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Supply vessels, passing merchant vessels and shuttle tankers are regarded a major threat for 
offshore structures and platforms are often designed intentionally to resist collisions. In 
Norwegian sector of the North Sea the standard design event has been a supply vessel of 
5,000 tons displacement sailing into a platform with a speed of 2m/s. With the recent update 
of NORSOK N-003 the standard size for a supplyvessel is 10,000 tons. For bow collisions the 
speed has increased to 3 m/s. For design purposes standard force-deformation curves for bow, 
side and stern impacts are defined in NORSOK N-004 Appendix A for bow, sideways and 
stern impact. Appendix A is essentially identical to the recommended practice DNV-GL RP-
C204 from 2010. A revision of RP-C204 is expected in the fall of 2017, with a significant 
update on design force-deformation curves for supply vessels.  However, there are relatively 
few new clauses for the structural design of large, diameter stiffened cylinders. 
 
With respect to the distribution of strain energy dissipation there may be distinguished 
between three design principles, namely strength design, ductility design and shared-energy 
design  depending upon the relative strength the ship and the platform: 
Strength design implies that the platform is strong enough to resist the collision force with 
minor deformation, so that the striking ship is forced to deform and dissipate the major part of 
the collision energy. Ductility design implies that the platform undergoes large, plastic 
deformations and dissipates the major part of the collision energy. 
Shared energy design implies that both the platform and the striking ship contribute 
significantly to the energy dissipation.  
From a calculation point of view, strength design or ductility design is favorable. In strength 
design, it is only necessary to verify that the struck ship is capable of resisting the total 
collision force and the local high pressure intensities during the deformation process. In 
ductility design, the shape of the deformation is highly dominated by the geometry of the 
striking ship structure and the energy dissipation can be analyzed by means of plastic 
methods. In shared energy design, both the magnitude and the distribution of the collision 
force depend upon the deformation of both ships. This interaction makes the analysis more 
complex and calls for nonlinear finite element analysis. In most cases ductility or shared 
energy design is used or assumed. However, strength design may in some cases be achieved 
with small changes in structural configuration or material improvement. 
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The purpose of this work is to contribute to the development of simplified methods and 
guidance for the design of large diameter stiffened columns of semi-submersibles. The work 
can also relevant for the design of columns/pontoons in floating bridges and offshore fish 
farms 
 
The following topics should be addressed: 
 
 
1. Complete the script developed for automatic generation of finite element mesh for 

stiffened columns. Based on the review of typical dimensions of stiffened columns 
propose a parametric study where the scantlings, e.g. the diameter, thickness, frame 
spacing, compartmentalization as well as material strength may be varied. It may be 
considered to vary the parameters beyond “normal” values 
 

2. Perform finite element analysis of ship collision  against the modeled columns  with  LS-
DYNA. Analysis shall be conducted for stern, bow and side impacts. Existing ship finite 
element models will be made available. To the extent possible conduct also simulations 
where the rigid body motions are also included in LS-DYNA simulations. Develop force-
intensity curves for various contact areas. Describe the damage pattern. Material fracture 
and tearing due to excessive straining of watertight compartments shall be considered 

 
3. Compare the results of numerical simulations with estimates based on simple methods for 

analysis of external and internal mechanics. . Emphasis shall be placed on the methods 
behind the current and the proposed new requirements given in DNV GL RP-C204. The 
applicability of the method proposed by Yu et.al.: Large inelastic deformation resistance of 
stiffened panels subjected to lateral loading J. of Marine Structures, 2018 shall be evaluated. .  
Consider also models to estimate the energy dissipation in decks/stringers and bulkheads 

 
4. Based on the experience obtained form the simulations and comparisons with simplified 

methods propose modifications to improve the accuracy of the simplified methods. 
Propose requirements that may be applied for strength design of stiffened columns. 

 
5. Conclusions and recommendations for further work 
 
 
Literature studies of specific topics relevant to the thesis work may be included. 
 
The work scope may prove to be larger than initially anticipated.  Subject to approval from the 
supervisor, topics may be deleted from the list above or reduced in extent. 
 
In the thesis the candidate shall present his personal contribution to the resolution of problems 
within the scope of the thesis work. 
 
Theories and conclusions should be based on mathematical derivations and/or logic reasoning 
identifying the various steps in the deduction. 
 
The candidate should utilize the existing possibilities for obtaining relevant literature. 
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The thesis should be organized in a rational manner to give a clear exposition of results, 
assessments, and conclusions.  The text should be brief and to the point, with a clear language.  
Telegraphic language should be avoided. 
 
The thesis shall contain the following elements:  A text defining the scope, preface, list of 
contents, summary, main body of thesis, conclusions with recommendations for further work, list 
of symbols and acronyms, references and (optional) appendices.  All figures, tables and 
equations shall be numerated. 
 
The supervisor may require that the candidate, in an early stage of the work, presents a written 
plan for the completion of the work.  The plan should include a budget for the use of computer 
and laboratory resources which will be charged to the department.  Overruns shall be reported to 
the supervisor. 
 
The original contribution of the candidate and material taken from other sources shall be clearly 
defined.  Work from other sources shall be properly referenced using an acknowledged 
referencing system. 
 
The report shall be submitted in two copies: 
 - Signed by the candidate 
 - The text defining the scope included 
 - In bound volume(s) 
 - Drawings and/or computer prints which cannot be bound should be organized in a separate 

folder. 
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Abstract

In this work the resistance of a stiffened column exposed to stern corner impacts
is studied. The effect of ring and vertical stiffeners are explored, as well as the
effect of decks and bulkheads. It is found that the ring stiffener is an important
part of the load carrying structure for radial loads. These are therefore isolated
and studied in greater detail.

The ring stiffeners are analysed as a semicircular arch using several analytical
models, as well as with the finite element method. It is shown that the collapse
load for a ring stiffener with a stocky cross section can be well estimated by both
a static and a kinematic model. For a more slender cross section local effects
such as bucking of the web and top flange is important for the response.

A folding line model for the local collapse of the cross section is proposed, and
included in the kinematic model. This increases the accuracy of the model sig-
nificantly, especially for slender cross sections at large displacements.

The accuracy of the statical model was improved by introducing interaction equa-
tions between the moment capacity and the axial load. This resulted in a iterative
formula.

Finite element analyses of stern corner impacts have been performed for several
different designs of stiffened columns to determine how a strength design can
be obtained. It is found that the collapse of the ring stiffeners give a reduction
in capacity and subsequently large deformations. This collapse load is therefore
proposed as a limit for strength design.

The vertical stiffening is shown to influence the collapse load by restraining the
lateral displacement of the ring stiffener web, in addition to providing the neces-
sary strength to carry the impact load to the ring stiffeners.

The effect of decks was found to be minor with respect to the initial collapse,
but important for the energy dissipation at large deformations. Bulkheads were
found to give little to no extra capacity apart from the case where they are
directly inline with the impact direction.
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Sammendrag

I denne oppgaven har en avstivet sirkulær sylinder ustatt for skipsstøt blitt anal-
ysert. Effekten av ulike geometriske parametere har blitt utforsket, blandt annet
dimensjonene av ringstiverne of vertikalstiverne. Effekten av dekk og skott ble
også studert. Ringstiverene viste seg å være viktige for strukturens evne til å
bære radielle laster. Disse ble derfor isolert og studert nøyere.

Ringstiverene ble analysert som en sirkulær bue med flere ulike analytiske metoder.
For forholdsvis kompakte tverrsnitt kan sammenbruddslasten tilnærmes godt ved
hjelp av både statiske og kinematiske beregningsmodeller. For slanke tverrsnitt
blir lokale effeker som buling av ringstiverens steg og toppflens viktig, og mer
sofistikerte metoder er nødvendig.

For å forbedre nøyaktigheten til den kinematiske modellen ble en lokal folde-
mekaniske introdusert. Denne modellen ga betydlig bedre samsvar mellom den
analytiske modellen og elementmetode-beregninger, spesielt for slanke tverrsnitt
og ved store utbøyninger.

Nøyaktigheten til den statiske analysen ble forbedret ved å innføre interaksjons-
likninger som beskriver samvirke mellom momentkapasitet og aksielle laster. Det
resulterende uttrykket er på en iterativ form.

Elementmetodeanalyser ble utført av flere ulike søyledesign utsatt for hekkhjørnekol-
lisjoner for å undersøke hvordan man mest effektivt kan oppnå et styrkedesign.
Når ringstiverene når sammenbruddslasten mister strukturen evnen til å motstå
kollisjonskraften og store deformasjoner oppstår. Denne kapasiteten er derfor
foreslått som en grense for styrkedesign.

De vertikale stiverne er vist å påvirke sammenbrukkslasten ved å motvirke ver-
tikale forsyvninger av ringstiverseget, i tillegg til å bære kontakttrykket som
virker på konstruksjonen mellom ringstiverene.

Effekten av dekk og skott ble deretter undersøkt. Tilstedeværelsen av dekk viste
seg å ikke påvirke kollapslasten signifikant, men bidro kraftig til reststyrken etter
første kollaps. Vertikale skott bidrar lite hvis ikke skipsstøtet treffer direkte på
linje med skottet.
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1. NOMENCLATURE

1 Nomenclature

Variable Unit Description
E MPa Youngs Modulus
I mm4 Moment of inertia
P N Impact force
P̄ - Normalised impact force, P̄ = PR

MP

λ - Dimensionless slenderness parameter, λ = MP

NPR

R mm Radius
σ MPa Stress
σY MPa Yield stress
ε - Strain
εP - Plastic strain
ν - Poisson ratio
ρ kg/m3 Density of steel
le mm Characteristic edge length of one element
te mm Characteristic element thickness
Ae mm2 Area of cross section including effective plate flange
Af mm2 Area of cross section top flange
Ap mm2 Area of cross section plate flange
Aw mm2 Area of cross section web
NP N Plastic axial force, NP = AeσY
WP mm3 Plastic section modulus
MP Nmm Plastic moment, MP = WPσY
M kg Mass matrix
C kg/s Damping matrix
K N/mm Stiffness matrix
u mm Nodal displacement vector
Q N External force vector
∆tcr s Critical timestep
dwi m Relative deformation for the installation
dws m Relative deformation for the ship
m kg Mass
a kg Hydrodynamic added mass
v m/s Velocity
Es GJ Strain energy
We, δWe GJ External work, virtual external work
We, δWe GJ Internal work, virtual internal work
See also appendix A for definitions of geometrical parameters.
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2 Abbreviations

BWH Bressan-Williams-Hill fracture criterion
RTCL The Rice-Tracey Cockroft-Latham fracture criterion
ALS Accidental limit state
ULS Ultimate limit state
FEA Finite element analysis
NLFEA Non linear finite element analysis
FEM Finite element model
RS Ring stiffener
VS Vertical stiffener
BHD Bulkhead
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3. INTRODUCTION

3 Introduction

The probability of a ship impacting an offshore installation is quite low, how-
ever the consequences of such an incident can be significant for the installation’s
structural integrity, stability and operability. A large impact may also lead to
other accidents such as leakage of hydrocarbons and fires. For these reasons it is
important to consider such events in the design.

In design codes the different scenarios that can affect the integrity of a structure
is normally divided into two categories. These are the ultimate limit state (ULS)
and the accidental action limit state (ALS). The ultimate limit state is the largest
loading that are expected to occur with a yearly occurence probability of 10−2.
The structure is to be designed to withstand the ULS conditions without signif-
icant structural damage (Moan, 1994). Similarly is the probability level for the
ALS conditions set to 10−4. The ALS loading should not give a loss of structural
integrity, or safety critical equipment (DNVGL-RP-C204, 2010). After a ALS
incident the structure should still be able to resist an ULS event. Design codes
provide requirements on the size and speed of colliding vessels to be considered
for both these categories (NORSOK-N003, 2016).

The consequences of ship impacts can be managed by three different methods.
Firstly operational restrictions may be enforced on the visiting vessel. Limits can
be set on the weight, velocity and manoeuvrability within the area surrounding
the structure, this is often referred to as event control. Event control can reduce
the probability and magnitude of ship impacts. The second design method is
termed indirect design, and relates to general measures to ensure the structural
integrity without directly considering the impact load. These measures can in-
clude designing with redundancy in the load carrying structures, using sufficiently
ductile materials and avoid dependence on slender members with non ductile post
buckling behaviour. The last method is direct design where the impact itself is
used as a basis for the design. Loads are established based on the type of impact,
and the damage is assessed in the relevant region (DNVGL-RP-C204, 2010). The
direct design approach is considered herein.

In this thesis the focus have been on impact from a platform supply vessel visiting
the platform. Other collision events may include impacts from tankers loading at
the field, passing merchant vessels, aircrafts enroute to or from the installation,
or ice-bergs (NORSOK-N003, 2016).

Circular stiffened shells are used in several different applications offshore, both
as pressure vessels and as load bearing columns. Such columns are found in
structures ranging from floating bridges, to offshore platforms. Most notably
perhaps, is the columns of a semi submersible platform such as the Aker H3
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design. Similar columns are also found in other offshore structures including
monopile and tension leg platform types. In these application the stiffened shell
can be subjected to ship impacts.

The current practise when a supply vessels visits an offshore rig is to position the
vessel with the stern towards the installation, minimising the risk of bow impacts,
and giving good access to the vessel’s cargo area. This leaves the columns of the
platform exposed to stern corner impacts. Figure 1 shows an example the leg of
an semi submersible platform damaged by a supply vessel impact.

Figure 1: Column leg after supply vessel impact (Do Amaral Amante et al., 2008)

The column legs of a semi submersible are a critial part of both the load bearing
and the flotation structure. Do Amaral Amante et al. (2008) analysed the residual
buclikng strength of such a column after broad side ship impacts and found that
the capacity was reduced by 9%. Hu et al. (2009) performed a similar analysis on
another design and found that the residual strength is satisfactory. This shows
that the current designs are well equipped to handle impacts without posing an
immediate risk to the safety of the platform. Secondary effects such as water
ingress and subsequent loss of stability can still lead to dangerous situations, as
well as downtime and production loss.

The collapse of flat stiffened panels have been studied at great detail, and mul-
tiple analytical expressions for the resistance exists (Yu, 2017). The influence
of curvature in the panel have also been studied to some extent. Johansen and
Amdahl (1997) proposed a simple plastic mechanism to describe the collapse of
a ring stiffener, and Spoorenberg et al. (2012) proposed a iterative method to
determine the ultimate load of a circular arch. Both these methods are consid-
ered herein. In this thesis several different analytical methods, as well as finite
element analyses, are used to in an effort to describe the collapse.
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4. ENERGY DISSIPATION

4 Energy dissipation

In all physical processes the total energy is conserved. In a ship collision the
initial kinetic energy in the striking ship must be converted to strain energy
and dissipated as heat. It is interesting to quantify how this strain energy is
divided between the striking ship and the installation, and how much damage
each vessel must undergo to dissipate all the necessary energy. Some energy will
also be dissipated through other processes such as wave making, these effects are
neglected in the following discussion.

The evaluation of the energy distribution have historically been based on one of
four methods. These are statistical, experimental, simplified analytical methods
or more recently non linear finite element analysis.

Figure 2: Correlation between dissipated energy and damaged volume in ship
collisions, figure taken from Storheim (2016)

Minorsky is known for his early work on ship on ship collisions with both empirical
and statistical methods. Using 26 full scale collisions reported by the U.S Coastal
Guard he showed a linear connection between the energy dissipated in MJ and
the volume of damaged material, the data and the resulting regression line is
shown in figure 2 (Amdahl, 1983). This expression gives good results for high
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energy impacts, but for lower levels the scatter is significant. In this thesis the
energy levels are about 20 MJ and thereby out of bounds of Minorskys formula.

For lower energy levels simplified analytical methods may yield better results.
These are often based on plasticity theory and kinematic models of the impacting
bodies. In these models all deformations are assumed to be localised in yield lines,
and the energy dissipated is linked to the angle which the structure rotates about
these lines.

Experimental methods consisting of both full scale and model scale impacts are
the most accurate methods for studying impact mechanics (Yu, 2017). The draw-
back of course is the need for large expensive structures that will get destroyed.
Experiments like this provide important data that can be used to verify and tune
analytical methods.

In recent times non linear finite element method have become the preferred tool
to assess damage, due to the fact that computers have developed to the point
where analyses of complete systems with a reasonable fine mesh are feasible. This
method is able to predict the damage pattern with high accuracy, and is often
used as virtual experiments. Simplified methods are never the less still important
as a design tool, given that it allows for quick assessment of the general damage,
and a better understanding of the problem at hand.

Figure 3: Design principles (DNVGL-RP-C204, 2010)

Figure 3 outlines the concepts ofDuctile design, Shared-energy design and Strength
design. These three different design principles are based on the relative distri-
bution of strain energy. In the case of ductile design the installation is designed
in such a way that most of the impact energy is dissipated in the installation,
trough large plastic deformations. In the strength design regime the installation
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4. ENERGY DISSIPATION

is designed to withstand the impact with only minor deformations and the im-
pact energy will therefore have to be dissipated trough deformation of the ship.
In between these extremes one find the shared-energy design philosophy where
both the installation and the ship undergoes some plastic deformation. In design
of offshore structures it is advantageous to aim for a strength or shared-energy
design DNVGL-RP-C204 (2010).

