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Abstract

Motivated by recent experimental progress in realizing novel antiferromagnetic phases
with state-of-the-art characteristics for memory storage and information processing,
we study the magnon excitation spectra and eigenmodes around the antiferromag-
netic skyrmion. In the micromagnetic limit of an insulating nearest-neighbour spin
coupled two-sublattice antiferromagnet, we derive from Hamilton’s principle a new
set of coupled Schrödinger-like equations for perpendicularly excited magnons with
respect to an inhomogeneous chiral texture.

In the limit of a homogeneous antiferromagnetic ground state, the impact of
various interaction mechanisms on the dispersion relation is discussed. A nonzero
external magnetic field lifts the degeneracy of right-circularly and left-circularly po-
larized modes, while the asymmetric Dzyaloshinskii-Moriya interaction shifts the
continuous spectra in momentum space along particular directions dictated by the
polarization degree of freedom.

For the chiral antiferromagnetic skyrmion, the Hamiltonian matrix subject to
various pinning strengths of the texture-induced potential is numerically diagonal-
ized for azimuthally symmetric modes. We find that the out-of- and in-plane, with
respect to the skyrmion basal plane, excitation modes decouple. The presence of
the Dzyaloshinskii-Moriya coupling and the localized feature of the skyrmion make
Goldstone, bound and unbound modes emerge for both in-plane and out-of-plane
magnons. The Goldstone modes can be interpreted as a collective excitation of the
entire skyrmion, or as equally likely exponentially damped evanescent or growing
resonant modes for which further consideration by for instance kinetic theory and
Landau damping is necessary to collapse the modes onto either solution. We find
that the relative strength of the intrinsic coupling mechanisms is decisive for the
magnon states that appear.
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Sammendrag

Med bakgrunn i nye eksperimentelle fremskritt i å fremstille antiferromagnetiske
faser med enestående egenskaper for minnehåndtering og informasjonsprosessering,
studerer vi eksitasjonsspektret og eigentilstandene til magnoner rundt et antiferro-
magnetisk skyrmion. I den mikromagnetiske grensen for en isolerende dobbelt-gitter
antiferromagnet med spinnkoblinger mellom nabo-gitterpunkt, utleder vi med ut-
gangspunkt i Hamiltons prinsipp et sett med nye Schrödinger-lignende likninger for
magnonske ortogonale eksitasjoner av en inhomogen kiral tekstur.

I grensen for en homogen antiferromagnetisk grunntilstand, diskuterer vi hvordan
ulike vekselvirkningsmekanismer påvirker dispersjonsrelasjonen. Et eksternt mag-
netfelt løfter degenerasjonen av høyre- og venstrepolariserte tilstander. Den asym-
metriske Dzyaloshinskii-Moriya-interaksjonen forskyver det kontinuerlige spekteret
langs enkelte retninger i impulsrommet, hvilket avhenger av polarisasjonen.

For kirale antiferromagnetiske skymioner, diagonaliserer vi Hamilton-matrisen
numerisk for ulike styrker av den tekstur-induserte potensialbrønnen for rotasjon-
ssymmetriske tilstander. Vi observerer at tilstander som befinner seg i og normalt
på baseplanet til skyrmionet ikke lenger er koblet sammen. Tilstedeværelsen av
Dzyaloshinskii-Moriya-koblingen og den endelige utstrekningen av skyrmionet gjør
at både Goldstone-, bundne og ubundne tilstander eksisterer for magnonene både i
og ut av baseplanet. Goldstone-tilstandene kan forstås som en enhetlig eksitasjon av
skyrmionet, eller som en kombinasjon av like sannsynlige eksponentielt dempede fly-
ktige og ustabile resonante tilstander hvor bruk av kinetisk teori og Landau-demping
kan være nødvendig for å få en selvkonsistent løsning. Den relative styrken mellom
de intrinsike koblingsmekanismene er avgjørende for hvilke tilstander magnonene kan
befinne seg i.
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Nomenclature

Symbols

Nsk Topological quantum number of skyrmions
D The inhomogeneous Dzyaloshinskii-Moriya interaction strength
Ms Saturation magnetization
d The homogeneous Dzyloshinskii-Moriya interaction strength
γ Helicity of skyrmion
m Vorticity of skyrmion
A The Euclidian action
F Free energy
K Kinetic energy
αG The Gilbert damping constant
c Lattice constant of a squared 2D lattice

Conventions

• Bold text implies vectors

• Repeated indices implies the Einstein summation convention

• ∇2
ρ = 1

ρ∂ρ(ρ∂ρ) is the radial derivative of the cylindrical Laplacian
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1
Introduction

In this chapter we will firstly motivate for the study of antiferromagnetic magnonics
by establishing the historical and theoretical development of the field and discuss
some of the present research activities and prospects. Secondly, we will describe the
structure of the thesis.

1.1 Motivation

The electron is a fundamental particle that can be attached different labels such as
mass and charge to define its properties. The extensive use of the charge property
of electrons in applications can be traced back to the first patent of the telegraph in
1837 [1], long before the detection of the electron itself by Thomson [2] or its charge
property by Millikan [3]. Since then, via the birth of mobile phones and computers,
the number of electronic devices has skyrocketed, with an ever-increasing demand
to computational power. To accommodate this issue, the use of the spin property of
electrons has been explored in the field of spintronics [4], allowing for more subtle
treatment of memory storage and information processing in devices. For now, the
industry primarily uses ferromagnetic materials [5], where the spins tend to align par-
allel, setting up a spontaneous magnetization in the ground state of the system. To
meet the needs of tomorrow, new technology with more versatile and robust design
is needed. Such a candidate could be antiferromagnetic materials, where adjacent
spins tend to align antiparallel in the ground state. They are by far more common
in nature [6] and are operating in a frequency range much higher than ferromagnets,
allowing for shorter response time [7, 8]. Also, they do not generate any stray fields
perturbing components in the vicinity as the net magnetic moment is zero [9]. In-
formation storage in such constructions is favourable as antiferromagnetic materials
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are insensitive to magnetic reading and field perturbations from other components,
allowing fore more densely packed devices increasing the memory storage capacity
[6].

The theoretical framework for applications based on ferromagnetic and antifer-
romagnetic materials started with Heisenberg in 1926. Heisenberg proposed that
the spontaneous magnetization observed in some materials below the Curie temper-
ature was the result of an exchange coupling between neighbouring spins resulting
in a ferromagnetic ground state [10]. In the 1930s, Néel found interest in materi-
als containing magnetic elements such as Fe and Cu, which did not show any bulk
magnetization far below the Curie temperature. Bloch had in 1930 introduced the
concept of quantized spin waves (magnons) - thermal excitations of the spins around
some equilibrium - to describe the drop in spontaneous magnetization when ap-
proaching a critical temperature from below [11]. At this temperature, the system
undergoes a phase transition and the spontaneous magnetization perish. But these
magnons could not account for the absent magnetization far below the critical tem-
perature. Instead, Néel addressed the lack of a net magnetic moment to a local
molecular field [12], changing rapidly on interatomic distances and pointed out that
the exchange interaction favouring antiparallel alignment of neighbouring spins was
the responsible mechanism. The theory for such systems was extended the succeed-
ing decades, covering new interaction mechanisms between spins [13, 14] and the
dispersion relation of systems comprising large magnonic occupation numbers and
magnon-magnon interactions [15].

These materials first found their route to applications by the independent discov-
ery of the giant magnetoresistance in 1988 by the groups of Fert [16] and Grünberg
[17]. Less than 10 years later, the work of Berger [18] and Slonczewski [19] on
spin transfer torque (STT) between currents and ferromagnetic domains in thin film
sandwich structures paved the way for the use of ferromagnetic spin valves in mag-
netoresistive random access memory (MRAM) and hard drive read heads [20]. Since
then, it has been a research area of vast interest, and new types of STT-MRAM with
improved properties are being produced [21]. Most of these devices are based on fer-
romagnetic materials, while antiferromagnets as for today have only been used for
pinning ferromagnetic layers by the exchange bias [22]. Yet, perturbation of the mag-
netic moments in antiferromagnets by electrical currents was theoretically proposed
in 2006 [23], and in 2011 it was reported magnetoresistance phenomena in spin-valve
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configurations of antiferromagnets [5], similar to those for ferromagnets. Switching
phenomena of two stable states in the antiferromagnet CuMnAs for current den-
sities j ∼ 106A/cm2 have been experimentally realized close to room temperature
[24], allowing for antiferromagnets to enter the branch of applied spintronics.

One area of potential applications is embedded in the area of soliton-magnon
interactions. A soliton is a topologically protected, nonlinear excitation of the order
parameter (the spin magnetization for ferromagnets and the staggered magnetiza-
tion for antiferromagnets). They appear spontaneously in materials to reduce the
total free energy of the system, and are a result of the subtle interplay between in-
teraction mechanisms of spins. One type of soliton with particle-like properties that
has attained a lot of interest recently are skyrmions [25–30]. Similarly to electrons
having an electric charge, skyrmions have a topological charge [9], taking both neg-
ative and positive integer values. This suggest skyrmions could act as information
bits in memory devices. Quantized spin wave excitations are compatible with such
equilibrium textures; the skyrmion texture could play the role of memory storage
while the magnons take care of information processing. Magnons are preferable to
domain walls for information transport, as the bottle-neck for magnon propagation is
the velocity of the spin wave excitations [31], which is order of magnitude larger than
the limiting Walker breakdown of domain walls [32]. It has been showed that a spin
current carried by transient conduction electrons perish over a very short distance
due to the damping of the electron movement [33]. However, a spin current carried
by a spin wave is much more persistent as it is a collective excitation of the magnetic
moments mounted on the strong exchange coupling between adjacent lattice sites
[34]. Hence, there is no need for the material to be conducting, meaning thermal
heating is avoided compared to electronic transport, theoretically supporting lossless
information processing.

Antiferromagnetic order can be viewed as two ferromagnetic sublattices with
opposite magnetization put together to form a single lattice where every spin is op-
positely oriented to its nearest neighbours. Materials supporting ferromagnetic order
only contain one such lattice, which again only allows for right-circularly polarized
magnon modes [35, 36]. In antiferromagnetic materials the two sublattices allows
for left- and right-circular polarization of the spin waves and hence a polarization
degree of freedom, with all types of linear or elliptical modes also being possible
[36]. With this additional degree of freedom, one have another way of reading in-
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formation processed by the quantized spin waves. One of the main tasks in going
from electronics to spintronics/magnonics lies in constructing magnetic logic circuits
replacing today’s electronic ones. For instance, MRAM can only be used to store
information, not process or manipulate [37]. Amplitude magnoninc transistors [38],
amplitude magnonic multiplexers [39] and amplitude magnonic nanocircuits for spin
wave detection [40] have all been realized, and work on magnonic phase difference
logic gates and circuits is also showing promising results [41–43].

Despite the vast assortment for applications being established, and the magnonic
circuitry business keeping pace, there is still a theoretical gap yet to be explored
regarding soliton-magnon interactions from a fundamental physics point of view.
We will therefore look into the unreported formalism of magnon excitations around
antiferromagnetic skyrmions, which have been experimentally observed recently [44],
taking on a semi-classical quest to discover the spin wave excitation spectra and
eigenmodes.

1.2 Structure of the thesis

In our endeavour on understanding the complexity of magnon dynamics in insulat-
ing antiferromagnets, we will start by introducing some general coupling mechanisms
between spins before considering magnetic textures and spin wave excitations. In
Chapter 5 we consider the eigenspectra of such excitations around an antiferromag-
netic skyrmion.

More detailed, we will in Chapter 2 discuss the interaction mechanisms of sym-
metric Heisenberg exchange coupling and antisymmetric Dzyaloshinskii-Moriya in-
teraction (DMI), the Zeeman coupling between electron spins and an external mag-
netic field, magnetic anisotropy and the demagnetizing field. The resulting antifer-
romagnetic free energy functional is the concluding remark in this chapter.

In Chapter 3, we consider antiferromagnetic textures for the staggered magneti-
zation. The visual appearance and some physical properties will be discussed. We
look at both homogeneous and chiral inhomogeneous textures.

In Chapter 4 we discuss spin wave excitations around the static antiferromagnetic
textures considered in the previous chapter. The dispersion relation of the homo-
geneous ground state is derived, and a new set of equations for spin waves around
antiferromagnetic Dzyaloshinskii-Moriya coupled chiral solitons are established.

In Chapter 5, we consider the wave function solutions to the new equations
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of motions and their belonging eigenspectra. We will investigate the lowest-lying
angular modes and solve the equations by a numerical diagonalization scheme. We
also consider the asymptotic behaviour far from and near the skyrmion core. We
end the chapter by comparing the results to antiferromagnetic easy-plane vortices
and look at the highly excited regime.

Finally, we will summarize the work and discuss the outlook in Chapter 6.
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2
Antiferromagnetic

micromagnetics

We begin our endeavour by considering the interaction mechanisms present in an-
tiferromagnetic spin systems. The different coupling mechanisms can give rise to a
large variety of static spin textures and dynamics and establish the foundation of
the expected physical behaviour of the system at hand. Our starting point will be of
the semi-classical type, starting with spins represented by vectors in 3D, localized at
lattice sites. From the discrete semi-classical starting point, we will move to the mi-
cromagnetic limit where the localized spin landscape is transformed into a smoothly
varying spin texture, described by a set of continuous vector fields.

2.1 The antiferromagnetic system

Materials can be subdivided into different classes by their magnetic properties. An-
tiferromagnetic materials are substances where the arrangement of the magnetic
moments takes on a checkerboard pattern; each magnetic moment favours to align
antiparallel to their neighbouring moments. We can assign each magnetic moment
to one of two sublattices, where the magnetization of one sublattice is equal and op-
posite to the other in the absence of an external magnetic field. The sublattices are
fully compensated by the intrinsic couplings, and the bulk magnetization is zero be-
low the critical Néel temperature TN. Above this temperature, the antiferromagnetic
arrangement becomes disordered by the thermal agitation inducing fluctuations of
the moments. One example of such a material could be manganese.

There also exist other materials with different magnetic properties than antifer-
romagnets. We call it a ferromagnetic material if adjacent magnetic moments tend
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to align parallel. This will typically lead to a nonzero spontaneous magnetization
below the Curie temperature TC of the material, even in the absence of an external
magnetic field. By decreasing the temperature, the magnetization will at some point
reach saturation. Above the Curie temperature, the thermal fluctuations of the mo-
ments break the ferromagnetic order and the magnetization disintegrates. Examples
of such substances would be iron, cobalt and nickel, but the crystallographic struc-
ture will influence the temperature and pressure requirements to have ferromagnetic
order [45]. Other magnetic classes are ferrimagnetic substances which are similar to
antiferromagnets but where the two sublattices are not fully compensated, diamag-
netic ones where the atoms are non-magnetic and paramagnetic materials where the
intrinsic moments are very weakly coupled.

In this thesis we will mainly focus on the antiferromagnetic type. An antiferro-
magnetic system with spins localized at lattice sites described by unit vectors {Sx},
is typically divided into two sublattices k = {α, β} [46–49], where neighbouring spins
belong to different sublattices. We define c as the nearest neighbour lattice constant.
Below the Néel temperature, the modulus of the magnetization of each sublattice
Mk(x) is fixed, and only contains orientational degree of freedom. Hence, we can
write Mk = Msmk(x), where Ms is the saturation magnetization. mk is a vector
pointing along the local magnetization direction of sublattice k. As we limit our
study to 2D antiferromagnetic systems, we can label each site by a set of two in-
dices i, j for both sublattices. We define the magnetization mi,j and the staggered
magnetization li,j at lattice site (i, j) according to

mi,j = (Sαi,j + Sβi,j)/2, li,j = (Sαi,j − Sβi,j)/2. (1)

S
α(β)
i,j is the spin at lattice site (i, j) in sublattice α(β). The staggered field and the

magnetization are so far just a discrete set of vectors. We will use the above relations
to derive the energy contributions to the free energy of an antiferromagnet in terms
of the magnetization and the staggered field only. We start with the symmetric
Heisenberg exchange.

2.2 The symmetric Heisenberg exchange

The exchange interaction originates from the Pauli exclusion principle and the Coulomb
interactions. By symmetry, fermions cannot occupy the same quantum state simul-
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taneously within a system. For a system which favours neighbouring electron spins
to be aligned antiparallel, the exchange constant is positive. For a system which
favours adjacent spins to be aligned parallel, the exchange constant is negative. In
the classical Heisenberg model, treating the spins of the electrons as vectors, the
Hamiltonian is then given by

HH =
∑
〈x,x′〉

Js Sx · Sx′ , (2)

where 〈x,x′〉 denotes sum over nearest neighbours, revealing the short-ranged nature
of the interaction. For an isotropic material, we can suppress the spatial/directional
dependence of the exchange tensor Js, and treat it as a coupling constant between
spins at neighbouring sites. The exchange coupling will typically be the dominating
term in the free magnetic energy of a system with respect to other sources of magnetic
energies. We refer to this as the exchange approximation, where Sαi,j ' −Sβi,j , with
the constraints mi,j · li,j = 0 and m2

i,j + l2i,j = 1. Within this approximation, we
define the Néel vector (order parameter) n = l/|l|. |l| ' 1, so we can replace l→ n

everywhere.
For the centred squared 2D lattice, the symmetric exchange contribution to the

free energy is in the micromagnetic limit to leading order (see Appendix A.1 for the
derivation)

HH =

∫
dx

V

(
a

2
m2 +A

(∑
i=x,y

(∂in)2 +
1

2

∑
i 6=j

∂in · ∂jn
)

+ L
∑
i=x,j

(m · ∂in)

)
, (3)

with V = 2c2, a = 8Js, A = 2Jsc
2, L = 2

√
2Jsc. There are two apparent parity-

breaking terms, (∝ m · ∂in) and (∝ ∂in · ∂jn). These terms can be neglected when
the net magnetization of the system is zero, even for materials with a noncollinear
staggered magnetization texture [50].

