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Abstract

The toughness of common structural steels is often affected by temperature changes where
low service temperatures frequently promote brittle material characteristics. Low service
temperatures often occur in the Arctic regions, and unexpected catastrophic failures may
occur due to inadequate material characterisation. It is crucial to have a model with the
highest level of accuracy to mitigate the risk of sudden brittle failure which in turn can pre-
cisely capture the material behaviour at shifting temperatures. The primary objective of
the master‘s thesis is thus to develop a model which is able to describe the temperature de-
pendence of fracture toughness in steels. The aim is to reduce the laboratory work needed
to characterise the ductile-to-brittle transition regions. At lower temperatures, steels ex-
hibit brittle behaviour and become susceptible to sudden brittle fracture without warning.
Higher temperatures yield ductile behaviour with mechanisms such as void nucleation,
void growth and void coalescence promoting ductile tearing and controlled ductile failure.
The transition between the ductile and brittle regions exhibit both ductile and brittle be-
haviour and is crucial when steels are utilised in fluctuating and low service temperatures
where sudden cleavage fracture may occur.

Two Gurson-RKR models are initially developed in a preliminary study to describe the
complete ductile-to-brittle transition and to visualise the ductile, transition and brittle re-
gions. [126] The RKR Criterion is a post-processing routine for the ductile Gurson model
and is used to predict brittle failure by considering critical stresses along the crack liga-
ment with the critical opening stress ahead of the crack tip as both temperature dependent
and independent. The Combined Gurson-RKR Model with temperature independent open-
ing stress can describe the ductile-to-brittle transition by demonstrating increasing fracture
toughness with increasing temperature. However, the results are somewhat conservative
as the combined model highly overestimates the steel’s brittleness at higher temperatures.
The Combined Gurson-RKR Model with temperature dependent critical opening stress can
visualise the ductile-to-brittle regions where the upper and lower boundary limits capture
all the experimental fracture toughness from -60 ◦C to 21 ◦C. Nevertheless, the opening
stress temperature approximation cannot be concluded without further testing, and several
material fitting parameters remain uncertain and questionable. Hence, further improve-
ments of the current model is necessary in order to develop a sufficient model to describe
the ductile-to-brittle transition of steels with limited laboratory testing.

Thus, a more comprehensive model is developed to describe the ductile-to-brittle tran-
sition by introducing a statistical and mechanisms based model following the weakest-link
principle; instability of one single microcrack in an arbitrary volume element may lead to
complete specimen failure. A Weibull-based criterion substitutes the distance-based RKR
Criterion which in turn provides a framework for the connection between the driving forces
on a micro-scale level and macro-scale models for cleavage fracture. The Weibull-based
Beremin model is used as a post-processing routine combined with The Complete Gurson
Model and constitutes a complete generalisation of the probability of brittle fracture and
ductile damage control while concurrently accounting for and supporting different crack
configurations, geometry constraints, and loading modes. The two Beremin model pa-
rameters fitted in the brittle region are calibrated from experimental and theoretical results
and respectively characterises the flaw distribution and the scaling factor of the Weibull



distribution utilised to calculate the probability of brittle fracture throughout the DBT.
The Weibull stress along with the calibrated Weibull parameters can be used to com-

pute the probability of brittle failure by considering the aggregate sum of the maximum
principal stresses in all the volume elements exceeding a particular critical stress. As the
Beremin model largely underestimates the rupture energies in the transition region, The
Complete Gurson Model is utilised to simulate ductile damage mechanisms to describe the
shifting stress state in the transition region. The Weibull-based Beremin Model is then used
as a post-processing routine to calculate the probability of brittle failure concurrently with
the competing ductile mechanisms integrated by The Complete Gurson Model. Hence, the
Gurson model is independently fitted to the experimental results at the highest tempera-
ture in the ductile region to accurately describe ductile mechanisms and crack extension
throughout the ductile-to-brittle transition. The Gurson model can simulate accurate crack
extension throughout the DBT for the high constraint geometry when utilising temperature
independent Gurson parameters. However, the same Gurson parameters are only to some
extent able to characterise the applicable resistance curves for the low constraint geometry.

The Weibull-based Beremin model can constraint-correct and characterise the fracture
toughness to the specimens in the brittle region but is only to some extent able to de-
scribe the DBT as it overestimates the steel’s brittleness in the transition region. A Gurson
user-defined material (UMAT) with constitutive ductile mechanism equations is then used
to characterise typical material behaviour in the transition region. The Beremin-Gurson
model with temperature independent Weibull parameters fitted at the lowest temperature
in the brittle region can constraint-correct the fracture geometries and describe the frac-
ture toughness throughout the brittle region. However, the model is unable to capture
the lower bound transition at higher temperatures but can capture the applicable upper
bound transition in the ductile-to-brittle transition which evidently supports temperature
dependent Weibull parameters. Thus, toughness scaling and constraint-correction of two
fracture geometries with different constraint levels are conducted to find the appropriate
temperature dependent Weibull parameters. The Beremin-Gurson model with temperature
dependent Weibull parameters can accurately constraint-correct the fracture geometries
and describe the relevant fracture toughness values throughout the ductile-to-brittle tran-
sition. The Weibull modulus defining the flaw distribution and the slope of the Weibull
cumulative distribution function is constant in the brittle region and increases when en-
tering the transition region where it remains relatively constant throughout the transition
region. The scale parameter defining the resistance to brittle failure follows the opposite
trend as large Weibull modulus promote small scale parameters and vice versa.

The current Beremin-Gurson model needs further improvements as several material
parameters remain questionable and uncertain. The Weibull stress calculation program,
LINKpfat must be further enhanced to represent the weakest-link principles in the con-
stitutive Beremin model. Thus, a thorough evaluation of the Weibull stress calculation is
necessary. Another weld simulated steel must be evaluated to conclude the Weibull param-
eter temperature trends, and a third constraint level must be integrated to infer the accuracy
of the constraint-correction.



Sammendrag

Seigheten til vanlige strukturelle stål er ofte påvirket av temperaturendringer hvor lave op-
erasjonstemperaturer ofte fremmer sprø materialegenskaper. Lave operasjonstemperaturer
oppstår ofte i arktiske regioner, og uventede katastrofale brudd kan oppstå på grunn av
utilstrekkelig materialkarakterisering. For å redusere risikoen for plutselige sprøbrudd er
det viktig å ha en modell med høyest mulig nøyaktighet, og som er i stand til å nøyaktig
beskrive materialets oppførsel ved skiftende temperaturer. Hovedmålet til masteroppgaven
er dermed å utvikle en modell som er i stand til å beskrive temperaturavhengigheten til
stålets bruddseighet. Målet er å redusere laboratoriearbeidet som trengs for å karakterisere
regionene i overgangen fra duktil til sprø oppførsel. Ved lavere temperaturer har stålet sprø
oppførsel og kan bli utsatt for plutselige sprøbrudd uten forvarsel. Høyere temperaturer
gir duktil oppførsel med mekanismer som kjernedannelse av tomrom, vekst i tomrom og
sammenvoksing av tomrom som fremmer duktil sprekkvekst og kontrollerte duktilitets-
brudd. Overgangsregionen mellom de duktile og sprø regionene har både duktil og sprø
oppførsel, og er avgjørende når stål brukes i svingende- og lave operasjonstemperaturer
der plutselige spaltningsbrudd kan forekomme.

To Gurson-RKR-modeller er i første omgang utviklet i en innledende studie for å
beskrive overgangen fra duktil til sprø oppførsel, og for å visualisere de duktile og sprø
regionene samt overgangsregionen. [126] RKR-kriteriet er en etterbehandlingsrutine for
den duktile Gurson-modellen, og brukes til å forutsi sprøbrudd ved å vurdere kritiske spen-
ninger langs midtsprekken hvor den kritiske åpningsspenningen foran sprekkspissen blir
testet som både temperaturavhengig og -uavhengig. Den kombinerte Gurson-RKR mod-
ellen med temperaturuavhengig åpningsspenning er i stand til å beskrive den duktile til
sprø overgangen som demonstrerer økende bruddseighet med stigende temperatur. Imi-
dlertid er resultatene noe konservative da den kombinerte modellen overestimerer stålets
sprøhet ved høye temperaturer. Den kombinerte Gurson-RKR modellen med temperat-
uravhengig kritisk åpningsspenning er i stand til å visualisere regionene i overgangen
fra duktil til sprø oppførsel der de øvre og nedre grenseverdiene fanger alle de eksperi-
mentell bruddseighetene fra -60◦C til 21◦C. Likevel kan temperaturapproksimasjonen av
åpningspenningen ikke konkluderes uten videre testing, og flere materialparametere for-
blir usikre og tvilsomme. Videre forbedring av gjeldende modell er derfor nødvendig for
å utvikle en tilstrekkelig modell til å beskrive den duktile til sprø overgangen av stål med
begrenset laboratorietesting.

Dermed er en mer omfattende modell utviklet for å beskrive den duktile til sprø over-
gangen ved å innføre en statistisk og mekanismebasert modell som følger svakeste-ledd
prinsippet; ustabilitet av en enkel mikrosprekk i et vilkårlig volumelement kan føre til
fullstendig prøvestavbrudd. Det avstandsbaserte RKR-kriteriet er erstattet med et Weibull-
basert kriterium som gir et rammeverk for sammenhengen mellom drivkraften på et mikro-
skala-nivå og makroskala-modeller for spaltningsbrudd. Den Weibull-baserte Beremin-
modellen benyttes som en etterbehandlingsrutine kombinert med Den Komplette Gurson-
modellen, og gir en fullstendig generalisering av sannsynligheten for sprøbrudd og duk-
til skadekontroll samtidig som den tar hensyn til og støtter ulike sprekk-konfigurasjoner,
geometri constraint og laster. Beremin-modellen er innledningsvis tilpasset i den sprø
regionen hvor to Weibull-parametere er kalibrert fra eksperimentelle og teoretiske resul-



tater. Weibull-parameterne kan henholdsvis karakterisere defektdistribusjonen og skaler-
ingsfaktoren til Weibull-fordelingen brukt til å beregne sannsynligheten for sprøbrudd i
hele overgangen fra duktil til sprø oppførsel.

Weibull-spenningene sammen med de kalibrerte Weibull-parameterne kan brukes til
å beregne sannsynligheten for sprøbrudd ved å ta den samlede summen av de høyeste
hovedspenningene i alle volumelementer som overstiger en viss kritisk spenning. Et-
tersom Beremin-modellen i stor grad overvurderer rupturkreftene i overgangsregionen
er Den Komplette Gurson-modellen brukt til å simulere duktilskademekanismer for å
beskrive den skiftende spenningstilstanden i overgangsregionen. Den Weibull-baserte
Beremin-modellen brukes så som en etterbehandlingsrutine for å beregne sannsynligheten
for sprøbrudd samtidig som de konkurrerende duktile mekanismene integreres med Den
Komplette Gurson-modellen. Derfor er Gurson-modellen uavhengig tilpasset de eksper-
imentelle resultatene ved den høyeste temperaturen i den duktile regionen for å nøyaktig
beskrive de duktile mekanismene og sprekkutvidelsen gjennom hele den duktile til sprø
overgangen. Gurson-modellen er i stand til å simulere nøyaktig sprekkforlengelse gjen-
nom hele den duktile til sprø overgangen for prøvestavene med høyt constraint-nivå ved
bruk av temperaturuavhengige Gurson-parametere. Likevel er Gurson-parameterne kun til
en viss grad i stand til å karakterisere de aktuelle motstandskurvene for prøvestavene med
lavt constraint-nivå.

Den Weibull-baserte Beremin-modellen er i stand til å constraint-korrigere og karak-
terisere bruddseigheten til prøvestavene i den sprø regionen, men er bare til en viss grad
i stand til å beskrive den duktile til sprø overgangen ettersom den overvurderer stålets
sprøhet i overgangsregionen. Et Gurson-brukerdefinert materiale (UMAT) med grunn-
leggende ligninger for duktile mekanismer brukes så til å karakterisere den representa-
tive materialeadferden i overgangsregionen. Beremin-Gurson-modellen med temperaturu-
avhengige Weibull-parametere tilpasset ved den laveste temperaturen i det sprø området
er i stand til å constraint-korrigere bruddgeometriene og beskrive bruddseigheten i hele
den sprø regionen. Modellen er imidlertid ikke i stand til å fange den nedre grenseover-
gangen ved høyere temperaturer, men er i stand til å fange den aktuelle øvre grenseover-
gangen i den duktile til sprø overgangen, noe som tydelig støtter temperaturavhengige
Weibull-parametere. Dermed er seighetsskalering og constraint-korreksjon av to brud-
dgeometrier med forskjellige constraint-nivåer utført for å finne de aktuelle temperatu-
ravhengige Weibull-parameterne. Beremin-Gurson-modellen med temperaturavhengige
Weibull-parametere klarer å nøyaktig constraint-korrigere bruddgeometriene, og beskrive
de aktuelle bruddseighetsverdiene gjennom hele den duktile til sprø overgangen. Weibull-
modulen som definerer defektfordelingen og helningen på den Weibull-kumulative dis-
tribusjonsfunksjonen forblir konstant i den sprø regionen, og øker når den går inn i over-
gangsregionen hvor den igjen forblir relativt konstant gjennom hele overgangsregionen.
Skaleringsparameteren som definerer motstanden til sprøbrudd følger den motsatte tren-
den hvor stor Weibull-modul fremmer små skaleringsparametere, og omvendt.

Den nåværende Beremin-Gurson-modellen trenger ytterligere forbedringer ettersom
flere materialparametere forblir tvilsomme og usikre. Programmet for Weibull-spennings-
beregning, LINKpfat må forbedres ytterligere for å få en mer nøyaktig representasjon
av svakeste-leddprinsippene til Beremin-modellen, og dermed må en grundig evaluering
av beregningene av Weibull-spenningene bli gjennomført. Et annet sveisesimulert stål
må vurderes for å konkludere temperaturtrendene til Weibull-parameterne, og et tredje
constraint-nivå må integreres for å konkludere nøyaktigheten av constraint-korreksjonene.



Nomenclature

This list describes the constitutive symbols and acronyms used within the body of the paper.

A = Amplitude
ACMOD
pl = Area under the Force-CMOD curve

B = Thickness of a SENB specimen
C0 = Diameter of a second-phase particle
C = Material dependent Ramberg-Osgood constant
E = Young’s modulus
E’ = Elastic modulus under plain strain
J = Line J-integral
JI = Line J-Integral of mode I crack
JIC = Critical JI
K = Stress intensity factor
KI = Stress intensity factor of mode I crack
KIC = Critical KI for cleavage fracture initiation
PF = Cumulative probability of failure
PS = Survival probability (reliability)
Qmax = Maximum stress intensification factor
Tp = Peak temperature
V0 = Elementary volume of Vp (reference volume)
Vp = Volume of the fraction process zone (FPZ)
W = Width of a SENB specimen
α = Numerical constant function of the crack shape
∆a = Crack growth
∆t8/5 = Weld cooling time between 800-500◦C
Γ0 = Minimum work of separation for cleavage
γp = Effective surface energy
γs = Specific surface energy
δ = Crack tip opening displacement (CTOD)
δc = Critical CTOD
δ0 = Initial crack opening
εp = Plastic strain tensor
εeq = Equivalent von Mises plastic strain tensor
εv = Equivalent von Mises plastic strain
ε1, ε2, ε3 = Principal strains
λ = Weibull scale parameter (CTOD)
σ0 = Initial tensile yield strength
σ22 = Opening stress
σUTS = Ultimate tensile strength
σc = Critical stress
σcTD = Temperature dependent critical opening stress
σcTID = Temperature independent critical opening stress
Φ = Gurson yield function



σd = Decohesion stress
σe = Effective stress
σeq = Equivalent von Mises stress
σf = Fracture stress
σm = Mean stress
σu = Weibull scale parameter
σw = Weibull stress
σy = Uniaxial yield strength
σys = Yield strength
σyy = Opening stress
σyymax = Maximum opening stress
σ1, σ2, σ3 = Principal stresses
σij = Stress tensor
θ = Angle from crack tip to stress field
a = Half the length of an internal crack
ac = Critical crack depth
a0 = Initial crack depth
d = Average grain diameter
f = Void volume fraction
farea = Grain size area fraction
f∗ = Artificially accelerated void growth
fc = Critical void volume fraction
fF = Void volume fraction at the end of coalescence
f0 = Initial void volume fraction
fij and gij = Dimensionless functions of θ
i = Rank number
k = Weibull shape parameter (CTOD)
lc = Mesh element length
m = Weibull modulus
n = Strain hardening exponent
q = Heat input (during welding)
qvm = Von Mises stress
q1 = Constant Gurson factor (= 1.5)
q2 = Constant Gurson factor (= 1.0)
r = Distance from crack tip to stress field
r̄ = Current void radius
r0 = Initial void radius
rp = Rotational factor (equal to 0.44)
t = Surface traction
v = Poisson’s ratio
xc = Characteristic distance

.cmd = Commando script

.dat = Output file

.inp = Input file

.odb = ABAQUS database file

.pfp = LINKpfat simulation file



CDF = Cumulative Distribution Function
CE = Carbon Equivalent
CMOD = Crack Mouth Opening Displacement
CGHAZ = Course-Grained Heat Affected Zone
CTOD = Crack Tip Opening Displacement
CVN = Charpy V-Notch
DBT = Ductile-to-Brittle Transition
DBTT = Ductile-to-Brittle Transition Temperature
EDM = Electrical Discharge Machining
FE = Finite Element
FEA = Finite Element Analysis
FEM = Finite Element Method
FGHAZ = Fine-Grained Heat Affected Zone
FPZ = Fracture Process Zone
GTN = Gurson, Tvergaard and Needleman
HAZ = Heat Affected Zone
LSQ = Least Square
ML = Maximum Likelihood
MLE = Maximum Likelihood Estimation
MOTE = Minimum Of Three Equivalent
M-A = Martensite-Austenite
RKR = Ritchie-Knott-Rice
SDV = State-Dependent Variable
SENB = Single Edge Notched Bend
SENB02 = SENB specimen with a

W = 0.2
SENB05 = SENB specimen with a

W = 0.5
SENT = Single Edge Notched Tension
SP = Specimen
SSY = Small-Scale Yielding
TD = Temperature Dependent
TID = Temperature Independent
UFG = Ultrafine-Grained
UMAT = User-Defined Material
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Chapter 1

Introduction

With increasing activity from the oil and gas industry in Arctic regions, harsher ambient
conditions must be taken into account when designing structural steels. Higher material
property requirements and the urgency for a better understanding of the weather impact in
the Arctic region is inevitable. Thus, a thorough examination of the temperature dependent
material properties is crucial and needs to be further investigated in order to operate safely
and efficiently in the Arctic regions.

One of the most vital material parameters is the fracture toughness of steels and its
temperature dependence. At low temperatures, steels tend to exhibit brittle characteristics
and low fracture toughness which in turn might lead to sudden fracture without warning
yielding catastrophic consequences. Common structural steels become more ductile with
increasing temperature, and the fracture toughness increases gradually with a steep transi-
tion at a constraint-specific transition temperature. This transition region is of crucial im-
portance as it defines when the steel becomes brittle at lower temperatures and needs to be
further investigated to understand the material behaviour changes. Thus, a comprehensive
examination of the complete ductile-to-brittle transition of steels is of utmost importance.

Several models are described and suggested to predict brittle failure, and other models
for ductile behaviour characterisation. A computational simulation scheme must be de-
veloped to lower the need of laboratory testing of steels to describe the ductile-to-brittle
transition. In the end, this will lead to less laboratory work which saves time and costs
when characterising structural steels. The simulation scheme is required to describe the
ductile region with material softening mechanisms, the brittle region constituting cleavage
initiation, and the transition region exhibiting both brittle and ductile characteristics. The
ultimate goal of the ductile-to-brittle transition study is to develop a model which can pre-
dict the DBT of structural steels by only requiring one fracture mechanics test series in the
brittle region and another one in the ductile region. However, in the transition region, only
simple uniaxial tensile tests should be required to characterise the essential stress-strain
curves needed to simulate the shifting stress field.

Due to the dissimilar fracture toughness scatter bands primarily in the brittle and tran-
sition region, several approaches have been considered to describe the material characteris-
tics. The preliminary Gurson-RKR model utilises the RKR Criterion as a post-processing
routine based on critical opening stresses along the crack ligament to identify cleavage
fracture initiation. The model can visualise the ductile-to-brittle transition regions, but the
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100% probability based model is quite conservative and consists of several questionable
material parameters and limitations. There is a range of different approaches to improve
the preliminary Gurson-RKR model, and two of the most prominent methods are a statisti-
cal distribution model and a traction-separation cohesive zone model. The distance-based
RKR Criterion can be improved by considering several critical material parameters such as
plastic strain, stress triaxiality and tensile stress in volume elements instead of character-
istic distances. It can also be established as a probability distribution model which charac-
terises the applicable volume in the active zone ahead of the crack tip. The volume-based
approach can be used to create statistical distributed ductile-to-brittle transition curves,
and concurrently support and relate to different crack configurations and constraint effects
to connect test data to large-scale structures.

Another method to describe the brittle behaviour of the material is the cohesive zone
approach where a traction-separation curve is used to model the fracture process zone. By
utilising FE-analysis, the model can solve boundary value problems at the crack tip by
considering the cohesive strength of the material and the work of separation needed to get
a complete brittle fracture. However, in several types of steels, especially when welded,
the microstructure constitute a bi-modal grain size distribution consisting of both coarse
and fine grain bands. The bi-modal grain size distribution leads to more significant scatter
bands in the transition region as the distance from the coarse grain band to the notch root
varies from specimen to specimen where a mixed microstructure might yield biased results
when utilising uni-modal simulation models. Thus, the bi-modal grain size distribution
must be considered when designing the computational simulation scheme to describe the
material behaviour and the complete ductile-to-brittle transition in steels. The ultimate
objective is to be able to predict and describe the ductile-to-brittle transition of both bi-
modal and uni-modal grain size distributed steels by utilising a complete simulation model
which are statistical and mechanism-based at a low-cost level and with limited laboratory
testing requirements. The Complete Gurson Model and the Weibull-based Beremin model
as a post-processing routine are utilised to characterise ductile damage mechanisms and to
calculate the probability of brittle failure throughout the whole DBT in structural steels.

The first part of the thesis introduces the fundamental fracture mechanics theory re-
quired to understand the subsequent chapters along with a more comprehensive descrip-
tion of all the constitutive ductile-to-brittle transition models. Some of the background
theory is converted from the preliminary project thesis [126], and a detailed presentation of
The Combined Gurson-RKR Model is described in order to justify the chosen simulation
models. Furthermore, the computational implementation methods of the Weibull-based
Beremin model and The Complete Gurson Model are along with finite element models
and a comprehensive material characterisation described in the subsequent chapter. The
last chapters constitute all the results and discussions with the Beremin model and The
Complete Gurson Model implemented and fitted individually. The Gurson parameters are
estimated at the highest available temperature in the ductile region, and the Weibull pa-
rameters used in the Beremin model are initially calibrated at the lowest temperature in the
brittle region. The Weibull-based Beremin model is as a post-processing routine combined
with The Complete Gurson Model to compute the probability of brittle failure throughout
the ductile-to-brittle transition. The final part consists of Weibull parameter temperature
dependency studies, a thorough discussion of the final Beremin-Gurson model, concluding
arguments, and a brief future work description.
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1.1 Arctic Materials Project
Between 22-25% of the undiscovered and technically recoverable oil and gas reserves in
the world are located in the Arctic region. The expected undiscovered reserves in the
Arctic region comprise 20% of the world’s liquefied natural gas, 30% of the natural gas,
and 13% of the oil reserves. [129][49][127] The extremely harsh weather conditions in
the Arctic region along with vast distances cause challenging oil and gas operations. To
establish safe and cost-effective applications of materials for hydrocarbon exploration and
production in the Arctic region, SINTEF is carrying out an extensive research project
called the Arctic Materials Project. [129] The objective is to establish material solutions
and criteria which can handle the material application challenges at low temperatures down
to -60◦C, light-weight solutions, and significant temperature variations and deformation.
SINTEF has the project leadership and is cooperating with major industrial companies
such as Equinor, DNV GL and Aker Solutions focusing the research and development of
steels, polymer materials, and composite materials. [129]

As today’s industry lack standards to qualify structural steels in the Arctic region,
material selection and material characterisation are quite challenging and expensive. Due
to the challenging but essential material selection process, the master’s thesis directs the
constitutive discussion to the following Arctic Materials Project sub goals: [129]

� Extend the application range of structural steels by characterising the brittle fracture
resistance in welded steels including local material property variations and geometry
constraint effects

� For design temperatures down to -60◦C; define criteria for application of steels and
weldments including safety factors, and develop specifications for qualification testing

� For light-weight high strength steels; develop the basis for application, and define
material criteria for safe application under large deformations

The fundamental objective of the thesis is to develop understanding and a model to de-
scribe the material performance under Arctic conditions such as large temperature vari-
ation, low temperatures, and large deformations. Hence, the thesis will also address the
following work packages (WP) to review the development of guidelines for qualification
of weldments and steels: [129]

� Mechanical characterisation and steel fabrication

� Toughness and strength criteria for safe material utilisation

� Material solutions and new concepts

One of the most immediate concerns is the fracture toughness of weldments which can
yield low fracture toughness with brittle characteristics at low temperatures. As steels
become brittle at low temperatures, it is crucial to qualify and develop ductile steels for
low-temperature applications. Hence, the thesis focuses on the characterisation of brittle
fracture resistance in steel structures with varying temperature and material properties.
Thus, the main objective is to develop criteria and guidelines for qualifying steels for
Arctic conditions in a safe and cost-efficient way.
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Chapter 2

Theoretical Background

This chapter covers the fundamental theory required to understand the results and discus-
sions in the subsequent chapters. The theoretical background chapter will enable the reader
to get a comprehensive insight into the most important elements to understand the com-
plexity of both fracture mechanics and the ductile-to-brittle transition of steels. Sections of
the theoretic background is converted from the author’s preliminary project thesis. [126]

2.1 Stress Triaxiality
Stress triaxiality is the triaxiality of the stress state and the ratio of the hydrostatic stress
and the effective von Mises stress as described in Equation 2.1. The stress triaxiality factor,
TF is only dependent on the principal stresses σ1, σ2 and σ3 and affects both void growth
and void coalescence under plastic deformation in ductile materials. Even under uniaxial
loading conditions, the material will be exposed to a triaxial stress state with concurrent
stresses in three directions.

