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Abstract
In numerous engineering disciplines, including naval and offshore engineering, the accurate prediction
of turbulent flows is essential for cost-efficient and safe designs. For industrial applications, the
turbulence must be modelled, and the development and understanding of appropriate turbulence
modelling for a given type of problem follows an extensive set of case studies. The present thesis
aims to be a contribution to that endeavor with respect to separating bluff body flows.

This thesis evaluates the ability of a set of RANS, hybrid and LES turbulence models to
predict the flow around the 6:1 prolate spheroid at 45◦ incidence at Re = 16000 based on the minor
axis. The flow configuration under investigation is the topic of an ongoing series of DNS studies at
NTNU Trondheim, where preliminary results at Re = 16000 were used for model validation. This
bluff body flow is a challenging turbulence modelling test case, which contains complex features as
laminar-turbulent transition, flow separation, unsteadiness and an asymmetric wake. Thus, the test
case is well suited to investigate shortcomings of different models and to drive model development.
All simulations were performed with the CFD software OpenFOAM, and the models were verified
and validated (V&V) with the standardized procedures in ASME (2009) and Hills (2005).

Because of issues with numerical stability, the V&V procedures could only be followed for
RANS and hybrid models, whereas a less formal evaluation was performed for the LES models.
The RANS models and hybrid models, which required numerical damping, exhibited a steady and
symmetric flow about the meridional plane. The Smagorinsky LES model was able to predict the
wake asymmetry, but it was less severe than that seen in the DNS study. Based on the stabilized and
the undamped results prior to instability, unsteadiness and turbulence anisotropy at the near-body
are assessed as critical aspects of the flow. These features of the flow are seen as essential in
developing wake oscillations of sufficient magnitude to establish the wake asymmetry. Accordingly,
hybrid models with an anisotropic RANS mode and LES models are recommended for modelling of
this configuration and similar ones. Due to the shortcomings of this study and the continuous need
for further V&V studies of bluff body flows, possible methodological improvements for a future
V&V study of this flow configuration are discussed.
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Sammendrag
I en rekke tekniske disipliner, inkludert marine- og offshore-engineering, er nøyaktig simulering
av turbulente strømninger avgjørende for kostnadseffektive og trygge design. For industrielle
applikasjoner må ofte turbulensen modelleres, og utvikling og forståelse av passende turbulensmod-
ellering for et gitt type problem følger et omfattende sett av casestudier. Denne oppgaven har til
hensikt å være et bidrag til den innsatsen med hensyn til separerende butte legeme strømninger.

Denne oppgaven evaluerer evnen til et sett med RANS, hybrid og LES turbulensmodeller for
å forutsi strømningen rundt en 6 : 1 prolate sfæroide ved 45◦ vinkling ved Re = 16000 basert på
den mindre aksen. Strømningskonfigurasjonen som undersøkes er temaet for en pågående serie
DNS-studier ved NTNU Trondheim, der foreløpige resultater ved Re = 16000 ble benyttet til
modellvalidering. Denne strømningen er en utfordrende testcase, som inneholder blant annet
laminær-turbulent transisjon, separasjon, en rekke ulike ustabiliteter og en asymmetrisk bakevje.
Testcasen er derfor velegnet til å undersøke mangler i ulike modeller, og for å drive modellutvikling.
Alle simuleringer ble utført med CFD-programmet OpenFOAM, og modellene ble verifisert og
validert (V&V) med standardiserte prosedyrer fra ASME (2009) og Hills (2005).

På grunn av problemer med numerisk stabilitet kunne V&V-prosedyrene kun følges for RANS-
og hybrid-modellene, mens en mindre formell evaluering ble utført for LES-modellene. RANS- og
hybridmodellene, som krevde numerisk demping, viste en jevn og symmetrisk strømning rundt
meridionalplanet. Smagorinsky LES-modellen var i stand til å forutsi asymmetrien, men den
var svakere enn det som ble predikert i DNS-studien. Basert på de stabiliserte og de udempede
resultatene før numerisk ustabilitet, er ustabiliteter i bakevja og turbulensanisotropi nære sfæroiden
vurdert som kritiske aspekter ved strømningen. Disse egenskapene er blitt ansett som avgjørende for
å utvikle bakevje-asymmetrien. Derfor anbefales hybridmodeller med en anistropisk RANS-modus
og LES-modeller for modellering av denne og lignende strømninger. På grunn av manglene i
denne studien og det kontinuerlige behovet for videre V&V-studier av separerende butte legeme
strømninger, presenteres mulige metodologiske forbedringer i en fremtidig V&V-studie av denne
strømningskonfigurasjonen.
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Preface
This report comprises the Master’s thesis in Marine Technology at NTNU Trondheim. The work
has been conducted in the Spring semester of 2018 and is within the field of Marine Hydrodynamics.
A V&V study on turbulence modelling of the 6:1 prolate spheroid at 45◦ incidence at Re = 16000
has been conducted.

The main motivation of the work has been to investigate the suitability of different types of
turbulence models for bluff body flows. Highly interconnected to this endeavor is the identification
of important physical characteristics of the flow. Additionally, conducting this project with the
formal procedures in ASME (2009), allowed the specification of simulation uncertainties. The
proposed background for the reader is an adequate competence in fluid mechanics, turbulence
modelling and CFD.

The thesis topic was developed after discussions with my supervisors, Professor Bjørnar
Pettersen and Ph.D. candidate Håkon Strandnes. It followed from the project thesis in Fall 2017,
where I performed more elementary CFD simulations, and a literature survey on turbulence modeling
of bluff body flows.

During the Fall and Spring of 2017/2018, I have improved my understanding of basic fluid
mechanics, turbulence and CFD substantially. Through the thesis work, I have obtained a broad
experience with different aspects of CFD and turbulence modelling, but I have also observed that
I still have a substantial way to go in terms of research methodology and experience to properly
contribute to the field.
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Nomenclature

Einstein notation is applied extensively in this thesis. A review is given in Kundu et al. (2012). In
addition to the below nomenclature, note the filtering definition in section 2.2. Below, only the
symbol of the unresolved component of the filtered variables are presented if not otherwise specified.

Latin Letters

f Body force vector

n Outward facing unit normal vector

u Velocity vector

η, ξ, z Position components in body-fixed coordinate system

CFi Force coefficient components

D Spheroid minor axis diameter

E Validation comparison error

fi Body force components

k Turbulent kinetic energy

L Turbulence length scale

p Static pressure

r Multivariate validation metric; refinement factor

Re Reynolds number, U0D
ν

S Resolved strain-rate magnitude,
√

2SijSij

Sij Resolved strain-rate tensor, 1
2(∂Ui∂xj

+ ∂Uj
∂xi

)

St Strouhals number, fDU0

u, v, w Instantaneous velocity components in x, y, z - directions

U0 Uniform inflow magnitude

ui Velocity components

x, y, z Position components in global coordinate system

x+
i Dimensionless, sublayer-scaled, distance

xi Position components in global coordinate system

ix
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Greek Letters

ω Vorticity vector

∆ LES filter width

δij Kronecker delta

γ Intermittency

µ Dynamic viscosity

µt Eddy viscosity

ν Kinematic viscosity

νt Kinematic eddy viscosity

νSGS Kinematic SGS viscosity

ω Vorticity vector magnitude; specific dissipation rate

ωi Vorticity components

Ωij Resolved rotation-rate tensor

ρ Mass density

τw Surface shear stress

τij Unresolved component stress tensor

θ Momentum thickness

Reθ Momentum thickness Reynolds number, θU0/ν

Abbreviations

CFD Computational fluid mechanics

CFL Courant-Friedrichs-Lewy number, ∆t u
′
i

∆xi

DES Detached-eddy simulation

DNS Direct numerical simulation

EARSM Explicit algebraic Reynolds stress models

FVM Finite volume method

GCI Grid convergence index

LDA Laser doppler anemometry

LES Large-eddy simulation

PDE Partial differential equation

RANS Reynolds-Averaged Navier-Stokes

SAS Scale-adaptive simulation

SGS Subgrid-scale

V&V Verification and validation



Chapter 1

Introduction

1.1 Background and Motivation

What are the drag on a submarine or the forces acting on an offshore riser? The solutions to these
complex problems depends on an accurate prediction of the surrounding flows. In addition to these
two examples, offshore and naval engineers face numerous problems where prediction of turbulent
flows is essential in establishing cost-efficient and safe designs.

Apart from recent history, the only tractable approaches to these problems were theoretical
and experimental fluid mechanics (EFD). Starting from the fundamental conservation laws from
Newtonian mechanics, Navier and Stokes, amongst others, derived the governing equations for
viscous fluid flow in the mid-19th century, the Navier-Stokes equations (White, 2007). However,
due to their complexity, the assumption of a frictionless (ideal) fluid was for long the only practical
approach to solving these equations. This provided limited practical use for fluid engineers, especially
in the case of internal flows, who resorted to experiments. This gap between theory and empiri did
not start to narrow before the advent of Prandlt’s boundary layer theory in 1904 (Prandtl, 1904). In
this theory, the flow is divided into two regions, one close to bodies where viscous action is important,
and an outer region where it can be neglected. In the case of the two aforementioned flows, the
outer regions may be predicted with potential flow theory, while the inner layer is governed by the
full Navier-Stokes equations. Alongside Prandtl’s discovery, Reynolds’ systematic experiments of
different flow regimes and his use of non-dimensional numbers were crucial in the understanding of
fluid flows (White, 2007). Another important work in the understanding of turbulent flows, were
given by Kolmogorov, who established a lower limit for turbulent scales (Tikhomirov, 1991). The
combination of theoretical developments and the advent of new instrumentation techniques, made
EFD the powerful and important discipline it is today (White, 2007). However, there are some
important limitations to EFD: Investigation of numerous configurations, as desirable in design, is
costly. Further, results face issues with blockage and scale effects (Vaz et al., 2016).

Many of the limitations of EFD can be circumvented with computational fluid dynamics
(CFD). In CFD, a mathematical model, resembling the physics, is solved numerically to simulate the
flow. For our applications, this consist of the incompressible Navier-Stokes equations coupled with
some turbulence model. Major breakthroughs in CFD followed the increase in computing power in
the 1950s-1980s; finite difference methods were developed extensively (Thomée, 2001), and finite
volume methods with pressure-velocity coupling algorithms were devised (Patankar and Spalding,
1972). Even though these methods may have advantages over EFD, they introduce numerous
error sources (cf. section 2.5). Presently, the main error source in this endeavor is the turbulence
modelling error (Wilcox, 2006). The need for turbulence modelling follows from Kolmogorov (1941);
Kolmogorov argued that the smallest turbulent length scales scale such that the required number
of grid cells in a 3D computation is given as N ∼ Re9/4 (Müller, 2017). Thus, for a typical marine
flow of Re = 109, a computational solution is presently infeasible. The rationale of turbulence
modelling is to limit the grid requirements by modelling the effect the smaller scales have on the
larger ones. That raises the fundamental questions of turbulence modelling: which scales are to be
modelled, and in what manner?

1
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These questions have been investigated since the days of Reynolds and Boussinesq in the late
19th century (Wilcox, 2006). A vast range of models have been developed; these models differ in
what scales are modelled (filtering) and the modelling ranges from simple algebraic relations to
transport equations(PDEs). In the assessment of each model, note Wilcox’s description of the ideal
model:"An ideal model shall introduce the minimum amount of complexity while capturing the
essence of the relevant physics" (Wilcox, 2006, p. 2). I.e., in a world with limited computing power,
there is no such thing as a perfect model covering all flows, as there is trade-off between accuracy
and cost. The model selection depends on the flow; in a simple free shear flow an algebraic model
may suffice, while a complex separating flow may only be accurately resolved with demanding
hybrid or LES simulations. Followingly, how are the flows usually seen in offshore engineering
to be modelled accurately? These flows are typically high Reynolds number flows around bluff
bodies. In Larssen (2017), major characteristics of such flows were identified: turbulence anisotropy,
unsteadiness and three-dimensionality. To investigate model suitability for bluff body flows, a
range of different type of models were recommended for Verification and Validation (V&V) studies:
k−ω SST , BSL−EARSM , k−ω SST SAS and k−ω SST DES. These models were identified
as accurate within their respective type (e.g., k − ω SST is a popular isotropic RANS model),
distinctly different and representing computational costs that is presently acceptable in industry.

To accurately and objectively assess the appropriate turbulence modelling for highly separating
bluff body flows, numerous verification and validation(V&V) studies are needed. I.e., by performing
a number of test cases with different flow characteristics, the accuracy of each model may be
identified (Vaz et al., 2016). This may be used to develop model improvements or best-practice
guidelines. If this is to be done in a systematic and collective manner, standardized procedures
for verification and validation should be utilized to ensure comparable results. In this context
verification denotes the process where the numerical uncertainty of a simulation is identified (Roache,
1998). If this is combined with a comparison to experimental results(validation), the modelling
uncertainty may be quantified. One of the early developments in this field is Roache (1998). Later,
his work has been extended in works by Hills (2005) and Eça and Hoekstra (2014). An established
framework for V&V are given in the standard ASME (2009). The aim of this procedure may be
to establish the uncertainty in a simulated quantity (e.g. a 95 % confidence interval in a force
coefficient). Alternatively, following Hills (2005), the multivariate procedure is used to assess the
model’s overall suitability for a given problem. Note, in addition to these objective measures on
model suitability, a thorough understanding of the flow physics is needed to assess the results. I.e.,
why do the V&V study show that model X is not suitable and why is model Y deemed suitable?
Given the results and such an understanding, model improvements and/or best-practice guidelines
may be pursued.

This thesis aims to be a contribution to the above effort. I.e., it aims to be a formal V&V study,
contributing to improved understanding and modelling of the turbulence present in separating
bluff body flows. Towards that aim, the procedures in ASME V&V 20 and Hills (2005) have been
used to assess model predictions of the flow around the 6:1 prolate spheroid at 45◦ incidence at
Re = 16 000 based on the minor axis. This flow case has been investigated by my supervisor with
DNS simulations and may be characterized as a separating bluff body flow. More specifically, the
boundary layer flow is characterized by laminar-turbulent transition and the wake is asymmetric
and moderately unsteady. To address these characteristics, additional turbulence models were
included, and most notably two LES models. In addition to conducting a V&V study, an aim of
this thesis is to complement the DNS studies in describing this problem’s governing flow physics.
I.e., some features of the flow might not been captured by some model while another one might.
Then, given a proper understanding of the different models, the triggering mechanism of a feature
of the flow may be identified. Some important applications of this flow configuration is related to
submarine maneuverability and particle modelling. A more detailed account of applications is given
in Jiang et al. (2015).
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1.2 Scope and Limitations of the Present Thesis
This study aims to increase the understanding of turbulence modelling for separating bluff body
flows. These types of flows have relevance in numerous engineering disciplines, where their accurate
prediction is of essence for cost-efficient, safe designs. To provide a proper assessment of a set of
selected model’s suitability for this type of flow, the procedures in ASME (2009) is adopted. I.e., a
formal V&V study is to be conducted, and the test case is the 6:1 prolate spheroid at 45◦ incidence
at Re = 16000 based on the minor axis. The simulations are to be validated against preliminary
results of a DNS study by my supervisors and colleagues. The thesis objectives may be summarized
in the following.

1. Perform a V&V study in accordance with ASME (2009) for the 6:1 prolate spheroid at 45◦
incidence at Re = 16000 for the turbulence models: k−ω SST , k−ω SSTLM , k−ω SST SAS,
k − ω SST DES, Smagorinsky and WALE.

2. Based on the V&V study and post-processing of the simulations, identify critical physical
aspects of the flow that needs to be captured to ensure qualitative similarity to the DNS
results. I.e., an asymmetric wake. Provide recommendations for appropriate turbulence
modelling of the studied flow configuration and similar flows.

There are some limitations to this study. The generalizability of the result is assumed to
be restricted to curved, separating flows at moderate Reynolds number. With higher Reynolds
numbers, it is assumed that the appropriate turbulence modelling might change. Hence, more V&V
studies are needed to cover the full Re parameter space.

Due to time limitations, there are some methodological limitations to the study. In the field of
V&V, there are more accurate procedures to estimate and monitor errors than those applied in this
study. However, these methods are work-intensive in terms of computing time and pre-processing,
and was thus not pursued. Further, there are some quantities of interest that were not readily
available in OpenFOAM, the applied CFD software. With more resources, utilities could have been
developed to increase control of the meshes used for LES models (x+, z+), and to investigate the
different modelling regions for hybrid models.

The above limitations, along with proposed solutions, are discussed in section 4.5.
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1.3 Outline of the Present Thesis
The present thesis is subdivided into 5 chapters and an appendix. Each chapter is further subdivided
into sections. Their contents are briefly outlined below.

Chapter 1 presents the background and the motivation for this study. This is traced from the
need of accurate flow predictions to that of accurate turbulence modelling. Further, accuracy
follows from substantial model development and testing, and this is formalized in terms of
Verification and Validation studies, whereof this thesis aims to contribute. Followingly, the
motivation is concretized in a set of objectives. Additionally, limitations of this study in terms
of generalizability and methodology are given.

Chapter 2 is to provide the necessary background theory and references for pursuing chapters.
The initial section are devoted to a presentation of the governing equations and their physical
characteristics of relevance to bluff body flows in general and for the prolate spheroid specifically.
This includes a description of the preliminary DNS results of the flow configuration under
investigation. Thereafter, the applied turbulence models are presented with an emphasis on
their modelling ability of bluff body flows. Lastly, the main concepts of FVM are given along
with its error sources, and the V&V procedures of ASME (2009) and Hills (2005) are presented.

Chapter 3 outlines specifics of the methodology applied in the study. I.e., aspects of the
numerical solution such as applied software, the computational domain and boundary conditions.
Next follows a description and discussion of the meshing methodology and the utilized numerical
settings. Lastly, post-processing tools and the V&V procedure of this study are described in
detail.

Chapter 4 presents and discusses the results. At first, all simulations are presented and
discussed separately for each model type (LES, hybrid or RANS). Here, the emphasis is on
qualitative validation with reference to the DNS results. Next, the results of the V&V study
are presented, along with an interpretation. Lastly, the trends and indications of the previous
sections are discussed. I.e., the important physical characteristics of the flow, and how the
physics is to be translated into appropriate turbulence modelling. Additionally, methodological
features of this V&V study are discussed.

