometry

Figure 3.2: Refinement of plate in a single direction

Hughes et al. (2005) summarizes the comparison of finite element analysis and isogeometric

analysis based on NURBS, which is presented in Table 3.1

Finite element analysis Isogeometric analysis

Nodal points Control points
Nodal variable Control variables
Mesh Knots
h-refinement Knot insertion
p-refinement Order elevation
Basis interpolates nodal points and variables Basis does not interpolate control points and variables
Approximate geometry Exact geometry
Polynomial basis NURBS basis
Sub domains Patches

Table 3.1: Comparison of finite element analysis and isogeometric analysis

3.2 Differential Geometry of Surfaces

Differential geometry of surfaces is the subfield geometry that deals with determining met-

ric properties like lengths, curvature, angle and areas of curved surfaces. In this section, the

fundamental forms of a surface utilized in Section 3.3 will be presented and explained. The

equations used for deriving the expressions of the first and second fundamental forms are

presented by Klingenberg (1978).
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Arfken and Weber (1999) describes an arbitrary vector as a linear combination of the basis

vectors e and their coordinate coefficients x as:

x = x1e1 +x2e2 +x3e3 = xi ei (3.1)

When summing vectors of the same upper and lower index, the vector can be written on

a more compact form with the Einstein summation convention. In Equation 3.1, the same

index is seen in both the coordinate and base vectors, i.e. Einstein summing convention is

applicable. Furthermore, in this and the following section, indices in Latin letters (i and j )

takes the values {1,2,3}, whereas Greek letters (α andβ) takes the values {1,2}. Moreover, italic

symbols indicate scalars and bold symbols denotes a tensor or a vector.

In order to describe a point on a free-form geometry like a surface, it is advantageous to use

curvilinear coordinates and local bases. The two important bases are the covariant gi and

the contravariant gi basis. Subscript indices denotes covariant and superscript indices de-

notes contravariant. Now an arbitrary vector is expressed as the covariant and contravariant

base vectors with their corresponding surface coordinates θi and θi , as:

x = θi gi = θi gi (3.2)

where θα are surface coordinates and θ3 are thickness coordinates. Furthermore, the co-

variant base vector is defined as the partial derivative of the position vector with respect to

corresponding contravariant surface coordinates:

gi = ∂x

∂θi
(3.3)

Worth noting about the two bases is that they are related by the Kronecker delta δ j
i function:

gi ·g j = δ j
i =

0 i 6= j

1 i = j
(3.4)

This relation reveals that the covariant and contravariant basis are orthogonal if i 6= j . Fur-

thermore, the third covariant base vector g3 is defined as the normalized vector orthogonal

to g1 and g2:

g3 = g1 ×g2

|g1 ×g2|
(3.5)

As shown in Equation 3.5, the contravariant base vector gα lie in the tangential plane spanned

by the covariant base vectors. Therefore, the third contravariant base vector g3 must be equal

to g3:

g3 = g3 (3.6)



3.2. DIFFERENTIAL GEOMETRY OF SURFACES 25

The covariant base vectors is utilized to define a local Cartesian basis. The first base vector

e1 is parallel to g1, expressed mathematically as:

e1 = g1

‖g1‖
(3.7)

where the vector inside double absolute signs indicates the norm. Furthermore, e2 is orthog-

onal to e1 and in the plane of the covariant base vectors.

e2 = g2 − (g2 ·e1)e1

‖g2 − (g2 ·e1)e1‖
(3.8)

The third base vector is equal to g3:

e3 = g3 (3.9)

Furthermore, the metric tensor g is defined as an expression in the covariant and contravari-

ant basis:

g = gαβgα⊗gβ = gαβgα⊗gβ (3.10)

where gαβ is the covariant metric coefficient computed by the scalar product of covariant

base vectors:

gαβ = gα ·gβ (3.11)

The relation in Equation 3.11 is commonly known as the first fundamental form of surfaces.

According to Weisstein, the first fundamental form is extremely important and useful in de-

termining the metric properties, such as length and area of a surface. The contravariant

metric coefficients gαβ is obtained by the inverse of the covariant coefficient matrix:

[gαβ] = [gαβ]−1 (3.12)

The contravariant base vector is then computed from the contravariant metric coefficient

matrix:

gα = gαβgα (3.13)

and vice versa:

gα = gαβgα (3.14)
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Finally, the second fundamental form of surfaces is obtained to describe the curvature of a

surface. The curvature tensor coefficients bαβ is retrieved from Klingenberg (1978) and de-

fined as:

bαβ =−gα ·g3,β =−gβ ·g3,α = gα,β ·g3 (3.15)

The metric and curvature metric coefficients will be utilized in Section 3.3.

3.3 NURBS-Based Kirchhoff-Love Shell Element

Kiendl (2011) developed a shell element based on the Kirchhoff-Love shell theory with NURBS

basis functions. In Kirchhoff-Love theory, curvature is expressed as the second derivative of

the geometry description. This means that C 1-continuity is required between elements in

order to fulfill the compatibility conditions. With Lagrange polynomials as basis functions,

this is generally not possible, unless higher order elements of rectangular shape is applied.

In finite element, the Reissner-Mindlin shell formulation is more common, since transverse

shear strain is accounted for and C 0-continuity is sufficient between elements. With NURBS

basis functions, the Kirchhoff-Love theory can be implemented without additional modifi-

cation, due to the high continuity between the element.

The NURBS-based Kirchhoff-Love shell needs neither rotational degrees of freedom nor nodal

directors. However, in clamped boundary condition and coupling between NURBS patches,

the rotations needs to be described at the shells boundary. For the clamped boundary con-

dition, this is solved by fixing the first two rows of control points along the fixed edge. It is

important to note that by fixing the second control point does not fix the displacements in-

side the plate, but only the rotation at the boundary. For coupling of NURBS patches in this

thesis, two methods will be reviewed in Section 3.4.

For the detailed formulation of the NURBS-based Kirchhoff-Love shell formulation, the reader

is referred to Kiendl (2011). Only an outline of the formulation will be highlighted here. One

distinguishes between undeformed and deformed configuration by referring to the two con-

figurations with upper and lower case letters, respectively. Other notations and definitions

are described in Section 3.2. In Kirchhoff-Love shell theory transverse shear deformation is

neglected, i.e. plane surfaces remain plane. Due to this assumption, every point in the shell

continuum can be described by the middle surface and its normal vector. The base vectors

ai on the middle surface (θ3 = 0) are obtained by:

aα = x,α (3.16)

a3 = a1 ×a2

|a1 ×a2|
(3.17)
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With an expression for the base vectors, Equations 3.11 and 3.15 defines the metric and cur-

vature of the shell:

aαβ = aα ·aβ (3.18)

bαβ =−bα ·b3,β =−bβ ·b3,α = bα,β ·b3 (3.19)

For a thin and moderately thick shell, strains in the shell represented by the metric coefficient

aαβ and curvature coefficient bαβ in the middle surface are given by:

Eαβ =
1

2
(aαβ− Aαβ)+θ3(Bαβ−bαβ) (3.20)

The strains consists of a constant and a linear part, where the constant membrane strains

εαβ describes the the strains in the middle surface and are defined as:

εαβ =
1

2
(aαβ− Aαβ) (3.21)

The linear part represents the change in curvature καβ as an effect of bending and is defined

as:

καβ = Bαβ−bαβ (3.22)

Now the strains in equation 3.20 can be rewritten as:

Eαβ = εαβ+θ3καβ (3.23)

Note that equations 3.22-3.23 are non-linear measures and that for linearized analysis, the

membrane strains and curvature is expressed in terms of the displacement and geometric

variables of the undeformed configuration as in Kiendl et al. (2016):

εm,l i n
αβ

= 1

2
(Aβ ·u,α+Aα ·u,β) (3.24)

κl i n
αβ =−A3 ·u,αβ+

1

|A1 × A2|
(
(X1 ×Xαβ) ·u,2 +X,αβ ·A3

(
(A2 ×A3) ·u,1 + (A3 ×A1)×u,2

))
(3.25)

The linearized membrane strains and curvature will be applied in this thesis. Furthermore,

the strain and the stress tensor are connected by the material matrix Dmat . Since the material

matrix has physical material parameters referring to the local Cartesian coordinate system,

the stresses and strains are transformed to coefficients with a local Cartesian basis with a

transformation rule. These coefficients are fitted with an upper bar, which gives the second

Piola-Kirchhoff stresses: 
S̄11

S̄22

S̄12

= Dmat ·


Ē 11

Ē 22

2Ē 12

 (3.26)
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In this thesis, an orthotropic material matrix is applied and will be described in detail in sec-

tion 4.2. Here the extensional stiffness A, the coupling stiffness B and the bending stiffness

D is derived and shown to make up the laminate stiffness matrix. The matrices expresses the

normal forces and bending moments as:
n̄11

n̄22

n̄12

= A ·


ε̄11

ε̄22

2ε̄12

+B ·


κ̄11

κ̄22

2κ̄12

 (3.27)


m̄11

m̄22

m̄12

= B ·


ε̄11

ε̄22

2ε̄12

+D ·


κ̄11

κ̄22

2κ̄12

 (3.28)

A virtual displacement is a change in the geometric configuration of the body compatible

with all kinematic constraints, made while keeping all forces and stresses on the body frozen.

With reference to Kiendl (2011), the kinematics of the NURBS-based Kirchhoff-Love shell

element is derived using the principle of virtual work at the equilibrium condition (δW =
0), forcing it to be fulfilled for any arbitrary variation of the displacement. The linearised

internal stiffness K i nt ,l i n
r s is then given as:

K i nt ,l i n
r s =

∫
A

(
∂n

∂us
:
∂ε

∂ur
+ ∂m

∂us
:
∂κ

∂ur

)
d A, (3.29)

which leads to the equation system for a geometrically linear problem:

Kl i nu = Fext , (3.30)

where Fext is the external load vector, defined from the applied load.

