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Abstract

In this Master’s thesis, the behavior of ultracold, synthetically spin–orbit
coupled, weakly interacting, two-component Bose gases residing on Bravais
lattices, is explored analytically. In particular, utilizing a mean field ap-
proach, general expressions for the chemical potentials are deduced for the
superfluid phase, and non-diagonal expressions for the Hamiltonian are sub-
sequently provided. An application of these expressions is presented for the
case of a pure condensate residing on a square lattice, yielding an analyti-
cally derived phase diagram that coincides with numerical results found in
the literature. Finally, future continuations of this work are suggested.
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Sammendrag

I denne masteroppgava presenteres en analytisk studie av oppførselen til
ultrakalde, syntetisk spinn–bane-koplede, svakt vekselvirkende, to-komponents
Bose-gasser bundet til Bravais-gitre. Spesielt utledes generelle uttrykk for
de kjemiske potensialene under en middelfeltstilnærming gyldig for super-
fluidfasen, og ikke-diagonale uttrykk for Hamilton-funksjonen presenteres
deretter. Disse uttrykkene anvendes til å utlede et fasediagram analytisk
for et system best̊aende av et reint kondensat bundet til et kvadratisk gitter;
diagrammet samsvarer med numeriske resultat funnet i litteraturen. Avslut-
ningsvis foresl̊as videreføringer av arbeidet.

ii



Preface

Suggested by my friend Abdulrahman Alhasan.

By and large entirely rewritten over the course of two summer months,
the process of this thesis has been demanding, but experiential. What I antic-
ipated would be a short phone call with my supervisor on a Sunday morning,
evolved into a five hour long discussion, at the end of which the majority of
the calculations in my 130 pages long thesis had been deemed erroneous, one
week before the deadline. A few errors in the preliminary material—some
rather subtle—had pervaded the remainder, and what initially appeared to
be a moderately challenging exercise for a Master’s thesis, proved instead to
be beyond the scope of expertise. Rewriting this thesis in light of the former
has, however, lead to the discovery of results to be presented in Ch. 3 and
4 that the reader hopefully finds as interesting as I do myself. The weather
and temperatures this summer has either way been unbearably bad by every
definition save the one used by meteorologists on television; I have saved the
longer bike trips for cooler days.

I would like to thank my supervisor Professor Asle Sudbø for his guidance
throughout this past year, and his excellent availability. He has displayed
outstanding interest for, and knowledge about, the subject. I am also very
grateful for all the invaluable help that has been offered by fellow Master’s
degree student Stian Thomas Heimdal Hartman, with which I have had sev-
eral rewarding discussions; as well as the equally invaluable aid by Sigve Solli,
who shared all the code he had written for his Master’s thesis—from which
the analysis presented in this thesis draws many elements—and who kindly
gave me feedback on my project work after it was submitted for evaluation in
December 2017. Furthermore, I would like to thank Steinar Brattøy Gunder-
sen, for his technical assistance with computing and programming during this
past year, as well as aiding me in running a number of quite resource-intensive
numerical simulations; Morten Andreas Klausen Elvekrok, who kindly aided
me as well in running these simulations; the student organization Norsk Start,
the volunteers and attendees of which are all amazing people; and finally, my
family and other friends, for aid and support throughout this period.

iii



Contents

1 Introduction 1
1.1 Theoretical and Experimental Exploration of Bose–Einstein

Condensation . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Engineering and Exploring Bose–Einstein Condensation on a

Lattice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Engineering Synthetic Spin–Orbit Coupling . . . . . . . . . . 6
1.4 Motivation and Outline of Thesis . . . . . . . . . . . . . . . . 7

2 Preliminaries 9
2.1 Notation and Conventions . . . . . . . . . . . . . . . . . . . . 9
2.2 Quantum Mechanics on a Lattice . . . . . . . . . . . . . . . . 9
2.3 The Bose–Hubbard Model . . . . . . . . . . . . . . . . . . . . 11
2.4 Synthetic Spin–Orbit Coupling . . . . . . . . . . . . . . . . . 17

2.4.1 Introduction and Experimental Realization . . . . . . . 17
2.4.2 Analytic Framework . . . . . . . . . . . . . . . . . . . 19

2.5 Synthetically Spin–Orbit Coupled, Non-Interacting Bose Gas . 23
2.6 Weakly Interacting Bose Gas: The Bogoliubov Transformation 29

2.6.1 The Free Energy . . . . . . . . . . . . . . . . . . . . . 35
2.7 Generalized Diagonalization Procedure . . . . . . . . . . . . . 37

3 Spin–Orbit Coupled, Weakly Interacting Bose Gas 40
3.1 Mean Field Theory . . . . . . . . . . . . . . . . . . . . . . . . 46

4 Pure Condensate on a Square Lattice 67
4.1 The PZ Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.2 The NZ Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.3 The PW Phase . . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.4 The SW Phase . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.5 The LW Phase . . . . . . . . . . . . . . . . . . . . . . . . . . 80
4.6 Phase Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5 Miscellaneous Discussion 83
5.1 Impact of Phases . . . . . . . . . . . . . . . . . . . . . . . . . 83
5.2 Handling Linear Terms in the Hamiltonian . . . . . . . . . . . 83

6 Summary and Outlook 85

iv



CONTENTS

Appendices 87

A Counting Momentum Configurations 88
A.1 A Visualized Iterative Method . . . . . . . . . . . . . . . . . . 88
A.2 Combinatorial Expressions . . . . . . . . . . . . . . . . . . . . 95

v



Chapter 1

Introduction

1.1 Theoretical and Experimental

Exploration of Bose–Einstein

Condensation

In certain bosonic systems, when cooled to below a critical, typically
near absolute zero temperature, a macroscopic number of bosons enter a
single quantum state to form a Bose–Einstein condensate (BEC), a coherent
matter wave that may exhibit exotic large-scale quantum behavior, such as
superfluidity and superconductivity [1, 2]. The behavior of identical particles
in this context was first explored theoretically by S. N. Bose in 1924 [3], for the
special case of non-interacting photons. In particular, he derived the Planck
distribution employing the then still quite novel Lichtquantenhypothese that
had been explored before him by, among others, M. Planck in 1900 [4], in
relation to his empirically derived law that came to be known as Planck’s
law; and A. Einstein in 1905 [5], in relation to the photoelectric effect, for
which A. Einstein was awarded the 1921 Nobel Prize in Physics [6]. The
work of S. N. Bose was subsequently generalized to non-interacting massive
particles by A. Einstein in 1924 [7], and the phenomenon of Bose–Einstein
condensation was first predicted and explored theoretically shortly after, in
his paper from 1925 [8] .

In terms of experimental realization, one of the earliest applications of
the theory of Bose–Einstein condensation was in the description of super-
fluid 4He,1 discovered experimentally in 1938 by P. Kapitza [9] and by J. F.
Allen et al. [10]. The same year, F. London proposed to model the system
as a condensed Bose gas [11], and the theory was further developed and re-
fined to account for interactions, in particular between the condensate and

1Though the constituent particles of 4He are fermionic, their collective spin is integral;
for this reason, 4He obeys bosonic statistics.
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CHAPTER 1. INTRODUCTION

the excited states, by L. D. Landau in 1941 [12]—theory for which he would
later be awarded the 1962 Nobel Prize in Physics [13]. He proposed that be-
low a critical fluid velocity in viscous capillary flow, spontaneous excitations
would become energetically unfavorable, eliminating this dissipative mecha-
nism and allowing for frictionless flow [14, Ch. 6]. In the 1950s, condensed
matter theory was developed to describe superconduction: In particular, the
celebrated Ginzburg–Landau theory, which was developed in 1950 by V. L.
Ginzburg, applying Landau theory of phase transition to describe type-I su-
perconductors; and the also very much celebrated BCS theory devised in
1957 by J. Bardeen, L. N. Cooper and J. R. Schrieffer, to provide a broader
theoretical description of what are now known as conventional supercon-
ductors, crucially attributing the phenomenon of superconductivity to ener-
getically favorable pairing of conduction electrons—Cooper pairs—resulting
from electron–phonon interactions [15, 16]. For these theoretical advances, J.
Bardeen, L. N. Cooper and J. R. Schrieffer, and V. Ginzburg, were awarded
the Nobel Prize in Physics in 1972 and 2003, respectively [17, 18].

These early applications concerned systems with strong interactions, which
suffered some important limitations [19]. In particular, the relative occu-
pancy of the zero-momentum state of experimentally engineered superfluid
4He, one of the then most central systems of study concerning Bose–Einstein
condensation, was typically at around 0.1 or less, as the interactions caused
non-zero momentum states to persist even at zero temperature [15]. An in-
terest was thus sparked for engineering systems of weakly interacting Bose
gases, potentially with higher condensate fractions. Due to technological
limitations, however, experimental engineering and exploration of such gases
proved to be generally infeasible prior to the advent of laser cooling and
evaporative cooling techniques in the 1980s and 1990s. Combining quan-
tum mechanics and special relativity, one laser cooling technique ingeniously
exploits the Doppler shift and discrete atomic transitions to transfer momen-
tum from photons to moving atoms only if the frequency, and thereby the
energy, of light that the atom ‘perceives’ matches the gap between atomic
energy levels. Alkali metal have proved to be particularly interesting in this
respect, carrying internal energy levels apt for low-temperature cooling, as
well as being suited for cooling using accessible laser technology [20].

The use of these techniques in order to produce a Bose–Einstein con-
densate in a weakly interacting Bose gas, was pioneered in 1995 by a group
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CHAPTER 1. INTRODUCTION

lead by E. A. Cornell and C. E. Wieman, using a dilute2 atomic gas of 87Rb
cooled to below a mere 170 nanokelvin; at 20 nanokelvin, their condensate
comprised 2000 atoms of rubidium, and it persisted for more than 15 seconds
[19, 21]. Shortly after their work was published, another paper by C. C.
Bradley et al. reported independently achieving Bose–Einstein condensation
in a dilute gas of 7Li atoms [22]. A mere three months after the first pub-
lication, a third group, headed by W. Ketterle [23], reported independently
achieving Bose–Einstein condensation in a dilute gas of yet another alkali
metal, 23Na, engineering a sample large enough to further explore the behav-
ior of the condensate: For instance, the coherent properties of the BEC were
explored by studying interference patterns produced by two condensates that
were allowed to mutually expand into one another; and droplets of the BEC
were made to fall under gravity, appropriately and amusingly described as a
“material laser beam” in a press release by the Nobel Institute [24]. E. A.
Cornell, C. E. Wieman and W. Ketterle were awarded the 2001 Nobel Prize
in Physics for the work of their groups [24, 25, 26].

1.2 Engineering and Exploring

Bose–Einstein Condensation on a

Lattice

In recent years, in particular the past two decades, a considerable inter-
est for Bose–Einstein condensates trapped in various lattice geometries has
been sparked, and with it, a rapidly growing body of research. Such a sys-
tem bears several alluring features: Of particular interest is the conspicuous
resemblance of this system to that of electrons on a crystal lattice, as well
as easily realizable methods for tuning system parameters [27, 28]. As such,
they have become invaluable tools in theoretical and experimental research,
and are used to explore, among other things, the Bose–Hubbard model, Mott
insulators, and—of particular interest for this thesis—the effects of spin–orbit
coupling (SOC) on particles trapped in lattices.

One routine procedure by which atomic gases are cooled and trapped, is
by first applying laser cooling to lower the temperature into a range below

2The motivation for using dilute gases is that at very low temperatures, various gases
form solids or liquids; the diluted nature of the gases in question enables them to instead
form Bose–Einstein condensates for extended periods at these temperatures.
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CHAPTER 1. INTRODUCTION

which this method is no longer viable, before the cold atomic gas is transferred
to a conservative magnetic or optical trap, and cooled further using decreasing
trap depths to cool the sample evaporatively [27]; this was the procedure
employed in the dilute alkali gas experiments of Ref. [19] and [22], whereas
another trapping method combining both magnetic and optical forces was
employed by the group of W. Ketterle [23]. There is a multitude of techniques
available to trap particles at low temperatures: For ions, one may make use
of Coulomb interactions; for neutral atoms, however, one may, at sufficiently
low temperatures, make use of weaker methods. These include radiation-
pressure trapping, which, though often used to prepare the system for dipole
trapping, is itself not suitable for the lowest of temperatures due to strong
optical interactions; magnetic trapping, which exploits dipole momenta to
trap particles at exceptionally low temperatures, but carry crucial limitations
to its applicability due to its inherent reliance on the internal atomic state, as
well as to its trapping geometry; and optical trapping, which enables trapping
at very low temperatures employing couplings between dipole momenta and
far-detuned light, neither relying on internal atomic states such as magnetic
traps, nor being limited in applicability by optical interactions to the same
extent as radiation-pressure traps [29].

The latter method is, as insinuated, particularly appealing for its overall
applicability and tunability of system parameters. Optical traps may be
achieved using interfering laser light, by way of for instance retro-reflexive
interference, or interfering opposing or parallel lasers; the latter offering more
experimental degrees of freedom for instance by allowing for tuning lattice
spacing through adjustments of the relative angles of the interfering lasers,
as well as by allowing for an induced velocity of the lattice, by detuning
the phases of the interfering lasers [27]. In essence, the principle behind
an optical trap is the AC Stark shift: By placing a neutral atom in a light
field, a dipole moment is induced in the former by the oscillating electric
field of the latter, leading to a shift in the atomic energy level. A red-
detuned light field, for which the frequency of the light field is lower than the
atomic resonance frequency, leads to a gradient field that guides the atoms
to regions of intensity maxima. The opposite, a blue-detuned light field,
may also be employed, instead generating a gradient field guiding atoms to
intensity minima [29]. As is explained in detail by O. Morsch et al. in Ref.
[27], one may lower the rate of spontaneous photon scattering by atoms at
the center of the traps by increasing the detuning, and further evaporative
cooling may be achieved by gradually lowering the trap depth, by way of
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CHAPTER 1. INTRODUCTION

decreasing the laser intensity. Further details may be found in Ref. [27],
and in another review by I. Bloch et al. in Ref. [30]. In the context of a
Bose–Hubbard model, several tunable parameters of an optical lattice trap
may be directly translated to parameters of said model; for instance, the
hopping parameter t—as well as the extent of the interaction potential U—
of the Bose–Hubbard model may be tuned directly by way of tuning the
lattice depth, which in physical terms alters the tunneling rate of the trapped
particles across lattice sites; thus, the system becomes an invaluable tool to
study this model experimentally [1, 28]. This does not only enable the study
of the model for varying parameter inputs, but also for different phases, in
particular the superfluid phase and the Mott insulator phase, occurring in
the regimes of U/t � 1 and U/t � 1—or, in terms of the properties of
the lattice: shallow and deep traps—respectively [31]. Roughly, the former
phase is characterized by a favoring of hopping across lattice sites, and the
latter, by a strong binding to each site. For phase diagrams of a one- and
three-dimensional optically trapped Bose–Einstein condensate described by
the Bose–Hubbard model, the reader is referred to Ref. [32] by J. Mun et
al.3 This thesis will be concerned only with the weakly interacting superfluid
phase due to limitations to the mean field approach to be employed in the
analysis.

Experimental realizations of Bose–Einstein condensation in optical traps
include the early work by D. M. Stamper-Kurn et al. [33]; a case of a har-
monic one-dimensional trap by J. H. Denschlag et al. [34]; and a case of a
two-dimensional harmonic trap by K. Jiménez-Garćıa et al. [35]. Another
interesting example is the experimental realization by M. Greiner et al. [36],
in which the transition from a superfluid phase to a Mott insulator phase in
a BEC on a harmonic optical lattice was explored, as the lattice depth was
increased. As suggested by D. Jaksch in Ref. [37], among the practical appli-
cations of Bose–Einstein condensates trapped in optical lattices, is quantum
computing, due to the high level of control achievable for a system of trapped
cold neutral atoms.

Of particular interest for this thesis is the analytic behavior of two weakly
interacting Bose–Einstein condensates in a Bose gas trapped in an optical
lattice. Such a system is adequately described by the Bose–Hubbard model,
and, as mentioned, offers realizable methods for tuning model parameters.

3This thesis will predominantly be concerned with the two-dimensional case, however;
the diagrams referred to are but illustrative in this context.
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CHAPTER 1. INTRODUCTION

For these particular systems, the energy spectra of quasi-particles4 emerging
from diagonalization procedures applied to non-diagonal Hamiltonians, have
been calculated and explored in papers by J. Gu et al. [38], X. P. Liu [39],
and more recently, by J. Linder et al. [1]. The two former papers did so under
standard assumptions of nearest neighbor hopping and on-site interactions;
the latter paper explored effects under longer-range conditions as well.

1.3 Engineering Synthetic Spin–Orbit

Coupling

Spin–orbit coupling is a relativistic correction to the energy of a particle,
coupling its spin to its orbital momentum. It plays an important—or even
essential—role in several condensed matter phenomena, such as the spin Hall
effect, and the electronic properties of GaAs, as well as playing a key role
in systems such as topological insulators and spintronic devices [40]. How-
ever, the effects of an SOC is typically negligible under normal laboratory
conditions. In 2002, J. Higbie et al. proposed an experimentally realizable
method of inducing a synthetic SOC in a dilute atomic Bose gas [41]. By
directing two lasers of appropriately tuned frequencies at the gas, one induces
Raman transitions between two internal hyperfine states through absorption
and stimulated re-emission, and by exploiting the Doppler effect, the atomic
momentum couples to the transition rate by a momentum dependent de-
tuning from the Raman resonance frequency. Thus, by treating the internal
hyperfine states as pseudospin5 states, one is effectively left with a spin–orbit
coupled spin-1

2
system. The advantage of such systems is that the SOC is tun-

able, enabling a considerably more experimentally feasible study of the effects
of an SOC; as such, they are suited to simulate the effects of an SOC on other
systems as well, such as on electronic gases in crystal lattices, and on topo-
logical insulators [42]. A 2013 paper by V. Galitski et al. [43] expands on a

4A quasi-particle is an effective particle emerging from the collective behavior of real
particles. “Quasi-particle” and “particle” will be used interchangeably throughout this
thesis; the context implies the nature of the particles.

5As the name suggests, “pseudospin” is not spin; rather, it is another feature or a
set of states that may be engineered to emulate one or more desired effects of spin in
a mathematically isomorphic manner. The terms “pseudospin” and “spin” will be used
interchangeably throughout this thesis; the distinction is ultimately not of mathematical
importance.
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CHAPTER 1. INTRODUCTION

wider experimental implementation of synthetically spin–orbit coupled dilute
Bose gases, enabling tunable two-dimensional Rashba and Dresselhaus SOC,
as well as higher dimensional coupling such as Weyl SOC. Another very inter-
esting feature of such a system, is that though emulating a spin-1

2
system, the

particles involved are bosons, and as such, they are not subjected to fermionic
constraints such as the Pauli exclusion principle, enabling the study of highly
exotic phenomena; notably, and in the interest for this thesis, by cooling the
gas to sufficiently low temperatures, one may produce two-component—or
even multi-component—spin–orbit coupled Bose–Einstein condensates.

The first experimental realization of a synthetic SOC in a neutral atomic
BEC was achieved in 2011 by Y.-J. Lin et al. [40], in which a one-dimensional
Rashba and Dresselhaus SOC of equal strengths were engineered by the
method of Raman transitions described above, directing two appropriately
tuned lasers at a relative angle of 90◦ at a dilute gas of 87Rb, with the ground
state and a complementary hyperfine internal state acting as pseudospin-up
and pseudospin-down, respectively. SOC of tunable strength in an ultracold
gas of 87Rb was achieved experimentally in 2015 by K. Jiménez-Garćıa et
al. [44], by modulating the amplitude and the phase of the Raman lasers.
Experimental realization of a two-dimensional SOC in a quantum degener-
ate gas remained challenging, but was achieved quite recently, in 2016, by
Z. Wu et al., again using the method of Raman lasers on an ultracold gas
of 87Rb, inducing both a highly tunable SOC and an optical lattice trapping
potential. Such a system may enable a broad experimental study of topo-
logical Hall effects, the Berry mechanism, and several exotic systems, such
as Mott insulators of spin–orbit coupled interacting bosons, and topological
superfluids [42].

1.4 Motivation and Outline of Thesis

In this Master’s thesis, the behavior of ultracold, synthetically spin–orbit
coupled, weakly interacting, two-component Bose gases residing on Bravais
lattices, is explored analytically. In particular, utilizing a mean field ap-
proach, general expressions for the chemical potentials are deduced for the
superfluid phase, and non-diagonal expressions for the Hamiltonian are sub-
sequently provided. An application of these expressions is presented for the
case of a pure condensate residing on a square lattice, yielding an analytically
derived phase diagram that coincides with numerical results found in the lit-
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erature, in particular in Ref. [45]. This analysis is a generalization of the work
by D. van Oosten et al. in Ref. [46], in which a similar analysis is performed
for a non-spin–orbit coupled, weakly interacting, single-component Bose gas;
in particular, the method by which D. van Oosten et al. deduces expressions
for the chemical potentials in the superfluid phase, is applied in this thesis for
the generalized case under consideration. Furthermore, the analysis draws
many elements from the analysis of quasi-particle energy spectra conducted
by J. Linder et al. in Ref. [1] for the non-spin–orbit coupled case, by S. Solli
in Ref. [47] for the strongly6 spin–orbit coupled case, and by the author in
his 2017 project work [48], in which corrections were made to the thesis of S.
Solli. The motivation for this analysis is to develop an analytic framework
that describes the system under consideration; this is of practical interest for
engineering experimentally feasible studies and simulations of the impact of
spin–orbit couplings on fermionic systems such as electron gases in crystal
lattices, as well as for exploring the exotic nature of synthetically spin–orbit
coupled, weakly interacting Bose–Einstein condensates, both analytically and
experimentally.

This thesis is structured as follows. Ch. 2 comprises preliminary mate-
rial for Ch. 3 and 4, in particular reviewing relevant material for spin–orbit
coupled, non-interacting Bose gases, and non-spin–orbit coupled, weakly in-
teracting Bose gases. Additionally, a generalized diagonalization procedure
is presented in Ch. 2, which may be of relevance for future work, as is elab-
orated in Ch. 6. In Ch. 3, a general analytic framework for an ultracold,
spin–orbit coupled, weakly interacting two-component Bose gas on a Bravais
lattice, is developed. In particular, expressions for the chemical potentials
are deduced following the application of mean field theory to simplify the
problem of diagonalizing the Hamiltonian. In Ch. 4, the framwork devel-
oped in Ch. 3 is applied to a simple example of a pure condensate residing
on a square lattice, which is shown to analytically reproduce numerical re-
sults found in the literature. Finally, miscellaneous discussion of the results
in Ch. 3 and 4, and a summary and outlook, is presented in Ch. 5 and 6,
respectively. The thesis is proceeded by an appendix that may be helpful in
understanding some of the results presented in Ch. 3, as well as presenting
methods that may be used to generalize the materials of Ch. 3.

6“Strong” in the sense that the coupling considered was assumed sufficiently strong
to induce non-zero momenta among condensed bosons; the meaning of this will be made
clear later in this thesis.
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Chapter 2

Preliminaries

2.1 Notation and Conventions

The following notation and conventions are employed in this thesis:

• Vectorial quantities are written in bold font, e.g. vvv.