Chapter 5 concludes the findings of the thesis and outline recommendations for further work.
The conclusions highlight characteristic flow features and the appropriate type of turbulence
modelling for this flow. Regarding further work, an emphasis is on a future V&V study
that would build on the findings of this study and address its methodological shortcomings.
However, to improve the understanding of turbulence modelling for the studied configuration
and similar flows, other efforts are also identified. Particularly, more turbulence modelling
development for anistropic hybrid models and formal V&V procedures for the use of DNS in
validation are recommended.

Appendix includes various supplementary material not included in the main report. In
Appendix A, all force coefficient time histories, except the ones who are qualitatively similar,
are displayed. E.g., for a model that yields the same qualitative results for all three meshes,
only one time history are presented. Further, the force coefficient statistics, along with V&V
results are given in Appendix B. Appendix C is an extract of the literature survey on turbulence
modelling for separating bluff body flows in Larssen (2017). Appendix D contains OpenFOAM
scripts, displaying the numerical schemes for the different model types and the solution settings.
Additionally, the project thesis and a poster are accompanying the thesis in a separate zip
folder (Attached.zip).



Chapter 2

Background Theory

2.1 Governing equations
This section first presents the governing equations for incompressible Newtonian flow, followed by the
corresponding filtered equations. Thereafter, the filtering operations in Reynolds-averaged Navier-
Stokes(RANS) and Large Eddy Simulation(LES) are briefly discussed. A proper understanding of
this section, the filtering in particular, is essential when investigating the suitability of different
turbulence models (cf. section 2.3).

The Incompressible Navier-Stokes Equations

The fluid in this study is considered incompressible and Newtonian. Following the fundamental law
of mass conservation, the continuity equation for incompressible flow may be derived (Kundu et al.,
2012)

∂u
′
i

∂xi
= 0 . (2.1)

Linear and angular momentum balance results in Cauchy’s equation

∂u
′
i

∂t
+ u

′
j

∂u
′
i

∂xj
= 1
ρ

∂σ
′
ij

∂xj
+ f

′
i . (2.2)

which reduces to the incompressible Navier-Stokes equations with the aforementioned constitutive
assumptions

∂u
′
i

∂t
+ u

′
j

∂u
′
i

∂xj
= −1

ρ

∂p
′

∂xi
+ ν

∂2u
′
i

∂xj∂xj
+ f

′
i , (2.3)

where the stress tensor is given as σ′ij = −p′δij + 2µs′ij . Eqs. (2.1) and (2.3) constitute an
elliptic-parabolic system of PDEs, which govern 3D Newtonian incompressible fluid flow (Müller,
2017).

Filtered equations

As described in Tikhomirov (1991), a turbulent flow contains a continuum of different length and
time scales. For high Reynolds number flows (Re ∼ 109), resolving the entire range of scales is not
computationally viable. Hence, a filter is introduced to decompose a quantity ψ′ into a resolved
component Ψ and an unresolved component ψ. I.e., ψ′ = Ψ + ψ (Vaz et al., 2017). This filter is
constant preserving and commuting with spatial and temporal differentiation. Then, if this filter is
applied to Eqs. (2.1) and (2.3), it leads to

5
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Figure 2.1: Time averaging of nonstationary turbulence (Wilcox, 1998).

∂Ui
∂xi

= 0 , (2.4)

∂Ui
∂t

+ Uj
∂Ui
∂xj

= −1
ρ

∂P

∂xi
+ ν

∂2Ui
∂xj∂xj

+ fi + 1
ρ

∂

∂xj
(τij(ui, uj)) . (2.5)

Note, the filtering operation introduces a new diffusion-like term including the tensor τij , which
models the effect of the unresolved components. Eqs. (2.4) and (2.5) are governing for all the
turbulence models in this study. Further, a possible hypothesis regarding τij is the Boussinesq
hypothesis (Wilcox, 1998)

τij(ui, uj)
ρ

= 2νtSij −
2
3kδij . (2.6)

This hypothesis implies that the eddy viscosity is a scalar and thus invariant for all τij at a given
point in space and time. All models in this study apply this hypothesis, but notice that the
assumption is highly dependent on the filtering operation.

RANS filtering

In RANS, the filtering operation decomposes the pressure and velocity field to a slowly varying
mean part with time scale T2 and a rapidly fluctuating turbulent with time scale T1 (Wilcox, 2006).
This is well depicted in Figure 2.1. If the flow variables are time averaged with time scale T , the
following must hold

Ui(x, t) = 1
T

∫ t+T

t
u
′
i(x, t) dt , T1 << T << T2 . (2.7)

Further, τij are denoted the Reynolds stresses, and represent the momentum transfer from the
mean flow to the turbulent fluctuations (Tennekes and Lumley, 1985). In the case of RANS, the
Boussinesq assumption implies equal normal Reynolds stresses( τ11 = τ22 = τ33). In Wilcox (2006),
it is identified a set of flow-cases where this do typically not hold, and three-dimensional flows over
curved surfaces are listed.
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LES filtering

In LES, the filter represents a spatial averaging that removes scales smaller than the grid spacing
(Wilcox, 1998). There are numerous LES filters, whereas the first and simplest one is the volume
averaged box filter in Deardorff (1970)

Ui(x, t) =
∫ x+ 1

2 ∆x

x− 1
2 ∆x

∫ y+ 1
2 ∆y

y− 1
2 ∆y

∫ z+ 1
2 ∆z

z− 1
2 ∆z

u
′
i(ξ, t)dξdηdζ . (2.8)

τij are denoted the subgrid-scale stresses (SGS) and these stresses are intended to model stresses
from eddies in the inertial sub-range (Müller, 2017). This definition introduces much stricter
requirements to spatial and temporal resolutions than in RANS. Close to solid boundaries, these
scales approach the ones encountered in DNS (Wilcox, 2006). A further discussion on wall-bounded
turbulent flows are given in section 2.2. Note, the Boussinesq approximation for LES, amounts to
assuming isotropic turbulence at the inertial sub-range, which is motivated by the realization that
small scale turbulence tends towards isotropy, while larger scales are flow dependent (Wilcox, 2006).

2.2 Flow around Bluff Bodies
When investigating the fluid forces on a given body, it is useful to differentiate between streamlined
and bluff bodies. Typically, for a streamlined body, friction forces are dominating. In the case of
bluff bodies, as investigated in this study, flow separation is common and this results in additional
form drag (Schlichting et al., 2017). For moderate to high Reynolds numbers, the form drag might
be asymmetric and unsteady in nature. An example is the circular cylinder at Re > 40 (Sumer and
Fredsøe, 1997); this flow causes a periodic lift force on the body, which may be critical in design, as
this can cause resonance.

An accurate resolution and modelling of the boundary layer is essential in an accurate prediction
of separation and hence also the form drag (Wilcox, 1998). In many situations, laminar-turbulent
transition is critical in this aspect. In the following, the flow around bluff bodies are investigated
in the light of these phenomena. At the end of this section, the relevant flow physics for the 6:1
prolate spheroid are considered in detail. This is of major importance, as the complexity of the
flow physics ultimately determines the suitable level of turbulence modelling (Wilcox, 1998).

Boundary Layers, Transition and Separation

The flow around solid objects may be subdivided into two distinct regions: the boundary layer and
the outer flow (Prandtl, 1904). In the boundary layer and in its wake, viscous forces are important,
while they are negligible in the outer flow. In the limit of Re→∞, the steady 2D incompressible
steady Navier-Stokes equations simplifies in the boundary layer to

u
′ ∂u

′

∂x
+ v

′ ∂u
′

∂y
= −1

ρ

dp

dx
+ ν

∂2u
′

∂y2 . (2.9)

At a wall, due to the no-slip and impermeability conditions (White, 2007), Eq. (2.9) reduces to

ν
∂2u

′

∂y2 = 1
ρ

dp

dx
. (2.10)

As the flow moves in the streamwise direction and the pressure gradient gradually increases
due to an outer flow, the streamwise velocity is reduced (Schlichting et al., 2017). This process
is depicted in Figure 2.2. In 2D, separation is defined as a point of zero shear stress (Schlichting
et al., 2017). I.e.,

τw = µ
∂u
′

∂y
|y=0 = 0 ⇐⇒ ∂u

′

∂y
|y=0 . (2.11)

This corresponds to the 3rd velocity profile from the left in Figure 2.2. At separation, the boundary
layer profile leaves the wall and the downstream backflow pushes it away from the wall. When the
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Figure 2.2: Flat plate boundary layer separation (Schlichting et al., 2017).

flow separates, the pressure recovery seen for streamlined bodies do not occur, and this results
in form drag. Another important feature of the boundary layer follows from Eq. (2.10). When
the pressure gradient equals zero, ∂2u

′

∂y2 = 0, and this is a necessary requirement for instability in
an inviscid parallel shear flow (Drazin, 2002). Hence, the separating shear layers can be unstable
and roll up into vortical structures, which possibly may trigger transition (separation induced
transition). The equivalent separation form in 3D is often denoted as closed separation and is
defined in terms of lines with zero wall shear stress (separation lines) (Schlichting et al., 2017).
Downstream of the separation lines, backflow bubbles are present.

The transition mode seen for a flat plate with zero pressure gradient is denoted as natural
transition (cf. Figure 2.2). At some critical Reynolds number, flow perturbations propagates
into 2D Tollmien-Schlichtling (T-S) waves (2) (Schlichting et al., 2017). These waves initiate
transition through interactions, forming 3D structures denoted as turbulent spots (3)-(5). As noted
in Jovanovic and Nishi (2017), these structures are highly anisotropic. With increasing Reynolds
number, these spots diffuse, interact and produce a fully turbulent flow (6). At high Reynolds
numbers, the fully turbulent flow has reduced levels of anisotropy relative to the transition phase
(Jovanovic and Nishi, 2017).

For concave objects, as the 6:1 prolate spheroid, it can be shown that the curvature is
destabilizing for the 3D disturbances seen in natural transition. This instability causes the creation
of Görtler vortices, and further details can be found in Schlichting et al. (2017). With this geometry,
the Boussinesq assumption generally do not hold, as the turbulence is anisotropic (Wilcox, 2006).

Lastly, crossflow instabilities are seen in 3D flows. Because of the 3D geometry and the
resulting pressure gradients, the flow will develop what is denoted as secondary flows. I.e., velocity
components which is orthogonal to the streamwise direction. This velocity profile may become
unstable, and this type of instability may cause open separation. Here, the flow separates without
the requirement of wall shear stress equalling zero. This instability is further discussed in Schlichting
et al. (2017) and Rosenhead (1963).

Note, the aforementioned transition modes interact, making the prediction of transition and
flow separation a difficult modelling task (Schlichting et al., 2017). Typically for a bluff body 3D
flow, both open and closed separation occur. However, correct modelling of separation and the
turbulence onset is crucial in determining the correct flow patterns and vortex dynamics.



2.2. FLOW AROUND BLUFF BODIES 9

Figure 2.3: Natural transition (Schlichting et al., 2017).

Turbulent Boundary Layers

Following transition to a fully turbulent flow, the mean streamwise turbulent boundary layer is
described by the law of the wall (Wilcox, 1998). If transport processes are neglected, as in attached
boundary layers, dimensional analysis yields the following relation of the velocity profile

u+ = f(y+) , (2.12)

where the following nondimensional variables are used

u+ = U

u∗
, u∗ =

√
τw
ρ

y+ = y

ν/u∗
. (2.13)

By physical arguments, the shape of the function f can be determined; closest to the wall, in
the viscous sublayer, viscous effects dominate. In the mid region, the buffer layer, both viscous
and Reynolds stresses are important and in the outer layer, the log layer, the Reynolds stresses
dominate. These different layers are illustrated in Figure 2.4. In the viscous sublayer (y+ < 5)

u+ = y+ , (2.14)

and in the log-layer (30 < y+ < 200) it is given by

u+ = 1
κ
ln(Ey+) , (2.15)

where κ and E are constants.
For fully turbulent attached flows, it has been shown that the use of the log-layer as a boundary

condition is accurate (Eça et al., 2015). However, for flows with laminar regions it can be highly
inaccurate, and consequently, the iterative convergence is significantly slowed down (cf. section 2.4).
Alternatively to using the log-law, the equations may be resolved down to the viscous sub-layer.
When this approach is applied, it is typically denoted as a low-Re number turbulence model.
Contrary to log-layer modelling, this approach is not susceptible to errors due to transport processes,
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Figure 2.4: Law of the wall (τ0 = τw) (Kundu et al., 2012).

as only a laminar velocity profile are to be resolved; in the viscous sub-layer, the unresolved
component tensor τij is assumed negligible compared to the viscous stresses. These assumptions
may be used to simplify the k and ω equations (cf. section 2.3), yielding the relations (Liu, 2018)

k+ = Ck(y+)3.23 , k+ = k

u2
τ

, (2.16)

ω+ = 6
(β1y+)2 , ω+ = ων

u2
τ

, (2.17)

where β1 and Ck are constants and the eddy viscosity is derived from the above with νt = k
ω . Note,

these boundary conditions do only hold in the viscous sub-layer, and a usual criteria for RANS
simulations are y+

max < 1 (Pereira et al., 2017).
Similarly as with RANS, the boundary layer can either be resolved or modelled in LES. In near

wall-resolved LES, the dynamics of the near-wall is resolved directly. Note, the dynamics captured
with LES are highly different from RANS because of the different filtering. In Sagaut (2006), it is
recommended to satisfy the following inequalities for an accurate resolution of the boundary layer

∆x+ < 10 , ∆z+ < 5 , y+ < 1 , (2.18)

where

∆x+
i = ∆xi

x+
i

, x+
i = xi

ν/uτ
, (2.19)

and ∆xi denotes the grid spacing in the i-th direction. Here, x is the streamwise direction, while z
denotes the crosswise direction.



2.2. FLOW AROUND BLUFF BODIES 11

Vorticity Dynamics

As denoted in Tennekes and Lumley (1985), turbulence is characterized with high levels of fluctuating
vorticity. Thus, understanding vorticity dynamics is essential in understanding turbulent flows.
The vorticity vector is given as the curl of the velocity vector

ω
′ = ∇× u′

. (2.20)

In understanding the motion of fluid particles and the role of vorticity, the decomposition in
Rosenhead (1963) is illustrative. A sphere of fluid is considered, and its motion is regarded as the
combination of three modes:

1. Uniform translation with velocity u′ at its centre.

2. Rotation with strength and direction 1
2ω

′ .

3. Stretching of the sphere to an ellipsoidal shape.

In addition, vorticity dynamics may be investigated by the vorticity equation, which follows
from taking the curl of the momentum equations (2.3) (Tennekes and Lumley, 1985).

∂ω
′
i

∂t
+ u

′
j

∂ω
′
i

∂xj
= ω

′
j

∂u
′
i

∂xj
+ ν

∂2ω
′
i

∂xj∂xj
. (2.21)

Hence, the total change of vorticity is balanced by viscous diffusion and stretching/tilting (first
term on the RHS). The stretching and tilting term is absent in 2D flows, signifying that turbulence
is three-dimensional in nature. Another point of emphasis is the production and destruction of
vorticity, which occurs at solid or free surfaces (Rosenhead, 1963). In this study, the spheroid acts
as a vorticity sink and source. To illustrate this, consider a 2D boundary layer flow, where the
following assumption holds

ω
′
z = ∂v

′

∂x
− ∂u

′

∂y
∼ −∂u

′

∂y
. (2.22)

Combining Eq. (2.22) with (2.10) yields

1
ρ

dp
′

dx
= −ν ∂ω

′
z

∂y
. (2.23)

As Eq. (2.10) follows from boundary layer theory, Eq. (2.30) is limited to relatively streamlined
bodies. However, this equation states that the boundary layer acts as a vorticity source in the case
of favourable gradients (dp

′

dx < 0) and as a sink for adverse pressure gradients (dp
′

dx > 0). Hence, the
vorticity produced at the walls are convected and diffused to the rest of the flow. In this case, the
separation types discussed in 2.2 are crucial in understanding the wake vorticity dynamics.

Further, vorticity appears in the form of coherent flow structures, making them well suited to
investigate wake dynamics (Jeong and Hussain, 1995). These flow structures consist of an assembly
of vortices, which is typically defined as a concentration of codirectional or nearly codirectional
vorticity (Kundu et al., 2012). Further, a vortex line is defined as a curve in the fluid where the
vorticity vector is aligned with the tangent of the curve. This is analogous to how a streamline
is related to the velocity vector. Next, in a region of nontrivial vorticity, the vortex lines passing
through a closed curve form a vortex tube (Kundu et al., 2012).

In being able to analyze the evolution of coherent structures, they first need to be identified
with some suitable criterion. First, given the above definition of a vortex, the velocity field only due
to motion type 2. is given in polar coordinates as ur = 0 uθ = ω

′

r , uz = 0 (Kundu et al., 2012). This
amounts to rigid body rotation, where the z-axis is aligned with ω′ and ω′ denotes its magnitude.
The momentum equations yield the following result for the pressure

p(r, θ)− p0 = 1
8ρω

′2
r2 , (2.24)
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where p0 is the pressure at r = 0. Thus, the center of a vortex have a pressure minimum. This
realization was used in Jeong and Hussain (1995) to devise the λ2-method that identifies coherent
flow structures. The momentum equations are manipulated to find an expression for the hessian of
the pressure that only contains terms due to vortical motions

− 1
ρ

∂2p
′

∂xj∂xi
= SikSkj + ΩikΩkj = S2 + Ω2 . (2.25)

If p is to have a pressure minimum in the plane, at least two of the hessian’s eigenvalues have to be
negative(Jeong and Hussain, 1995). I.e., if the eigenvalues of S2 + Ω2 are defined as λ1 ≥ λ2 ≥ λ3,
it requires that λ2 < 0. Note, S2 + Ω2 is real and symmetric and will have three real eigenvalues.

Figure 2.5: Flow separation types at 10◦ incidence with 3:4 aspect ratio and Re = 60 000 (Han and
Patel, 1979).
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Prolate Spheroids at Incidence

Prolate spheroids are well defined bodies of revolution, where the polar axis is larger than the
equatorial diameter. When the body is inclined relative to the inflow, flow separation is observed
at moderate Reynolds numbers (Jiang et al., 2014). Due to its geometrical simplicity, it has been
considered as ideal to investigate three-dimensional separation (Jiang et al., 2014).

As identified in Han and Patel (1979), the flow separation of the prolate spheroid typically
consists of both open and closed separation. In early experimental studies, surface shear stresses
and velocity distributions in its near wall region were investigated (Han and Patel, 1979) (Fu
et al., 1994). In Figure 2.5, streamlines and separation types and locations are indicated for a 10◦
incidence angle. The flow was assumed to be symmetric about the meridonial and was investigated
at incidence angles up to 30◦.