3.4 Multipatch Coupling

For complex geometric structural models, multiple patches have to be considered, because

a single NURBS patch cannot represent geometries of arbitrary complexity. For multipatch

NURBS surfaces, rotation-free IGA elements require special treatment as patch boundaries

where the basis functions are C 0-continuous. Apostolatos et al. (2014) presents three do-

main decomposition methods (DDMs) for solving the boundary value problem in multiple

domains. The interest reader is referred to Toselli and Widlund (2006) for more theory on

DDMs. For coupling and managing rotations along two NURBS patches, the popular penalty

method is presented. The method is widely used because of its simple implementation,

where the size of the equation system remains unaltered. The main drawback is that the

equation system rapidly becomes ill-conditioned, and is highly dependant on the penalty

parameter. The involved parameter needs to be set constant, and is in this thesis chosen as

α= 103.
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In this thesis, a point search algorithm is applied to find the penalty coupling point. The

point search algorithm utilize orthogonal projection, which is explained by Ko and Sakkalis

(2014) to be a process of finding a point on a curve or a surface such that the vector connect-

ing the point in space and the point on the curve or the surface becomes perpendicular to

the curve or the surface. The approach applied for this thesis is the one proposed by Piegl

and Tiller (1995). As input, the algorithm requires a tolerance for the angle, tolerance for the

distance and an initial guess. The tolerance of the angle decides how much the orthogonal

tangent may deviate, and the tolerance distance tells how far the projected point is allowed

to be. Initial guess tells where in the parametric space of the opposite surface or curve the

algorithm shall start its iterations. This has been an important subject in this thesis, as there

might be two or more points on a surface that fulfils the orthogonality condition. Figure 3.3b

shows the coupling condition by penalty method and point search.

Another coupling between patches is with the so called bending strip method. A bending

strip is an additional patch which constrains the angle between two patches. Bending strips

does not represent structural parts but only constraints on the angle between patches. This

is due to the special material properties of this additional patch, which is no membrane stiff-

ness and bending stiffness only in the direction transverse to the interface, i.e the mending

strip stiffness is given as:
S̄11

S̄22

S̄12

=


0 0 0

0 0 0

0 0 0



ε̄11

ε̄22

ε̄12

+θ3


Es 0 0

0 0 0

0 0 0



κ̄11

κ̄22

2κ̄12

 (3.31)

The bending strip method is tested in Kiendl et al. (2009) and proven to be reliable, and it can

handle both smooth geometries and patches forming a kink. Due to the regular topology of

NURBS, the bending strips can be created automatically. They do not necessarily need to

be created in CAD, but can be added during analysis. In the analysis, a bending strip patch

is created from a common interface or shared control point between the patches and the

two next control points of the respective patches. Figure 3.3a shows how the bending strips

are implemented in analysis. The yellow and blue curves are separate patches, and the red

curves are bending strips. The shared control point is highlighted.
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Shared control point

(a) Coupling with bending strip method and
shared control point.

Point search

(b) Coupling with penalty method and point
search.

Figure 3.3: 2D view of multipatch coupling with bending strip method and non-matching
penalty method.



Chapter 4

Structural Mechanics of Orthotropic

Materials

Several textbooks (González-Viñas and Mancini (2015); see also Hearn (1977); Timoshenko

and Woinowsky-Krieger (1959)) explains isotropic materials as materials with same elastic

properties in all three directions, i.e. the deformation in response to a load is invariant

with respect to direction. If an object has different material properties varying with the

direction they are measured, the material is said to be anisotropic. Furthermore, an or-

thotropic material is a subset of anisotropic materials, but they differs along three mutually-

orthogonal twofold axes of rotational symmetry. In the majority of anisotropic structural

materials, the anisotropy is orthogonal, i.e. the properties are uniform and differ only in

three or two orthogonal directions. Gopalakrishnan (2016) states that laminated compos-

ites are understood to act orthotropic on a lamina level, and anisotropic on a laminate level.

The anisotropic behaviour results in a bending-axial-shear coupling in beams and plates,

that makes analysis of laminated composites less comprehensible than isotropic structures.

In this chapter, theory for performing a simple micro-mechanical analysis will be supplied.

Also, classical lamination plate theory is presented as an option to determine normal forces

and bending moments imposed on a composite laminate.

When evaluating an orthotropic material, subscripts are important to distinguish direction

type of property, direction and plane. In the micro-mechanical equations, subscript f and m

are used for fibre and matrix, respectively. In addition, properties along the fibre direction

is denoted with subscript 1 and are conventionally called longitudinal or radial direction.

Similarly, those transverse to the fibre direction have subscript 2, and are called transverse

or circumferential direction. Furthermore, radial-tangential and vice versa are denoted 1-2

and 2-3, respectively. This notation also applies for the classical lamination plate theory.

31
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4.1 Micromechanics Theory

In the case of a composite, the materials under consideration have different material prop-

erties. In micromechanics theory, the rule of mixtures is used to obtain material properties

at the lamina level. From the individual mechanical properties of a matrix and fibre ma-

terial, mechanical properties of a unidirectional lamina are computed using a set of micro-

mechanical equations of simple form. Several textbook present these equations, where Chamis

(1983) is one of them. First the apparent Young’s modulus is defined as:

E1 = E f 1V f +EmVm (4.1)

where E f 1 is the longitudinal Young’s modulus of the fibres, Em is the Young’s modulus of the

matrix and V f and Vm is the volume fraction of fibres and the matrix, respectively. Further-

more, the transverse Young’s modulus is computed as:

E2 = Em

1−√
V f (1− Em

E f 2
)

(4.2)

where E f 2 is the transverse modulus of the fibres. Moreover, the in-plane and transverse

shear modulus is computed as:

G12 = Gm

1−√
V f (1− Gm

G f 12
)

(4.3)

and

G23 = Gm

1−√
V f (1− Gm

G f 23
)

(4.4)

where G f 12 and G f 23 is the longitudinal and transverse shear modulus of the fibres, and Gm

is the shear modulus of the matrix. The in-plane Poisson’s ratio, ν12, for the unidirectional

lamina is computed as:

ν12 = ν f 12V f +νmVm (4.5)

where ν f 12 is the major Poisson’s ratio of the fibres, and νm is the Poisson’s ratio of the matrix.

By using the Young’s modulus transverse to the fibres and out-of-plane shear modulus in

Equation 4.2 and 4.4, the out-of-plane Poisson’s ratio is computed as:

ν23 = E2

2G23
(4.6)
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Then the mass density of the unidirectional lamina is computed as:

ρ = ρ f V f +ρmVm (4.7)

where ρ f and ρm is the mass density of the fibres and matrix, respectively. Finally, the re-

maining elastic properties are decided due to symmetry considerations:

E3 = E2 (4.8)

G13 =G12 (4.9)

ν13 = ν12 (4.10)

4.2 Classical Lamination Plate Theory

Roylance (2000) outlines the mechanics of fiber-reinforced laminated plates, leading to a

computational scheme that relates the in-plane strain and curvature of a laminate to the nor-

mal forces and bending moments imposed on it. This is done by retrieving the extensional-,

coupling- and bending stiffness matrix from each individual layup in a laminate. In this sec-

tion a short derivation and the important steps of how to retrieve the mentioned stiffness

matrices through classical lamination plate theory are presented.

In a state of plane stress (σ33 = σ13 = σ23 = 0), one writes the strain-stress relation of an

anisotropic material (E1 6= E2 6= E3) as:
ε11

ε22

γ12

=


1/E1 ν21/E2 0

ν12/E1 1/E2 0

0 0 1/G12



σ11

σ22

τ12

 (4.11)

where E1, E2 are the Young’s moduli, ν12,ν21 Poisson’s ratios and the matrix in the brackets

are known as the compliance stiffness matrix. Next, one has to transform the axes between

the global x-y frame and the natural material frame with axes labelled 1-2, corresponding

to the longitudinal and transverse fibre direction. The stresses in the two configurations are

illustrated in Figure 4.1.
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The transformation law for Cartesian Cauchy stress in two dimensions (plane stress) can be

used to transform the stresses with the lamina principal axes to the global axes:

Figure 4.1: Transformation between global and fibre axis (Roylance, 2000).


