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Abstract

This Paper aims to investigate Trimmed NURBS surfaces for Isogeometric Analysis(IGA). NURBS are Non-
Rational B-spline functions which are widely used for geometric modelling in most Computer aided Design
programs. This is because they have the ability to represent a wide range of curves, surfaces and solids. When
models are created in CAD and imported in to Finite Element programs for analysis, the geometry is approx-
imated, and the resulting model is less accurate. IGA aims to close the gap between design and analysis by
performing analysis directly on the geometry from CAD. IGA therefore also use NURBS in analysis. A walk-
through of the theory behind NURBS curves and surfaces are presented in this paper.
One problem with IGA is that trimming is a very common practice when constructing complex geometries
in CAD. Trimming does not actually change the mathematical description of the surface, it simply renders
the trimmed part invisible. This means that when analysis is performed on a trimmed surface, the surface
will behave exactly like the surface before the trimming. The main purpose of this thesis is to investigate
how to perform analysis on trimmed NURBS surfaces. A trimmed surface consist of a trimming curve and an
untrimmed surface. The parametric coordinates of the two are different, and so a correlation between the two
must be found.
Trimmed elements are classified into different cases based on the location of the trimming curves relative to
the element vertex points. Searching steps to find out which elements are trimmed, untrimmed or inactive is
explained, and the intersection points between the elements and the trimming curves can be found. Classify-
ing the elements and determining the intersection points are important for the analysis.
Analysis of trimmed NURBS surfaces is possible through the use of mapping. Different mapping schemes are
discussed and used. The blending function method divides the trimming curves into segments based on their
intersection with the elements, and maps element that are quadrilateral or triangular in shape. The Adaptive
Gaussian integration procedure shifts, scales and rotates the trimming curves into a Gaussian space, and con-
structs an element. Integration points are found on the Adaptive Gaussian surface. Nurbs enhances triangles
uses several mapping to map a triangular domain with a NURBS curve from the Gaussian space.
Finally, analysis of ship hulls are discussed. Ship hulls are composed of many small components. Global anal-
ysis is usually performed on the whole structure, while local analysis is important to investigate the behaviour
of the hull accurately. A trimmed element representing a plate with a hole is investigated by Isogeometric
analysis of trimmed and untrimmed surfaces as well as Finite elemen analysis. Isogeometric analysis holds an
advantage to FEA in both accuracy and computational time. The results converge for a much coarser mesh.
The one advantage FE has over IGA is that if the element can not be trimmed, creating the model in CAD
might be much more time consuming. The trimmed IGA also proves stable, and so with further investigation
and development of the trimmed analysis IGA might prove far superior to FEA,
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Chapter 1

Introduction

Analysis of ship hulls are crucial for designing a ship that is stable, can carry the desired load, has an efficient
geometry with low resistance and many other aspects. The curved geometry of the hull created a lot of chal-
lenges for analyzing the geometry accurately in standard FEA programs. Because shells are curved arbitrarily
in 3D, and the appropriate description necessary, it is vulnerable to large errors for a FE analysis. Meshing
of the structure changes the geometry, and in addition mesh refinement are time consuming. Isogeometric
analysis is an alternative analysis method to FEA, where the original geometry is preserved, and the need for
meshing is eliminated. This method therefore aim to improve the accuracy of an analysis, as well as serve as a
tool to save time.

Isogeometric analysis is more related to CAD, than FEM, which makes the implementation between a CAD
program and the analysis easier. Both are based on polynomial curves, and so the geometry created on which
the analysis is performed is exactly the same as the original geometry. Isogeometric analysis (IGA) uses spline
functions from Computer Aided Design(CAD) in the analysis of a model. Most commonly used in CAD are
NURBS. NURBS curves and surfaces are a combination of control points, with corresponding weights, and
basis function over a parametric space. The basis functions are derived from knots vectors, which define a
parametric space, and a polynomial degree. The goal of IGA is to merge CAD and FEA into and thus to
close the gap between design and analysis. IGA holds advantages to FEA especially for models where the
geometric representation requires high accuracy, such as for shells, because the analysis is performed on the
exact geometry from CAD. In addition, the process of meshing is avoided. A common tool in the design
process is trimming, where a part of the surface or curve is cut away. This is especially useful when designing
complex models because you do not have to change the surface or curve description in any way. The fact that
the geometric description is not changed is also why trimming is one of the problems IGA has encountered.
The control points, knot vectors and basis functions remain the same, while the trimmed part has only been
made invisible. Avoiding trimming altogether in the design process is one solution, but for complex models
this would be time consuming and thus eliminating one of the major advantages to IGA. Several methods
to incorporate the trimming curve in the analysis has been proposed, thus making IGA possible for designs
where trimming has been used.

The purpose of this thesis is to consider relevant geometries for ship hulls and perform trimmed IGA on these
type of models. A set of matlab codes have been written, which implements several methods proposed for
analysis of trimmed elements. The code imports the surface and trimming curves from an IGES file, categorizes
the element into the possible cases, find the intersection points and does refinement for elements not suited
for analysis. Analysis can be performed using three different mapping methods. Various conditions for each
method is implemented by the code. This code is the basis for this thesis, and all plots and results are obtained
by this.
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Chapter 2

Geometric Modeling and Fundamentals

Geometric shapes are described mathematically, thus it is important to have functions which can describe a
wide range of geometric shapes. A parametric description offers the most suitable representation of geome-
tries, and are thus the basis for geometric modelling today. For a parametric curve, the coordinates (x,y,z) are
explicit functions of an independent parameter.
Computer Aided Design(CAD) is mostly used for designing geometric models. Standard for CAD programs
is that they use NURBS functions for modelling. NURBS are Non-Uniform Rational B-Splines, which describe
a curve, surface or solid as linear combinations of Basis functions and control points over a parametric space.

2.1 NURBS

NURBS are based on B-splines which in turn are based on Bézier curves.

2.1.1 Bézier curves

Bézier curves are described as

C(u) =
n

∑
i=1

Bi,l(u)Pi, (2.1)

where Pi are the control points, l is the polynomial degree,n is the number of control points and Bi,l are the
basis functions:

Bi,l =
n!

i!(n− i)!
ui(1− u)n−i. (2.2)

The polynomial degree and the number of control points are related through l=n-1. This means that when
the number of control points increase, the polynomial degree increases linearly. Another disadvantage to this
representation is that all control points are related to each other and alteration of one point would affect the
whole curve. B-splines were introduced as a solution to this.
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2.1.2 B-Splines

For B-Splines. the parameter space is divided into knot spans, making the degree independent to the number
of control points. An important property of B-spline curves is that the control point at the start and end of the
curve only has influence on their respective knot spans. All other control points influences a maximum of l+1
knot spans.

Knot vectors

A knot vector, U = [u1,u2, ...,un+l+1], defines the parametric space, where ui are parametric coordinates in
ascending order. Each distinguishable coordinate divides the curve into knot spans.

Inside a knot span, there is always C∞ continuity. At a knot, there is Cl−k continuity, where k is the number of
repeated knots. At the beginning and end of a curve, there should be C−1 continuity, meaning that the knots
usually have a multiplicity of l+1 here. These are called open knot vectors. Curves with open knot vectors
are always interpolated at the first and last control points, which is advantageous when modeling because the
beginning and end of the curve can be easily determined.
Figure 2.1 shows a B-Spline curve, C(u), with three inner knots: u5, u6 and u7. The knots divide the curve into
four knot spans. The knots are marked with an x. The dashed line shows the control point polygon, which
connects the control points, Pi.