In shared energy design the distribution of strain energy, and thereby the amount
of damage, can be studied using the force deformation curves. A conceptual
example of such a curve is presented in figure 4. The dissipated strain energy,
Es, can be found by integrating the force over the displacement. By keeping the
force level equal for both parties, one can find the force and displacement that
gives the required total energy. Mathematically this can be expressed as

Es = Es,s + Es,i =
∫ ws,max

0
Psdws +

∫ wi,max

0
Pidwi. (1)

Figure 4: Conventional energy distribution (DNVGL-RP-C204, 2010)[Modified]

Depending on the type of impact the energy to be dissipated does not necessarily
reflect the entire initial kinetic energy. In some impacts the striking ship retains
some of its kinetic energy, and in other cases the installation may be set in motion
and thereby gain kinetic energy. In DNVGL-RP-C204 (2010) the requirement for
impact energy is dependent on whether the structure is fixed or compliant.

For a fixed structures the maximum impact energy to be dissipated is the entire
initial kinetic energy of the impacting vessel. The energy is given by

Es = 1
2(ms + as)v2

s (2)
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where ms and as is the mass and added mass of the vessel, and vs is the impact
velocity.

For compliant installations the energy to dissipate can be taken as

Es = 1
2(ms + as)v2

s

(
1− vi

vs

)2

1 + ms + as
mi + ai

(3)

where vi, mi and ai is the initial velocity mass and added mass of the installation.
The velocity of the installation is often negligible. (NORSOK-N004, 2004)

A structure can be assumed compliant if the duration of the impact is small com-
pared to the fundamental period of vibration of the structure (NORSOK-N004,
2004). Since the fundamental period for sway and surge of a semi submersibles
is in the order of 100 s (Larsen, 2014), it is safe to use the compliant assumption.

In an accidental limit state (ALS) analysis of a stern impact the initial kinetic
energy should not be taken less than 22 MJ if no operational restrictions on
allowable visiting vessels are imposed (NORSOK-N003, 2016). This figure is
derived from a assumed impact with a 10 000 tonne ship impacting with a velocity
of 2 m/s and 10% added mass. For ULS analysis, the velocity can be taken as 0.5
m/s giving an energy equal to 1.38 MJ. In the following, only the ALS requirement
is discussed.

Using a somewhat conservative estimated installation weight of 50 000 tonne and
10% added mass, equation 3 gives the energy going towards strain Es = 18 MJ.
By assuming a compliant structure one can reduce the energy level by nearly
20%. In this thesis the full 22 MJ is used due to the lack of information about
the structure.

In their recommended practise C204 DNV GL presents force deformation curves
for various impact scenarios. In the current document the curves are based on a
5000 tonne supply vessel (DNVGL-RP-C204, 2010). As stated earlier the current
NORSOK requirement is 10 000 tonne, additionally there have been changes in
the design of the supply vessel fleet since the last revision. To ensure that the
recommended practice is up to date a revised version is currently being devel-
oped. The new version will include updated force displacement curves, based on
analyses of a standardized supply vessel in the range of 10 000 tonnes (DNVGL-
RP-C204, 2016). The old and new curves are compared in figure 5. In these
curves the structure is held rigid and the striking ship follows a prescribed path
with a constant velocity.

The recommended curves does not take the deformation of the installation into
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4. ENERGY DISSIPATION

account. In practical engineering the force deformation curves is often established
for the two interacting structures independently, assuming the other to be rigid.
In shared energy design this is however not accurate as the deformations changes
the impact area and therefore impact pressure and ultimately the resistance (Yu,
2017).

The method of analysing a constant velocity impact and later calculate the dam-
age based on equation 1 rest on the assumption that the collision mechanism
and strain energy dissipation can be decoupled. According to Storheim (2016)
this distinction where first suggested by Minorsky in 1959. This decoupling is
useful both in simplified energy methods, and when using non linear finite ele-
ment analyses. It also gives the possibility of representing impacts with different
combinations of mass and velocity by the same analysis. The inertia effects in
the collision is however neglected, and accordingly the change in kinetic energy
during the analysis should be verified to be negligible(DNVGL-RP-C204, 2010).

Yu (2017) showed by a full 6 degree of freedom coupled analysis that the struc-
tural damage obtained from this decoupled model might give inaccurate results,
especially for small collision angles. He gave several explanations for the discrep-
ancies, including the effect of changing added mass, varying impact angle and
secondary impacts due to roll, pitch and heave.
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(a) Proposed (DNVGL-RP-C204, 2016)

(b) Current (DNVGL-RP-C204, 2010)

Figure 5: Design impact force indentation curves
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4. ENERGY DISSIPATION

4.1 Equivalent displacement

To represent the impact by its force deformation curve a representative displace-
ment must be chosen. The displacement in the ship and in the installation must
be taken in the same location, and thereby sum to the rigid body motion of the
ship. In simple cases the maximum displacement of both the structures often
occur at the same location, and the choice of displacements is trivial.

However when the case gets more advanced and the relative strength of the two
structures varies from location to location the deformations may not be possible
to define unambiguously. This problem is illustrated in figure 6, where 6a shows
a simple representation of a stern corner impact where the deformations are well
defined and case 6b shows a similar impact, but now with the addition of a deck
in the column. If the displacement of the two structures is measured in way of
the deck, the column will seem to be in the strength design range with the ship
undergoing most of the damage. If however one use the maximal deflection of
both structures as a measure the total deflection will be larger that the rigid
body motion of the ship and one overestimates the energy dissipated.

(a) Uniform strength (b) Varying strength

Figure 6: Varying relative resistance, dotted lines represent original shapes of the
structures.
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To get a better picture of the actual distribution of strain energy in a coupled
analysis the plastic work done to the ship and installation can be logged through
out the analysis and used as a measure for the strain energy. By logging the
energy for each part, one can also get an idea on how the energy is distributed
within the structures. Figure 7 shows how such an energy versus time graph may
be used to determine the relative distribution of strain energy.

Figure 7: Strain energy versus time, parts of the column are represented by the
dotted lines.

Figure 7 does not give much insight into the impact scenario as it is cumulative
and therefore strictly increasing. Even though the energy distribution now is
captured by the plastic work data, it is interesting to find a force deformation
curve to describe the development of the impact. By utilizing the known strain
energy (Es) and impact force (P ), it is possible to define an equivalent displace-
ment at timestep t by rewriting the trapezoidal rule for numerical integration.
The resulting expression becomes:

dweq,t =
t∑
i=1

∆Es,i
Pi− 1

2

=
t∑
i=1

Es,i − Es,i−1
1
2 (Pi + Pi−1)

. (4)

This equivalent displacement gives a force displacement curve which is consistent
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4. ENERGY DISSIPATION

with respect to both the force level and the energy. The equivalent displace-
ments must however not be confused with a real displacement as it may differ
significantly from the displacements present in the colliding bodies.

This approach is adopted for the force deformation curves herein. Examples of the
resulting force deformation curves is given in figure 8. The energy requirements
for the ALS and the ULS are shaded in figure 8a and 8b respectively, for three
different designs.

(a) ALS criterion, 22 MJ

(b) ULS criterion, 1.38 MJ

Figure 8: Energy represented by force displacement curves
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5 Finite element analysis

The finite element method is a power full numerical method for solving differ-
ential equations in an approximate manner. The defining characteristics of the
finite element method is that the region for which the differential equation is to
be solved is divided into smaller region, so called finite elements and the approx-
imations are then carried out for each of these small elements rather than for the
entire region (Ottosen and Petersson, 1992).

When the method is applied to structural problems the differential equation is
formulated in terms of the displacements. Over a small element it is assumed
that the change in the displacement is small enough such that it can be found by
interpolating the displacements in discrete nodes on the boundary of the element.

A stiffness relation between the force and displacement are established on the
element level, and presented in a stiffness matrix. These relations are collected
in a global stiffness matrix for the whole system such that the forces working on
each node (Q) can be given in terms of the global stiffness matrix (K) and the
nodal displacement vector (u) in the following manner.

Ku = Q (5)

The displacements can then be found by solving expression 5 for the vector u
either by inverting K or by some numerical solving algorithm. Other interesting
quantities, such as strains and stresses, are easily calculated once the displace-
ments are found.

5.1 Nonlinear finite element analysis

The method of expressing the relation between the force and deformation trough
a constant stiffness matrix is only valid if the system behaves linearly. This is
rarely the case for accidental limit state analyses. In a nonlinear case the stiffness
becomes dependent on the nodal displacements:

K(u)u = Q (6)

The nonlinearities in a structural problem can be classified into three main cate-
gories, geometrical, material and boundary condition nonlinearities (Cook et al.,
2002). All these are important in impact analyses.

12



5. FINITE ELEMENT ANALYSIS

Geometrical nonlinearities are due to changes in geometry as the load history
progresses. This change will affect the stiffens of the structure as well as the
cross sectional areas used for stress calculations. In impact analyses the expected
deformations are large, and the effects of geometrical change will be significant.
The structural stiffness is expected to quickly diverge from the initial linear elastic
stiffness. An example of an nonlinear geometry problem is given in section 5.1.2.

The material non linearities are connected with the stress strain relationship for
the given material. In a linear elastic case the stress and strain is expected to
follow Hooke’s law.

σ = Eε (7)

This relation is however only valid for small strains. For larger strains plasticity
becomes important and the linear relation is no longer valid. Fracturing of the
material is also a highly nonlinear effect that is important for the capacity at
high strains. The material models used in this report is presented in detail in
section 6.

Faces coming in and out of contact is considered a nonlinear boundary condition.
This condition is characterised by sudden changes in stiffness which can lead to
problems with convergence (Cook et al., 2002). The identification of contact area
is also computationally challenging, and have to be updated for each timestep.
Several contact criteria are implemented in LS-DYNA, with the kinematic con-
straint method as the default option. This method is briefly outlined in section
5.1.1.
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5.1.1 Contact boundary condition

(a) (b) (c)

Figure 9: Penalty method for handling contact problems, (a) Mathematical prob-
lem, (b) Computational model, (c) Resulting force deformation curve (Cook et al.,
2002)

The default contact criteria in the analysis software LS-DYNA is based on the
penalty method (LS-DYNA Support, a). This procedure is outlined in figure
9 for a simple case of a rigid L-shaped bracket contacting a rigid surface. To
represent the contact a non linear spring with stiffens given as

k =
{
kg, if D ≥ g
0, if D < g

(8)

is placed between the two impacting bodies. D and g are given in figure 9a.
The stiffness kg is given a value large enough to prevent overclosing the gap, but
not so large as to create convergence problems. The dotted line in figure 9c is
sometimes adopted to aid with numerical stability. (Cook et al., 2002)

In the case presented above one knows where and when the two bodies will con-
tact in advance, and can already from start implement the spring. In a collision
analysis the exact positions of contact is impossible to determine before the anal-
ysis begins and some modifications are necessary. First one surface is designated
as the master surface, and the other as the slave. At each timestep a search for
slave nodes penetrating the master surface is performed. When a penetration is
found a spring is placed between the the node and the master surface exerting a
force proportional to the penetration depth. (LS-DYNA Support, a)
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5. FINITE ELEMENT ANALYSIS

5.1.2 Two-bar problem

One of the simplest systems where nonlinear geometry is important is the two-
bar system in figure 10a. In this problem a point load acts on two bar elements
pinned to each other and to a rigid boundary. As the center point is forced down
the bars have to compress to accommodate the geometrical change. This change
in geometry changes the stiffens of the system, leading to a non linear system.

The resulting force deformation curve is given in figure 10b. One can observe
how the stiffens reduces as the angle α reduces. This is due to the geometry
being such that a small increment in the deflection gives a smaller compression
of the bars for a small value of α than for a large. The initial stiffness from
linear theory is also given on the figure as the tangent to the non-linear solution
at no deformations (k0). It is clear that the non linear effects quickly become
significant.

At one point the force reaches a maximum and further loading leads to a phe-
nomena called snap through. Snap trough describes the sudden unloading and
large deformations that happen when a local maxima of the force deformation
curve is reached. The true equilibrium path will not follow the path described
by the curve in figure 10b, but rather "jump" across the minimum to the next
point on the curve with sufficient resistance. This will in the case of the two-bar
problem mean a change from compression to tension in the bars.

This snap through phenomena can lead to problems with the numerical time
integration as it happen suddenly and involve large displacements. In an analysis
where the mass of the structure is considered the numerical stability is somewhat
improved as the inertia effects limits the instantaneous response.

(a) Geometry (b) Force deformation

Figure 10: The two-bar problem (Bergan and Syvertsen, 1977)
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5.2 Time integration techniques

In order to analyse a dynamic problem in the time domain it is necessary to solve
the dynamic equilibrium equation given as:

Mü + Cu̇ + Ku = Q(t) (9)

In practise this involves numerical integration of the response(u) in time. The
response is discretized in the time domain and the initial state is assumed to be
known. There are two main ideas on how to predict the following steps, namely
explicit and implicit integration procedures.

Explicit methods can generally be expressed as

un+1 = f (un, u̇n, ün,un−1 . . . ) (10)

and uses only uses information about the current timestep and previous timesteps
in order to predict the next. Explicit methods are only conditionally stable, and
will "blow up" if the timestep exceeds a critical value denoted ∆tcr.

In addition to the information used by the explicit methods, the implicit methods
uses the equilibrium condition in the next timestep to predict the changes in
acceleration. Generally the implicit methods can be given as

un+1 = f (u̇n+1, ün+1,un, u̇n, ün,un−1 . . . ) . (11)

Commonly used implicit methods are unconditionally stable, i.e. they remain
stable even for large timesteps (Cook et al., 2002). The tradeoff is however that
each timestep of the implicit methods are more costly.

In collision analysis the total simulation time is quite short, while the model can
be large and complex. An explicit method is therefore often a good choice with
many short, relatively cheap, timesteps.

5.2.1 Central difference method

One well used solution method is the central difference method. The analysis
software used herein, LS-DYNA, uses a variation of this method (Hallquist, 2006).
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5. FINITE ELEMENT ANALYSIS

Figure 11: Discretization of the displacement

The displacements are discretised as shown in figure 11, and the current velocity
and acceleration is assumed to be on the form:

u̇ = 1
2∆t (un+1 − un−1) (12)

ü = 1
∆t

(
u̇n+ 1

2
− u̇n− 1

2

)
=
(
un+1 − un

∆t − un − un−1

∆t

)
= 1

∆t2 (un+1 − 2un + un−1) (13)

Substituting equation 12 and 13 into the dynamic equation of motion (equation
9) yields:(

M + ∆t
2 C

)
un+1 = ∆t2Qn −

(
∆t2K− 2M

)
un −

(
M− ∆t

2 C
)
un−1 (14)

This expression is given by the current and previous time steps, i.e. the method
is of the explicit type and a stability criterion must be established.
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5.2.2 Critical timestep

The stability criterion is established by looking at an undamped linear system.
The mode shapes of the system can be found by solving the eigenvalue problem
given as

[K− ωM]φ = 0 (15)

where φ is a modal matrix of eigenvectors and ω is the corresponding eigenvalues
(Langen, 1999).

The matrix φ can be normalized such that

φTMφ = I (16)
φTKφ = ω2 (17)

(18)

leaving the dynamic equation of motion as

ü + ω2u = φTQ︸ ︷︷ ︸
=Y

. (19)

In the central difference method the acceleration is given as

ün = 1
∆t2 (un+1 − 2un + un−1) . (20)

Substituting this expression into 19 gives the position at time n+ 1 as

un+1 =
(
2−∆t2ω2)un − un−1 + ∆t2Yn (21)

or on matrix form[
un+1
un

]
=
[
2−∆t2ω2 −1

1 0

]
︸ ︷︷ ︸

A

[
un
un−1

]
+
[
∆t2

0

]
Yn. (22)

After m steps with Y = 0 the the displacement vector x̂m is given by

ûm = Amû0 (23)
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5. FINITE ELEMENT ANALYSIS

and it becomes apparent that A must be banded when m approaches infinity. It
can be shown that this is the case only if the spectral radius of A is smaller than
1, giving the critical timestep as

∆t ≤ 2
ωmax

= ∆tcr. (24)

In the damped case the same procedure can be used to show that

∆t ≤ 2
ωmax

(√
1 + ξ2 − ξ

)
(25)

where ξ is the damping ratio (Cook et al., 2002).

For a two node bar element with lumped masses, the highest eigenfrequency can
be given as

ωmax = 2
√
AE

mle
= 2
le

√
E

ρ
for m = ρAle (26)

where le is a characteristic element length (Cook et al., 2002).

Combining equation 26 and 24, and noticing that
√

E
ρ = c is the speed of sound

in the material, gives an alternative expression for the critical timestep.

∆tcr ≤
le
c

(27)

This expression show how the critical timestep can be interpreted as the minimum
time for which information can not propagate more than the distance between
two nodes.

Unfortunately this estimate is not always conservative for shell elements and it
is inconvenient to calculate the distance between all nodes in the element. It can
also happen that ∆tcr is governed by flexural modes, whose natural frequency
is not dependent on the nodal distances (Cook et al., 2002). To account for
potential odd sized elements the characteristic length can be taken as the area of
the element divided by the minimum of the longest side or the longest diagonal.

There are no available stability proofs for time integration in nonlinear problems.
The current practice is therefore to use the value obtained for the linear case with
a suitable safety factor.

∆tcr = γ∆tcr,linear. (28)

The value of γ is typically 0.9 for a standard analysis (LS-DYNA, 2003).
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6 Material models

The art of modelling material behaviour using mathematical formulations have
been widely studied, and many different models have been proposed. For simple,
low strain, applications the elastic model is often sufficient. In this model only
the elasticity modulus (E) is required. When the stress exceeds the elastic range
the material starts to yield, and the problem quickly becomes more advanced. In
the plastic region one can in some use cases conservatively assume that the stress
remains at the yield level for increasing strains, in this case the material is said
to behave perfectly plastic. The elastic perfectly plastic approach can both be
overly conservative for some materials, and non-conservative in cases where lower
resistance is beneficial. A more advanced hardening rule is therefore required.