σ11

σ22

τ12

=


c2 s2 2sc

s2 c2 −2sc

−sc sc c2 − s2



σxx

σy y

τx y

 (4.12)

where c = cosθ, s = sinθ and θ is the angle between the x- and the 1 axis. The transformation

matrix T can be used to transform infinitely small strain components. Next, the strains are

related in a similar manner:


ε1

ε2
1
2γ12

= T


εx

εy
1
2γx y

 (4.13)

Note that in order to use the same transformation matrix, the shear component is multiplied

by a factor of 1
2 . Without going into much detail, is this related to the classical definition of

shear strain, which is twice the tensorial shear strain. This introduces some awkwardness in

the transformation, which is repaired with by introducing the Reuter’s matrix, R, defined as:

[R] =


1 0 0

0 1 0

0 0 2

 and [R]−1 =


1 0 0

0 1 0

0 0 1
2

 (4.14)

Now the relationship between the strains in an arbitrary x-y direction can be related to the

strains in the 1-2 direction with the transformation matrix T and the Reuter’s matrix R:
ε1

ε2

γ12

= R


ε1

ε2
1
2γ12

= RT


εx

εy
1
2γx y

= RTR−1


εx

εy

γx y

 (4.15)

By means of the transformation and compliance stiffness matrix in the 1-2 configuration,

the x-y strains are related to the x-y stresses:
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εx
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1
2γx y
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1
2γ12
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= RT−1R−1S
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σ2

τ12

= RT−1R−1ST


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τx y

≡ S̄


σx

σy

τx y


where S̄ is known as the transformed compliance matrix. Furthermore, the stiffness matrix

D̄ is derived from the inverse of the transformed compliance matrix. This is summarized by

the two equations:

S̄ = RT−1R−1ST (4.16)

D̄ = S̄−1 (4.17)

Now that the transformed stiffness D̄ of a single ply is obtained, the laminate stiffness matrix

can be derived from the classical lamination plate theory. We allow in-plane normal forces

and bending moments, which gives the normal forces n and bending moments m at a posi-

tion x,y:

n =


nx

ny

nx y

 and m =


mx

my

mx y

 (4.18)

Figure 4.2: Deformations associated with Kirchhoff plate theory (Powell and Housz, 1998)
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with the well known Kirchhoff assumption in Figure 4.2, the strains can be expressed as the

gradient of the displacement as:


εx

εy

γx y

=


u,x

v,y

u,y + v,x

=


u0,x − zw0,xx

v0,y − zw0,y y

(u0,y + v0,x)−2zw0,x y

= ε0 + zκ (4.19)

where ε0 is the midplane strain and κ is curvature, expressed as the second derivative of

the displacement and has components in x-, y- and xy-direction. Here κx y is known as the

twisting curvature. Thus, stresses σ in the kth lamina at any vertical position is expressed

with the transformed stiffness matrix and strains as:

σk = D̄kε
0 + zD̄kκ (4.20)

Furthermore, the normal fores are balanced by taking the integral of the stresses in the lam-

inate over the hight h. This is equivalent to adding up the stresses of each ply. The distance

z is the vertical distance from the bottom of respective ply to the midpoint of the laminate

and the index k marks the ply number:

n =
∫ +h/2

−h/2
σd z (4.21)

=
N∑

k=1

∫ zk+1

zk

σk d z (4.22)

=
N∑

k=1
(
∫ zk+1

zk

D̄kε
0d z +

∫ zk+1

zk

D̄kκzd z) (4.23)

=
N∑

k=1
(D̄kε

0
∫ zk+1

zk

d z + D̄kκ

∫ zk+1

zk

zd z) (4.24)

= Aε0 +Bκ (4.25)

where A and B is the extensional and coupling stiffness matrix, respectively, defined as:

A =
N∑

k=1
D̄k (zk+1 − zk ) (4.26)

and

B = 1

2

N∑
k=1

D̄k (z2
k+1 − z2

k ) (4.27)

Note that the z inside the integral of the curvature term is the contributes to a squared z term

in the expression for the coupling stiffness matrix.

Similarly to the normal forces, the bending moments are balanced by the internal moments

caused by the internal stresses:
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m =
∫ +h/2

−h/2
σz d z (4.28)

=
N∑

k=1

∫ zk+1

zk

σk z d z (4.29)

=
N∑

k=1
(
∫ zk+1

zk

D̄kε
0z d z +

∫ zk+1

zk

D̄kκz2 d z) (4.30)

=
N∑

k=1
(D̄kε

0
∫ zk+1

zk

z d z + D̄kκ

∫ zk+1

zk

z2 d z) (4.31)

= Bε0 +Dκ (4.32)

where D is the bending stiffness matrix:

D = 1

3

N∑
k=1

D̄k (z3
k+1 − z3

k ) (4.33)

Now the squared z term inside the curvature term contributes to a cubed z-contribution in

the bending stiffness matrix. When an expression for the A, B and D are established, forces

and moments can be expressed as: {
n

m

}
=

[
A B

B D

]{
ε0

κ

}
(4.34)

The matrix inside the brackets is known as the laminate stiffness matrix, and can be used in

the shell formulation without any further modifications.

The inverse of the laminate stiffness matrix is known as the laminate compliance matrix.

By examining the (1,1) and (2,2) elements of the laminate compliance matrix, the effective

modulus of the laminate can be determined with Ex = 1/a11 and Ey = 1/a22 where a11 and

a22 are the (1,1) and (2,2) elements of the laminate compliance matrix.
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Chapter 5

Modelling of Offshore Wind Turbine

Blades

Bak et al. (2013) provides a data repository for the DTU 10MW RWT. This includes all neces-

sary data for modelling both the external shape and internal structure of the rotor. A com-

mon terminology in order to describe the airfoil shape of the wind turbine blade is provided

by Hau (2013). Figure 5.1 shows an air foil profile, or the cross section of the outer surface of

a wind turbine blade. The dashed line located halfway between the top and bottom surface

of the air foil is called the mean chamber line. Furthermore, the forward end point of the

mean camber line marks the leading edge, and the rear point marks the trailing edge. The

connecting line drawn between the two edges is named the chord line. The chord line has a

significant role when it comes to describe the design with respect to distances between re-

gions and webs, which is described in detail in Section 5.1.

Figure 5.1: Basic concept of airfoil and plotted lines (Bachynski, 2017)

The thickness is defined as the distance between upper and lower surface, measured perpen-

dicular to the chord line. The term relative thickness is introduced to describe the thickness

of an airfoil, and is defined as the thickness divided by the chord length. This creates an

expression of the thickness as a ratio of the chord length. Figure 5.2 presents two different

ways of interpreting the term relative thickness. The term is understood to be applicable for

both a local and global context. In Figure 5.2a, a single airfoil section is considered in 2D,

and the term relative thickness is expressed in a local manner. Here the relative thickness is

39
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plotted for all x- and y-coordinates, giving a detailed view of the airfoil at the respective blade

position. Furthermore, Figure 5.2b shows the relative thickness across the span of the blade.

Here the relative thickness is interpreted globally, where the maximum relative thickness for

all sections is extracted and plotted along the span.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x/c

-0.2

-0.1

0

0.1

0.2

0.3

y/
c

(a) 2D view of the relative thickness for
a FFA-W3-600 airfoil with Gurney flap.
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(b) Relative thickness as a function
across the blade span.

Figure 5.2: Two ways of interpreting the term relative thickness.

The angle of attack, α, referred to in Figure 5.1, is the angle between the relative wind di-

rection and chord line. This angle contributes to the lift of the foil, which is not relevant for

this thesis. With reference in Figure 5.2a, the upper and lower side of a wind turbine rotor

is known as the suction and pressure side. When referring to the position along the span,

one uses the radial position r in wind turbine terminology. Furthermore, terminology like

flapwise direction refers out of plane loading, and edgewise direction refers in-plane loading

of the blade.

5.1 Blade Geometry Description

The DTU 10MW Reference Wind Turbine is described in its completeness by Bak et al. (2013)

in the report, and some key features will be highlighted here. Since this is a reference de-

sign for commercial use, the wind turbine has many common design features. Among these

features are the number of rotor blades, which is three. The hub has a radius 2.8 m and the

blades has a length of 86.466 m. In order to ensure tower clearance, the blades has a pre-

bend which decreases the projected blade radius to 86.366 m. For the structural analysis the

pre-bend is not included. The fully assembled wind turbine is presented in Figure 5.3

Different circumferential regional definitions are applied to distinguish the material proper-

ties of the blade. These regions are shown in Figure 5.4 defined from a straight line perpen-

dicular to the chord line. The size of each region is decided from a percentage of the chord

length, and is kept constant throughout the entire span of the blade.
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Figure 5.3: The fully assambled geometry model of the reference wind turbine, including
tower, nacelle, spinner and rotor (Bak et al., 2013).

The blade is fitted with two shear webs with a cap in between, which makes up what is known

as a box spar. Traditionally, the box spar and outer shell appear as constituent parts which

are manufactured separately and then joined together in a bonding process. However, for

the DTU 10 MW RWT blade, an alternative solution is utilized, where the webs connects the

caps from each side of the blade, which also makes up the spars. Thomsen (2009) states that

mainly the spars restricts most of the effects from flapwise bending, and that the webs carry

the torsional and shear loading. A third web is fitted close to the tail with same purpose as

the first two webs, in addition to take care of the buckling strength in the tail area. This shear

web starts at the radial position r = 21.8m

Unlike the definition of the regions, who are perpendicular to the chord, the webs are per-

pendicular to the x-axis. In Figure 5.4, three key distances along the chord line for locating

the webs are presented. The distance a represents the distance between the two webs. The

cap centre is located along the chord line in the centre of the two webs. Furthermore, the

distance b marks the distance between the cap centre and pitch axis. Finally, the distance c

is the distance from the leading edge to the pitch axis. These three distances are defined as

a function along the span of the blade and presented by Bak et al. (2013) as a spline in the

data repository. Section 5.2.4 describes how these splines are utilized in order to create the

internal structure of the isogeometric analysis model.

Thomsen (2009) claims that edgewise and flapwise bending are responsible for 97% of the

fatigue damage in the blade. The edgewise bending is primarily resisted of by the leading

and trailing edges of the outer shell, which is strengthened due to this fact. The nose-region

and the four different tail-regions viewed in Figure 5.4 is designed for this exact purpose.

In addition to the 11 circumferential regions, the structural design of the wind turbine blade

is defined with 100 radial regions. These regions have varying the material thickness and

properties along the span. Figure 5.5 shows the complete build-up of the 11 ·100 = 1100 re-

gions, where the external regions are extracted from the internal structure.
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Figure 5.4: Definition of blade regions and internal structure (Bak et al., 2013), where PA is
the pitch axis and CC is the cap centre.

