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ABSTRACT 

Evaluating the seismic performance of concrete dams requires nonlinear dynamic analysis of 
two- or three-dimensional dam–water–foundation rock systems that include all the factors 
known to be significant in the earthquake response of dams. Such analyses are greatly 
complicated by interaction between the structure, the impounded reservoir and the deformable 
foundation rock that supports it, and the fact that the fluid and foundation domains extend to 
large distances. Presented in this thesis is the development of a direct finite element (FE) 
method for nonlinear earthquake analysis of two- and three-dimensional dam–water–
foundation rock systems. The analysis procedure applies standard viscous-damper absorbing 
boundaries to model the semi-unbounded fluid and foundation domains and specifies at these 
boundaries effective earthquake forces determined from a ground motion defined at a control 
point on the ground surface.  

Part I develops the direct FE method for 2D dam–water–foundation rock systems. The 
underlying analytical framework of treating dam–water–foundation rock interaction as a 
scattering problem, wherein the dam perturbs an assumed "free-field" state of the system, is 
presented, and by applying these concepts to a bounded FE model with viscous-damper 
boundaries to truncate the semi-unbounded domains, the analysis procedure is derived. Step-
by-step procedures for computing effective earthquake forces from analysis of two 1D free-
field systems are presented, and the procedure is validated by computing frequency response 
functions and transient response of an idealized dam–water–foundation rock system and 
comparing against independent benchmark results. 

This direct FE method is generalized to 3D systems in Part II of this thesis. While the 
fundamental concepts of treating interaction as a scattering problem are similar for 2D and 3D 
systems, the derivation and implementation of the method for 3D systems is much more 
involved. Effective earthquake forces must now be computed by analyzing a set of 1D and 2D 
systems derived from the boundaries of the free-field systems, which requires extensive book-
keeping and data transfer for large 3D models. To reduce these requirements and facilitate 
implementation of the direct FE method for 3D systems, convenient simplifications of the 
procedure are proposed and their effectiveness demonstrated. 

Part III of thesis proposes to use the direct FE method for conducting the large number 
of nonlinear response history analyses (RHAs) required for Performance Based Earthquake 
Engineering (PBEE) of concrete dams, and discusses practical modeling considerations for 
two of the most influential aspects of these analyses: nonlinear mechanisms and energy 
dissipation (damping). The findings have broad implications for modeling of energy 
dissipation and calibration of damping values for concrete dam analyses. At the end of Part 
III, the direct FE method is implemented with a commercial FE program and used to compute 
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the nonlinear response of an actual arch dam. These nonlinear results, although limited in 
their scope, demonstrate the capabilities and effectiveness of the direct FE method to compute 
the types of nonlinear engineering response quantities required for PBEE of concrete dams. 

 

Keywords: Concrete dams; nonlinear earthquake analysis; dam–water–foundation rock 
interaction; absorbing boundaries; response history analysis; three-dimensional analysis 
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INTRODUCTION 

Motivation 

Concrete dams are critical structures that provide important services in the form of power 
generation, flood control, irrigation and recreation. There are also catastrophic consequences 
for life and property in the case of a failure of these structures. However, most existing dams 
in seismic regions were designed by methods that are now considered inaccurate and obsolete. 
The damage sustained by the few concrete dams that have been subjected to intense ground 
motions, e.g., Koyna Dam in India, Hsinfengkiang Dam in China, Sefidrud Dam in Iran, and 
Pacoima Dam in the United States, together with the growing concern of the seismic safety of 
critical facilities, has led to considerable interest in reevaluating existing dams using modern 
analysis and experimental procedures. In recent years, interest has also increased on how to 
apply the principles of Performance Based Earthquake Engineering (PBEE) to concrete dam 
evaluations.  

Earthquake analysis of concrete dams is greatly complicated by interaction between the 
structure, the impounded reservoir and the deformable foundation rock that supports it, and 
the fact that the fluid and foundation domains extend to large distances. To overcome the 
difficulties in modeling dam–water–foundation rock interaction and semi-unbounded domains 
in the finite element method (FEM), the dam engineering profession has often employed an 
expedient solution: the foundation is modeled in limited extent and assumed to have no mass, 
hydrodynamic effects are approximated by an added mass of water moving with the dam, and 
the design ground motion at the surface is applied directly to the bottom fixed boundary of the 
foundation domain. This modeling approach has become popular in actual dam engineering 
projects because it is easy to implement in commercial FE codes; however, research has 
demonstrated that such oversimplified analyses can overestimate stresses by as much as a 
factor of 2 to 3, thus leading to overly conservative design of new dams and the incorrect 
conclusion that an existing dam is unsafe and needs retrofitting. 

Clearly, this situation is not satisfactory. Evaluating the seismic safety of concrete dams 
requires accurate and robust analysis procedures that recognize dam–water–foundation rock 
interaction and the semi-unbounded sizes of the water and foundation domains, and consider 
nonlinearities such as opening and closing of vertical contraction joints and cracking of 
concrete during intense earthquake motion. However, recognizing that most dam engineers 
may – for various reasons – be predisposed to use a particular FE program, it is also important 
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that such analysis procedures are general enough to be used with any FE program without 
requiring undue efforts from the user.  

Objectives and scope 

The overall objective of this research is to develop a procedure for nonlinear response history 
analysis (RHA) of semi-unbounded dam–water–foundation rock systems that is accurate, 
robust, and general enough to be used with any commercial FE program without modification 
of the source code. In particular, the objectives are to: 

• Extend the "standard" finite element model of dam–water–foundation rock systems to 
include absorbing boundaries at the upstream end of the fluid domain and bottom and 
side boundaries of the foundation domain to model their semi-unbounded geometries.  

• Develop a practical procedure for determining the seismic input to the analysis 
procedure starting from a free-field control motion specified on level ground. 

• Validate the accuracy of the analysis procedure by comparing against analytical and 
semi-analytical unbounded domain models using the substructure method of analysis 
for 2D and 3D dam–water–foundation rock systems.  

• Develop guidelines for implementation of the procedure in commercial FE software, 
as well as recommendations for practical modeling choices such as the sizes of the 
foundation and fluid domains to be included in the FE model, modeling of nonlinear 
mechanisms, and modeling of energy dissipating mechanisms (damping). 

• Demonstrate the usefulness of the analysis procedure for conducting nonlinear RHA 
of concrete dams in commonly used commercial FE programs. 

• Advocate use of more accurate analysis procedures for earthquake analysis of concrete 
dams in the dam engineering community. 

Organization of this thesis 

This thesis is written in three parts, each corresponding to a paper that has been published in 
international peer-reviewed journals (Parts I and II) or has been submitted for such 
publication (Part III). The content in this thesis is more extensive than the journal papers 
however, because it also contains several parts (derivations, validation results, etc.) that were 
left out of the papers due to space limitations.  

Part I presents the analytical framework underlying the direct FE method, develops the 
analysis procedure for earthquake analysis of two-dimensional dam–foundation rock,  
dam–water, and ultimately dam–water–foundation rock systems, and derives the equations of 
motion for these systems. Then, procedures for computing effective earthquake forces starting 
from a free-field ground motion defined at a control point on the foundation surface are 
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developed. Several examples are presented to validate the accuracy of the direct FE method 
applied to a wide range of 2D systems. 

Part II generalizes the direct FE method to three-dimensional systems, which is 
fundamentally more challenging to analyze because of their complicated 3D geometry. The 
equations of motions for 3D systems with absorbing boundaries are derived, procedures for 
computing effective earthquake forces from a set of 1D and 2D analyses are presented, and 
several numerical examples are presented to validate the accuracy of the direct FE method 
applied to 3D systems. To facilitate implementation of the procedure for 3D systems, 
convenient simplifications are proposed and their effectiveness demonstrated.  

Part III proposes to use the direct FE method for conducting the large number of 
nonlinear RHAs required for PBEE of concrete dams. A brief introduction to PBEE in the 
context of concrete dams is presented, the most significant nonlinear mechanisms that can 
develop in concrete dams are discussed, and the various types of energy dissipation (damping) 
in the dam–water–foundation rock system are reviewed. Recommendations for how to model 
these features in the direct FE method are presented. Finally, the capabilities of the direct FE 
method are demonstrated by computing the nonlinear earthquake response of Morrow Point 
Dam using a commercial FE code. 

This thesis also includes five appendices: Appendix A presents guidelines for 
selecting an appropriate size for the foundation domain to be included in 2D dam–water–
foundation rock models. Appendix B outlines the use of the Domain Reduction Method for 
seismic input to soil–structure interaction analyses and demonstrates that – when based on the 
same assumptions – the DRM and direct FE method will give identical results. Appendices C 
and D provides details on the computational procedures used to calculate frequency response 
functions in the time domain and to apply uniform ground motion in the direct FE method, 
respectively. Lastly, Appendix E presents equations for computing effective earthquake forces 
from one-dimensional stress-strain relations. 

In addition, two contributions from this research are not documented in this thesis. The 
first is the development of several sets of scripts and computer code to implement the direct 
FE method for nonlinear RHA and to facilitate the benchmark analyses using the substructure 
method for 2D and 3D systems implemented in the Fortran77 programs EAGD84 and 
EACD3D-08. These scripts will be made publicly available online through the NISEE e-
library websites. The second is the objective of advocating the use of more accurate analysis 
procedures in the dam engineering community. This has been achieved through presentations 
at international conferences and workshops on concrete dams and earthquake engineering.  
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1 Introduction 

Evaluating the seismic performance of concrete gravity dams requires dynamic analysis of 
two- or three-dimensional dam–water–foundation rock systems that include all significant 
factors in the earthquake response of concrete dams [1]: dam–foundation rock interaction 
including inertia effects of the rock [2,3]; dam–water interaction, including water 
compressibility and energy absorption at the reservoir bottom [4–6]; radiation damping due to 
the semi-unbounded sizes of the reservoir and foundation domains [3,7]; and nonlinear 
behavior of the dam and foundation rock [8–16]; 

 Analysis procedures based on the substructure method have been available since 1984 
for 2D frequency-domain analysis of dam–water–foundation rock systems [17]. This method 
models the semi-unbounded domains rigorously and specifies the ground motion directly at 
the dam–foundation rock interface; however, it is restricted to homogeneous material 
properties and simple geometry of the reservoir and foundation domains. More importantly, 
the substructure method is restricted to linear behavior of the entire system. Thus, nonlinear 
effects such as cracking of concrete and separation and sliding at joints and interfaces cannot 
be modeled.  

 The direct method of analysis on the other hand, models the entire system directly in 
the time-domain using finite elements (FEs). Such analyses are often conducted using 
commercial software that ignores one or several of the above factors to facilitate nonlinear 
dynamic analysis. For many years, the dam engineering profession used a FE model that 
included a limited extent of foundation rock, assumed to have no mass, and approximated 
hydrodynamic effects by an added mass of water moving with the dam. The design ground 
motion – typically defined at a control point on the free surface – was applied at the bottom 
fixed boundary of the foundation domain without modification. These approximations are 
attractive because they simplify the analysis greatly, however, such a model solves a problem 
that is very different from the real problem on two counts: (1) the assumptions of massless 
rock and incompressible water – implied by the added mass water model – are unrealistic, as 
research has demonstrated [1]; and (2) applying ground motion specified at a control point on 
the free surface to the bottom boundary of the FE model contradicts recorded evidence that 
motions at depth generally differ significantly from surface motions. In recent years, some 
engineers have shifted away from this approach. 

To eliminate these unrealistic assumptions, the FE model of the dam must be extended 
to comprise a foundation domain that includes mass, stiffness, and material damping 
appropriate for rock, and a fluid domain that includes water compressibility and reservoir 
bottom absorption. The semi-unbounded foundation and fluid domains must be reduced to 
bounded sizes with appropriate radiation conditions at the domain boundaries to allow 
propagation of outgoing waves. Development of such absorbing boundaries is a vast field 



PART I: INTRODUCTION 

7 
 

with rich literature [18–34]. The earthquake motion cannot be specified directly at the model 
truncations as this would render any absorbing boundary ineffective. Instead, effective 
earthquake forces are computed from the earthquake motion and applied either directly at the 
absorbing boundaries [35–37] or via a layer of elements interior of the boundaries [38–40].  

 Utilizing these concepts, a direct finite element procedure for nonlinear analysis of 
dam–water–foundation rock systems was developed by Basu [41]. Here, the high performing 
Perfectly Matched Layer (PML) [25] was used as the absorbing boundary, and the Effective 
Seismic Input (ESI) method [38], also known as the Domain Reduction Method (DRM) [40] 
was used to apply the effective earthquake forces. Although the procedure rigorously 
incorporates all the above factors significant in the earthquake response of dams, the PML 
boundary and DRM procedure are currently not available in most commercial FE codes; the 
only exception is LS-DYNA [42]. Thus, this procedure is not accessible to researchers and 
practicing engineers who, for various reasons, prefer other FE codes. These limitations can be 
overcome by modeling the absorbing boundaries by viscous dampers [18] and specifying the 
effective earthquake forces directly at these boundaries. Both of these features are available in 
almost every commercial FE code and are therefore chosen herein. A variation of such a 
procedure initiated by the US Bureau of Reclamation, wherein effective earthquake forces on 
the side boundaries are ignored, is often used in the dam engineering profession [43–45]. 

 The following chapters develops the formulation for a direct finite element method for 
nonlinear earthquake analysis of semi-unbounded dam–water–foundation rock systems that 
incorporates all significant factors for the earthquake response of dams, while ensuring broad 
applicability by using the well-known viscous damper as the absorbing boundaries. 
Derivation of the analysis method is founded on the idea of treating interaction as a scattering 
problem [38,46], and follows a similar outline as the procedure developed by Basu [41] using 
PML-boundaries and DRM for seismic input. In Chapter 2, the system and ground motion is 
defined, and the governing equations for each of three subdomains are presented. In Chapters 
3 and 4, the direct FE method is developed for dam–foundation rock and dam–water systems, 
respectively, by utilizing the concept of treating interaction as a scattering problem and 
formulating the radiation condition for viscous-damper boundaries in a convenient way. 
These two procedures are integrated to formulate the analysis procedure for the combined 
dam–water–foundation rock system in Chapter 5. At the end of each of the Chapters 3–5, the 
analysis method is validated by computing the response of idealized dam–foundation rock 
(Chapter 3), dam–water (Chapter 4), and dam–water–foundation rock (Chapter 5) systems 
and comparing against results obtained using the substructure method. In Chapter 5, the 
importance of including water–foundation rock interaction is also discussed.  

A shortened version of this part of the thesis has been published in the journal 
Earthquake Engineering and Structural Dynamics:  

Løkke, A., and Chopra, A.K. (2017). Direct finite element method for nonlinear analysis of semi
unbounded dam–water–foundation rock systems. Earthquake Engineering & Structural Dynamics, 
46.8, 1267-1285.  
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2 System and ground motion 

2.1 Semi-unbounded dam–water–foundation rock system 

The idealized, two-dimensional dam–water–foundation rock system (Figure 2.1) has three 
parts: (1) the gravity dam with nonlinear properties; (2) the foundation rock, consisting of a 
bounded region adjacent to the dam that can be nonlinear and inhomogeneous, and a semi-
unbounded region that is restricted to be linear; and (3) the fluid domain, consisting of a 
bounded region of arbitrary geometry adjacent to the dam that may be nonlinear, and a 
uniform channel, unbounded in the upstream direction, that is restricted to be linear. Thus, 
nonlinear effects such as concrete cracking, sliding and separation at construction joints, lift 
joints, and concrete-rock interfaces, and cavitation in the fluid may be considered in the 
analysis.  

The earthquake excitation is defined at a control point at the surface of the foundation 
rock by two components of free-field ground acceleration (Figure 2.1): the horizontal 
component ( )x

ga t  transverse to the dam axis, and the vertical component ( )y
ga t . The surface of 

the foundation rock is assumed to be at the same elevation in the far upstream and 
downstream directions; this geometric restriction is introduced to define a convenient free-
field state of the foundation rock in Section 3.1.  

 

Figure 2.1: Semi-unbounded dam–water–foundation rock system: (1) the dam itself; (2) the foundation rock, 
consisting of a bounded, nonlinear region and a semi-unbounded, linear region; and (3) the fluid domain, 

consisting of an irregular, nonlinear, region, and a semi-unbounded prismatic channel with linear fluid. Figure 
adapted from Ref. [41]. 
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2.2 Modeling of semi-unbounded domains 

The dam–water–foundation rock system in Figure 2.1 is modeled by a FE discretization of a 
bounded system with viscous-damper boundaries to represent the semi-unbounded foundation 
and fluid domains. The earthquake motion cannot be specified directly at these model 
truncations as this would render any absorbing boundary ineffective. Instead, effective 
earthquake forces are computed from the earthquake excitation and applied at the absorbing 
boundaries. 

The size of the foundation and fluid domains included in the FE model is determined 
by the ability of the absorbing boundaries to absorb outgoing (scattered) waves from the dam. 
If an advanced boundary such as the PML [25] is used, a small domain is sufficient to model 
the fluid and foundation domains (Figure 2.2a). In contrast, the simple viscous-damper 
boundary applied in this formulation requires much larger domains (Figure 2.2b).  

 

Figure 2.2: Dam–water–foundation rock system with truncated foundation and fluid domains: (a) small domain 
sizes with advanced absorbing boundary; (b) large domain sizes with simple absorbing boundary. 

2.3 Governing equations 

2.3.1 Dam and foundation domain 

The equations of motion governing the vector of total displacements r t  in the FE model of 
the dam with a truncated foundation domain and absorbing boundary Γf  (Figure 2.3) are 

 st( )t t t t t t
h b f+ + = + + +mr cr f r R R R R  (2.1) 

where m  and c  are the mass and damping matrices, respectively; ( )tf r  is the vector of 
internal forces which may be nonlinear in the dam and adjacent part of the foundation rock; 
Rt

h  and Rt
b  are the vectors of hydrodynamic forces acting at the dam–water interface Γh  and 

water–foundation interface Γb , respectively; stR  is the vector of static forces, including self-

Advanced absorbing 

boundary, e.g. PML
Simple absorbing boundary,

 e.g. viscous dampers

(a) (b)
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weight, hydrostatic pressures, and static foundation reactions at Γf ; and t
fR  are the forces 

associated with the absorbing boundary Γf , which include the effect of the excitation caused 
by seismic waves propagating from a distant earthquake source to the dam site, and the 
radiation condition at the boundary. Expressions for the forces Rt

h , Rt
b  and t

fR  will be 
derived later. 

 

Figure 2.3: Schematic FE model of the dam and foundation rock, with absorbing  
boundary Γ f  to truncate the semi-unbounded foundation domain.  

2.3.2 Fluid domain 

The water is modeled as a linear inviscid, irrotational and compressible fluid with 
hydrodynamic pressures p governed by the acoustic wave equation: 

 2
2

1
∇ =p p

C
 (2.2) 

where C  is the speed of pressure waves in water. 

Hydrodynamic pressures are caused by acceleration of the boundaries in contact with 
the reservoir: the upstream dam face Γh  and the reservoir bottom Γb  (Figure 2.4). These 
pressures are related to the total accelerations r t  at the fluid–solid interface by the boundary 
conditions: 

 
ρ∇ ⋅ = − ⋅n n r t

h h hp ,            at Γh   

ρ∇ ⋅ + = − ⋅n n r t
b b bp qp ,     at Γb   

(2.3a) 

 

(2.3b) 

where nh  and nb  are the outward normal vectors to the fluid at Γh  and Γb , respectively; and 
ρ  is the density of water. The second term on the left hand side of Equation (2.3b) is 
associated with the absorption of hydrodynamic pressure waves in sediments deposited at the 

Dam and nonlinear 

foundation rock

Linear and homogeneous 

foundation rock

Absorbing boundary,  �f

Water
 �b

 �h
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reservoir bottom. This wave absorption is modeled in an approximate way by a boundary 
condition that allows partial absorption of incident hydrodynamic waves, where the damping 
coefficient q is given by 

 
1

1

α

α

−
=

+
qC  (2.4) 

where α  is the reservoir bottom reflection coefficient [6,17]. This simplified model is chosen 
herein to allow for a meaningful comparison with the substructure method [17] in the 
numerical validations presented at the end of Chapters 3–5. The effects of reservoir bottom 
sediments can alternatively be included using more sophisticated methods, for example by 
directly modeling the thickness and extent of sediments discretized by finite elements with a 
viscoelastic [47,48] or poroelastic [49,50] material model. 

At the free water surface the boundary condition is simply 0=p ; effects of surface 
waves are not included as these have little influence on the dynamic response of concrete 
dams [51]. Lastly, an appropriate radiation condition must hold at the absorbing boundary Γ r . 

 

Figure 2.4: Schematic FE model of the fluid domain highlighting the various boundary  
conditions at the reservoir boundaries.  

Discretizing the fluid domain using finite elements and defining pt  as the vector of 
total hydrodynamic pressures – where the superscript t  has been added for consistency with 
the notation for the total displacements r t  – the standard discretization process results in 

 T Tρ+ + = − + +sp bp hp Q Q r Ht t t t t
h b r  (2.5) 

where s , b  and h  are the corresponding "mass", "damping" and "stiffness" matrices of the 
fluid [52], and t

rH  is the vector of forces associated with the absorbing boundary  Γr . In 
contrast to the "standard" formulation [52], the damping matrix b  does here not include the 
effects of the radiation condition because these are represented by the forces t

rH . Also 
included in this term are the forces exerted on the absorbing boundary due to excitation of the 

Dam
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part of the fluid domain upstream of Γr  that has been eliminated; an expression for these 
forces will be derived in Chapter 4.   

The matrix Qh  relates hydrodynamic pressures in the fluid to accelerations in the dam 
at the dam–water interface Γh  according to the boundary condition of Equation (2.3a): 

 
T

h

h h h hd
Γ

= ΓQ N n N  (2.6) 

where hN  and hN  are the shape functions of the dam and fluid nodes, respectively, on the 
interface Γh . The matrix Qb  is constructed the same way, but integrated over  Γb . 

2.3.3 Dam–water–foundation rock system 

The hydrodynamic forces t
hR  and t

bR  in Equation (2.1) that act on the dam and foundation 
rock, respectively, can be expressed in terms of the hydrodynamic pressures pt  as [52] 

 =R Q pt t
h h h            =R Q pt t

b b b  (2.7) 

Substituting this equation into Equation (2.1) and combining with Equation (2.5) gives the 
equations of motion for the dam–water–foundation rock system with truncated foundation and 
fluid domains: 

 

T T

st

( )

( )( )

ρ
+

+

− + +
+ + =

m 0 c 0r r
Q Q s 0 bp p

0 Q Q r R Rf r
0 h p H0

t t

t t
h b

t tt
h b f

t t
r

 (2.8) 

where the coupling matrices Qh  and Qb  have non-zero entries only on the interfaces Γh  and 
Γb , respectively. Expressions for the unknown forces Rt

f  and Ht
r  associated with the 

absorbing boundaries Γ f  and Γ r  will be derived in the subsequent chapters. 
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3 Dam–foundation rock system 

3.1 Dam–foundation rock interaction as a scattering problem 

Dam–foundation rock interaction may be treated as a scattering problem in which the dam 
perturbs the free-field motion in the foundation rock. Procedures based on this idea have been 
developed for analysis of soil–structure interaction systems [38–40], and of dam–water–
foundation rock systems using PML absorbing boundaries and the DRM for seismic input 
[41]. In this chapter, these ideas will be utilized to formulate an analysis procedure for the 
dam–foundation rock subsystem with absorbing boundaries modeled by viscous dampers. 

Consider the linear foundation rock in its free-field state, i.e., before the dam was 
constructed or excavation had started (Figure 3.1a). This domain is separated into two 
subdomains: 0Ω  denotes the region interior of the future absorbing boundary Γ f , and +Ω  is 
the semi-unbounded exterior region. The vector of free-field displacements at nodes in both 
subdomains is denoted by 0r  (Figure 3.1a); a procedure to determine this motion will be 
presented in Section 3.4. 

 

Figure 3.1: Illustration of dam–foundation rock interaction as a scattering problem: (a) foundation rock in its 
free-field state with displacement field defined by 0r  in 0 +Ω ∪ Ω ; (b) dam–foundation rock system with 

displacement field defined by the total motion r t  in Ω  and the scattered motion 0−r rt  in +Ω  

The dam–foundation rock system is also separated into two subdomains (Figure 3.1b): 
Ω  denotes the dam and foundation region interior of the absorbing boundary Γ f , and +Ω  is 
the semi-unbounded exterior region, the latter is identical to the exterior region in the free-
field system. Following the approach first proposed by Herrera and Bielak [46], the 
displacement field in the dam–foundation rock system is defined by the variables: 

 rt ,        in the interior region Ω  (3.1a) 
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0−r rt ,  in the exterior region +Ω  (3.1b) 

where rt  is the vector of total displacements governed by Equation (2.1), and 0−r rt  
represents the scattered motion in the exterior region +Ω , i.e., the perturbation of the free-
field motion caused by the presence of the dam. This substitution of variables in +Ω  will 
subsequently allow formulation of the governing equations for the absorbing boundary in a 
way that the forces Rt

f  in Equation (2.1) can be determined from the free-field motion 0r . 

3.2 Viscous-damper absorbing boundaries 

A set of continuously distributed viscous dampers enforces the one-dimensional radiation 
condition [18]. Assuming that incident waves impinge perpendicular to the boundary, this 
radiation condition is 

 
0f pV uσ ρ+ =  

0f sV wτ ρ+ =  

(3.2a) 
 

(3.2b) 

where ( )σ t  and ( )τ t  are the normal and tangential tractions; ( )u t  and ( )w t  are the normal 
and tangential displacements† (Figure 3.2); ρ f  is the density of the foundation medium; and 

pV  and sV  its pressure-wave velocity and shear-wave velocity. The viscous damper is a 
perfect absorber of body waves that arrive normal to the boundary, but only a partial absorber 
for body wave impinging at an arbitrary angle and for surface waves. However, the accuracy 
is generally acceptable provided the boundary is placed at sufficient distance from the wave 
source [20]. 

The viscous-damper boundary simulates the semi-unbounded foundation region +Ω  
where the displacements were defined by the scattered motion (Equation 3.1b), i.e., 

0= −tu u u  and 0= −tw w w . Because the foundation rock in +Ω  is assumed to be linear, it 
follows that the boundary tractions associated with the scattered motion are 0σ σ σ= −t  and  

0τ τ τ= −t . Substituting for the scattered motion and the corresponding tractions in Equation 
(3.2) and rearranging terms one obtains: 

 

0 0σ σ ρ= − −t t
f pv u u  

0 0τ τ ρ= − −t t
f sv w w  

(3.3a) 
 

(3.3b) 

Thus, the total tractions on the absorbing boundary consist of two parts: the free-field 
tractions, and the product of a damper coefficient and the scattered motion.  

                                                 
† Temporarily – for convenience of notation – u and w is used instead of tr  for displacements 
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In a discretized model the distributed dampers can be lumped at the boundary nodes, 
resulting in discrete viscous dampers with coefficients (Figure 3.2): 

 
p f pc A Vρ= ,   normal to the boundary 

s f sc A Vρ= ,   tangential to the boundary 

(3.4a) 
 

(3.4b) 

where A is the tributary area (tributary length in a 2D model) for the boundary node. In finite 
element notation, Equation (3.3) can be written for the boundary Γ f  as 

 0 0= − −R R c r rt t
f f f f f  (3.5) 

where 0
fR  is the vector of nodal forces consistent with the free-field tractions and fc  is the 

matrix of damper coefficients pc  and sc . The vectors t
fR , 0

fR , and matrix fc  contain non-
zero entries only for nodes on Γ f . 

 

Figure 3.2: Definition of damper coefficients pc  and sc  for lumped viscous damper on Γ f .  

3.3 Equations of motion  

Substituting Equation (3.5) in Equation (2.1), noting that ≡ ≡R R 0t t
h b  in the absence of water 

in the reservoir, and rearranging terms, the final equations of motion for the dam–foundation 
rock subsystem with truncated foundation domain are obtained: 

 st 0( )+ + + = +mr c c r f r R Pt t t
f f  (3.6) 

where the effective earthquake forces acting on the boundary Γ f  are 

 0 0 0= +P R c rf f f f  (3.7) 

Observe by comparing Equations (3.6) and (2.1) that the unknown forces Rt
f  associated 

with the absorbing boundary Γ f  have now been expressed in terms of the viscous damper 
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forces t
fc r  and the effective earthquake forces 0

fP . The latter consists of two parts: (1) 0
fR , 

the forces consistent with the free-field tractions at Γ f , and (2) the damper forces 0
f fc r  

determined from the spatially varying free-field motion at Γ f . Working with the scattered 
displacements in +Ω  has thus enabled derivation of Equation (3.7) for the effective 
earthquake forces in terms of the free-field displacements and tractions.  

3.4 Free-field earthquake motion 

The free-field motion 0r f  required to compute the effective earthquake forces 0Pf  can be 
determined by various methods. The standard procedure is to define the ground motion at the 
control point (Figure 2.1) to be consistent with a design spectrum. This target spectrum may 
be the Uniform Hazard Spectrum (UHS) determined by probabilistic seismic hazard analysis 
(PSHA) [53], or a Conditional Mean Spectrum (CMS) [54]. Recorded ground motions are 
selected, scaled and modified to "match" in some sense the target spectrum; alternatively 
synthetic motions may be developed for an earthquake scenario. These methods are well 
developed for a single component of ground motion; work on extending these methods to 
two- or three components acting simultaneously is in progress.  

To determine the required free-field motion at the boundary Γ f  from the ground 
motion at the control point it is necessary to introduce assumptions on the type of seismic 
waves and their incidence angle. The simplest assumption, often used for site response 
analyses and soil–structure interaction analyses, is vertically propagating SH-waves and P-
waves [55,56]. This is clearly a major simplification of the actual seismic wave field, that 
generally consists of a superposition of vertically and horizontally propagating SH-, SV- and 
P-waves, and horizontally propagating surface waves. This assumption is often justified on 
the basis that most sites are located relatively far away from the earthquake source, and that 
the gradual softening of rock and soil towards the earth's surface leads to diffraction of 
seismic waves towards vertical incidence [57]. It is not obvious that this assumption is 
appropriate for concrete dams sited on competent bedrock, but at the present time it seems to 
be the only pragmatic choice.  

Under the assumption of vertically propagating waves and homogeneous or layered 
rock, the free-field motion 0r f  at Γ f  can be obtained by deconvolution of the ground motion 

( )k
ga t  at the control point using standard frequency-domain procedures [55]; software such as 

SHAKE [58] or DEEPSOIL [59] can be utilized for this purpose. In principle, the deconvolution 
analysis can provide directly the motion at every nodal point on Γ f ; however, such an 
implementation may become cumbersome if output from the deconvolution analysis is 
required at a large number of elevations. An alternative method that overcomes this problem 
is presented in the next section.  
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3.5 Computing effective earthquake forces 

3.5.1 Bottom boundary 

It was assumed in Section 3.4 that the earthquake motion is caused by vertically incident 
seismic waves propagating up from an underlying elastic medium. Because the free-field 
foundation-rock system (Figure 3.1a) is assumed to be linear and homogenous or horizontally 
layered, the boundary tractions at the bottom of the truncated foundation domain can be 
expressed as the sum of tractions due to the incident and reflected seismic waves: 

 0 0 0σ σ σ= +I R  (3.8) 

where 0σ I  and 0σ R  are the normal tractions due to the incident (upward propagating) and 
reflected (downward propagating) seismic waves, respectively. At the boundary, the radiation 
condition must be satisfied for both the incident and reflected waves: 

 0 0 0I f p IV uσ ρ− =         0 0 0R f p RV uσ ρ+ =  (3.9) 

where 0
Iu  and 0

Ru  are the displacements at the boundary in the normal direction corresponding 
to the incident and reflected seismic waves. The free-field velocity 0u  at the boundary is the 
sum of the incident and reflected waves, i.e., 0 0 0= +I Ru u u . Substituting for 0

Ru  in Equation 
(3.9), and inserting the result in Equation (3.8), a new expression for the free-field boundary 
tractions 0σ  is obtained: 

 0 0 02f p IV u uσ ρ= −  (3.10a) 

It follows that a similar expression can be derived for the tangential tractions 0τ : 

 0 0 02f s IV w wτ ρ= −  (3.10b) 

Such expressions were first derived by Joyner and Chen [60]. 

Expressing Equation (3.10) in finite element notation to obtain 0 0 02f f I f= −R c r r , 
substituting the results into Equation (3.7) and cancelling terms, the final expression for the 
effective earthquake forces at the bottom of the foundation domain is obtained: 

 0 02=P c rf f I  (3.11) 

where 0rI  is the motion at Γ f  due to the incident (upward propagating) seismic waves.  