2.3 The Dzyaloshinskii-Moriya interaction

The DMI is a coupling mechanism that favours a noncollinear orientation of neigh-
bouring spins. It was proposed by Dzyaloshinskii in 1958 [13], emerging as a result of
the underlying crystal symmetry in α−Fe2O3, giving rise to a nonzero spontaneous
magnetic moment in certain magnetic states. However, the true origin of the effect
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was not proposed for another two years; in 1960 Moriya [14] showed how spin-orbit
coupling in systems with low magnetic order gives rise to an antisymmetric interac-
tion mechanism between neighbouring spins Sx and Sx′ forming the Hamiltonian

HDM =
∑
〈x,x′〉

Dx,x′ · (Sx × Sx′), (4)

where Dx,x′ is the DMI vector. The DMI strength D is generally weaker than the
exchange coupling [14]. Interchanging the two spins x ↔ x′ flips the sign of the
Hamiltonian HDM → −HDM, reflecting the asymmetry of the DMI. Both for non-
centrosymmetric crystals without a centre of inversion and asymmetric thin films,
noncollinear magnetic structures are stabilized by the DMI [51, 52]. Derrick was
the first to propose that the exchange interaction and magnetic anisotropies are not
adequate to stabilize a noncollinear magnetic configuration [53]. Rather, systems
with such exotic features, like 2- and 3D localized magnetic vortices, are stabilized
by the DMI [54]. Some phases, such as the skyrmion lattice in MnSi [55], cannot
exist with only symmetric exchange and anisotropies present as it will not be ther-
modynamically stable. That DM interactions are more commonly encountered in
antiferromagnets than ferromagnets [13, 14] is another argument for studying anti-
ferromagnetic DMI stabilized phases which provides a richer and more fine-tuning
assortment for applications.

There are typically two types of DMI to consider; bulk and interfacial DMI. The
bulk DMI is experimentally shown to stabilize noncollinear magnetic textures in
bulk magnets where the DMI vector is parallel to the position vector between neigh-
bouring spins [55–57]. The other commonly encountered DMI, interfacial DMI, has
the DMI vector perpendicular to the position vector joining adjacent spins. The
latter is found in ultrathin films with sandwich structure comprising metallic layers
with strong spin-orbit coupling and at surfaces with broken inversion symmetry [28,
58–62]. We refer to these in-plane types of DMI as the inhomogeneous DMI. If the
DMI vector has a nonzero out-of-plane component, we call it the homogeneous DMI
contribution. The names originate from the micromagnetic form of the DMI free
energy arising from the different components, which we will come back to. Recently,
is has been discovered that skyrmions in IrMn/CoFeB, a multilayer antiferromag-
netic/ferromagnetic heterostructure, exist in the antiferromagnetic material at room
temperature for a negative DMI constant and a left-handed chirality [44]. There
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are no geometric constraints for the existence of the skyrmion phase, but there are
constraints on the geometry for the heavy metal/ferromagnetic multilayers. As inter-
facial skyrmions are smaller than bulk type ones, and are experimentally observed,
we henceforth restrict our study to systems with interfacial type DMI.

As for the symmetric exchange coupling, we consider a centred cubical two-
dimensional lattice (x-y plane) in the exchange approximation of a slowly varying
spin texture. The centred site belongs to sublattice α, while the four nearest neigh-
bours belong to sublattice β. The in-plane interfacial DMI vector is orthogonal to
the position vector joining two adjacent spins:

Dx,x′=x+ŷ = Dx̂,

Dx,x′=x+x̂ = −Dŷ,
(5)

and zero otherwise. We sum only over the unit cells for one sublattice to avoid
double-counting, and arrive at the inhomogeneous interfacial Hamiltonian

HDM,inhom =

∫
dx

V
D ((ẑ · n)(∇ · n)− (n · ∇)(ẑ · n)) . (6)

in the micromagnetic limit. The broken spatial inversion symmetry manifests from
Eq. (6) as first order gradients of the order parameter are present. Its contribution
to the free energy is spatially inhomogeneous, thereby the name. The DMI con-
stant, which have been calculated for a wide range of surfaces, will depend upon the
underlying symmetry of the system, as opposed to its symmetric counterpart [52].
The homogeneous DMI, with DMI vector d||ẑ and perpendicular to the basal plane,
gives the interfacial DMI Hamiltonian

HDM,hom =

∫
dx

V
(d · (m × n)) . (7)

This DMI does not hold any derivatives of neither the magnetization nor the Néel
field, and its contribution is spatially homogeneous, so the name. For a full derivation
of the homogeneous and inhomogeneous DMI, see Appendix A.2.

2.4 Magnetocrystalline anisotropy

Magnetocrystalline anisotropy favours the magnetization of a system to orient along
certain crystallographic directions. For instance, cobalt, with hexagonal crystallo-
graphic structure, obtains stronger magnetization along the hexagonal axis under the
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influence of a collinear external magnetic field, compared to other directions. For
iron, which is cubical, the cube edges are the directions of which the magnetization
reaches its maximum value, while for nickel it is the cube diagonals [63]. When a
certain crystallographic direction is energetically favourable, it is called an easy-axis.
Similarly, a direction of which is energetically unfavourable, is called a hard-axis.

We will only consider a phenomenological treatment here, as a full quantum
mechanical approach is beyond the scope of the thesis. Also, we will only treat the
anisotropy interactions through coupling constants and suppress any temperature
dependence. The anisotropy Hamiltonian for localized spins Sx at lattice site x is
to lowest order

Haniso =
∑
x

Kaniso(Sx · n̂)2 (8)

where a negative (positive) anisotropy parameter Kaniso yields an easy- (hard-)axis
along n̂. In general, the anisotropy parameter will not be constant, but vary as a
function of temperature [64]. Easy (hard) planes are planes which tend to align
(not align) the spins within them, where the direction in the plane is arbitrary. A
combination of several planes and axes, both easy and hard, is also possible. n̂ is the
(local) direction dictated by the lattice structure which is energetically favourable
for the spins to align with, which in principle could be position-dependent.

The magnetocrystalline anisotropy arises due to the coupling between the elec-
tric field induced by the ions and the magnetic moments of the electrons. From a
microscopic point of view, the electric field experienced by the electrons introduces
an anisotropy in the occupation of the orbitals and thereby an anisotropy in the or-
bital angular momentum of the electrons. By the spin-orbit coupling, the magnetic
moment of the electrons will experience the same anisotropy, which is the magne-
tocrystalline anisotropy. The electron spins will align according to the direction
being most energetically favourable, dictated by the crystal lattice [45, 65]. With
the z-axis as the easy axis, allowing for biaxial anisotropy, the contribution to the
micromagnetic free energy to leading order is

Haniso = −Kz

∫
dx

V
(ẑ · n)2. (9)

with Kz > 0. We have assumed we are in the exchange approximation where |m| �
|n| and Js � Kz.
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2.5 Demagnetization

For spins Sx located at lattice sites x, the magnetostatic dipole-dipole interaction is
incorporated similarly as for magnetic dipoles. The energy contribution is

Hdipole = Jd
∑
x 6=x′

Sx · Sx′ r2
xx′ − 3(Sx · rxx′)(Sx′ · rxx′)

r5
xx′

, (10)

where Jd > 0 is the dipole coupling constant and rxx′ = |x− x′| is the distance
between spins at lattice sites x and x′. The interaction between two dipoles scales
as ∼ 1/r3

xx′ , suggesting that the coupling should be rather short ranged. But, as
the number of neighbours scales as distance cubed (or squared for 2D systems), the
effect is cancelled, and the interaction is in fact long-ranged. For a large system,
the above sum is quite hard to compute. Rather, in the micromagnetic limit of
large occupation numbers, we would like to replace the sum over spins at discretely
localized lattice sites by an integral where we instead consider the magnetization
m:

∑
x

(
(...) · Sx

)
→
∫
dx(... ·m). The total effective field due to the long-ranged

dipole-dipole interactions at position x is the self-interacting demagnetization field
hd(x), which gives the energy contribution

Hdemag = −
∫
dx

V
(hd ·m), (11)

where we have incorporated the relevant prefactors in the field. The demagnetizing
field will only for ellipsoidal geometries take a uniform value [66]. In a magnetic
material, the demagnetizing field will try to encapsulate the magnetic field lines
within the material. As a result, the field counteracts a spontaneous magnetization
of the system and will be aligned (at least to a certain extent) antiparallel to the
magnetization of the material.

For antiferromagnets, the dipole-dipole interactions are small because the net
magnetization is close to zero. The magnetic moments in checkerboard pattern
are already compensated by their neighbours because of the dominating exchange
coupling. The demagnetization energy can thus be considered as a higher order
correction to the free energy, similarly to quadratic terms in the magnetization arising
from the Heisenberg exchange or the magnetocrystalline anisotropy [67].
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2.6 Zeeman coupling

The Zeeman coupling is the interaction between a magnetic field and a body carrying
a magnetic moment, which can be of both intrinsic (spin) and orbital nature. For an
electron with intrinsic spin S in the presence of a magnetic field H, the single spin
Hamiltonian reads

HZE = −S ·H, (12)

where the prefactors related to the magnetic moment of the electron is absorbed into
the external field which now has units of energy. For an ensemble of electrons, the
total Hamiltonian is

HZE = −
∑
x

Sx ·H, (13)

In the micromagnetic limit of a bulk magnetization, the spin of the electron is re-
placed with the local magnetization m(x, t), and

∑
i →

∫
dx/V . The energy then

reads

HZE = −
∫
dx

V
(m ·H). (14)

The Zeeman coupling tries to align the spin of the electron with the magnetic field
by exerting a torque on it. This phenomena is utilized in several memory storage
and reading devices through the giant magnetoresistance effect (GMR) [68], where
the resistance is observed to substantially increase when applying a current through
an antiparallel alignment of ferromagnetic layers [16, 17].

2.7 The antiferromagnetic free energy

The above-mentioned coupling mechanisms will be the main constituents in the
antiferromagnetic free energy we will consider for the thesis. The free energy is to
be invariant under sub-lattice exchange and respect rotational invariance of the spin
vectors [48, 69]. With these requirements, the total antiferromagnetic free energy
takes the form

F =

∫
dx

V

(
A(∂in)2 + am2 −Kz(n · ẑ)2 − 2m ·H + 2d · (m × n)

+D
(
(ẑ · n)(∇ · n)− (n · ∇)(ẑ · n)

))
.

(15)
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We have re-scaled some of the interaction constants to smooth the notation for the
remaining part of the thesis. The apparent parity-breaking exchange terms from the
symmetric Heisenberg coupling are disregarded, and the free energy respects Cnν
symmetry.
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3
Chiral antiferromagnetic

textures

In the previous chapter we discussed some of the most fundamental interaction mech-
anisms and the resulting free energy functional of an antiferromagnetic system. The
interaction parameters span a multidimensional parameter space. In different regions
in the space of parameters, different antiferromagnetic phases exist. In this chapter
we start with the trivial antiferromagnetic ground state, and quickly increase the
level of complexity by considering chiral structures.

3.1 The homogeneous antiferromagnetic ground state

For both ferromagnetic and antiferromagnetic materials, a uniform order parameter
(the Néel field for antiferromagnets and the magnetization for ferromagnets) corre-
sponds to an exchange dominated free energy minima. The antiferromagnetic ground
state takes a homogeneous distribution n = ẑ, while the magnetization is identically
zero: m = 0. The arrangement of the magnetic moments in the ground state for both
ferromagnetic and antiferromagnetic materials is shown in Figure 1. The antiferro-
magnetic ground state is shown as a linear chain with neighbouring spins being an-
tiparallel. The staggered magnetization in the antiferromagnetic ground state takes
the same distribution as the magnetic moments in the ferromagnetic ground state.
The antiferromagnetic ground state ordering in a higher dimensional lattice can be
degenerate, depending on the lattice symmetry. After Louis Néel first addressed
the antiferromagnetic nature of substances consisting of ferromagnetic elements to
the local molecular field and the exchange interaction, the antiferromagnetic ground
state energies and wave functions became hot topics of theoretical interest [70, 71].

17



FM

AFM

Figure 1: The homogeneous ferromagnetic, abbreviated FM, and antiferromagnetic, ab-
breviated AFM, ground states. The arrows indicate the orientation of nearest neighbour
magnetic moments. The antiferromagnetic order parameter, the staggered magnetization,
will take on an identical distribution as the magnetization in a ferromagnetic system in the
ground state (top picture).

Despite the gloomy future predicted by Néel in his Nobel lecture in 1970 for the
feasibility of using antiferromagnets in applications [72], detecting antiferromagnetic
ground states in materials is now a popular area of research [73, 74].

If we start perturbing the antiferromagnetic ground state by an external magnetic
field, or there are several intrinsic interaction mechanisms present, we move from the
region in phase space where the antiferromagnetic order is the stable configuration
into regions with less trivial stable arrangements. One of those phases are the chiral
domain walls and skyrmions, which we will have a closer look at.

3.2 Domain walls

The subtle interplay of different energy contributions in Eq. (15) makes it ener-
getically favourable for the order parameter to take on a non-uniform distribution.
The exchange coupling is by far the strongest, and favours a uniform alignment of
the spins in both sub-lattices, with the magnetization in each sublattice opposite to
the other, Mα = −Mβ . For spins far apart, the exchange interaction is negligible
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as it drops off quickly when increasing the distance and is only present as a weak
chain effect. In a ferromagnetic material where the order parameter is the magnetiza-
tion, an energy penalty emerges for domain-free spin structures. The demagnetizing,
long-ranged dipole-dipole interactions tries to reduce the overall magnetization. As
a result, the conflicting interests prevents a uniform magnetization of the material.
Instead, a compromise consisting of domains with noncollinear magnetic moments to
reduce the total magnetization and at the same time preserve the local collinearity of
the spins without too much frustration are established [75, 76]. For an antiferromag-
netic material, however, the sub-lattice magnetizations are already compensated, so
ideally there should be no need to introduce energy penalties by splitting up into
domains with noncollinear orientation of the staggered magnetization. The dipole-
dipole interactions reducing the overall magnetization is irrelevant. Domain walls are
thermodynamically stable, but the entropy gain cannot compensate the energy cost
for splitting up into domains. One of the mechanisms that can be (partially) respon-
sible for the domain formation are magnetoelastic forces [77], induced by material
imperfections as dislocations and grain boundaries [78].

The region where the order parameter spatially reorient is called the domain
wall, with a characteristic width λDW. These are planar defects [48], meaning the
reorientation takes place along one spatial direction only. The width of this region is
determined by the relative strength of the anisotropy and the exchange interaction.
For the sake of argument, consider a 180° rotation between two domains with an
easy-axis along ẑ. A slowly varying texture will reduce the exchange energy cost of
the domain wall. On the contrary, the easy-axis anisotropy favours a reduced spatial
extension of the wall such that the area of a noncollinear order parameter with
the preferred crystallographic direction is reduced. If the order parameter rotates
helically around the axis connecting the two domains, it is called a Bloch wall, and
if it rotates around the out-of-plane axis, it is called a Néel wall, pictured in Figures
2 and 3, respectively. The type of rotation is dictated by the symmetry group of the
system considered [48].

If the material considered instead was ferromagnetic, and the arrows were in-
dicating the rotation of the magnetization, we observe that domain walls induce
magnetic surface charges σm on the edges. The Néel configuration will have surface
charges on the planes with unit normal ±x̂ and the Bloch type will have surface
charges on the planes with unit normal ±ŷ. The net stray field generated by sur-
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Figure 2: An antiferromagnetic Néel wall configuration. The colour of the arrows reflects
the orientation of the staggered magnetization with respect to the z-axis. Red arrows are
parallel to the z-axis, blue arrows are antiparallel. The order parameter rotates cycloidally
when moving from one domain with staggered magnetization +ẑ to the other domain with
staggered magnetization −ẑ. λDW is a typical length scale for the width of the domain wall.
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Figure 3: An antiferromagnetic Bloch wall configuration. The colour of the arrows reflects
the orientation of the order parameter with respect to the z-axis; blue arrows indicate when
the order parameter n is antiparallel to ẑ, while the red arrows show n parallel to ẑ. The
order parameter rotates helically when moving from one domain with n = +ẑ to the other
domain with n = −ẑ. λDW is a typical length scale for the width of the domain wall.
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face charges put up an energy penalty which is not present in an antiferromagnetic
material as it is the compensated staggered magnetization that reorients [32].

3.3 Skyrmions

For a magnetic field parallel to ẑ, the original Hamiltonian leading to the free energy
in Eq. (15) is invariant under rotations about this axis of symmetry [48]. Excitations
of the staggered magnetization answering this basal plane symmetry inherit vortex
structure. Such 2D, both delocalized and, more recently, localized structures have
been experimentally observed [44, 79]. The delocalization of the vortices reflects
the ambiguous orientation of the staggered magnetization far from the vortex core.
For a vortex, the staggered magnetization is parallel to the axis of symmetry at
the core and lies in the basal plane far from the centre orthogonal to the local
azimuthal direction. Localized vortices, or skyrmions, are excitations where the
staggered magnetization undergoes a rotation of 180° from the centre to the rim
of the skyrmion. An illustration of a staggered magnetization configuration for a
cylindrically symmetric skyrmion is provided in Figure 4.

Skyrmions, or the skyrmion lattice phase, is a topological stable magnetic exci-
tation of a material. The presence of skyrmions in spintronics and condensed matter
physics is a derivation from the original introduction to theoretical physics proposed
by Skyrme in 1962 [81]. He found that topologically protected irregularities in field
theory respect particle-like behaviour and properties such as (topological) charges
and phase transitions. The concept of skyrmions has been adapted widespreadly in
a vast amount of fields in physics, like quantum Hall phenomena [82], Bose-Einstein
condensates [83] and chiral vortex-like magnetization excitations [55]. After attain-
ing more theoretical and numerical attention in magnetic materials through the
1990s [84, 85], the first experimental evidence of the existence of such a phase was
reported in 2009 [55]. The skyrmion phase was detected in a ferromagnetic anti-
symmetric bulk magnet without a centre of inversion. More recently, it has been
identified in thin magnetic nanostructures too [25], and finally in antiferromagnetic
thin film structures [44]. Typical for these types of materials is the presence of the
asymmetric DMI, either bulk type or interfacial in the case of thin multilayers, induc-
ing vortex-like spin textures. In the limit of zero DMI, the Hamiltonian resemble the
non-linear sigma model [86], where such structures are thermodynamically unstable
and collapses when subject to magnetocrystalline anisotropies or magnetic fields [54,
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Figure 4: The Néel-type skyrmion stabilized by the interfacial DMI. The lower figure
shows the spatial orientation of the staggered magnetization. It is cylindrically symmetric,
with the order parameter pointing down in the core and up at the edge. The upper inset
shows how the staggered magnetization maps onto the unit sphere taking a hedgehog-like
configuration. The figure is reproduced with permission from Ref. [80].
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84, 87]. Hence, the DMI is necessary to stabilize the skyrmions.
The stability of skyrmions is encoded in their topology. The order parameter

(the magnetization for ferromagnetic systems and the staggered magnetization for
antiferromagnetic systems) cannot be smoothly deformed into other stable configu-
rations due to its topological features. We assign to this a topological number (or
charge), known as the skyrmion number, which is the number of times the order pa-
rameter maps the unit sphere. In the micromagnetic limit for a skyrmion in the x−y
plane, it is defined similarly for both ferromagnetic and antiferromagnetic systems
in terms of the appropriate order parameter [32, 88]:

Nsk = − 1

4π

∫
dx
(
n · (∂xn × ∂yn)

)
(16)

Also, we can assign a topological charge to each sublattice, where the staggered
magnetization in Eq. (16) is replaced by the sublattice magnetization [88]. Then,
Nsk,α = −Nsk,β = 1, establishing the topological protection.