5.2 Rhinoceros As a Tool for Modelling

In this thesis, Rhinoceros, or Rhino, by Robert McNeel & Associates is utilized as a tool to cre-

ate the NURBS-model for the isogeometric analysis. The modelling is done in the way which

is best suited for a multipatch analysis. The outer geometry is represented by two patches,

where the lofted airfoils with unconnected edges is one patch, and the second patch is the

trailing edge, tail V, of the blade. For the internal structure, three separate patches are ap-

plied to represent the three webs. In this section, the procedure for how the analysis model

is obtained with data from the report and repository of the DTU 10MW RWT. Throughout

this thesis, reference to the circumferential parametric direction will be made to U-direction.

Similarly, V-direction referrers to the longitudinal or radial direction of the rotor.
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Figure 5.5: Regions of the wind turbine blade outer surface and internal structure (Bak et al.,
2013).

5.2.1 Importing Points

In the data repository, 101 cross sections with 109 points are located, which are utilized to

create the airfoil sections of the wind turbine blade. These are the same Cartesian coordi-

nates utilized for describe the geometry in the reference finite element analysis. However,

the points are not a representation of the NURBS control polygon, but cubic spline inter-

polation points. In Figure 5.6a an exaggerated example shows how interpolation points and

control points for the same curve has completely different coordinates. The red points are

the control polygon for the NURBS curve, blue points are spline interpolation points and the

black curve are the NURBS curve if the spline interpolation points enter as control points.

This shows why cubic spline interpolation points can not be applied as control points for a

NURBS curve. The cross sections utilized in the reference blade are cubic spline interpola-

tion curves which is lofted to surface of polynomial degree q = 3.

Importing points to Rhino can be done from a text file, where the coordinates are on the

form (x, y, z) delimited by commas. The cross section file from the data repository is on

a form where the respective span position is the header, and a list of x- and y- coordinate

pairs. Since the points are arrange differently, a script in Matlab creates a text file with the

same convention as in Rhino. This new text file can then be imported directly and appear as

a point cloud in the modelling environment.
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5.2.2 Creating NURBS Control Polygon

Rhino is a NURBS-based CAD software that offers a variety of methods for creating free-form

curves. One of them is to use picked points and draw a spline interpolation curve. In Rhino,

the IntrpCrv-function allows the user to create a spline interpolation curve with a specified

degree of the curve. However, the output from the function is a NURBS-curve with a corre-

sponding control polygon, rather than a parametrization of the spline interpolation curve.

This means that by choosing the degree p = 3 and uniform knots, the cross sections of the

geometry model can be recreated in Rhino by picking all data points in a sequential order.

Now the curves for the cross sections corresponds to the parametric U-direction, and their

span corresponds to the V-direction of the model. Figure 5.6b shows an example from the

trailing edge of a cross section close to the root, with interpolation points in blue and the

NURBS curve and its corresponding control polygon in red. This illustrates different inter-

penetration of the points used for the two mentioned free-form curve methods for this spe-

cific model.

(a) Interpolation points and control polygon
for the same curve.

(b) Display of points at the trailing edge of an
arbitrary cross section.

Figure 5.6: NURBS curves with control polygon in red and interpolated points in blue.

5.2.3 Model Coarsening

When the cross sections are established, a surface is lofted through them in order to create

the exact geometry of the wind turbine blade outer surface utilized as basis for the reference

structural analysis. However, one of the scopes in this thesis is to use an IGA model with

fewer numbers of degrees of freedom than the reference model. This means that the geome-

try model needs to be coarsened. Rhino has a built in function which allows for model coars-

ening by entering the desired number of control points and calculating the deviation from

the original model. Robert McNeel & Associates reports that the calculation-algorithm tests

for the distances between knots and halfway between knots of the two surfaces. As men-
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tioned, the original geometry model uses 101 cross sections with 109 points (109x101). With

the Rebuild function, several combinations of points in U- and V- direction are executed by

the means of finding a combination that has low deviation from the original surface, as well

as being coarser. The user is allowed to decide calculate the maximum deviation from the in-

put surface while trying new combinations. In Table 5.1 some of the combinations of U and

V are presented with their respective deviation from the original surface. With these criteria,

the best combinations is found to be 50x60, which gives a maximum deviation of 2.3cm.

U V Maximum Deviation [m]

60 70 0.041
50 61 0.0233
70 60 0.035
60 60 0.043
51 60 0.022
50 60 0.0228
49 60 0.025
40 60 0.079
50 59 0.028
60 50 0.046
30 40 0.091

Table 5.1: Combinations for model coarsening.

5.2.4 Internal Structure in Rhinoceros

The internal structure described in Section 5.1 needs to be added to the new blade model

created in Rhino. In addition to the trailing edge, the three internal webs are modelled as

separate independent patches. The trailing edge is simply created from lines which connect

the start and the end of the cross sections. Creating the shear webs is more complex, since

their position somewhat irregular. As mentioned earlier, the internal structure is recreated

with information of the three distances a, b and c in the data repository. Figure 5.7 shows the

three mentioned distances as a plot along the span, which illustrates the complexity of the

web structure, since their position is dependant on three varying distances, in addition to

the varying chord length. Also, Rhino is primarily a free form surface modeller where tech-

nical drawing features like distance, angle and tangential constrains is less intuitive to add.

The procedure for creating the patches of the webs in Rhino starts with identifying the lead-

ing and trailing edge of the respective cross section. Between these points the chord line

defined. Using snap options like Tangent and SmartTrack, the distance between the lead-

ing edge and pitch axis, c, is found on the the chord line. Similarly, b is found as a distance

from the pitch axis and back towards the leading edge of the air foil. The with of the caps is
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Figure 5.7: Definitions of internal structure.

then found from the distance a. The distances b and c are created with the default settings of

the Line-function is created in Rhino with the Line-function. Since the distance a is a width

from a centre, the option BothSides is selected in order to create a line from the midpoint.

The third web is created from a point at 13% of the chord line, as shown in Figure 5.4. When

the point at the chord line for all webs is identified, the orthogonal snap option is selected

and a line is drawn to the cross section outer surface. A surface is then lofted through each

web cross section, creating the internal structure of the blade. A detailed view of the blade

consisting of five surfaces are shown in Figure 5.8.

Figure 5.8: Wind turbine blade in Rhino fitted with webs

For the analysis, a multipatch IGA model coupled with bending strips is also to be tested.

This has to be accounted for in the modelling. As mentioned, coupling with bending strips

requires a shared control point between the two coupled patches. This is only the case for the
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patch representing the edge of the blade, i.e. some modifications of the current model needs

to be executed. In order to keep the correct width of the caps as well as perpendicular webs

to the x-axis, the modification is done by snapping a control point from the outer surface to

the end of each webs. This obviously adds some change to the geometry, which is reported in

Tables A.1-A.5, where the maximum deviation from the rebuilt cross sections is now found to

be 8.8cm. Furthermore, a script written by Golay (2008) calculates the distance between two

surfaces, finds a deviation 9.23cm between original geometry model and the rebuilt surface

with manipulated control points. Figure 5.9 shows an arbitrary modified cross section with

the pitch axis, cap centre and width. The detailed view shows the shared control point of the

web and outer surface. that this is a modified where the outer surface is fitted to the webs. As

can be seen in the detailed view, the outer surface and web has a shared control point. The

deviation between the outer surface before and after attaching control points to the webs is

calculated in the same way as with the Rebuild function.

Figure 5.9: View of arbitrary wind turbine blade cross section in Rhino with the pitch axis
(PA), cap centre (CC) and width (a).

5.3 Material Parameters

Thomsen (2009) states that wind turbine blades are most commonly designed using poly-

mer matrix composites (PMC), in a combination with monolithic and sandwich composites.

PMC is a composite material consisting of a polymer matrix reinforced by fibres bound to-

gether. Monolithic composites are continuous reinforced thermoplastic composites, and

sandwich composites consists of two strong and stiff faces separated by a thick, lighter and

weaker core. The DTU 10MW RWT blade layup is defined with a core material and three

different plies, one unidirectional and two multidirectional. For the sandwich core mate-

rial, balsa wood is applied, and the multidirectional plies has fibres going in two and three

directions. The polymer matrix composite laminae consists of an epoxy matrix and E-glass

fibres as reinforcement. All ply properties are denoted with suitable subscripts, with respect

to type of property (fibre or matrix), plane, direction and sense of strength (tensile and com-

pressive), as described in Chapter 4. Hinton et al. (2004) provides the mechanical properties
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of the epoxy matrix and E-glass fibres used for the blade, and is presented in Table 5.2-5.3.

Property Value Unit

Young’s modulus Em 4.0 GPa
Poisson’s ratio νm 0.35 -
Shear modulus Gm 1.4815 GPa
Mass density ρm 1140.0 kg/m3

Table 5.2: Mechanical properties of the epoxy matrix (Hinton et al., 2004).

Property Value Unit

Longitudinal Young’s modulus E f 1 75.0 GPa
Transverse Young’s modulus E f 2 75.0 GPa
Major Poisson’s ratio ν f 12 0.2 -
In-plane shear modulus G f 12 31.25 GPa
Transverse shear modulus G f 23 31.25 GPa
Mass density ρm 1140.0 kg/m3

Table 5.3: Mechanical properties of the E-glass fibres (Hinton et al., 2004).

The composites under consideration have laminae of two different fiber volume fractions,

where lamina 1 and lamina 2 uses volume fraction 0.5 and 0.55, respectively. With the matrix

and fiber properties in Table 5.2-5.3 and simplified micro-mechanical Equations 4.1-4.7, the

mechanical properties of the two unidirectional laminae utilized for the blade are computed.

The resulting properties of each laminae are presented in Table 5.4.