This equation has the advantage that it requires only the motion 0rI  of the incident 
wave, thus avoiding computation of the free-field tractions required if directly using Equation 
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(3.7). Furthermore, the incident motion 0rI  is easily computed as 1/2 the outcrop motion† at 
the bottom boundary, which is extracted directly from the deconvolution analysis. The 
procedure to compute 0

fP  from Equation (3.11) is summarized in Box 3.1.  

Box 3.1: Computing 0
fP  at bottom boundary of foundation rock. 

1. Determine the outcrop motion at the bottom foundation-rock boundary by 1D 
deconvolution of each component of the surface control motion  ( )k

ga t , ,k x y= .  
2. Compute the incident motion 0

Ir  as 1/2 the outcrop motion at the bottom boundary 
determined in Step 1 and obtain 0

Ir  by taking the time derivative of 0
Ir . 

3. Calculate the effective earthquake forces 0
fP  at the bottom boundary from Eq. 

(3.11) using 0
Ir  from Step 2.  

 

3.5.2 Side boundaries 

The free-field motion 0
fr  (and its time derivatives) required to compute the effective 

earthquake forces 0Pf  at the side boundaries can be obtained directly from the deconvolution 
analysis; free-field tractions can then be computed from 1D stress-strain relations and these 
stresses converted to forces. Alternatively, both quantities can be computed by an auxiliary 
analysis of the foundation rock in its free-field state (Figure 3.1a). Analysis of this system 
reduces to a single column of foundation-rock elements with a viscous damper at its base that 
is subjected to the forces of Equation (3.11) and analyzed to determine 0rf  and 0R f  at each 
nodal point along the height. The procedure is summarized in Box 3.2 and illustrated in 
Figure 3.3a. 

Although straightforward, both of these approaches requires the force histories 0Pf  at 
all nodal points on the side boundaries to be stored for later use in setting up Equation (3.7). 
Clearly, such "book-keeping" may become cumbersome to implement for large models, 
especially for a 3D system [37]. These difficulties can be avoided by introducing free-field 
boundary elements in the form of 1D foundation-rock columns at the side boundaries that are 
solved in parallel with the main FE model (Figure 3.3b) [61]. However, such elements are 
currently not available in most commercial FE or finite difference codes, the only exceptions 
are FLAC [62] and PLAXIS [63]. 

                                                 
† The reflected motion must equal the incident motion at every rock outcrop (stress-free boundary), hence is the 
incident motion exactly equal to 1/2 the outcrop motion. 
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Figure 3.3: Two methods for application of effective earthquake forces to side boundaries of foundation 
domain: (a) auxiliary analysis of 1D column to compute 0rf  and 0R f  followed by direct application of  0Pf ; (b) 

use of free-field boundary elements.  
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Box 3.2: Computing 0
fP  at side boundaries of foundation rock. 

1. Determine the outcrop motion at the bottom foundation-rock boundary by 1D 
deconvolution of each component of the surface control motion ( )k

ga t , ,k x y= .  
2. Calculate the effective earthquake forces 0

fP  at the bottom boundary from 
Equation (3.11), with the motion 0

Ir  due to the incident (upward propagating) 
seismic wave computed as 1/2 the outcrop motion extracted from the 
deconvolution analysis. 

3. Develop a FE model for the free-field foundation-rock system: a single column of 
elements that has the same mesh density as the main FE model at the side 
boundaries, with viscous dampers applied at the base in the x- and y-directions 
(Figure 3.3a).  

4. Compute the free-field velocities 0
fr  and forces 0

fR  at each node over the height 
by analyzing the foundation-rock column subjected to forces given by Eq. (3.11) 
at its base.  

5. Calculate the effective earthquake forces 0
fP  at the side boundaries from Eq. (3.7) 

using 0
fr  and 0

fR  from Step 4. 
 

3.5.3 Relation to the Domain Reduction Method 

The Domain Reduction Method (DRM) [40] is a two-step methodology for modeling 
earthquake response where large contrasts exist between the physical scales of the 
background model and a smaller localized feature. The method overcomes the issues of scale 
difference by subdividing the original problem into two simpler ones where a local feature 
perturbs the free-field motion in a larger background domain. This same idea was utilized in 
deriving the equations of motion for the dam–foundation rock system, Equations (3.6) and 
(3.7), earlier in this chapter.  

Although initially developed for large scale geological simulations, the DRM has also 
been successfully applied to specify the seismic input in soil–structure interaction problems in 
a layer of FEs interior of the absorbing boundary [41,64]. This has the advantage that it 
completely de-couples the boundary condition from the method of seismic input, unlike the 
direct FE method developed above where the effective earthquake forces were derived 
assuming viscous-damper boundaries. Thus, DRM can be used with any advanced boundary 
condition and the domain sizes reduced accordingly (Figure 2.2).  

When developing a general procedure for earthquake analysis of concrete dams 
however, this benefit is outweighed by two disadvantages of using DRM: (1) implementation 
of DRM requires modification of the FE source code, effectively limiting the procedure to 
users of LS-DYNA, which is the only commercial FE program frequently used by dam 
engineers where DRM is available; and (2) specifying seismic input for a dam–water–
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foundation rock system with small domain sizes (which is the main attractiveness of using 
DRM) is impractical because it requires auxiliary analysis of a complex water–foundation 
rock system and extensive book-keeping to set up and store the seismic input forces [41].  

To ensure broad usefulness of the direct FE method it was therefore decided to use 
simple viscous dampers as the absorbing boundaries and specify effective earthquake forces 
directly at these boundaries. A more comprehensive discussion on this topic, as well as a 
general introduction to DRM and a comparison between the DRM and direct FE method, can 
be found in Appendix B.   

3.6 Numerical validation 

The analysis method developed in the preceding sections is validated by computing the 
dynamic response of the idealized dam–foundation rock system shown in Figure 3.4. All the 
direct FE method analyses are implemented in the open source FE program OPENSEES [65] 
using implicit time integration by the HHT-α  method [66] to solve the dynamic equilibrium 
equations (Equation 3.6).  

The idealized, triangular, dam has a vertical upstream face, a downstream slope of 0.8 
to 1, and height H = 120 m. The dam concrete and foundation rock is assumed to be isotropic, 
homogeneous, linearly elastic, and in generalized plane stress. This assumption, while strictly 
speaking not appropriate for the foundation, is dictated by the expected individual vibration of 
monoliths during intense ground motions. Material properties for the concrete are: modulus of 
elasticity sE  = 22.4 GPa, density ρs  = 2483 kg/m3, and Poisson's ratio ν s  = 0.20; for the 
foundation rock: fE  = 22.4 GPa (i.e. /f sE E  = 1), ρ f  = 2643 kg/m3, and ν f  = 0.33. 
Material damping is modeled by Rayleigh damping with 2%ζ =s  and 2%ζ =f  viscous 
damping specified for the dam and foundation rock separately, with the damping matrix for 
the complete system constructed by assembling the individual Rayleigh damping matrices for 
the two subdomains [67].  

The FE models for the dam and foundation rock both consist of quadrilateral 4-node 
elements [68]. The FE mesh for the dam has 15 elements across the width and 29 elements 
over the height (Figure 3.4a). The maximum element size in the foundation rock is limited to 
less than one-tenth of the shortest wavelength considered in the analysis to ensure satisfactory 
wave propagation in the mesh [69]. The width (on either side of the dam) and depth of the 
foundation domain is selected as 4H and 2.5H, respectively. These dimensions are sufficiently 
large to minimize wave reflections from the viscous dampers for the selected system 
parameters, and were selected based on a parametric study for determining the required size 
of the foundation domain when using viscous-damper boundaries (see Appendix A). 

The ground motion is specified by the ground acceleration ( )k
ga t  at the foundation 

surface; the free-field motion at depth in the model is obtained by deconvolution of this 
motion. The effective earthquake forces at the bottom and side boundaries of the foundation 
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rock are then computed from Equations (3.11) and (3.7), respectively, using the procedures in 
Boxes 3.1 and 3.2. 

 

Figure 3.4: (a) Geometry and FE mesh for triangular dam cross section; (b) dimensions of FE model for dam–
foundation rock system with viscous-damper boundaries to truncate the semi-unbounded foundation domain.  

Frequency response functions are computed by time-domain analysis of the FE system 
with free-field surface motions ( )x

ga t  and ( )y
ga t  defined by a harmonic function of unit 

amplitude. The response of the dam for a single excitation frequency is computed by solving 
the equations of motion for long enough time to reach steady-state; this is then repeated at a 
sufficient number of frequencies to produce a smooth plot. More information about this 
procedure can be found in Appendix C. The semi-analytical benchmark solution, to which the 
results of the direct FE method is compared, is obtained directly in the frequency domain by 
the substructure method [17] using the computer program EAGD84 [70] with a set of pre- and 
post-processing modules in MATLAB [71] that the author has previously developed [72]. In the 
substructure method, the foundation rock is modeled as a viscoelastic halfspace, the fluid 
domain is treated as an infinitely long continuum, and the earthquake excitation is specified 
directly at the dam–foundation interface, thus avoiding the need for artificial model 
truncations, absorbing boundaries, and deconvolution of the ground motion. 

Material damping in EAGD84 is modeled by constant hysteretic damping specified by 
the hysteretic damping factors 0.04η =s  and 0.04η =f  for the dam and foundation rock; this 
corresponds to viscous damping ratios of 2%ζ =s  and 2%ζ =f . For time-domain analysis in 
the direct FE method, the Rayleigh coefficients are determined by specifying ζ s  and ζ f  at 
the excitation frequency / 2ω π=f , where ω  is the angular frequency of the harmonic 
excitation, and at f = 1 Hz. This unconventional choice defines frequency-dependent Rayleigh 
damping to be as consistent as possible with frequency-independent hysteretic damping, thus 
ensuring a meaningful comparison of the frequency response functions from the direct FE and 
substructure methods. For the response history analyses to earthquake excitation presented 
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later in Section 5.4.2, ζ s  and ζ f  are specified at the first two natural frequencies of the dam–
water–foundation rock system. 

3.6.1 Dam on rigid foundation rock 

The frequency response function for the amplitude of the relative horizontal acceleration at 
the crest of the dam on rigid foundation is computed by OPENSEES and EAGD84 and compared 
in Figure 3.5. The near identical results for both horizontal and vertical excitation confirm the 
equivalency of the two FE models, and validate that the procedure for selecting Rayleigh 
coefficients provides material damping that is consistent with the constant hysteretic damping 
model at a given excitation frequency.  

 

Figure 3.5: Comparison of frequency response functions from OPENSEES and EAGD84 for the amplitude of 
relative horizontal acceleration at the crest of dam on rigid foundation due to horizontal and vertical ground 

motion. Results are plotted against normalized frequency 1/ω ω  where 1ω  is the fundamental frequency of the 
dam on rigid foundation. Material damping in the dam is temporarily set for this analysis as ζ s  = 5%.  

3.6.2 Dam–foundation rock system 

The dynamic response of the dam on flexible foundation rock is presented in Figure 3.6 for 
several values of /f sE E , the ratio of modulus of elasticity for the foundation rock to the 
dam. The results obtained by the direct FE method with viscous-damper boundaries and 
truncated foundation domain are generally close to the results from the substructure analysis, 
thus validating the ability of the direct FE method to model the semi-unbounded dam–
foundation rock system. The small discrepancies observable at some frequencies are due to 
the inability of the viscous-damper boundary to perfectly absorb outgoing (scattered) waves 
from the dam; such discrepancies will generally decrease as the size of the foundation domain 
included in the FE model increases (see Appendix A). 
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 Figure 3.6: Comparison of frequency response functions from direct FE and substructure methods for the 
amplitude of relative horizontal acceleration at the crest of dam on flexible foundation rock due to horizontal and 

vertical ground motion. 2%ζ ζ= =s f ; / 1f sE E = .  

3.6.3 Ignoring effective earthquake forces at side boundaries 

The dam engineering profession has been using a variation of the rigorous procedure 
summarized in Boxes 3.1 and 3.2, wherein the effective earthquake forces 0Pf  are applied 
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only at the bottom boundary, but ignored at the side boundaries. Initiated by the US Bureau of 
Reclamation and applied to actual projects [43,44], variations of the method have also been 
used by other dam engineering professionals [73].  

Frequency response functions for the dam on flexible foundation rock obtained using 
such an analysis procedure – where forces are only applied at the bottom foundation boundary 
– are presented in Figure 3.7. The significant discrepancies observable in the results for both 
horizontal and vertical ground motion arise from the inability of this model to reproduce free-
field conditions. Attempts have been made to correct for this shortcoming by modifying the 
amplitude and/or frequency content of the input ground motion [45]. However, it is not clear 
whether such modifications will lead to acceptable results, and neither version of these 
approximate methods has been validated against the substructure method.  

 

Figure 3.7: Comparison of frequency response functions from the USBR direct method and substructure method 
for the amplitude of relative horizontal acceleration at the crest of dam on flexible foundation rock due to 

horizontal and vertical ground motion. 2%ζ ζ= =s f ; / 1f sE E = .  

3.6.4 Can foundation mass be ignored? 

The massless foundation model [74] is attractive in its simplicity as it only considers the 
flexibility of the foundation rock, but neglects the inertia and damping effects. The foundation 
rock can then be modeled by a small bounded-sized foundation model without absorbing 
boundaries as part of a standard FE analysis. Despite of its well documented deficiencies [1], 
the massless foundation model is still being used in dam engineering practice.  

Presented in Figure 3.8 are frequency response functions for the dam–foundation rock 
system computed massless foundation approach and compared to the substructure method 
including foundation mass. Neglecting the foundation mass – and thereby also radiation 
damping – greatly overestimates the response of the dam and the results are in significant 
error. Clearly, such a model is unable to capture the dynamic properties associated with dam–
foundation interaction, and should not be used in earthquake analysis of concrete dams.  
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Figure 3.8: Comparison of frequency response functions from the massless foundation model and substructure 
method for the amplitude of relative horizontal acceleration at the crest of dam on flexible foundation rock due 

to horizontal and vertical ground motion. 2%ζ ζ= =s f ; / 1f sE E = .  
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4 Dam–water system 

4.1 Dam–water interaction as a scattering problem 

In this chapter, dam–water interaction is again treated as a scattering problem – in which the 
dam perturbs a "free-field" state of the system – to derive the effective earthquake forces for 
the fluid domain at the absorbing boundary Γ r .  

Consider the fluid in its "free-field" state, consisting only of the semi-unbounded 
prismatic channel +Ω  upstream of the future absorbing boundary Γ r  (Figure 4.1a). This 
system is not representative of any physical state of the fluid, but it facilitates formulation of 
the analysis procedure. Because the bottom boundary of the prismatic channel is horizontal, 
the free-field hydrodynamic pressures 0p  in +Ω  will be zero if the ground motion is purely 
horizontal, but they will be nonzero for vertical ground motion. A procedure for determining 
these pressures will be presented in Section 4.4. 

 

Figure 4.1: Illustration of dam–water interaction as a scattering problem: (a) fluid domain in its "free-field" state 
with hydrodynamic pressures defined by 0p  in +Ω ; (b) dam–water system with hydrodynamic pressures defined 

by total pressures pt  in Ω  and scattered pressures 0−p pt  in +Ω . 

The dam–water system is separated into two subdomains: Ω  denotes the dam and 
irregular fluid region between the dam and the absorbing boundary Γ r  and +Ω  is the semi-
unbounded prismatic channel (Figure 4.1b); the latter is identical to the free-field system. 
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Following the same approach as for the dam–foundation rock system (Chapter 3), the 
hydrodynamic pressure field in the dam–water system is defined by the variables 

 
pt ,          in the interior region Ω  

0−p pt ,    in the exterior region +Ω  

(4.1a) 
 

(4.1b) 

where pt  is the vector of total hydrodynamic pressures governed by Equation (2.5), and 
0−p pt  represents the scattered hydrodynamic pressures in the exterior region +Ω , i.e., the 

perturbation of the free-field pressures caused by the existence of the dam and the irregular 
fluid region. This choice of variables in +Ω  will subsequently allow formulation of the 
governing equations for the viscous-damper boundary in a way that the unknown forces Ht

r  
associated with the absorbing boundary Γ r , which first appeared in Equation (2.5), can be 
determined from the free-field pressures. 

4.2 Viscous-damper absorbing boundary 

A set of continuously distributed viscous dampers enforces the one-dimensional radiation 
condition for a fluid [52]. For incident waves perpendicular to the boundary, this condition is 

 
1

0
∂

+ =
∂

p
p

n C
 (4.2) 

where n denotes the outward normal to the fluid boundary. This boundary condition is also 
known as the plane wave approximation. 

The viscous-damper boundary models the unbounded prismatic fluid channel +Ω  
where the scattered pressure 0−tp p  was chosen as the variable to define hydrodynamic 
pressures (Equation 4.1b). Because the fluid in +Ω  is assumed linear, Equation (4.2) becomes 

 ( )
0

0( ) 1
0

∂ −
+ − =

∂

t
tp p

p p
n C

 (4.3a) 

which can be rewritten as 

 ( )
0

01∂ ∂
= − −

∂ ∂

t
tp p

p p
n n C

 (4.3b) 

The distributed dampers are lumped to the boundary nodes in the discretized model, 
resulting in discrete viscous dampers with coefficient: 

 /=rc A C  (4.4) 
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where A  is the tributary area (tributary length in a 2D model) for the node. Equation (4.3) 
written in finite element notation for nodes on the boundary Γ r  is 

 0 0t t
r r r r r= − −H H c p p  (4.5) 

where 0Hr  is the vector of nodal forces consistent with the free-field pressure gradient 
0 /∂ ∂p n , and cr  is the matrix of damping coefficients rc . The vectors Ht

r , 0Hr  and matrix cr  
have non-zero entries only for nodes on Γ r .  

Working with the scattered pressures in +Ω  has enabled the derivation of Equation 
(4.5) for the unknown forces t

rH  in Equation (2.1) associated with the absorbing boundary 
Γ r  in terms of the free-field pressures. 

4.3 Equations of motion 

Equation (2.1) that governs the dam–foundation rock subsystem is specialized for the dam 
alone: 

 st( )+ + = +mr cr f r R Rt t t t
h  (4.6) 

where stR  now includes only gravity loads and hydrostatic forces on the dam, and the 
hydrodynamic forces are t t

h h=R Q p , where Qh  was defined in Equation (2.6). Combining 
Equation (4.6) with Equation (2.5) for the truncated fluid domain and rearranging terms:  

 

T

st

T

( )

ρ

ρ

+

−
+ + =

−

m 0 c 0r r

Q s 0 bp p

0 Q Rrf r

0 h H Q rp0

t t

t t
h

tt
h

t tt
r b b

 (4.7) 

where rt
b  denotes the prescribed accelerations of the rigid foundation rock at the water–

foundation rock interface Γb , and the matrix Qb  is computed similarly to Equation (2.6) but 
integrated over Γb .  

Substituting Equation (4.5) for the unknown forces Ht
r  leads to the final equations of 

motion for the dam–water-system with truncated fluid domain:  

 

T

st

0 T
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ρ

ρ
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+

−
+ + =

−

m 0 c 0r r
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0 Q Rf r r
0 h P Q r0 p

t t

h r
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t
r b b

 (4.8) 
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where the effective earthquake forces at Γ r  are  

 0 0 0= +P H c pr r r r  (4.9) 

The forces 0Hr  are zero for both horizontal and vertical ground motion because the pressure 
gradient 0 /∂ ∂p n  at Γ r  is zero when the foundation rock is rigid and the reservoir bottom is 
horizontal. The second term 0c pr r  represents the contribution from earthquake-induced 
pressures in the fluid upstream of Γ r  that has been eliminated. 

The earthquake excitation enters in Equation (4.8) through two quantities: (1) the 
forces Tρ− Q rt

b b  acting on Γb  due to the prescribed accelerations rt
b , and (2) the effective 

earthquake forces 0Pr  acting on Γ r . Because the foundation rock is rigid, rt
b  is defined 

directly by the free-field ground accelerations ( )k
ga t  (Figure 2.1); these accelerations are also 

applied to the base of the dam. Thus, the only information required to specify the earthquake 
excitation is the free-field ground accelerations ( )k

ga t  and the free-field pressures 0pr .  

Accelerations rt
h  are coupled with the hydrodynamic pressures pt

h  at the upstream 
face of the dam ( Γh ) through the matrix Qh  defined in Equation (2.6). In some FE programs, 
these conditions can be enforced by specification of tie constraints at the interfaces [75]. 
Alternatively, interface elements can be introduced to perform this coupling, These interface 
element will have three DOFs, two displacements and one pressure, and are defined by the 
mass and stiffness matrices [41]: 

 DOFs: 
( )

( )

r

p

t e
h

t e
h

         Mass: ( )Tρ

0 0

Q 0e
h

        Stiffness: 
( )−0 Q

0 0

e
h        (4.10) 

Because these matrices are unsymmetric, they lead to an unsymmetric system of global 
equations in the numerical model. This rarely causes problems in modern FE programs 
however, because these normally have efficient and robust solvers for sparse, unsymmetric 
systems of equations.  

4.4 Computing effective earthquake forces at rΓ  

The effective earthquake forces 0Pr  at Γ r  are to be computed by analysis of the free-field 
fluid system, which is a prismatic channel of uniform depth (Figure 4.1a). Horizontal ground 
motion will not generate any hydrodynamic pressures because the reservoir bottom is 
horizontal, hence 0 =P 0r . Analysis of the prismatic channel for vertical ground motion 
reduces to a single column of fluid elements of unit width subjected to forces y

gaρ  at its base 
(Figure 4.2a). This analysis provides the pressures 0pr  (and its time derivatives) that are 
required in Equation (4.9). The procedure is summarized in Box 4.1 and illustrated in Figure 
4.2. 
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Box 4.1: Computing 0
rP  at upstream fluid boundary.   

1. Develop a FE model for the free-field fluid (Figure 4.2a): a single column of 
elements of unit width with the same mesh density as the fluid adjacent to the 
boundary Γr . Apply a single line element to model reservoir bottom sediments. 

2. Calculate 0pr  at every nodal point along the height by analyzing the fluid column 
subjected to forces y

gaρ  at its base for vertical ground motion; 0
r =p 0  for 

horizontal ground motion 
3. Compute the effective earthquake forces 0Pr  at the fluid boundary Γr  from 

Equation (4.9) using 0pr  from Step 2. 
 
 

  

Figure 4.2: Summary of analysis procedure for dam–water subsystem: (a) auxiliary analysis of single column of 
fluid elements to determine 0pr  for vertical ground motion; (b) application of earthquake excitation and effective 

earthquake forces to truncated FE model.  

4.5 Numerical validation 

The analysis procedure developed in the proceeding sections is validated by computing the 
dynamic response of the idealized dam–water system shown in Figure 4.3 subjected to 
horizontal and vertical ground motion. The idealized dam has the same cross-section, FE 
discretization and material properties as the ones used in Section 3.6. Standard solid and 
acoustic elements [68] are used in the dam and fluid, respectively; interface elements are 
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applied at the dam–water interface; and line elements are applied to model sediments at the 
reservoir bottom using the approximate 1D sediment model (Equation 2.4). Material damping 
in the dam is modeled by Rayleigh damping implemented using the procedure described in 
Section 3.6 specialized for the dam alone, but with ζ s  = 5% viscous damping selected for the 
dam concrete to provide reasonable overall energy dissipation in the system with rigid 
foundation rock. The impounded water has the same depth as the height of the dam, density 
ρ  = 1000 kg/m3, and pressure-wave velocity C  = 1440 m/s. The ground motion is specified 
by the ground acceleration ( )k

ga t  of the rigid foundation at the dam base. Effective 
earthquake forces at the boundary of the fluid domain are computed from Equation (4.9) 
using the procedure in Box 4.1. 

 

Figure 4.3: Dimensions of FE model for dam–water system with viscous  
damper boundary to truncate the semi-unbounded fluid domain. 

4.5.1 Hydrodynamic forces on rigid dam 

To determine the influence of the length of the bounded fluid domain on the accuracy of the 
results, the hydrodynamic forces on a rigid dam is computed first. The frequency response 
functions for the hydrodynamic forces 0| ( |xF ω)  and 0| ( |ω)yF  on the upstream face of a rigid 
dam due to horizontal and vertical ground motion, respectively, are determined by computing 
the steady-state response of the system at many excitation frequencies. These forces are 
compared with analytical results for an unbounded fluid domain [17] in Figure 4.4, where the 
results are normalized with respect to the hydrostatic force 2

st 1 / 2ρ=F gH . 

For horizontal excitation, the viscous-damper boundary is inadequate when using very 
small domain lengths (L = H), and results are unacceptable for all values of α . Increasing the 
length to L = 4H significantly improves the accuracy and results are generally acceptable; 
however, some scatter is still observable for α =0.90. This occurs for high values of α  
because radiation damping is then effectively the only source of energy dissipation in the 
system, and the response becomes sensitive for even small wave reflections at the viscous-
damper boundary. This effect is much less prominent for low α -values because wave 
absorption at the reservoir bottom then contributes more to the overall energy dissipation. 
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Figure 4.4: Influence of length of bounded fluid domain on hydrodynamic forces on a rigid dam. Results  
are plotted against the normalized frequency 1ω ω/ r , where 1 / 2ω π=r C H  is the fundamental  

vibration frequency of the fluid domain. "Exact" results are from Ref. [17]. 

For vertical excitation, the numerical results match the analytical solution for all 
lengths of the bounded domain, because the simple fluid geometry and uniform excitation at 
the reservoir bottom leads to a 1D pressure distribution in the fluid. Thus, when the effective 
earthquake forces 0Pr  – representing the contribution from earthquake-induced pressures in 
the part of the fluid that has been eliminated – are applied at Γr , these 1D conditions are 
exactly reproduced in the model. For a flexible dam however, this simple 1D behavior is no 
longer maintained, and larger domain lengths are required to obtain acceptable results. 
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4.5.2 Dam–water system 

Frequency response functions for the amplitude of the relative horizontal acceleration at the 
crest of the dam–water system (Figure 4.3) subjected to ( )x

ga t  and ( )y
ga t  defined by a 

harmonic function of unit amplitude is computed. These are compared in Figure 4.5 to results 
obtained directly in the frequency domain by the substructure method [76], that models the 
reservoir rigorously using semi-analytical solutions. Results are computed for different values 
of α  and length L= 4H for the truncated fluid domain.  

 
Figure 4.5: Comparison of frequency response functions from direct FE and substructure methods for the 

amplitude of relative horizontal acceleration at the crest of dam on rigid foundation with full reservoir due to 
horizontal and vertical ground motion. ζ s = 5%.  
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The results computed by the direct FE method are generally close to the results from 
the substructure method for both vertical and horizontal ground motion, thus validating its 
ability to model the semi-unbounded dam–water system even with the moderately sized fluid 
domain of length  L = 4H.  

4.5.3 Ignoring effective earthquake forces on fluid boundary Γ r  

Implementation of Equation (4.8) may be simplified by ignoring the effective earthquake 
forces 0Pr  at Γ r , which eliminates the need for auxiliary analysis of the 1D fluid column 
(Section 4.4) for vertical ground motion. This approximation implies that the vertical 
excitation extends only over the dam and truncated part of the fluid domain, thus neglecting 
the effect of hydrodynamic pressures caused by excitation of the fluid that has been 
eliminated upstream of Γ r . 

Presented in Figure 4.6 are frequency response functions for the amplitude of the 
relative horizontal acceleration at the dam crest due to vertical ground motion for α =0.50 and 
α =0.75 and different lengths of the bounded fluid domain. Results are computed by the 
direct FE method for two cases: including and excluding effective earthquake forces 0Pr . 
Ignoring 0Pr  leads to considerable differences in the response for higher α -values unless the 
bounded fluid domain is very long (L = 8H) because the excitation is now applied only to the 
base of the dam and truncated part of the fluid domain, and not to the complete semi-
unbounded system. For analysis of an actual dam with a reasonable length for the fluid 
domain (e.g. L = 4H) this discrepancy should be of little concern because uniform ground 
motion obviously cannot extend to infinity in the upstream direction in a real system. 

  

Figure 4.6: Influence of ignoring effective earthquake forces 0Pr  on the frequency response function for the 
amplitude of relative horizontal acceleration at the crest of flexible dam with full reservoir due to vertical ground 

motion. ζ s = 5%.  
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5 Dam–water–foundation rock system 

5.1 Dam–water–foundation rock interaction as a scattering problem 

Procedures for computing the earthquake response of a dam–foundation rock system (with 
empty reservoir) or dam–water system (supported on rigid rock) were developed in the 
previous chapters. Utilizing the same principle of viewing interaction as a scattering problem, 
wherein the dam perturbs a free-field state, these procedures are combined and extended to 
the entire dam–water–foundation rock interacting system. 

The auxiliary system is now defined as shown in Figure 5.1a as the combination of the 
two free-field systems introduced in Figures 3.1a and 4.1a. It consists of three subdomains: 
Ωa  denotes the foundation region interior of the future absorbing boundary Γ f ; f

+Ω  is the 
semi-unbounded foundation region exterior to Γ f ; and r

+Ω  is the prismatic fluid channel 
upstream of the future absorbing boundary Γ r . This auxiliary system does not correspond to 
any physical state, but facilitates formulation of the analysis procedure. The displacements 
and hydrodynamic pressures in the auxiliary system are defined as ra  and pa , respectively.  

The dam–water–foundation rock system is also separated into three subdomains 
(Figure 5.1b): Ω  denotes the dam and adjacent foundation and fluid regions interior of Γ f  
and Γ r , and f

+Ω  and r
+Ω  are the semi-unbounded foundation and fluid domains exterior to 

Γ f  and Γ r ; these are identical to the exterior regions of the auxiliary system. In order to 
subsequently formulate the governing equations for the absorbing boundaries in terms of free-
field quantities – following Chapters 3 and 4 – the displacements and hydrodynamic pressures 
are defined by the variables 

 
rt  and pt , in the interior region Ω  

−r rt a  and −p pt a , in the exterior regions f
+Ω  and r

+Ω  

(5.1a) 
 

(5.1b) 

The variables chosen in f
+Ω  and r

+Ω  represent the scattered motion and scattered 
hydrodynamic pressures, i.e., the perturbation of the free-field motion (Chapter 2) and 
pressures (Chapter 3) due to the presence of the dam and the bounded, irregular fluid region. 
This choice of variables in the exterior domains will subsequently allow reformulation of the 
governing equations for the absorbing boundaries in a way that the unknown forces t

fR  and 
Ht

r  associated with Γ f  and Γ r  (Equation 2.8) can be determined from ra  and pa . 
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Figure 5.1: Illustration of dam–water–foundation rock interaction as a scattering problem: (a) auxiliary water–
foundation rock system in its "free-field" state with variables defined by pa  in +Ωr  and ra  in +Ω ∪Ωa

f  ; (b) 
dam–water–foundation rock system with variables defined by pt  and r t  in Ω  and the scattered variables 

−p pt a  in +Ω r  and −r rt a  in +Ω f . 

5.2 Equations of motion 

The equations of motion for the dam–water–foundation rock system contained within the 
domain Ω  are given by Equation (2.8). The unknown forces t

fR  and t
rH  associated with the 

absorbing boundaries Γ f  and Γ r  are given by Equations (3.5) and (4.5), respectively, with an 
obvious change of notation:  

 

t a t a
f f f f f= − −R R c r r  

t a t a
r r r r r= − −H H c p p  

(5.2a) 
 
 

(5.2b) 

where variables with superscript a are for the auxiliary water–foundation rock system; a
fR  are 

the forces consistent with the boundary tractions at Γ f ; and Ha
r  are the forces consistent with 

the hydrodynamic pressure gradient at Γ r .  
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Included in Equation (2.8) are various interaction effects: dam–foundation rock 
interaction is included directly in the system matrices, dam–water and water–foundation rock 
interaction is represented by the coupling matrices Qh  and Qb , respectively, and reservoir 
bottom absorption is represented through the damping matrix b . Water–foundation rock 
interaction is also considered in the exterior domain f r

+ +Ω ∪ Ω  through the variables entering 
Equation (5.2): (1) the displacements ra

f  and forces Ra
f  at Γ f  include the effects of 

hydrodynamic pressures; and (2) the hydrodynamic pressures pa
r  and forces Ha

r  at Γ r  
include the effects of foundation-rock flexibility.  

5.2.1 Approximating water–foundation rock interaction 

These quantities are to be determined by analysis of the auxiliary water–foundation rock 
system (Figure 5.1a). This complicated analysis can be avoided by ignoring the effects of 
water–foundation rock interaction in f r

+ +Ω ∪ Ω : 

 

0≈r ra
f f  and 0≈R Ra

f f  in the foundation domain +Ω ∪ Ωa
f  

0≈p pa
r r  and 0≈ ≡H H 0a

r r
† in the fluid domain +Ωr  

(5.3a) 
 

(5.3b) 

where the free-field motion 0rf  and forces 0R f  at the boundary Γ f  are computed from 
analysis of the free-field foundation-rock system (Figure 3.1a), thus ignoring the effects of 
hydrodynamic pressures in +Ωr  on the foundation-rock motions; and the free-field 
hydrodynamic pressures 0pr  are computed from analysis of the fluid in its "free-field" state 
(Figure 4.1a) with rigid foundation rock, thus ignoring the effects of foundation-rock 
flexibility on the hydrodynamic pressures in +Ωr . 