TF =
σh
σe

=
1
3 (σ1 + σ2 + σ3)

1√
2

√
(σ1 − σ2)2 + (σ2 − σ3)2 + (σ3 − σ1)2

(2.1)

On a micromechanical level, the stress triaxiality promotes void growth and causes
damage in the affected process zone ahead of the crack tip. [27] Models such as the
Gurson model can describe the physical effects of the crack tip constraint and the tearing
resistance as explained in Section 3.2.1. As the triaxiality factor increases, a progressive
reduction of the material elasticity occurs at necking initiation. [24][107]

The stress triaxiality factor (TF) applies as a constraint parameter, and with plastic
strain, the two parameters can control ductile rupture by cavity nucleation and growth.
[114][56][57] The equivalent von Mises plastic strain, εv is usually defined as

εv =
1√
2

√
(ε1 − ε2)2 + (ε2 − ε3)2 + (ε3 − ε1)2 (2.2)

where ε1, ε2, and ε3 are the principle strains, ε1 > ε2 > ε3.
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2.2 Microstructures and Welding in Steel
A variety of different microstructures in structural steels depend on the alloy content and
the processing of the steel. Different phases form through phase transformation during
processing which in turn changes the entire crystal structure. One of the two main phase
transformations is the reconstructive phase transformation where the atoms rearrange into
alternative and random patterns after the bonds break. There is no shape deformation, the
volume change due to atom diffusion, and usually occurs at high temperatures. The second
one is shear transformation where homogeneous deformation creates a new crystal struc-
ture from shape deformation in a specific manner and order. [22] The reader is expected
to know the basic characteristics of austenite, ferrite, martensite, and bainite along with
acicular ferrite, and Widmanstätten ferrite. More information about the material phases in
[22], [89], and [135].

2.2.1 Welding and Heat Affected Zones
Weldments are often considered as the most crucial part of the construction as it often
exhibits brittle characteristics compared to the parent material, and comprise a large den-
sity of impurities which actively reduces the toughness. The microstructure in steels often
change during welding, and many different microstructures form in the heat affected zone
depending on the chemical composition and the thermal cycles during welding. [83] The
welding process might yield heterogeneous microstructure with varying toughness. [2]
[1] The weld zone can be divided into two main regions; the HAZ and the fusion zone as
shown in Figure 2.1. During welding, the fusion zone is heated up to the melting point,
and the HAZ is the area around the fusion zone where the steel’s microstructure changes
without melting. [22]

Figure 2.1: Heat source and the two main regions; fusion zone and HAZ [42]

The HAZ comprises several different regions and microstructures with different me-
chanical features. The main parameters which determine the final microstructure in the
HAZ are the cooling rate, ∆t8/5, the heat input, q, and the peak temperature, Tp. ∆t8/5
is the time for cooling the material from 800◦C to 500◦C and is crucial for the phase
transformation from austenite to ferrite. [22] The peak temperature and the heating rate
decreases with distance from the fusion zone, while the cooling rate is independent of
distance as respectively shown in Equation 2.3 and 2.4.
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Tp ∝
q

r
(2.3)

∆t8/5 ∝ qn (2.4)

r characterises the distance from the fusion zone, and n is equal to 1 or 2 depend-
ing on the heat input, q, being two or three dimensional, respectively. [22] As shown
in Equation 2.3 and 2.4, both parameters are increasing with heat input and can both be
utilised to determine the nature of the thermal cycle at any given point in the HAZ.

The HAZ in single-pass welds separates into four central regions with depreciating
toughness with increasing distance from the fusion zone; Course-Grained HAZ (CGHAZ),
Fine-Grained HAZ (FGHAZ), Intercritical HAZ (ICHAZ), and Subcritical HAZ (SCHAZ)
as shown in Figure 2.2. [39]

Figure 2.2: Illustration of the HAZ regions in single-pass welds [120]

Figure 2.3 illustrates the varying Tp with distance from the fusion zone and how it re-
lates to the microstructure obtained in the HAZ after cooling. The heat diffusion changes
the microstructure and the mechanical properties of the HAZ regions. Regions close to
the fusion boundary have very high temperatures, and during continuous heating over the
ferrite to austenite transformation temperature, 950◦C [22], a fully austenitic microstruc-
ture forms. The CGHAZ primarily comprises large austenite grains due to annealing over
950◦C, and the final CGHAZ microstructure depends on the density of impurities in the
parent material, the cooling time ∆t8/5, and the chemical alloy composition. The coarse-
grained HAZ is coarse with brittle characteristics and often comprises a variety of M-A
Constituents (see Section 2.2.2), carbides and martensite. Also, the fracture toughness in
the CGHAZ has often been observed to decrease with increasing Tp. [1]

The CGHAZ is commonly characterised as the most brittle region with the lowest
toughness in the HAZ, but in later studies, the Intercritically Reheated CGHAZ (ICCG-
HAZ) has exhibited even greater toughness degradation due to its large austenite grain
size, M-A Constituents, and micro-alloy precipitates. [75] Rapid cooling (low ∆t8/5) will
yield incomplete austenite to ferrite-bainite transformation resulting in M-A Constituents
which in turn degrade the material. [74] [34] The M-A Constituents are brittle and hard
islands of austenite in bainitic ferrite matrix and carbon-rich martensite. At high cool-
ing rates, the CGHAZ is primarily bainite and martensite, and at lower cooling rates, the
CGHAZ commonly comprises lower and upper bainite, bainitic ferrite, and M-A Con-
stituents. The diffusion increases with decreasing cooling rate which in turn leads to even
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more bainitic ferrite, M-A Constituents, and upper bainite. [79] The M-A Constituents are
further described in Section 2.2.2.

Figure 2.3: HAZ microstructures in single-pass welds with a corresponding phase diagram. [22]

Further away from the fusion boundary, the temperature will not be sufficient to yield full
annealing which in turn leads to decreasing austenite grain size. This zone is commonly
referred to as the fine-grained zone and tends to be superior to the CGHAZ regarding
strength and toughness. Beyond the fine-grained zone, the microstructure partially trans-
forms to austenite. This austenite comprises a high concentration of carbon due to the
increasing carbon solubility in austenite with decreasing temperature. And even further
away from the fusion boundary, regions of the HAZ do not transform to austenite and are
thus characterised as tempered. [22] [43]

2.2.2 M-A Constituent Regions
Local brittle zones such as M-A Constituents in the HAZ is often associated with degra-
dation of the fracture toughness in steels after welding. [43] [79] Upper bainite, micro-
alloy precipitates, and M-A islands are some of the leading metallurgical factors which
tend to lower the fracture toughness in the CGHAZ. [43] The M-A Constituents or M-A
Islands have retained austenite enclosed by bainitic ferrite matrix and carbon-rich marten-
site. They commonly form at high temperatures with average cooling rates, and the mor-
phology depends on the cooling time during welding. [34] [3] [65] The M-A constituents
usually have either a morphology with blocky particles (M-A Islands) formed at austen-
ite grain boundaries at longer cooling times, [78] or elongated lath particles developed
between martensite laths at short cooling times. [34]

Up to a particular maximum cooling time, increasing cooling times lead to a higher
amount of M-A Constituents. At higher cooling times, austenite, carbide, and ferrite for-
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mation are possible which in turn will decrease the amount of M-A Constituents. [65]
The M-A regions affect the fracture toughness and the transition temperature due to its
brittle characteristics from the high carbon content. [32] Increasing amounts of M-A Con-
stituents increases the ductile-to-brittle transition temperature which means the steel will
exhibit brittle fracture mechanisms at even higher temperatures. [65] Besides, the in-
creasing amount of M-A Constituents will yield even lower fracture toughness making the
material even more brittle. [3] The brittleness of the M-A Constituents promote cleavage
initiation as described in Section 2.3.1, and the increased local stress concentration around
the M-A Constituents will eventually yield broken bonds between the matrix and the M-A
Constituents initiating a microcrack which ultimately leads to fracture.

2.2.3 Bi-Modal Grain Size Distribution
Materials are often considered as uni-modal with one dominant grain size which deter-
mines the appropriate critical distance and critical stress for failure as assumed in ma-
terial models such as the RKR Criterion [115] described in Section 3.1.1. However,
steels utilised in engineering applications can exhibit a mixed microstructure with inho-
mogeneities in the form of one soft and one hard phase. [159] This type of bi-modal
microstructure leads to a more complex material characterisation process, and several re-
searchers [7] [62] have tried to describe and explain the effect of grain size bimodality on
fracture toughness. Neville and Knott [97] produced dual-phase steel with a mixture of
ferrite and martensite phases and concluded that inhomogeneity rather than experimental
errors primarily caused the variation in fracture toughness.

A bi-modal grain size distributed steel is not necessarily a disadvantage, and both
second-phase particles and bi-modal grain distributions must be considered when im-
proving the strength-ductility ratio. [131][145][100] Hanamura et al. [55] showed that
steel with a bi-modal distribution of ferrite grains comprising UFG ferrite/cementite mi-
crostructure has even better impact toughness than conventional microstructures in low
carbon steels. One method to generate a bi-modal microstructure in low carbon steel is
by cold rolling and annealing of ferrite-martensite dual-phase steel. The heterogeneous
microstructure is created by the concurrent recrystallization of ferrite and martensite with
carbide initiation in the martensitic regions. [13]

However, as the effective grain size is one of the most important factors to determine
the DBTT, the bimodality turns into a difficult challenge during material characterisation.
[164] High-angle grain boundaries exceeding 15◦ are more effective in impeding cleavage
fracture, [69] and are usually prevailing in the coarse-grained regions. [162] [163] As
shown in Equation 2.5, the DBTT for low carbon steels is highly dependent on the effective
grain size, deff . The material constant A contains several metallurgical factors apart from
the grain size, and B is a coefficient independent of the grain size. [55]

DBTT = A−B · ln(d
−1/2
eff ) (2.5)

d
−1/2
eff =

n∑
i=1

d
−1/2
i farea−i (2.6)

Zhao et al. [161] showed that for heterogeneous materials, the effective grain size is the
sum of each grain size, di for n grains multiplied by the grain size area fraction, farea−i
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as shown in Equation 2.6. The effective grain size follows a normal Hall-Petch relation
(strength ∝ d−1/2) for homogeneous grains based on the fraction area of each grain. In
recent studies of bi-modal grain size distributed steels [31], it is shown that a large grain
size with an area percent higher than four percent can yield cleavage initiation independent
of the more dominant fine grain size distribution. Hence, Equation 2.6 may not be valid for
bi-modal materials with two dominant grain size distribution peaks exceeding four percent
fraction area as shown in Figure 2.4 (d).

Figure 2.4: (b) Uni-modal grain size distribution, (d) Bi-modal grain size distribution [31]

By conducting a range of CVN tests of both uni-modal and bi-modal materials can
characterise the effect of grain size bimodality on fracture toughness in the transition re-
gion. The overall fracture toughness scatters for bi-modal materials are usually larger
than uni-modal materials due to the presence of coarse grain populations with larger
grains which ultimately leads to low fracture toughness. Thus, the mixed microstruc-
ture will comprise randomly distributed bands of fine and coarse grains where the coarser
grain bands act as the weakest-link for cleavage initiation. [31] The difference in size
and distance between the fine and coarse grain bands results in a wide scatter of frac-
ture toughness in the transition region. As the bi-modal grain size distribution is hetero-
geneous and follows weakest-link principles, scientists commonly use a Weibull-based
Beremin model (see Section 3.1.3) with two independent Weibull distributions to account
for the complex scatter variation. [110] [6] In addition to the bimodality challenges of
single-pass weld as illustrated in Figure 2.2, multi-pass welds with multiple thermal cy-
cles often comprise several reheated microstructures such as Intercritically Reheated CG-
HAZ (ICCGHAZ) and Subcritically Reheated CGHAZ (SCCGHAZ) which can lead to
weld sections with varying mechanical properties and even more local brittle zones like
M-A Constituents. [83] [38] [120]

2.3 Brittle Fracture
A fracture is when a solid is separated permanently into two or more pieces. Brittle frac-
tures are often related to a critical crack initiation stage without any significant crack prop-
agation or crack growth prior to fracture, and are characterised by sudden fractures without
any visual warning due to its rapid and unstable crack growth.

Brittle fracture only happens when the stresses at the crack tip exceed the cohesive
strength of the material. It is the most dangerous form of fracture characterised by the
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separation across well-defined crystallographic planes, and often exhibit a river pattern on
the fracture surface originating from the crack initiation point. The fracture toughness can
also readily be determined in the lower transition region in steels by conducting fracture
mechanics tests. [33]

Brittle fracture occurs suddenly without warning and can be characterised by a specific
stress limit which must be avoided to ensure safe service conditions. The tendency of
brittle fracture in structural steels is highly temperature dependent and can be illustrated
by a ductile-to-brittle transition curve. More about this transition curve in Section 2.7.

2.3.1 Cleavage Fracture Initiation
Three stages can characterise the complete brittle fracture process; the initiation of a crack
nucleus, crack propagation across the boundary between the particle and the first grain,
and crack propagation across the entire grain into another adjacent grain. The initiation of
the crack nucleus depends on the microcrack extension in a second-phase particle and the
nucleation of the crack.

By utilising the fracture mechanics parameters K, J and δ (CTOD) calculated by FEA,
and building the stress and strain field ahead of a pre-cracked tip, the driving forces for
triggering the brittle fracture can be determined. The normal stress, σ22 and the local
plastic strain, εp are the most important driving forces to trigger the microcracking and
must be balanced with the critical resistance of the material. [86]

The driving forces of the material are presented by the fracture mechanics parameters
KI , JI and δ which in turn controls the corresponding crack-tip field and must exceed the
resistance parameters of the material,KIC , JIC and δC in order to trigger a brittle fracture
as described in Equation 2.7. [33]

KI ≥ KIC , JI ≥ JIC , δ ≥ δC (2.7)

The crack initiation is primarily influenced by the extent of second-phase particles, grain
size, and the service temperature. Under high stresses or strains, the second-phase particles
might exhibit microcracks ahead of the crack front primarily due to the high concentration
of M-A Constituents. The particle fracture stress, σf is presented in Equation 2.8 where
γp is the effective surface energy, E is the Young’s modulus, v is Poisson’s ratio, and C0 is
the diameter of the second-phase particle. [33]

σf =

√
πEγp

(1− v2)C0
(2.8)

The grain size effect is one of the most important factors regarding brittle fracture due
to its impact on the ductile-to-brittle transition temperature (see Section 2.7) as well as the
yield strength and ductility. Coarser grains yield higher DBTT, lower ductility and lower
yield strength which is related to the dislocation pile-ups at the grain boundaries. Larger
grains leads to more severe dislocation pile-ups and higher stress concentrations which
in turn lead to higher probability of brittle fracture. Hahn proposed a crack propagation
criteria below the transition temperature as when the maximum normal stress exceeds σf
the material will fail by brittle fracture as described in Equation 2.9 and 2.10. [54]

σyymax = Qmaxσy = σf (2.9)
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σf =

√
πEγp

(1− v2)d
(for a grain size crack) (2.10)

σyymax is the maximum normal stress,Qmax is the maximum stress intensification factor,
σy is the uniaxial yield strength, and d is the average grain diameter. [37]

Ritchie et al. [115] established a critical distance criterion where they showed that
before brittle fracture could occur, the critical opening stress must be exceeded over a
characteristic distance ahead of the crack tip. The RKR Criterion is further discussed
in Section 3.1.1 where the characteristic distance is in fact found to be dependent on the
grain diameter.

2.4 Ductile Fracture

Ductile fracture is when a material fails after a certain degree of plastic deformation and
is used to indicate failure when the plastic deformation yields unstable crack propagation.
This type of failure is often related to a process of void nucleation followed by void growth
and void coalescence which ultimately leads to a macroscopic fracture. The fracture sur-
face often appear as dimpled, and the material will fail when it reaches a plastic instability
point where the strain hardening cannot keep up with the loss of cross-sectional area. [4]
[158] Thus, the material will fail by the tearing instability when voids coalesce yielding
rapid ductile crack growth followed by complete failure.

The consecutive stages prior to ductile failure are:

1. An inclusion or second-phase particle form a free surface either by particle cracking
or interface decohesion yielding void nucleation.

2. Void growth around the particle by hydrostatic and plastic strain.

3. Coalescence of adjacent voids leading to rapid crack growth and failure.

The constitutive stages are exhibited in Figure 2.5 and show the process of void nucle-
ation, void growth, and void coalescence. The respective stages are further described in
Section 2.4.1, 2.4.2 and 2.4.3.

Figure 2.5: (a) Void Nucleation, (b) Void Growth, (c) Void Coalescence. [4]
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2.4.1 Void Nucleation

Void nucleation happens in the early stages of deformation where the voids form mainly
from inclusions or second-phase particles after the stress breaks the bonds between the
matrix and the particles. The two most essential models for estimating the void nucleation
stress are the continuum theory discussed by Argon et al. [10] and Beremin et al. [17],
and the dislocation-particle interactions addressed by Goods and Brown. [51]

The continuum theory argues that the decohesion stress is equal to the sum of the mean
hydrostatic stress and the effective von Mises stress as described in Equation 2.11

σd = σe + σm (2.11)

which Beremin later optimised by utilising a semi-empirical relationship to predict a better
void nucleation stress in special rolling conditions. [17] [10]

Goods and Brown made a dislocation model for void nucleation which consisted of
both heterogeneous and homogeneous void nucleation. Cavities might form from vacancy
condensation with high strain and high dislocation density which promotes homogeneous
void nucleation. The dislocation model indicates increasing local stress concentration with
decreasing particle size which concludes that larger particles make void nucleation more
difficult. [51] However, larger particles are more likely to crack when exposed to plastic
strain due to the increased probability of inclusions and second-phase particles.

Grain boundaries and second-phase particles are essential factors in heterogeneous
void nucleation. It is shown that grain boundary sliding is the primary mode of defor-
mation at low strain rates and intermediate temperatures, and is modelled as dislocation
pile-ups when they meet obstacles. However, during sliding, the nucleation of cavities is
independent of temperature which indicates that matrix displacement is determining the
void nucleation. [51]

Second-phase particles and large non-metallic inclusions such as sulphides and oxides
can be induced and created during material production which in turn promote void nucle-
ation and ductile rupture. The local deformation state between the particle and the matrix
might determine the cavity initiation and not the applied stress. Thus, the two mech-
anisms for void nucleation are cracking of the particle and decohesion between matrix
and particle. [82]

2.4.2 Void Growth

Void growth is the second stage in the process of ductile fracture where voids start to grow
immediately after void nucleation. The localised strain is then propagating between the
voids until necking initiation and void coalescence. As abundant materials contain bi-
modal or tri-modal distribution of particles, intermetallic particles can exhibit submicron
second-phase precipitates or inclusions dependent on the size and type of particle.

The two most widely used void growth models are from Rice and Tracey [112] and
Gurson [53]. Rice and Tracey’s model is based on a single isolated void which approxi-
mates the void growth with the semi-empirical relationship described in Equation 2.12

ln
( r̄
r0

)
= α

∫ εeq

0

exp
(1.5σm

σe

)
dεeq (2.12)
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where r̄ is the void radius, r0 is the initial void radius, εeq is the equivalent von Mises
plastic strain tensor, σm is the hydrostatic mean stress, and σe is the effective stress which
substitutes the yield strength, σys in the original Rice and Tracey model. [112]

The growth of artificially inserted voids has recently been studied with tomography by
Weck et al. [146]. The voids initially elongate first at a rate twice as fast as the speci-
men due to the high stress concentration. With a necking-induced increase in triaxiality,
the voids start to grow laterally, and when the lateral void diameter to void spacing ratio
reaches 1/3, the plastic flow localisation in the ligaments changes the void growth kinet-
ics. In engineering alloys, it is essential to consider the coexistence of continuous void
nucleation and void growth which can lead to challenges when modelling ductile material
behaviour. There is also a modelling challenge when multiple concurrent nucleations hap-
pen which in turn promote challenges to the conventional continuum frameworks. [106]

2.4.3 Void Coalescence
Void coalescence occurs in a lot of different modes and variants solely dependent on the
microstructure, plastic flow and stress state. The void coalescence phenomenon can cat-
egorise into three modes; internal shearing of the intervoid ligament, internal necking of
the intervoid ligament, and necklace coalescence as shown in Figure 2.6. [106]

Figure 2.6: (a) Internal necking, (b) Internal shearing, (c) Necklace coalescence. [106]

Internal necking of the intervoid ligament describes the void impingement which was hy-
pothesised by Cottrell [35] and later rationalised by Thomason [133] in plane strain. De-
formation will localise in areas where the intervoid matrix loses bearing capacity due to
increasing void growth which in turn yields necking in the matrix between the bonds. As
a result of the necking, the voids will coalesce and form a large crack. Internal shear-
ing of the intervoid ligament may yield localised cavities to coalesce due to the localised
shearing. The cavities will form narrow bands of secondary voids (see Figure 2.6 (b)) as
a result of local failure by void sheeting and secondary void nucleation. [36] Necklace
coalescence is when voids link up along their length and is usually exhibited in steels with
elongated inclusions or particle clusters. The formation is known to promote ductility, but
it can also cause ductile delaminations. [16]

2.4.4 Ductile Crack Growth
The initial crack opening, δ0 may under static load create a plastic zone at the crack tip
and initiate a crack tip blunt. The stress concentration at the crack tip will exceed the
yield strength and favour nucleation of voids at second-phase particles near the crack tip.
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The crack tip opening displacement, δ and the distance between the inclusions and voids
will determine the nucleation sites which in turn depend on the amount of stress triaxial-
ity ahead of the crack tip where the plastic strain is quite intense. [106] When the void
becomes large enough and the distance from the crack tip becomes small enough, plastic
localisation and coalescence between the void and the crack tip will prevail. Dependent
on the void size, the strain hardening capacity, and the initial volume fraction of voids,
four types of void coalescence can occur; multiple void interactions, void by void coales-
cence, shear coalescence (zig-zag) or diffuse damage zone. The void coalescence types
are exhibited in Figure 2.7.

Figure 2.7: a: Multiple void interactions, b: Void by void coalescence
c: Shear coalescence (zig-zag), d: Diffuse damage zone.

Multiple void interactions occur when the porosity level is sufficient to let the void
in the vicinity of the crack tip grow at the same rate as the adjacent void. The interaction
with the first voids leads to higher stress concentration in the voids further away from the
crack tip which in turn yields a higher aggregate growth rate. Thus, the increased growth
rate leads to coalescence between several voids. [139]

Void by void coalescence does usually occur when the metallic alloys have an initial
void volume fraction smaller than 10−2. Indifference to multiple void interactions, the
void at the crack tip does not affect the growth rate of the adjacent void. [106]

Shear coalescence happens in an early shear localisation process between the blunted
crack tip and an adjacent void which in turn is harmful to the fracture toughness where
there is less plastic work than full void growth and coalescence. It might occur in fracture
process zones under plane strain which often promotes a zig-zag void by void coalescence
pattern ahead of the crack tip as exhibited in Figure 2.7 c. [106]

Diffuse damage zone contains a high number of voids at the crack initiation points
during the fracture process, and the voids can cause resemblance to a damage volume
element in a notched tensile specimen rather than at a crack tip. Thus, the first coales-
cence might not occur at the crack tip but as a damage volume element, unlike the three
other void coalescence mechanisms. Some materials might experience diffuse damage
zone mechanisms at crack initiation and later yield one of the other three mechanisms
as the crack propagates. Hence, the crack tip stress and strain field might change as the
crack propagates which in turn influences the ductile-to-brittle transition as discussed in
Section 2.7. [106]
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2.5 Flat to Slant Fracture Transition

2.5 Flat to Slant Fracture Transition
When a ductile fracture of sheet material occurs, the fracture initiation often commences
as a flat triangular region normal to the loading condition. When the triangle forms, the
whole crack will tilt and form a slant with an angle of 45◦ with the loading. [92] The flat
to slant transition and the slant propagation might indicate the change from high triaxiality
void growth to a more shear-dominated coalescence. [90] In the slant area, dimples and
secondary dimples form, and in combination with a sharp notch will in turn yield higher
mean stress and promote void growth. [28] However, experimental results indicate that
fracture at grain boundaries or shear decohesion mechanisms might be dominant in a slant
fracture. [48][29][84]

Modelling the flat to slant fracture transition is challenging as most models assume a
flat fracture and it is hard to reproduce the flat to slant fracture transition since the macro-
scopic load and the fracture path cannot be reproduced concurrently. [28][91][26][156][157]
The modified Gurson model (see Section 3.2.1) describes the void growth at both low
and high stress triaxiality and can be utilised to model shear fracture in a flat to slant
fracture transition. [92]

Flat to slant fracture transition is often less likely to occur when the material has en-
dured high work hardening, but the transition might be more likely to happen under plane
strain with additional damage by local stresses and strain in the stable tearing region. [20]
When using continuum damage mechanism models such as Gurson [53] with extensions,
the crack path changes in 2D plane strain and only slant fracture is simulated. [20]

2.6 Fracture Mechanics
Structures generally fail due to negligence during the structural design process, or when
introducing new material or design. Ductile materials yielding brittle fracture with catas-
trophic consequences demonstrate the need for a better understanding of fracture mechan-
ics. What is the maximum crack size the material can sustain safely, what is the strength
of the material as a function of crack size, or how does the crack size relate as a function of
time and applied loads? These are typical questions in fracture mechanics where scientists
try to fit experimental research to understand the complexity of the fracture driving forces.

