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Abstract

Wake word detection is the process of continuously listening for some specific
keyword or phrase which, when uttered, wakes up a system and initiates com-
munication between the system and a user. This is a necessity for interaction
with virtual assistants such as Google Now, Apple’s Siri, Microsoft’s Cortana,
and Amazon’s Alexa.

The goal of this project was to implement and evaluate a wake word detection
algorithm based on deep learning. Two systems were implemented using recur-
rent neural networks which were trained as binary classifiers designed to return
a confidence score indicating whether a wake word was uttered or not within
a speech frame. The first system was based on a commonly used approach in
which features are extracted from a sliding window of fixed length. The sec-
ond system was more experimental, and exploited some of the capabilities of
recurrent neural networks in order to eliminate the need for overlapping and
fixed-length windows.

Both systems used GRU networks with 65,154 trainable parameters, and thus
had a similar memory footprint. However, the experimental system cut the
computation cost by nearly 80 % compared to the sliding window based sys-
tem, while also reducing the number of false detections. The results were highly
encouraging, though there is still room for improvement. The first step would
be using a larger and more diverse data set, and using a higher ratio of negatives
to positives. Added layers, tweaking of parameters, regularization techniques
or using a different type of cell in the network might also have a positive ef-
fect.
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Sammendrag

Vekkeorddeteksjon innebærer å lytte etter et bestemt nøkkelord eller -ytring i en
kontinuerlig talestrøm. Ved deteksjon skal systemet vekkes for videre kommu-
nikasjon med brukeren. Denne teknologien er en nødvendighet for interaksjon
med virtuelle assistenter som Google Now, Apples Siri, Microsofts Cortana og
Amazons Alexa.

Målet med dette prosjektet var å implementere og evaluere en algoritme for
vekkeorddeteksjon basert p̊a dyp læring. To systemer ble implementert ved
bruk av rekurrente nevrale nettverk, som ble trent som binære klassifiserere de-
signet til å returnere en sannsynlighetsverdi for at et vekkeord har blitt ytret.
Det første systemet brukte en velkjent tilnærming hvor egenskapsvektorer blir
beregnet basert p̊a et glidende vindu. Det andre systemet var mer eksper-
imentelt, og brukte noen av fordelene med rekurrente nevrale nettverk til å
eliminere behovet for overlappende tidsvinduer av fast lengde.

Begge systemene brukte GRU-nettverk med 65 154 trenbare parametre, og
hadde dermed ganske lik bruk av minne. Det eksperimentelle systemet re-
duserte derimot prosessorbruken med nærmere 80 %, samtidig som at færre
falske deteksjoner ble registrert. Resultatene var meget oppmuntrende, men det
er fremdeles rom for forbedring. Første steg vil være å bruke et større og mer
variert datasett, og å ha en større andel av negativer. I tillegg bør det ogs̊a være
mulig å forbedre modellen ved å legge til lag, justere parametere, benytte seg
av regulariseringsteknikker og teste ut andre typer celler i nettverket.
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Chapter 1

Introduction

1.1 Motivation

Voice interaction with technology is becoming increasingly commonplace due
to the rapid development of smartphones and tablets, as well as artificial in-
telligence. This allows communication with a computer without using a key-
board.

In order for a hands-free system to initiate voice input, it needs to continuously
listen for some specific keyword. Virtual assistants such as Google Now, Apple’s
Siri, Microsoft’s Cortana, and Amazon’s Alexa can all be addressed by saying
a wake word, such as ”OK Google”, ”Hey Siri”, or ”Alexa”, followed by some
voice command. The process of listening for this wake word is called wake word
detection.

A wake word detection system needs to have a small memory footprint, low com-
putational cost, and high precision[2]. Traditionally, the Keyword/Filler Hidden
Markov Model has been used for wake word detection. However, artificial neu-
ral networks have been shown to improve complexity, run-time computation,
memory footprint and latency.

Convolutional neural networks have been a popular choice in recent years, as
they have been shown to outperform basic multi-layer perceptrons with far fewer
parameters[3]. Both of these neural network classes are usually implemented for
wake word detection by extracting feature vectors from a sliding window of fixed
length, and passing it through the neural network. The produced output is used
as a confidence score indicating whether the wake word was uttered inside the
window or not. However, the overlapping nature of this approach leads to an
excess of computations. Also, it requires a pre-defined length for all training
data, i.e. the size of the window.
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By instead using a recurrent neural network model, it should be possible to
design a system which doesn’t require overlapping windows, and which can
be trained using variable length training data. This will greatly reduce the
computation cost, and ensure that no important data is lost in the process of
fitting training data within a window.

1.2 Project Description

In this thesis, two different wake word detection systems based on recurrent
neural networks will be designed and implemented. The first system will use the
sliding window approach, while the second system will be trained in a way which
allows it to continuously listen for wake words without any overlap. Ideally, the
latter should perform as well as the former, while significantly reducing the
computation cost.

Training a neural network requires pre-recorded and labeled data. The data set
used in this thesis has been provided by Cisco Systems AS. The neural networks
will be implemented using TensorFlow in Python language. The two systems
will be evaluated and compared using various performance measures, as well as
a simulation of how they would perform in a real-time application.

1.3 Thesis Outline

The rest of the thesis is structured as follows.

Chapter 2 provides the basic theory needed to understand and solve the project
task. The first section gives an introduction to the field of automatic speech
recognition, including a description of how mel-frequency cepstral coefficients
can be extracted from a speech signal. The second section gives a general intro-
duction to artificial neural networks, including how they can be designed, how
they can be trained, and how they can be evaluated using various performance
measures. In the third section, recurrent neural networks are explained, with
an emphasis on the GRU cell, which is used in both systems implemented in
this thesis.

