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1 Background and research questions 
 

Short-term demand response from electricity consumers is important for deregulated 

competitive electricity markets to function properly.1 An active demand side that 

respond when wholesale prices vary, may contribute to efficiency and reliability, 

reduced price volatility, mitigation of exercise of market power, as well several other 

advantages in the electricity market. Despite this importance, many electricity markets 

are characterized by a rather low response from the demand side. One reason is that 

most consumers do not face time-differentiated prices that reflect the wholesale price 

variation; they have instead prices that are fixed for longer periods of time (weeks, 

months, years). Many of these consumers have chosen these fixed contracts voluntarily, 

for instance in order to ensure more stable and predictable prices. However, many 

consumers have not the possibility to choose differently if they are equipped with an 

electric metering system which can only measure accumulated electricity consumption. 

This metering system makes it impossible to charge the consumers by real-time prices 

corresponding to their actual real-time consumption. As a result, they lack incentives to 

respond to short-term market price fluctuations. This implies that their demand in the 

wholesale market is represented by price insensitive demand curves. 

Lack of demand response may have adverse implications. Electric generators with 

high costs may be utilized to cover demand during short-term peak price periods, even 

though many consumers would use less electricity if they were faced with the actual 

cost of their consumption. Similarly, because consumers neither increase consumption 

during short-term off-peak price periods, some generators are not utilized even though 

they may offer electricity at costs below what many consumers would be willing to pay 

if they had the opportunity to do so. This short-term inefficiency in allocation of 

resources may also have long-term impacts through inefficient investments in 

generation capacity. Moreover, low demand response, accompanied with the special 

                                                 
1
 “Short-term” in this thesis refers to an hourly time-scale, and short-term demand response refers to electricity 

consumption adjustments to prices that vary within the day, or short-term consumption changes as a result of 
incentive payments designed to induce reductions when needed, for instance during high price periods or during 
periods when the system is constrained.  
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properties of electricity as a commodity; non-storability, capacity constraints and long 

lead times for new capacity expansions, also contributes to volatile prices. Low demand 

response may furthermore make it easier and more profitable to exercise market power, 

which exacerbates price volatility even more. Increased price volatility increases 

uncertainties regarding long-run average rate of return on capacity investments which in 

turn may reduce the investment level and thus reliability of supply. High and 

unpredictable prices and increased probability for shortage of supply increase the risk of 

political intervention in the market. The likelihood of political intervention may further 

reduce the propensity for investments.  

Most Norwegian households are metered by their accumulated electricity 

consumption. This implies a disconnection between the wholesale market and the retail 

market in which households purchase their power. The rapidly changing costs of 

electricity are not signalled to the consumers, and, consumers’ willingness to pay for 

electricity is not reflected in the market, in the short term. This disconnection may be of 

increasing concern as the overcapacity from the regulated period is diminishing, and as 

Norway and the other Nordic countries now enters a period where tighter conditions 

may be experienced. If consumers instead face prices that are closer to the marginal 

costs of supply through time-differentiated tariffs, and are metered automatically, they 

have incentives to adjust their demand to the varying prices. New enabling technologies 

that can control appliances automatically, such as direct load control of water heaters 

and energy management systems, may further enhance households’ responsiveness to 

short-term price changes. With this infrastructure, information about wholesale prices is 

conveyed to the customers, they have incentives and increased ability to respond to the 

prices, and, information about their responses are conveyed back to the market. 

Increasing demand response in the electricity system by connecting the wholesale and 

the retail market this way may provide several benefits and mitigate the concerns 

described above.   

 

This thesis encompasses several topics. With the objective of studying the 

importance of demand response in the electricity market, it first details the above 

discussion by examining the Norwegian electricity market and by reviewing relevant 

literature. It describes the present wholesale and the end-user market, and discusses why 
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there is a lack of short-term demand response from households, how it can be increased, 

and potential benefits from this. It argues that short-term demand response in the 

electricity market is an important contributor to obtain and maintain an efficient and 

well-functioning market. It also surveys demand response experiments around the 

world. This survey indicates that households do respond when exposed to time-

differentiated prices, and that enabling technologies contribute to increase their 

responses.  

Many of the benefits from demand response programs are influenced by the extent 

to which consumption is adjusted. Estimates of the potential increase in demand 

response that may be achieved are necessary to compare benefits with costs associated 

with the introduction of automatic meter reading, time-differentiated tariffs and direct 

load control. Indications and expectations of Norwegian households’ demand response 

potential may be provided by examining other demand response programs and 

experiments. Such results and experiences enable evaluations on how tariffs, load 

control strategies, information and marketing campaigns, etc., may affect consumers’ 

electricity consumption. However, as will be seen, these estimates may vary due to e.g. 

experimental or region/country specific differences. The results are therefore not 

necessarily transferable to Norwegian conditions. This suggests it is also important to 

conduct own experiments which give the opportunity to evaluate the Norwegian 

demand response potential, and to compare obtained results with results from other 

similar experiments. Together, this information provides a basis for the development of 

effective instruments forming new demand response programs. 

The thesis further study Norwegian households’ demand response potential by 

analysing households participating in a large-scale demand response experiment called 

"End-user flexibility by efficient use of information and communication technology". In 

this experiment, electricity consumers (mostly households) were equipped with 

automatic meter reading and they were offered time-differentiation of both network and 

power tariffs, as well as direct load control of their water heaters. Hourly metering of 

each household’s electricity consumption and hourly measurements of temperature and 

wind speed, number of hours of daylight and household data from a survey, provide a 

large panel data set. In order to evaluate the households’ demand response potential, 

these data are analysed with statistical and econometrical methods.  
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The most important research questions analyzed here are: What is the load reduction 

potential from direct load control of residential water heaters? Which customers will 

choose time-differentiated tariffs; those who will adjust their consumption as a result of 

the new tariff, or those who already have a consumption pattern which make it 

favourable to choose the new tariff even without adjusting consumption (sometimes 

called free-riders)? What is households’ electricity consumption response to time-

differentiated prices? And, how much can direct load control contribute to increase the 

responses? 

 

The thesis consists of two parts, where Part 1 gives a summary of the analysis, 

which are presented in Part 2. Part 1 is organized as follows. Section 2 describes the 

large-scale experiment where the data analysed in the thesis are gathered. Section 3 

briefly sums up the main results from four articles which constitute the main work of 

the thesis, and Section 4 discusses the implications of these results. This discussion 

evaluates how the tariffs and load control offered by the network and the power 

companies separately affect the households’ consumption, as well as the combined 

effect on consumption from these measures. It attempts to discuss the results in light of 

the instruments utilized, and in light of experiences from other similar demand response 

experiments and programs, in order to offer suggestions for future demand response 

programs. Section 5 gives a conclusion. Part 2 presents the four articles, with an 

appendix at the end, describing the methods applied in the analyses in more detail.  

2 The Norwegian large-scale experiment “End-user 
flexibility by efficient use of information and 
communication technology” 

 

A large-scale project was established in 2001 to test automatic meter reading, direct 

load control technology and households’ demand response to new tariffs. Three of the 

articles in this thesis analyses data from this project. This section describes the project 

and the data it provided. 
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"End-user flexibility by efficient use of information and communication technology 

(ICT)" was a large-scale Norwegian project running in the period 2001-2004.2 The 

objective was to increase the end-user flexibility in periods with scarcity of electrical 

energy and power, by:  

• Establishing a decision basis and suggest external conditions for a prioritised 

building of an infrastructure based on ICT-solutions for the future.  

• Develop, test and evaluate different initiatives with basis in network tariff, 

power prices and other market solutions, based on ICT, which stimulates to 

flexibility in consumption.  

 

EBL Kompetanse was the responsible institution towards the Norwegian Research 

Council, with SINTEF Energy Research as executing research establishment. Several 

participants in the Norwegian energy sector constituted a reference group.3 The project 

contained six sub projects, including this doctorate study. 

In the project, two network companies (Buskerud Kraftnett and Skagerak Energi 

Nett) installed automatic meter reading and direct load control technology at 

approximately 5,000 electricity consumers each, mostly residentials. The meters 

allowed for hourly metering of electricity consumption, and the direct load control 

enabled disconnection of load, mostly water heaters. The analyses in this thesis use data 

from one of the network companies, Buskerud Kraftnett. 

Approximately 5,000 electricity customers in the grid area of Buskerud Kraftnett 

had automatic meter reading technology mandatory installed. These customers were 

offered several voluntary options with respect to new network tariffs, power tariffs and 

direct control of load. The tariffs and load control options studied in this thesis are: 

• Customers were offered a discounted network tariff if they allowed for 

disconnection of their water heater in periods the network company defined as 

constrained. 

• At the end of 2002, customers were offered a dynamic critical peak pricing 

(CPP) network rate to be in effect from 2003. This rate had a peak price that 
                                                 
2
 See also http://www.energy.sintef.no/prosjekt/Forbrukerflex/engelsk. 

3
 The reference group consisted of representatives from Buskerud Kraftnett, Skagerak Energi Nett, Østfold Energi 

Nett/ Fortum Distribusjon, Trondheim Energiverk Nett, Helgelandskraft, Istad Nett, NVE, Statnett, EBL 
Kompetanse, Hafslund and Fjordkraft. 
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increased with 1 NOK, from a level of 0.15 NOK, in the peak hours from 7 to 11 

am and from 4 to 8 pm on working days with temperatures lower than -8°C.4  

• However, temperatures never fell below -8°C in 2003, so it was not possible to 

measure the customers' price response with this rate. Because of this, it was 

decided to offer a new time-of-use (TOU) tariff to all customers, also to those 

that did not have the CPP rate from before. The customers on the CPP rate were 

automatically transferred to the TOU rate, with the possibility of opting out if 

they did not want this new rate.5 The TOU rate was offered in October 2003, and 

was in effect from November 2003. This rate was quite similar to the CPP rate, 

but the peak price was charged the peak hours independent of temperature.6 

• Customers were offered an hourly spot price tariff from one power company 

(Hafslund).  

• Customers who chose the hourly spot price tariff were offered the possibility of 

automatic disconnecting the water heaters in the normally two most expensive 

spot price hours of the morning and evening (8-10 am and 5-7 pm on working 

days). 

  

All customers were offered all opportunities, and the customers spread from the 

standard network tariff and standard power tariffs to different combinations of the above 

mentioned options. This means that some customers had discounted network and 

standard power contracts, and allowed the network company to disconnect during 

shortage situations. Some had the CPP or the TOU network tariffs in combination with 

their standard power tariff. Some chose CPP or the TOU tariff, and in addition the spot 

price power tariff, with or without disconnection of the water heater in the peak spot 

price hours.  

                                                 
4
 The rate is described further in Article III. 

5
 Approximately 10 percent of the customers opted out of the new TOU rate. 

6
 The TOU rate is described in Article IV. 
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3 Summary of the thesis’ main results 
 

This section gives a brief presentation of the results found in each of the four articles 

in the thesis. The next section attempts to draw some implications based on these 

findings. The first article describes the present wholesale and end-user market in 

Norway, and discusses why there is a lack of short-term demand response from 

households in the electricity market, how it can be increased, potential benefits from 

this, and some evidences on households responsiveness found in demand response 

experiments around the world. The second article estimates the load reduction potential 

from direct load control of residential water heaters using the experimental data. The 

third article studies whether offering time-differentiated tariffs attracts demand 

responsive households, or mainly households who benefit because of their consumption 

pattern, even if they do not have a corresponding demand response. The fourth article 

estimates households’ electricity consumption response to time-differentiated prices in 

three groups that differed with respect to their choice of network and power tariffs and 

direct load control.  

3.1 Article I: Improving the power market performance by automatic 
meter reading and time-differentiated pricing 

 

Because the electric meters installed in Norwegian households only measure 

accumulated electricity consumption, it is not possible for them to face time-

differentiated electricity prices that vary frequently, for instance from hour to hour. 

Instead, the households have prices that are fixed for, at least, weeks at a time. 

Households do consequently not see the continuously varying costs of electricity 

consumption reflected in the wholesale prices, and have thus no incentives to respond to 

these prices. Because of this, households’ short-term demand appears totally inelastic in 

the wholesale market.  

If consumers face the marginal costs of supply through time-differentiated tariffs 

and are metered automatically, they have better incentives to adjust their demand to the 

varying prices. New technologies that can control appliances automatically may further 

assist households’ response to prices. 40 percent of the annual Norwegian electricity 
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consumption, where households’ consumption constitute the main part, does not have 

automatic meter reading. If these consumers are provided with this technology, and if 

the consumers that today have monthly average spot price based contracts then continue 

on hourly spot price contracts, the share of Norwegian annual consumption by 

consumers with incentives to be short-term price responsive may double. It is also worth 

noticing that during cold peak periods, when demand response often is most needed, 

this percentage share is likely to be higher due to households’ high temperature 

sensitivity as compared with for instance the large industry. Thus, there is a 

considerable potential for increased short-term demand response in the electricity 

market if these customers are provided with new metering technology.  

Increasing demand response in the electricity system may provide several benefits 

such as improved efficiency, enhanced system reliability, reduced price volatility and 

mitigation of exercise of market power. It may therefore be important to exploit the 

demand response potential among households as we now enter a period where the 

Norwegian and the Nordic electricity consumption approach capacity. 

Experiences from experiments and projects around the world indicates that 

households do respond to short-term changing price signals, and that assistant 

technologies contribute to increase the demand response.  

3.2 Article II: Direct load control of residential water heaters 

 

In this article, a regression model is developed to evaluate the effects on the load 

curve of disconnections and reconnections of residential water heaters. The analysis 

uses a panel data fixed effects regression method to estimate the load control impacts 

(this method is described in the appendix). 

The results show that a disconnection of heaters from the electricity grid for the 

analyzed customer group give an hourly average reduction in load per household of 

between 0.18 kWh/h and 0.60 kWh/h dependent on which hour the disconnection 

occurred, with an average of approximately 0.5 kWh/h. 

The interruption of the natural diversity between the water heaters’ electricity 

consumption during a disconnection causes a payback effect, i.e. a higher consumption 
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in a period after reconnection. For the first hour after reconnection, the average extra 

consumption was found to be up to 0.28 kWh/h, dependent on the hour. It is likely that 

the instantaneous demand at the moment of reconnection is higher than the hourly 

averaged estimates. By using the averaged hourly demand for the subsequent hours after 

reconnection, a simple methodology indicates the excess power demand at the moment 

of reconnection to be 0.36 kW (after disconnection in hour 10).  

3.3 Article III: Households' self-selection of a dynamic electricity tariff 

 

Customers may want to be exposed to higher prices in peak periods in return for 

lower prices in other periods if they are able to adjust their consumption, thus reducing 

their electricity bill. Another reason for choosing such a tariff may be that their 

consumption is normally low during peak price periods and/or high in off-peak price 

periods. With such a consumption pattern, they may reduce their electricity bill simply 

by choosing the differentiated rate, even without a corresponding price response (they 

may, of course, benefit further if they also adjust consumption). For the customers, this 

may be considered as fair as they no longer are subsidizing other customers’ expensive 

peak consumption. However, from the perspective of those offering this tariff, attracting 

mainly the last group to the differentiated rate may not be desirable, since their intention 

often is to increase demand response. It may also lead to lower revenues. Thus, if the 

latter participation motive is prevailing among customers, it may be questioned whether 

companies will be likely to offer such tariffs.  

The article uses a discrete choice model to analyze whether the customers chose the 

new rate because of a higher ability to respond to the price signals, or because of 

favorable consumption pattern (see the appendix for details of the statistical method).  

The results suggest that, on average, the consumption pattern does not influence the 

households' decision of whether to select the time-differentiated critical-peak pricing 

(CPP) rate or the standard rate. On the other hand, ownership of energy management 

systems and wood-burning furnaces increased the probability to join the CPP program. 

Households can utilize such equipment to shift peak consumption to off-peak hours or 

to reduce peak consumption and thus reduce electricity expenditures. These results 
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therefore indicate that the offering of CPP tariffs attract customers with potentially 

higher demand response compared to the general population, and the CPP tariff does not 

attract customers that may benefit without making consumption adjustments in a 

significant way, more than it attracts other customers.  

3.4 Article IV: Time-differentiated pricing and direct load control of 
residential electricity consumption 

 

The analysis in the third article does not reveal whether the consumers actually did 

respond to the prices when they were exposed to the new tariff. The demand response 

due to price changes is the topic of the fourth article. The focus is on three different 

household groups, which differed with respect to their choices of tariffs and direct load 

control:  

• Group 1 (TOU/Std): Time-of-use network tariff and standard power tariff, 

without load control. 

• Group 2 (TOU/spot): Time-of-use network tariff and spot price power tariff, 

without load control. 

• Group 3 (TOU/spot/DLC): Time-of-use network tariff and spot price power 

tariff, with load control. 

 

A fixed effect panel data regression model is used to measure the effect of TOU and 

spot pricing of electricity on the daily load curves for households’ participating in the 

experiment (see the appendix for a description of the model and the method).7 The 

contribution from direct load control of water heaters to automatically increase the price 

response is also estimated. 

The results from Group 1 indicate modest consumption reduction to price signals 

(0.055 kWh/h electricity consumption reduction to a price increase of 1 NOK). The 

results from Group 2, show high price response (0.545 kWh/h reduction). Customers in 

Group 3, showed slightly higher responses than the first group (0.077 kWh/h), but not 

as high as one could expect considered they had automatic load control.  

                                                 
7
 Only consumers from which power price information exist are included, i.e., consumers from Hafslund. 
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4 Discussion and implications of the results 
 

This section discusses the results from the articles. It attempts to discuss these 

results in connection with each other and in connection with results found elsewhere, 

and give some implications for the demand response potential in the electricity system. 

It first discusses the results regarding direct load control and time-differentiated pricing 

separately, and then the combined effect of these two measures. 

4.1 Demand response and load control 

 

The results in Article II suggest that disconnections of water heaters may be an 

effective way to reduce peak load, given some physical factors are taken into account. 

Using the estimated average load reduction per customer of approximately 0.5 kWh/h 

for hour 10, the total load reducing potential in Norway from disconnection of water 

heaters can be suggested. Assuming that half of the Norwegian households 

(approximately 1 million households) have allowed for disconnection of their water 

heater, and assuming a 0.2 percent loss in the grid in a peak load situation, the total load 

reduction potential is 600 MWh/h for the whole Norwegian system.8 The results also 

indicate a payback effect when the heaters are reconnected. The average additional 

demand the first hour after reconnection is estimated to 0.24 kWh/h. This means that an 

average additional demand of 288 MWh/h can be expected in the electricity system the 

first hour after a one-hour disconnection. Also, because the heaters were reconnected 

simultaneously, it is likely that the initial peak taking place at the moment the heaters 

are reconnected is higher than the average for the entire hour after the reconnection. The 

result indicates an initial payback of approximately 0.36 kW power demand per 

household, or 432 MW at an aggregated level, at the moment when the heaters are 

reconnected.  

It is illustrative to impose these numbers into the system load curve of 5 February, 

2001, the day with the highest system peak in Norway so far. The load in the peak hour 

(hour 10) would then be reduced from 23,054 MWh/h to 22,454 MWh/h, i.e. a 2.6 

                                                 
8
 Assumptions are based on Graabak and Feilberg (2004). 
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percent reduction. The system load the following hour after reconnection (hour 11) 

would rise from 22,940 MWh/h to 23,228 MWh/h on average. Furthermore, the 

instantaneous payback effect would yield an instant total power demand of 23,432 MW 

(assuming the power demand at the reconnection moment was approximately the 

average of the load in hour 10 and 11; i.e. 23,000 MW). On this day, the new “post-

peak” would thus be at a higher level than the peak that was the target for the load 

reduction. This indicates that direct load control of water heaters may also have an 

unfortunate payback effect that should be monitored and possibly controlled so that a 

new problematic peak is not created. 

To avoid possible post-peak problems, one may disconnect for longer periods, in 

order to wait for lower system load. Then the payback effect may occur at a time when 

the new peak does not create a load problem. However, one should be aware of that the 

longer the disconnection period, the higher the payback effect. Rotational 

disconnections and reconnections of the heaters is another way to circumvent a 

problematic payback effect, as described in Article II. By using this method, the 

operators can better tailor the load control as they need.  

4.2 Demand response and time-differentiated prices 

 

The results in Article III show that the customers choosing the time-differentiated 

tariff were well equipped and held characteristics that made them suited to exploit the 

varying prices. The article suggests that the offering of time-differentiated tariffs is 

likely to increase demand response among residential consumers because the consumers 

choosing the tariff have higher flexibility with respect to the timing of their electricity 

consumption due to certain household characteristics, compared to the customers that 

did not choose the new tariff. In Article IV, the consumers’ price response to the TOU 

tariff was estimated (Group 1 (TOU/Std)).9 The result indicate that the price response 

was lower than the responses found for the two other groups also analysed in this 

article, and also compared to results in many other demand response programs (see the 

                                                 
9
 As explained in Section 2, the peak price of the CPP tariff were never activated due to temperatures that never fell 

below the activating threshold, and the customers did consequently not experience differentiation in their price. 
This group was transferred to the time-of-use (TOU) tariff, and actually constituted the main part of this group. 
Their price response to the TOU tariff was estimated in Article IV, in Group 1 (TOU/Std).  
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review of other programs in Article I). Even if the results in Article III indicate these 

customers’ demand response potential, their revealed response found in Article IV 

suggests it still may not have been optimal for them to adjust consumption.  

One reason for this may be that the customers found the benefits from adjustments 

in consumption too little compared with the inconvenience and costs. The economic 

incentive, i.e. the peak/off-peak price ratio, may have been too small to motivate a 

larger price response for this group. Experiences from other TOU experiments indicate 

that the largest consumption reductions are found where the price ratio are highest 

(Faruqui and Malko, 1983), and according to Braithwait (2000), the ratios need to be in 

the range of 4:1 or 5:1 to induce substantial price response. Although the TOU price 

ratio in the Norwegian experiment alone was high, the total price ratio (when adding the 

network and the power prices) was approximately 3.2:1, and may thus be one 

explanation why the demand response in this experiment is lower than in many other 

experiments analyzed in the literature. This suggests that higher price differentials may 

be considered in future programs utilizing TOU tariffs.10 

The high economic incentive needed to induce customers to respond, further 

suggests that enabling technologies that control loads automatically are important for 

consumption adjustments. For instance, water heaters, heating cables or heating panels 

may be directly controlled without any effort from the customer. Allowing the 

customers to override a control event in case of too high inconvenience may increase 

customers’ acceptance for the demand response program. Simple energy management 

systems such as timers (or more advanced systems) can also be offered along with the 

new tariffs. If such timers are already programmed, it makes it easier for the customers 

to take the device in use.11 It is also worth noticing that signalling lamps or other price 

information systems have given higher responses than those without such assistant 

technology in experiments abroad (see Article I). Providing customers with such 

                                                 
10

 Whether this is consistent with a desire of designing the tariff to reflect expected time-varying network cost is 
another question and will not be dealt with here. A CPP tariff may be better suited for this than the more static 
TOU tariff, because CPP may have higher prices during critical peak periods and lower prices during more normal 
peak periods, while still allowing the average of the prices to reflect expected average costs (see Article I for a 
description of these rates). 

11 See also Hartway et al. (1999), attributing their large load response findings in a TOU program to the high price 
differential (6.5:1), and to customers’ programming of their air conditioners, using an advanced energy 
management system. 
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equipment could possibly increase their awareness of the prices they face and contribute 

to increase their demand response. 

Another aspect worth considering is the information and the educational material 

given the consumers on the various ways to exploit the price structure in order to reduce 

electricity expenditures. If this information was insufficient, it may have lead many 

customers to disregard possible ways to benefit and to believe it was little to gain from 

adjusting consumption. In two experiments that seem to display higher responses than 

in the one analyzed here, and where the enrollment and welcome packages offered the 

customers are available (which they rarely are), the educational material seems to be 

more comprehensive (see Norges Energiverksforbund,12 1989, Vaage, 1995 and CRA, 

2005a, 2005b for the former, and Sæle and Grande, 2004 for the latter experiment). 

Although such a comparison across experiments of the information level and the 

achieved demand response results are complicated by other factors that also influence 

the results, it may serve as an indication of the importance of instructive educational 

information to consumers.13  

Finally, it must be mentioned that the results are average over all the customers in 

each group. No attempts have been made to reveal whether there exist subgroups within 

the sample that exhibit higher price responsiveness. For instance is it likely that 

customers with energy management systems have higher response than those without 

such equipment. It may also be that consumers that differ with respect to their 

consumption pattern prior to the participation in the experiment, as discussed in Article 

III, display differing responses. The high response found in Group 2 (TOU/spot), i.e. 

those with a TOU network tariff and spot price tariff but no load control, also analysed 

in Article IV, indicates that there exist customers highly motivated and able to exploit 

the varying rates by adjusting their consumption.14 This is also supported by several 

papers that find price responses to differ across customers, for instance due to differing 

stock of appliances (see Article I). Thus, designing marketing campaigns directed 

                                                 
12

 This is a former Norwegian time-differentiated pricing experiment conducted from 1984-1987. 
13

 See also Hartway et al. (1999), paying especially high attention to the customer information aspect, and as already 
mentioned, achieving high responses. 

14
 Note that this group consisted of very few households, so that drawing inferences from this group may 
questionable. 
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towards customer segments that are likely to yield high responses may give the highest 

response from those participating (see also Faruqui and George, 2005).  

4.3 Demand response and load control combined with time-differentiated 
prices 

 

It is interesting to study how load control combined with time-differentiated prices 

affected households’ price responses. This is analyzed in Article IV, with Group 3 

(TOU/spot/DLC), i.e. those with a TOU network tariff, and a spot price power contract 

combined with direct load control. The analysis estimates the total price response, from 

both the customers' own efforts to adjust consumption, and, from the assistance of the 

direct load control.15  

The results indicate a total price response which is not as high as one could expect, 

compared with the other two groups analyzed, given the fact they had assistance from 

load control. This may both have to do with the way that the load control events were 

carried out, and with the efforts the customers did on their own to adjust consumption.  

The spot price varied very little within the day in the experiment period, and since 

the water heater disconnections were carried out in conjunction with the peak periods of 

the spot price contract, the effect was that the customers received only small benefits 

when load was shifted from the spot price peak hours to the following off-peak hours. 

The main price differentiation of the customers’ total price was therefore due to the 

TOU tariff. It will thus mainly be the consumption adjustments to the TOU price that 

drive the results in the analysis. The fact that disconnections occurred in the two middle 

hours of the TOU peak periods may thus explain the estimated response. The payback 

effect that occurred after reconnecting the heaters, as described in Article II, appeared 

when the TOU price was still high. This means that load was not shifted entirely out 

from the TOU peak hours to off-peak hours so that the load level during the high price 

period did not change much, with a low estimated response as the result. Although the 

spot price power tariff and the TOU network tariff were two separate products that were 

                                                 
15

 It may not be entirely correct to refer to load reductions due to automatic control as price response, since a 
reduction from a disconnected water heater is the same independent on the price level. However, this enables 
comparison between the analysed groups. 
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offered independently, the customers would have experienced higher benefits if the 

disconnections had been coordinated and timed in accordance with the price structure of 

both contracts. This is important to notice, since in a non-experimental setting, peak 

price periods of two tariffs may be defined in such a way that load control carried out in 

connection with the peak price period of one tariff could shift consumption from off-

peak to peak price periods of the other tariff, and thus offset much of the gains that the 

disconnections can provide.  

Group 3 (TOU/spot/DLC), had nevertheless a somewhat higher total price response 

than the other group discussed in the previous section; Group 1 (TOU/Std). The reason 

for this may be that the control events after all shifted some parts of the energy to the 

off-peak TOU period for some customers in Group 3.16 This means that the customers’ 

own efforts to adjust consumption probably were small in Group 3 too. This may have 

to do with similar conditions as suggested for Group 1.  

5 Conclusions 
 

This thesis analyses factors limiting household demand response in Norway, how to 

increase the response and benefits from that. It is argued that increasing demand 

response may be important to achieve a well-functioning, efficient and reliable 

electricity market. The thesis also analyses the demand response potential in 

households, using data from a large-scale Norwegian time-differentiated pricing and 

direct load control experiment. The results from these analyses indicate that load 

reductions from direct load control of residential water heaters have a potential which 

may contribute to decrease peak load when needed, given some physical factors are 

taken into account. Furthermore, the offering of time-differentiated tariffs seems to 

attract households with a higher potential to respond to price changes than those 

remaining on standard rates. Yet, the demand response from the customers’ owns efforts 

to adjust consumption within the day generally seem to be on average low, although 

some customers display high price sensitivity. 

                                                 
16

 Water heaters that are affected more than one hour during the disconnection period would experience this. See 
Article II, Section 2 for a discussion of how load control affects water heaters. 
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This indicates a demand response potential among the analyzed customers that may 

be better exploited. The experiment and the analyses have pointed out possible ways to 

improve households’ demand response. For instance, marketing campaigns, both before 

and during the demand response program with good information and guidance to the 

households on how to take advantage of the new tariff structures is likely to be 

important. Automatic load control is also an essential contributor. Both direct load 

control performed by external parties such as network or power companies, as well as 

energy management systems such as timers, are likely to contribute to increased 

demand response. The analysis have also pointed at the importance of a coordination 

between separate products such as time-differentiated network and power tariffs and 

direct load control if they are offered by different parties, so that they do not offset each 

other and the combined effect gives the consumers the highest possible benefits from 

participation. 

When evaluating the results from the experiment, one should bear in mind that 

Norwegian customers traditionally have been provided with low electricity prices so 

that the focus on electricity saving may have been low. Changing behavior with respect 

to how and when electricity is used may take time. If the power and energy situation 

continue to tighten, this might change, as seen in the winter 2003/2003 and in 2006. 

Higher and more volatile prices may thus increase customers’ incentives and awareness 

of potential ways to reduce their electricity expenditures by adjusting consumption.  

In a situation where capacity becomes tighter, it may be valuable to have the 

necessary infrastructure in place in order to utilize the demand elasticity. The thesis has 

discussed that even a small increase in price responses may contribute to a well-

functioning market by increasing efficiency, reducing price volatility, mitigating 

exercise of market power and contributing to a reliable power supply.  