2.6.1 Stress Field
Microscopic cracks and flaws in the material produce concentrated stress fields where the
stresses decrease with the distance from the crack tip. If assuming isotropic elastic ma-
terial behaviour, Sneddon [130], Westergaard [61], Williams [88] and Irwin [52] derived
an equation to deduce a closed-form expression for the stresses in the body as shown in
Equation 2.13. [4] It is defined in a polar coordinate system with the crack tip as the origin
and exhibits the stress field in linear elastic cracked bodies.

σij =
( k√

r

)
fij(θ) +

∞∑
m=0

Amr
(m2 )g

(m)
ij (θ) (2.13)

σij is the stress tensor, fij and gij are dimensionless functions of θ, k is a constant,
Am is the amplitude. r and θ are the distance and angle from the crack tip to the appli-
cable stress field in the body. m depends on the geometry but since the stress tensor is
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proportional to 1/
√
r, the leading term will approach infinity as r approaches 0. Thus, a

stress singularity is happening in front of the crack tip with a local stress asymptote at r = 0
which implies that the material will fail at any given applied load. Hence, Section 2.6.2
introduces the stress intensity factor in order to deal with this issue. [4]

2.6.2 Stress Intensity Factor
The stress intensity factor, K is a fracture mechanics quantity that governs the stress field
at the crack tip and is used as a scaling factor to treat the singularity issue of 1/

√
r as

mentioned in Section 2.6.1. The constant k in Equation 2.13 can be substituted with the
stress intensity factor, K = k

√
2π which deduces Equation 2.14 for all modes. Thus,

the stress intensity factors KI , KII and KIII can respectively be calculated for the three
different fracture modes; opening, in-plane shear and out-of-plane shear. [4]

lim
r→0

σ
(I)
ij =

( KI√
2πr

)
f

(I)
ij (θ) (2.14)

The stress intensity factor defines the amplitude of the crack tip singularity. Thus, the
stress and strain near the crack tip are directly proportional to KI . If the magnitude of K
is known, it can ultimately define the conditions at the crack tip and solve for all compo-
nents including strain, stress, and displacement as a function of r and θ. Hence, the stress
intensity factor is an essential concept in fracture mechanics which can comprehensively
assess the singularity issue at the crack tip.

With tensile stress normal to the crack plane (mode I loading), KI can be defined as in
Equation 2.15 and 2.16 where P is the force, S is the distance between the applied loads,
B is the specimen thickness, W is the width of the specimen, a is the crack depth, and
f( aW ) is a dimensionless function dependent on the mode of loading and the geometry.
For a SENB fracture mechanics test (see Section 5.2), its dimensionless function can be
defined as in Equation 2.16. [132]

KI =
P

B
√
W
f(

a

W
) (2.15)

f( aW ) =
3 S
W

√
a
W

2(1+2 a
W )(1− a

W )3/2

[
1.99− a

W (1− a
W )
{

2.15− 3.93( aW + 2.7( aW )2)
}]

(2.16)

The definition of the stress intensity factor is given in many forms and can always be
related to the crack with the appropriate correction factor as exhibited in Equation 2.17,

K(I,II,III) = Y σ
√
πa (2.17)

where a is half the crack length, Y is a dimensionless constant which depends on ge-
ometry and mode of loading, and σ as the characteristic stress. [4] However, the mate-
rial’s resistance to brittle fracture with a crack present can be defined as the critical frac-
ture toughness, KIc which in turn is related to the critical fracture stress as described in
Equation 2.18 and 2.19.

KIc = σc
√
πac (2.18)
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σc =

√
2Eγs
πac

(2.19)

ac is the critical crack length equal to half the length of the internal crack, E is the
Young’s modulus, γs is the specific surface energy, and σc is the critical fracture stress
required for crack propagation.

Brittle materials usually have low KIc, and ductile materials typically have a higher
fracture toughness as the fracture toughness describes the ability to resist brittle fracture.
Since brittle materials do not have any significant plastic deformation at the crack tip, the
material will be exposed to brittle fracture. Hence, KIc is only applicable for brittle mate-
rials as ductile materials are in an elastic-plastic range with additional fracture toughness
parameters as described in Section 2.6.4. [60]

2.6.3 Geometry Constraint Effects
The constraint effects are usually considered as specimen configurations and loading con-
ditions which influence the crack-tip field. The highly strained area around the crack tip is
constrained by the surrounding material which in turn affects the crack growth and frac-
ture behaviour due to the stress triaxiality state. As the fracture toughness dependence
relates to the specimen configuration and loading conditions, the constraint effects can
be considered as the inhibition of plastic flow. [128] It enhances the material degrada-
tion and elevates the local stress which in turn will make it easier to exceed the critical
fracture stress.

Two-parameter fracture theory [9][8][21] is developed for elastic-plastic materials to
quantify the constraint levels for different geometries and loading conditions. Single
edge notched bending (SENB) specimens with a0/W = 0.5 ratio have a high geome-
try constraint level which yields high conservatism in critical engineering assessments,
but it is difficult to know the degree of conservatism as the geometry constraint is highly
material dependent. [153][154]

By reducing the specimen size, the constraint effects will diminish and the toughness
increases accordingly, thus, decreasing the specimen size can increase the crack growth
resistance of SENB specimens [153]. The constraint level is in this manner dependent
on factors such as geometry, material thickness, material properties, and crack location
relative to external boundaries. [98] Specimens with longer crack ligaments will have
less crack tip constraint effects than deeper notched specimens, and a significant loss of
constraint effect is exhibited when the local plasticity zone at the crack tip merges with the
global plasticity in the specimen which in turn results in constraint relaxation. [154]

The constraint effects in fracture mechanics have been thoroughly investigated the last
decades, and to accurately quantify the constraint effects on near crack-tip stress fields,
Betegon and Hancock [21] proposed the T-stress, and O’Down and Shih [99] introduced
the Q-parameter. However, there are still challenges when determining constraint mod-
ified fracture toughness between geometries and different constraint levels. The scaling
of fracture toughness between geometries is proposed by Ruggieri and Dodds [122] by
utilising a Weibull-based Beremin model [18] (see Section 3.1.3) to account for the scatter
variation. Wallin [143] later proposed a constraint modified version by utilising a mas-
ter curve approach to account for changing material characteristics with shifting temper-
ature. Knott [72] discussed the challenges with inhomogeneous microstructures in the
HAZ (see Section 2.2.1) which resulted in wide fracture toughness scatters for different
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HAZ regions. In recent years, thermal weld simulation has been utilised to obtain a ho-
mogeneous microstructure in order to determine the fracture toughness in the different
HAZ regions. [1] [102] The weld simulation is thus able to mimic brittle characteristics
in the HAZ with homogeneous microstructure. The fracture toughness is not recognised
as an intrinsic material parameter as it is influenced by mode of loading and geometry as
discussed in Section 2.7. However, the shifting fracture toughness relates to the so-called
constraint effect. [101]

The transversal stress (T-stress) is often utilised to describe the crack tip geometry
constraints. O’Dowd and Shih [99] and Dodds et al. [40] described a relationship between
the T-stress and the stress triaxiality near the crack tip. When the T-stress is positive, the
stress triaxiality remains high, and negative values of T-stress rapidly decrease the stress
triaxiality for KI − T -controlled far-fields in elastic-plastic materials. Both KI and T-
stress can be determined for particular specimens and may deduce relevant information
about the specimen’s dimensions and constraint level. The dimensionless biaxiality ratio

β =
T
√
πa

KI
(2.20)

is thus defined to quantify the crack tip constraint changes for different types of frac-
ture specimens with a normalised T parameter. [76] The biaxiality ratio is related to
Equation 2.17 where the reference stress is normalised to T and the stress biaxiality ra-
tio as described in Equation 2.20. By defining the T-stress with a Williams series of the
crack displacement field, the biaxiality ratio can yield geometry independence with a crit-
ical transition of the crack path stability behaviour. [76]

2.6.4 Additional Fracture Toughness Parameters

The crack tip opening displacement (CTOD) was first introduced by Wells [148][149]
when he noticed that as a result of plastic deformation and blunting at the crack tip, the
fracture surfaces moved apart prior to fracture as shown in Figure 2.8. The blunting
increases in proportion to the toughness and the CTOD could be utilised to measure the
fracture toughness at the crack tip. CTOD is the most commonly used fracture toughness
parameter and can also be utilised as a fracture criterion where the material fails at δ = δc.
However, the critical CTOD is highly dependent on temperature and constraint level as
discussed in Section 2.6.5 and 2.7.

Figure 2.8: Finite displacement (CTOD, δ) at the crack tip with an initially sharp
crack yielding plastic blunting prior to ductile tearing initiation. [4]
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A generic expression of CTOD can be described as in Equation 2.21 and relates to the
stress intensity factor, KI and the yield strength, σys. For plane stress conditions, m = 1.0
and E’ = E, while for plane strain conditions, m = 2.0 and E’ = E’ as described in Equation 2.21
[4]. v is the Poisson’s ratio, a0 is the initial crack depth, W is the width of the specimen,
and rp is the rotational factor assumed to be equal to 0.44.

CTOD =
K2
I

mσysE′
, E′ =

E

1− v2
(2.21)

CTODel+p =
K2
I

mσysE′
+
rp(W − a0)CMOD

rp(W − a0) + a0
(2.22)

Figure 2.9: Single edge notched three-point bend specimen (SENB) [4]

The hinge model for notched three-point bend specimens as exhibited in Figure 2.9 can
be utilised to determine CTOD values from measurements of the crack mouth opening
displacement (CMOD). The total CTOD value can be calculated by using Equation 2.22
where both elastic and plastic deformation has occurred. The CTOD can be separated into
two parts where the first component is elastic CTOD which relates to the stress intensity
factor KI . The second component is the plastic CTOD which is related to Figure 2.9 as a
function of CMOD and the rotational factor. [4]

In addition to the CTOD, J-integrals are determined from all fracture mechanics tests.
The J-integral value is defined as

J =
K2
I

E′
= mσysδ (2.23)

where E’ is the Young’s modulus in Equation 2.21, δ is the CTOD, and m is the cor-
rection factor for plane stress or strain. In theory, m = 2.0 for plane strain and m = 1.0
for plane stress, however, Hauge and Holm [59] demonstrated an average m-factor at
about 1.5 for varying constraint levels of weld simulated steels. Nevertheless, if the frac-
ture specimen has endured plastic deformation, the area under the Force-CMOD curve,
ACMOD
pl can be used to calculate the critical J-integral, Jc with the estimation procedure

by Kirk and Dodds [70] expressed as

J =
K2
I

E′
+
ηJc
Bb

ACMOD
pl (2.24)
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where b is the length of the remaining crack ligament (W − a), and ηJc is the non-
dimensional eta factor for CMOD defined as

ηJc = 3.75− 3.101
a

W
+ 2.018

( a
W

)2
,
a

W
∈ [0.05, 0.70] (2.25)

2.6.5 Resistance Curves
A plot of a fracture mechanics parameter as a function of crack extension is called a re-
sistance curve, or R-curve. The resistance curve is often utilised to illustrate stable or
unstable crack growth with a fracture toughness parameter such as KI , J or CTOD along
the y-axis, and crack growth, ∆a along the x-axis. Thus, the R-curve illustrates how the
fracture toughness changes as a function of crack extension during plastic blunting and
ductile tearing.

Figure 2.10 exhibits a steady-state region after a certain amount of crack growth which
means the material will not fail if the characteristic fracture toughness (KI , J or CTOD)
is under the critical fracture toughness value, CTODSS

R . Thus, the crack propagation
becomes unstable immediately after the characteristic value exceeds the critical fracture
toughness which in turn initiates unstable crack growth and ultimate failure. Brittle ma-
terials have flat resistance curves as the surface energy is an invariable material property,
[4] hence, the material will fracture when the characteristic fracture toughness exceeds the
corresponding resistance curve.

Ductile materials usually have sloped resistance curves where the driving force rate
must be higher than the resistance curve in order to get unstable crack propagation. Thus,
the structure will ultimately fail when the driving force rate is tangent to the resistance
curve. The rising resistance curve trend is usually due to the evolving plastic zone ahead of
the crack tip as it requires increasing driving forces in order to maintain the crack growth.
If the plastic zone is too small compared to the body, the fracture resistance will reach a
steady-state value where the resistance curve remains flat. [4]

Figure 2.10: CTOD vs ∆a, resistance curve phases [63]

Figure 2.10 exhibits a typical crack growth resistance curve for a semi-infinite crack with
CTODR (CTOD resistance) as a function of crack growth, ∆a. The straight blunting line
is often followed by stable tearing and steady-state as the crack tip field moves correspond-
ingly along the crack plane at a constant CTOD with increasing crack growth. According
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to ASTM E 1290 [12], a pop-in may happen when local instability occurs at configura-
tions where the crack growth resistance decreases locally. Thus, the crack will propagate
dynamically until it arrests and follows the resistance curve once again with further crack
growth. [63] The SENB fracture mechanics test results are somewhat conservative which
in turn produce relatively straight fracture resistance curves when only incorporating duc-
tile tearing. The constraint effects will increase in the process zone as the compressive
field and crack propagation decrease the crack ligament which in turn yields a flattening
effect of the resistance curve.

2.7 The Ductile-to-Brittle Transition

The fracture toughness of steels is temperature dependent where the material exhibits a
transition going from low fracture toughness at low temperatures with brittle behaviour, to
high fracture toughness at higher temperatures with ductile behaviour. As previously dis-
cussed in Section 2.4 about ductile fractures, the voids nucleate at second-phase particles,
voids grow as the material plastically yields, and finally, the voids coalesce as shown in
Figure 2.5. These plastic deformation mechanisms are immensely energy-consuming and
result in high fracture toughness and exhibit a high tolerance for initial flaws.

By reducing the temperature, the mobility of dislocations decreases, and it is required
an increased level of stresses in order to move them which in turn will decrease the plastic
deformation. At certain lower temperatures, local stresses will be high enough to break
the local bonds and initiate brittle fractures as microcracks nucleate at broken second-
phase particles. Brittle crack propagation requires considerably less energy consumption
compared to the ductile mechanisms. Hence, the material fracture toughness will be sig-
nificantly lower with decreasing temperature as exhibited in Figure 2.11.

Figure 2.11: Ductile-to-brittle transition curves with shifting
loading rate and crack tip constraint level [63]

The transition region in Figure 2.11 exhibits both ductile and brittle behaviour and
the transition temperature is usually determined by factors such as second-phase particles,
flaws, and microcracks. Prohibited plastic flow contributes to embrittlement and increases
the transition temperature which is highly problematic in Arctic regions with low service
temperature where sudden brittle fracture may prevail. The transition temperature also
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depends on the loading rate where increased loading rate increases the transition temper-
ature. As discussed in Section 2.6.3, the highly concentrated plastic deformation at the
crack tip promotes a high stress level in the process zone which in turn yields a higher
transition temperature with increasing crack tip constraint levels. [63]

The fracture toughness scatters in the transition region are highly responsive to the ge-
ometry and size of the test specimen which makes the essential data collection extremely
difficult. Thus, the experimental values may not have the best transferability to large struc-
tures. The large scatter in the transition region is due to the competing micromechanisms
of fracture where concurrent ductile tearing and cleavage initiation might happen. The
fracture toughness is related to the distance from the cleavage initiator to the crack tip
where a short distance yields low toughness, and a remote cleavage initiator results in a
higher toughness. In some cases, a crack grows by ductile tearing until the crack reaches
a microstructural feature which initiates a cleavage fracture. [5] The fracture toughness in
the transition region can be significantly affected by the stress triaxiality relaxation (see
Section 2.1) at the crack tip due to the geometry and size effects. The plastic flow during
ductile tearing leads to constraint relaxation which in turn results in constraint loss and
increased fracture toughness up to a factor of six. [5]

2.8 Probabilistic Fracture Mechanics Modelling
Methods in probability theory enable material characterisation of known but apparent ran-
dom populations of fracture mechanics data by utilising mathematical modelling and prob-
abilistic analyses. Experimental samples can be interpreted and described with statistical
models and distributions which further can be used to assume material characteristics by
quantifying and illustrating the sample data. Thus, probability distributions and statistical
models can describe and predict both randomness and statistically independent fracture
mechanical data.

Failure analyses are often utilised to guarantee reliable structures during the structural
design process where averaged fracture mechanics data are traditionally utilised to deter-
mine material characteristics. The averaged data will give acceptable results in cases of
small variations in the fracture mechanics scatter, but for larger scatter band, the results
become uncertain and ambiguous. However, lower limit approaches are often used to give
safe predictions for material characterisation with large scatter bands where the results re-
main conservative which in turn leads to expensive material and structure design. Hence, a
probabilistic approach is often suggested when predicting failure in structural engineering
and to quantify the probability of failure with more reliable risk assessments.

This section will focus on the underlying concepts of the classical Weibull distribution
and the theoretical basis of the weakest-link principles in the Weibull approach. [165]

2.8.1 The Weakest-Link Principle
The weakest-link approach is commonly used in probabilistic analyses for continuum me-
chanics where the weakest-link is based on a mechanical chain of statistically independent
components. If one of the statistically independent parts in the mechanical chain fails,
ultimate failure occurs. In fracture mechanics, this means the material will ultimately fail
if one of the statistically independent elements fails. However, in reliability engineering,
the weakest-link approach is usually defined by a series system where all the statistically
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independent components need to be working for the system to work, and if one of the parts
fails, the entire system fails. The reliability (survival probability) of the system can be ex-
pressed as in Equation 2.26 where Ri is the reliability of component i in a series system
of n statistically independent components.

Rsys =

n∏
i=1

Ri (2.26)

In general terms, the density of the weakest-links is often distributed with the density
function c = n/lch, where n is the amount of weakest links and lch is the chain length.
When l is the finite length of an arbitrary segment, the survival probability is defined as

PS =

(
1− l

lch

)clch
(2.27)

However, as the chain length, lch is not finite and limits to infinity, the resulting failure
probability of an arbitrary segment can be expressed as [71]

PF = 1− e−cl (2.28)

In continuum mechanics, the segments are substituted with statistically independent vol-
ume elements containing n defects. When a single defect in one of the volume elements
becomes critical due to uniform loading, the whole volume chain fails. By utilising a sim-
ilar flaw density distribution, c = nc/V0 where V0 is the original volume with nc critical
flaws, the failure probability of volume V0 can be expressed as

PV0

F = 1− e−cV0 (2.29)

When the structure comprises a volume V =
∑N
i=1 ∆Vi with N non-overlapping statis-

tical independent volume elements (∆Vi) containing statistically independent defects, the
failure probability of the continuous volume V can be defined as

PVF = 1− exp
(
−

N∑
i=1

c(f)∆Vi

)
= 1− e−c(f)V (2.30)

where c(f) is the density function of defects as a function of uniform loading, f . [71]
In conclusion, the weakest-link approach is based on the ultimate failure from uniformly
distributed statistically independent material defects defined as point defects in statistically
independent volume elements.

2.8.2 The Weibull Approach
The density function discussed in Section 2.8.1 was initially introduced by W. Weibull in
1951 [147] as the empirical expression

c(f) =
1

V0

(
f

f0

)m
, f ≥ 0 (2.31)

where f0 is the normalising value of the uniform loading, f related to the scaling
volume, V0 and the exponent m characterised as the Weibull modulus. By assuming
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the material follows the weakest-link principles in Section 2.8.1, the density function in
Equation 2.31 substituted into Equation 2.30 leads to the failure probability by Weibull:

PVF = 1− exp
[
− V

V0

(
f

f0

)m]
, f ≥ 0 (2.32)

As shown in Figure 2.12 (a), the variability increases with decreasing Weibull modulus,
and the failure probability converges to a single point at about 63,2% with constant vol-
ume relation regardless of Weibull modulus when considering the failure probability in
Equation 2.32 versus the uniform loading, f . In reliability engineering, the Weibull mod-
ulus is characterised as the shaping constant and defines the component life phases. For
m < 1, the component is in its burn-in phase with a downward sloping hazard function,
m = 1 represents a constant hazard function in its steady life phase, and m > 1 represents
the component in its wear-out phase with upward sloping hazard function. As the material
during fracture mechanics testing experience abnormally high stress and strain, it is most
likely to be in the wear-out phase with m > 1. However, by changing the volume relation
with constant Weibull modulus, the resulting failure probability increases with increasing
volume relation as shown in Figure 2.12 (b). [71]

Figure 2.12: Weibull failure probability, PV
F as a function of uniform loading, f [71]

From Equation 2.32 and Figure 2.12, the constituent parameters, f0, m, and V0 can a pri-
ori be estimated by conducting statistical analysis of experimental results. More recently,
scientists such as Beremin [18] has utilised Weibull probabilistic distributions and the
weakest-link principles to predict fracture toughness values primarily in the brittle region.
More about the Weibull-based Beremin model and the constitutive Weibull parameter cal-
ibration schemes in Section 3.1.3 and 5.3.1, respectively.
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Constitutive DBT Models

A range of different models is described in this chapter to characterise the material be-
haviour in all the ductile-to-brittle transition regions. One model is traditionally utilised
to describe the unstable crack propagation with cleavage initiation and another model to
describe the plastic deformation and material softening. The chapter will start by intro-
ducing the individual models to independently characterise the material behaviour in the
brittle and ductile regions, and then present a couple of combined models which can be
used to describe the concurrent ductile and brittle mechanisms in the transition region.

3.1 Brittle Region
This section briefly introduces the three most common material behaviour models to pre-
dict and visualise the fracture toughness in the lower ductile-to-brittle transition region, or
the so-called brittle region. The material models are based on brittle fracture as described
in Section 2.3, and cleavage fracture initiation as described in Section 2.3.1.

3.1.1 RKR Criterion
The RKR Criterion developed by Richie, Knott, and Rice [115] is based on the idea that
cleavage will occur if the principal stresses along the crack ligament exceed the critical
stress over a characteristic distance. The RKR Criterion is established to solve the singu-
larity problem as discussed in Section 2.6.1 and explain why the material did not fail even
though the stress concentration approaches infinity at the crack tip. It suggests that brittle
failure occurs whenever the stresses perpendicular to the crack ligament exceed the critical
opening stress over a characteristic distance along the crack ligament. [4][115]

For unstable crack growth to occur, the original RKR Criterion states the crack must
initiate at a grain boundary and propagate to the next grain boundary. Thus, the opening
stresses along the crack ligament must exceed the critical opening stress over a distance
equal to one grain diameter, and the total characteristic distance necessary for unstable
crack growth is considered as two grain diameters. [115]

Another approach is to relate the characteristic distance to a volume element within the
plastic zone where all the cracked particles experiencing high enough stress concentration
for cleavage initiation are considered. [80] The basis for this behaviour arises as the brittle
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strength of the material is based on the highest stress in a defined volume exceeding the
critical stress. The most probable fraction initiation location may be determined from a
statistical fracture model competition between the increasing number of plastic sampling
volumes remote from the crack and the high stresses near the crack tip. [14] The latter
approach is later set up as a Weibull distribution model as described in Section 3.1.3.

3.1.2 Cohesive Zone Model

A cohesive zone model to describe the brittle behaviour before cleavage initiation has
been investigated by scientists such as Kabir et al. [67] and Hardenacke et al. [58]. The
cohesive zone model combines two predominant features; the softening effect when the
maximum principal stress exceeds the cohesive strength of the ligament, and the work of
cohesive separation defined as the work required to drive the microcrack from the broken
second-phase particle into a grain and through the next grain boundary.

The cohesive zone model with its constitutive traction-separation law describes the re-
lation between surface traction and local separation where bi-linear and exponential shape
laws are used to describe the brittle mechanisms exhibited in Figure 3.1. Similarly to
the RKR Criterion in Section 3.1.1, the cohesive zone model is dependent on a critical
cohesive strength and the maximum principal stresses along the crack ligament. The pa-
rameters in the bi-linear and exponential laws are thoroughly discussed by Tvergaard and
Hutchinson [138], and Xu and Needleman [155] where they explain how the cohesive zone
at the crack tip propagates prior to cleavage initiation. The cohesive work of separation
corresponds to the critical energy-release rate which in turn can account for the minimal
work required for cleavage. When reaching the critical cohesive strength, the model ac-
counts for the softening and further separation in order to describe the full extent of the
cleavage initiation and the minimum work required to yield brittle fracture. [63]

The cohesive laws visualised in Figure 3.1 defines the relation between the local sepa-
ration, δ and the surface traction, t along the crack during blunting and crack propagation.
The bi-linear law is based on a shape parameter λ ∈ [0, 1] which determines the relation-
ship between the critical cohesive strength and the critical local separation as shown in
Figure 3.1 (a). [63]

Figure 3.1: Cohesive traction-separation laws. (a) bi-linear, (b) exponential shape. [63]

Regardless of cohesive law, the respective traction-separation laws follow the universal
cohesive work of separation envelope described in Equation 3.1.
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Γ0 =

∫ ∞
0

t(δ) dδ (3.1)

The surface traction, t is a function of local separation, and is for the bi-linear law separated
into two discontinuous functions, one for δ < δ0, and one for δ0 < δ < δc where δ0 is the
local separation at the critical cohesive strength, σc and δc is the critical local separation
for cleavage. As exhibited in Figure 3.1 (b), the exponential law has continuous surface
traction as a function of local separation which reaches the critical cohesive strength at δ0.
Rice [113] defined Γ0 as the minimum work required for cleavage and corresponds to both
the critical energy-release rate and the lower-bound fracture toughness. The exponential
cohesive law was initially proposed by Roth and Kuna [117] due to the discontinuous
behaviour of the bi-linear law at δ0 which in turn resulted in a sudden increase in the
dissipated work, Γdiss as shown in Figure 3.1 (a). The variableD = Γdiss

Γ0
is often utilised

to represent the total cohesive damage where the material will yield ultimate cleavage
when Γdiss = Γ0. [63]

3.1.3 Weibull-based Beremin Model

The statistical Weibull approach established by Beremin [18] postulates a stochastic dis-
tribution of potential cleavage initiation flaws and is a local criterion for cleavage fracture
initially introduced by Weibull [147]. By assuming weakest-link behaviour as described
in Section 2.8.1, the Weibull stress is derived as a global measure of loading by modelling
the flaws as Griffith-cracks. The weakest-link principles constitute the idea of complete
failure whenever one of the statistically independent components in a series of compo-
nents fails. Thus, if cleavage initiates at any flaw, the material will yield complete failure.
The Beremin model can a priori be used regardless of constraint effects to describe the
experimental fracture toughness scatter. The Weibull stress can be utilised to quantify
the constraint effects as the failure probability scales with the Weibull stress meaning the
probability of failure with corresponding Weibull stress should be identical regardless of
the geometry constraint level.