Chapter 3 describes the tools and methods used to implement the systems. The
first section presents the tools used for implementing the systems, as well as the
data set used to train the neural network models. The second section provides
a thorough description of the implementation of the sliding window approach.
The third section describes the implementation of the non-overlapping window
approach.

In chapter 4, the two systems are evaluated and compared to each other. Both
systems are also applied to longer speech files to simulate how they would work
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in a real-time application.

The conclusion is given in chapter 5, along with suggestions for future work.
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Chapter 2

Theory

In this chapter, there will be a presentation of the theoretical knowledge needed
to understand and solve the project task. It is assumed that the reader has
basic knowledge of signal processing and classification.

2.1 Automatic Speech Recognition

The goal of automatic speech recognition is to develop an automated process in
which a computer is able to recognize speech or to translate it into text. In the
case of wake word detection, this process involves recognizing a chosen word or
phrase in a continuous audio stream.

2.1.1 Overview

Automatic speech recognition generally involves training a classifier to recognize
some unit of speech. In order to do this accurately, one unit must not be
easily confused with other units. The most common unit of speech for speech
recognition is either words or phonemes. Phonemes are considered the most
basic unit of speech, and they comprise a relatively small set. English as it is
spoken in the United States contains 40 phonemes in total[4].

For a general classifier, phonemes are a reasonable choice as speech unit, as
they can infer other units such as words or sentences. However, if the number
of classes one wants to recognize is small, words may be a better choice, as they
generally provide higher accuracy[4]. Wake word detection can be viewed as a
binary classification process, where the wake word is classified as a positive and
all other utterances are classified as negatives.
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To train a classifier, training examples for every class is required. Ideally, train-
ing data should be collected from a database which offers a good variety of
speakers with regards to age, sex, nationality, and so on. It also needs to contain
enough data so that the parameters of the model can be accurately estimated.
Usually, a set of features extracted from the waveform is used to represent the
unit. The process of feature extraction is described in greater detail in the next
subsection.

There are multiple possible choices of classifiers in speech recognition. Neural
network classification is described in detail in the second section of this chapter.
Other types of classification are beyond the scope of this thesis.

In summary, in order to train a classifier for speech recognition, one needs
to collect transcribed data from a speech database, extract features from the
waveforms and assign labels indicating the classes of the units, and use this
information to estimate the parameters of a model. Once this is done success-
fully, the model should be able to predict the classes of unlabeled data. The two
stages of this process, called training and inference respectively, are illustrated
in figure 2.1.

Figure 2.1: Training a classifier for speech recognition, and using it to predict
the label of some spoken utterance.

2.1.2 MFCC Feature Extraction

Usually, it is preferable to train the classifier using a compact representation of
the speech signal, as opposed to using the waveform itself. This representation,
or set of features, needs to be as different as possible for different classes, and
as similar as possible within the same class. Features in speech recognition are
usually based on the spectrum of the signal, as many features such as formants
are better characterized in the frequency domain with a low-dimension feature
vector[4].

The mel-frequency cepstral coefficients (MFCC) is a speech representation mo-
tivated by the behavior of the human auditory system which has been success-
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fully used in speech recognition. It is defined as the real cepstrum of a windowed
short-time signal derived from the FFT of that signal.

First the signal is partitioned into small overlapping windows. The MFCCs of
each window are computed as follows[4]. First, the discrete Fourier transform
of the frame is computed:

Xa[k] =

N−1∑
n=0

x[n]e−j2πnk/N , 0 ≤ k < N (2.1)

The powers of the spectrum are mapped into mel-frequency scale using M tri-
angular overlapping filters (m = 1,2,...,M):

Hm[k] =


0, k < f [m− 1]

2(k−f [m−1])
(f [m+1]−f [m−1])(f [m]−f [m−1]) , f [m− 1] ≤ k ≤ f [m]

2(f [m+1]−k)
(f [m+1]−f [m−1])(f [m+1]−f [m]) , f [m] ≤ k ≤ f [m+ 1]

0, k > f [m+ 1]

(2.2)

The mel scale is linear below 1 kHz, and logarithmic above, and one mel is
defined as one thousandth of the pitch of a 1 kHz tone. It can be approximated
by:

B(f) = 1125 ln(1 + f/700) (2.3)

This scale models the sensitivity of the human ear, and improves discriminatory
capability between speech segments. Then the log-energy at the output of each
filter is computed as follows:

S[m] = ln

[
N−1∑
k=0

|Xa[k]|2Hm[k]

]
, 0 ≤ m < M (2.4)

Finally, compute the discrete cosine transform of the filter outputs to obtain
the mel-frequency cepstrum:

c[n] =

M−1∑
m=0

S[m] cosπn(m+ 1/2)/M, 0 ≤ n < M (2.5)

M varies for different implementations, but for speech recognition using neural
networks, 40 coefficients is a reasonable choice.

The process of computing MFCCs for a signal is illustrated in figure 2.2.
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Figure 2.2: Overview of MFCC computation.

The dimensions of an MFCC vector depends on the length of the input signal,
and the number of frames it is partitioned into. For example, if each speech unit
is of 1-second length, one may choose to divide it into frames of 25 ms length
with a 10 ms step size. Then, for each 10 ms, 40 coefficients will be computed
based on the following 25 ms of speech. This will result in either a 99x40 matrix
or a 100x40 matrix, depending on whether the signal is zero-padded or not
respectively.

2.2 Introduction to Artificial Neural Networks

Artificial neural networks (ANN) are computing systems which imitate the bio-
logical neurons of the human brain. They are widely used for classification, and
have achieved overwhelming success in automatic speech recognition in recent
years[5].