It has been demonstrated through numerical results that the response of gravity dams 
to horizontal ground motion is essentially unaffected by the above approximation of water–
foundation rock interaction, and that the response to vertical ground motion is only noticeably 
affected for large values of the wave-reflection coefficient α , where the approximate results 
tends to overestimate the response [41]. These conclusions were based on analyses using very 
small domain sizes; the errors will be much smaller when using larger domain sizes that are 
required by the viscous-damper boundaries (Figure 2.2). 

Although the secondary effects of water–foundation rock interaction in f r
+ +Ω ∪ Ω  are 

ignored, the dominant effects within the truncated FE domain Ω  are still rigorously 
represented by the coupling matrix Qb . Alternatively, water–foundation rock interaction can 
be neglected altogether by setting ≡Q 0b ; however, because this approximation can lead to 
significant error (Section 5.4.3), it is not introduced here.  

                                                 
† Recall from Section 4.3 that the forces 0H r  associated with the free-field pressure gradient 0 /∂ ∂p n  at Γr  are 

zero for both horizontal and vertical ground motion. 
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5.2.2 Dam–water–foundation rock system 

With the preceding approximations in modeling water–foundation rock interaction, the forces 
t
fR  and Ht

r  can be determined independently of each other by considering the free-field 
systems of Figure 3.1a and Figure 4.1a, respectively. Substituting Equation (3.5) and (4.5) 
into Equation (2.8), the final equations of motion for the dam–water–foundation rock system 
are obtained: 

 

T T

0st

0

( )

( )( )

ρ

+
+

+ +

− +
+ + = +

m 0 c c 0r r
Q Q s 0 b cp p

0 Q Q Pf r r R
0 h P0 p 0

t t
f

t t
h b r

t t
h b f

t
r

 (5.4)
 

The earthquake excitation is specified in Equation (5.4) by the effective earthquake 
forces 0Pf  at Γ f  defined by Equations (3.11) and (3.7) for the bottom and side boundaries of 
the foundation domain, respectively; and the effective earthquake forces 0Pr  at Γ r  defined by 
Equation (4.9). These forces are easily obtained using the procedures developed in Sections 
3.5 and 4.4.  

5.3 Summary of procedure 

Analysis of the dam–water–foundation rock system subjected to the free-field ground 
acceleration ( )k

ga t , ,=k x y , defined at a control point at the surface of the foundation rock 
(Figure 2.1) is organized in three parts: static analysis, linear analyses of the free-field 
foundation-rock and fluid systems, and nonlinear dynamic analysis of the dam–water–
foundation rock system. 
 

Static analysis: 
1. Develop a FE model for static analysis of the dam–foundation rock system with a 

suitable material model for the dam concrete and a suitable (static) model for the 
foundation rock. 

2. Determine the static response of this system to gravity loads on the dam and 
hydrostatic forces on the dam and foundation rock. 

3. Record the static state of the dam–foundation rock system, including reactions from 
the foundation rock at the boundary Γ f .  

 

Linear analysis of free-field foundation-rock system (Figure 5.2a): 
4. Obtain the free-field motion at the base of the foundation model by deconvolution of 

the surface ground motion ( )k
ga t . 



PART I: DAM–WATER–FOUNDATION ROCK SYSTEM 

40 
 

5. Calculate the effective earthquake forces 0
fP  at the bottom boundary from Eq. (3.11), 

with the motion 0
Ir  due to the incident (upward propagating) seismic wave taken as 

1/2 the outcrop motion extracted from the deconvolution analysis. 
6. Develop a FE model for the free-field foundation-rock system: a single column of 

elements that has the same mesh density as the main FE model adjacent to the side 
boundaries, with viscous dampers applied at the base in the x- and y-directions.  

7. Compute 0rf  and 0R f  at each node along the height by analyzing the foundation-rock 
column subjected to forces given by Eq. (3.11) at its base.  

8. Calculate the effective earthquake forces 0Pf  at the side boundaries of the foundation 
domain from Eq. (3.7) using 0rf  and 0R f  from Step 7. 

Steps 6-8 may be avoided if free-field boundary elements are applied along the side 
boundaries (Figure 3.3b).  
 

Linear analysis of free-field fluid system (Figure 5.2b): 

9. Develop a FE model for the free-field fluid: a single column of elements of unit width 
with the same mesh density as the fluid adjacent to the boundary Γr , add a single line 
element to model reservoir bottom sediments. 

10. Calculate 0pr  at every node along the height by analyzing the fluid column subjected 
to forces y

gaρ  at its base for vertical ground motion; 0
r =p 0  for horizontal motion. 

11. Compute the effective earthquake forces 0Pr  at the fluid boundary Γr  from Eq. (4.9) 
using 0pr  from Step 10. 

 

Nonlinear dynamic analysis of dam–water–foundation rock system (Figure 5.2c): 

12. Develop a FE model of the dam–water–foundation rock system with viscous-damper 
boundaries to truncate the semi-unbounded foundation and fluid domains at Γ f  and 
Γr , respectively. Use standard solid and fluid elements for the dam, foundation rock, 
and fluid, and apply interface elements (or tie constraints) at the upstream dam face 
and at the water–foundation rock interface. Reservoir bottom sediments can be 
approximately modeled using line elements based on the 1D absorption model, or by 
using one of several more sophisticated methods (Section 2.3.2).  

13. Calculate the response of the FE model of the dam–water–foundation rock system 
subjected to effective earthquake forces 0Pf  at the boundary Γ f  calculated in Steps 5 
and 8, 0Pr  at the boundary Γr  calculated in Step 11, plus static loads and foundation 
reactions at Γ f . The static state of the dam (Step 3) is taken as the initial state in the 
nonlinear dynamic analysis.  
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Figure 5.2: Summary of analysis procedure for dam–water–foundation rock system: (a) auxiliary analysis of 
single column of foundation-rock elements to compute 0rf  and 0R f ;  (b) analysis of 1D column of fluid elements 
to calculate 0pr  for vertical ground motion; (c) application of effective earthquake forces to truncated FE model. 

5.4 Numerical validation 

The direct FE method developed in the preceding sections is validated by computing the 
dynamic response of the dam–water–foundation rock system shown in Figure 5.3 to 
horizontal and vertical ground motion. The idealized dam–water–foundation rock system has 
the same geometry, FE mesh and material parameters as the systems used in Sections 3.6 and 
4.5, but is combined to form the complete dam–water–foundation rock system. Material 
damping in the dam and foundation rock is modeled by Rayleigh damping with 2%ζ =s  and 

2%ζ =f  viscous damping specified for the dam and foundation rock separately, 
implemented using the procedure described in Section 3.6.  
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Figure 5.3: Dimensions of FE model for idealized dam–water–foundation rock system with viscous-damper 

boundaries to truncate semi-unbounded foundation and fluid domains.  

The ground motion is specified by the ground acceleration ( )k
ga t  at the foundation 

surface. The free-field motion at depth in the model is obtained by deconvolution of this 
motion; then effective earthquake forces at the bottom and side boundaries of the foundation 
rock are then computed from Equations (3.11) and (3.7), respectively. For vertical ground 
motion, the effective earthquake forces at the fluid boundary Γ r  are computed from Equation 
(4.9). 

5.4.1 Frequency response functions for dam response 

Frequency response functions for the amplitude of the relative horizontal acceleration at the 
crest of the dam is computed and shown in Figure 5.4 for three values of α . The results are 
compared to results obtained by the substructure method [76] where the foundation rock is 
modeled as a viscoelastic halfspace, hydrodynamic pressures are modeled by analytical 
solutions, and the earthquake excitation is specified directly at the dam–foundation interface. 
Because the computer program EAGD84 – used to compute the substructure results – ignores 
water–foundation rock interaction, this interaction is also ignored in the direct FE method for 
these validation analyses.  

The results computed by the direct FE method are very close to the results from the 
substructure analysis for both vertical and horizontal ground motion, thus validating its ability 
to model the semi-unbounded dam–water–foundation rock system. The slight differences at 
some frequencies are attributable to the approximate nature of the viscous-damper boundary, 
which is unable to perfectly absorb all outgoing waves. As previously mentioned, these 
discrepancies will generally decrease as the sizes of the foundation and fluid domains 
included in the FE model increases. 
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Figure 5.4: Comparison of frequency response functions from direct and substructure methods for the amplitude 
of relative horizontal acceleration at the crest of dam on flexible foundation rock with full reservoir due to 

horizontal and vertical ground motion. 2%ζ ζ= =s f ; /f sE E  = 1.0. 

5.4.2 Response to transient motion 

To demonstrate the ability of the direct FE method to accurately compute the response of the 
dam–water–foundation rock system to earthquake excitation, the system is analyzed for ( )x

ga t  
and ( )y

ga t  specified as the S69E and vertical components, respectively, of the motion 
recorded at Taft Lincoln School Tunnel during the 1952 Kern County earthquake. The 

Substructure method

Direct FE method

1

 
�  

1

 
�

A
b
so

lu
te

 v
al

u
e 

o
f 

h
o
ri

zo
n
ta

l 
ac

ce
le

ra
ti

o
n
 a

t 
d
am

 c
re

st

Horizontal ground motion Vertical ground motion

0 1 2 3 4 5 0 1 2 3 4 5
0

5

10

15

20

0 1 2 3 4 5 0 1 2 3 4 5
0

5

10

15

20

0 1 2 3 4 5 0 1 2 3 4 5
0

5

10

15

20

= 0.90� = 0.90�

= 0.75� = 0.75�

= 0.50� = 0.50�



PART I: DAM–WATER–FOUNDATION ROCK SYSTEM 

44 
 

response was also computed by the substructure method. The relative horizontal 
displacements and accelerations at the dam crest are presented in Figure 5.5, and the envelope 
values of the maximum principal stresses in Figure 5.6. It can be seen that the results from the 
direct FE method closely match the substructure method results, as expected to by the close 
agreement observed earlier for the frequency response functions.  

 

Figure 5.5: Horizontal displacements and accelerations at the crest of the dam on flexible foundation rock with 
full reservoir due to the S69E and vertical components, separately, of Taft ground motion. ζ ζ=s f  = 2%; 

/f sE E  = 1.0; α = 0.75. 

 

Figure 5.6: Envelope values of maximum principal stresses, in MPa, in dam on flexible foundation rock with 
full reservoir due to S69E component of Taft ground motion; initial static stresses are excluded.  

ζ ζ=s f  = 2%; /f sE E  = 1.0; α = 0.75. 

5.4.3 Influence of water–foundation rock interaction 

In the direct FE method, water–foundation rock interaction is directly represented in the 
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hydrodynamic pressures at the reservoir boundaries. In the preceding validation results 
however, water–foundation rock interaction was excluded in the direct FE method to ensure 
comparability with the substructure method results used as benchmark, which completely 
neglects water–foundation rock interaction. The influence of this assumption on dam response 
is investigated next.  

 

Figure 5.7: Influence of water–foundation rock interaction on frequency response function for dam on flexible 
foundation rock with full reservoir, without sediments, due to horizontal and vertical ground motion. 
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Figure 5.8: Influence of water–foundation rock interaction on earthquake response of dam on flexible 
foundation rock with full reservoir, without sediments. ζ ζ=s f  = 2%; /f sE E  = 1.0. 

Presented in Figures 5.7 and 5.8 are frequency response functions and earthquake 
response, respectively, for the dam on flexible foundation rock with a full reservoir with no 
sediments (i.e., α  = 1.0). Results are computed by the direct FE method for two cases: (1) 
including water–foundation rock interaction; (2) excluding water–foundation rock interaction. 
Neglecting water–foundation rock interaction has little influence on the response to horizontal 
ground motion except near the first resonance peak where the response is underestimated. For 
vertical ground motion, neglecting water–foundation rock interaction significantly 
overestimates the response near the resonance frequencies of the reservoir and the resonance 
peaks become unbounded. The same trends are seen in the response to earthquake excitation. 
Because water–foundation rock interaction can be significant for the dam response, and the 
fact that there is no advantage in ignoring it in the direct FE method, it should be included in 
earthquake analysis of concrete dams.  
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6 Conclusions 

A direct FE method for earthquake analysis of concrete dams interacting with fluid and 
foundation rock, which may be semi-unbounded domains, has been developed. The analysis 
procedure uses viscous-damper boundaries to truncate these semi-unbounded domains and 
specifies the seismic input as effective earthquake forces directly at the model truncations. 
The analysis procedure is formulated by treating dam–water–foundation rock interaction as a 
scattering problem [41] where the dam perturbs an assumed "free-field" state of the system. 
The FE model of the fluid includes water compressibility and reservoir bottom absorption, 
and the FE model of the foundation rock includes mass, stiffness, and material damping 
appropriate for rock. Thus, the unrealistic assumptions of massless rock and incompressible 
water, sometimes used in engineering practice, are eliminated. 

The seismic input to the procedure is defined by a ground motion specified at a control 
point on the foundation surface. The free-field motion at the bottom of the foundation rock is 
determined by deconvolution of this motion. Effective earthquake forces at the boundaries of 
the foundation and fluid domains are then computed from analysis of two individual 1D free-
field systems. Implementation of these analyses is straightforward, and does not require 
modification of the source code of a commercial FE program.  

The analysis procedure is validated numerically by computing the dynamic response 
of an idealized dam–water–foundation rock system and comparing against results obtained 
using the substructure method [17]. The excellent agreement demonstrates that (1) the 
truncated foundation and fluid models with viscous-damper boundaries are able to model the 
semi-unbounded domains; (2) the earthquake excitation is properly defined by the effective 
earthquake forces determined from the free-field variables. 

Because the direct FE method is applicable to nonlinear systems, it allows for 
modeling of concrete cracking, as well as sliding and separation at construction joints, lift 
joints, and at concrete-rock interfaces. Implementation of the procedure is facilitated by 
commercial FE software, with their nonlinear material models, that permit modeling of 
viscous-damper boundaries and specification of effective earthquake forces at these 
boundaries. 
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1 Introduction 

Earthquake analysis of arch dams requires three-dimensional dam–water–foundation rock 
systems that recognize all factors known to significantly influence their earthquake  
response [1]: dam–water interaction including water compressibility and wave absorption at 
the reservoir bottom [4,77]; dam–foundation rock interaction including inertia effects of the 
rock [3]; radiation damping due to the semi-unbounded sizes of the reservoir and foundation 
domains [3,7]; spatial variation of ground motion at the dam–canyon interface [78,79]; and 
nonlinear behavior of the dam and foundation rock [7,8,12].  

Most dam engineers prefer to work with the direct method of analysis – implemented 
in commercial FE software with their user-friendly interfaces – that models the entire system 
using finite elements and analyzes it directly in the time-domain. While these programs are 
able to model nonlinear mechanisms, they often neglect or use simplistic models for dam–
water–foundation rock interaction and the semi-unbounded domains. Furthermore, spatial 
variation of earthquake motions at the dam–canyon interface is typically ignored in dam 
engineering practice, even though there is substantial evidence that such variations can 
significantly influence the response of arch dams [78–81].  

Accurate modeling of dam–water–foundation rock systems requires a FE model that 
includes mass, stiffness, and material damping properties of the foundation rock, the 
compressibility of water, and the effects of energy dissipation at the reservoir bottom. The 
semi-unbounded foundation and fluid domains must be reduced to bounded sizes using 
absorbing boundaries [20,23], and the seismic input specified by effective earthquake forces 
applied either directly to these boundaries [20,35], or via a single layer of elements interior of 
the boundaries [38,40]. 

Utilizing the former of these approaches, a direct FE method for nonlinear earthquake 
analysis of 2D dam–water–foundation rock systems was developed in Part I of this thesis. 
Standard viscous-damper boundaries [18] were selected to model the semi-unbounded 
domains and the seismic input was specified as tractions directly at these boundaries. These 
are standard features in FE analyses, thus ensuring that this direct FE method can be 
implemented with any commercial FE software without modification of the source code.  

The objective of the work presented here is to generalize the direct FE method to 3D 
dam–water–foundation rock systems. After defining the components of the 3D dam–water–
foundation rock system in Chapter 2, the analysis procedure is developed in Chapter 3, and 
step-by-step procedures for computing effective earthquake forces at the foundation and fluid 
boundaries are outlined in Chapter 4. Several examples are presented in Chapter 5 to validate 
the accuracy of the direct FE method. First, the method is used to compute the free-field 
motion at the surface of a flat foundation box and at a semi-cylindrical canyon and compared 
to classical solutions. The dynamic response of an arch dam system is computed next and 
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compared against results from the substructure method. To facilitate implementation of the 
direct FE method for 3D systems, several simplifications of the procedure are proposed in 
Chapter 6, and their efficacy is evaluated. Finally, in Chapter 7, the analysis procedure is 
summarized in step-by-step form.  

A shortened version of this part of the thesis has been published in the journal 
Earthquake Engineering and Structural Dynamics:  

Løkke, A., and Chopra, A.K., (2018). Direct finite element method for nonlinear earthquake analysis of 

3 dimensional semi unbounded dam–water–foundation rock systems. Earthquake Engineering & 

Structural Dynamics, 47(5), 1309-1328. 
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2 System and ground motion 

2.1 Semi-unbounded dam–water–foundation rock system 

The idealized, three-dimensional dam–water–foundation rock system considered consists of 
three subsystems (Figure 2.1): (1) the concrete dam with nonlinear properties; (2) the 
foundation rock, consisting of a bounded region adjacent to the dam that may be nonlinear, 
inhomogeneous, and irregular in geometry; and the exterior, semi-unbounded, region with 
"regular" geometry that has linear constitutive properties and is homogeneous or horizontally 
layered; and (3) the fluid domain, consisting of a bounded region of arbitrary geometry 
adjacent to the dam that may be nonlinear; and a uniform channel, unbounded in the upstream 
direction, that is restricted to be linear.  

By "regular" geometry of the semi-unbounded foundation region, it is meant that the 
canyon upstream of the bounded region has a uniform cross-section, and similarly, the canyon 
downstream of the bounded region has a uniform cross-section; however, the two cross-
sections may be different. The assumption of homogeneous or horizontally layered properties 
in the exterior foundation region is introduced to permit use of a 1D deconvolution method – 
based on the assumption of vertically propagating waves – to define the seismic input for the 
system starting from ground motion specified at the surface of the foundation rock (Section 
2.2). 

 

Figure 2.1: Semi-unbounded dam–water–foundation rock system showing main parts: (1) the nonlinear dam; (2) 
the foundation rock, consisting of an irregular, nonlinear region and a semi-unbounded region that is linear and 

has regular geometry and homogeneous properties; (3) the fluid domain, consisting of an irregular nonlinear 
region, and a semi-unbounded uniform channel with linear fluid.  
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The semi-unbounded system in Figure 2.1 is modeled by a 3D finite-element 
discretization of a bounded system with viscous-damper boundaries at the bottom and side 
boundaries of the foundation domain to model its semi-unbounded geometry, and at the 
upstream end of the fluid domain to model its essentially "unbounded" length (Figure 2.2). 
Although many absorbing boundaries have been proposed in the literature (e.g. [18–34]), the 
well-known viscous damper [18] has been chosen herein because of its availability in every 
commercial FE code, acceptable accuracy, and ease of implementation.  

The linear, regular parts of the foundation and fluid domains included in the FE model 
provide a transition from the irregular geometry and nonlinear behavior adjacent to the dam to 
the regular geometry and linear behavior required at the absorbing boundaries. The minimum 
sizes for these domains are determined by the ability of the viscous-damper boundaries to 
absorb outgoing scattered waves from the system. Because the viscous damper is a "simple" 
absorbing boundary, larger domain sizes are required than if an "advanced" boundary such as 
PML was used. However, as will be seen in Section 6, the use of larger domains has the 
advantage that it enables introduction of two simplifications that significantly reduce the 
complexity of implementing the analysis method.  

 

Figure 2.2: Dam–water–foundation rock system with truncated foundation  
and fluid domains: (a) 3D perspective view.  
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Figure 2.2 (continued): Dam–water–foundation rock system with truncated foundation and fluid domains: (b) 
section view through center of canyon; (c) plan view.  

The use of finite elements for the entire system permits modeling of arbitrary 
geometry and inhomogeneous material properties of the dam, canyon, foundation and fluid 
domains adjacent to the dam. Furthermore, it allows for modeling of nonlinear mechanisms 
(Figure 2.3) such as cracking of the dam concrete [7,8,14,82], sliding and separation at 
construction joints, lift joints, and at concrete-rock interfaces [7,11,83–85], discontinuities in 
the rock due to local cracks and fissures [36,86], and cavitation in the fluid [87].  
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Figure 2.3: Nonlinear mechanisms for concrete arch dams. Figure adapted from Ref. [88]. 

2.2 Earthquake excitation 

Equations governing the motion of the system in Figure 2.2 subjected to earthquake excitation 
defined by the free-field ground motion – the motion that would occur in the foundation rock 
without the dam and water present – will be formulated in Chapter 3. These equations require 
that the spatially varying free-field motions at all future boundaries of the FE model are 
known. Specifying such motions remains a challenging problem. 

The most general approach is to perform large-scale simulation of seismic wave 
propagation from an earthquake source to the dam site [89–91], shown schematically in 
Figure 2.4a. Here, physics-based FE or finite difference models of large regions subjected to a 
fault slip are analyzed. Although such regional simulations have been reported in the research 
literature, they seem impractical for concrete dam analysis for two reasons: (1) information 
regarding the details of the earthquake fault rupture and the properties of the geological 
materials is lacking; and (2) simulation models are currently limited to lower frequencies 
compared to the vibration properties of concrete dams.  

Another approach would be to use boundary element methods (BEM) to compute the 
free-field motions resulting from incident plane waves propagating from infinity to the dam 
site at predefined angles, shown schematically in Figure 2.4b. Such methods have been used 
to compute the free-field motions at the surface of canyons [81,92], and to investigate the 
influence of assumed incident angles on the dam response [93]. However, due to the obvious 
difficulty in selecting a combination of wave types and their incidence angles for an actual 
situation, these methods are rarely applied to solve practical problems.  
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Figure 2.4: Illustration of methods to obtain free-field earthquake motion: (a) large scale fault-rupture 
simulation; (b) boundary element method with incident plane waves propagating from infinity at predefined 

angles; (c) deconvolution analysis starting with a free-field surface control motion ( )k
ga t .   

Presently, the standard approach is to define the earthquake excitation by three 
components of free-field acceleration specified at a control point on the foundation surface 
(Figure 2.4c): the stream component, ( )x

ga t , the cross-stream component ( )y
ga t  and the 

vertical component ( )z
ga t . Because the ground motion cannot be defined uniquely, an 

ensemble of motions is required. These motions should, in some sense, be consistent with a 
target design spectrum that represents the seismic hazard at the site, e.g., the uniform hazard 
spectrum (UHS) or some variation of the conditional mean spectrum (CMS). Several methods 
have been developed to select and scale ground motion records to "match" a target spectrum 
[94–96]. The UHS (and CMS) applies to an outcrop location on level ground; this control 
point is chosen at the elevation of the dam abutments in the linear, regular part of the 
foundation rock (Figure 2.4c). It could also be at other locations however, for example if the 
purpose is to perform analysis using earthquake input motions recorded at specific locations 
near the dam.  

The free-field motion at the bottom and side boundaries of the foundation domain can 
be determined from the surface control motion ( )k

ga t  using a deconvolution-type analysis 
(Figure 2.4c). For this analysis, it will be assumed that the incident wave field consists solely 
of plane SH-, SV- and P-waves propagating vertically upwards from the underlying semi-
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unbounded foundation rock. This is clearly a major simplification but, at the present time, it 
seems to be a reasonable pragmatic choice.  

When specifying the earthquake excitation this way, spatial variation of the ground 
motion, both amplitude and phase, is automatically considered in the analysis, albeit 
predominantly in the vertical direction. To demonstrate this, such free-field motions are 
computed by the direct FE method to be developed in Chapters 3 and 4 applied to analyze the 
FE model in Figure 2.5 consisting of a canyon without a dam or reservoir. In these analyses, 
the control motion at the surface of the foundation rock was defined in the stream direction by 
the S69E component of the motion recorded at Taft Lincoln School Tunnel during the 1952 
Kern County earthquake. 

 

Figure 2.5: FE model of canyon showing location of two vertical node arrays: array 1-1 at  
the center of the model, and array 2-2 at the side boundary of the model. 

Observe from the results in Figure 2.6 that the amplitude and phase of the motion 
varies greatly with height, and by comparing the motions at two locations at the same 
elevation (e.g. at z = 0m), it is evident that scattering and diffraction of waves from the 
canyon cause variation of the motion also in the horizontal direction. Because of the 
assumption of vertically incident waves however, this spatial variation is significant in the 
vertical direction, but less so in the horizontal direction.  
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Figure 2.6: Stream component of free-field earthquake motion computed by the direct FE method at six 
different elevations at the two arrays. A specific peak in the acceleration history is identified and connected by a 

dashed line to demonstrate the amplitude change and time shift in the motions at higher elevations. 
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3 Equations of motion 

3.1 Governing equations  

The governing equations for a 2D gravity dam–water–foundation rock system idealized as an 
ensemble of finite elements with viscous-damper boundaries were derived in Part II. These 
equations are repeated here and generalized for 3D dam–water–foundation rock systems 
(Figure 3.1): 

 

T T

st

( )

( )( )

t t

t t
h b

t tt
h b f

t t
r

ρ
+

+

− + +
+ + =

m 0 c 0r r

Q Q s 0 bp p

0 Q Q r R Rf r

0 h p H0

 (3.1) 

where tr  is the vector of total displacements in the dam and foundation rock; tp  is the vector 
of total hydrodynamic pressures in the fluid, idealized as a linear (for convenience of 
notation), inviscid, irrotational and compressible Eulerian fluid† [52]; m  and c  are the 
standard mass and damping matrices, respectively, for the dam–foundation rock system; 

( )tf r  is the vector of internal forces due to (nonlinear) material response; s , b  and h  are the 
"mass", "damping" and "stiffness" matrices, respectively, for the fluid [52]; ρ  is the density 
of water; Qh  and bQ  are matrices that couple accelerations to hydrodynamic pressures at the 
dam–water interface Γ h  and water–foundation rock interface Γ b , respectively; stR  is the 
vector of static forces, including self-weight, hydrostatic pressures, and static foundation 
reactions at Γ f  (see Chapter 7 for details); t

fR  is the vector of dynamic forces associated 
with the absorbing foundation boundary Γ f ; and t

rH  is the vector of dynamic forces 
associated with the absorbing fluid boundary Γr . Expressions for the unknown forces t

fR  
and t

rH  will be derived later in this chapter. 

Hydrodynamic wave energy is lost at Γ b  – the bottom and side boundaries of the 
reservoir – by means of two mechanisms. The first is wave absorption in sediments invariably 
deposited at the reservoir bottom. This mechanism is – for the purpose of comparing against 
results from the substructure method in Chapter 5 – modeled approximated by the reservoir 
bottom reflection coefficient α  [6], and its effects are included in Equation (3.1) through the 
damping matrix b . The second mechanism, associated with water–foundation rock 
interaction, is explicitly considered in the FE model through the coupling matrix bQ . Because 
this mechanism automatically accounts for some radiation of hydrodynamic waves, care 

                                                 
† The analysis procedure is also applicable to a Lagrangian fluid formulation with appropriate modifications of 
Equation (3.1)  
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should be taken not to overestimate the total amount of energy lost at these boundaries when 
also including sediment absorption in the FE model. For example, if the foundation consists 
of sandstone or granite, including water–foundation rock interaction has approximately the 
same amount of energy dissipation as a 1D absorption model with 0.50α =  or 0.75α = , 
respectively.  

 

Figure 3.1: Schematic FE model of (a) dam and foundation domain, and (b) fluid domain. Absorbing boundaries

fΓ  and rΓ at the truncation of the foundation and fluid domains, and interfaces hΓ  at the upstream dam face 
and bΓ  at the reservoir bottom and sides are highlighted.  

The wave-absorbing boundaries that enforce the radiation condition at the foundation 
and fluid boundaries are modeled by viscous dampers (dashpots) lumped at the boundary 
nodes of the FE model (Figure 3.2). Their governing equations can be written in FE notation 
as 

 
f f f+ =R c r 0 ,   at the foundation boundaries Γ f  

r r r+ =H c p 0 ,   at the upstream fluid boundary rΓ  

(3.2a) 
 

(3.2b) 

In Equation (3.2a), c f  is the matrix of normal and tangential damper coefficients p f pc A Vρ=  
and s f sc A Vρ= , respectively, where A is the tributary area of the node, and fρ , sV   and pV  
are the density, shear wave velocity and pressure wave velocity, respectively, of the rock. In 
Equation (3.2b), rc  is the matrix of damper coefficients /=rc A C , where C is the speed of 
pressure waves in water. In the next section, these equations will be reformulated in terms of 
the total variables that enter into Equation (3.1).  

3.2 Interaction as a scattering problem 

Dam–water–foundation interaction may be interpreted as a scattering problem, in which the 
dam perturbs a "free-field" state of the system. Utilizing this idea, the procedure developed 
for 2D gravity dam systems in Part II is extended next for 3D dam–water–foundation rock 
systems.  
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Figure 3.2: Viscous-damper boundary fΓ  for foundation rock.  

Consider the auxiliary water–foundation rock system defined in Figure 3.3a, which 
consists of three subdomains: aΩ  denotes the foundation region with an irregular canyon 
interior to the future absorbing boundary Γ f ; f

+Ω  is the semi-unbounded, regular foundation 
region exterior to Γ f ; and +Ωr  is the semi-unbounded, uniform fluid channel upstream of the 
future absorbing boundary Γ r . The displacements and hydrodynamic pressures in this 
auxiliary water–foundation rock system are defined as ar  and ap , respectively. This auxiliary 
system does not correspond to any physical state, but is introduced to facilitate formulation of 
the analysis procedure. 

The dam–water–foundation rock system is also separated into three subdomains 
(Figure 3.3b): Ω  denotes the dam and adjacent parts of the foundation and fluid domains 
interior to Γ f  and Γ r ; and f

+Ω  and +Ωr  are the semi-unbounded foundation and fluid 
domains exterior to Γ f  and Γ r ; these are identical to the exterior regions of the auxiliary 
system. In order to formulate the governing equations for the absorbing boundaries in terms 
of free-field quantities, the displacements and hydrodynamic pressures are defined by the 
variables 

 
rt  and pt , in the interior region Ω  

−r rt a  and −p pt a , in the exterior regions f
+Ω  and +Ωr  

(3.3a) 
 

(3.3b) 

The variables chosen in the exterior regions f
+Ω  and +Ωr  represent the scattered 

motion and scattered hydrodynamic pressures, i.e., the perturbation of the motion and 
pressures in the auxiliary water–foundation rock system due to the presence of the dam and 
irregular fluid region. The viscous-damper boundaries Γ f  and rΓ  are intended to simulate 
these semi-unbounded regions.  Because linear material behavior was assumed in these 
exterior domains, the boundary forces (tractions) corresponding to the scattered variables are 

t a
f f f= −R R R  at Γ f  and t a

r r r= −H H H  at rΓ . Substituting these expressions into the 
radiation conditions for the viscous-damper boundaries (Equation 3.2), one obtains: 
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 t a t a
f f f f f= − −R R c r r           t a t a

r r r r r= − −H H c p p  (3.4) 

The total forces on the viscous-damper boundaries can be seen to consist of two parts: the 
forces a

fR  and a
rH  consistent with the boundary tractions in the auxiliary system at Γ f  and 

rΓ , respectively, and the product of damper coefficients and the scattered motion and 
scattered hydrodynamic pressure.  

 

 

Figure 3.3: Illustration of dam–water–foundation rock interaction as a scattering problem: (a) semi-unbounded 
auxiliary water–foundation rock system in its "free-field" state with variables defined by ap  in +Ωr  and ar  in 

a
f
+Ω ∪ Ω ; (b) dam–water–foundation rock system with variables defined by pt  and r t  in Ω  and the scattered 

variables t a−p p  in +Ω r  and t a−r r  in +Ω f .  
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Figure 3.4: Illustration of dam–water–foundation rock interaction as a scattering problem, section through center 
of canyon: (a) semi-unbounded auxiliary water–foundation rock system in its "free-field" state; (b) dam–water–

foundation rock system.  