Whether the demand responses found in the analyses are sufficient for the benefits 

to exceed the costs associated with new metering infrastructure, tariffs and load control, 

is beyond the scope of this thesis. According to Kolbeinstveit and Tjeldflåt (2006), 60 % 

of the Norwegian annual consumption has now automatic meter reading and they 

amount to 100,000 measuring points out of a total 2.5 million. This means that the 

remaining consumers are many and small. Development of new meters to a higher share 

of this group may therefore provide less benefit compared with the cost from each 
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consumer than what might have been the case for those already provided with this 

technology. However, one should note that many of the benefits come through the 

market, and may not directly benefit the one responsible for developing the 

infrastructure, or the customers, who now may require automatic meter reading 

technology but must pay for it (though limited to a maximum price). Although difficult 

to calculate, these benefits may be important to include when cost-benefit analysis are 

conducted and decisions of whether developing automatic meter reading to a higher 

share of the consumers are taken. This is important because the possible situation could 

exist, where cost-benefit analyses conducted by either the responsible institution (e.g. a 

network company) or by single customers show negative results, while an analysis 

including all costs and all benefits for all affected parties could show the opposite. If the 

latter is the case, there may be need for coordination of the development of the 

necessary infrastructure for remaining customers without automatic meter reading. 

Anyway, the costs of the necessary technology have declined recent years, and are 

likely to continue declining (Jørum et al., 2006). At some point, the benefits will 

probably exceed the costs.17 This suggests it is important to continue the research and 

the experiments with demand response so that the infrastructure and the most efficient 

instruments at that time are prepared for implementation. 

 

                                                 
17

 According to Jørum et al. (2006), the benefits already exceed costs in Norway. 
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Article I:  
Improving the power market performance by  

automatic meter reading and time-differentiated pricing* 

 

 

 
Abstract 

 

In most electricity markets, households’ electricity metering systems only allow prices 

that are fixed for long periods of time (weeks, months, years). Households can therefore 

not choose tariffs reflecting the continuously changing conditions and marginal costs in 

the electricity system. Thus, they have no incentive to adjust their electricity 

consumption in the short-term. This lack of demand response in the market may create 

inefficient allocation of resources in the short term and non-optimal investments in 

capacity in the long term. It may contribute to insufficient reliability of supply, higher 

price volatility and to an electricity system more exposed to exercise of market power. 

This paper discusses how automatic meter reading and direct load control technology 

combined with time-differentiated tariffs can increase demand response and improve the 

functioning of the electricity market. 

 

                                                 
*
 This version is published in the Statistics Norway’s Documents series (see 

www.ssb.no/emner/01/03/10/doc_200706/doc_200706.pdf). I am grateful to Bente Halvorsen for all the help and 
all the valuable discussions. I would also like to thank Kjetil Telle, Petter Vegard Hansen, Hanne Sæle, Annegrete 
Bruvoll, Torstein Bye and Knut Einar Rosendahl for their comments on earlier drafts and our discussions. 
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1 Introduction 
 
In most electricity markets, the electric metering system installed in households can 

only measure accumulated electricity consumption. Households can consequently only 

choose between tariffs where prices in practice are fixed for longer periods of time.1 

Because these consumers do not, and can not, face the continuously varying costs of 

electricity consumption reflected in the wholesale prices, they have no incentives to 

respond to these prices by consumption adjustments. Because they do no restrict their 

demand if the wholesale price increases in the short-term, their retailers must bid price 

insensitive bids into the wholesale markets, and are thus forced to pay any price in order 

to serve their customers. This situation indicates a disconnection between the wholesale 

and the retail market; information about market conditions, communicated by the 

wholesale prices, is not conveyed to households. And, information about households’ 

actual demand response and their actual willingness to pay for electricity is not reflected 

in the wholesale market, leading to artificially low price elasticities. 2 

This disconnection may contribute to an electricity market that performs less 

efficient than what is possible. When consumers face prices different from the short-

term marginal cost of supply, electric generators with high costs may be utilized to 

cover demand during peak periods, even though many consumers would reduce their 

consumption if they were charged marginal costs. Furthermore, during off-peak periods, 

some generators are not utilized even though they may offer electricity at prices below 

what many consumers are willing to pay. The short-term inefficient allocation of 

resources may also have long-term impacts through inefficient investments in 

generation capacity. Low demand elasticity together with the special properties of 

electricity; non-storability, capacity constraints and long lead times for new expansions, 

may further contribute to volatile prices. This may also make it easier and more 

profitable to exercise market power, which exacerbates price volatility even more. Price 

                                                 
1
 This applies to all consumers without automatic meter reading, i.e. most of the household sector. Also consumers 

with “spot price” based contracts face a price that are fixed for months at a time, because they in reality only see 
the monthly average of the market based spot price. 

2
 Demand response in this paper refers to electricity consumption adjustments to prices that vary within the day, or 

consumption changes as a result of incentive payments designed to induce reductions when needed, for instance 
during high price periods or during periods when the system is constrained.  
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volatility increases uncertainties regarding long-run average rate of return on capacity 

investments. Investors may thus be more reluctant to invest as they require higher prices 

to cover their risk-premium. This may in turn reduce reliability of supply and increase 

the risk of rationing in high-demand periods. High and unpredictable prices and higher 

probability for shortage of supply increase the risk of political intervention in the 

market, which, in turn, may further reduce the propensity for investments. As this paper 

describes, demand response is one important factor that may contribute to a well-

functioning market with the ability of moderating volatility of prices, balancing demand 

and supply, and providing sufficient and timely investment in capacity.  

Increased demand response may be achieved if consumers face prices that are 

closer to the marginal costs of supply through time-differentiated tariffs, and if they are 

metered automatically. Consumers will then have incentives to adjust their demand to 

the varying prices. Enabling technologies that can control appliances, such as direct load 

control of water heaters or energy management systems, may further enhance their price 

responsiveness. With these technologies, information about wholesale prices is 

conveyed to the customers, their incenctives and ability to respond to the prices 

increases, and information about their responses is brought back to the market. This 

connects the wholesale and the retail markets, and as will be described in this paper, 

provides for several benefits.  

Many of these benefits are due to an improved electricity market performance, and 

are distributed among several of the participators in the market. However, the decision 

of whether to develop the new metering infrastructure may often hinge on individual 

(network) companies who may ignore benefits that are not utilized by them directly. If 

they find the costs too high, they may not carry out the development, even if the benefits 

for the society as a whole may exceed the costs. Thus, socially optimal decision on such 

may require governmental intervention. The discussion in this paper is exemplified 

using the Norwegian (and the Nordic) market. It aims to discuss benefits related to the 

introduction of the mentioned technologies, many of which would probably not be 

included in cost-benefit analysis conducted by individual companies, and many of 

which is not included in earlier cost-benefit evaluations in Norway (see for instance 

Grande and Graabak, 2004, Tjeldflåt and Vingås, 2004 and Jørum et al., 2006). 
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Quantifying, and weighing the benefits against related costs, both for the individual 

companies and for the society as a whole, is however beyond the scope of this paper.  

Section 2 gives a short description of the wholesale and the end-user market in 

Norway as a basis for the other topics addressed in this paper. Section 3 discusses the 

performance of the market and why many consider the deregulated market to have 

performed well in terms of efficient operation until now, but also why there is a 

potential for improvement by fully integrating the wholesale and the retail market. It 

discusses the reasons for the lack of short-term demand response in the electricity 

market, and why automatic meter reading and time-differentiated tariffs are necessary 

prerequisites to increase short-term demand response. Section 4 discusses implications 

and benefits in the market of increasing demand response, such as improved efficiency 

and system reliability, reduced price volatility and mitigation of exercise of market 

power, and, in addition, several other benefits. Section 5 reviews results from the 

literature describing experiments where households’ responses to short-term price 

changes have been tested. This is important knowledge since the extent of households’ 

demand response has implications for the benefits from demand response programs. 

Section 6 sums up the discussion and concludes. 

2 The Norwegian electricity market 
 
During the years of the regulated electricity market, central decision makers were 

responsible for maintaining reliability of supply. Risk of shortages of supply was 

limited since the objective of the production capacity planning was to cope with demand 

under nearly all circumstances (Bye and Hope, 2005). Production investment risk was 

low since tariffs were designed to cover the costs, and inefficient investments decisions 

could be recovered by tariff modifications. However, there were indications of 

substantial over-investment in the power sector, and a lack of cost effectiveness in the 

networks.3 One of the main objectives of the deregulation was to increase efficiency and 

achieve a better utilization of the total resources in the power sector by leaving 

investment decisions to the market players (decentralised decision making). The 

                                                 
3
 According to Bye and Halvorsen (1999), efficiency losses in the power market, power production and distribution 

were considerable, and may have added up to 2.5-3 percent of GDP in 1991. 
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Norwegian electricity market was deregulated in 1991. Sweden followed in 1996, and a 

common Norwegian and Swedish Exchange (Nord Pool) was established as the first 

multinational exchange for trade in power contracts in the world. Finland joined in 

1998, Denmark West in 1999 and Denmark East in 2000. The Nordic countries are now 

connected in a common integrated electricity market. In 2005, Nord Pool Spot opened a 

new bidding area in the Vattenfall Europe Transmission control area in Germany 

(www.nordpool.com). This section presents the wholesale and the end-user market in 

Norway. 

2.1 The wholesale market 

 
Any producer in the Nordic area can deliver electricity to the common Nordic 

electricity market. The wholesale market includes power producers, power suppliers, 

retailers, industry and other large undertakings. In the wholesale market, the trade of 

electricity takes place at the Nord Pool exchange and bilaterally between different 

market players. About 40 percent of the physical deliveries are traded at the Nord Pool 

Spot (Glende et al. 2005). The exchange provides a financial market for trading 

contracts for price hedging and risk management, and an Elspot market for trading 

power contracts for next day's physical deliveries. 

At the Nord Pool Elspot, the next day's hourly spot prices are settled on the basis of 

bids from the participators for purchase and sale (a day-ahead market). Each participant 

submits bids to Nord Pool Elspot on bidding forms, and the bids are aggregated to a 

demand and a supply curve for each of the next day's 24 hours. The intersection of the 

demand and the supply curve provides the Elspot system price. The price also 

determines the obligations for each participant to deliver or take power from the central 

grid (see for instance Flatabø et al., 2003, Nord Pool, 2006a). 

The determination of the spot price may lead to a power flow from one area to 

another that exceeds the ability of the network to transfer the electricity. If there are 

bottlenecks, the market is divided into pricing areas and the prices in the surplus areas 

are lowered and the price in the deficit area is increased, until demand and production is 

in balance within each area (Rønningsbak, 2000). 
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Because electricity cannot be economically stored, balance between production and 

consumption must exist at every moment. However, operational difficulties, production 

fall out, bottlenecks in the grid, unexpected shift in temperature or other unforeseen 

events may lead to differences between forecasted deliveries/demand and real 

deliveries/demand. Imbalance between production and consumption is the result. The 

Norwegian system operator (Statnett) has the responsibility of maintaining the balance 

in the Norwegian electricity system and provide for sufficient capacity reserves at every 

time. Statnett uses the Regulating Power Market to keep a stable balance and frequency 

in the electricity system. In this market, producers as well as consumers can bid 

regulating power for either up regulation or down regulation.4 

During cold periods there is a risk that all Norwegian generating capacity is sold in 

the Elspot market. In order to secure sufficient power reserves for the regulating power 

market, a Regulating Power Option Market was established in 2000 (see Walther and 

Vognild, 2005, Glende et al., 2005). Here, Statnett purchases the right to utilize 

generating and demand resources for regulating purposes if needed. Statnett chooses the 

cheapest bids up to the desired amount, which then must be offered in the Regulating 

Power Market the next week.  

2.2 The end-user market 

 

The end-user market includes all buyers of electricity for own consumption, for 

instance industry, commercial buildings, households, etc. Households’ electricity 

consumption constitutes approximately 1/3 of Norway’s total electricity demand (SSB, 

2006a). Approximately 60 percent of the households have standard variable contracts 

(in the third quarter of 2006), 11 percent have fixed price contracts, and 29 percent have 

spot price based tariffs (SSB, 2006b). In the latter case, the consumers are confronted at 

the end of each month with the average hourly spot price, i.e. they do not face hourly 

varying prices. All consumers can change supplier every week. In the other Nordic 

countries, most end-users have fixed price contracts (Kristensen et al., 2004). 

                                                 
4
 Since the Nordic countries have a connected grid, regulating power anywhere in the area can treat imbalances, 

given there are no bottlenecks (see for instance, Wibroe et al., 2002). From 2002, the Nordic system operators 
created a common regulating power market in order to utilize the resources in all countries optimal. 

 



Improving the power market performance by AMR and time-differentiated pricing 

31 

End-users in Norway with an annual consumption below 100,000 kWh have meters 

that measure accumulated consumption.5 The consumers with this metering technology 

constitute approximately 40 percent of the total annual electricity consumption 

(Kolbeinstveit and Tjeldflåt, 2006). Since households on average use approximately 

18,000 kWh per year (Halvorsen et al., 2005), i.e. well below the 100,000 kWh 

threshold, they constitute most of the consumers without automatic meter reading.6 

They are required to report their consumption a few times a year (but may report more 

often if they want) and are charged according to their accumulated consumption 

between the meter reading dates. The price these customers pay is a weighed average, 

over the so-called adjusted load profile from all non-hourly metered customers in the 

area for the relevant period.7 Since one single customer has no significant impacts on 

this load profile, he or she will not receive the whole benefit if reducing consumption 

more than other customers do during a high price period. This means the efficient signal 

of hourly spot prices is substantially diluted (see also Fraser, 2001). The result is that at 

what time between the meter reading dates that the consumer uses electricity, does not 

matter for the total bill. The incentive is thus only to save energy for the whole period, 

independent on the time of day/week/month this saving is carried out. Note that this also 

applies to those with spot price based tariffs who only face the average of the hourly 

spot prices.  

3 Potential for improvement in the electricity market 
 

In general, the Nordic market has so far been working well (Flatabø et al., 2003, 

Bergman, 2005, von der Fehr et al., 2005). For instance, the deregulation have yielded a 

downward pressure on the electricity price as excess capacity has been exposed to 

competition in the market, and, prices between customer groups have equalized (Bye 

and Hope, 2005). Tjeldflåt (2005) considers the end-user market to function quite well, 

since customers seem to change retailer when the price differential between retailers is 

                                                 
5
 From 1 January 2005, all customers with an annual consumption above 100,000 kWh were required to have hourly 

metering of consumption. 
6
 The households may require automatic meter reading but they must pay for it themselves, though with a maximum 

price. 
7
 Consumers with fixed price contracts pay only according to their accumulated consumption. 
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high, and because the market share of the dominating retailers has declined recent years. 

Also, according to Statnett (2004), Norway has one of the most efficient and best 

utilized transmission systems for electricity in the world.  

3.1 The disconnected wholesale and retail electricity markets 

 
Increased integration between the retail and the wholesale market may improve the 

functioning of the market further. Figure 3.1 illustrates the existing situation in which 

most households now have no incentives to respond to short-term changes in wholesale 

prices by consumption adjustments. It shows the hourly spot prices in the Oslo pricing 

area during the winter 2002/2003, along with the prices offered through a standard 

variable contract from one of the larger suppliers in the Oslo region. 
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Figure 3.1. Hourly spot prices (in the Oslo region) and the price offered from a supplier 
through a standard variable price contract in the winter 2002/2003 

 

As seen in the figure, the spot price rose to very high levels in December 2002 and 

the beginning of January 2003, due to a situation with scarcity of energy.8 The standard 

price facing the customers, however, was in parts of this period lower, sometimes only 

about half of the market price. Furthermore, from mid-January until May, the customer 

price was high above the market price, sometimes more than twice. We can see here 

that the standard price did not bring the energy scarcity price signal to the customers at 

                                                 
8
 More on the 2002/03 winter can be found in for instance Bye et al. (2003b), Nordel (2003), Finon et al. (2004), von 

der Fehr et al. (2005), OED (2003). 
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the time the market considered the situation to be constrained. Neither did the standard 

price signal inform the customers when the market considered this situation to be over. 

Also important is the price spike 6 February 2003, where the peak price signalled a 

power shortage situation (see also Figure 3.3). The figure illustrates that consumers 

have little incentive to adjust consumption according to short-term changing market 

prices.9 Because of this, their retailers must bid price insensitive bids into the wholesale 

markets, and are forced to pay any price in order to serve their customers. This is 

illustrated in Figure 3.2. 
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Figure 3.2. The disconnection between the wholesale and the retail markets 

 

The left figure illustrates consumers’ demand curves in off-peak and peak periods 

of the day (Doff and Dpeak), and a standard variable price (Pstd,var) offered by their retailer, 

which can not change in any of the periods. The elastic demand curves indicate that 

consumers are price responsive and willing to adjust consumption on a short notice if 

they were given this opportunity (the assumption that consumers are price responsive is 

supported in the review in Section 5). However, their price does not change in the short-

term. Consequently, their demand appears inelastic in the wholesale market both in the 

off-peak as well as in the peak periods. The figure to the right illustrates this with two 

perfectly inelastic demand curves (assuming all customers are completely inelastic).  

                                                 
9 We know that tacit collusion between consumers may give some market response, thus changing the load profile 

and costs for the consumers, while each consumer alone will not have this impact. However, it is questionable 
whether consumers will act like this, for instance due to lack of knowledge regarding the load profiling effects and 
due to free rider problems from consumers benefiting from others tacit collusive behaviour. 
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This situation indicates a disconnection between the wholesale and the retail 

market; information about short-term changing market conditions is not received by 

consumers. And, information about consumers’ actual demand response and their 

willingness to pay for electricity is not reflected in their demand curves in the wholesale 

market. 

The actual demand curves at the Nord Pool are however not as inelastic as they 

appear in Figure 3.2, because some customers with automatic meter reading and time-

differentiated tariffs also are present in the wholesale market. However, Figure 3.3, 

showing the purchase and sales curves at Nord Pool Spot the 6 February 2003, hour 

17:00-18:00, illustrates that the short-term price response still may be limited, as the 

purchase curve is nearly vertical at higher prices. 10 
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Figure 3.3. Elspot purchase/sales curves. Hour 17:00-18:00, 6. February 2003, System 
Price NOK 981,14. (Source: Nord Pool Spot AS) 

 

That the demand response is low, is further supported in, for instance, Hansen and 

Bye (2006) who estimated low short-term demand elasticities in a simultaneous 

multimarket model for the Norwegian and the Swedish market. They found the price 

elasticity to be approximately -0.015 in Norway and even smaller in Sweden.11 

                                                 
10 Note that the threshold for requirement of automatic meter reading was lowered from an annual consumption of 

400,000 kWh to 100,000 kWh in 2005. This increased the amount of the Norwegian annual consumption on this 
metering technology from 50% to 60% (Tjeldflåt and Vingås, 2004). The elasticity may therefore be somewhat 
higher in today’s market than what this figure illustrates. 

11 The elasticity may be somewhat higher now for the same reason as in the previous footnote. 
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The low elasticity may be a consequence of a too small amount of consumption 

with contracts tied to the spot price, and which also are hourly metered. It may also 

reflect low responses among those customers. For instance, the share of the Norwegian 

electricity consumption in the energy-intensive manufacturing and pulp and paper 

industry with contracts tied to the spot price constitute only approximately 0.2 % (in the 

3rd quarter of 2006, SSB, 2006a, 2006b).12 For mining, quarrying and other 

manufacturing industries this number is approximately 2.6 %. These sectors constitute 

about 45 % of the total Norwegian annual electricity consumption. In addition, 

households and others without automatic meter reading constitute around 40 % of the 

annual consumption.  

The remaining part thus constitutes about 15 percent. A high share of this 

consumption is probably within the consumer group called “Other industry”, i.e. for 

instance, trade, hotels and restaurants, public administration, education, health and 

social work and other service activities. Here, the share of customers tied to spot price 

contracts is a little above 70 percent, and then comprises approximately 10 percent of 

the Norwegian annual consumption. 

Thus, the part of the Norwegian consumption on contracts tied to the spot price 

probably constitutes less than 13 %. Furthermore, some of this consumption probably 

only faces monthly average spot prices, which means this estimate probably is a 

maximum.13 This means that the main part of the Norwegian consumption today has no 

incentives to be short-term responsive. Given the many long-term contracts in the other 

Nordic countries, the share of the total Nordic consumption (approximately 400 TWh) 

with hourly spot price contracts is thus probably only a few percent.  

Since the consumption in “Other industry” constitute the highest share with spot 

price contracts, the elasticity for this group of customers will therefore be important for 

the total response in the Norwegian (and Nordic) market. This group’s price elasticity is 

not known, but, according to Faruqui and George (2002) price elasticities for small to 

medium size commercial and industrial consumers are significantly smaller than for 

                                                 
12 Assuming that the contracts are evenly distribution among the consumers. 
13 SSB (2006a and 2006b), only inform that the contracts are “tied to” the spot price, thus it is unknown whether the 

contracts are based on hourly prices or monthly average spot prices. 
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residential consumers, suggesting households could be important contributors to 

increase demand response in the market. 

As mentioned, approximately 40 % of the annual consumption in Norway, with 

households as the largest share, can only choose tariffs with prices that do not reflect the 

short-term marginal cost of supply. Given that those on spot price based contracts today 

continue on hourly spot price contracts if they are provided with automatic meter 

reading, the share of the Norwegian annual consumption with incentives to be short-

term demand responsive could more than double from today’s level.14 

Furthermore, these consumers’ electricity consumption is likely to constitute a 

larger share than 40 % during cold periods due to their high temperature sensitivity 

(compared with for instance large industry). This means that a significant share of the 

market has no possibility to be responsive to prices in periods when demand response 

often is needed most. 

3.2 Connecting the markets and increasing demand response with 
automatic meter reading and time-differentiated tariffs  

 

The previous discussion indicates that there may be a considerable contribution to 

increased demand response by letting the customers without automatic meter reading to 

be fully integrated in the wholesale market. One way to achieve this is to provide 

customers with automatic meter reading so that they can choose electricity tariffs 

reflecting wholesale price variations. Furthermore, installation of notification systems 

able to signal the current price level on displays or by signal lamps, and possibilities for 

direct control of loads, may also increase consumers’ demand response. 

With such equipment installed, retailers can offer a range of new tariffs and 

products to the electricity customers.15 For instance, a spot price contract may be 

popular among customers with a high risk tolerance who does not want to pay the “price 

                                                 
14 Assuming the remaining part of the 40 % share is made up of consumers in the sector “Other industry”. 
15 See also Mauldin, 1997, Eakin and Faruqui, 2000, Long et al., 2000, Camfield et al., 2002, Irastorza, 2005. 
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insurance premium” related to for instance a fixed price contract.16 Customers with spot 

price contracts can expect a lower electricity bill than with a fixed price contract 

(Faruqui et al., 2002). Besides, if they can control and reduce their electricity 

consumption in peak hours, they may provide themselves with physical risk insurance 

towards the price volatility by being demand responsive (Hirst, 2002b). 

In between the pure spot price contract, where most of the risk is placed on the 

consumer, and the fixed price contract where the main risk is placed on the supplier, 

there may emerge a variety of new kinds of contracts that fit different customers' 

tolerance for risk and ability to respond to time-differentiation in price. An example is 

the time-of-use tariff (TOU), which has prices that vary by blocks of time within the 

day, but are fixed and known by customers in advance independently of the conditions 

in the electricity system (see for instance Faruqui and George, 2002). This tariff is 

however quite static. If the system is unconstrained, the TOU peak price may be much 

higher than the wholesale price, and if the system is constrained, a higher price than the 

TOU peak price may be needed to signal the market condition and wholesale prices. A 

more dynamic tariff, able to reflect the spot price and the conditions in the electricity 

system more accurately, is the critical-peak pricing (CPP). This tariff can increase the 

peak price if the system is severely constrained, and is thus a hybrid between the TOU 

and the spot price tariff. The TOU and the CPP tariffs are more predictable for the 

consumers than the hourly spot price at the same time as they provide incentives for 

consumption adjustments. The CPP rate lessens the price and quantity risk for the 

retailer compared with the TOU rate because of the possibility to impose a critical peak 

price during special circumstances.  

Another interesting tariff is a two-part real-time pricing (RTP) contract. This tariff 

offers consumers a fixed price for an agreed volume and the spot price for deviations 

from this volume. If the consumer uses less than what is agreed on, the consumer will 

be paid back the spot price for the deviation. If the consumer uses more, he pays the 

                                                 
16 A fixed price contract ensures a known price a year or more in advance and protects customers from possible 

volatile prices in the wholesale market and reduces the risk for unforeseen expenditures during the contract period. 
However, offering a fixed price contract exposes the retailer for price and quantity risk, as procurement costs at the 
wholesale market and the customers' consumption level is unknown. Thus, the retailer charges more than the 
expected average wholesale price for the contract period to account for this uncertainty, or hedges at the financial 
market through for instance forward contracts. See for instance, Hirst, 2002b, Gersten, 1999, Woo et al., 2004, 
Nord Pool, 2006b, Deng and Oren, 2006. 
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spot price for the deviation. Other versions of this tariff may also price the deviation 

somewhere between the fixed price and the spot price (see for instance Braithwait and 

Eakin, 2002, Horowitz and Woo, 2006 or Hunt, 2002).17 Consumers may also be offered 

a spot price contract with a cap at some level agreed on by the retailer and customer. 

Both retailers and customers expose themselves for financial risk dependent on the 

electricity contract agreed on (Sioshansi, 2002, Solem et al., 2003a). Figure 3.4 

summarizes some different tariffs and how they share risk between customer and 

retailer. 
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Figure 3.4. Electricity tariffs with differing risk on the customer or retailer. (Adapted 
from Eakin and Faruqui, 2000) 

 

Due to differing risk taking preferences among the customers, they are likely to 

diversify to the different tariffs. The retailer can hedge some of its risk at the financial 

markets, thereby contributing to more predictable prices also for producers. 

In addition, retailers may offer direct load control of appliances in order to assist 

end-users' price response, as a mean of attracting customers. Agreements can be made 

where load control is carried out at some predefined price levels, power consumption 

levels or in predefined periods in combination with any of the above mentioned 

contracts, to reduce or shift consumption when desired (see for instance Solem et al., 

2003a,b). 

                                                 
17 Trondheim Energiverk in Norway is currently offering a version of a two-part RTP tariff to residential customers, 

see www.tev.no. 
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When wholesale prices are conveyed to the customers and they adjust consumption 

to the varying prices, their retailers will bid price sensitive bids into the wholesale 

market. The two disconnected markets are then better integrated. 

4 Benefits from increased demand response 
 

There are a number of benefits that may be released with time-differentiated 

pricing, automatic meter reading and direct load control. This section discusses the 

following; improved economic efficiency in the electricity market, increased system 

reliability, reduced price volatility, mitigation of market power, and other benefits. 

4.1 Improved economic efficiency in the electricity market 

 

A market is most efficient when customers pay the marginal cost and make 

consumption decisions based on their marginal valuation of the commodity. For the 

electricity market, this means that consumers pay the wholesale hourly spot prices for 

their hourly consumption. The inefficiencies in the disconnection of the wholesale and 

the end-user markets arise when customer prices deviate from the wholesale prices. 

When customers pay less than the market price during peak periods, production 

technologies with high costs may be used to cover demand, even though many 

consumers would not find it worthwhile to consume electricity if they had been charged 

the marginal cost of this supply (see also Amundsen et al., 1996, Lafferty et al., 2001, 

Borenstein, 2002b, DOE, 2006). When customers pay more than the market price 

during off-peak periods, generators are not utilized even though many consumers would 

find the electricity production worth the costs. 

Figure 4.1 illustrates demand and supply curves for two different periods of the 

day; one peak and one off-peak period, in an electricity market where the customers are 

metered hourly and charged wholesale prices.  
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Figure 4.1. A connected market with demand responsive consumers with time-
differentiated tariffs 

 

The figure describes a connected market, as opposed to the situation in Section 3.1. 

Customers are confronted with the prices in the wholesale market and make 

consumption decisions according to their willingness to pay. Because the information 

about the customers’ demand responsiveness is brought to the wholesale market, their 

demand curves will no longer appear vertical as is also shown in the figure. The market 

therefore clears at other consumption and price levels than before. During a high 

demand period, this occurs at a lower consumption and price level (Q'peak,P'peak) than in 

the situation with no demand response (Qpeak,Ppeak). During a low demand period, the 

market clears at (Q'off,P'off), i.e. at a higher consumption and price level than in the 

situation with no demand response (Qoff,Poff). The efficiency gains that arise when 

customers face marginal prices rather than fixed prices are illustrated in the figure as the 

shaded areas (for two different periods of the day).18  

As seen in Figure 3.1, there is almost always a divergence between the customer 

price and the wholesale price. In a tightening Norwegian and Nordic electricity market, 

where prices may fluctuate more, efficiency gains from time-differentiated tariffs and 

                                                 
18 The standard variable tariff and the spot price based tariff are able to bring the customer price closer to the 

wholesale price than a fixed price contract for a year is. However, in today’s market, the wholesale prices may rise 
without the prices in these contracts following closely. The deviation between customer price and wholesale price 
may thus be substantial, also for these contract types, as was described in Section 3.1 (see Figure 3.1). 
Furthermore, none of these contracts have the possibility to reflect short-term price spikes as the one exemplified 6 
February 2003. 
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increased short-term demand response from households may thus have an increasing 

potential. 

4.2 Increased system reliability 

 
Reliability of supply in the power system is often characterised by system adequacy 

and security. Adequacy relates to the ability of the system to provide consumers’ 

demand at all times, while security relates to the ability of the system to handle 

disturbances (Oren, 2005). The Norwegian electricity market organisation is often 

referred to as an energy-only market, which means that generators are paid only for 

their produced energy.19 Under ideal conditions, energy-only markets are claimed to 

provide an adequate level of supply (Eltra et al., 2002, Oren, 2005). This level is where 

the cost of new capacity equals the willingness to pay for such capacity (von der Fehr et 

al., 2005).  

However, there are concerns regarding the energy-only market’s ability to provide 

sufficient investments.20 It is argued that the markets may suffer from inadequate 

capacity levels due to a number of conditions which may contribute to inefficient 

market performance. As Morey (2001) puts it, the question seems not to be whether a 

competitive market can provide adequate capacity, but whether a competitive wholesale 

power market can be achieved. One of the conditions that may contribute to inefficient 

market performance is lack of demand response.  

One of the reasons for this is that in the deregulated energy-only market framework, 

investments in generators (and demand side measures) are based on expectations of 

future energy prices (and maybe on income from the Regulating Power Market and 

Regulating Power Option Market). This means that the market model relies heavily on 

price signals, and consequently that the economic integrity of pricing mechanisms 

within the market rules is paramount (Fraser, 2001). Prices should provide the correct 

incentives for long-term investments decision and signal how much total capacity, and 

                                                 
19 This is because no additional capacity mechanisms to ensure sufficient generation capacity exist. However, there 

may be payment for other services also, such as the Regulating Power Market or the Regulating Power Option 
Market. It may therefore not be entirely correct to refer to the Norwegian market as an energy-only market 
(Botterud and Korpås, 2004). 