Figure 2.1: Curve with knot vector U=[0 0 0 0 0.25 0.5 0.75 1 1 1 1], and polynomial degree l=3.

If the multiplicity at an inner knot is equal to the polynomial degree, there is C0 continuity, meaning that the
curve is interpolated at this knot. Figure 2.2 shows a B-Spline curve with control points, Pi, control polygon
and knot spans. The multiplicity at the inner knot, u5−7 is equal to the polynomial degree, and the curve is
interpolated at this knot.

Figure 2.2: Curve with knot vector U=[0 0 0 0 0.5 0.5 0.5 1 1 1 1], and polynomial degree l=3.

3



For B-spline surfaces, there are two knot vectors, S = [s1, s2, ..., sn+1+p] and T = [t1, t2, ..., tm+1+p].
The surfaces consists of a control point net with n x m control points, the two knot vectors and two polynomial
degrees p and q.
Figure 2.3 shows a surface and its corresponding knots, control points and control point net. The inner knots
in s- and t-direction divide the surface into four patches.

Figure 2.3: Surface with knot vectors S=[0 0 0 0 0.5 0.5 1 1 1 1], T=[0 0 0 0 0.5 1 1 1 1] and polynomial degrees
p=q=3.

Basis functions

The knot vectors and polynomial degrees are used to determine the basis functions, Ni. First, the B-Spline basis
function is computed for l=0.

Ni,0(u) =

{
1, ui ≤ u < ui+1
0, otherwise (2.3)

For l ≥ 1, The basis functions are

Ni,l(u) =
u− ui

ui+l − ui
Ni,l−1(u) +

ui+l+1 − u
ui+l+1 − ui+1

Ni+1,l−1(u) (2.4)

The first derivative of the basis function is

N′i,l(u) =
l

ui+l − ui
Ni,l−1(u)−

l
ui+l+1 − ui+1

Ni+1,l−1(u) (2.5)

Figure 2.4 shows the basis functions for the curve in Figure 2.1.

Figure 2.4: Basis functions for the curve in figure 2.1
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As mentioned previously, the basis functions are C∞ continuous inside knot spans and Cl−k continuous at
knots of multiplicity k. If a basis function has C0 continuity at a knot, the basis function will be one, while the
rest will be zero at this knot.
The curve in Figure 2.2 has multiplicity k=3 at u=0.5 and degree l=3, which can be seen in Figure 2.5. The basis
function N4,3 is 1, while the rest are 0 at u5−7

Figure 2.5: Basis functions for the curve in figure 2.2

B-Spline basis functions have the following important properties:

1. Ni,l(u) 6= 0 only in interval [ui,ui+l+1].

2. ∑n
i=1 Ni,l(u) = 1

3. Ni,l(u) ≥ 0

4. ∑n
i=1 αi Ni,l(u) = 0⇔ αi = 0, i=1,2,...,n

B-spline Curves and surfaces

B-spline curve are described by a set of control points, Pi and basis functions Ni,l(u) as:

C(u) =
n

∑
i=1

Ni,l(u)Pi (2.6)

The first derivative of B-spline curves are

C′(u) =
n

∑
i=1

N′i,l(u)Pi (2.7)

B-Spline surfaces are defined by two basis functions, Ni,p(s) and Mj,q(t), and a net of control points with n
control points in s-direction and m control points in t-direction.

S(s, t)
n

∑
i=1

m

∑
j=1

Ni,p(s)Mj,q(t)Pi,j (2.8)
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2.1.3 NURBS

NURBS stand for Non-Uniform Rational B-splines. They differ from B-splines in that their knot vector in
general is not uniform, and that their basis functions are piece-wise rational polynomials.
Each control point of a NURBS curve or surface has a corresponding weight, wi. This weight enables the
further opportunities in geometric modelling, in particular the creation of circles and ellipses.
A NURBS curve is represented as:

C(u) =
∑n

i=1 Ni,l(u)wiPi

∑n
i=1 Ni,l(u)wi

(2.9)

The NURBS basis functions can be expressed as

Ri,l(u) =
Ni,l(u)wi

∑n
i=1 Ni,l(u)wi

, (2.10)

so the curve can be represented as a function of the basis function and the control points:

C(u) =
n

∑
i=1

Ri,l(u)Pi (2.11)

For NURBS surfaces, the basis function is defined as

Rpq
ij (s, t) =

Ni,p(s)Mj,q(t)wi,j

∑n
i=1 ∑m

j=1 Ni,p(s)Mj,q(t)wi,j
(2.12)

NURBS curves and surfaces where all weights, wi are equal are B-spline curves and surfaces.
Figure 2.6 (a) shows a NURBS curve representing a circle with weights wk=0.707 at control points Pk, k=2,4,6,8.

Figure 2.6 (b) shows the curve with the same knot vector, degree and control points, but with uniform weights
wi = 1, i=1,2,..,9.

(a) NURBS curve with non-uniform weight (b) B-Spline curve

Figure 2.6: Circle with knot vector U=[0 0 0 0.25 0.25 0.5 0.5 0.75 0.75 1 1 1] ans degree l=2
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Chapter 3

Trimmed surfaces

3.1 Representation of Trimmed Surfaces

The trimming operation in CAD modifies which part of the surface is visible, but the parameters used to de-
scribe the surface mathematically remains unchanged.
A trimmed surface is described by the untrimmed surface and a set of trimming curves. The direction of the
trimming curves determine which part of the surface is in material region and which part is in void region:
Void region is to the right of the direction of increasing knot values. The trimming curves all form closed
loops, so that the entire boundary of the trimmed surface can be represented by a set of M trimming curves. In
addition, there can be inner trimming curves.
A distinction between inner and outer trimming curves is the direction of the curves: Inner trimming curves
has a direction that moves clockwise, while the direction of outer trimming curves are counterclockwise.

The surface and the trimming curves use a different set of parameters, thus making it challenging to relate
the two. Surfaces are described by the two parameters (s,t), while curves are described by only one parameter,
(u). In parameter space, curves are related to the parameters (s,t) by:

CPa
k (u) =

[
sk(u)
tk(u)

]
= ∑nk

i=1 Ri,l(u)P
Pa,k
i ,

k = 1,2, .., M

(3.1)

Where PPa,k
i are the control points of the trimming curve in parametric space, M is the number of trimming

curves, l is the polynomial degree and u curve parameter. sk and tk are the parameters of the curve on the
surface.
Figure 3.1 shows the parameter space of a trimmed surface with knot vectors U=V=[0 0 0 0 0.25 0.5 0.75 1 1 1
1] and polynomial degree p=q=3. There are six trimming curves which form two closed loops; one inner and
one outer. Five of the curves represent the outer boundary, while the last, C6 describes the inner.
The orientation of the inner boundary is clockwise, while the outer are counter-clockwise. Trimming curves
2,3,4 and 5 lie on the boundary of the untrimmed surface and does not actually contribute to the trimming of
the surface.
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Figure 3.1: Trimmed surface in parameter space described by the trimming curves, Ci

The untrimmed surface in physical space is:

S(s, t) =
n

∑
i=1

m

∑
j=1

Rij,pq(s, t)Pij, (3.2)

The trimmed surface is defined by the domain, D, which is represented by the trimming curves

Svisible =
{

S(s, t)|(s, t) ∈ D
}

,

D =
⋃

Ck

(3.3)

The curves which bound the surface in physical space can be found by mapping the parametric coordinates,
(sk(u), tk(u)), found from Eq.3.1 to the untrimmed surface, S(s, t)

CPh
k (u) = S(sk(u), tk(u)),

k = 1,2, .., M
(3.4)
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The surface from Figure 3.1 is plotted in physical space, and shown in figure 3.2.