To numerically predict the large experimental fracture toughness scatter as discussed
in Section 2.7, the Beremin model has probably become the most popular local fracture
approach in this area. The original approach is based on a hypothesis of temperature inde-
pendent critical cleavage stress similar to the RKR Criterion (see Section 3.1.1), but is also
incorporating statistically distributed Griffith-flaws based on the weakest-link principles in
Section 2.8.1. Structural steels usually contain certain populations of defects (M-A Con-
stituents, inclusions and microcracks) which follows a simple power law, p(a). This flaw
distribution function is used to calculate the probability of failure for uniformly loaded
element volumes, V0 expressed as

P (σ) =

∫ ∞
ac(σ)

p(a) da (3.2)

where ac = 2Eγs/ασ
2
c is the critical half crack length as described in Equation 2.19

substituted with α as a mathematical constant function of the crack shape instead of π.
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[105] As shown in Equation 3.2, the probability of failure is calculated after reaching the
critical half crack length and with further crack growth.

When weakest-link principles are assumed, all the volume elements which are uni-
formly loaded can be characterised as V/V0 statistically independent elements, and the
probability of failure in volume V can be expressed as [105]

PF = 1− exp
[
− V

V0
P (σ)

]
(3.3)

The simple power law, p(a) in Equation 3.2 has been proposed through experimental met-
allurgical observations of propagated microcracks from defects. For Weibull distributions,
the flaw distribution function can be described as an inverse power law defined as

p(a) = γa−β (3.4)

with both γ and β as material constants which in turn leads to the probability of failure:

PF = 1− exp
[
− V

V0

( σ
σu

)m]
(3.5)

where the Weibull modulus (shape parameter), m and the scale parameter, σu are respec-
tively defined as [105]

m = 2β − 2 σu =

(
m

2γ

)1/m

·
(

2Eγs
α

)1/2

(3.6)

By assuming microcracks modelled as Griffith flaws and a microcrack size distribution fol-
lowing the inverse power law in Equation 3.4, the Weibull distribution can be expressed as
[18] [25] [93]

PF (σw) = 1− exp
[
− 1

V0

∫
Vpl

(σ1

σu

)m
dV

]
= 1− exp

[
−
(σw
σu

)m]
(3.7)

where PF is the Weibull cumulative probability of failure, m is the Weibull modulus,
σu is the scale parameter, and σw is the Weibull stress determined by the volume size
effects and principal stresses in the respective elements near the crack tip as expressed in
Equation 3.8. [18] [125] [96] The Weibull distribution in Equation 3.7 is defined with two
material dependent parameters, m and σu which respectively represent the size of the flaw
distribution and the Weibull scale parameter.

σw =

[ ∫
Vpl

(σ1)m
dV

V0

]1/m

=

[ n∑
i=1

(σi1)m
Vi
V0

]1/m

(3.8)

The Weibull stress, σw in Equation 3.8 is the random variable in the two-parameter
Weibull distribution in Equation 3.7 and must be computed in order to describe the shifting
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material behaviour during blunting and crack propagation. σ1 is the maximum principal
stress, m is the same Weibull modulus as in Equation 3.7, and V0 is the initial element vol-
ume. Vpl is the entire plastic volume of the structure called the fracture process zone (FPZ)
as shown in Figure 3.2 and represents the volume of all elements which have undergone
enough plastic deformation to yield a certain probability of slip-induced cleavage due to
dislocation pile-ups. The reference volume, V0 is often set as temperature independent
and must be small enough to resolve extreme stress levels ahead of the crack tip and large
enough to allow the presence of a critical flaw. [116]

Figure 3.2: Illustration of the FPZ evolution during crack propagation. [96]

As expressed in Equation 3.8, the Weibull stress must be calculated by integrating the max-
imum principal stresses over the entire FPZ. Nevertheless, as the Beremin model follows
the weakest-link principle, the Weibull stress can be determined by calculating the aggre-
gate sum of the maximum principal stresses from all the elements in the FPZ. For a specific
time increment, the Weibull stress calculation must account for both volume change and
the maximum principal stresses in all the statistically independent volume elements in the
fracture process zone.

The FPZ ahead of the crack tip contains potential sites for cleavage initiation and is
defined as a highly stressed region with plastic deformation. Ruggieri and Dodds [122]
[123] [121] [124] described the FPZ in Figure 3.2 as the loci where σ1 ≥ λσ0, λ ≈ 2 was
fulfilled. However, Beremin [18] and Mudry [93] defined the FPZ as the plastic region
ahead of the macroscopic crack where σeq ≥ σ0 was fulfilled. As the crack grows, the
FPZ evolves accordingly as illustrated in Figure 3.2 which in turn leads to higher Weibull
stress as the crack advances. Fracture geometries with low constraint level experience
a significant increase in stress triaxiality ahead of the crack tip during ductile tearing,
and fracture geometries with a high constraint level exhibit less stress triaxiality elevation
during ductile tearing. Nevertheless, the high stress triaxiality region will expand with
increasing crack growth leading to a more prominent FPZ which in turn is more vulnerable
to cleavage fracture initiation. [122]

The Weibull parameters, m and σu must be separately calibrated and fitted by com-
paring the simulated Weibull stress with the experimental results which in turn requires a
comprehensive calibration scheme in order to get an optimal fit between the probability of
failure and the critical Weibull stresses. One of the methods is to utilise a non-dimensional
Weibull stress σ̄w = σw/σu to define the probability of failure as PF = 1− exp[−(σ̄w)m]
and fit it to the experimental probability of failure. Rank probabilities of each fracture
point are utilised to represent the cumulative probability of failure by ranking the criti-
cal Weibull stresses in ascending order, and an approximation scheme such as maximum
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likelihood estimation or mean least square regression is used to calibrate the Weibull mod-
ulus. After the m-value is calibrated from the previous fitting procedure, the Weibull stress,
σw can be fitted to the Prank = 63.2% (or 1 − 1/e) to find the assigned scale parame-
ter, σu. [152] Recent studies disclose the best rank probability to estimate the cumula-
tive probability of failure for Weibull distributed materials as the median rank probability
F (i, n) = (i−0.3)/(n+0.4), i ∈ [1, n] for both Monte Carlo simulations with maximum
likelihood estimation [45] and logarithmic Weibull representation utilising the mean least
square regression method [77] where i is the rank number of n specimens arranged in as-
cending order. There are several other methods to determine the Weibull parameters, and
the whole Weibull parameter study is further described in Section 5.3.1.

The two-parameter Weibull model approach implies that a relatively small fracture
toughness or Weibull stress leads to a finite failure probability. However, as discussed in
Section 2.3.1, cleavage fracture cannot occur before sufficient energy to break the atomic
bonds and crack propagation have endured. Hence, it may exist a threshold limit for the
minimum Weibull stress or fracture toughness for which the cracks are completely arrested
below this threshold value. By recognising these problems, Anderson et al. [5] made a
simplified three-parameter Weibull distribution which approximates the probabilities of
crack arrest and propagation expressed as

PF (KI) = 1− exp
[
−
(KI −Kmin

K0 −Kmin

)4]
(3.9)

where KI is the stress intensity factor for a mode I crack, K0 is the fracture toughness
at 63.2% probability of failure, and Kmin is the threshold fracture toughness estimated
to 20 MPa

√
m for common ferritic steels under SSY conditions. [11] A similar ap-

proach is proposed by Wallin [144] who defined KI in Equation 3.9 as KJC equivalent
with the critical fracture toughness corresponding to PF . Wallin suggested a master curve
approach where K0 changes with temperature by calibrating a reference temperature, T0

for each specimen geometry by utilising a K0 estimation scheme based on censored frac-
ture toughness data. However, Gao et al. [47] substituted all the stress intensity factors in
Equation 3.9 with corresponding Weibull stresses and introduced a new threshold Weibull
stress, σm,min in the Weibull cumulative distribution function

PF (σw) = 1− exp
[
−
(σw − σw,min
σu − σw,min

)m]
(3.10)

where σm,min is defined at the time increment where KI = Kmin (in plane-strain),
and assumes that cleavage fracture cannot occur below this threshold Weibull stress value
(σw < σw,min) due to crack arrest and lack of energy dissipation. Nevertheless, if the
thickness of the fracture mechanics test specimens remains identical, the threshold stress
can simply be defined as σ∗w = σw − σm,min and can a priori follow the same parameter
calibration procedure as the two-parameter Weibull model. [47]

If small-scale yielding (SSY) conditions are fulfilled, the original Beremin theory can
describe the real probability to failure as

PF = 1− exp

[
− σm−4

0 K4
ICBCm(n)

V0σnu

]
(3.11)
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where PF is the cumulative probability to failure, σ0 is the yield strength, B is the
specimen thickness, V0 is the volume of the mesh element at the crack tip, and KIC is the
fracture toughness for a given probability. Cm(n) can be expressed as

Cm(n) =

∫ π

−π
gmθθ(θ)dθ

∫ α(θ)

0

fm(u)udu (3.12)

with ∆u steps related to the mesh element length, stress intensity factor, and yield
strength. Equation 3.11 is found in the ASTM standards [11] and can describe the size ef-
fects and the fracture toughness with changing temperature, specimen thickness, and yield
strength. The whole criterion can be implemented into computer programs to compute
equal probability distributions. [104]

3.2 Ductile Region
This section describes The Complete Gurson Model which in turn can be utilised to sim-
ulate the ductile material softening mechanisms as described in Section 2.4. The ductile
damage model has shown to be able to describe the fracture toughness in the upper ductile-
to-brittle transition region or the so-called ductile region. Several models have been devel-
oped over the last decades in order to describe the ductile mechanisms, and some of them
exhibit noticeable results in the ductile region. One of the most common ductile mod-
els is developed by Rousselier [118] [119] which is based on constitutive relationships
including coalescence and cavity growth for accurate material characterisation and good
transferability of material data to cracked structures. The Rousselier model comprises
similarities with the Gurson model discussed in Section 3.2.1 as the Rousselier model is
based on a local approach to fracture and damage mechanisms by predicting the effect of
inclusion content and temperature concerning ductile fracture. [118] Both Rousselier and
Gurson are plasticity theories utilised to describe the material softening with continuum
mechanics composing idealised growth of voids. Other ductile models are usually based
on the original Gurson model [53] with extensions such as The Complete Gurson Model
described in Section 3.2.1 and other non-local Gurson models. [111] [64]

3.2.1 The Complete Gurson Model
As discussed in Section 2.4, a ductile fracture is often a result of void nucleation, void
growth, and void coalescence as engineering steels contain inclusions and second-phase
particles which nucleate micro-voids during plastic deformation. The most commonly
used model for elastic-plastic materials to simulate and describe the ductile mechanisms is
the model initially developed by Gurson [53] and later modified by Tvergaard and Needle-
man [136][140][137]. The original Gurson model only accounts for void nucleation and
void growth, and the coupling between plasticity and damage which can reflect the voids’
softening effect. When Tvergaard and Needleman introduced the critical void volume
fraction, the model considered the impact of void coalescence and is also known as the
Gurson-Tvergaard-Needleman (GTN) model. They were able to avoid the problem of
complete material loss Gurson initially had and modified the homogeneous yield function
as expressed in Equation 3.13.
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φ(qvm, σf , f, σm) =
q2
vm

σ2
f

+ 2q1fcosh
(3q2σm

2σf

)
− 1− (q1f)2 (3.13)

σm is the mean stress, f is the void volume fraction, qvm is the von Mises stress,
and σf is the flow stress of the matrix material. q1 and q2 are parameters introduced by
Tvergaard and Needleman [136][137] in order to modify the original Gurson model [53]
and is respectively equal to 1.5 and 1.0. As the yield function depends on the void volume
fraction, both void nucleation and void growth parameters are essential. Equation 3.14
illustrates the strain-controlled nucleation where fε is the void nucleation intensity, and εp

is the equivalent plastic strain. Due to the incompressible nature of the matrix material and
the requirement of a volume preserving plastic flow of the matrix material, the growth rate
of existing voids can be expressed as in Equation 3.15 where εp is the plastic strain tensor,
and I is the second-order unit tensor known as the Kronecker delta, δij .

dfnucleation = fε(ε
p)dεp (3.14)

dfgrowth = (1− f)dεp : I (3.15)

However, the GTN model did not have physical mechanisms based on void coalescence
criterion which is required when utilising realistic micro-void parameters. [41] Thoma-
son’s plastic limit load model for coalescence [134] is one of several coalescence models
[103][50][15] which can be used to complete the GTN model. Thomason argued that void
nucleation and growth competed with localised void coalescence and the homogeneous
deformation phase could shift to the localised deformation phase at a critical moment. For
2D strain problems, the limit can be expressed as in Equation 3.16 where σf is the flow
stress, and σ1 is the maximum principal stress. R and r are the current average void radius
and intervoid distance calculated from principal strains (see Appendix A.2).

σ1

σf
<

0.3

r/(R− r)
+ 0.6 no coalescence

σ1

σf
=

0.3

r/(R− r)
+ 0.6 coalescence starts

(3.16)

Zhang et al. [160] combined the GTN model for void growth and Thomason’s plastic
limit load model for coalescence and created The Complete Gurson Model. With the
complete model, the critical void volume fracture, fc can be determined automatically
from the plastic limit load model and does not need to be fitted as a material parameter
which in turn means the ductile fracture is only linked to void nucleation parameters.
Zhang usually applies a cluster nucleation model which assumes all the microvoids will
nucleate at the beginning of plastic deformation and the void volume fraction is exclusively
from the growth of existing voids following Equation 3.15. [160] In FEA, the mesh size
is solely related to the material characteristic length parameter and can thus link the mesh
size directly to the material in The Complete Gurson Model.

Tvergaard and Needleman [136] simulated artificial acceleration of the void growth,
f∗ as post-coalescence deformation behaviour which in turn resulted in the modification
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of the yield function to account for final material failure by substituting the void volume
fraction, f in Equation 3.13 with f∗ as expressed in Equation 3.17.

f∗ =

{
f for f 6 fc

fc +
f∗
u−fc
fF−fc (f − fc) for f > fc

(3.17)

f∗u = 1/q1, f0 is the initial void volume fraction, fc is the critical void volume fraction,
and fF is the void volume fraction at the end of coalescence defined as fF = 0.15 + 2f0.
When the void volume fraction reaches the critical value fc, the artificial acceleration of
the void growth, f∗ substitutes f in Equation 3.13 after which the load bearing capacity
drops rapidly.

3.3 Transition Region

The transition region in the ductile-to-brittle transition of steels has proved to be ex-
tremely challenging but crucial to characterise and predict. A range of different approaches
has been tested by several scientists the last three decades, and most of the simulation
schemes comprise one model to describe the ductile mechanisms in Section 2.4, and a post-
processing model to predict the occurrence of brittle fracture as described in Section 2.3.
The most common models to describe ductile mechanism are the Rousselier model and
the Gurson model as discussed in Section 3.2, and the usual post-processing models are
the RKR Criterion and Weibull-based Beremin models as described in Section 3.1. Also,
the cohesive zone model described in Section 3.1.2 can be utilised to define the minimum
work required for brittle fracture combined with for example non-local Gurson models.
[63] There are several other model combinations to predict the concurrent ductile and brit-
tle mechanisms in the transition regions, and two of them are the Gurson-RKR approach
described in Section 3.3.1, and the Beremin-Gurson approach described in Section 3.3.2.

3.3.1 RKR and Gurson

The Combined Gurson-RKR Model is based on the RKR Criterion in Section 3.1.1 and
The Complete Gurson Model in Section 3.2.1. The RKR Criterion is implemented to iden-
tify cleavage initiation as a post-processing routine combined with The Complete Gurson
Model. The RKR Criterion as a post-processing routine is based on two parameters, the
critical opening stress and the characteristic distance along the crack ligament. If the
opening stresses ahead of the crack tip exceed the critical opening stress over the entire
characteristic distance, the material will fail by cleavage fracture. The criterion solves the
singularity complication at the crack tip as discussed in Section 3.1.1 by considering open-
ing stress evolution along the crack ligament instead of a singularity point at the crack tip.
The RKR Criterion is based on the critical stresses at the lowest temperature in the brittle
region exhibiting solely brittle behaviour and are initially defined as temperature inde-
pendent. The critical opening stresses are further characterised as material parameters by
utilising a Gurson UMAT (see Section 5.4) as the FE-model material to predict when the
material fails by cleavage in the transition region. Temperature dependent critical opening
stresses can be approximated in order to visualise the ductile-to-brittle transition regions
and to identify the transition temperature.
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The temperature dependent true plastic flow curves from all the uniaxial tensile tests are
first incorporated as material properties in the original ABAQUS CAE model. From the
resulting ABAQUS database file (.odb), a path along the crack ligament is defined to anal-
yse the stresses perpendicular to the crack ligament. The characteristic fracture toughness
at the lowest temperature in the brittle region is chosen based on the BS 7910 Standard
[30]. For instance, the standard characterises the second lowest fracture toughness value
as the MOTE value when considering a fracture tests series comprising six specimens as
described in Appendix D.4. In ABAQUS, the Force-CMOD curve should coincide with
the experimental results if the material properties from the uniaxial tensile tests are prop-
erly fitted. When analysing 2D FE-models in ABAQUS, the simulated mid-point force
will be 20 times less than the experimental force due to symmetry and unit thickness (for
10x10mm2 SENB specimens). By utilising the path function in ABAQUS, the opening
stress as a function of true distance from the crack tip along the ligament can be extracted
from the critical time increment where the FE-model simulates the critical fracture tough-
ness. The characteristic distance from the applicable opening stress at the lowest temper-
ature in the brittle region is the fundamental basis for the whole simulation scheme. The
same method can be utilised by substituting the critical fracture toughness with the critical
force. Nonetheless, the time increment from the critical fracture toughness method should
a prior be identical to the time increment from the critical force method as the simulated
Force-CMOD curve fits the experimental Force-CMOD curve.

Determining the RKR Parameters

The parameters for the RKR criterion are the characteristic distance, xc and the critical
opening stress, σc. By utilising the critical time increment from either the critical fracture
toughness or force, the opening stress as a function of true distance from the crack tip is
plotted accordingly as shown in Figure 3.3. The critical distance, xc should a priori be
determined from the microstructure corresponding to two grain diameters as discussed in
Section 2.3.1. Nevertheless, the characteristic distance is in the current RKR Criterion
defined as a material fitting parameter from which the critical opening stress can be found.
Once the characteristic distance is chosen, the critical opening stress, σc can be defined as
the highest stress where the opening stress, σ22 is maintained over the entire characteristic
distance, xc as shown in Figure 3.3.

Figure 3.3: Opening stress as a function of true distance from the crack tip [4]
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The critical opening stress and the characteristic distance at the lowest temperature in the
brittle region are initially used as the fracture criterion for all temperatures when consid-
ering the critical opening stress as temperature independent. Thus, cleavage fracture initi-
ation is in all the ductile-to-brittle transition regions identified at the first time increment
where the opening stresses exceed the critical opening stress over the entire characteris-
tic distance. From the applicable critical time increments, the fracture toughness values
can be extracted directly from ABAQUS and incorporated as a ductile-to-brittle transi-
tion curve. The curve will thus describe when the material yields cleavage fracture at the
respective temperatures and act as a conservative cleavage criterion.

However, when considering the critical opening stress as temperature dependent, the
critical opening stresses are found at the critical time increment corresponding to the char-
acteristic experimental fracture toughness at the respective temperatures. The critical time
increment is thus identified when the simulated fracture toughness reaches the character-
istic experimental fracture toughness at the applicable temperatures. The critical opening
stress as a function of temperature is then established to deduce a linear approximation of
opening stress and temperature. The resulting opening stresses can then be utilised to visu-
alise the full extent of the ductile-to-brittle transition regions and identify the appropriate
transition temperatures.

3.3.2 Beremin and Gurson

The Combined Beremin-Gurson Model is based on the Weibull-based Beremin Model in
Section 3.1.3 and The Complete Gurson Model in Section 3.2.1. The Beremin model is
used to calculate the probability of brittle failure by considering volume elements instead
of characteristic distances. The volume elements in the finite element fracture test simula-
tion are defined as statistically independent entities following the weakest-link principles
and Weibull distributed volume defects as described in Section 2.8.1 and 2.8.2, respec-
tively. The Beremin model is used as a post-processing routine similar to the RKR Crite-
rion (see Section 3.1.1) but is based on statistical distributed flaws and defects in volume
elements instead of characteristic distances. The maximum principal stresses in all the
volume elements are calculated by considering the mean stress from all the nodes in each
element which in turn independently contribute to the total Weibull stress in Equation 3.8.
As the Beremin model originally only predicts brittle failure for fracture specimens in
the brittle region without ductile tearing [18], it is imperative to introduce another model
which can describe the degradation of the material stress capacity by considering material
softening during crack propagation and ductile mechanisms. Hence, The Complete Gur-
son Model can be utilised to describe the continuum damage processes happening in the
transition and ductile regions.

Scientists like Xia and Shih [152], Koers et al. [73], and Rossoll et al. [116] have all
utilised a Weibull-based model to predict brittle failure combined with a modified Gurson
model describing void-induced material softening in the transition region. Several papers
show promising results in the brittle and transition region by considering the void-induced
ductile damage and statistically independent defect distribution as shown in Figure 3.4 (a).
However, multiple material parameters remain uncertain with increasing temperature, and
the ductile region is still not yet fully accounted for in the ductile-to-brittle transition of
ferritic steels with concurrent void-induced damage and statistically distributed defects.

35



Chapter 3. Constitutive DBT Models

Figure 3.4: (a) Defect and void distribution, (b) Crack ligament and elements with initial void
volume fraction, (c) Crack setup with constituent symmetry plane and mesh arrangement [122]

The simulation material in The Combined Beremin-Gurson Model is characterised as a
user-defined material (UMAT) constituting cell elements with initial void volume frac-
tions as shown in Figure 3.4 (b) which in turn is specified by connecting the experimental
resistance curves to the finite element cell volume. Figure 3.4 (c) illustrates the mesh ar-
rangement used in the simplified finite element model with squared four-node elements
where the Gurson model with its constitutive Gurson parameters are fitted to the experi-
mental resistance curve in the ductile region or the upper transition region. As the Gurson
model should provide proper ductile tearing with increasing plastic deformation, the sim-
ulated void-induced damage is ideally fitted in the ductile region. In case of insufficient
mesh resolution during plastic blunting, a sub-cell averaging scheme by Bilby et al. [23]
can be utilised instead of manually reducing the mesh element size.

After the Gurson parameters are fitted in the ductile region or the upper transition
region, the Weibull parameters for the Beremin model can be determined. The Weibull
modulus is first calibrated through an iterative procedure by fitting critical experimental
fracture data in the brittle region with finite element simulated fracture data. In the com-
putational cell model, the ductile crack extension results in cell extinction through void
growth and void coalescence within the Gurson UMAT following its yield function (see
Equation 3.13). The Gurson UMAT is utilised as the FE-model material in the Weibull-
based Beremin model which in turn is used in parallel by independently describing the
flaw distribution within statistically independent unit volumes in order to calculate the
probability of brittle failure. Thus, The Complete Gurson Model simulates ductile tearing
by considering void-containing cell elements and the Beremin model based on weakest-
link statistics is incorporated in the cell element model as a post-processing routine to
predict the onset of unstable cleavage fracture. Hence, the combined model constitutes an
active competition between unstable nucleation of microcracks at flaw interfaces leading
to cleavage fracture and nucleation of voids leading to ductile fracture. By accounting for
the material softening mechanisms, the opening stress levels ahead of the crack and in the

36
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fracture process zone will a priori be substantially reduced which in turn leads to wide
confidence intervals.