In Simpson (1996), separation and near wall velocities were investigated at low incidence
angles (≤ 20◦) and high Reynolds numbers (∼ 106). The locations of open and closed separation
were identified. Additionally, the near wall LDA velocity measurements showed that the near-wall
turbulence is anisotropic and thus not comply with the RANS Bousinessq approximation. This is
to be expected given the discussion on anisotropy of curved, 3D flows in Wilcox (2006).

In Jiang et al. (2014), the 6:1 spheroid at 45◦ incidence was investigated at Reynolds numbers
50, 200, 1000. For the two lowest Reynolds numbers, the entire flow is laminar, steady and
symmetric about the meridionial plane. Open separation is identified as the dominating separation
type for all Reynolds number configurations. The wake is characterized by a counter-rotating vortex
pair, which size goes from a minimum at the lower pole to a maximum at the upper pole. At
Re = 1000, the flow is symmetric about the meridionial plain in the near-body wake. The wake is
dominated by a counter rotating vortex pair, which becomes distinctly asymmetric at x = 4− 5D
(cf. Figure 2.7). The wake remains steady until x = 14D, where it varies at Strouhals number 0.15.
As this is in the range of naturally occurring unsteadiness in bluff-body wakes, it is suggested that
the wake is on the verge of becoming unsteady.

Jiang et al. (2015) is a continuation of Jiang et al. (2014), where the unsteadiness and asym-
metry of the wake were of particular interest. The configuration is studied at Re = 3000, where
the wake is in the transitional regime, and is unsteady and highly asymmetric. The resulting
sideway force is substantial with a mean of 75% of the mean drag force. Note, the asymmetry
do not change in time; the side force do not oscillate about a zero mean, as seen with the von
Kármán vortex street for a circular cylinder. No vortex shedding was observed and the upper
vortex structures disintegrated into numerous minor structures just downstream of separation. A
vortex tube emerged at the lower pole and stayed intact approximately seven diameters downstream
(cf. Figure 2.8). The unsteadiness is occurring at the very low St=0.0733, and is assigned to
three-dimensional wake effects. The asymmetry of the flow is ascribed to a global instability, which
signifies that the instability is inherent in the wake itself. It is argued that this instability is triggered
at approximately Re = 1000 and is characteristic for higher Reynolds numbers for this configuration.

Figure 2.6: Preliminary DNS. Re = 16000, λ2 ∈ [−2000,−200] - contours.
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Figure 2.7: Re = 1000. λ2 = −0.5 - and ωxD/U0 -contours (Jiang et al., 2014).

Figure 2.8: Re = 3000. λ2 = −15 - contours(Jiang et al., 2015).
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Figure 2.9: Preliminary DNS. Re = 16000. Near-body flow topology. Bottom view.

The DNS study at Re = 16000 was yet to finish as this thesis was concluded. Thus, the ensuing
analysis by the undersigned is based on the preliminary results of this work, where the data from
an instantaneous flow field has been investigated (i.e., data which is not statistical representative
of the flow). At this point, the flow was fully developed and is assumed suitable for a qualitative
assessment of the flow. Cf. section 3.2 and Figure 3.1 for a description of the computational domain
and respective coordinate systems.

Figures 2.6, 2.9 and 2.10 show an overview of the flow topology at Re = 16000. The global
instability identified in Jiang et al. (2015) is still present, as the flow is still highly asymmetric.
However, there are major differences in force resultants and wake topology (cf. Table 4.3b and Figure
2.11). There is a reduction in the drag force(∼ 10%) and the Strouhals number is approximately
half that predicted at Re = 3000. The reduction in drag force with increased Reynolds number is
indicative of the flow entering a turbulent flow regime; this development is seen for bodies as the
smooth circular cylinder and sphere (Kundu et al., 2012). The reduction in Strouhals number is
also seen for the circular cylinder during transition to the fully turbulent flow regime (Sumer and
Fredsøe, 1997).

The counter-rotating vortex pair originating at the spheroid’s lower pole is an important aspect
of the flow (cf. Figure 2.9). Crossflow instabilities, curvature and resulting open separation are
attributed to the creation of these structures. In addition, note the helical structures surrounding
the vortex pair; smaller scale structures are convected into the wake, where the vorticity of the
dominating pair gives rise to the helix. This initial topology can further be studied in Figure 2.12a,
where the distribution of ωxD/U0 at η̄ = −0.6 is given. At this point, there is a small asymmetry
in the wake in terms of positioning and intensity; the wake-side vortex(yellow encircling)) has a
maximum 3% below the opposing vortex(green encircling).

With increasing Reη∗ , the wake topology becomes more chaotic. It is assumed that Kelvin-
Helmholtz(KH) (Drazin, 2002) instabilities are formed at the spheroid pressure side (the side with
body normal facing upstream)(Personal communication with Håkon Strandnes; April 26th 2018).
As these small-scale instabilities are convected into the wake, their accumulated disturbance on the
initial topology increases with Reη∗ . This effect combined with the separation induced instabilities
at the upper pole causes a complicated wake topology. Due to the asymmetry of the flow, the
effect of the KH-instabilities is at first most distinguishable at the wake-side; the wake-side primary
vortex disintegrates at approximately x = 1.4D, while the opposing primary vortex disintegrates
at approximately x = 3.2D. Figure 2.12b gives an image of the topology at ¯η = 0.6 , x = 1.3D.
The primary vortex pair are still noticeable (cf. encirclings), but smaller scales structures have
comparable intensities.

In the intermediate wake, depicted in Figure 2.13, two groupings of vortices can be observed.
At x = 4D, these groupings are quite distinguishable, but moving downstream they interact and
gradually unite. The green grouping is the result of the the wake-side primary vortex and its
attracted smaller scale structures. The other grouping is similar in its origin, but is larger in scale
and intensity, as this also includes instabilities triggered due to separation at the spheroid’s upper
pole.



16 CHAPTER 2. BACKGROUND THEORY

Figure 2.10: Preliminary DNS. λ2 ∈ [−2000,−250] - contours.

Figure 2.11: Preliminary DNS. λ2 ∈ [−2000,−250] -contours. Bottom view.

Table 2.1: Preliminary DNS force coefficient statistics.

CFX CFY CFZ St

Average 0.79 -0.83 0.66 0.035
RMS 0.80 0.84 0.67 -
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(a) η̄ = −0.6 . (b) η̄ = 0.6 .

Figure 2.12: Preliminary DNS. ωxD/U0 in the ξ − z plane. Facing negative η - direction.

(a) x = 4D . (b) x = 8D .

Figure 2.13: Preliminary DNS. √ωiωiD/U0 in the y − z plane. Facing positive x - direction.
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2.3 Turbulence Modelling
In the following, the turbulence models used in this study are presented. They are selected based
on the work in Larssen (2017) (cf. Appendix C for an extract) and discussions with my supervisors.
From Larssen (2017), the following models were identified as appropriate for modelling of separating
bluff body flows: k − ω SST , BSL−EARSM , k − ω SST SAS, k − ω SST DES. Note, besides
suitability, models were selected to represent a distinct class of turbulence models. I.e., k − ω SST
represents the most robust and accurate of the isotropic RANS models (Larssen, 2017). Similarly,
BSL− EARSM represents an anisotropic RANS model, while the two latter represents different
type of hybrid models. In this study, a hybrid model denotes a model that has a RANS- and a
LES-mode.

The anisotropic RANS model BSL − EARSM is not included in OpenFOAMv5.0, so this
model was disregarded. As laminar-turbulent transition is highly important in this test case (cf.
section 2.2), the transition model k − ω SSTLM has been included. My supervisors suspected
that the above models to not be of sufficiently complexity to replicate the flow features, as the
anisotropy and unsteadiness of the flow would not be resolved correctly by RANS or hybrid models
(cf. section 2.2). Especially, the small scale features at the nose of the spheroid are believed to
be of big importance for the wake dynamics and it was deemed likely that hybrid models are in
RANS mode at this point. Hence, the Smagorinsky LES model has been included. This model
was chosen as it has proved to work successfully in the qualitatively similar flow studied in Li et al.
(2018). However, it is not well suited to predict natural transition (Ducros et al., 1998), and thus
the Wall-adapting local-eddy viscosity (WALE) LES model was also included.

k− ω SST

Common for most RANS two equation models is a model equation for k. This transport equation
is established from modelling the exact equation for k (Wilcox, 1998). In establishing this equation,
viscous diffusion is neglected and the diffusion of k is modelled by a gradient-diffusion model. To
connect νt to k, a local mixing length model is used

νt = Cµ
√
kL . (2.26)

This follows from dimensional arguments, where L is a turbulence length scale (Jones and Launder,
1972) and Cµ is a constant. To determine νt, the turbulent length scale must be determined and
hence a second transport equation is introduced (Wilcox, 1998). There are two prominent examples
in this case: the dissipation rate of turbulent kinetic energy ε = CD

k3/2

L (k − ε model) and the
specific dissipation rate of turbulent kinetic energy ω =

√
k
L (k − ω model). These two transport

equations are based on arguments regarding the physical processes in a flow and dimensional
analysis. With this approach important physical processes may not be taken into account (Menter
and Egorov, 2010).

Following validation studies, it has become apparent that the k − ω model is accurate close to
walls, but very sensitive to freestream boundary conditions (Menter et al., 2003). The k − ε model
has been shown to be good in the freestream and bad close to walls. Hence, as these two models
complement each other, Menter (1993) proposed a mixing of the two, the k − ω SST turbulence
model. In this model, blending functions are used to switch to the k − ε model in the freestream
and to the k − ω model close to walls. The model formulation in OpenFOAMv5.0 is given as
(OpenCFD, 2018a)

Dρk

Dt
= P̃k − β∗ρωk + ∂

∂xj
[(µ+ σkµt)

∂k

∂xj
] , (2.27)

Dρω

Dt
= αρS2 − βρω2 + ∂

∂xj
[(µ+ µt)

∂ω

∂xj
] + 2(1− F1ρσω2) 1

ω

∂k

∂xj

∂ω

∂xj
, (2.28)

νt = a1k

max{a1ω, SF2}
, S =

√
2SijSij , (2.29)



2.3. TURBULENCE MODELLING 19

Pk = µt
∂Ui
∂xj

(∂Ui
∂xj

+ ∂Uj
∂xi

)
, P̃k = min(Pk, 10β∗ρkω) , (2.30)

where D
Dt{} denotes the material derivative (Kundu et al., 2012). The blending functions F1 and F2

and the constants β, β∗, σk, σω, σω2 , α, a1 are given in Menter et al. (2003). As this model can be
integrated down to the viscous sublayer, it may be used as a so-called low Re number turbulence
model (cf. section 2.2).

In Eça et al. (2016), it is identified that the k − ω SST model does not accurately predict
flows, where laminar-turbulent transition is important (cf. section 2.2).

k− ω SSTLM

Due to the shortfalls in transition prediction modelling of conventional two equation models,
transition models have been developed (Eça et al., 2016). A prominent example is the k−ω SSTLM
model, which combines the k − ω SST model with transport equations for intermittency γ and the
momentum-thickness Reynolds number Reθ (Langtry and Menter, 2009). As Reθ is an integral
quantity, the variable is unsuitable for implementation in a general purpose CFD code. Thus,
experimental correlations between the locally calculated vorticity Reynolds number Rev and Reθ
for a flat plate boundary layer is applied (y-coordinate is orthogonal to the body)

Rev = ρ
y2

µ
S , S =

√
2SijSij , Reθ =

max
y

(Rev)

2.193 . (2.31)

Empirical correlations between Rev and Reθ are used to estimate natural and separation-
induced separation (cf. section 2.2). Note, the model implemented in OpenFOAMv5.0 does not
contain the crossflow modification introduced in Watanabe et al. (2009). The rationale behind
the k − ω SSTLM model is that the local quantity Rev is connected to Reθ empirically, which
is used to determine the production of intermittency, signifying local transition. Followingly, the
intermittency works as a switch for the production of turbulent kinetic energy k.

In Eça et al. (2016), the k− ω SSTLM model shows better agreement with experiments than
regular two equation models, but it is shown that the results are highly dependent on the inlet
boundary conditions of Reθ.

k− ω SST SAS

An alternative to using ε or ω in the scale determining equation is kL. Rotta (1972) first established
the exact equation for kL and later modelled it to an applicable scale determining equation. However,
due to difficulties in calibrating it to the law of the wall (cf. section 2.2), the k − ε model was in
the early 70’s chosen as the preferred model (Menter and Egorov, 2010). In Menter and Egorov
(2010), the kL equation is revisited and an alternative modelling of the source term is performed.
This new model may be calibrated to the law of the wall, and more importantly, also introduces a
new type of source term not seen in the ω or ε model equations. This source term depends on the
von Kármán length scale (y-coordinate is orthogonal to body)

Lvk = κ

∣∣∣∣ ∂U/∂y∂2U/∂y2

∣∣∣∣ . (2.32)

This term causes scale determination also from smaller scales. I.e., with spatially varying strain
rates, Lvk will vary, which in turn causes different turnover frequencies, ω, and potentially a vast
range of different vortex structures. In this case, the scale determination is dependent on the
flow, and it is hence termed scale-adaptive and thereof the model name, scale-adaptive simulation
(SAS). This is in contrast to conventional two equation models, where the turbulent length scale
is proportional to the integral length scale L ∼ δ, where δ is the thickness of the turbulent layer
(boundary layer thickness in a shear flow) (Menter and Egorov, 2010). This is appropriate for
steady shear flows, but not for unsteady flows, where it damps out resolved smaller scales. Menter
and Egorov (2010) explains this by considering that in conventional two equation models, only the
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Figure 2.14: Q-contours colored with the eddy viscosity ratio µt/µ. k − ω SST left and k −
ω SST SAS right (Menter and Egorov, 2010)

shear strain is input, which yields the determination of ω. As no more information is provided, as
with Lvk in k − ω SST SAS, the above determination of L results. This behavior is clearly seen
in Figure 2.14 from Menter and Egorov (2010), where only the primary vortex shedding mode is
present for k − ω.

Given that the additional source term is included in a scale determining equation for kL,
Menter and Egorov (2010) deems it reasonable that they are to be included in the transport
equations for ε and ω. Thus, this type of term is introduced into the k − ω SST model, and the
result is the k−ω SST SAS model. The only difference from the k−ω SST model is the following
term added to the right hand side of the scale determining equation (2.28)

QSAS = max
[
ρζ2S

2( L
Lvk

)2 − 4ρk
σΦ

max
( 1
k2

∂k

∂xj

∂k

∂xj
,

1
ω2

∂ω

∂xj

∂ω

∂xj

)
, 0
]
. (2.33)

One issue identified with this model is that the scale adaptive production is only active with
a large degree of unsteadiness. Hence, the model may stay in RANS mode for flows that are
moderately unsteady and not predict transition from smaller scale instabilities (Menter and Egorov,
2010). An advantage of k − ω SST SAS to most other hybrid formulations is the switch from
RANS to a scale resolving simulation (SRS), which do not have an explicit dependence on grid
spacing (Menter and Egorov, 2010).

k− ω SST DES

In a delayed eddy simulation (DES), a RANS model is used in the attached boundary layer, while
a LES model is used in the detached regions. The rationale is to avoid the large computational cost
of solving the near wall region with LES and to use LES in the detached unsteady region, which is
unsuitable for RANS (Spalart et al., 1997). However, there are some conceptual concerns with DES,
as the flow is transferred between regions with different filters. That aside, DES was first developed
for the Spalart-Allmaras model and was later developed for k − ω SST . A major issue with DES
is the switch from RANS to SRS mode. It has been shown that this may produce premature
separation, and this is denoted as Grid Induced Separation (GIS) (Menter et al., 2003). There
have been extensive efforts to remove this deficiency, which have resulted in delayed DES(DDES)
(Shur et al., 2008). Unfortunately, this model is yet to be implemented in OpenFOAMv5.0, and the
conventional DES formulation has been used. In DES, the switching between RANS and LES is
performed with altering the length scale in the dissipation term in the k transport equation. The
formulation used in OpenFOAMv5.0 reads (OpenCFD, 2018b)

Dk
RANS = ρk3/2/LRANS , LRANS =

√
k

Cµω
, (2.34)
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is altered to

Dk
DES = ρk3/2/LDES , LDES = min(LRANS , CDES∆) , (2.35)

where ∆ is the LES filter width (cf. ’Smagorinsky’ below). Thus, in the LES region the method
switches to a Smagorinsky SGS model.

Smagorinsky

The Smagorinsky SGS model (Smagorinsky, 1963) (Versteeg and Malalasekera, 2007) formulation
is given as

τij = 2νtSij −
1
3δijτkk , (2.36)

where the eddy viscosity is specified as

νt = (Cs∆)2|Sij | , (2.37)

and Cs is a constant. There are numerous definitions of the filter width ∆, but a very common one
utilized in this study, is the cube root volume filter

∆ = (∆x∆y∆z)
1
3 . (2.38)

Note that νt is proportional to the grid spacing squared, which follows from the work of Lily
(Pope, 2000). This is in correspondence with Kolmogorov’s theory, where the energy content, and
thus also the dissipation, is decreasing with scale size in the inertial subrange. A problem with this
model is that νt is produced also for laminar boundary layer profiles. This disrupts the evolution of
linearly unstable waves and hence also transition modelling (Ducros et al., 1998). This is related to
the Smagorinsky constant Cs being dependent on the flow regime. In the Dynamic model, this
problem is resolved by making Cs a local flow variable(Germano et al., 1991). However, this model
introduces a second filtering and requires stabilization (Pope, 2000).

WALE

In WALE, the erroneous transition modelling of the Smagorisnky model is addressed with an
alternative modelling of νt(Ducros et al., 1998)

νt = (Cm∆)2 (SdijSdij)3/2

(SijSij)5/2 + (SdijSdij)5/4 , (2.39)

where Cm is a constant and

Sdij = 1
2(g2

ij + g2
ji)−

1
3δijg

2
kk , gij = ∂Ui

∂xj
. (2.40)

With the above model formulation, no turbulent viscosity is produced in the laminar boundary
layer, yielding an improved transition modelling to the Smagorinsky model. Away from the body,
the modelling is identical to the Smagorinsky model (Ducros et al., 1998).
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2.4 Computational Fluid Dynamics
In CFD, a fluid flow problem is solved by a numerical solution of some set of model equations.
In this study, the model equations constitute Eqs. (2.3)-(2.4) and one of the turbulence models
outlined in the previous section. There are numerous approaches to solving these equations, but in
this study the Finite Volume Method (FVM) is applied. Below, the method is described in brief
and thereafter follows a description of the method’s error sources. Estimation and control of these
error sources are of high importance in V&V in CFD.

