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Abstract

Modern cardiology research aims to encompass sophisticated analysis of intra-
ventricular blood flow in the clinical practice. Such analysis relies on robust and
effective means of measuring blood flow fields, an approach also known as vector
flow imaging (VFI). Because cardiovascular disease is the leading cause of death
globally, and ultrasound is the most used imaging modality in cardiology, finding
new and improved echocardiographic VFI techniques has huge potential benefits.

This master thesis concerns the development and evaluation of a Doppler based
VFI technique called intraventricular vector flow mapping (iVFM). iVFM is a two-
dimensional VFI method by Assi et al. that formulates and solves a regularized
linear minimization problem with Doppler and wall data as inputs.

The iVFM method was implemented in the visualization pipeline of the ultrasound
viewer named PyUSView, which was used as a platform for in silico and in vivo
studies that covered a comparison between iVFM, speckle tracking (ST) and an a
combined method. Two proposed iVFM improvements were also subject to ana-
lysis: One that restricts artificial radial flows by addition of a new regularization
term and another that shows how it is possible to include out-of-plane-flow in
iVFM.

The results outline some of the differences between ST and iVFM, and shows that
a combination of the two methods produces results that harvest strengths from
both. The new regularization term proved effective in the suppression of artificial
radial flows outside the color Doppler mask, and the out-of-plane flow gradient
analysis showed a large potential for error reductions.
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Sammendrag

Moderne kardiologiforskning har en målsetning om å inkludere sofistikerte ana-
lyser av intraventrikulær blodstrøm i klinisk praksis. Slike analyser avhenger av
robuste og effektive metoder for måling av strømningsfelt i blod, en tilnærming
også kjent som vector flow imaging (VFI). Fordi kardiovaskulære sykdommer er
den ledende dødsårsaken i verden, og fordi ultralyd er den mest brukte avbildnings-
modaliteten i kardiologi, har nye og forbedrede ultralydbaserte VFI-teknikker stor
potensiell nytteverdi.

Denne masteroppgaven tar for seg utvikling og evaluering av en Doppler-basert
VFI-teknikk kalt intraventricular vector flow mapping (iVFM). iVFM er en todi-
mensjonal VFI-metode utviklet av Assi et al. som setter opp og løser er regularisert
lineært minimaliseringproblem med Dopplerdata og veggdata som input.

iVFM ble implementert i visualiseringsdelen av ultralydprogrammet PyUSView,
som ble brukt som plattform for in silico og in vivo studier som inkluderte en
sammenlikning av iVFM, speckle tracking (ST) og en kombinert metode. To
foreslåtte iVFM-forbedringer ble også analysert: En som begrenser kunstige radi-
elle strømninger ved å legge til et nytt regulariseringsledd og en annen som viser
hvordan det er mulig å inkludere ut-av-planet-strømning i iVFM.

Resultatene illustrerer flere av forskjellene mellom ST og iVFM, og viser at en
kombinasjon av de to metodene produserer resultater som utnytter stryker fra begge.
Det nye regulariseringsleddet viste seg effektivt til å begrense de kunstige radielle
strømningene utenfor fargedopplermasken, og analysen av ut-av-planet-strømning
viste et stort potensial for reduksjon av feil.
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Chapter 1

Introduction

This chapter provides an introduction to Doppler vector flow reconstruction and
the current state of the art, plus the motivation behind the master project and its
main objectives. Section 1.2 and 1.3 originate from the author’s project thesis.

1.1 Doppler based flow reconstruction
Doppler based ultrasound techniques as a means to measure blood flow velocities
has been a part of clinical cardiology for decades. Their direct application in in-
traventricular cardiac flow imaging is however restricted by the fact that a Doppler
velocity estimate only contains the velocity component pointing in the the same
direction as the ultrasound beam. This makes Doppler based flow reconstruction
in cases where the direction of the flow is unknown a matter that requires additional
measurements, constraints or assumptions.

1.2 Motivation
Blood flow patterns in the heart chambers, and especially vortex formation in the
left ventricle, have in recent years attracted the attention of clinical cardiology re-
search. Several intraventricular flow characteristics have been recognized as pos-
sible precursors for heart disease [1], but further research and possible future dia-
gnostic implementation relies heavily on robust and cost-effective means of blood
flow measurements. Several approaches have been investigated and developed
to find the blood flow velocity components in two or three dimensions, a branch
of ultrasound imaging called vector flow imaging (VFI) [2]. One approach in-
volves using crossing ultrasound beams, another uses tracking of speckle patterns
between frames, and yet another uses directional beamforming to estimate velocity
components perpendicular to the ultrasound beam direction. The development has
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2 Introduction

been ongoing for years, but it is fairly recently that commercial VFI implementa-
tions have started to become available.

1.3 State of the art VFI
A possible way to utilize ultrasonic Doppler data in intraventricular flow imaging is
to formulate a regularized minimization problem that includes the Doppler data as
well as other physical constraints. This is fairly different from other, more analyt-
ically founded Doppler VFI methods, such as the method based on integrating the
continuity equation along the scan lines that has been developed by Damien Garcia
[3]. This method has been implemented on an Hitachi ultrasound scanner [4] and
is currently the clinical state of the art Doppler VFI. The regularized minimiza-
tion approach has, however, resulted in what the authors claim to be an improved
Doppler VFI method called intraventricular vector flow mapping (iVFM) [5].

1.4 Thesis goals
The main objective of this thesis has been to develop and implement an improved
version of iVFM and evaluate its performance. This master thesis is a continuation
of the writer’s project thesis [6], in which the iVFM performance was studied in
silico under scenarios related to walls, noise and dropouts of small velocities. The
project thesis identified challenges related to aliasing, overestimation of velocities
in dropout regions and out-of-plane flow that violates the two dimensional non-
divergence assumption. The working hypothesis has been that the overestimation
can be improved by an extra regularization term, and that out of plane flow is an
important error source that can be reduced by including out-of-plane flow meas-
urements in the divergence term in iVFM.

In addition to implementing and evaluating these two iVFM improvements, an ef-
fort to implement iVFM in a practical pipeline for in vivo ultrasound analysis has
been made. This pipeline contains a speckle tracking (ST) based aliasing correc-
tion method, the possibility to use Vx estimates from ST as iVFM input and an
iterative conjugate gradient solver sped up by preconditioning. The pipeline was
used to produce the main results in the thesis, which are in silico quantitative eval-
uation of the developed iVFM additions, in vivo iVFM analysis and comparison
to ST.



Chapter 2

Background

This chapter contains the most important theory needed to follow the rest of the
thesis. It starts with sections describing ultrasound, Doppler and ST. Then follows
a part about Tikhonov regularization, preconditioning of linear algebra systems,
before the chapter ends with a description of Doppler based flow field reconstruc-
tion. In this chapter, section 2.1.1, 2.1.2 and most parts of 2.2 and 2.4 originate
from the author’s project thesis.

2.1 Theory of ultrasonic imaging

2.1.1 History of ultrasound

Ultrasound imaging has become a valuable diagnostic tool in modern medicine
practice. Inspired by research done on the physiology behind bats’ echolocation
by Lazzaro Spallanzani [7] in the 18th century, the ultrasound development accel-
erated after the discovery of the piezoelectric crystal by Jacques and Pierre Curie
in 1880 [8]. Ultrasound was suggested as basis for an iceberg detection system
after the sinking of Titanic in 1912, and armed forces soon understood the value
of a technique especially applicable in submarine detection. Since its first medical
application in 1942 by the neurologist Karl Dussik [9], the ultrasonic scanner has
developed into a versatile instrument used by physicians in many medical special-
ties.

2.1.2 Physics of Doppler ultrasound

Ultrasound imaging is based on the sending, receiving and interpretation of longit-
udinal acoustic waves. Changes in mass density and compressibility of the medium
in which an ultrasound wave is propagating will cause scattering, reflection and re-
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4 Background

fraction. By analyzing the echo from an ultrasound wave using models founded
on wave physics, one can approximate the mass density and compressibility of the
medium, and use this information to form what we call an ultrasound image.

Ultrasound transducers are typically composed of arrays of piezoelectric crystals
that through individually controlled delays offer endless possibilities for beam-
forming and receiving schemes. The ultrasound images in this master thesis are
recorded with a linear array and a phased array, which are the two most common
transducer types in cardiac imaging. This results in images with different geomet-
ric properties: The linear array has parallel scan lines and the image is stored in
Cartesian coordinates, while the phased array scans in a sector that results in polar
coordinate images.

Doppler ultrasound is based on the Doppler effect observed in all wave phenomen-
ons: The frequency of a signal emitted by a wave transmitter moving towards or
away from a stationary observer changes as a function of the wave transmitter’s
velocity. By analyzing the frequency shift fd and knowing the speed of sound in
the medium, c, the velocity, v, of for instance blood flowing towards the ultrasound
probe can be determined by the relation

v =
c

2f0 cos θ
fd . (2.1)

Here, θ is the angle between the velocity vector and the ultrasound beam and f0 is
the ultrasound center frequency.