We will consider skyrmions localized in the x−y plane. The cylindrical symmetry
of the skyrmions suggests that the polar angle Θ of the staggered magnetization only
contains a radial dependence and no azimuthal dependence: Θ = Θ(r). The next
assumption to make is that the azimuthal angle Φ of the spins is solely dependent on
the azimuthal angle φ of their in-plane position vector: Φ = Φ(φ). The latter allows
for different vorticity of the skyrmions. By this ansatz, the staggered magnetization
n(x) is parameterized as

n(x) = (sin Θ(r) cos Φ(φ), sin Θ(r) sin Φ(φ), cos Θ(r)). (17)

.
In addition to the skyrmion number, two other characteristics of the skyrmions are
necessary to fully describe them: the above-mentioned vorticity and the helicity.
While the vorticity is directly related to the skyrmion number, the helicity is deter-
mined by the type of DMI. The vorticity m is defined as

m =

[
Φ(φ)

]2π

0

2π
, (18)

and is the integer number of rotations the staggered magnetization projected onto
the x−y plane, i.e. the in-plane component, circumvents the out of-plane axis when
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m = −1 m = 1

Figure 5: The in-plane component of the staggered magnetization for two skyrmions of
vorticity m = −1 to the left, and vorticity m = 1 to the right. When moving clockwise
around ẑ, the in-plane component rotates clockwise for m = −1 and counter-clockwise for
m = 1.

rotating in the φ̂-direction. A clockwise rotation of the component yields m < 0 and
a counter-clockwise rotation of the component yields m > 0. This is illustrated in
Figure 5.

The helicity γ is defined by

Φ(φ) = mφ+ γ, (19)

and its value will be determined by minimizing the DMI energy of the skyrmion.
Using this ansatz, following Nagaosa and Tokura [9], we will compute the skyrmion
number and the DMI energy to see which configurations of m and γ are possible.

Carrying out the cross-product according to Eq. (16) and dotting the resultant
vector with n gives

n · (∂xn × ∂yn) =
1

r

dΘ

dr

dΦ

dφ
sin Θ. (20)

Integrating the above result over the area of the skyrmion in the limit r → ∞ and
using the definition of the vorticity we get
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Nsk =
m

2

[
cos Θ(r)

]r=∞
r=0

. (21)

Now the close relation between the skyrmion number and the vorticity is clear. If
we take the skyrmion to have spin down at its centre, θ(0) = π and spin up at its
boundary, θ(r → ∞) = 0, we find Nsk = m. Oppositely, with spin up in the centre
and spin down at the boundary, we get Nsk = −m.

If we compute the DMI energy density, we find for the interfacial case using Eq.
(6)

hint = D cos ((m− 1)φ+ γ)
(dΘ

dr
+
m

2r
sin (2Θ)

)
. (22)

If m 6= 1, both terms in Eq. (22) give zero contribution to the energy after integra-
tion over φ due to the orthogonality of the trigonometric system. Therefore, m = 1

is necessary to obtain a minima in this case. Minimization of the energy is then
obtained for γ = 0, π. Under the assumption of D > 0, the only remaining factor in-
fluencing the energy density is the profile of Θ, and whether its derivative positive or
negative. Explicitly, for the interfacial case we can have the two stable configurations
γ = 0 and spin down at core and spin up at boundary ( dΘ/dr < 0) or γ = π with
spin up at the core and spin down at the boundary (dΘ/dr > 0). In Figure 6, we
show the in-plane orientation of the staggered magnetization for different helicites.
We have included γ = ±π/2, which correspond to unstable configurations for this
type of DMI.

The remaining part to determine is the radial profile of the skyrmion: Θ(r). It
can be done by seeking the minima of the free energy of the antiferromagnetic system
in Eq. (15). The minima is obtained with claiming zero variation of the free energy.
The resulting Euler-Lagrange equation for Θ yields

d2Θ

dρ2
+

1

ρ

dΘ

dρ
− sin Θ cos Θ

ρ2
+

4D

πD0

sin Θ2

ρ
−
(

1− H2

H2
0

)
sin Θ cos Θ = 0, (23)

with ρ = r/x0, x0 =
√
A/Kz, H0 =

√
aKz and D0 = 4

√
AKz/π. D0 is the critical

value of the inhomogeneous DMI which stabilizes the skyrmion, H0 is the spin-flop
field and x0 is a typical length scale of the skyrmion [69]. We solve the equation with
boundary conditions Θ(0) = π,Θ(∞) = 0, using a shooting method with a 5th order
explicit Runge-Kutta integration routine and the secant method. The profile for
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γ = 0 γ = π

γ = −π/2γ = π/2

Figure 6: The in-plane staggered magnetization component for skyrmions of different
helicity. The two upper are thermodynamically stable configurations showing hedgehog-like
structure, while the two lower ones are unstable with vortex-like structure. They will be
stable phases for a different system symmetry.

D/D0 = 0.9, H/H0 = 0.3 is shown in Figure 7. If we increase the external magnetic
field to exceed the spin-flop field, the antiferromagnetic order is destroyed and the
spins start to flip to align with the strong external magnetic field. In this region of
parameter space, the sublattice magnetization is no longer compensated yielding a
nonzero total magnetization.
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Figure 7: The radial profile of the staggered magnetization for an antiferromagnetic
skyrmion. The profile is dictated by the differential equation Eq. (23), corresponding
to a minima of the antiferromagnetic free energy functional comprised by symmetric ex-
change coupling, inhomogeneous DMI, easy-axis anisotropy and an external magnetic field.
Θ is the angle between the staggered magnetization and ẑ, subject to boundary condition
Θ(0) = π,Θ(∞) = 0, where the latter condition is implemented by a shooting routine. The
parameter choice is D/D0 = 0.9, H/H0 = 0.3.
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4
Antiferromagnetic spin wave

dynamics
So far, we have treated time-independent antiferromagnetics in terms of interaction
mechanisms, material properties, phases and textures. In this chapter, we will ex-
plore the dynamical properties of antiferromagnets. The dynamics play a crucial part
in a wide spectra of novel application prospects [24, 49, 57, 89]. We mainly focus on
the collective excitation of the spins resembling a spin wave in the large occupation
number limit. To motivate for dynamical excitations, we start with a quantum me-
chanical introduction, before considering the micromagnetic limit of spin waves and
look at the dispersion relation around the homogeneous antiferromagnetic ground
state. Finally, we derive a new set of equations describing spin wave excitations
around an inhomogeneous chiral soliton.

4.1 The equations of motion for the order parameter and the mag-
netization

From a quantum mechanical point of view, the time evolution of the expectation
value of an observable F , 〈F 〉, is governed by the equation

i~
d 〈F 〉
dt

=
〈

[F,H]
〉

+ i~
∂ 〈F 〉
∂t

, (24)

where [F,H] is the commutator of F and the HamiltonianH. For the time-independent
spin operator S in the presence of a magnetic field H (with units of energy), we find
for the z-component according to Eqs. (12) and (24)

i~
d 〈Sz〉
dt

=
〈
−[Sz, SiHi]

〉
, (25)

Now, using the commutation relations for the spin operators (taken to be dimen-
sionless) [Sx, Sy] = iSz with cyclic permutation, the time evolution of Sz reads
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d 〈Sz〉
dt

=

〈
− 1

~i
(iHxSy − iHySx)

〉
=

1

~
(〈S〉× H)z, (26)

The magnetization mα of a (sub)lattice α can be defined as the expectation value
of the spins. Thus, Eq. (26) describes precessional motion of the magnetization
around some magnetic field. Denote that Eq. (26) upon treating the magnetization
as the expectation value of the spins, conserves the magnitude of the magnetization.
This is obtained by noting that for the magnitude to be conserved (m2

α = 1), we
need ṁα = Ω × mα. Then, d(m2

α)
dt ∝ mα · (Ω × mα) = 0, as required. Ω is the

angular velocity of the magnetization. A slow dynamics approximation is captured
by excluding possible higher order time-derivatives [15].

Phenomenologically, magnetic moments are known to align with the present ef-
fective field (like a compass needle does with the Earth’s magnetic field) [90]. The
torque Eq. (26) above cannot induce such motion. This was the motivation for
Landau and Lifschitz to introduce a damping term in the equation of motion for the
magnetization to obtain a more realistic equation:

dmα

dt
= −1

~
mα × H− α

~
mα × (mα × H). (27)

The Landau-Lifschitz (LL) equation above gives damped precessional motion around
the effective magnetic field H, as shown in Figure 8 for the magnetization mα. Later,
Gilbert conducted experiments on ferromagnetic sheets where he observed that the
precessional damping will be material dependent. Thus, a modification of the LL
equation is the Landau-Lifschitz-Gilbert equation

dmα

dt
= −1

~
mα × H + αGmα × dmα

dt
. (28)

The LLG equation follows directly from the LL equation under the substitution
~ → ~(1 + α2

G) and α/~ → αG/(~(1 + α2
G)) in the original LL equation. αG is the

Gilbert damping factor, which is a material dependent parameter [91]. The form
of the damping term resembles that obtained from a generic Rayleigh dissipation
function used to introduce friction in the Lagrange formalism. Originally, it was
the gyromagnetic ratio and not the inverse of the Planck constant that was used as
prefactor in front of the vector products. With our definition of the magnetic field,
we use ~ to retain consistency of units.
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Heff

mα

−∂tmα ×mα

−mα ×Heff

Figure 8: Precession of the magnetization mα around some effective field Heff . The
term −mα × Heff shows the change in magnetization without damping. −∂tmα × mα

is the Gilbert damping term, which acts as a torque on mα trying to align it with the
effective field. This causes a damped precession, where the magnetization spirals towards
the orientation of the effective field. The illustration is based on figure 2, chapter 1 in Ref.
[90].
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A more general starting point when deriving the LLG equation is to adapt a
full Lagrangian formalism and derive it from an action principle. This was first
done by Döring for ferromagnets [92]. However, in multi-sublattice substances such
as antiferromagnets the story is different. When we have two sublattices α, β, the
dynamics of each sublattice is described by the LLG Eq. (28), and the effective
field is Hα(β) = ∂F

∂mα(β)
, respectively. The damping parameter αG is assumed to be

identical for the two sublattices, despite the complex relaxation mechanisms and the
inter-sublattice couplings present in magnetic materials [93].

In spite of the opportunity of evaluating the dynamics of two sublattices in an
antiferromagnet, it is more convenient to look at the staggered magnetization n

and the magnetization m, and their respective dynamics. We obtain these new
equations of motion from a variational principle using the free energy functional in
Eq. (15) which we already have written in the generalized coordinates q = (n,m).
We apply Hamilton’s principle on the Euclidian action A =

∫
dtL({qi, q̇i}, t) where

L({qi, q̇i}, t) = K−F is the Lagrangian described by the set of general coordinates
{qi, q̇i}, K is the kinetic energy and F is the free energy. Henceforth we will disregard
dissipational terms and spin torque terms under the assumption of the material being
insulating.

The kinetic term arising quantum mechanically from the Berry phase is deeply
rooted to the vector potential of a magnetic monopole. As a full treatment of this is
beyond the scope of the thesis, we will not elucidate the topic any further, and refer
to Refs. [94–96] for a rigorous treatment. In the micromagnetic limit, the kinetic
term reads [50]

K = 2~
∫
dx
(
m · (ṅ × n)

)
. (29)

The equations of motion for the magnetization and the Néel vector are obtained by
variation of the action δqA = 0 with respect to q = (n,m). We obtain a coupled
set of equations of motion for the magnetization and the order parameter:

ṅ =
1

2~
n × δF

δm
, (30)

ṁ =
1

2~
n × δF

δn
+

1

2~
m × δF

δm
, (31)
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where we have made use of the orthogonality properties of n and m. Eqs. (30) and
(31) are the antiferromagnetic counterparts to the single-lattice LLG equation, and
are the main tools we need to study antiferromagnetic spin waves.

When carrying out the functional derivative of the free energy and the cross
products, we find from Eq. (30)

m =
~
a

ṅ × n− 1

a
n × (n × H)− 1

a
n × d. (32)

We denote that the magnetization is in fact a slave variable of the order parame-
ter, and both its static and dynamic behaviour is fully dictated by n. The static
equilibrium solution to the equation above, m0, is given by

m0 = −1

a
n × (n × H)− 1

a
n × d (33)

which yields a nonzero magnetization even in the absence of external perturbations
canting the sublattices with respect to each other [69]. In the absence of an external
magnetic field and the homogeneous DMI, the magnetization is identically zero.
Still, a noncollinear staggered magnetization is possible. As the magnetization is
fully dictated by the order parameter as it slowly tracks the variations of the Néel
vector captured by the temporal first order derivative, we can construct an equation
with only the order parameter being the unknown variable.

4.2 Spin waves

We can separate the magnetization dynamics into two regimes in what concerns how
the amplitude of the order parameter varies. For instance, in ferromagnetic materials
with large amplitude oscillations, we observe phenomena such as coherent magnetiza-
tion reversal in single-domain magnets [97] and ultrafast precessional magnetization
reversal in soft nanomagnets [98]. In antiferromagnetic multiorbital systems excited
by lasers, we also find large amplitude oscillations of the order parameter, originating
from the Coulomb interaction [99].

The other limit, which we will consider, is the small amplitude oscillation limit.
Such oscillations can manifest by various perturbation mechanisms. A perpendicu-
larly injected spin current can for instance excite an anisotropic easy-plane antifer-
romagnetic bi-layer of Pt and NiO to the THz-regime by the spin-transfer torque,

33



which effect (surprisingly) does not cancel by the compensation of the two sublat-
tices [100]. Other excitation techniques demonstrated are oscillating magnetic fields
in Dzyaloshinskii-Moriya coupled easy-axis antiferromagnetic field effect transistors
[101] and temperature gradients in synthetic multilayered sandwich structures in
antiferromagnetic thin films [102].

Formally, we treat this by splitting the order parameter n(x, t) into time-dependent
small excitations δn⊥(x, t) around some static equilibrium texture n0(x):

n(x, t) = n0(x) + δn⊥(x, t). (34)

The equilibrium part is determined by the minimization of the system free energy,
and can be both homogeneous and position-dependent, as discussed in Chapter 3.
Small amplitude deviations means that the magnitude of the excitation field is much
smaller than the background texture: |δn⊥| � |n0|. Also, to first order, the devia-
tions are orthogonal with respect to the equilibrium configuration: n0(x)⊥δn⊥(x, t).
In the micromagnetic limit of a large occupation number they resemble a spin wave
[15], illustrated in Figure 9. The arrows symbolizing the staggered magnetization
precess with a fixed phase around ẑ with a wavelength λsw. These spin waves, or
magnons, are particle-like excitations of the spin configuration, just like phonons
are quantized thermal vibrations of the lattice, with a quantized linear and angular
momentum. The angular momentum of the magnons are ~, meaning they are spin-1
particles subject to Bose statistics [64].

Spin waves incident on a soliton texture transfers linear and angular momentum
inducing soliton dynamics unless the pinning potential is strong enough to sup-
press the motion. The soliton dynamics, typically governed by a variation of the
Thiele equation, has been an on-going topic of research for a while, including both
skyrmions, domain walls and vortices [36, 49, 69, 103, 104]. We are mainly inter-
ested in the reactive part of the soliton-magnon interactions, namely the influence
of the soliton on the magnons. When entering a region of a noncollinear texture,
the effective potential felt by the magnons is altered, and scattering phenomena and
magnon trapping can take place.

To obtain the equation of motion for the spin waves, we substitute in our ansatz
Eq. 34 into the equations of motion Eqs. (30) and (31) after deriving the effective
forces δF

δn ,
δF
δm . After some tedious manipulations we find
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λsw
Figure 9: A visual representation of a spin wave comprised by strongly coupled spins.
The red line shows the wave behaviour of the precessional motion of the order param-
eter, which we have taken to be aligned with ẑ, while the black arrows show the small
deviations δn⊥(x, t), which are orthogonal to the static equilibrium. The precession is
counter-clockwise with a given wavelength λsw. The figure is inspired by figure 11.5 in Ref.
[64].

~
a
δn̈⊥ =

1

~
A∇2δn⊥ −

1

~
Aδn⊥(∇2n0 · n0)− 1

~
Kz(n0 · ẑ)2δn⊥ +

1

~
Kz(δn⊥ · ẑ)ẑ

+
1

~
D(∇ · n0)(n0 · ẑ)δn⊥ −

1

~
D(∇ · δn⊥)ẑ − 1

~
D((∇(ẑ · n0) · n0)δn⊥

+
1

~
D∇(ẑ · δn⊥) +

2

a
n0 × δṅ⊥(H · n0) +

1

a
n0 × δn⊥(Ḣ · n0) +

1

~a
(H · n0)2δn⊥.

(35)
We have disregarded all terms that are higher order in the excitation fields as we are
only interested in the equation of motion to first order in the deviations. Further-
more, we have disregarded all terms that are of zeroth order in the excitation field.
The reason is that the solution δn⊥(x, t) = 0 is a perfectly allowed solution, both
physically and mathematically, which means that in the limit of zero spin wave exci-
tations, the zeroth order terms combine to zero to lowest order. We have made use
of the orthogonality property of δn⊥(x, t) and n0. For the derivation, see Appendix
B. This is the full equation of motion for spin wave excitations to first order around
a static texture stabilized by an interfacial-like DMI in the presence of an external,
time-dependent magnetic field with the crystallographic easy-axis being ẑ.
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4.3 Spin wave excitations of the homogeneous ground state

The most fundamental scenario are spin wave excitations around some static uniform
background texture which is not position-dependent: n0 = ẑ. We seek plane wave
excitation solutions around this equilibrium, meaning we have the spin wave ansatz

δn⊥(x, t) = (δnxx̂+ δny ẑ)e
i(k·x−ωt), (36)

with k = kxx̂ + kyŷ being the wave vector. Here, the wave vector is limited to the
x− y plane by the first order orthogonal relation, ω is the spin wave frequency and
δny, δnx are the amplitudes of the transverse excitations. We will find the dispersion
relation and discuss the impact of different coupling mechanisms on the spin wave
dynamics. First, in the absence of DMI, we observe that all the spatial and temporal
derivatives in Eq. (35) rule out the time- and position-independent ground state,
leaving us with the following equation of motion:

~2δn̈⊥ = aA∇2δn⊥ − aK(n0 · ẑ)2δn⊥ + 2~Hn0 × δṅ⊥ + δn⊥H
2 (37)

where we have redefined H = H · n0 and taken the magnetic field to be constant in
time. By substituting in the ansatz for the spin wave excitations Eq. (36) and the
staggered magnetization ground state ẑ, we find the dispersion relation

ω∗ =

√
(k∗)2 + K̃)± 1. (38)

We have introduced the dimensionless frequency ω∗ = ω/ω0 with ω0 = H/~, the
dimensionless wavevector k∗ = |k|/k0, with k0 = H/

√
aA and the dimensionless

anisotropy K̃ = aK/H2. Back-substituting the expression for the eigenfrequency
into the equation of motion yields a phase shift of π/2 between the two excita-
tion directions: δnx = δnye

∓iπ/2. The highest-lying branch, with the plus sign
in the dispersion relation Eq. (38), correspond to plane wave excitations where
the y-component is −π/2 out of phase with the x-component. Hence, the wave is
right-circularly polarized. For the lower-lying branch, with the minus sign in the
dispersion relation, the y-component leads the x-component with π/2, resembling a
left-circularly polarized wave. We plot the dispersion relation for the left and right
polarized waves in Figure 10. The presence of the magnetic field lifts the degen-
eracy of the right-circularly and left-circularly polarized waves. In the absence of
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Figure 10: Dispersion relation for ω∗ as a function of k∗, which is the dimensionless fre-
quency ω in units of ω0 = H/~ and the dimensionless wavevector k in units of k0 = H/

√
aA.