• Lattice sites, condensate momenta and vectorial components are la-
beled by Latin lower indices such as i and j. Particles species, e.g.
pseudospin states, are labeled by Greek upper indices such α and β.

• The Pauli spin matrices are labeled σi, i = x, y, z, and the conventional
definitions are used:

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
. (2.1)

If α, β =↑, ↓ are spin indices, the elements of these matrices are labeled
σαβi , such that

σi =

(
σ↑↑i σ↑↓i
σ↓↑i σ↓↓i

)
. (2.2)

2.2 Quantum Mechanics on a Lattice

The analysis of this thesis revolves around the behavior of a Bose gas on
a lattice, which effectively discretizes spatial translations. Realizable meth-
ods include radiation pressure traps, magnetic traps, and—for the interest of
this thesis—optical dipole traps, for instance achievable by applying a sinu-
soidal standing wave potential using opposing lasers, inducing dipole forces
that force atoms into intensity maxima or minima, depending on the specific
detuning of the frequency of the light field with respect to the gaps between

9
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the atomic ground state and the excited states [30, Sec. II.A.]. In-depth
reviews of these methods are found in I. Bloch et al. [30], R. Grimm et
al. [29] and C. J. Pethick et.al. [15]. Optical traps offer easily realizable
methods for tuning important system parameters: For instance, the energy
cost of hopping—i.e., the tunneling rate across lattice sites—may be tuned
simply by altering the intensity of the laser, leading to deeper or shallower
traps; and both the strength and the sign of the interaction of particles may
be tuned by way of Feshback resonance, wherein the energy of a bound state
Eres is tuned—for instance by way of applying a uniform magnetic field to the
optical trap, which is not possible in a magnetic trap—such that the energy
of interacting particles E lies in the vicinity of Eres. The bound state acts
as an intermediate state, leading to a resonant alteration of the scattering
length

as ∼
C

E − Eres

, (2.3)

where C is a constant [15, Ch. 4.2.2 & Ch. 5.4.2].
The exact eigenstates of a system subjected to a periodic lattice potential

are Bloch functions. These are, however, extended across the entire lat-
tice in real space [30, Sec. II.B.]. Wannier functions w(rrr −RRRi)—related to
Bloch functions by an inverse Fourier transform with respect to the lattice
vectors—are localized around each lattice site i located at the fixed position
RRRi, and constitute a more appropriate basis for describing discrete events
on a lattice, such as hopping. In the deep-lattice limit, the amplitude of
the Wannier functions decay exponentially around each lattice site, and their
overlap across sites rapidly decays to zero [30, Sec. II.B.]. Thus, in this limit,
choosing an appropriate normalization, the localized, lowest-band Wannier
functions constitute an orthonormalized basis into which we may expand the
field operators

ψ(rrr) =
∑
i

w(rrr − rrri)bi, (2.4)

where the bi are annihilation operators for particles at the respective lattice
sites [1]. This leads to a discretization of any Hamiltonian H in terms of
annihilation and creation operators.

10
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2.3 The Bose–Hubbard Model

The system of interest for this thesis is a zero-temperature two-component
Bose gas residing on a Bravais lattice, subject to a synthetic SOC and weak
interactions, i.e. interactions for which only two-body scatterings signifi-
cantly contribute to the system Hamiltonian H; three-body, four-body or
higher order scattering events are of negligible impact. In physical terms,
such a system could be a gas of neutral bosonic atoms residing on an optical
lattice, cooled significantly below the critical temperature for Bose–Einstein
condensation to occur—for which momenta are sufficiently small for us to
only consider s-wave scattering—and which is sufficiently dilute for two-body
scattering to be the only significant contribution to H, given by the condition
|as| � n−1/3, where as is the s-wave scattering length; and n−1/3 is the aver-
age distance between particles, given by the inverse cube root of the particle
density [14].

Consider a second-quantized system comprising an ensemble of two dis-
tinct bosonic particle species labeled α, β =↑, ↓1 and of masses mα, residing
on a Bravais lattice, subject to a two-body scattering potential vαβ(|rrr− rrr′|),
where rrr and rrr′ denote the position of the two respective particles of species
α and β. Then, the general system Hamiltonian is

H =
∑
α

∫
drrrψα†(rrr)hα(rrr)ψα(rrr)

+
1

2

∑
αβ

∫
drrr

∫
drrr′ψα†(rrr)ψβ†(rrr′)vαβ(|rrr − rrr′|)ψβ(rrr′)ψα(rrr),

(2.5)

where hα(rrr) is the single-particle Hamiltonian, given by

hα(rrr) = − ∇
2

2mα
− µα + V (rrr) ∈ R, 2 (2.6)

where µα is a species-dependent chemical potential, and V (rrr) is a Bravais
lattice potential [1]; therefore, if

vvvn, n = 1, . . . , d, (2.7)

1These labels, of course, allude to the function of these species as pseudospin states.
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are the d primitive vectors of the Bravais lattice,

V (rrr + n1vvv1 + n2vvv2 + · · ·+ ndvvvd) = V (rrr) (2.8)

⇒ hα(rrr + n1vvv1 + n2vvv2 + · · ·+ ndvvvd) = hα(rrr), n1, . . . , nd ∈ Z. (2.9)

In addition, invariance of the potential vαβ(|rrr − rrr′|) = vβα(|rrr − rrr′|) with
respect to a permutation of the species indices will be assumed, amounting
physically to a quite natural assumption that the inter-species two-body scat-
tering events depend only on relative species configurations. The terms in
Eq. (2.5) may be visualized using Feynman diagrams, as presented in Fig.
2.1.

ψα ψα

hα

r

(a) Single-particle term.

ψα ψα

vαβ

r

ψβψβ

r'

(b) Two-body scattering.

Figure 2.1: A visualization of the general Hamiltonian (2.5)
for a system of bosonic particles of species α, β subject to a
two-body scattering potential vαβ(rrr, rrr′). hα(rrr) is the single-
particle Hamiltonian. Time progresses from left to right.

Writing the field operators ψα(rrr) in terms of the Wannier basis (2.4) leads

2The reader may recognize “hα(rrr) ∈ R” as abuse of notation. Formally, one would
write “hα : R3 −→ R” to indicate that hα maps real 3-vectors to a subset of the real
numbers. However, for the remainder of this thesis, the former notation will be used to
avoid clutter; whether it indicates a set membership or a mapping is implied by whether
the left side of the expression is a number or a function, respectively. The domain of any
mapping is understood by the context.
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to

H =
∑
α

∫
drrr
∑
ij

wα∗(rrr − rrri)bα†i hα(rrr)wα(rrr − rrrj)bαj

+
1

2

∑
αβ

∫
drrr

∫
drrr′
∑
ijkl

wα∗(rrr − rrri)bα†i wβ∗(rrr′ − rrrj)b
β†
j

· vαβ(rrr, rrr′)wβ(rrr′ − rrrk)bβkw
α(rrr − rrrl)bαl

=−
∑
α

∑
i 6=j

tαijb
α†
i b

α
j −

∑
α

∑
i

µαi b
α†
i b

α
i

+
1

2

∑
αβ

∑
ijkl

Uαβ
ijklb

α†
i b

β†
j b

β
kb
α
l ,

(2.10)

where

tαij ≡ −
∫

drrrwα∗(rrr − rrri)hα(rrr)wα(rrr − rrrj), (2.11)

µαi ≡−
∫

drrrhα(rrr)|wα(rrr − rrri)|2

(2.9)
= −

∫
drrrhα(rrr)|wα(rrr)|2 ≡ µα ∈ R,

(2.12)

Uαβ
ijkl ≡

∫
drrr

∫
drrr′wα∗(rrr − rrri)wβ∗(rrr′ − rrrj)

· vαβ(|rrr − rrr′|)wβ(rrr′ − rrrk)wα(rrr − rrrl),
(2.13)

and where rrri, . . . , rrrl denote the fixed positions of the lattice sites i, . . . , l, re-
spectively, cf. Sec. 2.2. The first term of H comprises contributions from
hopping between two lattice sites; the second term is the self-energy of par-
ticles at every lattice site, with µα the chemical potential for particles of
species α; and the final term is the interaction term, expressing interactions
across as many as four lattice sites. It is evident that tαij = tα∗ji , and that

Uαβ
ijkl = Uαβ∗

lkji = Uβα
jilk, the latter upon a relabeling of the integration variables.

For the remainder of this thesis, we will assume that there only be nearest
neighbor hopping and on-site interactions. This may be achieved experimen-
tally by increasing lattice depths to a point for which the overlap of non-
neighboring Wannier functions is negligible, known as the tight-binding limit.
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Thus, vαβ(|rrr − rrr′|) takes the form

vαβ(|rrr − rrr′|) = γαβδ(rrr − rrr′) ∈ R, (2.14)

where

γαβ = γβα =
2π(mα +mβ)aαβ

mαmβ
. (2.15)

That is, the particles are subjected to mass-dependent point-interactions pro-
portional to the intra- and inter-species s-wave scattering lengths aαβ [1]. In
addition, because the bosons reside on a periodic Bravais lattice, the depen-
dency on lattice site positions is assumed only to be through the relative
displacements

δδδji ≡ rrrj − rrri. (2.16)

These assumptions amount to a considerably simpler H,

H =−
∑
α

∑
〈i,j〉

tαijb
α†
i b

α
j −

∑
α

µα
∑
i

bα†i b
α
i

+
1

2

∑
αβ

∑
i

Uαβ
iiiib

α†
i b

β†
i b

β
i b
α
i

=−
∑
α

∑
〈i,j〉

tαijb
α†
i b

α
j −

∑
α

µα
∑
i

bα†i b
α
i

+
1

2

∑
αβ

Uαβ
∑
i

bα†i b
β†
i b

β
i b
α
i ,

(2.17)

where 〈i, j〉 denotes nearest neighbor lattice site indices, and

tαij = −
∫

drrrwα∗(rrr)hα(rrr)wα(rrr − δδδji), (2.18)

Uαβ
iiii

(2.14)
=

∫
drrr

∫
drrr′wα∗(rrr − rrri)wβ∗(rrr′ − rrri)

· γαβδ(rrr − rrr′)wβ(rrr′ − rrri)wα(rrr − rrri)

=

∫
drrrγαβ |wα(rrr)|2

∣∣wβ(rrr)
∣∣2 ≡ Uαβ = Uβα ∈ R.

(2.19)

The nearest neighbor displacement vectors δδδ〈j,i〉 are

δδδ〈j,i〉 ≡ {±aaa1, . . . ,±aaa`}, (2.20)
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where {aaa1, . . . , aaan} is the set of all n non-parallel nearest neighbor displace-
ment vectors; the vectors in this set are by definition of equal magnitude.
The hopping coupling tαij will be assumed to be real and equal for all nearest
neighbor hoppings. Therefore, upon defining

tα〈i,j〉 ≡ tα ∈ R, (2.21)

the expression for H becomes

H =−
∑
α

tα
∑
〈i,j〉

bα†i b
α
j −

∑
α

µα
∑
i

bα†i b
α
i

+
1

2

∑
αβ

Uαβ
∑
i

bα†i b
β†
i b

β
i b
α
i .

(2.22)

Eq. (2.22) is the version of the Bose–Hubbard model that will be used in
this thesis. tα, µα and Uαβ will be assumed to be positive, meaning that
hopping and increasing the number of particles in the system is energetically
favorable, and that interactions are energetically unfavorable.

The behavior of an ultracold Bose gas is closely related to the momentum
distribution of its constituent particles. Therefore, it is convenient to proceed
further analyses in momentum space, by Fourier transforming the Hamilto-
nian (2.22). In terms of the basis {Aαkkk} of operators annihilating particles of
species α and momentum k, the operators

bαi =
1√
Ns

∑
kkk

Aαkkke
−ikkk·rrri . (2.23)

The new operators Aαkkk are readily shown to be bosonic: Using the inverse
expression

Aαkkk =
1√
Ns

∑
i

bαi e
ikkk·rrri , (2.24)

one finds that

[Aαkkk , A
β†
kkk′ ] =

1

Ns

∑
ij

(
bαi b

β†
j e

ikkk·rrrieikkk
′·rrrj − bβ†j bαi eik

kk·rrrieikkk
′·rrrj
)

=
1

Ns

∑
ij

[bαi , b
β†
j ]eikkk·rrrieikkk

′·rrrj

=δαβ
1

Ns

∑
i

ei(kkk−kkk
′)·rrri

(2.27)
= δkkkkkk′δ

αβ.

(2.25)
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Now, inserting Eq. (2.23) into Eq. (2.22) leads to

H =− 1

Ns

∑
α

tα
∑
〈i,j〉

∑
kkkkkk′

Aα†kkk e
ikkk·rrriAαkkk′e

−ikkk′·rrrj

− 1

Ns

∑
α

µα
∑
i

∑
kkkkkk′

Aα†kkk e
ikkk·rrriAαkkk′e

−ikkk′·rrri

+
1

2N2
s

∑
αβ

Uαβ
∑
i

∑
kkkkkk′pppppp′

Aα†kkk e
ikkk·rrriAβ†kkk′ e

ikkk′·rrriAβpppe
−ippp·rrriAαppp′e

−ippp′·rrri .

(2.26)

Applying the relation

1

Ns

∑
i

e−i(kkk−kkk
′)·rrri = δkkk,kkk′ , (2.27)

and using the fact that

eikkk·rrrie−ikkk
′·rrrj = eikkk·rrrie−ikkk

′·(rrrj−rrri+rrri) = e−ikkk
′·δδδjie−i(kkk

′−kkk)·rrri , (2.28)

Eq. (2.26) simplifies to

H =−
∑
α

∑
kkkkkk′

∑
〈i,j〉

tαe−ikkk
′·δδδjiAα†kkk A

α
kkk′

(
1

Ns

e−i(kkk
′−kkk)·rrri

)

−
∑
α

µα
∑
kkkkkk′

Aα†kkk A
α
kkk′

(
1

Ns

∑
i

e−i(kkk
′−kkk)·rrri

)

+
1

2Ns

∑
αβ

Uαβ
∑
kkkkkk′pppppp′

Aα†kkk A
β†
kkk′A

β
pppA

α
ppp′

(
1

Ns

∑
i

e−i(ppp+ppp
′−kkk−kkk′)·rrri

)

=−
∑
α

∑
kkkkkk′

 ∑
δδδ∈δδδ〈i,j〉

tαe−ikkk
′·δδδ


︸ ︷︷ ︸

≡εα
kkk′

Aα†kkk A
α
kkk′

(
1

Ns

∑
i

e−i(kkk
′−kkk)·rrri

)
︸ ︷︷ ︸

δkkk,kkk′

−
∑
α

µα
∑
kkkkkk′

Aα†kkk A
α
kkk′δkkk,kkk′

+
1

2Ns

∑
αβ

Uαβ
∑
kkkkkk′pppppp′

Aα†kkk A
β†
kkk′A

β
pppA

α
ppp′δkkk+kkk′,ppp+ppp′

(2.29)
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⇒ H =−
∑
kkk

∑
α

(εαkkk + µα)Aα†kkk A
α
kkk

+
1

2Ns

∑
kkkkkk′pppppp′

∑
αβ

UαβAα†kkk A
β†
kkk′A

β
pppA

α
ppp′δkkk+kkk′,ppp+ppp′ ,

(2.30)

where

εαkkk ≡tα
∑

δδδ∈δδδ〈i,j〉

e−ikkk·δδδ

(2.20)
= tα

∑
n

(
eikkk·aaan + e−ikkk·aaan

)
=2tα

∑
n

cos(kkk · aaan).

(2.31)

Eq. (2.30) is the expression forH that will be used in the subsequent analysis.
In the next section, the method by which the two bosonic particle species
may be engineered to emulate the states of a spin-1

2
system in the presence

of a synthetic spin–orbit coupling, is explored, and an analytic expression for
the contribution to the Hamiltonian due to this coupling, is deduced.

2.4 Synthetic Spin–Orbit Coupling

2.4.1 Introduction and Experimental Realization

Spin–orbit coupling is a relativistic coupling between the spin and the
orbital momentum of a particle. For an electron moving in an electrostatic
potential, the SOC may be derived by taking the non-relativistic limit of the
Dirac equation [49, 50]. Effectively, it may be viewed as an effect of changing
the frame of reference: When an electron carrying a momentum ppp moves
through a static electric field EEE, an effective magnetic field BBBeff ∝ EEE × ppp is
induced in its rest frame, which in turn couples to its spin SSS ∝ σσσ through the
Zeeman interaction, producing a so-called Rashba SOC, an example of which
is given in Eq. (2.32) [40, 50, 51]. For a gas of electrons constrained to a
two-dimensional crystal lattice, Rashba SOC is attributed to broken mirror
symmetry of the system, whereas another coupling, the Dresselhaus SOC, is
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attributed to broken inversion symmetry [43]; however, this thesis will be
concerned only with Rashba SOC.

Being a relativistic effect, unless the electrons are moving at sufficiently
high velocities, or are subjected to sufficiently strong electric fields, natural
SOC is typically of negligible impact. A more easily realizable, effectively
spin–orbit coupled system, is that of a dilute Bose gas comprising two hy-
perfine states, coupled to each other and their momenta through Raman
scattering and the Doppler shift. Such an experimentally relizable method
was first proposed by J. Higbie et al. in Ref. [41]. In essence, one considers a
dilute and uniform atomic Bose gas comprising two internal hyperfine states
|a〉 and |b〉 with a relative difference in energy ~ω0, and an excited state |e〉,
cf. Fig. 2.2. Two laser beams are directed at the gas: One laser beam carries
a momentum kkk1, and a frequency ω1 red-detuned3 by an amount ∆ from the
resonant frequency of the transition between the states |a〉 and |e〉; and the
second laser beam carries a momentum kkk2, and a frequency ω2 red-detuned
by the same amount ∆ from the resonant frequency of the transition between
the states |b〉 and |e〉. The red-detuning ∆ ensures that the hyperfine states
do not couple resonantly to the excited state; instead, photons inelastically
scatter off the atoms in a two-photon Raman transition between internal
states |a〉 and |b〉 via an intermediate energy level, by way of absorption and
stimulated re-emission. In addition, another detuning δ = (ω1 − ω2) − ω0

of the transition frequencies leads to deviations from Raman resonance; this
detuning depends on the atomic momenta through the Doppler shift, which
leads to an altering of the laser frequencies in the rest frame of the respective
atoms. As the absorption and re-emission of photons imparts a momentum
transfer on the atoms, the combination of Raman scattering and the Doppler
shift thus induces momentum dependent transitions between the two hy-
perfine states, the rate of which depends on the atomic momenta via the
detuning δ. This is effectively a synthetically spin–orbit coupled spin-1

2
sys-

tem, offering flexible tuning of the coupling parameters. Since the atoms are
bosonic—and therefore not subjected to fermionic constraints of a real spin-
1
2

system, such as the Pauli exclusion principle—such a system gives rise to
exotic and novel behavior: Notably, and in the interest of this thesis, such a
synthetic coupling may induce non-zero momenta among condensed bosons.
Variations of this method may be used to engineer both Rashba and Dressel-
haus SOC, and enable a considerably more experimentally feasible study of

3That is, adjusted to a lower frequency.
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the effects of an SOC than by studying systems subjected to a natural SOC
[43, 42].

|a⟩
|b⟩

|e⟩

δ

∆

ω1
ω2

ω0

Figure 2.2: Illustration of a mechanism by which a synthetic
SOC may be induced. A Raman transition occurs between
two hyperfine states |a〉 and |b〉 with a relative difference in
energy ~ω0, via an intermediate energy level. Two photons
of frequency ω1 and ω2 are absorbed and re-emitted; these
are red-detuned from the resonant frequencies between the
hyperfine states and the excited state |e〉 by an amount ∆,
to suppress transitions to this state. Another detuning δ,
from Raman resonance, affects the transition rate between
the hyperfine states, and depends on the atomic momenta
through the Doppler effect. Thus, one achieves a coupling
between the hyperfine states and their momenta.

2.4.2 Analytic Framework

In this section, an analytic expression for a synthetic SOC coupling the
components of a two-component Bose gas on a Bravais lattice, is deduced.
For a system of electrons moving through a static electric field EEE ≡ E0ẑzz, the
contribution to the Hamiltonian from a two-dimensional Rashba SOC takes
the form [43, 47]

HSOC = λR(σxky − σykx), (2.32)

where the σi are the Pauli spin matrices (2.1), and the precise form of the
coupling strength λR is λR = e~2E0/4m

2
ec

2 [47], which will be assumed to
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be non-negative. In Ref. [47, Sec. 3.2.1], S. Solli presents a heuristic two-
dimensional generalization of spin–orbit coupling on a one-dimensional lattice
presented by S. B. Sjømark in Ref. [52], which will be presented in this
section, and applied to the subsequent analysis.

The component kâaan ≡ kkk · âaan of kkk along the direction âaan ≡ aaan/|aaan| of the
non-parallel4 nearest neighbor lattice vector aaan is discretized such that

kâaan =− i
∑
i

(
b†ibi+n − b

†
ibi−n

)
=− i

∑
i

(
b†ibi+n − b

†
i+nbi

)
,

(2.33)

where the lower indices i±n refer to the lattice sites displaced by ±aaan relative
to the site at rrri, and

bi ≡
(
b↑i
b↓i

)
. (2.34)

A change in the summation variable i −→ i+n was performed in the second
equality in (2.33). Then

ky =
∑
n

kâaanâaan · ŷyy

=− i
∑
i

∑
n

(
b†ibi+n − b

†
i+nbi

)
(âaan · ŷyy).

(2.35)

4That is, aaan is one of the n mutually non-parallel nearest neighbor lattice vectors.
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Inserting this into Eq. (2.32), the discretized HSOC becomes

HSOC =iλR
∑
αβ

∑
i

∑
n

(
bα†i
(
−σαβx (aaan · ŷyy) + σαβy (aaan · x̂xx)

)
bβi+n

− bα†i+n
(
−σαβx (aaan · ŷyy) + σαβy (aaan · x̂xx)

)
bβi

)
=iλR

∑
αβ

∑
i

∑
n

(
bα†i
(
−σαβx (aaan · ŷyy) + σαβy (aaan · x̂xx)

)
bβi+n

− bβ†i+n
(
−σβαx (aaan · ŷyy) + σβαy (aaan · x̂xx)

)
bαi

)
=iλR

∑
αβ

∑
i

∑
n

(
bα†i
(
−σαβx (aaan · ŷyy) + σαβy (aaan · x̂xx)

)
bβi+n

− H.c.

)
, 5

(2.36)

where “H.c.” denotes the Hermitian conjugate of the preceding term, and the
hermiticity σβαi = σαβ∗i of the Pauli matrices was used in the third equality.