3.3 Approximating water–foundation rock interaction 

The quantities a
fR , a

fr , a
rH  and a

rp  that enter into Equation (3.4) are to be determined by 
dynamic analysis of the auxiliary water–foundation rock system (Figure 3.3a). This very 
complex analysis may be simplified by ignoring the effects of water–foundation rock 
interaction in r f

+ +Ω ∪ Ω , as was done in Part II for the 2D system. This simplification implies 
the following approximations:  

 

0a
f f≈r r  and 0a

f f≈R R  in the foundation domain a
f
+Ω ∪ Ω  

0≈p pa
r r  and 0≈ ≡H H 0a

r r
† in the fluid domain r

+Ω  

(3.5a) 
 

(3.5b) 

                                                 
† The forces 0H r  are zero for all components of ground motion because the pressure gradient at rΓ  is zero when 

the foundation rock is rigid and the semi-unbounded channel has a uniform cross section. 
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where the free-field motion 0
fr  and forces 0

fR  at the boundary Γ f  are computed from 
analysis of the foundation domain alone (Figure 3.5a), thus ignoring the effects of 
hydrodynamic pressures in +Ωr  on the foundation-rock motions; and the free-field 
hydrodynamic pressures 0pr  are computed from analysis of the fluid part alone (Figure 3.5b) 
with rigid foundation rock, thus ignoring the effects of foundation-rock flexibility on the 
hydrodynamic pressures in +Ωr .  

Although the secondary effects of water–foundation rock interaction in the exterior 
domain f r

+ +Ω ∪ Ω  distant from the dam are ignored, the dominant effects within the FE 
domain Ω Ω  that contains the dam are still rigorously represented by the coupling matrix Qb  

 
 

Figure 3.5: (a) Free-field foundation-rock system with displacements defined by 0r , 
 (b) "free-field" fluid channel upstream of rΓ  with pressures defined by 0p . 

3.4 Final equations of motion 

Substituting the above expressions for the viscous-damper boundaries (Equation 3.4) with the 
approximations in Equation (3.5) into Equation (3.1), the final equations of motion for the 3D 
dam–water–foundation rock system are obtained: 
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 (3.6) 
 

where the last term on the right hand side represents the effective earthquake forces:  

 

0 0 0
f f f f= +P R c r  at the foundation boundaries Γ f  

0 0=P c pr r r  at the upstream fluid boundary rΓ  

(3.7a) 
 

(3.7b) 
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Working with the scattered variables in f
+Ω  and +Ωr , and approximating water–

foundation rock interaction, has enabled Equation (3.7) to be derived for the effective 
earthquake forces in terms of free-field variables only. These free-field variables represent the 
minimal set of seismic input data required for determining the response of the dam–water–
foundation rock system to earthquake excitation.  
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4 Computing effective earthquake forces 

4.1 Forces at bottom boundary  

Similarly as for the 2D system in Part I, the equation for the effective earthquake forces at the 
bottom boundary (Equation 3.7a) is reformulated as:  

 0 02f f I=P c r   (4.1) 

where 0rI  is the motion at the bottom boundary due to the incident (upward propagating) 
seismic waves. The incident motion 0rI  is obtained by 1D deconvolution of the surface motion 

( )ga t  assuming vertically propagating seismic waves and homogeneous (or horizontally 
layered) rock. Deconvolution is an inverse procedure to determine the amplitude and 
frequency content of an input signal to be consistent with the observed output signal. It is 
most conveniently implemented in the frequency domain, either directly by computing the 
inverse of the transfer function for a 1D halfspace [57], or by utilizing available 1D wave 
propagation software such as SHAKE [55] or DEEPSOIL [59].  

Although rather straightforward, deconvolution is often subject to considerable 
confusion because 1D wave propagation software typically operate with two possible motions 
at every depth [97]: an outcrop motion and a within motion. By definition, the within motion 
is the superposition of the incident and reflected waves, i.e., it is the total (or "actual") motion 
at any given depth in the halfspace. In contrast, the outcrop motion is the motion that would 
occur at a theoretical outcrop location at the same depth; this is equal to twice the amplitude 
of the incident motion. Thus, the incident motion 0rI  needed in Equation (4.1) is one-half the 
outcrop motion at the bottom boundary determined in the deconvolution analysis. The 
procedure to compute effective earthquake forces 0

fP  from Equation (4.1) is summarized in 
Box 4.1. 

Box 4.1: Computing 0
fP  at bottom boundary of foundation rock. 

1. Determine the outcrop motion at the bottom foundation-rock boundary by 1D 
deconvolution of each component of the surface control motion ( )k

ga t , , ,k x y z= .  
2. Compute the incident motion 0

Ir  as 1/2 the outcrop motion at the bottom boundary 
determined in Step 1 and obtain 0

Ir  as the time derivative of 0
Ir . 

3. Calculate the effective earthquake forces 0
fP  at the bottom boundary from Eq. 

(4.1) using 0
Ir  from Step 2.  
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Some researchers have avoided deconvolution of the surface motion by idealizing the 
foundation rock as a homogeneous, undamped halfspace [7,98]. While this simplification may 
be appropriate for the simple case of a homogeneous, undamped halfspace, it can cause 
significant error in dam response for foundations with damping and for layered foundations, 
as will be demonstrated later in Section 6.3.  

4.2 Forces at side boundaries 

The computation and application of effective earthquake forces at the four side boundaries of 
the foundation domain (Equation 3.7a) can be done automatically within the FE code using a 
special class of so-called free-field boundary elements [35,99]. Such elements solve the 
radiation condition for 1D wave propagation and apply a form of effective earthquake forces 
at the boundaries at every time step as the analysis progresses in time. 

However, because very few commercial FE programs have such elements available, 
an alternative procedure will be presented wherein the effective earthquake forces are 
computed in a separate auxiliary analysis of the free-field system before the actual dam–
water–foundation rock system is analyzed. This approach has the advantage that it does not 
require modification of the FE source code, but has the disadvantage that it requires major 
data transfer.  

4.2.1 Computing forces at side boundaries: uniform canyon 

The free-field motion 0
fr  and boundary forces 0

fR  required to compute the effective 
earthquake forces 0

fP  at the four side boundaries (Equation 3.7a) are determined from 
dynamic analysis of the foundation rock in its free-field state (Figure 3.4a). Before presenting 
the general procedure, a special case is considered where two additional geometric restrictions 
are imposed: (1) the canyon cross-section is assumed to be uniform in the stream direction, 
and (2) the surface of the foundation rock is horizontal. Under these assumptions, the free-
field foundation-rock system is an infinitely long canyon of arbitrary, but uniform cross-
section cut in a homogeneous or horizontally layered halfspace (Figure 4.1a). Analysis of this 
3D system subjected to vertically propagating seismic waves reduces to a 2D analysis (Figure 
4.1b) where incident SH-waves cause the stream (out-of-plane) component of ground motion, 
and incident SV- and P-waves cause the cross-stream and vertical components.  

For this special system, the quantities 0
fr  and 0

fR  that enter into Equation (3.7a) can 
be determined by two simpler analyses: (1) analysis of a single column of foundation-rock 
elements subjected to forces of Equation (4.1) at the base (Figure 4.1c) suffices for the two 
boundaries oriented in the stream direction; and (2) analysis of the 2D system of Figure 4.1d 
subjected to forces of Equation (4.1) at the base and forces 0

fP  on the sides determined from 
the first analysis (these latter forces are required because the domain has been truncated) 
provides the desired results for the boundaries oriented in the cross-canyon direction at the 
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upstream and downstream ends of the foundation domain. The procedure is summarized in 
Box 4.2.  

 

 

Figure 4.1: Computing 0
fP  for uniform canyon: (a) 3D free-field system with uniform canyon cut in foundation-

rock halfspace; (b) "two-dimensional" free-field system with corresponding 1D corner columns; (c) analysis of 
1D foundation-rock column to compute 0rf  and 0R f  at side boundaries, (c) analysis of 2D system to compute 0rf  

and 0R f  at upstream and downstream boundaries.  
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Box 4.2: Computing 0
fP  at side boundaries of foundation domain: uniform canyon. 

Analysis of 1D column 

1. Develop a FE model for the 1D foundation-rock column that has the same mesh 
density as the boundary of the 2D system. 

2. For each component of ground motion, , ,k x y z= , add a viscous damper at the 
base in the k-direction and constrain DOFs in other directions to permit only shear 
( ,k x y= ) or axial ( k z= ) deformation of the 1D column. 

3. Apply effective earthquake forces (Eq. 4.1) to the base in k-direction and compute 
0
fr  and 0

fR  at every node along the height.  

 

Analysis of 2D system 

4. Develop a FE model for the 2D foundation-rock system, with the same mesh 
density as the main FE model at the upstream/downstream boundary. 

5. For each component of ground motion, , ,k x y z= , add viscous dampers at the 
bottom and side boundaries and constrain the DOFs at the faces to model the 
"infinite length" in the direction normal to the model boundary (e.g., if the x-axis 
is parallel to the upstream direction, two nodes with the same y-, and z-
coordinates should be constrained to move identically). 

6. Apply effective earthquake forces from Eq. (4.1) to the bottom boundary and from 
Eq. (3.7a) to the side boundaries using 0

fr  and 0
fR  from the 1D analysis, and 

compute 0
fr  and 0

fR  at every node in the 2D system.  

 

Computing effective earthquake forces for main model 

7. Compute the effective earthquake forces 0
fP  at every node along the side 

boundaries of the foundation domain from Eq. (3.7a) using 0
fr  and 0

fR  from Step 
3 at the along-canyon boundaries and from Step 6 at the cross-canyon boundaries 
at the upstream and downstream ends of the domain.  

 

4.2.2 Computing forces at side boundaries: arbitrary canyon geometry 

Next, the geometric restrictions of a uniform canyon and horizontal foundation surface that 
were introduced in the preceding section are removed, implying that the free-field system 
becomes much more complicated. Although a system with arbitrary canyon geometry (Figure 
4.2a) is not amenable to 2D analyses, the same type of analysis methodology can be extended 
to the system provided that it satisfies the general constraints described in Section 2.1. 

 For such a system, the quantities 0
fr  and 0

fR  that enter in Equation (3.7a) can be 
determined by two sets of four simpler analyses: (1) analysis of four 1D corner columns of 
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foundation-rock elements subjected to forces of Equation (4.1) at the base; and (2) analyses of 
the four 2D systems in Figure 4.2b subjected to forces of Equation (4.1) at the base and forces 

0
fP  on the sides determined from the first set of 1D analyses. The latter set of analyses 

provide 0
fr  and 0

fR  for nodes on all four side boundaries. The procedure is illustrated in 
Figure 4.2 and summarized in Box 4.3. 

 

Figure 4.2: Computing 0
fP  for arbitrary canyon geometry: (a) 3D free-field system with canyon of arbitrary 

geometry cut in foundation-rock halfspace; (b) free-field system with corresponding 1D corner columns and 2D 
systems; (c) analysis of 1D corner columns to compute 0rf  and 0R f  at corners, (d) analysis of 2D systems to 

compute 0rf  and 0R f  at the four side boundaries.  

This procedure for computing 0
fP  at the boundaries of a system with arbitrary 

geometry is based on the assumption that the motion in each of the four 2D systems (Figure 
4.2b) can be determined independently of the other 2D systems. This assumption seems 
reasonable as long as the foundation domain is large enough, which is normally the case in 
the direct FE method because viscous-damper boundaries generally require large domains to 
ensure acceptable modeling of the semi-unbounded domains.  

Implementation of the procedure in Box 4.3 means that eight auxiliary analyses are 
required for each of the three components of ground motion. The computational effort 
required for each of these linear dynamic analyses is minimal, and the procedure can be 
automated in a pre-processing script that is set up and executed before the nonlinear dynamic 
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analysis of the dam–water–foundation rock system takes place. For example, in this work 
MATLAB [71] is used to compute and store effective earthquake forces that are used with the 
FE code OPENSEES [65] to analyze the complete system; a similar method has been 
implemented by Saouma [37] in the FE code MERLIN [100].  

The disadvantage of this approach is that substantial amounts of data management and 
transfers are required for analyzing 3D models, which may easily have tens of thousands of 
boundary nodes. In Section 6.1, it will be demonstrated that that – under certain conditions – 
it is possible to drastically reduce these requirements by replace the actual 3D free-field 
system by a much simpler system.  

 

Box 4.3: Computing 0
fP  at side boundaries of foundation domain: arbitrary canyon geometry. 

Analysis of four 1D corner columns 

1. Develop FE models for each of the four 1D corner columns of the foundation 
rock that have the same mesh density as the corners of the main FE model. 

2. For each component of ground motion, , ,k x y z= , add a viscous damper at the 
base in the k-direction and constrain DOFs in other directions to permit only 
shear ( ,k x y= ) or axial ( k z= ) deformation of the 1D column. 

3. Apply effective earthquake forces (Eq. 4.1) to the base in k-direction and  
compute 0

fr  and 0
fR  at every node along the height.  

 

Analysis of four 2D systems 

4. Develop FE models for each of the four 2D systems of the foundation rock, with 
the same mesh density as the main FE model at the boundaries. 

5. For each component of ground motion, , ,k x y z= , add viscous dampers at the 
bottom and side boundaries and constrain DOFs at the faces to model the "infinite 
length" conditions in the direction normal to the boundary. 

6. Apply effective earthquake forces from Eq. (4.1) to the bottom boundary and from 
Eq. (3.7a) to the side boundaries using 0

fr  and 0
fR  from the 1D analyses, and 

compute 0
fr  and 0

fR  at every node in the 2D system.  

 

Computing effective earthquake forces for main model 

7. Compute effective earthquake forces 0
fP  at every node at the four sides of the 

foundation domain from Eq. (3.7a) using 0
fr  and 0

fR  from Step 6. 

4.3 Forces at upstream fluid boundary 

The free-field pressures 0
rp  required to compute 0

rP  at Γ r  are to be determined by dynamic 
analysis of the fluid in its free-field state (Figure 4.3a): a fluid channel of uniform cross-
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section unbounded in the upstream direction. Because this system is uniform in the upstream 
direction, the analysis reduces to two dimensions. For cross-stream and vertical components 
of ground motion, the free-field pressures 0

rp  on the boundary Γ r  can be computed from an 
analysis of the 2D fluid domain cross-section with rigid foundation rock (Figure 4.3b). The 
stream component of ground motion will not generate any hydrodynamic pressures, thus 
implying 0

r =P 0 . The procedure is summarized in Box 4.4. 

 

Figure 4.3: Computing 0
rP  at upstream fluid boundary: (a) 3D "free-field" fluid channel upstream of rΓ ; (b) 

analysis of 2D cross section subjected to vertical and cross-stream excitation to compute 0
rp . 

 

 

Box 4.4: Computing 0
rP  at upstream fluid boundary. 

Analysis of 2D fluid section 

1. Develop a FE model of the 2D fluid cross-section with the same mesh density as 
the main model at the upstream fluid boundary Γ r , add surface elements at the 
reservoir bottom and sides to model sediments.  

2. For cross-stream and vertical components of ground motion, ,k y z= , calculate 
0pr  at every node by analyzing the 2D model subjected to accelerations 0

br  at the 
base, where 0

br  is the foundation-rock accelerations at the interface b rΓ ∩ Γ  
(Figure 3.1b); these can be extracted from the relevant 2D analysis described in 
Section 4.2. 

 

Computing effective earthquake forces 

3. Compute the effective earthquake forces 0
rP  for every node at the fluid boundary 

from Eq. (3.7b) using 0
rp  from Step 2. 
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The forces 0
rP  are associated with earthquake-induced pressures due to vertical and 

cross-stream excitation of the part of the fluid domain that has been eliminated upstream of 
Γ r . These forces are required because of the system idealization (Figure 2.1), where the 
excitation is implicitly assumed to extend along the entire length of the unbounded fluid 
channel. Later in Section 6.4, it will be demonstrate that these forces are inconsequential to 
the dam response and may therefore be dropped from the analysis. 
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5 Numerical validation of the direct FE method 

In this chapter several examples are documented to validate the accuracy of the direct FE 
method that was developed in Chapters 3 and 4 and implemented with the FE program 
OPENSEES [65]. First, the ability of the method to reproduce free-field motions at the surface 
of a flat foundation box is documented. The free-field response of a uniform, semicylindrical 
canyon cut in a foundation halfspace is determined next and compared with classical 
solutions. Lastly, the dynamic response of Morrow Point Dam is computed for a wide range 
of conditions and compared with results obtained from the substructure method.  

5.1 Reproducing free-field motion in foundation rock  

5.1.1 Free-field motion at flat box surface (the flat box test) 

The flat box model shown in Figure 5.1 has a domain size and mesh density that is 
representative of an actual dam–water–foundation rock system with viscous dampers 
employed at the bottom and side boundaries. The free-field control motion ( )k

ga t  is defined at 
the surface in the two horizontal and vertical directions by the S69E, S21W and vertical 
components of the Taft ground motion, respectively. Each component of ground motion is 
deconvolved, effective earthquake forces 0

fP  are computed from the procedures summarized 
in Box 4.1 and Box 4.3 and applied to the bottom and side boundaries of the foundation box, 
respectively, and the response of the system is computed.  

 
Figure 5.1: FE model of flat foundation box. 

The results presented in Figure 5.2 show a near perfect match between the specified 
free-field control motion and the computed surface motions at every node on the surface of 
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the flat box, thus demonstrating that the direct FE method is able to exactly reproduce free-
field conditions for this simple system to within FE discretization error. This is achieved 
without iterative procedures to adjust the amplitude and/or frequency content of the input 
motion, which is sometimes used to overcome deficiencies in FE models [45,101]. 

 

Figure 5.2: Comparison of 5% damped pseudo-acceleration response spectra for control  
motion and computed motion at nodes on flax box surface. 

5.1.2 Free-field motion at canyon surface 

Next, the ability of the direct FE method to accurately compute the free-field earthquake 
motion at the surface of a semicylindrical canyon is evaluated; this is the motion that in turn 
will excite a dam supported in the canyon. Available analytical and numerical solutions for 
this classical problem [102,103] serve as the benchmark for the evaluation.  

 
Figure 5.3: FE model of semi-cylindrical canyon cut in halfspace. 

The semi-cylindrical canyon with radius R discretized as a FE system with viscous-
damper boundaries (Figure 5.3) is subjected to effective earthquake forces 0

fP  computed from 
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the procedures summarized in Boxes 4.1 and 4.3 with the vertically incident seismic motion 
0rI  specified as a plane wave of unit amplitude and frequency f. The forces 0

fP  are applied to 
the bottom and side boundaries of the FE model, and the displacement response along the 
canyon and top surface of the foundation is computed. Results are presented for Poisson's 
ratio sν  = 1/3 and different values of 2 / sfR Vη = , where sV  is the shear wave velocity of the 
foundation medium. The dimensionless frequency η  may be interpreted as the ratio of the 
canyon width to the wavelength of the incident waves. When plotted in this form, results are 
independent of the actual material properties as long as the ratio / sR V  is maintained.  

 

Figure 5.4: Displacement amplitudes at canyon surface computed by the direct FE method and compared with 
results by Trifunac [102] and Wong [103]. Responses to incident SH-, SV-, and P-waves are plotted against 

dimensionless distance /Y R , where Y  is the transverse distance from the center and R the radius. 
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The displacement amplitude, defined as the ratio of the Fourier transform of the 
computed displacements to the unit amplitude input motion, are presented in Figure 5.4 for 
incident SH-, SV- and P-waves; these correspond to excitation in the canyon, cross-canyon 
and vertical directions, respectively. The results obtained by the direct FE method closely 
match the analytical results by Trifunac [102] for incident SH-waves, and the numerical 
results by Wong [103] using boundary integral methods for incident SV-waves and P-waves. 
The small discrepancies are due to the inability of viscous-damper boundaries to perfectly 
absorb all scattered and diffracted waves from the canyon. This is most prominent in the 
response to incident SV-waves and P-waves because these excitations generate surface waves 
that are not effectively absorbed by the viscous dampers; but even for these excitations, the 
discrepancies are small. The excellent agreement demonstrates the ability of the direct FE 
method to accurately predict free-field motions at the surface of a canyon. 

5.2 Dynamic response of Morrow Point Dam 

5.2.1 System analyzed 

The ability of the direct FE method to accurately compute the dynamic response of concrete 
dams is validated numerically by analyzing Morrow Point Dam, a 142 m high, approximately 
symmetric, single centered arch dam located on the Gunnison River in Colorado. The linear 
material properties and damping values selected for the dam concrete and foundation rock are 
based on the results from forced vibration tests of the dam and subsequent numerical studies 
performed to match the experimental results [104,105]. The concrete and foundation rock is 
assumed to be homogeneous, isotropic and linearly elastic. The concrete has a modulus of 
elasticity sE  = 34.5 GPa, density ρs  = 2403 kg/m3, and Poisson's ratio ν s  = 0.20. The 
foundation rock has a modulus of elasticity fE  = 24.1 GPa (i.e. /f sE E  = 0.70), density ρ f  
= 2723 kg/m3 and Poisson's ratio fν  = 0.20. The impounded water has the same depth as the 
height of the dam, density ρ  = 1000 kg/m3, and pressure-wave velocity C  = 1440 m/s. The 
reservoir-bottom reflection coefficient is selected as α  = 0.80. 

Material damping in the dam and foundation rock is modeled in the direct FE method 
by Rayleigh damping with 1%sζ =  and 2%ζ =f  viscous damping specified for the dam 
concrete and foundation rock, respectively, at two frequencies: 1f  = 5Hz, the fundamental 
resonance frequency of the dam alone on rigid rock, and at three times this frequency. The 
damping matrix for the complete system is then constructed using standard procedures for 
assembling damping matrices for two subdomains [67]. Determined by the half-power 
bandwidth method applied to the resonance curve, the overall damping in the dam–water–
foundation rock system is 3-5% for the first few modes of vibration, which is consistent with 
the range of measured damping values at the dam [104]. 
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Figure 5.5: FE model of Morrow Point Dam: (a) dam; (b) fluid domain; (c) foundation domain. 

The FE mesh shown in Figure 5.5 is assembled using standard 8-node brick elements, 
with 800 solid elements for the dam, 42,000 solid elements for the foundation rock, and 9,200 
acoustic fluid elements for the water in the reservoir. Interface elements couple accelerations 
with hydrodynamic pressures at the fluid–solid interfaces, surface elements at the bottom and 
sides of the reservoir model the 1D wave absorption due to sediments, and viscous dampers 
(dashpots) at the foundation domain boundaries and at the upstream end of the fluid domain 
model the semi-unbounded domains. The combined FE model consists of approx. 63,000 
elements and 150,000 DOFs, and the overall dimensions are 700m x 700m x 400m, 
corresponding to approx. 5H x 5H x 3H, where H  is the height of the dam. These dimensions 
are sufficiently large to minimize reflections from the viscous-damper boundaries, and were 
selected based on an initial study of the influence of domain size on the arch dam response 
(not included here). Interestingly, the response of the 3D arch dam system was found to be 
less sensitive to the size of the foundation domain than was the case for 2D gravity dam 
systems, which may be explained by the observation that dam–foundation interaction 
generally has less influence on arch dam response than on gravity dam response [106]. 
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5.2.2 EACD3D-08 model for substructure method 

The dynamic response of this FE model – computed by the direct FE method – will be 
compared against independent results obtained using the substructure method [107]. Analyzed 
using the computer program EACD3D-08 [108], wherein the foundation rock is treated as a 
semi-unbounded halfspace, the fluid domain as unbounded in the upstream direction, and the 
earthquake excitation is specified directly at the dam–canyon interface, this method avoids 
artificial model truncations and absorbing boundaries.  

In order to effectively work with this computer program – which does not have a user 
interface or any pre- or post-processing capabilities – a set of MATLAB modules were 
developed to perform pre-processing of the input and post-processing the analysis output. 
These modules significantly increase the accessibility of EACD3D-08 by providing the user 
with a rational way to set up the analysis model, run the analysis, and gain easy access to the 
output data in the user-friendly MATLAB interface. The resulting EACD3D-08 model, shown in 
Figure. 5.6, includes 800 solid elements for the dam, the FE mesh for the irregular part of the 
fluid domain, and the boundary element mesh at the dam–foundation rock interface.  

Material damping in the substructure method is modeled by rate-independent, constant 
hysteretic damping [67] defined by the damping factors 0.02sη =  and 0.04η =f  specified for 
the dam and foundation rock separately; these correspond to viscous damping ratios of sζ  = 
1% and fζ  = 2% at all frequencies. A numerical investigation confirmed that the damping in 
the direct FE method, as defined earlier, is adequately consistent with this rate-independent 
damping over the frequency range of interest. Because EACD3D-08 does not consider water–
foundation rock interaction, this is also excluded in the direct FE method for these validation 
analyses to allow for a meaningful comparison. 

 

Figure 5.6: EACD3D-08 model for Morrow Point Dam: (a) FE model for dam, (b) FE model for semi-
unbounded fluid domain, (c) boundary element mesh for foundation rock at dam–canyon interface. 

5.2.3 Frequency response functions for dam response 

Results for the dam response are presented in the form of dimensionless frequency response 
functions that represent the amplitude of radial acceleration at the crest of the dam due to unit 
harmonic, free-field motion; the actual location at the dam crest is selected at node 34 – the 

(b)

Infinite

channel

(a) (c)

Node 34

Node 47

Node 40



PART II: NUMERICAL VALIDATION OF THE DIRECT FE METHOD 

80 
 

center node – for upstream and vertical ground motions, and at node 47 for cross-stream 
motion. These frequency response functions are determined in the direct FE method from 
time-domain analysis of the FE model (Figure 5.5) subjected to effective earthquake forces 

0
fP  and 0

rP  computed from the procedures summarized in Boxes 4.1 and 4.3 at the bottom 
and side boundaries of the foundation rock and Box 4.4 at the upstream fluid boundary, 
respectively. The free-field control motion, ( )k

ga t , is specified at the control point at the 
foundation surface as a long sequence of unit harmonics with gradually increasing frequency. 
Details of this procedure are provided in Appendix C.  

Implemented in the frequency domain, the substructure method directly provides 
frequency response functions. The earthquake excitation is here defined by the free-field 
motion at the dam–canyon interface. To determine this motion consistent with the specified 
control motion ( )k

ga t , a direct FE analysis is implemented of the foundation domain without 
the dam or impounded water (Figure 5.7) subjected to the same boundary forces 0

fP  as 
described in the preceding paragraph. The motion recorded at the dam–canyon interface is 
then used as the spatially varying input excitation to the EACD3D-08 analysis. 

Frequency response functions obtained by the direct FE and substructure methods for 
the dam on flexible foundation rock are compared for two cases: empty reservoir and full 
reservoir in Figures 5.8 and 5.9, respectively. Results for a full reservoir (Figure 5.9) are 
presented here only for the upstream component of ground motion, because limitations in the 
EACD3D�08 computer program do not allow for a meaningful comparison with the direct FE 
method for cross-stream and vertical ground motions†.  

 

Figure 5.7: FE model of foundation domain to compute free-field motion  
at dam–canyon interface used as input to EACD3D-08 analysis. 

                                                 
† EACD3D-08 requires the user to specify the earthquake excitation to the fluid domain directly at the reservoir 
boundaries, but restricts this motion to be uniform in the upstream direction [108]. These assumptions cannot be 
reproduced exactly in the direct FE method. For stream ground motion however, the issue is avoided when the 
reservoir boundaries are uniform in the upstream direction (Figure 5.5b), thus implying that no hydrodynamic 
pressures are generated at these boundaries by the stream component of ground motion. 
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The response results obtained by the direct FE method are very close to those from the 
substructure method. The small discrepancies near some of the resonant peaks (Figure 5.8), 
and at frequencies higher than approx. 15 Hz (Figure 5.9), are primarily caused by reflections 
from the viscous-damper boundaries, which are incapable of perfectly absorbing all scattered 
waves. Such errors will generally decrease with larger domain sizes.  

The good agreement demonstrates the ability of the direct FE method to model the 
factors important for earthquake analysis of arch dams: dam–water–foundation rock 
interaction including water compressibility and wave absorption at the reservoir boundaries, 
radiation damping in the semi-unbounded foundation and fluid domains, and the earthquake 
excitation defined by the control motion at the surface of the foundation rock. 

 

Figure 5.8: Frequency response functions for the amplitude of radial acceleration at the crest of Morrow Point 
dam including dam–foundation rock interaction (empty reservoir) due to stream, cross-stream and vertical 

ground motions. Results are computed by direct FE method and substructure method. 

 

Figure 5.9: Frequency response functions for the amplitude of radial acceleration at the crest of Morrow Point 
dam including dam–water–foundation rock interaction (full reservoir) due to stream ground motion. Results are 

computed by direct FE method and substructure method. 
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5.2.4 Response to transient motion 

To demonstrate the ability of the direct FE method to accurately compute the response of the 
arch dam–water–foundation rock system to earthquake excitation, the system is analyzed with 
the free-field control motion in the stream direction, ( )x

ga t , defined by the S69E component 
of the Taft ground motion. The radial displacements and accelerations at the crest of the dam 
relative to the base of the dam (node 40) are presented in Figure 5.10, and envelope values of 
maximum tensile arch and cantilever stresses on the upstream face of the dam in Figure 5.11. 
The results from the direct FE method closely match those from the substructure method: the 
displacements and accelerations at the crest show a near perfect match, and the envelope 
stress values are also close. The small discrepancies in the stress contour plots were found to 
be caused by differences in the FE stress recovery algorithms in the two computer programs.  

The effectiveness of the direct FE method is apparent from the fact that these excellent 
results (Figures 5.8–5.11) are achieved even with relatively moderate domain sizes: the 
overall dimensions of the FE model are approx. 5H x 5H x 3H, where H is the height of the 
dam. It is noted that larger domains were required to ensure similar levels of accuracy for 2D 
analysis of gravity dams (Appendix A). 

 

Figure 5.10: Relative radial displacement and acceleration histories at crest of Morrow Point Dam including 
dam–water–foundation rock interaction due to S69E component of Taft ground motion applied in the stream 
direction; static displacements are excluded. Results are computed by direct FE and substructure methods.  

The direct FE analyses were implemented in OPENSEES on a local workstation 
(without parallel processing capabilities) using a set of MATLAB script to perform the data 
management for computing and applying effective earthquake forces. The CPU time required 
to determine the dynamic response of the FE model in Figure 5.5 with roughly 150 000 DOFs 
was 68 minutes; approximately 13 minutes were required for the auxiliary analyses to set up 
the effective earthquake forces and 55 minutes for the (linear) dynamic analysis of the dam–
water–foundation rock system. The computational effort required to determine the effective 
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earthquake forces for the system is small compared to the time required for dynamic analysis 
of the overall system. Clearly, it is negligible compared to the time required to perform a 
more sophisticated nonlinear dynamic analysis of such systems. 

 

Figure 5.11: Envelope values of maximum tensile stresses, in MPa, on upstream face of Morrow Point Dam 
including dam–water–foundation rock interaction due to S69E component of Taft ground motion applied in the 

stream direction; static stresses are excluded. Results are computed by direct FE and substructure methods. 

5.3 Frequency response functions for spatially uniform motion  

Now that the direct FE method has been validated for the "actual" Morrow Point dam model, 
it is tested over a wide range of parameters that characterize the properties of the dam, 
foundation rock and reservoir bottom materials: sE , /f sE E  and α . For each of the analysis 
cases in Table 5.1, frequency response functions for the radial acceleration at the crest of the 
dam (relative to the base of the dam) are computed under the assumption that the free-field 
 

Table 5.1: Cases of dam–water–foundation rock system analyzed. 

Dam concrete Foundation rock Impounded water 

Case sE  (GPa) sζ  Condition /f sE E  fζ  Condition α  

1 any† 3% rigid  - empty - 

2 34.5 1% flexible 1/2 2% empty - 
3 34.5 1% flexible 1 2% empty - 
4 34.5 1% flexible 2 2% empty - 

5 any* 3% rigid  - full 0.50 

6 any* 3% rigid  - full 0.80 

7 34.5 1% flexible 1 2% full 0.50 
8 34.5 1% flexible 1 2% full 0.80 

                                                 
† When plotted against the normalized frequency 1/ω ω , these results are valid for all values of sE  
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earthquake motion is spatially uniform at the dam–foundation and water–foundation 
interfaces. This assumption is introduced for two reasons: (1) it facilitates a focused 
evaluation of the ability of the viscous-damper boundaries to model the semi-unbounded 
domains, and (2) it circumvents the aforementioned limitation in EACD3D-08 when specifying 
spatially varying motion in the substructure method (see footnote in Section 5.2.3).   

The spatially uniform ground motion at the dam–foundation and water–foundation 
interfaces is directly input in the substructure method. In the direct FE method, an alternative 
procedure for seismic input is implemented to achieve such uniform ground motion wherein a 
different set of effective earthquake forces are computed directly from the uniform ground 
motion and applied to the dam nodes and to the dam–water and water–foundation interfaces 
(see Appendix D for details).   