The multilayer perceptron is the most basic type of ANN which is simply a
mathematical function mapping some set of input values to output values[6].
The function is a combination of simpler functions, each of which provide a new
representation of the input.
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2.2.1 Artificial Neurons

An artificial neural network is formed by combining artificial neurons. The
artificial neuron is simply a mathematical function which computes a weighted
sum of its inputs, adds a bias term, and applies some activation function.

y = f
(∑

i

xiwi + b
)

(2.6)

The purpose of the activation function f is to add non-linearity. Without the
activation function, combining artificial neurons into more complex structures
would serve no purpose, as the result would still be a linear function. By intro-
ducing non-linearity to the network, more complex functions can be estimated.
In addition, the activation function can limit the contribution of each neuron to
the final output.

A single neuron with three inputs is illustrated in figure 2.3.

Figure 2.3: An artificial neuron with three inputs.

The most popular activation function is the sigmoid function[5]. The sigmoid
function squashes its input to a value between 0 and 1.

σ(z) =
1

1 + e−z
(2.7)

The tanh activation function is a version of the sigmoid which is scaled between
-1 and 1.

tanh(x) =
2

1 + e−z
− 1 = 2σ(2z)− 1 (2.8)

Another popular activation function is the rectified linear unit (ReLU)[5], which
simply sets negative values equal to 0.
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ReLU(z) = max(0, z) (2.9)

A comparison of the aforementioned activation functions can be seen in figure
2.4

Figure 2.4: Sigmoid, tanh and ReLU outputs plotted for values between -6 and
6.

2.2.2 Multilayer Perceptrons

Multilayer perceptrons are networks of artificial neurons structured into layers.
The layers are fully connected, which means that each neuron in one layer is
connected to every neuron in the next layer. These models are called feedforward
because there are no feedback connections in which outputs of the model are
fed back to itself[6].

The inputs to the network are usually referred to as the first layer. They pass
through a sequence of hidden layers, each of which perform some transformation
before they reach the output layer. For a binary classifier, the output layer may
consist of only one neuron, which produces a score indicating which of the two
classes the input belongs to. A simplified three-layer binary MLP classifier is
illustrated in figure 2.5.
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Figure 2.5: A simple multilayer perceptron with three input neurons, four hid-
den neurons, and one output neuron.

Alternatively, and especially in the case of multi-class classification, the output
layer can consist of multiple neurons, each representing a class. Then, instead
of applying an activation function on each neuron, the softmax function can be
used on the vector of outputs to convert it to a vector of estimated probabilities
for each corresponding class [7]. The class probabilities estimated by the softmax
function will add up to one. The function is defined as follows:

p̂k = σ(s(x))k =
exp (sk(x))∑K
j=1 exp (sj(x))

, (2.10)

where K is the number of classes, s(x) is the vector of outputs in the final layer,
and σ(s(x))k is the estimated probability that the instance x belongs to class k
given the scores of each class for that instance.

Increasing the number of layers and the number of units within a layer in-
creases the complexity of the functions which the network can represent. A
multilayer perceptron with multiple hidden layers is called a deep neural net-
work (DNN)[5].

2.2.3 Training a Neural Network

Training a neural network requires a large set of labeled data, which is typically
split into three subsets: training data, validation data, and test data. First,
the parameters of the model, i.e. the weights and biases, are initialized with
random values. Then, the training data is used to fit the model by adjusting
the parameters so that the model is able to map its inputs to the right class. In
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order to make sure that the model can generalize to new data, the performance
is continuously measured by feeding the separate validation data to the network
at regular intervals. Finally, the test data is used to give a final evaluation of
the performance of the model.

Feeding the training data to the neural network will produce a sequence of
confidence score vectors, onto which we can apply the softmax function to get
estimated class probabilities. We need to define a cost function in order to
quantify how well these probabilities correspond to the target classes. A popular
choice is the cross-entropy cost function[7], defined by

J(θ) = − 1

m

m∑
i=1

K∑
k=1

y
(i)
k log (p̂

(i)
k ) (2.11)

where K is the number of classes, y
(i)
k is the target class (1 when k is the true

class, 0 otherwise), and p̂
(i)
k is the class probability vector. The cost is averaged

over the total number of training inputs m. θ is the parameter vector, i.e. the
weights and biases of the model.

Once the error has been computed, we can use the gradient of the cost func-
tion to measure the error contribution from each weight. By considering the
biases as an additional neuron in each layer with constant value 1 and separate
weights, we can also measure their error contribution. This method is called
backpropagation[8], as the error gradient is propagated backward in the network
from the output layer to the input layer.

The last step is to minimize the cost function. We can use gradient descent
to update the weights in the network according to their error gradients and a
scaling factor called the learning rate, which determines the value change in
each update. If the learning rate is too low, the training process will be slow. If
it is too high, the learning may diverge and never be able to minimize the cost
function[9].

The gradient is usually computed based on fixed-size subsets of the training
data called batches. A pass through the whole training set is called an epoch.
The model is usually trained for multiple epochs, and at the end of each epoch,
we measure the average cost of the training data and some performance mea-
sure for the validation data. If the training cost decreases, but the validation
performance stagnates or decreases, we can stop training, as this indicates that
the model has stopped generalizing and started specializing on the training
set.

2.2.4 Performance Measures

Once the model has been trained, we need to measure how well it performs using
a test subset of the data which has not yet been fed to the network.
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The most intuitive performance measure for a classifier is the accuracy of the
model, which is simply the ratio of true predictions over total predictions. How-
ever, if the data is unbalanced, this will often give misleading results. Consider
a binary classifier where one class is regarded as positive and the other as neg-
ative. If 90 % of the data belongs to the negative class, predicting this class for
all inputs would always give a 90 % accuracy.

A better way to evaluate the performance of such a model is to look at its con-
fusion matrix. The confusion matrix of the example in the previous paragraph,
with a total of 1000 examples, would look like this:

Predicted class 0 Predicted class 1
True class 0 900 0
True class 1 100 0

Table 2.1: Example confusion matrix of a faulty model.