In practice, the received ultrasound signal is converted into so-called IQ data, us-
ing quadrature demodulation. This is done mainly to reduce the amount of data
without losing essential information [10], and will not be discussed in further de-
tail here. The Doppler velocity for pulsed wave (PW) Doppler can from the IQ
data be determined by

Vd =
Vny
π

angle
(〈
IQi · IQi+1

〉)
, (2.2)

where Vny is the Nyquist velocity, angle(z) returns the angle of a complex number
z, and

〈
IQi · IQi+1

〉
is the mean of the autocorrelation of the IQ frames in the

data packet, but shifted by one frame.

PW Doppler is a technique where the Doppler velocities in different regions can
be determined. This is done with a number of short pulses that are sent and re-
ceived by the same device. The pulses are too short to pick up the Doppler shift
individually, which is why two or more IQ frames are needed in equation (2.2) to
get a velocity estimate. Although PW Doppler gives spatial Doppler information,



2.1. Theory of ultrasonic imaging 5

its major disadvantage is the inherent upper limit of measurable velocities, Vny,
defined by

Vny =
c · PRF

4f0
, (2.3)

where PRF is the pulse repetition frequency. Radial velocities larger than this
limit will be sampled in the wrong end of the velocity spectrum, a sampling phe-
nomenon known as aliasing. The result of this for color Doppler images can be
observed in figure 2.1, where the color Doppler is shown before and after aliasing
correction.
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Figure 2.1: Color Doppler images from patient 4002 frame 46. The large blue area of
seemingly negative velocities in the left image are in reality aliased positive velocities.
The alias corrected image is shown on the right.

2.1.3 ST and aliasing correction

The idea that velocity estimates can be obtained from the tracking of speckle pat-
terns from frame to frame in ultrasound images was first reported by Robinson
et al. [11] in 1982. As the ST method has matured over the years, it seems
to overcome the two most important challenges in Doppler velocity estimation,
namely aliasing and the beam direction dependent velocity measurement. In ST,
the backscattered echos are tracked under the assumption that speckle signatures
remain relatively constant as tissues or liquids move, and that their motion can be
followed using pattern matching algorithms. The procedure can be done in one,
two or three dimensions, depending on the available ultrasound data.

As explained in an overview article by Bohs et al. [12], the ST process takes a
kernel region from one acquisition and finds the best match within a search region
from a later acquisition. This process is called block matching, and is illustrated
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crudely in figure 2.2. The vector describing the motion of a kernel can then be
acquired from the position of the kernel, the position of the best match and the time
between the two acquisitions. The whole vector field can be found by performing
repeated block matching with different kernels. There are several ways to define
the best match in the search region, as well as many other algorithmic nuances in
the ST process that lie well beyond the scope of this master thesis. The process
used for comparison in this thesis uses the sum of squared differences (SSD) to
define the best match.

Figure 2.2: Outline of the block matching process of ST. The procedure tracks a speckle
(hexagon) by finding the area in the search region (yellow) that best matches the kernel
(red). The best matching region (green) defines the displacement of the speckle. The figure
is used with the author’s permission [13].

For the aliasing correction process used to correct the Doppler velocity estimates
in this thesis, a two-dimensional version of the aliasing correction described in
[14] was used. In this algorithm, the spatial correlation was calculated for the po-
sitions corresponding to the aliased positions. This resembles how the ST works
in general, but the dealiasing procedure restricts its search area to the aliased pos-
itions. An overview of the process is viewed in figure 2.3, where we see the alias
candidate with the best correlation (green) the other aliased positions (red).
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Figure 2.3: Overview of the aliasing correction process. The alias candidate with the
best correlation (green) defines the alias corrected Doppler estimate. The other aliased
positions as well as the initial Doppler estimate, Vacm, are shown in red. The gray alias
candidate outside the predefined range [−Vmax, Vmax] is neglected. The figure is used
with permission of Morten Smedsrud Wigen.

2.2 Method of least squares and Tikhonov regularization
The least squares method is used to find the best fit solutions to overdetermined
problems in regression analysis. In the system

Ax = b + ε , (2.4)

where the matrix A and the vector b are known, we wish to find values for x that
minimizes the residual error εT · ε = (Ax − b)T (Ax − b). This can be done
by differentiation of the residual error with respect to x and setting equal to zero,
which leads to the expression for the least square estimator x = (ATA)−1ATb.

In the physical world, we sometimes want to approximate solutions to ill-posed
problems, that is problems without a unique solution or with a solution that does
not change continuously when the initial conditions are changed. A popular ap-
proach to solving ill-conditioned problems is the Tikhonov regularization [15]. By
adding one or more regularization terms to the residual error, the ill-posed system
is replaced with a closely related, but well-posed system. With only one simple
regularization term, the expression we seek to minimize is (Ax−b)T (Ax−b) +
λxTx, where λ > 0 is the regularization parameter. We call this functional the
cost functional. The solution for this simple regularization is known, but in the
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more general case where the cost functional is on the form

J(x) = (Ax− b)T (Ax− b) +
∑
k

λkCk(x)TCk(x) , (2.5)

one possible approach is to differentiate with respect to x and set equal to zero.
Whether or not this gives results depends on the constraints Ck(x). If they can be
expressed as Ck(x) = Qkx for a known matrix Qk, this approach leads to(

ATA+
∑
k

λkQ
T
kQk

)
x = ATb , (2.6)

which is a new linear system on the form A′x = b′. If instead only i of the k
constraints can be expressed as Ci(x) = Qix for a known matrixQi, and the other
j constraints can only be expressed as Cj(x) = Qjx− dj for a known matrix Qj
and vector dj, the resulting linear system becomes(

ATA+
∑
k

λkQ
T
kQk

)
x = ATb +

∑
j

λjQ
T
j dj . (2.7)

2.3 Preconditioning in linear algebra solvers
When solving the general linear algebra system on the form

Ax = b , (2.8)

where A is a sparse matrix, direct solvers tend to become computationally costly
as we increase the size of A [16]. Such a problem can often be solved much
more efficiently with an iterative solver, for example the conjugate gradient (CG)
solver. An iterative solver is an algorithm that, given an initial solution guess x0,
iteratively provides new solution guesses xk, that for each iteration comes closer
to the true solution x = A−1b. We are however not guaranteed that the solution
guess xk converges towards the true solution or that it comes satisfyingly close
to the true solution in a practical amount of iterations. To ensure this, one can
transform the linear problem (2.8) into

MAx = Mb , (2.9)

where the iterative solver will have a better starting point for iteration the closer
MA lies to the identity. In other words, we wish M to approximate the inverse
of A. The matrix M is what we call a preconditioner, and can be taken as an
additional argument by many iterative solvers.
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2.4 Flow field reconstruction based on Doppler ultrasound
Reconstruction of a flow field solely from Doppler velocity estimates seems in-
feasible. Considering the Doppler data only provides vector components parallel
to the ultrasound propagation direction, further data or new assumptions about the
flow field are required for a reconstruction scheme to work. By including wall
information and assuming non-divergence and a smooth flow field, Assi et al. es-
tablish the global quadratic minimization problem that plays the main part in the
most recent version of their reconstruction method, iVFM [5].

It is physically consistent to require that the reconstructed flow should not cross
the cardiac wall and that it should be somewhat smooth. One can also assume
incompressible flow and mass conservation by demanding the divergence of the
vector field to be zero. Although non-divergence is a valid assumption in 3D blood
flow, it is generally not valid for a 2D slice through a 3D flow. Since such a 2D field
can have hidden flow components perpendicular to the slice surface, one should be
cautious when applying iVFM to 2D cardiac views with potential flow out of the
plane. However, by measuring the perpendicular flow component and using it with
the result in equation (2.7), we will in section 3.1.6 see how the non-divergence
assumption can become valid.

The cost functional for the global minimization problem solved in iVFM, J(v),
can be expressed as

J(v) =

∫
Ω

(vr−vD)2 dV +λ1

∫
Ω

(∇·v)2 dV +λ2

∫
δΩ

(v·n)2 dσ+λ3

∫
Ω
S(v) dV ,

(2.10)
which is the sum of three constraint terms in addition to a Doppler fit term. In a
least square sense, we want the solution, v = vr · er + vθ · eθ, to fit well to the
Doppler data, vD, that lies inside the domain, Ω. We also want the solution to not
flow through the domain boundary, δΩ, to have small divergence, ∇ · v, and to be
relatively smooth. In addition to the three constraint terms in equation (2.10), we
add a fourth constraint

λ4

∫
Ω4

v2
r dV , (2.11)

where Ω4 is the dropout regions inside the domain. The motivation behind the
penalization of radial velocities in these regions is to prevent the tendency for
iVFM to overestimate velocities in dropout regions. This was seen in the dropout
tests on the CFD phantom in the writer’s project thesis [6], and also from the
earliest in vivo results in the master project.

To prevent an ill-posed minimization problem that can result in overfitting and in
worst case infinitely many solutions, we include the four constraints as Tikhonov
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regularization terms. The best fit solution is the one that minimizes the functional
J .



Chapter 3

Methodology

In the work that lead up to the writer’s project thesis [6], two versions of iVFM
were implemented: An angular and a linear version, iVFMang and iVFMlin. These
were written in Python 3 with the scientific computing tool SciPy. The angular ver-
sion was implemented using the procedure proposed by Assi et al [5]. It works in
a polar coordinate system, while the linear version, iVFMlin, works in a Cartesian
coordinate system, and was derived from the angular version through a coordinate
transformation.