As before, due to the close behavioral relationship between an ultracold
Bose gas and the particle momentum distribution, it is of interest to per-
form further analyses in momentum space. Applying relation (2.23) to the
expression (2.36) yields

HSOC =iλR
∑
αβ

∑
i

∑
n

((
1√
Ns

∑
kkk

Aα†kkk e
ikkk·rrri

)(
− σαβx (aaan · ŷyy)

+ σαβy (aaan · x̂xx)
)( 1√

Ns

∑
kkk′

Aβkkk′e
−ikkk′·(rrri+aaan)

)
+ H.c.

)
(2.27)
= iλR

∑
kkk

∑
αβ

∑
n

(
Aα†kkk

(
− σαβx (aaan · ŷyy)

+ σαβy (aaan · x̂xx)
)
Aβkkke

−ikkk·aaan + H.c.

)
.

(2.37)

5This step in deducing a discretized expression for HSOC is heuristic, not rigorous. The
Pauli matrices were implicitly moved inside products of vectors of operators in transitioning
from the matrical expression (2.32) to the scalar expression (2.36). The final expression
(2.36) is nevertheless a variation of the Kane–Mele model; the reader is referred to the
2005 paper by C. L. Kane et al. [53] for details.
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Now, using the explicit expressions (2.1) for the Pauli matrices, and writing
out the sum over spin indices, one finds that

HSOC =λR
∑
kkk

∑
n

(
A↑†kkk

(
− iaaan · ŷyy + aaan · x̂xx

)
· A↓kkk

(
e−ikkk·aaan − eikkk·aaan

)
+ H.c.

)

=
∑
kkk

(
A↑†kkk

(
−2λR

∑
n

(
aaan · ŷyy + iaaan · x̂xx

)
sin(kkk · aaan)

)

· A↓kkk + H.c.

)

=
∑
kkk

(
A↑†kkk skkkA

↓
kkk + H.c.

)
,

(2.38)

where
skkk ≡ −2λR

∑
n

(
aaan · ŷyy + iaaan · x̂xx

)
sin(kkk · aaan) (2.39)

is the spin–orbit coupling.
The full momentum space expression for the Hamiltonian of a synthet-

ically spin–orbit coupled, weakly interacting Bose gas on a Bravais lattice
may now be obtained by adding the expression (2.38) to the Hamiltonian
(2.30):

H =−
∑
kkk

∑
α

(εαkkk + µα)Aα†kkk A
α
kkk +

∑
kkk

(
A↑†kkk skkkA

↓
kkk + H.c.

)
+

1

2Ns

∑
kkkkkk′pppppp′

∑
αβ

UαβAα†kkk A
β†
kkk′A

β
pppA

α
ppp′δkkk+kkk′,ppp+ppp′

=
∑
kkk

(
A↑kkk
A↓kkk

)†(−ε↑kkk − µ↑ skkk
s∗kkk −ε↓kkk − µ↓

)(
A↑kkk
A↓kkk

)
+

1

2Ns

∑
kkkkkk′pppppp′

∑
αβ

UαβAα†kkk A
β†
kkk′A

β
pppA

α
ppp′δkkk+kkk′,ppp+ppp′

=
∑
kkk

∑
αβ

ηαβkkk Aα†kkk A
β
kkk +

1

2Ns

∑
kkkkkk′pppppp′

∑
αβ

UαβAα†kkk A
β†
kkk′A

β
pppA

α
ppp′δkkk+kkk′,ppp+ppp′ ,

(2.40)
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where

ηkkk =

(
η↑↑kkk η↑↓kkk
η↓↑kkk η↓↓kkk

)
≡
(
−ε↑kkk − µ↑ skkk

s∗kkk −ε↓kkk − µ↓

)
(2.41)

is the spin basis single-particle coupling.

2.5 Synthetically Spin–Orbit Coupled,

Non-Interacting Bose Gas

In this section, a brief exploration of the analytic behavior of a syntheti-
cally spin–orbit coupled, non-interacting, two-component Bose gas on a Bra-
vais lattice is performed, using the expression for the synthetic SOC derived
in the previous section. This is a precursor to the analysis of the weakly
interacting case, which is the primary focus of this thesis. The Hamiltonian
is

H =
∑
kkk

∑
αβ

ηαβkkk Aα†kkk A
β
kkk . (2.42)

In particular, we are interested in the behavior of the quasi-particles of the
system, i.e. the collections of pseudospin particles that effectively behave as
decoupled free particles. Mathematically, this amounts to finding a new basis
of particle operators

{Bα
kkk }, α = ±, 6 (2.43)

by a canonical transformation, such that

H =
∑
kkk

∑
α

λααkkk Bα†
kkk B

β
kkk , (2.44)

where

λkkk =

(
λ++
kkk λ+−

kkk

λ−+
kkk λ−−kkk

)
≡
(
λ+
kkk 0
0 λ−kkk

)
. (2.45)

Additionally, the transformation should preserve the canonical commutation
relation, such that

[Bα
kkk , B

β†
kkk′ ] = δkkkkkk′δ

αβ; (2.46)

6These labels allude to the function of these species as pseudohelicity states, provided
skkk 6= 0, as will be justified later in this section.
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that is, the resulting quasi-particles should be bosonic. An expression for λkkk
may be obtained by conventional diagonalization of the matrix (2.41):

ηkkk = P−1
kkk PkkkηkkkP

−1
kkk Pkkk = P−1

kkk λkkkPkkk, (2.47)

where
Pkkk ≡

(
χχχ+
kkk χχχ−kkk

)
(2.48)

is the invertible diagonalizing matrix, the columns of which are orthonormal-
ized eigenvectors χχχ±kkk of ηkkk. Thus,(

B+
kkk

B−kkk

)
= Pkkk

(
A↑kkk
A↓kkk

)
= χχχ+

kkk A
↑
kkk +χχχ−kkk A

↓
kkk. (2.49)

The eigenvalues λ±kkk of ηkkk are

ηkkkχχχ
±
kkk = λ±kkkχχχ

±
kkk ⇒

(
ηkkk − λ±kkk

)
χχχ±kkk = 0 ⇒ det

(
ηkkk − λ±kkk

)
= 0 (2.50)

⇒ λ±kkk =
1

2

(
−
(
ε↑kkk + ε↓kkk

)
−
(
µ↑ + µ↓

)
±
√

4 |skkk|2 +
((
ε↑kkk − ε

↓
kkk

)
+
(
µ↑ − µ↓

))2
)
.

(2.51)

These are the quasi-particle energy spectra. Observe that at kkk = 000, there is
a Zeeman splitting

λ+
000 − λ−000 =

√
4 |s000|2 +

((
ε↑000 − ε

↓
000

)
+
(
µ↑ − µ↓

))2

(2.39)
=

√((
ε↑000 − ε

↓
000

)
+
(
µ↑ − µ↓

))2
(2.52)

of the energy bands, dependent on the differences in the no-SOC single-
particle energies ε↑000−ε

↓
000, and in the chemical potentials µ↑−µ↓. Furthermore,

within the first Brillouin zone, the εαkkk are minimal at kkk = 000, while |skkk| has its
minima at kkk 6= 000, cf. Eq. (2.31) and (2.39). Evidently, a sufficiently strong
coupling strength λR may therefore displace the minima of the lowest energy
band to non-zero values.
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kx0

k01k02

k04k03

ky

(a) Four-fold case.

kx0

k00

ky

(b) One-fold case.

Figure 2.3: Momentum space illustration of a two-
dimensional square lattice. The red points denote the possible
ground state momenta kkk0i. Note that (a) is just one possible
four-fold case, as the magnitude of the condensate momenta
depends on the spin–orbit coupling strength.

Consider the case of the bosons residing on a two-dimensional square
lattice of lattice constant a, such that aaan = {ax̂xx, aŷyy}. Furthermore, let pse-
duospin states be treated equally, i.e.

µ↑ = µ↓ ≡ µ, (2.53)

t↑ = t↓ ≡ t (2.54)

⇒ ε↑kkk = ε↓kkk ≡ εkkk, (2.55)

such that there is no Zeeman splitting. Then

skkk
(2.39)
= −2λR(sin(kya) + i sin(kxa)), (2.56)

εkkk
(2.31)
= 2t(cos(kxa) + cos(kya)), (2.57)

and the quasi-particle energy spectra reduce to

λ±kkk = −εkkk − µ± |skkk|. (2.58)
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Treating kx and ky as continuous variables, the minima of λ−kkk are readily
found to occur at

kx, ky = ±
arcsin

(
λR/t√

2+(λR/t)2

)
a

, (2.59)

from which it is clear that in this case, any non-zero λR induces one or more
of four distinct non-zero momenta among ground state quasi-particles; see
Fig. 2.3 and 2.4. The minimum value λ0 of λ−kkk is given by λ−kkk evaluated at
either of these four points in k-space, and is equal to

λ0 = −4t

√
2λ2

R

t2
+ 1− µ. (2.60)

The ground state energy cannot be negative, by the physical argument that
the Hamiltonian (2.44) needs to be bounded from below. This may be solved
as follows. λ0 may be subtracted from the energy spectra and treated as a
contribution to the chemical potential as follows:

H =
∑
kkk

∑
α

λααkkk Bα†
kkk B

β
kkk

=λ0

∑
kkk

∑
α

Bα†
kkk B

β
kkk +

∑
kkk

∑
α

(λααkkk − λ0)Bα†
kkk B

β
kkk

=λ0Na +
∑
kkk

∑
α

∆λααkkk Bα†
kkk B

β
kkk ,

(2.61)

where
Na ≡

∑
kkk

∑
α

Bα†
kkk B

β
kkk (2.62)

is the total number of quasi-particles in this particular system,7 and

∆λ±kkk ≡ λ±kkk − λ0; (2.63)

the minimum value of the lower band ∆λ−kkk is now 0. If the ground state is
dominant and comprises quasi-particles of non-zero momenta, one may ne-
glect the contribution to the energy from the positive helicity quasi-particles

7The total number of quasi-particles is in general not equal to the total number of real
particles, cf. [14, Ch. 4.3].
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carrying a ground state momentum, as these are four excited states associated
with significantly higher energies than the ground state; cf. the expressions
(2.58). In this case, since the lower energy band ∆λ−kkk by definition is zero at
its minimum value, one may rewrite the final expression in (2.61) as

H = λ0Na +
∑′

kkk

∑
α

∆λααkkk Bα†
kkk B

β
kkk , (2.64)

where the sum
∑′

kkk
excludes all ground state momenta.

(a) ∆λ−kkk (b) kx = ky

Figure 2.4: Plots of the lowest energy band ∆λ−kkk —cf. Eq.
(2.63)—-associated with the quasi-particles in a spin–orbit
coupled non-interacting Bose gas on a square lattice, with
t = a = 1.0 and λR = 3.0. In Fig. 2.4a, the regions of
lowest energy are colored in pink, and the regions of highest
energy, in red; cf. Fig. 2.4b, which shows the cross-section
of Fig. 2.4a along the diagonal kx = ky. Note the four-fold
symmetry in the band due to the symmetry of the lattice,
and the displacement of the minima from the origin due to
the SOC.
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Furthermore, the eigenvectors χχχ±kkk of ηkkk are found to be

{
χχχ±
}

=


{

1√
2

(
1
0

)
, 1√

2

(
0
1

)}
, skkk = 0,{

1√
2

(
±e−iγkkk

1

)}
, skkk 6= 0,

(2.65)

where
e−iγkkk ≡ skkk

|skkk|
, skkk 6= 0 ∧ γkkk ∈ [0, 2π). (2.66)

Consequently, by Eq. (2.49), there is either no change in basis if skkk = 0, or(
B+
kkk

B−kkk

)
=

1√
2

(
e−iγkkk

(
A↑kkk − A

↓
kkk

)
A↑kkk + A↓kkk

)
, (2.67)

if skkk 6= 0. Alternatively, by an inversion,(
A↑kkk
A↓kkk

)
=

1√
2

(
B−kkk + eiγkkkB+

kkk

B−kkk − eiγkkkB
+
kkk

)
, (2.68)

if skkk 6= 0. Inserting the expressions (2.67) into the requirement (2.46), Bα
kkk

are readily confirmed to be bosonic operators:

[Bα
kkk , B

β†
kkk′ ] ∝ [(A↑kkk ± A

↓
kkk), (A

↑
kkk′ ∓ A

↓
kkk′)
†]

= [A↑kkk, A
↑†
kkk′ ]− [A↓kkk, A

↓†
kkk′ ] = 0, α 6= β,

(2.69)

[Bα
kkk , B

α†
kkk′ ] =

1

2

(
[(A↑kkk ± A

↓
kkk), (A

↑
kkk′ ± A

↓
kkk′)
†]
)

=
1

2

(
[A↑kkk, A

↑†
kkk′ ] + [A↓kkk, A

↓†
kkk′ ]
)

= δkkkkkk′ ,
(2.70)

⇒ [Bα
kkk , B

β†
kkk′ ] = δkkkkkk′δ

αβ. (2.71)

Comparing the expressions (2.65) in the case of skkk 6= 0 to the general expres-
sions for helicity eigenvectors,

{
ξξξ+, ξξξ−

}
=

{(
cos θ

2

eiφ sin θ
2

)
,

(
−e−iφ sin θ

2

cos θ
2

)}
, (2.72)

where θ and φ are the conventionally defined polar and azimuth angle with
respect to the particle momentum vector, respectively, one realizes upon an
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appropriate scaling of the eigenvectors χχχ±, that γkkk = φ, and θ = π/2; the
latter in line with the choice of orientation of the imagined8 static electric field
EEE ∝ ẑzz; see Fig. 2.5. The new basis (2.67) is thus identified as a pseudohelicity
basis.

ϕ = γk
x

y

z

kθ = π/2

Figure 2.5: Illustration of the interpretation of γkkk as the
azimuth angle φ with respect to the particle momentum kkk.
The polar angle θ is fixed and equal to π/2.

2.6 Weakly Interacting Bose Gas: The

Bogoliubov Transformation

In this section, we investigate the behavior of a single-component weakly
interacting Bose gas tightly bound to a Bravais lattice, and, in the pro-
cess, review the Bogoliubov transformation. This system is described by the
Hamiltonian (2.30) upon neglecting pseudospin indices:

H =−
∑
kkk

(εkkk + µ)A†kkkAkkk

+
U

2Ns

∑
kkkkkk′pppppp′

A†kkkA
†
kkk′ApppAppp′δkkk+kkk′,ppp+ppp′ ,

(2.73)

where µ, U and εkkk are given by Eq. (2.12), (2.19) and (2.31), respectively,
neglecting pseudospin indices; and Akkk is an annihilation operator for a boson
of momentum kkk. Specifically, we will deduce expressions for the quasi-particle

8Recall that these calculations are concerned with a bosonic pseudospin- 12 system
subjected to a synthetic SOC, modeled to emulate a system of electrons subjected to an
SOC induced by movement in a static electric field EEE = E0ẑzz.
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operators, as well as the quasi-particle energy spectra, which will be used to
explore the phenomenon of ground state depletion. This is what was done by
D. van Oosten et al. in Ref. [46], to which the reader is referred for details,
and on which the calculations in this section are largely based.

When the Bose gas is cooled significantly below the critical temperature
for which Bose–Einstein condensation occurs,9 the ground state—i.e. the
kkk = 000 mode—may be assumed to be dominant, provided the ground state
depletion is not too severe.10 Thus, we may neglect terms in H that are
trilinear and quadrilinear in excitation operators:

H ≈ H′0 +H′2, (2.74)

where

H′0 ≡ − (ε000 + µ)A†000A000 +
U

2Ns

A†000A
†
000A000A000, (2.75)

H′2 ≡−
∑′

kkk

(εkkk + µ)A†kkkAkkk

+
U

2Ns

∑′

kkk

(
A†000A

†
000AkkkA−kkk + 4A†000A

†
kkkAkkkA000 + A†kkkA

†
−kkkA000A000

)
,

(2.76)

where the sum
∑′

kkk
excludes kkk = 000. This is the first step of the Bogoli-

ubov approach. Note that due to conservation of momentum, i.e. the factor
δkkk+kkk′,ppp+ppp′ in Eq. (2.73), there are no terms in H that are linear in excitation
operators, since e.g. kkk = kkk′ = ppp = 000 would imply that also ppp′ = 000.

Now, the Bogoliubov prescription amounts to substituting the condensate
operators A000 with an expectation value a000 plus a small fluctuation δA000:

A000 −→ a000 + δA000. (2.77)

Here, a000 is a c-number and a mean field parameter, and δA000 is an operator. In
the literature, including in Ref. [46], a000 is usually taken to be real and equal
to the square root of the condensate particle number, i.e.

√
N000; however, for

this thesis, we will let
a000 ≡

√
N000e

−iθ000 ∈ C; (2.78)

9Here, it is implicitly assumed that Bose–Einstein condensation does occur.
10The meaning of this will be specified later in this section, after the concept of ground

state depletion has been covered.
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that is, though the modulus is still
√
N000 ∈ R, a000 may also carry a complex

phase factor parameterized by the angle θ000 ∈ [0, 2π). In accordance with
Ch. 4 of H. Bruus et al. [54], the mean field parameters N000 and θ000 may be
determined by solving a set of self-consistent equations, or, equivalently, by
minimizing the free energy F with respect to these parameters; the latter
approach will be employed in this thesis. Observe that in fixing a000, and by
extension the phase θ000, the global U(1) symmetry of the Hamiltonian (2.5)
with respect to the phase of the field operators, is formally broken, which
in turn renders the ground state particle number non-conserved; in physical
terms, one is effectively treating the condensate as a particle reservoir [14,
Ch. 2.2]. a000 is a local order parameter 11 that characterizes the Bose–Einstein
condensate phase.

Inserting Eq. (2.77) and (2.78) into Eq. (2.74), one finds that

H ≈ H0 +H(1) +H2, (2.79)

where

H0 ≡ − (ε000 + µ)N000 +
U

2Ns

N2
000 , (2.80)

H(1) ≡
(
−ε000 − µ+

U

Ns

N000

)√
N000

(
eiθ000δA000 + e−iθ000δA†000

)
, (2.81)

H2 ≡−
∑
kkk

(εkkk + µ)A†kkkAkkk

+
U

2Ns

N000

∑
kkk

(
e2iθ000AkkkA−kkk + 4A†kkkAkkk + e−2iθ000A†kkkA

†
−kkk

)
.

(2.82)

Observe that the sums over kkk in the expression for H2 are unconstrained, i.e.
including kkk = 000; implicitly, we redefined

δA000 ≡ A000, (2.83)

such that A000 hereafter refers to the zero-mode fluctuation about the expecta-
tion value a000. Now, because the free energy F is assumed to be minimal with

11An order parameter characterizes a feature of order in a phase, and is interlinked with
breaking of symmetries. What parameters constitute a measure of order may be highly
non-trivial [55]. Note that the idea of relating Bose–Einstein condensation to spontaneous
symmetry breaking is not entirely uncontroversial; A. J. Leggett expands on his objections
in Ref. [21], in particular in Ch. III.D.
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respect to the number of condensed particles N000, H(1) must be zero, as it
comprises all terms linear in zero-mode fluctuations. From this one deduces
the expression for the chemical potential:

µ = −ε000 +
U

Ns

N000. (2.84)

Treating µ as an input parameter, one may immediately deduce that the
expression for the number of condensed particles per lattice site is

N000

Ns

=
ε000 + µ

U
. (2.85)

Now, inserting Eq. (2.84) into Eq. (2.79), and using

A†kkkAkkk =
1

2

(
A†kkkAkkk + AkkkA

†
kkk − 1

)
(2.86)

as well as ε−kkk
(2.31)
= εkkk, one may write the Hamiltonian (2.79) as

H = − U

2Ns

N2
000 −

1

2

∑
kkk

(
−εkkk + ε000 +

U

Ns

N000

)

+
1

2

∑
kkk

(
Akkk
A†−kkk

)†(−εkkk + ε000 + U
Ns
N000

U
Ns
N000e

2iθ000

U
Ns
N000e

−2iθ000 −εkkk + ε000 + U
Ns
N000

)(
Akkk
A†−kkk

)
≡ H̃0 +

1

2

∑
kkk

AAA†kkkMAAAkkk,

(2.87)

where

H̃0 ≡ −
U

2Ns

N2
000 −

1

2

∑
kkk

(
−εkkk + ε000 +

U

Ns

N000

)
, (2.88)

AAAkkk ≡
(
Akkk
A†−kkk

)
, (2.89)

M≡
(
−εkkk + ε000 + U

Ns
N000

U
Ns
N000e

2iθ000

U
Ns
N000e

−2iθ000 −εkkk + ε000 + U
Ns
N000

)
. (2.90)

In order to find the quasi-particle operators and excitation spectra, one
must diagonalize the Hamiltonian (2.87) such that

H =H̃0 +
1

2

∑
kkk

~ω(kkk)

(
D†kkkDkkk +

1

2

)
, (2.91)
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where Dkkk is an annihilation operator for a quasi-particle of momentum kkk,
and ~ω(kkk) is the corresponding quasi-particle energy spectrum. Dkkk may be
deduced by using the Bogoliubov transformation, named after N. N. Bogoli-
ubov, who first applied this procedure in a paper published in 1947 to describe
superfluidity in a non-ideal Bose gas [56], and later, in 1958, generalized the
procedure in order to find solutions to the then recently developed BCS the-
ory of superconductivity [57]; the generalized method is what is presented
in the following. In the Bogoliubov approach, one postulates that one may
perform a canonical transformation such that(

Akkk
A†−kkk

)
=

(
u∗kkk vkkk
v∗kkk ukkk

)(
Dkkk

D†−kkk

)
. (2.92)

Inserting this into Eq. (2.5) and demanding that the resulting Hamiltonian
be on the form (2.91), one finds that the coefficients of the off-diagonal terms
in the new basis must be zero, i.e.

(
u2
kkke

2iθ000 + v2
kkke
−2iθ000

) U
Ns

N000 + 2ukkkvkkk

(
−εkkk + ε000 +

U

Ns

N000

)
= 0, (2.93)

and that the diagonal terms must be equal to ~ω(kkk), i.e.

(
|ukkk|2 + |vkkk|2

)(
−εkkk + ε000 +

U

Ns

N000

)
+
(
ukkkv

∗
kkke

2iθ000 + u∗kkkvkkke
−2iθ000

) U
Ns

N000 = ~ω(kkk).

(2.94)

The canonical transformation should preserve the canonical commutation
relation, implying

|ukkk|2 − |vkkk|2 = 1; (2.95)

that is, the resulting quasi-particles of the system should be bosonic. Solving
these equations for ~ω(kkk), |ukkk|2 and |vkkk|2 yields

~ω(kkk) =

√(
− εkkk + ε000

)(
− εkkk + ε000 + 2

U

Ns

N000

)
, (2.96)

|vkkk|2 = |ukkk|2 − 1 =
1

2

(
−εkkk + ε000 + U

Ns
N000

~ω(kkk)
− 1

)
. (2.97)
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The quasi-particle energy spectrum possesses two significant asymptotic fea-
tures: a) Since εkkk, as given by Eq. (2.31) upon neglecting the pseudospin
index, is asymptotically quadratic in |kkk| as |kkk| −→ 000, the energy spectrum
is asymptotically linear in |kkk|—i.e. phonon-like—as |kkk| −→ 000; and b) the
energy spectrum approaches that of bosons in a non-interacting system, i.e.
~ω(kkk) −→ −εkkk + ε000, as |kkk| approaches the boundary of the first Brillouin
zone.