There are in fact three important rules needed to model a material (Moan, 2003).
These are:

1. Yield criteria which determines the state of stress for the onset of yielding.

2. Hardening rule which gives an expression for the changes in the yield con-
dition as the material hardens during plastic flow.

3. Flow rule which describes how the plastic strain increment develops.

In addition to these one need to formulate a tensile failure criterion if the material
is expected to undergo extreme deformations.

6.1 Yield criteria

The yield criteria determines the onset of yielding. In the one dimensional case it
can simply be stated that yielding starts when the stress reaches the yield limit,
often taken as the tensile yield strength (Moan, 2003). In principle the stress
space is six-dimensional and thus one need a five-dimensional surface to capture
the full yield surface. An often used yield criterion when working with metals
is the von Mises yield criterion. This method is of the associative type where
yielding is postulated to take place if the effective stress reaches a limit value
(Cook et al., 2002). The effective, or von Mises, stress is given as:

σe = 1√
2
[
(σx − σy)2 + (σy − σz)2 + (σz − σx)2 + 6

(
τ2
xy + τ2

yz + τ2
zx

)] 1
2 (29)

The yield criterion can formally be stated as

F = σe − σ0 = 0 (30)
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where σ0 is the stress at which yielding should occur. This stress level starts as
the yield stress of the material σY and develops as described by the hardening
rule, as the analyses progresses.

The yield criteria gives different states of stress dependent on the value

F < 0 Elastic (31)
F = 1 Plastic (32)
F > 0 Inadmissible (33)

i.e. the stress state will always be within (elastic) or on (plastic) the yield surface.

6.2 Hardening rule

(a) Uniaxial stress (b) Plane stress

Figure 12: Kinematic and isotropic hardening models (Cook et al., 2002)

When plastic flow occur the yield surface may move or change shape. For steel
and other metals this change manifests as a increase in the force deformation
curve for the structure, and a rise in the yield strength. This effect is called
strain hardening.

The hardening rule is best described trough an example. For a uniaxial stress
state a sample follows the simplified stress strain curve in figure 12a. After
yielding the stress follows a linear hardening curve with a slope Et. When the
sample reaches point B the loading is released. The stress now reduces with a
slope E equal to the original elasticity. The load is then reversed and a negative
stress is introduced. If yielding is assumed to occur at |σ| = σB the hardening
is said to be isotropic. This rule is however in conflict with what is observed for
common metals, where yielding is continued at a value σB − 2σY (Moan, 2003).

21



This hardening rule is termed kinematic hardening. In practice the two rules
may be used in combination. In figure 12b the resulting yield surfaces of the two
models are presented for a case of plane stress.

The linear relationship between the plastic strain and the stress in the plastic
phase depicted in figure 12a is too simple to represent real materials. In this
work the rule adopted is a Hollomon type power hardening rule, extended to
include a yield plateau. This rule gives the true stress as a function of the true
strain and two material parameters K and n.

The hardening rule is given as

σ = K

(
εp +

(σY
K

) 1
n − εplateau

)n
for εp > εplateau (34)

where the parameters K and n are the hardening modulus and hardening ex-
ponent respectively (Storheim, 2016). These parameters are often given for the
specific material, or they can be calculated based on the ultimate stress and the
corresponding strain in the following manner,

n = ln(1 + εUTS) and K = σUTS

( e
n

)n
(35)

ensuring that the ultimate stress is the maximal stress in the engineering stress
strain curve.

6.3 Flow rule

The strain increments are regarded to be composed of an elastic and a plastic
component (Cook et al., 2002). The fundamental assumption is that these two
strains are independent and can be calculated separately.

dε = dεe + dεp (36)

The elastic part of the strain is recoverable at unloading. The stress increments
are associated with the elastic part of the strain trough the elastic modulus as

dσ = Edεe (37)

When the yield function reaches the value F = 1, plastic straining occurs. This
strain is not recoverable and will lead to permanent deformations of the structure.
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6. MATERIAL MODELS

The plastic strain increment can be given formally as

dεp = ∂Q

∂σ
dλ (38)

whereQ is a function with unit stress called the plastic potential, and dλ is termed
the plastic multiplier (Cook et al., 2002). For ductile materials the function Q
take the same value as the yield function F , these flow rules are called associated.
The plastic flow is dependent on the stress state, the yield surface and material
parameters. The partial derivative of the plastic potential gives the direction of
the plastic strain increment, while the plastic multiplier scales the size of the
step, as to keep the stress state on the yielding surface. The derivation of this
multiplier is not practical to include herein.

6.4 Tensile failure

In collision analyses and other high deformation applications the tensile failure
model used is important for the results. Tensile failure occurs when the material
is loaded in tensile beyond its ultimate capacity and therefore fractures. In ductile
materials the loaded sample often develops a small constriction at one point, and
all subsequent deformations is confined here. This phenomena is termed necking
(Callister and Rethwisch, 2015).

Two models were considered during the work in this thesis. The first criterion
considered was the maximum principle strain. This model is adopted by DNVGL
in the their recommended practises (DNVGL-RP-C208, 2016) however the limits
presented is quite conservative (Storheim, 2016), and more practical values are
hard to obtain. This method also gave some stability issues.

The model used in all the analyses herein is the BWH fracture criterion, extended
to account for post necking damage as proposed by Storheim et al. (2015).

The BWH criterion for sheet metal instability is defined as

σ1 =


2K√

3
1+ 1

2β√
β2+β+1

(
2√
3
ε̂1

1+β

√
β2 + β + 1

)n
if − 1 < β ≤ 0

2K√
3

(
2√
3
ε̂1
)n√

1−( β
2+β )2 if 0 < β ≤ 1

(39)

where σ1 is the major principle stress (Storheim et al., 2015). K and n are the
power law hardening modulus and and exponent respectively. The variable β
denotes the strain-rate ratio and ε̂1 is the critical strain. The critical strain
can be assumed equal to the power law exponent n if no measurements are
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available. In course mesh applications the local stress concentrations will not
be correctly captured and the criterion will predict instabilities to late. Storheim
(2016) therefore implemented a geometric mesh scaling where the critical strain
ε̂1 is scaled with a factor 1

2

(
te
le

+ 1
)
, where te and le is the initial thickness and

side length of the element. This geometrical scaling was proposed by Alsos et al.
(2009) and is shown to better the prediction of instabilities when the mesh length
is larger than the thickness of the shell.

When the BWH criterion is fulfilled a virtual neck is assumed to occur towards
the principal strain axis. This necking leads to a thinning of the element which
again leads to a reduction in element capacity. This reduction is included in a
virtual damage defined as

1−D = exp (1− 〈−β〉∆ε1)
1 + l0

t0
[exp (1− 〈−β〉∆ε1)− 1]

(40)

where ∆ε1 is the increase in the principle strain due to the necking (Storheim
et al., 2015). The effect of the damage is included by replacing the stress tensor
σ with a effective stress tensor defined as

σ̃ = σ

1−D. (41)

When a critical thickness strain is reached within the virtual neck the element is
eroded. The thickness strain within the virtual neck is given

ε̃3 = ε0
3∆ε̃3 = ε0

3 + ln (1−D) , l0 ≥ t0 (42)

and the erosion criterion is given

ε̃3,max =
{
ε0

3 (1 + ξ) if − 1 < β ≤ 0
ε0

3 (1 + ξ (1− ψβ)) if 0 < β ≤ 1 (43)

where the parameters ξ and ψ are material parameters that can be calibrated
from uniaxial tests. In lack of test data the parameters are taken as ξ = 1 and
ψ = 0.9 as proposed by Storheim et al. (2015) for normal marine steels.
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6. MATERIAL MODELS

6.5 Material parameters

Four material models are used in the analyses herein. These models are all
based on the previously discussed power law, with the hardening parameters
and yield strength adjusted to give the sought after behaviour. The material
parameters are chosen to represent the mean values, and a lower 5% percentile
of two different commonly used offshore steels, namely normal steel(NV-NS) and
high strength steel(NV-36). The mean values is used where a lower strength
would be beneficial, that is in the striking ship, while the lower limit was used in
the stricken installation to ensure a conservative analysis. This is in accordance
with the recommendations in DNVGL-RP-C208 (2016).

The values are based upon DNVGL-RP-C208 (2016) with some changes based
on Storheim (2016) and DNVGL-OS-B101 (2003). The most notable change is
that the ultimate stress for the lower curves are raised compared to the somewhat
conservative values in the recommended practises. The models are presented in
table 3 and figure 13a. The figure only depicts the plastic part of the curve.

Table 3: Material parameters (True stress strain)

MID 1 2 3 4
Name NV-NS mean NV-36 mean NV-NS 5% NV-36 5%
E [GPa] 210 210 210 210
σY [MPa] 319 428 235 355
σUTS [MPa] 450 566 400 490
εUTS [ - ] 0.018 0.018 0.018 0.018
εplateau [ - ] 0.015 0.01 0.015 0.01
K [MPa] 698.9 885.6 621.2 766.7
n [ - ] 0.153 0.157 0.153 0.157
ρ [t m−3] 7.85 7.85 7.85 7.85
ν [ - ] 0.3 0.3 0.3 0.3
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Figure 13: Stress strain curves for the implemented material models
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7. RING STIFFENER COLLAPSE LOAD

7 Ring stiffener collapse load

The critical load for the ring stiffeners is an important parameter when design-
ing against ship impacts, as they are an integral part of the radial load bearing
system. One important thing to note about the ring stiffeners is that the load is
carried both in bending and compression, this makes them susceptible to buck-
ling. After the critical load the geometry of the stiffener is such that the capacity
reduces. This reduction is further amplified by local failures of the cross sections
as the deformations become large.

In the following sections several simplified methods for determining the plastic
collapse load of a ring stiffener are presented and discussed. The main motivation
for doing simple methods like these are to quickly validate the design and to
identify which parameters of the design that are most important.

For a real ring stiffener the boundary conditions are quite complex as it interact
with the rest of the structure. By examining a full column analysis it seems
like a clamped semicircular arch might be a good model to study the behaviour.
The clamped support is somewhat too stiff, however the rotation in this area is
neglectable in comparison with the deformation of the rest of the structure.

Spoorenberg et al. (2012) studied the collapse of circular arches with double
symmetrical cross sections, and proposed a iterative solution based on a simplified
yield contour and a combination of static and kinematic analysis technique. In
their work a series of design curves are presented for design of circular arches. The
approaches considered in the following is verified to coincide with these design
curves.

7.1 Bound theorems

There are two distinct methods for calculating the plastic collapse load of a
structure, namely static and kinematic analysis. In order to state some useful
theorems regarding these methods some terms must first be defined.

1. A virtual displacement is kinematically admissible if:

a) Geometric compatibility between virtual displacements and rotations
exist everywhere

b) The moment capacity in the yield hinges is equal to the plastic moment

2. A load condition is statically admissible if:
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a) Static equilibrium between external action and internal forces/mo-
ments is complied with everywhere

b) The bending moment does not exceed the plastic moment anywhere
in the structure

With these definitions the following theorems are generally true (Amdahl, 2013).
Upper bound theorem:
Of all kinematically admissible mechanisms will all, but the correct one, give a
larger plastic resistance than the true resistance.

Lower bound theorem:
Of all statically admissible mechanisms will all, but the correct one, give a smaller
plastic resistance than the true resistance.

Uniqueness theorem:
If a mechanism is both kinematically and statically admissible the calculated
plastic resistance is the true plastic resistance.

The theorems are only valid for infinitesimal strains, and does therefore not give
any information for large strain applications (Amdahl, 1983).

7.2 Slenderness

In order for a cross section to be able to develop a plastic hinge it must be
compact enough to withstand the plastic moment without failing due to local
buckling. The design codes Eurocode 3 (2005) and DNVGL-OS-C101 (2016) di-
vides cross sections into four categories namely Plastic, Compact, Semi-compact
and Slender. Plastic sections are able to form a plastic hinge with large rotational
capacity. Compact sections will develop a plastic hinge, but have limited rota-
tional capacity. Semi-compact and Slender section will fail before the moment
reaches plastic moment and yield moment respectively. The simplest analytical
methods for determining the collapse load will only be valid for cross sections
of Plastic or Compact type, and even then only for small rotations. For more
slender cross sections the analytical methods will present an upper bound.
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7. RING STIFFENER COLLAPSE LOAD

Spoorenberg et al. (2012) proposed an non-dimensional slenderness parameter
λ based on the plastic moment (MP ), plastic normal force (NP ) and the arch
length of the analysed arch (S). In this thesis all the analysed arches have the
shape of a semicircle and therefore an arch length proportional to the radius (R),
and so the following definition for the non-dimensional slenderness parameter is
adopted.

λ = MP

NPR
(44)

7.3 Static analysis

In this section a static analysis of a ring stiffener is performed. If one assumes
that the structure is statically admissible this analysis will result in a lower bound
of the collapse load as per the lower bound theorem (see section 7.1).

Take a circular arch with radius R and cross sectional parameters A and WP .
Let P be a point load in the crown of the arch (point A in figure 14).

Figure 14: Idealized static problem
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7.3.1 Elastic phase

In the first stage of loading, no yielding have occurred and the elastic solution is
valid.

Figure 15: Ring subjected to opposing forces (Timoshenko and Gere, 1961)

Timoshenko and Gere (1961) showed how the elastic radial displacement of a
circular arch can be given by the differential equation

d2w

dθ2 + w = −MR2

EI
(45)

where M is the moment in the cross section and EI is the flexural rigidity of the
curved bar in the plane of its initial curvature.

For the case of the ring subjected to two opposite but equal forces given in figure
15 they were able to show that the displacement is given

w(θ) = PR3

4EI

(
cos θ + θ sin θ − 4

π

)
(46)

It is observed that the problem of the fixed arch in figure 14 can be expressed
as a superposition of two instances of this solution with one rotated π

2 from the
other. Such that the total displacement can be expressed

w(ϕ) = w(θ = ϕ̂− π

2 , P = PA) + w(θ = ϕ̂, P = PC) (47)

where PA is the force in point A, PC is the radial reaction force in point C and
ϕ̂ is an angle that is zero in point A and extending clockwise as defined in figure
14.
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7. RING STIFFENER COLLAPSE LOAD

Given the condition that the radial displacement at ϕ̂ = π
2 is zero one can obtain

a relation between the external force PA and the reaction forces in the supports.

The displacement in point C due to the two cases is

w(ϕ̂ = π

2 ) = PAR
3

4EI

(
π

2 −
4
π

)
− PCR

3

4EI

(
4
π
− 1
)

= 0 (48)

giving the relation
PC = 8− 2π

π2 − 8PA = kPA (49)

where k is a constant.

The full expression for the displacement can then be written

w(ϕ̂) = PAR
3

4EI

[(
sin ϕ̂−

(
ϕ̂− π

2

)
cos ϕ̂− 4

π

)
+ k

(
cos ϕ̂+ ϕ̂ sin ϕ̂− 4

π

)]
(50)

The resulting displacement shape is plotted in figure 16a for some values of PAR
3

4EI .
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Figure 16: Results from elastic analysis

The moment in a cross section at ϕ̂ can be expressed

M(ϕ̂) = PR

2

[(
2
π
− sin ϕ̂

)
+ k

(
2
π
− cos ϕ̂

)]
= PR

2 γ(ϕ̂) (51)
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where the function γ(ϕ̂) only is dependent on the angle. This function is plotted
in figure 16b with the undeformed structure as a reference.

The initial elastic stiffness of the structure is found by solving the expression for
the displacement in A with respect to the force.

The displacement in point A is

wA = w(ϕ̂ = 0) = PR3

4EI

[(
π

2 −
4
π

)
+ k

(
1− 4

π

)]
(52)

which gives the force as

P = 4EI
R3

[(
π

2 −
4
π

)
+ k

(
1− 4

π

)]−1
wA = k0wA (53)

where k0 is the initial elastic stiffens.

7.3.2 Plastic hinges

The elastic stage ends when the largest bending moment in the structure is equal
to the plastic moment. The critical load in in the first stage is then found when

MA,1 = P1R

2 γA = MP (54)

giving that

P1 = 2
γA

MP

R
(55)

where MP = WPσY is the plastic moment capacity and γA is the function γ(ϕ̂)
given in equation 51 evaluated in A, γA takes the approximate value 0.30.

It is also noted that the moment in point B at the formation of the first hinge is
given as

MB,1 = 1
2γBPR = γB

γA
MP . (56)

It is assumed that the difference in moment in point A and C is negligible, and
that they fail at the same force level. It is further assumed that the contribution
of shear forces can be neglected.
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In the second stage of loading the moment in point A and point C is assumed
to be constant equal to MP , and thereby not able to carry any more load. The
structure may therefore be studied as a three hinged circular arc. This structure
is statically determinate and the moment in point B due to the further loading
can be shown to be

M̂B = 1
2 P̂R (sinϕ+ cosϕ− 1) (57)

The total moment in point B is then given as

MB,2 = MB,1 + M̂B (58)

MB,2 = γB
γA

MP + 1
2 P̂R (sinϕ+ cosϕ− 1) (59)

(60)

Inserting for γA = γ(0) and γB = γ(ϕ) from expression 51 gives the moment as

MB,2 =
( 2
π − sinϕ

)
+ k

( 2
π − cosϕ

)
π
2 + k

( 2
π − 1

) MP + 1
2 P̂R (sinϕ+ cosϕ− 1) (61)

The second hinge occurs when the moment reaches the plastic moment level,
giving the expression

MB,2

MP
=
( 2
π − sinϕ

)
+ k

( 2
π − cosϕ

)
π
2 + k

( 2
π − 1

) + 1
2
P̂R

MP
(sinϕ+ cosϕ− 1) = 1 (62)

The force P̂ and ϕ was found by a numerical search for the lowest value of the
force that satisfy this expression. The resulting values are:

P̂ ' 2.63MP

R
(63)

ϕ ' 0.258π (64)

The load at which the hinge in B develops is then

P2 = P1 + P̂ (65)

Giving the two critical loads as

Pcr,1 ' 6.67MP

R
(66)

Pcr,2 ' 9.30MP

R
(67)
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A normalised force parameter is introduced as

P̄ = PR

MP
(68)

such that the critical loads can be written

P̄cr,1 ' 6.67 (69)
P̄cr,2 ' 9.30 (70)

The resulting moment distribution is presented in figure 17. It s observed that
using this method gives the moment in C slightly lower than the plastic moment
level, this is unphysical as the moment here should continue to increase with
further loading. This error will lead to the model underestimating the total
force.