Even though this master thesis uses iVFMlin as its starting point, this methodo-
logy chapter has been made more accessible to the new reader by starting with
two revised sections from the project thesis, section 3.1.1 and 3.1.2. These sec-
tions contain descriptions of how iVFMang and iVFMlin were implemented. The
sections that follow focus on the methods that have been applied to produce and
validate an improved iVFM version in this master thesis. Section 3.2.1 and 3.2.2,
describing the in silico phantom and the ultrasound simulations, as well as the last
part of section 3.3, describing the clutter filtering, are also from the author’s project
thesis.

3.1 iVFM implementation

3.1.1 iVFMang

To implement the minimization of the cost functional (2.10), one needs to choose
a smoothness function, S, before discretizing and performing the actual minimiz-
ation that leads to the linear system described in equation (2.6). Assi et al. chose
S(v) =

∑
m∈{r,θ}(r

2∂2
rvm)2 + 2(r∂2

rθvm)2 + (∂2
θvm)2, which contains second

degree partial derivatives that favor a spatially smooth solution. This term has no
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other physical foundation than the tendency for cardiovascular flow fields to be
smooth, and other smoothness functions could have been chosen. To get a more
convenient form in polar coordinates, r∇ · v = r∂rvr + vr + ∂θvθ, is used as the
divergence term instead of ∇ · v. Since we are minimizing the cost functional by
differentiation with respect to v later, this choice does not affect the final solution.

To discretize the cost functional, the following (M × N) matrices were defined,
where N is the number of scanlines and M is the number of samples per scanline:
Vd is the matrix containing the negative Doppler velocities, Vr and Vθ contain the
estimated radial and angular velocities, R contains the radial coordinates of the
grid nodes, Nr and Nθ contain the radial and angular component of the domain
normal vector and the binary matrix ∆ defines the domain. For the ∆ matrix,
elements inside the domain are set to 1, while elements outside are set to 0. For
the Nr and Nθ matrices, only the border elements contain the r and θ component
of the normal vector in that position, all other elements are set to zero. All the
matrices are vectorized into (MN × 1) column vectors such that vec(Vd) = vd,
vec(Vr) = vr, vec(∆) = δ and so on. The constant radial and angular step size
are hr and hθ. The differential operators are approximated with the (q × q) three
point stencils Ḋq and D̈q, defined as

Ḋq =


−0.5 0.5
−0.5 0 0.5

. . . . . . . . .
−0.5 0 0.5

−0.5 0.5

 , D̈q =


−1 1
1 −2 1

. . . . . . . . .
1 −2 1

1 −1

 .
(3.1)

The (q × q) identity matrix is denoted Iq, and Iq represents a column vector with
ones of size (q × 1).

The Doppler term, divergence term, wall term and smoothing term in the cost
functional (2.10) can now be discretized, which changes J(v) to

J(v) = (Q0v − vD)T (Q0v − vD) +
∑

k=1,2,3

λkv
TQTkQkv , (3.2)



3.1. iVFM implementation 13

where

Q0 =[1, 0]⊗ diag(δ),

Q1 =

[
1

hr
(r ITMN) ◦ (IN ⊗ ḊM ) + IMN ,

1

hθ
ḊN ⊗ IM

]
,

Q2 = [diag(nr), diag(nθ)] ,

Q3 =


I2 ⊗ 1

h2r

(
(r ◦ r ITMN) ◦ (IN ⊗ D̈M )

)
I2 ⊗ 2

hrhθ

(
(r ITMN) ◦ (ḊN ⊗ ḊM )

)
I2 ⊗ 1

h2θ

(
D̈N ⊗ IM

)
 .

(3.3)

Here ⊗ is the Kronecker product, ◦ is the Hadamard product and diag() denotes
the diagonal matrix. The full details of the discretization can be viewed in the Assi
et al. appendix [5].

The resulting cost functional is now on the same form as equation (2.5), and can
therefore be minimized to form a new linear system that can be solved with a linear
algebra solver. The resulting system is(

QT0 Q0 +
∑

k=1,2,3

λkQ
T
kQk

)
v = QT0 vd . (3.4)

3.1.2 Transition from iVFMang to iVFMlin

The coordinate transformation from iVFMang to iVFMlin only affects the diver-
gence and the smoothing term, represented by Q1 and Q3 in the linear system in
equation (3.4). Since∇ · v = ∂zvz + ∂xvx in Cartesian coordinates, Q1 becomes

Q1 =

[
1

hz
IN ⊗ ḊM ,

1

hx
ḊN ⊗ IM

]
. (3.5)

The smoothing function for the linear variant of iVFM was chosen to contain
second degree partial derivatives with cross terms. With S(v) =

∑
m∈z,x(∂2

zvm)2+

2(∂2
zxvm)2 + (∂2

xvm)2, the linear smoothing function resembles the angular, but is
not equivalent. With this as the smoothing function, Q3 simplifies to

Q3 =


I2 ⊗ 1

h2z

(
IN ⊗ D̈M

)
I2 ⊗ 2

hzhx

(
ḊN ⊗ ḊM

)
I2 ⊗ 1

h2x

(
D̈N ⊗ IM

)
 . (3.6)

Notice that the system no longer has an r dependence when working in Cartesian
coordinates, so the iVFM function does not need the R matrix. The rest of the
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terms involved in the system in equation (3.4) are changed from nr to nz, nθ to
nx and so on, as the velocity field is now described by v = vz · ez + vx · ex.

3.1.3 λ4 – A constraint on radial flow outside the color flow mask

In a less ideal iVFM setting with uncertain Doppler estimates and signal dropouts,
one does not necessarily wish to give the same weight to all Doppler velocity
estimates within the domain. Different weighing can be achieved in iVFM by
letting ∆ consist of floating point values between 0 and 1, instead of binary values.
The measurements we trust the most get the highest weight, and the ones we trust
the least get zero weight. The areas that get very small weights typically reside
within dropout regions that in practice only contain noisy measurements due to the
clutter filtering.

To prevent iVFM’s observed tendency to construct solutions containing high radial
velocities in areas with a very small ∆ value, a new constraint was imposed on
radial velocities. The physical reasoning behind this constraint goes as follows: A
region with high radial velocities will always provide good Doppler estimates, and
therefore high radial velocities in dropout regions are simply non-physical. Even
though all this tells for certain is that the real radial velocity must be somewhere
below the cutoff velocity of the clutter filter, the approach taken in this thesis is
to constrain radial velocities linearly by adding a new regularization term, Q4 and
control its influence through tuning of the regularization parameter λ4. The matrix
∆4 was introduced to regulate in which regions this new regularization term is
allowed to function. ∆4 was constructed by taking B−∆ in positions within both
the domain and the Doppler region of interest (ROI) and setting all other elements
to zero. B is here a matrix of ones with the same shape as ∆. Q4 takes the form

Q4 = [1, 0]⊗ diag(δ4) , (3.7)

and was included in the global problem by letting k = 1, 2, 3, 4 in equation (3.4).

3.1.4 The Θ matrix

In cases where the input Doppler data is recorded with phased ultrasound array
and later scan converted to Cartesian coordinates, iVFMlin would not be directly
applicable. The Doppler estimates will then contain velocity components in both z
and x direction, whereas iVFMlin assumes they all point along ez. To handle this,
the matrix Θ was given to iVFMlin as an additional argument containing the angle
between every input velocity estimate and and ez. By including Θ in the definition
of Q0 and Q4, we can effectively impose any angle on the Doppler estimates that
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are included in the global minimization problem. Q0 and Q4 then becomes

Q0 =[cosθ, sinθ]⊗ diag(δ) ,

Q4 =[cosθ, sinθ]⊗ diag(δ4) .
(3.8)

3.1.5 Preconditioning

Sparse linear systems on the form Ax = b can be solved using for instance the
spsolve function from the Scipy library. However, computation times can be
drastically improved by using an iterative solver such as cg from the same lib-
rary. The latter uses the conjugate gradient method to approach a solution until
an error tolerance level is reached. cg also has the ability to take a preconditioner
as an argument to improve the computation time. As explained in section 2.3, the
preconditioner for the matrix A should approximate the inverse of A. The iVFM
procedure usually consists of setting up and solving the linear system for several
consecutive frames that have a somewhat similar domain, and therefore somewhat
similar A matrices. The approach taken to speed up iVFM computation was to
calculate the exact inverse of A for the first frame and feed this into the cg solver
as a preconditioner for all the following frames in the same sequence. The piece
of code used to do this can be found in code line 66-71 in section 3.1.7.