Now, we turn our attention to the phenomenon of ground state depletion.
The total number of particles N is given by

N =N000 +
∑′

kkk

〈A†kkkAkkk〉

(2.92)
= N000 +

∑′

kkk

〈(
u∗kkkDkkk − vkkkD†−kkk

)† (
u∗kkkDkkk − vkkkD†−kkk

)〉
=N000 +

∑′

kkk

(
|ukkk|2〈D†kkkDkkk〉 − ukkkvkkk〈D†kkkD

†
−kkk〉

−u∗kkkv∗kkk〈DkkkD−kkk〉+ |vkkk|2〈D−kkkD†−kkk〉
)

=N000 +
∑′

kkk

((
|ukkk|2 + |vkkk|2

)
〈D†kkkDkkk〉+ |vkkk|2

)
,

(2.98)

where the marked sum excludes kkk = 000, and the property that H is diagonal
with respect to the new bosonic basis defined by Dkkk and D†−kkk, was used
to cancel off-diagonal terms in the third to last equality. Furthermore, due
to the property of diagonality, the quantity 〈D†kkkDkkk〉 is the Bose–Einstein
distribution;

N =N000 +
∑′

kkk

(
|ukkk|2 + |vkkk|2

eβ~ω(kkk) − 1
+ |vkkk|2

)
, (2.99)

where

β ≡ 1

kBT
, (2.100)

and T is the temperature of the system. At zero T , the number of condensed
particles is therefore

N000 =N −
∑′

kkk

|vkkk|2. (2.101)
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Observe the generally non-zero quantity subtracted from the total number of
particles. Evidently, introducing weak, two-body scattering interactions to
the single-component Bose gas has lead to a depletion of the ground state,
even at zero temperature. For a plot of the condensate fraction N000/N as
a function of the interaction strength U relative to the hopping coupling t,
see Fig. 1 in Ref. [46]. Note by inspection of Eq. (2.97) and (2.101) that
U/t � 1 leads to a severe depletion of the ground state, in which case the
assumption preceding Eq. (2.79) that the ground state is dominant, does no
longer hold true. As noted by D. van Oosten et al. in Ref. [46], the system
is expected to be in the Mott insulator phase when U/t� 1, and the present
mean field approach fails to describe this phase due to the neglect of trilinear
and quadrilinear terms in excitation operators that lead to Eq. (2.79); for this
reason, this analysis is restricted to the superfluid phase, which is expected
to occur for U/t� 1.

2.6.1 The Free Energy

The final quantity that remains to be addressed is the variational param-
eter θ000. As was elaborated below Eq. (2.78), the free energy F needs to
be minimized with respect to this in order to determine its value [54]. In
this section, a general expression for F is derived and applied. The deriva-
tion below is based on the one presented by S. Solli in Ref. [47], with some
adjustments.

The diagonalized Hamiltonian H is assumed to be on the form

H = H̃0 +
1

2

∑′

kkk

∑
σ

~ωσ(kkk)

(
C†kkkσCkkkσ +

1

2

)
, (2.102)

where Ckkkσ constitutes a basis of bosonic quasi-particle operators for which
H is diagonal, σ labels the branch, and the quantity H̃0 comprises additional
operator-independent terms. Let |Ñm〉 ≡

∏m
i=1|Ni〉, Ni ≡ Nkkkσ ≡ C†kkkσCkkkσ, be
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a many-particle Fock basis. The partition function Z is then

Z = tr
(
e−βH

)
=
∑
m

〈
Ñm

∣∣e−βH∣∣ Ñm

〉
(2.102)

= e−βH̃0 exp
(
− β

4

∑′

kkk

∑
σ

~ωσ(kkk)
)

·
∑
m

〈
Ñm

∣∣ exp
(
− β

2

∑′

kkk

∑
σ

~ωσ(kkk)Nkkkσ

)∣∣Ñm

〉
= e−βH̃0 exp

(
− β

4

∑′

kkk

∑
σ

~ωσ(kkk)
)∏
kkkσ

∑
Nkkkσ

exp
(
− β

2
~ωσ(kkk)Nkkkσ

)
= e−βH̃0 exp

(
− β

4

∑′

kkk

∑
σ

~ωσ(kkk)
)∏
kkkσ

1

1− exp
(
− β

2
~ωσ(kkk)

) .

(2.103)

F is thus

F = − 1

β
lnZ

= H̃0 +
1

4

∑′

kkk

∑
σ

~ωσ(kkk) +
1

β

∑′

kkk

∑
σ

ln
(
1− exp

(
− β

2
~ωσ(kkk)

))
β −→ ∞−→ H̃0 +

1

4

∑′

kkk

∑
σ

~ωσ(kkk),

(2.104)

where the final line expresses the limit of T −→ 0. Furthermore, for a
pure condensate, for which H = H0, where the quantity H0 is operator-
independent, F is simply

F = H0. (2.105)

Upon substituting the quantities in Eq. (2.104) for the appropriate ex-
pressions given by Eq. (2.88) and (2.96), one finds that F is independent
of θ000. It may therefore be fixed to any value in its range; the conventional
choice in the literature is θ000 = 0. Note that this trivial relationship between
the phase and the free energy needs not be the case in general, in particular
regarding the system under consideration in Ch. 3.
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2.7 Generalized Diagonalization Procedure12

We proceed to review and develop a diagonalization method that gener-
alizes the Bogoliubov procedure presented in Sec. 2.6. The contents of this
section are largely based on the theory developed by C. Tsallis in Ref. [58]
and by D. van Hemmen in Ref. [59], and will only be of importance for the
summary and outlook presented in Ch. 6 at the end of this thesis.

Let
J ≡ diag(1, 1, . . . , 1︸ ︷︷ ︸

n

,−1, . . . ,−1,−1︸ ︷︷ ︸
n

), (2.106)

and let AAA ≡
(
A1 A2 . . . An A†1 A†2 . . . A†n

)T
, where the Ai are n

bosonic field operators, i.e.
[AAA,AAA†] = J . (2.107)

Now, in diagonalizing a general Hamiltonian H that may be written in terms
of bilinear products of these n bosonic operators, one finds that

H ≡ AAA†MAAA = AAA†
(
J
(
T −1

(
JJ

)
T
)
J
)
M
(
T −1T

)
AAA

=
(
AAA†
(
J T −1J

))(
J T JMT −1

)(
TAAA
)

≡ CCC†JΩCCC

(2.108)

where M is a 2n-by-2n matrix comprising the coefficients in H for every
bilinear product; and Ω is the diagonalized 2n-by-2n matrix, provided the
2n-by-2n transformation matrix T diagonalizes JM, i.e.

T JMT −1 = Ω, (2.109)

and CCC† is the adjoint of CCC, i.e.

T † = J T −1J ⇔ T †J T = J . (2.110)

This last equation is equivalent to requiring that the resulting quasi-particles
described by CCC be bosons: If CCC = AAA†T and CCC† = T †AAA, then demanding that
the boson commutation relation holds for CCC implies

J = [CCC,CCC†] = T †[AAA,AAA†]T (2.107)
= T †J T . (2.111)

12This section is only relevant for Ch. 6, on summary and outlook.
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Eq. (2.107) implies that M can be symmetrized such that

M =

(
M1 M2

M∗
2 M∗

1

)
, (2.112)

whereM1 andM2 are n-by-n sub-matrices; the former being Hermitian, and
the latter symmetric, as implied by the hermiticity of M. The symmetries
of this expression can be used to investigate the properties of Ω and T .
Following the methods presented in Ref. [59, Sec. 4], we define an operator

K : C2n −→ C2n acting on
(
uuuT vvvT

)T
, uuu,vvv ∈ Cn, such that

K
(
uuu
vvv

)
=

(
vvv∗

uuu∗

)
. (2.113)

Then {J ,K} = 0 and [M,K] = 0. Consequently, if xxxi =
(
uuuT vvvT

)T
is

an eigenvector of JM with a corresponding eigenvalue ωi, then Kxxxi =(
vvv∗T uuu∗T

)T
is also an eigenvector of JM, with a corresponding eigenvalue

−ωi:
JMKxxxi = −KJMxxxi = −Kωixxxi = −ωiKxxxi. (2.114)

Accordingly, one may construct an Ω on the form

Ω = diag(ω1, . . . , ωn,−ω1, . . . ,−ωn), (2.115)

leading to a T on the form

T =

((
T1

T ∗2

)
K
(
T1

T ∗2

))
=

(
T1 T2

T ∗2 T ∗1

)
, (2.116)

where the columns are the eigenvectors of JM. Then, by Eq. (2.108), the
diagonal matrix associated withM is JΩ = diag(ω1, . . . , ωn, ω1, . . . , ωn), and
so the ωi are real by virtue of M being Hermitian.
T as given by Eq. (2.116) may now be shown to satisfy Eq. (2.110).

Re-expressing T in terms of the eigenvectors xxxi, i = 1 . . . n,

T =
(
xxx1 . . . xxxn K(xxx1 . . . xxxn)

)
, (2.117)

Eq. (2.110) is found to be equivalent to

(xxxµ,Jxxxν) = Jµν , (2.118)
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where (·, ·) denotes the conventional inner product. We note that

(Kxxxµ,JKxxxν) = (Kxxxµ,−KJxxxν) = −(xxxµ,Jxxxν)∗. (2.119)

Furthermore, using the fact that M and J are Hermitian,

ωµ(xxxµ,Jxxxν) = (ωµxxxµ,Jxxxν) = (JMxxxµ,Jxxxν) = (xxxµ,MJJxxxν)
= (xxxµ,Mxxxν) = (xxxµ,JJMxxxν) = (xxxµ,J ωνxxxν) = ων(xxxµ,Jxxxν).

(2.120)

If ωµ 6= ων , then Eq. (2.120) implies that (xxxµ,Jxxxν) = 0. If ωµ = ων , µ 6= ν,
then the Gram–Schmidt method can be applied in order to orthonormalize
the basis of the corresponding eigenspace. Finally, noting that CCC†JΩCCC cor-
responds to 2n harmonic oscillators, and discarding the possibility of ωi = 0,
one must have ωi > 0, since there would otherwise be no lower limit for the
energy of the system. Hence, M is positive-definite, and so, by the first and
fourth equality of Eq. (2.120),

ωµ(xxxµ,Jxxxµ) = (xxxµ,Mxxxµ) > 0 ⇒ (xxxµ,Jxxxµ) > 0, µ = 1 . . . n, (2.121)

since ωµ > 0. Now, because eigenvectors may be scaled by arbitrary non-
zero scalars, the first n column vectors of T may be scaled such that the
first n diagonal entries of the left-hand side of Eq. (2.118) are 1. Then
Eq. (2.119) implies that the remaining n diagonal entries are −1. Hence T
as defined by (2.116) either satisfies, or can be made to satisfy, the boson
relation (2.110). Therefore, if the Hamiltonian has the form (2.112), and the
associated diagonal matrix has the form (2.115), then these conditions suffice
to ensure that the resulting quasi-particles are bosons.
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Chapter 3

Spin–Orbit Coupled, Weakly
Interacting Bose Gas

Our starting point is the Hamiltonian (2.40),

H =
∑
kkk

∑
αβ

ηαβkkk Aα†kkk A
β
kkk +

1

2Ns

∑
kkkkkk′pppppp′

∑
αβ

UαβAα†kkk A
β†
kkk′A

β
pppA

α
ppp′δkkk+kkk′,ppp+ppp′ , (3.1)

where Aαkkk is an annihilation operator for a boson of pseudospin α and momen-
tum kkk, as given by Eq. (2.24) and (2.25); Ns is the number of lattice points;
and the delta function expresses conservation of momentum. Furthermore,
Uαβ = Uβα defined by Eq. (2.14) is the on-site interaction coupling, and ηkkk
is the single-particle coupling (2.41),

ηkkk =

(
η↑↑kkk η↑↓kkk
η↓↑kkk η↓↓kkk

)
≡
(
−ε↑kkk − µ↑ skkk

s∗kkk −ε↓kkk − µ↓

)
, (3.2)

where µα is the chemical potential associated with particles of pseudospin α,
εαkkk is the no-SOC single-particle energies defined in Eq. (2.31), and skkk is the
SOC. For a square lattice of lattice constant a, oriented as in Fig. 2.3,

εαkkk = 2tα(cos(kxa) + cos(kya)), (3.3)

skkk = −2λR(sin(kya) + i sin(kxa)). (3.4)

Here, tα is the hopping coupling, and λR is the SOC strength.
Because the temperature of the ultracold Bose gas is assumed to be signif-

icantly lower than the critical temperature for Bose–Einstein condensation to
occur,1 the condensate operators Aαkkk0i may be assumed dominant, provided
the phenomenon of ground state depletion described in Sec. 2.6 is not too se-
vere; for this reason, the subsequent analysis is expected only to hold for the

1As was also remarked in Sec. 2.6, here, it is implicitly assumed that Bose–Einstein
condensation does occur.

40



CHAPTER 3. SPIN–ORBIT COUPLED, WEAKLY INTERACTING
BOSE GAS

superfluid phase, for which the hopping couplings are considerably stronger
than the interaction couplings. Here, the kkk0i are the condensate momenta,
with the momentum index i = 0 or i = 1, . . . , n depending on whether there
is 1 or up to n > 1 distinct possible condensate momenta, respectively, cf.
Fig. 2.3; these cases are hereafter referred to as one-fold, and many-fold or
n-fold, respectively. Any trilinear or quadrilinear contributions in excitation
operators to H are assumed negligible. All separate instances of interac-
tion terms that are constant, linear and bilinear in excitation operators are
presented in Tab. 3.1.2

2S. Solli [47], S. T. H. Hartman [60] and the author [48] identified only a subset of
the configurations presented in Tab. 3.1 in their respective thesis and project work. This
subset of configurations does not appear to consistently describe any physical special case
besides the case of zero-momentum condensed particles, rendering many—if not all—
results regarding cases of non-zero momentum condensed particles, erroneous.
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Table 3.1: Interaction term momentum configurations

Case kkk kkk′ ppp ppp′ #6 #4 #2 #1 #n (n ≥ 2)

1: kkk0i kkk0j kkk0i′ kkk0j′ 90 36 6 1 3n(n− 1)

2: kkk0i kkk0j kkk0i′ ppp′ 126 28 2 0 n(n2 − 3(n− 1))

3: kkk0i kkk0j ppp kkk0j′ 126 28 2 0 n(n2 − 3(n− 1))

4: kkk0i kkk′ kkk0i′ kkk0j′ 126 28 2 0 n(n2 − 3(n− 1))

5: kkk kkk0j kkk0i′ kkk0j′ 126 28 2 0 n(n2 − 3(n− 1))

6: kkk0i kkk0j ppp ppp′ 36 16 4 1 n2

7: kkk0i kkk′ kkk0i′ ppp′ 36 16 4 1 n2

8: kkk0i kkk′ ppp kkk0j′ 36 16 4 1 n2

9: kkk kkk′ kkk0i′ kkk0j′ 36 16 4 1 n2

10: kkk kkk0j ppp kkk0j′ 36 16 4 1 n2

11: kkk kkk0j kkk0i′ ppp′ 36 16 4 1 n2

Table of all momentum configurations in the two-body scat-
tering terms. #n is the number of permissible configurations
in the respective cases when the condensate comprises par-
ticles of one or more of n distinct momenta symmetrically
distributed about the origin in k-space. Entries that are not
denoted by a condensate momentum such as kkk0i, are implic-
itly assumed not to be condensate momenta. For a derivation
of the expressions for #n when n ≥ 2, see the text proceeding
the table; for a visual method of counting, see appendix A.
Observe that in the many-fold cases, there are instances of
permissible configurations that are linear in non-condensate
momenta; neither the author nor his supervisor have found
this explored in the literature.

In case 6–11 in Tab. 3.1, the number of configurations is n2 as the mo-
mentum indices may take on any of the n values. In case 1–5, however, the
number of configurations is non-trivial because all momenta are constrained,
either by being assumed to be a condensate momentum, or by conservation
of momentum. For details on a visual, iterative method to count these con-
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figurations, see appendix A.
The general expressions for #n presented in Tab. 3.1—i.e. the number of

configurations of condensate momenta for the two-body scattering terms in
the n-fold case, assuming the terms are either bilinear, trilinear or quadrilin-
ear in condensate particle operators—may be derived as follows. The incom-
ing and outgoing particle momenta are constrained only by conservation of
momentum. Systematically examining the cases presented in Tab. 3.1, one
finds the following:

a) In case 6–11, conservation of momentum is on the form

kkk0i + kkk′ = kkk0i′ + ppp′. (3.5)

where kkk′ and ppp′ are assumed to be non-condensate momenta. In these
cases, conservation of momentum does not constrain the number of
permissible configurations of condensate momenta. In other words, the
momentum indices i, i′ may take on any of the n possible values, and
so

#n = n2. (3.6)

b) In case 1, conservation of momentum is on the form

kkk0i + kkk0j = kkk0i′ + kkk0j′ . (3.7)

By inspection of this equation, one finds that the permissible configu-
rations are exhausted by permutations on the following forms:

1 : kkk0i = kkk0j = kkk0i′ = kkk0j′ , (3.8)

2 : kkk0i = kkk0j′ 6= kkk0j = kkk0i′ , n ≥ 2, (3.9)

3 : kkk0i = kkk0i′ 6= kkk0j = kkk0j′ , n ≥ 2, (3.10)

4 : kkk0i = −kkk0j, kkk0i′ = −kkk0j′ 6= ±kkk0i, n ≥ 4. (3.11)

The last line follows from the inversion symmetry of the Bravais lattice.
Thus, the total number of permissible configurations is

#n =

{
1, n = 1,
n+ n(n− 1) + n(n− 1) + n(n− 2) = 3n(n− 1), n ≥ 2.

(3.12)

c) In case 2–5, conservation of momentum is on the form

kkk0i + kkk0j = kkk0i′ + ppp′. (3.13)
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If one is interested only in the number of permissible configurations,
one may proceed by treating ppp′ as an unconstrained momentum, from
which it follows that the number of permissible configurations in these
cases is equal to the total number of configurations of kkk0i, kkk0j, kkk0i′ , save
the configurations that leave ppp′ equal to a condensate momentum, i.e.

#n
(3.12)
=

{
13 − 1 = 0, n = 1,
n3 − 3n(n− 1) = n(n2 − 3(n− 1)), n ≥ 2.

(3.14)

However, it may also be of interest to identify all permutations that
exhaust the constraint of conservation of momentum in these cases. By
inspection of Eq. (3.13), one finds that these permutations are on the
following forms:

1 : kkk0i = kkk0j 6= kkk0i′ , n ≥ 2, (3.15)

2 : kkk0j 6= ±kkk0i, kkk0i′ 6= kkk0j 6= kkk0i, n ≥ 2. (3.16)

Thus, the number of permissible configurations is

#n =

{
0, n = 1,
n(n− 1) + n(n− 2)2 = n(n2 − 3(n− 1)), n ≥ 2.

(3.17)

which coincides with the expression (3.14), derived by a different line
of reasoning. Note that in the one-fold case, there are no terms in H
that are linear in non-condensate momenta, since, for instance,

kkk00 + kkk00 = kkk00 + ppp′ ⇒ ppp′ = kkk00, (3.18)

contrary to the assumption that ppp′ is not a condensate momentum.
This holds more generally for any condensate presumed to comprise
quasi-particles of only one momentum:

kkk0i + kkk0i = kkk0i + ppp′ ⇒ ppp′ = kkk0i, (3.19)

for a specified value of i. However, in the many-fold cases, there are
permissible configurations that are linear in non-condensate momenta;
as such, it is a qualitatively new aspect from the one-fold case, and
neither the author nor his supervisor have found this explored in the
literature.
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H may now be written as

H ≈ H0 +H1 +H2, (3.20)

where

H0 ≡
∑
i

∑
αβ

ηαβkkk0iA
α†
kkk0i
Aβkkk0i

+
1

2Ns

∑
iji′j′

∑
αβ

UαβAα†kkk0iA
β†
kkk0j
Aβkkk0i′A

α
kkk0j′

δkkk0i+kkk0j ,kkk0i′+kkk0j′ ,
(3.21)

H1 ≡
1

2Ns

∑′

kkk

∑
iji′

∑
αβ

Uαβ
(
Aα†kkk0iA

β†
kkk0j
Aβkkk0i′A

α
kkkδkkk0i+kkk0j ,kkk0i′+kkk

+Aα†kkk0iA
β†
kkk0j
AβkkkA

α
kkk0i′
δkkk0i+kkk0j ,kkk+kkk0i′

+Aα†kkk0iA
β†
kkk A

β
kkk0j
Aαkkk0i′δkkk0i+kkk,kkk0j+kkk0i′

+Aα†kkk A
β†
kkk0i
Aβkkk0jA

α
kkk0i′
δkkk+kkk0i,kkk0j+kkk0i′

)
,

(3.22)

and

H2 ≡
∑′

kkk

∑
αβ

ηαβkkk Aα†kkk A
β
kkk

+
1

2Ns

∑′′

kkkkkk′

∑
ij

∑
αβ

Uαβ
(
Aα†kkk0iA

β†
kkk0j
AβkkkA

α
kkk′δkkk0i+kkk0j ,kkk+kkk′

+ Aα†kkk0iA
β†
kkk A

β
kkk0j
Aαkkk′δkkk0i+kkk,kkk0j+kkk′

+ Aα†kkk0iA
β†
kkk A

β
kkk′A

α
kkk0j
δkkk0i+kkk,kkk′+kkk0j

+ Aα†kkk A
β†
kkk′A

β
kkk0i
Aαkkk0jδkkk+kkk′,kkk0i+kkk0j

+ Aα†kkk A
β†
kkk0i
Aβkkk′A

α
kkk0j
δkkk+kkk0i,kkk′+kkk0j

+ Aα†kkk A
β†
kkk0i
Aβkkk0jA

α
kkk′δkkk+kkk0i,kkk0j+kkk′

)
,

(3.23)

where the sum
∑′

kkk
excludes all kkk = kkk0i ∀i, and the sum

∑′′

kkkkkk′
excludes

all configurations of kkk and kkk′ for which either one or both are equal to a

condensate momentum; note that in relation to the sum
∑′′

kkkkkk′
, if e.g. kkk is set

equal to an arbitrary non-condensate momentum, kkk′ might be a condensate
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momentum due to conservation of momentum, which is a configuration that
is excluded from the sum.3 H1 and H2 may be simplified by applying the
commutator relation (2.25) and permuting momentum indices, in conjunction
with the fact that Uαβ = Uβα, cf. Eq. (2.19):

H1 ≡
1

Ns

∑′

kkk

∑
iji′

∑
αβ

Uαβ
(
Aα†kkk0iA

β†
kkk0j
Aβkkk0i′A

α
kkk

+Aα†kkk A
β†
kkk0i′
Aβkkk0jA

α
kkk0i

)
δkkk+kkk0i′ ,kkk0j+kkk0i

,

(3.24)

H2 ≡
∑′

kkk

∑
αβ

ηαβkkk Aα†kkk A
β
kkk

+
1

2Ns

∑′′

kkkkkk′

∑
ij

∑
αβ

Uαβ
((
Aα†kkk0iA

β†
kkk0j
AβkkkA

α
kkk′

+ Aα†kkk A
β†
kkk′A

β
kkk0i
Aαkkk0j

)
δkkk+kkk′,kkk0i+kkk0j

+ 2
(
Aα†kkk0iA

β†
kkk A

β
kkk0j
Aαkkk′

+ Aα†kkk0iA
β†
kkk A

β
kkk′A

α
kkk0j

)
δkkk0i+kkk,kkk′+kkk0j

)
.