The dashed black line is the dispersion relation in presence of only symmetric exchange cou-
pling. The red line is the dispersion relation if we turn on the easy-axis anisotropy. The
right-circularly and left-circularly modes are degenerate. When turning on the magnetic
field, the degeneracy is lifted and the blue line shows the right-circularly polarized waves,
while the lower green line shows the left-circularly polarized waves. We have set K̃ = 2.

an external magnetic field, the modes are degenerate, indicated by the red dotted
line. In the limit of zero anisotropy, the dispersion relation is linear in |k|, shown by
the dashed black line. The linear, relativistic behaviour is a characteristic feature of
antiferromagnetic spin waves. For ferromagnetic systems, the dispersion relation is
quadratic, and such systems cannot have both linearly and circularly polarized spin
waves.

Now, we will consider systems having a nonzero DMI in the free energy. When
the ground state n0 = ẑ and the spin wave excitations are in the x − y plane, the
presence of the DMI is in fact insignificant to the dispersion relation, as can be seen
from Eq. (35). The reason is that the lowest order, nonzero DMI contributions to
the equation of motion scales as O(δn2

i ), i = (x, y), and are thus negligible. For
the DMI to alter the dispersion relation, we need another form than the interfacial
DMI considered above, or another ground state than n0 = ẑ. Consider now instead
n0 = ŷ as the ground state. Now, the order parameter lies within the plane, still
with orthogonal spin wave excitations and the form of the interfacial DMI as in Eq.
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(35). After substituting in the spin wave ansatz (now with excitations along x̂, ẑ)
and the ground state ŷ, and rewriting it into an equation for ω, yields

(
ω ∓ H

~

)2
=

1

~2

(
aAk2 + aK ±Dkx

)
(39)

Back-substituting the expression for ω in the equation of motion gives δnx = e∓iπ/2δnz.
Hence, for the highest-lying branch (most energetic), the z-component is −π/2 out
of phase with the x-component, meaning we have a right-circularly polarized wave.
For the lower-lying branch, the z-component leads the x-component by π/2, repre-
senting a left-circularly polarized wave. This is the same as we get when considering
the ground state to be ẑ and rotating the inhomogeneous DMI vector to lie in x− z
plane. The dispersion relations for these two branches, together with the DMI-free,
zero field degenerate branch, are shown in Figure 11. We plot ω∗ as a function of the
dimensionless wave vector along x, using K̃ = 2 and the ratio D/A = 1 to enhance
the effect of having a nonzero DMI. Typically, A will dominate D. The presence of
the DMI now shifts the dispersion relation along one of the wave vector directions
(here along kx). They are still linear for large values of k(kx), but no longer degen-
erate when turning off the magnetic field. Along the other wave vector direction,
the dispersion relation is not altered, so the symmetry is broken. This has been
experimentally observed for antiferromagnetic magnons recently [105].

4.4 Spin wave excitations of inhomogeneous chiral textures

We have seen that a non-trivial position-dependent texture is thermodynamically
stable and experimentally realizable. In Chapter 4.3 we looked at plane wave solu-
tions to the small-amplitude excitations of the staggered magnetization in a (global)
plane orthogonal to the texture. Now, we increase the complexity by considering
spin wave excitations around an inhomogeneous chiral staggered magnetization in
the presence of both Heisenberg exchange, DMI, anisotropy and an external time-
dependent magnetic field.

When the order parameter spatially reorients, we need the plane containing the
perpendicular excitations to spatially reorient accordingly to remain orthogonal to
the texture to lowest order in the excitation fields. Our ansatz for the order param-
eter will be that of Eq. (34) with the equilibrium texture n0 given by Eq. (17). We
define the local spherical coordinate frame with unit vectors r̂, θ̂, ρ̂ according to
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Figure 11: Dispersion relation ω∗, with ω∗ = ω/ω0 and ω0 = H/~, for right-circularly
polarized (blue line) and left-circularly polarized (green) spin waves as a function of k∗x =

kx/k0 with inhomogeneous DMI in the presence of anisotropy and an external magnetic field
along ẑ. We have put the ratio D/A = 1, and K̃ = 2. Compared to the ky-direction, the
dispersion relation is shifted along kx. The red dotted line is for illustration and shows the
degenerate dispersion relation for the spin waves in the absence of DMI and external fields.

r̂ = (sin Θ cosφ, sin Θ sinφ, cos Θ),

θ̂ = (cos Θ cosφ, cos Θ sinφ,− sin Θ),

φ̂ = (− sinφ, cosφ, 0),

(40)

where the components are in the (x, y, z)-direction. Clearly, n0 = r̂ now, meaning
the linear deviations are confined to the plane spanned by θ̂, φ̂. Hence, we can expand
the staggered magnetization according to

n(x, t) =

(
1− h2

2
(n2
θ(x, t) + n2

φ)

)
r̂ + h(nθ(x, t)θ̂ + nφ(x, t)φ̂) (41)

where h is some small expansion parameter, as in Ref. [49]. We are only interested
in first order deviations, meaning the deviations to lowest order in h are

δn⊥(x, t) = hnθ(x, t)θ̂ + hnφ(x, t)φ̂ (42)
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We call nφ the in-plane field because these excitations only live in the basal plane of
the skyrmion by the definition of φ̂. Similarly, we call nθ the out-of-plane field as it
is the excitation direction which holds the only component orthogonal to the basal
plane. A visual representation of how these fields relate to some static equilibrium
n0 is provided in Figure 12.

As a side note, this is in fact similar to what done in Ref. [106] for domain walls,
where a global basis which span the plane of the orthogonal excitations (at every
point in space) is introduced. They are ê1(x) = ∂n0

∂Θ , ê2(x) = 1
sin Θ

∂n0
∂φ , ê3 = ê1× ê2 =

n0. By our definition of n0, we have ê1 = θ̂, ê2 = φ̂, ê3 = r̂ = n0, i.e. the two usual
ways of constructing the local coordinate frame is equivalent.

A main obstacle with the local redefinition of the coordinate frame, is that the
unit vectors Θ̂, r̂, φ̂ are position-dependent, too. When carrying out the spatial
derivatives arising from the DMI and the symmetric exchange coupling, this needs
to be accounted for, which makes the computation of the equations of motion for
the fields somewhat more complicated. When carrying out the derivatives, the cross
products and the scalar products using the ansatz

nθ(x, t) = nθ(x)e−iωθt, nφ(x, t) = nφ(x)e−iωφt, (43)

we find, using trigonometric identities and combinations of the component-wise equa-
tions from Eq. (35), a coupled set of Schrödinger-like equations. For the in-plane
field nφ we get

ω2
φ~2

a
nφ =

(
A
(
−∇2 − (∂rΘ)2 +

cos2 Θ

r2

)
+Kz cos2 Θ−D

(sin 2Θ

2r
+ ∂rΘ

)
− H2

a
cos2 Θ

)
nφ

−
((2A cos Θ

r2
− D sin Θ

r

)
∂φ −

i2~Hω cos Θ

a
+

~Ḣ cos Θ

a

)
nθ,

(44)
while we for the out-of-plane field we obtain the Schrödinger-like equation

ω2
θ~2

a
nθ =

(
A
(
−∇2 +

cos 2Θ

r2

)
+Kz cos 2Θ− D sin 2Θ

r
− H2

a
cos2 Θ

)
nθ

+

((2A cos Θ

r2
− D sin Θ

r

)
∂φ −

i2~Hω cos Θ

a
+

~Ḣ cos Θ

a

)
nφ.

(45)
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Figure 12: The orthogonal spin wave excitations nφ, nθ shown as black arrows around the
static order parameter n0 pictured as the black/blue arrow. n̂ is the unit normal of the
blue plane of which the spin wave excitations are confined to. The light red arrows show
the oscillating behaviour of the fields. n0 is taken along an arbitrary direction, and as the
staggered magnetization changes, so does the plane and the excitation directions. Both nφ
and nθ lives in the plane.
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There is no trivial route to for instance decouple the two equations to simplify the
system when looking for analytic solutions. In the ferromagnetic case of magnon
excitations around a skyrmion [107] and for antiferromagnetic domain walls with
magnon excitations [49, 106], one can construct the field ψ± = nφ ± inθ (n→ m for
ferromagnets) and find a single Schrödinger-like equation Eψ± = Ĥψ±. If we rewrite
our system into a matrix equation, we observe that the off-diagonal elements in the
potential matrix are similar to each other. However, the diagonal potential elements
are substantially different, not allowing us to rewrite the system into a more compact
form without making some assumptions. Instead of looking for a full general solution
to the Schrödinger-like equations, we will look for particular solutions, sub-scenarios
and some limiting behaviour, both for the system size and the spin waves. This will
be treated carefully in the next chapter.
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5
Eigenspectra and eigenmodes

for magnons around the
antiferromagnetic skyrmion

In this chapter we will examine the new set of Schrödinger-like equations derived in
the previous chapter. As the radial-dependence of the antiferromagnetic skyrmion
requires a numerical solution, and the symmetry of the equations are reduced com-
pared to antiferromagnetic domain wall or ferromagnetic skyrmion excitations, an
exact analytic result is not possible. We could, as done for the insulating ferromag-
netic skyrmion excitations [107], substitute an analytic ansatz mimicking the profile
of Θ, but the reduced symmetry do not allow us to construct single field equations.
Instead, we will take on a numerical diagonalization procedure and consider some
limiting behaviour.

5.1 Dimensionless equations and magnon ansatz

As we have discussed earlier, the Hamiltonian at hand is invariant under rotation
about the z-axis. The azimuthal variation of the in-plane and out-of-plane field
has to preserve this invariance. That is, 2π-periodic boundary conditions in φ:
nθ(φ)(φ) = nθ(φ)(φ + 2πm), where m is an integer. Following papers on antiferro-
magnetic delocalized azimuthally symmetric vortices which encounter a somewhat
similar structure for the Schrödinger-like equations [108–110], we make the generic
ansatz
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nφ(ρ, φ) =
∞∑

m=−∞
nφ,m(ρ)Fm(φ), nθ(ρ, φ) =

∞∑
l=−∞

nθ,l(ρ)Gl(φ). (46)

where we have introduced the azimuthal functions Fm(φ) = aeimφ+be−imφ, Gl(φ) =

i(aeilφ − be−ilφ) with a, b arbitrary constants and l,m ∈ Z. This way of introducing
the azimuthal numbers m, l allow for degeneracy of modes ±(m, l), which is not
the case for ferromagnetic skyrmions [107] nor ferromagnetic vortices [87, 111, 112].
Denote that in general the two azimuthal numbers m, l are independent.

Regarding the inhomogeneous chiral texture for which we derived the new set of
Schrödinger-like equations, we have not yet assumed any radial profile. The param-
eterization of the staggered magnetization introduced in Eq. (17) used to describe
skyrmions is in fact a fairly general parameterization as we take two generalized
angles to describe the unit vector. Our assumption for the antiferromagnetic texture
is that it takes on the skyrmion profile considered in Chapter 3. To confirm that the
skyrmion profile we have arrived at is in fact the true profile of the order parameter,
we need to perform a time integration of a randomly oriented set of spins localized
at discrete lattice sites in the presence of the coupling mechanisms introduced in
Chapter 2, and see if the order parameter takes on such a profile. As this is beyond
the scope of the thesis, we (safely) assume that the skyrmion at hand is identical or
close to identical to the real antiferromagnetic skyrmion.

While applying an oscillating external magnetic field is a route to excite spin
waves in an insulating material for which currents are inappropriate, it is not needed
to stabilize the chiral skyrmion texture we consider. Hence, in the interesting region
close to the skyrmion, we can disregard the external magnetic field in Schrödinger-
like equations Eqs. (44) and (45) for the in-plane and out-of-plane fields. Making
the equations dimensionless and substituting in our ansatz Eq. (46) for the magnon
wave functions yield

ω2
φ

ω2
0

nφ =

(
−∇2

ρ − (∂ρΘ)2 +
cos2 Θ

ρ2
− sin 2Θ

2ρ
− ∂ρΘ + kz cos2 Θ

)
nφ

+
1

ρ2

∑
m

(
m2Fm nφ,m

)
+

(
2 cos Θ

ρ2
− sin Θ

ρ

)∑
l

(lFl nθ,l),

(47)

and
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ω2
θ

ω2
0

nθ =

(
−∇2

ρ +
cos 2Θ

ρ2
− sin 2Θ

ρ
+ kz cos 2Θ

)
nθ +

1

ρ2

∑
l

(
l2Gl nθ,l

)
+

(
2 cos Θ

ρ2
− sin Θ

ρ

)∑
m

(mGm nφ,m) .

(48)

We have introduced a characteristic frequency of the system, ω0 =
√
aD2/~2A,

the reduced anisotropy kz = KzA/D
2, a typical length scale λsky = A/D and the

dimensionless radial coordinate ρ = r/λsky.

5.2 Azimuthally symmetric modes

The angular quantum numbers m, l couples the Schrödinger-like equations. Hence,
for a system in the angular ground state, that is m = l = 0, the equations decouple,
and the transverse excitation fields do not feel the presence of each other. These
wave functions are azimuthally symmetric, and obey radial equations similar to
the radial part of the wave function for an electron in the H-atom: Eθ(φ)nθ(φ) =

Ĥθ(φ)nθ(φ). The Hamiltonian is Ĥθ(φ) = −∇2
ρ + Vout−of−plane(in−plane), with the

out-of-plane potential Vout−of−plane = cos 2Θ/ρ2 − sin 2Θ/(2ρ) + kz cos 2Θ and the
in-plane potential Vin−plane = −(∂ρΘ)2 + cos2 Θ/ρ2 − sin 2Θ/ρ − ∂ρΘ + kz cos2 Θ.
The decoupling of the equations for the lowest angular modes is a distinct feature of
antiferromagnets, a feature which is not necessarily present in ferromagnetic systems
[110, 112]. The reason is that the coupling of the in-plane and out-of-plane modes
are only of azimuthal origin. We have introduced the dimensionless eigenvalues
Eθ(φ) = ω2

θ(φ)/ω
2
0.

Decoupling of the two excitation modes allows for different eigenspectra for the
in-plane and out-of-plane polarization directions. As the effective potentials are
different, we could have that spin waves incident on the skyrmion will be polarized
along either φ̂ or θ̂ after passing through the skyrmion area. Far from the skyrmion,
both potentials are constant, and we recover the usual dispersion relation for a
uniform staggered magnetization. These effects are similar to that of spin waves
excitations of an antiferromagnetic domain wall with nonzero DMI [36].

The effective potentials experienced by the magnon excitations are determined
by the numerical solutions of Eq. (23). We have shown the potential alongside
some of the wave function solutions in Figures 14, 15, 19, 20, 24 and 25 for different
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values of kz. For now, we only consider some properties of the potentials, and we
will come back to and discuss more thoroughly how the wave function solutions and
their eigenvalues relate to the potentials. A distinct property of Dzhyaloshinskii-
Moriya coupled antiferromagnetic systems emerges when looking at the effective
potentials: due to the asymmetry in this coupling mechanism, the potentials for
the in-plane and out-of-plane excitations are now fundamentally different in terms
of the texture-dependent terms. Yet, both effective potentials approach a constant
value far from the skyrmion core and goes to infinity at the core. The reason is that
in continuum theory, the core of the skyrmion will be a singularity. The singular
behaviour introduces a problem for energy calculations for vortex- or skyrmion-like
solitons, which usually have been avoided by introducing some small cut-off distance
[113–115].

The in-plane wave functions see a potential well when moving towards the skyrmion
from infinity, which is attractive. The depth of the well is dependent on the relative
strength of the exchange coupling, DMI and anisotropy, i.e. the value of kz. The
larger the anisotropy or symmetric exchange is compared to the asymmetric DMI,
the deeper the well. Irrespective of kz, the potential reaches a minima at ρ ≈ 3.5,
where Vin−plane(ρ) < 0. Furthermore, the global minima of the in-plane potential,
Vmin, appears to be independent of the choice of kz.

For the out-of-plane excitations, the effective potential diverges close to the
skyrmion core for all values of kz. Similar to the in-plane potential, the poten-
tial approaches a constant far from the skyrmion core. This constant value is solely
determined by the value of kz: Vout−of−plane(ρ → ∞) = kz. Another similar fea-
ture for the out-of-plane potential is that they also have global minima cusp. As
opposed to the in-plane potentials, the value of kz seems to strongly influence both
the depth of the potential well and the minimum value of the potential. We observe
that Vmin ≈ −kz for the out-of-plane potential, which is different to the in-plane
potential where Vmin was independent of kz. The well region of the potential is at-
tractive, allowing for the existence of local modes in this region. The same applies
for the in-plane modes, as the potential minima is smaller than the asymptotic value
of the potential far from the skyrmion core.

To solve the eigenvalue equations, we will use a numerical diagonalization routine
to explicitly find the eigenspectra and the belonging eigenstates in the micromagnetic
limit. The skyrmion profile Θ(ρ) is numerically determined by the 5th order Runge-
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Kutta shooting method mentioned in Chapter 3.3. The eigenfrequencies ω and the
eigenstates are calculated using the numpy Linear Algebra library in Python. The
kinetic part of the Hamiltonian holding spatial derivatives is set-up by a second order
local truncation error procedure. We find the eigenfrequencies and eigenstates for
three different values of kz to see how the texture-dependent potential influences the
magnon behaviour.