Property Lamina 1 Lamina 2 Unit

Fiber volume fraction V f 0.50 0.55 -
Young’s modulus in fiber direction E1 39.5 43.05 GPa
Young’s modulus transv. to fiber dir. E2 12.099 01 13.425 83 GPa
In-plane shear modulus G12 4.538 64 5.046 98 GPa
Out-of-plane shear modulus G23 4.538 64 5.046 98 GPa
In-plane Poisson’s ratio ν12 0.2750 0.2675 -
Out-of-plane Poisson’s ratio ν23 0.3329 0.3301 -
Mass density ρ 1845.0 1915.5 kg/m3

Table 5.4: Calculated mechanical properties of the two different laminae types.

As mentioned earlier, the composite is built from three different plies, where the first is uni-

directional, and the two others are multidirectional. For sake of simplicity, Bak et al. (2013)

represents the mechanical properties E1, E2, G12 and ν12 for the multidirectional plies as a

single orthotropic material, derived using classical lamination plate theory. The engineering
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properties for the plies are presented as in Table 5.5 and for the core material as in table 5.6.

Multidirectional Ply Uniax Biax Triax

Fiber volume fraction V f 0.55 0.50 0.50 -
Unidirectional lamina Lamina 2 Lamina 1 Lamina 1 -

0deg fibres 95 0 30 %
90deg fibres 5 0 0 %
45deg fibres 0 50 35 %
−45deg fibres 0 50 35 %

Young’s modulus E1 41.63 13.92 21.79 GPa
Young’s modulus E2 14.93 01 13.92 83 14.67 GPa
Shear modulus G12 5.047 11.50 9.413 GPa
Shear modulus G13 =G23

a 5.046 98 4.538 64 4.538 64 GPa
Poisson’s ratio ν12 0.241 0.533 0.478 -
Mass density ρ 1915.5 1845.0 1845.0 kg/m3

aChosen as identical to respective laminae.

Table 5.5: Calculated engineering mechanical properties of the two different laminae types.

Property Balsa direction Value Unit

Fiber volume fraction V f 0.50 0.55 -
Young’s modulus E1 radial 0.050 GPa
Young’s modulus E3 tangential 0.050 GPa
Young’s modulus E3 axial 2.730 GPa
Shear modulus G12 radial-tangential 0.016 67 GPa
Shear modulus G13 radial-axial 0.150 GPa
Shear modulus G23 tangential-axial 0.150 GPa
Poisson’s ratio ν12 radial-tangential 0.5 -
Poisson’s ratio ν13 radial-axial 0.013 -
Poisson’s ratio ν23 tangential-axial 0.013 -
Mass density ρ 110 kg/m3

Table 5.6: Mechanical properties of the core material.

With the simplified material parameters in table 5.5-5.6, the total laminate stiffness matrix

for each respective region is calculated as derived in Section 4.2. A Matlab code for calculat-

ing the A-, B- and D-matrix created by Badagi is modified in order to read properties of the

different materials and region layup.

5.4 Regions Layup

As mentioned earlier, the reference wind turbine blade consists of 11 circumferential and

100 radial regions. These regions are defined with varying thickness of the different plies and
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core material from Table 5.5-5.6, which results in a unique laminate stiffness matrix for each

region. Figure 5.10a shows how the layup of the leading panels and caps are distributed along

the span of the wind turbine blade. These regions are neighbouring regions, i.e. stresses are

transferred directly between them. As can be seen from the plot, the two neighbouring re-

gions exhibits relatively large and abrupt thickness changes, which can be a precursor of

stress concentrations. In Appendix B, the thickness of all plies in all circumferential regions

are presented as plots along the span of the wind turbine blade.

In Section 4.2, the coupling stiffness matrix B was presented as a part of the laminate stiffness

matrix. When examining Equation 4.34, one sees that the presence of non-zero elements in

the coupling matrix indicates that application of in-plane traction will lead to a curvature

or wrapping of the plate, and similarly, an application of bending moment will generate an

extensional strain. These effects are obviously undesirable. For this reason, the composite

layup of the wind turbine blade is symmetric.
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Figure 5.10: Layup plot of circumferential blade regions leading panels and caps.

The regions are defined from as constant percentage of the chord length and constant dis-

tance, as shown in Figure 5.4-5.5. In the data repository, one can find the key points as Carte-

sian coordinates that separates the different regions. In order to read the layup data of the

wind turbine blade model, these key points enters the analysis as boundaries each region.

The coordinates are extracted from the data repository stored in a three dimensional matrix

R, where the first dimension stores information about the radial boundary, the second stores

information about the circumferential boundary, and the third dimension tells whether the

evaluated point is on the pressure or suction side of the blade. Now the evaluated point

can be transformed to a point with Cartesian coordinates, which then is ran through a for-

loop comparing it to the boundaries in the R-matrix. When the region is decided for the

evaluated point, suited material type, properties and thickness is registered for computa-

tion of the laminate stiffness matrix. The algorithms applied for this procedure can be fund

in the Listings in Appendix C. Figure 5.11 shows how the regions of the blade are explained

mathematically. Here iz, iy and ix are counting variables that decides the radial, side and

circumferential region, respectively. The assignment of regions is summarized:
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1. The evaluated point is transformed from the parametric u,v-space to the Cartesian

x,y,z-space.

2. The counting index iz increases until the z-coordinate of the evaluated point reaches

a radial boundary that it fits inside.

3. Decide weather the evaluate point is on the pressure or the suction side by calculating

the distance between the y-coordinate of the evaluated point and each respective side.

The side with the minimum distance is chosen to be iy (1 or 2).

4. Similarly to finding iz. Due to the twist of the blade, the circumferential boundary is

dependant on whether the point is on the suction or the pressure side. With infor-

mation of radial region and side, the circumferential region is found by adding up the

counting index ix until the evaluated point reaches a boundary that it fits inside.

5. The variables iz, iy and ix is fed into the struct containing material properties and

layup.

(a) An example of how the code interprets the assigned region is:

str uct (p).l ayup(i x).t (:, i z) ⇒ str uct (1).l ayup(4).t (:,35),

where 1 is the number of the patch (Outer surface), ix = 4 indicates layup and

material properties of trailing panels from Figure 5.11b, and iz = 35 decides the

radial position of the region from Figure 5.11a.

(a) Radial regions. (b) Circumferential regions.

Figure 5.11: Region boundaries that enters the code.

During the modelling, the circumferential direction has been defined as the first axis in the

reference system, whereas the reference finite element model has its first axis pointing in

the radial direction. This means that the longitudinal strength is defined in the opposite

direction for the two models. In order to solve this, the material is rotated 90 degrees in

the stiffness function of the IGA model. Fiber direction is referring to the first axis of the

model, as stated in Section 4.2. With a 90 degree angle added to fiber direction in the stiffness

function, the conflict of material orientation between the two analysis models is corrected

and further modifications is not needed for the NURBS model.
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Chapter 6

Results and Discussion

In this chapter, results from the different tests will be presented. Also, a benchmark test has

been performed for the adapted stiffness function which calculates the laminate stiffness for

the regions. A finite element analysis has been performed as reference to the isogeometric

structural analysis. This analysis applies the model which is provided in the DTU 10 MW

RWT data repository, and is fitted with the boundary conditions and load cases applied in

the IGA code. Two different patch coupling methods are also investigated. Penalty method

is compared to the bending strip method in a simplified analysis model. Finally, IGA is per-

formed on the blade model created in this thesis and compared to the reference model. This

analysis applies the point search algorithm and couples patches with the penalty method,

and has the same regional build up, laminate materials, boundary condition and load cases

as the reference model.

6.1 Stiffness Function

With the classical lamination plate theory presented in Section 4.2, an algorithm that com-

putes the A-, B- and D-matrix is created. A structure originally studied experimentally by

Knight and Starnes (1985) is utilized as a benchmark to verify the algorithm. This is the same

benchmark applied for Smith (2009) Example Problems guide. The test panel consists of 16

layers of unidirectional graphite fibres in an epoxy resin. Each layer is 0.142 mm (0.0056 in)

thick an are arranged in the symmetric stacking sequence {±45/90/0/0/90/∓45} degrees re-

peated twise. The elastic material properties for the benchmark is presented in Table 6.1.

It is worth noting that Knight and Starnes (1985) uses the United States customary units as

input for the benchmark matrices i.e. the values with metric units are only approximations

of the values with USCS units. The conversion factor applied for the benchmark is unknown,

making it more convenient to use the reference matrices with USCS units:
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Property Value Unit Value Unit

E11 135 kN /mm2 19.6×106 lb/i n2

E22 13 kN /mm2 1.89×106 lb/i n2

G12 6.4 kN /mm2 0.93×106 lb/i n2

G13 6.4 kN /mm2 0.93×106 lb/i n2

G23 4.3 kN /mm2 0.63×106 lb/i n2

ν23 0.38 [-] 0.38 [-]

Table 6.1: Multidirectional and multistack composite laminate stiffness benchmark input.

A =


790.239 251.367 0

251.367 790.239 0

0 0 47.1831

×103 lb/i n ;

B =


0 0 0

0 0 0

0 0 0

 ;

D =


492.719 191.513 18.9245

191.513 517.951 18.9245

18.9245 18.9245 203.602

 lb − i n ;

Using the material parameters in pounds per square inch, the algorithm computes the fol-

lowing A-,B and D-matrix:

A =


790.239 251.367 0

251.367 790.239 0

0 0 47.1831

×103 lb/i n;

B =


6.821 0 0

0 −11.369 0

0 0 4.547

×10−13 ;

D =


492.719 191.513 18.9245

191.513 517.951 18.9245

18.9245 18.9245 203.602

 lb − i n;

As can be seen, all numbers in the A and D-matrix are the exact of the reference values. Also,

the numbers in the diagonal of the B are not equal to zero. However, these values are of sev-

eral orders of magnitude lower than the other values, and are reflecting numerical rounding
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errors.