(3.25)

3.1 Mean Field Theory

To simplify further analyses, a mean field approach is applied to the gen-
eral expression (3.20) for H, which in conjunction with an assumption that
the condensate be dominant, renders H at most bilinear in excitation op-
erators, effectively reducing the many-particle problem to a single-particle
problem. This is analogous to what was done in the non-SOC case presented
in Sec. 2.6. The mean field approach leads to the introduction of a number
of variational parameters. In accordance with Ch. 4 of H. Bruus et al. [54],
these may be determined by solving a set of self-consistent equations, or,
equivalently, by minimizing the free energy F with respect to these parame-
ters; the latter approach will be employed in this thesis.

3This latter point does not appear to be addressed consistently in the literature; see
e.g. D. Toniolo et al. [61, Eq. (5)], where kkk = 3KKK0 produces terms involving operators
for particles carrying a possible condensate momentum 2KKK0 − kkk = −KKK0, which is not
addressed beyond an implicit assumption that the mean field parameters associated with
these operators, are zero.
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The mean field approach amounts to substituting the condensate opera-
tors Aαkkk0i with an expectation value aαkkk0i plus a small fluctuation δAαkkk0i :

Aαkkk0i −→ aαkkk0i + δAαkkk0i . (3.26)

Here, aαkkk0i is a c-number, and δAαkkk0i is an operator. In the literature, aαkkk0i
is usually taken to be real and equal to the square root of the appropriate
condensate particle number, i.e.

√
Nα
kkk0i

; however, for this thesis, we will let

aαkkk0i ≡
√
Nα
kkk0i
e
−iθαkkk0i ∈ C; (3.27)

that is, though the modulus is still
√
Nα
kkk0i
∈ R, aαkkk0i may also carry a complex

phase factor parameterized by the angle θαkkk0i ∈ [0, 2π).
Following the same procedure as van Oosten et al. [46], Eq. (3.26) is

applied to Eq. (3.21), (3.24) and (3.25). To lowest order in the condensate
fluctuations, only terms that are constant or linear in fluctuations, save terms
that contain the product of a fluctuation and an excitation operator, are kept,
while the remainder is neglected. The contribution to H that comprises all
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terms that are linear in condensate fluctuations, is

H(1) ≡
∑
i

∑
αβ

ηαβkkk0i

(
(aαkkk0i)

∗δAβkkk0i + aβkkk0iδA
α†
kkk0i

)
+

1

2Ns

∑
iji′j′

∑
αβ

Uαβ
(

(aβkkk0j)
∗aβkkk0i′a

α
kkk0j′

δAα†kkk0i

+ (aαkkk0i)
∗aβkkk0i′a

α
kkk0j′

δAβ†kkk0j

+ (aαkkk0i)
∗(aβkkk0j)

∗aαkkk0j′δA
β
kkk0i′

+ (aαkkk0i)
∗(aβkkk0j)

∗aβkkk0i′δA
α
kkk0j′

)
δkkk0i+kkk0j ,kkk0i′+kkk0j′

=
∑
i

∑
αβ

ηαβkkk0i

(
(aαkkk0i)

∗δAβkkk0i + aβkkk0iδA
α†
kkk0i

)
+

1

Ns

∑
iji′j′

∑
αβ

Uαβ
(

(aβkkk0j)
∗aβkkk0i′a

α
kkk0j′

δAα†kkk0i

+ aαkkk0j(a
α
kkk0i′

)∗(aβkkk0j′ )
∗δAβkkk0i

)
δkkk0i+kkk0j ,kkk0i′+kkk0j′

=
∑
i

∑
αβ

(
δAβkkk0i

(
ηαβkkk0i(a

α
kkk0i

)∗

+
1

Ns

Uαβ
∑
ji′j′

aαkkk0j(a
α
kkk0i′

)∗(aβkkk0j′ )
∗δkkk0i+kkk0j ,kkk0i′+kkk0j′

)
+ δAα†kkk0i

(
ηαβkkk0ia

β
kkk0i

+
1

Ns

Uαβ
∑
ji′j′

(aβkkk0j)
∗aβkkk0i′a

α
kkk0j′

δkkk0i+kkk0j ,kkk0i′+kkk0j′

))

=
∑
i

∑
αβ

(
δAβkkk0i

(
ηαβkkk0i(a

α
kkk0i

)∗

+
1

Ns

Uαβ
∑
ji′j′

aαkkk0j(a
α
kkk0i′

)∗(aβkkk0j′ )
∗δkkk0i+kkk0j ,kkk0i′+kkk0j′

)
+ H.c.

)
,

(3.28)

where “H.c.” denotes the Hermitian conjugate of the preceding term. Be-
cause F is to be minimized with respect to the variational parameters aαkkk0i ,
H(1) must be zero. Thus, we conclude that to lowest order in condensate
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fluctuations, the chemical potentials µα in Eq. (2.41) exactly cancel the
remainder of H(1).

For the moment, we neglect the contributions from interactions. H(1)

written out in terms of pseudospin indices is

H(1) =
∑
i

(
δA↑kkk0i

(
−
(
ε↑kkk0i + µ↑

)
(a↑kkk0i)

∗ + s∗kkk0i(a
↓
kkk0i

)∗
)

δA↑†kkk0i

(
−
(
ε↑kkk0i + µ↑

)
a↑kkk0i + skkk0ia

↓
kkk0i

)
δA↓kkk0i

(
−
(
ε↓kkk0i + µ↓

)
(a↓kkk0i)

∗ + skkk0i(a
↑
kkk0i

)∗
)

δA↓†kkk0i

(
−
(
ε↓kkk0i + µ↓

)
a↓kkk0i + s∗kkk0ia

↑
kkk0i

)
.

(3.29)

There are two scenarios of particular interest:

a) skkk0i = 0: This is the case when either the SOC strength λR is sufficiently
weak, or kkk0i = 000. In this case,

µ↑ = −ε↑kkk0i , (3.30)

µ↓ = −ε↓kkk0i . (3.31)

The momentum index i is not problematic, as the Bravais lattice sym-

metry dictates that εαkkk0i
(2.31)
= εαkkk0j ∀i, j; hence, there is no dependency

of µα on this index.

b) skkk0i 6= 0: In this case, one cannot have a↑kkk0i 6= a↓kkk0i = 0 or vice versa;
otherwise, there would be no way to render H(1) = 0, contrary to
the assumption that the free energy be minimal with respect to the
variational parameters. Therefore, for any value of i, a↑kkk0i and a↓kkk0i must
both either be zero or non-zero. The instances of i for which both are
zero give no information about the chemical potentials, as the respective
contributions to the sum in Eq. (3.29) are zero. Therefore, assuming
there is a condensate, i.e. that there exists at least one pair

a↑kkk0i , a
↓
kkk0i
6= 0, (3.32)
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H(1) = 0 implies

µ↑ =− ε↑kkk0i + s∗kkk0i

(
a↓kkk0i
a↑kkk0i

)∗
= −ε↑kkk0i + skkk0i

a↓kkk0i
a↑kkk0i

, (3.33)

µ↓ =− ε↓kkk0i + skkk0i

(
a↑kkk0i
a↓kkk0i

)∗
= −ε↓kkk0i + s∗kkk0i

a↑kkk0i
a↓kkk0i

. (3.34)

Eq. (3.33) and (3.34) are equivalent to requiring µα ∈ R. Inserting the
expressions (3.27) for aαkkk0i , one finds that Eq. (3.33) and (3.34) both
imply that

e
i(γkkk0i+θ

↓
kkk0i
−θ↑

kkk0i
)

= e
−i(γkkk0i+θ

↓
kkk0i
−θ↑

kkk0i
)
, (3.35)

where e−iγkkk0i = skkk0i/|skkk0i |, cf. Eq. (2.66). Therefore,

sin(γkkk0i + θ↓kkk0i − θ
↑
kkk0i

) = 0 (3.36)

⇒ γkkk0i + θ↓kkk0i − θ
↑
kkk0i

= `π, ` ∈ {0, 1}. (3.37)

Note that the value `π of γkkk0i+θ
↓
kkk0i
−θ↑kkk0i is fixed, as µα must be invariant

with respect to i. An appropriate value of ` must therefore be chosen.
Now,

µ↑ =− ε↑kkk0i ± |skkk0i|

√√√√N↓kkk0i
N↑kkk0i

, (3.38)

µ↓ =− ε↓kkk0i ± |skkk0i |

√√√√N↑kkk0i
N↓kkk0i

, (3.39)

where the sign of the SOC term in the chemical potentials depends on
the value of `. As will be at the end of Ch. 4, choosing a negative sign
is necessary in order to reproduce results from the literature, which will
therefore be assumed for the remainder of this thesis, i.e.

µ↑ =− ε↑kkk0i − |skkk0i |

√√√√N↓kkk0i
N↑kkk0i

, (3.40)

µ↓ =− ε↓kkk0i − |skkk0i |

√√√√N↑kkk0i
N↓kkk0i

. (3.41)
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Again, εαkkk0i
(2.31)
= εαkkk0j ∀i, j introduces no dependency on the momentum

index i. The Bravais lattice symmetry also implies that the quantity

|skkk|
(2.39)
= λR

((∑
n

aaan · ŷyy sin(kkk · aaan)
)2

+
(∑

n

aaan · x̂xx sin(kkk · aaan)
)2
) 1

2
(3.42)

satisfies |skkk0i | = |skkk0j | ∀i, j. However, one must require that the ratios√√√√N↓kkk0i
N↑kkk0i

=

√√√√N↓kkk0j

N↑kkk0j
, i 6= j, (3.43)

are invariant with respect to values of the momentum indices for which
the pairs N↑kkk0i , N

↓
kkk0i

are non-zero. Note that these conclusions only apply
to cases for which skkk0i 6= 0.

Now, we include interactions; i.e., the full expression (3.28) for H(1) is taken

into consideration. Suppose that a↑kkk0i is non-zero for some value of i. Then
the condition H(1) = 0 leads to

µ↑ = µ↑∗ =− ε↑kkk0i −

|skkk0i |
√√√√N↓kkk0i
N↑kkk0i


skkk0` 6=0

+
1

Ns

∑
ji′j′

∑
α

U↑α

(
a↑kkk0j′

a↑kkk0i

)∗
aαkkk0j(a

α
kkk0i′

)∗δkkk0i+kkk0j ,kkk0i′+kkk0j′ ,

(3.44)

where the square brackets [. . . ]skkk0` 6=0 is a reminder that the term enclosed by

them contributes to the chemical potential only if skkk0` 6= 0. µ↑ = µ↑∗ implies

∑
ji′j′

∑
α

U↑α

(
a↑kkk0j′

a↑kkk0i

)∗
aαkkk0j(a

α
kkk0i′

)∗δkkk0i+kkk0j ,kkk0i′+kkk0j′

=

∑
ji′j′

∑
α

U↑α

(
a↑kkk0j′

a↑kkk0i

)∗
aαkkk0j(a

α
kkk0i′

)∗δkkk0i+kkk0j ,kkk0i′+kkk0j′

∗ ,
(3.45)
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i.e.

I

∑
ji′j′

∑
α

U↑α

(
a↑kkk0j′

a↑kkk0i

)∗
aαkkk0j(a

α
kkk0i′

)∗δkkk0i+kkk0j ,kkk0i′+kkk0j′

 = 0, (3.46)

(3.27)⇒
∑
ji′j′

∑
α

U↑α

√√√√N↑kkk0j′N
α
kkk0j
Nα
kkk0i′

N↑kkk0i

· sin(θ↑kkk0j′ − θ
↑
kkk0i
− θαkkk0j + θαkkk0i′ )δkkk0i+kkk0j ,kkk0i′+kkk0j′ = 0

(3.47)

The delta function may be eliminated by rewriting the sum over momentum
indices in terms of the configurations (3.8)–(3.11), resulting in

∑
j
j 6=i
n≥2

U↑↓

√√√√N↑kkk0jN
↓
kkk0j
N↓kkk0i

N↑kkk0i
sin(θ↑kkk0j − θ

↑
kkk0i
− θ↓kkk0j + θ↓kkk0i)

+
∑
j

kkk0j 6=±kkk0i
n≥4

∑
α

U↑α

√√√√N↑−kkk0jN
α
−kkk0iN

α
kkk0j

N↑kkk0i
sin(θ↑−kkk0j − θ

↑
kkk0i
− θα−kkk0i + θαkkk0j) = 0,

(3.48)

where n is the number of distinct possible momenta among condensed parti-
cles. Since the above condition only applies to many-fold cases, the SOC is
necessarily non-zero when the condition applies. Therefore, using the relation
(3.37),

θ↑kkk0j − θ
↑
kkk0i
− θ↓kkk0j + θ↓kkk0i = γkkk0j − γkkk0i . (3.49)

Furthermore, recalling the interpretation of γkkk as the angle between kkk and
the x-axis, as was illustrated in Fig. 2.5,

γkkk0j − γkkk0i = γ−kkk0i − γkkk0i = π, j 6= i ∧ n = 2, (3.50)

where the inversion symmetry of the Bravais lattice was used. Thus, the
condition (3.48) automatically holds true for n = 2; more generally, the term
in the first sum in Eq. (3.48) for which kkk0j = −kkk0i, is always zero. Upon
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applying Eq. (3.43), Eq. (3.48) may therefore finally be reduced to

∑
j

kkk0j 6=±kkk0i
n≥4

(
U↑↓N↓kkk0j sin(γkkk0j − γkkk0i)

+
∑
α

U↑α

√√√√N↑−kkk0jN
α
−kkk0iN

α
kkk0j

N↑kkk0i
sin(θ↑−kkk0j − θ

↑
kkk0i
− θα−kkk0i + θαkkk0j)

)
= 0.

(3.51)

It is interesting to note that this condition leads to constraints on the varia-
tional parameters only if n ≥ 4 in order to ensure µ↑ ∈ R; this is a qualita-
tively new aspect relative to the simplest of many-fold cases, i.e. n = 2, for
which this is automatically true.

Now that the imaginary part of the interaction terms in the expression
(3.44) has been set to zero, one may write

µ↑ =− ε↑kkk0i −

|skkk0i |
√√√√N↓kkk0i
N↑kkk0i


skkk0` 6=0

+
1

Ns

R

(∑
ji′j′

∑
α

U↑α

(
a↑kkk0j′

a↑kkk0i

)∗
aαkkk0j(a

α
kkk0i′

)∗δkkk0i+kkk0j ,kkk0i′+kkk0j′

)

(3.27)
= − ε↑kkk0i −

|skkk0i |
√√√√N↓kkk0i
N↑kkk0i


skkk0` 6=0

+
1

Ns

∑
ji′j′

∑
α

U↑α

√√√√N↑kkk0j′N
α
kkk0j
Nα
kkk0i′

N↑kkk0i

· cos(θ↑kkk0j′ − θ
↑
kkk0i
− θαkkk0j + θαkkk0i′ )δkkk0i+kkk0j ,kkk0i′+kkk0j′ .

(3.52)

In order to ensure that µ↑ is invariant with respect to the momentum index
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i, one must also require

∑
ji′j′

∑
α

U↑α

√√√√N↑kkk0j′N
α
kkk0j
Nα
kkk0i′

N↑kkk0`
cos(θ↑kkk0j′ − θ

↑
kkk0`
− θαkkk0j + θαkkk0i′ )δkkk0`+kkk0j ,kkk0i′+kkk0j′

=
∑
ji′j′

∑
α

U↑α

√√√√N↑kkk0j′N
α
kkk0j
Nα
kkk0i′

N↑kkk0`′
cos(θ↑kkk0j′ − θ

↑
kkk0`′
− θαkkk0j + θαkkk0i′ )δkkk0`′+kkk0j ,kkk0i′+kkk0j′

(3.53)

for all values of ` and `′ 6= ` for which N↑kkk0` , N
↑
kkk0`′
6= 0; because `′ 6= `, this

condition only applies to many-fold cases, i.e. n ≥ 2. Again eliminating the
delta functions by rewriting the sum over momentum indices in terms of the
configurations (3.8)–(3.11), results in∑

α

U↑α

(
Nα
kkk0`

+
∑
j
j 6=`
n≥2

Nα
kkk0j

+
∑
j

kkk0j 6=±kkk0`
n≥4

√√√√N↑−kkk0jN
α
−kkk0`N

α
kkk0j

N↑kkk0`
cos(θ↑−kkk0j − θ

↑
kkk0`
− θα−kkk0` + θαkkk0j)

)

+
∑
j
j 6=`
n≥2

U↑↑N↑kkk0j + U↑↓

√√√√N↑kkk0jN
↓
kkk0j
N↓kkk0`

N↑kkk0`
cos(γkkk0j − γkkk0`)



=
∑
α

U↑α

(
Nα
kkk0`′

+
∑
j

j 6=`′
n≥2

Nα
kkk0j

+
∑
j

kkk0j 6=±kkk0`′
n≥4

√√√√N↑−kkk0jN
α
−kkk0`′

Nα
kkk0j

N↑kkk0`′
cos(θ↑−kkk0j − θ

↑
kkk0`′
− θα−kkk0`′ + θαkkk0j)

)

+
∑
j

j 6=`′
n≥2

U↑↑N↑kkk0j + U↑↓

√√√√N↑kkk0jN
↓
kkk0j
N↓kkk0`′

N↑kkk0`′
cos(γkkk0j − γkkk0`′ )

 .

(3.54)
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Because n ≥ 2, the above expressions may be compacted slightly, to

∑
α

U↑α

(∑
j

n≥2

Nα
kkk0j

+
∑
j

kkk0j 6=±kkk0`
n≥4

√√√√N↑−kkk0jN
α
−kkk0`N

α
kkk0j

N↑kkk0`
cos(θ↑−kkk0j − θ

↑
kkk0`
− θα−kkk0` + θαkkk0j)

)

+
∑
j
j 6=`
n≥2

U↑↑N↑kkk0j + U↑↓

√√√√N↑kkk0jN
↓
kkk0j
N↓kkk0`

N↑kkk0`
cos(γkkk0j − γkkk0`)



=
∑
α

U↑α

(∑
j

n≥2

Nα
kkk0j

+
∑
j

kkk0j 6=±kkk0`′
n≥4

√√√√N↑−kkk0jN
α
−kkk0`′

Nα
kkk0j

N↑kkk0`′
cos(θ↑−kkk0j − θ

↑
kkk0`′
− θα−kkk0`′ + θαkkk0j)

)

+
∑
j

j 6=`′
n≥2

U↑↑N↑kkk0j + U↑↓

√√√√N↑kkk0jN
↓
kkk0j
N↓kkk0`′

N↑kkk0`′
cos(γkkk0j − γkkk0`′ )

 .

(3.55)

Cancelling all terms that appear on both sides of the equation, one finds that
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∑
kkk0j=±kkk0`′
kkk0`′ 6=±kkk0`

n≥4

∑
α

U↑α

√√√√N↑−kkk0jN
α
−kkk0`N

α
kkk0j

N↑kkk0`
cos(θ↑−kkk0j − θ

↑
kkk0`
− θα−kkk0` + θαkkk0j)

+ U↑↑N↑kkk0`′ + U↑↓

√√√√N↑kkk0`′N
↓
kkk0`′

N↓kkk0`

N↑kkk0`
cos(γkkk0`′ − γkkk0`)

=
∑

kkk0j=±kkk0`
kkk0` 6=±kkk0`′

n≥4

∑
α

U↑α

√√√√N↑−kkk0jN
α
−kkk0`′

Nα
kkk0j

N↑kkk0`′
cos(θ↑−kkk0j − θ

↑
kkk0`′
− θα−kkk0`′ + θαkkk0j)

+ U↑↑N↑kkk0` + U↑↓

√√√√N↑kkk0`N
↓
kkk0`
N↓kkk0`′

N↑kkk0`′
cos(γkkk0` − γkkk0`′ ).

(3.56)

Finally, applying the relation (3.43) and rearranging terms, one is left with

∑
α

U↑α

( ∑
kkk0j=±kkk0`′
kkk0`′ 6=±kkk0`

n≥4

√√√√N↑−kkk0jN
α
−kkk0`N

α
kkk0j

N↑kkk0`
cos(θ↑−kkk0j − θ

↑
kkk0`
− θα−kkk0` + θαkkk0j)

−
∑

kkk0j=±kkk0`
kkk0` 6=±kkk0`′

n≥4

√√√√N↑−kkk0jN
α
−kkk0`′

Nα
kkk0j

N↑kkk0`′
cos(θ↑−kkk0j − θ

↑
kkk0`′
− θα−kkk0`′ + θαkkk0j)

)

+ U↑↑
(
N↑kkk0`′ −N

↑
kkk0`

)
+ U↑↓ cos(γkkk0`′ − γkkk0`)

(
N↓kkk0`′ −N

↓
kkk0`

)
= 0.

(3.57)

To recapitulate, these conditions, applicable only in many-fold cases, ensure
that the chemical potential µ↑ does not depend on any momentum index.
There is one such relation for every combination ` 6= `′ for which N↑kkk0` , N

↑
kkk0`′
6=

0. As will be shown in a moment after performing the same calculations for
µ↓, these condition may be further simplified.

Now, suppose that a↓kkk0i is non-zero for some value of i. Then the condition
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H(1) = 0 leads to

µ↓ = µ↓∗ =− ε↓kkk0i −

|skkk0i |
√√√√N↑kkk0i
N↓kkk0i


skkk0` 6=0

+
1

Ns

∑
ji′j′

∑
α

U↓α

(
a↓kkk0j′

a↓kkk0i

)∗
aαkkk0j(a

α
kkk0i′

)∗δkkk0i+kkk0j ,kkk0i′+kkk0j′ .