The Finite Volume Method

FVM for incompressible, viscous flow is derived from the integral form of Eqs. (2.1)-(2.3)∫
∂Ω
ρu

′ · n dA = 0 , (2.41)

∫
Ω

∫ t+∆t

t

∂ρu
′

∂t
dt dV +

∫ t+∆t

t

∫
∂Ω
ρu

′(u′ · n) dA dt =

−
∫ t+∆t

t

∫
∂Ω
p
′
n dA dt+

∫ t+∆t

t

∫
∂Ω

(µ∇u′) · n dA dt+
∫ t+∆t

t

∫
Ω
ρf

′
dV dt ,

(2.42)

where Ω denotes a finite control volume, ∂Ω its boundary and ∆t a finite time step (Versteeg and
Malalasekera, 2007). In FVM, the entire flow domain is subdivided into numerous control volumes,
which are denoted cells (Versteeg and Malalasekera, 2007). In each cell, the flow variables are given
a discrete location (e.g. at the faces or the cell center). Given this formulation, the above equations
may be approximated by the use of these discrete values. I.e., face values may be interpolated by
use of cell values or vice versa, and derivatives may be approximated by finite differences. Hence,
for each cell, a non-linear system of equations are expressed in terms of the discrete flow variables
(the second term from the left hand side in Eq. 2.42 is non-linear). Further, as Eqs. 2.41 and 2.42
constitute an elliptic-parabolic system of PDEs (Müller, 2017), boundary conditions need to be
prescribed at all boundaries. This also holds for turbulent transport quantities as k or ω. The
boundary conditions may be prescribed in the form of values (Dirichlet) or gradients (Neumann)
(Kreyszig et al., 2015).

To solve this non-linear algebraic system of equations, an iterative procedure is used (Versteeg
and Malalasekera, 2007). I.e., p′ and u′ are guessed at initiation; the convective fluxes are
approximated with the guessed field u

′∗, resulting in a linear system for updated velocities u′ .
However, the solution of the discretized equations, denoted a predictor step, do usually not satisfy
mass conservation. Thus, corrections to u′ and p′ are needed.

In the original pressure-correction algorithm SIMPLE by Spalding and Patankar (Patankar and
Spalding, 1972), Eq. (2.42) is simplified to generate a direct coupling between pressure corrections
and velocity corrections. These relations are inserted into Eq. (2.41) to generate a Poisson-like
equation for the pressure corrections. After solving this equation the pressure and the velocities may
be corrected (a corrector step). This procedure continues until convergence, where the continuity
error may be used in a convergence requirement. After convergence, the equations are integrated in
time and the procedure is repeated at the new time step. This process continues until the simulation
reaches the end time.

Another prominent pressure-correction algorithm is PISO (Versteeg and Malalasekera, 2007).
This is an extension of SIMPLE, where the predictor and corrector step is followed by a second
corrector step. A schematic description of the PISO algorithm is given in Figure 2.15. This figure
depicts how PISO is used to solve one time step.

Solving the filtered equations is algorithmically very similar to solving the unfiltered ones.
Turbulent quantities are guessed at initiation, and after finishing the final corrector step, transport
equations for the turbulent properties, e.g. k and ω, are solved. However, the inclusion of turbulent
quantities generally slows down convergence, and grid requirements, especially in hybrid methods
and LES, may introduce numerous numerical difficulties (Jasak, 2018).
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Figure 2.15: Flowchart of the PISO algorithm (Versteeg and Malalasekera, 2007)
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Numerical Errors in FVM

In applying FVM to solve the filtered equations and a turbulence model, there will be numerical
errors (cf. next section for the definition of an error). The total error may be subdivided into three
categories (Eça and Hoekstra, 2009)

• Round-off error

• Iterative error

• Discretization error

Round-off error follows the finite computer precision. With double precision as applied in
OpenFOAMv5.0, Eça and Hoekstra (2009) state that for smooth flows this error is negligible
compared to the two other sources.

The iterative solution of linear systems of equations and the iterative correction methods
introduce a numerical error. As mentioned in the previous section, these iterative procedures are
due to the non-linearity of the systems of equations. The iterative error may be monitored by a
norm of the residual, and the residual is defined as

r = Aφ− b , (2.43)

where Aφ = b is the linear system under investigation. Alternatively, the error may be monitored
by the norm of the change from one iteration to the next. Three examples of norms are the
L∞-norm, the LRMS-norm and the L1-norm, which read

L∞ = MAX
i

(|φ(n)
i − φ

(n−1)
i |) , LRMS =

√√√√∑Np
i=1(φ(n)

i − φ
(n−1)
i )2

Np
, (2.44)

L1 = 1
Np

Np∑
i=1
|φ(n)
i − φ

(n−1)
i | , 1 < i < Np , (2.45)

where Np is the total number of grid points and n is the iteration counter. The L1-norm of the
residual or its relative change is used as default in OpenFOAMv5.0 to estimate iterative convergence
(OpenCFD, 2018c).

The discretization error is caused by the fact that one can only use a finite number of
control volumes (Roache, 1998). Dependent on the chosen discretization, e.g. a cell-based FVM,
the discretized equations include flow quantities and derivatives at faces. Thus, these must be
approximated by use of interpolation and finite differences, respectively. Dependent on the scheme,
these errors are proportional to the grid spacing by some order p. E.g., the central FVM is 2nd order
accurate, while the standard upwind method is first order accurate (Versteeg and Malalasekera,
2007). Thus, as the grid spacing are refined, the discretization error is reduced. However, the
observed convergence order is usually lower than the theoretical order for complex flows. This
difference is due to effects of boundary conditions, turbulence modelling and other aspects affecting
the numerical solution. The method to calculate the observed order of convergence is given in the
next section along with the use of Richardson extrapolation to estimate extrapolated flow variables.
Additionally, a method that estimates the numerical uncertainty caused by the discretization errors
is presented.

In estimating the discretization error, an inherent assumption in all such methods is that
iterative errors are negligible compared to the discretization errors. To establish the accuracy of this
assumption for a given simulation, a criterion is developed in Eça and Hoekstra (2009). The method
of manufactured solutions (Roache, 1998) was used to obtain values for iterative and discretization
errors, and this was utilized to establish a criterion for a negligible iterative error. The investigation
showed that the iterative error measured with L∞-norm is a good estimator; the iterative error do
not affect the observed convergence order if the L∞-norm is 2-3 orders of magnitude lower than the
estimated discretization error (cf. next section). Additionally, it was shown that the LRMS-norm
was not an accurate estimator for the iterative error.



2.5. VERIFICATION AND VALIDATION IN ASME V&V 20-2009 25

2.5 Verification and Validation in ASME V&V 20-2009

Verification and Validation (V&V) in CFD concerns assessing the accuracy of a numerical simulation
(Roache, 1998). In this context, verification involves determining whether a code correctly solves
the incorporated mathematical model. When this is established, code validation can be pursued.
This process aims to assess whether the incorporated mathematical model adequately represents
the physical problem. Before providing a more detailed account of this process, the following
introduces definitions used in ASME (2009), which are adopted in this study. Let D denote the
experimental value, S the simulated value and T the true value of some quantity. Further, the
validation comparison error is defined as

E = S −D . (2.46)

The error in S and D are defined as

δS = S − T , δD = D − T . (2.47)

Combining (2.46) and (2.47) yield

E = δS − δD . (2.48)

The errors in S can be subdivided into three categories:

• δmodel due to modelling approximations and assumptions

• δinput due to errors in input parameters

• δnum due to errors in the numerical solution of the equations (cf. previous section)

δs = δmodel + δinput + δnum . (2.49)

Using the subdivision in Eq. (2.49), Eq. (2.48) may be rearranged to

δmodel = E − (δnum + δinput − δD) . (2.50)

Further, a validation standard uncertainty uval can be defined to represent the combined error of
all the error terms. I.e.,

δmodel ∈ [E − uval, E + uval] . (2.51)

If the error terms are assumed independent, their respective uncertainties to a given confidence
level is given as (ASME, 2009)

uval =
√
u2
num + u2

input + u2
D . (2.52)

Conclusively, the process of establishing the model error interval to a certain confidence level
consists of establishing the validation comparison error E and the uncertainties associated with the
numerical solution, input parameters and experimental solution. In the following, this process is
outlined.

Estimation of Numerical Uncertainty unum

The first step in the verification process is denoted as code verification. This usually amounts to
applying the method of manufactured solutions (ASME, 2009). By doing so, one may verify that
the code solves the incorporated mathematical model correctly. This is a one-time affair performed
after code completion. In the case of OpenFOAM and commercial CFD codes, this process has
been performed.
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After the code has been verified, solution verification follows. Given that all grids are able
to resolve all scales of a simulation (flow and turbulence model dependent), a systematic grid
refinement study is used to estimate a Richardson extrapolated value of S and unum. That aside, if S
is assumed to have a power series representation in the grid spacing metric h with dominating order
p, p may be estimated from simulations on three grids (ASME, 2009). p is denoted as the observed
order of convergence. It is a requirement that the grid refinement must be consistent throughout
the grid. In this study, the grid spacing metric is defined as in ASME (2009), hi = [ VNi ]

1/3. Ni

denotes the total number of grid cells for a mesh indexed i and V is the volume of the flow domain.
In this case, it is assumed that the power series may be truncated to the leading order term of
order p; it is assumed that the grid is in the asymptotic range.
Followingly, the procedure for estimating p and the extrapolated value Sext is given as
h1 < h2 < h3, Si = S(hi), r21 = h2/h1, r32 = h3/h2, ε32 = S3 − S2 and ε21 = S2 − S1 ,

p = 1
lnr21

[ln|ε32/ε21|+ ln(r
p
21 − sign(ε32/ε21)
rp32 − sign(ε32/ε21) ] . (2.53)

Further, p is used to calculate the extrapolated value with use of Richardson extrapolation

S = Sext = rp21S1 − S2
rp21 − 1 . (2.54)

Lastly, the numerical uncertainty at 95% confidence is given by

unum = GCI21 = Fs

rp21 − 1 | ˜ε21| , ˜ε21 = S1 − S2 . (2.55)

For three-grids and more, Fs = 1.25. This safety factor is empirical and is given in Roache
(1998), following his case studies. The above quantity, unum, is denoted as the grid convergence
index (GCI).

Note, for complex CFD simulations, the required grid refinement may be very expensive, as
the grid size for reaching the asymptotic range may be prohibitive (Eça and Hoekstra, 2014). Hence,
Eça and Hoekstra (2014) developed an alternative approach, providing uncertainty estimates when
the solution is not in the asymptotic range. To calculate an estimate of the uncertainty, more terms
are included in the power series and it is determined by a least squares fit, requiring simulations
on at least 4 grids. Based on the fit, the observed convergence order follows, which yields the
extrapolated value and unum.

Estimation of Parameter uncertainty uinput

There are two approaches to establish the input parameter uncertainty. The first method is denoted
as the sensitivity coefficient method in ASME (2009). A first order Taylor series expansion in
parameter space is used to estimate the input parameter uncertainty for n uncorrelated random
input parameters

u2
input =

n∑
i=1

( ∂S
∂Xi

uXi)2 , (2.56)

where Xi is as an input parameter and uXi is the corresponding standard uncertainty. The
derivatives may be approximated by finite differences. E.g., by a central difference approximation,
one has

∂S

∂Xi
= S(X1, .., Xi + ∆Xi, ..., Xn)− S(X1, .., Xi −∆Xi, ..., Xn)

2∆Xi
+O(∆X2

i ) , (2.57)

where ∆Xi is some appropriate finite step in input parameter Xi. By using central differences,
2n+ 1 simulations needs to be performed to estimate uinput. An alternative to the above method is
using a Monte Carlo technique. Such a technique have the advantage of also capturing non-linear
behavior in parameter space. However, this technique is often prohibitively expensive in CFD, as
thousands of simulations may be needed to obtain statistical convergence (ASME, 2009).
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Estimation of validation uncertainty uD

Estimation of uD from experimental data follows an established standard given in ASME (2014).
As validation in this case is performed with DNS, this standard can not be utilized to estimate
uD. Further, ASME V&V 20 does not cover the use of DNS in validation. There is relatively little
literature on this subject. If one make a similar subdivision of uD as for δs (cf. (2.47))

δD = δDNS = δmodel + δinput + δnum . (2.58)

The modelling error in the incompressible Navier-Stokes equations is assumed negligible, δmodel = 0.
In the present DNS study, the inflow is laminar, and blockage effects are assumed negligible,
resulting in no input parameter uncertainty, δinput = 0. However, the numerical error, δnum, is
still present. As discussed in Oliver et al. (2014), the estimation of this term is more complicated
than in the RANS or LES case. If iterative errors and round-off errors are termed negligible, the
numerical errors are only dependent on the discretization error. However, due to the high accuracy
of DNS compared to RANS and LES, it is relevant to consider the finite statistical sampling of DNS
statistics. In Oliver et al. (2014), Richardson extrapolation in a generalized Bayesian framework is
used to include this effect. The authors note that the use of this procedure may not be tractable
for large DNS simulations, but rather be used to develop best-practice guidelines and rule of
thumb estimates. The study also included test cases, and amongst them, the wall channel flow at
Reτ = uτ δ

ν = 180 in Hoyas and Jiménez (2008).

Validation Uncertainty and Multivariate Extension

After performing the above procedure, the model uncertainty for a given quantity may be established
using Eqs. (2.52) and (2.51). Additionally, the different contributions to the model uncertainty
may be compared to assess the most critical sources of uncertainty. I.e., should a more accurate
experiment or a simulation be pursued to reduce uval? In Hills (2005), the procedure is extended
to multivariate problems with the metric

r =
√
ETV −1

val E , (2.59)

where N validation comparison errors are assembled in the vector E. Vval is the covariance matrix
given by

Vval = VS + VD + Vinput . (2.60)

If numerical and experimental uncertainties are uncorrelated, VS and VD are diagonal matrices
with entries u2

num and u2
D, respectively. If the Sensitivity coefficient method is applied with n

uncertain input parameters, Vinput is given as

Vinput = XSVlX
T
S , (2.61)

where Vl is a n× n diagonal matrix with entries uXi . Xs is the N × n sensitivity matrix
∂S1
∂X1

· · · ∂S1
∂Xn... . . . ...

∂SN
∂X1

· · · ∂SN
∂Xn

.

 . (2.62)

If the uncertainties of the N variables are estimated as normally distributed, r should be χ2

distributed (Hills, 2005). Then, a reference value rref may be defined as the expected value plus
one standard uncertainty

rref =
√
N +

√
2N . (2.63)

If r/rref > 1, the modelling error are not consistent with the experimental observation. With
r/rref < 1, the differences in simulation and experiments are within the level of uval.



28 CHAPTER 2. BACKGROUND THEORY



Chapter 3

Problem Setup

3.1 CFD Code
All simulations are performed in OpenFOAMv5.0, which is an open-source computational toolbox
capable of simulating a wide variety of different fluid flow processes. Amongst others, it is able to
simulate incompressible turbulent flows, applying RANS, hybrid and LES turbulence models. The
finite volume method in OpenFOAM is using co-located storage and an unstructured polyhedral
grid (OpenCFD, 2018d). The code is parallellized using message passing interfacing (MPI) and
subdomain decomposition.

3.2 Computational Domain and Boundary Conditions

The configuration under study is a prolate spheroid with an aspect ratio of λ = c/a = 6 : 1, where
’c’ denotes the half-length of the major axis while ’a’ denotes the half-length of the minor axis. The
spheroid is inclined 45◦ relative to the uniform inflow U0. There are two coordinate systems in use,
one global (x, y, z) and one body-fixed (η, ξ, z), both originating in the spheroid centroid (cf. Figure
3.1). Additionally, the body fixed coordinate system will only be utilized in its normalized form
(η̄, ξ̄, z̄), where the normalization is with the respective half-length (e.g. η̄ = η/3D). In addition, the
coordinate transformation η∗ = η + c will be utilized in the non-dimensional form Reη∗ = η∗D/U0
(similar to a flat plate Reynolds number).

The computational domain equals that used in the forthcoming DNS study, having dimensions
(51.5D × 25D × 27D) in the x, y, z -directions, respectively. D denotes the minor axis of the
spheroid (cf. Figure 3.1). The Reynolds number Re considered is 16000, where Re = U0D/ν. The
boundary conditions are depicted in Figures 3.2 and 3.3, and are further discussed in the following.
They have been devised following the guidelines in Versteeg and Malalasekera (2007) and the earlier
papers on this flow configuration for lower Reynolds numbers (Jiang et al., 2014) (Jiang et al.,
2015).

Inlet Conditions

For all models, the streamwise velocity component at the inlet is prescribed to unity and the
crosswise components are set equal to zero. The zero gradient condition is applied to the pressure.
Regarding the turbulence quantities, the incoming flow is assumed laminar(similar to the DNS
study). Hence, the Smagorinsky and WALE models are prescribed with zero νSGS at the inlet
(Schlüter et al., 2004).

If the RANS models are to converge, some limited turbulence must be prescribed. The
turbulence intensity is specified to I = 0.5% and the viscosity ratio νt/ν to unity, and this is based
on research practice (Pereira et al., 2017) (Vaz et al., 2016). The turbulence intensity is defined as
I = u/U0, where u is the root-mean-square of the turbulent velocity fluctuations. I.e.,

29
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Figure 3.1: Domain topology at the meridionial plane (Jiang et al., 2015).

u =
√

1
3(u2

1 + u2
2 + u2

3) =
√

2
3k . (3.1)

Combining the definition of the turbulence intensity with Eq. (3.1), yields an expression for k given
I and U0

k = 3
2(U0I)2 . (3.2)

Next, the viscosity ratio is used to derive the inlet ω-values. From the definition of ω, one have

ω = k

νt
= k

νt

ν

ν
= k

ν
(νt
ν

)−1 , (3.3)

and the eddy viscosity is given as νt = k/ω.
For the k−ω SSTLM model, the intermittency is set equal to 1 at the inlet, equaling laminar

flow. Further, Reθ at inlet is given by the expression

Reθt,inlet =
{

1173.51− 589.428I + 0.2196I−2, I ≤ 1.3 ,
331.50(I − 0.5658)−0.671, I > 1.3 ,

(3.4)

where the turbulence intensity I is specified in terms of percentage (Rumsey, 2018).