The success of The Combined Beremin-Gurson Model hinges on the accuracy of the
stress field evolution during ductile crack growth. Hence, the Gurson void-induced cell
damage model must concurrently and accurately characterise the micro-separation during
crack growth in competition with the critical flaw distribution in the transition region. Xia
and Shih [152] proposed a cleavage fracture model based on the constraint effects studies
by Koers et al. [73] and Wallin [142] which recognised that the amount of tearing depends
on microstructure and crack tip constraint. As the ductile tearing is the precursor to cleav-
age fracture, and both brittle and ductile mechanisms are in competition in the transition
region, the predictive approach relies on the accuracy of the ductile crack growth charac-
terisation and constraint relaxation. Hence, the initial void volume fraction, f0 is fitted in
the ductile region to account for the void distribution, and the Weibull modulus, m is cal-
ibrated in the brittle region to characterise the flaw distribution of second-phase particles
and other defects. The complete simulation scheme will then a priori be able to run compu-
tational simulations to predict relationships among probability of brittle fracture, loading,
crack growth, fracture toughness, and displacement for the whole ductile-to-brittle transi-
tion of ferritic steels. Thus, the combined model can yield better toughness scaling in the
transition and ductile regions. Hence, the concurrent ductile mechanisms from the Gurson
model and the brittle flaw distribution from the Beremin model can yield good predictions
of the fracture toughness scatter band for different geometry constraint levels. More about
the parameter studies and the implementation procedures of The Complete Gurson Model
and the Beremin model in Section 5.4 and 5.3, respectively.
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Chapter 4

Preliminary DBT Model

This chapter comprises the most important discoveries and conclusions from the prelim-
inary work conducted prior to the master’s thesis. [126] The initial study is unpublished,
and the overall conclusion and discussion are thus presented in full. The final review
of the two models is thoroughly described, and less attention is directed to the prelimi-
nary findings leading to the final simulation scheme. The initial study is based on The
Combined Gurson-RKR Model described in Section 3.3.1 and consists of The Complete
Gurson Model (see Section 3.2.1) to simulate material softening, and the RKR Criterion
(see Section 3.1.1) as a post-processing routine to predict brittle failure. The simulation
scheme considers a separate SENB05 fracture mechanics test series with corresponding
uniaxial tensile tests (see Section 2.6.4 and 5.2) conducted at -60◦C, 0◦C, and 21◦C.

4.1 Experimental Data and Material Parameters
SINTEF Industry conducted several fracture mechanics tests and tensile tests at -60◦C,
0◦C, and 21◦C, and by utilising SENB05 ( aW = 0.5) specimens with a cross-sectional
area equal to 10x10mm2, the applied load with the corresponding CMOD are concurrently
measured during bending. The tests are stopped if the specimen fractures, or unloaded if
the specimen reaches a desired CMOD. After the tests are conducted, the specimens are
cracked open, and an optical microscope is utilised to measure the plastic blunting and total
crack growth. The corresponding CTODs are calculated by utilising the measured CMODs
and Equation 2.22. As discussed in Section 3.3.1, the Force-CMOD curve from the charac-
teristic specimen at the lowest temperature in the brittle region determines the critical force
and fracture toughness for the failure criterion. The preliminary Force-CMOD curves with
all the specimens utilised in this chapter are illustrated in Appendix D.1.

Figure 4.1 exhibits the CTODs from the end of all the fracture mechanics tests. The
blue squares are specimens unloaded at desired CMODs, and the red crosses represent
fractured specimens. As shown in Table 4.1, all the specimens at room temperature are un-
loaded, while at 0◦C and -60◦C, some specimens fractured and some were unloaded. The
total ductile crack growth, ∆a and CTOD increases with increasing temperature which
in turn illustrates the ductile-to-brittle transition where the steel exhibit brittle character-
istics with low fracture toughness at low temperatures, and ductile mechanisms with high
fracture toughness at higher temperatures.
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4.1 Experimental Data and Material Parameters

Figure 4.1: SENB05 experimental ductile-to-brittle transition scatter plot

Table 4.1: Experimental CTOD and ∆a at unloading and fracture. F = Fracture, U = Unloading

-60◦C 0◦C 21◦C

CTOD ∆a Mode CTOD ∆a Mode CTOD ∆a Mode
mm mm F/U mm mm F/U mm mm F/U

0.111 0.07 F 0.205 0.23 U 0.259 0.22 U
0.094 0.08 U 0.318 0.39 F 0.538 0.89 U
0.052 0.05 F 0.353 0.47 U 0.368 0.51 U
0.076 0.07 F 0.101 0.08 F 0.458 0.77 U
0.042 0.03 U 0.133 0.11 U 0.134 0.09 U
0.110 0.06 U 0.175 0.17 F 0.190 0.19 U

In order to develop a simulation model which accounts for the whole ductile-to-brittle
transition of steels, The Complete Gurson Model is combined with the RKR Criterion as
a post-processing routine as described in Section 3.3.1. The following list constitutes the
comprehensive process of determining the essential material properties and the constitutive
model parameters:

1. Tensile testing conducted at temperatures in the brittle, transition and ductile regions

(a) Plot the engineering stress-strain curves

i. Determine the elastic parameters, E and v, and the characteristic yield
strength, σys

(b) Plot the true plastic stress-strain curves

i. Calibrate the strain hardening exponent, n and estimate true plastic flow
curves with limited data points for simple model characterisation in ABAQUS
by utilising the Ramberg-Osgood equation and the experimental true plas-
tic strain-stress curves
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2. Fracture mechanics testing at all temperatures utilising SENB specimens

(a) Measure the mid-point force as a function of CMOD and plot corresponding
Force-CMOD curves

(b) Measure the crack growth and plastic blunting by cracking the specimens open
and utilise an optical microscope

(c) Calculate the CTODs by utilising measured CMODs and crack growth at un-
loading and fracture (see Section 2.6.4)

(d) Plot the experimental CTOD scatter of all unloaded and fractured specimens

3. Develop ABAQUS Gurson UMAT

(a) Create an ABAQUS finite element model with accurate dimensions, symmetry
axes, and boundary conditions

i. Define the mesh element length, lc = 0.1mm

ii. Incorporate the material properties and parameters from the estimated true
plastic flow curves into the Gurson material code

iii. Define the initial Gurson parameters as fc = 0.2 and f0 = 0.0014

(b) Calibrate the initial void volume fraction, f0 by fitting the Gurson simulated
resistance curve to the experimental resistance curve at the highest tempera-
ture in the ductile region. Remember to exclude both simulation blunting and
experimental blunting during the fitting procedure

4. Develop simple ABAQUS FE-model

(a) Create an identical model as in the previous stage but only incorporate E, v,
and the estimated true plastic stress-strain curves as material parameters

(b) Run simulations and verify the accuracy of the FE-model by fitting the sim-
ulated Force-CMOD curve to the experimental Force-CMOD curves at the
lowest temperature in the brittle region

(c) Set the characteristic distance, xc equal to the diameter of two grains. If un-
known, use 60 microns (0.060mm) as a reference distance

5. Determine the temperature independent opening stress (if applicable)

(a) Examine the experimental Force-CMOD curve to identify the characteristic
fracture toughness and use the simple ABAQUS model to find the critical
time increment. Use the experimental fracture toughness at failure from the
characteristic specimen at the lowest temperature to identify the critical time
increment in the ABAQUS simulation

(b) At the applicable critical time increment, create a path along the crack ligament
and plot the opening stress as a function of true distance from the crack tip

(c) Find the largest opening stress which is maintained over the entire charac-
teristic distance and define it as the temperature independent critical opening
stress, σcTID
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4.2 Gurson-RKR Model 1

6. Determine the temperature dependent opening stresses

(a) Find the critical opening stresses at the corresponding time increments for all
the lowest experimental CTOD fracture values. Use the last time increment in
the simulation if none of the specimens fractured at the respective temperature

(b) Plot all the critical opening stresses as a function of temperature and find the
best approximation. Microsoft Excel with its trendline approximation tool is
recommended

(c) For the applicable specimens, use the approximation and the critical opening
stress available at the lowest temperature to approximate the remaining critical
opening stresses, σcTD at higher temperatures

(d) If the approximation is set as linear, use the characteristic experimental values
to create the linear approximation. Combine the temperature approximation
with the known opening stress and extrapolate the remaining opening stresses

All the constitutive parameters utilised in this section are displayed in Table 4.2. The
parameters and material properties are extracted from experimental tests and simulations
at -60◦C, 0◦C, and 21◦C.

Table 4.2: All the constitutive parameters utilised in the Combined Gurson-RKR Model.
σcTD and σcTID are the temperature dependent and independent critical opening stresses

T E v σys f0 fc lc xc σcTD σcTID
◦C [GPa] [MPa] [mm] [µm] [MPa] [MPa]
-60 697 2355
0 208 0.3 676 0.0012 0.2 0.1 60 2405 2355
21 667 2375

4.2 Gurson-RKR Model 1
A Combined Gurson-RKR Model can be established by utilising the constitutive parame-
ters in Table 4.2. The Gurson parameters are first estimated at 21◦C to describe the ductile
mechanisms, and then the RKR Criterion is fitted as a post-processing routine to predict
brittle failure at -60◦C. The distance-based RKR Criterion can predict brittle failure at
-60◦C but needs an underlying model to describe the material softening at higher temper-
atures. The temperature independent opening stress, σcTID in Table 4.2 is defined at the
characteristic CTOD value at -60◦C as described in Section 3.3.1.

The resulting ductile-to-brittle transition curve with temperature independent critical
opening stress for the Combined Gurson-RKR Model is illustrated as the thick red line in
Figure 4.2. The DBT curve follows the Gurson-RKR curve of the characteristic specimen
(#4) from -60◦C until it intersects with the simulated CTOD at maximum force curve at
about 9◦C, and then follows the latter curve to 21◦C. Thus, the material might fail by
cleavage below 9◦C and becomes solely ductile when exceeding 9◦C. The DBT curve
fits at both -60◦C and 21◦C which is expected as the model is fitted at both tempera-
tures. However, the DBT curve does not correspond with the experimental scatter in the
transition region. The characteristic value at 0◦C should a priori be between the second
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lowest and the lowest fracture CTOD values. The lowest experimental fracture at 0◦C
occurs at CTOD = 0.101mm, and the second lowest fracture at CTOD = 0.175mm. Also,
the lowest unloading CTOD value is equal to 0.133mm which in turn makes the lowest
CTOD at fracture excessively conservative as the unloading happens at a CTOD higher
than the lowest fracture value. Nevertheless, the characteristic CTOD at 0◦C is equal to
0.111mm and thus between the two fracture CTOD values. Hence, the brittleness is highly
overestimated at 0◦C which in turn means the model also overestimates the brittleness at
21◦C when considering the same critical opening stress. Thus, the combined model is too
conservative to give an accurate representation of the ductile-to-brittle transition.

Figure 4.2: DBT with CTOD at maximum force as the competing criteria
Temperature independent (TID) critical opening stress fitted at -60◦C.

The Combined Gurson-RKR Model can describe the material behaviour at -60◦C which
is expected as the critical opening stress is fitted at this temperature. However, the model
is unable to accurately describe the proper material behaviour in the transition and ductile
regions, and it is inadequate to only incorporate the true plastic flow curves as temperature
dependent material parameters. The initial void volume fraction, f0 fitted at 21◦C, and
the critical opening stress fitted at -60◦C are both initially established as temperature in-
dependent. The model should a priori simulate more ductile crack growth at 0◦C prior to
brittle fracture, and the initial void volume fraction or the critical opening stress might be
temperature dependent. Thus, a temperature dependent critical opening stress may yield a
better representation of the experimental fracture toughness scatter at 0◦C and 21◦C.

4.3 Gurson-RKR Model 2

In order to visualise the DBT regions, the experimental fracture toughness scatter needs to
be representative and not based on desired CTOD values where the specimens are unloaded
before reaching maximum force, or specimens which are unloaded or fail after reaching
the CTOD at maximum force. Even though all the experimental specimens at 21◦C are
unloaded, it is still unknown which ones exceeded the CTOD at maximum force. The
following criteria must be fulfilled in order to illustrate the representative scatter plot:
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• Experimental specimens which are unloaded before reaching maximum force are
redundant as they do not tell anything about how far the specimens are able to bend
before fracturing, or if the specimens can survive the critical maximum force. These
specimens are removed from the experimental scatter plot.

• Experimental specimens which survives the maximum force and continue bending
before either fracturing or are unloaded must be adjusted. The interesting and repre-
sentative values are the CTOD at maximum force as the material is certain to exhibit
ductile behaviour after this point. Thus, all the experimental values which survive
the maximum force are set to the CTOD value at maximum force.

None of the specimens reached the maximum force at -60◦C which in turn means only the
three fractured specimens are representative as it is unknown if the unloaded specimens
would cleave before reaching maximum force or not. At 0◦C, four specimens passed the
maximum force before they fractured or were unloaded. Two of them fractured before
reaching maximum force, and two specimens were unloaded before reaching maximum
force. And at 21◦C, all the specimens were unloaded where two were unloaded before
reaching maximum force, and four unloaded after reaching maximum force. Thus, seven
specimens are redundant as they were unloaded before reaching maximum force, and eight
specimens passed the maximum force and are set to the CTOD at maximum force.

The critical opening stress as a function of temperature must a priori be approximated
from the characteristic experimental values to give a representative description of how the
critical opening stress changes with temperature. After removing the redundant speci-
mens, the characteristic value at -60◦C is now the lowest fracture CTOD value, and the
characteristic experimental value at 0◦C is a priori between the lowest unloaded value and
the second lowest fracture value. The lowest unloading value at 0◦C is for simplicity de-
fined as the characteristic CTOD = 0.133mm without any extrapolation. The experimental
approximation curve is illustrated with a stippled blue line in Figure 4.3, and the critical
opening stresses from the characteristic points at -60◦C and 0◦C are utilised to approxi-
mate a linear relationship between the critical opening stress as a function of temperature.

Figure 4.3: Experimental approximation, and upper and lower boundary limits.
Experimental CTOD at maximum force.
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The critical opening stresses for the lower and upper boundary limits can be established
by utilising the linear opening stress approximation in Figure 4.3. The lower boundary
limit is the lowest CTOD as a function of temperature the material might endure, and the
upper boundary limit is the highest CTOD at maximum force the material might endure.
As shown in Figure 4.3, the lower boundary limit is fitted to the lowest CTOD at 0◦C, and
the opening stress approximation is used accordingly to find the critical opening stresses
at -60◦C and 21◦C. For the upper boundary limit, the opening stress approximation is
fitted to the largest CTOD at -60◦C which in turn is utilised to approximate the critical
opening stresses at 0◦C and 21◦C. All the critical opening stresses with corresponding
CTOD values are exhibited in Table 4.3.

Table 4.3: Temperature dependent critical opening stresses and CTODs at failure. xc = 60 microns

Exp. Approximation Lower Boundary Limit Upper Boundary Limit
Temperature [◦C] -60 0 21 -60 0 21 -60 0 21

σc [MPa] 2290 2350 N/A 2285 2345 2364 2375 2435 2456
CTOD [mm] 0.052 0.133 N/A 0.037 0.101 0.255 0.111 0.258 N/A

As shown in Figure 4.3, the lower boundary limit reaches its critical opening stress at
21◦C while the upper boundary limit does not reach its critical opening stress at 21◦C and
will go towards infinity. Thus, another underlying competing criterion must be utilised to
describe the respective DBT regions. As the experimental scatter at 21◦C is only repre-
sented by CTOD at maximum force, the competing criterion for the upper boundary limit
is the highest experimental CTOD value at 21◦C. Thus, the upper criterion represents the
maximum CTOD the material can reach before the specimen endures plastic deformation
yielding lower mid-point force with further crack growth, and the lower competing crite-
rion represents the minimum CTOD at maximum force the material must reach in order
to exhibit ductile behaviour. The resulting upper and lower boundary limits are shown in
Figure 4.4 where the lowest and highest experimental CTOD at maximum force at 21◦C
are used as the competing criteria.

Figure 4.4: Upper and lower boundary limits and competing ductility criteria
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The resulting upper boundary limit is fitted to the highest experimental CTOD at -60◦C
and follows the upper limit Gurson-RKR curve until it intersects with the upper competing
criterion and remains constant to 21◦C. The resulting lower boundary limit starts at a
point below the lowest experimental CTOD at -60◦C and follows the lower limit Gurson-
RKR curve until it intersects with the lower competing criterion and follows the latter
curve to 21◦C. As shown in Figure 4.5, the DBT regions can be visualised by utilising
the resulting upper and lower boundary limits. The illustrated curves are described with
nonlinear upper and lower boundary limits in order to give a more representative ductile-
to-brittle transition. The material is in the brittle region until the upper boundary limit
reaches the lower competing ductility criteria and enters the transition region at about
-26◦C. The material remains in the transition region until the lower boundary limit reaches
the lower competing criterion and enters the ductile region at about 11◦C.

Figure 4.5: The resulting ductile-to-brittle transition regions
B = Brittle, T = Transition, D = Ductile

The Combined Gurson-RKR Model with temperature dependent critical opening stress
can visualise the three DBT regions, and by only considering the experimental CTOD val-
ues at maximum force, the upper and lower boundary limits can describe the applicable
material behaviour regions. The simulated upper and lower boundary limits capture the
whole experimental fracture toughness scatter at all temperatures and yields a good rep-
resentation of the material behaviour with shifting temperature. The linear approximation
of the critical opening stress as a function of temperature is plausible but not inevitable.
Thus, the model is somewhat inconclusive as the opening stress approximation needs to
be tested for other materials in order to conclude the temperature approximation trend.
If the opening stress temperature approximation is material independent, the resulting
Combined Gurson-RKR Model can reduce the laboratory work required to describe the
ductile-to-brittle transition.

45



Chapter 4. Preliminary DBT Model

4.4 Gurson-RKR Model Evaluation

The primary objective of developing the Combined Gurson-RKR Model is to reduce the
experimental laboratory work required to describe the ductile-to-brittle transition of struc-
tural steels. Keeping that in mind when evaluating the models highlights several chal-
lenges. The Combined Gurson-RKR Model with temperature independent opening stress
is too conservative to describe the ductile-to-brittle transition as shown in Section 4.2.
Only the true plastic flow curves are initially incorporated as temperature dependent pa-
rameters while the critical opening stress, the initial void volume fraction, and the charac-
teristic distance are fitted as temperature independent parameters.

Thus, the critical opening stress is established as temperature dependent in order to
give a better representation of the experimental scatter and a less conservative model. As
the stress state changes with temperature, it is plausible that the critical opening stress also
changes with temperature. A linear approximation of the characteristic experimental val-
ues is utilised to create upper and lower boundary limits in order to visualise the full extent
of the DBT regions. The resulting material behaviour regions can capture the full extent of
the fracture toughness scatter throughout the DBT. However, the linear approximation of
the critical opening stress as a function of temperature is plausible but not certain. Thus, to
reduce the laboratory work needed to describe the ductile-to-brittle transition, the critical
opening stress approximation must be defined as material independent. Without doing any
addition simulations for other materials, the critical opening stress as a temperature de-
pendent parameter cannot be concluded. The determination of the critical opening stress,
σc and the characteristic distance, xc is also quite challenging. Due to the large element
size and rather low mesh resolution, the determination of the critical opening stress is
rather difficult. Also, the characteristic distance, xc is fitted as constant and independent
of both microstructure and temperature, and remains questionable as the microstructure
might change with temperature and type of material.

All the uncertain parameters and challenges with the Combined Gurson-RKR Model
indicate that it might not be adequate to describe the ductile-to-brittle transition. The
model can visualise the material behaviour regions accurately when the material param-
eters are fitted in both the ductile and brittle regions. Whether the model can be used to
reduce the laboratory work needed to describe the ductile-to-brittle transition for other ma-
terials is still unknown as several material parameters remain uncertain and questionable.
If the temperature approximation of the critical opening stress is material independent, it
is still doubtful if the model will reduce the laboratory costs as the current Gurson-RKR
Model needs fracture mechanics data at an intermediate temperature in order to establish
the temperature approximation and the resulting upper and lower boundary limits.

4.4.1 Conclusion

The simulation scheme is developed in order to describe the ductile-to-brittle transition
and to visualise the DBT regions. The Complete Gurson Model is utilised to describe the
material softening, and the Gurson parameters are estimated at 21◦C where the material
is completely ductile. The distance-based RKR Criterion is utilised as a post-processing
criterion in combination with The Complete Gurson Model to predict cleavage fracture ini-
tiation, and the RKR parameters are fitted at -60◦C where the material is entirely brittle.
0◦C is used as the intermediate temperature constituting transitional behaviour with con-
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current ductile and brittle mechanisms. The Combined Gurson-RKR Model can describe
the shifting material behaviour and the fracture toughness temperature dependence.

The original Complete Gurson-RKR Model with a temperature independent critical
opening stress as the fracture criterion is not sufficient to describe the ductile-to-brittle
transition. The model is too conservative and highly overestimates the steel’s brittleness
at 0◦C and 21◦C. The constraint effects at higher temperatures are too elevated with
extended crack growth which in turn underestimates the fracture toughness in the transition
and ductile regions. The underlying model is improved by converting the critical opening
stress to a temperature dependent parameter in order to represent the whole experimental
scatter and make it less conservative.

The improved model with temperature dependent critical opening stress can visualise
the brittle, transition and ductile regions where the highest and lowest experimental CTOD
values at maximum force at 21◦C are respectively utilised as the competing criteria for the
upper and lower boundary limits. The lower boundary limit reaches the critical opening
stress at 21◦C which in turn means the underlying model still overestimates the steel’s
brittleness in the ductile region. However, the resulting upper and lower boundary lim-
its can visualise the DBT regions and clearly illustrate a temperature dependent fracture
toughness. The material is entirely brittle up until -26◦C where it enters the transition re-
gion and exhibits both ductile and brittle behaviour until the material reaches 11◦C where
the material enters the completely ductile region.

The Combined Gurson-RKR Model gives a good representation of the DBT regions
but several material parameters remain questionable, and the objective of the simulation
scheme is not unconditionally reached. The characteristic distance is fitted without directly
linking it to the microstructure, and the temperature dependent critical opening stress ap-
proximation cannot be concluded as material independent without further material testing.
Thus, the current simulation scheme needs to be fitted and adjusted accordingly when
describing the ductile-to-brittle transition of other materials, and The Combined Gurson-
RKR Model must be further improved in order to reduce the laboratory work needed to
describe the ductile-to-brittle transition.

The critical opening stress temperature dependence needs to be further investigated,
and as the initial yield strength decreases with increasing temperature and the crack tip
constraint effects increases with crack growth, the accuracy of the critical opening stress
temperature dependence remains uncertain. Another brittle fracture model can substitute
the RKR Criterion to predict unstable crack propagation and the following work needed to
drive the microcrack far enough to yield cleavage fracture. A cohesive zone model as de-
scribed in Section 3.1.2 can be used to simulate these features which in turn can eliminate
the current challenges of determining the critical opening stresses. Another approach is to
describe the fracture toughness by considering statistical features in the process of microc-
rack formation where a typical Weibull-based Beremin model as described in Section 3.1.3
can be used to compute the probability of brittle fracture. Thus, the Weibull-based Beremin
model will give a more representative characterisation of the material behaviour regions
based on statistical confidence intervals with material parameters independent of fracture
geometry and constraint levels.
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Chapter 5

Material and Model Implementation

This chapter describes the material characterisation and the model implementation meth-
ods in order to provide a profound understanding of how the models work in combination
with the simulation tools. The scope is to find the most adaptable and versatile implemen-
tation methods in order to make the final simulation as time efficient as possible.

5.1 Material

A weld simulated CGHAZ 420 MPa steel with the weld cooling time, ∆t8/5 = 5s is fur-
ther utilised and examined in the subsequent sections. SINTEF initially conducted fracture
mechanics and uniaxial tensile tests at five temperatures; -90◦C, -60◦C, -30◦C, 0◦C, and
room temperature (21◦C). The yield strengths and the ultimate tensile strengths are ex-
hibited in Table 5.2, and the chemical composition is described in Table 5.1. The Young’s
modulus equals 208 GPa, and the Poisson’s ratio equals 0.3. This weld simulated steel is
the only available material in the SINTEF database with adequate fracture mechanics and
tensile tests in the ductile region which is crucial when calibrating the Gurson parameters.

Table 5.1: Chemical composition [%wt]

C Si Mn Cu Ni CE
0.09 0.19 1.54 0.28 0.72 0.42

Table 5.2: Yield strength and ultimate tensile strength

Temperature Yield strength UTS
[◦C] [MPa] [MPa]
-90 733 1001
-60 697 961
-30 680 931
0 676 900
21 667 889
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5.1.1 Flow Curves
Simple uniaxial tensile tests are conducted in order to construct stress-strain curves and
to characterise specific material parameters such as E, σys, σUTS and v. By utilising
true stress-strain curves as shown in Figure 5.2 instead of load-elongation or engineering
stress-strain as shown in Figure 5.1, the material characteristics become independent of
test specimen geometry and shifting dimensions during testing.

Figure 5.1: Engineering stress-strain curves from the uniaxial tensile tests

The experimental true plastic flow curves must first be interpreted and abated into man-
ageable small sets of material input data in order to get representative input data for the
constitutive ABAQUS simulation models. The true stress and true strain are initially cal-
culated from the engineering stress and strain as

σ = s(1 + e), ε = ln(1 + e) , σ < σUTS (5.1)

where s is the engineering stress, and e is the engineering strain. The resulting true
stress-strain are exhibited in Figure 5.2, and the true stress and true strain are calculated up
until necking initiation at σ = σUTS where Equation 5.1 becomes invalid as the specimen
starts deforming locally which in turn makes dimension updating nearly impossible with
simple material characterisation equations. However, more advanced simulation models
such as The Complete Gurson Model in Section 3.2.1 can be utilised to characterise the
material behaviour beyond necking initiation.

The uniaxial stress-strain behaviour is characterised with a void-free (f = 0) mate-
rial matrix and background material, and the resulting true stress-strain curves follow the
Ramberg-Osgood relationship expressed as

ε =

{
σ/E , σ < σ0

C(σ/E)n , σ ≥ σ0

(5.2)

where ε is the true strain, σ0 is the initial tensile yield strength, C is a material con-
stant, σ is the current true stress, E is the Young’s Modulus, and n denotes the strain
hardening exponent.
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The latter Ramberg-Osgood approximation in Equation 5.2 can be further simplified if the
yield strength is known. The simplified Ramberg-Osgood equation can thus be deduced to

ε =

{
σ/E , σ < σ0

α(σ/E)(σ/σ0)n−1 , σ ≥ σ0

(5.3)

with α defined as α = C(σ0/E)n−1 which in turn substitutes the initial C in Equation 5.2
where α(σ0/E) is defined as the yield offset (usually 0.002). The first part of both
Equation 5.2 and 5.3 (σ < σ0) represents the linear elastic material behaviour region solely
based on the Young’s modulus defined as the slope of the stress-strain curve in the elastic
region. [108] The second part (σ ≥ σ0) represents the plastic region and the true plastic
flow curves where the material exhibits plastic deformation and material softening.