3.1.6 Inclusion of out-of-plane flow

To address the problem of the non-divergence assumption in the 2D flow, the diver-
gence regularization term was changed to include the out-of-plane flow. Since the
assumption is generally not valid unless all three spatial dimensions are included
in the divergence term, we simply change the constraint from∇·v to∇·v+ ∂

∂yvy,
where v = vzez + vxex. If we assume ∂

∂yvy is known, the new constraint is now
on the formCj(x) = Qjx−dj as described in section 2.2, and the result presented
in equation (2.7) is directly applicable. Only the right hand side of the resulting
system from equation (3.4) is affected, and becomes

QT0 vd − λ1Q
T
1

∂

∂y
vy . (3.9)

3.1.7 Full Python implementation

The implemented Python version of the new iVFM is viewed below. It imports
sparse matrix functionality from Numpy and Scipy to set up and solve the linear
system, while the derivative operators are constructed by the imported functions
Dp_1 and Dp_2, that construct the derivative operators (3.1) as sparse matrices.
The new iVFM function has three different Doppler input options. It can 1) take
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Doppler velocity estimates in the z direction just like iVFMlin, 2) take Doppler ve-
locity estimates together with a Θ matrix specifying the direction of each estimate
or 3) take both initial vz and vx estimates. In addition to this, one can input ∂

∂yvy
if that is available for any of the three modes.

1 i m p o r t numpy as np
2 from s c i p y . s p a r s e i m p o r t c s r _ m a t r i x
3 from s c i p y . s p a r s e i m p o r t kron , i d e n t i t y , v s t a c k , h s t a c k , d i a g s , b l o c k _ d i a g
4 from s c i p y . s p a r s e . l i n a l g i m p o r t s p s o l v e , cg
5

6 d e f iVFM( Vd , h_z , h_x , N_z , N_x , De l t a , lambda_1 , lambda_2 , lambda_3 ,
7 Vx=None , The ta =None , t o l =None , m a x i t e r =None , M_p=None , D e l t a _ 4 =None ,

lambda_4=None , Vy_grad=None , h_y=None ) :
8

9 o r d e r = ' F '
10 M = Vd . shape [ 0 ]
11 N = Vd . shape [ 1 ]
12

13 i f The ta i s None :
14 d = d i a g s ( D e l t a . r a v e l ( o r d e r ) , f o r m a t = ' c s r ' , d t y p e =np . f l o a t 6 4 )
15 d4 = d i a g s ( D e l t a _ 4 . r a v e l ( o r d e r ) , f o r m a t = ' c s r ' , d t y p e =np . f l o a t 6 4 )
16 i f Vx i s None :
17 Q0 = h s t a c k ( ( d , c s r _ m a t r i x ( (M * N, M * N) , d t y p e =np . f l o a t 6 4 ) ) )
18 Q4 = h s t a c k ( ( d4 , c s r _ m a t r i x ( (M * N, M * N) ,
19 d t y p e =np . f l o a t 6 4 ) ) )
20 e l s e :
21 Q0 = b l o c k _ d i a g ( ( d , d ) )
22 Q4 = b l o c k _ d i a g ( ( d4 , d4 ) )
23

24 e l s e :
25 d_0 = d i a g s ( D e l t a . r a v e l ( o r d e r ) * np . cos ( The ta . r a v e l ( o r d e r ) ) ,
26 f o r m a t = ' c s r ' , d t y p e =np . f l o a t 6 4 )
27 d_1 = d i a g s ( D e l t a . r a v e l ( o r d e r ) * np . s i n ( The ta . r a v e l ( o r d e r ) ) ,
28 f o r m a t = ' c s r ' , d t y p e =np . f l o a t 6 4 )
29 Q0 = h s t a c k ( ( d_0 , d_1 ) )
30

31 d4_0 = d i a g s ( D e l t a _ 4 . r a v e l ( o r d e r ) * np . cos ( The ta . r a v e l ( o r d e r ) ) ,
32 f o r m a t = ' c s r ' , d t y p e =np . f l o a t 6 4 )
33 d4_1 = d i a g s ( D e l t a _ 4 . r a v e l ( o r d e r ) * np . s i n ( The ta . r a v e l ( o r d e r ) ) ,
34 f o r m a t = ' c s r ' , d t y p e =np . f l o a t 6 4 )
35 Q4 = h s t a c k ( ( d4_0 , d4_1 ) )
36

37 Q1 = h s t a c k ( ( ( 1 / h_z ) * kron ( i d e n t i t y (N) , Dp_1 (M) ) ,
38 (1 / h_x ) * kron ( Dp_1 (N) , i d e n t i t y (M) ) ) )
39

40 Q2 = h s t a c k ( ( d i a g s ( N_z . r a v e l ( o r d e r ) , f o r m a t = ' c s r ' , d t y p e =np . f l o a t 6 4 ) ,
41 d i a g s ( N_x . r a v e l ( o r d e r ) , f o r m a t = ' c s r ' , d t y p e =np . f l o a t 6 4 ) ) )
42

43 P1 = kron ( i d e n t i t y (N) , Dp_2 (M) )
44 P2 = kron ( Dp_1 (N) , Dp_1 (M) )
45 P3 = kron ( Dp_2 (N) , i d e n t i t y (M) )
46 Q3 = v s t a c k ( ( kron ( i d e n t i t y ( 2 ) , (1 / ( h_z * h_z ) ) * P1 ) ,
47 kron ( i d e n t i t y ( 2 ) , (2 / ( h_z * h_x ) ) * P2 ) ,
48 kron ( i d e n t i t y ( 2 ) , (1 / ( h_x * h_x ) ) * P3 ) ) )
49

50 A = ( Q0 . T . d o t ( Q0 ) ) + ( lambda_1 * Q1 . T . d o t ( Q1 ) ) +
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51 ( lambda_2 * Q2 . T . d o t ( Q2 ) ) + ( lambda_3 * Q3 . T . d o t ( Q3 ) ) +
52 ( lambda_4 * Q4 . T . d o t ( Q4 ) )
53

54 i f Vx i s None :
55 i f Vy_grad i s None :
56 b = Q0 . T . d o t ( Vd . r a v e l ( o r d e r ) )
57 e l s e :
58 b = Q0 . T . d o t ( Vd . r a v e l ( o r d e r ) ) −
59 (1 / h_y ) * lambda_1 * Q1 . T . d o t ( Vy_grad . r a v e l ( o r d e r ) )
60 e l s e :
61 b = Q0 . T . d o t ( np . h s t a c k ( ( Vd . r a v e l ( o r d e r ) , Vx . r a v e l ( o r d e r ) ) ) )
62

63 i f t o l i s None :
64 x = s p s o l v e (A, b )
65 e l s e :
66 i f M_p i s None :
67 from s c i p y . s p a r s e . l i n a l g i m p o r t sp lu , L i n e a r O p e r a t o r
68 M2 = s p l u (A)
69 M_x = lambda x : M2. s o l v e ( x )
70 M_p = L i n e a r O p e r a t o r ( (A. shape [ 0 ] , A. shape [ 0 ] ) , M_x)
71 x , i n f o = cg (A, b , M=M_p , m a x i t e r = m a x i t e r , t o l = t o l )
72

73 r e t u r n np . r e s h a p e ( x , ( 2 , N, M) ) . t r a n s p o s e ( 0 , 2 , 1 ) , M_p

The new iVFM function was fitted into the visualization pipeline of the ultrasound
analysis program PyUSView, which can be used to analyze clinical ultrasound
data. In this analysis scheme, the domain needs to be defined manually for a
chosen number of frames and then the domain definition for the remaining frames
are interpolated linearly. This domain definition was used to define the domain
mask both for the in vivo and FUSK analysis in this master thesis. The ∆ matrix
was defined by taking the arbitration mask within the domain multiplied with the
Doppler power. This proved to give a reasonable weighing of the Doppler velocity
estimates, prioritizing the higher velocities. The arbitration in PyUSView is a
sophisticated procedure for separating flow and tissue regions in the image based
on the combined properties of the IQ and B-mode signals. The normal matrices,
Nz and Nx, were defined from the domain border positions by using ConvexHull
from scipy.spatial. The vectors were then normalized and interpolated to fill the
whole domain border, except at the basis, where they were set to zero.

3.2 CFD, FUSK and in vivo data

3.2.1 CFD phantom

The computational fluid dynamics (CDF) model used in the evaluation of iVFM is
based on simulations carried out with a commercial CFD solver (ANSYS Fluent)
applied to a generic 3D model of a neonatal left ventricle [17]. The simulation is
a time varying flow inside a truncated prolate spheroid with an imposed volume
change to simulate the full heart cycle. The heart rate of the ventricle is set to
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120 beats per minute and the sequence contains 100 frames, which gives a total
sequence length of 0.5 seconds and 0.005 seconds between each frame. Figure
3.1 shows the model flow and domain walls for four frames used in the later ana-
lysis. The plots demonstrate ejection (frame 18), filling (frame 50) and late dia-
stole (frame 70 and 90) for three different cardiac views. See section 3.4 for an
explanation of how the cardiac view slicing was done.