Top, Bottom, Front, Back and Outlet Conditions

For all turbulence quantities and velocity components at the top, bottom, front, back and outlet
boundaries, the zero gradient condition is applied. This correspond to the flow being assumed fully
developed at each respective boundary in the direction of its normal vector (e.g. in the positive
x-direction at the outlet boundary). The zero gradient condition is also applied to the pressure on
the back, front, top and bottom boundaries, following the above argument. At the outlet, p is set
equal to zero and this works as the reference pressure, which is strictly needed in incompressible
flows, where pressure is only determined relative to some reference (Müller, 2017).
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Wall Conditions

At the wall, the zero gradient condition is applied for the pressure (Versteeg and Malalasekera,
2007). As discussed in section 2.2, the mean turbulent boundary layer may either be resolved by
integrating through the viscous sub-layer or by applying wall functions. Following the importance
of transition in this flow and the poor transition modelling of the log-law (Eça et al., 2016), all
RANS models are integrated down to the viscous sublayer. Thus, all models in this thesis are to
satisfy the requirement of y+ < 1. The corresponding wall modelling in OpenFOAM is presented
in Table 3.1. A thorough description of the different wall models in OpenFOAM is given in Liu
(2018). For the k − ω SSTLM model, the zero gradient condition was applied to both γ and Reθt
(Langtry and Menter, 2009).

Table 3.1: Applied wall functions.

OpenFOAM wall function
k kLowReWallFunction
ω omegaWallFunction

νt, νSGS nutUSpaldingWallFunction

Figure 3.2: Boundary conditions in the x-y plane, WF: Wallfunction , P: Prescribed.

Figure 3.3: Boundary conditions in the x-z plane.
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3.3 Grid Sets and Meshing Methodology

The meshing was performed in the OpenFOAM affiliated utilities blockMesh and snappyHexMesh.
In blockMesh, the domain size and the number of cells at the coarsest refinement level are specified
(Jackson, 2018). This mesh is a fully-structured hexahedral mesh. Next, snappyHexMesh is used to
refine the mesh around solid objects and in other specified refinement regions. The solid objects are
represented by CAD files (stl. or obj. format). Further, the user specifies a number of refinement
levels and at each refinement level, the mesh density is scaled by a factor of 0.125, as cell sides are
halved (0.53). In addition, close to solid objects, the user can specify the boundary layer mesh
design in terms of cell thicknesses, refinement ratios and much more (Jackson, 2018). Lastly, the
user specifies mesh quality control parameters. When snappyHexMesh is finished running, the mesh
quality can be checked with the utility checkMesh.

All meshes passed the checkMesh utility with its default settings. I.e., critical mesh quality
criteria such as max orthogonality, skewness and aspect ratio were all satisfied (Jackson, 2018).
Further, the mesh design included two refinement regions, which were made to provide the necessary
resolution in the wake of the spheroid. In Figure 3.4a, a slice of the mesh at z = 0, shows the
topology of the two refinement regions in the meridional plane. Further, in Figures 3.4b and 3.4c,
the boundary layer design is depicted.

(a) Mesh topology at the meridional plane.

(b) Inner refinement box and boundary layer. (c) boundary layer close-up.
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Table 3.2: Mesh sizes, refinement factors and y+
max for all grids.

M1 M2 M3 M4
Ntarget 6M 9M 13.5M 20.25M
Nactual 6.1M 9.1M 14.0M 21.2M
r - 1.14 1.15 1.15

y+
max 0.625 0.475 0.305 0.250

To perform a V&V study, three requirements may be identified from section 2.5

1. All scales of the filtered flow must be resolved.

2. The mesh refinement needs to be consistent throughout the grid.

3. All meshes have to be in the asymptotic range.

The first requirement is mainly relevant for the coarsest mesh of a grid set assigned to some
set of filtered equations (E.g. RANS or LES). To comply with this requirement, the meshing effort
started at the boundary layer. As outlined in sections 2.2, for RANS and LES models, y+ shall be
kept below 1. However, y+ depends on the flow, so this requirement makes an iterative procedure
of meshing and simulation necessary. Using OpenFOAM’s yPlus utility, the maximum y+ was
monitored and the grid was adjusted such that y+

max < 1.0. The maximum value of y+
max of all

models for each grid is given in Table 3.2. Note, OpenFOAM has no utility for monitoring the LES
requirements on x+ or z+, so this was unfortunately not monitored (cf. sections 2.2 and 4.5).

To investigate the rest of the grid, ParaView 5.4.1 was used to look for discontinuities in
pressure fields. This would entail not smooth enough meshes, where consistency may be partly
lost(Personal communication with Professor Bernhard Müller during a TEP4165 lecture at NTNU
Trondheim in November 2017). This may slow or even prevent convergence in accordance to the
Lax equivalence theorem (Lax and Richtmyer, 1956). After a smooth pressure field is ensured, the
coarsest mesh is said to fulfill the above requirement: the coarsest mesh resolves all scales of the
filtered flow. This is only regarded as a necessary condition and is far from sufficient in determining
if the requirement is satisfied. I.e., qualitative differences may be observed at finer grids, indicating
that the requirement do not hold. This is particularly relevant for hybrid and LES models, where
appropriate wall-modelling and grid spacings are more challenging than in RANS.

After the coarsest mesh is developed, refined meshes must be developed in accordance to the
second requirement. In snappyHexMesh, it is not possible to define a refinement ratio and apply
it to an earlier defined grid. Hence, the refinement process is relatively cumbersome with the use
of snappyHexMesh. To develop refined meshes, targets for the total number of grid cells N were
set to cover a range of different mesh sizes suitable for RANS and LES calculations. Four meshes
were developed, where the three coarsest meshes, M1, M2 and M3, were used for RANS, while the
finer meshes, M2, M3 and M4, were used for hybrid simulations (lower number denotes coarser
mesh). The refinement is specified in terms of a factor r∗, representing the relative increase in the
total number of cells N . I.e, NNew = r∗NOld. In this study r∗ ≈ 1.5; this was chosen as it ensures
a refinement factor r > 1.1(cf. section 2.5), which is recommended in Roache (1998). In Table 3.2,
the target and the achieved mesh sizes are presented
In order to perform a consistent refinement throughout the grid, some scaling factor was used to
refine the initial base mesh in blockMesh and to adjust the thickness of the innermost cells in the
boundary layer in snappyHexMesh. Thus, if one assumes that snappyHexMesh ensures a smooth
internal mesh, the mesh specifications at the boundaries are assumed to ensure a mesh refinement
consistent with the above refinement ratio. Thus, this procedure was used to develop M2-M4 in
accordance with the target mesh sizes.

Compliance with the third requirement is discussed in length in section 3.5. Note, investigation
of this requirement is performed by comparing the GCI of the coarse and medium grid to the GCI
for the medium and fine grid.
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3.4 Numerical Settings

The numerical schemes used in this thesis are inspired by Robertson et al. (2015). Here, three
test cases of bluff body flows where utilized to determine effective schemes in terms of accuracy
and speed. Recommendations were made for RANS and hybrid models. The notation used in the
OpenFOAM documentation is adapted in this thesis (OpenCFD, 2018e).

∫
Ω

∂ρu
′

∂t
dV︸ ︷︷ ︸

time

+
∫
∂Ω
ρu

′(u′ · n) dA︸ ︷︷ ︸
divergence

= −
∫
∂Ω
p
′
n dA+

∫
∂Ω

(µ∇u′) · n dA︸ ︷︷ ︸
Laplacian

+
∫

Ω
ρf

′
dV . (3.5)

The schemes applied in this thesis are given in Table 3.3, and the corresponding OpenFOAM
scripts are given in Appendix D. A thorough description of the different schemes are given in
OpenCFD (2018e). First, the schemes applied in Robertson et al. (2015) were tested, but using
’leastSquares’ for the gradient scheme proved to be unstable. Hence, the gradient scheme was set
to the default option ’Gauss linear’. Further modifications were performed after discussions with
Håkon Strandnes.

In addition to the above, Jasak (2018) proposed a set of best practice guidelines for OpenFOAM
numerical schemes. Regarding ’divergence’ schemes for Eq. (3.5) for hybrid and LES methods, it
is noted that special care must be taken, and that upwind schemes are to be avoided because of
their high numerical diffusivity. However, obtaining convergence for hybrid and LES models proved
difficult. For hybrid methods, the same scheme as used in RANS had to be utilized, ’bounded
Gauss linearUpwind’, as less diffusive schemes were unstable. For LES, initially ’Gauss linear’ was
attempted, but this proved unstable. This scheme is unbounded, which may cause nonphysical high
frequency oscillations(Versteeg and Malalasekera, 2007). A thorough discussion on properties of
convection schemes, including the boundedness property, is given in Versteeg and Malalasekera
(2007). To stabilize the solution, the scheme ’Gauss filteredLinear2’ was utilized. In this scheme,
limited amounts of upwind are added to limit the unboundedness of the regular ’Gauss linear’. The
amount of limiting is set in terms of a constant k, where k = 1 amounts to fully limited, while
k = 0 amounts to ’Gauss linear’. The minimum value of k where the simulation stayed stable, was
found to be k = 2.5%. Note, k is minimized to limit the numerical diffusivity.

Table 3.3: OpenFOAM Numerical Schemes.

OpenFOAM Name
Time CrankNicolson 0.9

Gradient Gauss linear
Divergence U bounded Gauss linearUpwind / Gauss filtreredLinear2 0.025 0.0

Divergence turbulence bounded Gauss limitedLinear 1
Laplacian Gauss linear corrected

Pressure-velocity coupling PISO

Concerning temporal discretization, the time steps were set to achieve maximum Courant
numbers of 0.8 (∆t ∼ 10−3). This may be considered as a conservative criteria for RANS-simulations,
but was still pursued to ensure high temporal accuracy.

PISO was identififed as the most effective pressure-velocity coupling algorithm in Robertson
et al. (2015), and was used in this thesis.

Regarding floating point arithmetics, double point precision is the default setting in Open-
FOAMv5.0 and was used in all simulations.

Iterative errors in OpenFOAMv5.0 are controlled by use of the L1-norm of the residual (cf.
section 2.4). The undersigned has not found research underpinning the suitability of the L1-norm
as an estimator for the iterative error. The L1-norm is a global measure similar to LRMS , and
following Eça and Hoekstra (2009) it is assumed to be an unsuitable criteria. However, in lack
of other options, it is assumed that this criteria yields iterative errors negligible compared to the
discretization errors. The default OpenFOAM tolerances were utilized (cf. Appendix D).
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3.5 V&V Procedure
Following the material covered in sections 2.5, 3.3 and 3.4, both round-off and iterative errors may
be assumed negligible to the discretization errors. Hence, the procedure outlined in ASME (2009)
with the multivariate extension in Hills (2005) was utilized.

The parameter uncertainty has been neglected as the computational requirement was deemed
prohibitive. Note, except WALE and Smagorinsky models, all turbulence models are subjected to
parameter uncertainty in k and ω.

Asymptotic Range Assumption and DNS Uncertainty Estimate

To ensure that the simulations are in the asymptotic range, the following relation, which is valid in
the asymptotic range (Roache, 1998), was monitored

GCI32 = rp21GCI21 . (3.6)

This was done by monitoring the error in this assumption GCIError, which is defined as

GCIError := GCI32
rp21GCI12

− 1 , GCI32 = Fs

rp32 − 1 | ˜ε32| . (3.7)

To estimate the 95 % uncertainty interval of the DNS result, the study by Oliver et al. (2014)
was utilized. Even though the flow case in this study vastly differs a channel flow, it was used in
lack of more suitable references. In this study, the PDF of the relative error in the skin friction
coefficient was established. In this case, 0.1 % is a conservative estimate of the numerical uncertainty
(including discretization and sampling error). As the force coefficients are integrated variables
similar to the skin friction coefficient, it is used as a reference PDF in this thesis. As the flow in
this thesis is more complex, I assume the uncertainty to be somewhat larger, but in the same order
of magnitude. Hence, I will use 0.5% as an estimate of the 95 % confidence interval for the relative
numerical uncertainty for all force coefficients (corresponding to uD in section 2.5).

Validation Metric Calculation

The Richardson extrapolated values and the numerical uncertainty of the verification points for a
given model are estimated by use of Eqs. (2.53)-(2.55). Followingly, the comparison error vector E
is assembled. As parameter uncertainty is neglected, Vval will be a diagonal matrix with entries at
row and column i given as

Vvalii = u2
numi + u2

Di , (3.8)

where unumi and uDi are the numerical and DNS uncertainty for verification point i, respectively.
Next, the verification metric r in Eq. (2.59) simplifies to the simple expression

r =

√√√√ N∑
i=1

E2
i

u2
numi + u2

Di

, (3.9)

where N is the total number of verification points. Finally, r/rref is calculated and interpreted
according to section 2.5.

As the RANS, hybrid and WALE results were not in qualitative agreement with the DNS
solution (cf. chapter 4), no other verification points than the force coefficients were utilized in the
V&V procedure. If qualitative agreement had been achieved, more challenging verification points
as for example time-averaged velocities at some location in the wake, could have been included.
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3.6 Simulation Methodology and Post-Processing
All simulations aimed at obtaining statistical convergence, and this was monitored with the force
coefficient time series. The force coefficients are defined as

CFi = Fi
1
2ρU

2
0
π
4d

2 , CMi = Mi
1
2ρU

2
0
π
4d

3 , i = x, y, z , (3.10)

where d is the diameter of a volume-equivalent sphere, which for the 6:1 spheroid is d = 1.817D
(Jiang et al., 2015). As discussed in section 4, some of the simulations did not obtain statistical
convergence and required to be analyzed at a given time instant which not necessarily is statistical
representative of the model predictions.

The flow was post-processed using Paraview 5.4.1. This application provides powerful visual-
ization possibilities for large data sets. In this thesis, the characterization of the wake topology
of the different models has been of prime interest. Towards this end, λ2 and ω was investigated
(cf. section 2.2). Applying OpenFOAM’s post-processing utilities lambda2 and vorticity, λ2 and ω
were calculated and later visualized in Paraview. λ2 was investigated in the form of iso-surfaces,
whereas ω was displayed in the form of 2D slices at various locations. Additionally, predictions
of k and νSGS has been analyzed; production of these quantities indicates model prediction of
laminar-turbulent transition. The selected post-processing quantities has been inspired by the
earlier work on this flow configuration for lower Reynolds numbers (Jiang et al., 2014) (Jiang et al.,
2015).

3.7 Computing Facilities
This research was supported in part with computational resources at NTNU provided by NOTUR,
http://www.sigma2.no. The utilized Vilje HPC cluster has 1404 computing nodes, where each
node has 2 Intel Xeon E5-2670 2.6 GHz 16-core CPUs and 32 GB RAM (NTNU-HPC-GROUP,
2018a). A HBA infiniband is used for inter-nodal communications. The number of nodes utilized
was determined from a Vilje OpenFOAM performance study (NTNU-HPC-GROUP, 2018b), and
ranged from 5 to 20 nodes.

http://www.sigma2.no


Chapter 4

Results and Discussion

This chapter will present the results and discussion of the simulations. In sections 4.1-4.3, the
results and discussion of the flows predicted by the, hybrid and LES models are given. Next,
in section 4.4, the results of the V&V study are presented and discussed. Lastly, a discussion
on the observed flow physics and suitable turbulence modelling is given in section 4.5. This
section also includes a discussion on the methodology utilized in this study. I.e., shortfalls in
the present thesis and proposals for improvements in pre-processing, V&V and post-processing
in a future study. Further, force coefficient time series and statistics are given in Appendix A
and B, respectively. Figures 4.1-4.2 give an overview of the wake topology for LES and hybrid models.

Figure 4.1: Smagorinsky. λ2 = −5 - contours.

Figure 4.2: k − ω SST SAS. λ2 = −5 - contours.

37



38 CHAPTER 4. RESULTS AND DISCUSSION

4.1 LES

For LES models, the results differ qualitatively with different grid spacings. For meshes M2 and M4,
an oscillating wake was predicted (cf. Appendix A). At M3, WALE was unstable while Smagorinsky
simulated an asymmetric wake. These qualitative differences violate the assumptions in ASME
(2009), and thus a formal V&V study was not pursued. Instead, a less formal validation procedure
was conducted, where the simulated force coefficients and characteristic features of the flow where
compared to the DNS results (cf. section 2.2). This was pursued for the Smagorinsky model at
mesh M3, as this result was in best qualitative accordance with the DNS results.

Results obtained at meshes M2 and M4 for both LES models used the ’Gauss linear’ divergence
scheme (cf. section 3.4). The solutions were stable, but predicted an oscillating wake (cf. Appendix
A). The reasons thereof remain unclear. However, it is believed that mesh M2 might not be fine
enough to satisfy the requirement of only modelling scales in the inertial-sub range (cf. section 2.1).
The very fine aspect ratio in grid M4 (ratio between smallest and largest cell) is believed to be
problematic, as this may cause loss of convergence (cf. section 2.2). I.e., by applying a smooth
refinement (cf. section 3.3), the spheroid wall resolution becomes very fine (finer than the one
applied in the DNS study). Additionally, the requirements on the near-body grid on x+ and z+

have not been ensured and may have a significant effect.
The reason for believing that there are issues with modelling and/or numerics in the simulations

on meshes M2 and M4 follows the correctly predicted asymmetry in the simulation with Smagorinsky
at mesh M3. After the initiation of the simulation, the wake starts to oscillate with an increasing
amplitude. As the diffusivity is reduced, these oscillations increase in strength. When the diffusivity
is low enough, the oscillation reaches a critical strength, where the wake remains on one side of
the spheroid. This asymmetry is typically preserved for a period of 150 s. Figure 5.5a depicts the
force coefficient time history when asymmetry was preserved. Due to no statistical convergence, an
instantaneous flow field was investigated at t = 279.1 s.

Results

Figures 4.3-4.5 give an overview of the flow topology. Note, scaling issues with λ2 make the
comparison with the DNS results only qualitative in nature. That aside, the primary vortex pair
can be seen in Figure 4.4 and 4.5. The scales of these structures are limited in comparison to the
DNS results, as the wake-side vortex disintegrates at approximately x = 0.15D and the opposing
vortex at approximately x = 0.8D. In DNS, it was x = 1.4D and x = 3.2D.

In Figure 4.6a, the vorticity of the primary vortex pair at ξ̄ = −0.6 is investigated. The
wake-side and opposing vortex have strengths(maximum ωxD/U0) of 39 %(yellow encircling) and
49 %(green encircling) relative to the DNS results. Moving in the positive η∗-direction, the primary
vortex structures quickly disintegrate. This is clearly seen in Figure 4.6; the vortices at η̄ = 0.6
relative to at η̄ = −0.6 amounts to 23 % in the the wake side vortex and 19 % in the opposing
vortex, respectively. In DNS, the strengths amounted to 127 % and 71 %.