Figure 3.2: Trimmed surface in physical space described by the trimming curves, Ci

The two major challenges to trimmed elements in Isogeometric Analysis are how to relate the trimming curves
to the surface in order to determine which part of the surface is trimmed, and how to perform analysis on
trimmed elements. The first will be addressed in this section, while the latter will be addressed in chapter
4.

3.2 Classification of Trimmed Elements

Each element of the untrimmed domain need to be classified as either trimmed or untrimmed. Untrimmed
elements have no trimming curves within their boundary. Further, untrimmed elements are classified as active
or inactive based on whether they lie within the trimmed domain.
Inactive elements are completely outside the trimmed domain, and they will in no way contribute to the stiff-
ness matrix. Untrimmed, active elements are treated in the same way in the integration of the stiffness matrix
as for conventional IGA.
For trimmed elements, the next step is to determine which parts of the element is trimmed and thus how the
Gauss integration points should be distributed.
Each trimmed element is classified into different cases based on which parts of the element is trimmed. Two
searching steps have been proposed for such classification.
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3.2.1 The First Searching step

Figure 3.3 shows the first searching step for classifying the elements.

Figure 3.3: First searching step for classifying elements.

The shortest distance from the trimming curve to the middle of the element is found. The inner and outer
radius are defined as:

rin = min{ si+1 − si
2

,
tj+1 − tj

2
} (3.5)

rout =
1
2

√
(si+1 − si)2 + (tj+1 − tj)2 (3.6)

Based on the relation between the length of the distance vector, |d|, the inner radius, rin, and the outer radius,
rout, we can draw the following conclusions:

1. If rin > |d|, the element is trimmed.

2. If rout < |d|, the element is untrimmed.

3. If rin ≤ |d| ≤ rout, it is unknown whether the element is trimmed or not.

If the first searching step provides information that the element is untrimmed, it is necessary to further classify
the element as active or inactive. This is determined by finding the cross product between the distance vector,
d and the tangential vector of the trimming curve,v, at the point closest to the centre of the element. The
tangential vector can be found as the derivative of the trimming curve.

v = C′(uc), (3.7)

where uc is the parameter of the trimming curve at the closest point to the centre of the element. The element is
inactive if d× v is negative, otherwise it is active. Figure 3.4 shows an untrimmed element where the direction
of the trimming curve and its placement relative to the element leads to a negative cross product. The element
is therefore inactive.

Figure 3.4: Classification of active or inactive element for first searching step.
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3.2.2 The Second Searching Step

If the element is trimmed or unknown, a second searching step is required. For this step, each vertex point is
used for reference instead of the middle-point.

The shortest distance vector, di, for each vertex point if found along with the corresponding tangential vector,
vi. Again the cross-product d× v determines if the vertex point is active or inactive.
If the cross-product is zero, there is an intersection point between the trimming curve and the element at the
vertex-point.
Figure 3.5 depicts a trimmed element with a trimming curve which leaves only vertex-point 2 active.

Figure 3.5: Second searching step for classification of elements.

3.2.3 The Trimmed Element Cases

If between 1 and 3 vertex points are active, the element can be classified into three main trimming cases:

1. One vertex-point is active, while the remaining vertex-points can be inactive or lie at an intersection
point. There are four sub-cases corresponding to this case; one for each vertex point that can be active.
An element represented by this case is shown in figure 3.6 (a), where vertex point 2,3 and 4 are active.

2. Two vertex points are active. The remaining can be inactive or lie at an intersection point. One exception
is if two vertex points are active, while the other two are at the intersection points;which means the ele-
ment is untrimmed.
For the case of two active vertex-points, it is important that the active vertex points are neighbouring
points, as shown in Figure 3.6 (b).
Cases where this does not apply will be discussed later. There are four sub-cases, one for each possible
combination of two active neighbouring vertex-points.

3. Three vertex-points are active, while the fourth must be inactive. If the fourth lies at an intersection point,
the element is untrimmed. There are four sub-cases, one for each vertex point which is inactive.
An example of this element is shown in Figure 3.6 (c), where vertex point 1 is active.
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(a) (b) (c)

Figure 3.6: Determining intersection points for the element cases: (a) One inactive vertex point; (b) Two
inactive vertex points; (c) Three inactive vertex points

3.3 Intersection Points

In order to determine which part of the trimming curve lies within each element, the intersection points need
to be located. These points are where the trimming curve enters and exits the element.
Since the element is defined in terms of (s,t), while the curve has coordinate u in parametric space, iteration to
a satisfactory solution is necessary. Figure 3.7 shows two trimmed elements of case 1 and 2 in parametric space.

(a) (b)

Figure 3.7: Finding intersection points between trimming curve and element: (a) Type 1 (b) Type 2.

For figure 3.7 (a) at the first intersection point, u1, we know that s = s1. Then we have the following rela-
tion:

s1 = C(u) (3.8)
u1 is the u-value where Eq.3.8 is true. With the intersection point in terms of the curve found, the unknown
coordinate for intersection point on the element is:

t = Ct(u1) (3.9)

When the element case and active vertex points are known, similar methods can be applied to all the element
cases mentioned previously.
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3.3.1 Special cases

There are some cases of trimmed elements where the boundaries of the trimming curves do not define an
element case suitable for analysis. The classification of elements described in this thesis require at least one
vertex point to lie within the void region.
Closed curves inside an element is one case where no vertex points are in void region, but the element is still
trimmed, as shown in Figure 3.8
The first searching step will classify the element as trimmed, but the second will classify it as untrimmed. In
order to properly classify the Element and perform analysis, refinement is necessary.

Figure 3.8: Closed trimming curve inside element

Another case is when the trimming curve crosses an edge, but no vertexes, as is the case in the first element in
Figure 3.9. It could be possible to classify the element as trimmed based on the first searching step and then
search the curve for any points lying on either edge, but for simplicity, refinement is done on these type of
elements.

Figure 3.9: Second searching step for classification of elements.

The other element in Figure 3.9 depicts another special case: the trimming curve exits the element and enters
back in. This type of element poses a difficult scenario because vertex points 1,3 and 4 are active, meaning the
element would be classified as case 1.
There are certain requirements for trimmed elements to be eligible for analysis: The sign of the tangential
vector at any point on the trimming curve can not differ from the sign of the tangential vector at the start of the
trimming curve in both s- and t-direction. This is called undercuts, and in the case for the element in Figure
3.9, there are undercuts in both directions. To find out if an element has undercuts, a searching step finds the
derivatives of the trimming curve at multiple steps along the curve and where they change.
Figure 3.10 shows two trimmed surfaces in parametric space along with the tangential vector at any location
where there are undercuts. As soon as an undercut is detected, this point becomes the new starting point for
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comparison. The direction of the trimming curve in Figure 3.10 (b) changes three times for the element, but
only in t-direction. This surface is therefore eligible for analysis. The surface in Figure 3.10 (a), however, has
undercuts in both s- and t-direction, and refinement is necessary. The element can either be divided into equal
parts until the condition is satisfied, or refinement can be done along the location of where the undercuts are
found.

(a) (b)

Figure 3.10: Locating points along the curve where the direction of the tangential vector changes.

Another special case, is when there are two trimming curves inside one element, as shown in Figure 3.11.
The searching steps for determining the element cases mentioned previously are performed on each curve
separately so it is possible to classify the element with two separate cases and subdivide the single element
during analysis. Subdivision could be performed between the two curves vertically or horizontally if

CI
s(u2) ≤ CI I

s (u2), (3.10)

or
CI

t (u1) ≤ CI I
t (u1), (3.11)

where u1 and u2 are the intersection points of the trimming curves. An example of a subdivision of this element
is represented as a stippled, vertical line.