After the development of the hinge in point B the structure collapses as a plastic
mechanism, as further discussed in section 7.4. Figure 32 plots the force levels
P̄cr,1 and P̄cr,2 and several results from finite element analysis for verification.
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7.3.3 Reduction in moment capacity due to compression

As the cross sections are subjected to compressive stresses as well as the bend-
ing moment, the moment capacity will be somewhat reduced. The interaction
between the two forms of loading is given in the following.

Plastic axis in plate flange
Yu (2017) presents a set of interaction equations for the case with the plastic
neutral axis in the plate flange, and the axial force acting in tension. In the
following it is assumed that the same arguments hold for compressive axial forces.

The reduction in bending moment can be divided into four stages:

Stage 1: Compression in plate flange only.
In stage one the bending capacity is not affected:

M

MP
= 1 for N

NP
≤ N∗

NP
(71)

where the limiting axial force is N∗

NP
=
(

2ApAe − 1
)
.

Stage 2: Compression in plate flange and web.
In stage two the plastic interaction is given as:

M

MP
= 1− 1

1 + 2AfAw

(
Ae

2Aw

)2(
N −N∗

NP

)2
for N∗

NP
≤ N

NP
≤ N∗∗

NP
(72)

with the limiting axial force being N∗∗

NP
=
(

1− 2AfAe
)
.

Stage 3: Compression in plate flange, web and top flange.
In stage stage three the interaction is linear and given as:

M

M∗∗
= 1− N −N∗∗

NP −N∗∗
for N∗∗

NP
≤ N

NP
≤ 1 (73)

where M∗∗ = σYAthw is the maximum plastic bending moment from the top
flange.

Stage 4: Pure compression.
The cross section does not have any remaining moment capacity, the axial com-
pression have reached the level where N

NP
= 1.

Plastic axis in web
If the plastic axis is located in the web of the cross section the approach above
is no longer valid. This case is less common in offshore structures but may be
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found. Some of the cross sections analysed in this thesis is of this type, and thus
interaction equations is needed. The derivation of these expressions is found in
appendix C.

The development can be divided into different stages.

(a) Stage 1 (b) Stage 2 (c) Stage 3

Figure 18: Stages of interaction between compression and bending. Shaded area
represent the area "occupied" by the axial force. The plastic neutral axis is located
a distance z0 above the plate flange.

Stage 1: Compression in web only
In the first stage the compression only occupy a small area in the web, symmet-
rically about the neutral axis. It can be shown that the interaction equation
becomes:

M

MP
= 1− A2

e

4twWP

(
N

NP

)2
for N

NP
≤ N̂

NP
(74)

whereWP is the full plastic section modulus for the cross section, and the limiting
axial force is N̂

NP
=
(

1− 2ApAe
)
.

Stage 2: Compression in web and plate flange
In stage two the area occupied by axial forces have reached the plate flange. The
interaction equation can be expressed as:

M

MP
= 1− A2

e

4twWP

[(
N

NP

)2(1
2 + tw

S

)
+ 2

(
N

NP

)(
N̂

NP

)(
1
2 −

tw
S

)
(75)

−
(
N̂

NP

)2(1
2 −

tw
S

)]
for N̂

NP
≤ N

NP
≤

ˆ̂
N

NP
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The limiting axial force is
ˆ̂
N
NP

=
(

1− 2AfAe
)
.

Stage 3: Compression in plate flange, web and top flange.
The expressions for stage 3 can be determined by considering the case where the
normal force partially occupies the top flange as well as the web and the plate.
It can be shown that the interaction then becomes:

M

MP
= A2

e

4twWP

(
1− N

NP

)[
Aw
Ae

+ tw
w

(
N

NP
−

ˆ̂
N

NP

)

+ tw
S

(
N

NP
− N̂

NP

)]
for

ˆ̂
N

NP
≤ N

NP
≤ 1 (76)

Stage 4: Pure compression.
In stage 4 the cross section has lost all its moment capacity and can only carry
axial force.
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Figure 19: Interaction between moment capacity and axial force

The interaction equations presented in this section is plotted for three cross sec-
tions in figure 19. Section C01 and C03 have the plastic axis located in the plate
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flange and follow the expressions given by Yu (2017), while section C02 have the
axis located in the web.

The critical forces found in the static analysis (see equation 69) can now be
modified to account for the compressive stress by multiplying with the fraction
M
MP

for the appropriate level of N .

P̄1 = 6.67 · M(N)
MP

(77)

P̄2 = 9.30 · M(N)
MP

(78)

From the equilibrium condition one can find that the axial force in point A, B
and C is given

NA = k
P

2 (79)

NB = (k cosϕ+ sinϕ)P2 (80)

NC = P

2 (81)

respectively, where k is the constant found in equation 49.

As the moment capacity is a function of the axial force N which again is a
function of the impact force P , iterations is required to find the critical load.
For the designs used in this thesis the effect of compressive stresses reduced the
moment capacity slightly for some of the cross sections, while other retain their
full capacity. The effect is included in figure 32, and shown to be of importance
for slender cross sections.
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7.4 Kinematic analysis

Figure 20: Kinematic model

The kinematic analysis is based on the assumption that the work done done by
the external forces is equal to the sum of internal work from rotation of plastic
hinges and elongation or shortening of these hinges. The material is assumed
rigid perfectly plastic such that all the deflection is due to the development of
plastic zones. It is further assumed that the effect of shear forces is negligible in
the areas where the plastic hinges forms.

In a kinematic analysis one need to establish a kinematically admissible dis-
placement field, where all rotations and displacements are described by the same
parameter. One such model was proposed by Johansen and Amdahl (1997) and
is recreated in figure 20. For small displacements it is assumed that point B is
stationary and that all deformations happen between point A and B. To accom-
modate the shortening of AB the beam is also subjected to compression forces.
It is assumed that all compression takes place in the hinges. This problem turns
out to be quite similar to the two-bar problem discussed in section 5.1.2.

For small angles the virtual displacement in point A can be approximated as:

δw ≈ 2R sin
(ϕ

2

)
δθ (82)

and the end shortening can be given

δe ≈ 2R sin2
(ϕ

2

)
δθ (83)
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The external and internal virtual work is then found as

δWe ≈ Pδw = 2PR sin
(ϕ

2

)
δθ (84)

δWi ≈ 4MP δθ + 2NP δe = 4MP δθ + 4NPR sin2
(ϕ

2

)
δθ (85)

Equating external and internal virtual work gives the following expression for the
critical load

Pcr = 2MP

R

(
1

sin
(
ϕ
2
) + NPR

MP
sin
(ϕ

2

))
(86)

Minimising the collapse load on the unknown angle ϕ gives the following expres-
sion for the critical load

Pcr = 4MP

R
√

MP

NPR

= 4√
λ

MP

R
(87)

where λ is the dimensionless parameter introduced in section 7.2. The angle at
which hinge B will occur is given as

ϕ = 2 sin−1
(√

λ
)

(88)

Introducing the dimensionless force parameter from equation 7.3.2 the force can
simply be given as.

P̄cr = 4√
λ

(89)

This expression for the collapse load is given in standards such as DNVGL-RP-
C204 (2010) and NORSOK-N004 (2004). In accordance with the bound theorems
this expression should be larger or equal to the true collapse load. It is shown
in figure 32 that the force indeed is quite a bit higher than the results obtained
using the finite element method.
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7.4.1 Alternative mechanism

Figure 21: Alternative kinematic model

The result from the kinematic analysis is dependent on the assumed displacement
field. Based on observations from the finite element analysis it seems that the
assumption that point B remains stationary is quite erroneous. An alternative
mechanism is presented in figure 21.

The mechanism is analysed under the assumptions that the plastic hinges can
undergo deformations and still maintain the plastic moment, and that the rest
of the structure remains rigid. By considering the geometry of the deformation
mechanism it can be shown that the rotation in in hinge A, B and C is given as:

θA = π

4 − 2γ (90)

θB = α− γ − π

4 (91)

θC = α− 3π
8 (92)
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where the angles α and γ are

α = cos−1
(a
l

)
(93)

γ = cos−1
(
R− a
l

)
(94)

The lengths a and l is marked in figure 21 and can be expressed in terms of the
radius R and the deformation w in the following manner

l = 2R sin π8 (95)

a = 1
2R−

1
2 (R− w)

√
4l2

(R− w)2 +R2
− 1 (96)

The expressions for the lengths and angles are derived in appendix D based on
the assumption that all the deformations happen in the hinges such that the
length l remains constant.

When the rotation are known the change in internal work (dWi) can easily be
determined as the product of the change in rotation and the respective moments
in the hinges.

dWi = MAdθA + 2MBdθB + 2MCdθC (97)

The change in external work is given as

dWe = Pdw (98)

and must be equal to the change in internal work, giving the relation

P = dWi

dw
(99)

If one assumes that the moment capacity in all three hinges are equal to the
plastic moment the critical force reads

P = dθA + 2dθB + 2dθC
dw

MP (100)
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7. RING STIFFENER COLLAPSE LOAD

By noticing that θB = 1
2θA + θC the expression can be simplified to

P = 4dθB
dw

MP (101)

or on normalised form
P̄ = 4RdθB

dw
(102)

The resulting force deformation for design C03 is presented in figure 22a, together
with the same curve from a finite element analysis. In figure 22b the dissipated
energy is plotted against the displacement.

For strength design the most important parameter is the collapse load, i.e. the
maximal impact resistance. The analytical solution is not easily found due to
the complexity of the kinematic model, however a computer search gives that the
normalised force have a constant value for all R of about:

P̄cr ' 9.657 (103)
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Figure 22: Comparison between finite element and kinematic analysis

The kinematic model gives a reasonable estimate for small displacements, and
thereby the maximal load, but for larger displacements the actual value drops.
The reason for this drop is a loss of moment capacity in the hinges due to local
buckling. The developement of the moment capacity for design C03 is plotted
in figure 23. It can be observed that hinge C remains at the plastic level even
for large displacements, this is due to the fact that the rotation is fairly limited
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and that the top flange is in tension. In hinge B the moment never reaches the
plastic level, and instead fails due to a local folding mechanism, this is further
discussed in section 7.4.2. Hinge A can withstand the plastic moment for small
displacements, but fail when the rotations becomes to large.

Regarding the Eurocode 3 (2005) classifications mentioned in section 7.2 the cross
section in design C03 can be taken to be of class 4, which is recognised by the
failure of the compression elements before the moment reaches the level of first
yield. The limits from the design code does also place the cross section in this
class.
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Figure 23: Development of moments in hinges A, B and C
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7. RING STIFFENER COLLAPSE LOAD

7.4.2 Folding mechanism

Figure 24: Assumed folding mechanism for web and plate flange

In hinge B the web and flange of the ring stiffener is subjected to compression and
a may fail due to local folding rather than forming a plastic hinge. The folding
mechanism assumed is given in figure 24 for a section of the shell plate and the
ring stiffener web. It is assumed that four folding lines occur (marked in pink),
one along the height of the shell plate, one across the web and two diagonals
forming an angle φ with the center fold. All deformations are assumed to located
in these yield lines.

In order to analyse the folding mechanism an expression correlating the rotation
of the cross section θB and the local angles β1 and β2 is needed. In figure 25 some
geometrical observations are shown. The triangles on the left is in the plane of
the web, with the long side being at the center folding line, and the hypotenuse
following the diagonal folding line.
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Figure 25: Geometrical obervations related to the folding mechanism

The distance d will then have the length:

d =
sin
(
φ− 1

2θB
)

cos(φ) (104)

The triangle on the right in figure 25 follow the outer vertical edge of the folding
shape in figure 24. Given that the original length of the hypotenuse remains
unchanged the local angles in the yielding lines are

cos(β1) =
sin
(
φ− 1

2θB
)

sin(φ) (105)

β2 = π

2 − β1 (106)

The absolute value of the change in the hinge line angles due to the change in
rotation of the cross section are observed to be equal for the two lines:

∆β = ∆β1 = ∆β2 (107)
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Figure 26: Lengths of the assumed folding lines

The lengths of the yield lines are found by considering the geometrical model in
figure 26. The center line have the same lengths as the web height (hw), and it
can be shown that the length of the diagonal lines can be written as

ldiag = R

(
cos(φ)−

√( r
R

)2
− sin2(φ)

)
(108)

for angles small enough such that the yield line intersects the flange, see appendix
E for detailed calculations.

Figure 27: Assumed mechanism for the flange

The flange is assumed to form the three point mechanism in figure 27, with all
deformations located at three plastic zones. The energy absorbed by a small
deformation can be written:

∆Wflange = 4MP,flange∆β = tfw
2σY ∆β (109)

The internal work done by a small deformation in the web and plate flange is
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given

∆Wweb = 2M0,web (hw + ldiag) ∆β (110)
∆Wplate = M0,plateS∆θB (111)

respectively. WhereM0 = 1
4 t

2σY is the moment necessary to rotate a unit length
of a yield hinge.

The work needed to rotate the entire hinge a small angle ∆θB is given in terms
of the external moment

∆WB,ext = MB∆θB (112)

or as a sum of all the internal work components

∆WB,int = ∆Wweb + ∆Wflange + ∆Wplate (113)

Equating the external and internal work gives the following expression for the
external moment

MB =
([

1
2 t

2
w (hw + ldiag) + tfw

2
]

∆β
∆θB

+ 1
4St

2
p

)
σY (114)

where ∆β is the change in the angles β1 and β2 due to the change in θB .

This expression is still dependent on the unknown angle between the yield lines.
The expression for the internal work was therefore minimised numerically with
respect to φ. Different cross sections yielded different optimal angles. Cross
sections with wide top flanges gave large values such that the rotations are kept
to a minimum, while for sections with smaller flanges the effects of the web is
more important and the angle tends towards lower values.

A picture of the folding mechanism obtained using finite element analysis is in-
cluded in figure 28. The folding lines are visualized by highlighting the effective
plastic strain. A figure of a analysis with vertical stiffening is also included to
demonstrate how the angle between the yield lines are limited by the stiffeners.

The calculated moment and the moment found from a finite element analysis is
given in figure 29. The general shape of the two curves coincide well, however
the folding mechanism does not take any initial deformations into account which
results in an offset in displacement between the predicted moment and the mo-
ment measured. The elastic moment is included in the figure. It is observed that
the intersection between the elastic moment and the moment obtained from the
folding mechanism happen for a lower moment level than what is found in the
FEA. This is probably due to the mechanism not taking any elastic deformation
into account.
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(a) C03 (b) C03 with vertical stiffeners

Figure 28: Actual folding patterns from FEA
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Figure 29: Moment comparison between FEA and folding mechanism

Huang and Wierzbicki (1993) proposed a similar folding mechanism under dif-
ferent assumptions. The resulting expressions give quite similar moments for the
same global rotation even though the local geometry is somewhat different. This
goes to show the strength of the plastic mechanism method.

The force displacement function for the mechanism is updated to include the
effect of folding in hinge B, the result is plotted in figure 30a. The discrepancy
between the model and the measured force at large deformations are probably
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mainly due to the loss of moment capacity in hinge A and the change in loading
pattern as the flat impactor contacts the arch away from the center point. The
elastic solution found in section 7.3 is also included.

For more slender cross sections the effect of local folding becomes increasingly
important. The same analysis as described above have been performed for cross
section C01, the results are presented in figure 31.
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Figure 30: Comparison between FEA and folding mechanism for design C03
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Figure 31: Comparison between FEA and folding mechanism for design C01
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7.5 Verification using finite elements

The simplified methods for determining the critical load for the ring stiffener is
verified by performing several finite element analyses of various circular arches
consisting of one ring stiffener including the plate flange. The load was intro-
duced by a flat rigid plate moving with constant speed. This will result in a
somewhat different load condition than used in the simplified analyses, especially
for large displacements. For small displacement however, this approach should
give comparable results. The use of a flat plate instead of a more concentrated
load is to reduce the stress concentration in the impact area. It is also observed
from the full scale analysis that the stern corner used deforms at a quite low
impact force and presents a flat impact area.

The arch was fully constrained in all directions and rotations at each end point.
All nodes along the edges of the plate flange was restricted in the vertical direction
to simulate the presence of the rest of the structure. This last measure proved
necessary due to the arch failing in an out of plane buckling mode if it was not
prevented.

For these analyses the mesh was refined to a global mesh edge length of 25 mm
giving about 6 elements across the flange and 26 across the web. The influence of
mesh size was investigated prior to the analysis and it was found that the critical
load changed insignificantly for mesh sizes smaller than about 50 mm. Due to the
simplicity of the model, the use of such a fine mesh did not result in significant
use of computational resources.