This topology is convected to the intermediate wake, depicted in Figure 4.7. The maximum
vorticity magnitudes in these slices are 15 % and 17 % of the DNS results at x = 4D and x = 8D.
However, there are groupings of vorticity, which are similar in topology to the DNS (cf. encirclings)

Thus, the Smagorinsky model predicts a flow which is similar to the DNS, but have weaker
vortical structures which disintegrates more quickly. As the characteristic features of the flow are
weaker in LES, so is the asymmetry of the flow. This can clearly be seen in the force coefficient
statistics in Table 4.3b. Note the 21 % underprediction of the sideway force.

Further, where the DNS predicts small scale KH-instabilities on the pressure side of the
spheroid, larger scale structures are predicted by the Smagorinsky model. Figure 4.8 shows a
close-up of these structures. Their size, orientation and length to breadth ratios suggest they are
separated shear layers, which have rolled up into vortical structures. As the mean flow is moving in
the direction of the wake, flow separation occurs on the wake-side of the spheroid along its length.
Based on section 2.2, the separation and following roll up of vortical structures is assumed to follow
from a combination of separation, curvature and crossflow induced instabilities.
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Table 4.1: Smagorinsky force coefficients statistics and comparison errors.

CFX CFY CFZ
Average 0.816 -0.856 0.522
RMS 0.816 0.856 0.532
Eavg 0.026 -0.026 -0.138
ERMS 0.016 0.016 -0.138

The distribution of νSGS in the x− y plane and the η − z plane is given in Figures 4.9 and
4.10. Figure 4.10 indicates that separation induced instabilities are triggered at the lower pole,
whereas natural and separation induced transition occur at the spheroids upper pole (there are high
velocities at this point)(cf. section 2.2). The lower pole production suggests that the asymmetry of
the flow is already felt at this point. Next, Figure 4.9 indicates that separation induced instabilities
are triggered at the upper pole. The production of νSGS occurring at η ∼ −0.5, is assumed to follow
from wake instabilities, produced by interactions between the primary vortex pair and smaller scale
structures.

Discussion

The deviations to DNS in coherence and strength of the primary vortex pair may be attributed
to various sources. It is difficult to determine a separation location exactly as the λ2 contours
do not provide a decisive location. However, Figures 4.4 and 4.5 suggest that separation occur
at an earlier location than seen in the DNS results, and this suggests a weaker vortex pair. It is
believed that the deviation in the prediction of the primary vortex pair has substantial ramifications
for the rest of the flow field. This may be related to additional viscosity introduced through
modelling and numerical schemes. I.e., the simulation introduces numerical diffusivity νnumerical
through the ’Gauss filteredLinear2’-divergence scheme, yielding a too high effective viscosity,
νeffective = ν + νSGS + νnumerical (cf. section 3.4). Here, the Smagorinsky model incorrectly
produces νSGS in wall-bounded laminar flows, and hence increases νeffective further. It is believed
that this increased effective viscosity results in a weaker primary vortex pair, as the mechanism
causing this pair is affected.

When comparing Figures 2.11 and 4.3, there is a clear difference in the structures on the
spheroid’s suction side. It is believed that the Smagorinsky model is unable to predict the smaller
scale KH-instabilities seen for DNS, because of its inability to model wall-bounded laminar flows
properly. A possible resolution of this issue is the application of the WALE model. However, good
enough grid resolution at the spheroid wall might be equally important (cf. section 3.3). The
aforementioned issues might be as important in the modelling of the spheroid’s suction side. E.g.
Figure 4.9 displays the production of νSGS in the vicinity of the primary vortex pair. Here, SGS
modelling and grid resolution are essential in predicting the disintegration of the primary vortex
pair accurately.

In essence, it remains substantial further work to finish the V&V-study of LES-models for
this flow configuration. However, it should be noted that the Smagorinsky model do predict the
flow asymmetry, and this suggests that LES-models are able to capture the global instability of
the flow (cf. section 2.2). More efforts with pre-processing are assumed to improve the predictions
substantially. I.e., the boundedness issue with mesh M3 could possibly be resolved with a higher
quality grid. Towards that end, LES mesh practices should be followed in terms of x+, z+ and
smoothness (cf. section 4.5). Followingly, the ’Gauss linear’ scheme could be utilized, eliminating
the numerical viscosity of the solution. In addition WALE might be stable with this improved grid,
and with its superior modelling of wall-bounded laminar flows, the results might improve. The sum
of these efforts would reduce the effective viscosity and is assumed to provide a primary vortex pair
more in accordance with DNS, and a stronger asymmetry.

.
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Figure 4.3: Smagorinsky. λ2 = −5 - contours. Overall topology.

Figure 4.4: Smagorinsky. λ2 = −5 - contours. Bottom view.

Figure 4.5: Smagorinsky. λ2 = −10 - contours. Bottom view.
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(a) η̄ = −0.6 . (b) η̄ = 0.6 .

Figure 4.6: Smagorinsky. ωxD/U0 in the ξ − z plane. Facing negative η-direction

(a) x = 4D . (b) x = 8D .

Figure 4.7: Smagorinsky. √ωiωiD/U0 in the y − z plane. Facing positive x-direction.
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Figure 4.8: Smagorinsky. λ2 = −5. Structures at the upper pole.

Figure 4.9: Smagorinksy. SGS viscosity νSGS in the meridional plane.

Figure 4.10: Smagorinksy. SGS viscosity νSGS in the η − z - plane at ξ = 0.
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4.2 Hybrid
The hybrid models is assumed to have qualitative grid independence, and was used in a formal
V&V study, applying ASME (2009). Hence, only the results from grid M3 is discussed. Before
discussing the results, please note section 3.4 concerning the convection scheme utilized for hybrid
models. Initially, the unbounded ’Gauss linear’ scheme was used, but it proved to yield unstable
calculations which exceeded the floating point precision after approximately 80 time steps. This
amounts to the same problem as seen with LES. The preliminary results showed an oscillating wake
qualitatively similar to the LES results for grids M2 and M4 (cf. Appendix A). To obtain a stable
result and force statistics, the same scheme as applied in RANS was utilized. Without doubt, this
have had a significant effect on the result, as it introduces substantial numerical diffusivity that
effectively damped the oscillations. Additionally, k − ω SST SAS predicts a significant increase
in force coefficients from grid M3 to M4. This suggests that the assumption of qualitative grid
independence might be questionable and this is further discussed in section 4.5. The Richardson
extrapolated force coefficient statistics and time series are reported in Table 4.2 and Appendix A.

Results

The hybrid models predict symmetry about the meridionial plane (cf. Figures 4.11-4.13). In having
qualitative similar near body flows, the two models also predict similar body forces. I.e., steady
forces in x- and y-directions and only small wiggles around a zero mean force in the z-direction (cf.
Table 4.2).

The predicted flow topology is similar to that seen in Figure 4.20, depicting the k − ω SST
topology; a primary vortex pair, a secondary counter-rotating pair and small scale structures
separating at the spheroid’s sides (encirclings in Figure 4.11 identifies these features as done in
Figure 4.20). This topology is discussed in detail in the next section. The smaller scale structures
originating at the spheorid’s upper pole is highlighted in Figure 4.15.

The strength(maximum ωxD/U0) of the primary vortex pair in the near body wake is inves-
tigated in Figure 4.14. k − ω SST SAS and k − ω SST DES at η̄ = −0.6 predict a symmetric
pair with strengths of 36.9 % and 60.0 % of the mean DNS value, respectively. The vortex pair
are completely symmetric for both models. The difference in strength between these two models
subsides with increasing η∗, and the vorticity dynamics are very similar at η̄ = 0.6, 14.3 %± 0.5 %
of the DNS mean value.

The further downstream development of these structures are presented in Figure 4.16. At
x = 2.5D, the vortex structures are still symmetric and the primary vortices are distinguishable.
However, for x & 5.5D, the wake is unstable as it becomes asymmetric and ruptures into numerous
minor structures. These structures gradually dissipates and have maximum magnitudes(√ωiωiD/U0)
of 2.3 % (k − ω SST SAS) and 3.0 % (k − ω SST DES) at x = 39D compared to at x = 2.5D.

Regarding production of turbulent kinetic energy, Figure 4.17 displays significant variations
in the production of k for k − ω SST , k − ω SST SAS and k − ω SST DES. At the lower pole,
k − ω SST SAS predicts transition, which, based on the position, is assumed to be separation
induced (cf. section 2.2). This is not seen for k − ω SST and k − ω SST DES. Note, the only
difference in the turbulence model formulations between k − ω SST and k − ω SST SAS is the
second source term in the ω equation, QSAS (cf. Eq. (2.33)). Hence, this term is assumed to be
active at the lower pole. Due to the similarity between k − ω SST and k − ω SST DES, it is
assumed that k − ω SST DES is in RANS mode at the entire spheroid surface. The same trend
is seen at the upper pole; k − ω SST and k − ω SST DES yield the same predictions, whereas
k − ω SST SAS predicts substantially higher production. For all models, the dominant source of
k near the body is separation induced transition at the spheroid upper pole. Finally, Figure 4.18
displays k in the meridional plane for the two hybrid models. It is apparent that k − ω SST SAS
does not predict further production in the wake, whereas k − ω SST DES does. The maximum
levels of k for k − ω SST DES is at approximately x ∼ 11D.



44 CHAPTER 4. RESULTS AND DISCUSSION

Table 4.2: Hybrid models force coefficients statistics and comparison errors.

(a) k − ω SST SAS .

CFX CFY CFZ
Average 0.734 -0.829 0.007
RMS 0.734 0.829 0.089
Eavg -0.066 0.001 -0.586
ERMS -0.066 -0.011 -0.581

(b) k − ω SST DES .

CFX CFY CFZ
Average 0.754 -0.878 0.002
RMS 0.754 0.878 0.003
Eavg -0.036 -0.048 -0.658
ERMS -0.046 0.038 -0.667

Discussion

Concerning the primary vortex pair, it is clear that both hybrid models underpredict its strength.
Following the above discussion, k − ω SST SAS is assumed to be in its SRS mode at the lower
pole, and its transition prediction causes an inaccurate modelling at the lower pole. The additional
source term of the ω-equation (cf. section 2.2) do not yield improvements over the conventional
k − ω SST model, as its prediction of the primary vortex pair is closer to the DNS result in terms
of strength. The unsteadiness caused by the separation induced instabilities at the upper pole is
believed to trigger the SRS mode of k − ω SST SAS.

Regarding k− ω SST DES, it is believed that this model is in RANS mode at the lower pole,
given the similar RANS distributions of k. This combined with the inaccurate prediction of the
primary vortex pair indicate that smaller scales and unsteadiness are of importance at the lower
pole (features not captured in RANS mode). In the vicinity of the upper pole, it is believed that
k−ω SST DES acts in its SRS mode because of the observed smaller scale structures. Additionally,
the force coefficients deviate to those seen for k − ω SST , implying that the model is in its SRS
mode close to the spheroid.

The detached eddies at the upper pole are assumed to cause both hybrid models to be in
their SRS mode in the wake. This causes production of anisotropic turbulence. These structures
make the wake slightly asymmetric at x = 2.5D, and eventually destabilize the primary vortex
configuration downstream (x = 5 − 6D). It is assumed that this unsteadiness are stronger with
lower numerical diffusivity and ultimately trigger the wake oscillations. The present simulations,
however, are similar to that seen in Jiang et al. (2014) for Re = 1000, where the symmetric wake
turns unstable at 4− 5D. This suggests that the RANS filtering and numerical schemes damps
out instabilities and effectively solve a lower Reynolds number problem. Note, the turbulence in
the immediate vicinity of the upper pole, given the above assumptions, are isotropic following the
isotropic RANS modelling.

As further discussed in section 4.5, a clear determination of the turbulent length scale would
be highly useful in assessing this result. With a clear distinction of the different modelling regions
(RANS or SRS), the discussion of the effect of the different regions would be more accurate.

The hybrid models do not qualitatively reproduce the flow (this is determined formally in
section 4.4). In order to improve the predictions, the most critical aspect is the numerical schemes.
Similarly to the LES simulations, the unboundedness of the ’Gauss linear’ divergence scheme
yields unstable solutions, whereas upwind schemes add too much numerical diffusivity. Following
additional efforts into pre-processing, the problem with unboundedness might be resolved. However,
the results with ’Gauss linear’, prior to instability, displayed a highly oscillating wake. In removing
the numerical diffusivity, more unsteadiness is observed, and correspondingly a larger portion of the
domain is assumed to be resolved in SRS mode. Nevertheless, regions of isotropic RANS modelling
may inaccurately model the near-body flow and this may have significant ramifications for the wake.
The early results with an oscillating wake is a testament thereof; the simulations with anisotropic
modelling, LES, show stronger oscillations than seen for RANS. Hence, the isotropic near-wall
modelling might be deteriorating in obtaining qualitative resemblance with the DNS results.
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Figure 4.11: k − ω SST DES. λ2 = −10 - contours. Overall topology.

Figure 4.12: k − ω SST SAS. λ2 = −5 - contours. Bottom view of primary vortex pair.

Figure 4.13: k − ω SST DES. λ2 = −5 - contours. Bottom view of primary vortex pair.



46 CHAPTER 4. RESULTS AND DISCUSSION

(a) k − ω SST SAS . η = −0.6. (b) k − ω SST DES . η = −0.6.

(c) k − ω SST SAS . η = 0.6. (d) k − ω SST DES . η = 0.6.

Figure 4.14: Hybrid models. ωxD/U0 in the ξ − z plane. Facing negative η-direction. Vertically
aligned figures share color map.

(a) k − ω SST SAS . (b) k − ω SST DES .

Figure 4.15: Hybrid models. λ2 = 150 - contours. Structures at the upper pole.
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(a) k − ω SST SAS . x = 2.5D. (b) k − ω SST DES . x = 2.5D.

(c) k − ω SST SAS . x = 6D. (d) k − ω SST DES . x = 6D.

(e) k − ω SST SAS . x = 10D. (f) k − ω SST DES . x = 10D.

Figure 4.16: Hybrid models. ωxD/U0 in the y − z plane. Facing positive x-direction.
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(a) k − ω SST .

(b) k − ω SST SAS .

(c) k − ω SST DES .

Figure 4.17: Hybrid models. Predictions of near-body turbulent kinetic energy.

(a) k − ω SST SAS .

(b) k − ω SST DES .

Figure 4.18: Hybrid models. Predictions of turbulent kinetic energy in the meridional plane.
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Table 4.3: RANS models force coefficient statistics and comparison errors.

(a) k − ω SST .

CFX CFY CFZ
Average 0.760 -0.872 0.005
RMS 0.760 0.872 0.006
Eavg -0.030 -0.042 -0.655
ERMS -0.040 0.032 -0.664

(b) k − ω SSTLM .

CFX CFY CFZ
Average 0.757 -0.870 0.000
RMS 0.757 0.870 0.001
Eavg -0.033 -0.040 -0.660
ERMS -0.043 0.030 -0.669

4.3 RANS
The RANS results are qualitatively similar for grids M1, M2 and M3. Thus, the assumption that all
scales are appropriately resolved for a given model is assumed satisfied for the two RANS models(cf.
section 3.3). Hence, a formal V&V study was pursued and this is reported in section 4.4. In the
following, grid M2 was used to analyze the flow. Cf. Table 4.3 for Richardson extrapolated force
coefficient statistics and Appendix A for time series. As seen in the statistics and figures, the two
models predict a highly similar flow. Thus, when appropriate, only the predictions of k − ω SST
are presented.

Results

The RANS models predict symmetry about the meridionial plane (cf. Figures 4.20-4.22). The
two models essentially predict the same force coefficient time histories; steady forces in x and y -
directions and small oscillations around a zero mean force in the z-direction.

The near-body topology, which is common for both models, is displayed in Figures 4.20-4.23
and have the following main features. The yellow encircling in Figure 4.20 identifies the primary
vortex pair, which originates close to the spheroid lower pole. This pair is symmetric. Further, the
green encircling identifies the secondary vortex pair, counter-rotating relative to the primary pair.
This is most clearly depicted in Figure 4.23a. The red encircling highlights small scale structures,
separating along the spheroid’s spanwise direction. Figure 4.23 indicates that these structures act
as a vorticity source to the primary vortex pair. However, towards the upper pole, the supply of
vorticity is limited, as the primary vortex pair is convected downstream. Separation occurs at the
spheroid upper pole, and this is depicted by strong λ2-contours in Figure 4.19.

Concerning the strength(maximum ωxD/U0) of the primary vortex pair, at η̄ = −0.6 and at
η̄ = 0.6 it amounts to 44.6 % and 13.8 % of the mean DNS values (cf. Figure 4.23). These value
are identical for both models to within 0.01 %.

The wake downstream development is depicted in Figure 4.24. At x = 2.5D, the wake is close
to symmetric, but small structures, mainly from separation at the upper pole, are also present. The
configuration becomes slightly unstable in the interval x ∈ (4D, 10D), but the primary vortex pair
stays intact. At x = 12D, the configuration retains stability and gradually dissipates downstream.

Regarding production of turbulent kinetic energy, the two models yield similar predictions at
the lower pole: no separation induced transition (cf. Figure 4.25). At the spheroid’s downstream
facing side (suction side), it is predicted increased levels of k with increasing η∗. This is assumed
to follow from natural transition; as the flow around the spheroid have similarities with the flow
around a 2D airfoil, there is an increased velocity at the spheroids suction side. With increased
velocities, high velocity gradients cause production of turbulent kinetic energy (cf. Eq. (2.30)).
This corresponds to the model approximation of natural transition. k − ω SSTLM do predict
slightly higher production than k − ω SST , but the models predict values in the same order of
magnitude. Moving to the spheroid’s upper pole, both models predict separation induced transition.
However, k − ω SSTLM do this is in a far greater degree than k − ω SST (approximately a factor
of 20 in difference). At x ∼ 10D, both models predict substantial production of k (cf. Figure
4.26). k− ω SSTLM yields the highest levels of k, but the the predictions are of the same order of
magnitude.
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Discussion

The two RANS models underpredict the strength and downstream development of the primary
vortex pair. Hence, important physical mechanisms of the flow are not captured, and this is assumed
to be related to general isotropic RANS characteristics. I.e., isotropic turbulence modelling and the
damping of smaller temporal and spatial scales.