20 See, for instance, Doorman, 2000, Agerholm et al., 2004, Botterud and Korpås, 2006, de Vries, 2003, 2004, Stoft, 
2002, 2003, Eltra et al., 2002, Vázquez et al., 2002, Nordel, 2002. 
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which type of capacity, to build. However, when wholesale prices are not seen by the 

customers and their actual willingness to pay for supply of electricity is not reflected in 

the price in the market, the level of investments may consequently deviate from the 

most efficient one. Stoft (2003) argues that markets lacking demand responsiveness to 

prices learn nothing from high prices about consumer preferences for reliability. The 

required information simply does not exist when consumers’ trade off between 

consuming and not consuming at different price levels is not revealed in the market.  

Furthermore, because of the inelasticity of consumers and because it is impossible 

to prevent any customers from consuming electricity when they want, there is a chance 

that the demand and supply curve may fail to intersect (see Stoft, 2002, calling this a 

result of the two “Demand-Side Flaws”: lack of metering and real-time billing, and, lack 

of real-time control of power flow to specific customers). Any actions directed towards 

reducing the probability of disruptions of supply will, according to Jaffe and Felder 

(1996), create positive externalities. They argue that resource adequacy is a public good 

and will be underprovided in the market. Others argue that uncertainties deteriorate the 

willingness to invest. For instance, Agerholm et al. (2004) point out uncertainties about 

the price of electricity, and whether price caps or other changes to the market 

framework might be imposed by regulators.21 Stoft (2003) mentions the business risk 

associated with high price volatility as another factor. The long-run average rate of 

return is difficult to predict, so investors want a higher risk-premium on these risky 

investments. According to de Vries and Hakvoort (2004), it is not unlikely that investors 

will choose a risk-averse strategy, taken into account many of these (unquantifiable) 

uncertainties. Doorman (2000) argues that uncertainty is especially harmful for peaking 

                                                 
21 Agerholm et al. (2004) also mention conditions which not necessarily are related to lack of demand response, for 

instance uncertainties about prices of other fuels and whether environmental restrictions (CO2 targets and prices), 
taxes or other changes to the framework might be imposed by regulators. It has also been maintained that the 
electricity market does not perform efficiently if entry barriers are high enough to prevent investments by new 
entrants. Incumbent producers may exploit this by under-investing in capacity in order to raise prices (Vázquez et 
al., 2002, Eltra et al., 2002). High entry barriers may be the case in the Nordic countries since, according to for 
instance Bye et al. (2003a) and TU (2006), public regulations here make it very difficult to establish new capacity. 
Furthermore, according to for instance Nordel (2004b), one of the prerequisites for the market to work is that risk 
can be kept at a reasonable level. Risk may be overcome by hedging at the financial markets (Stoft, 2003). 
However, financial contracts at Nord Pool can not be purchased for more than four years ahead which may not be 
sufficient for investment hedging purposes given long lead times and life times of generators. Furthermore, existing 
standard financial instruments are based on a flat profile which means e.g. peaking units possibly may lack a 
hedging product that otherwise, according to Nordel (2004b), could have secured more predictable revenues during 
peak periods. 
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generators, since the generator with the highest marginal cost will have to cover its 

investment during a few short periods where all generators run at their capacity limits. 

Given risk-aversion among investors, investments may thus only occur when very high 

prices can be expected, and if there are no risks of price caps (see also Vázquez et al., 

2002). However, as discussed in Finon et al. (2004), while high prices may be necessary 

to trigger investment, politicians may find them unacceptable. For instance, during the 

high-price period in 2002/03 politicians threatened to reregulate the Norwegian market 

(Bye and Hope, 2005). Politicians may especially find high prices unacceptable if they 

suspect high prices to be a result of abuse of market power by companies that are taking 

advantage of insufficient demand response (Oren, 2005, see also Section 4.4). And, if 

there is a risk that politicians may intervene in the price formation, investments may be 

postponed (Nordel, 2004a). 

The above discussion indicates several conditions that may cause the investment 

level to deviate from the most efficient one. Whether this is the situation in Norway will 

not be evaluated here. However, as illustrated by Glende et al. (2005), we note that the 

peak load in Norway has been steadily increasing the last years, while the generating 

capacity has not increased to the same extent, resulting in a gradually deteriorating 

capacity balance. Others, for instance Bye and Hope (2005), Grande et al. (2001) and 

von der Fehr et al. (2005), have also emphasized the tighter market conditions that now 

may be seen, and that ensuring adequate capacity is an important challenge. Statnett 

(2006b) points out that the power sector in Norway has never before been on the way 

into an investment phase with the organization of the sector that we have today, which 

confronts the sector with new challenges. Statnett asserts that within the sector 

organization and the policy we have today, it is not likely that new overcapacity will 

systematically be built; a situation with little or scarce capacity will be persistent.  

Some forecasts of the power balance in Norway and the whole Nordel area may 

further illustrate this. For the previous winter (2005/06), Norway as well as the whole 

Nordel area (the Nordic countries), were forecasted to have a deficit in the power 

balance in a very cold winter day, so that import to maintain balance between demand 

and supply could have been necessary (Statnett, 2005a, Nordel, 2005c). For the present 

winter (2006/07), both Norway and the Nordel area are forecasted to have a surplus in 

the power balance (Statnett, 2006a, Nordel, 2006b). Forecasts for the 2008/09 winter 
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again indicates the need for import in case of a very cold winter day for Norway and the 

whole Nordel area, while the situation in 2009/10 indicates surplus for Norway but a 

deficit in the power balance for the Nordel area (Nordel, 2005a, 2006a). These forecasts 

indicate that the demand and supply levels the next years will alternate around what 

may be regarded as a tighter balance. 

Hunt (2002) and Fraser (2001) maintain that the lack of demand response is the 

reason for the worries about reliability and the need for capacity markets, installed 

capacity requirements, price caps and other holdovers from the period of regulation, 

seen in many countries.22 Demand response is an important factor that may improve the 

functioning of the market and mitigate many of the concerns discussed above. One of 

the consequences with inelastic demand accompanied by increasing peak power 

consumption and lack of investments in supply, is that failure of market clearing in the 

day-ahead as well as in the regulating market may occur (Stridbæk, 2003). This is 

illustrated in Figure 4.2.  
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Figure 4.2.  Demand response may avoid rationing 

 

                                                 
22 Due to the concerns of the inability of the energy-only market to ensure adequate supply levels, additional 

instruments and different organizations of the market have been proposed and are in use in different markets 
around the world in order to meet the shortcomings of the energy-only market or in order to make the markets 
more complete. Capacity obligations, capacity payments, proxy market pricing or capacity subscription (see a 
discussion of these in Doorman, 2000), consumer response options (Stridbæk, 2003), and reliability contracts based 
on financial call options (Vázquez et al., 2002) are some examples. 
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The figure indicates two different situations. The first is where inelastic demand 

(Qpeak) exceeds available capacity (Q’peak), for instance due to extreme cold, generator 

outages etc. With inelastic demand, involuntary disconnection of customers with the 

amount of Qpeak- Q’peak may be necessary to maintain the power balance. This may lead 

to substantial loss of load costs, and may also be considered socially unacceptable. In 

addition, physical rationing is inefficient since all disconnected customers are equally 

affected, regardless of their willingness to pay for the electricity (Faruqui et al., 2002). 23  

Instead of resorting to involuntary rationing, this situation can therefore be 

managed by voluntary adjustments to high prices, as indicated in the second situation 

where demand response is present in the wholesale market with an elastic demand 

curve. Demand response ensures market clearing at Q’peak, and thus helps balancing 

demand and supply. This implies that periods of under-investments of capacity in the 

market leads to higher prices rather than rationing of customers. As Fraser (2001) 

explains, if customers’ willingness to pay is brought through to the wholesale market, 

each customer actually declares a maximum reservation price (i.e., each customer’s 

value of lost load), which the customer is prepared to pay. The demand curve then 

becomes an ordered list of individual customer value of lost loads. Some argue that 

when customers ration themselves in this way, the public good characteristic of system 

adequacy is turned into a private one (IEA, 2003, Oren, 2005). The second situation also 

illustrates that the elastic demand curve may ensure clearing above marginal cost of the 

last unit, which may be necessary for generators to cover their fixed costs (see for 

instance Fraser, 2001 or Stoft, 2002).  

According to Hunt (2002), California had to employ rolling blackouts with a 

shortage of only 300 MW in a system of 50,000 MW, which means that a very small 

reduction in demand was needed to avoid the blackouts. Others have also pointed out 

that one of the key factors of the problems in California’s market was the absence of 

demand response (Faruqui and George, 2002, Fraser, 2001).  

Increased demand response provides flatter daily load shapes, and a better 

utilization of the capacity for both generators and the networks. With lower peaks, the 

                                                 
23 The average interruption cost for the total of Norwegian consumption is estimated at about 4 /kWh interrupted 

(Glende et al., 2005). Typically average outage cost used for system planning purposes in the US, range from $2.5 
to $5/kWh (Boisvert et al., 2002, DOE, 2006). 
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transmission or generator capacity may not need to be dimensioned for the same 

extreme demand that may only occur for a few hours a year. The necessity of expanding 

the transmission system or building new peak power plants may thus be less, or deferred 

(Borenstein, 2002b, DOE, 2006, Earle and Faruqui, 2006).  

Another advantage with demand responsive customers is that their bidding in the 

day-ahead market implies that demand during extreme situations is less than without 

demand response (see Figure 4.1). This may have reliability benefits since additional 

supplies become available for the Regulating Power Market to meet possible 

contingencies (see also Hirst, 2002a, Braithwait and Eakin, 2002). Some of these 

resources may be better suited for fast response in this market. Opportunities for 

retailers or network companies to aggregate reductions from certain types of load and 

sell this into the Regulating Power Market may also provide the system operator with 

more competition and cheaper prices in this balancing market (see Grande et al., 2000). 

Furthermore, as Braithwait and Eakin (2002) maintain, when the market performance is 

improved and load becomes more stable, the desired or needed reserve requirement may 

decrease.  

It may also be less expensive and less time consuming to activate demand response 

and strengthen the peak load balance compared to investment in generating capacity 

(Earle and Faruqui, 2006, Nordel 2004a). Furthermore, Earle and Faruqui argue how 

implementing the necessary infrastructure for demand response, before an actual 

capacity shortage situation occurs, may have an option value. As they put it; it might be 

valuable to pay an insurance premium today as a hedge against future outages (see also 

Stridbæk (2003), arguing in the same line).  

Finally, demand response may reduce price volatility, thus contributing to reduce 

investors’ uncertainty regarding investments in new capacity which may contribute to 

more timely investments. This will be discussed in the next section. 

Overall, we can see that demand response may contribute to benefits and reduced 

costs of maintaining a reliable and well-functioning electricity system. Those savings 

may eventually be distributed among several participators in the electricity market and 

may benefit all customers; those on time-differentiated tariffs and those on traditional 

tariffs.  
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4.3 Reduced prices and price volatility 

 

Highly volatile spot prices in the day-ahead market may occur due to the 

inelasticity of demand in the wholesale market, the non-storable property of electricity, 

uncertainty regarding demand that vary by time of year, week and day, available 

production and transmission capacity, bottlenecks and possible exercise of market 

power. Figure 4.3 show some examples of daily spot price patterns in the Oslo area.  
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Figure 4.3. Different hourly spot prices for different days in the Oslo area 

 

As seen in the figure, prices may vary significantly during the day and between 

seasons. For instance, during 5 February 2001, prices increased substantially, indicating 

a power capacity shortage situation. We also see that prices were constantly high during 

6 January 2003 due to the energy scarcity situation. Also shown is the peak price 

situation 6 February 2003, discussed in Section 3.1. Examples of low prices are 16 July 

2000 and 9 May 2004. Although these examples indicate significant price variation, 

prices traditionally vary little within the day in Norway. This may however change if 
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the capacity situation continues to tighten, and also as a result of new transmission 

capacity to countries with thermal power production. 

Several analyses and simulations support that demand responsiveness provides 

lower prices during peak periods, as illustrated in Figure 4.1. For instance, Boisvert et 

al. (2002) analyses how price responsive load contributed to relieve the electricity 

system at a time when electricity peak demand reached all time high levels, using data 

from demand response programs in the state of New York. They found that the increase 

in demand response reduced prices and price volatility in both the day-ahead market and 

the real-time market. The authors claim that only a little price responsive load can go a 

long way toward reducing prices and price volatility. Caves et al. (2000) simulated the 

market impacts of demand and supply shocks in the Midwest in the USA under a 

scenario where only 10 percent of the load had a spot price based contract. The 

simulations show that prices would be reduced by as much as 73 percent from the 

highest prices. Jaske (2002) reported results from an experiment performed by CalPX, 

which operated a day-ahead market in the USA. By re-simulating market prices with 

hypothetical load reductions from price responsive load, they found the price to 

decrease by approximately 28, 58 and 75 percent for load reductions of 5, 10 and 15 

percent in the peak price hour, respectively. Simulations performed by Nordel have 

shown that demand response in one region of the Nordic countries will contribute to 

stabilize the spot prices also in other regions (Kristensen et al., 2004). See also 

Braithwait and Faruqui (2001) or Hirst (2002b) for similar computations. 

Furthermore, with respect to Figure 3.3 showing the market cross for the hour 

17:00-18:00, 6 February; if for instance 600 MW less demand (approximately 3 percent 

of the total cleared demand) were bid into the Elspot market at some predefined level 

because of customers demand response, let’s say at prices above 500 NOK, this could 

have been enough to clear the market at nearly half the price this hour. Pettersen (2004) 

also shows how demand response may even out prices, not only between peak and off-

peak periods of the day, but also between seasons.  

As described in the previous section, investments in peaking units are highly risky 

because they need market clearing above their marginal cost, which occurs in 

constrained situations only. The length and height of the price peaks must be high 

enough to recover the investment costs. The more elastic demand is, the less volatile are 
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the price, and the less is the uncertainties with respect to future income from 

investments in generators. Increasing demand response may therefore contribute to 

increased propensity to invest. Since the likelihood of extreme prices also is reduced, 

the chance for political interventions in the market by for instance imposing price caps 

may also be less. This further reduces investors’ uncertainty. Reduced volatility further 

reduces the retailers' price risk, which may lead to lower hedging costs at the financial 

markets. This provides benefits that in the next turn may be passed on to the consumers 

through lower tariff rates (Boisvert et al., 2002, Braithwait and Eakin, 2002, DOE, 

2006). Lowering peak prices may ultimately also lower average prices, which may 

benefit also consumers who choose standard variable or fixed price contracts (Boisvert 

et al., 2002, Hirst, 2002b). However, as pointed out by Ruff (2002), bill reductions due 

to lower peak prices are rent transfers, not necessarily social benefits. Notwithstanding, 

many (for instance politicians) regard lower peak prices as benefits.  

4.4 Mitigation of market power 

 

In periods when peak demand approaches the limits of the production capacity, the 

market may clear at the steep part of the supply curve, as happened 6 February 2003 

(see Figure 3.3). Then, producers with a significant market share may withhold enough 

power from the market to shift the supply curve to the left, and achieve higher price 

levels.24 Taking 6 February 2003 as an example; if less than 3 percent of the total supply 

bid at the Nord Pool Spot was held back between 17:00-18:00, the price could have 

been doubled. However, the gains for producers of such attempts to exercise market 

power depend on the trade-off between selling less power to a higher price and selling 

more power to a lower price. The gain is higher if raising the price has little short-term 

impact on the demand. That is, with a significant share of consumption coming from 

consumers facing prices that do not vary by time of the day, the incentive for exercising 

market power is higher. On the other hand, with time-differentiated prices conveying 

real-time prices to demand responsive customers, companies holding back power from 

the market will have smaller impacts on the wholesale price. This reduces the 

                                                 
24 Bye and Hope (2005) points out that any producer on the margin (in restricted price areas), even a small firm, may 

also exercise market power. 
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profitability of exercising market power (see also Borenstein, 2000, Borenstein et al., 

2000, DOE, 2006). 

Another point is that when firms exercise market power, prices deviate from the 

cost of production. Reducing market power therefore contributes not only to reduced 

price volatility and price spikes, it reduces wealth transfer from customers to suppliers, 

and reduces efficiency losses in the market that occur from the difference of what the 

customers pay and the marginal production cost (Borenstein, 2002a, Lafferty et al, 

2003). Besides, artificially high prices may lead firms, which are dependent on 

electricity, not to establish new businesses (Borenstein et al. 2000). De Vries (2003) and 

Twomey et al. (2005) further remark that since exercise of market power may distort 

prices, investment decisions with respect to new capacity may also be distorted. 

Mitigating market power by increasing demand response can thus also reduce 

uncertainties and improve the basis on which investors make their investment decisions.  

4.5 Other benefits 

 

With automatic meter reading and direct load control technology, the opportunities 

for a retailer to differentiate its products from those of its competitors' is enhanced. 

Customers get more opportunities to choose from and can select the tariffs or products 

that are best designed for their specific wants and needs, and then tolerance for risk.  

More accurate meter reading and billing of the customers, also prevent possible 

tactic meter reading by customers, and reduce the costs for customers as they no longer 

need to read and report their consumption manually.  

Environmental benefits may also arise if increased demand response leads to a 

reduction in peak period emission that weighs up against possible increases in off-peak 

production emissions (Holland and Mansur, 2004, 2006). Holland and Mansur find that 

the impact on the emissions of SO2, NOX and CO2 depends on the generation 

technology characteristics of the region they analyses. Another benefit is that new 

power plants or transmission lines with environmental impacts may not be needed if 

peak load is reduced. 
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In addition, some claim that energy efficiency may follow from demand response 

programs. For instance, Faruqui (1983) surveyed 12 TOU experiments and found that 

overall reduction in daily consumption generally occurs. In Puget Sound Energy Time-

of-Use pilot program (PSE, 2003) it was documented a 1 percent average decline in 

total monthly energy use by TOU pricing participants. An IEA (2003) publication 

suggests that typical residential programs deliver approximately 2 percent reductions in 

energy consumed. 

Since increased demand response provides a less varying demand, it will give more 

continuous utilization of generators, hence reducing starting and stopping of peak 

production, which tend to increase wear and tear for the generators (TU, 2005). 

Reduced demand during peak periods also reduces losses in the grid (Haugen et al., 

2004). 

Finally, under the existing load profile billing system, customers with little 

electricity consumption during peak periods and much electricity in the off-peak periods 

actually subsidize those with "the opposite" consumption pattern (Borenstein, 2002b, 

Borenstein, 2005). Instead of mainly paying the off-peak prices, as the customers would 

do with a time-differentiated price, a part of the customers' off-peak consumption is also 

charged the peak price, according to the adjusted load profile. Hunt (2002) remarks, “It 

is hard to think of any other industry where products whose price varies so widely are 

bundled together for sale”. Many customers consider this unfair, and may therefore 

want to be charged by time-differentiated tariffs.  

5 Evidences of households’ demand responsiveness  
 
The release of many of the benefits depends on the consumers’ demand 

responsiveness. It has therefore been important to quantify price elasticities by 

conducting time-differentiated pricing experiments. This section reviews some of the 

literature analysing data from these experiments. 

In some European countries, time-differentiated electricity rates have been tested or 

been in use for some decades, while the U.S.' interest for demand response programs 
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grew in the 1970’s, partly due to the oil crisis and a growing environmental concern 

(Eto, 1996). 25  

Papers analysing consumers' responses to time-differentiated prices were few 

before researchers analysed a series of 16 experiments carried out in the US in the late 

1970’s and 80’s. Two annuals of Journal of Econometrics were in its entirety devoted to 

many of these analyses (Aigner, 1984, Lawrence and Aigner, 1979). Since then, an 

extensive literature has developed on residential consumer response to variable pricing. 

Also, literature on load control of e.g. water heaters has been published, although not to 

the same extent. This review will therefore mainly focus on the time-differentiated 

pricing literature, but will also describe some experiments including load control. 

Furthermore, this review focuses on residential electricity consumers only.26  

The first experiments usually featured the TOU rate. However, due to the static 

properties of this rate as described in Section 3.2 (it is constant in each time block 

regardless of varying conditions in the electricity system), more dynamic rates, such as 

real-time market prices or the CPP rate, have been tested recently. Most of the papers on 

customers' responses to time-differentiated pricing have therefore analyzed TOU 

programs. Very few papers where end-users at the household level have been offered 

spot price tariffs, are published.  

Usually, the results from analyses of consumers' responses are reported in terms of 

elasticities. The most common is the own price elasticity (usually only referred to as the 

price elasticity) and the elasticity of substitution. The own price elasticity is defined as 

the percentage change in quantity demanded, divided by the percentage change in price. 

The elasticity of substitution is the negative of the percentage change in the ratio of 

peak to off-peak consumption, divided by the percentage change in the ratio of the peak 

to the off-peak price.27 

                                                 
25 For instance, time-of-use (TOU) rates have been reported in use as early as 1913 (Mountain and Lawson, 1995), 

and water heater load control as early as 1934 (Hastings, 1980). Since 1965, French households have been offered 
the choice between a standard flat rate and a rate with two daily pricing periods (Aubin et al., 1995), in the UK a 
large TOU tariff experiment was conducted in 1966/67 (Hawdon, 1992) and Finland has offered consumers a TOU 
rate since 1970 (Kärkkäinen, 2005).  

26 For papers analyzing or reviewing commercial and industrial customers, see for instance Aigner and Hirschberg 
(1985), Aigner et al. (1994), Faruqui and George (2005), Ham, Mountain and Chan (1997), Hopper et al. (2006), 
Mak and Chapman (1993), Schwarz et al. (2002).  

27 According to King and Chatterjee (2003), an elasticity of substitution of 0.17 is consistent with a peak-period own 
price elasticity of approximately -0.3. 
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5.1 TOU experiments 

 

The results from the analyses of the 16 U.S. projects conducted in the 1970/80's 

differed, and questions were raised how to transfer the results to other regions, which 

was one of the intentions with the experiments (Aigner, 1984, Lawrence and Aigner, 

1979). Initiatives were therefore taken to investigate whether consistency could be 

found across the experiments if the differences between the experimental characteristics 

where controlled for. Caves et al. (1984) reviewed several of the experiments and 

selected five with sufficiently high quality that could be used to pool the data. Their 

analyses found consistent price responses across the experiments when the effects from 

weather, appliance holdings and household characteristics were controlled for. They 

found the substitution elasticity to vary depending on the stock of electric appliances in 

the homes. For a typical customer the elasticity was 0.14, for a household with no major 

appliances it was 0.07, while a household with all major electric appliances had a 

substitution elasticity of 0.21. Baladi et al. (1998) report similar findings from a later 

U.S. experiment. 

A Norwegian TOU electricity pricing experiment took place during the period from 

1984 to 1987 and included 374 households that volunteered for the experiment. Vaage 

(1995) found the results to be quite comparable with the results from the U.S. 

experiments. The elasticity of substitution varied between 0.13 in the winter and 0.24 in 

the spring, with an average over the whole period of 0.18. Hence, price responses were 

highest in the part of the year that is considered as off-peak period. Furthermore, 

nighttime consumption was more elastic than daytime consumption. Vaage also tested 

whether the elasticity changed during the two years the consumers faced the TOU rate. 

Although the substitution elasticity showed a slight increase from the first to the second 

year, he evaluated it to be too small to be given any weigh. Hauge (1993) analyzed data 

from the same experiment, and found somewhat higher responses, and also that 

responses were higher in households with a higher total consumption of electricity, 

living in detached houses and with alternative heating sources. 

In Great Britain, a TOU pricing experiment took place from April 1989 to March 

1990. Henley and Peirson (1998) analyzed data from this project, and found that 

consumers reduced daytime consumption in response to the prices and that the price 
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response was dependent on temperature (price elasticity was highest at 10°C). They 

reported price elasticities of -0.10 and -0.25 at 10°C. In an earlier work, Henley and 

Peirson (1994) found that responses were different depending on the customers' 

consumption strata, with higher responses in the highest strata. 

Train and Mehrez (1994) analysed a TOU tariff experiment in California in 1985 

and 1986. They estimated price elasticities of –0.15 in the peak and –0.25 in the off-

peak period, and also found that peak and off-peak consumption are substitutes because 

of positive cross-price elasticities. 

Filippini (1995a) analyzed panel data from 21 cities in Switzerland, from the period 

1987 to 1990, where consumers faced a time-of-use tariff or a two-part tariff. Unlike 

most other studies, which use micro data, this study was based on aggregated cross-

sections data at city or state level. Filippini found elasticities that are much higher than 

in most other studies. He found peak elasticities to range from -1.29 to -1.50 and off-

peak elasticities from -2.36 to -2.42. Another analysis by Filippini (1995b), this time 

using micro data, confirmed the previous results with estimated elasticities in the same 

range. 

In a Japanese TOU experiment in Japan, Matsukawa (2001) found price elasticities 

close to those in Filippini (1995). However, contrary to the Swiss results, Matsukawa 

found peak elasticities (-0.70 to -0.77) to exceed off-peak elasticities (-0.51 to -0.72). 

A residential TOU program carried out by Puget Sound Energy in the USA in 

2001/2002 showed a shifting of 5 – 6 percent of the customers’ consumption out of 

high-priced periods (Williamson, 2002). This result must be seen in light of very low 

price differentials in the experiment, which gave limited incentives for the consumers to 

shift their energy use. 

These results indicate that customers do respond to time-differentiated prices, but 

the extent to which they respond varies between the experiments. According to 

Braithwait and Eakin (2002), the average elasticity of substitution from traditional TOU 

programs is about 0.15. According to King and Chatterjee (2003), the average own price 

elasticity from all types of programs (including CPP and automated thermostat control 

programs, discussed in the next section) is -0.3.  
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5.2 Dynamic pricing and direct load control experiments 

 

Dynamic rates have often been combined with signal lamps or enabling 

technologies. For instance, Räsänen et al. (1995) analysed data from a voluntary 

dynamic pricing experiment in Finland during 1988-1993. A yellow signal lamp warned 

the customers one day in advance that the critical peak price could be charged their 

usage, and a red lamp signaled the customers during the peak hours that the critical peak 

price was actually in effect. Räsänen et al. found it important to analyze impacts of the 

rates at an individual customer level, since the customers' responses differ. In their data 

they found an active and a passive response group. The passive group reduced their 

consumption in peak period with 16 to 26 percent while the active group showed strong 

responses with 60 to 71 percent reductions.  

Elecricité de France has for a long time offered their electricity consumers time-of-

use tariffs. From 1996 the French electric utility also introduced critical-peak price 

tariffs for its residential consumers. Prior to this introduction, from 1989 to 1992, they 

conducted an experiment with this so-called tempo-tariff. With this tariff, the year is 

divided into 22 red, 43 white and 300 blue days, and each day has a peak and an off-

peak period. The red days charged electricity consumption the highest prices and the 

largest peak/off-peak price ratios, and the white days the lowest prices and smallest 

ratios. As in the Finnish experiment, the end-users were notified with a signal lamp of 

the next day's price structure at the end of each day. The prices accompanied with each 

of the days were fixed and known for the customers, but the colour of the days was 

unknown until the evening before. Aubin et al. (1995) found high elasticities in this 

experiment, with a peak price elasticity of -0.79 and off-peak elasticity of -0.28.  

A large-scale project in the USA tested a real-time market price on households, 

with a notification by e-mail or phone if the next day's price exceeded USD 0.10. The 

analysis of the data found price elasticity of -0.04. This somewhat low result must be 

seen in light of prices that were not particularly high in the test period (Summit Blue 

Consulting, 2004). 

The above experiments did not assist the consumers' load reductions by 

automatically controlling loads. Other experiments have done this by offering enabling 

technologies such as direct load control, combined with time-differentiated pricing in 
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order to enhance the consumers' price response. King (2004) made a survey of programs 

with dynamic pricing of electricity and/or with automated control. The intention of the 

survey was to compare the peak demand reducing performance of programs with only 

dynamic pricing or with only automated control, with programs that combined those 

two demand response measures. He found load reductions for programs that integrated 

dynamic pricing with automated load control to be on average 53 percent larger than 

load reductions in programs with only load control. He further found the integrated 

programs to give 102 percent larger reductions compared with programs with only 

dynamic pricing. 

An example of one such project is a program in the USA that used a critical-peak 

price tariff together with an interactive communication system. This system allowed the 

utility to send a signal to the consumers when critical prices were expected and also 

allowed the customers to program and schedule some of their appliances in order to 

modify the consumption according to the prices. Braithwait (2000) analyzed data from 

the project and found elasticities of substitution of approximately 0.3.  

Hartway et al. (1999) found load reductions of up to 1.95 kW (approximately 35 

percent reduction) in another program in the USA. They attributed these high responses 

to the high price differential (6.5:1), and to customers’ programming of their air 

conditioners using an advanced energy management system.  

The results from the recently finished Statewide Pricing Pilot in California (Faruqui 

and George, 2005, CRA, 2005) further illustrate the same results. Although 

comparisons between the different customer groups in the program should be made with 

care, the results showed that customers with enabling technologies responded more than 

customers without this equipment. 

6 Conclusions 

 

Increasing short-term demand response in the Norwegian electricity market may 

increase efficiency, improve system reliability, decrease price volatility and mitigate 

exercise of market power. These market performance improvements may contribute to 

lessen uncertainties for investors of new capacity due to a market framework that may 
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become more predictable, thus providing more timely and correct investments 

decisions. These benefits may prove valuable as the Norwegian and the Nordic market 

now enter a period with tighter conditions and with uncertainties regarding new 

investments in electricity production.  

Approximately 40 percent of the annual electricity consumption, and probably 

more than 40 percent of the power consumption during cold peak periods, is metered by 

technologies that can only measure accumulated consumption. This prohibits the use of 

time-differentiated electricity tariffs that reflect wholesale prices because such tariffs 

require automatic meter reading. Consequently, households only face prices that are 

fixed for long periods of time, and have no incentives to adjust consumption according 

to the short-term varying market conditions signalled in the wholesale prices. This 

consumer group will therefore to a limited extent contribute to achieve the benefits 

described in this paper. Experiences from around the world have shown that households 

are responsive to the price. This suggests that households better integrated into the 

electricity market can be important contributors to increase demand response, and thus 

to improve the functioning and increase the efficiency of the Norwegian and the Nordic 

market. 
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Article II:  
Direct load control of residential water heaters* 

 

 

 

Abstract 
 

In Norway there is a growing concern that electricity production and transmission may 

not meet the demand in peak-load situations. It is therefore important to evaluate the 

potential of different demand side measures that may contribute to reduce peak load. 