3.2.2 FUSK – Simulated ultrasound

While ultrasound can be simulated by solving the acoustic wave equation, it can be
extremely expensive in terms of memory and computational cost when we are deal-
ing with anything more advanced than the simplest ideal models [18]. The choice
of approximation method used for ultrasound simulation is therefore a trade off
between achieved precision, and computational cost and memory demands. Many
methods exist in the spectrum ranging from the slow accurate to the faster less ac-
curate, and the simulated ultrasound used to evaluate iVFM belongs to the second
group. The fast ultrasound simulation in k-space (FUSK) uses a Fourier convo-
lution technique to convolve the point spread function with the field of sparsely
distributed ultrasound scatterers [19]. FUSK was used to simulate ultrasound on
the CFD phantom, and the simulated Doppler data was used as input for iVFM.
In this ultrasound simulation, the pulse repetition frequency (PRF) was 5 kHz, the
center frequency f0 was 3 MHz, the speed of sound c was set to 1540 m/s, and the
packet size was 12. This gives a Nyquist velocity of Vny = c

4f0
PRF = 0.64 m/s.
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Figure 3.1: Ground truth phantom flow (arrows), true domain walls (gray) and the alias
corrected Doppler estimates from FUSK (yellow/red/blue). The columns mark the cardiac
views and the rows mark the frame.
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3.2.3 In vivo analysis

The in vivo data subject to iVFM analysis was acquired from two healthy patients,
4002 and 4018, and was recorded in 2016 by a cardiologist with a GE E95 ultra-
sound scanner. For 4002, the PRF was 7 kHz, f0 was 5.9 MHz, the packet size
was 16 and Vny was 0.464 m/s. For 4018, the PRF was 5 kHz, f0 was 3.7 MHz,
the packet size was 16 and Vny was 0.53 m/s. Since the data was acquired with
a phased ultrasound array, a Θ matrix had to be constructed and fed to the iVFM
function together with the Doppler estimates. The Θ matrix was constructed based
on the positional ROI data of the recordings. This was done with the following
few lines of code:

z = numpy.linspace(ROI_e[1], ROI_e[3], res[0])
x = numpy.linspace(ROI_e[0], ROI_e[2], res[1])
xv, zv = numpy.meshgrid(x, z)
Theta = numpy.arctan2(xv,zv) .

Here, ROI_e is a list containing the coordinates of the bounding box of the ROI
and res contains the resolution of the iVFM Doppler input matrix. Apart from the
dependence on Θ to get the correct direction on the Doppler estimates, the in vivo
iVFM analysis was identical to the in silico analysis.

3.3 Aliasing correction and clutter filtering
In the analysis done in this master thesis, ST was always performed prior to iVFM.
This is because the aliasing correction method that was used here utilizes the ST
library developed at ISB, NTNU. The library has the ability to return the aliasing
corrected Doppler estimates in a Cartesian coordinate space, which can be sent dir-
ectly into the iVFM function, in addition to the more conventional ST algorithms.
The library also contains the SSD ST algorithm, and a fairly new hybrid algorithm
that combines Doppler estimates with lateral ST.

In practice, all the ST settings were kept at default values, except the output data
density parameter, which was tuned to give output arrays of about 100 datapoints
in each direction. A finite impulse response (FIR) clutter filter was also applied
to the ultrasound data prior to the actual tracking. The frequency response for the
FIR clutter filter that was applied to the FUSK and in vivo data is shown in figure
3.2. As shown, this is a highpass filter, and its function is to filter out the strong
echoes from the slowly moving heart tissue that disturbs the blood echo signal.
An inevitable effect of clutter filtering is the signal attenuation of small Doppler
velocities. The regions where the Doppler velocities are attenuated by the clutter
filter are known as dropout regions.
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Figure 3.2: The frequency response of the clutter filter plotted up to the Nyquist velocity
for the FUSK (top), 4002 (middle) and 4018 (bottom) data.
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3.4 Analysis and validation
For all the analysis and validation, values of the regularization parameters were
found by trial and error. Since it was established early that λ1 and λ2 variations
gave only small changes in the resulting field, different smoothing parameters, λ3,
and λ4 values were tested to find an optimal tuning. The following regularization
parameters were found to give satisfying results and were used as default settings
throughout the analysis and validation: λ1 = 5, λ2 = 5, λ3 = 5 × 10−13 and
λ4 = 0.5.

To analyze the FUSK data in PyUSView, the FUSK data were loaded into an empty
dummy HDF file that was exported from PyUSView. By loading FUSK IQ data,
positional data, pulse repetition and center frequency info into the same pipeline
used for in vivo data, we ensure as equal treatment as possible for the in vivo and in
silico analysis. Since the FUSK IQ data is a three-dimensional ultrasound record-
ing, the data must be sliced into two-dimensional data before it can be analyzed by
a two-dimensional method such as iVFM. Prior to the slice, the coordinate space
was rotated and shifted according to three predefined roll, pitch, yaw and offset
settings that result in three slices that resemble the three standard cardiac clinical
views apical long axis (ALAX), apical 2 chamber (A2C) and 4 chamber (4CH).
The settings for rotation and shifting can be found in table 3.1. The rotations are
given in degrees and the offsets in pixels. The offset defines the displacement of
the middle slice that is performed after the rotation of the coordinate space, and is
valid for the dimensions of the CFD phantom data, which are [178, 95, 95] for z,
y, and x respectively. Both the FUSK and CFD ground truth data were subjected
to the same rotation, offset and slicing, to get the same views in the ground truth
comparisons and the FUSK analysis.

Table 3.1: Table showing the settings used to obtain the three cardiac views for the FUSK
analysis.

View Roll Pitch Yaw Offset
ALAX -20◦ -2◦ 0◦ 3
A2C 90◦ 5.34◦ 0◦ -8
4CH 20◦ 0◦ 0◦ 0

3.4.1 Analysis of the effects of λ4

To study the influence of λ4 on the iVFM results from the FUSK data, an iVFM
analysis was carried out for all the three FUSK cardiac views with λ4 = 0 and
λ4 = 0.5. All other parameters were kept at default levels. The results were then
compared to the ground truth from the CFD phantom through root-mean-square
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(RMS) plots for all frames and flow plots for a selection of frames showing the
result flow and absolute error. The effect of λ4 on in vivo results was studied in
the exact same manner as the FUSK λ4 analysis, although the result presentation
is restricted to a side by side qualitative comparison.

3.4.2 Comparison of iVFM and ST

iVFM and ST with default settings were run on the FUSK and in vivo data. The
ST results were smoothed with a Gaussian kernel of 4 mm using the function
gaussian_filter from scipy.ndimage.filters. The FUSK results were compared to
ground truth and the in vivo results were compared qualitatively side by side. The
FUSK results were presented in RMS plots for all the views and frames as well
as difference plots to study the degree of over- and underestimation of velocities.
Only points within the color flow mask were included in the RMS and difference
plots. Differences in flow characteristics between iVFM and ST were studied in
flow plots, showing the flow field for the in vivo results in addition to the absolute
errors for the selected FUSK frames and views.

3.4.3 iVFM with Vx input from ST

The output from the hybrid ST, which combines Doppler estimates with lateral
SSD ST, was fed as input to the iVFM. iVFM then worked with both Vz and Vx
estimates. The results were compared to conventional iVFM and ST in the same
RMS error plot and compared qualitatively to iVFM through flow plots showing
the the absolute errors for the same FUSK frames and views as used in the com-
parison of iVFM and ST described in section 3.4.2. In vivo comparisons were also
performed for some of the same frames as for the ST vs iVFM comparison. This
makes it easier to compare iVFM with Vx input from ST to both the Doppler iVFM
version and the SSD ST version.

3.4.4 iVFM with Vy gradient on FUSK data

The impact of flow out of the plane on iVFM was studied by loading the exact out-
of-plane spatial gradient, the Vy gradient, into the HDF file loaded into PyUSView
for the three views. This gradient was obtained from the CFD data in the slicing
process by applying the Numpy gradient function to the velocity perpendicular
to the slice plane. The iVFM results with default settings were compared to the
iVFM results with default settings and the out-of-plane gradient. The two versions
were analyzed through RMS plots and flow plots showing the absolute errors for
selected frames and views for the FUSK data only.
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Chapter 4

Results

This result chapter is divided into four sections. First the radial flow constraint
and the effect of λ4, secondly a comparison between iVFM and ST, thirdly iVFM
with Vx estimates from ST, and lastly the inclusion of out-of-plane flow via the Vy
gradient. The first three sections show analysis of both FUSK and in vivo data,
while the Vy gradient test is done for the FUSK data only. An overview of all the
results can be viewed in table 4.1.

The following pages also contain two FUSK figures displaying the frames and
views that are used in the rest of the analysis. Figure 4.1 shows the domain and
the ∆4 mask used in the iVFM analysis, while figure 4.2 shows the true domain
together with the walls used in the iVFM analysis. Worth noting in these figures is
the relatively small extent of the ∆4 mask in figure 4.1 and the mismatch between
the manually drawn domain walls and the true domains in figure 4.2.
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Table 4.1: Overview of the figures in the results chapter.