The one big difference between the predictions of the two RANS models is the amount of
separation induced transition at the upper pole. k − ω SSTLM ’s ’separation correction’ is active
and yields higher predictions of k than those seen for k − ω SST . As crossflow instabilities are
of big importance in this flow, the inclusion of a k − ω SSTLM model with such a correction
would have been interesting (cf. (Watanabe et al., 2009)). From Figure 4.26, it is apparent that
wake instabilities cause significant production of k for both models. Given the similar values of
k in the wake for the two models, the same development of the primary vortex pair is observed;
diffusion eventually stabilizes the topology, which maintains the integrity of the primary vortex
pair. Followingly, the improved transition modelling of k−ω SSTLM over k−ω SST do not have
a significant effect in providing improved qualitative resemblance with DNS.

As aforementioned, it is believed that fundamental features of RANS filtering are attributable
to the qualitatively wrong results (cf. section 4.4 for the formal assessment). Firstly, RANS filters
out smaller scale temporal and spatial scales (Menter and Egorov, 2010), and this is believed to
dampen out wake instabilities, and consequently the wake asymmetry. Secondly, isotropic modelling
of the near body flow is assumed to be inaccurate (cf. section 2.2). In order to confirm this
suspicion, generation of Reynolds stresses from the DNS results would have been revealing (cf.
section 4.5). In essence, the results are indicative of RANS modelling being unsuitable for this
flow configuration. However, the issue of anisotropic turbulence could be addressed with EARSM
or Reynolds stress models. The problem with damping of the wake instabilities, however, is a
fundamental characteristic of RANS, making RANS modelling unsuitable in this region.

(a) k − ω SST . (b) k − ω SSTLM .

Figure 4.19: RANS models. λ2 = 150 - contours. Structures at the upper pole.
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Figure 4.20: k − ω SST . λ2 = −10 - contours. Overall topology.

Figure 4.21: k − ω SST . λ2 = −5 - contours. Bottom view of primary vortex pair.

Figure 4.22: k − ω SSTLM . λ2 = −5 - contours. Bottom view of primary vortex pair.
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(a) η̄ = −0.6 .

(b) η̄ = 0.6 . (c) η̄ = 0.9 .

Figure 4.23: k − ω SST . ωxD/U0 in the ξ − z plane. Facing negative η-direction.
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(a) x = 2.5D . (b) x = 4D .

(c) x = 6D . (d) x = 8D .

(e) x = 10D . (f) x = 12D .

Figure 4.24: k − ω SST . ωxD/U0 in the y − z plane. Facing positive x-direction. Figures (a)-(d)
share color map, and Figures (e)-(f) share color map.
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(a) k − ω SST .

(b) k − ω SSTLM .

(c) k − ω SSTLM .

Figure 4.25: RANS models. Predictions of near-body turbulent kinetic energy and intermittency.

(a) k − ω SST .

(b) k − ω SSTLM .

Figure 4.26: RANS models. Predictions of turbulent kinetic energy in the meridional plane.
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4.4 Verification & Validation

In Appendix B, the results of the verification and validation study for the RANS and hybrid models
are presented. I.e., average and RMS force coefficients for all grids, extrapolated values, numerical
uncertainties and errors in the asymptotic range assumption. Figures 4.27-4.28 are qualitatively
representative for the RANS and hybrid models, which indicates a flow field that is highly symmetric
about z = 0. As clarified in section 4.1, a formal V&V study was not pursued for the LES models.
Table 4.4 gives the multivariate metric r/rref for RANS and hybrid models (cf. section 2.5).

Figure 4.27: k − ω SST (M2).

Figure 4.28: k − ω SST SAS (M3).



56 CHAPTER 4. RESULTS AND DISCUSSION

Table 4.4: Multivariate metric for RANS and hybrid models.

k − ω SST k − ω SST LM k − ω SST SAS k − ω SST DES

r/rref 11799 43.7 3.2 16.2

Figure 4.29: k − ω SST DES (M3).

Following the assumptions in section 3.5 and that RANS and hybrid simulations show qualita-
tive similar results at different grid spacings, the validity of the V&V study is only dependent on one
assumption: that the verification points may be described by an asymptotic expansion in the grid
spacing, where higher order terms are neglected. I.e., the verification points are in the asymptotic
range. The error in this assumption is reported in Appendix A (cf. Eq. 3.7). The maximum
errors for k− ω SST and k− ω SSTLM are 8.0 % and 9.2 %, respectively. For the hybrid models,
the calculations yielded irregular results. I.e., the results did not change with grid spacing or the
change was not indicative of converging behavior (producing unreasonable convergence orders and
accordingly useless GCI estimates).

Thus, the results indicate that the verification points are not in the asymptotic range for the
coarsest mesh for the RANS models. However, there are limited guidelines on the uncertainty in
the V&V results, given an error in the asymptotic range assumption. If an error of 9.2 % in the
asymptotic range assumption invalidates the estimate of the numerical uncertainty, is unknown to
the undersigned. The hybrid models’ irregular behavior indicates that the models are not in the
asymptotic range. A problematic feature of hybrid models in regards to V%V is that the modelling
regions will change with different grids. Thus, applying the assumption of verification points being
in the asymptotic range, is a questionable assumption.

A more accurate estimate for the numerical uncertainty could have been produced with the
more work intensive procedure in Eça and Hoekstra (2009). This procedure is more general than
the one applied in this study, possibly describing the behavior of both RANS and hybrid models.
However, as the validation comparison errors are clearly dominating the numerical uncertainty,
this was not pursued. I.e., as the RANS and hybrid models have r/rref >> 1, it is apparent that
the models do not qualitatively reproduce the flow. An improvement in the estimate of unum is
assumed to not change this assessment. Note, the large deviations in r/rref for the different models
are mainly caused by differences in estimates of unum, following a more or less regular Richardson
extrapolation. I.e., the numerical uncertainty is smaller for the RANS than the hybrid models, as
the Richardson extrapolation is in better accordance with the asymptotic range assumption.
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4.5 General Remarks

Physical Characteristics of the Flow

If all models are compared, considering their respective characteristics, some essential features of
the flow may be identified.

The differences between RANS and Hybrid predictions in the wake suggest that unsteadiness
is of major importance. The RANS filtering damps out small scale wake oscillations effectively,
whereas hybrid models with added numerical diffusivity, predicts an unsteady wake. Considering
in addition the hybrid results prior to stabilization, it is assumed that the wake instabilities are
attributable to the wake oscillations (as conjectured in Jiang et al. (2015)). I.e., the hybrid model’s
SRS mode are able to capture the unsteadiness of the flow. The importance of capturing the
unsteadiness to obtain the flow asymmetry is more clearly seen with the LES simulations. As the
successful LES simulation progresses from initiation, the wake starts to oscillate with a steadily
increasing amplitude. When the wake reaches a critical amplitude, it remains on one side and
the asymmetry of the flow is established. Following the trend with higher amplitudes for lower
numerical diffusivity, it is suspected that the oscillations are to increase further as the numerical
diffusivity is removed entirely. With a stronger asymmetry, it is assumed that the wake modelled
with Smagorinsky would preserve the asymmetry indefinitely.

As both hybrid and LES models are able to resolve unsteady wakes, this feature can not explain
the difference in results of LES and hybrid models. This holds especially for k − ω SST DES,
which SRS mode is the Smagorinsky model (except the different model coefficient). It is assumed
that the difference is caused by the differing near-body modelling of the two approaches. Turbulence
anisotropy is assumed to be an important feature of the flow (cf. section 2.2)(unfortunately, data
on the flow anisotropy where not available at the conclusion of this thesis). Since the flow is mainly
attached, the hybrid models are in RANS mode near the body. The utilized RANS modes are
all isotropic and thus provide the wake with mostly isotropic turbulence. This is believed to be
inaccurate and thus distort the wake instabilities. This follows from the comparison between hybrid
and LES results, where the hybrid results do not oscillate with large enough amplitudes to obtain
the asymmetry. The Smagorinsky model are able to predict anisotropic Reynolds stresses, so this is
believed to yield the higher oscillations and ultimately result in asymmetry. Note, the Smagorinsky
results and the hybrid results prior to stabilization are comparable, as the hybrid model retains
stability longer than what Smagorinsky needs to reach asymmetry.

Another feature of the flow, not captured by any of the included models, is the small scale
KH-instabilities at the spheroid pressure surface. RANS attempts to model the effect of these
structures, whereas LES is intended to resolve them. The Smagorinsky model is assumed to not
be able to predict these structures as the model are unable to model wall-bounded laminar flows
accurately, and because of insufficient near wall resolution (cf. section 2.2).

Appropriate Turbulence Modelling

Following the above, it is assumed that the appropriate modelling of this flow needs to capture near-
wall anisotropy and wake unsteadiness. I.e., this is required to predict the flow’s main characteristic,
the wake asymmetry. It is identified two different type of models that are suspected to be able to
predict this type of flow.

Hybrid models with an anisotropic RANS mode will satisfy these requirements. In this case,
RSM is believed to be too costly, whereas EARSM-models are of greater interest. These types of
models are not included in standard commercial solvers, but are in use and under development
in academia (cf. Abe (2018), Gopalan and Jaiman (2015)). A problem with devising such a
model is an accurate and robust anisotropic RANS model. That no EARSM-model is available in
OpenFOAMv5.0 is indicative of accuracy and robustness issues. Additionally, the blending and
transfer of turbulence from the RANS to the SRS region are difficult problems. Note, the triggering
and evolution of KH-instabilites at the spheroid surface will be modelled with RANS.

LES are able to include the effects of anisotropy and unsteadiness. However, this study has
proven that obtaining good LES results, from a practical point of view, may be troublesome. As
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this flow case is highly sensitive to additional diffusivity, one cannot stabilize the solver easily
without effecting the result significantly. That aside, it is believed that the Smagorinsky model is
well suited to give an even better estimate of the topology and resulting force statistics. However,
WALE and the Dynamic model are able to model wall-bounded laminar flows. These models are
believed to improve the predictions of the primary vortex pair and the KH-instabilites on the
spheroid pressure side. I.e., these features are assumed to be highly sensitive to this feature of the
Smagorinsky model.

Conclusively, to model this highly three-dimensional, separating flow, anisotropic hybrid and
LES models are believed to be the two appropriate model types. In terms of cost and model
availability, LES might presently be preferable over anisotropic hybrid models; Numerous LES
models are readily available in commercial solvers, whereas anistropic RANS models are not.
Further, for flows where laminar-turbulent transition is of importance, RANS models should satisfy
y+ < 1 (Eça et al., 2016), making the RANS and LES computational costs comparable. However,
for higher Reynolds numbers, hybrid models might be preferable. With increased Reynolds number,
the flow anisotropy is generally smaller (Jovanovic and Nishi, 2017) and the wake instabilities are
expected to be stronger; An anistropic, and possibly even an isotropic hybrid model, could be able
to predict the flow asymmetry (given that the asymmetry persists for higher Reynolds numbers).
At higher Reynolds numbers the log-layer law is relatively accurate and would reduce the size of
a hybrid computation substantially relative to LES. In essence, models from these two types of
models should be further assessed in a future V&V study to identify specific models at different
Reynolds numbers.

Methodological Improvements for a Future V&V Study

The above assessment of appropriate turbulence modelling for this flow configuration was not
strictly based on a formal V&V study as presented in the scope of this thesis. It was rather
the result of considering qualitative features of the flow and the turbulence models. This was
required as either all relevant scales of the respective models were not resolved and/or that the
solution was unstable and had to be stabilized with artificial diffusivity. However, the qualitative
considerations in this thesis can be utilized to choose appropriate models for a future, more rigorous
V&V study that would aim to identify suitable anisotropic hybrid and LES models. Towards that
end, methodological improvements to this study are discussed below.

Pre-processing
The hybrid and LES simulations have faced issues with unboundedness, and this has been deterio-
rating for the assessment of these models. Investigations of the unstable results showed that errors
propagated from the transition regions between different refinement levels. Thus, grids with grading
rather than refinement levels might be desirable. Another aspect is the boundary conditions, where
alterations reduce the ill-conditioning of the linear system. Additionally, improving essential grid
quality parameters such as skewness and orthogonality, may reduce the issue (Jackson, 2018).

Another improvement in the pre-processing of grids for LES is the development and use of
utilities calculating x+ and z+. These quantities need to be monitored to ensure a proper near wall
resolution, as this is required to resolve the near wall flow anisotropy correctly (cf. section 2.2).

In a V&V study, numerous grid refinements are needed and there is no available grid refine-
ment utility in SnappyHexMesh. Hence, performing grid refinements are cumbersome, and more
importantly, liable to change qualitative features of the mesh. I.e., with large and unpredictable
changes following a refinement, the requirement of all scales being resolved may be hard to ensure.
A possible replacement for SnappyHexMesh is the mesher in ReFresco, which has been utilized in
numerous V&V papers (e.g., (Eça et al., 2017), (Vaz et al., 2017)).

V&V Procedures
As remarked in section 2.5, the procedure proposed in Eça and Hoekstra (2014) is more general
and accurate than the approach utilized in this study. Following the use of meshing software more
suitable for grid refinements, the requirement of performing simulations on 4 or more grids could
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be satisfied. This would improve the estimate of the discretization error and not depend on the
assumption of having grid spacing in the asymptotic range. Additionally, to have control of the
influence of the iterative error, the procedure in Eça and Hoekstra (2009) could be pursued. The
default tolerances applied in this study are mainly based on experience and do not necessarily yield
negligible iterative errors.

Another important feature of this V&V study is the use of DNS for validation. Following the
assumptions in section 2.5 and Oliver et al. (2014), the uncertainty of the DNS predictions is only
attributable to discretization and sampling errors. In this study, the example case in Oliver et al.
(2014) was utilized to produce a rough estimate of the uncertainty. This was required as the DNS
study was yet to finish. In a future study, the procedure in Oliver et al. (2014) could be adopted to
estimate the uncertainty. However, the procedures for use of DNS in validation are quite immature,
as they are yet to be covered in ASME (2009). Nevertheless, as DNS data becomes available for
more and more test cases, the development of uncertainty estimate procedures will become more
pressing. Thus, in a future V&V study, these procedures may have been formalized and more easily
adopted.

With more appropriate modelling, better pre-processing and uncertainty estimates, a more
informative V&V study could be performed. I.e., besides force statistics, average velocities, wake
frequencies and more could be investigated to improve the quality of the study. In doing so, the
procedure of establishing the multivariate metric r/rref would have included more ’challenging’
verification points. I.e., it is more challenging to predict local quantities as an average velocity
compared to an integrated variable as a force coefficient. Thus, the difficulty or the ’level’ of the
V&V study must be taken into account when assessing model suitability with the r/rref criterion.
In this study, the level of the V&V study is at the lowest level with only force coefficients, as the
models have not been suitable and/or the simulations have not been of sufficient quality for higher
level verification points.

Post-processing
All the post-processing in this study was performed with instantaneous flow fields. I.e., instead
of time averaging quantities of interest, one snap shot was investigated. This leaves the question
whether the snapshots were statistically representative. In this study, which has mainly been
qualitative in nature, this feature is assumed to have marginal influence in the assessment of the
results. For the most unsteady results with the Smagorinsky model, the results were investigated
at other time instances and no major qualitative differences were observed. Thus, given the highly
qualitative nature of this work, this is assumed to be of minuscule importance. However, in a more
accurate V&V study this is of relevance, as sampling errors may be considerable. E.g., the vorticity
field at the initiation of the primary vortex pair could be time-averaged to obtain representative
results. As importantly, the DNS results should be statistically representative to ensure accurate
validation.

Another feature of the post-processing that needs to be highlighted is the elliptic character
of the system of equations (cf. section 2.1). I.e., an arbitrary cell is dependent on all the other
cells in the flow domain. Thus, if the wake is asymmetric, this has an effect on the creation of the
primary vortex pair. E.g., comparing the drag forces of the symmetric hybrid and DNS simulations
is conceptually questionable. Nevertheless, important features of the different model predictions
may be identified by assessing flow features independently.

In a more thorough V&V study, also the level and accuracy of the post-processing effort could
increase. E.g., instead of analyzing ωx at the near body, ωη is a quantity of more relevance. Further,
in assessing the suitability of isotropic hybrid models, the actual levels of anisotropy in the flow
should be calculated with the DNS data. In addition to investigate the assumption of isotropy,
this would shed light on the extra anistropic production in the k − ω SST SAS model. I.e., k
distributions for the model and DNS could be compared. Concerning hybrid models in general,
calculation of the turbulence length scales is of relevance for an accurate assessment of these models.
Finally, numerous other flow quantities than those inspected in this study might be of interest when
performing more accurate validation. This is naturally very related to the available validation data,
but an example is the helicity density analyzed in Jiang et al. (2015).
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Chapter 5

Conclusions and Recommendations
for Further Work

In this study, a formal Verification and Validation (V&V) study was pursued for a set of RANS,
hybrid and LES models. This was performed for the 6:1 spheroid at 45◦ incidence at Re = 16000
based on the minor axis. The validation material was preliminary results from a DNS study that
predicts a separating and highly asymmetric wake. In the case of RANS models, the procedures in
ASME (2009) and Hills (2005) were successfully adopted, and resulted in deeming the k − ω SST
and k − ω SST models as unsuitable models for the studied flow configuration. These models
predicted a steady, symmetric flow. The study was only partly successful for hybrid and LES models,
as the simulations yielded unstable results with low-diffusion numerical schemes. Before instability,
the hybrid models predicted an oscillating wake. However, the hybrid model was stabilized with
a diffusive numerical scheme and this resulted in damping of all wake oscillations. These results
were then used in the aforementioned V&V framework, which invalidated the two hybrid models
k − ω SST SAS and k − ω SST DES. Further, the LES models were slightly stabilized, and the
Smagorinsky model was able to predict an asymmetric wake for a prolonged period of time. The
asymmetry was weaker than that observed in the DNS study, and this result was only obtained at
one of the three grids. As WALE was unstable at one grid and predicted an oscillating wake on the
two others, none of the LES models in this study were able to yield qualitative similar results on
all grids, so no formal V&V study could be conducted.