Figure 5.2: True stress-strain curves from the uniaxial tensile tests

An optimisation scheme in Microsoft Excel can be utilised to determine the constitutive
Ramberg-Osgood constants in Equation 5.2. Do natural logarithm of the true plastic flow
curves and run a mean least square linear regression of the logarithmic plot in order to find
the strain hardening exponent defined as the slope of the logarithmic regression function.
The resulting regression is virtually found by doing simple linear trend regression of the
logarithmic true plastic flow curves, and additional statistics such as material constant con-
fidence intervals can be estimated by using the regression function in the Microsoft Excel
add-on ’Data Analysis Tools’. However, a more efficient approach is suggested as the yield
strength is effortlessly identified from the uniaxial tensile tests. The material constant α is
readily calculated from the yield offset, 0.002 = α(σ0/E) by utilising Equation 5.3, and
the strain hardening exponent, n is calibrated by fitting the estimated and experimental
true plastic flow curves. The resulting material input is illustrated in Figure 5.3 where the
material input is solely based on the optimised Ramberg-Osgood equation (5.3) fitted to
experimental tensile test output.
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Figure 5.3: Experimental and Ramberg-Osgood estimated true plastic flow curves
(a) -90◦C, (b) -60◦C, (c) -30◦C, (d) 0◦C

The Ramberg-Osgood estimated material input data points exhibited in Figure 5.3 are
utilised to characterise the material behaviour after yielding. As discussed earlier in this
section, the true stress and strain are only valid up until the ultimate tensile strength, σUTS ,
which means the Ramberg-Osgood equation is only able to characterise the material up un-
til necking initiation. The material input in Figure 5.3 (a) and (b) fits the experimental
output, and are thus considered as accurate material input for the ABAQUS FE-models
described in Section 5.2. However, the material input in Figure 5.3 (c) and (d) somewhat
deviate from the experimental output at large true plastic strain levels. The large devia-
tions with increasing strain levels are due to the local material deformation after necking
initiation. Nevertheless, following the constitutive ultimate tensile strengths in Table 5.2
and the material fitting in Figure 5.3, all the material input flow curves fit the experimental
output up until the corresponding ultimate tensile strength. Hence, the material input from
the Ramberg-Osgood optimisation scheme, regardless of temperature, is accurate up until
necking initiation and can thus be applied as representative material input.

5.2 Fracture Mechanics Testing and Finite Element Model
All the applicable fracture mechanics tests are single edge notched bend (SENB) speci-
mens as shown in Figure 5.4 and are made from rolled plates where the rolling direction
might influence the results. After the specimen is cut with the right dimensions, a notch is
machined into the specimen edge creating a fatigue pre-crack with a small crack radius and
a small plastic zone. The specimen is equipped with loading cells and clips to respectively
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measure the mid-point force and CMOD in order to plot corresponding Force-CMOD
curves. The crack extension and plastic blunting are measured by cracking the specimen
open and examining the fracture surface with an optical microscope. Thus, the resistance
curves can be plotted, and the CTOD and KI values can be calculated.

Figure 5.4: SENB specimen with constitutive dimensions, fatigue pre-crack, and loads [4]

As shown in Figure 5.4, only half of the specimen needs to be simulated in ABAQUS
due to symmetry in the fracture mechanics test specimens. The finite element models are
made in 2D with unit thickness, and the applicable finite element mesh model, boundary
conditions, and dimensions are exhibited in Table 5.3 and Figure 5.5.

Table 5.3: Dimensions CAE-models

W a a/W S Length Crack-tip mesh size
Model [mm] [mm] [mm] [mm] [mm2]

SENB05A 10 5 0.5 20 40 0.05x0.10
SENB05B 10 5 0.5 20 40 0.05x0.05
SENB02 10 2 0.2 20 40 0.05x0.10

Figure 5.5: (a) Boundary conditions, material selection and dimensions for the SENB models,
(b) Detailed mesh in the crack region, (c) Full-scale finite element model used in the analysis
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Simple 4-noded 2D plane strain elements (CPE4) are used, and nonlinear effects (NLGEOM
in ABAQUS) are accounted for in the simulations. The full-scale finite element mesh
model is shown in Figure 5.5 (c), and the detailed crack tip mesh is exhibited in Figure 5.5 (b)
where a small element size is imperative to get accurate crack simulations. Two different
mesh sizes are initially considered, one with mesh element length 0.05mm and one with
mesh element length 0.10mm. Figure 5.5 (a) illustrates the boundary conditions where
the specimen is constrained at the bottom right side making it unable to follow the dis-
placement and forces the specimen to bend. The FE-model is constrained at the bottom
along the crack ligament due to symmetry, and will thus simulate the desired bending.
The arrow indicates the modelled displacement and the black sections illustrate the elastic
material used to mitigate the stress concentration at the respective nodes.

5.3 Implementation of the Weibull-based Beremin Model

The Beremin model is based on the weakest-link principles and the Weibull approach,
and is closely related to the stress field ahead of the crack and the fracture process zone
as described in Section 3.1.3. As the model predicts the probability of brittle fracture,
the fitting procedure is initially conducted in the brittle region where the material exhibits
solely brittle characteristics with a flaw distribution following the Weibull distribution and
weakest-link principles in Equation 3.2 and 3.4. However, it becomes crucial to use an
appropriate Weibull calibration method as the reliability of the Weibull parameters and the
Beremin model are highly dependent on the number of test specimens. The reliability of
the Weibull parameters might also be biased as there exist several parameter calibration
methods yielding different parameter estimates. Thus, a bias-corrected maximum like-
lihood estimation method could be used for brittle materials in case of biased Weibull
parameter estimates. [141]

All the ABAQUS CAE models are developed in 2D with representative boundary con-
ditions and displacement according to the experimental fracture mechanics tests described
and illustrated in Section 5.2. Only the Ramberg-Osgood estimated true plastic flow curves
from the experimental tensile tests following Equation 5.3 are used as material parameters
in the constitutive ABAQUS models during the initial calibration procedure. The critical
experimental fracture mechanics data are then measured for each fracture specimen in the
brittle region where the critical CTOD values related to the displacement and time incre-
ments are examined. The resulting ABAQUS database file (.odb) are then implemented
into an in-house stand-alone finite element post-processor program called LINKpfat as
described by Wormsen, Fjeldstad and Härkegård in multiple papers. [150] [44] LINKp-
fat calculates the Weibull stress from Equation 3.8 by considering the maximum principal
stresses in all elements, and the Weibull stress can then be described as a function of ei-
ther time increments or corresponding fracture toughness. See Appendix B.2 for a more
comprehensive description of LINKpfat and its Weibull stress calculation.

All the time increments in the fracture mechanics simulation are identified for each
critical fracture toughness from the experimental results. Further, the Weibull stresses and
their corresponding time increments are identified in LINKpfat and sorted in ascending
order. The rank probability, Prank described in Section 3.1.3 is then calculated accord-
ingly for each fracture specimen and plotted as a function of Weibull stress. Lastly, the
Weibull modulus is calibrated by doing an iterative fitting procedure of rank probabili-

53



Chapter 5. Material and Model Implementation

ties and critical Weibull stresses following the Weibull parameter study in Section 5.3.1
where the Weibull scale parameter, σu in Equation 3.7 is defined as the Weibull stress cor-
responding to 63.2% probability of failure and is indirectly determined after the Weibull
modulus calibration is concluded.

5.3.1 Weibull Parameter Calibration
The Weibull modulus, m and the Weibull scale parameter, σu can be estimated by several
different calibration procedures yielding biased parameter estimates. [141] The Weibull
parameters should a priori be geometry and constraint independent as they represent a
fixed flaw distribution only depending on material specific parameters as discussed in
Section 2.8.2 and 3.1.3. The constitutive calibration procedure is a simplified approach
based on an iterative process which applies median rank probabilities of experimental re-
sults and their corresponding critical Weibull stresses. Thus, the Weibull parameters are
calibrated by considering only one constraint level at one temperature which in turn makes
it fast and accurate for the recognised constraint level. The calibration procedure is based
on the mean least square method of rank probabilities and Weibull stresses, and is success-
fully implemented by Xia and Cheng [151], and Gao et al. [46], among others.

The mean least square method is based on f(x) = ax+ b as the resulting linear regres-
sion function by determining the minimum of R2(a, b) =

∑n
i=1[yi − f(xi)]

2 for n test
specimens with characteristic value yi. The probability of brittle failure in Equation 3.7 is
first rearranged, and then natural logarithms are done twice which in turn yields:

ln

[
ln

(
1

1− PF

)]
= m · ln(σw)−m · ln(σu) (5.4)

Equation 5.4 can then be described as the linear function, y = m · ln(σw) + c where m
is the slope of the curve, ln(σw) is defined as x, and m · ln(σu) is defined as c in the
corresponding regression function f(x) = m · x+ c. The rank probability, PF is obtained
by ranking the critical Weibull stresses in ascending order by utilising the median rank
probability corresponding to a 50% confidence level defined as

PF = Prank =
i− 0.3

n+ 0.4
, i ∈ [1, n] (5.5)

where i is the rank number for n test samples. Rank number 1 (one) corresponds to the
smallest Weibull stress, and rank number n corresponds to the largest Weibull stress. Both
Wallin [141] and Fothergill [45] proved the rank probability in Equation 5.5 to be the best
Weibull distribution approximation regardless of calibration methods like the maximum
likelihood method and the mean least square method. Nevertheless, rank probabilities
such as Prank = (i− 0.5)/n and Prank = i/(n+ 1) have been successfully implemented
by Gao et al. [46], and Xia and Cheng [151], respectively. The Weibull modulus is ini-
tially assumed to be an arbitrary value, mk before computing the critical Weibull stresses
by post-processing the observed experimental cleavage fracture points. Further, the rank
probability as a function of Weibull stress is plotted according to Equation 5.4 and 5.5,
and a mean least square regression is run which in turn results in a new Weibull modulus,
mk+1. If mk 6= mk+1, the post-processing is rerun with the new mk+1 value, and this
procedure is repeated until the new valuemk+1 converges to the previously simulatedmk.
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The constitutive mean least square calibration steps:

1. Assume an arbitrary Weibull modulus, mk

2. Compute the Weibull stresses for the corresponding experimental cleavage fracture
points by doing an FE post-processing routine in LINKpfat

3. Rank the Weibull stresses in ascending order and plot rank probability vs σw fol-
lowing Equation 5.5 and 5.4.

4. Use PF as the rank probability from Step 3 and σw from Step 2 to run the mean
least square linear regression of ln(ln[1/(1− PF )]) vs ln(σw).

5. The linear regression in Step 4 results in a new Weibull modulus, mk+1 defined as
the slope of the curve. Check if mk ≈ mk+1 is fulfilled. If not, determine mk+1 as
the new mk and repeat Step 2-5 until mk ≈ mk+1.

A more user-friendly and representative method is readily available to substitute the mean
least square method. Thus, the maximum likelihood estimation method can be used to
calibrate the constitutive Weibull parameters which in turn does not rely on mean rank
probabilities and is solely based on the experimental fracture points. As illustrated in
Figure 5.6, a Weibull modulus is first initialised before the generated Weibull stress as a
function of fracture toughness is plotted. The experimental fracture points are first iden-
tified in the FEA before the critical Weibull stresses are calculated at the corresponding
critical time increments in LINKpfat. Integrated functions in Matlab (see Appendix B.1)
are then used to estimate the Weibull parameters and plot the Weibull cumulative prob-
ability distribution function. The newly estimated Weibull modulus, m̂ is then reused in
another iteration until the estimated Weibull modulus remains somewhat constant.

Figure 5.6: Maximum likelihood estimation algorithm for Weibull parameter calibration [124]
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The mean least square (LSQ) method and the maximum likelihood (ML) method are
based on one single constraint level and are thus limited to this constraint level without
any extent of relation to other fracture geometries. Nevertheless, it is shown that the cali-
brated Weibull modulus for lower constraint levels is relatively identical with the calibrated
Weibull modulus for high constraint specimens. Nonetheless, the estimation process be-
comes difficult with limited experimental fracture mechanics data, and a small fracture
dataset might thus lead to relatively large Weibull modulus confidence intervals which
ultimately converge the Weibull modulus exponentially. [124]

However, an alternative approach can be utilised to calibrate the Weibull parameter
estimates if the fracture dataset is too small to calibrate unbiased Weibull parameter esti-
mates from the LSQ and ML methods. By conducting a toughness scaling procedure of
one fracture geometry with a high constraint level (configuration A) and one fracture ge-
ometry with a low constraint level (configuration B), the Weibull modulus can be calibrated
by comparing the experimental fracture toughness and the simulated Weibull stresses. As
shown in Figure 5.7 (a), the initial Weibull parameter estimates for the high constraint
specimen are used to describe the probability of failure as a function of Weibull stress
which in turn constructs confidence intervals of the preliminary Weibull estimates. These
parameters estimates are thus used to check if the same probability of failure prevails in the
low constraint specimen in Figure 5.7 (c) by comparing the predicted fracture toughness
values with the simulated probability of failure in the high constraint specimen. Hence,
the Weibull modulus is properly calibrated when both configurations yield the same prob-
ability of failure at the same critical Weibull stresses as shown in Figure 5.7 (b). [122]

Figure 5.7: Toughness scaling procedure employed with two different crack configurations
J-integral as the measured fracture toughness. [122]
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The toughness scaling should a priori incorporate the near crack-tip stress field changes
due to ductile tearing, constraint loss, volume stress effects, and its micromechanical fea-
tures of cleavage fracture. As shown in Figure 5.7 (b), the toughness scaling procedure
ultimately attain equal Weibull stresses to trigger cleavage fracture even though the frac-
ture toughness and constraint levels are considerably different. Thus, one configuration
might be used to predict the fracture toughness distributions of other fracture geometries
at a given temperature or material behaviour region.

5.3.2 Numerical Implementation

According to Ruggeri and Dodds [122], the cumulative probability of failure as a func-
tion of Weibull stress must be similar regardless of fracture test specimen geometry and
constraint level. Thus, all the test specimens must yield approximately the same Weibull
cumulative probability of failure vs Weibull stress relationship in order to apply the tough-
ness scaling concept correctly. As the Weibull modulus is fitted for one or two of the frac-
ture geometries according to the procedure in Section 5.3.1, the same Weibull modulus
should a priori yield similar Weibull cumulative probability of failure vs Weibull stress re-
lationships for other fracture geometries. If the toughness scaling is fulfilled, the Beremin
model with its constitutive Weibull parameters is thus capable of constraint-correcting the
fracture geometries. However, the toughness scaling is only valid for the respective tem-
perature and may not be representative for other temperatures yielding different material
characteristics. Thus, the Beremin model can be validified for all the test temperatures
in the ductile-to-brittle transition by conducting toughness scaling of different constraint
levels at the respective temperatures.

A third Weibull parameter can a priori be introduced to straighten out the PF vs σw
curve if it happens to illustrate a concave or convex trend. However, if the curve still does
not straighten out, the current two or three-parameter Weibull distribution could either be
characterised as incapable of representing the fracture mechanics data or the Weibull dis-
tribution could be represented with multiple populations of fracture data with so-called
Mixed Weibull Analysis. [68] [66] The mixed analysis may be required for bi-modal grain
size distributed materials with two or more independent populations with different fracture
mechanisms as discussed in Section 2.2.3. The mean least square regression and the maxi-
mum likelihood estimation can be applied by utilising the Statistics and Machine Learning
Toolbox in Matlab [85] which in turn constructs Weibull parameter confidence intervals
and Weibull cumulative distribution functions. However, the maximum likelihood estima-
tion method is often recommended for cases with small fracture datasets instead of the
mean least square method due to the readily available Matlab functions for ML estimation
(MLE). The MLE does not require any rank probability estimation nor plotting positions
and can exclusively consider the critical Weibull stresses. Another comprehensive program
for Weibull statistics is Weibull++ developed by ReliaSoft [109] which is supported by the
ROSS Gemini Centre at NTNU/SINTEF. More about the constitutive Matlab functions to
estimate the Weibull parameters in Appendix B.1.

The resulting confidence intervals following the semi-analytic expression in Equation 3.11
can be established after the Weibull parameters, m and σu are determined or calibrated at
one or multiple temperatures. The entirely analytic approach is to use either the two or
three parametric Weibull distribution following the cumulative probability of brittle fail-
ure in Equation 3.7 and 3.10, respectively. The probabilistic cleavage fracture model will
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thus be able to describe the fracture toughness with corresponding critical Weibull stresses
at all the test temperatures and plot confidence intervals accordingly.

5.4 Implementation of The Complete Gurson Model

The Complete Gurson Model consists of equations coupling plasticity and ductile damage
where the damage is considered as an internal state-dependent variable within the contin-
uum mechanics model. It is coupled to the material strain-stress field and their constitutive
true plastic flow curves which in turn is derived from a local approach to fracture consti-
tuting the ductile rupture stages in Section 2.4 in order to describe the damaged process
zone. The experimental true plastic flow curves are initially used as the material input
implemented in the Gurson FE-model material. Thus, true stresses for desired true strains
can be obtained and utilised to find the strain hardening exponent, n from the necking
phase. The deformation and failure can be predicted with high accuracy when using finite
element tools which in turn can demonstrate accurate material damage models. How-
ever, the models are highly mesh-dependent as they are susceptible to damage localisation
and strain. [19]

The input parameters in The Complete Gurson model are the true plastic flow curves
in Figure 5.3 and the Gurson parameters, f0 and fc. Several constitutive data files are
generated by running the first job from the ABAQUS CAE model; the output file (.dat),
the input file (.inp), and the ABAQUS database file (.odb). The material characterisation
section in the input file is manually updated with the Gurson parameters, f0 and fc, and
the Ramberg-Osgood estimated data points from the temperature dependent true plastic
flow curves in Section 5.1.1. The rest of the simulation is conducted directly in the input
file by implementing the Gurson model equations and characteristics through a user sub-
routine. The constitutive subroutine is defined by a user-defined material (UMAT) which
is not part of the original ABAQUS library and requires manually implemented material
input data and state-dependent variables (Appendix C.3). The simulation is then run by
activating a short command (.cmd, Appendix C.1) which concurrently runs the Gurson
UMAT (Appendix C.2) and the input file in the ABAQUS solver. It may be necessary to
manually renumber the nodes along the crack ligament with consecutive numbers as the
user subroutine is element and node dependent. If undone, the only output will be from
the first element at the crack tip which in turn is unable to describe the applicable fracture
toughness as a function of ductile crack growth.

A new output file is created after the simulation is conducted, and another commando
script is utilised (Appendix C.4) to initiate a python script made by SINTEF in order to
extract the respective CTOD and crack growth from the output file (.dat). The extracted
data is then utilised to plot the CTOD-∆a resistance curves at all temperatures. Thus, the
CTOD can be plotted as a function of ∆a at different temperatures in order to illustrate
the accuracy of the ductile mechanisms from The Complete Gurson Model by comparing
the simulated and experimental resistance curves. However, the Gurson parameters must
be refitted by trial and error if the simulated resistance curve at the highest temperature in
the ductile region does not fit the experimental results.
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5.4.1 Gurson Parameters
The Gurson model requires state-dependent variables and material input data consisting of
the Gurson parameters and the true plastic flow curves. Since the Thomason’s plastic limit
load model in Section 3.2.1 only partly solves the void coalescence criterion, the critical
void volume fraction, fc and the initial void volume fraction, f0 must be fitted accordingly.
Thus, fc becomes a by-product of the coalescence prediction while f0 must be determined
by comparing the simulated and experimental resistance curves. The Gurson parameters
are fitted in the ductile region where it will solely describe ductile mechanisms and yield
accurate predictions compared to the experimental results. Thus, the simulated resistance
curve is fitted to the experimental resistance curve in the ductile region by testing multiple
initial void volume fractions. However, the material might cleave after some extent of duc-
tile crack growth in the transition region which in turn means the Gurson parameters may
not be able to describe accurate resistance curves in this region. As the Gurson model is
unable to predict cleavage fracture initiation, the model will overestimate the loss of load-
bearing capacity and force void-induced ductile crack growth where the crack extension
will continue regardless of temperature and brittle characteristics.

The Gurson model will not capture the appropriate material behaviour in the brit-
tle region as the material exhibit solely brittle characteristics. The material will yield
brittle fracture even before any plastic flow is initiated, and the void-induced ductile
crack growth will continue indefinitely as the Gurson model is unable to identify the
cleavage fracture initiation.

5.4.2 Mesh Sensitivity
The void volume fraction controls the material softening and is calculated at the element
node integration points in the finite element model. The length of the crack growth step
determines the material crack extension due to the discontinuous process of void coales-
cence. It might be challenging to incorporate the optimal length scale necessary to account
for the material softening as the Gurson model is dependent on the individual crack inte-
gration points along the elements. Tvergaard and Needleman [94] incorporated the mesh
length scale, lc as a material parameter directly into the analysis in order to solve the
softening issue.

The mesh size sensitivity is further investigated in Section 6.3.1 where the mesh ele-
ment length along the crack ligament is 0.10mm for SENB05A and 0.05mm for SENB05B
(see Table 5.3). The damage zone and mesh element size will both change accordingly as
the void volume fraction is localised in between the integration points due to localisation
where each element contains a void which is treated as a nucleation point. As described in
Table 5.3, the damage zone is set to 0.05mm for both models, and the resulting resistance
curve slope shifts accordingly when the mesh element length is changed.
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Chapter 6

Results and Discussion

This chapter comprises the results of the experimental fracture mechanics tests along with
a brief discussion of the reliability of the datasets. Further, the experimental data is utilised
to calibrate the material characterisation models to calculate brittle failure probabilities
and simulate ductile mechanisms. First, the Beremin model with its constitutive Weibull
parameters are estimated with a material solely based on the true plastic flow curves. The
Gurson model parameters are after that calibrated and a user-defined material (UMAT)
is developed by utilising the constitutive Gurson parameters in combination with the true
plastic flow curves in order to simulate void-induced ductile mechanisms. Lastly, the
Beremin model and the Gurson UMAT are combined to give a better representation of
the material behaviour throughout the ductile-to-brittle transition. The Gurson UMAT
describes the ductile mechanisms, and the Beremin model is used as a post-processing
routine to calculate the probability of brittle failure.

6.1 Fracture Mechanics Testing
The fracture mechanics tests used as a basis for the simulation scheme are from two sepa-
rate projects conducted by SINTEF Industry; one from the Arctic Materials I project [129]
and one recent project which constituted additional tests in the ductile region. The weld
simulated CGHAZ steel described in Section 5.1 is used for all the single edge notched
bend specimens at temperatures from -90◦C to 21◦C. The cross-section for all the speci-
mens is 10x10mm2, electrical discharge machining (EDM) is used to obtain desired initial
crack depths, and liquid nitrogen is used to constrain the desired low test temperatures.

During bending, the CMOD and the mid-point load are concurrently monitored which
in turn results in corresponding Force-CMOD curves. After the test series are finalised,
the specimens are cracked open, and an optical microscope is utilised to examine the
crack propagation. The crack extension is then measured using a nine-point measuring
procedure based on the average crack growth by comparing the initial crack from the
EDM and the crack growth after the test is conducted. Equation 2.22 is then used to
calculate corresponding CTOD fracture toughness values which in turn can be used to plot
representative resistance curves (see Section 2.10) at any given temperature.

The Arctic Material I project series is based on testing until exhibiting sudden brittle
fracture, while the recent SENB05 test series is based on unloading at desired CMOD val-
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ues. Several specimens exhibit pop-ins and brittle characteristics before unloading when
reviewing the experimental Force-CMOD curves. As the crack growth is measured af-
ter the fracture mechanics test is finished, several specimens exhibit unobtainable crack
growth values which distinctly affects the resulting R-curves and makes them less com-
prehensive. As exhibited in Figure 6.1, the measured crack growth at the CMODs indi-
cated with red squares might deviate from the applicable CMODs at the brittle increments
illustrated with arrows. Since both CMOD and crack growth are utilised when calculating
the corresponding CTOD values (see Equation 2.22), the inconsistently measured crack
growth will severely bias the resulting fracture toughness values.

Figure 6.1: Experimental SENB05: Red squares indicating measured crack growth and arrows
indicating critical brittle characteristics points. (a) Specimen 4 at -60◦C, (b) Specimen 522 at 0◦C

Nevertheless, at lower temperatures such as in Figure 6.1 (a), the crack growth is neg-
ligible as the material is in the solely brittle region and the resulting CTOD values will
not be affected. The same conclusion prevails in the solely ductile region as all the speci-
mens are unloaded without brittle characteristics, and the resulting CTOD values will not
be affected as the measured crack growth remains accurate. However, at temperatures in
the transition region such as in Figure 6.1 (b), the material is expected to exhibit some
ductile crack growth prior to yield brittle characteristics. Hence, the biased crack growth
and fracture toughness in the transition region are taken into consideration when reviewing
the Force-CMOD and resistance curves. All the specimens which randomly exhibit brittle
characteristics prior to unloading cannot be concluded with accurate crack growth and thus
neither representative CTOD values.