This gives more valuable information than a single score. When the true class
is 1, a positive prediction and a negative prediction is called a true positive
and a false negative respectively. Conversely, when the true class if 0, a positive
prediction and a negative prediction is called a true negative and a false positive.
An ideal classifier only has true positives and true negatives. In our example, we
have 900 true negatives, 100 false negatives, and no positive predictions.

Based on the confusion matrix, we can compute the rate of positive instances
correctly classified. Negative instances are not considered. This measure is
called the recall of the classifier.

Recall =
True positives

True positives+ False negatives
(2.12)

The recall is usually used along with another performance measure called pre-
cision, which is the accuracy of the positive predictions.

Precision =
True positives

True positives+ False positives
(2.13)

To summarize, recall is a measure of the model’s ability to find all positives
within the data, while precision is a measure of the model’s ability to only
assign the positive label to positive instances. For our example, both the recall
and precision will be 0, as there are no true positives. Ideally, both precision
and recall should be as close to 1 as possible, and they should be considered
as a pair to give valuable information. For example, if we were to classify all
the data as positives, the recall would be 1, but the precision would be only
0.1.

12



Depending on the purpose of the model, one of the measures may be prioritized.
In the case of wake word detection, a high recall will ensure that a large number
of the wake word utterances will be detected. However, it may lead to a high
number of false positives. High precision gives more certainty that the detections
correspond to actual wake word utterances. For a system that is continuously
listening for a wake word, precision should be the priority, as false detections
could wake the system up at unexpected times, and thus be bothersome for the
user.

2.3 Recurrent Neural Networks

Recurrent neural networks (RNNs) are a family of neural networks which are
specialized for processing sequential data[6]. This is achieved by extending the
neural network architecture described in the previous section to include feedback
loops, allowing information to persist.

A great advantage of recurrent neural networks is their ability to work on se-
quences of arbitrary length. Thus, if you’re working with speech data, instead of
requiring all of the input to have the same dimensions, the network can accept
inputs of any length, as long as the dimension of each time step is the same.
This simplifies pre-processing, as there is no need to cut or pad sequences, as
well as reducing the number of parameters needed, as these are shared across
time steps[6].

2.3.1 Basic Architecture

In a basic single-layer RNN, every neuron receives both an input vector x(t) and
the output vector from the previous time step y(t−1). This layer of hidden neu-
rons is called a cell. The cell preserves some state across time steps. Since this
makes the output at a single time step dependent on all the previous inputs, we
say that the cell has memory[9]. A basic RNN is illustrated in figure 2.6.
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Figure 2.6: An RNN cell unrolled through three time steps.

Each neuron in the hidden layer needs a separate set of weights for the in-
put, and another for the outputs of the previous time step. The outputs of
a layer of recurrent neurons for all instances in a batch can be computed as
follows[9]:

Y(t) = φ
(
X(t) ·Wx + Y(t−1) ·Wy + b

)
(2.14)

Y(t) is a two-dimensional matrix containing the outputs of each neuron in the
hidden layer for each instance in the batch, and X(t) contains the inputs of
each instance. Wx and Wy contains the weights for the inputs and the previous
outputs respectively. b is a vector containing a bias term for each neuron. At the
first time step, the previous outputs are typically assumed to be all zeros.

Since there is one output for each neuron in the hidden layer, we need an
additional fully connected layer followed by a softmax layer to convert this to
class probabilities. In the case of sequence classification, where the goal is to
map a whole sequence of inputs to a single class, we only need to consider the
last time step, as this contains information passed on from all previous time
steps. An RNN sequence classifier for three time steps is illustrated in figure
2.7
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Figure 2.7: An unrolled sequence-classifying RNN.

For speech classification using MFCC data as inputs, each vector of 40 coeffi-
cients would correspond to a time step in the unrolled RNN. To classify a one
second speech segment, the RNN would have 40 inputs at each of the 99 time
steps, where the output at the last time step is converted to a confidence score
for the wake word being uttered.

Alternatively, if a sequence of class probabilities corresponding to each time step
is desired, the fully connected layer and softmax function can be applied at each
time step. Typically, the weights and bias terms of the fully connected layer are
shared across all time steps.

An RNN can be trained using a strategy called backpropagation through time,
which is similar to the backpropagation method described in the previous chap-
ter. Simply feed the network with some training data, evaluate the output using
a cost function, and propagate the gradients of the cost function backward in
time until the first time step is reached. Once the gradient of the cost function
is computed with regards to each parameter in the network, this information
can be used to update the parameters using gradient descent[9], or another opti-
mization algorithm such as the Adam optimizer, which is an efficient extension
to stochastic gradient descent with little memory requirement[10].

2.3.2 GRU Cell

If an RNN is trained on long sequences, the unrolled RNN will correspond to
a very deep network. A problem which often occurs with deep networks is the
vanishing gradients problem, in which the gradients get smaller and smaller
as the backpropagation algorithm progresses down to the lower layers, leading
to small weight changes and slow training. Alternatively, the gradients can
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grow bigger and bigger, leading to large updates, which makes training diverge.
This is called the exploding gradients problem. Additionally, due to to the
transformations that the data goes through when traversing an RNN, some
information is lost after each time step. After some time, traces of the first inputs
will be insignificantly small. Because of these issues, the basic RNN architecture
described in the previous subsection is rarely used in practice.