Figure 3.11: Two trimming curves with subdivision in vertical direction.
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Chapter 4

Basis for Analysis

4.1 Analysis of Shells

Shell formulations focus mainly on effects which are relevant for shell structures. This is advantageous because
it saves computational time. Shells are curved, thin-walled structures. Ship hulls are typical shell structures
because of their curved body that the thickness is relatively small compared to the dimension of the structure.
The theory for shells is based on the theory for thin plates, although there is a major behavioural difference
for plates and shells subjected to external loading. A plate loaded laterally must be imposed by bending and
twisting moments in order for the plate to have static equilibrium. For shells, this is not the case, as membrane
stresses can transmit the loading. The membrane stresses are distributed uniformly over the thickness of the
shell act parallel to the tangential plane of the middle surface (9).
The two main theories for shell analysis are Reissner-Mindlin theory and Kirchoff-Love theory. Reissner-
Mindling is a refinement of Kirchoff-Love, where two additional shear stresses are taken into account. This is
used when the thickness is significantly smaller than the length and the width of the structure.
The Kirchoff-Love theory is used in this thesis. In addition to there being no transverse shear deformations,
the director remains straight and perpendicular to the mid surface during deformation. (1)

4.1.1 Equilibrium and the Principle of Virtual Work

If a geometry is in equilibrium, the forces does not produce any work.(10) The principle of virtual work repre-
sents the work by forces through a virtual displacement. We have equilibrium of internal and external forces
if the total virtual work, i.e the sum of the external and internal work is zero

δW = δWint + δWext = 0 (4.1)

The internal virtual work is negative, and can be represented as

δWint = −
∫

Ω
SδEdΩ (4.2)

The external virtual work can be described by

δWext =
∫

Ω
ρ · δudΩ +

∫
Γ

tΓ · δudΓ (4.3)

Ω is the physical domain, Γ is the boundary, S is the Piola Kirchoff stress, δE is the virtual Green-Lagrange
strain tensor, ρ is the body force, tΓ is the stress vector at the boundary, and δu is the virtual displacement (1).
Virtual work must be fulfilled for any variation of displacements

δW =
∂W
∂ur

δur = 0→ ∂W
∂ur

= 0 (4.4)

To solve the nonlinear system, Eq.4.4 is linearized

∂W
∂ur

+
∂2W

∂ur∂us
∆us = 0 (4.5)
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The residual force vector, R, comes from taking the derivative of the virtual work with respect to a displacement
variable, ur. (4)

Rr =

(
∂Wint
∂ur

+
∂Wext

∂ur

)
= Fint

r + Fext
r (4.6)

where Fint
r and Fext

r are internal and external nodal forces, respectively. The stiffness matrix is found by taking
the second derivative of the virtual work

Krs = −
(

∂2Wint
∂ur∂us

+
∂2Wext

∂ur∂us

)
= Fint

rs + Kext
rs (4.7)

Lastly, we have the equation system
Ku = R (4.8)

4.2 Isogeometric Analysis

In Isogeometric Analysis(IGA), the basis functions used to represent the geometry are used in analysis to ap-
proximate the solution field.
A NURBS-based Kirchoff-Love shell element was developed by Kiendl et al. (? ). The residual force vector
components are represented as

Rr =
∫

A

(
n :

∂ε

∂ur
+ m :

∂κ

∂ur

)
dA−∑

i

∫
A

Pi ·
∂ui
∂ur

dA−∑
j

Fj ·
∂uj

∂ur
, (4.9)

and the stiffness matrix is expressed as

Krs =
∫

A

(
∂n
∂us

:
∂ε

∂ur
+ n :

∂2ε

∂ur∂us
+

(
∂m
∂us

:
∂κ

∂ur
+ m :

∂2κ

∂ur∂us

)
dA + Kext

rs . (4.10)

n is an internal membrane force, while m is an internal membrane moment. ε represents the strains, and κ is
the curvature. P and F are area and point loads.

4.2.1 Integration of NURBS surfaces

Integration of NURBS surfaces are performed element-wise using [p+1,q+1] quadrature points. The element
stiffness matrix is approximated as the sum of the element stiffness matrix for each Gauss quadrature point,
with the corresponding weighs and Jacobian mapping. Then the total stiffness matrix is constructed, and
solved for a chosen set of boundary conditions and external forces from Eq. 4.8. The area of an element,
represented by knot span indices ij is

|A|ij =
∫

Aij

dAij =
∫ send

sstart

∫ tend

tstart
J1dsdt =

∫
G

J1 J3dG (4.11)

where sstart, send and tstart, tend are the starting and ending points of the element in s- and d-direction in para-
metric space. The jacobian, J1 is the mapping from geometry to parameter space, and J3 is the mapping from
parameter space to Gaussian space.

J1 = |A1xA2|, J3 =
∂s

partialξ
∂t

partialη
, (4.12)

where ξ and η are the paraters in Gaussian space.
The area can be approximated as a sum of all mappings, using ng quadrature points, and the weights wl
corresponding to the integration points ξl ,ηl :

|A|ij ≈
ng

∑
l=0

J1(ξl ,ηl)J3(ξl ,ηl)wl . (4.13)
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4.2.2 Refinement

There are two methods of refining a NURBS surface or curve; knot insertion and order elevation. Both increase
the accuracy of the analysis, and both lead to a higher number of control points. Knot insertion divide the
surface into smaller parts by adding non-existing knots to the knot span. One control point is added for every
knot.
Knots can also be added at existing knots to decrease the continuity at the knot. Order elevation does not
change the number of elements, but existing knots are added, to keep the continuity at the knots. Knot insertion
is analogous to h-refinement in FEA, as both methods lead to a higher number of elements. the major difference
between refinement of NURBS surfaces and refinement in FEA is that the geometrical shape always remains
the same in IGA. Order elevation is analogous to p-refinement in FEA.
Local refinement of NURBS surfaces is not possible, because knot insertion extends the whole patch. An
alternative to NURBS are T-splines which permits T-junctions. This means the knot does not need to extend
the whole patch, thus making local refinement possible. T-splines also allow more control of the control points,
thus making it possible to have fewer control points at locations that are not important in an analysis. This is
advantageous when it comes to computational effort and time.
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Chapter 5

Analysis of Trimmed Elements

Trimmed elements can not be treated as normal, untrimmed elements in Isogeometric Analysis. First of all,
the inactive elements should not be considered for the integration of the stiffness matrix. Trimmed elements
contribute to the stiffness matrix, but the location of the Gauss quadrature points need to be mapped in some
way to represent the actual geometry of the element by accounting for the trimming curve.

What changes during the integration of the stiffness matrix is the area of a knot span ij if the knot span rep-
resents a trimmed element and the location and weights of the quadrature points. There are several methods
proposed for the mapping of trimmed elements.
Three of these will be discussed in this chapter: NURBS enhanced triangles introduced in Kim et al. (6; 7),
Adaptive Gaussian integration procedure (AGIP) proposed by M. Breitenberg (2), and the blending function
method presented by Guo et al. (5).

5.1 NURBS Enhanced Triangles

NURBS Enhanced Triangles are a method used for integration of trimmed surfaces. The trimmed elements
are divided into triangles and NURBS curved triangles. For the three cases of trimmed elements previously
mentioned, the division is shown in Figure 5.1.