6.2 Load Cases

For the comparison of IGA and FEM, two simple load cases are applied to the models. The

first load case, LC1, is the self weight of the blade weight, working in the direction of natural

gravity. The second load case, LC2, is a simulation of a flipped blade. This is simply modelled

by changing the sign of the gravity constant. The gravity constant g is set to be 9.81m/s−2.

These load cases are the most simple load cases that can be adapted while still being realistic.

6.3 IGA Multipatch Coupling Methods

In this thesis, the multipatch wind turbine blade model is subject for analysis utilizing two

different methods for coupling of NURBS patches. The scope of this analysis is to investi-

gate how the multipatch coupling with penalty method compares to a model with bending

strips. Since the input parameters are only of some importance for this analysis, compu-

tational time is prioritized and a simplified blade model with isotropic material properties

is subject for analysis. These isotropic parameters, together with the simplified load case is

presented in Table 6.2. The Young’s modulus for the isotropic material is extracted from the

longitudinal elastic modulus of the uniax laminate material. Furthermore, the blade model

has varying thickness, corresponding to the accumulated thickness of each respective blade

region. The area load is only applied to the outer surface, acts in negative y-direction and

has a magnitude of 5 400.

Parameter Value

Young’s modulus E 4.163×1010

Poisson’s ratio ν 0.28
Thickness t Varying
Area Load F -5 400

Table 6.2: Input parameters for multipatch coupling method analysis.

As mentioned in Section 3.4, the bending strip method requires a shared control point be-

tween the patches representing the outer surface and the webs. This is solved by modifying

the control points of the outer surface, which obviously changes the geometry of the surface.

Table A.1- A.5 stores information about the deviation from the original cross sections caused

by the control point manipulation. Furthermore, the surface area deviation is only minor,

and is found to increase by 0.06%. In addition, the result of the modified control points can

be seen from the internal curves of the bending strip model in Figure 6.2, which represents

the correspondence between control points in each respective cross section. Compared to
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(a) Two coupling methods analysis setup. (b) Deformed blade.

Figure 6.1: Two different models with different methods for coupling of NURBS patches.
The bending strips model is fitted with light blue bending strips on the green surface, and
the model coupled with penalty is the dark blue model.

the internal curves of the non-manipulated model, the bending strip model is highly irreg-

ular due to a bad parametrization. Nevertheless, the model modification does not seem to

have much of an impact on the results of the tip deflection.

Table 6.3 shows that the tip displacement deviates by 0.58%. The most likely source of er-

ror for the deviation is the geometric change when the model is modified for bending strips.

This indicates that the model modifications has minor influence on the tip displacement in

this simple analysis and that the penalty parameter for the analysis is appropriate.

Coupling Method Tip Displacement

Bending Strips Method -11.4293
Penalty Method -11.3626

Table 6.3: Tip deflection of the two IGA models.

Figure 6.2: Outer surface with manipulated control points to fit internal webs.

6.4 Finite Element Method Reference Model

A complete finite element shell model of the blade’s external and internal geometry and com-

posite layup is located in the data repository is utilized in this thesis. The commercial com-

puter aided engineering software Abaqus/CAE, or Complete Abaqus environment, is used



6.4. FINITE ELEMENT METHOD REFERENCE MODEL 57

for the analysis. Material density and parameters are defined with the engineering constants

presented in Table 5.5-5.6. The finite element model has the same composite layup as re-

ferred to in Section 5.4. This property of the blade is assigned to the model through the com-

posite layup-option, where ply thickness and its orientation are assigned to each respective

region. Moreover, the model is fitted with the load cases as presented in Section 6.2. Smith

(2012) states that the gravity load option in the Load module, creates a gravity load with uni-

form acceleration in a fixed direction. With the density specified in the material definition,

the gravity constants enter as acceleration in y-direction for both load cases. At the root of

the blade, the clamped boundary condition in the root is applied on the outer surface, trail-

ing edge and the two webs.

The FEM model has a verified mesh imported directly from the data repository. 8-node lay-

ered shell elements, S8R, are utilized for the outer surface, whereas solid 20-node hexahed-

dral elements, C3D20, is utilized to represent the adhesive connecting, or gluing, the suction

and the pressure side at the trailing edge. Because of the complex blade geometry blade, a

semi-automatic meshing procedure is applied for generating the mesh. Unfortunately, the

work hours behind this procedure is not reported. Finally, the whole blade is represented

by a mesh of approximately 35 000 elements corresponding to 616 000 degrees of freedom.

The complete setup of the analysis is shown in Figure 6.3, where the gravity load for LC1

indicated by yellow arrows and clamped boundary condition can be seen at the root. The

solving procedure utilized in the analyzes is a linear static stress procedure in which inertia

effects are neglected.

X

Y

Z

Figure 6.3: Setup of the finite element analysis with illustrative clamped boundary condition
and gravity load.

The deformed configuration of the finite element analysis for the two load cases are shown

in Figure 6.4. By means of the query-tool, tip displacement of the outer surface is extracted

for the node located closest to the trailing edge. Both load cases results in the same tip dis-

placement with different sign, as presented in Table 6.4. This is exactly as expected if one

examine Equation 3.30. The only difference between the representation of the displacement

vectors of the two load cases is the sign of the external force vector.
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(a) LC1. (b) LC2.

Figure 6.4: Deformed configuration of the reference FEM analysis for the two load cases.

Load Case Tip Displacement

LC1 -1.3023
LC2 1.3023

Table 6.4: Tip deflection of the two load cases for the FEM analysis.

6.5 Structural Analysis of Wind Turbine Blade with IGA

The NURBS based Kirchhoff-Love shell is utilized for the isogeometric structural analysis of

the wind turbine blade. In the research IGA-code, penalty method and point projection is

utilized for multipatch coupling. From Rhino, the rebuilt coarsened NURBS model is im-

ported to Matlab without further modifications. In the analysis, uniform knot vectors are

created in both parametric directions. The final setup is shown in Figure 6.5, with the red

curves representing the clamping condition imposed along the root of the blade. There are

3 000 control points in the outer surface NURBS patch. Furthermore, the trailing edge has

420 control points, Web C has 360 control points and both Web A and Web B has 540 control

points. This adds up to a total of 4 860 control points, corresponding to 14 325 degrees of

freedom.

Initial guesses for the point search algorithm in the parametric u-direction is added to the

coupling parameter of each individual patch. As mentioned in Section 3.4, the point search

algorithm searches for the orthogonal tangent plane of the opposite surface. For this model,

there are two feasible solutions which fulfill this condition for the internal webs. Both the

pressure and the suction side of the blade model has orthogonal tangent planes to the eval-

uated end points. The remedy for this is to apply initial guesses on the outer surface, close

to the evaluated points of each respective patch. Additional notes to the point search algo-

rithm input is the angle tolerance referring to the orthogonal tangential plane, which is set

to be 10−8. Similarly, the distance tolerance for the point is set to 0.01, which is less than the

shortest distance if the point search algorithm were to find the point on the wrong side. For

the initial guess in the parametric v-direction, the z-coordinate of the evaluated point is di-

vided by the span of the blade. In Table 6.5, the initial guesses in the parametric u-direction

is presented.
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Patch End 1 End 2

Trailing Edge 0 1
Web A 0.3617 0.6383
Web B 0.2340 0.8400
Web C 0.0638 0.9149

Table 6.5: Initial guesses for the point search algorithm in the parametric u-direction of the
outer surface. Her the ends refers to the end points of the respective patches, in which the
point search algorithm is applied for.

Figure 6.5: IGA model setup in the Matlab environment fitted with clamped boundary con-
dition.

In Figure 6.6, the accumulated thickness and calculated effective longitudinal modulus for

all regions are plotted as a contour plot. The material thickness contour plot in Figure 6.6a

varies from red to yellow, with yellow being the thickest. One can see from the plot, that

relative flat regions like the tail C, tail B and trailing panels are thicker than regions with

more curvature, like the nose and leading panels. This is due to the fact that the load is

carried through the shape in curved regions, rather than the material strength. The effective

longitudinal modulus contour plot in Figure 6.6b varies from blue to green, where green is

the stiffest. Here the caps region distinguishes from the other regions, and if one examines

the composite layup plot for caps in Figure 5.10a, one can see that the dominating material

is Uniax. As stated in Section 5.1, the main task of the caps is to withstand flapwise bending.

In Table 5.5, it can be seen that this ply has the largest longitudinal modulus. Moreover,

the other regions show a relatively small change in longitudinal stiffness. Also, the priorities

of the shear webs is not longitudinal stiffness, which also can be seen from the plot by its

distinct dark blue colour.

The load cases in Section 6.2 is added to the analysis at each respective patch as a function

handle. With the function handle, all Gaussian points are fitted with the same load as in the

reference finite element analysis. The load function utilizes the same algorithm applied to

decide the region. When the Gaussian point is assigned to a region, the layup is interpreted

with respect to thickness and mass density. Furthermore, the load magnitude fa is calculated

from:
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(a) Accumulated thickness of all regions. (b) Effective longitudinal stiffness contour plot.

Figure 6.6: Contour plot of accumulated thickness and effective longitudinal modulus as a
result of the regional layup defined in the IGA code.

fa = ρg t = g
n∑

k=1
ρk tk , (6.1)

where k is the ply number, n is the number of plies, ρk is the mass density and tk is the

thickness of the respective ply. For the IGA-code, the load magnitude is described as force

per area.

In Figure 6.7, a scaled deformation plot of the blade is displayed for LC1 and LC2. As for the

finite element reference analysis, the deformation for the two load cases are the same but

with different signs. This implies that there are no abnormalities in the IGA code. The tip

deflection is extracted for the isogeometric analysis and shown in Table 6.6.

(a) LC1. (b) LC2.