5.3.1 Dam on rigid foundation rock 

Computed by the two methods, frequency response functions for the dam supported on rigid 
foundation with empty reservoir (Case 1 in Table 5.1) are presented in Figure 5.12. Results 
are plotted against the dimensionless frequency 1/ω ω , where 1ω  is the fundamental 
frequency of the dam alone on rigid foundation. The close agreement between the two set of 
results demonstrates that the computational models employed in the direct FE (OPENSEES) 
and substructure (EACD3D-08) methods are equivalent, and validates the time-domain 
procedure for computing frequency response functions in the direct FE method. 

 

Figure 5.12: Frequency response functions for the amplitude of relative radial acceleration at the crest of 
Morrow Point Dam supported on rigid foundation with empty reservoir due to uniform stream, cross-stream and 

vertical ground motions (Case 1 in Table 5.1). Results are computed by direct FE and substructure methods. 
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several values of /f sE E  (Cases 2 to 4 in Table 5.1). The close agreement between the two 
set of results demonstrates the ability of the direct FE method to model the semi-unbounded 
foundation domain including radiation damping.  

The discrepancies observable near some of the resonance peaks are caused by 
reflections from the viscous-damper boundaries, which are unable to perfectly absorb all 
scattered waves. Because the accuracy of these boundaries generally improves for higher 
values of the ratio /r λ , where r is the distance from the dam to the boundary and λ  the 
wavelength of the scattered waves [20], such errors are more prominent for stiff foundations 
(longer wavelengths) than for soft foundations.  

 

Figure 5.13: Frequency response functions for the amplitude of relative radial acceleration at the crest of 
Morrow Point Dam supported on flexible foundation rock with empty reservoir due to uniform stream, cross-

stream and vertical ground motions. Results computed by direct FE and substructure methods are presented for 
three values of the moduli ratio /f sE E  (Cases 2 to 4 in Table 5.1). 
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5.3.3 Dam–water system 

The frequency response functions for the dam on rigid foundation with full reservoir obtained 
by the two methods are presented in Figure 5.14 for two values of the wave-reflection 
coefficient α  (Cases 5 and 6 in Table 5.1). In the direct FE method, effective earthquake 
forces 0

rP  are computed by the procedure summarized in Box 4.4 and applied to the fluid 
boundary rΓ . 

The results from the direct FE method closely match those from the substructure 
method for both values of α , thus validating the ability of the direct FE method to model the 
semi-unbounded fluid domain and water compressibility, reservoir bottom absorption, and 
radiation damping in the fluid.   

 

Figure 5.14: Frequency response functions for the amplitude of relative radial acceleration at the crest of 
Morrow Point Dam supported on rigid foundation with full reservoir due to uniform stream, cross-stream and 

vertical ground motions. Results computed by direct FE and substructure methods are presented for two values 
of the wave-reflection coefficient α  (Cases 5 and 6 in Table 5.1). 
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the direct FE method with viscous-damper boundaries is able to accurately model the dam–
water–foundation rock system with semi-unbounded subdomains and all its interaction 
effects. The small discrepancies are – as mentioned previously – due to the approximate 
nature of the viscous dampers, and will generally decrease with larger domain sizes.  

 

Figure 5.15: Frequency response functions for the amplitude of relative radial acceleration at the crest of 
Morrow Point Dam supported on flexible foundation rock with full reservoir due to uniform stream, cross-stream 

and vertical ground motions. Results computed by direct FE and substructure methods are presented for two 
values of the wave-reflection coefficient α  (Cases 7 and 8 in Table 5.1). 
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6 Simplifications of the direct FE method 

The procedures summarized in Boxes 4.1–4.4 for computing effective earthquake forces are 
conceptually straightforward, however, they require up to 24 auxiliary analyses for the 
foundation rock (8 analyses for each component of ground motion), and 2 auxiliary analyses 
for the fluid domain (1 analysis each for vertical and cross stream components). Substantial 
amounts of data management and "book-keeping" is required when using these procedures to 
analyze 3D models, which may have tens of thousands of boundary nodes. The next section 
presents simplifications to the direct FE method that drastically reduces these requirements, 
with the goal of simplifying the practical implementation of the analysis procedure. 

6.1 Using 1D analysis to compute effective earthquake forces at side foundation 
boundaries 

The use of a combination of 1D and 2D analyses to compute effective earthquake forces 0
fP  

at the side boundaries of the foundation domain is necessary to satisfy the general requirement 
in soil–structure interaction analyses that any admissible free-field system must be identical to 
the actual system in the region exterior to the absorbing boundaries [20,40]. However, it is 
reasonable to expect that even a much simpler system that technically violates this 
requirement could give accurate results provided the foundation domain is sufficiently large. 
This is normally the situation in the direct FE method with viscous-damper boundaries, 
because these always require large domain sizes to ensure acceptable modeling of the semi-
unbounded foundation rock. 

 To test this hypothesis, the actual free-field foundation-rock system (Figure 4.2a) is 
replaced by a much simpler system (Figure 6.1a): a flat foundation box with homogeneous (or 
horizontally layered) material properties, implying that the effects of the canyon are ignored 
in the free-field analysis. This simplification is especially attractive because analysis of this 
3D flat box to vertically propagating seismic waves reduces to analysis of the simple 1D 
column of foundation-rock elements shown in Figure 6.1b.  

Analysis of the 1D system of Figure 6.1b, discretized to match the elevations of the 
boundary nodes in the main model, subjected to the forces of Equation (4.1) at the base 
provides the motion 0

fr  at every node along the height. Alternatively, 0
fr  may be extracted at 

every elevation directly from the deconvolution analysis. Boundary tractions are computed 
from 0

fr  using stress-strain relationships for a 1D system (see Appendix E) and converted to 
nodal forces for the FE model by multiplying by the tributary area of each node. The analysis 
is repeated for each component of ground motion (x, y, z) considered in the analysis. Step-by-
step instructions for implementation of the procedure are presented in Box 6.1. 
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Figure 6.1: (a) Free-field foundation-rock system without canyon;  
(b) analysis of single column of foundation-rock elements to compute 0

fr .  
 

Box 6.1: Computing effective earthquake forces 0
fP  at side boundaries by 1D free-field analysis 

Determining 0
fr  by analysis of single foundation-rock column 

1. Develop a FE model of the simplified free-field foundation-rock system: a single 
column of foundation-rock elements with discretization to match the elevations 
of the boundary nodes in the main model (Figure 6.1b). 

2. For each direction of ground motion, , ,k x y z=  add a viscous damper at the base 
in the k-direction and constrain DOFs in the other directions to allow only shear  
( ,k x y= ) or axial ( k z= ) deformation of the column. 

3. Apply effective earthquake forces from Eq. (4.1) to the base in the k-direction, 
and compute the motion 0

fr  at each node along the height. 

As an alternative to Steps 1-3, the motion 0
fr  may be extracted at every elevation 

directly from a 1D deconvolution analysis. 

Compute effective earthquake forces 0
fP  

4. Compute 0
fr  as the time derivative of 0

fr . 
5. Compute boundary tractions from 0

fr  using 1D stress-strain relations (Appendix 
E) and multiply them by the tributary area of each node to determine 0

fR . 
6. Calculate effective earthquake forces 0

fP  at the side foundation boundaries from 
Eq. (3.7a) using 0

fr  from Step 4 and 0
fR  from Step 5. 

 

Such a single, 1D free-field analysis is drastically simpler compared to the rigorous 
procedure developed in Section 4.2.2 that required 24 auxiliary analyses and extensive data 
transfer. However, because the assumed system in Figure 6.1a is not identical to the actual 
system in the region exterior to the absorbing boundary, it will introduce errors in the 
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solution. The resulting errors in the free-field response at the center of the semi-cylindrical 
canyon (Figure 5.3) are shown in Figure 6.2, where results obtained by the direct FE method 
using 1D and 3D free-field analyses to compute effective earthquake at the side boundaries 
are compared.  

 

Figure 6.2: Displacement amplitudes at semi-cylindrical canyon subjected to incident SH-, SV-, and P-waves. 
Results are computed by the direct FE method with effective earthquake forces 0

fP  on the side boundaries 
determined from 1D and 3D free-field analyses.  

The displacements at the canyon surface computed by the two methods (Figure 6.2) 
are reasonably close for all types of incident waves and for a wide range of dimensionless 
frequencies η , thus suggesting that using 1D analysis to compute effective earthquake forces 
may be an acceptable approximation for this system. Later in this section, this approximation 
will be examined in the context of dam response.  

(c) Response to incident P-wave

D
is

p
la

ce
m

en
t 

am
p
li

tu
d
e

D
is

p
la

ce
m

en
t 

am
p
li

tu
d
e

(b) Response to incident SV-wave

(a) Response to incident SH-wave

Horizontal component Vertical component

Y / R Y / R Y / R

D
is

p
la

ce
m

en
t 

am
p
li

tu
d
e

1D FF analysis
3D FF analysis

0

1

2

3

4

-2 -1 0 1 2 -2 -1 0 1 2-2 -1 0 1 2

= 0.25� = 0.50� = 1.0�

= 0.25� = 0.50� = 1.0�

= 0.25� = 0.50� = 1.0�

0

1

2

3

4

-2 -1 0 1 2 -2 -1 0 1 2-2 -1 0 1 2

0

1

2

3

4

-2 -1 0 1 2 -2 -1 0 1 2-2 -1 0 1 2



PART II: SIMPLIFICATIONS OF THE DIRECT FE METHOD 

91 
 

The good agreement in Figure 6.2 is achieved – in part – because the foundation 
domain is sufficiently large: typical dimensions for a dam model (700m x 700m x 400m) was 
used relative to a canyon radius of R = 100m, thus ensuring sufficient distance from the center 
of the model to the side boundaries where the effective earthquake forces are applied. For a 
much smaller domain (200m x 400m x 400m), the resulting errors are considerably larger, as 
demonstrated in Figure 6.3.  

 

Figure 6.3: Influence of domain size on the errors in displacement amplitudes at semi-cylindrical canyon 
subjected to incident SH-waves when using 1D free-field analysis to compute effective earthquake forces 0

fP  on 
the side boundaries.  

The accuracy of using the simplified 1D free-field analysis when determining the 
dynamic response of concrete dams by the direct FE method is investigated by analyzing 
Morrow Point Dam (Figure 5.5). Frequency response functions for the amplitude of radial 
acceleration at the crest of the dam supported on flexible rock with empty reservoir are 
presented in Figure 6.4, where results obtained using 1D and 3D free-field analysis to 
compute effective earthquake forces are compared. The closeness of the two sets of results 
justifies the use of 1D free-field analysis to compute effective earthquake forces for this 
system.  

These results demonstrate that the loss of accuracy from using 1D free-field analysis is 
insignificant as long as the foundation domain is sufficiently large. As previously mentioned, 
this requirement is normally satisfied in the direct FE method when employing viscous-
damper boundaries because these always require large domain sizes to ensure acceptable 
modeling of the semi-unbounded foundation domain. Thus, the use of 1D free-field analysis 
is appropriate for practical analyses in the direct FE method. 

This conclusion puts the direct FE method at a significant advantage over previous 
analysis procedures [41] where high performing PML boundaries were used together with 
DRM to apply the seismic input. Because the attractiveness of such advanced methods lies in 
their ability to use very small domain sizes, they are not amenable for using such simplified 
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1D free-field analysis, and therefore require analysis of complicated 3D systems and 
extensive data transfer to determine the seismic input.  

 

Figure 6.4: Influence of using 1D free-field analysis to determine effective earthquake forces 0
fP  on the side 

boundaries on the response of Morrow Point dam on flexible foundation rock with empty reservoir. 

6.2 Ignoring effective earthquake forces at side foundation boundaries 

The dam engineering profession has been using a variation of the direct FE method wherein 
effective earthquake forces 0

fP  are applied only to the bottom boundary, and not to the side 
boundaries [45,73,101]. This approximation is attractive because it eliminates the need for 
analysis of the free-field foundation-rock system altogether, but as will be demonstrated, the 
resulting errors in the dam response can be large.  

First observed are the large errors in the free-field motion at the surface of the semi-
cylindrical canyon of Figure 5.3 computed by the direct FE method with and without effective 
earthquake forces applied to the side boundaries. The results are unacceptable for all three 
types of excitation over a wide range of η -values (Figure 6.5) because, without effective 
earthquake forces applied to the side boundaries, the viscous dampers boundaries attenuate 
seismic waves as they propagate up through the model. Some researchers have referred to this 
effect as leakage [99]. Because this leakage is frequency dependent, it affects the motion at 
some frequencies (η -values) more than others.  
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Figure 6.5: Displacement amplitudes at semi-cylindrical canyon subjected to incident SH-, SV-, and P-waves. 
Results are computed from two analyses: excluding and including effective earthquake forces 0

fP  on the side 
boundaries. 

The errors can be reduced by increasing the domain size, i.e., by moving the absorbing 
boundaries further away from the center of the model. This is demonstrated in Figure 6.6, 
where results are presented for two domain sizes: the "regular" domain size (700m x 700m x 
400m) used in the preceding analyses, and a large domain size, 1400m x 1400m x 400m. 
Increasing the horizontal dimensions of the foundation domain improves the results, but the 
errors remain significant even for this large domain.   
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Figure 6.6: Influence of domain size on the errors in displacement amplitudes at semi-cylindrical canyon 
subjected to incident SH-waves when excluding effective earthquake forces 0

fP  on the side boundaries. 

Frequency response functions for the amplitude of radial acceleration at the crest of 
Morrow Point Dam supported on flexible foundation rock with empty reservoir are shown in 
Figure 6.7. Results are computed by the direct FE method with and without effective 
earthquake forces applied to the side boundaries. As anticipated by the poor agreement in the 
free-field response at the canyon surface, excluding 0

fP  at the side boundaries cause 
significant error in the dam response to all components of ground motion.  

 

Figure 6.7: Influence of excluding effective earthquake forces 0
fP  on the side boundaries on the response of 

Morrow Point dam on flexible foundation rock with empty reservoir. 

In light of these results, there seems to be no justification in ignoring the effective 
earthquake forces on the side boundaries. Computing these forces using the simple 1D free-
field analysis (Box 6.1) requires very little effort, with minimal loss of accuracy compared to 
the more rigorous 3D free-field analysis summarized in Box 4.3.   
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6.3 Avoiding deconvolution of the surface control motion 

Some researchers have avoided deconvolution of the specified surface control motion ( )k
ga t  

by idealizing the foundation as a homogeneous, undamped, halfspace [7,98]. In this special 
case, a vertically propagating plane wave does not attenuate, implying that the incident 
earthquake motion at the bottom boundary, 0

Ir , is equal to one-half the specified surface 
motion, except for a time shift. The validity of this assumption for different foundation 
idealizations is investigated next.  

 A flat foundation box (Figure 5.1) is first analyzed by the direct FE method and the 
computed surface motions are compared against the specified control motion. Effective 
earthquake forces at the bottom and side boundaries are computed using two methods for 
obtaining the incident motion 0

Ir  at the bottom boundary: "rigorous" deconvolution of the 
surface control motion, and ½ the surface control motion. Such comparison is presented in 
Figure 6.8 for three different foundation idealizations†: (a) homogeneous foundation with zero 
material damping, (b) homogeneous foundation with 4% material damping, and (c) 
horizontally layered foundation with zero material damping. For all three cases, the free-field 
control motion ( )k

ga t  is defined at the surface in the two horizontal and vertical directions by 
the S69E, S21W and vertical component of the Taft ground motion, respectively. 

 Observe from the results in Figure 6.8 that when the incident motion 0
Ir  is determined 

by deconvolution of the surface control motion, the computed surface motion is essentially 
identical (to within FE discretization error) to the specified control motion for all three 
foundation idealizations. In contrast, specifying 0

Ir  as ½ the surface control motion gives 
essentially the exact results if the foundation is homogeneous and undamped (Figure 6.8a), 
but leads to significant underestimation of the surface motion for a damped foundation 
(Figure 6.8b) and overestimation for a layered foundation (Figure 6.8c). These results 
suggests that dam response would be accurately computed with 0

Ir  taken as ½ the surface 
control motion only if the foundation domain is homogeneous and undamped, but that errors 
will be introduced for other cases.  

Frequency response functions for the amplitude of radial acceleration at the crest of 
Morrow Point Dam including dam–foundation interaction (empty reservoir) are presented in 
Figure 6.9 for two cases: (a) homogeneous foundation with zero material damping, and (b) 
homogeneous foundation with 4% material damping. For both cases, results obtained with 0

Ir  
computed by deconvolution and as ½ the surface control motion are compared. As expected 
by the results in Figure 6.8, specifying 0

Ir  as ½ the surface control motion does not introduce 
error in dam response when the foundation is undamped (Figure 6.9a), but causes significant 
underestimation of the response for foundations with damping (Figure 6.9b).  

                                                 
† The material properties for the foundation are: density = 2723 kg/m3 and Poisson's ratio = 0.20. The 
homogeneous foundation (Cases a and b) has shear wave velocity sV  = 2000 m/s. The layered foundation (Case 
c) consists of three layers of equal thickness 133m on top of homogenous bedrock, with shear wave velocities 
that increase with depth: ,1sV = 1500 m/s, ,2sV = 2000 m/s, ,3sV = 2500 m/s, and ,s bedrockV = 3000 m/s; 



PART II: SIMPLIFICATIONS OF THE DIRECT FE METHOD 

96 
 

To eliminate such errors, the incident motion 0
Ir  at the bottom foundation boundary 

should be computed by 1D deconvolution analysis. There is little justification in bypassing 
such analysis, especially because it is a straightforward and requires very little computational 
effort compared to 3D analysis of the dam–water–foundation system.  

 

Figure 6.8: Comparison of 5% damped pseudo-acceleration response spectra for specified free-field control 
motion and motion computed at the surface of flat foundation box for three foundation idealizations. Results 

obtained with 0
Ir  computed from deconvolution and as ½ the surface control motion are compared. 
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Figure 6.9: Discrepancies introduced by approximating 0
Ir  as ½ the surface control motion on the response of 

Morrow Point Dam including dam–foundation interaction (reservoir is empty) for two foundation idealizations. 

6.4 Ignoring effective earthquake forces on upstream boundary of fluid domain  

Implementation of the direct FE method may be simplified by excluding effective earthquake 
forces 0Pr  at the upstream fluid boundary Γ r , which are the forces associated with 
earthquake-induced hydrodynamic pressures in the semi-unbounded fluid channel upstream 
of Γ r . This is attractive because it eliminates the need for the 2D auxiliary analysis of the 
fluid cross-section (Section 4.3) for vertical and cross-stream components of ground motion 

Presented in Figure 6.10 are frequency response functions for the radial acceleration at 
the crest of Morrow Point Dam on rigid foundation with full reservoir subjected to ground 
motions that are uniform at the dam–foundation and water–foundation interfaces for two 
values of the wave reflection coefficient characterizing sediment absorption†: α  = 0.50 and 
α = 0.80. Results from three analyses are presented for each α -value: (1) fluid domain 

                                                 
† Sediments are included herein only for the purpose of introducing some energy absorption at the reservoir 
boundaries in the absence of dam–foundation and water–foundation interaction mechanisms in this system with 
rigid foundation. 
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length of L = 2.5H including 0Pr  on the upstream fluid boundary, (2) L = 2.5H excluding 0Pr , 
and (3) L = 5H excluding 0Pr . Excluding 0Pr  for cross-stream and vertical ground motions has 
little influence on the response for α  = 0.50, but leads to errors for higher α –values (α = 
0.80) and short fluid domains (L = 2.5H ). For the stream component of ground motion, 

0
r =P 0  (Section 4.3), so all three cases give essentially identical results. 

These discrepancies occur because of the idealization of the system analyzed (Figure 
2.1): the uniform fluid channel is unbounded in the upstream direction and the excitation is 
implicitly assumed to extend along the entire length of this channel. In reality, neither the 
uniform fluid channel nor the ground motion could extend to infinity in the upstream 
direction, so excluding 0Pr  from the analysis – implying that the excitation stops at the 
boundary Γ r  – seems to be a more appropriate idealization. Thus, it can be concluded that 
the errors observed in Figure 6.10 are inconsequential for analysis of actual dams, and that 0Pr  
can be left out of the analysis without loss of accuracy as long as the fluid domain is large 
enough to accurately model dam–water interaction and radiation damping using the viscous-
damper boundaries (Section 5.3.3).  

 

Figure 6.10: Influence of excluding effective earthquake forces 0Pr  on the upstream fluid boundary on the 
response of Morrow Point dam on rigid foundation with full reservoir. Results are presented for two values of 

the wave-reflection coefficient: α  = 0.50 and α  = 0.80. ζ s = 3% damping is specified for the dam alone. 
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7 Summary of procedure 

The earthquake input for the three-dimensional dam–water–foundation rock system is defined 
by the free-field ground acceleration ( )k

ga t , , ,k x y z= , specified at a control point on the 
foundation surface at the level of the dam abutments (Figure 2.4c). This motion may for 
example be from an ensemble of recorded ground motions selected and scaled to "match" a 
target spectrum, or synthetic motions developed for an earthquake scenario. 

Analysis of 3D dam–water–foundation rock systems by the direct FE method – 
making use of the recommended simplifications presented in Sections 6.1 and 6.4 – is 
organized in three parts: static analysis, linear analyses of the free-field foundation-rock 
system, and nonlinear dynamic analysis of the dam–water–foundation rock system.  

 

Static analysis:  

1. Develop a FE model for static analysis of the dam–foundation rock system with an 
appropriate material model for the dam concrete and an appropriate (static) model for 
the semi-unbounded foundation rock. 

2. Compute the response of this system to self-weight and hydrostatic forces; for arch 
dams this may include effects of a staged construction sequence.  

3. Record the static state of the dam and foundation rock, including reactions from the 
foundation rock at the boundary Γ f . 

 

Linear analysis of the free-field foundation-rock system (using 1D free-field analysis): 

4. Obtain the outcrop motion at the base of the foundation-rock model by deconvolution 
of the surface control motion ( )k

ga t . 

5. Calculate the effective earthquake forces 0
fP  at the bottom boundary of the foundation 

domain from the procedure in Box 4.1.  

6. Compute the effective earthquake forces 0
fP  at the side boundaries of the foundation 

domain from the procedure in Box 6.1. 

Step 6 may be avoided if free-field boundary elements [99] are employed at the side 
boundaries of the truncated foundation domain. 
 

Nonlinear dynamic analysis of dam–water–foundation rock system: 

7. Develop a FE model of the dam–water–foundation rock system with viscous-damper 
boundaries to truncate the semi-unbounded foundation and fluid domains at Γ f  and 
Γ r , respectively. Use solid elements for the dam and foundation rock, fluid elements 
for the water, and interface elements (or tie constraints) at the dam–water and water–
foundation rock interfaces. Sediments at the reservoir bottom can be modelled 
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approximately by surface elements based on the one-dimensional absorption model, or 
by using more sophisticated viscoelastic or poroelastic material models.  

8. Calculate the response of this FE model subjected to effective earthquake forces 0
fP  

computed in Step 5 at the bottom foundation boundary and in Step 6 at the side 
boundaries, as well as self-weight, hydrostatic forces and static foundation reactions at 
Γ f . The static state of the dam (Step 3) is taken as the initial state in the nonlinear 
dynamic analysis.  
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8 Conclusions 

The direct FE method developed in Part I of this thesis for nonlinear earthquake analysis of 
two-dimensional dam–water–foundation rock systems has been generalized for three-
dimensional systems. Formulated by interpreting dam–water–foundation rock interaction as a 
scattering problem where the dam perturbs a free-field state of the system, the direct FE 
method considers all the factors important in the earthquake response of arch dams: dam–
water interaction including water compressibility and wave absorption at the reservoir 
boundaries; dam–foundation rock interaction including mass, stiffness and damping in the 
rock; radiation damping due to the semi-unbounded sizes of the foundation rock and reservoir 
domains; spatial variation of the ground motions around the dam–canyon interface; and 
nonlinear behavior in the dam and adjacent parts of the foundation and fluid domains. 

The seismic input to the procedure is specified by a ground motion at a control point 
on the foundation surface. The free-field motion at depth in the foundation rock is determined 
by deconvolution of this control motion. Then, effective earthquake forces are computed from 
a set of 1D and 2D analysis and applied to the boundaries of the FE model. Each of these 
analyses requires very little computational effort and can be implemented without modifying 
the FE source code, the main challenge is management and transfer of large amounts of data. 

Several examples are presented to validate the accuracy of the direct FE method 
applied to 3D problems. One of these examples compares the dynamic response of Morrow 
Point Dam computed by the direct FE method with independent benchmark solutions 
obtained by the substructure method. The excellent agreement achieved for a wide range of 
analysis cases demonstrates that (1) the effects of dam–water–foundation rock interaction are 
accurately modeled, (2) the bounded foundation and fluid models with viscous-damper 
boundaries are able to simulate the semi-unbounded extent of these domains, and (3) the 
earthquake excitation is properly defined by specifying – at the boundaries of the FE model – 
effective earthquake forces determined from a surface control motion.  

To facilitate implementation of the direct FE method, several simplifications of the 
analysis procedure are proposed and their efficacy evaluated. The presented results led to the 
following conclusions:  

1. Using 1D free-field analysis to compute effective earthquake forces 0
fP  at the side 

boundaries of the foundation rock, which drastically reduces the amount of data 
transfer and data management, is an appropriate approximation provided that the 
foundation domain is sufficiently large. This is normally the case when using viscous-
damper boundaries because these already require large domain sizes to model the 
semi-unbounded foundation domain.  

2. In contrast, ignoring the effective earthquake forces 0
fP  at the side boundaries – a 

popular simplification in the dam engineering profession – can lead to large errors in 
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the dam response. There seems to be no justification in ignoring these forces when 
they can be included with minimal effort using the simplified 1D free-field analysis.  

3. Specifying the incident motion 0
Ir  at the bottom foundation boundary as ½ the surface 

motion – thereby avoiding 1D deconvolution analysis – can cause significant error in 
dam response for foundations with damping and for layered foundations. To eliminate 
such errors, the incident motion at the bottom foundation boundary should be 
computed by 1D deconvolution of the surface control motion. 

4. Ignoring the effective earthquake forces 0
rP  at the upstream fluid boundary – implying 

that the earthquake excitation stops at the fluid boundary – is appropriate for practical 
analysis as long as the fluid domain is long enough. This is normally the case in the 
direct FE method because large domains are already required to accurately model 
dam–water interaction. 

The direct FE method is applicable to nonlinear systems, thus allowing for modeling 
of concrete cracking, as well as sliding and separation at construction joints, lift joints, and at 
concrete-rock interfaces. The procedure can be implemented with any commercial FE 
program that permits modeling of viscous-damper boundaries and specification of effective 
earthquake forces at these boundaries. 
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1 Introduction 

Much research has been devoted to developing the framework for seismic design and safety 
assessments of structures called Performance Based Earthquake Engineering (PBEE), which 
is routinely applied to evaluate structures such as buildings, nuclear power plants and bridges 
[109–112]. However, much less work has been done on PBEE in the context of concrete dams 
(with a few notable exceptions, e.g. [113]), and most of the conducted research have been 
focused investigations on developing seismic fragility curves for 2D gravity dam systems 
[114–116]. 

One obstacle for the adaption of PBEE by the dam engineering community is the lack 
of accurate and efficient analysis procedures for conducting the large number of nonlinear 
response history analyses (RHA) required to quantify the uncertainties in earthquake ground 
motions and material properties of the system. For years, nonlinear RHA of concrete dams 
were limited by major deficiencies: overly simplistic models for dam–water–foundation rock 
interaction, not accounting for radiation damping in the semi-unbounded foundation and fluid 
domains, and ignoring spatial variation of ground motions along the dam–canyon interface. 
These limitations were overcome in the direct FE method developed in Parts I and II of this 
thesis. Because this direct FE method was developed in a form that can be implemented with 
any commercial FE program, it is readily available for researchers and engineers who may be 
committed to using a particular program. 

Presented in this part of the thesis is an introduction to modeling and practical 
implementation of the direct FE method within the framework of PBEE of concrete dams. In 
Chapter 2, an introduction to PBEE of concrete dams is presented. The basic principles of 
PBEE are described, key equations are explained, and the current state of knowledge for 
PBEE of concrete dams is contrasted to that for buildings. Chapter 3 presents a discussion on 
nonlinear modeling of concrete dams by the direct FE method. First, the most significant 
nonlinear mechanisms that can develop in concrete dams are reviewed, and suitable modeling 
alternatives presented. In the second part of Chapter 3, the discussion focuses on the various 
types of linear energy dissipation (damping) that takes place within dam–water–foundation 
rock systems. Practical suggestions on how to model energy dissipation at the reservoir 
boundaries are presented, and recommendations are given for how to ensure consistency 
between damping in the numerical model and the damping measured at actual dams. Finally, 
in Chapter 4, the capabilities of the direct FE method when implemented with a commercial 
FE code is demonstrated by performing a nonlinear earthquake analysis of an actual arch dam 
using the commercial FE program ABAQUS [75].  

A condensed version of this part of the thesis has been submitted for publication in 
Earthquake Engineering and Structural Dynamics. 
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2 Performance based earthquake engineering of dams 

Performance Based Earthquake Engineering (PBEE) is a probabilistic framework for seismic 
design and safety assessments of structures that considers all the inherent uncertainties in 
earthquake performance assessments. In contrast to traditional load-and-resistance-factor 
design procedures which typically result in a "binary" fail or safe conclusion, PBEE offers a 
complete framework for performance evaluations that considers and quantifies the various 
sources of uncertainty along the way. PBEE is well developed and frequently used for 
performance evaluations of buildings, bridges and nuclear power plants; but has yet to be 
adapted to a meaningful degree by the dam engineering community.  

2.1 The Pacific Earthquake Engineering Research Center PBEE framework 

Several variations of PBEE have been proposed after the introduction of the first generation 
performance based earthquake engineering and design procedures for buildings in the United 
States [117,118]. Today, the most commonly used "version" of PBEE is the framework 
developed by the Pacific Earthquake Engineering Research Center (PEER). First proposed by 
Cornell and Krawinkler [119], The PEER PBEE framework provides a general tool to 
determine the probability distribution and rate of exceedance for various system-level 
performance measures for a given structure at a given site. From this information, and the 
information obtained in intermediate steps, a wide range of useful performance metrics (e.g. 
risk of collapse, annualized repair costs, expected number of casualties, etc.) can be extracted 
and used to make risk-informed decisions regarding the design of new dams or safety 
evaluations of an existing dam.  

The PEER framework can be summarized in the following equation [119]: 

 ( ) ( ) ( ) ( ) ( )| | |
IM EDP DM

DV G DV DM dG DM EDP dG EDP IM d IMλ λ=  (2.1) 

where ( )|G X Y  is the probability that X exceeds a specified value given Y (also known as the 
complimentary cumulative distribution function); ( )Xλ  is the mean annual rate of 
exceedance of X; and DV = decision variable, DM = damage measure, EDP = engineering 
demand parameter and IM = intensity measure.  

Recognizing the complexity and multi-disciplinary nature of problem, the PEER 
framework can be separated into four phases that each can be solved using appropriate 
techniques and tools (Figure 2.1): (1) seismic hazard analysis, (2) structural analysis, (3) 
damage analysis, and (4) loss analysis. The output from each phase is quantified using the 
four variables IM, EDP, DM and DV. This convenient decomposition is based on the 



PART III: PERFORMANCE BASED EARTHQUAKE ENGINEERING OF DAMS 

108 
 

assumption that, conditioned on EDP, DM is independent of IM, and, conditioned on DM, 
DV is independent of EDP and IM [120]. Through this decomposition, each of the four 
phases provides valuable information about the seismic hazard, structural response, and 
uncertainties in the analysis.   

 

Figure 2.1: Pacific Earthquake Engineering Research Center PBEE  
framework applied to concrete dams. Figure adapted from [109]. 

From Equation (2.1), several analogous formulas can be written out for intermediate 
measures. For example, the annual rate of exceedance of a given DM is 

 ( ) ( ) ( ) ( )| |
IM EDP

DM G DM EDP dG EDP IM d IMλ λ=  (2.2) 

and the annual rate of exceedance of a given EDP is given by 

 ( ) ( ) ( )|
IM

EDP G EDP IM d IMλ λ=  (2.3) 

Equation (2.3) is often referred to as the seismic demand hazard curve (SDHC) [94]. 
Evaluation of the SDHCs directly provides the rate of exceedance for a given structural 
capacity, or the seismic demand associated with a specified return period.  

Another metric, the so-called fragility function or fragility curve† is obtained by 
isolating the integrand in Equation (2.2):  

                                                 
† The "fragility function" is here defined as the probability of exceeding a DM given an IM, ( )|G DM IM . The 
same terminology is sometimes used to describe other metrics such as the probability of exceeding an EDP given 
an IM, ( )|G EDP IM , or the probability of exceeding a DM given an EDP, ( )|G DM EDP . 
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 ( ) ( ) ( )| | |
EDP

G DM IM G DM EDP dG EDP IM=  (2.4) 

The fragility function describes the probability of exceeding a certain damage state (or limit 
state) in the structure at different levels of intensity, for example the probability of exceeding 
a certain crest displacement at different levels of peak ground acceleration (PGA).   