(3.58)

Analogously to the conclusions that were drawn for µ↑, for µ↓ to be real, one
finds that

∑
j

kkk0j 6=±kkk0i
n≥4

(
U↑↓N↑kkk0j sin(γkkk0j − γkkk0i)

+
∑
α

U↓α

√√√√N↓−kkk0jN
α
−kkk0iN

α
kkk0j

N↓kkk0i
sin(θ↓−kkk0j − θ

↓
kkk0i
− θα−kkk0i + θαkkk0j)

)
= 0,

(3.59)

and for the value of µ↓ to not depend on the momentum index i, one finds
that

∑
α

U↓α

( ∑
kkk0j=±kkk0`′
kkk0`′ 6=±kkk0`

n≥4

√√√√N↓−kkk0jN
α
−kkk0`N

α
kkk0j

N↓kkk0`
cos(θ↓−kkk0j − θ

↓
kkk0`
− θα−kkk0` + θαkkk0j)

−
∑

kkk0j=±kkk0`
kkk0` 6=±kkk0`′

n≥4

√√√√N↓−kkk0jN
α
−kkk0`′

Nα
kkk0j

N↓kkk0`′
cos(θ↓−kkk0j − θ

↓
kkk0`′
− θα−kkk0`′ + θαkkk0j)

)

+ U↓↓
(
N↓kkk0`′ −N

↓
kkk0`

)
+ U↑↓ cos(γkkk0`′ − γkkk0`)

(
N↑kkk0`′ −N

↑
kkk0`

)
= 0,

(3.60)

for every combination ` 6= `′ for which N↓kkk0` , N
↓
kkk0`′
6= 0; cf. Eq. (3.51) and

(3.57).
Note that if two opposite points in k-space are occupied by the condensate,

i.e. Nα
kkk0`′

= Nα
−kkk0` ∧ Nα

kkk0`
, Nα
−kkk0` 6= 0, then for these, the coupled equations
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(3.57) and (3.60) reduce to

U↑↑
(
N↑−kkk0` −N

↑
kkk0`

)
+ U↑↓ cos(γ−kkk0` − γkkk0`)

(
N↓−kkk0` −N

↓
kkk0`

)
= U↑↑

(
N↑−kkk0` −N

↑
kkk0`

)
− U↑↓

(
N↓−kkk0` −N

↓
kkk0`

)
= 0,

(3.61)

U↓↓
(
N↓−kkk0` −N

↓
kkk0`

)
+ U↑↓ cos(γ−kkk0` − γkkk0`)

(
N↑−kkk0` −N

↑
kkk0`

)
= U↓↓

(
N↓−kkk0` −N

↓
kkk0`

)
− U↑↓

(
N↑−kkk0` −N

↑
kkk0`

)
= 0,

(3.62)

which are uniquely solved by

N↑kkk0` = N↑−kkk0` , N
↓
kkk0`

= N↓−kkk0` , (3.63)

with the single exception of when

(U↑↓)2

U↑↑U↓↓
= 1. (3.64)

In other words, in the presence of interactions, if the condensate contains par-
ticles of opposite momenta, then there must be equally many such particles
in the condensate.

The above conclusion also holds in the event that kkk0`′ and kkk0` are non-
parallel, and either Nα

−kkk0` = 0 or Nα
−kkk0`′

= 0, provided Nα
kkk0`
, Nα

kkk0`′
6= 0. That

is, the coupled equations (3.57) and (3.60) reduce to

U↑↑
(
N↑kkk0`′ −N

↑
kkk0`

)
+ U↑↓ cos(γkkk0`′ − γkkk0`)

(
N↓kkk0`′ −N

↓
kkk0`

)
= 0, (3.65)

U↓↓
(
N↓kkk0`′ −N

↓
kkk0`

)
+ U↑↓ cos(γkkk0`′ − γkkk0`)

(
N↑kkk0`′ −N

↑
kkk0`

)
= 0, (3.66)

which are uniquely solved by

N↑kkk0` = N↑kkk0`′ , N
↓
kkk0`

= N↓kkk0`′ , (3.67)

with the single exception of when

(U↑↓ cos(γkkk0`′ − γkkk0`))
2

U↑↑U↓↓
= 1. (3.68)
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If, on the other hand, Nα
−kkk0` , N

α
−kkk0`′

6= 0, then Eq. (3.63) may be applied to

simplify Eq. (3.57) and (3.60). Note that in this case, factors on the form√√√√Nβ
−kkk0jN

α
−kkk0`N

α
kkk0j

Nβ
kkk0`

=

√√√√Nβ
kkk0j
Nα
kkk0`
Nα
kkk0j

Nβ
kkk0`

=


Nα
kkk0j
, α = β√

Nβ
kkk0j

Nα
kkk0j

Nα
kkk0j

Nβ
kkk0j

= Nα
kkk0j
, α 6= β

 = Nα
kkk0j
,

(3.69)

where the relation (3.43) was used in the case of α 6= β, and Nα
±kkk0j 6= 0 was

assumed. Eq. (3.57) may now be written as

∑
α

U↑α

(
Nα
kkk0`′

∑
kkk0j=±kkk0`′
kkk0`′ 6=±kkk0`

n≥4

cos(θ↑−kkk0j − θ
↑
kkk0`
− θα−kkk0` + θαkkk0j)

−Nα
kkk0`

∑
kkk0j=±kkk0`
kkk0` 6=±kkk0`′

n≥4

cos(θ↑−kkk0j − θ
↑
kkk0`′
− θα−kkk0`′ + θαkkk0j)

)

+ U↑↑
(
N↑kkk0`′ −N

↑
kkk0`

)
+ U↑↓ cos(γkkk0`′ − γkkk0`)

(
N↓kkk0`′ −N

↓
kkk0`

)
= 0.

(3.70)

Now, due to relation (3.37),

γkkk0` + θ↓kkk0` − θ
↑
kkk0`

= γ−kkk0` + θ↓−kkk0` − θ
↑
−kkk0` (3.71)

⇒ θ↑kkk0` + θ↓−kkk0` = θ↑−kkk0` + θ↓kkk0` + γ−kkk0` − γkkk0` = θ↑−kkk0` + θ↓kkk0` ± π. (3.72)

Therefore, expressions on the form

cos(θ↑−kkk0` − θ
↑
kkk0`′
− θ↓−kkk0`′ + θ↓kkk0`) + cos(θ↑kkk0` − θ

↑
kkk0`′
− θ↓−kkk0`′ + θ↓−kkk0`) = 0, (3.73)

and (3.70) reduces to

U↑↑
(
N↑kkk0`′ −N

↑
kkk0`

)(
1− 2 cos(θ↑−kkk0`′ − θ

↑
kkk0`
− θ↑−kkk0` + θ↑kkk0`′ )

)
+ U↑↓ cos(γkkk0`′ − γkkk0`)

(
N↓kkk0`′ −N

↓
kkk0`

)
= 0.

(3.74)
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Conversely, Eq. (3.60) reduces to

U↓↓
(
N↓kkk0`′ −N

↓
kkk0`

)(
1− 2 cos(θ↓−kkk0`′ − θ

↓
kkk0`
− θ↓−kkk0` + θ↓kkk0`′ )

)
+ U↑↓ cos(γkkk0`′ − γkkk0`)

(
N↑kkk0`′ −N

↑
kkk0`

)
= 0.

(3.75)

Again, these are uniquely solved by

N↑kkk0` = N↑kkk0`′ , N
↓
kkk0`

= N↓kkk0`′ , (3.76)

with the exception of when

(U↑↓ cos(γkkk0`′ − γkkk0`))
2

U↑↑U↓↓ (1− A) (1−B)
= 1, A,B 6= 1, (3.77)

where

A ≡ 2 cos(θ↑−kkk0`′ − θ
↑
kkk0`
− θ↑−kkk0` + θ↑kkk0`′ ), (3.78)

B ≡ 2 cos(θ↓−kkk0`′ − θ
↓
kkk0`
− θ↓−kkk0` + θ↓kkk0`′ ). (3.79)

Additionally, because Eq. (3.63) was used, one must also have

(U↑↓)2

U↑↑U↓↓
6= 1, (3.80)

in order to ensure uniqueness of the solution. To recapitulate, due to the
requirement that µ↑ and µ↓ be real and invariant with respect to momentum
indices, the conclusions drawn so far imply that if the condensate comprises
particles of different momenta, then the fractions of particles of a specific
pseudospin state carrying the respective momenta, must be equal; that is,

N↑kkk0` = N↑kkk0`′ , N
↓
kkk0`

= N↓kkk0`′ , (3.81)

for all combinations of ` and `′ 6= ` for which there are particles present in
the condensate carrying the momenta kkk0` and kkk0`′ . For non-zero condensate
particle numbers, one may therefore neglect the momentum index altogether.
Assuming the condensate comprises particles of f distinct momenta, one may
write

N↑0/f ≡ N↑kkk0` , (3.82)

N↓0/f ≡ N↓kkk0` , (3.83)
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where Nα
0 is the total number of condensate particles of pseudospin α, and

` is any of the f values for which Nα
kkk0`
6= 0. The above conclusions do not

necessarily hold, however, in the event that either

(U↑↓)2

U↑↑U↓↓
= 1 (3.84)

in general; or
(U↑↓ cos(γkkk0`′ − γkkk0`))

2

U↑↑U↓↓
= 1 (3.85)

if kkk0`′ and kkk0` are non-parallel, and either Nα
−kkk0` = 0 or Nα

−kkk0`′
= 0; or

(U↑↓ cos(γkkk0`′ − γkkk0`))
2

U↑↑U↓↓ (1− A) (1−B)
= 1, A,B 6= 1, (3.86)

if Nα
−kkk0` , N

α
−kkk0`′

6= 0, where A and B are defined in Eq. (3.78) and (3.79),
respectively.

In summary, the expression for µ↑ is

µ↑ =− ε↑kkk0i +

[
−

[
|skkk0i |

√√√√N↓kkk0i
N↑kkk0i

]
skkk0i 6=0

+
1

Ns

∑
ji′j′

∑
α

U↑α

√√√√N↑kkk0j′N
α
kkk0j
Nα
kkk0i′

N↑kkk0i

· cos(θ↑kkk0j′ − θ
↑
kkk0i
− θαkkk0j + θαkkk0i′ )δkkk0i+kkk0j ,kkk0i′+kkk0j′

]
∃N↑

kkk0i
:N↑
kkk0i
6=0

,

(3.87)

where the square brackets [. . . ]∃N↑
kkk0i

:N↑
kkk0i
6=0 indicate that the terms enclosed

by them are present only if there exists a non-zero N↑kkk0i for some value of i.
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Conversely, the expression for µ↓ is

µ↓ =− ε↓kkk0i +

[
−

[
|skkk0i |

√√√√N↑kkk0i
N↓kkk0i

]
skkk0i 6=0

+
1

Ns

∑
ji′j′

∑
α

U↓α

√√√√N↓kkk0j′N
α
kkk0j
Nα
kkk0i′

N↓kkk0i

· cos(θ↓kkk0j′ − θ
↓
kkk0i
− θαkkk0j + θαkkk0i′ )δkkk0i+kkk0j ,kkk0i′+kkk0j′

]
∃N↓

kkk0i
:N↓
kkk0i
6=0

,

(3.88)

where the square brackets [. . . ]∃N↓
kkk0i

:N↓
kkk0i
6=0 indicate that the terms enclosed

by them are present only if there exists a non-zero N↓kkk0i for some value of
i. These expressions were derived by demanding that H(1)—which comprises
all terms linear in condensate fluctuations, and is given by Eq. (3.28)—is
zero, a requirement that follows from the assumption that the free energy is
minimal with respect to the variational parameters introduced by applying
mean field theory to condensate particle operators. Furthermore, to ensure
that the µα are real, the conditions (3.51) and (3.59) must be satisfied. Fi-
nally, to ensure that the expressions (3.87) and (3.88) for µα do not depend
on the momentum index i, the conditions (3.37) and (3.43) must be satis-
fied if there is a non-zero SOC present, and the conditions (3.57) and (3.60)
must be satisfied if there are interactions present. The conditions regarding
interactions uniquely reduce to (3.81), save the cases for which either Eq.
(3.84), (3.85) or (3.86) hold; that is, the fractions of condensed particles of a
particular pseudospin state carrying any of the f momenta presumed carried
by particles in the condensate, are all equal. All of these constraints lead to
a significant reduction in the number of degrees of freedom with respect to
the variational parameters involved. If Eq. (3.81) holds, the expressions for
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the chemical potentials reduce to

µ↑ =− ε↑kkk0i +

[
−

[
|skkk0i |

√
N↓0

N↑0

]
skkk0i 6=0

+
1

Nsf

(∑
ji′j′

∑
α

)′′′
U↑αNα

0

· cos(θ↑kkk0j′ − θ
↑
kkk0i
− θαkkk0j + θαkkk0i′ )δkkk0i+kkk0j ,kkk0i′+kkk0j′

]
∃N↑

kkk0i
:N↑
kkk0i
6=0

,

(3.89)

µ↓ =− ε↓kkk0i +

[
−

[
|skkk0i|

√
N↑0

N↓0

]
skkk0i 6=0

+
1

Nsf

(∑
ji′j′

∑
α

)′′′
U↓αNα

0

· cos(θ↓kkk0j′ − θ
↓
kkk0i
− θαkkk0j + θαkkk0i′ )δkkk0i+kkk0j ,kkk0i′+kkk0j′

]
∃N↓

kkk0i
:N↓
kkk0i
6=0

.

(3.90)

Above, in the respective expressions for µβ, the sum
(∑

ji′j′
∑

α

)′′′
goes over

the subset of values of j, i′, j′, α for which Nα
kkk0j
6= 0, Nα

kkk0i′
6= 0 and Nβ

kkk0j′
6= 0.

The primed parentheses (. . . )′′′ will be re-used in related sums in later ex-
pressions, generally signalizing that the sums which they enclose, only cover
values of the summand that are non-zero before the application of relation
(3.83); precisely what this entails will be specified under the respective ex-
pressions.

The complete expression for H after applying mean field theory is

H ≈ H0 +H1 +H2, (3.91)

where

H0 ≈
∑
i

∑
αβ

ηαβkkk0i(a
α
kkk0i

)∗aβkkk0i

+
1

2Ns

∑
iji′j′

∑
αβ

Uαβ(aαkkk0i)
∗(aβkkk0j)

∗aβkkk0i′a
α
kkk0j′

δkkk0i+kkk0j ,kkk0i′+kkk0j′ ,
(3.92)
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H1 ≈
1

Ns

∑′

kkk

∑
iji′

∑
αβ

Uαβ
(

(aαkkk0i)
∗(aβkkk0j)

∗aβkkk0i′A
α
kkk

+(aβkkk0i′ )
∗aβkkk0ja

α
kkk0i
Aα†kkk

)
δkkk+kkk0i′ ,kkk0j+kkk0i

,

(3.93)

H2 ≈
∑
kkk

∑
αβ

ηαβkkk Aα†kkk A
β
kkk

+
1

2Ns

∑
kkkkkk′

∑
ij

∑
αβ

Uαβ
((

(aαkkk0i)
∗(aβkkk0j)

∗AβkkkA
α
kkk′

+ aαkkk0ia
β
kkk0j
Aα†kkk′ A

β†
kkk

)
δkkk+kkk′,kkk0i+kkk0j

+
(
(aαkkk0i)

∗aβkkk0jA
β†
kkk A

α
kkk′

+ (aαkkk0i)
∗aαkkk0jA

β†
kkk A

β
kkk′

+ aαkkk0i(a
β
kkk0j

)∗Aα†kkk′ A
β
kkk

+ aαkkk0i(a
α
kkk0j

)∗Aβ†kkk′A
β
kkk

)
δkkk0i+kkk,kkk′+kkk0j

)
=
∑
kkk

∑
αβ

ηαβkkk Aα†kkk A
β
kkk

+
1

2Ns

∑
kkkkkk′

∑
ij

∑
αβ

Uαβ

((
(aαkkk0i)

∗(aβkkk0j)
∗AβkkkA

α
kkk′

+ H.c.
)
δkkk+kkk′,kkk0i+kkk0j

+
((

(aαkkk0i)
∗aβkkk0jA

β†
kkk A

α
kkk′

+ (aαkkk0i)
∗aαkkk0jA

β†
kkk A

β
kkk′

)
+ H.c.

)
δkkk0i+kkk,kkk′+kkk0j

)
,

(3.94)

where the reader should note that the sums over momenta in the above
expression for H2 are no longer constrained; analogously to what was done
in the process of obtaining the expression (2.82), the condensate fluctuations
were implicitly relabeled:

δAαkkk0i ≡ Aαkkk0i , (3.95)
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such that Aαkkk0i hereafter refers to the condensate fluctuation about the ex-
pectation value aαkkk0i . Assuming Eq. (3.81) holds, H0 reduces to

H0 ≈
1

f

(∑
i

∑
αβ

)′′′√
Nα

0 N
β
0 η

αβ
kkk0i
e
−i(θβ

kkk0i
−θαkkk0i )

+
1

2Nsf 2

(∑
iji′j′

∑
αβ

)′′′
UαβNα

0 N
β
0

· cos(θαkkk0j′ − θ
α
kkk0i
− θβkkk0j + θβkkk0i′ )δkkk0i+kkk0j ,kkk0i′+kkk0j′

=− 1

Nsf 2

(∑
i

∑
α

)′′′
Nα

0

(∑
ji′j′

∑
β

)′′′
UαβNβ

0

· cos(θαkkk0j′ − θ
α
kkk0i
− θβkkk0j + θβkkk0i′ )δkkk0i+kkk0j ,kkk0i′+kkk0j′

+
1

2Nsf 2

(∑
iji′j′

∑
αβ

)′′′
UαβNα

0 N
β
0

· cos(θαkkk0j′ − θ
α
kkk0i
− θβkkk0j + θβkkk0i′ )δkkk0i+kkk0j ,kkk0i′+kkk0j′

=− 1

2Nsf 2

(∑
iji′j′

∑
αβ

)′′′
UαβNα

0 N
β
0

· cos(θαkkk0j′ − θ
α
kkk0i
− θβkkk0j + θβkkk0i′ )δkkk0i+kkk0j ,kkk0i′+kkk0j′ ,

(3.96)

where the second equality follows from inserting the expressions (3.89) and
(3.90) for the chemical potentials, as well as applying (3.37) to the off-

diagonal single-particle terms; the sum
(∑

i

∑
αβ

)′′′
goes over the subset

of values of i, α, β for which Nα
kkk0i
6= 0 and Nβ

kkk0i
6= 0; and, conversely, the

sum
(∑

iji′j′
∑

αβ

)′′′
goes over the subset of values of i, j, i′, j′, α, β for which

Nα
kkk0i
6= 0, Nβ

kkk0j
6= 0, Nβ

kkk0i′
6= 0 and Nα

kkk0j′
6= 0. Note that further simplifica-

tions may me made to Eq. (3.96) once a specific configuration of non-zero
condensate particle numbers is assumed; for instance, if the configuration
includes non-zero condensate particle numbers associated with opposite mo-
menta, then Eq. (3.73) may be used to cancel certain terms. Note also that
in the final expression in Eq. (3.96), the condensate numbers Nα

0 and Nβ
0 are

no longer variational parameters; the free energy F has implicitly already
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been minimized with respect to these in the derivation of the expressions
(3.89) and (3.90) for the chemical potentials, which may be inverted to ac-
quire explicit expressions for the condensate numbers, akin to what was done
in order to arrive at the expression (2.85). Furthermore,

H1 ≈
1

Nsf
3
2

∑′

kkk

(∑
iji′

∑
αβ

)′′′
UαβNβ

0

√
Nα

0

·
(
e
−i(θβ

kkk0i′
−θαkkk0i−θ

β
kkk0j

)
Aαkkk + H.c.

)
δkkk+kkk0i′ ,kkk0j+kkk0i

,

(3.97)

where, analogously to before, the sum
(∑

iji′
∑

αβ

)′′′
goes over the subset of

values of i, j, i′, α, β for which Nα
kkk0i
6= 0, Nβ

kkk0j
6= 0 and Nβ

kkk0i′
6= 0; and

H2 ≈
∑
kkk

∑
αβ

ηαβkkk Aα†kkk A
β
kkk

+
1

2Nsf

∑
kkkkkk′

(∑
ij

∑
αβ

)′′′
Uαβ

√
Nα

0 N
β
0

·
((
e
−i(−θαkkk0i−θ

β
kkk0j

)
AβkkkA

α
kkk′ + H.c.

)
δkkk+kkk′,kkk0i+kkk0j

+
(
e
−i(−θαkkk0i+θ

β
kkk0j

)
Aβ†kkk A

α
kkk′ + H.c.

)
δkkk0i+kkk,kkk′+kkk0j

)
+

1

2Nsf

∑
kkkkkk′

(∑
ij

∑
αβ

)′′′
UαβNα

0

·
(
e
−i(−θαkkk0i+θ

α
kkk0j

)
Aβ†kkk A

β
kkk′ + H.c.

)
δkkk0i+kkk,kkk′+kkk0j ,

(3.98)

where the first instance of the sum
(∑

ij

∑
αβ

)′′′
goes over the subset of values

of i, j, α, β for which Nα
kkk0i
6= 0 and Nβ

kkk0j
6= 0, and the second instance goes

over the subset of values of i, j, α, β for which Nα
kkk0i
6= 0 and Nα

kkk0j
6= 0. Note

that these expressions reduce to those presented by van Oosten et al. in Ref.
[46] upon equating and neglecting all pseudospin and momentum indices, as
well as neglecting all phases.
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Chapter 4

Pure Condensate on a Square
Lattice

In this section, we explore the analytic behavior of a pure condensate on a
square lattice. The lattice is oriented as illustrated in Fig. 2.3. The analytic
results, in particular the phase diagram derived by minimization of the free
energy F , will be compared to the numerical results by P. N. Galteland et
al. [45] for the same system.