(a) Case 1 (b) Case 2 (c) Case 3

Figure 5.1: Subdivision of elements intro triangles and NURBS curved triangles for the three element cases
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5.1.1 Untrimmed quadrilateral elements

The untrimmed elements are normal quadrilateral elements defined by the knot spans [si, si+1] and [tj, tj+1].
Figure 5.2 shows the mapping of an untrimmed element from Gaussian space to parametric space.

Figure 5.2: Mapping from Gaussian space to Parametric space for untrimmed, quadrilateral elements.

The coordinates in parametric space can be found from the relation:

R : {ξ,η} → {s, t}

[
s
t

]
=

[
si+1−si

2 (ξ − 1) + si+1
tj+1−tj

2 (η − 1) + tj+1

] (5.1)

Where (ξ,η) are the parameters in Gaussian space. The Jacobian is defined as:

JR =

[
∂s
∂ξ

∂t
∂ξ

∂s
∂η

∂t
∂η

]
=

[
si+1−si

2 0

0
j+1−tj

2

]
(5.2)

|J| = |JR| (5.3)

5.1.2 Normal, Triangular Elements

The subdivided elements which form normal triangles can be integrated using Gauss quadrature points for tri-
angles, and a mapping from triangular Gaussian space to a triangle in parametric space, as shown in figure5.3.
The Gauss integration points for triangular elements, (ξT,l ,ηT,l), and their corresponding weights, WT,l can be
found as

ξT,l =
(1+ξi)

2 , ηT,l =
(1−ξi)(1+ηj)

4 , WT,l =
(1−ξi)

8 wiwj,

k = 1,2, ...,nint, i, j = 1,2, ...,ng.
(5.4)

where ξi,ηj are the Gaussian integration points in ξ- and η-direction with wi and wj being their corresponding
weights.
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Figure 5.3: Mapping from Gaussian space to Parametric space for normal, triangular elements.

The Parametric coordinates (s,t) for each triangular Gauss point is found by using the coordinates of the ver-
texes of the triangles.
These can be found as intersection points and vertexes of the quadrilateral element.
For example, the vertices of the triangular sub-element in Figure 5.1 (b) are defined by vertex point 1 and 2 of
the original quadrilateral element, and intersection point, u1.
The mapping from Gauss space to a trinagular domain in parameter space is defined by:

RT {ξT ,ηT} → {s, t}[
s
t

]
=

[
(1− ξT − ηT)s1 + (ξT)s2 + (ηT)s3
(1− ξT − ηT)t1 + (ξT)t2 + (ηT)t3

] (5.5)

JRT
=

[
∂s
∂ξ

∂t
∂ξ

∂s
∂η

∂t
∂η

]
=

[
−s1 + s2 −t1 + t2
−s1 + s3 −t1 + t3

]
(5.6)

The area of a trimmed element for triangular elements is found by the Jacobian as.

|Ω(h)
ij | ≈

ng

∑
l=1
|J1(ξl ,ηl)||JRT (ξT,l ,ηT,l)|WT,l (5.7)

Where J1 is defined in Eq.4.12, and ng are the number of integration points.
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5.1.3 NURBS enhanced triangles

NURBS enhances triangles uses several mappings from Gaussian space to parametric space.
First, the quadrilateral Gaussian space is mapped to a quadrature space Ψe which ranges from [0,1] in z-
direction and [u1,u2] in u-direction. u1 and u2 are the intersection points between the trimming trimming
curve and the element where

0≤ u1 < u2 ≤ 1 (5.8)

.
This mapping is shown in Figure 5.4.

Figure 5.4: Mapping from Gaussian space to rectangular space with boundaries z = [0,1] and u = [u1,u2].

The mapping P is defined as:
P : {ξ,η} → {u,z}

[
u
z

]
=

[
ξ
2 (u2 − u1) +

1
2 (u2 + u1

η
2 + 1

2

] (5.9)

And the Jacobian of the mapping P is:

JP =

[
∂u
∂ξ

∂z
∂ξ

∂u
∂η

∂z
∂η

]
=

[ u2−u1
2 0
0 1

2

]
(5.10)

The second mapping is from the quadrilateral space Ψe to a triangular space Te with vertices (0,1), (1,0) and
(0,0). In addition the domain Te has a NURBS curve φ(u) which intersects Te at vertices (0,0) and (1,0).

Figure 5.5: Mapping from rectangular space to triangular domain defined by vertices (0,1), (0,0) and (1,0) and
a NURBS curve φ(u)
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The parameters of Te are (X,Y), which can be found by:

Q : {u,z} → {X,Y}X

Y

 =

 φX(u)(1− z)

φY(u)(1− z) + z

 (5.11)

How to determine φ(u) will be discussed below. The Jabobian of the mapping Q is:

JQ =

 ∂X
∂u

∂Y
∂u

∂X
∂z

∂Y
∂z

 =

 ∂φX(u)
∂u (1− z) ∂φY(u)

∂u (1− z)

−φX(u) −φY(u) + 1

 (5.12)

The last mapping is the mapping from the triangular space Te to the triangular sub-element in parametric
space, Ωpa, shown in figure 5.6.

Figure 5.6: Mapping from triangular domain Te to parametric space Ωpa.

The coordinates (s2, t2) and (s3, t3) are found by the intersection points, u1 and u2.

(s2, t2) = C(u1), (s3, t3) = C(u2), (5.13)

while (s1, t1) lies on one of the vertex points of the original element. Them, the parametric coordinates s and t
can be expressed as:

R : {X,Y} → {s, t}[
s
t

]
=

[
(Y)s1 + (1− X−Y)s2 + (X)s3
(Y)t1 + (1− X−Y)t2 + (X)t3

] (5.14)

And the Jacobian of the mapping R is found by:

JR =

[
∂s
∂X

∂t
∂X

∂s
∂Y

∂t
∂Y

]
=

[
−s2 + s3 −t2 + t3
s1 − s2 t1 − t2

]
(5.15)

The total mapping is the product of all determinants of the separate mappings.

|J| = |JP||JQ||JR|, (5.16)

and so the area of the trimmed element can be described as

|Ω(h)
ij | ≈

ng

∑
l=1
|J1||J(ξl ,ηl |Wl , Wl = wiwj (5.17)
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where wi and wj are the weight corresponding to the quadrature points ξl and ηl respectively. The NURBS
curve φ(u) can be found from the relation

φ(u) =
[

φX(u)
φY(u)

]
= [A1]

−1

([
Cs(u)
Ct(u)

]
− [A2]

)
, (5.18)

Where [A1] is a 2x2 matrix and [A2] is a 2x1 matrix.