The model used consist of three parts, the plate flange, the web and the top
flange. All three parts are represented by shell elements. The different arches are
denoted with the prefix C, dimensions for the respective designs can all be found
in appendix A.

The maximal load from all the finite element analyses is plotted in figure 32
together with the analytical method discussed herein. The static analysis gave
rise to the lines for the first and last hinge as described in section 7.3. The dotted
line represent the formation of hinge 2 if correction of the moment capacity due
to compression is used. As this factor is dependent on several parameters other
than λ the correction has been calculated for all the cross sections independently.
Mechanism 1 is the mechanism behind the collapse formulae currently used in
the recommended practice (DNVGL-RP-C204, 2010), as presented in section 7.4.
Mechanism 2 is the alternative mechanism developed in this work, the derivation
of which can be found in section 7.4.1.

Four points from the designs curves proposed by Spoorenberg et al. (2012) is
included in figure 32 as a reference.
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With reference to the bound theorems one would expect the static analysis to un-
der estimate the collapse load, while the kinematic models over estimates. Some
few stocky designs exceeds the level predicted by mechanism 2. The common fac-
tor for these is that they have an increased shell plate thickness, which reduces
the the tendency of hinge A to fail due to local effects. The delayed failure of
point A may have increased the effect of strain hardening which is represented in
the finite element analysis, but not in the analytical models.

The collapse loads of the different designs are plotted with the dimensionless
slenderness parameter λ introduced in section 7.2 along the horizontal axis. There
seem to exist a limit value of this parameter (λlim), for which the analyses with
a larger value are not able to reach the force level necessary to develop the last
hinge. This limit has a value of about λlim = 0.03.

The collapse of the ring stiffeners as seen in the finite element analysis is presented
in figure 33. The Von Mises stress fringe levels are scaled for each frame to
give a better picture of the stress concentrations, the stress levels are thus not
comparable between figure. The force displacement curve for this impact can
be found in figure 22a, the developement of the moment in the different hinges
are plotted in figure 23. The frames are captured at three points that proved
interesting for the collapse. The first frame is from the maximal impact force,
note how the stress level associated with yielding have not completely covered the
hinge in point B. The next frame is for a state where the cross section in point
B have collapsed due to buckling of the flange, but there are still some capacity
in point A. In the last frame the plate flange in point A buckles and the capacity
of the plastic hinge reduces significantly.
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(a) Global displacement = 0m (b) Global displacement = 0.06 m
Hinges developed in locations A,B and
C

(c) Global displacement = 0.1 m
Hinges in point B have failed

(d) Global displacement = 0.2 m
Hinge in A have failed

Figure 33: Collapse of ring stiffener. Von Mises stress contour plot
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7.5.1 Influence of vertical stiffeners
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Figure 34: Effect of vertical stiffeners

In the previous analysis it became apparent that tripping of the ring stiffener
contributed significantly in the reduction of of the capacity. The vertical stiffeners
in the column might help prevent this mode of failure by restraining the vertical
displacement of the ring stiffener web. To test this hypothesis an analysis of the
ring stiffener design C01 was performed with vertical stiffening similar to design
A01, the results of which can be found in figure 34a. The addition of the vertical
stiffening does in fact postpone the onset of the tripping in this case and allows
the plastic hinge to form in point B. The vertical stiffeners also limits the local
buckling of the web in point A, and thereby limits the loss of moment capacity.

The same analysis was performed with the ring stiffener cross section from design
C03, this result is given in figure 34b. This cross section is able to carry the
plastic moment for small rotations. The addition of vertical stiffeners therefore
have limited effect on the maximum load capacity, however it limits the rate of
which the force decays in the post failure region.
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8 Collapse of the three dimensional column

In an effort to describe the effect of multiple ring stiffeners and the upper and
lower boundary, the model in figure 35 is proposed. The ring stiffeners are as-
sumed to displace the same distance and thereby carry the same load. The
loading from the ship is simplified to be a line load with intensity q working over
the height Himp. The extent of the loaded area is further discussed in section
10.2

(a) Simplified model (b) Section through center from FEA

Figure 35: The effect of multiple ring stiffeners

Using this model it can be found that the virtual external work is expressed as:

δWe = qHimpδw (115)

while the internal work is

δWi = nPcr,RSδw + 4mMP,V Sδθ (116)

where n and m is the number of deformed ring stiffeners and vertical stiffeners
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respectively. Assuming small angles this can be rewritten to

δWi = nPcr,RSδw + 4mMP,V S
δw

SRS
(117)

where MP,V S is the moment resistance of the vertical stiffeners and Pcr,RS is the
critical load for the individual ring stiffeners as found in section 7.

The number of deformed ring stiffeners n can be approximated with the expres-
sion

n =
(
Himp

SRS
+ 1
)

(118)

Equating the internal and external energy gives the following expression for the
global collapse load

Pcr = qHimp =
(
Himp

SRS
+ 1
)
Pcr,RS + 4mMP,V S

SRS
(119)

On normalised form this expression becomes:

P̄cr = PcrR

MP,RS
= Himp

SRS

(
P̄cr,RS + 4mR

Himp

MP,V S

MP,RS

)
+ P̄cr,RS (120)

For the designs analysed in this thesis the plastic modulus for the vertical stiff-
eners is significantly lower than for the ring stiffeners, and the actual moment
capacity of vertical stiffeners are probably even lower than the plastic modulus
would suggest due to local effects. The term regarding vertical stiffeners is as an
estimate neglected, leaving the expression:

P̄cr '
Himp

SRS
P̄cr,RS + P̄cr,RS (121)

To verify this expression for the collapse several analyses with varying ring stiff-
ener spacing and three different ring stiffener sections is plotted in figure 36. A
linear fit is constructed for each of the cross sections and plotted in the same
figure. The data points marked with a blue star have the same ring stiffener di-
mensions as design C01, while the red and green points have the same dimensions
as C03 and C08 respectively.
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Figure 36: Linear relation between number of stiffeners and collapse load, the
dotted lines represent the simplified model

From the analysis done in section 7.5 the ring stiffener collapse load for these
designs are:

P̄RS,C01 = 5.85
P̄RS,C03 = 9.66
P̄RS,C08 = 8.08

Comparing these values to the values for the linear expressions in figure 36 it
lends credence to the expression given in equation 121. The dotted lines in the
plot represents the simplified model using the ring stiffener collapse load. It is
noted that the collapse load for design C03 is about the theoretical maximum
obtained using the kinematic approach in section 7.4.1, the red dotted line does
therefore represent the line one obtains if this value is used.
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8. COLLAPSE OF THE THREE DIMENSIONAL COLUMN

For the analyses marked in green and blue the model slightly underestimates the
collapse load. This may be because the ring stiffeners have a relatively high value
of λ, and thus fail due to local effects. The vertical stiffeners have previously been
shown to prevent local failure of the ring stiffener web, and when this effect is
not accounted for one underestimates the strength.

The impact height have been taken to be 6 m for most of the designs. This is
slightly more than the initial impact height at 5 m, however the stern corner
deforms quickly to the level where the contact surface covers a height of 6 m. For
the three designs with the lower Himp

SRS
-ratios the total load did not surpass the

force level needed to deform the stern corner. For these the initial height of 5 m
where therefore used.

In this model the effect of vertical stiffeners are excluded. From further analyses
it becomes apparent that this simplification is erroneous, in that the presence
of vertical stiffeners greatly influences the collapse forces. The effect of vertical
stiffening is discussed in section 10.5.
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9 Finite element model

The finite element model used to conduct the analyses in this thesis consist of
a column model, an impacting ship part, a material model and a set of analysis
control parameters. For most of the analysis the impacting ship part is the stern
corner of a supply vessel. The stern and column models are further described in
this section.

The material model describes how the material deforms during loading and is
an essential part of the element analysis. The model used is an implementation
of the power law model discussed in section 6 with isotropic hardeing. The
failure criteria used is the BWH failure criteria as discussed in section 6.4. The
implementation is done by Storheim et al. (2015).

The sensitivity of the results with regard to the most important control param-
eters are discussed in the following sections.

9.1 Column model

The column model developed in this work consist of an outer shell, vertical stiff-
eners, ring stiffeners, decks and bulkheads. The column shell is assumed to be
perfectly circular, with evenly spaced stiffeners. The ring stiffeners are assumed
to be larger than the vertical stiffeners, such that the vertical stiffener intersects
the web of the ring stiffener. In the intersection the web of the vertical stiffener is
fixed to the web of the ring stiffener, while the flange is free to move. This resem-
bles a cut out, as one often find in ships and offshore structures. The bulkheads
are both vertically and horizontally stiffened, and can be given an arbitrary loca-
tion in the model. The decks are stiffened in the x direction with evenly spaced
stiffeners terminating in a continuous circular flange.

The column was modelled in Patran 2012. The geometry definition, meshing
and property assignment were all automated by utilizing Patran Command Lan-
guage(PCL). All model parameters are collected in a separate input file, making
the task of altering the model trivial. This feature is essential when one wants to
explore the effects of varying the parameters.

All the column designs were given a unique identifier with the prefix A followed by
a two digit number. The dimensions for these can be found in appendix A. The
original design (A01) is largely based on drawings of a real column leg of a semi
submersible platform. The remaining designs are variations of this to investigate
the effect of different parameters. Some of the designs have dimensions that would
be impractical in a real construction due to other concerns such as the availability
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of odd sized plates and stiffeners for production, as well as maintenance and use
of the facility. These dimensions are however beneficial in this work as they give
the opportunity to study the effect of changing one parameter while keeping other
quantities like area and stiffness constant.

All edges, but the upper one, is restricted in all translational degrees of freedom.
The top edge is left free in the vertical direction to avoid unwanted membrane
forces developing. The effect of these boundary conditions is further studied in
section 9.3.

Figure 37: Column model

61



9.1.1 Finite element mesh

Most parts have been meshed using the mesher IsoMesh in Patran, with a global
edge length of le = 100 mm and quadratic element shape. This mesh generator
provided a consistent mesh with undistorted quadrilateral elements throughout
the entire geometry. Figure 38 shows a representative section of the meshed
structure. For the deck part it proved necessary to use the Paver meshing routine
which uses more irregular quadrilateral elements with some occasional triangular
elements. To ensure proper alignment of the nodes, all plate fields were cut at all
intersections with other parts. This allowed the mesh generator to automatically
recognise mesh seeds on the edges, and mesh accordingly.

Figure 38: Typical mesh with global edge length equal 100 mm

The element used is the Belytschko-Lin-Tsay shell element. The element is very
computationally efficient, and therefore the default shell element in LS-DYNA
(Hallquist, 2006). The element is based on a combination of co-rotated and
velocity-strain formulations. The co-rotated formulation reduces the complexity
of the geometrical nonlinearities by fixing a local coordinate system to the element
and decomposing the global deformation into a rigid body motion, and a local
deformation (Cook et al., 2002). The deformations in the local coordinates is
thus small, and the stresses can be expressed using the Cauchy formulation.
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Figure 39: Effect of mesh size

The sensitivity with respect to the mesh size have been studied by performing
three analyses of design A01 with global mesh size lengths ranging from 200 mm
to 50 mm. The resulting force deformation curves are presented in figure 39.
The mesh of the stern corner was left unaltered. The mesh with size 200 gave
only one element across the vertical stiffener web, largely limiting the stiffeners
ability to fail due to local effects and thus raising the capacity of the structure.
Halving the mesh size to 100 mm gave three elements across the vertical stiffener
web, resulting in a more physical deformation pattern. However, when another
halving of the mesh was performed the analysis gave an even lower capacity for
the structure. It is seen that the mesh size of 100 mm will over estimate the
strength of the structure to some degree.

The run time of the analysis was found to scale with a factor of l−2
e quickly

resulting in impractical CPU time usage. In this work a mesh size of 100 mm
was adopted to accommodate the need for a large number of analyses. In this
an inherent error was introduced, but it is assumed that the general behaviour
of the system will be captured.

63



9.2 Stern model

The stern model used for the impact analyses is prepared by Force Technol-
ogy and published with DNV GL recommended practise C208, Determination
of structural capacity by non-linear finite element analysis method (DNVGL-RP-
C208, 2016). The typical element size is in the range of 45-55 mm (DNV GL,
2015).

By using this openly available standardized model, the results obtained can be
compared to other analysis with the same stern. It also ensures that the results
are easily reproducible. As this thesis focuses on the design of the column, there
have been no further assessment of the stern model. The main dimensions of the
stern model are presented in figure 40.

The stern model has been analysed in an impact with a rigid column to establish
a baseline for the impact forces to be expected. The result of this analysis is
presented in figure 41. An interesting point to note is the plateau in the force
displacement curve at about 12 MN. This force level is significant for the energy
distribution between the ship and the installation, and is further discussed in
section 10.1. The maximal force of the ship stern is also important when strength
design is desired.

Figure 40: Stern model with main dimensions
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Figure 41: Stern corner vs. 10 m rigid column

It is also noted that this curve is significantly higher than the newly proposed
design curve given in figure 5. The curve found herein is however congruent with
the one published alongside the stern model, suggesting that the design curve is
erroneous.

9.3 Effect of boundary conditions

One of the more challenging parts of creating a good finite element models is
the choice of boundary conditions. To minimize the need for computational
resources it is important that the part of the structure that is modelled is as
small as possible. This gives the boundary conditions the task of representing
the rest of the structure that is not included, as well as possible reaction forces
to other systems.

For the size of the modelled part there were two main concerns that needed to
be addressed, the height of the part, and which angle of the column that needed
to be modelled.

The angle was set to 180 degrees, leaving the column cross section as a semicircle.
This simplification involves fixing the translation degree of freedom of all nodes
in the exposed center plane in x and y direction. In figure 42a a full 360 degree
analysis is compared with the half model used herein. The force level in the two
models are virtually identical, apart from a notable drop at large deformations.
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This drop corresponds to point A (as marked in figure 14) reaching the same
x coordinate as point B, giving an effect similar to the snap trough behaviour
discussed in section 5.1.2. The x and y displacement of a single node in the
would be boundary was tracked trough the full column analysis, the results of
which is plotted in figure 42b. This shows that the restriction of this degree of
freedom will result in some overestimation of the global strength of the structure.
However when considering how small this effect proved to be, compared with the
relative large gain in efficiency, the half model was adopted for all other analysis.
A good side effect of this choice is that the ring stiffeners could be approximated
as semicircular fixed arches as discussed in section 7.
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Figure 42: Effect of half model

The other choice is the height of the column that is to be modelled, and con-
sequently how to constrain the top and bottom boundaries. The three tested
models were a high model with a total height of 18 m and the top free in z-
direction, a low model (H=12m) with the top free in z-direction and the same
low model but with the top clamped in the top. Force deformation curves are
presented in figure 43 for all three models.

For the high model there was no significant displacement of the top nodes, thus
the boundary is deemed far enough away to not influence the results. However
the additional elements needed for this larger model added to the computational
cost, and gave a want for a more efficient model. The two low models preform
equally good for small displacements, but after the collapse of the ring stiffeners
unwanted membrane forces quickly develop in the clamped model giving a to
large resistance. The capacity is eventually limited by fracture of the vertical
stiffeners and shell plate.
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Figure 43: Effect the modelled hight

The model where the top nodes are left free in the z-direction perform good
up to a equivalent displacement of about 0.5 m, after which the lack of vertical
constraints underestimates the membrane forces present. This underestimation
of the capacity is however small as well as conservative. At the point where
the models have dissipated the required 22 MJ the difference in the equivalent
displacement is in the order of 1% for the low model. The low model with a the
top nodes free in vertical direction is therefore adopted for most of the analyses,
knowing that the force level in the extreme displacements will be underestimated.
In some analyses where the behaviour at these displacements were especially
sought after the high model was used.

In figure 44 the displacement shape for the different models are shown. Note how
the free top plane for the model in 44b distorts.
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(a) High column (b) Top free in
z-direction

(c) Top clamped in
z-direction

Figure 44: Displacement shape at the end of the analysis
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9.4 Effect of fracture
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Figure 45: Effect of fracture

The effect of including the fracture model was investigated by analysing design
A01 with H = 18 m both with and without fracture, the force deformation curve
is presented in figure 45. The fracture becomes significant for extreme deforma-
tions, and may only be relevant for analysis where the column is expected to
undergo large deformations. However, as the fracture criteria did not impose any
significant change in the computational time it was left active in all analyses.
The added height in this analysis proved necessary for the membrane forces to
develop as discussed in section 9.3, Without this the effect of fracture becomes
insignificant.
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9.5 Analysis control

The software used to perform the analyses, LS-DYNA, is controlled via a series
of control cards. Each card controlling some essential part of the analysis. The
most important parameters will be discussed in the following section. For a full
overview of the parameters used in the analyses, see appendix B.

9.5.1 Contact definitions

The method used to account for contact between bodies is based on the penalty
method presented in section 5.1.1.

The contact definitions is controlled by the cards *contact_automatic_ sur-
face_to_surface and *contact_automatic_single_surface for the con-
tact between bodies, and the internal contact respectively. The contact types are
symmetric with respect to slave and master, which means that the subroutine
that checks for penetration of nodes are called twice, one for each of the con-
tacting faces (LS-DYNA Support, a). The choice of master and slave surfaces is
thereby irrelevant to the solution. The methods are also non-oriented meaning
that they can detect penetrations from both sides, a crucial property in collision
analyses where the deformations are expected to be large.

9.5.2 Timestep and mass scaling

The timestep and the mass scaling parameters are given in the card *con-
trol_timestep.