A better option may be using the Gated Recurrent Unit (GRU) cell introduced
by Kyunghyun Cho et al. in 2014[11]. The GRU cell is a simplified version of
the popular LSTM cell[1]. In order to solve the vanishing gradient problem, the
GRU cell uses an update gate and a reset gate to decide what information should
be maintained in the network. Thus, it is able to keep important information,
and discard insignificant information. This process is learned through separate
sets of weights. The equations for computing the output of a GRU cell are as
follows[9]:

z(t) = σ
(
WT
xz · x(t) +WT

hz · h(t−1)

)
r(t) = σ

(
WT
xr · x(t) +WT

hr · h(t−1)

)
h̃(t) = tanh

(
WT
xh̃
· x(t) +WT

hh̃
·
(
r(t) ⊗ h(t−1)

))
h(t) =

(
1− z(t)

)
⊗ h(t−1) + z(t) ⊗ h̃(t)

(2.15)

z(t) and r(t) are called the update gate and the reset gate respectively. The
reset gate decides how much of the previous state should be forgotten, while the
update gate decides how much of the candidate activation h̃(t) should be used
in updating the cell state h(t).

The structure of a GRU cell can be seen in figure 2.8

Figure 2.8: The structure of a GRU cell[1].

The GRU and LSTM cells are among the main reasons why RNNs have enjoyed
so much success in recent years. As the GRU cell is simpler to implement and
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understand, while seemingly performing just as well as its predecessor[12], it
will be preferred in this thesis.
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Chapter 3

Tools and Methods

In this chapter, the tools and methods used to produce the implementations will
be presented. Two different systems are implemented using recurrent neural
networks. The first one uses overlapping windows of fixed length to search for
wake words in a continuous stream of audio. The second exploits the capabilities
of recurrent neural networks in order to continuously listen for the wake word,
removing the overlap and significantly reducing the number of computations
needed.

3.1 Software Tools and Data

The implementation is entirely written in Python 3.5[13]. Python is an open
source interpreted high-level programming language.

3.1.1 TensorFlow

TensorFlow 1.5[14] will be used to create neural networks. TensorFlow is an
open source library used for numerical computation, which comes with strong
support for machine learning and deep learning. Implementing a neural network
in TensorFlow involves defining the network as a computational graph, and then
running the graph inside a TensorFlow session.

A computational graph is composed of two types of objects: operations and
tensors. Operations are the nodes of the graph, and they describe calculations
that consume and produce tensors. Tensors are the edges of the graph, and
they represent the values that will flow through the graph.

To evaluate tensors, a session must be instantiated. When you request the
output of a node inside a session, TensorFlow backtracks through the graph and
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runs all the nodes that provide input to the requested node. It is only during the
session that the tensors of the computational graph actually hold values. Input
values are typically fed to the graph using a feed dictionary, linking tensors or
placeholders to the data which we want to input to the graph.

3.1.2 Other Modules and Libraries

The following list includes short descriptions of the external modules and li-
braries used for the project, as well as what they will be used for. It does not
include modules from the Python standard library.

• SciPy[15]: a collection of open source software for scientific computing in
Python. It includes, among others, the following packages:

– The SciPy library[16]: a collection of numerical algorithms and
toolboxes. Includes an io module which we will use to read wav files
from the data set.

– NumPy[17]: a package for scientific computing with Python. Its main
object is the homogeneous multidimensional array, which we will use
to store and perform computations on the data.

– Matplotlib[18]: a plotting package which we will use to produce
plots for this thesis.

– scikit-learn[19]: a collection of algorithms and tools for machine
learning. Includes a metrics module which we will use to evaluate
the models.

• python speech features[20]: A library which provides common speech
features for automatic speech recognition. We will use it to compute
MFCC features for the raw speech data.

• Keras[21]: a high-level neural networks API. Includes some handy func-
tions for pre-processing, including a function for padding variable length
sequences which we will use.

• PyAudio[22]: provides bindings for the audio I/O library PortAudio. It
will be used for audio recording in the real-time implementations.

3.1.3 Data Set

The data set used for this project contains 23957 recordings sampled at 48
kHz, where 5269 of the examples contain wake word utterances. 20 different
phrases are uttered by speakers varying across different age groups and nation-
alities.

19



We divide the data set into three subsets: a training set, a validation set, and
a testing set, with a distribution of 80 %, 10 %, and 10 % respectively. The
data set is randomly shuffled before this split is performed, but the both the
implemented systems use the same subsets for training, validation, and testing.
All subsets share the same positive-to-negative ratio.

3.2 Sliding Window Approach

In this section, we design a wake word detection system based on a sliding
window approach. Feature vectors extracted from a fixed-size sliding window
are used as inputs to the neural network. The window needs to be large enough
to contain the whole wake word utterance. Windows also need to overlap in
time, so that no wake word utterance is split into two separate frames.

3.2.1 Pre-processing

The raw speech signal of each example in the data set need to be properly
pre-processed in order to be suitable as input to a neural network. We want
to produce a NumPy array containing MFCCs for each example, along with
another array containing the corresponding labels; either 1 if the wake word is
uttered, or 0 for any other utterance.

We choose a window length of 72000 samples, corresponding to 1.5 seconds at
a 48 kHz sampling frequency. In order to generate more negatives, we extract
two frames from each of the negative examples. The first is a randomly selected
slice, and the second contains the loudest segment of the utterance. The loudest
segment is found by sliding a window across the signal at regular steps, com-
puting the energy of each window, and choosing the window with the highest
energy.

For positive utterances, only the loudest frame is used. In both cases, examples
shorter than the fixed window size are discarded.

A plot of a negative speech signal, along with two extracted frames, is provided
in figure 3.1.
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Figure 3.1: Original negative speech signal, randomly selected slice, and loudest
frame.

MFCCs are computed for each frame using 25 ms windows (400 samples) with
a 10 ms step size (160 samples). 40 coefficients are computed for each window
using an FFT size of 2048. The mel-filterbank has 40 filters with the highest
band edge at 8 kHz. The result will be a 149x40 NumPy array. Note that
the python speech features module doesn’t use zero-padding in MFCC compu-
tation. If it did, the dimensions would be 150x40.

Finally, the MFCC coefficients are normalized. This is done by subtracting the
mean and dividing by the standard deviation of all the training data.