The derivative can then be expressed as: [
∂φX(u)

∂u
∂φY(u)

∂u

]
= [A1]

−1

[
∂C,s(u)

∂u
∂C,t(u)

∂u

]
(5.19)

The matrices [A1] and [A2] are found from the relation:

[
s
t

]
= [A1]

[
X
Y

]
+ [A2] (5.20)

Rearranging Equation 5.15 gives an expression for the two A-matrices:[
s
t

]
=

[
s3 − s2 s1 − s2
t3 − t2 t1 − t2

][
X
Y

]
+

[
s2
t2

]
(5.21)

5.2 Adaptive Gaussian Integration Procedure

The idea behind Adaptive Gaussian Integration Procedure is to reconstruct a trimmed element inside a Gaus-
sian space, GA, and distribute the Gaussian quadrature points to the untrimmed, constructed surface.
For a trimmed element, the curve is scaled and shifted to fit the Gaussian space [-1,1], and rotated so that only
the height, GA

H varies with respect to ξ, as shown in Figure 5.7

Figure 5.7: Mapping of trimmed element from parameter space to Adaptive Gaussian space
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The linear mapping from parametric space to Gaussian space is given by

J = | ∂s
∂ξ

∂t
∂η
|, (5.22)

when the rotation is 0◦ or 180◦, and

J = | ∂s
∂η

∂t
∂ξ
|, (5.23)

when the rotation is 90◦ or 270◦.
The rotated, shifted and scaled curve in Gaussian space is used to create a surface, Ŝ(ξ,η).
The surface will be the basis for a set of quadrature points, (ξA

l ,ηA
l ), distributed over the untrimmed surface

in the Adaptive Gaussian space. The Adaptive quadrature points can be found from:

(ξ A
l ,ηA

l ) = Ŝ(ξl ,ηl), l = 1,2, ...,ng, (5.24)

where ng are the number of quadrature points. the adaptive quadrature weights are given as

wA
l = J̃(ξ,η)wl , (5.25)

where J̃ represents the mapping of the adaptive Gaussian space, similar to Eq.5.23. Using ng quadrature points,
the area of a trimmed element can be computed as

|Ω(h)
ij ≈

ng

∑
l=1

J1(ξ̂
A
l , η̂A

l )J2(ξ̂
A
l , η̂A

l )w
A
l (5.26)

J1 is the mapping from physicaL space to parameter space, defined in Eq.4.12
To create the surface Ŝ, C0 continuity is imposed on the curve at intersection points, u1 and u2, of each trimmed
element.
Figure 5.8 (a) shows a trimmed element in parameter space with trimming curve, C(u). The curve is then
scaled to u=[-1,1] to fit the Gaussian space.
There is no need for rotation or fitting for this particular element. Figure 5.8 (b) shows the constructed surface
in Gaussian space.

(a) Trimmed element in parametric space (b) Untrimmed surface in Gaussian space

Figure 5.8: Construction of an untrimmed surface from the mapping of a trimming curve
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The location of the adaptive Gaussian quadrature points from found by Eq.5.24 are shown in Figure 5.9 (a).
These integration points are then mapped back to the parameter space and used for integration of the stiffness
matrix. The integration points in parameter space are shown in 5.9 (b).

(a) Gaussian space (b) Parameter space

Figure 5.9: Location of integration points for analysis

All trimmed elements that are valid for analysis can be represented by an adaptive Gaussian surface by shift-
ing, scaling and/or rotation of the trimming curve segments with C0 continuity at intersection points. Figure
3.11 shows a trimmed element with rotation of trimming curve 270◦.

(a) Trimmed element in Parameter space (b) Untrimmed, rotated and scaled surface

Figure 5.10: Scaling and rotation of trimming curve into Gaussian space to construct adaptive Gaussian surface
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5.3 The Blending Function Method

The blending function method aims to reconstruct the material region of trimmed elements by dividing the
trimming curves at all intersection points, thus giving each trimmed element a separate part of the trimming
curve.
The method uses two categories of mapping: Mapping of quadrilateral trimmed elements, and mapping of
triangular trimmed elements. These mappings will be discussed further below. Further, any trimmed element
which does not represent a triangular or quadrilateral geometry, can be subdivided in various ways until it
does.
There are two important aspects to this method, the first being that all curves must be C0 continuous at all
intersection points. This is done to divide the trimming curves into curve segments.
The second aspect is that any curve segments with internal C0 knots must be subdivided at the location of the
knot.
The area of a trimmed element segment used for integration of the element stiffness matrix is found by

|Ω(h)
ij | ≈

ng

∑
l=1
|J1(ξl ,ηl)||JR(ξl ,ηl)|wl (5.27)

where wl are the quadrature weight corresponding to each quadrature integration point, (ξl ,ηl), and ng are
the number of integration points. How to find the mapping, JR, for various element cases will be described in
detail in this section.

5.3.1 Quadrilateral trimmed elements

Figure 5.11: Mapping of quadrilateral elements from gauss space to parametric space

Figure 5.11 shows the mapping, RQ from Gaussian space to parametric space for a trimmed quadrilateral
element. Cn(η) is the trimming curve segment which is parametrized with respect to η=[-1,1]. P1 and P1 are
vertex points of the element. The mapping is given by:

RQ : {ξ,η} → {s, t}[
s
t

]
= 1

4 ((1− ξ)(1− η)P1 + (1− ξ)(1 + η)P4) +
1
2 Cn(η)(1 + ξ),

(5.28)
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Similar mapping exists for various rotation of the element. This means all quadrilateral trimmed elements can
be mapped using this method, as long as the conditions for a valid element cases are met.
The other three quadrilateral elements with a rotation of 90◦, 180◦ and 270◦ are shown in Figure 5.12.

(a) Rotation 90◦ (b) Rotation 180◦ (c) Rotation 270◦

Figure 5.12: Rotation of quadrilateral trimmed elements for mapping

The various rotations require different parametrizations of the trimming curve segments, as can be seen in
Figure 5.12. The mapping for the different rotations are given below.

90◦Rotation :
[

s
t

]
=

1
4
((1− ξ)(1 + η)P1 + (1 + ξ)(1 + η)P4) +

1
2

Cn(ξ)(1− η), (5.29)

180◦Rotation :
[

s
t

]
=

1
4
((1 + ξ)(1 + η)P1 + (1 + ξ)(1− η)P4) +

1
2

Cn(−η)(1− ξ), (5.30)

270◦Rotation :
[

s
t

]
=

1
4
((1 + ξ)(1− η)P1 + (1− ξ)(1− η)P4) +

1
2

Cn(−ξ)(1 + η), (5.31)

The Jacobian for quadrilateral trimmed elements is given by:

JR =

[
∂s
∂ξ

∂t
∂ξ

∂s
∂η

∂t
∂η

]
(5.32)

5.3.2 Triangular trimmed elements

The mapping for triangular trimmed elements are based on the one for quadrilateral, where two corners of
the active domain are joined together. The mapping from Gaussian space to parametric space for a triangular
trimmed element, RT is shown in figure 5.13.

Figure 5.13: Mapping of triangular elements from Gauss space to parametric space
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The trimming curve segment is parametrized with respect to ξ=[-1,1], and the mapping can be found by the
relation:

RT : {ξ,η} → {s, t}[
s
t

]
= 1

4 ((1 + ξ)(1 + η)P2 + (1− ξ)(1 + η)P4) +
1
2 Cn(ξ)(1− η),

(5.33)

Following the procedure of the quadrilateral trimmed elements, the element can be rotated to depict all possi-
ble and valid cases of trimmed triangular elements.

(a) Rotation 90◦ (b) Rotation 180◦ (c) Rotation 270◦

Figure 5.14: Rotation of triangular trimmed elements for mapping

Figure 5.14 shows the triangular element rotated 90◦, 180◦ and 170◦, with the respective parametrizations of
the trimming curve segments. The mapping, RT for the three cases are:

90◦Rotation :
[

s
t

]
=

1
4
((1 + ξ)(1− η)P2 + (1 + ξ)(1 + η)P4) +

1
2

Cn(−η)(1− ξ), (5.34)

180◦Rotation :
[

s
t

]
=

1
4
((1− ξ)(1− η)P2 + (1 + ξ)(1− η)P4) +

1
2

Cn(−ξ)(1 + η), (5.35)

270◦Rotation :
[

s
t

]
=

1
4
((1− ξ)(1 + η)P2 + (1− ξ)(1− η)P4) +

1
2

Cn(η)(1 + ξ), (5.36)

The Jacobian for trimmed triangular elements is found the same way as for trimmed quadrilateral elements.