This paper analyses data from an experiment where residential water heaters were 

automatically disconnected during peak periods of the day. A model of hourly 

electricity consumption is used to evaluate the effects on the load of the disconnections. 

The results indicate an average consumption reduction per household of approximately 

0.5 kWh/h during disconnection, and an additional average increase in consumption the 

following hour, due to the payback effect, of approximately 0.2 kWh/h. 

 

                                                 
* An earlier version of this paper can be found in the Proceedings of the Sixth IAEE European Conference, Zurich, 1-

3 September. This version is published in the Statistics Norway’s Discussion Paper series (see 
www.ssb.no/publikasjoner/DP/pdf/dp479.pdf), and submitted to Energy Policy. I am very grateful to Kjetil Telle 
and Bente Halvorsen for advice and helpful discussions. I also appreciate comments on earlier drafts of this paper 
from Terje Skjerpen, Petter Vegard Hansen, Knut Reidar Wangen, Annegrete Bruvoll, Trond Gärtner, Hanne Sæle 
and Per Finden, and programming assistance from Hilde Madsen. 
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1 Introduction 
 

Peak electricity consumption in Norway has been increasing, and is expected to 

continue to increase in the years to come (Glende et al., 2005). However, since 

deregulation of the electricity market in 1991, new investment in power generation has 

been at a low level (Bye and Hope, 2005). Periods with extreme cold weather have 

revealed a vulnerable production and distribution system, as consumption in such peak 

situations has been close to capacity. This calls for a flexible demand side with the 

potential of reducing loads in peak situations to relieve the constrained system. Demand 

response may consequently defer the need for costly augmentation of the electricity grid 

or power production.  

Direct load control and time-differentiated tariffs are two measures to obtain 

demand response that have been tested and used worldwide. A direct load control 

programme often involves customers who are willing to offer electricity-consuming 

appliances for load reduction if they are compensated economically. Traditional 

interruptible programmes have paid their customers in advance for participating, for 

example, through rate discounts. An example is an air conditioner and water heater load 

programme in the USA, where customers are provided with discounts on their 

electricity bill if they participate in the programme (Xcel Energy, 2005). The customers 

receive $US6 for each month in the summer if they allow 15–20 minutes cycling of 

their air conditioner in the hot summer months and an additional $US2 each month for 

the whole year if they allow their water heaters to be disconnected for six-hour periods 

on hot summer days or cold winter days. The utility is only allowed to control the 

appliances for a maximum of 300 hours per year. In 2001, when approximately 280,000 

residential customers were on the programme, electricity consumption was reduced by 

330 MW in peak situations. Another example where water heaters are under direct 

control is an Australian programme involving 355,000 water heaters. This control 

reduces peak electricity consumption by 389 MW. The incentive for the customers to 

participate in the programme is lower rates for their water heating (Charles River 

Associates, 2003). A direct load control programme in the USA controls air 
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conditioning, central electric heaters, electric water heaters and swimming pool pumps. 

A total of 800,000 controlled points provides 1,000 MW of demand reduction in normal 

operation, and 2,000 MW in emergency situations (Malemezian, 2004). 

Direct load control is often combined with time-differentiated pricing, such as time-

of-use or dynamic pricing, to assist reduction of consumption during high-priced peak 

periods. King (2004) found load reductions for programmes that integrated dynamic 

pricing with automated load control to be on average 53% larger than load reductions in 

programmes with load control alone. He further found the integrated programmes give 

102% larger reductions than programmes with only dynamic pricing, i.e., over twice the 

reduction. 

Water heaters constitute approximately 10% of the electricity consumption in 

Norwegian households (Larsen and Nesbakken, 2005). Direct load control of water 

heaters may therefore have a large demand response potential which is important to 

quantify. This paper provides such estimates by studying data from a large-scale 

Norwegian project where load control of residential water heaters was applied. Hourly 

measurement of the electricity consumption from 475 households, number of hours of 

daylight each day, and the local temperature and wind speed in a six-month period from 

November 2003 to May 2004, provide a large panel data set that we analyse with 

statistical methods. We develop a fixed effects regression model of hourly electricity 

consumption and use it to evaluate the impact of the water heater control on households’ 

load curves.  

The results from the analysis show significant electricity consumption reductions 

during disconnections of the water heaters. The results also indicate additional 

consumption when the heaters are reconnected due to the so-called “payback” or “cold 

load pickup” effect (which is explained in the next section) which may cause a new 

peak in the electricity system, suggesting cycling the control events may be necessary. 

Section 2 describes factors that may influence the load reducing potential and the 

payback effect experienced when applying direct load control of water heaters, Section 

3 describes the experiment and the data that are analysed and Section 4 describes the 

method and the models that are used. The results are evaluated in Section 5 and the last 

section concludes. 
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2 Water heaters and load control 
 

When water heaters are used for direct load control, essentially all of the energy not 

supplied to the heaters when they are disconnected from the electricity supply will be 

required when they are reconnected. When switched on, all affected heaters that were 

supposed to be on during the control period, will start recovering from the interruption 

at the same time. Unless handled properly, this payback effect may have the undesired 

effect of creating a new peak in the electricity system. It is thus useful to discuss some 

causes for the effects experienced when water heaters are used for load control. This 

section describes some of these factors. 

A water heater is used to heat and store hot water. A typical Norwegian residential 

water heater holds 200 litres and has a rated heating element capacity of 2 kW. The heat 

loss from a tank is approximately 0.1 kWh/h at a temperature of 75°C (HiO, 2005). It 

takes approximately 2.3 hours for a full heated tank to drop in temperature by 1°C in 

stand-by mode, i.e., when no hot water is drawn from the tank. The water heater’s 

thermostat is usually a bimetallic strip with a dead-band of approximately 4°C. This 

means that the heating element will start operating when temperature falls below 73°C 

and stop operating when the temperature exceeds 77°C. Due to the thermostat’s dead-

band, a full heated tank in stand-by mode will require approximately nine hours before 

the thermostat activates the heating element as a result of heat loss. Orphelin and Adnot 

(1999) found that most heaters are operating due to the households’ usage of water 

rather than due to heat losses. 

When a household uses hot water, the water is drawn from the top of the tank. At 

the same time, cold water refills at the bottom of the tank. The thermostat is placed a 

few centimetres above the bottom, and will respond to a temperature drop by activating 

the heating element. A hand wash may use only a few litres of hot water. The energy 

use is accordingly low, and a heater will need to operate for only a few minutes to 

restore the energy used.1 A large family may use all the hot water, approximately 14 

kWh, when all members are showering, which requires the heating element to operate 

                                                 
1 However, small amounts of water use may not activate the heating element. This is explained below. 
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for seven hours afterwards. Those two examples may represent a range of energy use 

due to hot water use during morning hours in different households. 

Because hot water can be stored for long periods of time without significant heat 

loss in a well-insulated tank, it is well suited to heat water at one period of the day and 

use this water at another period. Direct load control of water heaters has therefore been 

widely applied to reduce peak load. The idea is to turn off the electricity supply to a 

large number of heaters during peak periods. If all heaters have elements of 2 kW-rated 

capacity, the maximum theoretical load reduction achievable is 2 kWh/h per heater. 

However, the average reduction of load per household is likely to be less, due to 

diversity with respect to the timing of the hot water usage between households. 

Two principle outlines of energy recover in water heaters, with and without 

disconnections of the heaters, in hypothetical household groups with different usage 

(high and low) of hot water are shown in parts (a) and (b) of Figure 2.1. The heating 

element capacity is assumed to be the same for all households. For illustrative purposes 

it is assumed that the starting point for hot water usage is distributed uniformly over the 

hours around the control event. 

 

1 
2 
. 
. 
. 
. 
. 
. 
. 
. 
. 
. 
. 
. 
n 

Disconnection Reconnection 

time t0 t1 t3 

Disconnection Reconnection 

time t1 t0 t2 

1 
2 
. 
. 
. 
. 
. 
. 
. 
. 
. 
. 
. 
. 
n 

Consumption of water (and operation of heating element) 

Operation of heating element 

Payback period 

 

 (a) (b) 

Figure 2.1. Energy recovering of water heaters with and without disconnections for 
households with a high level of hot water consumption, 1,…,n (a), and low level 
of hot water consumption, 1,…,n (b) 
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Figure 2.1 shows water heaters of two household groups with n households in each 

group. There is one heater at each “line”. The shaded and the white areas indicate the 

operating period for the heaters under normal conditions if a disconnection is not made. 

The shaded area indicates the period of hot water use (it is assumed that the heaters start 

operating immediately after hot water is drawn, i.e., at the beginning of the shaded 

area). The households use hot water at different times; in each group, number 1 starts 

consuming hot water first and number n last. A disconnection starts at t0 and finishes at 

t1, when the heaters are reconnected. The black area indicates the period when the 

heaters recover energy in the situation where a disconnection has occurred. The black 

area is simply the part of the energy recovery period that could not be accomplished due 

to the disconnection and which is postponed compared to the normal situation, without 

the disconnection. Approximately the same amount of energy that would normally be 

consumed during a disconnection will be consumed after the heater is reconnected.2 

This demand will be added to the system load and give rise to consumption that would 

normally not exist if load control did not occur. This payback effect is therefore the 

result of a disturbance in the natural diversity of the heaters used for load control (see 

for example Rau and Graham (1979) and van Tonder and Lane (1996) for a similar 

discussion). 

Figure 2.1(a) shows households with a high level of hot water usage. It can be seen 

that the disconnection affects the first water heater only slightly. The heater has nearly 

finished recovering the energy loss when it is disconnected; the final part of its 

restoration of the energy must wait until the heater is reconnected. Disconnection of this 

water heater will contribute little to load reduction in the electricity system. 

Nevertheless, the heater will contribute with its full-rated capacity at the time of 

reconnection, although only for a short time. To some extent, this will also be the case 

for the second and third heaters. The heaters in the middle of the figure will, however, 

contribute to a reduction with their rated capacity during the entire disconnection 

period. In addition, as these heaters start operating close to the time of disconnection 

and have a long recovery period, their payback contribution occurs after t1. At every 

                                                 
2 There will be a very small energy saving effect as the heaters are left for a period at a lower temperature than they 

otherwise would have been. 
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moment during the disconnection period, it can be seen that the disconnection affects 10 

heaters. When reconnected, only five heaters contribute to the payback effect at every 

moment until t3. In this example the power demand added to the system load after a 

disconnection is therefore only half the size of the reduced power demand during the 

disconnection. The system load curve will return to normal shape after t3, when all 

heaters affected by the load control have restored the energy consumed by the hot water 

use. 

Figure 2.1(b) shows households with a low level of hot water consumption. Their 

contribution to load reduction in the electricity system is small, and the disconnection 

has no effect on most of the heaters. For those that are affected, only one heater is 

disconnected in a certain time interval whereas five heaters will start operating 

simultaneously when reconnected, giving a payback effect from t1 to t2. The power 

demand added to the system load after a disconnection is five times the size of the 

reduced power demand during the disconnection. Furthermore, the size of the payback 

is the same as from the high hot water consumers in Figure 2.1(a). The system load 

curve will however quickly return to normal shape (after t2), when all heaters affected 

by the load control have restored the energy consumed by the hot water usages. 

Parts (a) and (b) of Figure 2.2 illustrate the discussion above with load curves 

during a day with and without disconnection of water heaters for the two customer 

groups. 
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Figure 2.2. Load curves with and without disconnection for households with a high level of 
hot water consumption (a), and low level of hot water consumption (b) 
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These simplified examples indicate some effects experienced when water heaters 

are used in load control programmes. Consumption is shifted out of the disconnection 

period to a later period. The payback effect will then give rise to extra consumption in 

the system load that would not have taken place otherwise. The figure illustrates that the 

low hot water consumers contribute little to reducing the load during the disconnection, 

but still create a high, although brief, peak when reconnected. This suggests that 

households with the highest consumption of hot water may be the target group in a 

direct load control programme. 

The above discussion illustrates some effects that may occur due to differing 

amounts of hot water consumption among households in a direct water heater load 

control programme. Further, the capacity of the heating elements of the water heaters 

will influence the effects. Given two consumer groups of equal size and with similar 

amounts of hot water consumption distributed equally over time, heaters with a low-

rated heating element capacity will require a longer time to restore energy than those 

with high capacity, and the demand during restoration will be smaller. The group of 

heaters with a high heating element capacity will contribute the same demand reduction 

during the disconnection as those with the low-element capacity, but will yield a higher 

payback demand, although over a shorter period of time, before water temperature is 

restored. 

The inlet temperature of water to the tanks also influences the impact on the load 

curve from control events. Low inlet temperature will contribute to longer heating 

periods and vice versa. 

The frequency of hot water use may contribute to different impacts from load 

control, depending on the region where it is applied. A survey of Norwegians’ 

showering habits revealed that the frequency of showers differed between regions. For 

example, the percentages of citizens showering daily differed from 31% in one region to 

66% in another region (Pettersen, 2006). 

The timing of the households’ hot water consumption may also be important. Most 

people in Norway start their day from 5 to 8 am (Vaage, 2002). This suggests that a 

large share of the water heaters in Norway are operating around these morning hours 

(around 7 to 9 am). For the evening, the proportion of people that are home from work 

and have a meal is highest around 4 to 5 pm. The proportion of households performing 
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household work is highest around 6 pm. Disconnections occurring around those two 

periods of the day (morning and afternoon) may then give the largest consumption 

reductions since this will probably affect a high proportion of the households’ heaters. 

The design of the heater may also be important. A tank will always contain a 

volume of water below the heating element that remains unheated, and this unheated 

volume will be larger if the heating element is installed horizontally than if it is tilted 

downwards inside the tank (the thermostat is placed above the element for both 

designs). When hot water is drawn, the unheated water will be pushed upwards and 

activate the thermostat. Therefore, because the unheated water is just below the 

thermostat in the horizontal design, use of even small volumes of hot water will activate 

the thermostat. In the downward-tilted design, the unheated water is further below and 

larger volumes of hot water use are allowed before the cold water reaches and activates 

the thermostat. Furthermore, some heaters are designed with a cold-water distributor, 

which decreases the velocity of the inlet water so that the water at the bottom is blended 

to a lesser degree. This allows larger volumes of hot water to be drawn without 

activating the heater. 

The length of a disconnection will also influence the size of the initial payback 

demand from all households affected by the control event, since a longer disconnection 

period affects more heaters. 

Therefore, load control carried out in different areas may give different load 

reductions and different payback effects if, for example, hot water consumption 

behaviour, types of water heaters, etc., differ between areas due to differing 

demographic characteristics of the households (see also Gustavson et al. (1993), for a 

discussion of some of these factors). 

3 Experimental data 
 

The project “End-user Flexibility by Efficient Use of Information and 

Communication Technology” (2001–2004) was a Norwegian large-scale project where 

automatic meter reading and direct load control technology were installed at electricity 

consumers’ premises (chiefly residential). We used data from this project to study the 

effect on households’ loads caused by direct load control of their water heaters. 
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3.1 Direct load control of water heaters 

 
The automatic meter reading and direct load control technology enabled hourly 

metering of each household’s electricity consumption throughout the test period and 

direct control of their water heaters. The automatic load disconnections were performed 

by a common signal from the network company to a relay in each household’s fuse box. 

The relay disconnected the heaters from the electricity until a new signal was sent for 

reconnection. This was tested on 12 different test days in hour 10 (9–10 am). There 

were also two test weeks with disconnections at different hours in the morning and the 

afternoon in order to study the load control impact for different hours. For two days 

disconnections were tested in hour 8 (7–8 am) and hour 17 (4–5 pm), two days in hour 9 

and hour 18, two days in hour 10 and hour 19, and two days in hour 11 and hour 20. If 

the households in the sample inquired, they were told they could find information on the 

timing of the tests on a web page, but no information was given directly. One can 

therefore assume that most did not know when the tests occurred, and therefore did not 

take any precautionary actions to compensate for the electricity being disconnected. 

3.2 The data 

 
We used a sample of households that had been exposed to automatic disconnection 

of their water heaters but had not faced time-differentiated tariffs. The households could 

voluntarily choose whether they wanted to participate. The sample consisted of 475 

households where hourly electricity consumption for each customer had been metered 

in the period from 3 November 2003 to 30 April 2004 (which corresponds to 180 days 

or 4,320 hours). Totally, the panel data set (unbalanced) consists of approximately 1.4 

million hourly observations.3 

In addition to electricity prices and individual consumption data, we use 

information on numbers of hours of daylight each day, and temperature and wind on an 

hourly basis. Summary statistics of the data are shown in Table 1. 

 

                                                 
3 Missing observations occurred due to technical problems with the metering system. 
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Table 1. Summary statistics of the data 

Variable  Mean Std. dev. Min Max 

Energy [kWh/h]  2.8 1.6 0.1 17.3 

Price [NOK] 0.6 0.1 0.4 0.6 

Temp [°C] 0.5 5.6 –16.3 16.7 

Wind [m/s] 1.5 0.8 0.3 6.6 

Daylight [hours] 9.0 2.8 5.9 15.2 

Note: NOK 1 ≈ EUR 0.12  
 

The variation in the weather variables was high with temperatures from –16 to 

+16°C, and wind speed approaching 7 m/s (hourly average). This variation captures 

much of the temperature and wind conditions that are often experienced in these seasons 

in Norway. The number of hours of daylight each day varies from 5.9 (in December) to 

15.2 (in April), with an average of nine hours. 

4 Method and model 
 

The aim of the analysis was to quantify the average load reducing potential from 

load control of the households’ water heaters and the size of the payback effect due to 

simultaneous reconnection of the heaters. 

We used a regression model capable of predicting the average residential 

consumption for every hour throughout the test period. The disconnection and payback 

effects were captured by dummy variables for the hours in question. The households’ 

price response and the effect on consumption from variations in outside temperature and 

wind speed, number of hours of daylight, and the cyclical consumption patterns due to 

times of day, week and year are also accounted for in the regression. 

4.1 Econometric specification 

 
We assumed the following specification for the hourly residential consumption of 

electricity: 
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i = 1,…,475, t= 1,....,4296, C = {17nov–21nov,18dec,19dec,14jan–16jan,15mar–

18mar,26apr–29apr}, D = {tue,wed,thu,fri,sat,sun}, H = {8–11,17–20}, M = 

{nov,dec,jan,feb,mar,apr},  

 

where: 
 

yit  = hourly electricity consumption [kWh/h] at time t for household i; 

Dch,t   = dummy variables for the hour of disconnection, i.e., 1 if t is 

disconnection hour h, 0 otherwise; 

Rch+1,t   = dummy variables for the hour following a disconnection, i.e., 1 if t is 

in reconnection hour h + 1, 0 otherwise; 

Rc10+j,t  =  dummy variables for the five hours following a disconnection in 

hour 10, i.e., 1 if t is in reconnection hour 10 + j, j = 1,…,5, 0 

otherwise; 

pit  =  electricity price [NOK] for household i at time t ; 

Tt  =  temperature [ºC] at time t; 

2
tT   =  temperature, squared [ºC]2 at time t; 

TMAt  =  moving average of temperature in the previous 24 hours [ºC] at time 

t; 

2
tTMA   =  moving average of temperature in the previous 24 hours, squared 

[ºC]2 at time t; 

Wt  =  wind [m/s] at time t; 

tWMA   =  moving average of wind last 24 hours [m/s] at time t; 
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dlt  =  daylight variables; 1 between sunrise and sunset, 0 otherwise; 

Dwd,wdh,t =  dummy variables; 1 if t is in hour wdh of a weekday, 0 otherwise; 

Dwe,weh,t =  dummy variables; 1 if t is in hour weh of a weekend or holiday, 0 

otherwise; 

Dd,t  =  dummy variables; 1 if t is in day d of the week, 0 otherwise; 

Dm,t  =  dummy variables; 1 if t is in month m of the year, 0 otherwise; 

DHd,t  =  dummy variables; 1 if t is in a holiday, 0 otherwise; 

Ddlc,t  =  dummy variable is 1 if t is in a day dlc where direct load control is 

carried out, 0 otherwise; 

γi  =  fixed time-invariant effect for household i; and 

εit  =  a genuine error term, assumed to be independently distributed across 

i and t with a constant variance.4 

 

To capture the drop in consumption caused by a disconnection we used dummy 

variables for the period in question. In addition, to capture the size of the expected 

payback effect in the hour of reconnection, we included a dummy variable for these 

hours. For the 12 days with disconnection in hour 10 we also included dummy variables 

for each of the five hours after the reconnection to study how long the payback effect 

lasts, and its size.5 The parameters of interest are therefore the coefficients for the 

disconnection (δDc) and reconnection (δRc) variables. The estimates of the coefficients 

related to the dummy variables may be interpreted as deviations from the normal 

consumption and they indicate directly the difference in kWh/h from the alternative of 

no disconnection. To isolate these effects it is important to control any other factors that 

may interfere with the dummy variables. The most important factors influencing 

electricity consumption included in the model are described briefly below. 

A fixed periodic/cyclical pattern, that often is assumed caused by the lifestyle of the 

households, can be modelled using dummy variables (Granger et al., 1979; Pardo et al., 

                                                 
4 The Huber/White/sandwich estimator was used to obtain robust estimates of the asymptotic variance–covariance 

matrix of the estimated parameters (StataCorp, 2005). 
5 The ability to estimate accurately the load control impact with the chosen model depends on the accuracy of the 

predictions of the load curve for the days of the load control events. We found that the model fits very well for the 
average of the 12 days with disconnections in hour 10, but has a somewhat poorer fit for the two test weeks with 
disconnections at other hours. Therefore, we only used the former days to study the length of the payback effect. 
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2002) or trigonometric terms (Al-Zayer and Al-Ibrahim, 1996; Granger et al., 1979), or 

by the use of splines (Hendricks et al., 1979; Harvey and Koopman, 1993). We 

modelled the cyclical patterns with dummy variables; one set with dummy variables for 

the 24 hours of the working days and one set for the 24 hours of the non-working days. 

In addition, we controlled for the possible different levels in use between the different 

days of the week with day dummy variables, and with the same argument for the 

months we introduce monthly dummy variables. To avoid multicollinearity, the 

weekend hour 01–, Monday–, and November dummy variables were excluded. Dummy 

variables were also included for each of the days where load control was applied to 

adjust the consumption curve level for those days to obtain a better fit. 

A rich literature on the temperature’s effect on electricity consumption suggests 

that the impact of a temperature change has non-linear, as well as delayed effects; see, 

for example, Henley and Peirson (1997, 1998), Granger et al. (1979), Harvey and 

Koopman (1993), Ramanathan et al. (1997) and Pardo et al. (2002). Following Granger 

et al. (1979) we allowed for the current temperature by one term and its possible non-

linear influence by a squared term. To account for the delayed effect of a temperature 

change we introduced a 24-hour moving average term, and also the square of this 

variable. Although most of the above studies have focused on temperature as the key 

weather variable, wind may also be important as it can increase a building’s heat loss 

(SINTEF, 1996). Both a current term and a 24-hour moving average term were 

included. Because the customers in the sample are located within the same area 

(Drammen), we assumed all dwellings to be exposed to the same weather conditions. 

Daylight is also likely to influence the consumption of electricity, as it decreases 

the need for electric lights and electric heating (see, for example, Johnsen (2001)). To 

allow for varying impact of daylight over the seasons, one variable for each month is 

included. Each variable was given the value 1 in the hours between sunrise and sunset 

for the existing month, and 0 otherwise.6 

Other seasonal changes, such as the change in humidity, rain or other seasonal 

factors, are picked up by the monthly dummy variables. In addition, because electricity 

                                                 
6 In the sunrise or sunset hour, the value of a daylight variable is equal to the share of the hour that it is daylight, i.e., 

between 0 and 1. 
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prices are expected to influence behaviour when they vary, a price variable was 

included in the model.7 

Differing time-invariant characteristics of the households may cause different 

consumption patterns. Such variables can be assumed constant during the six months 

the experiment lasted. We do not comment on their impact on consumption because our 

choice of model presented in the next section allows for such time-invariant variables. 

4.2 Fixed effects estimation 

 
It is likely that the consumption pattern of the households will differ due to 

differences in, for example, dwelling size, age and standard of the dwelling, heating 

systems, number of members in the families, income, education, attitude to 

environmental issues, etc. All such variables cannot possibly be obtained, and omission 

of some in the model may influence the estimates of the other parameters of interest. 

The cross section time series dimension of the data invites us to take the household-

specific factors into consideration by the use of a fixed-effects model. To present this 

idea, consider the simple model 

 

it it i ity X β γ ε= + + , (4.2) 

 

where yit represents consumption of electricity, Xit the vector of explanatory variables 

from (4.1), β is the vector of coefficients for the variables, and γi can be interpreted as 

fixed unobserved time-invariant household-specific effects.8 If the covariance between 

Xit and γi is non-zero, an ordinary least-squares estimation, where household-specific 

effects are neglected, will give biased estimators of β (Hsiao, 2003). However, by 

subtracting from each observation its household-specific mean, we can eliminate the 

effect of the unobserved household-specific effects. 

 

( ) ( ) ( )it i it i it iy y X X β ε ε⋅ ⋅ ⋅− = − + − , (4.3) 

                                                 
7 Prices vary between households, due to differing types of contracts. 
8 In X, only price varies between households. 
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where iy ⋅ , iX ⋅ , and iε ⋅ indicate the mean value of the variables for each household. The 

transformation removes the household-specific effects. β can then be estimated 

consistently without bias by ordinary least squares on the transformed variables. The 

use of ordinary least squares on (4.3) is therefore robust to correlation between Xit and 

γi, which is not the case when ordinary least squares is used on (4.2) and γi is omitted 

from the equation. The resulting estimator is called the fixed effects estimator, or the 

within estimator.9 

5 Results 
 

The results from the fixed effects regression using Stata are shown in Table 2 

(StataCorp, 2005). 

                                                 
9 Note that the regressions are performed with the software Stata, which uses an alternative but equivalent 

formulation by introducing an intercept (see StataCorp, 2005 and Gould, 2001). The intercept represents the 
average value of the fixed effects. 
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Table 2. Results from the fixed effects (within) regression 

Variables Estimate t-value p-value
Dc hour 8 –0.466 –14.62 0.000
Dc hour 9 –0.580 –18.69 0.000
Dc hour 10 –0.497 –33.91 0.000
Dc hour 11 –0.355 –10.70 0.000
Dc hour 17 –0.414 –11.57 0.000
Dc hour 18 –0.489 –14.00 0.000
Dc hour 19 –0.596 –17.85 0.000
Dc hour 20 –0.178 –4.47 0.000
Rc hour 8+1 0.284 7.23 0.000
Rc hour 9+1 0.158 4.12 0.000
Rc hour 10+1 0.239 13.60 0.000
Rc hour 10+2 0.097 5.48 0.000
Rc hour 10+3 0.045 2.61 0.009
Rc hour 10+4 0.019 1.12 0.262
Rc hour 10+5 0.002 0.10 0.918
Rc hour 11+1 0.147 3.78 0.000
Rc hour 17+1 0.240 5.80 0.000
Rc hour 18+1 0.196 4.83 0.000
Rc hour 19+1 0.134 3.14 0.002
Rc hour 20+1 –0.017 –0.41 0.679
Price –0.246 –9.23 0.000
Temp –0.024 –65.18 0.000
Temp2 –0.001 –25.22 0.000
TempMA –0.043 –101.74 0.000
TempMA2 0.000 0.38 0.706
Wind 0.014 11.03 0.000
WindMA 0.069 31.59 0.000
Daylight: November –0.072 –10.75 0.000
Daylight: December –0.043 –6.83 0.000
Daylight: January –0.084 –13.20 0.000
Daylight: February –0.147 –25.72 0.000
Daylight: March –0.128 –24.97 0.000
Daylight: April –0.056 –10.57 0.000
Constant 2.529 123.13 0.000
R2:  within   = 0.2251 F(109,1498051) = 3740.91  

  between  = 0.0047 Prob > F  = 0.0000 
  overall  = 0.1124 

Note: the effects of the holiday, control day, cyclical hour, day and month dummy variables are reported 
in the Appendix. Dc = Disconnection, Rc = Reconnection 
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The results show that most of the explanatory variables are highly significant. The 

hypothesis that all the slope coefficients are jointly 0, which is tested using an F-

statistic, is rejected (see the bottom of the table). 

First we comment on the results for the load control in the two test weeks with 

control in different morning and afternoon hours, then we examine the impact of load 

control for the 12 days with disconnections in hour 10. 

5.1 Results for load control in different hours in two test weeks 

 
The estimates reported in Table 2 for the automatic load disconnection dummy 

variables all show the expected negative signs indicating consumption reductions, and 

all the reconnection dummies but the estimate for hour 20 are positive, indicating a 

payback effect in the first hour after a disconnection.10 Figure 5.1 plots the estimates 

from Table 2 for the morning disconnections and the hour immediately after the 

disconnection when the water heaters are reconnected to the electricity supply. Figure 

5.2 illustrates the same for the evening load control events. 
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Figure 5.1. Predicted effects (kWh/h) of disconnections and reconnections in the morning 
hours 

 

                                                 
10 The positive reconnection estimate of hour 20 is an anomaly and probably due to a small deviation between the 

predicted and the real load curve. However, the estimate is far from significant. 
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Figure 5.2. Predicted effects (kWh/h) of disconnections and reconnections in the evening 
hours 

 

Our findings suggest that when a common signal for automatic disconnection of the 

water heaters is sent, one can anticipate an average load reduction of between 0.36 and 

0.58 kWh/h per household for the morning hours, depending on the hour, and between 

0.18 and 0.60 kWh/h in the afternoon, depending on which hour disconnections occur. 

Graabak and Feilberg (2004), analysing the impact of load control in one of the test 

weeks, found similar, but somewhat smaller effects.11 Our results show that 

disconnection in hour 9 in the morning and in hour 19 in the evening give the largest 

load reductions. 

Assuming an average load reduction per customer of 0.5 kWh/h, the total load 

reducing potential in Norway from this measure can be inferred. Given that half of the 

Norwegian households (approximately 1 million) have their water heaters disconnected, 

and assuming 20% losses in the grid in a peak load situation, the potential is 0.5 kWh/h 

* 1,000,000 * 1.2 = 600 MWh/h reduction of load for the whole Norwegian system 

(assumptions correspond to those used by Graabak and Feilberg, 2004). For 

comparison, the maximum measured load in Norway is 23,054 MWh/h in hour 10, 5 

February 2001. This suggests that consumption could be lowered to 22,454 MWh/h this 

hour. 