As exhibited in Figure 6.2, representative experimental resistance curves can be de-
scribed after excluding all the specimens which had inconclusive crack growth values.
Only the SENB05 test series comprises crack growth values in all the ductile-to-brittle
transition regions ranging from -90◦C to 21◦C due to the particular focus in the recent
SENB05 project where several specimens were unloaded before yielding brittle charac-
teristics which in turn provided representative resistance curves. However, the fracture
toughness specimens from Arctic Materials I did only supply a certain amount of valid
crack growth values from the SENB05 and SENB02 test series. See Appendix D.4 for the
comprehensive tables of the fracture mechanics test data which accurately characterise the
validity of the experimental data for every specimen.
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Figure 6.2: Experimental CTOD-∆a resistance curves at all temperatures
(a) SENB05 Fracture and Unloading Values, (b) SENB02 Fracture Values

As exhibited in Figure 6.2, the measured crack growth and CTOD at low temperatures are
notably smaller compared to the CTOD and crack growth at higher temperatures. Hence,
the steel is brittle at lower temperatures where the material yields cleavage fracture at a
microscopically low crack growth level and more ductile crack growth at higher temper-
atures. The material is able to endure additional crack growth prior to cleavage as the
temperature increases due to the evolving plastic zone ahead of the crack tip as discussed
in Section 2.6.5. For high temperatures in the upper transition and ductile regions, the
material experience relaxation of both stress triaxiality and constraints which in turn lead
to ductile tearing and a notably higher crack growth level.

Figure 6.3: Experimental resistance curves. SENB05 (red) and SENB02 (black)

Figure 6.3 illustrates a comparison of the resistance curves in Figure 6.2 (a) and (b) which
respectively represents the results from the SENB05 and SENB02 fracture mechanics test
series. A rather strong geometry dependency emerges as the constraint level clearly affects
the slope of the resistance curve. As SENB05 has a higher constraint level than SENB02,
the resulting resistance curves illustrate an increasing slope with decreasing constraint
level. However, the resistance curves are consistently linear even with shifting tempera-
ture for both geometries which in turn reveals a linear resistance curve trend independent
of temperature and material characteristics.
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The material requires increasing driving forces in order to maintain the crack growth level
during crack extension, and as exhibited in Figure 6.4, the fracture toughness clearly in-
creases with increasing temperature which is in agreement with the DBT discussion in
Section 2.7. Figure 6.4 exhibits all the fractured specimens from the fracture mechanics
test series which experienced brittle failure. As the unloaded specimens are redundant in
the subsequent sections concerning the probability of brittle failure they are exclusively
used to make resistance curves to calibrate the Gurson parameters. More about the Gurson
model with its constitutive Gurson parameter study in Section 6.3. All the fracture me-
chanics data from both the unloaded and fractured specimens are described in the compre-
hensive tables in Appendix D.4, and the valid fractured and unloaded DBTs are displayed
in Appendix D.2.

Figure 6.4: Experimental ductile-to-brittle transition fracture toughness scatter plot

The fracture toughness values illustrated in Figure 6.4 are increasing with increasing
temperature which in turn means the material follows a brittle-to-ductile transition from
-90◦C to 0◦C. Some of the cleaved specimens at -30◦C and 0◦C exhibit a signifi-
cant increase in CTOD compared to -90◦C and -60◦C which indicate a rather distinc-
tive transition between -30◦C and 0◦C. The scatter expansion phenomenon is due to
either the heterogeneous distribution of second-phase particles and defects as described in
Section 2.2.2 and 2.3.1 or a bi-modal grain size distributed matrix material as described in
Section 2.2.3. As the temperature increases, the mobility of dislocation increases accord-
ingly, and it is required lower stresses in order to move them which in turn will increase the
plastic deformation. However, at lower temperatures, the local stresses are high enough to
break the local bonds and nucleate microcracks at broken second-phase particles which in
turn leads to brittle fracture. The plastic flow during ductile tearing will ultimately lead
to constraint relaxation which results in large fracture toughness scatter banners in the
transition and ductile regions. The resulting scatter banner will a priori become larger as
the geometry constraint level decreases, and the ductile-to-brittle transition temperature
will decrease will decreasing constraint level as seen in Figure 6.4. Thus, the high con-
straint SENB05 fracture specimens will yield much lower fracture toughness values than
SENB02 due to its high constraint level.
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6.1.1 Experimental and Simulated Force-CMOD Curves
In order to get representative simulations in ABAQUS for further model implementation,
the FE-models described in Section 5.2 must be established with material characteristics
and boundary conditions which can accurately represent the experimental material be-
haviour from both the uniaxial tensile tests and the fracture mechanics tests. As discussed
in Section 5.1.1, the constitutive material properties are defined from the true plastic flow
curves which in turn are implemented as the FE-model material properties following the
Ramberg-Osgood equation (5.3). The simulated Force-CMOD curves are compared with
the corresponding experimental Force-CMOD curves in order to examine whether or not
the FE-model and the constitutive material parameters can accurately describe the experi-
mental material behaviour.

Figure 6.5: Simulated and experimental Force-CMOD. SENB05 and SENB02 at -90◦C and 0◦C

Figure 6.5 exhibits some of the experimental Force-CMOD curves with corresponding
simulated Force-CMOD curves for SENB05 and SENB02 at -90◦C and 0◦C. The ABAQUS
FE-models are able to simulate rather accurate Force-CMOD curves for both temperatures
and fracture geometries which in turn means the FE-models can be used to simulate rep-
resentative fracture mechanics test data. The red squares indicate the initially measured
fracture data points where a few of them do not represent valid CMOD values as previ-
ously discussed in Section 6.1. All the simulated and experimental Force-CMOD curves
are displayed in Appendix D.3, and the comprehensive fracture mechanics data tables con-
taining valid fracture data are presented in Appendix D.4. All the simulated Force-CMOD
curves fit the experimental Force-CMOD curves at all temperatures ranging from -90◦C to
21◦C which in turn means the FE-models are adequate to simulate representative fracture
mechanics data throughout the ductile-to-brittle transition.
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6.2 Probability of Brittle Failure Analysis
The Weibull-based Beremin model in Section 3.1.3 can be used to calculate the probability
of brittle fracture, and the fracture criterion is exclusively based on the specimens yield-
ing cleavage fracture. As the Beremin model is usually based on two or three-parameter
Weibull distributions as discussed in Section 3.1.3, the constitutive distribution of the frac-
ture toughness values and their corresponding scale and shape parameter must be deter-
mined in order to examine whether or not the weld simulated steel described in Section 5.1
has Weibull distributed fracture mechanics data.

The experimental fracture toughness values in Figure 6.4 are sorted in ascending or-
der, and the rank probability of each fracture toughness value is calculated following the
mean rank probability in Equation 6.1 where i is the rank number of n specimens. As
shown in Figure 6.6, the fracture data points from all the temperatures are plotted as a
function of rank probability. The fracture data points as a function of temperature are with
constant rank probability illustrating increasing fracture toughness with increasing temper-
ature which in turn is evidence of a brittle-to-ductile transition. Thus, the material is able
to endure more plastic deformation prior to cleavage fracture with increasing temperature
due to dislocation movement and increased plastic zone in front of the crack tip.

PF = Prank =
i− 0.3

n+ 0.4
, i ∈ [1, n] (6.1)

The two-parameter Weibull distribution is considered to represent the fracture toughness
distribution as it will also be recognised in subsequent Beremin model sections. The
cumulative distribution function of the two-parameter Weibull distribution is defined by
Equation 6.2 where λ is the scale parameter, δ is the CTOD, and k is the shape parameter.

PF (δ) = 1− e−(δ/λ)k (6.2)

The scale parameter represents the fracture toughness value at 63.2% (PF = 1− e−1)
probability of failure and λ is the flaw distribution of the fracture dataset where a large
shape parameter is equivalent with a steep Weibull CDF. Thus, both the Weibull parameters
must be estimated in order to conclude whether or not the material fracture toughness data
follows a two-parameter Weibull distribution.

Figure 6.6: Cumulative distributions of (a) SENB05 (high constraint), (b) SENB02 (low constraint)
ML = Maximum Likelihood, LSQ = Least Square, CDF = Cumulative Distribution Function
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As discussed in Section 5.3.1, there are primarily two methods to estimate the constitu-
tive Weibull parameters in a two-parameter Weibull distribution. One method is to utilise
maximum likelihood estimation (MLE) which in turn estimates the parameters by max-
imising a likelihood function of the given fracture data. [87] [95] The parameters are thus
readily estimated by utilising integrated Weibull fitting functions in Matlab as described
in Appendix B.1. The second method is to solve Equation 6.2 directly by utilising mean
least square (LSQ) linear regression. First, the Weibull probability of failure is rearranged
before natural logarithms are done twice which in turn yields:

ln
[
ln

(
1

1− PF (δ)

)]
= k · ln(δ)− k · ln(λ) (6.3)

Equation 6.3 follows a linear regression function where ln[ln( 1
1−PF (δ) )] represents y, k is

the slope of the curve, ln(δ) is the variable x, and k · ln(λ) is the constant, c yielding the
linear regression function y = k ·x+c. By conducting the latter procedure, all the fracture
data points in Figure 6.6 are converted accordingly. Mean least square linear regression
of the converted fracture data points are then conducted which in turn results in the linear
regression curves in Figure 6.7.

Figure 6.7: Ln-ln plot of rank probability and CTOD. (a) SENB05, (b) SENB02.
Black data points indicate MOTE values according to Table D.1

The fracture data points in Figure 6.7 follows a somewhat linear trend which partly
confirms a two-parameter Weibull distribution. The fracture data points in Figure 6.7 (a)
fit the linear regression functions except for some of the lowest fracture toughness values
and a population of fracture data points at -60◦C. The deviating population may be due
to material heterogeneity or different defect populations in the weld simulated CGHAZ.
A similar trend is displayed in Figure 6.7 (b) where a few fracture toughness points at
-60◦C deviate from the original regression function. The resulting square roots, R2 can
be used to determine the accuracy of the mean least square regression curves which in
turn also indicate poor values for the fracture mechanics test series at -60◦C. As seen
from the resulting slopes in Figure 6.7 and the plotted parameter trend in Figure 6.8, the
mean least square estimated shape parameter is increasing with temperature. However,
the scale parameter is also increasing with increasing temperature as the material becomes
more ductile and exhibits larger fracture toughness values. The relatively constant shape
parameter between -90◦C and -60◦C in Figure 6.8 is likely due to the brittleness of the
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material. As the material is still in the brittle region at -60◦C, the flaw distribution should
a priori remain relatively constant throughout the brittle region. The material allows more
dislocation movement with increasing temperature, but as the material is still brittle the
flaw distribution will remain relatively constant. Further, the scale parameter increases
linearly with temperature which is evidence of enhanced plastic blunting and ductility with
increasing temperature where the material will endure increased plastic deformation before
reaching 63.2% probability of brittle failure. The steep SENB02 scale parameter trend in
Figure 6.8 (b) is due to its low constraint level which evidently leads to larger fracture
toughness values compared to the SENB05 specimens. However, the shape parameter in
Figure 6.8 (b) does not exhibit the same transition trend as in Figure 6.8 (a) which may
indicate the SENB02 specimens already have entered the lower transition region at -90◦C
even though the resulting shape parameters are somewhat identical when comparing the
corresponding values in Figure 6.8 (a) and (b)

Figure 6.8: Scale and shape parameter transitions. (a) SENB05, (b) SENB02
ML = Maximum Likelihood, LSQ = Least Square

The maximum likelihood estimation and the mean least square method should yield a
priori approximately the same parameter estimates. As exhibited in Figure 6.8 (a), the
curves are identical except for the mean least square estimated shape parameter which is
deviating from the maximum likelihood estimated shape parameter at 0◦C. The maximum
likelihood shape parameter is characterised as the most probable estimate as the shape pa-
rameter a priori should not decrease with increasing temperature. The CDF curves are
plotted by generating random material data in order to find the most accurate parameter
estimates by utilising integrated Matlab functions along with a Matlab script as described
in Appendix B.1. The resulting LSQ and ML CDF curves in Figure 6.6 (a) at 0◦C fit
the fracture data points. However, the LSQ CDF curve highly overestimates the fracture
probability of the lowest fracture data point which results in an inaccurate prediction of
several subsequent data points. Thus, the maximum likelihood estimate is the most accu-
rate which in turn means the increasing shape parameter trend in Figure 6.8 prevails. The
remaining CDF curves follow the same trend functions and are thus able to represent the
fracture toughness in Figure 6.6 accurately.

The resulting MLE cumulative distribution functions can then be used to establish con-
fidence intervals for the ductile-to-brittle transition of both crack configurations. The MLE
CDFs follows the two-parameter Weibull cumulative failure probability in Equation 6.1
where the Weibull parameters are separately estimated at all the test temperatures. As ex-
hibited in Figure 6.9, the MLE [10%, 90%] confidence intervals can account for the whole
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fracture toughness scatter except for a few extreme values. In conclusion, the constitutive
fracture toughness data, parameter regression curves, and Weibull CDFs are evidence of a
material which follows a two-parameter Weibull distribution which in turn allows further
analysis of the Weibull parameters in the Beremin model.

Figure 6.9: Ductile-to-brittle transition and MLE Weibull confidence intervals
(a) SENB05, (b) SENB02

6.2.1 Beremin Model: Weibull Parameter Study

The constitutive Weibull parameters must first be calibrated accordingly in order to con-
duct representative simulations with the Weibull-based Beremin model. The true plastic
flow curves are initially implemented as the material properties in the FE-model to account
for the applicable stress-strain relationship for both elastic and plastic behaviour. However,
the Weibull parameter calibration procedures are limited to the solely brittle region as the
original Beremin model is based on the flaw distribution of defects without any extent of
ductile tearing. The SENB05 fracture mechanics test series comprise ten valid fracture
data points at -90◦C and thirteen valid fracture data points at -60◦C.

Both the maximum likelihood parameter estimation and the mean least square method
described in Section 5.3.1 are conducted at -90◦C and -60◦C to calibrate the constitutive
Weibull parameters for SENB05 and ultimately other fracture geometries. The time in-
crements of the corresponding critical fracture toughness values are first identified in the
ABAQUS FEA which in turn provides all the critical fracture data points to consider in the
subsequent Weibull calibration procedures. Thus, by utilising the in-house finite element
post-processing program LINKpfat, the corresponding Weibull stresses can be calculated.
The reference volume, V0 is taken equal to 0.001mm3 (detailed mesh element volume),
and the thickness and symmetry axes are accounted for in the LINKpfat simulation model
(.pfp) in order to represent a full-scale 3D fracture mechanics test specimen.

For the mean least square parameter estimation, the critical Weibull stresses are first
arranged in ascending order, and corresponding rank probabilities are calculated for each
fracture specimen by utilising the mean rank probability in Equation 6.1. Thus, the Weibull
modulus can a priori be calibrated by conducting the iterative calibration procedure de-
scribed in Section 5.3.1. A similar process is independently conducted with the maximum
likelihood estimation method which is solely based on the critical Weibull stresses and the
Weibull cumulative failure probability in Equation 6.4.
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PF (σw) = 1− exp
[
−
(σw
σu

)m]
(6.4)

However, neither of the Weibull parameter calibration methods are able to converge
the Weibull modulus to a specific value. As exhibited in Figure 6.10, the Weibull mod-
ulus converges exponentially regardless of the calibration method. The same calibration
procedure was conducted at -60◦C as it comprised three more fracture specimens but
the same exponential Weibull modulus trend prevails. There are several explanations for
this particular phenomenon; the material experiences some extent of ductile tearing be-
fore fracturing, the constraint effects are inconsistent without a ductile simulation model,
or the amount of fracture mechanics data in the test series is too small to calibrate the
Weibull parameters accurately. Inadequate model sectioning in LINKpfat will also pro-
mote large Weibull parameter confidence intervals and must be taken into consideration
when calibrating the constitutive Weibull parameters.

Figure 6.10: SENB05 LSQ and MLE Weibull modulus calibration

The most probable explanations for the non-converging Weibull modulus are the limited
fracture dataset or inadequate model sectioning in LINKpfat. Due to the small set of frac-
ture data points, the resulting Weibull modulus confidence interval becomes substantially
large for each iteration and is unable to converge the Weibull modulus estimate. The first
iteration of the Weibull dataset results in the 90% Weibull modulus confidence interval
[19.3, 25.0] which is too large to accurately estimate the Weibull modulus. Similar non-
converging Weibull modulus prevails in several scientific papers, and one example is when
Bakker & Koers [73] tried to determine the Weibull modulus for ferritic steel. They were
unable to converge the Weibull modulus estimate at -110◦C with about twenty fracture
data points, but the same calibration procedure was successful at -170◦C with the same
amount of fracture data points. Hence, the latter phenomenon demonstrates the extreme
limitation to both the maximum likelihood estimation and the mean least square method
concerning both microscopical plasticity and the extent of fracture mechanics data.

An alternative approach is thus used to get proper Weibull parameter estimates as the
initial Weibull modulus calibration procedures are unable to converge the Weibull param-
eter estimates for one single fracture mechanics geometry. As discussed in Section 5.3.1,
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the Weibull parameters can be estimated by toughness scaling two fracture mechanics ge-
ometries with different constraint levels which in turn eliminates the non-uniqueness in the
previous calibration methods. The Weibull-based toughness scaling of one high constraint
geometry (SENB05) and one low constraint geometry (SENB02) will a priori be able to
estimate a unique Weibull modulus which can constraint-correct the two fracture geome-
tries with identical Weibull cumulative distribution functions following Equation 6.4. The
toughness scaling as a calibration method will thus be able to estimate a unique set of
Weibull parameters at the respective temperature if both the fracture geometries are in the
solely brittle region with no ductile tearing prior to cleavage fracture.

As exhibited in Figure 6.11, when the constraint level increases the corresponding
Weibull stresses as a function of fracture toughness will inevitably increase due to the
elevated stress field ahead of the crack tip which in turn yields large local principal stresses
at high constraint levels. However, the resulting Weibull stresses as a function of fracture
toughness increases accordingly as the Weibull modulus is decreased which is reasonable
as a decreasing Weibull modulus will promote larger Weibull stresses and steeper CDFs.
The Weibull stress will after a certain amount of plastic deformation stabilise at a given
Weibull stress due to the onset of constraint loss and a reduced rate of constraint relaxation
under further loading as exhibited in Figure 6.11. However, the characteristic transition
temperature for the different geometries will change due to the loss of constraint and is
further discussed in the subsequent sections.

Figure 6.11: Toughness scaling and constraint effects. SENB05 and SENB02 fails at the same
Weibull stress yielding the same probability of failure at different critical CTODs

One of the most exciting features of the constitutive Weibull stress functions in Figure 6.11
is their ability to quantify constraint effects. As indicated with black and red stippled lines,
identical Weibull stress can yield the same failure probability for two constraint levels with
different fracture toughness at failure. As the Weibull stress scales with the failure prob-
ability, the Weibull stress will exclusively account for the local stress field ahead of the
crack tip and can a priori be used to define equivalent fracture toughness values for differ-
ent fracture geometries in the brittle region. The applicability of the toughness scaling is
limited to the brittle region as the Weibull stresses will deviate considerably with ductile
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tearing as the current Beremin model does not simulate crack extension. Thus, overlap-
ping critical Weibull stresses with equal rank probabilities means the Weibull parameters
can constraint-correct the fracture geometries at the respective temperatures.

The toughness scaling is initially conducted at -90◦C by comparing critical Weibull
stresses with corresponding rank probabilities as both SENB05 and SENB02 are assumed
to be in the solely brittle region at this temperatures. By following the toughness scal-
ing procedure in Section 5.3.1, the two fracture geometries are constraint-corrected ac-
cordingly to calibrate a unique Weibull modulus estimate at -90◦C. As exhibited in
Figure 6.12, a range of Weibull modulus values are tested in order to find the best constraint-
correcting estimate. The Weibull modulus, m = 13.5 in Figure 6.12 (c) is the best fit and
can thus accurately constraint-correct the two fracture geometries. The appropriate frac-
ture values are identified by utilising LINKpfat and the implemented ABAQUS database
file (.odb) which in turn calculates Weibull stresses for the corresponding fracture tough-
ness values. Thus, the resulting Weibull parameters yield equal Weibull stresses with equal
probability of brittle failure for both fracture geometries at -90◦C.

Figure 6.12: Toughness scaling: Weibull modulus estimation. SENB05 and SENB02. T = -90◦C
(a) m = 5, (b) m = 10, (c) m = 13.5, (d) m = 15

The simulated and experimental CDFs are then compared in Figure 6.13. The experimen-
tal failure probabilities are mean rank probabilities following Equation 5.5, and the theo-
retical CDFs are plotted with MLE Weibull parameters from the resulting critical Weibull
stresses following Equation 6.4. The figure shows a good agreement between the MLE
CDF curve and the experimental Weibull stresses when adopting the Weibull modulus,
m = 13.5 in LINKpfat and the MLE scale parameter, σu = 4065MPa.
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Figure 6.13: Rank probability vs normalised Weibull stress, m = 13.5, T = -90◦C
MLE CDF for SENB05 and the aggregate MLE CDF for both SENB05 and SENB02

As exhibited in Figure 6.13, the resulting SENB02 critical Weibull stresses do not coin-
cide perfectly with the MLE CDFs nor the critical Weibull stresses of the SENB05 fracture
data points. The fit is perfect up until about 70% probability of failure where the SENB02
Weibull stresses become basically constant due to the constraint relaxation as shown in
Figure 6.11 where the Weibull stresses stabilise at large fracture toughness values. The
relatively constant Weibull stress after 70% probability of failure may be evidence of duc-
tile tearing prior to cleavage which in turn yields inaccurate Weibull stresses as the current
Beremin model does not simulate crack extension nor constraint effects. The concave
probability curve trend may also indicate a three-parameter Weibull distribution as dis-
cussed in Section 5.3.2 or inadequate model sectioning in LINKpfat leading to biased
Weibull stresses at large plastic deformation. Nevertheless, the current toughness scaling
with the constitutive Weibull parameters are considered as adequately accurate to quantify
the constraint-correction in the brittle region.

6.2.2 Beremin Model: The Ductile-to-Brittle Transition
The original Beremin model is based on the assumption of material dependent Weibull
parameters characterised from the microstructure. Hence, the parameters should a priori
be independent of geometry and constraint level in the brittle region with predominant
cleavage fractures and negligible ductile damage. A large Weibull modulus corresponds
to narrow Weibull stress scatter bands and steep CDFs, and the resulting scale parame-
ter is likely to decrease with larger m-values as the Weibull stresses become smaller at
corresponding fracture toughness values.

Nevertheless, the calibrated Weibull modulus in Section 6.2.1 should a priori be able
to account for the constraint-correction throughout the brittle region. As exhibited in
Figure 6.14, the constant Weibull parameters can accurately describe the Weibull cumu-
lative fracture probability for SENB05 at -60◦C except for the deviating Weibull stresses
between 40-70% probability of failure. However, the SENB02 Weibull stresses start de-
viating from the other distributions at about 50% which in turn can be evidence of either
ductile damage or inadequate model sectioning in LINKpfat with biased Weibull stress
computation. The material may endure lower critical Weibull stresses when constant
Weibull parameters are assumed as the Weibull stress as a function of fracture toughness is
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seemingly decreasing with increasing temperature. Thus, the constant Weibull parameters
cannot simulate representative Weibull stresses to describe the SENB02 fracture toughness
scatter banner at -60◦C and neither at the respective temperatures in the transition region.

Figure 6.14: Rank probability vs Weibull stress in the brittle region
SENB05 and SENB02 at -90◦C and -60◦C. m = 13.5

A full-scale DBT with temperature independent Weibull parameters can nonetheless be
established by only considering the SENB05 fracture mechanics data. As exhibited in
Figure 6.15, the MLE confidence intervals [10%, 90%] with constant and temperature in-
dependent Weibull parameters can be described for SENB05 from -90◦C to 0◦C. The
confidence intervals are simulated by utilising the Weibull cumulative probability of fail-
ure following Equation 6.4 and the MLE Weibull parameters from the initial toughness
scaling procedure in Section 6.2.1. The constant Weibull parameters and the constitutive
confidence intervals can account for the whole fracture toughness scatter banner at both
-90◦C and -60◦C which is expected from the preliminary study in Figure 6.14. At -30◦C,
the confidence intervals can account for the fracture toughness scatter banner even though
the 50% and 10% confidence intervals somewhat overestimate the steel’s brittleness. How-
ever, at 0◦C, the confidence intervals are unable to accurately capture the whole fracture
toughness scatter banner as the confidence intervals overestimate the steel’s brittleness.
The overestimated brittleness is expected as the current Beremin model does not simulate
the appropriate crack extension nor constraint effects which in turn will yield large Weibull
stresses due to non-existent constraint loss.

The original Beremin model with constant and temperature independent Weibull pa-
rameters is based on estimated Weibull parameters at the lowest temperature which in turn
is a priori only able to predict accurate failure probabilities in the brittle region. As the
material exhibit some extent of ductile tearing at both -30◦C and 0◦C (see Figure 6.2),
the Beremin model will evidently not be able to calculate the appropriate Weibull stresses
as the current model does not simulate crack growth in the elasto-plastic analysis.

The resulting confidence intervals in Figure 6.15 are relatively linear with increasing
temperature which in turn means they are unable to simulate the somewhat abrupt transi-
tion happening between -30◦C and 0◦C. The brittleness of the material is overestimated at
both -30◦C and 0◦C and thus inadequate to simulate the increasing fracture toughness with
increasing temperature. The non-consideration of the ductile damage effect on the stress-
strain distribution in the transition region makes the current Beremin model with tempera-
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ture independent Weibull parameters and no crack growth unable to accurately describe the
ductile-to-brittle transition. Nevertheless, the current model is able to capture the changing
stress-state with increasing temperature which is evidence of a brittle-to-ductile transition.