JR =

[
∂s
∂ξ

∂t
∂ξ

∂s
∂η

∂t
∂η

]
(5.37)
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5.3.3 Subdivision of trimmed elements

There are two cases where subdivision is necessary when applying the blending function method to analysis
of trimmed elements: If the element is classified as case 1, or if there are internal C0 knots inside a trimming
curve segment.
Elements of case 1 have three active vertex points and one inactive. This means the shape of the domain does
not represent a quadrilateral geometry, nor a triangular. Figure 5.15 is an example of this element type, where
vertex point 1 is inactive.

(a) Horizontal subdivision (b) Diagonal subdivision

Figure 5.15: Subdivision of elements classified as case 1.

There are several ways to subdivide this type of element. One method is to subdivide horizontally or vertically
at the beginning or the end of the trimming segment, depending on the location. This is shown in Figure 5.15
(a). Another method is shown in 5.15 (b), where the element is subdivided diagonally from the middle of the
trimming curve segment. The advantage to diagonal subdivision is that the two sub domains will be approx-
imately equal in area, meaning the Gauss quadrature points will be evenly spaces. However, this requires
further division of the trimming curve segments.
As shown in 5.15 (b), the curve segment Cn is divided into CI and CI I . For simplicity, horizontal subdivision
will be used in this thesis.
For the case of internal C0 knots, the elements must be subdivided at this location. Figure 5.16 shows a quadri-
lateral and a triangular trimmed element with internal C0 knots. The quadrilateral element is subdivided into
two quadrilateral elements.
In the case of additional inner C0 knots, more subdivisions into quadrilaterals will be performed. For the case
of triangular element, subdivision leads to one triangular element, and one quadrilateral. Again, multiple C0

knots produces multiple quadrilaterals.

(a) Quadrilateral trimmed elements (b) Triangular trimmed elements

Figure 5.16: Subdivision of elements because of inner C0 knots
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5.4 Conditions for the integration domain

Integration of the element stiffness matrix for the trimmed element cases described in Chapter 3 can be per-
formed using either mapping presented above.
As mentioned, there are some conditions which need to be fulfilled in order for the integration domain to be
suitable for analysis.

1. Undercuts can only occur in one direction, s or t.

2. No closed curves inside an element

3. There can only be one trimming curve per element

4. The trimmed element must be represented by one of the three cases, meaning the trimming curve must
cross at least one of the element vertex points.

The trimmed surface in Figure 3.10 (a) has undercuts in both s- and t-direction.
To illustrate the problem with this type of trimmed elements, the Gauss quadrature points are plotted and
shown in Figure 5.17.
At the location of the second undercut, the element becomes unavailable for analysis because the integration
points appear outside of the trimmed domain.

Figure 5.17: Integration points for an element with undercuts in s- and t-direction.

5.5 Determination of active control points

Even though an element is classified as inactive, meaning it lies outside of the trimmed domain, it might
contain active control points. For analysis of trimmed surfaces it is important to identify inactive control
points and exclude their contribution in the relation

Ku = R (5.38)

Figure 5.18 shows a trimmed surface in physical space with control points and a control point net. There are
11 control points in each direction, x and y.
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Figure 5.18: Trimmed surface in physical space.

Figure 5.19 shows the surface in parametric space, with the knot spans marked si, tj. The knot vectors S,
and T each consists of 15 knots. The polynomial degrees are p=q=3. The indexes 1-3 and 13-15 are zero-knots
spans. The remaining index spaces i,j represent trimmed, untrimmed or inactive patches. There are six inactive
patches, three at the upper right corner, and three at the lower left corner. The trimmed elements has influence
over the control points (i-p+b,j-q+c), where b=1,2,..,p and c=1,2,..,q. Because of this only the three rightmost
control points in the lower corner and the three leftmost control points in the upper corner are inactive.

Figure 5.19: Trimmed surface in physical space.

The displacements of the inactive control points, [d10,1 d11,1 d11,2 d1,10 d1,11 d2,11] are set to zero for the analy-
sis.
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5.6 Comparison of the mapping methods

Apart from the conditions the trimmed elements must satisfy for analysis, some of the mapping methods also
have additional conditions to fulfill.
As mentioned, the adaptive Gaussian integration procedure requires C0 continuity of the trimming curve at
all intersection points. This requires, in most cases, a refinement of the trimming curve at this location.
The blending function method requires the trimming curve to be fully divided into segments by imposing C−1
continuity at the intersection points. In addition, the element must be subdivided in the event of any internal
C0 knots.
The trimmed surface in Figure 5.19 har three trimming curves. For the blending function method, all three
curves are divided into smaller segments, which can be seen in figure 5.20.

Figure 5.20: Refinement of trimming curves by imposing C−1 continuity at intersection points.

The NURBS enhanced triangles mapping requires no refinement of the trimming curves, which can be advan-
tageous in terms of computational time. The adaptive Gaussian integration procedure holds and advantage to
the other two, in that it requires less subdivision of elements.
Subdivision of the NURBS enhanced triangles are required for elements classified as both case 1 and case 2.
How the elements are subdivided is determined based on which vertex points are active, which can lead to
some sub-section triangles being represented by a much smaller area than the rest of the elements. For the
blending function method subdivision is only required for elements of case 1, but if there are inner C0 knots,
element cases 2 and 3 might also be subdivided.
Subdivision requires more computational time, and gives a more uneven distribution of quadrature points.
The trimmed surface from Figure 5.20 is used to show the distribution of integration points using the three
mapping methods discussed. Figure 5.21, 5.22 and 5.23 shown the quadrature points for the blending function
method, the NURBS enhanced triangles method and the adaptive Gaussian integration procedure, respec-
tively.
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Figure 5.21: Integration points using the blending function method

Figure 5.22: Integration points using the NURBS enhanced triangles method.

Figure 5.23: Integration points using the adaptive Gaussian integration procedure.
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Chapter 6

Structural Analysis of Ship Hulls

Computer simulations are often used in ship design, using mathematical equations to define displacements
and stresses on the different parts of the hull. There are many different aspects to analyzing ships. Hydrody-
namic analysis is important for the performance of the ship in water, wrt. speed, stability and safety among
other factors. Buckling-, strength- and fracture- analysis are also crucial for ships. Ship hulls are exposed to
a number of loads in addition to the weight of the cargo and the structure. The water creates a pressure on
the bilge of the hull, which depend on the waves. Wind forces are another environmental load, which can
affect the stability of the ship hull. Computational fluid dynamics simulations are important when it comes
to propulsion design, as for example corrosion is important to avoid. CFD can also be used in hull design, to
minimize drag forces.

6.1 Analysis using FEA

The finite element method (FEM) is common practice for analyzing ship hulls. Often, the geometry is created
in CAD and imported into a computer program which implements the theory behind FEM for analysis. FEA
divides the structure into small elements, and in doing so approximates the original geometry. The collection
of elements which make up the structure is called a mesh- Refinement in the form of a finer mesh will improve
the quality of the result. Mesh convergence studies are often performed, in which the number of elements are
doubled for each analysis, until a converged solution has been reached. The use of FE computer programs
helps make analysis of complex structures faster, simpler and more accurate. It also makes it easy to make
changes to the geometry and simulate various loading cases, making it possible to find a more optimized
model.