                                                 
11 The differences between their results and ours may be due to different analysis methods (they compared load 

curves with those of a reference group) and they studied only one of the two test weeks. 
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The positive coefficients for the hour following a reconnection of the water heaters 

indicate the size of the payback effect, i.e., the electricity use that will be added to the 

system load curve after load control has occurred. We see that disconnections lead to 

surplus consumption of between 0.15 and 0.28 kWh/h in the morning and between 012 

and 0.24 kWh/h in the evening, when the heaters are reconnected.13 Assuming the 

payback effect to be 0.24 kWh/h, the aggregated extra average demand for the 

Norwegian system can be inferred using a similar calculation to the above; 288 MWh/h 

for the first hour after the disconnection in hour 10. Imposing this value into the same 

day as above suggests that consumption could increase from 22,940 MWh/h (the load in 

hour 11 in the Norwegian system 5 February 2001) to approximately 23,230 MWh/h, 

that is, to a higher level than the previous peak. 

To illustrate how the automatic load control may affect the daily load curve for the 

households in this study, Figure 5.3 shows the predicted mean hourly electricity use for 

one of the test days with disconnection in hour 8 and in hour 17. The payback effect is 

only indicated for the first hour following a disconnection. 
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Figure 5.3. Predicted consumption for one day with disconnection in hour 8 and 17, with 
and without predicted disconnection and reconnection terms 

 

                                                 
12 Assuming the negative estimate of –0.017 is not logical. It is likely to be at least 0.  
13 Graabak and Feilberg (2004) found payback effects of between 0.09 and 0.29 kWh/h for the morning hours, and 

between 0.06 and 0.37 kWh/h for the evening hours. 
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As shown in Figure 5.3, disconnections cause significant reductions in 

consumption. In addition, the post-peak in the hour after the water heaters have been 

reconnected is evident. 

5.2 Results for load control in hour 10 in twelve test days 

 
Section 2 indicates that the size of the post-peak is likely to be largest in the first 

minutes after reconnection and then diminish. However, since our data are measured 

with an hourly sampling frequency, we only know the average effects over hourly 

intervals and not the instantaneous power demand at the moment the heaters are 

reconnected, or the following evolvement of the payback effect. Nevertheless, we know 

the likely range for the instantaneous power demand. Since most heaters in Norway 

have heating elements with rated capacities of 2 kW, the maximum possible average 

payback demand at reconnection is likely not to be higher than 2 kW. In addition, using 

hour 10 as an example, we know from the estimated hourly average payback demand 

for the first hour after a disconnection, that the additional power demand is not likely to 

be less than 0.239 kW. 

Nevertheless, our estimates for the five hours after the hour 10 disconnections 

allow us to indicate the payback size at the time of reconnection. From Table 2 we can 

see that the hourly payback is highest in the first hour and diminishes over the following 

hours. The estimates for the fourth and fifth hours are not significantly different from 0. 

We can then anticipate that it will take at least three hours before all energy is restored, 

on average, in all the water heaters affected by the disconnection. This supports our 

description in Section 2 regarding the distribution of the time the water heaters use to 

restore the energy in the tanks; some heaters use a short time to recover from an energy 

loss, whereas others require a longer time. 

We indicate a possible real-time power demand curve after reconnection by plotting 

the estimates for four hours after reconnection and fitting a simple exponential trend 

line to the hourly estimates (the fifth hour is excluded as it is highly insignificant). The 

intersection with the y-axis for the trend line will indicate the size of the instantaneous 

water heater demand at the moment of reconnection. There is a high degree of 

uncertainty related to this curve and its intersection, so one must be cautious about 
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transferring our results from the hour 10 disconnections to other hours of the day or to 

other customer areas. Nonetheless, it is useful as a starting point for discussion and as 

an illustration of how the real payback demand curve may look. In addition, bear in 

mind that we use averaged data for 12 days to indicate the instantaneous payback effect, 

which makes it likely that some of these 12 days experienced higher instantaneous 

peaks. 

Figure 5.4 illustrates the hourly averaged estimates for the subsequent four hours 

after a disconnection and the fitted line suggests the real-time payback power demand. 
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Figure 5.4. Estimated average payback consumption for four hours following a 
disconnection, and a fitted exponential trend curve, the potential real-time 
payback power demand 

 

Using the four estimates to fit the exponential trend line, we find the power demand 

at the time of reconnection to be approximately 0.36 kW.14 By visual inspection, the 

area (i.e., the energy use) under the trend line for each hour is quite similar to the area 

under the hourly estimates. This indicates that the trend line is sensible. 

In the literature, the payback effect has been described using data from actual field 

tests and by simulation models. For example, Bische and Sella (1985) found that a load 

shedding of 25 MW of water heaters can build up to an initial payback demand of 80–

90 MW. Another example is found in Lee and Wilkins (1983). Using their model, water 

                                                 
14 Using only the three estimates that are significant at the 10% level, we find it to be 0.35 kW, and if all five 

estimates are used, the intersection is at 0.57 kW. 
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heater electricity consumption 15 minutes after a one-hour disconnection would be 

nearly twice the size that would have occurred if no load control had been applied, and 

three times the size after a two-hour disconnection.15 The plots in Reed et al. (1989) 

indicate that the percentage of water heaters operating can be approximately 2.5 times 

higher immediately after a two-hour disconnection than if no disconnection is applied. 

In Ryan et al. (1989), the payback effect is approximately three to four times higher 

than the normal water heater load, after a four-hour disconnection. 

Compared with the instantaneous power demand at the moment of reconnection 

found in this literature, our indication of the water heater power demand immediately 

after a reconnection seems to be quite low. The size of the payback demand found is 

approximately 0.7 times higher than water heater electricity consumption during normal 

operation, while the examples from the literature range from two to four times higher.16 

One reason may be that the rated power of the heating elements in water heaters used in 

experiments abroad is higher than in Norway. For example, heating elements with rated 

power of 4.5 kW are common in the USA (Orphelin and Adnot, 1999). Norwegian 

households, which usually have 2 kW heating elements, will then have comparably 

lower instantaneous power demand and longer recovering periods for the same amount 

of hot water use. Another reason is probably that some of the disconnections referred to 

have a longer disconnection period. 

Whether payback effects due to load control of residential water heaters induce new 

so-called post-peaks in the electricity system higher than the targeted peak depends on 

the total load in the system. If the total load curve has a pattern such that the load is low 

enough in the same period as the post-peak appears, it may offset the payback effect. 

However, this may vary from day to day, depending on a number of variables, as, for 

example, temperature. A strategy to control the payback effect is to divide the heaters 

into groups and cycle the control events between the groups, i.e., disconnect and 

reconnect the groups at different times during the control period. The principle is that 

when some heaters are reconnected, others will be allowed to recover. By disconnecting 

one or more groups of heaters when the system load reaches a pre-defined level and 

                                                 
15 Displaced energy during disconnection is assumed to be 0.5 kWh/h. 
16 The value 0.7 is found by dividing the power demand (0.36 kW) by the disconnected demand (0.5 kWh/h) for hour 

10 (assuming the water heater power demand to be a constant 0.5 kW). 
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reconnecting on a first-off first-on basis when the load is sufficiently low again, load 

reductions can be achieved while a critical post-peak can be avoided (van Tonder and 

Lane, 1996; see also Bische and Sella (1985), Lee and Wilkins (1983), Rau and Graham 

(1979), Salehfar and Patton (1989), Weller (1988) and Gomes et al. (1999) for 

descriptions of cycling strategies). 

5.3 Results for temperature, wind and daylight 

 
From the other results shown in Table 2 we first see the importance of controlling 

for the current and moving average temperature, as the estimates are highly significant. 

There is a decreasing impact from a temperature change on electricity consumption for 

the current term when temperature falls. The moving average of temperature influences 

consumption only linearly because the squared term is insignificant. Second, the wind 

speed coefficients are highly significant, indicating that increased wind speed increases 

energy use, as expected. Third, the estimates attached to the hours of daylight variables 

are negative, which indicates that more daylight reduces electricity consumption, as 

expected. Fourth, the price coefficient indicates that a price increase of 0.01 NOK/kWh 

will decrease consumption by 0.003 kWh/h. 

6 Conclusions 
 

Estimates of the impact of load reduction indicate that direct load control of 

households’ water heaters can be an effective tool in decreasing peak load consumption. 

Disconnection of the heaters from the electricity grid for the sample of households 

analyzed in this paper can be expected to give an average reduction in load per 

household of between 0.36 kWh/h and 0.58 kWh/h in the morning hours and between 

0.18 kWh/h and 0.60 kWh/h in the evening hours. As described in this paper, the 

interruption of the natural diversity of the water heater electricity consumption during a 

disconnection gives rise to a payback effect, which leads to an additional consumption 

in a period after reconnection. For the first hour after a reconnection we found that the 

average extra consumption can reach up to 0.28 kWh/h per household. Note that the 

data are measured on an hourly sampling frequency, and that the instantaneous demand 
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at the instant of reconnection is likely to be higher than the hourly estimates of the 

payback effect. By using the hourly payback demand estimates for the subsequent hours 

after disconnection in hour 10, we have indicated an average power demand per 

household at the instant of reconnection to be 0.36 kW more than it would be if no load 

control had been applied. This payback demand may have the adverse consequence of 

causing a new peak in the system, which suggests it may be necessary to re-establish the 

diversity of the loads in a controlled manner by cycling the control events.
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Appendix 

Table A1. Results from the fixed effects regression 

Coefficient Variable Explanation Estimate t-value p-value 

δDc,8 Dc8 Dummy, disconnection, hour 8 –0.466 –14.62 0.000 

δDc,9 Dc9 Dummy, disconnection, hour 9 –0.580 –18.69 0.000 

δDc,10 Dc10 Dummy, disconnection, hour 10 –0.497 –33.91 0.000 

δDc,11 Dc11 Dummy, disconnection, hour 11 –0.355 –10.70 0.000 

δDc,17 Dc17 Dummy, disconnection, hour 17 –0.414 –11.57 0.000 

δDc,18 Dc18 Dummy, disconnection, hour 18 –0.489 –14.00 0.000 

δDc,19 Dc19 Dummy, disconnection, hour 19 –0.596 –17.85 0.000 

δDc,20 Dc20 Dummy, disconnection, hour 20 –0.178 –4.47 0.000 

δRc,8+1 Rc8+1 Dummy, reconnection, hour 8+1 0.284 7.23 0.000 

δRc,9+1 Rc9+1 Dummy, reconnection, hour 9+1 0.158 4.12 0.000 

δRc,10+1 Rc10+1 Dummy, reconnection, hour 10+1 0.239 13.60 0.000 

δRc,10+2 Rc10+2 Dummy, reconnection, hour 10+2 0.097 5.48 0.000 

δRc,10+3 Rc10+3 Dummy, reconnection, hour 10+3 0.045 2.61 0.009 

δRc,10+4 Rc10+4 Dummy, reconnection, hour 10+4 0.019 1.12 0.262 

δRc,10+5 Rc10+5 Dummy, reconnection, hour 10+5 0.002 0.10 0.918 

δRc,11+1 Rc11+1 Dummy, reconnection, hour 11+1 0.147 3.78 0.000 

δRc,17+1 Rc17+1 Dummy, reconnection, hour 17+1 0.240 5.80 0.000 

δRc,18+1 Rc18+1 Dummy, reconnection, hour 18+1 0.196 4.83 0.000 

δRc,19+1 Rc19+1 Dummy, reconnection, hour 19+1 0.134 3.14 0.002 

δRc,20+1 Rc20+1 Dummy, reconnection, hour 20+1 –0.017 –0.41 0.679 

βp  p Price –0.246 –9.23 0.000 

βT
 T Temperature –0.024 –65.18 0.000 

βT
2 T2 Temperature, squared –0.001 –25.22 0.000 

βTMA TMA Temperature, moving average –0.043 –101.74 0.000 

βTMA
2 TMA2 Temperature, moving average, squared 0.000 0.38 0.706 

βW W Wind 0.014 11.03 0.000 
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βWMA
 WMA Wind, moving average 0.069 31.59 0.000 

βdl,nov Dnov dl Daylight: November –0.072 –10.75 0.000 

βdl,dec Ddec dl Daylight: December –0.043 –6.83 0.000 

βdl,jan Djan dl Daylight: January –0.084 –13.20 0.000 

βdl,feb Dfeb dl Daylight: February –0.147 –25.72 0.000 

βdl,mar Dmar dl Daylight: March –0.128 –24.97 0.000 

βdl,apr Dapr dl Daylight: April –0.056 –10.57 0.000 

βwd,2 Dwd,2 Dummy, weekday, hour 2 –0.138 –23.67 0.000 

βwd,3 Dwd,3 Dummy, weekday, hour 3 –0.191 –33.32 0.000 

βwd,4 Dwd,4 Dummy, weekday, hour 4 –0.195 –34.29 0.000 

βwd,5 Dwd,5 Dummy, weekday, hour 5 –0.175 –30.63 0.000 

βwd,6 Dwd,6 Dummy, weekday, hour 6 –0.073 –12.49 0.000 

βwd,7 Dwd,7 Dummy, weekday, hour 7 0.163 26.21 0.000 

βwd,8 Dwd,8 Dummy, weekday, hour 8 0.477 70.06 0.000 

βwd,9 Dwd,9 Dummy, weekday, hour 9 0.538 75.55 0.000 

βwd,10 Dwd,10 Dummy, weekday, hour 10 0.505 64.08 0.000 

βwd,11 Dwd,11 Dummy, weekday, hour 11 0.429 54.08 0.000 

βwd,12 Dwd,12 Dummy, weekday, hour 12 0.374 47.27 0.000 

βwd,13 Dwd,13 Dummy, weekday, hour 13 0.308 39.31 0.000 

βwd,14 Dwd,14 Dummy, weekday, hour 14 0.286 36.57 0.000 

βwd,15 Dwd,15 Dummy, weekday, hour 15 0.343 43.36 0.000 

βwd,16 Dwd,16 Dummy, weekday, hour 16 0.458 61.53 0.000 

βwd,17 Dwd,17 Dummy, weekday, hour 17 0.617 86.13 0.000 

βwd,18 Dwd,18 Dummy, weekday, hour 18 0.699 98.69 0.000 

βwd,19 Dwd,19 Dummy, weekday, hour 19 0.708 101.48 0.000 

βwd,20 Dwd,20 Dummy, weekday, hour 20 0.707 102.31 0.000 

βwd,21 Dwd,21 Dummy, weekday, hour 21 0.685 102.03 0.000 

βwd,22 Dwd,22 Dummy, weekday, hour 22 0.627 95.62 0.000 

βwd,23 Dwd,23 Dummy, weekday, hour 23 0.473 74.43 0.000 

βwd,24 Dwd,24 Dummy, weekday, hour 24 0.240 38.62 0.000 

βwe,2 Dwe,2 Dummy, weekend, hour 2 –0.143 –17.10 0.000 
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βwe,3 Dwe,3 Dummy, weekend, hour 3 –0.214 –26.01 0.000 

βwe,4 Dwe,4 Dummy, weekend, hour 4 –0.247 –30.42 0.000 

βwe,5 Dwe,5 Dummy, weekend, hour 5 –0.257 –31.86 0.000 

βwe,6 Dwe,6 Dummy, weekend, hour 6 –0.229 –28.31 0.000 

βwe,7 Dwe,7 Dummy, weekend, hour 7 –0.158 –19.14 0.000 

βwe,8 Dwe,8 Dummy, weekend, hour 8 –0.033 –3.84 0.000 

βwe,9 Dwe,9 Dummy, weekend, hour 9 0.185 20.11 0.000 

βwe,10 Dwe,10 Dummy, weekend, hour 10 0.451 44.60 0.000 

βwe,11 Dwe,11 Dummy, weekend, hour 11 0.620 58.78 0.000 

βwe,12 Dwe,12 Dummy, weekend, hour 12 0.663 62.28 0.000 

βwe,13 Dwe,13 Dummy, weekend, hour 13 0.641 60.34 0.000 

βwe,14 Dwe,14 Dummy, weekend, hour 14 0.600 56.42 0.000 

βwe,15 Dwe,15 Dummy, weekend, hour 15 0.605 57.00 0.000 

βwe,16 Dwe,16 Dummy, weekend, hour 16 0.628 61.63 0.000 

βwe,17 Dwe,17 Dummy, weekend, hour 17 0.660 65.81 0.000 

βwe,18 Dwe,18 Dummy, weekend, hour 18 0.686 68.50 0.000 

βwe,19 Dwe,19 Dummy, weekend, hour 19 0.700 70.16 0.000 

βwe,20 Dwe,20 Dummy, weekend, hour 20 0.675 68.73 0.000 

βwe,21 Dwe,21 Dummy, weekend, hour 21 0.599 63.55 0.000 

βwe,22 Dwe,22 Dummy, weekend, hour 22 0.500 54.53 0.000 

βwe,23 Dwe,23 Dummy, weekend, hour 23 0.362 40.58 0.000 

βwe,24 Dwe,24 Dummy, weekend, hour 24 0.175 19.56 0.000 

βtue Dtue Dummy, Tuesday 0.013 4.06 0.000 

βwed Dwed Dummy, Wednesday 0.023 7.47 0.000 

βthu Dthu Dummy, Thursday –0.001 –0.28 0.782 

βfri Dfri Dummy, Friday –0.007 –2.19 0.028 

βsat Dsat Dummy, Saturday 0.055 6.95 0.000 

βsun Dsun Dummy, Sunday 0.095 12.09 0.000 

βdec Ddec Dummy, December 0.085 22.65 0.000 

βjan Djan Dummy, January 0.156 36.39 0.000 

βfeb Dfeb Dummy, February 0.036 8.43 0.000 
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βmar Dmar Dummy, March –0.046 –10.43 0.000 

βapr Dapr Dummy, April –0.249 –48.23 0.000 

βHd DHd Dummy, Holiday 0.096 11.94 0.000 

β17nov D17nov Dummy, control day, 17 November –0.064 –5.19 0.000 

β18nov D18nov Dummy, control day, 18 November –0.047 –3.83 0.000 

β19nov D19nov Dummy, control day, 19 November 0.033 2.84 0.004 

β20nov D20nov Dummy, control day, 20 November 0.004 0.35 0.729 

β21nov D21nov Dummy, control day, 21 November 0.040 3.21 0.001 

β18dec D18dec Dummy, control day, 18 December 0.010 1.05 0.295 

β19dec D19dec Dummy, control day, 19 December 0.081 8.19 0.000 

β14jan D14jan Dummy, control day, 14 January –0.044 –4.28 0.000 

β15jan D15jan Dummy, control day, 15 January –0.115 –10.52 0.000 

β16jan D16jan Dummy, control day, 16 January –0.141 –11.05 0.000 

β15mar D15mar Dummy, control day, 15 March 0.031 2.95 0.003 

β16mar D16mar Dummy, control day, 16 March 0.026 2.48 0.013 

β17mar D17mar Dummy, control day, 17 March –0.041 –3.96 0.000 

β18mar D18mar Dummy, control day, 18 March –0.066 –6.22 0.000 

β26apr D26apr Dummy, control day, 26 April 0.084 7.03 0.000 

β27apr D27apr Dummy, control day, 27 April 0.151 12.89 0.000 

β28apr D28apr Dummy, control day, 28 April 0.030 2.61 0.009 

β29apr D29apr Dummy, control day, 29 April –0.060 –5.24 0.000 

  Constant 2.529 123.13 0.000 
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Article III:  
Households' self-selection of a dynamic electricity tariff* 

 

 

 

Abstract 
 

Offering electricity consumers time-differentiated tariffs may increase demand 

responsiveness, thereby reducing peak consumption. However, one concern is that time-

differentiated tariffs may also attract consumers who benefit because of their 

consumption pattern, even without a corresponding demand response. A discrete choice 

model applied to data from a residential dynamic pricing experiment indicates that 

higher demand flexibility increases the propensity of a household to select dynamic 

tariffs, while consumption patterns do not influence the tariff choice. The offering of 

dynamic time-differentiated tariffs is then likely to increase the demand response among 

residential consumers. 

 

                                                 
* An earlier version of this paper can be found in the Proceedings of the 28th Annual IAEE International Conference, 

Taipei, 3-6 June. A later version is published in the Statistics Norway’s Discussion Paper series (see 
www.ssb.no/publikasjoner/DP/pdf/dp446.pdf). This version has been selected for presentation at the EcoMod 
Conference on Energy and Environmental Modeling in Moscow, Russia on September 13 – 14, 2007. I am grateful 
to Bente Halvorsen, Kjetil Telle, Petter Vegard Hansen, Terje Skjerpen, Hanne Sæle, Runa Nesbakken, Annegrete 
Bruvoll for help and discussions 
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1 Introduction 
 
Deregulation of the Norwegian electricity market in 1991 improved efficiency (Bye 

and Halvorsen, 1999), but the continued reliance on tariffs with prices fixed for long 

periods of time lessens demand response among end-users and may prevent the 

realisation of further efficiency gains. Increased demand response may decrease 

consumption during constrained peak periods and flatten load curves, deferring or 

avoiding the need for costly investment in production and transmission capacity. It may 

also reduce average power prices, stabilize volatile spot prices, improve system 

reliability, and decrease the likelihood of exercise of market power (Caves et al., 2000, 

Braithwait and Eakin, 2002, Schwartz, 2003, Kristensen et al., 2004). 

A number of different approaches can be used to increase demand response. One is 

to offer residential electricity consumers time-differentiated tariffs. These tariffs charge 

electricity consumers high prices in peak-load periods and low prices in off-peak 

periods, i.e., they better reflect wholesale real-time price variations than flat rates. 

Examples of tariffs are the time-of-use (TOU) rate, where prices vary by hours-of-the-

day blocks. Another is the more dynamic critical peak pricing (CPP) rate, where higher 

prices may be imposed if the system is severely constrained as in cold winter periods. In 

these instances, end-users have incentives to respond to short-term price variations by 

reducing peak consumption or by shifting peak consumption to off-peak periods. 

An important question is the extent to which voluntary time-differentiated rates 

attract price responsive customers. One would expect responsive customers to choose 

rates according to their ability to shift or reduce consumption, and thereby reduce 

electricity expenditure (Caves et al., 2000). Experiments with optional TOU rates have 

indicated that customers choosing this rate are more price responsive than the rest of the 

population as a whole (Aigner and Ghali, 1989, Train and Mehrez, 1994, Caves et al., 

1989). 

However, one concern with voluntary time-differentiated rate programs is that 

customers who benefit without any demand response also may choose to participate. 

Typically, these are customers with low electricity consumption in peak-price periods 

and high electricity consumption during off-peak periods. If most participating 
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customers have such favourable consumption patterns and little price response, 

differentiated rates may not be an efficient tool to increase demand response. 

Furthermore, revenues for the utility offering the rate may decrease because the 

participating customers pay less for electricity than before, while the cost of providing 

electricity remains the same. In turn, revenue losses are imposed on the utility or its 

shareholders, or shifted to the remaining customers through an increase in the general 

rate (Train and Mehrez, 1994). Such an outcome may well be justified as consumers 

selecting the differentiated rates are released from subsidizing other customers' 

expensive peak consumption (PLMA, 2002). However, if an increase in the standard 

rate is the result, it may be politically difficult to implement because of opposition from 

customers harmed through the rate increase (Williamson, 2002).1  

Aigner and Ghali (1989) found evidence of participation based on favourable 

consumption patterns in their analyses of five TOU experiments. High peak-period 

consumption in the pre-experiment period resulted in a lower participation rate and 

higher off-peak consumption resulted in the opposite. Train et al. (1987) found similar 

results. Their results indicated that the probability of choosing TOU rates decreased if 

the electricity costs under these rates increased compared with the costs on a standard 

rate. Patric (1990), Train and Mehrez (1994) and Matsukawa (2001) also found that 

consumers volunteering for TOU rates possessed more favourable load shapes than 

consumers on standard rates.  

However, the literature is inconclusive regarding customer participation as based on 

favourable load patterns. Caves et al. (1989), for example, found that consumption 

patterns do not influence the customers' choice of a TOU rate. Analysing data from a 

voluntary TOU experiment, and comparing their findings with earlier mandatory TOU 

programs, they found that volunteers do not take greater advantage of participation 

without shifting usage than the rest of the population. In a Canadian TOU program, 

Mountain and Lawson (1995) calculated monetary savings and losses for customers 

choosing TOU rates and standard rates, assuming no change in consumption patterns. 

They found no difference with respect to the distribution of savings. Baladi et al. (1998) 

                                                 
1 MacKie-Mason (1990) and Train (1991) have shown that optional TOU rates can be designed that require those 

choosing the rate to adjust consumption in order to benefit, while others will not be negatively influenced by 
introduction of the new rate. However, designing such rates requires knowledge of all customers' consumption 
patterns, which utilities may not always have. 
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compared consumption patterns of volunteers and non-volunteers from a pre-test period 

in a TOU experiment, and concluded that on-peak consumption shares were 

indistinguishable. 

The lack of consensus concerning participation and consumption patterns calls for 

further study in new tariff programs. Further, to the author's knowledge, the extent of 

participation in time-differentiated programs based on load patterns and/or price 

responsiveness has only been investigated in the context of TOU programs. Compared 

with traditional TOU pricing, dynamic pricing schemes may entail more uncertainty for 

end-users with respect to the frequency and the timing of high peak prices. 

Consequently, it is more difficult for electricity consumers to assess whether they will 

benefit from the dynamic rate without load shifting. It may be hypothesized that this 

uncertainty will reduce the extent of customer participation based on consumption 

patterns, and increase instead the extent of participation based on the customers' ability 

and willingness to respond to the price signals. Since dynamic pricing (e.g. critical peak 

pricing) of electricity has recently been the subject of much interest (see, for instance, 

Faruqui and George (2002, 2005), Herter (2007)), there is a need for further 

examination of dynamic rate programs. 

This paper investigates these questions using data from a Norwegian residential 

dynamic pricing experiment. A qualitative response model is used to test whether the 

customers' choice between the dynamic rate and the standard rate was influenced by 

their consumption patterns. The model is also used to test whether the group that 

chooses the dynamic rate differs from the group that retains a standard rate with respect 

to the ownership of appliances suited for load reduction or shifting. In addition, socio-

economic characteristics of the households are included in the econometric model in 

order to reveal other important factors that may help explain customers' choices.  

2 The dynamic pricing experiment 
 

In a Norwegian experiment in 2003, households with annual electricity 

consumption above 8,000 kWh had new technology installed that enabled hourly 

automatic metering of consumption. These households were offered a critical peak 
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pricing (CPP) network rate, and could choose between this and the standard rate already 

in place.2  

The CPP network rate had a two-level structure. It was dynamic in the sense that 

peak periods were defined as the hours 8–11 and the hours 17–20 on working days, only 

when temperatures fell below –8°C (during winter). The peak price was approximately 

1.15 NOK/kWh.3 Off-peak periods were defined as all other hours of the year. The off-

peak price was approximately 0.15 NOK/kWh. Summer was defined as the months May 

to October, and winter as November to April. The standard network price was 

approximately 0.20 NOK/kWh; that is, somewhat higher than the off-peak CPP price 

and substantially lower than the peak CPP price. 

The CPP tariff was designed to be revenue neutral for the network company. The 

peak and off-peak prices were chosen so that if the average customer, as defined by the 

average consumption pattern, did not change his or her consumption pattern under the 

CPP rate, electricity revenues would be unchanged, as compared to revenues from the 

average customer on a standard rate. Based on statistical data, peak periods were 

assumed to occur in eighteen days during the winter. Few electricity consumers actually 

have an average consumption pattern. This means that if all customers chose the CPP 

rate, while not changing load patterns, many customers would gain while the rest would 

lose. Williamson (2002), analyzing a TOU rate program found that about half would 

pay less while the other half would pay more than on the fixed rate. 

3 Who will choose the dynamic rate? 
 

 This section discusses the factors that may have influenced customers' choice 

between the CPP and the standard rate, i.e., the customers' load patterns and their ability 

to adjust consumption to the prices.  

                                                 
2 The total electricity price facing the consumer consists of the network price plus the power price (plus taxes and 

VAT). 
3 NOK 1 ~ EUR 0.12 / USD 0.16  
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3.1 Consumers’ utility functions  

 

Consider two utility maximizing households, A and B, with utility functions UA and 

UB, shown in Figure 3.1. Their budgets for electicity under the standard tariff are 

assumed equal, and are illustrated by the budget line mstd. The figure shows their 

different consumption bundles of peak and off-peak electricity. 

 

mCPP

Qon

Qoff

mstd

BU

AU

 

Figure 3.1. Two consumers’ indifference curves and their option between the standard 
and the CPP tariff 

 

Let us assume that the consumers are offered the new CPP tariff. Since the tariff is 

constructed to be revenue neutral for the average consumer (given that consumption is 

not changed under the new tariff), the budget line, mCPP, will pivot around the peak/off-

peak consumption bundle of this consumer, illustrated in the figure by the circle. This 

means that any consumption bundle along mstd under the standard tariff costs the same 

as any consumption bundle along mCPP under the CPP tariff. The question is: which 

consumers will have incentives to select the new tariff? The answer to this question 

depends on the consumer’s consumption pattern, i.e. the ratio of the peak to off-peak 

consumption, and on the ability of the consumer to respond to prices.  
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From Figure 3.1 we see that consumer B has a peak/off-peak consumption ratio 

which is lower than for the average consumer. It is clear that consumer B will benefit by 

simply choosing the new rate, even without adjusting consumption. By selecting the 

CPP tariff, consumer B can, for instance, continue consuming the same amount of peak 

and off-peak electricity as under the standard tariff and spend the profit on other goods 

(not shown in this figure), or the consumer may increase peak and/or off-peak electricity 

consumption until the new budget constraint is reached at a higher utility level than 

before. Consumer A, however, has a peak/off-peak consumption ratio which is higher 

than for the average consumer. Whether the consumer may benefit from switching tariff 

depends on the utility function, i.e. how price responsive the consumer’s consumption 

is. Let us examine consumer A and B in more detail. First, in Figure 3.2, we look at 

consumer A. 