We discover that there is a set of eigenfrequencies with belonging eigenfunctions
that solves the decoupled Schrödinger-like equations. To label the ground state,
the first excited state and so on, we assign to the radial wave functions the radial
quantum number nr = 0, 1, 2, ..., analogous to the radial quantum number in the
H-atom. We discuss properties of the spectra and modes being the same for all three
values of the reduced anisotropy in Chapter 5.2.1, and address particular differences
and features in the succeeding chapters.

5.2.1 Anisotropy parameter kz = 0.1

In Figure 13 the in-plane and out-of-plane eigenfrequencies in units of ω0 are shown,
where we have included frequencies up to nr = 9. The in-plane eigenfrequencies
are lower than the out-of-plane frequencies for a given radial number. When in-
creasing nr, the difference between the in-plane eigenfrequency and the out-of-plane
eigenfrequency decreases. The inset in the lower right corner with the 100 lowest-
lying frequencies shows that there is a (close-to) linear relationship between the
eigenfrequencies and the radial quantum number: ω = ω0(anr + b). a, b are fit-
ting parameters. The frequency quanta is thus approximately ω0a, and the bosonic
magnons with energy ~ω shows the same behaviour as the 1D harmonic oscillator.
The energy increases in quanta proportional to the excitation number nr. The line
is green because the red crosses and the blue dots merge together as the resolution
is reduced. In Figure 13 we have not included the nr = 0, 1 in-plane frequencies.
The reason is that the eigenvalues of these states Eφ = ω2

φ/ω
2
0 is negative as can be

seen from Figure 14 and 16, meaning we have a purely imaginary eigenfrequency for
these modes.

Figures 14 and 15 show the effective in-plane and out-of-plane potential for kz =

0.1 seen by the magnons, respectively. Alongside the in-plane potential, we have
inserted the in-plane states nr = 0, 1, 4, 6, while we have inserted the nr = 0, 1, 3, 5

out-of-plane states in Figure 15. It is the eigenvalue, and not the eigenfrequency,
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Figure 13: The in-plane and out-of-plane eigenfrequencies ω in units of ω0 up to nr = 9 for
reduced anisotropy kz = 0.1. The nr = 0, 1 in-plane eigenfrequencies are not included as Eφ
is negative for nr = 0, 1. The in-plane states have lower frequencies than the corresponding
out-of-plane states for same level of excitation nr. The relative difference decreases for
increasing nr. The inset in the right corner shows an extension of the spectra up to nr = 100.
The blue dots and red crosses for the out-of-plane and in-plane frequencies merge together
into one green line due to limited resolution on the axes. We observe a linear relationship
between the frequency and the radial quantum number: ω ∝ nr.
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that we can compare to the potential according to Eqs. (47) and (48). Hence, the
black dotted lines show the eigenvalue levels Eφ and Eθ for increasing values of
nr. We find that the in-plane and out-of-plane states that have eigenvalues larger
than the asymptotic value of their respective texture-induced potentials far from the
skyrmion core, Vin−plane(ρ → ∞) = Vout−of−plane(ρ → ∞) = kz, are linear close
to the skyrmion core and undergoes decaying oscillations when moving away from
the centre. They have real eigenfrequencies and represent travelling waves. We also
discover a bound mode, the nr = 0 out-of-plane state, which is localized close to the
skyrmion and trapped by the potential well.

nr = 0

nr = 1

nr = 4

nr = 6

Figure 14: The in-plane potential Vin−plane = cos2 Θ
ρ2 − (∂ρΘ)2− sin 2Θ

2ρ −∂ρΘ+kz cos2 Θ for
anisotropy parameter kz = 0.1 as a function of ρ. The insets are the in-plane wave functions
nφ,m=0 plotted as a function of ρ. The black dotted line shows the corresponding eigenvalue.
The lowest inset is the ground state nr = 0 with Eφ = −1.27. The second lowest inset is
the 1st excited state with Eφ = −0.15 and nr = 1. The next inset is the 4th excited state
with Eφ = 1.10, nr = 4. The uppermost inset is the 6th excited state with Eφ = 2.36 and
nr = 6. The two latter show delocalized behaviour compared to the two former modes.

We can make an analogy to the H-atom for the travelling waves and the bound
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nr = 0

nr = 1

nr = 5

nr = 3

Figure 15: The out-of-plane potential Vout−of−plane = cos 2Θ
ρ2 − sin 2Θ

ρ + kz cos 2Θ for
anisotropy parameter kz = 0.1 as a function of ρ. The insets are the out-of-plane wave
functions nθ,l=0 plotted as a function of ρ. The black dotted lines show the corresponding
eigenvalue. The lowest inset is the ground state with Eθ = 0.03 and radial quantum number
nr = 0, having a localized appearance. The second lowest inset is the 1st excited state with
Eθ = 0.31. The next inset is the 3rd excited state with Eθ = 1.09. The uppermost inset is
the 5th excited state with Eθ = 2.15. The three latter ones are delocalized.

modes discovered here. The bound magnons do not have enough energy to escape
the potential trap and are captured by the skyrmion. This is analogous to the
bound electron states of the H-atom. When the energy is increased in terms of the
eigenfrequency above a certain threshold, which we name the ionization energy, the
magnons become unbound to the skyrmion potential, similarly to ionized electrons.
The ionization energy for the magnons is ~ω0

√
kz. This threshold is the same for

both the in-plane and out-of-plane modes.
As mentioned above, the in-plane ground state and the first excited state have

negative eigenvalues, yielding purely imaginary eigenfrequencies ωφ = ±i
√
Eφω0.

By our ansatz nφ ∝ e−iωφt, clearly the sign is of massive importance; the minus
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sign results in exponentially damping of the magnon excitations, while the plus sign
induces exponentially growth of the amplitude. If there is some initial condition
leading to the exponential damping of the magnons, we can simply prepare the
system with the same initial conditions but with the magnon velocities reversed,
which leads to the instability. In the theory we have adapted, the modes appear to be
equally likely, with no indication of whether the unstable (usually explained by being
in a region of parameter space where the solution at hand being thermodynamically
unstable) or the stable mode is the physical solution. We must address this carefully,
and we will look at some physical interpretations of such solutions.

The effective radial 1D Schrödinger-like equations for the in-plane and out-of-
plane magnons we have discovered are very similar to magnon excitations around
an antiferromagnetic easy-axis domain wall [49]. By analogy, we can interpret imag-
inary eigenfrequencies in terms of localized "Goldstone modes". Such modes were
also introduced for imaginary eigenfrequencies of the zero wavevector mode in the
ferromagnetic Bloch wall [116]. For these chiral textures with elementary excitations,
bound states and travelling waves were also discovered, similarly to the antiferro-
magnetic skyrmion studied here. One could project away the Goldstone modes by
allowing for a time-dependent position of the solitons, meaning the magnons induce
antiferromagnetic and ferromagnetic domain wall motion. Applying the same ar-
gument here, the apparent "Goldstone modes" could be understood as a collective
excitation of the skyrmion, leading to translational displacement of the skyrmion as
a whole.

Another way of interpreting the results is in terms of resonance phenomena and
damping. As a motivation, the net effect of having a nonzero Gilbert damping term
in the equations of motion for the antiferromagnetic domain wall leads to an explicit
term in the dispersion relation being purely imaginary with a minus sign in front
[49]. This is equivalent to having ωφ = −i

√
Eφω0, which also leads to an exponential

damping as time runs by. However, we have disregarded phonon-magnon interactions
giving rise to the Gilbert damping term which acts to reduce the magnon density,
and we have to address the exponential decay (and growth) as time elapses by some
other damping mechanisms.

One explanation could be related to magnon Landau damping and inverse-
Landau damping, analogous to electrons in plasma. The beam-plasma modes of
an electron beam traversing a region of plasma with an neutralizing ion background
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not interacting with the electrons has a dispersion relation with a conjugate pair
of complex eignefrequencies, similar to the conjugate pair we found for the magnon
excitations around the antiferromagnetic skyrmion, leading to a temporal unstable
mode with exponential growth and one mode with exponential decay [117]. We will
simply outline the idea for determining which mode is physically plausible. The
eigenmodes are explained by kinetic theory where a distribution function fe(x,v, t)
of the electron beam is superimposed on a stationary, homogeneous distribution f0

of the plasma background. By linearizing the Vlasov equation

∂f

∂t
+ v · ∇rf + a · ∇vf = 0 (49)

where the acceleration a experienced by the electrons is the effective Lorentz force
originating from average quantities of charge and current densities with an elec-
tron wave ansatz fe = f̂ee

i(x·v−ωt), the dielectric function reads D(k, ω) = 1 −
ω2
p

k2

∫ ∂f0/∂v
v−ω/k dv with ωp being the plasma frequency [118]. The eigenmodes are zeros

in the dielectric function, and the solution requires integration over the complex v-
plane with a deformation of the path to account for the complex poles, first solved
by Landau with the Landau contour [119]. The residue provides a term Im(ω) ∝ ∂f0

∂v

evaluated at the phase velocity, i.e. in the tail of the distribution. For a negative
slope like that of a Maxwellian distribution, the mode is exponentially damped and
vice versa. It is the contribution of the resonant particles in the tail that leads
to Landau damping or bump-on-tail instability for multiply peaked and less trivial
velocity distributions.

For further treatment of our system motivated by the analogy to kinetic plasma
theory, we could substitute the homogeneous electron distribution by an ideal Bose-
gas distribution of magnons and superimpose a small spin wave perturbation. For
the effective force term we could use the gradients of the texture-induced in-plane
and out-of-plane potentials derived in the thesis. Another route would be to perform
a local rotation of the original equation of motion Eq. (35) without any ansatz for
neither the texture nor the excitations and derive an effective vector and scalar po-
tential leading to emergent magnetic and electric fields interacting with the magnons,
as done in Ref. [107]. A clear analogy to the Lorentz force in the Vlasov equation
on the electrons is evident. Instead of considering zeros in the dielectric disper-
sion, we would rather seek zeros in the apparent susceptibility as that yields the
magnon eigenmodes [120]. A remaining question to answer is whether or not this
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route collapses the eigenfrequency onto the positive/negative imaginary solution, or
if the frequency remains ambiguous, and would be a topic for further research. If the
Vlasov equation does not bring a conclusive interpretation, a more rigorous treat-
ment in terms of kinetic theory and the spin-dependent Vlasov-Boltzmann equation
could be applied [121].

The Vlasov equation is memory-less as it utilizes average quantities of charge
and current density, and disregard the short-ranged correlations and collisions due to
particle-particle interactions [117]. Magnon-magnon and four-magnon scattering is
therefore to be neglected when taking on this approach. We thus require the magnons
to be thermally equilibrated obeying Bose-statistics at a sufficiently low temperature
for magnon interference phenomena to be dominated by magnon-soliton interactions
[122, 123]. There is not an equally strict constraint on the magnon density as multi-
magnon-magnon couplings can be neglected even at very high densities, making the
magnons still undergo ideal Bose gas description [124]. To capture the probability
distribution in position space by the texture-induced potential, we could include a
position-dependent temperature in the distribution [122] or make a separation of
variables for the distribution function, spatially modulated by the in-plane and out-
of-plane wave functions discovered in the thesis, similarly to what done in Ref. [125]
for a magnon gas subject to Bose-Einstein condensation in a box-like potential trap.

The simple picture of resonant particles solely determining whether damping or
resonance occurs is not satisfactory for describing beam damping and instabilities
in plasma and should probably not be a stand-alone explanation if applicable to
magnons either. We will discuss some mechanisms that could account for the damp-
ing and/or growth in the following. It has been found that an excess of fast-moving
electrons can drive instabilities into turbulence in locally saturated plasma [126].
The unstable eigenmodes grows exponentially in time until saturation is obtained.
Saturation of sublattice magnetization will also limit the spin wave amplitude from
growing infinitely for magnon excitations of the antiferromagnetic skyrmion, as in-
creasing oscillation amplitudes are compensated by reduction of the static staggered
magnetization. Such a feature was also spotted for complex conjugate eigenmodes in
the canted antiferromagnet KMnFe3 with magnetocrystalline anisotropy, DMI and
exchange coupling. The exponential growth of nonzero wavevector modes super-
imposed on the uniform collective precession mode k = 0 when the driving field
exceeded a critical threshold was ultimately limited by the degenerate −k mode
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[127]. Below the threshold, the modes are damped and not exponentially growing
until saturation. Damping of eigenmodes is also encountered at interfaces, where
evanescent modes have been detected in finite sized easy-axis insulating antiferro-
magnets with magnons at a temperature far below the Néel temperature condensing
into a single Bose quantum state [128]. The evanescent modes decay exponentially
fast at a normal metal interface, with higher excited travelling wave states similar
to those we discovered also present. This could offer the interpretation of the anti-
ferromagnetic skyrmion being an effective interface observed by incoming magnons
in a homogeneous texture, with the magnons turning into evanescent modes when
entering the region of the skyrmion.

Another piece of the puzzle that can lead to damping phenomena is spin-flip
Stoner excitation, where an excitation from an occupied to empty state with a spin
flip occurs. Single-electron Stoner excitations can both damp and even make spin
waves disappear [129]. Recently it is has been shown that, using time-dependent
density functional perturbation theory, Landau damping suppressing magnon exci-
tations occurs when the magnon energy resonates with the Stoner continuum [130].
Also dephasing and back-reaction of scattered magnons with the incidental pumped
spin waves can lead to magnon relaxation [131, 132]. Finally yet importantly, we
have only considered first order excitations when solving the Schrödinger-like equa-
tions. Clearly, if the magnon mode is collapsed onto the resonance state by kinetic
theory for instance, we would need to include the higher order corrections of the
field excitations as they will no longer be small when they can grow as time elapses.
Including higher order corrections might eventually lead to limitation of the expo-
nential growth.

Now, to see how the in-plane and out-of-plane magnon states changes for increas-
ing degree of excitation, we plot the 8 lowest-lying in-plane wave functions in Figure
16 and the 8 lowest-lying out-of-plane states in Figure 17. The ground state and the
first excited in-plane state are initially localized around the skyrmion, and dies out
rapidly outside the skyrmion region. This applies to the bound out-of-plane ground
state too. The first excited out-of-plane state and the second excited in-plane state
have a nonzero derivative at ρ = 10, illustrating the travelling wave property as
these states are delocalized. As we continue to excite our system, the eigenstates
accumulate more and more curvature, associated to the increasing kinetic energy.
The probability densities become more oscillating, while close to the skyrmion core
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the wave functions are linear as a function of ρ.
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Figure 16: The in-plane wave functions nφ,m=0 for kz = 0.1. (a): The ground state, with
probability density focused around the minima of the potential. (b): The first excited state,
being initially localized. (c): The second excited state, which is the first unbound state. It
has an asymptotic oscillating behaviour for ρ→∞. (d)-(h): The 3rd− 7th excited state, all
being unbound, linear at 0 . ρ and oscillating for increasing ρ.
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Figure 17: The out-of-plane wave functions nθ,l=0 for kz = 0.1 (a): The localized ground
state, with probability density focused around the minima of the potential. (b): The first
excited state, which is the first unbound state, being oscillatory far from the skyrmion.
(c)-(h): The 2nd − 7th excited state, all being unbound, linear at 0 . ρ and oscillatory for
large ρ.
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5.2.2 Anisotropy parameter kz = 1.0

The in-plane and out-of-plane eigenfrequency spectra for reduced anisotropy kz = 1.0

are shown in Figure 18. We include eigenfrequencies up to nr = 9 and deliberately
leave out nr = 0 for both in-plane and out-of-plane modes by the same reasoning
as for kz = 0.1. Again, the in-plane frequencies are higher for the same level of
excitation, with the linear relationship to nr shown by the inset.
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Figure 18: The in-plane and out-of-plane eigenfrequencies ω in units of ω0 up to nr = 9

for reduced anisotropy kz = 1.0. The nr = 0 ground state for both the in-plane and the
out-of-plane eigenfrequency is not included as Eφ, Eθ are negative for those values. The
in-plane states have lower frequencies than the corresponding out-of-plane states for same
level of excitation nr. The relative difference decreases for increasing nr. The inset in the
right corner shows an extension of the spectra up to nr = 100. The blue dots and red
crosses for the out-of-plane and in-plane frequencies melt together into one green line due
to limited resolution on the axes. We observe a linear relationship between the frequency
and the radial quantum number: ω ∝ nr.

In Figure 19 and 20 the in-plane and out of-plane potential for kz = 1.0 with
wave functions nr = 0, 1, 3, 5 included are shown, respectively. The blue line shows
the potential as a function of ρ, while the black dotted lines show the eigenvalue
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nr = 0

nr = 1

nr = 3

nr = 5

Figure 19: The in-plane potential Vin−plane = cos2 Θ
ρ2 − (∂ρΘ)2− sin 2Θ

2ρ −∂ρΘ+kz cos2 Θ for
reduced anisotropy kz = 1.0 as a function of ρ. The insets are the in-plane wave functions
nφ,m=0 plotted as a function of ρ. The black dotted lines show the corresponding eigenvalues
for each wave function. The lowest inset is the ground state with Eφ = −1.07 and nr = 0.
The second lowest inset is the 1st excited state with Eφ = 0.42 and nr = 1. The next inset
is the 3rd excited state with Eφ = 1.40 and nr = 3. The uppermost inset is the 5th excited
state with Eφ = 2.43 and nr = 5. The two latter are unbound states.

for the given radial number. Both ground states have negative eigenvalue, differ-
ent to the kz = 0.1 scenario where no out-of-plane evanescent or resonant modes
manifested. Another difference is the purely bound both in-plane and out-of-plane
magnon modes. For kz = 0.1, only out-of-plane modes could be purely bound.