 In the following sections, each phase of the PBEE framework is described in more 
detail and put into context of concrete dam analysis. 

2.2 Seismic hazard analysis 

The goal of this phase is to perform a probabilistic seismic hazard analysis (PSHA) [53,54] of 
the dam site to obtain the intensity measure hazard curve (IMHC), ( )|IM Dλ . The IMHC 
quantifies the annual rate of exceedance for an IM given the site characteristics D by using 
ground motion prediction models that consider the seismic environment such as nearby faults, 
recurrence rates, site conditions, etc. Several online tools and open source computer programs 
are available for this purpose [121,122]. 

The IM in the PSHA may be defined as a scalar or a vector. Most often, the spectral 
acceleration 1( )aS T  at the fundamental period 1T  of the dam–water–foundation rock system is 
chosen. Several other IMs are also possible, for example peak ground acceleration (PGA), 
acceleration spectrum intensity (ASI), or multiple-period intensity 1 2( , ,..., )a NS T T T . However, 
recent research have demonstrated that 1( )aS T  is a very good choice of IM for concrete dam 
analysis [123]. 

From the IMHC, the next step is to develop a target spectrum for a given hazard level 
(or return period). This can for example be the uniform hazard spectrum (UHS) or some 
variation of the conditional mean spectrum (CMS) [54]; both are commonly used in PSHA. 
Finally, an ensemble of ground motions whose IM matches the target spectrum at 1T , or 
closely matches the target spectrum over a period range of interest, is selected for the 
structural analysis. Because it is unlikely to find a sufficient number of unscaled records that 
matches the target spectrum, this process requires scaling and modification of existing ground 
motions [95]; or alternatively, development of synthetic motions [124].   

Tools for probabilistic seismic hazard analysis for one or two components of 
horizontal ground motion conditioned on a single vibration period are well developed. These 
tools must be extended to consider three simultaneous components of ground motion (two 
horizontal and one vertical) over multiple vibration periods before they are fully applicable to 
concrete dam analysis. Such work is in progress [125,126], but as of now, these issues remain 
largely unresolved.  
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2.3 Structural analysis 

In the structural analysis phase, a large number of nonlinear response history analyses (RHA) 
of the dam are conducted to determine ( )|G EDP IM , the response of an EDP given an IM.  
Relevant EDPs for concrete dams can be maximum displacements or accelerations at the dam 
crest (for operability of appurtenant structures); maximum opening at contraction joints or 
sliding at lift joints; extent of tensile cracking in the dam concrete; or relative movement of 
rock wedges and dam abutments. Common for these (nonlinear) EDPs is that they usually 
show a high degree of sensitivity to the choice of modeling assumptions and selection of 
material parameters in the analysis. Thus, the sensitivity of the results to the choice of 
modeling assumptions should be checked as part of the analysis. 

The results of the nonlinear RHA can be integrated with the IMHC ( )IMλ  from the 
seismic hazard analysis to form the SDHC (Equation 2.3). Construction of the seismic 
demand hazard curve is illustrated in Figure 2.2. First, the IMHC is discretized at different 
intensity levels (Figure 2.2a) and ground motions are selected and scaled to match the IM 
(Figure 2.2b) at a given intensity level 0im . Using the selected ensemble of ground motions, 
nonlinear RHA are conduced and the output used to determine the probability distribution 

( )|G EDP IM , often by fitting a lognormal distribution to the individual data points (Figure 
2.2c). Numerical evaluation of Equation (2.3) at discrete levels gives the data point for 0edp  
in Figure 2.2d, and repeating the process at multiple intensity levels 0im  provides the 
complete SDHC. This curve can be used to determine the rate of exceedance for a specific 
structural capacity (e.g. the exceedance rate of a certain crest displacement value), or to 
determine the structural demand for a given return period (e.g. the maximum joint opening 
expected for a 10,000 year return period).  

Implementation of these nonlinear RHA requires accurate and efficient analysis 
procedures. Accuracy is obviously needed to ensure meaningful results. Efficiency is also 
essential, for two reasons: (1) nonlinear RHA of the large FE models required to model dam–
water–foundation rock systems is computationally demanding, even by modern standards; 
and (2) a large number of nonlinear RHAs are required to quantify the uncertainties in 
earthquake ground motions and material properties of the system. The direct FE method 
developed in Parts I and II of this thesis meets both of these criteria.  

Significant resources have been spent developing and validating (through 
experimental programs) nonlinear models for the behavior of the various structural 
components that make up multi-story buildings. The state of research for concrete dams is 
much less mature because it is difficult and expensive to perform meaningful experimental 
tests on dams, and there is little field evidence to go by since few concrete dams have been 
damaged during earthquakes. Without more research on this topic, it will be difficult to 
reduce the substantial uncertainties involved in estimating nonlinear dam response.  
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Figure 2.2: Construction of the SDHC when 1( )aIM S T= : (a) discretization of the IMHC, ( )IMλ ; (b) selection 
and scaling of ground motions so that 0IM IM= ; (c) Nonlinear RHA of the dam to estimate ( )|G EDP IM ;  

(d) resulting SDHC, ( )EDPλ . Figure adapted from [94]. 

2.4 Damage analysis 

The damage analysis seeks to determine the level of physical damage DM given an EDP, 

( )|G DM EDP . For buildings, this damage analysis is usually performed on a component 
level using available data on the expected damage given various deformations, force levels, 
etc., compiled from laboratory experiments and field experience. As previously mentioned, 
such data is not available for concrete dams. Thus, it is often more useful to define damage 
states (or limit states) for the dam directly on the structural level, and use damage measures to 
quantify the damage in each of these states. Defining such meaningful damage states requires 
identification and evaluation of the potential failure modes of the dam [127]. 

The resulting output can be visualized in the form of fragility curves for the dam, 

( )|G DM IM , defined by Equation (2.4). Construction of the fragility curve is illustrated in 
Figure 2.3a: first, outputs from a large number of nonlinear RHA at several intensity levels 
are used to determine the fraction of analyses exceeding a certain damage threshold. A 
fragility function is then fitted to the data set, usually in the form of a lognormal cumulative 
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distribution [128]. Examples of fragility curves for relevant damage states in concrete dams 
are shown in Figure 2.3b. If an important objective for the dam is to ensure operability of 
flood gates at the crest, a useful damage measure can for example be the maximum crest 
displacement. Such curves should be computed not only for extreme damage states (e.g. 
uncontrolled release of the reservoir), but rather at multiple intermediate stages to give a 
complete description of the gate performance at different hazard levels.  

 

Figure 2.3: Illustration of fragility curve: (a) fitting of fragility curve to output from nonlinear  
RHA; (b) examples of fragility curves relevant for concrete dams. 

Researchers have successfully applied the concepts of seismic fragility analysis to 
study the influence of modeling assumptions on the seismic performance of gravity dams at 
different intensity levels [114–116]. However, routine use of such methods in professional 
practice does not seem practical at present time. 

2.5 Loss analysis 

The last phase in the PBEE framework is loss analysis, which seeks to determine ( )DVλ , the 
rate of exceedance of a certain decision variable. For concrete dams, these can be system-
level measures such as repair costs, loss of power generation or loss of life downstream of the 
dam, or "component" measures such as gate operability.  

Information about the rate of exceedance of these DVs – as well as other performance 
metrics derivable from ( )DVλ  [110] – is useful for making risk-informed decisions for a 
broad range of problems. Example application can be to determine whether the expected 
future earthquake repair cost of a new dam is acceptable, or to assess the effectiveness of a 
planned dam retrofit in reducing the expected loss of power generation due to earthquakes.  

Detailed loss models have been developed and made available to researchers and 
engineers to systematically estimate repair costs, downtime, number of casualties, etc. in 
buildings at different damage levels [109]. Such models are currently not available for 
concrete dams because of the very limited experience with earthquake damage in these 
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structures. As for the damage analysis phase, more research on this topic is needed before 
PBEE can become a routine part of dam safety assessments.   

2.6 Modeling of uncertainty  

Uncertainty is present at every step of the analysis process. The integration of conditional 
probabilities in Equation (2.1) ensures that this uncertainty is allowed to propagate from one 
step of the analysis to the next in the PBEE framework, thus achieving in the end a 
probabilistic overall prediction of the dam performance.    

 The resulting total uncertainty can be separated into two categories: aleatory and 
epistemic. The aleatory uncertainty is associated with the inherent randomness of processes, 
such as future earthquake events, and cannot (at least as of now) be completely eliminated. 
This form of uncertainty is accounted for in the PSHA, which considers a range of earthquake 
events and aggregates their contribution to the overall seismic risk, and in the structural 
analysis by considering an ensemble of different ground motions. In contrast, epistemic 
uncertainty is that caused by lack of knowledge about modeling assumptions, material 
parameters, etc., which can be reduced or completely eliminated by gathering more 
information.   

The epistemic uncertainty in the analysis can be quantified by treating each input 
parameter as a basic random variable and applying statistical sampling techniques (e.g. Monte 
Carlo Simulations or Latin Hypercube Sampling) to estimate the variance of the analysis 
outputs (EDP, DM, DV) to changes in the input. However, because conducting a very large 
number of nonlinear RHAs of 3D dam–water–foundation rock systems is challenging, these 
methods are not commonly used for concrete dam analyses.  

A more practical alternative is to quantify the influence of epistemic uncertainty using 
a so-called tornado-diagram-analysis [129,130], wherein the change in output is measured for 
each uncertain input by varying it from a lower limit to an upper limit while keeping all other 
parameters constant. From the results, a tornado diagram (Figure 2.4) is developed, and the 
influence of individual uncertainties on the overall response can be evaluated. Similarly, 
parameters that have insignificant influence on the results can be identified and treated as 
deterministic in subsequent analyses.  
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Figure 2.4: Illustration of tornado diagram. Figure adapted from [109]. 
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3 Modeling of concrete dams by the direct FE method 

Having accurate and reliable analysis procedures for predicting the nonlinear earthquake 
response of concrete dams is essential for successful application of the PBEE framework. To 
avoid introducing unnecessary error in the results, the nonlinear FE model must consider all 
the significant factors in the earthquake response of concrete dams (see Part II). However, 
implementation of the large number of RHA required for PBEE also requires that the analysis 
procedure is efficient, robust, and for practical reasons, possible to implement with the 
various commercial FE programs preferred by dam engineers. The direct FE method 
developed in Parts I and II of this thesis meets all these requirements. In this chapter, 
recommendations for practical modeling of concrete dams by the direct FE method, 
emphasizing modeling of nonlinear mechanisms and energy dissipation (damping), are 
presented.  

3.1 Modeling of nonlinear mechanisms 

Linear analyses cannot predict the performance of concrete dams during ground motions that 
are intense enough to cause extensive cracking in concrete or initiate other mechanisms of 
nonlinear behavior. Examples of such nonlinear mechanisms are: cracking in the dam 
concrete [8,82,131]; opening, closing and sliding of vertical contraction joints [83,85,132]; 
sliding and separation at lift joints and at concrete–rock interfaces [84,133,134]; relative 
movement of discontinuous rock wedges in the foundation [36,86]; and possibly, separation 
of water from the upstream face of the dam causing cavitation [87].  

The study of these mechanisms and their influence on dam response is a vast field 
with extensive literature. In this section, the discussion is limited to a brief introduction to 
how the most influential mechanisms can be practically modeled in the direct FE method 
using commercial FE programs. These findings will then be utilized in the example nonlinear 
analysis of an actual arch dam presented in Chapter 4. 

3.1.1 Cracking of concrete 

Concrete dams are designed to resist static loads primarily through compressive stress fields 
that are much below the compressive strength of concrete, and with little or no tensile 
stresses. However, intense ground motions are likely to induce tensile stresses in the dam that 
exceed the low tensile resistance of the unreinforced mass concrete used in dam construction, 
typically around 10% of the compressive strength. Thus, cracking of concrete is an important 
mechanism to consider when evaluating the seismic safety of concrete dams. 

The two most common methods for modeling crack propagation in concrete dams are 
the discrete crack model and the smeared crack model (Figure 3.1). Each of these are briefly 
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presented below; the reader is referred to the review by Bhattacharjee and Léger [135] for a 
more comprehensive discussion.  

 

Figure 3.1: Two approaches to modeling crack propagation in FE models of concrete  
dams: (a) discrete crack model based on the Extended Finite Element  

Method (XFEM), (b) smeared crack model.  

3.1.1.1 The discrete crack model 

Early studies of cracking in concrete dams employed linear fracture mechanics theory and the 
discrete crack model [136] applied to 2D gravity dam models [137,138]. Modeling of discrete 
cracks would appear to be a physically realistic approach that can explicitly consider 
penetration of water in the crack, uplift pressure on crack-open surfaces, aggregate interlock 
at rough-crack surfaces, opening and closing of cracks, and impact and sliding of sections of 
the dam after extensive cracking. However, the approach is computationally challenging 
because the finite element mesh is redefined at each time step, and the crack propagation is 
strongly dependent on the size, shape, orientation and order of finite elements in the mesh; 
thus the results are not unique.  

The preferred way to model discrete crack propagation today is the Extended Finite 
Element Method (XFEM) [139] that allows cracks to propagate through the finite elements, 
and hence does not require modification of the FE mesh. This is achieved by adding 
enrichment functions to the finite element approximation to account for the presence of a 
crack that can propagate arbitrarily through the elements. The XFEM has been employed to 
study the nonlinear earthquake response of both gravity dams and arch dams [131,140,141]; 
however, most current implementations of XFEM do not allow for multiple cracks to form 
within any single region, which is a significant limitation for practical analysis of concrete 
dams where the crack pattern is not known prior to the analysis.  

3.1.1.2 The smeared crack model 

To overcome the aforementioned difficulties encountered in the discrete crack model, the 
fracture can instead be idealized as "smeared" over the finite elements or over a certain 
bandwidth of the element. The smeared crack model  [142] employs a suitable constitutive 
model to describe the crack initiation and the softening response of concrete during crack 

(a) (b) 
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propagation. After initiation of the fracture, the constitutive relation is changed from the 
original pre-crack relation to an updated damage relation, usually based on nonlinear fracture 
mechanics theory [143]. This eliminates the need for remeshing as the only factor requiring 
updating is the constitutive relationship, thus making it computationally attractive, but with 
the disadvantage that it can cause diffuse crack patterns and is unable to provide information 
about the physical dimensions of the crack. Various implementations of the smeared crack 
model have been used to study crack propagation in both 2D gravity dam systems 
[8,12,82,140] and 3D arch dam systems [131,144]. Most commercial FE programs have one 
or more variations of the smeared crack model available. 

The plastic damage model for cyclic loading of concrete proposed by Lee and Fenves 
[82] is a variation of the smeared crack model. Several features of this model have made it 
attractive for earthquake analysis of concrete dams. By keeping track of tensile damage and 
compressive damage through two damage variables td  and cd , the complex stiffness change 
in concrete during cycling loading (Figure 3.2a) – where the stiffness in compression is 
recovered when a crack closes, but the stiffness in tension is not – can be simulated. The 
model also allows for the conceptual separation of the behavior in tension into two parts: 
linear stress–strain relation before the tensile strength, tf , is exceeded (Figure 3.2b); and 
softening behavior after crack initiation described by fracture mechanics theory relating 
stresses to crack opening displacements cru  (Figure 3.2c). This approach to defining the 
behavior after crack initiation offers two important advantages. First, the dissipated fracture 
energy per unit length of crack remains independent of the FE mesh, thus ensuring that the 
results are less sensitive to mesh size [82,143]. Second, it introduces the concept of the 
specific fracture energy for concrete, FG , defined as the area under the stress–crack opening 
displacement curve (Figure 3.2c). The two significant material parameters for this model, the 
tensile strength tf  and specific fracture energy FG , can both be determined experimentally: 

tf  from a direct tensile test or splitting tensile test [145], and FG  from a wedge splitting  
test [146,147].  

Experimental tests have shown that the strength of mass concrete increases at higher 
strain rates, which can be modeled by increasing the static fracture parameters [145,147]. 
However, there is no clear consensus in the literature on what is an appropriate value for such 
dynamic magnification. Because of the high uncertainty in specifying material parameters for 
cracking models, the sensitivity of the results to the selected values should always be checked.  
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Figure 3.2: (a) Softening response of concrete under uniaxial cyclic loading; (b) linear stress–strain curve for 
pre-failure response; (c) post-failure stress–crack opening displacement curve, where the area under the curve is 

the fracture energy FG . Figure adapted from [147]. 

3.1.2 Opening and closing of vertical contraction joints 

Vertical contraction joints between cantilevers, which are grouted possibly with shear keys, 
are unable to resist any significant net tension in the arch direction, and are therefore likely to 
open and close during intense ground motions. This nonlinear response mechanism affects the 
dam response in two ways: (1) opening of a joint temporarily reduces the resistance in the 
arch direction, causing an increase in flexural stress and possibly horizontal cracking of 
cantilevers, (2) repeated opening-closing may cause compression failure of the joint. Model 
tests have demonstrated that these effects can have significant influence on the dynamic 
response of arch dams [83]. 

 Several numerical formulations are available to model contraction joints; frequently 
used are discrete joint elements [10,11,85], or a contact formulation at the surfaces between 
cantilevers [7,141,148]. Opening and closing of the joint in the normal direction may be 
specified by a zero-tensile strength master-slave contact relation with a pressure-overclosure 
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relationship (Figure 3.3a) to prevent node penetration to prevent node penetration [75]. 
Alternatively, the joint failure under combined normal and shear forces can be modeled by a 
traction separation law based on nonlinear fracture mechanics theory. In the tangential 
directions, shear keys can be modeled by very stiff linear springs; if shear keys are not 
present, frictional sliding can be modeled by the Mohr-Coulomb friction criterion (Figure 
3.3b): tan cτ σ φ= + , where τ  is the shear stress, σ  the normal stress, and the material 
parameters φ  and c  represents the fiction angle and cohesion of the joint, respectively.   

 

Figure 3.3: (a) Exponential pressure-overclosure relation for normal contact in contraction joint, where 0c  is the 
clearance at zero pressure and 0p  the pressure at zero opening. (b) Mohr-Coulomb friction criterion.  

Figure adapted from [75]. 

3.1.3 Sliding and separation at lift joints and concrete-rock interfaces 

The properties of lift joints and concrete–rock interfaces are greatly influenced by how the 
surface was prepared before pouring the next concrete lift. Even with good preparation, the 
strength and fracture properties at these joints are usually much lower than values for mass 
concrete [133,149,150]. Thus, cracks are likely to form along these joints rather than through 
the mass concrete.  

 Lift joints and concrete–rock interfaces can be modeled by joint interface elements 
[84,151] or by a contact formulation. The failure of the joint can be defined by a traction-
separation law, with the residual strength described by the Mohr-Coulomb friction criterion. 
However, the high degree of uncertainty regarding the properties of lift joints and concrete–
rock interfaces – such as tensile strength, fracture energy and roughness – makes it difficult to 
specify material parameters for these models with confidence. Thus, sensitivity analyses 
should always be conducted.  
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3.1.4 Discontinuities in the foundation rock 

The foundation near a dam behaves nonlinearly because it is often fractured and 
discontinuous, with weak planes permitting sliding and separation of rock masses at these 
surfaces. During an earthquake, the increase in forces transmitted to the foundation from the 
dam may initiate shear failure along these weak planes.  

 Planes of weakness in the foundation rock can be modeled using nonlinear joint 
elements [84,151], or assemblages of individual rock wedges can be modeled using the 
discrete element method (DEM) [86]. Such modeling is a very challenging problem, 
particularly because detailed information about subsurface rock conditions at dam sites is 
usually limited. Consequently, such detailed modeling is often excluded from the dynamic 
analysis of the dam–water–foundation system. However, given that experience shows that 
most major concrete dam failures have been initiated in the foundation [152], the potential for 
instabilities in the foundation should always be evaluated by supplemental analyses. 

3.2 Modeling of energy dissipating mechanisms  

The FE model of the dam–water–foundation rock system includes three main sources of 
energy dissipation that combine to form the total (linear) damping in the system: (1) material 
damping in the concrete and rock, (2) radiation damping in the semi-unbounded foundation 
and fluid domains, and (3) dissipation of hydrodynamic wave energy at the reservoir 
boundaries.  

3.2.1 Material damping 

Modeling of material damping in dam concrete and foundation rock is highly uncertain, even 
when restricted to the linear range of behavior. Phenomenological modeling of these 
mechanisms is not practical due to the lack of experimental data on the energy dissipating 
behavior of mass concrete and rock under seismic loading conditions [8]. As a substitute, 
highly idealized linear viscous damping models, such as modal damping or Rayleigh 
damping, are almost invariably used. It is widely accepted that these models do not represent 
any actual physical mechanism, but are instead used for their mathematical convenience.  

3.2.1.1 Modification of Rayleigh damping for nonlinear modeling 

In most commercial FE codes, the linear damping matrix c  is constructed by assembling 
damping submatrices cc  and rc  for the dam concrete and foundation rock, respectively, using 
mass- and stiffness proportional Rayleigh damping in the form 0 1a a= +c m k , where the 
Rayleigh coefficients 0a  and 1a  are determined from a viscous damping ratio specified for the 
dam concrete and foundation rock, separately, at a selected frequency. Usually, this frequency 
is chosen as the fundamental natural frequency of the dam–foundation rock or dam–water–
foundation rock system.  
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Although Rayleigh damping is commonly used for several classes of structures 
including buildings and bridges, it does not seem to be appropriate for continua of mass 
concrete and rock. Mass-proportional damping is inappropriate in the presence of sliding of 
the dam along the dam–foundation rock interface or cracks that extends through the dam 
thickness because it causes spurious damping forces that prohibit sliding and overturning of 
sections above an open crack [12,153,154]. Stiffness proportional damping is intuitively more 
appealing because the element damping forces are proportional to deformation rates in the 
element (specifically, the relative velocity between nodes). Stiffness proportional damping 
matrices for the dam concrete and foundation rock, respectively, are defined as: 1c c ca=c k  
and 1r r ra=c k . 

 In nonlinear RHA, this damping matrix should not be constructed using the initial 
stiffness matrix, 0k , because this can lead to transfer of tensile damping forces across open 
cracks that can falsely prohibit crack growth and cause diffuse crack patterns [8,154]. To 
overcome this issue, several solutions have been proposed: (1) setting the element damping to 
zero upon initial cracking of an element [12]; (2) using the tangent stiffness matrix instead of 
the initial stiffness matrix [8]; (3) capping the damping forces at a maximum value for each 
element [154]; or (4) using the degraded elastic stiffness matrix ( )el tk  [82] that is a function 
of the damage variables td  and cd  (Section 3.1.1.2). The latter of these approaches has the 
advantage that it eliminates transfer of tensile damping forces when a crack is open (d = 1), 
but allows for recovery of compressive damping forces upon closing of the crack (d < 1). 
Most commercial FE software has one or several of these options available; however, they are 
not always activated in the default settings. 

3.2.2 Radiation damping 

Seismic waves reflected from the dam to propagate outwards in the semi-unbounded 
foundation domain will not be reflected back unless there is a sharp impedance difference, 
which generally do not exist at dam sites. This mechanism for energy dissipation, called 
radiation damping, can be significant for seismic waves in the foundation domain, but less so 
for hydrodynamic waves in the fluid domain, except at high frequencies [2]. 

Presented in Figure 3.4 is the added damping due to dam–foundation rock interaction 
– which is primarily attributable to radiation damping – for 2D gravity dams and 3D arch 
dams supported on homogeneous foundations. Observe that radiation damping is a major 
source of energy dissipation for 2D gravity dam models unless the rock is much stiffer than 
concrete; however, for arch dams the effect is much less significant. The large added damping 
in the 2D system is caused by the assumption of homogeneous rock, which implies no wave 
reflections in the foundation domain. For other foundation idealizations (e.g. a layered 
halfspace) the radiation damping effects will be smaller due to multiple reflections and 
refractions of waves in the layered system.  
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Figure 3.4: Additional damping in the fundamental mode of vibration due to dam–foundation interaction for 2D 

gravity dams and 3D arch dams supported on foundation modeled as a homogeneous halfspace. Data for gravity 

dams are from Ref. [76] and arch dams from Ref. [106]. 

3.2.3 Energy dissipation at the reservoir boundaries 

The bottom of a reservoir upstream of the dam may consist of highly variable layers of 
exposed bedrock, alluvium, silt, and other sedimentary materials. Hydrodynamic wave energy 
is dissipated at these boundaries by two mechanisms: (1) water–foundation rock interaction 
causing radiation of wave energy to the underlying semi-unbounded foundation domain; and 
(2) energy absorption in the sediments deposited at the reservoir boundaries.  

 

 
Figure 3.5: Conceptual overview of two mechanisms for energy dissipation at reservoir boundaries: (1) water–

foundation rock interaction, (2) absorption in sediments deposited at the reservoir bottom. 

Most of the past investigations of the effects of sediments deposited at reservoir 
boundaries have been based on results from the substructure method, wherein water–
foundation rock interaction is ignored and sediments modeled implicitly by the one-
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dimensional wave reflection coefficient, α  [2,155]. The effects of sediments on dam 
response are re-investigated here by the direct FE method, where water–foundation 
interaction is rigorously included, and the sediments – with their thickness and extent – can be 
explicitly modeled by finite elements.  

Researchers have primarily investigated two types of material models for sediments: a 
two-phase fluid saturated poroelastic model, and a viscoelastic model. The most sophisticated 
of these is the two-phase fluid-saturated poroelastic material [49,50]. It has been demonstrated 
that sediments modeled in this manner have little influence on the response of concrete dams 
if the sediments are fully saturated, but show great influence if they are partially saturated, 
even for very small variations in the degree of saturation [50,156]. This two-phase poroelastic 
model is presently not ready for practical application, for two reasons: (1) the dam response is 
extremely sensitive to the degree to which sediments are saturated, a quantity that cannot be 
determined precisely; and (2) the model requires detailed information on sediment properties 
such as grain size, porosity and hydraulic conductivity, for which data is not available for 
reservoirs impounded behind dams. 

 A simpler model for sediments is a viscoelastic material [47,48], characterized by 
familiar parameters: modulus of elasticity sedE , Poisson's ratio sedν , material density  

sedρ , and material damping ratio. These properties have rarely been measured at dam sites, 
but data exists in the literature for river delta deposits and marine underwater sediments (e.g. 
[157]). Thus, the viscoelastic material model seems to be a pragmatic choice for modeling 
sediments in the direct FE method. However, it will be demonstrated next that sediments 
modeled in this manner may have very little influence on dam response.  

3.2.3.1 Gravity dams 

The effect of sediments on the dynamic response of a gravity dam is investigated first. 
Determined by the direct FE method, frequency response functions for the idealized 2D 
gravity dam on flexible foundation with full reservoir used in Section 5.4 of Part I are 
presented in Figure 3.6 for three values of the moduli ratio /f sE E . For each moduli ratio, 
two cases are compared: (1) no sediments at the reservoir bottom, and (2) sediment layer 
modeled as a viscoelastic material. The viscoelastic sediments have uniform thickness sedH  = 
0.1H, where H = 120 m is the height of the dam, sedρ  = 1600 kg/m3, sedν = 0.46, viscous 
damping = 10% and pressure wave velocity = 1700 m/s ( sedE  = 1.0 GPa); these properties are 
based on typical values for saturated underwater sediments [157].  

The results in Figure 3.6 demonstrate that sediments have little influence on gravity 
dam response to horizontal ground motion; the first resonant peak – which is the most 
significant in earthquake response of dams – is unaffected, but the response at higher 
frequencies is more noticeably affected. Relatively speaking, sediments have more influence 
on the frequency response functions for vertical ground motion. The discrepancy in response 
at the first two resonant frequencies is noticeable, although it is small, and the response at 



PART III: MODELING OF CONCRETE DAMS BY THE DIRECT FE METHOD 

124 
 

higher resonant frequencies is greatly influenced by sediments with the resonance peaks 
almost completely eliminated. 

 

Figure 3.6: Influence of sediments on the response of idealized gravity dam on flexible foundation rock with full 
reservoir due to horizontal and vertical ground motion. Results are plotted against normalized frequency 1/ω ω  

where 1ω  is the fundamental frequency of the dam on rigid foundation.  
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Figure 3.7: Influence of sediments on the displacement response of idealized gravity dam on  
flexible foundation rock with full reservoir due to the S69E and vertical components, separately,  

of the Taft ground motion; /f sE E  = 1.0.  

The influence of sediments on the earthquake response of the gravity dam is not 
significant however, as confirmed by the two sets of response histories presented in Figure 
3.7, which are essentially identical. Similar results have been reported by other researchers 
[48,158,159].  

3.2.3.2 Arch dams 

The effect of sediments on arch dam response is investigated next. Determined by the direct 
FE method, frequency response functions for Morrow Point Dam (properties described in 
Section 5.2.1 of Part II) are presented in Figure 3.8 for two cases: (1) no sediments at the 
reservoir boundaries, (2) sediment layer modeled as a viscoelastic material. The sediments 
have uniform thickness sedH  = 0.1H, where H = 142m is the dam height, sedρ  = 1600 kg/m3, 

sedν = 0.46 and viscous damping = 10%; two values for the pressure-wave velocity are 
considered, 1400 m/s ( sedE  = 0.68 GPa) and 1800 m/s ( sedE  = 1.12 GPa). The results 
demonstrate that, just as in the case of gravity dams, sediments have small influence on the 
dam response: the first two resonant peaks due to ground motions in the stream and cross-
stream directions, and the first resonant peak due to vertical ground motion, are essentially 
unaffected, but responses at higher resonant frequencies are more noticeably affected. Where 
differences are noticeable, ignoring sediments tends to be a conservative assumption. 

The overall influence of sediments on earthquake response of the arch dam is not 
significant however, as demonstrated by the two sets of displacement and acceleration 
response histories presented in Figure 3.9, which are nearly identical. 
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Figure 3.8: Influence of sediments on the response of Morrow Point Dam on flexible  
foundation rock with full reservoir subjected to stream, cross-stream and vertical ground motions.  

 

Figure 3.9: Influence of sediments on the earthquake response of Morrow Point Dam on flexible foundation 
rock with full reservoir subjected to the S69E, S21W and vertical components, applied simultaneously, of the 

Taft ground motion.  
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3.2.3.3 Can sediments be ignored? 

The preceding results indicate that the influence of sediments at the reservoir boundaries – 
modeled as a viscoelastic material – has negligible influence on the response of gravity dams 
as well as arch dams. Because water–foundation interaction and the associated radiation 
damping is included in the analysis, the additional loss of vibration energy due to sediments is 
apparently of little consequence. Thus, at the present time, it seems reasonable to ignore 
sediments in analysis of dam–water–foundation systems by the direct FE method. 

This conclusion may seem to contradict earlier results obtained by the substructure 
method, which found that sediments may influence dam response significantly [2,155]. 
Because water–foundation interaction (and the associated radiation damping) is ignored in the 
substructure method, the loss of vibration energy associated with wave absorption in the α -
model apparently becomes significant. 

3.2.4 Calibration of damping values 

Damping in the numerical model for the dam–water–foundation system should be consistent 
with measured values at the dam determined from low-amplitude motions – within the linear 
range of response – recorded during forced vibration tests, ambient vibrations or small 
earthquakes. Obviously, these measured values represent the overall damping in the system, 
including material damping, radiation damping, and energy loss at the reservoir boundaries; 
experimental data on the contributions of individual sources is generally not available.  

Summarized in Figure 3.10 are data for damping "measured" at 32 concrete dams 
determined by forced vibration tests and ambient vibration measurements [80,160,161]. Both 
gravity dams and arch dams covering a wide range of system parameters are included. The 
overall damping values measured at these dams are all in the range of approximately 1–5%. 
These comprehensive data lead to an important conclusion: overall damping in the numerical 
model should generally not exceed 5% unless a larger value was "measured" at the particular 
dam. In contrast, the current practice of specifying a viscous damping ratio of 5% for the 
concrete dam and a similar value for the foundation domain will lead to damping in the range 
of 10–15% in the overall dam–water–foundation system [76,106]. Thus, this current practice 
of choosing damping values should be abandoned because it will underestimate the 
earthquake response of dams. 

Material damping in the numerical model is usually specified separately for the two 
substructures, dam and foundation; however the contributions from energy loss at the 
reservoir boundaries and radiation damping are not known prior to the earthquake analysis of 
the dam. It is therefore not possible to know in advance the damping values that should be 
specified for the two substructures to achieve a target value of, say, 5% overall damping. 
Thus, material damping in the two substructures should be determined by trial and error to 
achieve an overall damping consistent with the target value. The overall damping in the 
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numerical model can be determined from frequency response functions or system 
identification techniques applied to the response histories.  

 

Figure 3.10: Measured damping at 32† concrete dams during forced vibration field tests and ambient vibration 
measurements, compiled from Refs. [80,160,161]. The range for each dam shows the minimum and maximum 

damping values measured at the first few (1-5) resonant frequencies.  