In the analysis software LS-DYNA the assignment of timestep size is automated.
The algorithm uses the method discussed in section 5.2.2 for each element. The
default safety factor 0.9 is used, giving the following expression for the next global
timestep

∆tn+1 = 0.9 ·min{∆t1,∆t2, ...,∆tN} (122)

where N is the number of elements (LS-DYNA, 2003).

The individual elements timestep is as shown dependent on a characteristic length
and mass. As the analysis progresses the lengths may change. Some elements may
become very small and thereby require the time step to be reduced significantly
to ensure stability. To counter this phenomena one can use a technique known
as mass scaling. In mass scaling a non physical mass is added to the structure to
increase the critical time step (LS-DYNA Support, b). This process will naturally
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9. FINITE ELEMENT MODEL

affect the results of the analysis, but sometimes this effect is negligible and the
addition of extra mass is justifiable.

Invoking selective mass scaling on the smallest elements in the analysis may
significantly reduce the time consumption of the analysis. However, Storheim
(2016) warns that the use of this technique in ship-ship collisions may affect the
energy balance. One should therefore verify that it does not influence the results
before utilizing the method.
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Figure 46: The effect of mass scaling

In figure 46 an analysis with mass scaling is compared with one without. The
non mass scaled analyses timed out before it could complete, however the two
force deformation curves seems to align well.

In the analysis with mass scaling the non physical mass was added to ensure that
the minimum time step did not become lower than 3.0·10−6. The mass added to
the system was logged through the analysis and proved to be in the order of 10
kg, of which all was added to elements in the ship model. This mass is deemed
negligible in relation to the energy levels in the problem. The technique about
halved the required CPU time and gave no noticeable ill effects. Mass scaling
was adopted for the remaining analysis.
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9.5.3 Impact speed

-0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4

Equivalent displacement [m]

0

5

10

15

20

25

Im
pa

ct
 fo

rc
e 

[M
N

]
Ship Installation

A01 2 m/s
A01 1 m/s

Figure 47: Effect of impact velocity

The impact speed is controlled by two different control cards, *boundary_pre-
scribed_motion and *initial_velocity_node, which control the prescribed
constant velocity and the initial velocity respectively. The prescribed motion
where given to the boundary of the striking vessel, while the whole vessel was
assigned an initial velocity. Initial velocity was given to avoid an acceleration
phase in the start of the analyses, which can give undue stresses on the vessel.

A key assumption in this work is that external and internal mechanics can be
decoupled. From this it follows that the force deformation curve should be un-
affected by the impact velocity. In figure 47 two analyses with different impact
velocities are compared. The analysis with velocity 1 m/s was terminated after
one second to save on CPU and memory resources. The results seem to coin-
cide quite well. The only difference between the two impacts is the change in
kinetic energy of the impacting bodies. This change was examined trough out
the analysis and deemed negligible in contrast to the strain energy developing in
the structure.

72



9. FINITE ELEMENT MODEL

9.6 Effect of both structures being deformable
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Figure 48: Comparison between coupled and uncoupled analysis

In traditional analyses the force deformation curves are often obtained indepen-
dently for the two colliding bodies, keeping the other rigid (DNVGL-RP-C204,
2016). This approach can give erroneous results, especially in shared energy de-
sign where both bodies are expected to undergo significant deformations. This
is illustrated in figure 48 where three analyses are presented, one where the col-
umn is kept rigid, one where the stern corner is rigid and one where both bodies
are allowed to deform. Both the rigid analyses underestimates the force levels
to some extent. Most notably is the underestimation of the force level in the
column when the stern corner is kept rigid, due to the fact that the corner does
not flatten and thus presents a much smaller impact area. The development of
the contact area is discussed in section 10.2.
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10 Analysis of stern corner impact

(a) Overhead view (b) Isometric view

Figure 49: Overview of impact scenario

In the following section some of the results from the analyses will be presented
and discussed. The full description of the designs used in each analysis can be
found in appendix A. Force deformation curves for all the different designs is
included in appendix F.

The part of the striking ship highlighted in figure 49 are defined as a rigid body
and only permitted to move in the global x direction. The rigid part is given a
prescribed constant velocity of 2 m/s for the entire simulation. The analysis is
terminated after 1 second, giving an total deformation of 2 m. This have proved
sufficient to cover the required energy dissipation for all but the weakest columns.

The initial position of the stern corner is such that there is only a few millimetres
of clearance between the two bodies, sufficient to prevent initial penetration, but
not so large as to introduce unnecessary time delay before the first contact.
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10. ANALYSIS OF STERN CORNER IMPACT

10.1 Phases of the stern corner impact

Figure 50: Phases of a typical force displacement curve from a stern corner impact

A typical force deformation curve for the stern corner versus column collision can
be divided into four phases. First both the ship and the installation undergoes
minor deformations as the impact force increases rapidly. At an impact force of
about 15 MN the stern corner collapses and the force level drops while the ship
sustains a large deformation. This force level corresponds to the plateau in the
force deformation curve for the ship, as seen in figure 41. As the ship strengths
the force level rises again and reaches a local maximum, this top is taken as the
collapse load for the installation.

Now the installation obtains a large deformations as the ring stiffeners are no
longer able to carry the load. After some displacement the stresses redistributes
and membrane effects in the shell and vertical stiffening becomes important, these
stresses give another rise in the total resistance until the last phase is reached
where the shell and vertical stiffening fractures due to excessive strain. The yellow
and red phase will hereafter be referred to as the post failure region.

A picture from each of the phases is presented in figure 51, note the fracture of
the vertical stiffeners in the last picture.
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(a) Middle of the blue phase (b) End of the blue phase

(c) Middle of the green phase (d) End of the green phase

(e) Middle of the yellow phase (f) End of the red phase

Figure 51: Collapse of A01. Von Mieses stress in MPa.
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10. ANALYSIS OF STERN CORNER IMPACT

10.2 Impact area and pressure

Figure 53 shows how the impact pressure develops as the analysis progresses.
The pressure starts as expected in a vertical band where the stern impacts, with
high points corresponding to the stiffeners in the stern. Further the stern corner
deflects in such a way that the pressure forms two distinct vertical bands moving
to either side and unloading the middle section. It is worth noting that this
unloading leads to pressures that greatly exceeds the value one would get if one
assumes the impact load as uniformly distributed over the impact area. For
comparison, the pressure would be about 1.3 MPa for the collapse load 18 MN
if it was to be taken as a uniformly distributed pressure, that is a factor of 10
lower than the pressures present.

Two horizontal bands can also be observed in the pressure, especially at large
deformations. These bands corresponds to the two decks in the stern model. In
this case the strong point in the ship caused by the decks happen to strike the
column between the ring stiffeners, this means that the vertical stiffeners must
have the capacity to carry the load to the nearest ring stiffener to avoid a collapse.

The impact force is plotted against the analysed time in figure 52 as a reference,
and the points where the pressures in figure 53 are recorded are marked.

Figure 52: Impact force versus time
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(a) t = 0.05 s (b) t = 0.1 s

(c) t = 0.2 s (d) t = 0.3 s

(e) t = 0.4 s (f) t = 0.5 s

Figure 53: Interface pressure on column A01. Values in MPa.
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10.3 Relative strength
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Figure 54: Mass as a measure for strength

In the design codes regarding ship collision the term relative strength is often used
to describe the distribution of energy dissipation between the impacting bodies
(see figure 3). This is however not so easily determined without performing an
analysis of the collision scenario. It would be beneficial to use a more intrinsic
property of the analysed structures to determine the distribution of energy. For
the simple case of the curved stiffened shell there seems to be a correlation be-
tween the mass and the ability to dissipate the energy. This relation is shown in
figure 54, where the fraction of the ALS requirement dissipated by the structure
is plotted against the mass.
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The use of mass as a measure for relative strength is however only suitable when
comparing structures with similar load bearing geometry. For example when a
deck or bulkhead is added to the cylinder the capacity increases significantly
without increasing the mass with the same factor.

As the mass is an important parameter for design of offshore structures, this
graph may be used to compare different designs on their load bearing abilities.
Structures below the linear fit performs better that expected for that total weight.
By correlating these designs to their individual dimensions it is observed that
these generally have strong ring stiffeners spaced close together.

Some analyses are excluded from figure 54 due to the capacity being so low that
the required 22 MJ was not dissipated during the 1 s analysis. Analysis A34 is
worth noting as this design falls in the strength design range. In this analysis the
ring stiffeners does not collapse and the stern corner takes all the deformations.
The column still dissipates some energy due to deformations of vertical stiffeners
and local plate fields.

A parallel to Minorsky’s method of correlating strain energy with deformed vol-
ume can be seen, but as the energy levels are too low no direct link can be
established.
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10.3.1 Internal distribution of energy dissipation
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Figure 55: Distribution of energy for design A01

The dissipation of energy in the column is logged for all the parts of the column
separately. This allows for the study of the distribution of said energy between
the components. In figure 55 the energy dissipated by the different parts of
the structure is plotted against the time. The values for the ring and vertical
stiffeners are without the associated plate flange, as the shell plate is plotted as
a separate part.

It is observed that most of the energy is dissipated by the vertical stiffeners the
first 0.3 seconds of the impact. After this time the the ring stiffeners fail and the
plastic work required to deform these dominates the energy dissipation for the
rest of the process. The shell plating is the part that dissipates the most energy.
The plate deforms in three different ways, as a plate between the stiffeners, as the
plate flange of the vertical stiffener and as the plate flange of the ring stiffener.

For large displacements the energy dissipated by each part was found to be pro-
portional to the mass of the part.
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10.4 Effect of ring stiffeners

In the designs considered in this work the ring stiffeners are the main load carrying
components in the radial direction. To avoid large deformations of the column it is
therefore important that the ring stiffeners are designed with sufficient strength to
withstand the impact. The effect of cross section types, cross section slenderness
and ring stiffener spacing is investigated in the following. It is seen that after the
loss of the ring stiffeners the resistance decreases and large deformations occur.
The collapse of the ring stiffeners are proposed as a limit for the structure to be
classified as a strength design.
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Figure 56: Ring stiffener sections

The effect of the ring stiffener cross section type was investigated by analysing
designs A05 and A11 where the stiffener type is changed to a L-type and a flat
bar (FB) respectively. The cross sectional areas and the plastic moduli are kept
constant. The results of the analyses is presented in figure 56. The main takeaway
from this figure is that the collapse of the ring stiffeners happen at a significantly
lower impact force for the L and FB stiffeners. This can be explained by the
fact that the lack of lateral support for the FB stiffeners and the unsymmetrical
nature of the L stiffeners advances the onset of local failure of the ring stiffeners.

Some displacement after the first collapse the L-type stiffeners regain some strength
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10. ANALYSIS OF STERN CORNER IMPACT

and the forces eventually reach the same level as in the case with the T-type stiff-
eners.

At large deformations the stiffness of the system is virtually unaffected by the
choice of stiffener section as other load carrying members come into effect.
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Figure 57: Ring stiffeners with different slenderness

The analysis of the single ring stiffeners in section 7 showed that the slenderness
of the cross sections are important for the moment capacity of the structure. In
figure 57 the response of two cross sections with different slenderness ratio λ is
compared. The cross sections have the same area, and thereby the same weight.
The plastic cross sectional modulus WP is different for the two designs giving
two different responses. The main difference is the force level at which the ring
stiffeners collapse. This change appears quite big in the force displacement curves
due to design A07 failing just before the stern corner at about 15 MN. This leads
to a much larger displacement in this design compared to design A01. At large
displacements both cross sections exhibits more or less the same behaviour due
to other load carrying components coming into effect.
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Figure 58: Effect of varying ring stiffener spacing

Changing the spacing between the ring stiffeners will obviously affect the weight
of the structure significantly, and one expects the strength to rise proportionally.
In figure 58 several analyses with varying ring stiffener spacing are compared.
For the three analyses with the smallest spacing the collapse load for the column
increases about linearly with the factor S−1

RS as shown in section 8. For the two
lowest analyses very little extra capacity where gained by reducing the spacing.
This is because no additional ring stiffeners came in contact with the stern, and
thus no extra capacity where gained.
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10.5 Effect of vertical stiffeners

The vertical stiffeners serves two main purposes. Firstly as a load bearing struc-
ture in the vertical direction, and secondly as a mean to carry a radial load to
the ring stiffeners. In this work only the latter is studied. As a secondary effect
the vertical stiffeners also serve as tripping brackets for the ring stiffener web,
preventing local buckling.
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Figure 59: Equal total vertical stiffener area

Two different designs with altered vertical stiffening are modelled and analysed,
these designs are named A12 and A13. In figure 59 they are presented together
with design A01 with unaltered vertical stiffening. In design A12 the total number
of stiffeners are halved, while the cross-sectional area of each stiffener is doubled
resulting in the same total area. In design A13 the opposite was done, giving
twice the number of stiffeners but still with the same total area.

As observed in the force deformation curve, this does not change the behaviour
of the collapse to a large degree. One aspect to note is that the stern corner fails
at a slightly lower total force for the case with the strongest vertical stiffeners.
Some of this effect may be due to the vertical stiffeners being higher and thus
preventing the vertical displacement of the stiffener web to a larger extent, and
postponing the local failure of the ring stiffeners.
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In the post failure range the stiffness of design A12 is the lowest while design
A13 with the most numerous stiffeners are the highest. In this phase the load is
predominantly carried as membrane forces in the vertical elements. Even tough
the total cross sectional area of stiffeners is the same for these three analyses the
number of stiffeners that are mobilised is different, and thus the area that carry
the load.
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Figure 60: Equal vertical stiffener sections

A series of analyses with the same vertical stiffener section but with varying
spacing was then performed. The force deformation curves is given in figure 60.
The reduction in vertical stiffening does, as expected, influence the impact force
significantly.

It is worth noting that the first collapse load for the two middle analyses (A17
and A03) is similar even though the vertical stiffening is different. In both these
scenarios the stern impacts a single vertical stiffener which takes the initial load.
The distance between the vertical stiffeners are also wide enough such that the
folding mechanism discussed in section 7.4.2 can form unhindered.

The capacity of one ring stiffener with design C01 and no vertical stiffeners have
been shown to be equal to 3.28 MN (see fig 34a). The stern contacts four ring
stiffeners giving the expected capacity

Pcollapse = 4 · 3.28 = 13.12 [MN] (123)
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10. ANALYSIS OF STERN CORNER IMPACT

for the case without ring stiffeners. This is higher than what is observed with
none ring stiffeners, however quite close to what is found in the case for few
stiffeners.

With vertical stiffeners the capacity of the ring stiffener raised to 5.12 MN due
to the folding being constrained. In this case the capacity is expected to be

Pcollapse = 4 · 5.12 = 20.48 [MN] (124)

which is slightly higher than what is found.

In analysis A16 there are no vertical stiffeners, and the entire load must be carried
by the ring stiffeners and the shell plate. These analysis clearly show how the
presence of vertical stiffeners is important for the global strength.

The orientation of the vertical stiffeners in relation to the impact direction also
proved important for the collapse load. The two analyses depicted in figure 61
have the exact same scantlings, however they give quite different force deforma-
tion curves. In the original analysis (A17) the stern corner impacts exactly on
a vertical stiffener, while in the second (A17 Rotated VS) the vertical stiffeners
are rotated such that the impact happens between two stiffeners.

A plausible explanation for the discrepancies is that even though the stern corner
in the second scenario hits between two stiffeners the impact area is wide enough
to include the two neighbouring stiffeners, while for the for the first scenario
only one stiffener is affected. This may explain the difference in the initial peak.
Further the area of the column affected by the impact widens and more vertical
stiffeners contributes to the load bearing. At this point the ring stiffeners have
failed and an important mechanism for supporting the load is the membrane
forces in the vertical direction.

From studying the analysis in greater detail it becomes apparent that in the
scenario where the column is rotated one fewer vertical stiffener contribute in
this load bearing mode and consequently the stiffness is reduced. This becomes
even more significant at about 1 m equivalent displacement in the rotated case
where the two central vertical stiffeners fractures due to excessive tensile strain.

It is also noted that the local tripping of the ring stiffeners happen in another
location when the stiffeners are moved. This changes the geometry of the problem
and ultimately the collapse load of the structure. The change is not large (from
about 36◦ to 40◦ away from the centre) however this shows that the local failure
will happen between two vertical stiffeners.

All the other analyses herein is oriented such that the stern corner impacts on a
vertical stiffener.
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(a) A17 at 0.1 m (b) A17 at 1 m

(c) A17 Rotated at 0.1 m (d) A17 Rotated at 1 m
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(e) Force deformation curve

Figure 61: Effect of relative position of the vertical stiffeners
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10.6 Effect of shell thickness
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Figure 62: Effect of shell plate thickness

The effect of the outer shell plate thickness was investigated by analysing three
similar stern corner impacts with only the shell thickness as the changing param-
eter. The results are plotted in figure 62 together with the original design A01.
The thickness of the shell plating proved to influence the impact load quite much,
as it deforms dissipating a large amount of energy. The change in thickness also
changed the total weight of the structure significantly as the shell plating usually
make up a large portion of the overall weight.

This approach is not an effective way of strengthening the structure. With ref-
erence to figure 54 where the amount of impact energy dissipated by the column
is plotted against the mass of the structure, it is found that all the analyses fall
more or less on the trend line. Other solutions, particularly with many close
spaced ring stiffeners, have proved much more efficient in raising he strength of
the structure without adding large amounts of weight.