If we consider the higher-lying in-plane and out-of-plane states shown in Figures
21 and 22, respectively, we once again observe the wave functions becoming more
oscillatory. The linear dependence on ρ close to the skyrmion core in the classically
forbidden region for both the in-plane and out-of-plane modes found for kz = 0.1 is
also evident here.
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nr = 0

nr = 1

nr = 3

nr = 5

Figure 20: The out-of-plane potential Vout−of−plane = cos 2Θ
ρ2 −

sin 2Θ
ρ +kz cos 2Θ for reduced

anisotropy kz = 1.0 as a function of ρ. The insets are the out-of-plane wave functions nθ,l=0

plotted as a function of ρ. The black dotted lines show the corresponding eigenvalues for each
wave function. The lowest inset is the evanescent/resonant ground state with Eθ = −0.25

with nr = 0. The second lowest inset is the 1st excited state with Eθ = 0.94 and nr = 1. This
state is bound and localized close to the skyrmion. The next inset is the 3rd excited state
with Eθ = 1.66 and nr = 3. The uppermost inset is the 5th excited state with Eθ = 2.73

and nr = 5. The two latter insets are both unbound states.
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Figure 21: The in-plane wave functions nφ,m=0 for kz = 1.0 (a): The evanescent/resonant
ground state, with probability density focused around the minima of the potential. (b):
The first excited state, which is a bound state. (c): The second excited state, which is the
first unbound state. It has an asymptotic oscillating behaviour for ρ → ∞. (d)-(h): The
3rd − 7th excited state, all being unbound, linear at 0 . ρ and oscillating for increasing ρ.
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Figure 22: The out-of-plane wave functions nθ,l=0 for kz = 1.0. (a): The evanes-
cent/resonant ground state, with probability density focused around the minima of the
potential. (b): The first excited state, which is bound. (c)-(h): The 2nd− 7th excited state,
all being unbound, linear at 0 . ρ and damped oscillatory for increasing ρ.
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5.2.3 Anisotropy parameter kz = 10

In Figure 23 we show the in-plane and out-of-plane eigenfrequencies, as usually in
units of ω0 up to nr = 9. We have left out the nr = 0, 1 out-of-plane modes as
their eigenvalue is negative. We observe a local accumulation in the density of states
around ω ∼ 3ω0. Such a close-to degeneracy in the energy level is not present for
kz = 0.1 nor kz = 1.0 and ensures that a global linear dependency on nr is not
accurate. However, the inset in the lower right corner shows that the asymptotic
dependency on nr is still linear. Another difference to previous kz-values is that the
out-of-plane frequencies are less than the in-plane ones for a given value of nr.
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Figure 23: The in-plane and out-of-plane eigenfrequencies ω in units of ω0 up to nr = 9 for
reduced anisotropy kz = 10. The nr = 0, 1 out-of-plane eigenfrequencies are intentionally
left out as Eθ is negative for those values. The out-of-plane states have lower frequencies
than the corresponding in-plane states for same level of excitation nr. The relative difference
decreases for increasing nr. There appear to be an accumulation of states around ω ≈ 3ω0.
The inset in the right corner shows an extension of the spectra up to nr = 100. The blue
dots and red crosses for the out-of-plane and in-plane frequencies merge together into one
green line due to limited resolution on the axes. We observe a linear relationship ω ∝ nr

for nr > 10.
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In Figures 24 and 25 we plot the effective in-plane and out-of-plane potential
as a function of ρ, respectively. Next to the potentials we have added four wave
functions at their corresponding eigenvalue level to illustrate how the eigenstates
now changes. The nr = 3 in-plane and nr = 5 out-of-plane wave functions are quite
smeared out, reflecting the weakly binding to the skyrmion. Many more bound modes
manifest here, as the depth of the potential traps is much larger than previous cases.
Particularly, it emerges as a result of the kz cos 2Θ ∈ {−kz, kz} vs. kz cos2 Θ ∈ {0, kz}
terms.

nr = 0

nr = 1

nr = 3

nr = 11

Figure 24: The in-plane potential Vin−plane = cos2 Θ
ρ2 − (∂ρΘ)2− sin 2Θ

2ρ −∂ρΘ+kz cos2 Θ for
anisotropy parameter kz = 10 as a function of ρ. The insets are the in-plane wave functions
nφ,m=0 plotted as a function of ρ. The black dotted lines show the corresponding eigenvalue
for each wave function. The lowest inset is the ground state with Eφ = 0.17 and nr = 0.
The second lowest inset is the 1st excited state with Eφ = 4.06 and nr = 1. The next
inset is the 3rd excited state with Eφ = 8.96 and nr = 3. These are all bound states. The
uppermost inset is the 11th excited state with Eφ = 15.51 and nr = 11, and is an unbound
state, linear in ρ close to the core and damped oscillatory far away from the centre.

In Figures 26 and 27 the 8 lowest-lying in-plane and out-of-plane modes are
shown, respectively. We observe that the regular damped oscillations and the linear
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nr = 0

nr = 2

nr = 5

nr = 14

Figure 25: The out-of-plane potential Vout−of−plane = cos 2Θ
ρ2 − sin 2Θ

ρ + kz cos 2Θ for
anisotropy parameter kz = 10 as a function of ρ. The insets are the out-of-plane wave
functions nθ,l=0 plotted as a function of ρ. The black dotted lines show the corresponding
eigenvalue. The lowest inset is the ground state with Eθ = −7.13 and nr = 0, where the
probability distribution is centred in the potential well. The second lowest inset is the 2nd

excited state with Eθ = 2.67 and nr = 2. The next inset is the 5th excited state with
Eθ = 9.92 and nr = 5, which is the last bound state. The uppermost inset is the 14th

excited state with Eθ = 18.45 and nr = 14, which is just one of many unbound states.
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dependence on ρ close to the skyrmion are not present unless we increase nr fur-
ther, as shown by the uppermost insets in Figures 24 and 25. Another effect more
prominent here, is that the curvature of the unbound travelling wave magnons in-
creases vastly in the potential well compared to region outside the texture-induced
well, see Figures 26(e)-(h) and 27(g)-(h). The wavelength contracts within the well
and is extended outside it. Within the trap, the potential energy decreases, and the
reduction is picked up by an equal and opposite increment in the kinetic energy to
conserve the total energy. Outside the well we observe elongated wavelengths with
little curvature, related to less kinetic energy.
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Figure 26: The in-plane wave functions nφ,m=0 for kz = 10. (a): The localized ground
state, with probability density focused around the minima of the potential. (b)-(d): The
1st − 3rd excited states, all bound. (e)-(h): The 4th − 7th excited state, all unbound, linear
at 0 . ρ and more oscillatory the higher the eigenvalue.
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Figure 27: The out-of-plane wave functions nθ,l=0 for kz = 10. (a): The ground state,
with probability density focused around the minima of the skyrmion induced potential. (b):
The first excited state, being either evanescent or resonant as the ground state. (c)-(f) The
2nd − 5th excited states, all being bound. (g)-(h): The 6th and 7th excited state, which are
the lowest-lying unbound states.
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5.3 Analogy to the easy-plane antiferromagnetic vortex

The antiferromagnetic easy-plane vortex is, similarly to the skyrmion, a topologi-
cally protected soliton excitation. They are cylindrically symmetric about the axis
orthogonal to the basal plane, and was reported long before the antiferromagnetic
skyrmion [79]. In the 1990s, they were widely studied from a theoretical point of
view [109, 114, 115, 133, 134], and it was demonstrated that only exchange coupling
and easy-plane anisotropy are necessary to stabilize the vortices. Following Ref.
[109], the apparent Schrödinger-like equations for the vortices, using µ for nφ and ϑ
for nθ, read

q2µ =
(
−∇2 +

cos2 Θ

x2
− (∂xΘ)2

)
µ− 2 cos Θ

x2
∂φϑ− cos2 Θµ, (50)

and

q2ϑ =
(
−∇2 +

cos 2Θ

x2

)
ϑ+

2 cos Θ

x2
∂φµ− cos 2Θµ. (51)

Here, x = r/λvortex is the dimensionless radial coordinate, with λvortex = ( c2

√
λ

1−λ)

and λ originating from their Hamiltonian H = Js
∑
〈n,n′〉

(
Sn · Sn′ + (λ − 1)SznS

z
n′
)

assuming (1 − λ) � 1. q2 = ω2/ω2
0, but for the vortex, the natural eigenfrequency

of the system used is ω0 = v/λvortex with the phase velocity v = (2Jsc/~)
√

1 + λ.
As can be seen from Eqs. (47) and (50), the potential terms ∝ cos2 Θ from the

anisotropy and the exchange coupling are present for both skyrmions and vortices.
Also, the out-of-plane Eqs. (48) and (51) contain much of the same structure, with
the potential terms ∝ cos 2Θ from the anisotropy and exchange being the same. The
sign flip in the anisotropy terms arise because we have considered easy-axis instead
of east-plane anisotropy for the skyrmion.

There are the terms coupling the Schrödinger-like equations that complicates the
systems for both skyrmions and vortices. They are proportional to cos Θ for both
solitons, while skyrmions hold an extra coupling term from the DMI proportional to
sin Θ. For stable delocalized vortices with boundary conditions Θ(r → ∞) = π/2

[48], cos Θ → 0 far from the core. The coupling is exponentially decaying [109],
which allows for analytic solutions even for nonzero azimuthal quantum numbers.
For localized skyrmions, we have cos Θ(r → ∞) = 1 and sin Θ(r → ∞) = 0. We
spot an exponential decay in Θ here too, shown in Figure 28. We have added an
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Figure 28: The polar angle Θ(ρ) between the staggered magnetization n0 and the z-axis
as a function of ρ = r/λsky. The blue line is the exact result obtained by solving Eq. (23),
while green line is an ad-hoc exponential function f(ρ) = ae−bρ added to illustrate the
exponential decay of Θ. a = 42.88 and b = 0.92 are manually adjusted to fit the blue line.

exponential function f(ρ) = ae−bρ to fit the tail of Θ outside the skyrmion core.
The parameters a, b is not based on a least-square method, just manually tweaked
to recreate the asymptotic form of Θ. We used a = 42.88, b = 0.92. Hence, the
coupling between the in-plane and out-of-plane fields for a skyrmion shows a power-
law decaying behaviour rather than being exponentially decaying.

Let us now consider the m = l = 0 mode for the vortices. We label these lowest-
lying angular modes µ0 and ϑ0. The delocalized vortex equations decouple, and we
can find analytic solutions in the long and short distance limit. Far from the vortex
core, we can neglect the derivative of the texture, and the in-plane radial amplitude
is a linear combination of zeroth order Bessel functions:

µ0 = c1J0(z) + c2Y0(z), (52)

where z = xω/ω0. Far from the vortex core, with z �
∣∣ν2 − 1

4

∣∣, we can use the
asymptotic behaviour of the Bessel functions:

Jν(z) '
√

2

πz
cos (z − νπ

2
− π

4
), Yν(z) '

√
2

πz
sin (z − νπ

2
− π

4
), (53)
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where ν is the order. We have ν = 0, and we combine the Bessel function of first
and second kind by writing

µ0 ∝
1√
r

sin (kr + δ), k = |ω|/v, (54)

with δ some phase shift and v = λvortexω0 is the magnon velocity. The dispersion
relation is defined in this way as ω/(ω0λsky) has units of m−1 and appears alongside r,
meaning it has the physical interpretation of wavenumber and is a gapless continuous
spectrum. For the out-of-plane excitations, the story is a bit different, as cos 2Θ = 1

far away from the vortex. This gives a gap in the dispersion relation, which allows
for the existence of local out-of-plane modes [109].

If we now consider the antiferromagnetic skyrmion instead, the texture deriva-
tives can be neglected in the long-distance limit as Θ ' 0, and the asymptotic
Schrödinger-like equations read

ω2

ω2
0

nφ(θ),0 =
(
−∇2

ρ +
1

ρ2
+ kz

)
nφ(θ),0. (55)

The wave functions have their argument altered: z = r
λsky

√
ω2/ω2

0 − kz. If ω > ωcrit,
where ωcrit is the critical frequency for having bound modes, the argument is real
and the solution is that of first order Bessel functions

nφ(θ),0 ∝
1√
r

sin (kφ(θ)r + δφ(θ)), kφ(θ)v =
√
ω2
φ(θ) − kzω

2
0, (56)

where v = λskyω0 is the magnon velocity. We observe that both the in-plane and
out-of-plane excitations have a gap for the skyrmion, while only the out-of-plane
excitations have a gap for vortices. The wave functions are oscillatory but damped,
which is the asymptotic behaviour we found in Chapter 5.2.

If the magnon eigenfrequency does not exceed the threshold, ω2 < kzω
2
0, the

eigenstates turn into modified Bessel functions of first and second kind, I1(z),K1(z).
The first kind modified Bessel function has an exponential growth in position and
are unphysical. Hence, we are left with exponentially decaying eigenstates, i.e. local
modes with frequency ω = ωl, ω

2
l < ω2

0kz. The solutions are

nlocalφ,0 , nlocalθ,0 ∝ e−klr, klv =
√
kzω2

0 − ω2
l . (57)
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That is similar to what found for delocalized vortices, but for the m = l = 0 mode,
the only possible local modes are the out-of-plane excitations. For the antiferromag-
netic skyrmion both in-plane and out-of-plane excitations can be local modes.

Let us now consider the small distance limit for the m = l = 0 modes for the
skyrmion. We are close to the skyrmion centre, where Θ = π can be considered
a constant, and the spatial texture derivatives can be neglected once again. Also,
sin 2Θ = 0 here. A distinct property of the skyrmion Schrödinger-like equations is
that they are invariant in the small- and long-distance limit. For delocalized vortices,
this is not the case, as cos 2Θ flip signs between ±1 for Θ = 0, π/2. The asymptotic
behaviour when z → 0 for Bessel functions is

Jν(z) ' 1

Γ(ν + 1)

(z
2

)ν
, (58)

Yν(z) '

 2
π [ln(z/2) + γ], ν = 0

−Γ(ν)
π

(
2
z

)ν
, ν 6= 0.

(59)

where ν is the order, Γ(ν) is the Gamma function and γ is the Euler-Mascheroni
Constant. The skyrmion solutions are first order Bessel functions, but the second
kind diverges in the classically forbidden region at the skyrmion core and must be
disregarded as it is unphysical. Hence, we obtain

nφ,0, nθ,0 ∝ z (60)

This approximation is justified if we consider modes with eigenfrequency above
the critical threshold. The numerical diagonalization procedure used to find the
wave functions in Chapter 5.2 showed the same linear dependency on ρ close to the
skyrmion core as the analytic solution derived here for these modes.

Now, let us discuss the implication of rather having a finite sized system. For
a finite sized system, we have to impose some boundary conditions at the rim.
Both Dirichlet (fixed), Neumann (free) and general (combination of fixed and free)
boundary conditions at the edge r = L are possible. They all have in common that we
consider the long-distance limit, far from the skyrmion core. In terms of applications,
the small frequencies are most interesting. However, if we consider the apparent local
mode ω2

l < kzω
2
0, the boundary conditions, regardless of type, are always fulfilled
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as both the in-plane and out-of-plane wave functions are harshly damped. For the
travelling wave states, this is not the case. Fixed boundary conditions imply

nφ,0(r = L), nθ,0(r = L) = 0, (61)

while free boundary conditions yield

∂rnφ,0|r=L, ∂rnθ,0|r=L = 0. (62)

For both cases, the magnon spectrum will be discrete as the solutions are oscillating
as a function of r, and fixing r implies that only a discrete (infinite) set of wave
numbers kn are allowed. This is opposite to what discussed above, where we found
continuous spectra. In fact, numerical studies suggest that finite sized systems with
open boundaries breaking the lattice symmetry are requirements for skyrmions to
be a thermodynamically stable phase [67].

Finally, a note about the effective potentials are in place. For skyrmions with
nonzero DMI, the potentials in the presence of DMI for both the in- and out-of-
plane wave functions are quite complicated as they hold derivatives of the texture
in combination with sine and cosine texture-dependent terms. To illustrate the
difference to the vortex potentials, we make the analytic ansatz Θvortex = π

2 −
π
2 ·

1
1+(x/4)2

, which fulfills the boundary conditions Θ(0) = 0,Θ(∞) = π/2, see Figures
29 and 30. The true potentials are somewhat altered as the profile of Θ is slightly
deviating from our ansatz [109]. Nevertheless, the overall form of the potentials is
somewhat similar to the skyrmion ones, only with the influence of the anisotropy
being stronger for skyrmions. All potentials have a global minima, diverge close to
the centres and approach a constant far from the solitons.

5.4 Highly excited magnon regime

The full Schrödinger-like equations (47) and (48) do not permit analytic solutions.
From an application point of view, interesting properties such as magnon-mediated
spin Hall response have been investigated for highly excited states [135]. The en-
ergetic modes will typically require a temperature gradient to reach the necessary
level of excitation. For the spin waves, it means that the wavelength is very small
compared to the typical length scale of the skyrmion: λsw � λsky. In our search
for analytic approximate solutions, we introduce the dimensionless radial coordinate
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Figure 29: The effective potential U1(x) = cos 2Θ(1/x2 − 1) for the out-of-plane magnon
excitations around the easy-plane antiferromagnetic vortex. x = r/λvortex, with λvortex

being the natural length scale. The potential has the limiting behaviour U1(∞) = 1 and is
attractive, with a global minima and a potential barrier close to the vortex core.
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Figure 30: The effective potential U2(x) = cos2 Θ(1/x2 − 1) − (∂xΘ)2 for the in-plane
magnon excitations around the easy-plane antiferromagnetic vortex. x = r/λvortex, with
λvortex being the natural length scale. The potential has the limiting behaviour U2(∞) = 0,
and is attractive, with a global minima and a potential barrier close to the vortex core.
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ρ̃ = r/λsw, and write the Schrödinger-like equations as a series expansion in the
parameter η = λsky/λsw:

q2
φnφ = η2

((
−∇2

ρ̃ − (∂ρ̃Θ)2 +
cos2 Θ

ρ̃2

)
nφ −

2 cos Θ

ρ̃2
∂φnθ

)
+ η

((
−sin 2Θ

2ρ̃
− ∂ρ̃Θ

)
nφ +

sin Θ

ρ̃
∂φnθ

)
+ kz cos2 Θnφ,

(63)

q2
θnθ = η2

((
−∇2

ρ̃ +
cos 2Θ

ρ̃2

)
nθ +

2 cos Θ

ρ̃2
∂φnφ

)
(64)

+ η
(
−sin 2Θ

ρ̃
nθ −

sin Θ

ρ̃
∂φnφ

)
+ kz cos 2Θnθ. (65)

In the short wavelength limit, we only keep the highest order terms in η. Doing so,
we rule out the impact of the DMI on the magnons. Also, the anisotropy becomes
irrelevant. These coupling mechanisms will only be minor corrections when the
spin waves are highly excited. From the Hamiltonian, this makes sense, because
the spin waves now carry so much energy that only the most influential interaction
mechanisms become important, i.e. the exchange coupling. The new equations, by
re-scaling the radial coordinate ρ̃→ ρ after assuming λsw � λsky allowing us to only
keep the leading order terms, are

ω2
φ

ω2
0

nφ =
(
−∇2

ρ − (∂ρΘ)2 +
cos2 Θ

ρ2

)
nφ −

2 cos Θ

ρ2
∂φnθ, (66)

ω2
θ

ω2
0

nθ =
(
−∇2

ρ +
2 cos2 Θ− 1

ρ2

)
nθ +

2 cos Θ

ρ2
∂φnφ. (67)

Despite simplifying the system up to this point, we are still not able to find analytic
expression for the eigenfrequencies nor the eigenstates. To do so, we need an analytic
expression for the radial dependence of Θ(ρ). In the simplest form, we could assume
a linear function in r as done in Refs. [104, 107], respecting the boundary conditions
at r = 0 and r = L: Θ(ρ) = π(1− r/L). This is a vast simplification of the profile,
yet the solution for magnon excitations of the ferromagnetic skyrmion in Ref. [107]
becomes quite intricate. A less trivial ansatz would be to apply the Walker profile for
the antiferromagnetic domain wall: Θ(r) = 2 arctan e(r0−r)/λsky , where r0 determines
where Θ(r) = Θ(0)/2. With this kind of approach, however, the coupling and the
complicated expression for Θ do not allow us to obtain analytic solutions of Eqs.
(66) and (67) for a general set of angular quantum numbers.
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6
Conclusion

In this chapter we will recap the work done in the thesis and summarize the main
findings. At the end, we discuss the prospects and challenges for antiferromagnetic
magnonics.