The results gave strong indications of important physical features of the flow. A wake instability
is assumed to trigger the development of the flow asymmetry; only scale-resolving models as LES
or hybrid models are able to capture this property. Additionally, from a combination of theory
and the comparison of hybrid and LES results, it is assumed that near-body turbulence anisotropy
is of importance. Anisotropic near body modelling with the Smagorinsky model yields stronger
wake oscillations than those seen for the hybrid models with isotropic RANS modes (prior to
stabilization). Based on these findings, it is assumed that there are two types of turbulence models
that can be able to predict the flow asymmetry. I.e., hybrid models with anisotropic RANS modes
and LES models. Thus, RANS and hybrid models with isotropic RANS modes are assumed to be
unsuitable. To identify specific models among the selected group of models, a new V&V study
could be pursued. In that case, numerous LES models are easily available in commercial and, and
based on this study, Smagorinsky and WALE are two promising models. Anisotropic hybrid models
are, however, not well validated on simpler flow cases and are still under development.

As the hybrid and LES models were not formally validated in this study and numerous more
models could be investigated with this test case, recommendations for methodological improve-
ments to this study have been discussed. Regarding pre-processing, grids and boundary conditions
preventing the instability due to unboundedness for the hybrid and LES models are needed. This is
a necessity in order to establish the suitability of these type of models. In this endeavor, a mesher
with good grid refinement capabilities is desirable. This is to reduce the amount of pre-processing
work, but also to produce better quality grids. This is of big importance, as an accurate and general
estimation of the numerical uncertainty requires simulations on at least 4 grids (Eça and Hoekstra,
2014). Additionally, this study has estimated the uncertainty of the DNS verification points. This

61
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effort revealed that procedures on this topic is yet to be standardized and is not easily adopted in a
V&V study. Lastly, with improved methodology and more suitable turbulence models, the ’level’
of the verification points should be increased. I.e., in this study force coefficients have been used
to ascertain qualitative features of the wake, whereas a more accurate assessment requires more
difficult verification points. E.g. time averaged velocities at different points, measures on wake
geometry and more.

In essence, further work related to V&V of turbulence models for this flow and separating bluff
body flows in general may be summarized in the following points. The initial point is of comparable
nature to this work, whereas the two latter are undertakings of a different character.

Conduct a follow-up V&V study , where stability issues with low-diffusion numerics for
hybrid and LES models are resolved. This study could include isotropic and anistropic hybrid
models and LES models. The difficulty of the verification points should be increased, such
that the study becomes more informative. A large set of other possible improvements are
given in section 4.5. If successful, this study could be seen in the larger context of numerous
V&V studies and ultimately push development and understanding in turbulence modelling for
separating bluff body flows.

Model development of anisotropic hybrid models are suspected to be needed to sim-
ulate flows similar to this flow configuration. This is of high practical importance, as LES
simulations become quickly very expensive at higher Reynolds numbers relative to hybrid
simulations.

Procedures for uncertainty estimates of DNS statistics could be further developed
and standardized, which may lead to more published uncertainty estimates from DNS studies
and increase the applicability of DNS for validation in V&V studies in general.
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Appendix

A. Force Coefficient Time Histories

In this section the force coefficient time histories are presented. The characteristic behavior for
RANS and hybrid models are given in Figures 5.1 and 5.2, respectively. All LES force coefficient
time histories are given in Figures 5.3-5.5.

(a) k − ω SST (M2).

(b) k − ω SSTLM (M2).

Figure 5.1: RANS characteristic force coefficient time series.

I
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(a) k − ω SST SAS (M3).

(b) k − ω SST DES (M3).

Figure 5.2: Hybrid characteristic force coefficient time series.
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(a) Smagorinsky.

(b) WALE.

Figure 5.3: LES force coefficient time series (M2).



IV Appendix

(a) Smagorinsky.

(b) WALE.

Figure 5.4: LES force coefficient time series (M3).



A. Force Coefficient Time Histories V

(a) Smagorinsky.

(b) WALE.

Figure 5.5: LES force coefficient time series (M4).
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B. Results of the V&V study
Below, the results from the V&V study is given. Note, unum and GCIerror are given in percentages.
Blank entries represent irregular results and are not reported. These are caused by calcultions of p,
where the simulated data is very close to zero or do not change with grid spacing. In this case, the
result at the finest mesh is used to calculate the validation comparison error. Note, in the case
of k − ω SST and k − ω SSTLM , fine, medium and coarse correspond to M3, M2 and M1. For
hybrid and LES models, these terms correspond to M4, M3 and M2. The LES force coefficient
statistics are also presented below. When calculating the validation comparison errors, the results
from mesh M3 was used for Smagorinsky, and mesh M4 for WALE.

k− ω SST .
CFxA CFxR CFyA CFyR CFzA CFzR

Coarse 0.754 0.754 -0.861 0.861 0.001 0.002
Medium 0.764 0.764 -0.869 0.869 0.001 0.002
Fine 0.761 0.761 -0.871 0.871 0.005 0.006
Extrapolate 0.760 0.760 -0.872 0.872 0.005 0.006
E -0.030 -0.040 -0.042 0.032 -0.655 -0.664
unum% 0.185 0.185 0.075 0.075 - -
GCIerror% 8.032 8.032 0.000 0.000 - -

k− ω SST LM .
CFxA CFxR CFyA CFyR CFzA CFzR

Coarse 0.755 0.755 -0.861 0.861 0.002 0.003
Medium 0.764 0.764 -0.869 0.869 0.001 0.002
Fine 0.760 0.760 -0.870 0.870 0.006 0.006
Extrapolate 0.757 0.757 -0.870 0.870 -0.000 0.001
E -0.033 -0.043 -0.040 0.030 -0.660 -0.669
unum% 0.476 0.476 0.016 0.016 - -
GCIerror% 9.213 9.213 0.000 0.000 6.996 7.683

k− ω SST SAS .
CFxA CFxR CFyA CFyR CFzA CFzR

Coarse 0.656 0.656 -0.730 0.730 0.013 0.013
Medium 0.657 0.657 -0.736 0.736 0.027 0.028
Fine 0.734 0.734 -0.829 0.829 0.007 0.008
Extrapolate 0.734 0.734 -0.829 0.829 0.074 0.0089
E -0.066 -0.066 0.001 -0.011 -0.586 -0.581
unum% 13.285 13.285 14.985 14.985 - -
GCIerror% - - - - - -

k− ω SST DES .
CFxA CFxR CFyA CFyR CFzA CFzR

Coarse 0.765 0.765 -0.870 0.870 0.002 0.003
Medium 0.762 0.762 -0.870 0.870 0.004 0.005
Fine 0.767 0.767 -0.878 0.878 0.019 0.019
Extrapolate 0.754 0.754 -0.878 0.878 0.002 0.003
E -0.036 -0.046 -0.048 0.038 -0.658 -0.667
unum% 2.054 2.054 - - - -
GCIerror% 2.749 2.749 - - - -
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Smagorinsky.
CFxA CFxR CFyA CFyR CFzA CFzR

Coarse 0.745 0.746 -0.804 0.806 0.011 0.189
Medium 0.816 0.816 -0.856 0.856 0.522 0.532
Fine 0.757 0.757 -0.819 0.820 0.035 0.178
E 0.026 0.016 -0.026 0.016 0.138 -0.138

WALE.
CFxA CFxR CFyA CFyR CFzA CFzR

Coarse 0.705 0.706 -0.782 0.784 0.038 0.196
Medium 0.718 0.719 -0.783 0.785 0.066 0.145
Fine 0.738 0.738 -0.814 0.814 0.039 0.149
E -0.052 -0.062 0.016 -0.026 -0.621 -0.521



VIII Appendix

C. Extract of Literature Survey in Larssen (2017)

Turbulence Modelling of Bluff Bodies

In this main part of the review, I will present research efforts focusing on validation of
turbulence modelling of bluff bodies at high Reynolds numbers. The papers are presented in
increasing degree of model complexity/computational cost. Most of the studies include multiple
models, so this chronology is only schematic. The included models range from two equation RANS
models to LES, but the emphasis is on anisotropic RANS and hybrid RANS/LES models. I.e., I
consider these models to reasonably compromise between accuracy and computational cost relative
to engineering purposes. This consideration is confirmed by the review. The studies included in
this review range from 2014-2017, where a majority were published in 2016-2017.

Eça et al. (2017) validated the RANS models k − ω SST and Spalart & Allmaras for flow
around a squared column with rounded corners with Re = 105, 106, 107. The results were validated
against experimental data, and the simulations were performed with ReFRESCO. It is noted that
for even the simple assumption of two-dimensional flow, the level of grid refinement and iterative
convergence criteria required to obtain acceptable numerical uncertainties are more demanding than
usually observed in the literature; with half a million cells, numerical uncertainties of selected flow
quantities (CDs , St etc.) are not below 5 %. Further, only the k − ω SST model at Re = 105 is
able to predict zero lift statistically. A possible explanation of their behavior is that theses models
were developed for statistically steady problems, making them unsuited for the complex separating
flows around the squared column. As the applied models struggle to predict the simplified 2D flow,
the authors suggest that the models are not sophisticated enough to reproduce the actual 3D flow.

In van Raemdonck et al. (2016), RANS simulations of a generic truck model is validated
against experimental data. The two models in use were SST k − ω and realizable k − ε (a modified
k − ε model), and the commercial software package FLUENT was used. The authors note good
correspondence in the attached boundary layer flow seen in the front, at the sides and at the top of
the truck. Boundary layer parameters as boundary layer thickness and momentum thickness are in
good correspondence with experimental data. However, the wake structure deviate significantly
from the experimental values. In Figure 5.6, the rear pressure distributions of the experimental
and numerical results are presented. The authors suggest the discrepancy is because RANS forces
steadiness on the flow, while it is highly unsteady in the wake. I.e., T 6� T2 (cf. section 2.1).
Hence, two equation models do not seem to adequately model highly separating flows, but do
predict attached boundary layers quite well. The authors suggest the models may be used in the
preliminary design phase to get an estimate of mean force coefficients, but not to optimize rear
truck design.

(a) PIV. (b) RANS.

Figure 5.6: Truck rear pressure distributions in van Raemdonck et al. (2016)
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A comprehensive validation study of different RANS models was performed in Pereira et al.
(2017). 11 eddy viscosity based models and 3 EARSM models were validated by performing
resistance and local flow field simulations of a KVLCC2 tanker (one of the test cases in the
workshop on numerical ship hydrodynamics). The free-surface was neglected and none of the
models used wall-functions, but rather a special low Re near wall treatment. The convergence
properties of the different models were assessed with the ASME V&V 20 procedure. The results
were qualitatively in line with the 2010 Gothenburg workshop on numerical hydrodynamics. The
eddy-viscosity based models accurately predict the total resistance and show good convergence
properties. EARSM produce worse predictions of the total resistance, but provides better estimates
of the local flow at the ship stern (cf. Figures 11 and 12 in Pereira et al. (2017)).

Contrary to standard two-equation models, DES and SAS formulations are still under de-
velopment. In Moussaed et al. (2014) a new DES formulation is tested on a circular cylinder at
Re = 1.4 ∗ 105. This formulation includes an automatic switch between RANS and LES by use of a
blending function. This switch is meant to alleviate the earlier a priori specification of RANS and
LES regions, making the DES pre-processing less laborious and error-prone. The predicted main
flow parameters are generally in good correspondence to reference values, but the authors reckon
that further development efforts on the RANS-LES switch are needed.

In Wu et al. (2016), the vortex-induced motion of a square cylinder is studied. The simulations
were performed with OpenFOAM’s pimpleDy solver, which allows mesh movement in one direction.
The flow was simulated at 1500 6 Re 6 14000 with the three models DDES(Delayed DES),
DES-SST k − ω and SAS-SST k − ω. The movement of the square cylinder was validated against
experiments and showed decent agreement with the DES-SST k − ω and DDES models and very
good agreement for SAS-SST k − ω(cf. Table 3 in Wu et al. (2016)). Thus, only the SAS-SST
k − ω was used in the subsequent simulations. As the cylinder length was varied, the simulations
produced good quantitative results and the correct wake modes were observed.

Menter and Egorov (2010) conducted a validation study of the SAS and DES SST k − ω,
where the emphasis was particularly on the former model. The validation test cases was a circular
cylinder and a NACA0021 airfoil at angle of attack 60◦ at Re = 1.4 ∗ 105. Both of the test cases
are characterized by massive flow separation. Force coefficients are well predicted by both models,
but SAS was the more accurate(cf. Table 2 (Menter and Egorov, 2010)). For SAS, mean flow
properties are accurately predicted, while second order turbulent statistics only show reasonable
correspondance. Allover, both models perform well, but SAS do in general achieve better accuracy
than the DES SST k − ω model for these validation cases.

A comprehensive study of DES and LES was conducted by Serre et al. (2013) on the Ahmed
body for Re = 768 000. Three different LES models and the DES SST k − ω model were studied.
The level of detail in these simulations are illustrated in Figure 5.7. All models were shown to
produce results with good overall agreement with experiments, but significant deviations were
observed for all models. E.g., a LES model with a near wall treatment did not predict the onset of
separation correctly. Another high-order LES model, predicted incorrectly a confined recirculation
zone at the front of the body, resulting in a dramatic overestimation of the drag coefficient (44%).
The authors reckon LES simulations to be costly, but assess LES and DES to be the right level
of turbulence modelling to accurately predict highly separating flows at high Reynolds number.
They argue that further improvements of LES and DES algorithms are needed to improve accuracy
and to reduce the computational cost. The results show that DES is a viable option to LES, but
further algorithmic developments are needed.

In Vaz et al. (2017), a comprehensive validation study of different turbulence models are
conducted for the flow cases: circular cylinder at Re = 3 900, 140 000 and a rounded square prism
at Re = 100 000 at incidence angles 0◦ and 45◦. The models under investigation were: SST k − ω,
EARSM, DDES, XLES (similar to DDES) and PANS (hybrid between RANS and DNS). The
simulations show that the isotropic SST k − ω is unable to calculate these flows accurately. In
comparison to the SST k − ω model, the EARSM model results in considerable improvements, as
can be seen in Table 2 (Vaz et al., 2017). The hybrid methods show a further leap in accuracy,
and the results are in very good agreement with experiments for the circular cylinder. In Figure
5.8, the improvement in accuracy for more sophisticated models is illustrated. The improvement in
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Figure 5.7: Q=60 - contours. (a) DES-SST, (b) LES-NWR, (c) LES-SVV (Serre et al., 2013).

Figure 5.8: Time-averaged stream-wise velocity downstream as function of turbulence model.
Re = 3 900. cf. Vaz et al. (2017).

accuracy brings a significant increase in computing time, and this is summarized in Table 6 (Vaz
et al., 2017). For the square prism, there are also some discrepancies for the hybrid methods. The
authors identify a need for further investigation of the square rounded prism, in order to identify
model deficiencies. That effort is a part of a bigger set of verification studies, which is led by the
development team behind the aforementioned ReFRESCO software package. This is a dedicated
marine CFD tool, which is currently under development at mainly MARIN in the Netherlands.

Robertson et al. (2015) did a comparative study of turbulence models in OpenFOAM of the
RANS and hybrid RANS/LES types. Three different test cases were used: flow over backward
facing step, a sphere in the supercritical regime and a delta wing with a sharp leading edge. Among
the RANS models, SST k − ω is found to be the most accurate. For hybrid methods, Spalart
Allmaras - based DES model performed somewhat better than the k − ω based SAS model. As a
sidenote, this study also identified which numerical schemes that are the most accurate and costly
for the given type of turbulence model (RANS or hybrid). This is not relevant for this literature
review, but highly relevant for performing efficient analyses in OpenFOAM of highly separated
turbulent flows.
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Discussion and Recommendations

In Larsson et al. (2014), it is noted that isotropic turbulence models seem to be inadequate to model
3D separating flows. This is verified in Eça et al. (2017) and van Raemdonck et al. (2016), where
the isotropic models SST k − ω and realizable k − ε performs poorly. This is further confirmed
in Pereira et al. (2017), where 11 isotropic models are tested. However, these studies also show
that when determining the total drag off a body with a large length/breadth-ratio (e.g. ships and
trucks), an isotropic model is quite accurate. Boundary layers with limited curvature is accurately
predicted, as these models have been tested and developed extensively for these types of flows. In
this case, the assumption of an isotropic eddy viscosity seems to be accurate. The studies indicate
that the SST k − ω model is the most accurate among the isotropic models.

Larsson et al. (2014) and Pereira et al. (2017) show that the anisotropic RANS model EARSM
is a good alternative to isotropic RANS models for curved, separating flows. A significant increase
in accuracy is achieved by a relatively small increase in computing cost. I.e., algebraic expressions
for the anisotropy tensor needs to be computed and the iterative convergence is somewhat slowed
down. The model performs worse than the isotropic models for the aforementioned total resistance
predictions. Hence, among RANS models, EARSM should be used for separating flows, while
isotropic models are better suited to predict boundary layers with limited curvature.

In terms of accuracy, the next level of modelling is the DES and SAS models. With RANS
behaviour in attached boundary layers and LES behaviour elsewhere, these models optimally achieve
LES accuracy without having to resolve a boundary layer with LES-resolution. This implies a
significant reduction in computing cost compared to LES. Wu et al. (2016), Serre et al. (2013) and
Vaz et al. (2017) show that these models can achieve accurate results for 3D highly separating
flows. However, these models show inconsistencies and needs to be further evaluated. E.g., the
RANS-LES switch needs to be improved (Spalart et al., 1997). Thus, these models show promise
but need further development and validation.

Comprehensive LES and DES simulations were performed in Serre et al. (2013). A further
increase in accuracy is observed with LES, but at a considerable cost. If this is due to the RANS
simulations in DES or because of algorithmic issues with DES, is an open question. Deficiencies
with the LES simulations were found and further development needs to be performed for LES
applied to 3D high Reynolds number separating flows.

The above may be summarized in the following:

• Isotropic RANS models are unable to predict high Reynolds number separating flows, but is
a cheap and quite accurate option for boundary layers with limited curvature.

• The anisotropic RANS model EARSM yields a big improvement in the calculation of 3D
separating flows compared to isotropic RANS models.

• DES and the SAS models provide accurate predictions for complex 3D separating flows, but
are not well validated and show some inconsistencies. Further development and validation is
needed.

• LES simulations provide accurate results, but are presently too computationally expensive for
engineering purposes. LES has the inherent problem of a very fine boundary layer resolution,
but its cost may be reduced by algorithmic/modelling improvements.

Thus, for engineering purposes, I recommend EARSM, DES and SAS models for turbulence
modelling of flows around bluff bodies at high Reynolds number. The former do only increase
the computational cost slightly from isotropic RANS models. The two latter are more costly, but
have produced highly accurate results for complex flows. All of the three models need further
development and validation, but the preliminary results looks promising.
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D. OpenFOAM Scripts

D1. fvSchemes for LES Models
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D2. fvSchemes for Hybrid & RANS Models
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D3. fvSolution for All Models
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