In the post failure phase the stiffness of the structure increases with thicker shell
plates. Here the shell plate can be regarded as the plate flange of the vertical
stiffeners that is carrying the load as membrane forces.
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10.7 Effect of bulkhead
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Figure 63: Effect of bulkheads

In offshore applications one often find vertical bulkheads in stiffened columns.
The effects of these is therefore interesting to examine. In figure 63 three different
impact scenarios where a bulkhead is present are shown, together with the same
same column without bulkhead for comparison. The first scenario is an impact
directly in way of the bulkhead. In this case the stern deforms significantly and
dissipates most of the energy. However when the bulkhead is rotated 40◦ away
from the line of impact the contribution from the bulkhead becomes insignificant
and the force level matches that of the column without a bulkhead. For the
case where the bulkhead is offset by 20◦ some mixture of the two behaviours
is observed. The first collapse of the ring stiffeners happen at the same force
level, but after some displacement the presence of the bulkhead strengthens the
structure by preventing the rotation of the second hinge. A horizontal section is
included in figure 64 to better illustrate this point.
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10. ANALYSIS OF STERN CORNER IMPACT

(a) BHD at 0◦ (b) BHD at 20◦ (c) BHD at 40◦

Figure 64: Horizontal section through the column and ship in the way of the
middle most ring stiffener at global displacement equal to 1.2 m

10.8 Effect of deck
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Figure 65: Effect of deck

Decks may also be present in columns and may be influential on the global
strength. Two different decks are considered, the effect of which are presented in
figure 65. Surprisingly design A14 was shown to perform worse than design A01

91



even tough they have the same scantlings apart from the deck. The reason for
this is that a ring stiffener had to be removed i order for the deck to be fitted,
and the deck plating is thinner than the web of the ring stiffener giving rise to
local crushing. At larger displacements the continued crushing of the deck gives
a higher impact load as one would expect. In design A35 the plate thickness
of the deck is set to the same thickness as the ring stiffener web. The impact
force does in this case follow the same level as for the case without deck until the
first collapse and then diverges as the deck starts to deform. To reduce the total
weight added by the deck, a solution could be to use the same thickness as for
the ring stiffener web for a outer boundary of the deck and reduce the thickness
towards the center of the column.

From these analyses it seems like the local crushing of the ring stiffener web is
the catalytic factor for the collapse of the ring stiffener. This effect should be
studied further.

10.9 Side and bow impact

(a) Bow impact (b) Side impact

Figure 66: Deformed bow and side after 2 m global displacement

The platform column may also be subjected to side and bow impacts. Two
analyses have been prepared to compare these impact scenarios with the stern
impact analysed herein. Both models are published as an appendix to the design
code DNVGL-RP-C208 (2016) together with the stern corner, and are designed
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10. ANALYSIS OF STERN CORNER IMPACT

to be representative for the type of platform supply vessels that operate on the
Norwegian shelf. The deformed bodies after the impact is shown in figure 66, the
resulting force deformation curves is given in figure 67.
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Figure 67: Comparison between stern corner, side and bow impacts

The side impact resembles the set-up used to evaluate collapse load of the in-
dividual ring stiffeners in section 7. The side itself is sufficiently strong to not
undergo any significant deformations. If one neglects the contribution from the
bulwark the total number of ring stiffeners in direct contact with the ship side is
6. An estimate for the structural capacity can then be made as

Pcollapse = 6Pcr,RS = 6 · 9.6MP

R
= 6 · 5.4 = 32.4 [MN] (125)

which is confirmed to be about correct in figure 67. After the collapse the struc-
tural capacity is reduced, and is not regained before after a large displacement.
The peak around 1 m is due to the flat ship side impacting the hinges that have
formed at 45◦ from the impact direction, previously denoted as point B.
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Figure 68: Force distribution between forecastle and bulb in bow impact

The bow impact is somewhat different from the two other scenarios in that the
contact surface is split into two distinct areas with very different relative resis-
tance, namely the bulb and the forecastle. In figure 68 the force from each impact
is plotted separately. The forecastle deforms without causing significant damage
to the structure. The bulb on the other hand has a much higher resistance and
penetrates the outer shell. The collapse of the first two ring stiffeners that ini-
tially contacted the bulb happens at 0.3 m, with a collapse load at about 8 MN.
This is somewhat less than the 2Pcr,RS = 10.8 MN predicted. This is probably
due to the narrow impact area of the bulb, which lead to local crushing of the
ring stiffener web.

After the first collapse the total force keeps rising as the vertical membrane forces
forming around the bulb increases. After about 1 m global displacement the
vertical stiffening fractures along with the shell plate due to excessive straining.
This penetration of the outer skin may pose problems for the buoyancy and
stability of the structure, considering that the bulb will impact at the waterline.
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10. ANALYSIS OF STERN CORNER IMPACT

10.10 Strength design
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Figure 69: Force displacement in strength design

In a strength design case the impacting ship should undergo most of the defor-
mations. From the analysis of the stern corner versus the rigid column it was
found that the peak load is about 30 MN. Due to deformations of the column, a
slightly higher load should be expected.

For design A34 the ring stiffeners are spaced with a distance SRS = 600 mm giving
11 ring stiffeners in contact with the impacting ship. The maximal resistance can
be estimated as

Pcollapse = 11Pcr,RS = 11 · 9.6MP

R
= 11 · 3.08 = 33.9 [MN] (126)

The result of the analysis of design A34 is presented in figure 69, along with the
analysis of the stern corner against the rigid column. It is observed that the ring
stiffeners in design A34 fails at a global load equal 32 MN, quite close to the
estimate.

This design can be classified as a strength design, as the required 22 MJ is
dissipated before this failure.
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In figure 70 the deformed bodies are presented after 2 m global displacement.
Most of the deformations are located in the stern corner. The plate fields between
the ring stiffeners does undergo some deformations accounting for the energy
dissipation seen in the force deformation curve.

There are observed some fracturing in the outer shell of the column structure.
This happen in way of the lower deck of the stern, which impacts in between two
ring stiffeners.

Figure 70: Deformed stern after strength design impact
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11. CONCLUSION

11 Conclusion

A ship impact with a circular stiffened shell is a highly nonlinear phenomena and
is largely governed by local effects not easily described using analytical methods,
which makes NLFEA the tool of choice in analysing such designs. Analytical
methods can never the less give insight in the dependence on the various param-
eters, and give a first estimate for the resistance.

Several analytical methods were explored in an effort to describe the collapse of
the ring stiffeners. From the analysis of the full column it was found that the ring
stiffener can be represented by a semicircular arch with clamped boundaries. Both
static and kinematic analyses gave the collapse load of the ring stiffener of about
P = 9.6MP

R . It was found, using the finite element method, that the analytical
methods predicts the collapse load well for structures that are able to carry the
plastic moment without failing due to local effects. The susceptibility to local
failure was captured in a dimensionless slenderness parameter λ = MP

NPR
and it was

found that the analytical models overpredicts the resistance if λ > λlim ' 0.03.

It was found that the vertical stiffeners contributed to the strength of the ring
stiffeners by preventing vertical displacement of the ring stiffener web. This
effect was particularly prominent in the designs with high λ values where the
local buckling was an important factor. The vertical stiffeners also contribute
to the global strength by carrying the impact pressure to the ring stiffeners. In
the post failure phase the effect of the vertical stiffeners are important as the
load is redistributed to vertical membrane loads. Here the cross sectional area is
governing.

The effect of bulkheads was tested and found to not be of importance, unless
the impact happened directly in line with the bulkhead. This suggests that the
presence of a bulkhead should be disregarded if the impact direction is unknown.
This is not to say that the bulkhead is unimportant as it provides a lot of resid-
ual strength for the column, and limits the water ingress if the outer shell is
compromised.

If a deck is to be fitted in way of a ring stiffener it is found that the deck plate
thickness should be no less than the web of the ring stiffener it replaces, at least
in the outer region. This is to prevent a loss of initial strength by loosing a
ring stiffener. After some deformation the effect of the deck greatly increases the
strength of the structure as expected.

There have been observed fracturing of the outer shell in most of the analyses
performed herein. Punctures like this looks to be unavoidable as the locations of
the strong points in the stern are unpredictable.
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11.1 Strength design

As earlier stated, it is often a want for the designs of offshore structures to follow
the strength design philosophy. The collapse of the ring stiffeners is proposed
as a limit for when a structure no longer can be classified as a strength design.
After the loss of the ring stiffeners the resistance decreases and large deformations
occur.

The following suggestions are made in order to obtain a strength design. These
are mainly to ensure that there are no loss of ring stiffeners.

1. Find the maximal impact load, either by design curves or by FEA where
the installation is kept rigid.

2. Establish the collapse load of a single ring stiffener by FEA, or use Pcr '
9.6MP

R as an estimate.

3. Design ring stiffener sections such that λ < λlim.

4. Use symmetrical stiffener sections (i.e. T instead of L of FB).

5. Ensure that no ring stiffener carry more than the collapse load. In lieu
of a better estimate divide the total load in equal parts between the ring
stiffeners in direct contact with the ship.

6. Deck plating thickness should be no less than the thickness of the RS web
in the outer region.

7. Bulkheads should not be considered if the impact can happen out of line
with the bulkhead.

8. The shell plating should be kept thin to reduce weight.
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12. FURTHER WORK

12 Further work

The model proposed for the progressive collapse of the ring stiffener does not
take the crushing of the ring stiffener web in point A into account. Neither does
it include the effect of the plate flange buckling. Both these effects reduces the
moment capacity in hinge A, and should be included to fully capture the collapse.
A small angle approximation of the kinematic model should also be established
to find a analytic expression for the collapse load.

Some evidence suggest that the local crushing of the ring stiffener web in point
A is the catalytic factor for the collapse of the ring stiffeners. This effect should
therefore be studied in greater detail.

The effect of vertical stiffeners on the collision resistance should be further stud-
ied, and if relevant included in the analytical model of the structural capacity.

The static model of the collapse should be extended to include the difference
in moment in point A and C. This will include solving for the elastic moment
distribution in the case where hinge A have formed, but not hinge C.

A model of the post failure phase should be developed in order to describe shared
energy designs. The analyses herein suggest that the area of the vertical stiffeners
will be an important parameter in such a model.
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A. DIMENSIONS

A Dimensions

Figure A.1: Principal drawing of the column

(a) T type (b) L type

Figure A.2: Stiffener definitions
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Dimensions A-series

Vertical stiffeners Ring stiffeners
Design R H tshell SV S Type hw w tw tf SRS Type hw w tw tf
A01 6500 12000 12 450 L 250 80 9 12 1500 T 850 300 14 20
A02 6500 12000 12 450 L 250 80 9 12 3000 T 850 300 14 20
A03 6500 12000 12 1350 L 250 80 9 12 1500 T 850 300 14 20
A04 6500 12000 24 450 L 250 80 9 12 1500 T 850 300 14 20
A05 6500 12000 12 450 L 250 80 9 12 1500 L 850 300 14 20
A06 6500 12000 18 450 L 250 80 9 12 1500 T 850 300 14 20
A07 6500 12000 12 450 L 250 80 9 12 1500 T 400 300 30 20
A08 6500 12000 12 450 L 250 80 9 12 1500 T 1000 145 16.5 9.5
A09 6500 12000 24 450 L 250 80 9 12
A10 6500 12000 12 450 L 350 110 13 17 1500 T 850 300 14 20
A11 6500 12000 12 450 L 250 80 9 12 1500 FB 1135 15.8
A12 6500 12000 12 900 L 350 110 13 17 1500 T 850 300 14 20
A13 6500 12000 12 225 L 180 60 6 9 1500 T 850 300 14 20
A14D 6500 12000 12 450 L 250 80 9 12 1500 T 850 300 14 20
A15B 6500 12000 12 450 L 250 80 9 12 1500 T 850 300 14 20
A16 6500 12000 12 1500 T 850 300 14 20
A17 6500 12000 12 900 L 250 80 9 12 1500 T 850 300 14 20
A18 6500 12000 6 450 L 250 80 9 12 1500 T 850 300 14 20
A19 6500 12000 12 450 L 250 80 10 15 1500 T 850 300 14 20
A20 6500 12000 12 450 L 250 80 15 20 1500 T 850 300 14 20
A21 6500 12000 12 450 L 250 80 9 12 1500 T 1000 450 20 30
A22 6500 12000 12 450 L 250 80 9 12 1000 T 850 300 14 20
A23 6500 12000 12 450 L 250 80 9 12 2000 T 850 300 14 20
A24 6500 12000 12 450 L 250 80 9 12 2400 T 850 300 14 20
A25 6500 12000 12 450 L 250 80 9 12 1200 T 850 300 14 20
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Vertical stiffeners Ring stiffeners
Design R H tshell SV S Type hw w tw tf SRS Type hw w tw tf
A26 6500 12000 12 450 L 250 80 9 12 800 T 850 300 14 20
A27 6500 12000 12 450 L 250 80 9 12 1500 T 650 150 14 20
A28 6500 12000 12 450 L 250 80 9 12 1000 T 650 150 14 20
A29 6500 12000 12 450 L 250 80 9 12 800 T 650 150 14 20
A30 6500 12000 12 450 L 250 80 9 12 600 T 650 150 14 20
A31 6500 12000 12 450 L 250 80 9 12 1500 T 650 150 20 30
A32 6500 12000 12 450 L 250 80 9 12 1000 T 650 150 20 30
A33 6500 12000 12 450 L 250 80 9 12 800 T 650 150 20 30
A34 6500 12000 12 450 L 250 80 9 12 600 T 650 150 20 30
A35D 6500 12000 12 450 L 250 80 9 12 1500 T 850 300 14 20
DIncluding one deck
BIncluding one bulkhead

Stiffeners Ring flange
Design Hdeck tdeck S Type hw w tw tf hw tw
A14 6000 12 650 L 250 80 9 12 250 15
A35 6000 14 650 L 250 80 9 12 250 15

Vertical stiffeners Horizontal stiffeners
Design Placement tplate SV S Type hw w tw tf SHS Type hw w tw tf
A15 center, x-direction 12 650 L 250 80 9 12 1500 T 850 300 14 20
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Dimensions C-series

Ring stiffener
Design R H tshell SRS Type hw w tw tf σY
C01 6500 1500 12 1500 T 850 300 14 20 355
C02 6500 1500 12 1500 T 850 300 20 30 355
C03 6500 1500 12 1500 T 650 150 14 20 355
C04 6500 1500 24 1500 T 650 150 14 20 355
C05 6500 1500 6 1500 T 850 300 14 25 355
C06 6500 1500 12 1500 T 850 300 14 20 300
C07 6500 1500 12 1500 T 850 300 14 20 400
C08 6500 1500 12 1500 T 650 150 20 30 355
C09 6500 1500 18 1500 T 650 150 10 12 355
C10 6500 1500 12 1500 T 850 300 10 12 355
C11 6500 1000 12 1000 T 850 200 14 20 355
C12 6500 2000 12 2000 T 850 400 14 20 355
C13 7800 1500 12 1500 T 1020 300 14 20 355
C14 5000 1500 12 1500 T 653.85 250 14 20 355
C15 6500 1500 12 1500 T 650 100 14 20 355
C16 6500 1500 12 1500 T 650 200 14 20 355
C17 6500 1500 12 1500 T 650 50 14 20 355
C18 6500 1500 12 1500 T 650 300 14 20 355
C19 6500 1500 12 1500 T 650 450 14 20 355
C20 6500 1500 12 1500 T 450 300 14 20 355
C21 6500 1500 18 1500 T 450 300 14 20 355
C22 6500 1500 12 1500 T 650 150 25 20 355
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B. CONTROL CARDS USED IN THE ANALYSES

B Control cards used in the analyses

1 ∗CONTACT_AUTOMATIC_SURFACE_TO_SURFACE_ID
2 $# cid title
3 1leg to ship
4 $# ssid msid sstyp mstyp sboxid mboxid spr mpr
5 3 1 2 2 0 0 1 1
6 $# fs fd dc vc vdc penchk bt dt
7 0.0 0.0 0.0 0.0 0.0 0 0.01.00000E20
8 $# sfs sfm sst mst sfst sfmt fsf vsf
9 1.0 1.0 2.0 0.0 1.0 1.0 1.0 1.0

10 ∗CONTACT_AUTOMATIC_SINGLE_SURFACE_ID
11 $# cid title
12 2ship internal
13 $# ssid msid sstyp mstyp sboxid mboxid spr mpr
14 2 0 2 0 0 0 0 0
15 $# fs fd dc vc vdc penchk bt dt
16 0.0 0.0 0.0 0.0 0.0 0 0.01.00000E20
17 $# sfs sfm sst mst sfst sfmt fsf vsf
18 1.0 1.0 0.0 0.0 1.0 1.0 1.0 1.0
19 ∗CONTROL_CONTACT
20 $# slsfac rwpnal islchk shlthk penopt thkchg orien enmass
21 0.0 0.0 0 2 0 1 0 0
22 $# usrstr usrfrc nsbcs interm xpene ssthk ecdt tiedprj
23 0 0 0 0 0.0 0 0 0
24 $# sfric dfric edc vfc th th_sf pen_sf
25 0.0 0.0 0.0 0.0 0.0 0.0 0.0
26 $# ignore frceng skiprwg outseg spotstp spotdel spothin
27 0 0 0 0 0 0 0.0
28 $# isym nserod rwgaps rwgdth rwksf icov swradf ithoff
29 0 0 1 0.0 1.0 0 0.0 0
30 $# shledg pstiff ithcnt tdcnof ftall unused shltrw
31 0 0 0 0 0 0.0
32 ∗CONTROL_ACCURACY
33 $# osu inn pidosu iacc
34 0 2 0 0
35 ∗CONTROL_ENERGY
36 $# hgen rwen slnten rylen
37 2 2 2 1
38 ∗CONTROL_HOURGLASS
39 $# ihq qh
40 4 0.03
41 ∗CONTROL_TERMINATION
42 $# endtim endcyc dtmin endeng endmas
43 1.0 0 0.0 0.0 0.0
44 ∗CONTROL_TIMESTEP
45 $# dtinit tssfac isdo tslimt dt2ms lctm erode ms1st
46 0.01 0.9 0 0.0−3.0000E−6 0 0 0
47 $# dt2msf dt2mslc imscl unused unused rmscl
48 0.0 0 0 0.0
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C. DERIVATION OF INTERACTION EQUATIONS

C Derivation of interaction equations

When a cross section is loaded with both moment and axial stress the capacity
for carrying both kinds of loading is reduced. This reduction will follow an
interaction equation. In this appendix the interaction equations are derived for
a I-stiffener without vertical symmetry, with the plastic neutral axis in the web.
The plastic neutral axis is placed a distance z0 above the inside of the plate
flange, this distance can be expressed as:

z0 = 1
tw

(
1
2Ae −Ap

)
= Ae

2tw

(
1− 2Ap

Ae

)
(C.1)

where Ae is the total area of the stiffener including the plate flange, Ap is the
area of said plate flange and tw is the thickness of the web. Further At = wtf
if defined to be the area of the top flange, and Aw = hwtw the area of the web.
The neutral axis is assumed to remain stationary during all the stages.