Figure 6.7: The scaled deformed configuration of the IGA model for both load cases.

Load Case Tip Displacement

LC1 -1.2979
LC2 1.2979

Table 6.6: Tip deflection of the two load cases for the FEM analysis..
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A plot of the displacement along the span for LC1 is created and compared to the finite ele-

ment analysis in Figure 6.8. This shows a displacement pattern which is virtually identical.

0 10 20 30 40 50 60 70 80 90
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IGA

Figure 6.8: Displacement plot along the span for the two analyzes for LC1. The displacement
pattern are the same and has only minor deviation.

From the displacement plot, one can see that the displacement is somewhat underestimated

for all positions. Nevertheless, the displacement vector obtained in IGA is in good accor-

dance with the reference results from the finite element method.
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Chapter 7

Conclusions and Outlook

IGA has been performed on a non-matching multipatch model of the DTU 10MW Refer-

ence Rotor. From the CAD model applied to obtain the finite element model, Rhino has

been implemented as a tool to create a coarsen model for IGA. As a result of the geometrical

modelling, a coarsen multipatch NURBS model with only minor deviations from the original

model has been created.

Two different methods of multipatch coupling has been investigated for a simple IGA model.

Penalty coupling method has been compared to coupling with bending strips, where the

bending strip model has been modified in order to achieve a common interface between

the internal patches. Performing IGA on the modified blade model illustrated one of the ad-

vantages of IGA, where changes to the geometry did not need a new mesh for the analysis.

Moreover, the modification done to the control points of the outer surface influenced the

area, which again increases the external load vector. Also, the two models have different in-

ternal stiffness, which also affects the displacement. These effects causes an of increases the

tip displacement by 0.58%. Nevertheless, this deviation is connected with the geometrical

change and not the method of coupling. The penalty parameter α = 103 is considered as

acceptable for further analysis of the blade model.

The reference FEA has been modified in order to compare with IGA. In addition to the re-

gional definitions in the model, clamped boundary condition and gravity load case has been

added to the analysis framework. Results obtained from the FEM analysis for both load cases

shows a realistic displacement pattern and tip deflection magnitude, and is utilized as refer-

ence in further analyzes.

With basis in the reported reference blade, IGA is performed on a multipatch coarsen NURBS

model. A function for assigning the correct region to the parametric NURBS surface has been

created with the purpose of assigning composite layup and corresponding material param-

eters. Furthermore, a code that utilizes composite laminate plate theory has been adopted

in order to evaluate the element laminate stiffness. Compared to the reference model, IGA
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is found to perform with great efficiency and accuracy. The number of degrees of freedom is

reduced significantly in IGA, and the magnitude of the tip deflection is found to deviate by

0.34%.

The static structural analysis done in this thesis is only one of many possible analyzes for

this type of model. Buckling analysis is commonly done on shell models, and with the ex-

act geometry provided in the blade model from this thesis. This analysis has been done for

the reference blade, and would interesting to perform for the IGA model as well. Also, non-

linear, fatigue and dynamic structural analysis are other analyzes that could be done for this

model.

One of the greatest advantages of IGA is that the meshing procedure between design and

structural analysis is omitted. This creates an opportunity for the design to be modified,

analyzed and optimized without having to script the mesh generation procedure. Design of

wind turbines are generally based on parameters like span, chord length, airfoil shape and

thickness. By the means of these parameters, a parametrized IGA blade model can be subject

for multidisciplinary design optimized only varying a selected number of parameters, like

the work done in Herrema et al. (2017)
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Appendix A

Modelling

The maximum deviation for the manipulated bending strips model is reported for the coarsen

NURBS model. Control points in the respective cross sections is moved around manually in

order to create a common interface between the outer surface and internal webs. The devia-

tion from the origin cross section is calculated with the CrvDeviation-function and presented

in Tables A.1- A.5.

# Section 1 2 3 4 5 6 7 8 9 10 11 12

Deviation (×10−3) 7.3 8.1 7.2 6.7 7.8 6.8 7.1 8.5 5.3 3.9 5.7 4.9

Table A.1: Manipulated cross sectional deviation for section 1-12.

# Section 13 14 15 16 17 18 19 20 21 22 23 24

Deviation (×10−3) 5.8 3.4 4.4 5.0 4.5 3.4 3.9 3.0 4.7 3.4 4.2 3.6

Table A.2: Manipulated cross sectional deviation for section 13-24.

# Section 25 26 27 28 29 30 31 32 33 34 35 36

Deviation (×10−3) 3.6 2.3 2.3 2.6 2.4 2.4 2.2 2.2 2.1 2.0 1.8 1.5

Table A.3: Manipulated cross sectional deviation for section 25-36.
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# Section 37 38 39 40 41 42 43 44 45 46 47 48

Deviation (×103) 1.6 1.7 1.6 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.4 1.4

Table A.4: Manipulated cross sectional deviation for section 37-48.

# Section 49 50 51 52 53 24 55 56 57 58 59 60

Deviation (×103) 1.4 1.2 1.1 1.1 8.7 1.0 .82 .81 .72 .69 .56 .31

Table A.5: Manipulated cross sectional deviation for section 49-60.



Appendix B

Composite Layups

In this chapter, the composite layup for the DTU 10MW reference rotor is presented in terms

of the stacking-sequence of layers representing multidirectional plies and core material. The

circumferential regions and structural parts are presented as thickness plots of each respec-

tive ply and material, together with an illustrative accumulated thickness plot along the span.

Plots are extracted from the data repository accompanied with the report. The name of the

region is presented in the title of the plot, and the materials are labeled in the legend. It is

worth noting that some regions uses the same layup.
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Appendix C

Matlab

In the following chapter, the Matlab-codes used to assign the correct region to a Gaussian

point, the stiffness function and load function is presented. For assignment of regions, the

two matrices Rx and R y are utilized to store regional boundaries in respective x- and y- coor-

dinates. The first dimension of the matrix is the radial boundary and the second dimension

is the circumferential boundary. The third dimension assigns the side of the blade. First the

counting index for assignment of radial position is decided as:

1 for i z = 1 : nz

2 i f ( z<rs ( i z ) )

3 break

4 end

5 end

Listing C.1: Identify span position.

where i z is the counting index for the radial position, nz is the number of radial regions, z is

the z-coordinate of the evaluated point and r s is the array of coordinates for radial bound-

aries. When the radial position is assigned, the side of the blade is decided as:

1 for i y =1:2

2 d i s t y ( i y ) =abs ( y−Ry( iz , 1 , i y ) ) ;

3 end

4 [~ , indexy ]=min( d i s t y ) ;

5 i y =indexy ;

Listing C.2: Identify side of the blade.

where i y = 1 is the suction (upper) side and i y = 2 is the pressure (lower) side, S(2) is the

y-coordinate of the evaluated point and Ry(iz,1,iy) is the boundary for Tail A for the given

radial position for the two blade sides. The side closes to the evaluated point is chosen as i y .

Finally, the circumferential region is decided similarly to the radial position as:
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1 for i x =1:nx

2 i f x<Rx ( iz , ix , i y )

3 break

4 end

5 end

Listing C.3: Identify circumferential region.

where i x is the counting index and nx is the number of circumferential regions and x is the

evaluated point. The three counting indexes enters the layup structure where the correct

material properties are assigned to the evaluated point. In the modelling, it is only the outer

surface patch which uses circumferential regions, i.e the other patches are only considers

the radial position with respect to region assignment.

An adapted code is used to compute the A-, B- and D- matrix making up the composite lam-

inate stiffness. The code reads the region layup, stores the strength properties in a stacking

sequence computes the composite laminate stiffness matrix. The stacking sequence is ex-

tracted from the layup-struct, and the material properties are extracted from the matprops-

struct As mentioned in Section 5.4, the wind turbine blade has rotated material orientations

to begin with, which solved by rotating the material orientations inside the stiffness function.

The stiffness function for the evaluated point with assigned regional layup is then given as:

1 comm=layup ( i x ) . materials ;

2 M=length ( layup ( i x ) . materials ) ;

3

4 % I n i t i a l i z i n g

5 t =zeros ( 1 ,M) ;

6 E1=zeros ( 1 ,M) ;

7 E2=zeros ( 1 ,M) ;

8 E3=zeros ( 1 ,M) ;

9 n12=zeros ( 1 ,M) ;

10 n13=zeros ( 1 ,M) ;

11 n23=zeros ( 1 ,M) ;

12 G12=zeros ( 1 ,M) ;

13 G13=zeros ( 1 ,M) ;

14 G23=zeros ( 1 ,M) ;

15

16 for i =1:M

17 i f strcmp (comm( i ) , ’ Uniax_ { MaxStrain } ’ )

18 E1 ( i ) =matprops . E1 ( 1 ) ;

19 E2 ( i ) =matprops . E2 ( 1 ) ;
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20 E3 ( i ) =E2 ( i ) ;

21 n12 ( i ) =matprops . nu12 ( 1 ) ;

22 n13 ( i ) =n12 ( i ) ;

23 n23 ( i ) =matprops . nu23 ( 1 ) ;

24 G12( i ) =matprops . G12( 1 ) ;

25 G13( i ) =G12( i ) ;

26 G23( i ) =matprops . G23( 1 ) ;

27 t ( i ) =layup ( i x ) . t ( i , i z ) ;

28 e l s e i f strcmp (comm( i ) , ’ Triax_ { MaxStrain } ’ ) }

29 E1 ( i ) =matprops . E1 ( 2 ) ;

30 E2 ( i ) =matprops . E2 ( 2 ) ;

31 E3 ( i ) =E2 ( i ) ;

32 n12 ( i ) =matprops . nu12 ( 2 ) ;

33 n13 ( i ) =n12 ( i ) ;