FUSK domain and ∆4 mask 4.1
FUSK true domain and walls 4.2
λ4 analysis: RMS error 4.3
λ4 analysis: FUSK ALAX frame 18 4.4, 4.5
λ4 analysis: FUSK 4CH frame 50 4.6, 4.7
λ4 analysis: FUSK ALAX frame 90 4.8, 4.9
λ4 analysis: In vivo example and ∆4 mask 4.10, 4.11
iVFM vs. ST: RMS error 4.12
iVFM vs. ST: FUSK ALAX frame 18 4.13, 4.14
iVFM vs. ST: FUSK A2C frame 70 4.15, 4.16
iVFM vs. ST: FUSK 4CH frame 90 4.17, 4.18
iVFM vs. ST: FUSK difference plots 4.19, 4.20, 4.21, 4.22,

4.23, 4.24
iVFM vs. ST: In vivo examples 4.25, 4.26, 4.27, 4.28,

4.29
iVFM with Vx input from ST: FUSK A2C frame 70 4.30, 4.31
iVFM with Vx input from ST: FUSK 4CH frame 90 4.32, 4.33
iVFM with Vx input from ST: In vivo examples 4.29
iVFM with Vy gradient: RMS error 4.35
iVFM with Vy gradient: FUSK A2C frame 50 4.36, 4.37
iVFM with Vy gradient: FUSK ALAX frame 60 4.38, 4.39
iVFM with Vy gradient: FUSK 4CH frame 70 4.40, 4.41
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Figure 4.1: ∆ masks (green) and ∆4 masks (yellow) used for the all the FUSK iVFM
analysis.
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Figure 4.2: True phantom domain (yellow) and manually drawn walls (green) used for
the all the FUSK iVFM analysis.
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4.1 λ4 – the radial flow constraint parameter
This section contains the results from the analysis of the introduced radial flow
constraint parameter, λ4. The FUSK results for all 100 frames and all three cardiac
views is summed up in figure 4.3, which shows the RMS error for iVFM running
with and without λ4 regularization. The new constraint is observed to have a larger
impact on the errors in the radial z-direction than the lateral x-direction. While the
Vz errors are considerably or slightly lowered in most of the regions and almost
identical in the other regions, the error in Vx ranges from slightly lower to about
the same in most regions, but is also slightly higher in a few others. This increased
Vx error can be seen for A2C and 4CH from frame 20 to 40. The most prominent
finding is however how the λ4 presence effectively dampens the Vz error spikes
in the region from frame 0 to frame 40, and that this error reduction is achieved
without the introduction of any other significant errors.

The six figures that follow show how the radial flow constraint affects the flow
results for three FUSK views at different points in the heart cycle. Figure 4.4 and
4.5 show the iVFM results for the ALAX view for frame 18, respectively without
and with λ4 regularization. Observe how both the Vz and Vx absolute errors are
reduced when λ4 = 0.5 in the lower right region of the domain. In figure 4.6 and
4.7, which both show 4CH frame 50, mainly the Vz error is affected by λ4, while
the error in Vx stays more or less unchanged. The third FUSK example is from
ALAX frame 90 and is visualized in figure 4.8 and 4.9. This last FUSK example
shows a decent error reduction in the apical regions for both Vz and Vx for the λ4

regularized flow field solution.

An in vivo example showing the iVFM analysis result with and without the radial
flow constraint can be viewed in figure 4.10, and figure 4.11 shows the ∆ and ∆4

masks used for the analysis of this particular frame. The effect of λ4 regularization
within the ∆4 mask is clear: Almost no radial motion is allowed in these regions in
the solution flow. Notice however how radial flow is allowed outside the ∆4 mask
in the upper left part of the ventricle. This region lies outside the ROI, and iVFM
cannot penalize the radial flow here on the same basis as within the ROI, since this
region can contain radial velocities that will never show up as Doppler estimates.
The result is an iVFM flow solution without the artificially high radial velocities
in dropout regions, but only within the ROI.
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Figure 4.3: iVFM RMS errors in the whole domain for raw FUSK data, with λ4 = 0 and
λ4 = 0.5. Views from the top: Apical long axis (ALAX), apical 2 chamber (A2C) and 4
chamber (4CH).
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Figure 4.4: iVFM ALAX result for frame 18 from the clutter filtered and aliasing correc-
ted FUSK data, analyzed with λ4 = 0. The top row shows the reconstructed velocity field,
while the bottom row shows the absolute error and ground truth.
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Figure 4.5: iVFM ALAX result for frame 18 from the clutter filtered and aliasing correc-
ted FUSK data, analyzed with λ4 = 0.5. The top row shows the reconstructed velocity
field, while the bottom row shows the absolute error and ground truth.
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Figure 4.6: iVFM 4CH result for frame 50 from the clutter filtered and aliasing corrected
FUSK data, analyzed with λ4 = 0. The top row shows the reconstructed velocity field,
while the bottom row shows the absolute error and ground truth.
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Figure 4.7: iVFM 4CH result for frame 50 from the clutter filtered and aliasing corrected
FUSK data, analyzed with λ4 = 0.5. The top row shows the reconstructed velocity field,
while the bottom row shows the absolute error and ground truth.
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Figure 4.8: iVFM ALAX result for frame 90 from the clutter filtered and aliasing correc-
ted FUSK data, analyzed with λ4 = 0. The top row shows the reconstructed velocity field,
while the bottom row shows the absolute error and ground truth.
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Figure 4.9: iVFM ALAX result for frame 90 from the clutter filtered and aliasing correc-
ted FUSK data, analyzed with λ4 = 0.5. The top row shows the reconstructed velocity
field, while the bottom row shows the absolute error and ground truth.
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Figure 4.10: In vivo iVFM analysis with and without λ4 regularization. Frame 48 from
patient 4002.
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Figure 4.11: The ∆ and ∆4 masks used in the in vivo iVFM analysis of frame 48 from
patient 4002.



4.2. Comparison of iVFM and ST 35

4.2 Comparison of iVFM and ST
This section contains a comparison between iVFM and ST applied to both FUSK
and in vivo data. Figure 4.12 summarizes the iVFM and ST performance for all
the views and frames in an RMS error plot. The figure also contains iVFM results
with Vx estimates, which will be presented in detail in section 4.3. The RMS error
plots show a tendency for iVFM to have a slightly smaller Vz error, and for ST to
have a significantly smaller Vx error. This general difference in performance can
be seen in all frames, except for the almost flowless time interval around frame 40,
and is more prominent for ALAX and 4CH than for A2C.

Figure 4.13 to 4.18 show ST and iVFM results for ALAX frame 18, A2C frame
70 and 4CH frame 90. All three examples illustrate the tendency for ST to un-
derestimate and iVFM to overestimate velocities. This becomes especially evident
in figure 4.17 and 4.18, where the details of the flow are lost in both the ST and
iVFM solution, due to under- and overestimation respectively. The result is that
the field produced by iVFM suffers from Vx errors and the field produced by ST
suffers from Vz errors.

Difference plots for iVFM and ST were constructed to investigate the under- and
overestimation in ST and iVFM more thoroughly. The plots can be seen in figure
4.19 to 4.24. These are scatter plots with the true velocity plotted along the x-axis
and the difference between the iVFM or ST velocity and the true velocity on the
y-axis. Underestimated velocities will lead to points below the y = 0 line for
positive true velocities and above for negative true velocities, and the opposite for
overestimated velocities. The difference plots were made for all three views and
Vz and Vx separately. ST shows a clear underestimation trend, especially for Vx,
but also for Vz at high absolute velocities. For small positive velocities, ST has a
tendency to overestimate the velocity. iVFM, on the other side, shows no overall
over- or underestimation trend in Vx. For Vz the iVFM trend is an overestimation
of small absolute velocities and an underestimation of high absolute velocities.

In vivo comparisons of ST and iVFM are found in figure 4.25, 4.26, 4.27 and
4.28 for patient 4002 and 4.29 for patient 4018. ST and iVFM seem to agree
on the direction in most cases, but iVFM appears to overall result in flow fields
with higher velocities, as seen for example in figure 4.26 and 4.28. ST sometimes
clearly underestimates radial velocities, such as in the central part of the ventricle
in figure 4.25 and in frame 49 in figure 4.29. Another important observation is that
seemingly small differences in the Doppler input can lead to widely different iVFM
results, as seen from frame 46 to 47 in figure 4.29, where the aliasing correction
has failed to correct every aliased velocity in frame 47. The corresponding ST
solutions are more or less unaffected, while the iVFM field is influenced globally.
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Figure 4.12: iVFM, ST and iVFM with Vx estimates from ST RMS errors in the whole
domain for raw FUSK data. Views from the top: Apical long axis (ALAX), apical 2
chamber (A2C) and 4 chamber (4CH).
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Figure 4.13: ST ALAX result for frame 18 from the clutter filtered and aliasing corrected
FUSK data, with a Gaussian smoothing. The top row shows the reconstructed velocity
field, while the bottom row shows the absolute error and ground truth.
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Figure 4.14: iVFM ALAX result for frame 18 from the clutter filtered and aliasing cor-
rected FUSK data. The top row shows the reconstructed velocity field, while the bottom
row shows the absolute error and ground truth.
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Figure 4.15: ST A2C result for frame 70 from the clutter filtered and aliasing corrected
FUSK data, with a Gaussian smoothing. The top row shows the reconstructed velocity
field, while the bottom row shows the absolute error and ground truth.
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Figure 4.16: iVFM A2C result for frame 70 from the clutter filtered and aliasing corrected
FUSK data. The top row shows the reconstructed velocity field, while the bottom row
shows the absolute error and ground truth.
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Figure 4.17: ST 4CH result for frame 90 from the clutter filtered and aliasing corrected
FUSK data, with a Gaussian smoothing. The top row shows the reconstructed velocity
field, while the bottom row shows the absolute error and ground truth.
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Figure 4.18: iVFM 4CH result for frame 90 from the clutter filtered and aliasing corrected
FUSK data. The top row shows the reconstructed velocity field, while the bottom row
shows the absolute error and ground truth.
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Figure 4.19: ST ALAX difference plot. The difference is defined as the ST velocity minus
the true velocity.