For a pure condensate, any contribution to the Hamiltonian H propor-
tional to an excitation operator, is neglected. Assuming the relation (3.63)
holds, the expression for H is

H = H0

(3.96)
≈ − 1

2Nsf 2

(∑
iji′j′

∑
αβ

)′′′
UαβNα

0 N
β
0

· cos(θαkkk0j′ − θ
α
kkk0i
− θβkkk0j + θβkkk0i′ )δkkk0i+kkk0j ,kkk0i′+kkk0j′ ,

(4.1)

where Ns is the number of lattice points; f is the number of distinct mo-
menta carried by the bosons comprising the condensate; Uαβ are pseudospin-
dependent interaction couplings; Nα

0 is the number of condensed particles
in pseudospin state α; θαkkk0i are the mean field phases defined in Eq. (3.27);
kkk0i are the condensate momenta; the delta function expresses conservation

of momentum; and the sum
(∑

iji′j′
∑

αβ

)′′′
goes over the subset of values of

i, j, i′, j′, α, β for which Nα
kkk0i
6= 0, Nβ

kkk0j
6= 0, Nβ

kkk0i′
6= 0 and Nα

kkk0j′
6= 0, where

the Nα
kkk0i

are the mean field condensate numbers defined in Eq. (3.27). Note
that the Nα

0 are not variational parameters; F has implicitly already been
minimized with respect to these in the derivation of the expressions (3.89)
and (3.90) for the chemical potentials, which may be inverted to acquire ex-
plicit expressions for the condensate numbers. The variational parameters
that must be determined by minimization of F , are the phases θαkkk0i , and the
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magnitude of the condensate momenta
√

2k0 ≡ |kkk0i| (4.2)

in the event that they are non-zero. Because momentum is quantized, k0 is
a discrete variable, but will be approximated as a continuous variable for the
remainder of this chapter, so that one may differentiate F with respect to k0.
Furthermore, the free energy F is

F
(2.105)

= H0; (4.3)

and the chemical potentials are given by Eq. (3.89) and (3.90):

µ↑ =− ε↑kkk0i +

[
−

[
|skkk0i |

√
N↓0

N↑0

]
skkk0i 6=0

+
1

Nsf

(∑
ji′j′

∑
α

)′′′
U↑αNα

0

· cos(θ↑kkk0j′ − θ
↑
kkk0i
− θαkkk0j + θαkkk0i′ )δkkk0i+kkk0j ,kkk0i′+kkk0j′

]
∃N↑

kkk0i
:N↑
kkk0i
6=0

,

(4.4)

µ↓ =− ε↓kkk0i +

[
−

[
|skkk0i |

√
N↑0

N↓0

]
skkk0i 6=0

+
1

Nsf

(∑
ji′j′

∑
α

)′′′
U↓αNα

0

· cos(θ↓kkk0j′ − θ
↓
kkk0i
− θαkkk0j + θαkkk0i′ )δkkk0i+kkk0j ,kkk0i′+kkk0j′

]
∃N↓

kkk0i
:N↓
kkk0i
6=0

,

(4.5)

where, in the respective expressions for µβ, the sum
(∑

ji′j′
∑

α

)′′′
goes over

the subset of values of j, i′, j′, α for which Nα
kkk0j
6= 0, Nα

kkk0i′
6= 0 and Nβ

kkk0j′
6= 0;

and the quantities εαkkk0i and |skkk0i| are given by

|skkk0i |
(2.56),(4.2)

= 2
√

2λR|sin(k0a)|, (4.6)

εkkk0i
(2.57),(4.2)

= 4t cos(k0a). (4.7)
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In order to write out the sums
(∑

iji′j′
∑

αβ

)′′′
and

(∑
ji′j′
∑

α

)′′′
in the

expressions for the Hamiltonian (4.1) and the chemical potentials (4.4) and
(4.5), a configuration of condensate numbers Nα

kkk0i
must be assumed. In as-

suming the form (4.1) of H, equal fractions of condensed bosons of a specific
pseudospin carrying any of the available condensate momenta, was implicitly
assumed. The condition (3.32) further limits the possible configurations in
cases for which the SOC is non-zero. All remaining configurations that are
not equivalent upon a rotation or an interchange of pseudospin states, are
illustrated in Fig. 4.1.
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Figure 4.1: All condensate configurations remaining after
taking into consideration the constraints (3.32) and (3.63).
All possible condensate momenta for a set of input parame-
ters are colored in red. Condensate momenta assumed carried
by the particles in the condensate are encircled and labeled
kkk0i. The arrows indicate the pseudospin states present in
the condensate. The configurations (a) and (b) are the po-
larized (PZ) and non-polarized (NZ) zero-momentum phase,
respectively; the names are given due to their respective pseu-
dospin imbalances, as well as the associated condensate mo-
mentum. The configurations (c), (d) and (g) are the plane
(PW), stripe (SW) and lattice (LW) wave phase, respectively;
the names are given due to the wave patterns they produce in
real space. The configurations (e) and (f) have been given the
arbitrary names C1 and C2, and will be show to be impossible
in the calculations proceeding this figure. The configurations
(a)–(d) were analyzed numerically by P. N. Galteland et al.
in Ref. [45]; the LW phase was not taken into account.
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The configurations C1 and C2 in Fig. 4.1 may be dismissed as they do not
satisfy the condition (3.51) that renders µ↑ real. These are four-fold cases,
as there are four available condensate momenta. In both cases, the second
term in the sum over j in Eq. (3.51) is zero, and the condition reduces to∑

j
kkk0j 6=±kkk0i
n≥4

N↓kkk0j sin(γkkk0j − γkkk0i) = 0.
(4.8)

In both cases, choose kkk0i = kkk01. Then Eq. (4.8) reduces to

N↓kkk02 = 0, (4.9)

which contradicts the initial assumption N↓kkk02 6= 0. Thus, neither of these

configurations produces a real-valued chemical potential µ↑, and may be dis-
missed.

For the PZ, NZ, PW and SW phase, the condition (3.51) is trivially
satisfied, as the left-hand side is zero. For the LW phase, using Eq. (3.63)
and choosing kkk0i = kkk01, condition (3.51) yields

U↑↓N↓0 (sin(γkkk02 − γkkk01) + sin(γkkk04 − γkkk01))

+ U↑↓N↓0

(
sin(θ↑kkk04 − θ

↑
kkk01
− θ↓kkk03 + θ↓kkk02)

+ sin(θ↑kkk02 − θ
↑
kkk01
− θ↓kkk03 + θ↓kkk04)

)
+ U↑↑N↑0

(
sin(θ↑kkk04 − θ

↑
kkk01
− θ↑kkk03 + θ↑kkk02)

+ sin(θ↑kkk02 − θ
↑
kkk01
− θ↑kkk03 + θ↑kkk04)

)
(3.50),(3.72)

= 2U↑↑N↑0 sin(θ↑kkk04 − θ
↑
kkk01
− θ↑kkk03 + θ↑kkk02) = 0.

(4.10)

⇒ θ↑kkk04 − θ
↑
kkk01
− θ↑kkk03 + θ↑kkk02 = m↑π, m↑ ∈ {0, 1}. (4.11)

Conversely, for the LW phase, condition (3.59) leads to

θ↓kkk04 − θ
↓
kkk01
− θ↓kkk03 + θ↓kkk02 = m↓π, m↓ ∈ {0, 1}. (4.12)

In fact, using

γkkk0` + θ↓kkk0` − θ
↑
kkk0`

= γkkk0`′ + θ↓kkk0`′ − θ
↑
kkk0`′

(4.13)

⇒ θ↓kkk0`′ − θ
↓
kkk0`

= γkkk0` − γkkk0`′ + θ↑kkk0`′ − θ
↑
kkk0`

(4.14)
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one finds that

θ↑kkk04 − θ
↑
kkk01
− θ↑kkk03 + θ↑kkk02 = θ↓kkk04 − θ

↓
kkk01
− θ↓kkk03 + θ↓kkk02 + π (4.15)

⇒ m↑ = m↓ + 1 ≡ m mod 2. (4.16)

Note that the results (4.11) and (4.12) render A,B 6= 1, where A and B are
defined in Eq. (3.78) and (3.79), respectively, in turn rendering the quantity
(3.77) well-defined provided U↑↑, U↓↓ 6= 0.

The sums
(∑

iji′j′
∑

αβ

)′′′
and

(∑
ji′j′
∑

α

)′′′
in the expressions for the

Hamiltonian (4.1) and the chemical potentials (4.4) and (4.5) may now be
written out for each of the remaining phases. The sets of values that the
momentum and pseudospin indices may take for the respective phases that
are not equivalent upon a rotation or an interchange of pseudospin states,
are summarized in Tab. 4.1.

Table 4.1: Sets of values for momentum and pseudospin
indices

Phase Momentum indices Pseudospin indices

PZ {0} {↑}

NZ {0} {↑, ↓}

PW {1} {↑, ↓}

SW {1, 3} {↑, ↓}

LW {1, 2, 3, 4} {↑, ↓}

Table of the sets of values for momentum and pseudospin

indices in the sums
(∑

iji′j′
∑

αβ

)′′′
and

(∑
ji′j′
∑

α

)′′′
for the

respective phases that are not equivalent upon a rotation or
an interchange of pseudospin states. The sums in question
appear in the expressions for the Hamiltonian (4.1) and the
chemical potentials (4.4) and (4.5).

When both the SOC term and the interaction term are present in the ex-
pressions (4.4) and (4.5) for the chemical potentials, they may be rewritten as

two coupled equations second-degree in
√
N↑0 and

√
N↓0 , respectively, the so-
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lutions to which are difficult to handle analytically in generality.1 Therefore,
for the following analysis, the expression (4.1), (4.4) and (4.5) are simplified
by means of the following assumptions:

a) The pseudospin states are treated equally with respect to all input
parameters, i.e.

µ↑ = µ↓ ≡ µ, 2 ε↑kkk0i = ε↓kkk0i ≡ εkkk0i , U
↑↑ = U↓↓ ≡ U↑↓

α
≡ U ; (4.17)

and

b) if N↑0 , N
↓
0 6= 0, we postulate that

N↑0 = N↓0 ≡ N0/2. (4.18)

If N↑0 6= N↓0 = 0, then
N↑0 ≡ N0, (4.19)

and vice versa.

Consequently, if N↑0 , N
↓
0 6= 0, the expressions (4.4) and (4.5) are equal, and

produce the following expression for N0:

N0

Ns

= 2f
εkkk0` + |skkk0` |+ µ(∑

ji′j′
∑

α

)′′′
U↑α cos(θ↑kkk0j′ − θ

↑
kkk0`
− θαkkk0j + θαkkk0i′ )δkkk0`+kkk0j ,kkk0i′+kkk0j′

(4.20)

where the reader should note that kkk0i has been replaced by kkk0` to avoid
ambiguity in the ensuing calculations; and either Eq. (4.4) or (4.5) produces

N0

Ns

=
ε000 + µ

U

(4.7)
=

4t+ µ

U
(4.21)

if N↑0 6= N↓0 = 0 or N↓0 6= N↑0 = 0, in which case |skkk0` | = 0 by condition
(3.32), which in turn implies kkk0` = kkk00 = 000 and f = 1. As expected, the

1These coupled equations are nevertheless solvable; using Maple, the author is able
to invert the expressions (4.4) and (4.5) using the solve function in order to obtain

expressions for N↑
0 and N↓

0 .
2This is impossible if N↑

0 6= N↓
0 = 0 or N↓

0 6= N↑
0 = 0, since the expressions (4.4)

and (4.5) for µ↑ and µ↓ depend of the existence of condensed particles in the respective

pseudospin states. However, if for instance N↓
0 = 0, then all dependencies on µ↓ in the

original Hamiltonian (3.92) cancel, and so µ↓ may be neglected, in which case µ↑ ≡ µ
implicitly.
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solution (4.21) is identical to the single-component solution (2.85). Note
that in order to consistently obtain the expression (4.20) from Eq. (4.4) and
(4.5), one must have that(∑

ji′j′

)′′′
cos(θ↑kkk0j′ − θ

↑
kkk0`
− θ↑kkk0j + θ↑kkk0i′ )δkkk0`+kkk0j ,kkk0i′+kkk0j′

=

(∑
ji′j′

)′′′
cos(θ↓kkk0j′ − θ

↓
kkk0`
− θ↓kkk0j + θ↓kkk0i′ )δkkk0`+kkk0j ,kkk0i′+kkk0j′ ,

(4.22)

by equating Eq. (4.4) and (4.5) under the assumption (4.17). If condition
(4.22) does not hold, then there is a conflict between the assumptions that the
chemical potentials are equal, and that there are also equally many condensed
particles of either pseudospin state. The Hamiltonian (4.1) may now be
rewritten as

H = H0

≈ −Ns

2

 εkkk0` + |skkk0` |+ µ(∑
ji′j′
∑

α

)′′′
U↑α cos(θ↑kkk0j′ − θ

↑
kkk0`
− θαkkk0j + θαkkk0i′ )δkkk0`+kkk0j ,kkk0i′+kkk0j′


2

·

(∑
iji′j′

∑
αβ

)′′′
Uαβ cos(θαkkk0j′ − θ

α
kkk0i
− θβkkk0j + θβkkk0i′ )δkkk0i+kkk0j ,kkk0i′+kkk0j′ ,

(4.23)

if N↑0 , N
↓
0 6= 0, by Eq. (4.20); and

H = H0 ≈−
Ns

2U
(4t+ µ)2 (4.24)

if N↑0 6= N↓0 = 0 or N↓0 6= N↑0 = 0, by Eq. (4.21).
In the following sections, the analysis is continued for each respective

phase. The quantitative definition of each phase listed in Tab. 4.1 will
be used in conjunction with the list (3.8)–(3.11) of momentum-conserving

condensate configurations in order to write out the sums
(∑

iji′j′
∑

αβ

)′′′
and

(∑
ji′j′
∑

α

)′′′
.
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4.1 The PZ Phase

For the PZ phase, for which N↑0 6= N↓0 = 0 and the condensate momentum
magnitude k0 = 0—as illustrated in Fig. 4.1a—all calculations have already
been performed. The condensate density is

N0

Ns

(4.21)
=

4t+ µ

U
, (4.25)

and the free energy FPZ is

FPZ
(4.3),(4.24)

= −Ns

2U
(4t+ µ)2 . (4.26)

FPZ is independent of the phase θ↑000, which is therefore arbitrary.

4.2 The NZ Phase

For the NZ phase, for which N↑0 = N↓0 ≡ N0

2
6= 0 and the condensate

momentum magnitude k0 = 0—as illustrated in Fig. 4.1b—the condensate
density is

N0

Ns

(4.20)
=

2

U

ε000 + µ

1 + α
=

2

U

4t+ µ

1 + α
(4.27)

and the free energy FNZ is

FNZ
(4.3),(4.23)

= − Ns

U(1 + α)
(4t+ µ)2 . (4.28)

The condition (4.22) is trivially satisfied since

θα000 − θα000 − θα000 + θα000 = 0 ∀α. (4.29)

FPZ is independent of the phases θ↑000 and θ↓000, which are therefore arbitrary.

4.3 The PW Phase

For the PW phase, which is illustrated in Fig. 4.1c and defined quantita-
tively in Tab. 4.1, the condensate density is

N0

Ns

(4.20)
=

2

U

εkkk01 + |skkk01|+ µ

1 + α
, (4.30)
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and the free energy FPW is

FPW
(4.3),(4.23)

= − Ns

U(1 + α)
(εkkk01 + |skkk01|+ µ)2

(4.6),(4.7)
= − Ns

U(1 + α)

(
4t cos(k0a) + 2

√
2λR|sin(k0a)|+ µ

)2

,

(4.31)

Again, the condition (4.22) is trivially satisfied since

θαkkk01 − θ
α
kkk01
− θαkkk01 + θαkkk01 = 0 ∀α, (4.32)

and FPW is independent of the phases θ↑kkk01 and θ↓kkk01 , which are therefore con-
strained only by Eq. (3.37). In order to determine the remaining variational
parameter k0, FPW must be minimized with respect to this. The derivative
of FPW with respect to k0 is

∂FPW

∂k0

=− 2Ns

U(1 + α)

(
4t cos(k0a) + 2

√
2λR|sin(k0a)|+ µ

)
·
(
−4ta sin(k0a) + 2

√
2λRa cos(k0a)sgn(λR sin(k0a))

)
= 0.

(4.33)

The quantity 4t cos(k0a) + 2
√

2λR|sin(k0a)| + µ cannot be zero, since this
would render the condensate density (4.30) zero, contrary to initial assump-
tions. Therefore,

−4ta sin(k0a) + 2
√

2λ2
Ra cos(k0a)sgn(sin(k0a)) = 0, (4.34)

which yields

k0 =
1

a
arctan

(√
2λR
2t

)
. (4.35)

Now, using

cos(arctan(x)) =
1√

x2 + 1
, sin(arctan(x)) =

x√
x2 + 1

, (4.36)

one finds that

εkkk01 + |skkk01| =4t cos(k0a) + 2
√

2λR|sin(k0a)|

=
4t+

2λ2R
t√

λ2R
2t2

+ 1
= 4t

√
λ2
R

2t2
+ 1,

(4.37)
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from which it follows that the condensate density (4.30) is

N0

Ns

=
2

U

4t

√
λ2R
2t2

+ 1 + µ

1 + α
, (4.38)

and that the free energy (4.31) is

FPW = − Ns

U(1 + α)

(
4t

√
λ2
R

2t2
+ 1 + µ

)2

. (4.39)

The second derivative of FPW with respect to k0, evaluated at the value
(4.35), is

∂2FPW

∂k2
0

=
4Nsa

2

U(1 + α)
4t2
√
λ2
R

2t2
+ 1

(
2

(
λ2
R

2t2
+ 1

)
+ µ

)
> 0, (4.40)

which confirms that the value of FPW at this point is a minimum. The other
local extrema of FPW within the first Brillouin zone occur at k0 = 0 and
k0 = ±π/a, at which points sin(k0a) changes sign. When λR > 0, the value
of FPW evaluated at either of these points is greater than the one presented in
Eq. (4.39); thus, we conclude that the expression (4.39) is indeed the global
minimum value of FPW with respect to k0.

4.4 The SW Phase

For the SW phase, which is illustrated in Fig. 4.1d and defined quanti-
tatively in Tab. 4.1, upon choosing kkk0` = kkk01, the left-hand side of condition
(4.22) becomes(∑

ji′j′

)′′′
cos(θ↑kkk0j′ − θ

↑
kkk0`
− θ↑kkk0j + θ↑kkk0i′ )δkkk0`+kkk0j ,kkk0i′+kkk0j′

= cos(θ↑kkk01 − θ
↑
kkk01
− θ↑kkk01 + θ↑kkk01) + cos(θ↑kkk03 − θ

↑
kkk01
− θ↑kkk03 + θ↑kkk01)

+ cos(θ↑kkk01 − θ
↑
kkk01
− θ↑kkk03 + θ↑kkk03) = 3,

(4.41)
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and the right-hand side becomes(∑
ji′j′

)′′′
cos(θ↓kkk0j′ − θ

↓
kkk0`
− θ↓kkk0j + θ↓kkk0i′ )δkkk0`+kkk0j ,kkk0i′+kkk0j′

= cos(θ↓kkk01 − θ
↓
kkk01
− θ↓kkk01 + θ↓kkk01) + cos(θ↓kkk03 − θ

↓
kkk01
− θ↓kkk03 + θ↓kkk01)

+ cos(θ↓kkk01 − θ
↓
kkk01
− θ↓kkk03 + θ↓kkk03) = 3,

(4.42)

and so condition (4.22) is satisfied. Note that choosing kkk0` = kkk03 would
have made no difference; the equations would have been equivalent upon a
rotation of k-space. Furthermore, f = 2, and the sum in the denominator of
the expression (4.20) for the condensate density is(∑

ji′j′

∑
α

)′′′
U↑α cos(θ↑kkk0j′ − θ

↑
kkk0`
− θαkkk0j + θαkkk0i′ )δkkk0`+kkk0j ,kkk0i′+kkk0j′

= U

(
cos(θ↑kkk01 − θ

↑
kkk01
− θ↑kkk01 + θ↑kkk01) + cos(θ↑kkk03 − θ

↑
kkk01
− θ↑kkk03 + θ↑kkk01)

+ cos(θ↑kkk01 − θ
↑
kkk01
− θ↑kkk03 + θ↑kkk03) + α

(
cos(θ↑kkk01 − θ

↑
kkk01
− θ↓kkk01 + θ↓kkk01)

+ cos(θ↑kkk03 − θ
↑
kkk01
− θ↓kkk03 + θ↓kkk01) + cos(θ↑kkk01 − θ

↑
kkk01
− θ↓kkk03 + θ↓kkk03)

))
(4.14)
= U(3 + α).

(4.43)

The condensate density is therefore

N0

Ns

(4.20)
=

4

U

εkkk01 + |skkk01|+ µ

3 + α
. (4.44)
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The sum in the numerator of the expression (4.23) for the Hamiltonian is(∑
iji′j′

∑
αβ

)′′′
Uαβ cos(θαkkk0j′ − θ

α
kkk0i
− θβkkk0j + θβkkk0i′ )δkkk0i+kkk0j ,kkk0i′+kkk0j′

= U

(
cos(θ↑kkk01 − θ

↑
kkk01
− θ↑kkk01 + θ↑kkk01) + cos(θ↑kkk03 − θ

↑
kkk01
− θ↑kkk03 + θ↑kkk01)

+ cos(θ↑kkk01 − θ
↑
kkk01
− θ↑kkk03 + θ↑kkk03) + cos(θ↓kkk01 − θ

↓
kkk01
− θ↓kkk01 + θ↓kkk01)

+ cos(θ↓kkk03 − θ
↓
kkk01
− θ↓kkk03 + θ↓kkk01) + cos(θ↓kkk01 − θ

↓
kkk01
− θ↓kkk03 + θ↓kkk03)

+ α
(

cos(θ↑kkk01 − θ
↑
kkk01
− θ↓kkk01 + θ↓kkk01) + cos(θ↑kkk03 − θ

↑
kkk01
− θ↓kkk03 + θ↓kkk01)

+ cos(θ↑kkk01 − θ
↑
kkk01
− θ↓kkk03 + θ↓kkk03) + cos(θ↓kkk01 − θ

↓
kkk01
− θ↑kkk01 + θ↑kkk01)

+ cos(θ↓kkk03 − θ
↓
kkk01
− θ↑kkk03 + θ↑kkk01) + cos(θ↓kkk01 − θ

↓
kkk01
− θ↑kkk03 + θ↑kkk03)

))
+ (kkk01 ←→ kkk03)

= 4U(3 + α),

(4.45)

where (kkk01 ←→ kkk03) indicates that all preceding terms are effectively re-
peated, upon an interchange of kkk01 and kkk03. The free energy FSW is therefore

FSW

(4.3),(4.23)
= −2Ns (εkkk01 + |skkk01|+ µ)2

U(3 + α)

(4.6),(4.7)
=

2Ns

(
4t cos(k0a) + 2

√
2λR|sin(k0a)|+ µ

)2

U(3 + α)
.

(4.46)

Again, FSW is independent of the phases θ↑kkk01 , θ
↓
kkk01

, θ↑kkk03 , θ
↓
kkk03

, which are there-
fore constrained only by Eq. (3.37). The dependency of FSW on k0 is es-
sentially the same as the dependency of FPW on k0, cf. Eq. (4.31). FSW is
therefore minimal for

k0
(4.35)
=

1

a
arctan

(√
2λR
2t

)
. (4.47)

The final expression for FSW is thus

FSW = −
2Ns

(
4t

√
λ2R
2t2

+ 1 + µ

)2

U(3 + α)
.