34 n23 ( i ) =matprops . nu23 ( 2 ) ;

35 G12( i ) =matprops . G12( 2 ) ;

36 G13( i ) =G12( i ) ;

37 G23( i ) =matprops . G23( 2 ) ;

38 t ( i ) =layup ( i x ) . t ( i , i z ) ;

39 e l s e i f strcmp (comm( i ) , ’ Biax_ { MaxStrain } ’ )

40 E1 ( i ) =matprops . E1 ( 3 ) ;

41 E2 ( i ) =matprops . E2 ( 3 ) ;

42 E3 ( i ) =E2 ( i ) ;

43 n12 ( i ) =matprops . nu12 ( 3 ) ;

44 n13 ( i ) =n12 ( i ) ;

45 n23 ( i ) =matprops . nu23 ( 3 ) ;

46 G12( i ) =matprops . G12( 3 ) ;

47 G13( i ) =G12( i ) ;

48 G23( i ) =matprops . G23( 3 ) ;

49 t ( i ) =layup ( i x ) . t ( i , i z ) ;

50 e l s e i f strcmp (comm( i ) , ’ Balsa ’ )

51 E1 ( i ) =matprops . E1 ( 4 ) ;

52 E2 ( i ) =matprops . E2 ( 4 ) ;

53 E3 ( i ) =E2 ( i ) ;

54 n12 ( i ) =matprops . nu12 ( 4 ) ;

55 n13 ( i ) =n12 ( i ) ;

56 n23 ( i ) =matprops . nu23 ( 4 ) ;

57 G12( i ) =matprops . G12( 4 ) ;

58 G13( i ) =G12( i ) ;

59 G23( i ) =matprops . G23( 4 ) ;
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60 t ( i ) =layup ( i x ) . t ( i , i z ) ;

61 end

62 end

63

64 % Restructuring layup

65 % Remove materials of zero thickness

66 AllProps = [ t ; E1 ; E2 ; E3 ; n12 ; n13 ; n23 ; G12 ; G13 ; G23 ] ;

67 colsWithZero=any ( AllProps ==0) ;

68 AllProps = AllProps ( : , ~ colsWithZero ) ;

69 % Return to array notation

70 t =AllProps ( 1 , : ) ;

71 E1=AllProps ( 2 , : ) ;

72 E2=AllProps ( 3 , : ) ;

73 E3=AllProps ( 4 , : ) ;

74 n12=AllProps ( 5 , : ) ;

75 n13=AllProps ( 6 , : ) ;

76 n23=AllProps ( 7 , : ) ;

77 G12=AllProps ( 8 , : ) ;

78 G13=AllProps ( 9 , : ) ;

79 G23=AllProps ( 1 0 , : ) ;

80

81 %Begin CLPT computation

82 N=length ( t ) ;

83 all_ang = 90.* ones ( 1 ,N) ; % Rotate due to c o n f l i c t in orientation from

reference .

84

85 h=zeros (N+1 ,1) ;

86 H=sum( t ) / 2 ;

87 for i =1:N; h( i +1)=h( i ) + t ( i ) ; end

88 for i =1:N+1; z ( i ) =(h( i )−H) ; end

89 l s t f =zeros (3*N, 3 ) ;

90 z=round ( z , 1 0 ) ; % Remove some of numerical error

91

92 %Begin laminate s t i f f n e s s calculat ion

93 for k = 1 : N

94 %%Compliance Matrix elements

95 S = [1/E1 ( k ) −n12 ( k ) /E1 ( k ) 0 ;

96 −n12 ( k ) /E1 ( k ) 1/E2 ( k ) 0 ;

97 0 0 1/G12( k ) ] ;

98
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99 %%S t i f f n e s s Matrix elements

100 C = S^(−1) ;

101

102 %Reduced S t i f f n e s s

103 Q = zeros ( 3 , 3 ) ;

104 Q( 1 , 1 ) = C( 1 , 1 ) − (C( 1 , 3 ) ) ^2 / C( 3 , 3 ) ;

105 Q( 2 , 2 ) = C( 2 , 2 ) − (C( 2 , 3 ) ) ^2 / C( 3 , 3 ) ;

106 Q( 1 , 2 ) = C( 1 , 2 ) − C( 1 , 3 ) *C( 2 , 3 ) / C( 3 , 3 ) ;

107 Q( 2 , 1 ) = Q( 1 , 2 ) ;

108 Q( 3 , 3 ) = C( 3 , 3 ) ;

109

110 %Transformatioin Matrix

111 m = cosd ( all_ang ( k ) ) ;

112 n = sind ( all_ang ( k ) ) ;

113

114 T = zeros ( 3 , 3 ) ;

115 T( 1 , 1 ) =m^2;

116 T( 1 , 2 ) =n^2;

117 T( 1 , 3 ) =2*m*n ;

118 T( 2 , 1 ) =n^2;

119 T( 2 , 2 ) =m^2;

120 T( 2 , 3 ) =−2*m*n ;

121 T( 3 , 1 )=−m*n ;

122 T( 3 , 2 ) =m*n ;

123 T( 3 , 3 ) =m̂ 2−n^2;

124

125 %Transformed S t i f f n e s s

126 q=zeros ( 3 , 3 ) ;

127 q ( [ 1 : 2 ] , [ 1 : 2 ] ) =Q( [ 1 : 2 ] , [ 1 : 2 ] ) ;

128 q( 3 , 3 ) =2*Q( 3 , 3 ) ;

129

130 q=T^(−1) *q*T ;

131 for i = 1:3

132 q( i , 3 ) =q( i , 3 ) / 2 ;

133 end

134

135 l s t f ( [ 3 * k−2:3*k ] , [ 1 : 3 ] ) =q ( [ 1 : 3 ] , [ 1 : 3 ] ) ;

136 end

137

138 A=zeros ( 3 , 3 ) ;
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139 B=zeros ( 3 , 3 ) ;

140 D=zeros ( 3 , 3 ) ;

141

142 for i =1:3

143 for j =1:3

144 q ( [ 1 : 3 ] , [ 1 : 3 ] ) = l s t f ( [ 1 : 3 ] , [ 1 : 3 ] ) ;

145 A( i , j ) = q( i , j ) * ( z ( 2 ) − z ( 1 ) ) ;

146 B( i , j ) = 1/2*(q( i , j ) * ( z ( 2 ) ^2 − z ( 1 ) ^2) ) ;

147 D( i , j ) = 1/3*(q( i , j ) * ( z ( 2 ) ^3 − z ( 1 ) ^3) ) ;

148

149 for k = 2 : N

150 q ( [ 1 : 3 ] , [ 1 : 3 ] ) = l s t f ( [ 3* k−2:3*k ] , [ 1 : 3 ] ) ;

151 A( i , j ) = q( i , j ) * ( z ( k+1) − z ( k ) ) + A( i , j ) ;

152 B( i , j ) = 1/2*(q( i , j ) * ( z ( k+1)^2 − z ( k ) ^2) ) + B

( i , j ) ;

153 D( i , j ) = 1/3*(q( i , j ) * ( z ( k+1)^3 − z ( k ) ^3) ) + D

( i , j ) ;

154 end

155 end

156 end

157

158 i f length ( all_ang ) ==0

159 A= A . * [ 1 1 0 ; 1 1 0 ; 0 0 1 ] ;

160 B= B . * [ 0 0 0 ; 0 0 0 ; 0 0 0 ] ;

161 D= D. * [ 1 1 1 ; 1 1 1 ; 1 1 1 ] ;

162 end

Listing C.4: Stiffness function for a point with assigned region.

Using the same procedure, the load magnitude for the evaluated point computed from the

load function given as:

1 comm=structure_p . layup ( i x ) . materials ;

2 M=length ( structure_p . layup ( i x ) . materials ) ;

3 t =zeros ( 1 ,M) ;

4 rho=zeros ( 1 ,M) ;

5 for i =1:M

6 i f strcmp (comm( i ) , ’ Uniax_ { MaxStrain } ’ )% comm( i ) =={ ’ Uniax_ {

MaxStrain } ’ }

7 rho ( i ) =structure_p . matprops . density ( 1 ) ;

8 t ( i ) =structure_p . layup ( i x ) . t ( i , i z ) ;

9 e l s e i f strcmp (comm( i ) , ’ Triax_ { MaxStrain } ’ )% comm( i ) =={ ’ Triax_ {

MaxStrain } ’ }
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10 rho ( i ) =structure_p . matprops . density ( 2 ) ;

11 t ( i ) =structure_p . layup ( i x ) . t ( i , i z ) ;

12 e l s e i f strcmp (comm( i ) , ’ Biax_ { MaxStrain } ’ ) % comm( i ) =={ ’ Biax_ {

MaxStrain } ’ }

13 rho ( i ) =structure_p . matprops . density ( 3 ) ;

14 t ( i ) =structure_p . layup ( i x ) . t ( i , i z ) ;

15 e l s e i f strcmp (comm( i ) , ’ Balsa ’ ) % comm( i ) =={ ’BALSA ’ }

16 rho ( i ) =structure_p . matprops . density ( 4 ) ;

17 t ( i ) =structure_p . layup ( i x ) . t ( i , i z ) ;

18 end

19 end

20

21 % Remove materials of zero thickness

22 AllProps = [ t ; rho ] ;

23 colsWithZero=any ( AllProps ==0) ;

24 AllProps = AllProps ( : , ~ colsWithZero ) ;

25 % Return to array notation

26 t =AllProps ( 1 , : ) ;

27 rho=AllProps ( 2 , : ) ;

28

29 % Load calculateion

30 g=−9.81;

31 f = t *rho ’ . * g ;

Listing C.5: Load function for a point with assigned region. Here the sign of the gravity

constant is changed according to load case.
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