A positive utterance before and after pre-processing can be seen in figure 3.2.
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Figure 3.2: A positive utterance before and after pre-processing.

Pre-processed training, testing, and validation data, along with their corre-
sponding labels, are stored in separate pickle files for later use. We also store
the mean and standard deviation of the training data, so it can be used to
normalize new data.

3.2.2 RNN Model Architecture

The MFCC matrices computed in the previous section can be viewed as se-
quences of 149 time steps, each holding a vector of 40 features. Thus, we can
train a recurrent neural network to classify utterances based on this data.

We use a GRU network as described in subsection 2.3.2. As this is a sequence
classification problem, we only consider the output produced at the last time
step. Recall that this output holds information transferred through all of the
time steps of the sequence. An overview of the unrolled model is provided in
figure 3.3.
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Figure 3.3: GRU model unrolled through 149 time steps.

We use a single-layer GRU model with 128 neurons in the cell. The fully con-
nected layer at the final time step also has 128 neurons. In total, the model has
65,154 trainable parameters. The model is trained using batches of 128 train-
ing examples, with cross-entropy loss and Adam optimization, with a learning
rate of 0.001. The whole training set is randomized at each epoch before it is
divided into batches. A validation accuracy is produced after each epoch. We
stop training the model after 20 epochs, as the validation accuracy is stagnating
at this point.

3.2.3 System Implementation

After the model is trained, it can be used to detect wake words in a continuous
stream of audio. The model is trained for windows of 1.5 seconds, and we
use a step size of 0.25 seconds. Three consecutive windows of such a process
can be seen in figure 3.4. In this case, we expect the third and final frame to
produce a wake word detection, as it is the only one which contains the whole
utterance.
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Figure 3.4: Three consecutive windows of a speech signal. The third frame
contains the whole utterance.

In order to implement this in practice, we write a function which records 72000
samples at 48 kHz sampling frequency. For each window, we compute a 149x40
MFCC feature matrix. The feature matrix is normalized using the mean and
standard deviation which we calculated from the training data. Then, the result
is fed to the neural network, producing a probability score indicating whether
the wake word was uttered or not within the recorded frame. If the score is
higher than some pre-defined threshold, a detection is registered. The function
is called recursively using threads every 0.25 seconds, meaning that overlapping
frames are recorded and processed in parallel.

As mentioned, the window size has been set quite large to ensure that the whole
utterance is contained within it. The downside of this is that multiple detections
may occur based on a single utterance. To counter this, some smoothing of the
sequence of produced probabilities may be performed. However, this has not
been prioritized in this thesis.

3.3 Non-overlapping Window Approach

The sliding window approach is computationally inefficient, because of its need
to use parallel threads which record and process overlapping data. It also re-
quires the whole utterance to be contained within the pre-defined window length,
which may not be suitable for slow speakers. Conversely, for fast speakers, the
whole utterance may fall within consecutive windows, leading to consecutive
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detections for a single utterance.

To counter these limitations, we design a different system which exploits the
capabilities of a recurrent neural network. The basic idea is to use shorter
frames, and to transfer the final state of a frame onto the first input of the
following frame, instead of using a null state for the first input, thus eliminating
the need for threads and overlapping computations.

3.3.1 Pre-processing

The pre-processing can be performed very similarly to how it was done for the
sliding window based system. However, as we don’t need a fixed window size,
we can use the whole utterance as input without having to worry about varying
sequence length.

Still, as we want detections to occur immediately after a positive utterance, we
need to remove the trailing silence of each example. This can be done in the
same way we used to extract the loudest frame in the previous section, but this
time we keep the leading silent part. The resulting signal is shown in figure
3.5.

Figure 3.5: Speech signal before and after removing trailing silence.

Note that this is only necessary for positive utterances. For the negative ex-
amples, the whole signal can be used as input. However, to generate more
negatives, we also extract one half of the utterance for each negative example.

25



Whether the first or the second half of the signal is used is chosen by a ran-
dom process. This will produce two negatives per negative example, giving the
same positive-to-negative ratio as the one used for the sliding window based
model.

The MFCC computation, normalization, and data storage is performed in the
same way as in the previous section.

3.3.2 RNN Model Architecture

The architecture of the model is quite similar to the one of the sliding window
based model with a few very notable exceptions.

First of all, a wake word probability score is computed at every time step, which
means that we need the fully connected layer with softmax activation at every
output. However, only the last output is used to compute loss during training.
This is because we want detections to occur only after the whole wake word
has been uttered, and it would be difficult to find suitable labels for all other
time steps. The other outputs are only used for real-time detection, as we want
the flexibility of allowing detections to occur at any time within a frame. This
is made possible by the fact that the parameters of the fully connected layer
are shared across all time steps. The parameter sharing also means that this
model will have the same number of trainable parameters as the model from
the previous section.

Secondly, instead of using a null state for each new input sequence, we use the
last state of the previous input sequence as the initial state of the current input
sequence. During the training process, this means that if we use batches of 128
input sequences, the 128 final states of one batch will be used as initial states
for the next batch. This is done by using a placeholder in the computation
graph to store the initial state, and giving this the value of the last state at each
iteration.

A basic overview is provided in figure 3.6. Note that the sequence length is no
longer fixed to 149.
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Figure 3.6: Overview of the model used for the system based on non-overlapping
windows.

Training a TensorFlow model with variable length sequences within a batch is
not trivial. First, we need to pad all sequences with zeros so that all of the
sequences within the same batch has the same length. Then, at each iteration,
we need to create a vector with one element for each sequence indicating its
original length. This vector is passed to the model constructor as an argument,
ensuring that the zero-padding does not affect the output and final state of the
RNN.