Figure 4.20: iVFM ALAX difference plot. The difference is defined as the iVFM velocity
minus the true velocity.
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Figure 4.21: ST A2C difference plot. The difference is defined as the ST velocity minus
the true velocity.

Figure 4.22: iVFM A2C difference plot. The difference is defined as the iVFM velocity
minus the true velocity.
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Figure 4.23: ST 4CH difference plot. The difference is defined as the ST velocity minus
the true velocity.

Figure 4.24: iVFM 4CH difference plot. The difference is defined as the iVFM velocity
minus the true velocity.
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Figure 4.25: In vivo iVFM and ST analysis. Frame 27 from patient 4002.
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Figure 4.26: In vivo iVFM and ST analysis. Frame 30 from patient 4002.
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Figure 4.27: In vivo iVFM and ST analysis. Frame 45 from patient 4002.
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Figure 4.28: In vivo iVFM and ST analysis. Frame 48 from patient 4002.
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Figure 4.29: In vivo iVFM and ST analysis. Frame 46 (top), 47 (middle) and 49 (bottom)
from patient 4018.
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4.3 iVFM with Vx input from ST
The figure that shows how iVFM with Vx input from ST performs compared to
the pure iVFM and ST, 4.12, can be found in section 4.2. For the most part, this
iVFM version has the same level of Vx RMS error as the ST result, and almost the
same level of Vz RMS error as the iVFM result. The RMS error is sometimes as
high as the RMS error for the standard iVFM, as seen when comparing figure 4.30
to figure 4.31, but the typical behaviour is better described by comparing figure
4.32 to 4.33. As seen here, the Vz errors are almost identical and the Vx errors are
heavily reduced in the iVFM versions that takes Vx estimates. By comparing with
the Vx error in figure 4.17, we see that iVFM with Vx estimates is more or less on
the same Vx error level as ST.

An in vivo analysis of iVFM with Vx input from ST and the conventional Doppler
iVFM can be seen in figure 4.34. In frame 46 in this figure, the main differences
between using and not using the Vx estimates consist of a few underestimated
z-velocities in the central part of the domain and the suppression of a lateral left-
to-right flow near the ventricle basis in Vx version. The removal of a strong lateral
current can also be seen in frame 49. The usage of Vx estimates has however the
biggest impact on frame 47, which is dominated by lateral flows in both directions
in the Doppler iVFM. By using the Vx estimates the flow field behaves much more
as expected, judging by the color Doppler and domain.
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Figure 4.30: iVFM A2C result for frame 70 for iVFM with Vx estimates from ST. The
top row shows the reconstructed velocity field, while the bottom row shows the absolute
error and ground truth.
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Figure 4.31: iVFM A2C result for frame 70 from the clutter filtered and aliasing corrected
FUSK data. The top row shows the reconstructed velocity field, while the bottom row
shows the absolute error and ground truth.
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Figure 4.32: iVFM 4CH result for frame 90 for iVFM with Vx estimates from ST. The
top row shows the reconstructed velocity field, while the bottom row shows the absolute
error and ground truth.
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Figure 4.33: iVFM 4CH result for frame 90 from the clutter filtered and aliasing corrected
FUSK data. The top row shows the reconstructed velocity field, while the bottom row
shows the absolute error and ground truth.
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Figure 4.34: In vivo iVFM and iVFM with Vx estimates analysis. Frame 46 (top), 47
(middle) and 49 (bottom) from patient 4018.
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4.4 iVFM with Vy gradient on FUSK data
The results from the iVFM with Vy gradient is summarized in figure 4.35. The
RMS error plots show modest reductions in Vz error and fairly large reductions in
Vx error. The Vx error reductions are present for all views and all frames except a
small time interval around frame 35 with very little flow. The FUSK examples in
figure 4.36 to 4.41 show the same trend of massive Vx error reduction and almost
no changes to the Vz . In figure 4.37 and 4.39 the flow escaping through the lateral
walls is reduced, and in 4.41 the vortex center is moved much closer to the true
center which makes the field resemble the true field to a much larger extent. The
remaining Vx errors are mainly situated along the domain walls, except for 4.39,
where all the Vx error that is left is a small central patch.
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Figure 4.35: iVFM RMS errors in the whole domain for raw FUSK data. iVFM Vy grad
is provided with the exact Vy gradient, all other parameters are kept at default values for
both iVFM versions. Views from the top: Apical long axis (ALAX), apical 2 chamber
(A2C) and 4 chamber (4CH).
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Figure 4.36: iVFM A2C result for frame 50 from the clutter filtered and aliasing corrected
FUSK data. The top row shows the reconstructed velocity field, while the bottom row
shows the absolute error and ground truth.
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Figure 4.37: iVFM A2C result for frame 50 from the clutter filtered and aliasing corrected
FUSK data. iVFM is provided with the exact Vy gradient, all other parameters are kept at
default values. The top row shows the reconstructed velocity field, while the bottom row
shows the absolute error and ground truth.
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Figure 4.38: iVFM ALAX result for frame 60 from the clutter filtered and aliasing cor-
rected FUSK data. The top row shows the reconstructed velocity field, while the bottom
row shows the absolute error and ground truth.
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Figure 4.39: iVFM ALAX result for frame 60 from the clutter filtered and aliasing correc-
ted FUSK data. iVFM is provided with the exact Vy gradient, all other parameters are kept
at default values. The top row shows the reconstructed velocity field, while the bottom
row shows the absolute error and ground truth.
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Figure 4.40: iVFM 4CH result for frame 70 from the clutter filtered and aliasing corrected
FUSK data. The top row shows the reconstructed velocity field, while the bottom row
shows the absolute error and ground truth.
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Figure 4.41: iVFM 4CH result for frame 70 from the clutter filtered and aliasing corrected
FUSK data. iVFM is provided with the exact Vy gradient, all other parameters are kept at
default values. The top row shows the reconstructed velocity field, while the bottom row
shows the absolute error and ground truth.



Chapter 5

Discussion

The main goals of this master thesis were to implement and evaluate an additional
regularization parameter in iVFM, evaluate the effect of out-of-plane motion and
show how new out-of-plane measurements could be included in iVFM. Another
goal was to implement iVFM in a practical pipeline for in vivo data analysis before
conducting a thorough comparison between ST and iVFM both in silico and in
vivo. This chapter discusses the most important findings.

5.1 Aliasing correction
The ST approach to aliasing correction has shown promising results. The time
intervals from the FUSK data set that originally contained aliased velocities, and
therefore had to be left disregarded in the writer’s project thesis, could now be in-
cluded in the analysis. Furthermore, the establishment of a proper anti-aliasing
treatment opened the door to in vivo iVFM analysis. The aliasing correction
was used non-critically with default settings throughout this thesis, with the con-
sequence that it sometimes failed to correct all aliased velocities. This can be seen
in figure 4.29, where it becomes apparent that iVFM can be very sensitive even
to small errors in the aliasing correction procedure. Since iVFM is an algorithm
that finds a global minimum, part of the flow going in the wrong direction can
have consequences for the whole flow domain. When using iVFM in a clinical
context, extra attention should therefore be put into ensuring that the aliasing cor-
rection has succeeded, compared to for instance ST with Gaussian smoothing or
the iVFM version with Vx estimates from ST.

55
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5.2 λ4 – the radial flow constraint parameter
The new constraint on radial flow was created to constrain an effect that was dis-
covered when starting to give different weight to different Doppler estimates for
in vivo iVFM analysis. iVFM tended to suggest illogically strong flows in areas
that were given little or no weight because they were situated outside the color
flow mask. The new constraint on high radial velocities outside the color flow
mask has shown itself to work as intended. The FUSK results are characterized
by fairly small dropout regions, as illustrated by figure 4.1, and therefore gives the
λ4 constraint a limited scope. The effects are however a reduction of the error in
most frames, without contribution to more error in the frames where it turns out
less effective. The λ4 constraint has proven even more useful in in vivo analysis,
where the dropout regions generally are much bigger than the FUSK ones. Radial
flows are effectively restricted and the new global solution adapts accordingly, as
shown in the in vivo figure 4.10.

There are two main challenges with the new restriction on radial flow. The first
is its penalization of all radial flows outside the color flow mask. Even small
flows are drawn towards zero, when all one really knows for certain is that the
radial flow is somewhere between zero and the cutoff velocity of the clutter filter
in the dropout areas. If the penalization of velocities over the cutoff velocity only
could be implemented, the λ4 regularization could probably prove itself even more
effective. One could argue that adjustments of the λ4 parameter would serve more
or less the same function, regulating the amount of radial flow allowed, but that
would require different parameter adjustments for different cutoff values. It could
be interesting to establish a tuning relation between the cutoff velocity and the
λ4 value, especially if the non-linear penalization of radial flow suggested above
proves too difficult. iVFM is after all based on the solving of a linear problem, and
it is not obvious how one would implement such a non-linear penalization.