6.2 Ship Hull Dimensioning

Basic dimensioning of ships is based on guidelines and knowledge from experience. Solutions obtained from
analysis and model testing help build on this knowledge. The finite element method allows for more detailed
structural analysis. Classification societies provide some guidelines to the creation of models, and whether
or not simplifications can be made. Structurally, a ship can be seen as beam with varying mass and stresses
which cause bending and torsion. There are requirements developed for ship building which defines certain
dimensions based on loading conditions. This includes the thickness of the shell and other components such as
girders and stiffeners. These guidelines and requirements form the basis for the dimensioning of the ship hull.
After the main dimensions have been layed out, analysis, often using FEM, can be performed to determine the
remaining dimension. A sufficient analysis is crucial to determine whether the ship will be able to withstand
the expected stresses and forces it will be subjected to during its lifetime.
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6.3 Global and Local Models

An optimal shape of the ship hull is important for the stability, speed, resistance and many other aspects.
Figure 6.1 shows an example of a ship hull created in Rhino

Figure 6.1: Ship hull created in Rhino

Line drawings are often used for designing the shape of the hull. A grid which shows longitudinal lines and
water lines is the basis for such drawings. One plane shows the profile of the ship, and the lines in longitudinal
direction. The half breath plan shows the lines of the ship from above/below, and the body plan shows the
cross section.The line drawings used to create the ship hull are shown in Figure 6.2

Figure 6.2: Top left: Profile. Top right: Perspective. Bottom left: half breath plan. Bottom right: body plan

Ship are composed of a number of components which make up the entire hull. The entire ship, containing all
parts of the structure is called a global model. When analyzing global models, division into smaller parts is
usually done in a large scale. Small components such as stiffeners and girders are not analyzed separately, but
included in the stiffness of the larger components. The overall performance of the ship hull is what is investi-
gated during the global analysis.
Local model divides the ship further into smaller parts. All parts of the hull is analyzed for during local
analysis. This allows for precise stress analysis. Local models are analyzed based on displacement from neigh-
bouring components.
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6.4 Isogeometric Trimmed Elements used for Ship Hull Analysis

Isogeometric analysis performs analysis on an exact geometry description, unlike FEA, where the geometry
is approximated. Because of this IGA should hold an advantage to classical FEA programs, in reaching a
more accurate solution faster. Isogeometric analysis of trimmed structures allow for trimming in CAD, unlike
conventional IGA. A trimmed surface representing a local part of a ship hull will be analyzed using both FEA
and IGA. FEA models with very fine mesh will be used as a reference solution. figure 6.3 shows various
components of a ship hull

Figure 6.3: Part of a Ship hull

As seen from the figure, a lot of the parts consist of plates with holes. an important aspect to analysis of ship
holes is therefore an accurate analysis of these type of components.

6.5 Analysis of A Plate With a Hole

A geometry represents a quarter of a plate with a hole in the middle which will be subjected to a pressure load
along the vertical edges. The plate can be modelled as a quarter plate because of symmetry. The quarter plate
is therefore a local model of another local model.
The boundary conditions are imposed at the edges where the local model is connected to the plate. The loading
is applied along the vertical edge, and has a magnitude of 20 [MPa]. The direction of the loading is in the
negative x-direction.
All four local parts will have the same results for stress and displacements. The Trimmed surface created in
Rhino is shown in Figure 6.4.
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Figure 6.4: Trimmed surface from Rhino

The surface was also created without the use of trimming, shown in Figure 6.5

Figure 6.5: Untrimmed surface from Rhino

The untrimmed surface is analyzed using an existing matlab code which implements the theory behind NURBS
surface shell analysis. The trimmed surface will be analyzed using my own matlab code for trimmed isogeo-
metric elements elements, based on the theory discussed in this thesis. The trimmed surface is imported to the
FE program Abaqus. Two of the meshes used in Abaqus are shown in Figure 6.6. The first mesh clearly shows
how the surface is approximated using FEA.
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(a) (b)

Figure 6.6: Mesh of 4x4 and 16x16 elements in Abaqus

The displacements at the lower part of the edge imposed by a loading are compared for untrimmed IGA,
trimmed IGA and FEA.

1Mesh size 11x1 12x2 14x4 18x8
Trimmed IGA -0.0047 -0.0050 -0.0052 -0.0052
Untrimmed IGA -0.0047 -0.0052 -0.0052 -0.0052
FEA 0.0033 -0.0039 -0.0050 -0.0052

The table above clearly show that IGA converges quicker than FEA. The untrimmed isogeometric surface
reaches a converged soultion already at a mesh of only four elements. The finite element doesnt reach the
same value untill the mesh is refined to 8x8 elements.

Stresses are also investigated for the plate. Since The untrimmed Nurbs surface is constructed with parametric
coordinates s, and t it is difficult to compare the stresses to those for the model in Abaqus. This is because
the s,t coordinates are not defined as the linear directions x,y,z. The trimmed NURBS surface however, has
parametric coordinates s,t which behave linearly. This is because the surface is created as a rectangular surface
and then trimmed. Because of this, it is possible to compare the stresses at a point on the trimmed IGA surface
and the FE model. The stress component suu for the IGA model is compared to s11 from Abaqus. The results
at the lower corner of the hole is presented in the table below.

1Mesh size 12x2 14x4 18x8 116x16 132x32
Trimmed IGA 61.4915 78.7546 82.4675 72.2577 71.6861
FEA 30.9218 35.7997 48.1502 59.9639 64.0063

A very fine mesh was also created in Abacus to verify the result, and act as a reference solution. At this mesh,
the stresses had converges, which means the solution is accurate enough. The reference solution at this point
was found to be s11=71.6510 [Mpa]. The Nurbs surface does not differ too much from this solution for all
meshes, and the final refinement of 32x32 elements lies within the boundary for an accurate solution. There is
even a possibility that this solutions is more accurate than the one obtained from the FE surface. The stresses
for the FEA has not yet reached an approximate solution, even for the finest mesh.
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Chapter 7

Conclusion and further work

The mapping functions discussed work well for the cases looked at in this thesis. The quadrature points are
shown to be mapped on to the active domain of trimmed elements. Implementation of the conditions for anal-
ysis can be complicated when taking into account all the possible integration domains.
So far, the Matlab code implementing the mapping and the element detection works for most element types
that satisfy the conditions for analysis.
Further work could be done to account for more trimmed element cases, such as multiple trimming curves in
one element, and elements with trimming curves which crosses an element edge in stead of a vertex. However,
this would lead to a much more complex system and searching algorithms, so there might be advantageous
to simply perform refinement of the surface for such cases. The method discussed which offers the lowest
computational time is the NURBS enhanced triangles method. No knot insertion in necessary, unlike the other
two.
This also saves computational effort, because there are fewer trimming curves and thereby fewer parameters
to sort and keep track of during the integration.
However, there is more subdivision for this method, where elements of case 1 are divided into three parts,
while elements of case 2 are divided into two. Some of these subdivisions may represent very small integra-
tion areas, which is unnecessary and might even be a disadvantage.
Further investigation into the subdivision of trimmed elements would be interesting. Some algorithm which
determines the subdivision with the objective to find the most evenly distributed areas could be useful. In
addition, the effect of trimmed elements which define notably small areas, could be investigated.
Are the integration of such elements harmful for the analysis, or just unnecessary use of computational time.
Further, how small would the trimmed element have to be in relation to the rest, for it to be considered neg-
ligible. Analysis of a simple trimmed model using IGA, trimmed IGA and FEA proves that NURBS hold an
advantage to Finite Elements because it represents an exact geometry. Trimmed analysis also proved to be a
good method for analyzing the model. Futher investigation of trimmed analysis would be useful to identify a
larger scope of its abilities. For example, if there are any elements which could not be analyzed using trimmed
IGA. It would be interesting to look at more global components of ship hulls, and investigate how they all
relate to form the global model.
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