Transferring the final states of each training batch onto the next one, as opposed
to initializing each batch with a null state, means that instead of only considering
the data from the current input sequence, the network will perceive that the
current input sequence is just the trailing part of a much longer sequence. This,
along with the fact that the sequence length is not fixed, means that the model
eventually will learn to produce wake word probabilities at all time steps in a
continuous stream of speech.

Otherwise, the model is trained in the same way as the model based on the
sliding window approach.

3.3.3 System Implementation

The described system can be used to detect wake words in a continuous stream
of audio more efficiently than the previous system. As there is no need for
overlapping frames, we can use a step size equal to the frame size, which in
practice can be of any value. However, due to the way MFCCs are calculated,
there will be a small number of missing samples at the end of each frame.
Thus, the frame size shouldn’t be too small. Also, after producing wake word
probabilities for a frame, we want to check whether any of the probabilities
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exceed the chosen threshold. If the frame size is too big, it will delay this
process. We choose to use 0.25-second frames, as in the previous section.

The wake word detection is a cycle of four steps: record a 0.25-second frame,
pre-process the frame resulting in a matrix of 24x40 MFCCs, feed this to the
neural network producing a vector of 24 wake word probabilities, and search for
a probability exceeding a pre-defined threshold. If no wake words are detected,
the final state of the frame will be used as the initial state of the next frame,
allowing the system to continuously listen for a wake word. If a wake word
is detected, the next frame will be initialized with a null state, resetting the
memory and thus avoiding consecutive detections for a single utterance.

A basic overview of how the model is used to detect wake words in a continuous
stream is illustrated in figure 3.7.

Figure 3.7: Continuous wake word detection overview.
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Chapter 4

Results and Discussion

In this chapter, the systems designed in the previous chapter are evaluated and
compared to each other.

First, we use the dedicated test subset to evaluate the models according to the
performance measures presented in subsection 2.2.4. Be aware that the data set
includes negatives which are very similar to the wake word. This means that
false classifications may occur more frequently on the test data compared to
other recorded data.

Then, we measure the CPU and memory usage of the real-time implementations
of the systems described in subsections 3.2.3 and 3.3.3 respectively. We also
apply the systems to longer audio streams, to get a sense of how they would
perform in practice. We do this using four different files. Three of them are
generated by choosing examples randomly from the test set and concatenating
them. We use 20 negatives and 5 positives for each concatenated file. The
systems are also applied to a podcast where we don’t expect any wake word
utterances to occur. The podcast used for testing is an episode of The Joe
Rogan Experience[23]. It was chosen because it contains a natural dialogue
between a man and a woman, and because of its length (2 hours, 38 minutes).
It was originally a 44,100 Hz mp3 file, but it was converted to a 48,000 Hz wav
file using SoX[24].

In the real-time simulation, the detection threshold has been set to 99 % for both
systems, as this seems to work best in practice. The systems are run on a laptop
with an Intel i5-4210u 1.7 GHz clock frequency dual-core processor.
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4.1 Sliding Window Approach

The following results have been obtained using the sliding window approach.
Recall that the test data was pre-processed along with the training data.

4.1.1 RNN Model Performance

Predicting the labels of the test subset using a detection threshold of 50 % gives
an accuracy of 97.41 %. The confusion matrix is shown in table 4.1.

Predicted class 0 Predicted class 1
True class 0 3611 47
True class 1 60 448

Table 4.1: Confusion matrix for the sliding window based model.

These numbers give a precision of 90.51 % and a recall of 88.19 %. This means
that 90.51 % of the positive predictions are accurate, and when a positive pre-
diction is uttered, it is correctly classified 88.19 % of the time.

Note that the number of false negatives is higher than the number of false
positives. The number of false positives should ideally be low, as it is not
desirable to wake up the system at unexpected times. By adjusting the detection
threshold, we may get a higher precision, which in turn will reduce the number
of false negatives.

Figure 4.1 shows how the precision and recall changes for different threshold
values.

30



Figure 4.1: Varying precision and recall for the sliding window based model.

A selection of these values can be seen in table 4.1.1

Threshold Precision Recall
50 % 90.51 % 88.19 %
75 % 91.17 % 87.40 %
90 % 92.89 % 84.84 %
95 % 93.74 % 82.48 %
99 % 95.89 % 78.15 %

Table 4.2: Precision and recall values for the sliding window based model.

4.1.2 System Performance

Running the real-time implementation of the system utilizes around 6.7 % of
the CPU on average while allocating 333,568 kB of memory.

We can simulate the system by applying the same method to recorded files. We
use 1.5-second windows with a step size of 0.25 seconds. As we only consider the
last output produced for each window, we get one probability score every 0.25
seconds. A plot of the probability scores produced for the concatenated test
files can be seen in figure 4.2. The red vertical lines show where a wake word
has been uttered. The green dots indicate a wake word probability exceeding
the pre-defined threshold.
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(a) File 1

(b) File 2

(c) File 3

Figure 4.2: Plotted predictions from three files using the sliding window ap-
proach.
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Apart from the false detection after approximately 20 seconds in the third file,
the model performs as desired. This false positive, as well as any other high
spikes seen in the plots, correspond to utterances that are very similar to the
wake word.

Running the system on the podcast produces 18 false detections, which is a rate
of 6.84 false detections per hour. Detections appearing in quick succession are
assumed to be triggered by the same utterance and are thus not counted.

4.2 Non-overlapping Window Approach

The following results have been obtained using the non-overlapping window
approach. The test data has been preprocessed in the same way as the training
data. The model has been trained using non-null initial states for each example.
For this reason, at the end of the final training epoch, the vector of final states
was stored in a pickle file. For each of the test inputs, a state is chosen randomly
from this vector and used as the initial state.

4.2.1 RNN Model Performance

Predicting the labels of the test set with a 50 % detection threshold gives an
accuracy of 97.43 %. The confusion matrix is shown in table 4.3.