The other issue with the radial flow constraint becomes apparent when parts of the
ventricle domain lies outside the ROI, which defines where Doppler estimates are
available. This sometimes leads to "highways" of radial flow that are unlikely to
be real, like in frame 46 in figure 4.29. However, it is less obvious how to deal with
this artifact, given that we cannot really implement on a general basis whether or
not to constrain radial velocities in these areas.

5.3 Comparison to ST and iVFM with Vx estimates from ST
Even though a comparison between iVFM and ST was conducted in the writer’s
project thesis, it was rather brief and only gave clues about the most important
differences between the two VFI methods. In this master thesis, a new comparison
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was completed with alias corrected FUSK data sliced in three different ways to
mimic cardiac views used in the clinic. Furthermore, this time the performance of
the two methods could be compared on in vivo data analysis and, as first purposed
in the project thesis, a hybrid iVFM method combining Doppler estimates with Vx
estimates from ST was analyzed. This was compared to the conventional iVFM
and ST on both FUSK and in vivo data.

Not surprisingly, ST shows much less error for lateral velocities while iVFM is
better at reconstructing the radial velocities. The general impression of underes-
timation in ST and overestimation in iVFM was partly confirmed by the difference
plots: ST clearly has an higher tendency to underestimate velocities than iVFM.
This conclusion is easier to draw from the Vx difference plots then from the Vz dif-
ference plots. The Vz differences between ST and iVFM are more vague, a result
suspected to come from underestimated high velocities in the Doppler estimates.
Nevertheless, the scatter plots show that iVFM produces solutions with both higher
Vz and Vx velocities than ST. This general conclusion comes as no surprise, given
that the ST fields underwent spatial Gaussian smoothing. The spatial smoothing
smears out extreme values, but is an absolute necessity to get a coherent flow field
from the raw ST results. Even though the FUSK analysis shows less overall errors
for ST than for iVFM, they both seem to reconstruct the velocity field character-
istics to more or less the same extent in the FUSK examples. Many smaller flow
details are simply lost in both cases, and even though ST has the ability to trade
some of the smoothness for more details by shrinking the Gaussian smoothing
kernel, it is necessary to apply quite a lot of smoothing to prevent a wrinkled field.

The differences between the ST and iVFM performance seem to become more dis-
tinct for the in vivo comparisons. ST struggles a lot more than what the RMS plots
from the FUSK analysis would suggest, and sometimes makes large underestima-
tions of radial velocities such as in figure 4.25. This can possibly be corrected with
some tuning of the ST settings, but it looks like a reoccurring source of ST error
when the a group of radial velocities are placed in a relatively narrow band. iVFM,
on the other hand, gets thrown off easily by errors in the anti-aliasing procedure,
like in frame 47 in figure 4.29.

The perhaps most interesting finding comes not from the comparison of ST and
iVFM, but from the iVFM version that combines Doppler values and Vx estimates
from ST. This seemingly combines the best parts of iVFM and ST into an over-
all better VFI method, but only when the Vx ST estimates are more accurate than
the Vx that results from the conventional Doppler iVFM. Since the ST library is
already used for the aliasing correction, the practical transition to producing addi-
tional ST Vx estimates is minimal.
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Even though iVFM with Vx estimates from ST looks like the best performing
iVFM version so far, the "best of both worlds"-trend observed in the results of
this master thesis, should not be taken for granted. The combined iVFM version
might easily inherit the underestimating nature of the ST from heavily underestim-
ated Vx input, or the chaotic nature of iVFM when given aliased Doppler estimates.
The reconstruction of velocities outside the ROI will no matter what suffer from
the same "highway"-effect mentioned in section 5.2 and seen in frame 47 in figure
4.34.

5.4 iVFM with Vy gradient on FUSK data
The inclusion of the out-of-plane flow gradient in the divergence term of iVFM,
has shown itself to be a computationally cost effective way to exploit ultrasonic
measurements in three dimensions. It omits the colossal matrices one has to face
in a full 3D iVFM implementation, but can nevertheless make use of 3D ultrasound
measurements, which will become more available as the world of ultrasound pro-
gresses towards 3D. The fact that the Vx error was substantially reduced for all
three views points in the direction that the 2D iVFM is more prone to errors origin-
ated from the faulty non-divergence assumption than assumed earlier. For views
with a small out-of-plane flow, such as ALAX, this assumption has been con-
sidered a satisfactory approximation. This master thesis has however not tested a
scheme for including in vivo Vy gradient measurements, so bear in mind that these
conclusions are drawn from an idealized simulation set up.

The remaining error sources are believed to be the imperfect walls and imperfect
nature of the FUSK Doppler estimates. This conclusion is supported by a disap-
pearance of virtually all errors for brief test completed with only CFD data as both
Doppler input and Vy gradient, as well as with almost perfect walls. Another pos-
sible error source is the smoothing regularization, which may have a lower optimal
value when the Vy gradient is provided to iVFM. The Vy gradient gives iVFM more
precise information especially about the areas where the 2D flow field has rapid
spatial changes as it flows out of the plane, and a high smoothing regularization
could potentially smear out correct flow details.

5.5 Further work
A natural next step in the iVFM development outlined in this master thesis, would
be to set up an analysis of the Vy gradient on in vivo data. The results from the
FUSK Vy gradient test are clear: Vx errors can be heavily reduced with good
measurements of the out-of-plane flow. Such measurements could come from full
volume ST or from ST in a sector just wide enough to get an a out-of-plane meas-
urement.
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One of the strengths of a global minimization approach with regularization terms,
such as iVFM, is the possibility to add new ways to penalize unwanted or illo-
gical solutions through the addition of regularization terms. Thus, it is a relat-
ively straight forward process to combine all iVFM improvements to an improved
iVFM. The λ4 regularization and Vy gradient measurements can therefore be in-
cluded in an iVFM version that also uses Vx estimates from ST. How well this
combined iVFM version can perform also depends on the domain definitions, that
up till now have been defined manually. Domain has not been the focus of this
thesis, but it is clear that a connection between iVFM and the work done on do-
main segmentation with machine learning could ease the domain definition process
itself, but more importantly, lead to more consistent flow results.

One of the weaknesses with the addition of new regularization terms is the growing
number of regularization parameters. The tuning of these needs to be handled in
a more objective manner than what has been done in this master thesis, should
iVFM be enrolled in a clinical context. Future work should definitely look into
how parameter tuning for iVFM can be implemented in an effective way.
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Chapter 6

Conclusion

This master thesis intended to implement iVFM in a practical in vivo analysis
pipeline, upgrade the traditional iVFM with an extra regularization term and show
how out-of-plane flow could be included. It also aimed to evaluate these innova-
tions through in silico and in vivo analysis. In addition to the iVFM development,
an in silico and in vivo comparison of iVFM and ST was conducted to shed light
on individual strengths and weaknesses of the two VFI methods, and to look into
the possibilities for unification.

The results of the analysis showed that the regularization term that constrains radial
flow, λ4, contributes to a reduction of radial error due to iVFM overestimation in
areas outside the color flow mask. But even with this regularization, iVFM showed
a tendency to overestimate small radial velocities in the comparison to ST. ST, on
the other hand, has challenges related to underestimation of both radial and lateral
velocities. It proved to have a consistently lower Vx RMS error than iVFM, but the
underestimation in ST causes iVFM to have a lower Vz RMS error than ST. The
iVFM version that combines Doppler values with lateral Vx estimates proved itself
as a good compromise, and had the lowest overall RMS error.

The in vivo results backed up the general conclusions from the in silico validation,
but also helped to lay bare a few flaws of both iVFM and ST. The λ4 regularization
cannot constrain radial flow outside the ROI, which typically leads to overestima-
tion and even completely artificial flows. iVFM also proved very sensitive to errors
in the aliasing correction, which can leave the whole flow field affected. ST some-
times suffers from majorly underestimated velocities, but the iVFM version with
Vx estimates from ST seems to hit a good compromise also for the frames where
these flaws are present.
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The analysis of the inclusion of the spatial gradient of Vy in the out-of-plane dir-
ection shows that out-of-plane motion has a lot to say for the result of the two
dimensional iVFM. The idealized test shows that a perfect measurement of this
flow gradient could reduce the lateral error massively, and it stands out as an al-
ternative to a full 3D implementation of iVFM.

iVFM is now fitted into the visualization pipeline of the ultrasound viewer PyUS-
View, developed at ISB, NTNU. It utilizes the ST library that is already incorpor-
ated in the ultrasound viewer to aliasing correct Doppler estimates and provide
lateral velocity estimates to iVFM, which is now fully capable of velocity re-
construction of two-dimensional in vivo ultrasound data. With the implemented
preconditioner for the iterative conjugate gradient solver that is being used, com-
putation times are kept well within reasonable limits.

Future iVFM development should focus on trying to harvest the great error reduc-
tion potential that lies in the inclusion of a well measured out-of-plane gradient,
as well as effective implementations of parameter tuning and automatic domain
definitions.
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