6.1 Summary and concluding remarks

In this thesis we have derived a new set of Schrödinger-like equations for in-plane and
out-of-plane spin wave excitations of a 2D skyrmion in an insulating two-sublattice
antiferromagnet subject to easy-biaxial crystallographic anisotropy, DMI and sym-
metric exchange coupling. For the inhomogeneous Néel-type skyrmion the new set
of Schrödinger-like equations are derived from a variational principle in the micro-
magnetic limit assuming an orthogonal basis of the spin wave fields to that of the
equilibrium texture to first order. The equations are highly coupled to each other,
and the symmetry is considerably reduced compared to spin waves around the anti-
ferromagnetic ground state and ferromagnetic inhomogeneous soliton excitations.

The new set of Schrödinger-like equations are solved for the lowest angular az-
imuthally symmetric eigenmodes for which the excitations decouple. This is identical
to solving the equations along a given azimuthal direction. The eigenspectra and
the eigenmodes are computed by a 2nd order local truncation error numerical diag-
onalization scheme, where the texture-induced potential is numerically solved by a
shooting method with a 5th order Runge-Kutta integration procedure by minimizing
the antiferromagnetic free energy. The effective potentials are strongly dependent
on the interaction strength between the anisotropy and the symmetric exchange
coupling, and the inhomogeneous DMI.

Both the in-plane and out-of-plane magnon excitations can be evanescent, reso-
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nant, bound or travelling wave modes. There are two "Goldstone modes" present,
irrespective of the reduced anisotropy parameter. For each of those modes, the
magnons are either exponentially damped or growing. The model does not predict
whether damping or growth occurs for these modes, and an extension of the model by
for instance considering kinetic theory, magnon-magnon coupling or Stoner excita-
tions is necessary to conclude. For the other modes, an increasing reduced anisotropy
parameter allows for more bound magnon states. The higher excited delocalized trav-
elling wave states resemble first order cylindrical Bessel functions of the first kind, a
behaviour which is analytically confirmed in the short and long-distance limit from
the skyrmion core. When comparing to easy-plane antiferromagnetic vortices, we
find that both in-plane and out-of-plane excitations can have local modes, while
only the out-of-plane vortex modes can be bound and localized.

In the highly excited regime, where the spin wave wavelength is much shorter
than the typical length scale of the skyrmion, λsky � λsw, we find that the new
set of Schrödinger-like equations reduces to a simplified set where the DMI and the
anisotropy are absent. For these energetic modes, only the strongest spin coupling,
the symmetric Heisenberg exchange, is present. However, the equations are still
coupled, and only display a power-law decaying coupling, as opposed to vortices
which have exponentially decaying coupling terms. Full analytic solutions on the
entire domain are still not possible without further assumptions on the system.

6.2 Outlook

In further studies of magnon excitations around the antiferromagnetic skyrmion, we
suggest applying kinetic theory in terms of the Vlasov or spin-dependent Vlasov-
Boltzmann equation to investigate conditions for damping or growth of the "Gold-
stone" modes. Resonance with Stoner excitations leading to Landau damping and
the impact of higher order corrections in the excitations fields should also be ad-
dressed. A local rotation of the high-frequency Schrödinger-like equations in Chap-
ter 5.4 similarly to what done earlier for ferromagnets would also be relevant [107].
The intense modes excited by thermal gradients can be of interest in applications
[8, 102]. This continuation with emergent electrodynamics could also be compatible
to the effective force terms used in kinetic theory. Avoiding the weakness of a lin-
ear skyrmion profile by using the antiferromagnetic Walker ansatz [36] could be an
intuitive approach, but the calculation will be very technical and analytic solutions
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are doubtful.
In addition, a full discrete treatment of the Hamiltonian with magnon excitations

is necessary to confirm the micromagnetic limit solutions considered here. Such an
approach could be a semi-classical quantum operator representation of the spins,
where the eigenmodes are found by the Gram-Schmidt process and self-consistent
Gauss-Seidel scheme, which has been applied on vortices [136]. Also, a more rigorous
quantum mechanical treatment should be investigated by for instance rewriting the
magnonic spin operators by the Holstein-Primakoff transformation to obtain bosonic
creation and annihilation operators to diagonalize the original discrete Hamiltonian
and thereby solve the Schrödinger equation.

Regarding the experimental challenges, a considerable void in characterizing the
spin structure of antiferromagnetic materials has to be probed before antiferromag-
nets can fully replace today’s technology in memory storage and processing [137].
Especially those exotic types with noncollinear staggered magnetization, and their
dynamic response to perturbations as spin currents, spin-orbit torques and ac mag-
netic fields. For the skyrmions, which is exactly one of those exotic spin structures
that has been experimentally observed at room temperature in the antiferromag-
netic/ferromagnetic heterostructure IrMn/CoFeB by nitrogen-vacancy centre-based
microscopy and Brillouin light scattering [44], a question to answer is how to create,
manipulate and delete them. Numerical simulations show how strong magnetic fields
can destabilize the skyrmion, while a skyrmion can be created by Dzyaloshinskii-
Moriya interaction combined with out-of-plane uniaxial anisotropy [30], offering tech-
niques for novel memory devices.
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A
Antiferromagnetic spin

interactions

In this appendix we derive the micromagnetic coupling mechanisms from the discrete
spin picture of a 2D squared lattice antiferromagnetic material. The starting point
for all the contributions to the free energy of the system are two sublattices α, β with
magnetization Mk, k ∈ {α, β} far below the Curie temperature, such that the mod-
ulus of the magnetization is fixed, and only contains orientational degree of freedom
[48]. We write Mk(x) = Msmk(x), where Ms is the saturation magnetization and
mk is a unit vector pointing along the magnetization direction of sublattice k. We
define the magnetization mi,j and staggered magnetization li,j at lattice site (i, j)

as

mi,j = (Sαi,j + Sβi,j)/2, li,j = (Sαi,j − Sβi,j)/2, (68)

such that

Sαi,j = (mi,j + li,j), Sβi,j = (mi,j − li,j). (69)

We define the Néel vector ni,j = li,j/|l|i,j . In the exchange approximation, Sαi,j '
−Sβi,j .

A.1 Symmetric Heisenberg exchange

In this chapter we derive the symmetric exchange coupling for the antiferromagnetic
free energy with the definition of the order parameter and magnetization as given
above. The Heisenberg exchange in 2D is
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HH = Js
∑
〈x,x′〉

Sx · Sx′ , (70)

where Sx denotes the dimensionless spin of unit length at position x. The sum runs
over nearest neighbours, where the number of adjacent spins Nn = 4 for both types
α and β. Substituting in the order parameter and the magnetization gives

HH = Js

N−1,N−1∑
i,j

[mi,j − li,j ] ·
(

[mi,j + li,j ] + [mi+1,j + li+1,j ] + [mi,j+1 + li,j+1]

+ [mi+1,j+1 + li+1,j+1]
)

' 4Js

N,N∑
i,j

(m2
i,j − l2i,j)

+
Js
2

N−1,N−1∑
i,j

(
(li+1,j − li,j)

2 + (li,j+1 − li,j)
2 + (li+1,j+1 − li,j)

2

− (mi+1,j −mi,j)
2 − (mi,j+1 −mi,j)

2 − (mi+1,j −mi,j)
2
)

+ Js

N−1,N−1∑
i,j

(
mi,j(li+1,j + li,j+1 + li+1,j+1 − 3li,j)

− li,j(mi+1,j + mi,j+1 + mi+1,j+1 − 3mi,j)
)

(71)
where we have neglected the boundary contributions

ε '
N∑
i=1

3(m2
i,N − l2i,N )±3

N∑
j=1

(m2
N,j− l2N,j)±

N∑
j=1

(m2
1,j− l21,j)±

N∑
i=1

(m2
i,1− l2i,1), (72)

which are all linear sums, vanishingly small in the large N limit of a physical system.
N is the number of lattice sites along each axis of the lattice. For the cubic squared
lattice in 2D, we have nearest-neighbour spacing c and the volume of the unit cell
V = ∆x∆y = 2c2. Here, ∆x = ∆y = ∆. When considering the micromagnetic limit,
we approximate
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li+1,j − li,j = l(xi + ∆, yj)− l(xi, yj) ≈ ∆∂xl (73)

li,j+1 − li,j = l(xi, yj + ∆)− l(xi, yj) ≈ ∆∂yl (74)

li+1,j+1 − li,j = l(xi + ∆, yj + ∆)− l(xi, yj) ≈ ∆(∂x + ∂y)l (75)

Similar definitions are used for the magnetization. The form of the approximations
allow us to write them using the Jacobian matrix, defined as operating on the vector
field f with elements Ji,j = ∂fi

∂xj
. Using the Jacobian, in the limit of ∆→ 0, we have

N−1,N−1∑
i,j

li+1,j − li,j ≈
1

V

∫
dxJ (l)∆x, (76)

N−1,N−1∑
i,j

li.,j+1 − li,j ≈
1

V

∫
dxJ (l)∆y, (77)

N−1,N−1∑
i,j

li+1,j+1 − li,j ≈
1

V

∫
dx (J (l)∆x + J (l)∆y). (78)

Here, ∆i = ∆î, i ∈ {x, y}, is the vector adjoining two neighbouring lattice sites. We
use the Jacobians and the integral approximations in the micromagnetic limit to ob-
tain an expression for the Heisenberg exchange. Writing HH = 1

V

∫
dxH(m, l,m′, l′)

with H(m, l,m′, l′)/V being the energy density, we obtain

HH =
Js
2c2

∫
dx
(

4(m2 − l2) +
1

2
∆2
(
2(∂xlx)2 + 2(∂yly)

2 + 2(∂xly)
2 + 2(∂ylx)2

+ 2∆2∂xlx∂ylx + 2∆2∂xly∂yly
)

+ 2∆m · (∂xl + ∂yl)− 2∆l · (∂xm + ∂ym)
)

=
Js
c2

∫
dx
(

2m2 +
∆2

2

∑
i

(
(∂il)

2 − (∂im)2
)

+
∆2

4

∑
i 6=j

∂il · ∂jl− ∂im · ∂jm)

+ ∆
∑
i

(
m · ∂il− l · ∂im

))
,

(79)
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where the factor 1/4 in front of the cross-derivative products has been introduced
to avoid overcounting. The ground state energy l2 has been disregarded as it corre-
sponds to a global minima in the energy function, and we consider excitations from
the ground state. We get

HH =

∫
dx

V

(
a

2
m2 +A

(∑
i=x,y

(∂in)2 +
1

2

∑
i 6=j

∂in · ∂jn
)

+ L
∑
i=x,j

(m · ∂in)

)
, (80)

with a = 8Js, A = 2Jsc
2, L = 2

√
2Jsc, and terms higher order in the magnetization

( ∂im · ∂jm, ∂im and (∂im)2) are being disregarded. We have substituted l→ n as
we consider the exchange approximation.

A.2 Inhomogeneous Dzyaloshinskii-Moriya interaction

The Dzyaloshinskii-Moriya interaction (DMI) between neighbouring spins Sx,Sx′ in
discrete form reads

HD =
∑
〈x,x′〉

Dx,x′ · (Sx × Sx′), (81)

where the DMI vector Dx,x′ is determined by the underlying crystal symmetry. The
inhomogeneous DMI, responsible for the Lifschitz invariants stabilizing chiral states,
has the DMI vector confined to the basal-plane of the texture. We consider the
interfacial DMI with Dx,x+cŷ = Dx̂ for adjoining spins along ŷ and Dx,x+cx̂ = −Dŷ
for neighbouring spins in the x-direction. Labeling each of the N · N unit cells by
a pair of indices (i, j), we only sum over the bonds with sub-lattice spins β as the
centred spin in the square to avoid overcounting. For each cell, there are thus four
bonds. The Hamiltonian becomes

86



HD =

N−1,N−1∑
i,j

Dx,x′ ·
(

[mi,j − li,j ] ×
(
[mi,j + li,j ] + [mi+1,j + li+1,j ] + [mi,j+1 + li,j+1]

+ [mi+1,j+1 + li+1,j+1]
))

= D

N1,N−1∑
i,j

−ŷ
(

[mi,j − li,j ] ×
(

[mi,j + li,j ] + [mi+1,j+1 + li+1,j+1]
))

+ x̂

(
[mi,j − li,j ] ×

(
[mi+1,j + li+1,j ] + [mi,j+1 + li,j+1]

))

' D
N1,N−1∑

i,j

ŷ
(
li,j × li+1,j+1

)
− x̂
(
li,j ×

(
li+1,j + li,j+1

))
(82)

We have disregarded terms containing magnetization components. In the exchange
approximation, the symmetric Heisenberg exchange dominates the other coupling
mechanisms. That is, |Js| � |D|, and as the magnetization is also very small, these
terms can be neglected when they are combined with the free energy in Eq. (80).
Introducing the Jacobian approximations as in Appendix A.1, we obtain

HD = D

N−1,N−1∑
i,j

lzi,jl
x
i+1,j+1 − lzi+1,j+1l

x
i,j − (lyi,jl

z
i+1,j − l

y
i+1,jl

z
i,j)− (lyi,jl

z
i,j+1 − l

y
i,j+1l

z
i,j)

= D

N−1,N−1∑
i,j

lzi,j(∆∂xl
x
i,j + ∆∂yl

x
i,j + lxi,j)− lxi,j(∆∂xlzi,j + ∆∂yl

z
i,j + lzi,j)

− lyi,j(∆∂xl
z
i,j + lzi,j) + lzi,j(∆∂xl

y
i,j + lyi,j)− l

y
i,j(∆∂yl

z
i,j + lzi,j) + lzi,j(∆∂yl

y
i,j + lyi,j)

= D∆

N−1,N−1∑
i,j

lzi,j(∂xl
x
i,j + ∂yl

x
i,j + ∂xl

y
i,j + ∂yl

y
i,j)− (∂xl

z
i,j + ∂yl

z
i,j)(l

x
i,j + lyi,j)

(83)
The crystal symmetry of the material at hand determines what type of Lifschitz
invariants are present in the free energy [48, 51, 138]. For class D2d, the invariants
take the form

D2d : lz∂ylx − lx∂ylz + lz∂xly − ly∂xlz. (84)
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These forms are not present if the crystallographic structure respects Cnν symmetry.
For this class, the invariants take the form

Cnν : lz∂xlx − lx∂xlz + lz∂yly − ly∂ylz. (85)

For a crystallographic material with Cnν , we can disregard the Lifschitz invariants
that are only present in materials respecting D2d symmetry. In the micromagnetic
limit, substituting the discrete sum by the integral as in Appendix A.1, we obtain
for materials in the Cnν class with the basal-plane being the x− y plane:

HD =

∫
dx

V
D
(
(ẑ · n)(∇ · n)− (n · ∇)(ẑ · n)

)
. (86)

We have redefined the DMI constant, meaning we have made D∆→ D in the inho-
mogeneous DMI free energy in Eq. (86). As |l| ≈ 1 in the exchange approximation,
we can substitute l → n. The inhomogeneity of this free energy arises from the
derivatives of the staggered magnetization.

A.3 Homogeneous Dzyaloshinskii-Moriya interaction

The DMI vector can also hold a nonzero component orthogonal to the basal plane
of the texture. With the basal plane being the x − y plane, the out-of-plane DMI
vector is d = (0, 0, d).
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HD =

N−1,N−1∑
i,j

d
(

[mi,j − li,j ] ×
(
[mi,j + li,j ] + [mi+1,j + li+1,j ] + [mi,j+1 + li,j+1]

+ [mi+1,j+1 + li+1,j+1]
))

z

= d

N−1,N−1∑
i,j

8mx
i,jl

y
i,j − 8lxi,jm

y
i,j +mx

i,j(l
y
i,j+1 − l

y
i,j + lyi+1,j − l

y
i,j + lyi+1,j+1 − l

y
i,j)

−my
i,j(l

x
i,j+1 − lxi,j + lxi+1,j − lxi,j + lyi+1,j+1 − l

x
i,j)

− lxi,j(m
y
i,j+1 −m

y
i,j +my

i+1,j −m
y
i,j +my

i+1,j+1 −m
y
i,j)

+ lyi,j(m
x
i+1,j −mx

i,j +mx
i,j+1 −mx

i,j +mx
i+1,j+1 −mx

i,j)

+ lyi,j(l
x
i+1,j − lxi,j + lxi,j+1 − lxi,j + lxi+1,j+1 − lxi,j)

− lxi,j(l
y
i+1,j − l

y
i,j + lyi,j+1 − l

y
i,j + lyi+1,j+1 − l

y
i,j),

(87)
where we have disregarded quadratic terms in the magnetization as |m| � |l| and
|d| � |Js| in the exchange approximation. In the micromagnetic limit, we introduce
the Jacobian matrix as in Appendices A.1 and A.2. The Jacobian formalism intro-
duces gradient terms li∂imj , li∂jmj ,mi∂ilj ,mi∂jlj . The staggered magnetization is
smoothly varying in the exchange approximation as the symmetric Heisenberg cou-
pling dominates, such that spatial derivatives of the Néel field is small compared
to the Néel field itself. The same applies for the magnetization. Thus, the terms
holding spatial derivatives can all be neglected when combined with the symmet-
ric exchange terms. The remaining part which enters the total free energy of the
antiferromagnetic system reads

HD =

∫
dx

V

(
d · (m × n)

)
, (88)

where we have redefined the homogeneous DMI vector 8d→ d and substituted l→ n
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as we consider the exchange approximation.

90



B
Derivation of the equations of

motion for antiferromagnetic spin waves

In this appendix we give the full derivation of the new equations of motion for
the transverse (in-plane and out-of-plane) spin wave excitations around a 2D static
antiferromagnetic skyrmion in a material satisfying the Cnν symmetry group.