  

mstd

mCPP

Qon

Qoff

1
inflexibleU

std,offQ

std,onQ

CPP,off
1Q

CPP,on
1Q

2
inflexibleU

CPP,off
2Q

CPP,on
2Q

a

c

d

b

1
flexibleU

2
flexibleU

 

Figure 3.2. The choice of tariffs for consumer A, with two possible sets of indifference 
curves indicating flexible and inflexible consumption 
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As we can see at point a in the figure, consumer A consumes std,offQ in the the off-

peak period and std,onQ  in the peak period under the standard tariff. If the consumer does 

not have the ability to adjust consumption, this consumption pattern does not induce the 

consumer to be better off by simply choosing the CPP tariff. Whether the consumer is 

flexible in consumption is revealed by his or hers indifference curve. The figure 

illustrates two alternative sets of indifference curves that consumer A may have; one set 

where peak and off-peak consumption are perfect complements (Uinflexible), i.e., the 

consumer has no possibility to shift load from peak to off-peak periods, and another set 

where peak and off-peak consumption are substitutes (Uflexible), i.e. the consumer is price 

responsive. 

We can see that with the price inresponsive indifference curves, inflexible
1U and 

inflexible
2U , consumer A can not benefit from choosing the CPP rate, because the new 

utility maximizing consumption bundle would be at a lower utility level (point b), while 

expenditures remain unchanged.  

However, with the price responsive indifference curves flexible
1U  and flexible

2U , the 

consumer can adjust consumption by shifting peak consumption to off-peak periods, 

and increase or decrease peak and off-peak consumption. For instance, by selecting the 

CPP tariff, the consumer may choose to remain at the same expenditure level in order to 

achieve a higher utility level, by consuming  CPP,off
1Q  and CPP,on

1Q  (point c), or the 

consumer may choose to remain at the same utility level in order to achieve lower 

electricity expenditures, by consuming CPP,off
2Q  and CPP,on

2Q  (point d), and instead spend 

the profit on other goods. The shaded area indicates the possible peak and off-peak 

consumption bundles where the consumer will benefit on sticking to the CPP rate 

instead of switching to the standard rate. Which consumption bundle the consumer 

actually chooses, also depend on the trade-off between electricity and all other goods. 

Note that the consumption at point d represents the compensated (Hicksian) demand and 

that the difference between the consumption expenditures in point c and d equals the 

compensating variation (see e.g. Varian, 1992).  

Now, let us look at consumer B, who is analogously illustrated with two sets of 

indifference curves, in Figure 3.3. 
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Figure 3.3. The choice of tariffs for consumer B, with two possible sets of indifference 
curves indicating flexible and inflexible consumption 

 

Consumer B consumes std,offQ and std,onQ  under the standard tariff in the off-peak 

and peak periods, respectively (point a). We see that by simply choosing the CPP tariff, 

the consumer will benefit independent of the shape of the indifference curves, i.e., the 

consumer will benefit even with completely inflexible consumption.  

Notice that this consumer may actually increase peak consumption (as well as off-

peak consumption) compared with the case under the standard tariff due to the decrease 

in electricity expenditures (income effect). For instance, the consumer may increase 

peak and off-peak consumption so that the expenditures under the CPP tariff are 

unchanged from what they were under the standard tariff (point b or c, dependent on the 

utility function). If most of the consumers selecting the CPP tariff behave like this, the 

network company may experience an increase, instead of a decrease, in peak 

consumption, while the revenue from the consumers remains unchanged. However, the 

final consumption bundle for the consumer when maximizing utility, given the new 
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prices, also depends on the trade-off between electricity and all other goods, and will be 

somewhere within the shaded area.  

3.2 Compensating variation 

 

The discussion above suggests it is important to understand which kind of 

consumer that will choose the CPP tariff since this has implications for the result from a 

time-differentiated pricing program. Let VCPP and Vstd indicate the indirect utility for a 

household choosing either the CPP rate or the standard rate, respectively, and ∆V = 

VCPP- Vstd the difference in indirect utility between the two tariffs. The consumers’ 

decision criteria are that they will choose the CPP rate if the indirect utility exceeds 

indirect utility under the standard rate, i.e. they select the CPP rate if ∆V>0. As a 

measure of the change in indirect utility, we use the compensating variation which 

measures how much money the consumer would need when facing CPP peak/off-peak 

prices to be as well off as the consumer was at the standard price tariff (see Varian, 

1992). The compensating variation measures the income that the consumer needs to be 

compensated for the change of tariff. By using this measure, we can find the sign of the 

difference between indirect utility on the CPP and the standard rate. If the compensating 

variation is positive, the consumer is better off choosing the CPP rate. If it is negative, 

the consumer will choose the standard rate.4 This is illustrated in Figure 3.4, for 

consumer A with positive and negative compensating variation (CV) in the left and 

right picture, respectively. The sign of the CV thus depends on the sign of the indirect 

utility change in the choice between the different tariffs. For consumer B, the 

compensating variation will always be positive, and the consumer will always be better 

off choosing the CPP. 

 

                                                 
4 Other costs related to the selection of the CPP rate, such as differences in the fixed costs of the two rates, or 

transaction costs related to the inconvenience of switching to the new rate, may also influence the choice. 
However, the rates had equal fixed costs, and for simplicity, we disregard transaction and other costs. 
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Figure 3.4. Compensating variation for consumer A with two different shapes of 
indifference curves. The left diagram illustrates the consumer with flexible 
consumption and a positive compensating variation (CV). The right diagram 
illustrates the consumer with a less flexible consumption and negative CV 

 

In the figure, stdY  denotes the expenditures under the standard rate, CPP
1Y  denotes 

the expenditures if the consumer maximizes utility under the CPP rate assuming 

expenditures on electricity to remain unchanged, and CPP
2Y  denotes the expenditures at 

the new CPP rate assuming the utility to be at the same level as on the standard tariff. 

The difference between CPP
1Y  and CPP

2Y  equals the compensating variation by 

definition.  

In the following we assume that CPP
1Y  equals stdY , because electricity expenditures 

under each tariff alternative are equal along the two budget lines of the two rates, and, 

for simplicity, we drop the subscripts and write CPP,onQ  instead of CPP,on
2Q  and  CPP,offQ  

instead of CPP,off
2Q . 

The consumer will select the CPP rate if he gain utility from changing, that is if 

CV>0, i.e. ∆V >0. Thus, the CPP rate is selected if: 



Article III 

112 

 

( ) ( )
CPP CPP std CPP

1 2 2

std std,off std,on CPP,off CPP,off CPP,on CPP,on

CV Y Y Y Y

p Q Q p Q p Q 0

= − = −

= + − + > ,   (3.1) 

 

where stdp  is the standard rate electricity price, CPP,offp  is the CPP off-peak price 

and CPP,onp  is the CPP peak price. std,offQ  and std,onQ  denote annual consumption under 

the standard rate in the off-peak and peak periods, respectively, CPP,offQ  and CPP,onQ  

denote annual consumption under the CPP rate in the off-peak and peak periods, 

respectively.  

The consumer’s choice between the tariffs is based on the consumption pattern they 

normally have under the standard rate, and on the ability to adjust consumption to the 

CPP tariff structure. Thus, when considering the CPP option, the consumers anticipate 

their consumption pattern under this rate to be similar to what it is under the standard 

rate, with the exception that consumption may be adjusted to the price variations. 

Consumption under the CPP rate will then be given as: 

 

CPP,off std,off CPP,offQ Q Q= + ∆  and CPP,on std,on CPP,onQ Q Q= + ∆ ,  (3.2) 

 

i.e., consumption under the CPP rate equals consumption under the standard rate, 

plus adjustments in consumption to the CPP prices ( CPP,offQ∆  and CPP,onQ∆ ), in off-peak 

and peak periods, respectively. Inserting (3.2) in (3.1) and rearranging suggests that the 

CPP rate will be selected if: 

 

( ) ( ) ( )std CPP,off std,off CPP,on std std,on CPP,off CPP,off CPP,on CPP,onCV p p Q p p Q p Q p Q 0= − − − − ∆ + ∆ > .  (3.3) 

 

The different terms in expression (3.3) imply that whether the consumer selects the 

CPP rate depends on the expenditure savings if off-peak consumption is charged by the 

CPP off-peak price instead of the standard price ( ( )std CPP,off std,offp p Q− ), the extra 

expenditure if peak consumption is charged by the CPP peak price instead of the 
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standard price ( ( )CPP,on std std,onp p Q− ), and on the household's ability to shift, increase 

and reduce consumption in order to benefit ( CPP,off CPP,off CPP,on CPP,onp Q p Q∆ + ∆ ). The last 

two terms are collected into a single 'adjustment' term: 

 

CPP CPP,off CPP,off CPP,on CPP,onadj p Q p Q= ∆ + ∆ .      (3.4) 

 

Inserting (3.4) in (3.3) and rearranging, we find that the consumer will choose the 

CPP tariff if: 

 

( )
( ) ( )

std CPP,off std,on CPP

std,offCPP,on std CPP,on std std,off

p p Q adj

Qp p p p Q

−
> +

− −
.     (3.5) 

 

The inequality (3.5) conveniently expresses the fact that the consumer's choice 

depends on the ratio of the differences between the standard price and the off-peak CPP 

price to the difference between the peak price and the standard price (first term), the 

ratio of consumption in peak hours to the consumption in off-peak hours (second term), 

and the customer's ability to adjust consumpion (third term). This means that the 

consumer will consider all prices (i.e. the price ratio), and then select the CPP rate if: i) 

the consumption ratio is small enough; and/or ii) if the benefits related to consumption 

adjustment are sufficiently high.  

We now discuss the consumption ratio term and the consumption adjustment term 

on the right hand side of the inequality (3.5) in further detail to evaluate which 

customers may benefit from choosing the CPP rate, and which may not. We will also 

discuss whether it is likely that the customers' knowledge and information level is 

adequate to make the calculations necessary for accurate comparisons between the rate 

alternatives. 
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3.3 The consumption ratio 

 

As discussed, peak consumption consists of the sum of consumption in the hours 8–

11 and 17–20 on working days in the winter when the temperature is below –8 °C. Off-

peak consumption then consists of total electricity consumption in other winter hours 

and in all summer hours. 

A household will benefit from the CPP rate, given an unchanged consumption 

pattern, if its consumption ratio is lower than the price ratio. As the price ratio is 

calculated using the consumption pattern of an average customer, we may also put this 

differently; a household will benefit if its consumption ratio is lower than the 

consumption ratio of the average customer. It is clear that low on-peak consumption or 

high off-peak consumption contributes ceteris paribus to a consumption ratio that may 

be smaller than that of the average consumer. 

It is likely that certain household electricity consumption behaviour affects normal 

load patterns. For instance, households who normally lower their electricity 

consumption during night hours may not benefit, unless they change their consumption 

pattern. This is because the off-peak consumption in night hours in the winter will be 

smaller, thereby giving a higher ratio. If these households are unwilling to change their 

way of using electricity for heating, the probability they will not choose the CPP rate 

increases. Likewise, lower electricity use during off-peak weekends in winter will 

contribute to a higher ratio. Households who normally use little electricity during 

daytime are likely to have ratios in their favour, and thus benefit from choosing the CPP 

rate, even without changing their pattern of consumption. 

3.4 Consumption adjustments 

 

Consider a customer with an equal or larger peak/off-peak consumption ratio than 

the average customer. The only way this customer can benefit from the CPP rate is by 

shifting peak consumption to the off-peak period, and/or reducing and/or increasing 

consumption in the off-peak and peak period.5 Of course, customers with smaller 

                                                 
5 We disregard other possible benefits such as automatic meter reading, which is both convenient and time-saving. 
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consumption ratios than price ratios may benefit further from consumption adjustments 

if they choose the CPP rate. However, whether consumption is flexible enough and 

suited for adjustment to the price will vary across households as illustrated by the two 

kinds of indifference curves for consumer A in Figure 3.2 and 3.4. Accordingly, it is 

likely that certain household characteristics will increase their propensity to select the 

new rate offered, and vice versa. 

For instance, consumers with energy management systems can program their 

electric heaters in order to shift peak consumption to off-peak hours. These households 

can more easily take advantage of the CPP rate and save money on their electricity bill 

than other households. One can then expect ownership of energy management systems 

to increase the propensity of households to choose the CPP rate. 

Another way of taking advantage of the price structure is to reduce peak electricity 

consumption through heating the dwelling with a wood-burning stove instead of 

electricity. Some households do not normally use oil/paraffin/gas furnaces, even if 

already owned, and may decide to do so once they select the CPP rate. Ownership of 

alternative heating equipment may therefore increase a household's interest in the 

alternative rate.  

Furthermore, households who only use electricity for space heating may find it 

easier to adjust consumption than those without electricity for heating at all, as a higher 

consumption level may increase flexibility (for instance, Mountain and Lawson (1995) 

found price responses to be larger for households with electric heating, air conditioning 

and electric water heating, compared with households without these appliances). Such 

households may have a higher probability of choosing the CPP rate. 

The timing of use of electric appliances, such as washing machines, dishwashers, 

vacuum cleaners, televisions, personal computers, electric cookers, outdoor electric 

ground heating, engine heaters, etc., may easily be shifted from peak to off-peak hours. 

Consequently, we may expect households with a large stock of electric appliances to be 

more interested in the CPP rate than those with fewer appliances. This is supported by 

studies elsewhere that have found households with relatively more appliances to have 

higher price responses (see, for instance, Caves et al. 1984, Baladi et al., 1998). 

The income of the household can also influence the willingness to participate in the 

CPP rate program. Households in the highest income groups may care less about their 
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electricity bill if it constitutes only a small part of total expenditure. Hence, we may 

expect customers in the lowest income groups to have the highest propensity to choose 

the CPP tariff since they are likely to be most price responsive (see for instance Reiss 

and White (2005)).  

3.5 Information level 

 

All things considered, the decision on selecting the CPP rate is a difficult task for 

consumers. The uncertainty with respect to how many peak hours will be charged the 

peak price during the winter season introduces a problem for the household when trying 

to calculate which rate will yield most benefits. Moreover, customers do not usually 

have any information on how much electricity they normally use each day, week or 

year. This makes it difficult in practice to undertake the necessary calculations. Besides, 

it is unlikely that every household will actually undertake these calculations. On the 

other hand, customers may rely on a rule of thumb to assess whether they wish to use 

the CPP rate. If they know their consumption is small during the hours of the day when 

the peak price may be activated, they may believe that they will benefit from choosing 

the rate. However, such consumers may be a minority in the population, as electricity 

consumption may not be of major concern to most households. It may be more likely 

that most customers will base their decision on information and knowledge they actually 

have, i.e. their ability and willingness to adjust consumption according to varying 

prices.  

4 Econometric specification 
 

The households' decision to select the CPP rate or the standard rate is formulated 

with a discrete choice participation model. This statistical model is used to test whether 

there are statistically significant differences between two groups that have chosen 

differently between the rates, with respect to their characteristics. 

Let the indirect utility V for a customer under each of the rates depend on the 

consumption pattern of the customer (i.e. consumption in the off-peak and peak 
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periods), electricity prices, income, and other household characteristics. Then ∆V = 

VCPP - Vstd
 indicates the difference in a household's indirect utility between choosing the 

CPP rate and the standard rate. A household will choose the CPP rate if ∆V>0, i.e. if the 

indirect utility on the CPP rate is higher than on the standard rate. The utilities are 

unobservable, but in a linear random utility framework we observe the choice between 

the two rate alternatives, and this choice is assumed to reveal the one with the greatest 

utility (see e.g. Greene, 2003). Let 

 

1       if V 0 
CPP

0      otherwise

∆ >
= 


,       (4.1) 

 

and VCPP= XβCPP-εCPP, Vstd= Xβstd-εstd, so that ∆V=X(βCPP - βstd) - (εCPP-εstd) = Xβ-ε, 

where X is the deterministic component, ε is the stochastic component which, for 

instance, may represent unobserved preferences for comfort (indoor temperature, 

lighting, amount of hot water spent on showering or bathing, etc.), environmental 

concerns (if they regard peak consumption reductions as an environmental measure), 

transaction costs of a shift of tariff (such as time and effort spent on understanding the 

new rate alternative). β are unknown coefficients to be estimated. As described in 

Section 3, the systematic part of ∆V depends on the difference in expenditures between 

the two rates, CV = Ystd - YCPP. Then customer i's probability of choosing the CPP rate 

is given by: 

 

( ) ( ) ( ) ( )std,off std,on CPP
i i i i i 1 i 2 i iP CPP 1 P V 0 P X P Q Q Z= = ∆ > = ε < β = ε < α + β + β + γ ,   (4.2) 

 

where std,off
1 iQβ  and std,on

2 iQβ  gives the effect on utility of consumption in off-peak and 

peak periods under the standard rate. As discussed in Section 3 regarding the 

indifference curves and the consumption ratio, a consumer with high off-peak 

consumption will have a low consumption ratio, and one may expect such a consumer 

to select the CPP rate. The sign of β1 is then hypothesised to be positive. The opposite is 

likely to be true for β2, which is attached to the on-peak consumption variable. The 
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consumption variables in (4.2) will thus pick up the impact of peak and off-peak 

consumption on the propensity to participate separately, instead of in a single ratio term. 

CPP
iZ γ  gives the effect on the utility of consumption adjustments to the prices for each 

household. The vector CPP
iZ is approximated by variables indicating the households' 

ability or willingness to reduce or shift consumption in peak periods, i.e. the 

substitability of peak and off-peak consumption revealed by the indifference curves. γ is 

expected to be positive/negative for variables that are likely to increase/decrease a 

household's likelihood of selecting the CPP rate. The stochastic error term (εi) is 

assumed to be logistic and independently distributed. The unknown parameters in (4.2) 

are estimated using a bivariate logit model (see, for instance, Greene, 2003).  

5 The data 
 

In the experiment, automatic meter reading technology provided measurements of 

each customer's hourly electricity consumption. All customers were asked to answer a 

survey by post or Internet that requested socio-demographic information about the 

household. Twenty percent of households responded to the survey (see Andersen et al., 

2004, and Sæle, 2004, for details). The consumption and survey data are used in this 

analysis to investigate systematic differences between households choosing the CPP rate 

and those retaining the standard rate. This section describes the data and the variables 

included in the analysis. 

One objective of the analysis is to study whether the customers' consumption 

patterns have affected their choice of tariff. Data from the experiment period is used as 

an indicator of the consumption pattern before the participation decision was made.6 In 

November and December 2003 (during the experiment period), temperatures never fell 

below –8°C and the peak price was never activated. Hence, customers that chose the 

CPP tariff faced flat off-peak prices, and had no incentive to adjust their daily load 

                                                 
6 Metering of the households' electricity consumption commenced at the beginning of the experiment period. 
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patterns.7 It is then reasonable to assume that the CPP group (as well as the standard 

group) behaved in the same manner in this period with respect to their consumption 

patterns, as they did prior to the experiment period.  

Consumption during the hours 8–11 and 17–20 in the coldest days in November 

and December are therefore used to approximate peak consumption, while the 

remaining consumption in these months is used to approximate off-peak consumption. 

The number of peak hours used is approximately the same as the number of hours with 

temperatures below –8°C that normally would occur in November and December.8 

Although consumption behaviour for temperatures below –8°C is not measured, 

temperatures lay below zero for several days. This makes it likely that the data still 

reflects any consumption differences between the households. 

The other objective of the analysis is to investigate whether customers who selected 

the CPP rate did so because they are more flexible in consumption when prices vary. As 

indicators of flexibility, characteristics of the households and residences are used, as 

these may influence price responsiveness and the decisions to select the CPP rate (Train 

et al., 1987, Caves et al., 2000). Dummy variables are included to indicate households 

with an energy management system, households with electricity as their only space-

heating source, households with electricity and wood-heating furnaces, households with 

electricity and oil/gas/paraffin and households with oil/gas/paraffin as their only space-

heating source. Dummy variables also indicate whether the household is a single-

member family (zero otherwise), whether there is at least one family member living at 

home (zero otherwise), and whether the total annual income of the household belongs to 

one of four income intervals (zero otherwise). In addition, dwelling size and age are 

included in the analysis as continuous variables. 

Descriptive statistics for 107 households in the group choosing the CPP rate and 

167 households choosing to remain on the standard rate are given in Table 1.  

 

                                                 
7 The consumers’ total prices consist of the network plus the power prices plus taxes and VAT. The small difference 

in total price due to the difference between the off-peak CPP price and the standard price is assumed to be 
negligible (total price under the CPP and the standard tariff depends on the power tariff, but as an approximation, it 
would be about 0.60 NOK/kWh and 0.65 NOK/kWh, respectively). Moreover, it should not influence the shape of 
the load curve, since none of the rates varies across the day. 

8 Data from the remainder of the experiment period could not be used due to technical problems with the metering 
system and missing data. 
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Table 1. Summary statistics of household electricity consumption and 
characteristics for CPP and standard rate. 

 Critical peak pricing 

rate 

Standard rate 

Number of households 107 167  

Binary variables Percent Percent  

Energy management system 25.2 10.8  

Heating: No electricity 3.7 10.2  

Heating: Electricity + oil/gas/paraffin 46.7 55.7  

Heating: Electricity + wood 39.3 26.9  

Heating: Only electricity 10.3 7.2  

Dwelling: Detached 75.7 56.3  

Dwelling: Semi-detached 11.2 13.8  

Dwelling: Undetached 8.4 9.6  

Dwelling: Flat 4.7 20.4  

Income: 0–250,000  [NOK] 15.0 26.9  

Income: 250,000–500,000  [NOK] 38.3 30.5  

Income: 500,000–750,000  [NOK] 32.7 25.7  

Income: 750,000–  [NOK] 14.0 16.8  

Single-member family 10.3 26.9  

Living at home 45.3 52.0  

Continuous variables Mean Std. dev. Min Max Mean Std. 

dev. 

Min Max 

Peak consumption [kWh] 104 43 15 216 91 44 5 235 

Off-peak consumption 

[kWh] 

4326 1789 652 8497 3801 1875 243 10161 

Peak/Off-peak cons. ratio 0.024 0.002 0.021 0.029 0.024 0.002 0.017 0.032 

Age of dwelling [in years] 28.5 18.4 4 131 52.0 29.0 9 155 

Dwelling size [m2] 146.3 51.5 40 275 143.8 65.8 40 350 

NOK 1 ~ EUR 0.12 / USD 0.16  
 

Table 1 shows that both mean peak and off-peak electricity consumption is higher 

for the CPP group. However, peak/off-peak consumption ratio is almost the same. The 

share of households with an energy management system in the CPP group (25.2 

percent) is also larger than in the standard group (10.8 percent).  
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Households are divided into four groups with respect to their heating equipment: 

dwellings with no electric heating (which means they use oil, gas or paraffin instead); 

dwellings with electricity and oil/gas/paraffin heating systems; dwellings with 

electricity heating and wood-burning furnaces; and finally, dwellings with electricity 

heating only. The percentage share of households with electricity heating only is 

somewhat larger for the CPP group, and the share of customers with oil/gas/paraffin 

heating in addition to electricity heating is somewhat larger for the group choosing the 

standard rate. The share of households with electricity heating and wood-burning stoves 

is nearly fifty percent larger in the CPP group, and the share of households without 

electricity heating in the CPP group is only a third of the share in the standard group.  

In terms of dwelling type, about three quarters of CPP households, and only about 

half of the households in the standard group, are living in detached houses. The share of 

the households living in flats in the CPP group is about a quarter of the share in the 

standard group. The share of households living in semi-detached and undetached houses 

is quite similar for the two groups. With respect to the total annual income of 

households, we can see the share in the lowest income group (income less than NOK 

250,000) is nearly half in the CPP group compared to the standard group, and somewhat 

larger in the two middlemost income groups. We also see that the two groups do not 

differ significantly for the highest income level.  

The share of households in the CPP group living as a single-member family is 

nearly one third of the standard group. Households where at least one of the family 

members is living at home during the daytime do not differ much between the two 

groups, though the share is somewhat lower in the CPP rate group. Finally, we can see 

that the average age of dwellings for the CPP group is nearly half that of the standard 

group, but the average dwelling size is approximately the same. 

6 Estimation results 
 

As shown in the previous section, the summary statistics indicate differences 

between households choosing the CPP rate and those choosing to remain on the 

standard rate. A cross-section logit model is used to analyse the joint impact of the 
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variables on the participation decision. Results from the estimated logit model, using 

Stata 8.0 (StataCorp, 2003), are presented in Table 2.9  

Table 2. Estimated logit model results. 

Variable Coef. Robust Std. Err. P>|z| 

Energy management system 0.9873 0.4201 0.019 

Peak consumption  –0.0272 0.0232 0.241 

Off-peak consumption 0.0007 0.0005 0.187 

Heating: Electricity + oil/gas/paraffin 0.4444 0.6618 0.502 

Heating: Electricity + wood 1.1778 0.7162 0.100 

Heating: Only electricity 1.6842 0.9033 0.062 

Dwelling: Semi-detached –0.8183 0.5157 0.113 

Dwelling: Undetached –1.3333 0.5966 0.025 

Dwelling: Flat –2.3886 0.6804 0.000 

Income: 0–250,000 [NOK] 0.4991 0.6433 0.438 

Income: 250,000–500,000 [NOK] 0.9920 0.5709 0.082 

Income: 500,000–750,000 [NOK] 0.3358 0.5226 0.521 

Single-member family –0.8991 0.5485 0.101 

Living at home –0.3007 0.3441 0.382 

Dwelling size [m2] –0.0081 0.0040 0.043 

Age of dwelling [in years] –0.0468 0.0107 0.000 

Constant 1.5554 1.1796 0.187 

Log pseudo-likelihood = –130.14876 Wald chi2(16) =  49.95 

Pseudo R2 = 0.2863 Prob>chi2 =  0.0000 

Note: The left-hand side binary variable is one for households choosing the CPP rate and zero for 
households choosing to remain on the standard rate. Detached dwelling, Heating with only 
oil/gas/paraffin, Multi-member family and Income 750,000– are omitted to avoid multicollinearity. 

 

A positive sign on an estimated coefficient in this table indicates the increased 

propensity of a household to select the CPP rate; negative signs indicate greater 

reluctance to select the CPP rate.  

The peak and off-peak consumption parameter estimates display a negative and a 

positive sign, respectively. This indicates reluctance of consumers with large peak 

and/or low off-peak consumption to choose the CPP rate. Alternatively, it indicates the 

interest of consumers with small peak and/or large off-peak consumption to take 

                                                 
9 To correct for possible misspecification in the model, the Huber/White/sandwich estimator is used to obtain a robust 

estimate of the asymptotic variance-covariance matrix of the estimated parameters (StataCorp, 2003). 



Households self-selection of a dynamic electricity tariff 

123 

advantage of their consumption pattern by choosing the CPP rate. However, none of the 

estimated coefficients is significant. Jointly testing the two variables' significance with 

an F-test also fails to indicate any statistical significance. This suggests that with respect 

to electricity consumption patterns, households selecting the CPP rate do not differ 

significantly from the households who do not. 

One reason may be that the consumers do not have accurate information about their 

consumption during the day, in either peak or off-peak periods. This complicates the 

task of calculating how their consumption during different parts of the day across a year 

affects expected expenditure. One should also recall the dynamic feature of the CPP 

rate; that is, the peak price is only charged when the temperature is below –8°C. 

Although the customers were informed how often these temperatures normally occur, it 

introduces additional uncertainty, which further complicates the calculation of peak and 

off-peak consumption and its related costs. These uncertainties and difficulties may be 

the main reason why the consumption differences in peak and off-peak periods are 

insignificant. Baladi et al. (1998) suggests another explanation for similar findings: 

instead of making decisions based on accurate consumption information, customers may 

rely on perceived usage patterns, which are not necessarily correct.  

In this case, instead of choosing between rate alternatives based on consumption 

patterns, households may have based their decision on their ability and willingness to 

adjust usage. Estimates for the remaining variables indicate whether this was the case. 

The effect of the energy management system variable, as expected, is positive and 

significant (at the 2 percent level). Since these households display a higher ability to 

shift consumption between peak and off-peak periods, this is likely to be the reason why 

their probability of choosing the CPP rate is higher than other households. This implies 

that the group of customers selecting the rate has greater potential to be demand 

responsive than those selecting the standard rate. However, and as shown in Table 1, 

there are still some households with energy management systems who did not choose 

the CPP rate, even though they possibly could have benefited. This suggests that the 

marketing campaign for the CPP tariff could have focused more on the saving potential 

of energy managing systems. This could then have increased the demand response 

potential from the households on the CPP rate. 
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The results also indicate that households with electricity heating only and 

households with wood-burning furnaces in addition to electricity are significantly more 

interested (at the 10 percent level) in the CPP rate than households without electricity 

heating (those with only oil, gas, paraffin heating). The interest of the former may be 

explained by their higher potential for changing consumption, as they use more 

electricity for heating and then have greater consumption to reduce or shift. The latter 

may be explained by the ability to substitute electricity consumption in peak-price hours 

with wood. The group with electricity heating in addition to oil, gas or paraffin is not 

significantly different from the group with oil/gas/paraffin heating only. These groups 

may be reluctant to participate because their electricity usage is not as flexible as 

households who use electricity, or electricity and wood, to heat their residences. 

The results also indicate that customers living in detached houses are more likely to 

select the CPP rate than households living in other house types. Households living in 

flats were least likely to select the CPP rate. One reason may be that detached houses 

usually have more rooms, which makes it easier to reduce consumption in parts of the 

house that are not frequently in use. Another reason is that households living in 

detached houses are more likely to own more electric appliances than those living in 

other and smaller dwellings (some examples of appliances are listed in Section 3). With 

more appliances, it should be easier to alter the time of usage between price periods. If 

we interpret dwelling types as a proxy for electric appliances excluded in the estimation, 

this may explain why house type significantly affects the choice of CPP. 

In terms of total annual income, the results indicate that households in the second-

to-lowest and lowest income groups are most likely to select the CPP rate, when 

compared with the highest income group. The reason why households with the highest 

income have a lower interest may be that they do not care about saving the relatively 

small share of income used on electricity consumption. However, only the coefficient 

for the second-to-lowest income group differs significantly from that for the highest 

income group.  

The coefficient for single-member families displays a negative sign. Singles are 

assumed less likely to select the CPP rate, as compared to families of two or more 

members.  One possible explanation may be that the adjustments in consumption 

necessary to take advantage of the rate may be more easily accomplished if there are 
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more people in the household, i.e., the time budget spent on making consumption 

adjustments is shared across household members. Another explanation is that more 

members infers higher consumption and with that, higher adjustment potential. The 

estimate is nearly significant at the 10 percent level. 