Based on a sensitivity study conducted during this thesis (not included here) and 
reported cases in the literature, it is found that specifying damping in the range of 1–2% for 
the dam concrete and 1–4% for the foundation rock is likely to lead to overall damping in 3D 
analysis models is consistent with the range of measured values in Figure 3.10. For example, 
viscous damping ratios of 1% and 3% for the dam and foundation, respectively, in the case of 
Mauvoisin Dam; 2% and 4%, respectively, for Pacoima Dam; and 1% and 2%, respectively, 
for Morrow Point Dam, combined to provide damping in the overall dam–water–foundation 
system that was consistent with measured damping for these dams: 2–3% for Mauvoisin Dam, 
6–7% for Pacoima Dam and 1.5–4% for Morrow Point Dam. Responses computed from the 
numerical models for Mauvoisin Dam and Pacoima Dam were in good agreement with 
motions recorded during small earthquakes at these two dams [79]. More recent examples 
include analyses of Tagokura gravity dam (1% in dam, 0% in foundation) and Kurobe arch 
dam (1% in dam, 0% in foundation) [98]. 

Limiting the overall damping to less than 5% in 2D numerical models is very difficult 
because of the large amount of radiation damping associated with 2D homogeneous, semi-
unbounded foundation models (Figure 3.4). Presented in Table 3.1 are examples of total 

                                                 
† Four data points that were deemed inaccurate in Ref. [160] due to excessive modal interference in the dam 
response are excluded from the data set. 
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damping in a 2D model of Pine Flat Dam computed by the substructure method [17] for 
several values of the parameters that characterize energy loss in the system: material damping 
in the dam, sζ ; material damping in the foundation, fζ ; the moduli ratio of the foundation to 
the dam concrete, /f sE E ; and the reservoir bottom reflection coefficient α , which is 
computed based on rock properties alone. For example, specifying 2% damping in the dam 
and 2% for the foundation domain (Case 2 in Table 3.1) leads to overall damping of 
approximately 10% in the 2D numerical model, which is much higher than the 2–4% damping 
"measured" at the dam during forced vibration tests [162].  

Observe from Table 3.1 that it is not possible to achieve consistency with the 
measured damping for Pine Flat Dam unless the foundation is much stiffer than concrete and 
essentially zero material damping is specified in the dam as well as the foundation. Thus, for 
final design analysis, 2D numerical models may have to be abandoned in favor of 3D models, 
which also permit realistic modeling of the 3D geometries of gravity dams.   

Table 3.1: Overall damping resulting in a 2D numerical model of Pine Flat Dam computed by the substructure 
method for several values of the parameters that characterize energy loss in the system.  

  Dam Foundation rock Reservoir bottom Overall damping 

Case sζ   /f sE E  fζ  α     

1 5% 1 5% 0.68 13% 
2 2% 1 2% 0.68 10% 
3 0% 1 0.5% 0.68 8.5% 
4 0% 2 0.5% 0.77 5.0% 
5 0% 3 0.5% 0.80 3.7% 
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4 Nonlinear earthquake analysis of Morrow Point Dam 

The direct FE method developed in Parts I and II of this thesis has been proposed as a tool for 
conducting the large number of RHAs required for PBEE of concrete dams. In this chapter, 
the capabilities of the direct FE method to conduct such analyses are demonstrated by 
performing a nonlinear earthquake analysis of an actual arch dam using the commercial FE 
code ABAQUS [75]. A step-by-step procedure for how to use the direct FE method with any 
FE program is presented, example outputs from the nonlinear RHA of engineering interest are 
shown, and use of the direct FE method as a tool for PBEE of concrete dams is discussed.  

4.1 System and ground motion 

4.1.1 FE model of dam–water–foundation rock system 

Chosen for the example analysis is the 142m high Morrow Point Dam. The FE mesh of the 
dam, foundation rock and fluid shown in Figure 4.1 includes 4,196 solid elements for the dam 
(with four elements through the dam thickness), 14,175 solid elements for the foundation 
domain, and 9,200 acoustic elements for the fluid domain. A tie constraint couples 
accelerations with hydrodynamic pressures at the dam–water and water–foundation rock 
interfaces, and standard viscous dampers are included at all outer boundaries to model the 
semi-unbounded extent of the foundation and fluid domains. The overall dimensions of the 
FE model are 700m x 700m x 400m, corresponding to approx. 5H x 5H x 3H, where H  is the 
height of the dam.  

The elastic material properties for the dam–water–foundation rock system are the 
same as those in Section 5.2.1 of Part II of this thesis, but for two exceptions: (1) sediments at 
the reservoir bottom and sides are not included because their effects on the dynamic response 
of arch dams are negligible (Sec. 3.2.3); (2) material damping in the dam and foundation is 
modeled by stiffness proportional damping using the degraded elastic stiffness matrix instead 
of the initial stiffness (Sec. 3.2.1.1). The damping coefficients 4

1 1.1 10ca −= ×  and 
4

1 2.2 10ra −= ×  were chosen to give 1% damping in the dam and 2% in the foundation at the 
fundament vibration period of the dam–water–foundation system. With these values, the 
overall damping in the system is within the range of 1.5–4% damping measured at the first 
few resonant frequencies during forced vibration tests in the 1980s [104].   
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4.1.2 Nonlinear modeling parameters 

Included in the numerical model are several nonlinear mechanisms based on the review in 
Section 3.1. Opening and closing of contraction joints (Figure 4.1a) is modeled using the  
"general contact" model in ABAQUS, with properties in the normal direction is specified by a 
zero-tensile-strength contact constraint with an exponential pressure-overclosure relationship 
given the following properties: initial clearance 0c  = 0.1 mm and contact pressure at zero 
opening 0p  = 5 MPa. Morrow Point Dam was constructed with large and frequent shear keys 
that limit relative tangential movements between cantilevers unless the joint opens more than 
approximately 150 mm (6 inches) [163]. These are modeled by linear springs given very high 
stiffness to effectively prevent tangential slip at the joint.  

 
Figure 4.1: (a) Morrow Point Dam showing location of contraction joints; (b) FE model of dam; (c) FE model of 

water in reservoir; (c) FE model of foundation rock.  

The dam–foundation rock interface is approximately modeled using a zero-tensile-
strength contact constraint to allow opening and closing of this joint, but relative tangential 
sliding is prevented using linear springs with high stiffness. For simplicity, the effects of 
weaker planes along lift lines in the dam are not modeled. 
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Cracking of the dam concrete is modeled by the Lee–Fenves concrete damage model 
[82], but excluding the possibility of compression failure after an initial analysis confirmed 
that the maximum compressive stresses are much lower than the compressive strength of 
concrete. The tensile fracture properties for this model (Figure 4.2) are based on typical 
values for dam concrete [135,164]: tensile strength, tf  = 2.5 MPa and specific fracture energy 

FG  = 250 N/m. These static values are increased by a dynamic magnification factor of 1.20 to 
represent the effects of higher strain-rates in the dynamic analysis; thus ,t dynf  = 3.0 MPa and 

,F dynG  = 300 N/m.  

The nonlinear dynamic analysis is conducted in ABAQUS/Standard using the implicit 
HHT-alpha [66] time integration scheme and an automatic time step control that changes the 
time increment depending on the convergence rate of the solution. Convergence is checked at 
the end of each time step as the analysis progresses, and in addition, the energy balance error 
[8] is controlled at the end of the analysis to ensure that the overall solution remained stable.  

 
Figure 4.2: Stress-displacement curve for concrete in tension (static values). 

4.1.3 Static and dynamic loads 

An initial static analysis is conducted using a model with outer boundaries of the foundation 
domain fixed. Gravity loads are applied to the dam cantilevers first, then the reservoir is 
filled, and hydrostatic pressures applied; uplift pressures at the dam–foundation interface are 
not modeled. The state of the dam and foundation domain at the end of this static analysis is 
recorded to define the initial state for the nonlinear dynamic analysis.  

The free-field control motion, ( )k
ga t , specified at the surface of the foundation domain 

(at the level of the dam abutments) is defined in the stream, cross-stream and vertical 
directions by the S69E, S21W and vertical components, respectively, of the Taft ground 
motion. Each component of ground motion is amplitude-scaled by a factor of 2.0, 
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corresponding to a PGA of approximately 0.35g for the S69E component†. From the specified 
control motions, effective earthquake forces at the bottom and side foundation boundaries are 
determined by the method described in Section 6.1 of Part II. 

4.2 Implementation of the direct FE method with ABAQUS 

The direct FE method has been developed in a form that can be implemented with any 
commercial FE code. Here, ABAQUS was chosen and used with a simple pre-processing script 
in MATLAB developed to interact with the input file to compute and store the effective 
earthquake forces. This procedure is organized in three phases: (1) an initial static analysis 
simulates the sequence of construction of the dam and filling of the reservoir; (2) 
deconvolution of the free-field control motion followed by analysis of a 1D foundation 
column determines the effective earthquake forces at the bottom and side boundaries of the 
foundation domain; and (3) nonlinear dynamic analysis of the FE model subjected to effective 
earthquake forces from Step 2, where the results from Step 1 provide the initial state of the 
system.  

Thus, the only addition to a "standard" dynamic analysis in ABAQUS is the use of the 
MATLAB script in Step 2, which conducts the following tasks (Figure 4.3): first, the mesh and 
material properties of the foundation domain are extracted from the ABAQUS input file. The 
earthquake ground motion is deconvolved, and effective earthquake forces are computed at 
the bottom boundary using the procedure in Box 4.1 of Part II. Then, following the procedure 
in Box 6.1 of Part II, a 1D foundation column is analyzed to determine free-field 
displacements over the height of the foundation that are used with 1D stress-strain relations to 
compute effective earthquake forces at the side boundaries at various elevations. Finally, 
these computed forces are mapped to each node on the four sides of the actual foundation 
domain mesh and stored for later use.  

This process for setting up the model for nonlinear dynamic analysis is general and 
can be implemented with any FE code. The process is entirely automated, and requires less 
than a few minutes to produce an updated input file that – together with the static state of the 
system – contains all information required for dynamic analysis. Thus, the analysis can easily 
be set up to run repeatedly for a large number of ground motions, or for the same ground 
motion for a range of input parameters, both of which are required to quantify uncertainty 
within the PBEE framework (Chapter 2). The resulting set of input files can then be deployed 
in batches to a high performance computing (HPC) service locally or in the cloud to save 
significantly on computational time.  

 

                                                 
† No attempt has been made to select ground motions consistent with the seismic hazard at the site of Morrow 
Point Dam; thus, the results presented in Section 4.3 are merely illustrative 
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Figure 4.3: Implementation of the direct FE method with a commercial FE program. 

4.3 Results from nonlinear dynamic analysis 

Commercial FE codes can provide results for any response quantity of engineering interest; 
examples of such output are presented in Figures 4.4–4.8. Displacement response histories in 
the stream, cross-stream and vertical directions at the midpoint on the dam crest are shown in 
Figure 4.4, and envelope values of the stream displacements over the length of the crest in 
Figure 4.5. Such results are of interest in evaluating the operability of appurtenant structures, 
such as mechanical equipment, gates and roadway bridges, over any spillway. 

To illustrate the nonlinear contraction joint response, two types of output are 
presented: response histories for the opening of two contraction joints at the crest level are 
plotted as a function of time in Figure 4.6, and envelope values of the maximum (over time) 
opening of all joints at the crest level is presented in Figure 4.7. The maximum opening of 
any contraction joint is approximately 25 mm (near the right abutment), which is much less 
than the 150 mm "depth" of the shear keys, implying that the shear keys remain  interlocked 
during the selected ground motion. Interestingly, the maximum joint opening occurs near the 
right abutment, and not at the center of the dam (Figure 4.7), which illustrates the significance 
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of the cross-stream component of ground motion for this particular system. Had the dam been 
excited only in the stream and vertical directions, it would have responded much more 
symmetrically due to its (almost) symmetric design. 

 

Figure 4.4: Displacements histories at center of dam crest in the stream, cross-stream and vertical directions, 
caused by simultaneous application of the S69E, S21W and vertical components of the Taft ground motion. 

 
Figure 4.5: Envelope values of maximum and minimum displacements along dam crest.  
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of areas to expect cracks in the dam. The tensile damage is greater on the downstream face of 
the dam and along one side of the dam–foundation interface (Figures 4.8a and b). The dam is 
beginning to show signs of a semi-circular crack pattern in the upper, central part of the dam, 
which has been observed as a potential failure mode during model studies of arch dams [165]. 
However, no single crack has yet formed through thickness of the dam (Figure 4.8c) to fully 
develop such a mechanism.   

 

Figure 4.6: Opening of contraction joints at two locations: at the joint near the right abutment where maximum 
joint opening occurs, and at the joint between the center cantilevers.  

 

 

Figure 4.7: Envelope values of maximum contraction joint opening along the dam crest.  
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Figure 4.8: Distribution of tensile damage on (a) upstream face, (b) downstream face,  

(c) section through center (crown) cantilever. 

Engineering demand parameters obtained from nonlinear RHA (such as the ones 
presented in Figures 4.4–4.8) can be systemized to quantify the performance of concrete dams 
over a wide range of possible scenarios. For example, by doing repeated nonlinear RHA for 
an ensemble of ground motions scaled to different intensity levels, the SDHC and fragility 
curves (Sections 2.3–2.4) for the structure can be computed for any EDP or DM of interest. 
The effects of uncertainty in input parameters can be estimated by repeated analysis of the 
system in a tornado-diagram analysis. As previously mentioned, such information is essential 
for making risk-informed decisions regarding the performance of dams.   

The total runtime for the analysis was approximately 15 hours on a local workstation, 
of which only a few minutes were required for setting up the effective earthquake forces. This 
runtime can be reduced significantly by deploying the analysis to a HPC service locally or in 
the cloud. Utilizing such services to run analyses with the direct FE method is especially 
attractive for conducting the large number of nonlinear RHAs required to consider the 
inherent uncertainties in ground motions and the material properties of the system.  
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5 Conclusions 

Using the direct FE method for conducting the large number of nonlinear RHAs required for 
PBEE of concrete dams has been proposed. The discussion and results presented in this part 
of the thesis can be summarized as follows:  

• The state-of-research for Performance Based Earthquake Engineering (PBEE) of 
concrete dams is behind that for other classes of structures such as buildings and 
nuclear power plants. Two factors that have contributed to this situation are: (1) the 
deficiencies in commonly used procedures for RHA of concrete dams; (2) the lack of 
knowledge about the nonlinear behavior and failure mechanisms of concrete dams 
during earthquakes. Development of the direct FE method addresses the first of these. 

• Sediments at the reservoir boundaries – modeled as a viscoelastic material – have 
negligible influence on the response of gravity dams as well as arch dams when water–
foundation rock interaction and the associated radiation damping is included in the 
analysis. Thus, at the present time, it seems reasonable to ignore sediments in analysis 
of dam–water–foundation systems by the direct FE method. 

• Based on "measured" data at 32 concrete dams, the overall damping in the numerical 
model of the dam–water–foundation system should not exceed 5% unless a larger 
value was "measured" at the dam to be analyzed. Specifying viscous damping ratios in 
the range of 1–2% for the dam alone and 1–4% for the foundation domain is likely to 
lead to overall damping that is consistent with the measure values.  Consequently, the 
common practice of specifying 5% viscous damping for the dam and a similar value 
for the foundation should be abandoned because it would significantly underestimate 
the earthquake response of dams. 

• The direct FE method has been developed in a form that can be implemented in any 
commercial FE code; an example analysis implemented in ABAQUS has been 
presented. The procedure is entirely automated, and requires less than a few minutes 
of computation to produce an updated input file that – together with the static state of 
the system – contains all information required for dynamic analysis. The effectiveness 
of the procedure makes it attractive for conducting the large number of nonlinear 
RHAs required to recognize the uncertainties in ground motions and the material 
properties of the system. 

 

Evaluating the seismic performance of concrete dams subjected to ground motions 
intense enough to cause damage is a very challenging problem. Although commercial FE 
programs contain models and material libraries capable of modeling a wide range of nonlinear 
mechanisms, experience in their application is limited. Quantitative measures for the extent of 
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damage – cracking in concrete, sliding at lift joints or at cracked interfaces, and opening of 
contraction joints – that dams can sustain while still retaining the impounded water are 
lacking. A great deal of innovative experimental, modeling, and analytical research must yet 
be done to accurately model the nonlinear behavior of mass concrete, rock, and joints; and 
extensive numerical parameter studies must be performed to better understand the factors that 
control the seismic safety of concrete dams.  
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CONCLUSIONS AND FUTURE WORK 

Summary and conclusions 

The work presented in thesis has developed a direct FE method for nonlinear earthquake 
analysis of two- or three-dimensional dam–water–foundation rock systems. The analysis 
procedure considers all the factors important in the earthquake response of dams: dam–water 
interaction including water compressibility and absorption of hydrodynamic waves energy at 
the reservoir boundaries; dam–foundation rock interaction including mass, stiffness and 
damping in the rock; radiation damping due to the semi-unbounded sizes of the foundation 
and fluid domains; spatial variation of the ground motions around the dam–canyon interface; 
and nonlinear behavior in the dam and adjacent parts of the foundation and fluid domains. 
The key contributions of each part of the work are summarized in the following. 

Part I presented the analytical framework underlying the direct FE method: treating 
dam–foundation rock interaction, dam–water interaction, and ultimately dam–water–
foundation rock interaction as different scattering problems wherein the dam perturbs 
assumed "free-field" states of the system. Applying these concepts to a bounded FE model 
with viscous-damper absorbing boundaries to model the semi-unbounded domains, the 
equations of motions for the direct FE method for earthquake analysis of 2D gravity dam 
systems were derived. A free-field control motion specified at the foundation surface defines 
the earthquake input to the procedure; such motions are standard output from PSHA. The 
motion at the bottom of the foundation rock is determined by deconvolution of this motion. 
Then, effective earthquake forces at the boundaries of the foundation and fluid domains are 
determined from analysis of two 1D free-field systems. Several examples were presented to 
validate the accuracy of the direct FE method for 2D systems covering a wide range of system 
parameters. The excellent agreement demonstrates that (1) the effects of dam–water–
foundation rock interaction are accurately modeled in the direct FE method, (2) the bounded 
foundation and fluid models with viscous-damper boundaries are able to simulate the semi-
unbounded extent of these domains, and (3) the earthquake excitation is properly defined by 
specifying – at the boundaries of the FE model – effective earthquake forces determined from 
a surface control motion.  

Part II generalized the direct FE method to 3D systems. While the fundamental 
concepts of treating dam–water–foundation rock interaction as a scattering problem are 
similar for 2D and 3D systems, the derivation of the method – but more significantly, its 
implementation – is more involved for 3D systems. Effective earthquake forces must now be 
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computed by analyzing a set of different 1D and 2D systems derived from the free-field 
foundation and fluid systems and applied to the boundaries of the main FE model. A wide 
range of numerical examples demonstrated the accuracy of the direct FE method when 
applied to analyze 3D problems. Even though the aforementioned sets of 1D and 2D analyses 
each require little computational effort and can be implemented without modifying the FE 
source code, the management and transfer of large amounts of data is challenging for large 3D 
models. To ease implementation of the direct FE method for such systems, several possible 
simplifications were evaluated, of which two were recommended: (1) using 1D free-field 
analysis to compute effective earthquake forces at the side boundaries of the foundation rock, 
and (2) ignoring the effective earthquake forces at the upstream fluid boundary. Through 
several numerical examples it was demonstrated that these approximations are appropriate as 
long as the sizes of the foundation and fluid domains are sufficiently large. This is normally 
the case when using viscous-damper boundaries because these always require large domain 
sizes to accurately model the semi-unbounded domains.  

 Part III of the thesis proposed using the direct FE method for conducting the large 
number of nonlinear RHAs required for PBEE of concrete dams. Even though the state of 
research for PBEE of concrete dams is lagging behind that for other classes of structures, 
interest in the topic for concrete dams is increasing. Practical implementation of two of the 
most uncertain aspects of nonlinear RHA of dams, modeling of nonlinear mechanisms and 
modeling of damping, were reviewed. It was found that (1) most commercial FE codes have 
ways of modeling the nonlinear mechanisms in concrete dams, the main challenge is the 
selection of parameters for these models; (2) viscoelastic sediments have little influence on 
dam response when water–foundation rock interaction is included in the FE model. As a 
practical simplification, the effects of sediments can therefore be ignored in the direct FE 
method; (3) measured damping compiled from 32 concrete dams suggests limiting the overall 
damping in the numerical model to no more than 5% unless there is measured data to justify 
higher values. Specifying material damping in the range of 1–2% in the dam concrete and 1–
4% in the foundation rock is likely to achieve damping consistency for 3D models. 

At the end of Part III, the direct FE method was implemented with the commercial FE 
program ABAQUS and used to compute the nonlinear response of an actual arch dam. The 
results demonstrate the capabilities of the direct FE method to compute the types of nonlinear 
engineering demand parameters required for PBEE of concrete dams. Utilizing cloud 
computing services – which are becoming increasingly available – to run analyses with the 
direct FE method is an attractive alternative for conducting the large number of nonlinear 
RHA required for PBEE of dams. 

Future work 

During the work with this thesis, several topics for future work were identified. Following is a 
summary of some of these topics.  
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• PBEE of concrete dams is still in its early days, and most of the work conducted has 
been focused investigations on a narrow subset of the overall framework. While such 
studies are useful, there is also a need for research applying all four phases of the 
framework in the same study. Such studies would be useful to evaluate the feasibility 
for adaption of the PBEE framework on an overall level, and identify subsets in each 
phase where focused investigations would provide the most benefit for developing the 
overall state-of-research. 

• The direct FE method developed in this thesis presents one solution for accurate and 
efficient earthquake analysis of concrete dams; obviously there are several others. An 
interesting project would be to develop a common set of standardized numerical 
examples that can be used by researchers and engineers for validation and verification 
of different parts of their own analysis procedures (e.g. examples to validate 
foundation modeling, hydrodynamic modeling, simple nonlinear examples, etc.). Once 
such a framework is available, different methods and models can be compared and a 
common understanding established in the dam engineering community as to how these 
methods work and what are their relative strengths and weaknesses.  

• Even though the numerical models for predicting earthquake response of concrete 
dams are becoming increasingly sophisticated, there remains a significant mismatch 
between the nonlinear behavior predicted by numerical models and the actual 
performance of concrete dams subjected to intense earthquakes. To explain this gap 
and give confidence in the output from numerical models, the numerical models must 
be validated against observed motions and performance of actual dams that have 
experienced strong earthquakes. Numerical benchmark workshops, such as those 
hosted by the United States Society on Dams, US Bureau of Reclamation and the 
ICOLD Committee on Computational Aspects of Dam Analysis and Design are great 
tools in this regard, and more of these should be conducted.  

• Development of ground motion selection and modification procedures is a broad field 
where extensive research has been conducted mostly in the context of multi-story 
buildings and nuclear power plants. These procedures must be extended for concrete 
dam analysis to account for: (1) three components of ground motion (two horizontal 
plus one vertical) acting simultaneously; (2) multiple vibration periods of interest; and 
(3) the fact that concrete dams are typically supported on firm bedrock, and not soft 
soils on which most of the available ground motions were recorded. 

• In the direct FE method, the ground motion at depth in the model was determined by 
deconvolution of a ground motion specified at a control point on the foundation 
surface; deconvolution assumes vertically propagating seismic waves. Overcoming 
this assumption requires research on how to develop realistic ground motions without 
making the inherent assumptions in deconvolution. Progress in this arena would be of 
significance not only in dam engineering, but also for other critical or expensive 
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facilities where soil–structure interaction is significant, such as offshore platforms and 
nuclear power plants. 

• Researchers and practicing engineers have investigated isolated aspects of the 
nonlinear behavior of concrete dams; however, much research is yet to be done on 
studying the overall nonlinear behavior of these structures under a variety of 
earthquake scenarios. Performing extensive numerical parameter studies of concrete 
dams – considering all factors that may significantly influence dam response – will be 
an important step in understanding the factors that control the nonlinear seismic 
behavior dams. 

• In addition to these numerical research objectives, there is a need for a major 
experimental research program for (1) investigating the nonlinear properties of mass 
concrete used in dam construction and its failure mechanisms under cyclic 
deformations at strain rates expected during seismic loading of the dam; and (2) 
performing shaking table tests and/or hybrid tests to verify the developed analysis 
models on a macro (i.e., dam level) scale.  
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NOTATION 

Roman symbols 
A tributary area of node on absorbing boundary 

k
ga  k -component of free-field ground acceleration at the foundation surface 

b  "damping" matrix of FE model of fluid 

c  damping matrix of FE model of dam and foundation rock 

pc , sc  = f pA Vρ  or f sA Vρ , coefficient for viscous damper at foundation boundary in the normal or 

tangential direction, respectively 

rc   = /A C , coefficient for viscous damper at fluid boundary 

fc , c r   matrix of damper coefficients for nodes on absorbing boundaries Γ f  and Γ r , respectively 

C   speed of pressure waves in water 

,c td d   damage index for concrete in compression and tension, respectively  

fE , sE   Young's modulus of elasticity for foundation rock and dam concrete, respectively 

f   excitation frequency, in Hz 

tf   tensile strength of concrete 
( )tf r   vector of (nonlinear) internal forces in dam and foundation rock 

( )|G X Y  probability that X exceeds a specified value given Y 

FG   specific fracture energy for concrete 

g   acceleration due to gravity 

h  "stiffness" matrix of FE model of fluid 

Hr  vector of dynamic forces associated with absorbing boundary Γ r  

H   height of arch dam 

k  stiffness matrix of linear part of FE model of dam and foundation rock 
0k   initial (linear) stiffness matrix  

( )el tk  [ ] 01 ( )d t= − k , the degraded elastic stiffness matrix 

L  length of bounded fluid domain 

m  mass matrix of FE model of dam and foundation rock 

n  outward normal vector to fluid domain 
tp   vector of (total) hydrodynamic pressures at FE nodes in fluid 
0
fP   effective earthquake forces on foundation boundary Γ f  
0
rP   effective earthquake forces on fluid boundary Γ r  

Q   fluid-solid coupling matrix 

r t   vector of total displacements at FE nodes in dam and foundation rock 
0rI  vector of displacements for incident seismic wave 

fR  vector of dynamic forces associated with absorbing boundary Γ f  

R  radius of semi-cylindrical canyon 

s  "mass" matrix of FE model of fluid 
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1( )aS T   spectral acceleration at the fundamental vibration period 1T  

cru   crack opening displacement in concrete cracking model 

pV , sV   velocity of pressure waves and shear waves, respectively, in foundation rock 

 

Nodal subscripts on matrices and vectors 
b   nodes on water–foundation rock interface, i.e., the reservoir bottom and sides 

f   nodes on absorbing boundary in foundation domain, Γ f  

h   nodes on dam–water interface, i.e., the upstream face of the dam 

r   nodes on absorbing boundary in fluid domain, Γ r  

 

Superscripts on matrices and vectors 
0   quantities in free-field foundation rock or free-field fluid systems 

a   quantities in auxiliary water–foundation rock system 

st   static forces 

t   total displacements, pressures or forces 

 

Greek symbols  
α  wave reflection coefficient for reservoir bottom materials 

Γ b   water–foundation rock interface 

fΓ , Γ r  absorbing boundaries in foundation and fluid domains, respectively  

hΓ  dam–water interface  

,ζ ζf s  viscous damping ratio of foundation rock and dam concrete, respectively 

,f sη η  hysteretic (rate-independent) damping factors of foundation rock and dam concrete, respectively 

η  = 2 / sfR V , dimensionless frequency (in Chapters 5 and 6) 

λ  wavelength of scattered waves  

( )Xλ  mean annual rate of exceedance of X 

,ν νf s  Poisson's ratio of foundation rock and dam concrete, respectively 

, ,ρ ρ ρf s  density of foundation rock, dam concrete and water, respectively 

σ  normal tractions on foundation boundary 

τ  tangential tractions on foundation boundary 

1ω  natural angular frequency of dam with empty reservoir on rigid foundation rock 

Ω  region interior of absorbing boundaries, i.e., the truncated FE model 
0Ω  region interior of fΓ  for free-field foundation-rock system 

Ωa  region interior of fΓ  and rΓ  for auxiliary water–foundation rock system 
+Ω  regions exterior of absorbing boundaries fΓ  and rΓ  

 

Abbreviations  
BEM  Boundary Element Method 
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CMS Conditional Mean Spectrum 

DRM  Domain Reduction Method 

DM Damage measure 

DV Decision Variable 

EDP Engineering Demand Parameter 

ESI Effective Seismic Input Method 

FEM Finite Element Method  

IM Intensity Measure 

IMHC Intensity Measure Hazard Curve 

UHS Uniform Hazard Spectrum 

PBEE Performance Based Earthquake Engineering 

PEER Pacific Earthquake Engineering Research Center 

PSHA Probabilistic Seismic Hazard Analysis 

PML Perfectly Matched Layer 

RHA Response History Analysis 

SDHC Seismic Demand Hazard Curve 
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APPENDIX A 

 

Selection of domain size for two-dimensional 

dam–water–foundation rock systems 

A.1  Introduction 

An important requirement to ensure accurate results when using the direct FE method for 
earthquake analysis of concrete dams is that the viscous-dampers boundaries at the 
truncations of the foundation domain absorb the outgoing (scattered) waves caused by dam–
foundation rock interaction. The primary factor determining the effectiveness of these 
boundaries is the size of foundation domain included in the FE model. In this appendix, 
guidelines for selecting appropriate domain sizes for 2D gravity dam systems are presented. 
First, the dynamic response of a rigid footing on a viscoelastic halfspace is analyzed, and then 
the response of a concrete gravity dam is investigated. 

A.2  Dynamic response of rigid footing on a viscoelastic halfspace 

Much research has been devoted to the developing generalized dynamic force-displacement 
relationships for rigid footings of various shapes bonded to a viscoelastic halfspace, as these 
play an important role in the study of vibrating machinery and soil–structure interaction [166–
168]. For long and relatively uniform structures, the footing can best be idealized as an 
infinitely long strip. If the dynamic loading is uniform in the longitudinal direction, a plain-
strain condition is appropriate, and the steady-state harmonic response is fully described by a 
set of dynamic flexibility (or compliance) coefficients. 

In this section, these dynamic flexibility coefficients are used to evaluate the 
performance of the viscous-damper absorbing boundary for different sized foundation 
domains. These results will subsequently be used to recommend an appropriate size of the 
foundation domain to be used for dam–water–foundation interaction analyses.  

A.2.1 Formulation of the problem 

The infinitely long rigid strip footing of width 2b perfectly bonded to a semi-unbounded 
homogeneous viscoelastic halfspace (Figure A.1a) is analyzed. The rigid footing has three 
degrees-of-freedom: horizontal translation (H), vertical translation (V) and rocking (M). The 
properties of the halfspace is defined by its shear modulus μ , Poisson's ratio ν , density ρ , 
and damping ratio ζ . If iP  and iΔ , , ,i V H M=  denotes the amplitudes of a unit harmonic 
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force and harmonic displacement, respectively, along the i-th DOF, the dynamic force-
displacement relationship can be written as: 

 
0

0 0

0 0

( ) 0 0
1

0 ( ) ( )

0 ( ) ( ) /
πμ

Δ

Δ =

Δ

V VV V

H HH HM H

R MH MM M

F a P

F a F a P

b F a F a P b

 (A.1) 

The coefficients of the dynamic flexibility matrix are complex-valued quantities with real and 
imaginary components 0 0 0( ) ( ) ( )ij ij ijF a f a ig a= +  that are function of the dimensionless 
frequency parameter  

 0 / sa b vω=  (A.2) 

The real and imaginary parts of these dynamic flexibility coefficients can be interpreted as 
measures of flexibility (i.e. inverse of the stiffness) and damping of the underlying halfspace, 
respectively. 

  
Figure A.1: (a) Cross section of rigid footing on viscoelastic halfspace;  

(b) FE model with characteristic width and height.  

The system is implemented in the FE program OPENSEES using a mesh with 15 
elements under the rigid strip footing, and gradually increasing element size towards the outer 
boundaries of the model (Figure A.1b). This mesh provides sufficient density to adequately 
model the range of frequencies considered in the analysis. Material damping is modeled by 
specifying ζ  = 2% Raleigh damping at every given excitation frequency; this unconventional 
choice was implemented to match the constant hysteretic damping model in the benchmark 
solution. Viscous dampers are applied on the bottom and side boundaries of the foundation 
domain, with the distance from the center of the footing to the boundaries ( xn b  and yn b ) 
varied in the analyses. 
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Figure A.2: Dynamic flexibility coefficients for rigid strip footing on viscoelastic homogeneous halfspace due to 
(a) vertical excitation, (b) horizontal excitation. ν  = 1/3; ζ  = 2%.  