We start the quest with the Euclidian action A, the free energy F and the kinetic
energy K in the antiferromagnetic system. The free energy is

F =

∫
dx

V

(
A(∂in)2+am2−Kz(n·ẑ)2−2m·H+D

(
(ẑ·n)(∇·n)−(n·∇)(ẑ·n)

))
(89)

where A is the inhomogeneous exchange constant, a is the homogeneous exchange
constant, Kz is the easy-axis anisotropy along ẑ, H is the external field, D is the in-
homogeneous Dzyaloshinskii-Moriya interaction (DMI) constant and V is the volume
of the unit cell. The kinetic energy is [50, 94]

K = 2~
∫
dx

V

(
m · (ṅ × n)

)
. (90)

The Euclidian action is an arbitrary time integral over the Lagrangian, which again
is the kinetic energy minus the free energy of the system, A =

∫
dt (K − F). We

obtain the equations of motion by zero variation of the action with respect to the
set of generalized coordinates {q, q̇}: δqA = 0. The generalized coordinates are
the magnetization and the staggered magnetization. Carrying out the functional
derivatives gives the equations of motion

ṅ = − 1

2~
δmF × n, (91)
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ṁ = − 1

2~
δnF × n− 1

2~
δmF × m (92)

For linear spin wave excitations around the static antiferromagnetic skyrmion,
we put all the time-dependence of the staggered magnetization into the linear spin
wave deviations and allow for a non-trivial spatial variation of both the spin wave
fields and the texture. That is,

n(x, t) = n0(x) + δn⊥(x, t), (93)

under the assumption |δn(x, t)| � |n0|. We only consider an expansion up to first
order in the excitations for the equations of motion. The linear excitations are
orthogonal to the static equilibrium texture. We construct the effective forces to
explicitly fulfill the orthogonality constraints on m and n, similarly to what done in
Refs. [139, 140]. For the first term on the right side in the Eq. (92) we have

−δnF × n = 2
(
A(n0 + δn⊥) × (∇2(n0 + δn⊥) × (n0 + δn⊥))

+Kz((n0 + δn⊥) · ẑ)(n0 + δn⊥) × (ẑ× (n0 + δn⊥))

− ((n0 + δn⊥) ·H)m

−D
(
ẑ(∇ · (n0 + δn⊥)−∇(ẑ · (n0 + δn⊥)

))
× (n0 + δn⊥)

(94)

For the first term in Eq. (94), we get

An × (∇2n × n) × n = A(n0 + δn⊥) × (∇2(n0 + δn⊥) × (n0 + δn⊥)) × (n0 + δn⊥)

= −An0 × n0(δn⊥ · ∇2n0 +A(∇2δn⊥× n0 − n0 × n0(n0 · δn⊥))

−Aδn⊥× n0(n0 · ∇2n0 +A(∇2n0 × δn⊥ − n0 × δn⊥(n0 · ∇2n0))

= A(∇2δn⊥× n0 +∇2n0 × δn⊥),

(95)
where we have expanded the vector triple products, utilized that n0⊥δn⊥, disre-
garded higher order excitation terms and terms not containing the linear deviations
at all. The reason why we disregard the zeroth order terms is if the excitations are
zero, which is physically possible, the terms which are zeroth order in the excitations
combine to zero to first order. They are ground state contributions only. For the
anisotropy term, we get
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Kz((n · ẑ)n × (ẑ× n)) × n = Kz

(
((n0 + δn⊥) · ẑ)(n0 + δn⊥) × (ẑ× (n0 + δn⊥))

)
× (n0 + δn⊥)

= Kz(n0 · ẑ)(ẑ× δn⊥ − n0 × δn⊥(ẑ · n0))

−Kz(n0 · ẑ)(δn⊥× n0(n0 · ẑ)) +Kz(δn⊥ · ẑ)(ẑ× n0)

= Kz(n0 · ẑ)(ẑ× δn⊥) +Kz(δn⊥ · ẑ)ẑ× n0

(96)
For the third term involving the external magnetic field we get

(n ·H)m × n = (n0 ·H)m × n0 (97)

For the last term arising from the DMI, we obtain

D
(
ẑ(∇ · n)−∇(ẑ · n)

)
= D

(
ẑ(∇ · (n0 + δn⊥)−∇(ẑ · (n0 + δn⊥)

)
× (n0 + δn⊥)

= D(∇ · n0)ẑ× δn⊥ +Dẑ× n0(∇ · δn⊥)−D∇(ẑ · n0) × δn⊥

−D∇(ẑ · δn⊥) × n0

(98)
Putting everything together, the first effective force acting on the magnetization is

− 1

2~
δnF × n =

1

~

(
A(∇2δn⊥× n0 +∇2n0 × δn⊥) +Kz

(
(n0 · ẑ)ẑ× δn⊥

+ (δn⊥ · ẑ)ẑ× n0

)
− (n0 ·H)m × n0 −D

(
(∇ · n0)ẑ× δn⊥

+ ẑ× n0(∇ · δn⊥)−∇(ẑ · n0) × δn⊥ −∇(ẑ · δn⊥) × n0

))
(99)

The second force term in Eq. (92) is

− 1

2~
δmF × m =

1

~
(−am + (n0 + δn⊥) × (H × (n0 + δn⊥)) × m

=
1

~
(H × m− (H · n0)n0 × m)

(100)

The last force term in the equations of motion is the driving force of the staggered
magnetization in Eq. (91), which reads
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− 1

2~
δmF × n =

1

~
(−am + (n0 + δn⊥) × (H × (n0 + δn⊥)) × (n0 + δn⊥)

=
1

~

(
−am × n0 + H × n0 + H × δn⊥ − n0 × δn⊥(H · n0)

− δn⊥× n0(H · n0)
)

=
1

~
(
−am × n0 + H × δn⊥

)
(101)

The form of the effective force acting on the staggered magnetization allows us to
write the magnetization as a slave variable of the staggered order parameter by Eq.
(91):

m =
~
a
δṅ⊥× n0 −

1

a
δn⊥(H · n0) (102)

We take the time derivative of Eq. (102) and substitute ṁ with the force terms Eqs.
(99) and (100) above according to Eq. (92) and obtain

~2

a
δn̈⊥× n0 =

~
a
δṅ⊥(H · n0) +

~
a
δn⊥(Ḣ · n0)

+A(∇2δn⊥× n0 +∇2n0 × δn⊥)

+Kz((n0 · ẑ)ẑ× δn⊥ + (δn⊥ · ẑ)ẑ× n0)

− (n0 ·H)m × n0

−D
(
(∇ · n0)ẑ× δn⊥ + ẑ× n0(∇ · δn⊥)−∇(ẑ · n0) × δn⊥

−∇(ẑ · δn⊥) × n0

)
+ (H × m− (H · n0)n0 × m)

=
~
a
δṅ⊥(H · n0) +

~
a
δn⊥(Ḣ · n0) +A(∇2δn⊥× n0 +∇2n0 × δn⊥)

+Kz((n0 · ẑ)ẑ× δn⊥ + (δn⊥ · ẑ)ẑ× n0

−D
(

(∇ · n0)ẑ× δn⊥ + ẑ× n0(∇ · δn⊥)−∇(ẑ · n0) × δn⊥

−∇(ẑ · δn⊥) × n0

)
+ H ×

(~
a
δṅ⊥× n0 −

1

a
δn⊥(H · n0)

)
(103)

Denote that time derivatives of the linear excitations are orthogonal to the static
equilibrium texture: δṅ⊥ ·n0 = dt(δn⊥ ·n0)− δn⊥ ·∂tn0 = 0⇒ δn̈⊥⊥n0. Hence, all
the terms proportional to n0 are to be removed in this leading order approach when
we isolate δn̈⊥ by taking the vector product with n0:
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~2

a
δn̈⊥ = A∇2δn⊥ −Aδn⊥(∇2n0 · n0)

−Kz(n0 · ẑ)2δn⊥ +Kz(δn⊥ · ẑ)ẑ

+D(∇ · n0)(n0 · ẑ)δn⊥ −D(∇ · δn⊥)ẑ −D((∇(ẑ · n0) · n0)δn⊥ +D∇(ẑ · δn⊥)

+
2~
a

n0 × δṅ⊥(H · n0) +
~
a

n0 × δn⊥(Ḣ · n0) +
1

a
(H · n0)2δn⊥.

(104)
This is the equation of motion governing small-amplitude excitations of the staggered
magnetization for a general position-dependent texture.

For the antiferromagnetic skyrmion, which is symmetric about the out-of-plane
axis ẑ, we make the following parameterization of the static equilibrium staggered
magnetization:

n0(x) = (sin Θ cos ζ, sin Θ sin ζ, cos Θ), (105)

with Θ = Θ(x) and φ = φ(x). For certain crystallographic classes, we have that
the azimuthal angle equals that of the position vector, i.e. ζ = φ. For the symme-
try group Cnν that is the case [69]. Following Ref. [49], we adapt a local spheri-
cal coordinate frame descried by the skyrmion angles, with the following unit vec-
tors(components being in the (x,y,z)-direction):

r̂ = (sin Θ cosφ, sin Θ sinφ, cos Θ)

θ̂ = (cos Θ cosφ, cos Θ sinφ,− sin Θ)

φ̂ = (− sinφ, cosφ, 0)

(106)

We Taylor expand the staggered magnetization around its equilibrium in small de-
viations h in these three directions:

n(x, t) =

(
1− h2

2
(n2
θ(x, t) + n2

φ(x, t))

)
r̂ + h(nθ(x, t)θ̂ + nφ(x, t)φ̂) (107)

Hence, to first order, the linear excitation of the staggered magnetization is

δn⊥ = hnθ(x, t)θ̂ + hnφ(x, t)φ̂. (108)
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To find Schrödinger-like equations for the transverse excitation fields, we substi-
tute our ansatz Eqs. (105), (106) and (107) into Eq. (104). We extract the temporal
dependence in the transverse fields accordingly: nθ(φ)(x, t) = nθ(φ)(x)e−iωθ(φ)t. We
will individually compute the contributions from the terms on the right-hand side
to ease the writing and limit the size of the equation. After considering each term,
we combine them component-wise to give the equations for the in-plane field nφ and
the out-of-plane field nθ. We call it in-plane as φ̂ lies in the basal plane, so the
out-of-plane excitations are all encoded into nθ. We drop the expansion parameter
as all terms are linear in h.

For the first term on the right of Eq. (104), we have:

A∇2δn⊥ = A∇2(nθ(x, t)θ̂ + nφ(x, t)φ̂)

= x̂A
(
r−2∂2

φnθ cos Θ cosφ− r−2∂2
φnφ sin θ + cos Θ cosφ∂2

rnθ − sin θ∂2
rnφ

− cosφnθ sin Θ∂2
rΘ− 2r−1 cosφ(r∂rΘ sin Θ− 1

2
cos Θ)∂rnθ

− nθ(∂rΘ)2 cos Θ cosφ− nθ∂rΘ sin Θ cos(φ)r−1 − ∂rnφ sinφr−1

− 2∂φnθ cos Θ sinφr−2 − nθ cos Θ cosφr−2 − 2∂φnφ cosφr−2

+ nφ sinφr−2
)

+ ŷA
(
r−2∂2

φnθ sinφ cos Θ + r−2∂2
φnφ cosφ+ sinφ cos Θ∂2

rnθ

+ cosφ∂2
rnφ − sinφnθ sin Θ∂2

rΘ− 2 sinφr−1(r∂rΘ sin Θ− 1

2
cos Θ)∂rnθ

− sinφ cos Θnθ(∂rΘ)2 − nθ sinφ∂rΘ sin Θr−1 + ∂rnφ cosφr−1

+ 2∂φnθ cosφ cos Θr−2 − nθ sinφ cos Θr−2 − 2∂φnφ sinφr−2

− nφ cosφr−2
)

− ẑA
(

sin Θ(∂2
rnθ + r−1∂rnθ + r−2∂2

φnθ) + 2 cos Θ∂rΘ∂rnθ

+ nθ(− sin Θ(∂rΘ)2 + cos Θ∂2
rΘ + r−1 cos Θ∂rΘ)

)
(109)

For the second term, we get
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Aδn⊥(∇2n0 · n0) = −x̂A
(
(∂rΘ)2 + r−2 sin2 Θ

)
(nθ cos Θ cosφ− nφ sinφ)

− ŷA
(
(∂rΘ)2 + r−2 sin2 Θ

)
(nθ cos Θ sinφ+ nφ cosφ)

+ ẑA
(
∂rΘ)2 + r−2 sin2 Θ

)
nθ sin Θ

(110)

For the third term, we get

Kz(n0 · ẑ)2δn⊥ = x̂Kz cos2 Θ(nθ cos Θ cosφ− nφ sinφ)

+ ŷKz cos2 Θ(nθ cos Θ sinφ+ nφ cosφ)

− ẑKz cos2 Θnθ sin Θ

(111)

For the fourth term we have

Kz(δn⊥ · ẑ)ẑ = −ẑKznθ sin Θ (112)

For the fifth term we get

D(∇ · n0)(ẑ · n0)δn⊥ = x̂D cos Θ(r−1 sin Θ + cos Θ∂rΘ)(nθ cos Θ cosφ− nφ sinφ)

+ ŷD cos Θ(r−1 sin Θ + cos Θ∂rΘ)(nθ cos Θ sinφ+ nφ cosφ)

− ẑD cos Θ(r−1 sin Θ + cos Θ∂rΘ)nθ sin Θ

(113)
For the sixth term, we get

D(∇ · δn⊥)ẑ = ẑD
(
cos Θ cosφ(cosφ∂rnθ − r−1 sinφ∂φnθ) + nθ cosφ(− cosφ sin Θ∂rΘ)

+ nθ cos Θr−1 sin2 φ− sinφ(cosφ∂rnφ − r−1 sinφ∂φnφ) + nφr
−1 sinφ cosφ

+ cos Θ sinφ(sinφ∂rnθ + r−1 cosφ∂φnθ) + nθ sinφ(− sinφ sin Θ∂rΘ)

+ nθ cos Θ cos2 φr−1 + cosφ(sinφ∂rnφ + r−1 cosφ∂φnφ)− nφr−1 cosφ sinφ
)

= ẑD
(
cos Θ∂rnθ − nθ sin Θ∂rΘ + nθr

−1 cos Θ + r−1∂φnφ
)

(114)
For the seventh term, we have

D((∇(ẑ · n0) · n0)δn⊥ = D((∇ cos Θ · n0))δn⊥

= −x̂D sin2 Θ(∂rΘ)[nθ cos Θ cosφ− nφ sinφ)

− ŷD sin2 Θ(∂rΘ)(nθ cos Θ sinφ+ nφ cosφ)

+ ẑD sin2 Θ(∂rΘ)nθ sin Θ

(115)
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For the eight term, we have

D∇(ẑ · δn⊥) = −D∇(sin Θnθ)

= −x̂D(sin Θ cosφ∂rnθ − sin Θ sinφr−1∂φnθ + nθ cosφ cos Θ∂rΘ)

− ŷD(sin Θ sinφ∂rnθ + sin Θ cosφr−1∂φnθ + nθ sinφ cos Θ∂rΘ)

(116)
For the ninth we need to use that the external field has to be in the z-direction, with
the possibility of having a temporal variation as discussed in Refs. [48, 69, 94, 140]:
H(x, t) = H(t)ẑ. We obtain

2

a
n0 × δṅ⊥(H · n0) = −x̂i2

a
(H cos Θ)(−nθ sin2 Θ sinφ− nθ cos2 Θ sinφ− nφ cos Θ cosφ)

− ŷi2
a

(H cos Θ)(nθ cos2 Θ cosφ− nφ cos Θ sinφ+ nθ sin2 Θ cosφ)

− ẑi2
a

(H cos Θ)(nθ sin Θ cos Θ sinφ cosφ+ nφ sin Θ cos2 φ

− nθ sin Θ cos Θ sinφ cosφ+ nφ sin2 φ sin Θ)

= −x̂i2
a

(H cos Θ)(−ωθnθ sinφ− ωφnφ cos Θ cosφ)

− ŷi2
a

(H cos Θ)(ωθnθ cosφ− ωφnφ cos Θ sinφ)

− ẑi2
a

(H cos Θ)(ωφnφ sin Θ)

(117)
For the tenth term, we can use the result from Eq. (117):

1

a
(Ḣ · n0)n0 × δn⊥ = x̂

1

a
(Ḣ cos Θ)(−nθ sinφ− nφ cos Θ cosφ)

+ ŷ
1

a
(Ḣ cos Θ)(nθ cosφ− nφ cos Θ sinφ)

+ ẑ
1

a
(Ḣ cos Θ)(nφ sin Θ)

(118)

For the eleventh term, we have

1

a
(H · n0)2δn⊥ = x̂

1

a
cos2 Θ(nθ cos Θ cosφ− nφ sinφ)

+ ŷ
1

a
cos2 Θ(nθ cos Θ sinφ+ nφ cosφ)

− ẑ 1

a
cos2 Θnθ sin Θ

(119)
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For the term on the left hand side, we get

~
a
δn̈⊥ = −x̂~

a
(ω2
θnθ cos Θ cosφ− ω2

φnφ sinφ)

− ŷ~
a

(ω2
θnθ cos Θ sinφ+ ω2

φnφ cosφ)

+ ẑ
~
a

(ω2
θnθ sin Θ)

(120)

Now, we have three equations, one for the x-, y- and z-component, respectively.
We can combine them to simplify the expressions. The first equation we obtain by
taking the x-component, multiplying it with sinφ and subtract the y-equation with
all terms multiplied with cosφ. We get

ω2
φ~2

a
nφ =

(
A
(
−∇2 − (∂rΘ)2 +

cos2 Θ

r2

)
+Kz cos2 Θ−D

(sin 2Θ

2r
+ ∂rΘ

)
− H2

a
cos2 Θ

)
nφ

−
((2A cos Θ

r2
− D sin Θ

r

)
∂φ −

i2~Hωθ cos Θ

a
+

~Ḣ cos Θ

a

)
nθ.

(121)
Next, we need an equation for the out-of-plane field nθ. We add the x-equation
with all terms multiplied with cosφ and the y-equation with all terms multiplied
with sinφ, before subtracting this sum multiplied with cos Θ from the z-equation
multiplied with sin Θ. We get

ω2
θ~2

a
nθ =

(
A
(
−∇2 +

cos 2Θ

r2

)
+Kz cos 2Θ− D sin 2Θ

r
− H2

a
cos2 Θ

)
nθ

+

((2A cos Θ

r2
− D sin Θ

r

)
∂φ −

i2~Hωφ cos Θ

a
+

~Ḣ cos Θ

a

)
nφ.

(122)

These are the new, unreported coupled Schrödinger-like equations for magnon ex-
citations around a static antiferromagnetic skyrmion stabilized by DMI, easy-axis
anisotropy and an external magnetic field orthogonal to the basal-plane in the ex-
change approximation. The fields are strongly coupled, which is different compared
to the 1D domain wall scenario where the fields are decoupled [49, 141]. When
comparing to easy-plane antiferromagnetic 2D vortices, these equations are more
complicated as they are more tightly coupled [47, 115, 133].
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