The equations are derived on the assumption that the moment and axial force is
independent and "occupy" different parts of the cross section. The entire cross
section is yielding and the material is assumed perfectly plastic such that the
stresses have the value ±σY and are working normal to the cross section surface.

The interaction is divided into four stages.

Stage 1

In stage one the area occupied by the axial forces are limited to the web. The
axial force does not give any resulting moment and the area is thereby placed
symmetrically around the plastic neutral axis, extending a distance z1 in both
directions.
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Figure C.1: Stage 1

The axial force can be written as:

N = 2z1twσY (C.2)

or on the normalised form as:
N

NP
= 2z1tw

Ae
(C.3)

where NP = AeσY is the full plastic capacity in axial loading only.

The moment carried by the rest of the cross section is written as

M = MP − 2
(

1
2z

2
1tw

)
(C.4)

giving
M

MP
= 1− z2

1tw
WP

(C.5)

where WP is the full plastic section modulus for the cross section.

Solving equation C.3 for z1 and inserting in equation C.5 gives the interaction
equation for stage 1 as:

M

MP
= 1− A2

e

4twWP

(
N

NP

)2
(C.6)

Stage 1 is limited by level of axial force when z1 = z0 and the area carrying axial
force reaches the plate flange. This axial force is termed N̂ and is given as:

N̂

NP
= 2twz0

Ae
=
(

1− 2Ap
Ae

)
(C.7)
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C. DERIVATION OF INTERACTION EQUATIONS

In is noted that the distance z0 can be expressed in terms of this limiting force
in the following manner:

z0 = Ae
2tw

N̂

NP
(C.8)

Stage 2

In stage two the area where the axial forces are working is limited by two param-
eters z1 and z2 as given in figure C.2.

Figure C.2: Stage 2

The area of the plate flange that is occupied by the axial force is denoted A∗p.

The axial force is given as:
N

NP
=
A∗p
Ae

+ tw(z0 + z2)
Ae

(C.9)

The moment does not contribute to the axial force, giving:

Af + tw(h− z2 − z0) = Ap −A∗p (C.10)
Af +Aw − tw(z2 + z0) = Ap −A∗p (C.11)

Af +Aw −Ap = tw(z2 + z0)−A∗p (C.12)
Ae − 2Ap = tw(z2 + z0)−A∗p (C.13)

N̂

NP
= 1− 2Ap

Ae
= tw(z2 + z0)

Ae
−
A∗p
Ae

(C.14)

A∗p
Ae

= tw(z2 + z0)
Ae

− N̂

NP
(C.15)
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Inserting in equation C.9

N

NP
= tw(z2 + z0)

Ae
− N̂

NP
+ tw(z0 + z2)

Ae
(C.16)

N

NP
= 2tw(z2 + z0)

Ae
− N̂

NP
(C.17)

N

NP
= 2twz2

Ae
+ 2twz0

Ae
− N̂

NP
(C.18)

Inserting for z0

N

NP
= 2twz2

Ae
+ N̂

NP
− N̂

NP
(C.19)

N

NP
= 2twz2

Ae
(C.20)

Ae
2tw

N

NP
= z2 (C.21)

Inserting this expression back into equation C.9

N

NP
=
A∗p
Ae

+ twz0

Ae
+ twz2

Ae
(C.22)

N

NP
=
A∗p
Ae

+ tw
Ae

Ae
2tw

N̂

NP
+ tw
Ae

Ae
2tw

N

NP
(C.23)

N

NP
=
A∗p
Ae

+ 1
2
N̂

NP
+ 1

2
N

NP
(C.24)

1
2

(
N

NP
− N̂

NP

)
=
A∗p
Ae

(C.25)
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C. DERIVATION OF INTERACTION EQUATIONS

The area A∗p can also be given in terms of the distance z1

1
2

(
N

NP
− N̂

NP

)
=
A∗p
Ae

= S(z1 − z0)
Ae

(C.26)

Ae
2S

(
N

NP
− N̂

NP

)
= z1 − z0 (C.27)

Ae
2S

(
N

NP
− N̂

NP

)
+ z0 = z1 (C.28)

Ae
2S

(
N

NP
− N̂

NP

)
+ Ae

2tw
N̂

NP
= z1 (C.29)

Ae
2S

(
N

NP
− N̂

NP

(
1− S

tw

))
= z1 (C.30)

Now the moment can be expressed

M

MP
= 1− 1

WP

[
1
2 twz

2
2 + 1

2 twz
2
0 +A∗pz1

]
(C.31)

M

MP
= 1− 1

WP

1
2 tw

(
Ae
2tw

N

NP

)2
+ 1

2 tw

(
Ae
2tw

N̂

NP

)2

+A∗pz1

 (C.32)

M

MP
= 1− A2

e

4WP tw

1
2

(
N

NP

)2
+ 1

2

(
N̂

NP

)2

+
2A∗p
Ae

2twz1

Ae

 (C.33)

M

MP
= 1− A2

e

4WP tw

[
1
2

(
N

NP

)2
+ 1

2

(
N̂

NP

)2

+
(
N

NP
− N̂

NP

)
tw
S

(
N

NP
− N̂

NP

(
1− S

tw

))]
(C.34)

M

MP
= 1− A2

e

4WP tw

[
1
2

(
N

NP

)2
+ 1

2

(
N̂

NP

)2

+ tw
S

( N

NP

)2
− N

NP

N̂

NP

(
1− S

tw

)
− N

NP

N̂

NP
+
(
N̂

NP

)2(
1− S

tw

)]
(C.35)
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M

MP
= 1− A2

e

4WP tw

[
1
2

(
N

NP

)2
+ 1

2

(
N̂

NP

)2

+ tw
S

( N

NP

)2
− N

NP

N̂

NP

(
2− S

tw

)
+
(
N̂

NP

)2(
1− S

tw

)] (C.36)

M

MP
= 1− A2

e

4WP tw

[
1
2

(
N

NP

)2
+ 1

2

(
N̂

NP

)2

+ tw
S

(
N

NP

)2
− N

NP

N̂

NP

(
2 tw
S
− 1
)

+
(
N̂

NP

)2(
tw
S
− 1
)]

(C.37)

M

MP
= 1− A2

e

4WP tw

[(
N

NP

)2(1
2 + tw

S

)
+
(
N̂

NP

)2(
1
2 + tw

S
− 1
)

+ N

NP

N̂

NP

(
1− 2 tw

S

)]
(C.38)

Giving the final expression

M

MP
= 1− A2

e

4WP tw

[(
N

NP

)2(1
2 + tw

S

)
+ 2 N

NP

N̂

NP

(
1
2 −

tw

S

)

−

(
N̂

NP

)2(
1
2 −

tw

S

)]
(C.39)

The limiting axial force for this stage is

ˆ̂
N

NP
=
(

1− 2Af
Ae

)
(C.40)
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C. DERIVATION OF INTERACTION EQUATIONS

Stage 3

In stage three the area occupied by the axial force have developed into the top
flange.

Figure C.3: Stage 2

The area occupied in the top and plate flange is denoted A∗f and A∗p respectively.
Under the condition that the moment does not contribute to the axial force the
remaining areas must be equal

Af −A∗f = Ap −A∗p ⇒ A∗p = Ap −Af +A∗f (C.41)

The axial force is given:

N

NP
=
Aw +A∗f +A∗p

Ae
(C.42)

N

NP
=
Aw +A∗f +Ap −Af +A∗f

Ae
(C.43)

N

NP
=
Ae − 2Af + 2A∗f

Ae
(C.44)

N

NP
= 1− 2Af

Ae
+ 2w(z2 − (hw − z0))

Ae
(C.45)

N

NP
=

ˆ̂
N

NP
+ 2w(z2 − (hw − z0))

Ae
(C.46)
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And it follows that the distance z2 is

z2 = hw − z0 + A

2w

(
N

NP
−

ˆ̂
N

NP

)
(C.47)

Using the same approach the distance z1 is given

z1 = z0 + Ae
2S

(
N

NP
− N̂

NP

)
(C.48)

The moment carried by the cross section is

M

σY
= (Af −A∗f )z2 + (Ap −A∗p)z1 (C.49)

M

σY
= (Ap −A∗p)[z2 + z1] (C.50)

M

σY
= (Ap −A∗p)

[
hw + Ae

2w

(
N

NP
−

ˆ̂
N

NP

)
+ Ae

2S

(
N

NP
− N̂

NP

)]
(C.51)

The area (Ap −A∗p) is

(Ap −A∗p) = Ap − S(z1 − z0) (C.52)

(Ap −A∗p) = Ap −
Ae
2

(
N

NP
− N̂

NP

)
(C.53)

Inserting into equation C.51:

M

MP
= 1
WP

(
Ap −

Ae
2

(
N

NP
− N̂

NP

))[
hw + Ae

2w

(
N

NP
−

ˆ̂
N

NP

)

+ Ae
2S

(
N

NP
− N̂

NP

)]
(C.54)

M

MP
= A2

e

4twWP

(
2Ap
Ae
−

(
N

NP
− N̂

NP

))[
Aw
Ae

+ tw
w

(
N

NP
−

ˆ̂
N

NP

)

+ tw
S

(
N

NP
− N̂

NP

)]
(C.55)
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C. DERIVATION OF INTERACTION EQUATIONS

Giving the final expression:

M

MP
= A2

e

4twWP

(
1− N

NP

)[
Aw
Ae

+ tw
w

(
N

NP
−

ˆ̂
N

NP

)

+ tw
S

(
N

NP
− N̂

NP

)]
(C.56)

The expression is valid until the entire cross section is occupied by axial force,
that is

N

NP
= 1 (C.57)
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D. DERIVATION OF MECHANISM ANGLES

D Derivation of mechanism angles

Figure D.1: Kinematic model

Relations between the displacement w of point A and the rotations of the yield
hinges are needed in order to describe the energy necessary to deform the struc-
ture.

It is assumed that all deformations happen in the yield hinges, and that hinge B
forms at an angle π

4 from the impact location. From this one can observe that
the undeformed structure is described by a regular octagon with internal angles
3π
4 . The side lengths of this octagon is denoted l and is given as:

l = 2R sin π8 (D.1)
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Figure D.2: Calculation model for position of point B

In figure D.2 point A and B is drawn into a Cartesian coordinate system. Point
B have the coordinate B = (a, b). Under the assumption that the side lengths in
the original octagon does not change, it is observed that point B must be located
at the intersection between two circles given as:

x2 + y2 = l2 (D.2)
(x−R)2 + (y − (R− w))2 = l2 (D.3)

such that the point B = (a, b) can be written

a2 + b2 = l2 (D.4)
(a−R)2 + (b− (R− w))2 = l2 (D.5)

Taking the difference between D.5 and D.4 one obtains

a2 − 2aR+R2 − a2 + b2 − 2b(R− w) + (R− w)2 − b2 = 0 (D.6)

solving for b yields

D-2



D. DERIVATION OF MECHANISM ANGLES

b = 1
2(R− w)

(
−2aR+R2 + (R− w)2) (D.7)

This expression is then inserted in equation D.4:

a2 +
(

1
2(R− w)

(
−2aR+R2 + (R− w)2))2

= l2 (D.8)

a2 + 1
4(R− w)2

[
4a2R2 − 4aR

(
R2 + (R− w)2)+

(
R2 + (R− w)2)2

]
= l2

(D.9)

a2
(

1 + 4R2

4(R− w)2

)
− a

(
4R
(
R2 + (R− w)2)
4(R− w)2

)
+
(
R2 + (R− w)2)2

4(R− w)2 − l2 = 0

(D.10)

a2

(
1 +

(
R2

R− w

)2)
− aR

(
1 +

(
R

R− w

)2
)

+
(
R2 + (R− w)2)2

4(R− w)2 − l2 = 0

(D.11)

a2 − aR+
(
R2 + (R− w)2)2

4(R− w)2
(

1 +
(

R2

R−w

)2
) − l2(

1 +
(

R2

R−w

)2
) = 0 (D.12)

a2 − aR+ 1
4
(
R2 + (R− w)2)− l2(R− w)2

(R− w)2 +R2 = 0 (D.13)

Solving for a yields:

a = 1
2R−

1
2 (R− w)

√
4l2

(R− w)2 +R2
− 1 (D.14)

When the distances a and l are known the angles α and γ can be expressed as
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cos(α) = a

l
(D.15)

cos(γ) = R− a
l

(D.16)

The rotations of the three hinges is then given as functions of the original unde-
formed angles of the octagon and the angles α and γ

θA = 3π
4 − 2

(π
2 − γ

)
= 2γ − π

4 (D.17)

θB = 3π
4 −

(π
2 − α+ π

2 + γ
)

= α− γ − π

4 (D.18)

θC = 3π
8 − α (D.19)

For the use in conjunction with energy dissipation only the absolute value of the
rotations are interesting. The angles is therefore redefined to have a positive
value for the interesting values of w.

θA = π

4 − 2γ (D.20)

θB = α− γ − π

4 (D.21)

θC = α− 3π
8 (D.22)
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E. LENGTH OF DIAGONAL FOLDING LINES

E Length of diagonal folding lines

Figure E.1: Lengths of the assumed folding lines

The lengths of the diagonal yield lines are found by considering the geometrical
model in figure E.1.

The angle φ is assumed such that the folding line intersects the inner radius r at
a point B = (a, b).

With base in point A = (0, R) two vectors are defined.

−→
AO =

[
0
−R

]
, and −−→

AB =
[

a
b−R

]
(E.1)

Since B lays on a circle with radius r = R−hw, the coordinate a can be given as

a =
√
r2 − b2 (E.2)

yielding vector −−→AB on the form:

−−→
AB =

[ √
r2 − b2

b−R

]
(E.3)

The angle between two vectors is given

cos(θ) = v1 · v2

|v1| · |v2|
(E.4)
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The angle between −−→AB and −→AO are the unknown angle φ.

cos(φ) = −R(b−R)
R
√
r2 − b2 + (b−R)2

(E.5)

The expression for the coordinate b then follows:

√
r2 − 2bR+R2 cos(φ) = R− b (E.6)

(r2 − 2bR+R2) cos2(φ) = R2 − 2bR+ b2 (E.7)

b2 + 2R(cos2(φ)− 1)b+R2 − (r2 +R2) cos(φ) = 0 (E.8)

Solving for b gives

b = −R(cos2(φ)− 1)± 1
2
√

4R2(cos2(φ)− 1)2 − 4 (R2 − (r2 +R2) cos2(φ))

b = R sin2(φ)±
√
R2sin4(φ)−R2 + (r2 +R2) cos2(φ) (E.9)

Further, normalizing on the outer radius:

b

R
= sin2(φ)±

√
sin4(φ)− 1 +

(( r
R

)2
+ 1
)

cos2(φ) (E.10)

b

R
= sin2(φ)±

√√√√sin4(φ)− 1 + cos2(φ)︸ ︷︷ ︸
cos4(φ)−cos2(φ)

+
( r
R

)2
cos2(φ) (E.11)

b

R
= sin2(φ)± cos(φ)

√
cos2(φ)− 1 +

( r
R

)2
(E.12)

b

R
= sin2(φ)± cos(φ)

√( r
R

)2
− sin2(φ) (E.13)

The length of the diagonal folding line is the length of vector −−→AB

ldiag = |−−→AB| =
√
r2 − 2bR+R2 = R

√( r
R

)2
− 2 b

R
+ 1 (E.14)

Inserting the positive expression for b
R gives the length of the diagonal as:
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E. LENGTH OF DIAGONAL FOLDING LINES

ldiag =R

√( r
R

)2
− 2 sin2(φ)− 2 cos(φ)

√( r
R

)2
− sin2(φ) + 1 (E.15)

ldiag =R

√( r
R

)2
− sin2(φ)− 2 cos(φ)

√( r
R

)2
− sin2(φ) + 1− sin2(φ) (E.16)

ldiag =R

√( r
R

)2
− sin2(φ)− 2 cos(φ)

√( r
R

)2
− sin2(φ) + cos2(φ) (E.17)

ldiag =R

√√√√(√( r
R

)2
− sin2(φ)− cos(φ)

)2

(E.18)

ldiag =R

∣∣∣∣∣
√( r

R

)2
− sin2(φ)− cos(φ)

∣∣∣∣∣ (E.19)

The positive length is given

ldiag = R

(
cos(φ)−

√( r
R

)2
− sin2(φ)

)
(E.20)
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F. FORCE DEFORMATION CURVES

F Force deformation curves
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