(4.48)
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4.5 The LW Phase

For the LW phase, which is illustrated in Fig. 4.1g and defined quanti-
tatively in Tab. 4.1, the parentheses (. . . )′′′ may be omitted from the sums
in which they appear, because all four points in k-space are occupied by the
condensate. Upon choosing kkk0` = kkk01, the left-hand side of condition (4.22)
becomes∑

ji′j′

cos(θ↑kkk0j′ − θ
↑
kkk0`
− θ↑kkk0j + θ↑kkk0i′ )δkkk0`+kkk0j ,kkk0i′+kkk0j′

= cos(θ↑kkk01 − θ
↑
kkk01
− θ↑kkk01 + θ↑kkk01) + cos(θ↑kkk02 − θ

↑
kkk01
− θ↑kkk02 + θ↑kkk01)

+ cos(θ↑kkk03 − θ
↑
kkk01
− θ↑kkk03 + θ↑kkk01) + cos(θ↑kkk04 − θ

↑
kkk01
− θ↑kkk04 + θ↑kkk01)

+ cos(θ↑kkk01 − θ
↑
kkk01
− θ↑kkk02 + θ↑kkk02) + cos(θ↑kkk01 − θ

↑
kkk01
− θ↑kkk03 + θ↑kkk03)

+ cos(θ↑kkk01 − θ
↑
kkk01
− θ↑kkk04 + θ↑kkk04) + cos(θ↑kkk02 − θ

↑
kkk01
− θ↑kkk03 + θ↑kkk04)

+ cos(θ↑kkk04 − θ
↑
kkk01
− θ↑kkk03 + θ↑kkk02)

(4.11),(4.12),(4.16)
= 7± 2,

(4.49)

and the right-hand side becomes∑
ji′j′

cos(θ↓kkk0j′ − θ
↓
kkk0`
− θ↓kkk0j + θ↓kkk0i′ )δkkk0`+kkk0j ,kkk0i′+kkk0j′

= cos(θ↓kkk01 − θ
↓
kkk01
− θ↓kkk01 + θ↓kkk01) + cos(θ↓kkk02 − θ

↓
kkk01
− θ↓kkk02 + θ↓kkk01)

+ cos(θ↓kkk03 − θ
↓
kkk01
− θ↓kkk03 + θ↓kkk01) + cos(θ↓kkk04 − θ

↓
kkk01
− θ↓kkk04 + θ↓kkk01)

+ cos(θ↓kkk01 − θ
↓
kkk01
− θ↓kkk02 + θ↓kkk02) + cos(θ↓kkk01 − θ

↓
kkk01
− θ↓kkk03 + θ↓kkk03)

+ cos(θ↓kkk01 − θ
↓
kkk01
− θ↓kkk04 + θ↓kkk04) + cos(θ↓kkk02 − θ

↓
kkk01
− θ↓kkk03 + θ↓kkk04)

+ cos(θ↓kkk04 − θ
↓
kkk01
− θ↓kkk03 + θ↓kkk02)

(4.11),(4.12),(4.16)
= 7∓ 2,

(4.50)

and so condition (4.22) is not satisfied, meaning there is a conflict between
the assumptions that the chemical potentials are equal, and that there is
also equally many condensed particles of both pseudospin states. This phase
will therefore be discarded for the remainder of this analysis, although the
reader should note that this conflict of assumptions does not invalidate this
phase; instead, a more thorough analysis of all solutions for N↑0 and N↓0 upon
inverting the expressions (4.4) and (4.5) is required in order to determine
whether or not this phase exists.
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4.6 Phase Diagram

All that remains to be done in order to determine the phases of the
condensate—specifically as a function of the interspecies interaction strength
α and the SOC strength λR—is to minimize the free energy globally with
respect to these input parameters. This is done by determining which phase
is associated with the lowest free energy at any given point (α, λR), i.e. by
comparing FPZ, FNZ, FPW and FSW. This procedure produces the following
phase diagram:

λR

α1
NZ

PZ

0

PW

SW

Figure 4.2: Sketch of the phases of the pure condensate as
a function of the interspecies interaction strength α and the
SOC strength λR; see Fig. 4.1 for definitions of the phases.
The NZ phase region is exaggerated in this sketch, as it occurs
only when λR = 0 when k0 is approximated as continuous.

This analytically derived phase diagram coincides with the numerical re-
sults presented by P. N. Galteland et al. in Ref. [45, Fig. 2]. The boundary
between the PW and the SW phase is given by α = 1,3 and the boundary
between the PZ and the SW phase is given by the expression

λR =

√
2
(
4t(α− 1) + µ(α + 7)

)
(4t+ µ)− 8

√
µ2(4t+ µ)2(α + 3)

8
. (4.51)

3Observe that this boundary coincides with the condition (3.84) for which the as-
sumption that there are equally many condensed particles of any momenta carried by the
condensed particles, for a given pseduospin state, does no longer necessarily hold true.
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Note that if the positive sign had been chosen in the expressions (3.38) and
(3.39) for the chemical potentials, the expression (4.46) for FSW would instead
have been

FSW = −2Ns (εkkk01 − |skkk01|+ µ)2

U(3 + α)

(4.6),(4.7)
=

2Ns

(
4t cos(k0a)− 2

√
2λR|sin(k0a)|+ µ

)2

U(3 + α)

(4.47)
= −

2Ns

(
4t
(

1− λ2R
2t2

)/√
λ2R
2t2

+ 1 + µ

)2

U(3 + α)
,

(4.52)

which produces a boundary between the SW and the PZ phase that is not in
agreement with the literature, e.g. Ref. [45].
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Chapter 5

Miscellaneous Discussion

5.1 Impact of Phases

As mentioned in the text preceding Eq. (3.27), the expectation value aαkkk0i
of the condensate operators Aαkkk0i is usually taken to be real and equal to the
square root of the corresponding condensate number. This choice was shown
indeed not to have any impact on the non-SOC case presented in Sec. 2.6, as
well as on the PZ and the NZ phase presented in Sec. 4.1 and 4.2. The phases
θαkkk0i defined in Eq. (3.27) did, however, have a crucial impact on the PW and
the SW phase presented in Sec. 4.3 and 4.4: Because the SOC skkk is generally
complex-valued, the relative differences in the phases—θ↑kkk01 and θ↓kkk01 for the

PW phase, and θ↑kkk01 , θ
↓
kkk01

, θ↑kkk03 and θ↓kkk03 for the SW phase—were necessary
in order to render the chemical potentials real-valued, which is the case for
any condensate configuration for which the SOC contributes to the chemical
potentials; cf. the expressions (3.33) and (3.34) for the non-interacting case.
The differences in phases are generally fixed by Eq. (3.37), (3.51) and (3.59).
In other words, neither the PW phase nor the SW phase would have existed
in the absence of the phases θαkkk0i .

5.2 Handling Linear Terms in the

Hamiltonian

After applying mean field theory to the Hamiltonian (3.20), one is left
with a number of terms that are linear in either condensate fluctuations,
producing H(1), or in excitation operators, producing H1, which are given by
Eq. (3.28) and (3.93), respectively. It was argued that H(1) would have to
cancel on the basis that the free energy F had to be minimal with respect
to the number of condensed particles, akin to what was done by D. van
Oosten et al. in Ref. [46], which was handled by deducing appropriate
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expressions for the chemical potentials. D. van Oosten et al. [46] did not
encounter any terms analogous to H1, however. It would seem natural that
this contribution to the Hamiltonian would also somehow cancel, in order
to ensure a Hamiltonian bounded from below, and the convergence of any
appropriate Gaussian integral. A few suggested methods for handling H1 are
listed below:

a) Appropriately adjusting the chemical potentials. One may argue that
due to the phenomenon of ground state depletion, linear terms in exci-
tation operators would affect the number of condensed particles anal-
ogously to condensate fluctuations, and that as such, H1 must cancel
for the same reason that H(1) must cancel, i.e. that F is assumed to be
minimal with respect to the number of condensed particles. Therefore,
one might attempt to cancel H1 by deducing an appropriate expres-
sion for the chemical potentials. However, on its own, adjusting the
chemical potentials fails to produce cancellation terms that are linear
in excitation operators.

b) Absorbing the linear terms into the bilinear terms, or “completing the
square.” Consider the following toy example:

H = AAA†MAAA+XXX†MAAA+AAA†MXXX = (AAA+XXX)†M(AAA+XXX)−XXX†MXXX. (5.1)

Here, AAA is a vector of operators,M is a matrix with scalar entries, and
XXX is a vector with scalar entries. By adding and subtracting the term
XXX†MXXX, the terms linear in AAA and AAA† were absorbed into the bilinear
term by introducing a constant shift XXX to AAA. Identifying XXX†MAAA +
AAA†MXXX as analogous to H1, and AAA†MAAA as analogous to H2—given by
Eq. (3.94)—one may attempt to handle H1 in a similar fashion.

c) A combination of the above. If a constant shift is introduced to the
operators, the single-particle terms in Eq. (3.94) produces terms that
are linear in excitation operators. This way, an appropriate adjustment
of the chemical potentials may produce terms that aid in cancelling H1.
However, a näıve application of this shift appears to produce additional
terms originating from the single-particle terms, that are linear in ex-
citation operators, but with momentum-dependent coefficients, which
therefore cannot be handled by adjusting the chemical potentials.
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Chapter 6

Summary and Outlook

This thesis comprises an analytic study of ultracold, synthetically spin–
orbit coupled, weakly interacting two-component Bose gases in Bravais lat-
tices. In particular, the method by which D. van Oosten et al. deduced
expressions for the chemical potentials in the superfluid phase in Ref. [46],
was applied and generalized to the spin–orbit coupled case, yielding the mean
field expressions (3.87) and (3.88) for the chemical potentials, which may be
further simplified provided certain conditions are met, resulting in the ex-
pressions (3.89) and (3.90). The general framework developed in Ch. 2 and
3 was applied to a simple example of a pure condensate residing on a square
lattice, the results of which coincides with numerical results obtained by P.
N. Galteland et al. in Ref. [45]. A few intermediate results, equivalents
in the literature to which are unbeknownst to both the author and his su-
pervisor, were obtained as well; in particular, many-fold cases were shown
to potentially involve terms in the Hamiltonian that are linear in excitation
operators; cf. Tab. 3.1.

The expressions (3.87) and (3.88), or (3.89) and (3.90), leave much to be
explored. In particular, no application of the framework developed in Ch. 3
that included excitations—i.e. including the terms H1 and H2 in the Hamil-
tonian (3.91)—was successfully developed by the author, due to difficulties
handling the linear terms comprised by H1. A few suggestions for how to
handle these terms were presented in Sec. 5.2, though the author invites the
reader to search for other methods. Once the linear terms have been han-
dled, the generalized diagonalization procedure presented in Sec. 2.7 may
be applied to the Hamiltonian (3.91) in order to obtain quasi-particle energy
spectra, which in turn may be used to find an explicit expression for the free
energy F by substituting the appropriate quantities in the general expres-
sion (2.104), after which explicit expressions for all variational parameters in
terms of the input parameters, as well as the phases of the system, may be
deduced by minimization of F with respect to the variational parameters.

Furthermore, the simple and heavily restricted example presented in Ch.
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4, may be explored in more detail. Only solutions for N↑0 and N↓0 to the
coupled equations (3.89) and (3.90) for which N↑0 = N↓0 , were explored, as-
suming the two pseudospin states were treated equally with respect to all
input parameters. There are multiple general solutions to the coupled equa-
tions (3.89) and (3.90), that should all be addressed; in particular, one may
identify the particular general solutions that reduce to the particular solu-
tions explored in the respective sections 4.1–4.4 upon assuming that the two
pseudospin states are treated equally with respect to all input parameters.

Finally, for cases in which the SOC is non-zero—and, by extension, the
pseudohelicity of the bosons is well-defined—it may be of interest to convert
all appropriate expressions presented in Ch. 3 to the pseudohelicity basis
presented in Eq. (2.67). Intuitively, this may potentially result in simplifica-
tions, since the non-diagonality of the Hamiltonian of the spin–orbit coupled,
weakly interacting Bose gas, would then only result from perturbations rela-
tive to the non-interacting case.
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Appendix A

Counting Momentum
Configurations

A.1 A Visualized Iterative Method

1

3

9 3

3

3

3

3 3

3

1

1

1

9

9

9

Figure A.1: A unit square lattice. The red points denote
the points that are nearest to the origin. The number by the
encircled points indicate the number of ways one may reach
that point in three unit steps from the origin.

Counting the number of configurations for case 1–5 in Tab. 3.1 in the
four-fold case, may be done by hand by inspecting the unit square lattice
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in Fig. A.1. Momentum conservation dictates that when there are at least
three condensate particles involved in a two-body scattering event,

kkk0i + kkk0j = kkk0i′ + ppp′, i, j, i′ = 1, 2, 3, 4, (A.1)

⇒ ppp′ = kkk0i + kkk0j − kkk0i′ , (A.2)

where the kkk0i are condensate momenta, and ppp′ a fourth momentum deter-
mined by the above relation. All instances for which ppp′ is a condensate
momentum correspond to case 1 of Tab. 3.1, while all other instances cor-
respond to either one of case 2–5. By rotating the lattice presented in Fig.
2.3a, scaling it such that all condensate momenta have a magnitude of 1, and
neglecting all points that are not reachable by an integral number of vertical
and horizontal unit steps from the origin, one is left with the unit square
lattice in Fig. A.1. One then recognizes that Eq. (A.2) is equivalent to
determining ppp′ by moving three unit steps through this lattice; the steps are
determined by the value of the indices i, j, i′. Therefore, the total number of
configurations for which ppp′ is a condensate momentum, is equal to the total
number of ways one may reach either of the four encircled red points in Fig.
A.1, i.e. 4 · 9 = 36, and conversely, the total number of configurations for
which ppp′ is not a condensate momentum, is equal to the total number of ways
one may reach the remaining encircled points, i.e. 4 · (1 + 3 + 3) = 28.

It may be useful to generalize this counting. Consider the same unit
square lattice, but this time, only taking one unit step from the origin. The
corresponding diagram is presented in Fig. A.2.
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1

1

1

1

Figure A.2: The same situation as illustrated in Fig. A.1,
but this time limited to taking one unit step from the origin.

Conversely, the two-step variant is presented in Fig. A.3.
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1

1

1

1

2 2

22

4

Figure A.3: The same situation as illustrated in Fig. A.1,
but this time limited to taking two unit steps from the origin.

In the two-step case, one may count the number of ways of reaching an
encircled point by considering all ways one may reach that point by moving
two steps from the origin. However, one may also use the one-step case as
a starting point. Choosing an arbitrary point in the two-step lattice, the
number of ways of reaching that point is the sum of the ways of reaching any
nearest-neighboring point in one step from the origin; see Fig. A.4.

91



APPENDIX A. COUNTING MOMENTUM CONFIGURATIONS

2 1

1

0

0

0

0

00

0

Figure A.4: Complementary illustration for Fig. A.3. In-
stead of counting the number of ways one may reach an ar-
bitrary point by taking two steps from the origin, one may
use the one-step case as a starting point. The one-step case
is colored in yellow, corresponding to Fig. A.2. Counting the
number of ways of reaching an arbitrary point by taking two
steps from the origin, is equivalent to counting the number
of ways one may reach nearest-neighboring points in one step
from the origin.

This counting generalizes to the case of taking n unit steps from the
origin. To count the number of ways of reaching an arbitrary point in the n-
step case, one counts the number of ways of reaching any nearest-neighboring
point in n− 1 unit steps from the origin. Now, the relationship between the
most distant reachable points and Pascal’s triangle is evident by inspection
of Fig. A.5.
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1 3 3 1
Figure A.5: The rotated fourth quadrant of Fig. A.1. The
relationship between the reachable points most distant from
the origin, and Pascal’s triangle, is evident by inspection. This
generalizes to the n-step case.

For a square lattice, whether or not an arbitrary point is reachable in n
steps alternates depending on whether n is even or odd, unless the point is
too far away from the origin; this pattern may be observed by comparing
Fig. A.2, A.3 and A.1 consecutively. This leads to another pattern directly
related to Pascal’s triangle, illustrated in Fig. A.6.
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1

3

9 3

3

3

3

3 3

3

1

1

1 9

9

9

a.

b.

c.

d.

Figure A.6: Rows of encircled points in Fig. A.1, labeled
a.–d.. The numbers in row a. and d. are the entries of the
fourth row of Pascal’s triangle, multiplied by 1. The num-
bers in row b. and d. are also the entries of the fourth row of
Pascal’s triangle, multiplied by 3. Observe that the sequence
1, 3, 3, 1 of multiplicative factors is also the fourth row of Pas-
cal’s triangle. This pattern holds in the n-step case as well;
see for instance Fig. A.3.

The method of counting in the n-step case presented above may be used
to compute the total number of configurations for the equivalents of case 1–5
in Tab. 3.1 for higher order scattering events. For instance, for three-body
scattering events, one would consider the 5-step case, and in general, for m-
body scattering events, one would consider the (2m − 1)-step case, which
follows from conservation of momentum.

The above method may also be applied to other lattice geometries, and
generalized to other dimensions. See for instance Fig. A.7, in which the num-
ber of ways of reaching arbitrary points in three unit steps from the origin on
a two-dimensional hexagonal lattice is presented, computed using the itera-
tive method presented in Fig. A.4. Note that the pattern of multiplicative
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factors that was present in the case of a square lattice—cf. Fig. A.6—
is no longer present for this geometry. This case corresponds to two-body
scattering events on a two-dimensional lattice geometry for which condensed
particles may carry any of six possible momenta.

1

3

3

1

6

6

615

15

12

Figure A.7: The hexagonal equivalent to what is presented
in Fig. A.1. The number of ways in which an arbitrary point
may be reached by taking three unit steps from the origin,
was computed using the iterative method presented in Fig.
A.4. Only one of six sections are numbered in the diagram;
the symmetry dictates that these numbers are the same for
every other section as well.

A.2 Combinatorial Expressions

In combinatorics, the stepwise process described in the previous section is
formally known as a lattice walk. The lattice points are referred to as nodes,
and labeled e.g. (a, b) on a square lattice, corresponding to the point that
is a ∈ Z horizontal and b ∈ Z vertical steps away from the origin (0, 0) in
Fig. A.1. Derivations of the expressions for the number of ways of reaching
a specific node in n steps from the origin, are presented by S. Hollos in Ref.
[62], for the special cases of one-, two- and three-dimensional cubic lattices.
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The final expressions are presented in Tab. A.1.

Table A.1: Lattice walk expressions

D Node Nn

1 a
(

2`+a
`

)
2 (a, b)

(
2`+a+b

`

)(
2`+a+b
`+a

)
3 (a, b, c)

(
2`+a+b+c

`

)∑`
k=0

(
`
k

)(
`+a+b+c
k+b+c

)(
2k+b+c
k+b

)
Table of expressions for the number of ways Nn one may reach
a specific node on a D-dimensional cubic lattice in n steps
from the origin, provided ` ≥ 0; otherwise, Nn = 0. The
expressions are due to S. Hollos [62]. Here, a, b, c ∈ Z, and `, k
are non-negative integers. The quantity ` is the total number
of steps in all negative directions in the lattice—e.g. in the -xxx
and -yyy direction on a square lattice—and is related to n via
the relation n = 2`+ a, n = 2`+ a+ b and n = 2`+ a+ b+ c
in one, two and three dimensions, respectively.

96



Bibliography

[1] J. Linder and A. Sudbø, Phys. Rev. A 79, 063610 (2009).

[2] J. O. Andersen, Introduction to Statistical Mechanics (Akademika forlag,
Trondheim, 2012).

[3] S. N. Bose, Z. Phys. 26, 178 (1924).

[4] M. Planck, Verhandl. Dtsch. phys. Ges. 2, 237 (1900).

[5] A. Einstein, Ann. Phys. 322, 132 (1905).

[6] The Nobel Prize in Physics 1921 (Nobel Media AB 2014, https://

www.nobelprize.org/nobel_prizes/physics/laureates/1921/, ac-
cess date 13/8/2018).

[7] A. Einstein, Sitzungsber. Preuss. Akad. Wiss. 1924 22, 261 (1924).

[8] A. Einstein, Sitzungsber. Preuss. Akad. Wiss. 1925 1, 3 (1925).

[9] P. Kapitza, Nature 141, 74 (1938).

[10] J. F. Allen and A. D. Misener, Nature 142, 643 (1938).

[11] F. London, Nature 141, 643 (1938).

[12] L. D. Landau, Phys. Rev. 60, 356 (1941).

[13] The Nobel Prize in Physics 1962 (Nobel Media AB 2014, https://

www.nobelprize.org/nobel_prizes/physics/laureates/1962/, ac-
cess date 13/8/2018).

[14] L. P. Pitaevskii, Bose–Einstein Condensation (Clarendon Press, Oxford,
2003).

[15] C. J. Pethick and H. Smith, Bose–Einstein Condensation in Dilute Gases
(Cambridge University Press, Cambridge, 2001).

[16] V. L. Ginzburg, ChemPhysChem 5, 930 (2004).

[17] The Nobel Prize in Physics 1972 (Nobel Media AB 2014, https://

www.nobelprize.org/nobel_prizes/physics/laureates/1972/, ac-
cess date 13/8/2018).

97

https://www.nobelprize.org/nobel_prizes/physics/laureates/1921/
https://www.nobelprize.org/nobel_prizes/physics/laureates/1921/
https://www.nobelprize.org/nobel_prizes/physics/laureates/1962/
https://www.nobelprize.org/nobel_prizes/physics/laureates/1962/
https://www.nobelprize.org/nobel_prizes/physics/laureates/1972/
https://www.nobelprize.org/nobel_prizes/physics/laureates/1972/


BIBLIOGRAPHY

[18] The Nobel Prize in Physics 2003 (Nobel Media AB 2014, https://

www.nobelprize.org/nobel_prizes/physics/laureates/2003/, ac-
cess date 13/8/2018).

[19] M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman, and
E. A. Cornell, Science 269, 5221 (1995).

[20] F. Dalfovo, S. Giorgini, L. P. Pitaevskii, and S. Stringari, Rev. Mod.
Phys. 71, 463 (1999).

[21] A. J. Leggett, Rev. Mod. Phys. 73, 307 (2001).

[22] C. C. Bradley, C. A. Sackett, J. J. Tollett, and R. G. Hulet, Phys. Rev.
Lett. 75, 1687 (1995).

[23] K. B. Davis, M. O. Mewes, M. R. Andrews, N. J. van Druten, D. S.
Durfee, D. M. Kurn, and W. Ketterle, Phys. Rev. Lett. 75, 3969 (1995).

[24] The Nobel Prize in Physics 2001 (Nobel Media AB 2014, https://

www.nobelprize.org/nobel_prizes/physics/laureates/2001/, ac-
cess date 13/8/2018).

[25] E. A. Cornell and C. E. Wieman, Rev. Mod. Phys. 74, 875 (2002).

[26] W. Ketterle, Rev. Mod. Phys. 74, 1131 (2002).

[27] O. Morsch and M. Oberthaler, Rev. Mod. Phys. 78, 179 (2006).

[28] D. Jaksch, C. Bruder, J. I. Cirac, C. W. Gardiner, and P. Zoller, Phys.
Rev. Lett. 81, 3108 (1998).

[29] R. Grimm, M. Weidemüller, and Y. B. Ovchinnikov, Adv. Atom. Mol.
Opt. Phys. 42, 95 (2000).

[30] I. Bloch, J. Dalibard, and W. Zwerger, Rev. Mod. Phys. 80, 885 (2008).

[31] D. Jaksch, C. Bruder, J. Cirac, C. Gardiner, and P. Zoller, Phys. Rev.
Lett. 81, 3108 (1998).

[32] J. Mun, P. Medley, G. K. Campbell, L. G. Marcassa, D. E. Pritchard,
and W. Ketterle, Phys. Rev. Lett. 99, 150604 (2007).

98

https://www.nobelprize.org/nobel_prizes/physics/laureates/2003/
https://www.nobelprize.org/nobel_prizes/physics/laureates/2003/
https://www.nobelprize.org/nobel_prizes/physics/laureates/2001/
https://www.nobelprize.org/nobel_prizes/physics/laureates/2001/


BIBLIOGRAPHY

[33] D. M. Stamper-Kurn, M. R. Andrews, A. P. Chikkatur, S. Inouye, H.-J.
Miesner, J. Stenger, and W. Ketterle, Phys. Rev. Lett. 80, 2027 (1998).

[34] J. H. Denschlag, J. E. Simsarian, H. Häffner, C. McKenzie, A. Browaeys,
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