The effect of the variable that indicates whether people are home during the 

daytime is negative. The reason for this reluctance to choose the CPP rate may be an 

unwillingness to reduce consumption during colder periods during the day as the 

household may have small children or elderly occupants. The estimate is, however, not 

significant. The significant negative estimate of the coefficient for net floor space 

indicates that larger dwellings decrease the likelihood of participation. The size of the 

dwelling (in square metres) is likely correlated with both income and dwelling type, 

which are controlled for in the regression. However, income is defined in quite broad 

intervals, and the income dummy variables may therefore not have picked up all of the 

explanatory power related to the income effect. The negative coefficient may be thought 

of as a further support for higher income groups' low interest in the CPP rate.  

We further show that the age of the dwelling is highly significant with a negative 

sign. This indicates that households in newer dwellings are more likely to choose the 

CPP rate. This variable picks up standard and energy efficiency differences between 

dwellings, e.g., electric floor heating is more common in newer dwellings. With electric 

floor heaters, energy is stored in the floor due to its higher heating capacity. Households 

with these heating systems are more time-of-use flexible, and hence better suited for 

switching consumption between price periods. Newer dwellings also tend to be better 

insulated. This decreases heat loss from the dwelling and lessens the loss of comfort if, 

for instance, electric heaters are turned off during high price periods.  

Finally, the Wald-statistic (which is χ2-distributed with the degrees of freedom 

equal to the number of slope coefficients) is used to test the hypothesis that all 

coefficients (except the intercept) are jointly equal to zero. This hypothesis is rejected at 

a high level. This indicates that the model explains outcomes quite well.  
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7 Conclusions 
 

This analysis indicates that, on average, the consumption pattern does not influence 

the households' decision on whether to select the critical peak price (CPP) rate or the 

standard rate. Ownership of energy management systems and wood-burning furnaces 

increases the probability of joining the CPP program. Households can use this 

equipment to shift peak consumption to off-peak hours, or to reduce peak consumption 

and reduce electricity expenditures. The results indicate that the offering of CPP tariffs 

may increase the demand response among residential electricity consumers since the 

tariff appears to attract customers with a higher ability to respond to varying prices than 

the population as a whole. Moreover, the CPP tariff does not, on average, appear to 

attract customers that may benefit without making any consumption adjustments 

significantly more than the tariff attracts other consumers. 

One possible explanation for the results is that customers' lack of information and 

knowledge of when and how electricity is used prevents decisions being taken with 

respect to consumption patterns. Instead, their decisions appear to be based on the 

knowledge they have in place, such as their own motivation and ability to be price 

responsive. The data also show that a larger share of households with energy 

management systems and with wood-burning furnaces could have been attracted to the 

CPP rate. This suggests that marketing campaigns may attain a higher share of possible 

price responsive households if a greater effort was made to inform them about the 

expenditure saving potential of the CPP rate. 

Technologies supplying hourly consumption data to households will probably be 

more common in the future. Such technologies may ease the comparison of expenditure 

with different rate alternatives. With such information, it is likely that the customers' 

selection of time-differentiated rates will increasingly be taken on the basis of 

consumption patterns. If customers with advantageous consumption patterns mainly 

choose differentiated tariffs, this may in turn erode the benefits associated with demand 

response programs based on time-differentiated tariffs. On the other hand, new 

technologies are also likely to manage electricity usage in more advanced ways, and 

may offer automatic calculation of the possible savings from price adjustment. This may 
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increase the participation of price responsive customers, which in turn will increase the 

benefits of demand response programs. 
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Article IV: 
Time-differentiated pricing and direct load control of  

residential electricity consumption* 

 

 

 

Abstract 

 

Time-of-use and real-time spot pricing tariffs in conjunction with direct load control of 

water heaters was offered to residential electricity consumers in a large-scale demand 

response experiment. Hourly data from the experiment on consumption, temperature, 

wind, and hours of daylight comprise a large panel data set, which are analysed with a 

fixed effects regression model. Price responses are estimated for three customer groups, 

which differ with respect to their choices of tariffs and requests for direct load control. 

The results indicate differing responses between the groups depending on their tariff 

combination. 

 

                                                 
* An earlier version of this paper can be found in the Nordic Energy Research Project, NEMIEC, Conference on 

"Demand Response in Energy Markets", Risø, 26 November 2004. A later version is published in the Statistics 
Norway’s Discussion Paper series (see www.ssb.no/publikasjoner/DP/pdf/dp461.pdf). This version will be 
resubmitted to Energy Journal. I am grateful to Kjetil Telle, Bente Halvorsen, Hanne Sæle, Terje Skjerpen, 
Torstein Bye and Knut Reidar Wangen for help and valuable discussions. 
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1 Introduction 
 

Measures to increase demand response in the power system may contribute to 

improve efficiency, maintain reliability and mitigate exercise of market power (DOE, 

2005). Presently, most Norwegian households face electricity prices that might be 

constant over weeks or seasons, and they are charged their energy consumption 

accumulated between meter reading dates occurring only a few times a year. This does 

not encourage consumption reductions during constrained peak periods. If instead 

households face time-differentiated prices, and are metered automatically, they will be 

provided with incentives to reduce electricity usage in peak price periods. 

Time-differentiated tariffs can be designed in various ways. With time-of-use 

(TOU) rates, prices vary by blocks of time within the day and are fixed and known by 

customers in advance. However, the TOU pricing scheme remains quite static because 

the prices in each time block are constant and independent of the conditions in the 

electricity system. With dynamic rates, prices can be adjusted in accordance with the 

system situation. An example of a dynamic rate is critical-peak pricing. This is related 

to the TOU rate, but has the possibility of increasing the peak price to an extra high 

level if the system is severely constrained. Even more dynamic is real-time pricing. 

With this rate, the price can change frequently, e.g., on an hourly basis, to better reflect 

real-time system conditions. The market-based spot price is an example of this (see, for 

instance, Faruqui and George (2002) for a description of these rates). 

Several experiments using time-differentiated pricing of electricity have been 

carried out in recent decades to quantify the responsiveness of end users. A series of 

experiments were conducted in the USA in the late 1970s and early 1980s. Although 

results differ, the general findings from the analyses of these experiments are that 

consumers respond to the varying prices (Lawrence and Aigner, 1979, Aigner, 1984). 

Caves et al. (1984) pooled data from five of the experiments and calculated a 

substitution elasticity of about 0.14.1 Later analyses of similar experiments indicate the 

                                                 
1 The elasticity of substitution is a measure of the percentage change in the ratio of the peak to off-peak consumption 

as a result of a percentage change in the ratio of the peak to the off-peak price. 
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same result: customers do respond to short-term price signals. For instance, Filippini 

(1995) found high price elasticities ranging from –1.25 to –1.41,2 Vaage (1995) found 

elasticities of substitution of about 0.18, Henley and Peirson (1998) reported price 

elasticities of –0.102 and –0.249, Baladi et al. (1998) estimated substitution elasticities 

from 0.127 to 0.173, and Matsukawa (2001) found price elasticities of about –0.7. 

However, despite the fact that customers respond to price signals, the resulting 

benefits have not normally been sufficiently large to justify investment in the costly 

equipment needed for implementing the new tariff schemes (Hawdon, 1992, Braithwait, 

2000). 

This has motivated projects using enabling technologies designed to motivate or aid 

an increase in the price response. This is done either by continuously informing 

consumers of the current price level, or by helping them to reduce consumption by, for 

example, controlling loads automatically. An example is a Finnish dynamic pricing 

experiment that used indicator lamps to warn customers that peak price periods were 

possibly forthcoming or in effect. Räsänen et al. (1995) found customers responded to 

this price signal by reducing consumption during peak periods by up to 71%. The 

“tempo tariff” offered by Electricité de France is an example of an approach using 

critical-peak pricing along with notification to the households of the next day’s prices. 

The price level is signalled to customers by colour signals on their meters. Aubin et al. 

(1995) found high responses in an experiment using the tempo tariff (price elasticity of 

–0.79). A project conducted in the USA used a critical-peak price tariff together with an 

interactive communication system. The system allowed the utility to send a signal to the 

consumers during critical high-price periods. In addition, it allowed customers to 

program and schedule some of their appliances to adjust consumption according to 

prices. Braithwait (2000) analysed data from this project, and found an elasticity of 

substitution of approximately 0.3, considered to be higher than what has been found in 

most other studies of traditional TOU programs. The results from the recently finished 

Statewide Pricing Pilot in California (Faruqui and George, 2005) further illustrate the 

same results. Although comparisons between different customer groups in the 

                                                 
2 The (own) price elasticity is a measure of the percentage change in consumption as a result of a percentage change 

in the price. A price elasticity of –0.3 is comparable to an elasticity of substitution of 0.17 (Faruqui and George, 
2002). 



Article IV 

134 

experiment should be made with care, the results showed that customers with enabling 

technologies responded more than customers without this equipment. 

A Norwegian residential large-scale experiment combined time-differentiated 

tariffs with automatic meter reading and direct load control. The consumers were 

offered a time-of-use tariff and real-time spot prices as incentives to adjust electricity 

consumption according to varying prices. In addition, they were offered price-response 

assistance by direct load control of their water heaters. Ericson (2006b) investigated the 

effect of the automated water heater control on the daily load shape in this experiment. 

The data analysis showed that disconnecting water heaters reduced the load by 

approximately 0.5 kWh/h per household on average.3 

This paper investigates new data from the Norwegian experiment. It aims to 

estimate price responses for three groups of households, which differ in their choice of 

tariffs and requests for direct load control. The panel data set, analysed with a fixed 

effects regression model, was collected over a six-month period. It consists of hourly 

metered data on electricity consumption from 312 households (nearly 800,000 data 

points), along with the number of hours of daylight per day and measurements of local 

temperatures and wind speeds. 

The results indicate that customers with TOU and spot prices, without direct load 

control, were most responsive to the price variation. Customers with TOU and standard 

power tariffs, without direct load control, and customers with TOU and spot prices and 

direct load control of water heaters had smaller responses to the prices. 

2 Experiment and data 
 

“End-user Flexibility by Efficient Use of Information and Communication 

Technology” (2001–2004) was a Norwegian project where automatic meter reading and 

direct load control technology was installed in residential dwellings. The project 

developed and tested the use of time-differentiated network and power tariffs, and direct 

load control of water heaters. The electricity consumption of each household was 

metered every hour from 3 November 2003 to 25 April 2004, i.e., for 4200 hours. 

                                                 
3 A typical water heater in Norway has a capacity of 200 litres and a heating element of 2 kW. 
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2.1 Samples 

 

Before the test period started, all customers had standard flat network tariffs and 

standard power tariffs.4 The project was a voluntary “opt-in” program, and the 

customers were given different participation choices. They could choose a TOU tariff 

from the network company and/or the market based spot price tariff from a power 

company. If they chose the spot price alternative, they had the further option of direct 

load control of their water heaters. The disconnections of the heaters would normally 

occur in the two most expensive spot price hours, every morning and evening. 

Depending on the customers’ choices, they divided into groups with differing 

combinations of standard and/or new tariffs, and with/without direct load control of 

water heaters. 

This paper studies three different samples from the panel of customers. The 

samples are grouped according to their choice of tariff and their choice regarding water 

heater disconnection. Table 1 shows the customer groups, the number of households in 

each group, and the total number of observations in each group. 

                                                 
4 After the deregulation of the Norwegian electricity market in 1991, vertically integrated power companies were 

separated into generating or trading divisions and network divisions. Customers now face one network tariff from 
their local net supplier, and one power tariff from a power supplier, which can be freely chosen from competing 
companies. Therefore, a consumer's total electricity price will be made up of the network price plus the power price 
(plus taxes and VAT). 
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Table 1. Customer groups (abbreviations in parentheses), the number of households in 
each group, and the total number of observations in each group 

Customer group No. of 
households 

No. of 
observations 

TOU net tariff & standard power 
tariff 

(TOU/Std)  171 415,841 

TOU net tariff & 
spot price power tariff 

(TOU/spot) 7 19,289 

TOU net tariff & 
spot price power tariff &  
direct load control 

(TOU/spot/DLC) 134 343,138 

Note: Approximately 150 of the households in the TOU/Std group are only “semi-volunteers”. They 
originally chose a dynamic tariff that activated high peak prices only when temperatures fell below –8 °C. 
This tariff was terminated at the beginning of January 2004 and the customers were automatically 
transferred to the normal TOU tariff, with the option of opting out if they refused this rate (approximately 
10 percent refused the new tariff). Only observations from the period with the normal TOU tariff (later 
than 5 January 2004) are included in the analysis of those customers. 

2.2 Tariffs 

 
The TOU network tariff had a two-level rate structure with a peak price of 

approximately NOK5 0.91 in hours 8–11 (7 am–11am) and hours 17–20 (4 pm–8 pm) 

on working days, and an off-peak price of approximately NOK 0.03 in all other hours of 

working days, weekends, and holidays.6 The power tariff was the next day’s hourly spot 

prices, settled in the day-ahead market at Nord Pool. Figure 2.1 shows average, 

minimum, and maximum daily spot prices during the test period. 

 

                                                 
5 NOK 1 ≈ EUR 0.12 and USD 0.15 
6 Tax and VAT (24%) are not included. In 2003, a tax of approximately NOK 0.10 was added to the power price. In 

2004, this tax was shifted to the network price. 
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Figure 2.1. Average, minimum, and maximum daily spot prices from November 2003 to 
May 2004 

 

Figure 2.1 reveals two important characteristics of the spot price during the test 

period. First, the average daily level was quite stable. Over the first 1½ months, the 

price remained at a level of about NOK 0.30 and, for the rest of the period, it remained 

at a level of approximately NOK 0.25. Second, the average difference between the 

minimum and maximum hourly spot price for each day was below NOK 0.03. Only on 

nine days did the difference exceed NOK 0.05 and, on four of those days, the difference 

exceeded NOK 0.10. To exemplify the hourly price variation the consumers were faced 

with, Figure 2.2 shows the spot price for one typical day (15 November) and one non-

typical day (22 January), along with the TOU rate for working days. 
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Figure 2.2. Hourly spot price on a typical (15 November) and non-typical day (22 
January), and the TOU tariff 

 

Figure 2.2 clearly shows that, on most days, the spot price provided only small 

incentives for consumers to alter their consumption. In other words, the TOU tariff was 

by far the most powerful price signal when it came to encouraging intra-daily changes 

in electricity consumption, for all three consumer groups. The price ratio (peak 

price/off-peak price) of the TOU rate, disregarding the power rate and taxes, is very 

high. However, as the total price faced by the consumers consists of the network price 

plus the power price plus taxes and VAT, the average total price ratio that the 

consumers actually face is lower (approximately 3.2:1). 

2.3 Direct load control 

 
The disconnections and reconnections of the water heaters’ electricity circuits were 

carried out by direct contact with a relay in each household’s fuse box. The load control 

was a service accompanied with the spot price tariff, and performed in conjunction with 

the hours when the spot price was expected to be highest (hours 9, 10, 18, and 19).   

The load control events were not timed in accordance with the network TOU tariff. 

Because the water heaters were reconnected at the beginning of the last hour of the 

TOU peak price period, the water heater energy restoration for the first hour after 

reconnection did not take place when the TOU price was low, but when the price was 

still high. Thus, the length of a heater’s normal recovery period, without any 
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interruption, determined whether a household gained from the disconnection, also with 

respect to the TOU tariff. If the recovery period normally took one hour or less, all 

consumption would only be shifted to the hour when the TOU price was high and these 

consumers would probably not gain from the load control. On the other hand, if the 

recovery period normally took more than one hour, some of the hot water recovery 

would take place in the low-price period. Consequently, these consumers would shift 

parts of their consumption from TOU peak to off-peak price hours, and gain from the 

load control, not only with respect to the spot price power tariff, but also with respect to 

the TOU network tariff. 

2.4 Household electricity consumption 

 
The time-differentiated tariffs are intended to provide customers with incentives to 

adjust their electricity consumption patterns throughout the day. Figure 2.3 shows the 

average daily load curve (average consumption per hour) in the test period for the three 

groups with differentiated rates and a reference group. The reference group consists of 

754 households that did not volunteer for the new rates. They had no incentives to alter 

their daily load curve, and are included in the figure to enable visual comparisons 

between the groups. 
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Figure 2.3. Average daily load curve for the groups with time-differentiated rates and a 
reference group 

 
As seen in Figure 2.3, the reference group with standard network and power tariffs 

has a smooth daily load curve. There are morning and afternoon peaks corresponding to 

the hours when people are usually at home, and off-peak periods in the middle of the 

day and at night, which correspond to the hours when people are at work or asleep. This 

load curve reflects the typical consumption pattern for households that do not face 

variations in price during the day, and thus have no incentive to change their electricity 

consumption behaviour. 

The groups with TOU and standard power tariffs without direct load control 

(TOU/Std) and with TOU and spot prices with direct load control (TOU/spot/DLC) 

have higher overall consumption levels than the reference group. In addition, it appears 

that these two groups consume more electricity in the early morning hours, when the 

price is low, compared with the reference group. This is illustrated by their consumption 

curve which seems to increase more in those hours. Following the same argument, it 

does not appear that these two groups have reduced their consumption in hour 8, which 

is a high-price hour. For the TOU/spot/DLC group, we see the effect of the 

disconnections in hours 9, 10, 18, and 19, when consumption drops. The effect of the 
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reconnections is seen in hours 11 and 20. Consumption increases in these hours owing 

to the postponed water heater recovery.7 

The group with TOU and spot price without direct load control (TOU/spot) differ 

from the other two test groups, as overall consumption level is lower. In addition, their 

consumption pattern is well adjusted to the TOU peak and off-peak prices. Their 

consumption seems to fall substantially in high-price periods and to increase in the low-

price periods. 

As Figure 2.3 shows, the consumption curves of all three groups differ from the 

reference group in their consumption level and/or in their pattern during the day. As the 

customers participated on a voluntarily basis, one could argue that the time-

differentiated tariffs were chosen either by households that could easily alter their 

consumption pattern or by households with a favourable load profile. If the sample 

consisted purely of the former type of customers, the utility could expect a demand 

response from its customers. However, if the sample consisted only of the latter type, 

reductions might actually not have taken place because these customers simply could 

continue their prior consumption behaviour during the experiment, and gain from the 

tariff without changing their consumption. Thus, it is important to know whether this 

type of self-selection is prevalent among the customers. Ericson (2005, 2006a) 

investigated this issue among customers in the TOU/Std group and found that the load 

pattern of this group did not differ significantly from a group that chose to remain on 

their standard tariff. This indicates that self-selection based on favourable load patterns 

is not prevailing and that any load reductions measured in the analyses in the present 

paper is a result of adjustments to the price, at least for the TOU/Std group. 

Summary statistics for electricity consumption for working days are given in Table 

2. 

                                                 
7 Consumption may remain high in subsequent hours also, but will not be as high as in the first hour after 

reconnection. Among other factors, consumption depends on the level of hot water used in each household and the 
time required to recover lost energy from the hot water consumption. This so-called payback or cold load pickup 
effect resulting from simultaneous reconnections is discussed in, e.g., Gomes et al. (1999), Orphelin and Adnot 
(1999), and van Tonder and Lane (1996). 
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Table 2. Summary statistics of electricity consumption [kWh/h] for the groups 
with time-differentiated tariffs and the reference group (working days) 

Customer group Period Mean Std 
dev. 

Median Min. Max. 

Off-peak 2.12 1.43 1.8 0.1 17.6 Reference  

Peak 2.38 1.59 2.0 0.1 25.8 

Off-peak 2.50 1.48 2.2 0.1 14.7 TOU net tariff & 
standard power tariff 

(TOU/Std) 

Peak 2.78 1.63 2.5 0.1 14.9 

Off-peak 2.23 1.24 2.1 0.1 9.6 TOU net tariff & 
spot price power 
tariff  

(TOU/spot) 

Peak 1.92 0.98 1.7 0.1 8.3 

Off-peak 2.58 1.44 2.3 0.1 16.8 TOU net tariff & 
spot price power 
tariff & direct load 
control 

(TOU/spot/DLC) 

Peak 2.81 1.56 2.5 0.1 15.9 

Note: Peak (hours 8–11, 17–20 in working days) and off-peak (the remaining hours) are related to the 
high and low TOU rate periods, respectively. 

2.5 Temperature and wind data 

 
In addition to the electricity consumption data, hourly observations of average 

outdoor temperature and wind speed, and hours of daylight each day are available. 

These data are shown in Table 3. Temperature and wind data are measured at a central 

point in the vicinity of the customers. 

 

Table 3. Summary statistics for temperature, wind, and number of daylight hours (all 
days) 

Variable Mean Std dev. Min. Max. 

Temp [°C] 0.5 5.6 –16.3 16.7 

Wind [m/s] 1.5 0.8 0.3 6.6 

Daylight [hour] 9.0 2.8 5.9 15.2 

 

The variation in the weather variables was high with temperatures from –16 to +16 

ºC and wind speeds reaching up to 6 m/s. This variation captures much of the 
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temperature and wind conditions often experienced in these seasons in Norway. The 

number of hours of daylight each day varied from 5.9 (in December) to 15.2 (in April), 

with an average of nine hours. 

3 Method and model 
 

The regression model presented in this section is developed to predict the electricity 

consumption of customers at every hour during the whole test period. Analyses will be 

performed simultaneously on the three groups with the time-differentiated tariffs: the 

TOU/spot, TOU/Std, and TOU/spot/DLC groups. The goal is to find the extent to which 

the groups responded to the varying prices by adjusting consumption. The price 

responses will be captured in price coefficients, one for each of the three groups, and are 

measured as changes in kWh/h to changes in price (where the hourly price is the sum of 

the network and the power price in each hour, and taxes and VAT). 

Variations in outside temperature and wind speed, number of hours of daylight each 

day, household specific characteristics, and time of day, week, and year are controlled 

for in the regression. As described earlier, self-selection based on an advantageous load 

pattern in the TOU/Std group did not appear to be prevalent, as indicated by the results 

in Ericson (2005, 2006a). This is assumed to be the case for the TOU/spot and the 

TOU/spot/DLC groups also. Hence, no measure for testing or controlling for this is 

included. 

3.1 Econometric specification 

 
In this analysis, the households’ utility is assumed to depend on their consumption 

of electricity and all other goods and services. The consumption of electricity depends 

on the stock of electrical appliances because electricity does not give the household 

utility per se, but has to be used along with such equipment to obtain utility (for 

instance, when preparing hot meals, washing clothes, watching television, and heating 

water or rooms). The households are assumed to maximize their utility given all prices 

and income. This gives the households’ demand for electricity and other goods as a 
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function of all prices, incomes, their stock of appliances, and other household 

characteristics. Households’ demand for electricity is approximated by:  
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i = 1,…, N, t = 1,…,T, D={tue,wed,thu,fri,sat,sun}, 

G={TOU/spot,TOU/Std,TOU/spot/DLC}, M={nov,dec,jan,feb,mar,apr}, 

  

where: 

yit = hourly electricity consumption [kWh/h], at time t for household i; 

pit =  electricity price [NOK] for household i, at time t ; 

dlt  =  daylight; 1 between sunrise and sunset, 0 else; 

Tt  =  temperature [ºC], at time t; 

2
tT   =  temperature, squared, at time t; 

TMAt = moving average of temperature last 24 hours, at time t;    

2
tTMA  = moving average of temperature last 24 hours, squared, at time t;   

Wt  = wind [m/s], at time t; 

WMAt = moving average of wind last 24 hours, at time t; 

trigj,t  =  trigonometric terms, taking the value sin(πh/6), sin(πh/8), sin(πh/12), 

cos(πh/6), cos(πh/12), for j=1,…,5, respectively, if t is in hour h of 

the day, for weekends and holidays (see Appendix A for more 

detailed information); 

Di,g  =  dummy variables; 1 if household i belongs to group g, 0 else; 

Dh,t  =  dummy variables; 1 if t is in hour h of the day, 0 else;  

Dd,t  =  dummy variables; 1 if t is in day d of the week, 0 else;  

Dm,t  =  dummy variables; 1 if t is in month m of the year, 0 else; 
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DHd,t  = dummy variable; 1 if t is in a holiday, 0 else; 

γi  =  fixed time invariant effect for household i; and 

εit  =  an error term, assumed to be independently distributed over i and t 

with a constant variance.8 

 

N represents the sum of all households i. T is the same for all groups (4200), 

although missing data will make some time series incomplete (an unbalanced panel). 

The price responses will be captured by one price coefficient for each group as the 

effect of price changes is assumed to be different for the three groups. Further, it is 

necessary to control for other important factors influencing electricity consumption. 

They are discussed briefly below. 

The influence of temperature on energy use is particularly important in countries 

with substantial climatic variations. The effect is well described in the literature, 

although no uniform way of including temperature in the models has been established. 

The different analyses have found that temperature changes may have non-linear, as 

well as delayed effects on electricity consumption. These findings are covered by, e.g., 

Henley and Peirson (1997, 1998), Granger et al. (1979), Harvey and Koopman (1993), 

and Ramanathan et al. (1997). Following Granger et al. (1979), the contemporary 

temperature is controlled for by one term, and its possible non-linear influence by a 

squared term. To account for the delayed effect of a temperature change, a 24-hour 

arithmetic moving average term as well as its squared value in another term is used. 

Wind might influence energy use as it increases a building’s heat loss (SINTEF, 

1996). Both a contemporary term and a 24-hour moving average term are included. 

Because the households in the sample are located within the same area, all dwellings are 

assumed to be exposed to the same weather conditions over the data collection period. 

Daylight is likely to influence the consumption of electricity because it decreases 

the need for electric lights and heating (see, for instance, Johnsen, 2001). To allow for 

different impacts of daylight over the seasons, variables intended to pick up the 

                                                 
8 The Huber/White/sandwich estimator is used to obtain robust estimates of the asymptotic variance-covariance 

matrix of the estimated parameters (StataCorp, 2003). 
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daylight’s impact in each month is included. Each variable takes the value one in the 

hours between sunrise and sunset in the existing month, and zero otherwise.9 

In high-frequency data like those used here, a large part of the variation in the data 

is caused by seasonal and cyclical patterns. Seasonal factors (e.g. rain, snow, humidity), 

or special periods such as Christmas and New Year, might lead to different consumption 

levels, depending on the season. Cyclical patterns over the week might appear if, e.g., 

consumption is higher on weekends compared with weekdays. Also important, are the 

cyclical patterns of the day. Most people sleep at night, make breakfast and leave for 

work in the morning, and come home for dinner in the afternoon in a more or less 

similar pattern every day, and the electricity consumption reflects this behaviour. All the 

variables explaining these cycles cannot possibly be obtained, but they should still be 

accounted for in the model. Different approaches have been used in the literature to 

control for these patterns. Seasonal and weekly cycles can be controlled for by dummy 

variables (Pardo et al., 2002). Cycles within the day have been treated with dummy 

variables, one dummy for each hour (Granger et al., 1979, Ramanathan et al., 1985), by 

trigonometric terms (Granger et al., 1979), or by cubic splines (Hendricks et al., 1979, 

Harvey and Koopman, 1993). In the current paper, the cyclical patterns are modelled 

with dummies; one set with dummies for the 24 hours of the day.10 As weekends and 

holidays have different consumption patterns compared with working days, 

trigonometric terms are included to allow for shifts in the consumption pattern.11 After 

some experimentation, five variables were found to represent the daily cycle for these 

days; they are defined as sin(πh/6), sin(πh/8), sin(πh/12), cos(πh/6), and cos(πh/12), 

where h is the hour of the day. They do not enter on other days (see Appendix A for a 

more detailed explanation). Possible different levels in usage between the different days 

of the week or months are controlled for by day and month dummies. In addition, a 

                                                 
9 In the sunrise or sunset hour, the value of a daylight variable is equal to the share of the hour which it is daylight, 

i.e. between 0 and 1. 
10 Consumption patterns for different working days were found to differ slightly. Regressions with inclusions of 

separate hour dummies for each weekday were tested, and found to increase the estimates of the price responses, 
but only to a small extent. Because such a specification is not very parsimonious, and it is computationally heavy, 
it was not considered worth the extra effort. 

11 Regressions with inclusions of separate hour dummies for the weekends were also tested. This was found to 
decrease the price response estimates, but only to a small extent. Inclusions of the extra variables were, for the 
same reasons as in the previous footnote, not considered worth the extra effort. 
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holiday dummy is included. To avoid multicollinearity, the hour-01, Monday, and 

November dummies are excluded. 

The households’ specific characteristics (income, stock of appliances, type of 

dwelling, etc.) are important factors that can account for differences in electricity 

consumption behaviour. Such variables are not included in the model, but heterogeneity 

between the households is accounted for by fixed (unobserved) effects with the 

estimation procedure presented in the next session. Therefore, their impact on electricity 

consumption is not commented on further. 

The errors may have an autoregressive structure, where for instance special 

attention is devoted to residual autocorrelation at lag 1 (corresponding to the previous 

period), at lag 24 (corresponding to the same hour the previous day) and at lag 168 

(corresponding to the same hour one week ago). No specification of autoregressive 

structures is done, since our software, Stata, only allow specifications of first-order for 

panel data. The estimators will anyway be consistent, but they are not efficient (Baltagi, 

2001).  

3.2 Estimation method 

 
It is likely that the consumption patterns vary between customers with different 

demographic or household characteristics. For instance, it is likely that households with 

larger dwellings, higher incomes, more electrical appliances, or more family members 

will use more electricity than others. As the experiment lasted only six months, such 

characteristics are assumed to be constant during the test period. The cross section time 

series dimension of the data gives the opportunity to control for such household specific 

time-invariant explanatory variables by the use of a fixed effects panel data model. The 

fixed effects model controls for factors that are anticipated to not change within the 

timeframe of this experiment (see, e.g., Baltagi, 2001). This reduces heteroskedasticity 

and gives more efficient results.  
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4 Results 
 

The analysis of the three groups’ price responses is performed in one regression, 

with one separate price variable for each group to estimate the response to the total 

hourly price facing the customers. Table 4 shows the results from the fixed effects 

regression using Stata (StataCorp, 2005). 