The steady-state displacement response of the footing due to unit harmonic excitation 
is determined for vertical, horizontal and rocking vibration modes, and the procedure is 
repeated at every excitation frequency considered. From the displacement response, 
components that are in-phase (real) and 90 degrees out-of-phase (imaginary) with the input 
harmonic force are determined, and the results are compared with available semi-analytical 
benchmark solutions [168]. These benchmark results are denoted "exact" in Figures A.2– A.4. 
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A.2.2 Influence of domain size 

Results for the horizontal, vertical and rocking compliance are presented in Figures A.2 and 
A.3, for three domain sizes: 5b x 5b, 10b x 10b and 20b x 20b. The viscous-damper boundary 
generally performs well, with increasing accuracy at higher excitation frequencies and for 
larger domain sizes. This is consistent with results reported elsewhere [20]. The convergence 
towards the exact solution at higher frequencies is prominent for vertical and horizontal 
excitation of the footing (Figure A.2), but less so for rocking (Figure A.3). For rocking 
motion, the wave field is shallower and more of the energy is radiated through surface waves, 
even at high frequencies [169]. Because the viscous dampers are less effective in absorbing 
these waves, noticeable oscillations are seen in the results for all domain sizes and at all 
frequencies. These oscillations are caused by "standing waves" in the model, i.e., small 
resonance patterns that occur when the ratio of the horizontal distance to the excitation wave 
length approaches certain values. Such oscillations will be less of a concern for a transient-
type excitation. 

 

Figure A.3: Dynamic flexibility coefficients for rigid strip footing on viscoelastic homogeneous halfspace due to 
harmonic rocking motion. ν  = 1/3; ζ  = 2%.  

Table A.1, shows the mean relative error between the computed results and the 
benchmark solution for several domain sizes, computed as  

1
ˆ ˆe | ( ) / |

N

j j j jj
y y y

=
= −  where 

jy  is the computed value, ˆ jy  is the benchmark value at frequency jω , and N is the total 
number of sampling points, The accuracy of the viscous-damper boundary improves for all 
modes of vibration when the domain size is increased. "Acceptable" accuracy is obtained at 
most frequencies with a foundation size of approx. 10b x 10b or higher, with mean relative 
error around 5-8% for all modes.   
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Table A.1: Mean relative error compared to exact analytical solution, in %, for different domain sizes; error 
computed between 0a  = 0.25 and 2.0. ν  = 1/3, ζ  = 2%. 

Distance to 
boundary 

Re(FVV) -Im(FVV) Re(FHH) -Im(FHH) Re(FMM) -Im(FMM) 

2.5b 23.6 7 16.3 10.8 6.8 19.2 
5.0b 16.2 6.1 9.4 7.5 5.1 9.2 
7.5b 9.6 5.2 7.4 5.4 3.2 7.3 
10b 8.3 4.1 6.5 4 3.1 6.8 
15b 5.5 3.2 5.9 2.9 2.2 4.4 
20b 5.2 2.1 5.7 2.3 1.7 3.8 

 

A.2.3 Influence of aspect ratio on rocking compliance 

Rocking motion is a significant part of the overall dynamic response of stiff and heavy 
structures such as concrete gravity dams. Because rocking generally causes shallower wave 
fields than horizontal or vertical excitation, it is interesting to investigate whether acceptable 
accuracy can be obtained for a shallow domain.  

 

Figure A.4: Dynamic flexibility coefficients for rigid strip footing on viscoelastic homogeneous halfspace due to 
harmonic rocking motion; (a) 5=xn b ; (b) 10=xn b . For both sizes, ν  = 1/3, ζ  = 2%.  

Figure A.4 compares the results for rocking compliance for two horizontal domain 
sizes: narrow ( 5=xn b ) and wide ( 10=xn b ), and two vertical domain sizes: shallow 
( 5=yn b ) and deep ( 10yn b= ). The accuracy is generally much better for the wide model 
than for the narrow model; however, there seems to be no benefit of increasing the vertical 
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dimension beyond the shallow domain size. This indicates that a shallow and wide model will 
be the ideal aspect ratio for concrete gravity dam analyses, where rocking is important. 

A.3 Dynamic response of Pine Flat Dam  

The required size of the foundation domain to be used with the direct FE method developed in 
Part II of this thesis is investigated by analyzing the dam–foundation rock system shown in 
Figure A.5. The dam cross section is chosen to be that of Pine Flat Dam (Figure A.5a), which 
has a geometry representative of many concrete gravity dams. The concrete in the dam is 
assumed to be homogeneous, isotropic and linear elastic, in a state of plain strain, with 
modulus of elasticity sE = 22.4 GPa, density sρ  = 2483 kg/m3 and Poisson's ratio ν s  = 0.20. 
The foundation rock is assumed to be homogeneous, isotropic and linear elastic, in a state of 
plain strain, with modulus of elasticity f sE E= , fρ  = 2643 kg/m3, and ν f  = 0.33. The dam is 
assumed to be supported on the surface of the halfspace. Material damping in the dam and 
foundation is modeled in the direct FE method analyses by Rayleigh damping with  
ζ ζ=s f  = 2% damping specified in the two first periods of vibration for the dam–foundation 
rock system. For the substructure method analyses used as benchmark, material damping is 
modeled by constant hysteretic damping with equivalent hysteretic damping factor η ζ= 2 . 

 

Figure A.5: (a) FE model of dam cross section (Pine Flat Dam); (b) dam–foundation rock system with viscous-
damper boundaries to simulate the semi-unbounded foundation domain. 

The FE model for the dam cross section consists of four-node solid elements and has 
15 elements along the base and 30 elements along the height. The FE model for the 
foundation rock also consists of four-node solid elements and has a maximum element size 
chosen to be less than one-tenth of the shortest wavelength considered in the analysis [170]. 
Viscous-damper boundaries are applied at the bottom and sides of the model. The overall size 
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of the foundation domain in the horizontal and vertical directions are defined by xn H  and 

yn H  (Figure A.5b), where H is the dam height.  

Frequency response functions are computed by defining a unit-amplitude harmonic 
surface ground motion, computing effective earthquake forces following the procedure 
summarized in Boxes 3.1 and 3.2 of Part I, and analyzing the system for long enough time to 
determine the steady-state response. Results obtained using the substructure method – 
wherein the foundation rock is modeled rigorously as a semi-infinite halfspace – provide the 
benchmark for comparison. 

A.3.1 Influence of foundation domain size 

Frequency response function for the dam–foundation rock system subjected to horizontal and 
vertical ground motion are shown in Figure A.6. Results are computed for three different of 
foundation domain sizes: 4H x 2H, 8H x 4H and 16H x 8H. For all three foundation sizes, the 
direct FE method is able to closely represent the effects of dam–foundation rock interaction. 
The shape and amplitude of the response function is close to the benchmark solution for both 
horizontal and vertical excitation. The peak at the first resonance frequencies is overestimated 
for the smallest sized foundation domain, but the agreement increases for larger domain sizes. 
This is consistent with the results observed in Section A.2, where "standing waves" caused 
oscillations in the compliance coefficients when the ratio of the distance to the boundary to 
the excitation wave length approached certain values. Choosing a domain size of 8H x 4H 
seems sufficient to ensure that these oscillations have minimal influence on the dam response, 
and there is little additional benefit of further increasing the domain size to 16H x 8H.  

A.3.2 Influence of foundation domain aspect ratio 

Figure A.7 compares the accuracy of the direct FE method with viscous-damper boundaries 
for different aspect ratios of the foundation domain. The aspect ratio of the foundation domain 
clearly influences the results: there is little improvement by increasing the domain size from 
4H x 2H to 4H x 4H, and correspondingly, the results for 8H x 4H are almost identical to 
those for 8H x 8H. This lack of improvement in accuracy when increasing the vertical 
dimension occurs because the scattered wave field from the dam is largely caused by rocking 
motion, which generates a shallow wave field primarily propagating in the horizontal 
directions. Additional increase of the vertical dimension will therefore not provide much 
additional absorption from the viscous dampers. These results indicate that a vertical 
dimension between 2H and 4H will likely provide sufficient accuracy for practical analyses.  
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Figure A.6: Influence of foundation domain size on the accuracy of direct FE method in computing the response 
of dam on flexible foundation due to harmonic horizontal and vertical ground motion.  

ζ ζ=s f  = 2%; /f sE E  = 1.0. 
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Figure A.7: Influence of foundation domain aspect ratio on the accuracy of direct FE method in computing the 
response of dam on flexible foundation due to harmonic horizontal and vertical ground motion.  

ζ ζ=s f  = 2%; /f sE E  = 1.0. 

A.3.3 Influence of foundation stiffness 

To investigate how the accuracy of the direct FE method is influenced by changes in the 
stiffness of the foundation rock, results are presented in Figure A.8 for /f sE E  = 2, 1 and 1/4. 
The accuracy generally increases as the moduli ratio /f sE E  decreases, which for a fixed 
value of sE  implies increasingly flexible foundation rock. This is a somewhat counter-
intuitive result, as one might have expected the accuracy to worsen for a more flexible 
foundation because the effects of dam–foundation interaction are more prominent. However, 
the opposite occurs because the ability of the viscous dampers to absorb body waves improves 
when the ratio of distance to excitation wave length increases [20], and this ratio will decrease 
with increasing foundation stiffness fE . The same trend was observed in Figures A.2 and 
A.3, where the accuracy was seen to increase for higher values of 0a , which for a fixed 
frequency implies a more flexible foundation.  
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Figure A.8: Influence of foundation stiffness on the accuracy of direct FE method in computing the response of 
dam on flexible foundation due to harmonic horizontal and vertical ground motion. Size of foundation  

domain = 8H x 4H; ζ ζ=s f  = 2%. 

A.3.4 Influence of material damping  

Figure A.9 presents the response of the system for two values of material damping in the dam 
and foundation rock: ζ ζ=s f = 2% and ζ ζ=s f = 5%. Increasing the amount of material 
damping slightly improves the accuracy of the results from the truncated model because (1) 
the amplitude of the outward propagating wave is reduced before it hits the boundary leading 
to less energy for the viscous dampers to absorb; and (2) the wave reflected from the 
boundary is further damped before it reaches the structure. However, the trend is modest, so 
increasing the amount of material damping is clearly not a substitute for accurate modeling of 
the semi-unbounded foundation domain. 

 

Figure A.9: Influence of material damping on the accuracy of direct FE method in computing the response of 
dam on flexible foundation due to harmonic horizontal and vertical ground motion. Size of foundation  

domain = 8H x 4H; /f sE E  = 1.0. 
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A.3.5 Recommendations for domain size 

Based on the preceding results, the following conclusions can be stated: 

• An overall foundation-domain size of 8H x 4H is sufficient to ensure accurate results 
in the direct FE method when using viscous-damper boundaries to model the semi-
unbounded foundation domain. Further increase in the domain size does not improve 
the accuracy. 

• Increasing the vertical size of the foundation domain beyond a certain minimum value 
does not improve the results. These presented results indicate that a vertical dimension 
between 2H and 4H will likely suffice for practical analyses. 

• The accuracy is generally better for more flexible foundations because the 
performance of the viscous-damper boundary is inversely proportional to the 
foundation stiffness. For stiff foundations, the dimensions recommended above may 
have to be increased.  

• Increasing the amount of material damping in the foundation slightly improves the 
accuracy of the results, but the trend is only modest.  
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APPENDIX B 

 

The Domain Reduction Method for seismic input 

in soil–structure-interaction analyses 

B.1  Introduction 

The Domain Reduction Method, or DRM, [40] is a modular, two-step finite-element 
methodology developed for modeling response to earthquake ground motion in situations 
where large contrasts exist between the physical scale of the background model and a smaller 
localized feature. The method overcomes the problem of multiple physical scales by 
subdividing the original problem into two simpler ones. The first is an auxiliary problem that 
simulates the earthquake source and propagation path effects by using a model that 
encompasses the source and a simpler background structure where the localized feature has 
been removed. The second problem models the local site effects by using a set of equivalent 
localized forces derived from the first step as the effective seismic input. 

Although primarily developed for large scale geological simulations, the DRM is also 
directly applicable for soil–structure interaction (SSI) problems. SSI problems under external 
excitation such as earthquake motion may be viewed as a scattering problem, where a local 
feature perturbs the free-field motion in a larger soil domain. This concept was utilized to 
formulate the direct FE method in Parts I and II of this thesis. The local feature could in this 
context be any type of structure or local geological feature, either supported on, or embedded 
in the soil domain. The DRM then only requires that the free-field motion is known in a single 
continuous layer of elements interior of an absorbing boundary. 

For SSI analysis, the large-scale simulation approach has the advantage that the 3D 
wave field is directly available from the motions recorded in the first step. It is therefore not 
necessary to make simplifying assumptions restricting the shape of the wave field, such as the 
assumption of vertically propagating waves. However, the DRM can also be used for seismic 
input under more restrictive assumption, where the free-field motion is obtained from a 
simpler auxiliary problem. 

B.2  Formulation of method 

Consider the large, but finite, seismic region +Ω  that contains a seismic source eP  (Figure 
B.1a). Within the larger region +Ω  is a smaller region Ω  that contains a local feature such as 
a structure or a geological feature for which the seismic response is to be computed. The 
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material in the following derivation is for simplicity assumed to be linear elastic in both +Ω  
and Ω , however this assumption can be partly removed later. 

 

Figure B.1: (a) Original seismic regions partitioned into two substructures Ω  and +Ω  by a fictitious divide Γ ; 
(b) auxiliary free-field problem where localized features of the actual problem in Ω  have been replaced by a 

simpler background model over domain 0Ω . Figure from Ref. [40]. 

Presented herein in its original notation [40], the equations of motion for this system 
are governed by Navier's equations of elastodynamics, which when discretized spatially by 
finite elements can be expressed in partitioned form as 
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(B.1b)

where the matrices M , C  and K  are the mass, damping and stiffness matrices, respectively, 
and the subscripts , ,i e b  refer to nodes in the interior, exterior and on the boundary between 
them (Figure B.1a), respectively. To obtain the traditional form of the equations of motion, 
these equations are added to obtain 
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To transfer the seismic excitation to the interior region Ω , an auxiliary free-field 
problem is considered, in which the region Ω  is replaced by the simpler background region 

0Ω  that does not include the local feature (Figure B.1b). The outer region +Ω  remains 
identical. All variables in the auxiliary free-field problem will be denoted using the 
superscript 0. 

With the replacement of the interior region, the equations of motion for the auxiliary 
"free-field" problem in the outer region +Ω  can now be written as  

 
0 0 0 0

0 0 0

+ + + + + +

+ + + + + +
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Ω Ω Ω Ω Ω Ω

−
+ + =bb be bb be bb beb b b b

e e e eeb ee eb ee eb ee

M M C C K Ku u u P

u u u PM M C C K K
 

(B.3) 

where 0
bP  are the interface forces at the boundary Γ . Since there is no change in the exterior 

region +Ω , the mass, stiffness and damping matrices M , C  and K , and force vector eP , 
remains the same.  

From the second of these equations, the force vector eP  can be expressed as 

 0 0 0 0 0 0+ + + + + +Ω Ω Ω Ω Ω Ω= + + + + +e eb b ee e eb b ee e eb b ee eP M u M u C u C u K u K u  (B.4) 

One can solve for the displacement field for the complete domain by substituting 
Equation (B.4) into Equation (B.2). This is not a very practical approach however, as it 
requires that the free field motion 0

eu  to be computed and stored in the entire domain +Ω . 

To simplify, a substitution of variables is introduced to expresses the total variables eu  
as the sum of the free-field 0

eu  and the scattered field ew  due to the local feature: 

 0= +e e eu u w  (B.5) 

Substituting Equation (B.5) into Equation (B.2), and then substituting for eP  from 
Equation (B.4), the desired equation is obtained as 
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It can be seen that all the system matrices M , C  and K  are identical as before, 
however, the seismic forces eP  have now been replaced by the effective earthquake forces 

effP , given by the right hand side of Equation (B.6) 

 0 0 0

0 0 0

0
+ + +

+ + +

Ω Ω Ω

Ω Ω Ω

= − − −

+ +

eff
i

eff eff
b be e be e be e
eff

e eb b eb b eb b

P

P P M u C u K u

P M u C u K u

 (B.7) 

This formulation has the advantage that ≡effP  0 everywhere except in a single layer 
of elements adjacent to the boundary Γ (Figure B.2b), and that only the solution of the 
auxiliary free-field wave field is needed to determine the forces. Since the effective forces 

effP  depend only on the material properties of the exterior region  +Ω , the procedure is also 
fully applicable for cases where the material in the interior region Ω  behaves nonlinearly.  

The results from the above derivations are summarized in the two-step procedure 
shown in Figure B.2. In Step II, the original exterior region +Ω  is replaced by a truncated 
portion ˆ +Ω . The wave field in this region consists only of outgoing waves corresponding to 
the scattered motion ew  due to the presence of the local feature. Appropriate absorbing 
boundary conditions must therefore be applied at the boundary ˆ +Γ  to avoid spurious 
reflections back into the interior region. Hence, the dimensions of the truncated exterior 
region ˆ +Ω  are only determined by the performance of the chosen boundary conditions to 
eliminate these reflections. 

 

Figure B.2: Summary of the Domain Reduction Method: (a) Step I defines the auxiliary free-field problem for 
the background model. Resulting motion at the boundaries Γ , eΓ  and the region between them are recorded and 

used to evaluate effective seismic forces effP . (b) Step II, defined over the reduced region made up of Ω  and 
ˆ +Ω  (a truncated portion of +Ω ).The effective seismic forces effP  are applied within Γ  and eΓ .  

Figure from Ref. [40]. 

It is interesting to note that in the DRM, the location of the absorbing boundary needed 
to truncate the exterior region ˆ +Γ  is decoupled from the location of the seismic input. This is 
an advantage for SSI type analyses, since any type of absorbing boundary formulation can 
then be applied without having to allow for the incoming seismic motion to pass through the 
boundary. The Domain Reduction Method therefore represents a convenient way to apply 

(a) (b)
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seismic input in SSI analyses when the wave field is known beforehand at a predefined layer 
of elements encompassing a local region of interest. This is e.g., the case if the seismic input 
motion is obtained directly using large scale earthquake simulations, or if certain restrictions 
are imposed to simplify the shape of the wave field.  

When the exterior region is truncated by ˆ +Γ  in Step II, the accuracy is determined by 
the adequacy of the absorbing boundaries applied at ˆ +Γ  to absorb the scattered wave field  

ew . Since the wave field in the exterior region ˆ +Ω  in Step II consists only of outgoing waves, 
the wave field can be monitored to provide information about the dynamic characteristics of 
the local feature, and the performance of the absorbing boundaries. 

B.3  DRM for seismic input in SSI models 

Assume that the DRM is used to model the same dam–foundation rock problem from 
Appendix A (Figure A.5), where viscous dampers are used to model the unbounded extend of 
the foundation domain. The equations of motion for this system are given by Equation (B.6), 
The effective seismic input forces are given in terms of the free-field motion by Equation 
(B.7) and applied to a single layer of elements somewhere interior of the absorbing boundary 
between Γ  and Γ e   (Figure B.3).   

 
Figure B.3: DRM for seismic input to dam–foundation rock system.  

Viscous dampers are applied at the outer boundary of the exterior region +Ω . At this 
boundary, the viscous dampers must absorb the motion relative to the free-field motion, 
which by definition in the DRM formulation (Equation B.5) is equal to 0= −e e ew u u . This 
means viscous dampers with coefficients kAVρ  can be applied at the truncation boundary 
without further modification. 

Even though the formulation for the DRM seems very different from the direct FE 
method formulated in Part I, they are in fact quite similar when used for soil–structure 
interacting models: both formulations provide a method to apply effective earthquake forces 
to the model, and both allow for the outgoing (scattered) motion to be absorbed at the 
absorbing boundary. The advantage of the DRM is that it decouples the location of the 
absorbing boundary from application of earthquake forces, thus allowing advanced boundary 
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conditions to be used and the domain sizes to be reduced accordingly. However, two 
significant disadvantages are (1) implementation of DRM requires modification of the FE 
source code effectively limiting its application to users of LS-DYNA, the only FE code 
routinely used in dam engineering where DRM is available; and (2) specifying the seismic 
input for a combined dam–water–foundation rock system with small domain sizes is 
impractical because it requires auxiliary analysis of a complex water–foundation rock system 
and extensive book-keeping. For these reasons, the DRM was not chosen as the method for 
applying seismic input in the direct FE method developed in Part I and II of the thesis.  

B.4  Comparison of direct FE method to DRM 

To compare the DRM and the direct FE method, the dynamic response of Pine Flat Dam is 
computed by both methods. The FE mesh and material properties of this system are described 
in Section A.3 of Appendix A. The seismic input for the DRM is computed from Equation 
(B.7) with the free-field motions obtained from the same auxiliary analysis that is used for the 
direct FE method (described in Box 3.2 of Part I). This way, both methods are based on the 
same set of assumptions regarding the seismic wave field (vertically propagating waves). 

 

Figure B.4: Comparison of frequency response functions computed by the direct FE method and DRM for dam 
on flexible foundation rock due to horizontal and vertical ground motion. 2%ζ ζ= =s f .  

Frequency response functions for the dam computed by the two methods are compared 
in Figure B.4. The response computed by the direct FE method is essentially identical to that 
when using the DRM, only some insignificant differences exist because of the numerical 
discretization. This demonstrates the equivalency of the two methods when used to specify 
seismic inputs: the DRM will give identical results as the direct FE method when used to 
analyze the same dam–foundation rock system with the same boundary condition and free-
field motions based on the same assumptions. 
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APPENDIX C 

 

Computing frequency response functions  

in the time domain 

 

The frequency response functions for the dam response that are computed and compared to 
results from the substructure method in Parts I and II are dimensionless response factors that 
represent the radial acceleration at the crest of the dam to unit harmonic, free-field 
acceleration. The details of two procedures for computing these frequency response functions 
in the direct FE method are presented in this appendix, and both procedures are verified 
individually by comparing against independent solutions obtained using the substructure 
method.  

C.1 Frequency response functions by repeated steady-state analysis 

The first method to determine the frequency response function ( )H ω  for the system is to 
perform repeated steady-state analysis (Figure C.1): (1) first, the steady-state response nu  of 
the system to a single excitation frequency nf  is computed by solving the by equations of 
motion for long enough for steady-state to occur; (2) this analysis is repeated at a sufficient 
number of frequencies to generate a smooth frequency response function.  

 

Figure C.1: Schematic overview of procedure for computing frequency response  
functions by repeated steady-state analysis. 

This approach is straightforward, but because it requires repeated steady-state analyses 
of the system at a high number of frequencies, it becomes excessively time consuming for 3D 
dam–water–foundation rock systems that may easily have several hundreds of thousands of 
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finite elements. An alternative procedure that is much more computationally effective is 
presented next. 

C.2 Frequency response functions by Fourier analysis 

The dynamic response ( )u t  of a system can be expressed in the frequency domain as the 
product of the frequency response function for the system and the Fourier transfer of the 
applied excitation [67]: 

 ( ) ( ) ( )U H Aω ω ω=  (C.1) 

where ( )U ω  is the Fourier transform of the dynamic response ( )u t , ( )H ω  is the frequency 
response function (FRF), and ( )A ω  is the Fourier transform of the applied excitation ( )ga t . 
Rearranging Equation (C.1), an expression for the FRF for the system is obtained as 

 ( ) ( ) / ( )H U Aω ω ω=  (C.2) 

If the input and outputs signals were described by analytical expressions valid for all 
frequencies it would be possible to obtain the exact FRF from Equation (C.2). Such analytical 
expressions are rarely available except for very simple systems; thus, the above equation will 
normally provide a numerical estimate of the FRF which is valid only within a given range of 
frequencies. Such an estimate is obtained for the arch dam–water–foundation rock system 
using the following procedure (Figure C.2):  

1. The free-field control motion ( )ga t  is defined as a long series of continuous unit 
harmonic sine waves that has gradually increasing frequency. A sufficient number of 
frequencies are included in ( )ga t  to ensure that the system is excited adequately over 
the frequency range of interest between approx. 2 – 20 Hz.  

2. The dynamic response ( )u t , here selected as the radial acceleration at the crest of the 
dam, is computed by time-domain analysis of the FE model by the direct FE method.  

3. The Fourier transforms ( )A ω  and ( )U ω  of the input and output signals, respectively, 
are computed using the Fast Fourier Transform (FFT). 

4. The FRF for the dam response is computed from Equation (C.2).  

The advantage of this approach is that it requires only a single dynamic analysis, thus 
significantly reducing the computational effort compared to doing a repeated number of 
steady-state analyses. For example, it takes just under 3 hours to accurately compute the FRF 
for the arch dam–water–foundation rock system analyzed in Part II of this thesis between 2 – 
20 Hz using the Fourier analysis approach. In contrast, obtaining the same FRF using repeated 
steady-state analysis takes in excess of 12 hours. 
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Figure C.2: Schematic overview of procedure for computing frequency  
response functions using Fourier analysis.  

C.3 Verification of implementation 

Implementation of the two procedures for obtaining FRFs in the time domain is verified by 
computing the response of Morrow Point Dam alone on rigid foundation with empty reservoir 
and comparing against results obtained using the substructure method. The mesh and material 
properties for the dam are the same as those described in Section 5.2.1 of Part II. 

The results presented in Figure C.3 demonstrates that the two procedures for obtaining 
FRFs give near identical results, and that these results are very close to those obtained using 
the substructure method.  
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Figure C.3: Comparison of frequency response functions for the amplitude of relative radial acceleration at the 
crest of dam on rigid foundation with empty reservoir due to uniform stream, cross-stream and vertical ground 

motions. sζ  = 3%.  
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APPENDIX D 

 

Applying uniform ground motion in  

the direct FE method 

The response results presented in Section 5.3 of Part II for several dam–water–foundation 
rock systems were computed under the assumption that the ground motion ( )ga t  was uniform 
at the dam–foundation interface and water–foundation interface. For these analyses, the 
seismic input method proposed by Wilson [171] was extended and implemented to apply the 
earthquake excitation to the FE model. This method is derived below for the dam–water–
foundation rock system  

D.1 Equations of motion 

Consider the dam–water–foundation rock system (Figure 3.1 of Part II) whose equations of 
motion were given by Equation (3.1) in Part II. For convenience of notation in the subsequent 
derivation it is here assumed that the system is linear elastic with no material damping, thus 
reducing the governing equation for the dam–water–foundation rock system to: 

 T T

( )

( )

t t t
h b f

t t t
h b r

ρ

− +
+ =

+

m 0 k Q Qr r R
Q Q s 0 hp p H

 (D.1) 

If water–foundation rock is ignored upstream of the absorbing boundary rΓ  and the 
free-field foundation-rock motion 0r  is known, we can express the total motion tr  in terms of 
the displacements r  relative to the free-field motion 0r , i.e., 0t = +r r r . Rewriting Equation 
(D.1) and collecting terms that involve 0r  on the right hand side, the following equation is 
obtained: 

 
0 0 0

T T T T 0

( )

( ) ( )
h b ff

t t t
h b h br

ρ ρ

− + + −
+ = −

+ +

m 0 r rk Q Q mr kr RR
Q Q s p p0 h Q Q rH

 (D.2) 

This equation can be simplified when the free-field displacements 0
br  at the dam–

foundation interface are uniform. Under this assumption, the static rigid body motion of the 
dam is: 
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 0
d b =k r 0  (D.3) 

where dk  is the stiffness matrix for the dam alone. Furthermore, the equation governing 
displacements in the free-field foundation-rock system are 

 0 0 0
0 0 f+ =m r k r R  (D.4) 

where 0m  and 0k  are the mass and stiffness matrices, respectively, for the foundation rock 
alone. Using Equations (D.3) and (D.4) and cancelling terms, Equation (D.2) becomes 

 
0

T T T T 0

( )

( ) ( )
h b df

t t t
h b h b br

ρ ρ

− +
+ = +

+ − +

m 0 r rk Q Q PR
Q Q s p p0 h Q Q rH

 (D.5) 

where the effective earthquake forces 0
dP  applied to the dam nodes are  

 0 0 ( )d d b d ga t= − = −P m r m  (D.6) 

where  is the influence vector [67], and ( )ga t  is the free-field ground motion assumed at the 
dam–foundation interface.  

Substituting Equations (3.2a) and (3.4b) of Part II for fR  and t
rH , respectively, in 

Equation (D.6), and adding material damping and static forces to the formulation, gives the 
final equations of motion for the dam–water–foundation rock system with uniform excitation: 

 

T T

0st

0 T T 0
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t t

h b r
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ρ

+
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Q Q s p 0 b c p

rk Q Q PR
p0 h P Q Q r0

 (D.7) 

Comparing Equation (D.7) to Equation (3.6) it is seen that the change of variable 
0t = +r r r  in the dam and foundation rock has led to two changes: (1) the effective 

earthquake forces 0
fP  at the foundation boundaries have been replaced by the effective 

earthquake forces 0
dP  applied to the dam only; and (2) the effective earthquake forces 0

rP  at 
the fluid boundary have been supplemented by forces T T 0( )h b bρ− +Q Q r  applied to the dam–
water and water–foundation interfaces. These modifications allow for application of effective 
earthquake forces that is consistent with the assumption of uniform ground motion at the 
dam–foundation and water–foundation interfaces. 
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D.2 Verification of implementation 

Implementation of the method is verified by computing the response of Morrow Point Dam 
on rigid foundation with full reservoir, with mesh and material properties chosen as the same 
as those described in Section 5.2.1 of Part II. The results obtained using the method derived in 
Section D.1 are compared with independent results obtained by directly prescribing the free-
field displacements at the dam–foundation and water–foundation interfaces.  

 The frequency response functions for the amplitude of relative radial acceleration at 
the crest of the dam obtained by the two methods are presented in Figure D.1. The results 
obtained using Equation (D.7) leads to results that are essentially identical to those obtained 
by directly prescribing the free-field displacements for the system. The small differences in 
the results are due to the slight numerical differences associated with applying forces based on 
accelerations vs. directly prescribing base displacements.  

 

Figure D.1: Comparison of frequency response functions for the amplitude of relative radial acceleration at the 
crest of dam on rigid foundation with full reservoir due to uniform stream, cross-stream and vertical ground 

motions. sζ  = 3%; α = 0.80. 
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APPENDIX E 

 

Computing boundary tractions from  

1D stress-strain relations 

E.1 One-dimensional stress-strain relations 

The simplified 1D free-field analysis presented in Section 6.1 of Part II replaced the actual 
free-field foundation-rock system by a much simpler system (Figure 6.1b): a homogeneous or 
horizontally layered halfspace without the canyon topography. Under the assumption of 
vertically propagating seismic waves, this system reduces to a single column of foundation-
rock elements that only allows for shear and axial deformation (Figure E.1a). The boundary 
tractions for this system can be computed using standard 1D stress-strain relationships: 

 

xz x

du
n

dz
τ μ= ,                                 for x-component of ground motion 

yz y

dv
n

dz
τ μ= ,                                for y-component of ground motion 

,x x y y

dw dw
n n

dz dz
σ λ σ λ= = ,         for z-component of ground motion 

(E.1a) 

 

(E.1b) 

 

(E.1c) 

where kσ  and kzτ , ,k x y=  are the normal and tangential boundary tractions (Figure E.1b); 
, ,u v w  are the displacements in the x, y and z-direction, respectively; λ  and μ  are the first 

and second Lamé parameters for the foundation rock; and 1kn = +  or 1−  if an outward 
normal points in the positive or negative k-direction, respectively.  

Horizontal excitation will only produce tangential tractions because / 0dw dz = , and 
vertical motion will only produce normal tractions because / 0du dz =  and / 0dv dz =  
(Figure E.1a). From the boundary tractions kσ  and kzτ , nodal forces are computed by 
multiplying by the tributary area of each node. 

E.2 Verification of implementation 

Implementation of the method is verified by computing the surface response of the flat 
foundation domain of Figure 5.1 of Part II with the free-field control motion ( )k

ga t  defined at 
the surface by the S69E, S21W and vertical components of the Taft ground motion. Effective 
earthquake forces 0

fP  are computed from the procedures summarized in Box 4.1 of Part II at 



APPENDIX E 

184 
 

the bottom boundary and from a 1D free-field analysis (Box 6.1) with boundary tractions 
computed from Equation (E.1) at the side boundaries, and the motion at the surface of the flat 
foundation domain is determined.  

The results presented in Figure E.2 shows a near perfect match between the assumed 
free-field control motion and the computed motion at the surface of the flat foundation 
domain, thus verifying the implementation of the procedure. 

 

Figure E.1: (a) Deformation of foundation rock column due to vertically  

propagating SH- ,SV- and P-waves; (b) normal and tangential boundary tractions for foundation-rock element. 

 

 

 

Figure E.2: Results from Flat Box Test: comparison of 5% damped pseudo-acceleration response spectra  
of free-field control motion and motion computed at nodes on the flax box surface. 
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