Predicted class 0 Predicted class 1
True class 0 3619 39
True class 1 68 440

Table 4.3: Confusion matrix for the non-overlapping window based model.

These numbers give a precision of 92.05 % and a recall of 86.61 %. Figure 4.3
shows how the precision and recall changes for different threshold values.
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Figure 4.3: Varying precision and recall for the non-overlapping window based
model.

A selection of these values can be seen in table 4.2.1

Threshold Precision Recall
50 % 92.05 % 86.61 %
75 % 93.94 % 85.43 %
90 % 95.50 % 83.46 %
95 % 95.84 % 81.69 %
99 % 96.92 % 74.41 %

Table 4.4: Precision and recall values for the non-overlapping window based
model.

4.2.2 System Performance

Running the real-time implementation of the system utilizes around 1.4 % of
the CPU on average while allocating 329,376 kB of memory.

As there is no overlap in the windows, a wake word can occur at any time.
Therefore we need to search through the outputs at every time step for a prob-
ability value exceeding the threshold. Plots of the probability scores produced
for the concatenated test files can be seen in figure 4.4.
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(a) File 1

(b) File 2

(c) File 3

Figure 4.4: Plotted predictions from three files using the non-overlapping win-
dow approach.
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This system produces no false predictions at all for any of the three files.

Running the system on the podcast produces 17 false detections, which is a rate
of 6.46 false detections per hour.

4.3 Comparison

The results obtained from applying the two RNN models to the test data set are
very similar, with the test accuracy being nearly identical. This is not surprising,
considering that the main difference between them is that the former is trained
with fixed length input and null-state initialization, while the latter is trained
with variable length input and state transferred from the previous input.

The results are summarized in table 4.3. Model 1 and model 2 refer to the model
based on sliding windows and the model based on non-overlapping windows
respectively.

Model 1 Model 2
Threshold Precision Recall Precision Recall
50 % 90.51 % 88.19 % 92.05 % 86.61 %
75 % 91.17 % 87.40 % 93.94 % 85.43 %
90 % 92.89 % 84.84 % 95.50 % 83.46 %
95 % 93.74 % 82.48 % 95.84 % 81.69 %
99 % 95.89 % 78.15 % 96.92 % 74.41 %

Table 4.5: Precision and recall comparison for the two models.

The main difference is that the first model generally has a higher recall, while
the second model has higher precision. However, by using different threshold
values for the two models, there are cases where the second model outperforms
the first model both in terms of both precision and recall. For example, setting
the threshold of the first model to 95 % gives 93.74 % precision and 82.48 %
recall, while setting the threshold of the second model to 75 % gives 93.94 %
precision and 85.43 % recall. This does not seem to be the case the other way
around.

However, we observe an even greater difference in performance when comparing
the implemented systems based on the respective models. An overview of this
can be seen in table 4.3.
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Sliding window system Non-overlap system
CPU usage 6.7 % 1.4 %
Memory allocation 333,568 kB 329,376 kB
False detection rate 6.84 per hour 6.46 per hour

Table 4.6: Comparison of the two implemented systems.

The false detection rates based on the downloaded podcast file are very similar,
although the non-overlapping window approach has a slight advantage. Also
recall that this system performed perfectly on the concatenated test files, while
the other system produced one false detection.

As both the GRU cells and the fully connected layers share parameters across
all time steps for both models, meaning that they have the same number of
trainable parameters, there is no significant difference in memory usage for the
two systems. However, while the sliding window approach uses 6.7 % of the
CPU, the non-overlapping window approach uses only 1.4 %. Thus, the latter
reduces the computational cost by nearly 80 %. This is mainly due to the lack
of overlapping windows, which in turn reduces the number of computations it
needs to perform drastically. It’s also simpler to implement, as it doesn’t require
threading.
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Chapter 5

Conclusion

5.1 Summary

The goal of this thesis was to design and evaluate a wake word detection algo-
rithm based on deep learning. Two different recurrent neural network models
were implemented. The models were trained using a data set containing speech
utterances from a good variety of speakers. This data was pre-processed, and
MFCC features were extracted and normalized.

The RNN models were used to implement two systems The first system uses
a sliding window approach to search for wake words in a continuous stream.
The second system exploits the memory capabilities of the recurrent neural
network to continuously search for wake words without the need for any overlap.
Both implementations were written in Python language using the TensorFlow
framework.

The aim and expectation for the non-overlapping window approach was that it
would perform similarly to the basic sliding window approach while significantly
reducing the computation cost. Both models were evaluated using various per-
formance measures, as well as a simulation of how the models would perform in
a real-time application. Somewhat surprisingly, the experimental system ended
up slightly outperforming the sliding window based system while reducing the
computation cost by nearly 80 %. All in all, the results were highly encourag-
ing, and showcase some of the capabilities and advantages of recurrent neural
networks in speech processing.
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5.2 Future Work

The results obtained are highly encouraging, though there is still room for im-
provement. Even after setting the decision threshold to 99 %, too many false
detections occur when applying the systems on a speech based podcast. As the
data set used is relatively small and limited, it is reasonable to assume that
the number of false detection would decrease if the model was trained using
more data and a broader range of unique utterances, including various types of
noise and other non-speech sounds. In particular, the ratio of negative should
be increased in order to give a more realistic distribution.

The model itself is also quite basic. Added layers, parameter tuning, and reg-
ularization techniques might lead to better performance. Also, it is possible to
use other types of cells than the GRU cell, such as its predecessor, the widely
popular LSTM cell. The low computation cost of the proposed model also al-
lows for using ensemble modeling, in which confidence scores from two or more
separate models are produced and combined.

Also, as the data set used for this project was sampled at 48 kHz, this sampling
frequency was also used for audio recording in the real-time implementations
of the systems. For speech, 16 kHz would probably be enough to capture the
most important contents of the speech. This would further reduce the memory
footprint and computation cost.
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