Table 4. Results from the fixed effects regression 

Variables Estimate t-value p-value 

Price: TOU/spot -0.5453 -35.94 0.000 

Price: TOU/Std -0.0556 -8.58 0.000 

Price: TOU/spot/DLC -0.0771 -11.57 0.000 

Daylight: November -0.0698 -5.54 0.000 

Daylight: December 0.0118 0.88 0.380 

Daylight: January -0.0450 -5.48 0.000 

Daylight: February -0.1277 -17.36 0.000 

Daylight: March -0.1229 -18.28 0.000 

Daylight: April -0.0716 -10.06 0.000 

Temp -0.0286 -58.41 0.000 

Temp2 -0.0008 -20.91 0.000 

TempMA -0.0342 -61.24 0.000 

TempMA2 0.0001 1.87 0.061 

Wind 0.0109 6.08 0.000 

WindMA 0.0463 15.25 0.000 

Constant 2.2923 233.33 0.000 

R2: within  = 0.2024 F(71,777907)    = 2674.74 

between  = 0.0022 p-value for F-test = 0.0000 

overall  = 0.1065   

Note: The results for the holiday and cyclical dummy variables for hours, days, and months, and the 
trigonometric terms are reported in Appendix B. 
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Table 4 shows that the price-response coefficients for the three groups are all 

significantly different from zero. Furthermore, F-tests indicate that the different price 

coefficients are significantly different from each other. 

The results from the TOU/spot group are much higher than those for the other two 

groups. The estimated price response indicates a reduction in electricity usage of 0.545 

kWh/h in response to an increase in price of 1 NOK. Assuming a linear price response 

and calculating the peak price elasticity using average price and electricity consumption 

values, the price elasticity is approximately –0.26.12 Thus, the result is of the same 

magnitude as many of the findings from TOU experiments described in the 

Introduction. This group seems to have a higher ability and willingness to respond to the 

price variations than the other groups analysed in this paper. The TOU/spot group chose 

two independent rates that exposed them to the possibility of high volatility in prices, 

and high prices in the peak periods when consumption usually is higher. They did not 

choose direct load control with its prospective load reducing assistance. An explanation 

for their stronger response might be that these customers chose this riskier combination 

of tariffs because they relied on their own energy-controlling systems that could be 

programmed to exploit the tariff structure. Although this group consisted only of a few 

customers, their response gives an indication of the potential that might exist in 

households that are motivated and able to adjust consumption to varying price signals. 

The estimated coefficients for the other two groups are smaller than for the 

TOU/spot group. For the TOU/Std group, we can see that electricity consumption 

declines by 0.055 kWh/h in response to a price increase of 1 NOK. Thus, the price 

elasticity is calculated to be –0.02. An explanation for the weaker response might be 

that households generally do not give their electricity consumption much attention, and 

want to take intra-daily price changes into account to a small extent only. The result 

may simply reflect that the end users in general are not very price responsive. However, 

it might be that a higher degree of information and frequent reminders of the tariff they 

have chosen are required for customers with a low interest in adjusting their electricity 

consumption. The customers received little information before and during the 

experiment about the various ways they could exploit the electricity rate structures. As 

                                                 
12 The average off-peak and peak prices, including taxes and VAT, were approximately NOK 0.50 and NOK 1.60, 

respectively. 
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these types of rates were new and unknown to the customers, more attention and 

guidance on how to benefit from the varying prices may have increased the price 

response. Another explanation might be that the peak/off-peak price ratio was too small 

to motivate price-responsive behaviour from this group. Experience from earlier TOU 

experiments indicates that the largest consumption reductions are found when the peak 

to off-peak price ratio is highest (Faruqui and Malko, 1983) and that peak to off-peak 

price ratios should be in the range of 4:1 to 5:1 to induce substantial price responses 

(Braithwait, 2000). The price ratio in this experiment was approximately 3.2:1. 

Therefore, it may not have been sufficiently high to motivate the consumers to make 

consumption adjustments. 

The TOU/spot/DLC group had a somewhat stronger response than that of the 

TOU/Std group. Electricity usage was reduced by 0.077 kWh/h in response to a price 

increase of 1 NOK (indicating a price elasticity of approximately –0.03, again assuming 

linear price responses). The estimate must be seen in the light of that the households in 

this group were exposed to automated load control. As was the case for the TOU/spot 

group, customers in this group chose two tariffs, which in combination could expose 

them to substantial price variations within the day. This might suggest that they had a 

high willingness and ability to be price responsive, as was seen in the TOU/spot group. 

However, instead of relying on their own energy-controlling systems to yield benefits 

from the price structure, they may have anticipated that the direct load control offered in 

conjunction with the spot price tariff would take care of their price response. Therefore, 

these customers may have taken little action on their own to respond to the price signals 

(regressions that control for the impact of the load control indicate slightly lower 

responses than for the TOU/Std group, thus indicating that the customers have done 

little efforts to respond to the price changes manually). That the estimate for the 

TOU/spot/DLC group is low, despite the fact that they had load control, may be due to 

that the spot price did not vary much within the day during the experiment. Thus, there 

was little to gain from shifting consumption from peak spot price hours to off-peak spot 

price hours. It may further indicate that a large share of the load was shifted only within 

the TOU peak price periods. It is probable that greater effects for the customers would 

have been experienced if the water heaters had been reconnected at the end of the TOU 

peak price periods instead of when the TOU price was still high. This could be achieved 
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if, e.g., the water heaters had been disconnected for the entire TOU peak price periods. 

If this had occurred, the customers could have achieved benefits from shifting 

consumption out of possible high spot prices as well as the TOU peak prices. The result 

suggests that, if customers have two separate time-differentiated electricity tariffs from 

their network and power supplier, the timing of the load control measures in one of the 

tariffs might take into account the price structure of the other tariff in order to increase 

the benefits for the customers. 

For the other estimates, we can see that the temperature coefficients are all 

significant. The negative contemporary linear and squared terms indicate that 

consumption will increase if the temperature drops from one hour to the next, but a 

temperature drop will have less impact as the weather becomes colder. The negative 

linear and positive squared moving average term indicates that, if the average 

temperature for the previous 24 hours drops, consumption will increase and the increase 

will be greater the colder it is. 

The wind coefficient estimates are both positive and significant. As expected, wind 

increases electricity consumption. 

All daylight variables except that for December are negative and significant. 

However, the December variable is not significant. This means that more daylight will 

decrease electricity consumption, as expected. We see that daylight has a greater impact 

during the months with more hours of light. The reason why daylight in April is 

estimated to cause less of a reduction in consumption as daylight in, say, February or 

March, may be that people heat their dwellings to a lesser degree at that time of the 

year. Thus, daylight does not replace electricity for heating in April to the same extent 

as it does in February and March. 

The F-statistic test related to the hypothesis that all the coefficients except the 

intercept are jointly zero, is reported in Table 4. The hypothesis is clearly rejected, 

which suggests that the model has substantial explanatory power. 

Finally, we mention that regressions were run for each of the groups separately to 

see whether this had an impact on the estimates. These results show price responses of –

0.627 kWh/h for the TOU/spot group, –0.067 kWh/h for the TOU/Std group, and –

0.066 kWh/h for the TOU/spot/DLC group. Thus, the estimates can be said to be robust 

as the responses are small and in the same range regardless of the specification for the 
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TOU/Std and TOU/spot/DLC groups, and high and in the same range for the TOU/spot 

group. 

5 Conclusions 
 

A fixed effects panel data model uses data from a Norwegian residential experiment 

to estimate price responses to TOU and spot pricing as well as direct load control of 

water heaters. 

The results show that the customers with TOU and spot price tariffs without direct 

load control responded to a NOK 1 increase in price with a 0.545 kWh/h consumption 

reduction. Customers with a TOU network tariff and standard power tariff without 

disconnections responded to changes in price with a smaller adjustment in consumption 

(0.055 kWh/h). The customers with TOU and spot price tariffs with disconnections of 

water heaters had a somewhat higher response than the latter group (0.077 kWh/h). 

These results indicate that the residential electricity consumers analysed were not 

very price responsive, as only one group with a few customers had a substantial 

response to the prices. However, the results indicate only the average response for all 

customers within each group and no attempts were made to reveal whether there existed 

subgroups with higher price responsiveness. The response found in one of the groups 

indicates that some customers are highly motivated and able to exploit the varying rates 

by adjusting consumption. For instance, it is likely that customers with equipment 

suited to taking advantage of the price structure by reducing or shifting consumption 

would have shown higher responses.  

It may be that the provision of more information to the participating customers 

before and during the experiment on how they could have benefited from the rates could 

have increased the response. Furthermore, the direct load control would most likely 

have resulted in a higher response had the timing of the control events been conducted 

not only in accordance with the spot price power tariff but also in accordance with the 

TOU tariff. This suggests that, if customers have two separate time-differentiated 

electricity tariffs (network and power tariffs), one may consider taking into account the 

price structure of those two contracts when deciding the timing of load control measures 
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in order to increase customers’ economic savings from participation in time 

differentiated pricing programs. 
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Appendix A 
 
This appendix explains how the trigonometric variables accounting for weekend 

and holiday effects are constructed. 

Let Xj be an arbitrary household invariant variable for which one has observations 

Xj1, Xj2, ..., XjT. The variable is measured on an hourly basis. Let us assume that Xj,1 and 

Xj,T correspond to the value of the variable Xj in the first hour of a Monday (the initial 

day) and the last hour of a Sunday (the last day), such that we consider complete weeks. 

Let us collect the observations in a vector, that is 

 

/

j j1 j2 jTX X , X , ..., X =   . 

 

X  may be partitioned in blocks corresponding to the different days, that is 

 

// / /
j j1 j2 jKX B , B , ..., B =   , 

 

where Bjk is a column vector with 24 elements, corresponding to the hours of an 

arbitrary day, and where K=T/24. We have for instance 

 

/

j1 j1 j2 j24B X , X , ..., X =   , 

/

j2 j,25 j,26 j,48B X , X , ..., X =    and 

/

jK j,T 23 j,T 22 j,TB X , X , ..., X− − =   . 

 

For all the cases below one has that Bjk = Bj ∀ k = 1, 2, ..., K.  This means that we 

may write 

 

j N jX e B= ⊗ , 
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where Ke  is a column vector with K elements, which all are equal to 1 and where ⊗  

denotes the Kronecker-product. We will consider the five following Bj vectors:   

 

[ ]/

1B sin(1 / 6), sin(2 / 6), ..., sin(24 / 6)= π π π , 

[ ]/

2B sin(1 / 8), sin(2 / 8), ..., sin(24 /8)= π π π , 

[ ]/

3B sin(1 /12), sin(2 /12), ..., sin(24 /12)= π π π , 

[ ]/

4B cos(1 / 6), cos(2 / 6), ..., cos(24 / 6)= π π π  and 

[ ]/

5B cos(1 /12), cos(2 /12), ..., cos(24 /12)= π π π . 

 

Let furthermore D be a dummy variable with values 1 2 TD ,D ,..., D  such that Dt is 

one if the hour corresponds to an hour on a Saturday, a Sunday or a holiday and zero in 

all other cases. We define the vector D   

 

[ ]/

1 2 TD D , D , ..., D= . 

 

We consider the following vectors 

 

j jZ X D, j 1,...,5= = , 

 

where  denotes the Hadamard-product (that is elementwise multiplication). We may 

write  

 

/

j j,1 j,2 j,TZ Z , Z , ..., Z =   . 

 

The total effect of the five Z-variables in period t may be written as 
5

j j,t
j 1

Z
=

κ∑ , 

which corresponds to 
5

trig, j j,t
j 1

trig
=

β∑  in Eq. (1). 
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Appendix B 

Table 5. Results from the fixed effects regression 

Coefficients Variables Explanation Estimate t-value p-value 

δTOU/spot DTOU/spot p Price: TOU/spot -0.5453 -35.94 0.000 

δTOU/Std DTOU/Std p Price: TOU/Std -0.0556 -8.58 0.000 

δTOU/spot/DLC DTOU/spot/DLC p Price: TOU/spot/DLC -0.0771 -11.57 0.000 

βdl,nov Dnov dl Daylight: November -0.0698 -5.54 0.000 

βdl,dec Ddec dl Daylight: December 0.0118 0.88 0.380 

βdl,jan Djan dl Daylight: January -0.0450 -5.48 0.000 

βdl,feb Dfeb dl Daylight: February -0.1277 -17.36 0.000 

βdl,mar Dmar dl Daylight: March -0.1229 -18.28 0.000 

βdl,apr Dapr dl Daylight: April -0.0716 -10.06 0.000 

βT
 T Temp -0.0286 -58.41 0.000 

βT
2 T2 Temp, squared -0.0008 -20.91 0.000 

βTMA TMA Temp, moving average -0.0342 -61.24 0.000 

βTMA
2 TMA2 Temp, moving average, squared 0.0001 1.87 0.061 

βW W Wind 0.0109 6.08 0.000 

βWMA
 WMA Wind, moving average 0.0463 15.25 0.000 

β2 D2 Dummy, hour 2 -0.0955 -14.14 0.000 

β3 D3 Dummy, hour 3 -0.1193 -17.47 0.000 

β4 D4 Dummy, hour 4 -0.0991 -14.42 0.000 

β5 D5 Dummy, hour 5 -0.0410 -5.95 0.000 

β6 D6 Dummy, hour 6 0.0932 13.14 0.000 

β7 D7 Dummy, hour 7 0.3004 39.10 0.000 

β8 D8 Dummy, hour 8 0.5345 51.39 0.000 

β9 D9 Dummy, hour 9 0.5512 50.67 0.000 

β10 D10 Dummy, hour 10 0.5520 47.84 0.000 

β11 D11 Dummy, hour 11 0.6368 54.67 0.000 

β12 D12 Dummy, hour 12 0.4650 47.33 0.000 

β13 D13 Dummy, hour 13 0.3572 36.92 0.000 

β14 D14 Dummy, hour 14 0.3358 34.57 0.000 
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β15 D15 Dummy, hour 15 0.3832 39.04 0.000 

β16 D16 Dummy, hour 16 0.4895 50.81 0.000 

β17 D17 Dummy, hour 17 0.6348 58.32 0.000 

β18 D18 Dummy, hour 18 0.6477 60.73 0.000 

β19 D19 Dummy, hour 19 0.6807 64.94 0.000 

β20 D20 Dummy, hour 20 0.8283 78.68 0.000 

β21 D21 Dummy, hour 21 0.6974 85.37 0.000 

β22 D22 Dummy, hour 22 0.5966 77.34 0.000 

β23 D23 Dummy, hour 23 0.4416 61.07 0.000 

β24 D24 Dummy, hour 24 0.2099 29.26 0.000 

βtrig,1 trig1 Trigonometric term, Sin(πh/6) 0.1120 29.17 0.000 

βtrig,2 trig2 Trigonometric term, Sin(πh/8) 0.2089 11.82 0.000 

βtrig,3 trig3 Trigonometric term, Sin(πh/12) -0.0991 -29.02 0.000 

βtrig,4 trig4 Trigonometric term, Cos(πh/6) 0.2003 19.10 0.000 

βtrig,5 trig5 Trigonometric term, Cos(πh/12) -0.2611 -18.78 0.000 

βtue Dtue Dummy, Tuesday 0.0408 10.08 0.000 

βwed Dwed Dummy, Wednesday 0.0238 5.86 0.000 

βthu Dthu Dummy, Thursday -0.0131 -3.20 0.001 

βfri Dfri Dummy, Friday -0.0048 -1.18 0.239 

βsat Dsat Dummy, Saturday -0.0066 -1.12 0.261 

βsun Dsun Dummy, Sunday 0.0324 5.40 0.000 

βdec Ddec Dummy, December 0.2032 24.60 0.000 

βjan Djan Dummy, January 0.1410 19.29 0.000 

βfeb Dfeb Dummy, February 0.0047 0.66 0.509 

βmar Dmar Dummy, March -0.0422 -5.91 0.000 

βapr Dapr Dummy, April -0.2086 -25.90 0.000 

βHd DHd Dummy, Holiday 0.0345 5.02 0.000 

  Constant 2.2923 233.33 0.000 
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Appendix:  
Methods and models* 

 

 

 

Article II, III and IV in this thesis analyse observed data from households in the 

experiment "End-user flexibility by efficient use of information and communication 

technology (ICT)". The articles use econometric/statistical methods to study the relation 

between variables of interest. Article II and IV utilize fixed effects panel data models to 

estimate the relation between electricity consumption and variables assumed to have 

explanatory power with respect to the consumption. Article III uses a discrete choice 

logit model to investigate to which extent households’ choices of a new electricity tariff 

are influenced by some household characteristic variables. This Appendix will describe 

the econometric methods in more detail. 

 

                                                 
* I would like to thank Erik Biorn and Bente Halvorsen for comments and help. 
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1 Panel data models 
 

When N households are observed over T time periods, one obtain a cross-section 

time-series dimensional data set, also called a panel data set. See, for instance, Biorn 

(2000), Hsiao (2003), Greene (2003) or Wooldridge (2002) for good descriptions of 

panel data models and more details on estimation methods.  

Consider a simple model: 

 

it it it ity x z uα β ρ∗= + + +
   

1,..., ,

1,..., ,

i N

t T

=
=

   (1) 

 

where xit and zit are scalars of exogenous variables, α* is a constant, β and ρ are 

coefficients (the variables and the coefficients are generalized to vectors in Section 1.2). 

uit is assumed to be independently, identically distributed over i and t, with mean zero 

and variance σ2.  

An ordinary least-squares estimation gives unbiased and consistent estimators of 

α*, β and ρ. However, if zit is unobserved, and if the covariance between xit and zit are 

nonzero, the ordinary least-squares regression of yit on xit will give biased estimators α* 

and β (Hsiao, 2003).  

1.1 Advantages with panel data 

 

Panel data allows more complicated models than pure cross-sectional or time-series 

data, and may give the opportunity to control for the effects of missing or 

unobserved/unobservable variables. For instance, if the z values are constant through 

time for each household, but vary across households (zit = zi), the effect of z can be 

controlled for. This can be achieved by for instance subtracting the individual means 

from each observation 
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( ) ( ) ( )it i it i it iy - y = x - x β+ u - u⋅ ⋅ ⋅   
1,..., ,

1,..., ,

i N

t T

=
=

   (2) 

 

where (1/ )
T

i t=1 it
y T y⋅ = ∑ , (1/ )

T

i t=1 it
x T x⋅ = ∑  and (1/ )

T

i t=1 it
u T u⋅ = ∑ . The time invariant z 

variable is then swept away, and a least-squares regression of (2) will now give 

unbiased and consistent estimates of β. The utilization of ordinary least squares on (2) is 

therefore robust to correlation between xit and zi, which is not the case when ordinary 

least squares is used on (1) and zi is omitted from the equation (since it is unobserved). 

The transformation of the data performed is not possible with only cross-sectional 

observations (where T = 1). 

1.2 The fixed effects model 

 

This section will discuss the fixed effects model which is utilized in Article II and 

IV.  

Let us assume a regression equation with K right hand side variables: 

 

2

,

IID(0, ),
it i it it

it

y u

u

α
σ

∗ = + +

 ∼

x β
    

1,..., ,

1,..., ,

i N

t T

=
=

  (3) 

 

where 1, 2( ,..., )Kβ β β ′=β  is the column vector of coefficients for the K right hand side 

variables in the regression equation, 1 2 K( , ,..., )it it it itx x x=x  is the row vector with 

observations of the K right hand side variables for household i in period t, and where uit 

and xit are independently distributed for all i and t.1 In the context of this thesis, yit is the 

hourly consumption of electricity for household i, xit can for instance represent 

electricity price or temperature, and iα ∗  represents the effect of all household specific 

variables which can be assumed unchanged for each household during the 6 months 

observation period; for instance income, size of dwelling, members in the household, 

education, attitude to for instance environmental issues, cognitive ability, motivation, 

                                                 
1 IID(0,σ2) is an abbreviation for independently, identically distributed variables with expectation 0 and variance σ2. 
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etc. It is assumed that differences across households are captured in these household 

specific constant terms. Let us define the following vectors and matrices for household i 

of dimension (T × 1), (T × K) and (T × 1) 

 

1

2

i

i
i

iT

y

y

y

 
 
 =
 
 
 

y , 

1 1 1 2 1 1

2 1 2 2 2 2

1 2

i i i Ki

i i i Ki
i

iT iT KiTiT

x x x

x x x

x x x

   
   
   = =
   
   

  

x

x
X

x

,  

1

2

i

i
i

iT

u

u

u

 
 
 =
 
 
 

u , 

 

and let (1,...,1)T
′=e  be the (T × 1) vector with all elements equal to 1, IT the identity 

matrix (all diagonal elements are 1, the rest of the elements are 0) of the order (T × T), 

and 0T,1  the zero vector of dimension (T × 1). Then (3) can be written as 

 

  
*

2
1

,

IID( , ),

i T i i i

i T, T

α
σ

 = + +

 0∼

y e X u

u I

β
   i = 1,…, N.  (4) 

 

The coefficients in (4), iα ∗  and β, can be found by minimizing the sum of the 

squared error terms 

 

( ) ( ) ( )
1 1

N N

i i i T i i i T i i
i i

S α α∗ ∗

= =

′′= = − − − −∑ ∑u u y e X y e Xβ β .  (5) 

 

by first taking the partial derivate of S with respect to iα ∗  and setting them equal to zero, 

which gives 

 

( ) ( )ˆ ˆ T
i i i i iy

T
α α∗ ∗

⋅ ⋅

′
= − = −i

e
y X xβ = β β , i = 1,…, N.  (6) 

 

where  
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1 T

i it
t=1

y y
T⋅ = ∑ ,  

1 T

i it
t=1T⋅ = ∑x x . 

 

Inserting for ˆ
i iα α∗ ∗=  from (6) into (5) and taking the partial derivative of S with 

respect to β, we get  

 

( ) ( ) ( ) ( )
1

1 1 1 1

ˆ
N T N T

W it i it i it i it i
i t i t

y y
−

⋅ ⋅ ⋅ ⋅
= = = =

   ′ ′= − − − −      
∑∑ ∑∑x x x x x xβ  (7) 

 

which is called the least-squares dummy-variable (LSDV) estimator, because it may be 

implemented by interpreting ,...,i Nα α∗ ∗  as coefficients of dummy variables for 

individuals 1,…N. With many households (large N), as is the case for the regressions in 

this thesis, the computational burden when the dummy variables are included in the 

matrix of explanatory variables, is high. It is however not necessary to include the 

household specific dummy variables in the regression in order to estimate the β’s 

(which are the coefficients of our interest), as shown by (7). 

An alternative way of deriving (7) is the following: First, by premultiplying 

equation (4) by a (T × T) idempotent transformation matrix 

 

T T
T T T

′
= − e e

B I         (8) 

 

we obtain 

 

*

,
T i T T i T i T it

T i T it

α= + +
= +

B y B e B X B u

B X B u

β
β

  i = 1,…, N.   (9) 

 

In (9), the observations are transformed so that the means of each household’s time-

series are subtracted from the observed variables, and the household specific effects 

( iα ∗ ) are swept out (BTeT = 0T,1, since BT and eT are orthogonal). Second, by applying 

ordinary least-squares on (9), we get 
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1

1 1

ˆ
N N

W i T i i T i
i i

−

= =

   ′ ′=       
∑ ∑X B X X B yβ      (10) 

 

which is the same estimator as was found in (7). The estimator is also often referred to 

as the within-individual estimator or the fixed effects estimator. It utilizes only the 

variation in the variables within each individual (in this thesis: household). The β’s 

represent the impact on y of an increase in its corresponding variable, given all other 

variables are kept constant. For instance, a positive β related to the wind variable then 

tells how much consumption increases with a small increase in wind. A negative β 

related to the price variable tells how much consumption is reduced with a small 

increase in price. 

The estimator ˆ
Wβ is unbiased, and when either N or T or both goes to infinity it is 

also consistent. Its covariance matrix is equal to 

 

( ) ( )( )
1

2

1

ˆ ˆ ˆVar
N

W W W i T i
i

E Bσ
−

=

   ′ ′= − − =     
∑β β β β β X X   (11) 

 

It should be noted that the regressions are performed with the software Stata, which 

uses an alternative but equivalent formulation of (3), by introducing an intercept µ (see 

StataCorp, 2005 or Gould, 2001) 

 

it it i ity uµ α= + + +x β        (12) 

 

In order to identify both µ  and αi, a restriction 
1

0
N

ii
α

=
=∑  is imposed. The intercept, 

µ , then represent the average value of the fixed effects, and αi the deviations from this 

mean. 

Stata runs ordinary least-squares on 

 

( ) ( ) ( )it i it i it iy - y y = + x - x x β+ u - u uµ α⋅ ⋅ ⋅+ + + +    (13) 
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where 
1 1

(1/ )
N T

i t= it
y NT y

=
= ∑ ∑ , 

1 1
(1/ )

N T

i t= it
x NT x

=
= ∑ ∑ , 

1 1
(1/ )

N T

i t= it
u NT u

=
= ∑ ∑  and 

1 1
(1/ ) 0

N T

i t= it
NTα α

=
= =∑ ∑ .  This formulation has however no effect on the estimated 

βW’s. 

2 Discrete choice models 
 

In the regression models used in article II and IV, the regressand, i.e. the left hand 

dependent variable y was quantitative, and the right hand explanatory variables X were 

quantitative and qualitative (dummy variables). In article III, the dependent variable is 

qualitative. The model used is called a discrete choice model or a qualitative response 

regression model, because the dependent variable takes either of two values, which we 

conveniently set to 1, or 0. In this thesis, these values depend on a household’s choice 

between a new tariff and the old tariff. This choice is assumed to depend on explanatory 

household characteristic variables, as for instance the households’ ownership of energy 

management system, the electricity consumption pattern, income, etc. The objective of 

the model is to estimate how the probability that a household chooses the tariff, is 

affected by these characteristics (the model is also often referred to as a probability 

model). There are several approaches to develop a probability model for a qualitative 

binary response variable, the one used in article III is a logit model. For descriptions of 

the logit model, see for instance Biorn (2003), Gujarati (2003) or Green (2003). 

2.1 The logit model 

 

Article III aims at modelling households’ choices between selecting a new tariff 

and not selecting the new tariff that was offered in the experiment "End-user flexibility 

by efficient use of information and communication technology (ICT)". Let us assume n 

households are observed, and let2 

 

                                                 
2 This corresponds to Eq. (4.1) in Article III if yi equals CPPi. 
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1  if household  selects the new tariff

0  if household  does not select the new tariffi

i
y

i


= 


 i = 1,…, n. 

 

We also assume that the households are observed independently of each other. Let 

us then say that Pi is the probability that a household selected the new tariff offered in 

the experiment (yi = 1). Also, say (1 – Pi) is the probability that the household did not 

select the new tariff (yi = 0). We do not observe Pi, but we observe whether each 

household chose the new tariff or not. Let 

 

( )i iP F x β=         (14) 

 

where the probability Pi  is represented by a function F, with a vector of explanatory 

variables 1 2 K(1, , ,..., )i i i ix x x x= and parameters 0, 1( ,..., )Kβ β β β ′= .  

The probability must lie between 0 and 1, and it is likely that Pi is nonlinearly 

related to the explanatory variables xi. Furthermore, the function must be monotonically 

increasing in its argument. The strategy is to choose F such that its domain is (-∞, +∞) 

and its range is (0, 1), that is 

 

F(-∞) = 0   F(+∞) = 1  F´(xiβ)   0 

 

 The households’ probability for choosing the new tariff can be represented by 

the logistic cumulative distribution function3  

 

( ) ( ) 1
1

1 1

i

i i

x

i i i x x

e
P P y F x

e e

β

β ββ −= = = = =
+ +

     (15) 

 

which satisfies the desired model properties just discussed. The response mechanism 

described in (15) is called the logit model. The probability of not choosing the new tariff 

can thus be expressed as  

 

                                                 
3 This correspond to Eq. (4.2) in Article III. 
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( ) ( ) 1
1 0 1

1 1

i

i i

x

i i i x x

e
P E y F x

e e

β

β ββ
−

−− = = = − = =
+ +

   (16) 

 

2.2 Maximum likelihood estimation 

 

Maximum likelihood is used to estimate the logit model. For the households i = 

1,…,n, we have the sample of observations (yi, xi) = (yi, 1, x1i, x2i,…, xKi). We assume 

that (y1|x1), (y2|x2),…, (yn|xn) are stochastically independent, and let 

 

( )1     for 1,
1

1  for 0.
ii

y i iy
i i i

i i

P y
L P P

P y
− =

= − =  − =
     (17) 

 

i.e., Li is equal to the response probability if individual i respond positively and the non-

response probability if he responds negatively. Then, the joint probability, L, of 

observing the sample is given as the product of the individual probabilities 

 

  ( ) ( )
{ }{ }

1

1 1 : 1 : 0

1 1ii

i i

n n
yy

i i i i i
i i i y i y

L L P P P P
−

= = = =

= = − = −∏ ∏ ∏ ∏    (18) 

 

where ∏ is the product operator, and ∏{i:yi=1} and ∏{i:yi=0} denotes the product taken 

over all i where yi = 1 and where yi = 0, respectively. The joint probability in Eq. (18) is 

called the likelihood function. By taking the natural logarithm, we obtain the log 

likelihood function 

 

( ) ( ) ( ) ( ) ( )
1 1

ln ln ln 1 ln 1
n n

i i i i i
i i

L L y P y P
= =

= = + − −  ∑ ∑ ,   (19) 

 

The Maximum Likelihood problem is to maximize the likelihood or the log 

likelihood function with respect to the β’s. Put differently, the objective is to find the 

unknown β’s that makes the observed sample most probable. The maximization is 
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performed on (19) since this is the easiest mathematical problem. Differentiate (19) 

partially with respect to each unknown gives 

 

( ) ( )
1 1

ln

1

i

i

xn n

i i ki i kix
i ik

L e
y P x y x

e

β

ββ = =

∂  
= − = − ∂ + 
∑ ∑     (20) 

 

where k = 0, 1,…,K. By setting this expression equal to zero (( ln(L))/( βk) = 0), we 

obtain the first-order conditions for the maximum likelihood problem 

 

1 1 1

i

i

xn n

i ki kix
i i

e
y x x

e

β

β
= =

 
=  + 

∑ ∑ ,  k = 0, 1,…,K.   (21) 

 

which are nonlinear equations that requires an iterative solution.  

The sign of the β’s tell whether a change in its corresponding variable increases of 

decreases the probability to select the tariff (a positive sign means an increase in the 

probability, and the other way round). The estimated parameters can be used in Eq. (15) 

and (16) to estimate the probability of a household to select the new tariff, or not to 

select the tariff, given the household’s x-vector of characteristics. By differentiating (15) 

and (16) we get 

 

( )1i
i i k

ki

P
P P

x
β∂ = −

∂ ,  
( ) ( )1

1i
i i k

ki

P
P P

x
β

∂ −
= − −

∂   (22) 

 

and by putting the estimates into these equations, we can find the changes in the 

probabilities if there is a change in one of the variables (given the other variables are 

kept at a chosen constant level, for instance at the sample mean). 
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