Figure 6.15: DBT SENB05: Beremin model with temperature independent Weibull parameters

A few theoretical concerns also arise with the current temperature independent Weibull
parameters. As the plastic zone expands, the initial defect and microcrack distribution are
assumed to be constant regardless of temperature which is questionable for ductile fer-
ritic steels during plastic deformation. There is also frequently observed cleavage crack
arrest at grain boundaries [81] or plastic blunting of microcracks at higher temperatures
which violate the weakest-link principles described in Section 2.8.1. Hence, the origi-
nal Beremin model needs an underlying model which can accurately simulate adequate
crack growth and temperature dependent flow stress with ductile mechanisms. Thus,
The Complete Gurson Model (see Section 3.2.1) is utilised to describe a more represen-
tative ductile-to-brittle transition by combining it with the Weibull-based Beremin model.
The combined model should a priori be able to simulate representative material charac-
teristics in all the DBT regions and provide the required ductile mechanisms to calculate
appropriate Weibull stresses at high temperatures.

6.3 Ductile Tearing: The Complete Gurson Model

The Gurson model study is exclusively based on specimen SENB05A as described in
Section 5.2 and Table 5.3 since it is the only fracture geometry with the applicable fracture
mechanics data in the ductile region. Hence, only the fracture toughness values exhibited
in Figure 4.1 and Table 4.1 are utilised in the Gurson parameter study. The Complete
Gurson Model is used to simulate ductile tearing from material void growth and void co-
alescence yielding loss of bearing capacity. Thus, the Gurson parameters f0 and fc are
fitted at the highest temperature (21◦C) with solely ductile characteristics in order to get
representative simulation in the transition region.
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6.3.1 Evaluation of Mesh Size and Blunting
As described in Section 5.2 and Table 5.3, two different mesh are tested; one with element
size 0,05x0,05mm2 and one with element size 0,05x0,10mm2 along the crack ligament.
The smaller element size is tested in order to get a higher resolution of the stress field
ahead of the crack tip to get more representative principal stresses and plastic blunting. As
exhibited in Figure 6.16, the resulting Gurson simulated resistance curve yields a steeper
slope and simulates values closer to zero crack growth when reducing the element size at
room temperature (21◦C). The steeper resistance curve slope is equivalent to the effect
from a smaller initial void volume fraction, f0 as described in Section 6.3.2 and 5.4.2.

Figure 6.16: Element size effect on CTOD and total crack growth, f0 = 0.0014, T = 21◦C

The smaller mesh size initially seems like a better solution in order to get more accu-
rate simulations. However, errors emerged in the output file when conducting the Gurson
simulation with element size 0,05x0,05mm2 at 0◦C. The simulation is unable to obtain
convergence for the equilibrium iterations between each time increment, and regardless of
several cutbacks in the automatic time increments, the simulation is still unable to achieve
convergence between the equilibrium iterations. This issue only emerges in the Gurson
simulation at 0◦C with element size 0.05x0.05mm2. The Gurson simulations at -60◦C
and 21◦C work with the small element size, and all the simulations work with element
size 0.05x0.10mm2. The UMAT code with corresponding user subroutine in the Gurson
model did not indicate any immediate reason for the convergence problem. Neither could
the issue be solved by changing the time increment criteria in the input file nor by changing
the base mesh size outside the critical damage zone along the crack ligament. The most
likely reason for the convergence problem at 0◦C is an inconsistent UMAT description in
the constitutive input file (.inp). However, element size 0.05x0.10mm2 is utilised in all
the simulations in the subsequent sections as it did not yield any errors when running the
Gurson simulations which in turn also requires less computer power.

The Complete Gurson Model only accounts for the void growth and void coalescence
which in turns means just ductile tearing is simulated with the Gurson model. Hence,
the initial plastic blunting must be subtracted in order to estimate the appropriate Gurson
parameters and fit the Gurson simulated resistance curve to the experimental results. Thus,
the Gurson simulation results at 21◦C can be compared to the experimental ductile tearing
in order to calibrate the constitutive Gurson parameters.
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Figure 6.17: FE-model crack region. (a) CTOD-node, (b) Simulation Blunting, (c) Crack tip-node

As exhibited in Figure 6.17, the Gurson simulations in ABAQUS also present a small
simulation blunting before ductile tearing initiating due to the large element size. The
applicable simulation blunting must be subtracted from the ductile tearing values in or-
der to get solely ductile tearing results from the Gurson simulation. The SDV2 value in
Figure 6.17 represents the state-dependent variable defined as the void volume fraction at
the end of the time increment (see Appendix C.3).

6.3.2 Gurson Parameter Study
As shown in Figure 6.16, the Gurson simulated resistance curve at room temperature
(21 ◦C) fits the experimental resistance curve with initial void volume fraction, f0 = 0.0014.
However, the Gurson parameters must be refitted when the experimental blunting and the
simulation blunting illustrated in Figure 6.17 are subtracted.

Figure 6.18: Gurson parameter study of the initial void volume fraction, f0. T = 21◦C, fc = 0.2

Only the initial void volume fraction, f0 must be estimated since the preliminary Gurson
resistance curve (f0 = 0.0014) in Figure 6.3.2 fits quite well at ductile tearing initiation.
Thus, the resulting critical void volume fraction, fc is defined as a by-product of the ini-
tial void volume fraction and is equal to 0.2 as it can accurately describe the appropriate
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resistance curve in Figure 6.18. As previously shown in Figure 6.17, the element starts
tearing when SDV2 (current void volume fraction) exceeds 0.2 which in turn determines
the critical void volume fraction, fc where the element loses its bearing capacity.

The slope of the Gurson simulation curve increases with decreasing initial void volume
fraction as exhibited in Figure 6.18 where f0 is readily fitted to the experimental results.
f0 = 0.0012 is chosen as the most suitable estimate and all the simulated resistance curves
are extrapolated from 0.1 to zero ductile tearing as the Gurson simulated resistance curves
should a priori be linear immediately after ductile tearing initiation. The slope trend is thus
reasonable as smaller initial void volume fractions will constitute elements that require
additional void-induced damage before reaching the critical void volume fraction.

6.3.3 Gurson: Resistance Curves
As discussed in Section 5.4, the CTOD values as a function of ductile tearing can be plot-
ted after all the Gurson simulations are conducted and analysed accordingly. The original
material data from the recent SENB05 test series are utilised to illustrate the Gurson resis-
tance curves as they represent all the ductile-to-brittle transition regions. The R-curves are
presented in Figure 6.19 and compared to the experimental crack growth results.

Figure 6.19: Gurson simulated resistance curves and experimental crack growth.
Negative values at -60◦C due to the large average experimental blunting

As shown in Figure 6.19, the Gurson simulation fits the experimental values at 21◦C
which is expected as the Gurson simulated R-curve is initially fitted to the experimental
ductile tearing at room temperature. The initial void volume fraction, f0 is temperature
independent, and the true plastic flow curves from the respective temperatures are the only
temperature dependent parameters. As shown in Table 5.1, the yield strength increases
with decreasing temperature which in turn indicates that the material becomes more brittle
with decreasing temperature. Since the Gurson model is unable to describe brittle char-
acteristics, the Gurson model should exhibit some problems in the 0◦C simulation as the
material exhibit concurrent ductile and brittle mechanisms. Nevertheless, as shown in
Figure 6.19, the remaining experimental ductile tearing fits the Gurson simulated resis-
tance curve when the experimental blunting is subtracted.

At -60◦C, the experimental results exhibit no ductile tearing prior to cleavage which
in turn demonstrates solely brittle characteristics. As shown in Figure 6.19, the Gur-
son simulated resistance curve does not fit the experimental values at -60◦C which is
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expected as the Gurson model is unable to describe the plastic blunting prior to ductile
tearing initiation.

The Gurson model is unable to describe the crack growth under 0.1mm and CTOD
values under 0.15mm due to the large element size and the relatively low mesh resolution
which in turn cannot describe the correct plastic blunting at the crack tip. Thus, smaller
element size and higher mesh resolution are initially tested to characterise the plastic blunt-
ing. However, the current subroutine with its constitutive Gurson parameters cannot solve
the resolution challenge as described in Section 6.3.1. The temperature dependence of
the experimental and simulated resistance curves are illustrated in Figure 6.19 as lower
temperatures yield smaller CTOD with corresponding ∆a which is reasonable as brittle
materials promote horizontal resistance curves as described in Section 2.6.5. However, the
Gurson model is simulating material softening and ductile tearing regardless of tempera-
ture which in turn results in sloped resistance curves even in the brittle region.

In order to conclude whether or not the constitutive Gurson simulation models can
simulate accurate ductile crack growth (plastic blunting and ductile tearing), the exper-
imental blunting is added to the simulated ductile tearing curves instead of subtracting
the experimental blunting from the experimental results. Thus, the difference between
the experimental and simulated resistance curves is unaffected after ductile tearing initi-
ation. The blunting can then be extrapolated to the origin by assuming constant plastic
blunting rate following the theoretical resistance curve trend in Figure 2.10. As shown
in Figure 6.20 (a), the simulated SENB05 resistance curves can describe accurate plastic
blunting and ductile tearing regardless of temperature which in turn means the simulation
models are consistent for the whole ductile-to-brittle transition.

Figure 6.20: Simulated and experimental resistance curves. (a) SENB05, (b) SENB02

The accuracy of the simulated plastic blunting is also reasonable as all the specimens at
-90◦C and -60◦C cleaved before ductile tearing initiation where the simulations precisely
characterise the Force-CMOD curves as shown in Figure 6.5 and D.6. The simulated
resistance curves follow the same ductile tearing trend up until about ∆a = 0.4 where the
21◦C R-curve deviates from the other curves which in turn is reasonable as the material is
in the solely ductile region at 21◦C and should simulate a steeper resistance curve.

However, the simulated SENB02 resistance curves in Figure 6.20 (b) are not entirely
consistent with the experimental results. The slope during ductile tearing is too low to
simulate the experimental values accurately at -60◦C and -30◦C where the simulation
overestimates the ductile tearing as a function of fracture toughness. Nevertheless, the
resulting plastic blunting and ductile tearing are relatively accurate for the lowest temper-
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atures and can be considered as adequate for simulations in the brittle region and the lower
transition region. A smaller initial void volume fraction would be able to simulate perfect
SENB02 resistance curves, but it must remain identical for both fracture geometries as
f0 is defined as a material dependent parameter. All the simulated resistance curves are
approximately similar when the experimental blunting is incorporated which is predom-
inantly due to the constant and temperature independent Gurson parameters even though
the true plastic flow curves are temperature dependent material parameters. As exhibited
in Figure 6.20 (a), all the specimens at -90◦C and -60◦C fail during blunting which in
turn means the SENB05 specimens are in the solely brittle region at the respective temper-
atures. However, the fractured specimens in Figure 6.20 (b) do not fail during blunting at
-60◦C and exhibit ductile tearing prior to cleavage which may indicate the specimen is in
the lower transition region. At -90◦C, most of the SENB02 specimens fail during blunting
which in turn demonstrates a brittle-to-transition region shift between -90◦C and -60◦C.

As shown in Figure 6.21, the simulated resistance curves for SENB05 and SENB02 at
21◦C are essentially the same in the blunting phase and both rise at a constant rate during
crack extension. The simulated resistance curves depend on the crack growth where deeper
initial crack and higher constraint level lead to lower CTOD values for the corresponding
crack extension. Nevertheless, the moderately increasing trend shows a relatively weak
crack size dependence from the simulated R-curves. However, the resulting resistance
curves can be utilised to describe geometry transferability of different constraint levels in
order to assess fracture toughness estimates and crack extension.

Figure 6.21: Simulated resistance curves. SENB02 and SENB05 at 21◦C. f0 = 0.0012

In conclusion, The Complete Gurson Model with its constitutive Gurson parameters fit-
ted in the ductile region is able to accurately simulate ductile crack growth for a range of
temperatures and constraint levels. However, even though the simulation scheme can accu-
rately simulate plastic blunting at low temperatures when assuming constant plastic blunt-
ing rate prior to ductile tearing initiation, the Gurson model is unable to describe the cleav-
age fracture initiation nor any brittle characteristics. Thus, the Weibull-based Beremin
model as a post-processing routine is combined with The Complete Gurson Model to de-
scribe when brittle failure prevails and to compute the appropriate probability of brittle
failure throughout the ductile-to-brittle transition.
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6.4 The Beremin-Gurson Model
The Complete Gurson Model and the Weibull-based Beremin model are in this section
combined in order to simulate appropriate ductile mechanisms and calculate the probabil-
ity of brittle failure throughout the ductile-to-brittle transition. The Gurson model with
its constitutive Gurson UMAT is used as the FE-model material constituting temperature
dependent true plastic flow curves and temperature independent Gurson parameters. The
Beremin model is then used as a post-processing routine in combination with the Gurson
UMAT to calculate the probability of brittle failure as described in Section 3.3.2. The
Gurson parameters are calibrated by fitting simulated and experimental resistance curves
at the highest temperature in the ductile region, and the Weibull parameters are calibrated
at the lowest temperature in the brittle region. The following list constitutes the consec-
utive steps in order to develop the Gurson UMAT and calibrate the constitutive material
parameters for both The Complete Gurson Model and the Weibull-based Beremin model.

1. Determine material properties: Conduct uniaxial tensile tests at all temperatures

(a) Analyse the engineering stress-strain curves

i. Determine the material parameters; E, v, σys and σUTS
(b) Review and plot true plastic flow curves

i. Calculate the true stress and true strain and plot the equivalent true plastic
flow curves for all temperatures

ii. Calibrate the stress hardening exponent, n by fitting the Ramberg-Osgood
equation to the experimental true plastic flow curves. Generate true plastic
flow curves with a manageable small dataset for simple FE-model mate-
rial implementation

2. Fracture mechanics data analysis: Conduct SENB fracture mechanics tests and
review the material output data

(a) Conduct fracture mechanics tests

i. Measure and describe the concurrent mid-point load and CMOD. Plot the
corresponding Force-CMOD curves

ii. Measure the plastic blunting and ductile tearing of all the specimens by
cracking them open and then use the nine-point measuring procedure to
calculate the equivalent crack extension

(b) Analyse the reliability of the experimental data

i. Study the experimental Force-CMOD curves to identify valid and invalid
fracture mechanics data. Exclude the invalid fracture mechanics data

ii. Calculate the CTOD values by utilising the corresponding CMOD and
∆a-values at valid fracture data points (see Section 2.6.4)

(c) Plot the experimental scatter of all the fractured specimens in order to describe
the ductile-to-brittle transition as a function of CTOD
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3. Develop the ABAQUS Gurson UMAT: Establish the FE-model material

(a) Create ABAQUS finite element models with adequate boundary conditions
and displacement according to the experimental fracture mechanics tests

i. Establish a detailed mesh ahead of the crack tip with a mesh element
length, lc = 0.10mm or smaller

ii. Incorporate temperature dependent true plastic flow curves, E, v, n, and
σys as material parameters

iii. Compare simulated and experimental Force-CMOD curves to examine
the accuracy of the simulation models

(b) Set fc = 0.2 and f0 = 0.0012 as the initial Gurson parameter estimates.
Calibrate f0 by fitting the simulated and experimental resistance curves at the
highest test temperature. The fitting procedure should be carried out without
experimental and simulated blunting

4. Examine the fracture toughness distribution: Check whether or not the experi-
mental fracture toughness values follow the two-parameter Weibull distribution

(a) Calculate the mean rank probabilities for all the fractured specimens and their
corresponding fracture toughness values

(b) Plot rank probabilities as a function of fracture toughness at all temperatures

(c) Estimate Weibull parameters at all the temperatures by either utilising the
mean least square method or the maximum likelihood estimation method in
Matlab: phat = wblfit(data)

(d) Plot the resulting Weibull cumulative distribution functions by utilising the
estimated Weibull parameters and the integrated Matlab function:
cdf = wblcdf(data, phat(1), phat(2))

5. Calibrate the Weibull parameters: Combine the Gurson UMAT as the FE-model
material with the Weibull-based Beremin model

(a) Establish a LINKpfat simulation (.pfp) and implement the ABAQUS database file

i. Set the reference volume, V0 = 0.001mm3

ii. Set the analysis type to Weakest Link, define the material from the ABAQUS
database file (.odb), measure first principal stresses from nodes, and spec-
ify the correct symmetry axes and thickness of the specimen

iii. Define the initial Weibull modulus estimate, m0 = 10

(b) Calibrate the Weibull parameters with one fracture mechanics geometry

i. Identify critical Weibull stresses corresponding to critical experimental
fracture toughness values in the LINKpfat simulation at the lowest temperature

ii. Utilise either the mean least square method or the maximum likelihood
estimation method to calibrate the Weibull parameters (see Section 5.3.1)
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(c) Contingency/Alternative approach: Calibrate the Weibull parameters by tough-
ness scaling two fracture geometries with different constraint levels

i. Identify the critical Weibull stresses corresponding to the critical experi-
mental fracture toughness values in the LINKpfat simulation for both the
fracture geometries at the lowest temperature

ii. Calculate the rank probabilities for the corresponding critical Weibull
stresses and compare the results from the two fracture geometries

iii. Repeat step ii by changing the Weibull modulus until the cumulative rank
probabilities with equivalent Weibull stresses coincide

iv. (If applicable) Use the Weibull modulus from step iii as m0 to toughness
scale the critical Weibull stresses at the remaining temperatures in order
to find the temperature dependent Weibull parameters

The material properties and the calibrated parameters from Section 5.1, 6.2.1, and 6.3 are
described in Table 6.1. All the Gurson and Weibull parameters are temperature indepen-
dent in the preliminary study, and only the true plastic flow curves are temperature dependent.

Table 6.1: Constitutive parameters from the uniaxial tensile tests, fracture mechanics tests,
and the preliminary temperature independent Gurson and Beremin studies

T E v σys σUTS f0 fc lc m σu
◦C [GPa] [MPa] [MPa] [mm] [MPa]
-90 733 1001
-60 697 961
-30 208 0.3 680 931 0.0012 0.2 0.10 13.5 4065
0 676 900

21 667 889

6.4.1 Temperature Independent Weibull Parameter Study
The original Beremin model is able to constraint-correct SENB05 and SENB02 in the
brittle region but is unable to account for the changing stress state and constraint effects
during ductile tearing. Hence, the preliminary Beremin model is inadequate to accurately
compute the probability of brittle failure in the transition region when temperature inde-
pendent Weibull parameters are assumed. The Complete Gurson Model is combined with
the original Beremin model by incorporating the Gurson UMAT as the FE-model material
to describe the appropriate ductile mechanisms and crack extension. Thus, the combined
model can a priori describe the geometry constraint effects as both the simulated resistance
curves in Figure 6.20 and the simulated Force-CMOD curves in Figure 6.5 correlates with
the experimental results.

The Beremin-Gurson Weibull modulus is first estimated by conducting two separate
calibration methods. As described in Section 5.3.1, the mean least square and maximum
likelihood estimation methods are utilised to calibrate Weibull modulus estimates by only
considering one fracture geometry. As exhibited in Figure 6.22, the two calibration meth-
ods are able to converge respective Weibull modulus estimates, but the estimates converge
to different values. The mean least square method estimates, m = 17.6, and the maxi-
mum likelihood estimation method estimates, m = 22.5 which in turn means one or both

82



6.4 The Beremin-Gurson Model

Weibull modulus estimates might be biased. The small fracture dataset yields large esti-
mate confidence intervals which in turn means both the calibration methods might result
in biased Weibull modulus estimates.

Figure 6.22: SENB05: Iterative Weibull modulus calibration. Gurson UMAT. T = -90◦C

As exhibited in Figure 6.22, both the calibration methods only require a limited amount
of calibration iterations and converge approximately at the same rate. Thus, the Beremin-
Gurson approach is compared to the original Beremin model in Section 6.2.1 able to cali-
brate appropriate Weibull modulus estimates with a small fracture dataset by only consid-
ering one fracture geometry. The Gurson UMAT simulates higher stresses at large plastic
blunting which in turn calculates critical Weibull stresses following the two-parameter
Weibull distribution in Equation 6.4. However, the plain material without Gurson mate-
rial equations in the original Beremin model is unable to simulate the Weibull distribution
precisely which is evidently due to the large estimate confidence intervals and inadequate
model sectioning in LINKpfat.

Figure 6.23: Toughness scaling to determine the best Weibull modulus estimate

Toughness scaling of the critical Weibull stresses from SENB02 and SENB05 can read-
ily be performed at -90◦C instead of bias-correcting both the Weibull modulus estimates.
As shown in Figure 6.23, m = 22.5 is unable to constraint-correct the probability of brit-
tle failure with corresponding critical Weibull stresses. However, m = 17.6 is able to
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constraint-correct the fracture geometries at -90◦C which in turn confirms the Weibull
modulus estimate from the mean least square calibration procedure as adequate without
any significant bias-correction.

The original Beremin model is based on the weakest-link principles in Section 2.8.1
and Weibull stress calculation based on plastic elements exhibiting principal stresses which
exceed the yield strength as discussed in Section 3.1.3. However, the LINKpfat Weibull
stress calculation program bases its calculation on the weakest-link principles of all the
elements regardless of stress level. Thus, the calculated Weibull stress can be severely
biased when considering the whole FE-model. As exhibited in Figure 6.24, the full-scale
model highly overestimates the Weibull stress as the base model accommodate a signifi-
cant amount of elements with intermediate stresses which do not exceed the yield strength.

Figure 6.24: Model sectioning effects. The full-scale model compared to the heat affected zone

The resulting Weibull stresses from the full-scale model might be able to describe the
ductile-to-brittle transition of the individual fracture specimen geometries as the constitu-
tive Weibull stresses will change accordingly with temperature. However, the constraint-
correction remains beyond the bounds of possibility as the SENB05 model will simulate
higher Weibull stresses compared to the SENB02 model due to its high constraint level and
amount of intermediate principal stresses in the model body. Thus, the ABAQUS model
is sectioned with separate model body and weld zone to solve the weakest-link limitation
in LINKpfat. As shown in Figure 6.23 and 6.24, the resulting Weibull stresses from the
heat affected zones can be constraint-corrected with identical Weibull stresses following
the same fracture probability distribution.

The Weibull stresses are affected by the constraint effects during ductile tearing and
the onset of constraint relaxation when the Gurson UMAT is combined with the Beremin
post-processing routine. Thus, the constraint relaxation will prevail at two separate crack
extensions due to the different constraint levels in SENB05 and SENB02. As exhibited
in Figure 6.25, the Weibull stress in the SENB05 weld zone increases with increasing
crack extension until reaching 0.3mm ductile tearing. The constraint effects ahead of the
crack tip leads to elevated stress fields during crack growth which in turn results in higher
Weibull stresses. The constraint relaxation starts dominating after a certain amount of
ductile tearing which in turn will cause lower Weibull stress with further crack extension.
The same phenomenon appears in the SENB02 weld zone where the constraint effects
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prevail until 1.2mm ductile tearing before the specimen starts experiencing constraint re-
laxation. SENB05 has a high constraint level compared to SENB02 which in turn leads to
a steeper Weibull stress elevation at small crack extensions which is a priori reasonable as
the SENB05 specimens yield lower fracture toughness due to its high constraint level.

Figure 6.25: Ductile tearing effects. Normalised Weibull stress vs ductile tearing

As exhibited in Figure 6.25, the resulting Weibull stress increases accordingly as the
Weibull modulus is decreased. Thus, the Weibull modulus shift will moderately affect
the Weibull stress ratio between the two specimens even though the Weibull stress trends
are not particularly affected. Hence, there should exist a Weibull modulus which can ac-
curately constraint-correct the two fracture geometries. Nevertheless, as the stress field
experiences notable changes throughout the transition region, the resulting Weibull pa-
rameters might change with temperature even though the flaw distribution a priori should
remain relatively constant when identical weld simulation and heat treatment are assumed.

Figure 6.26: Constraint-correction with constant Weibull modulus
(a) -90◦C and -60◦C, (b) -30◦C and 0◦C

Figure 6.26 (a) and (b) respectively illustrate the critical Weibull stresses in the assumed
brittle and transition regions from the SENB05 and SENB02 test series. As exhibited
in Figure 6.26 (a), the maximum likelihood estimated distribution function at -90◦C is
able to describe the experimental Weibull stresses. However, the SENB05 fracture se-
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ries at -60◦C deviates from the other distributions between 30-80% probability of failure.
The same deviating population also prevails in the initial fracture toughness analysis in
Section 6.2 and in the Weibull parameter study in Section 6.2.1 which in turn means that
the fracture mechanics test series does not follow the two-parameter Weibull distribution.
Nonetheless, the concave trend can usually be solved by introducing a third Weibull pa-
rameter, but since only the mid population deviates from the two-parameter Weibull dis-
tribution, the deviating Weibull stress population is presumably due to experimental errors
or flawed weld simulation causing heterogeneous microstructure.

By considering temperature independent Weibull parameters, the resulting CDF at
-90◦C in Figure 6.26 (a) can accurately constraint-correct the two fracture geometries
at -90◦C and -60◦C without any particular Weibull parameter changes. However, the es-
timated CDF in Figure 6.26 (b) is unable to capture the lower fracture points as the lower
bound confidence interval does not increase accordingly in the transition region. Never-
theless, the upper bound confidence interval can account for the applicable transition with
increasing temperature. Thus, the Beremin-Gurson approach with temperature indepen-
dent Weibull parameters can constraint-correct the fracture geometries in the brittle region
and to some extent in the transition region. It is nonetheless unable to capture the lower
bound transition trend which might be due to the low mesh resolution, inconsistent Weibull
stress calculation in LINKpfat or temperature dependent Weibull parameters.

6.4.2 Temperature Dependent Weibull Parameter Study

The Beremin-Gurson model with temperature independent Weibull parameters is unable
to describe the shifting Weibull stresses in the transition region. Thus, a more compre-
hensive Weibull parameter study is conducted to determine the temperature dependence of
the constitutive Weibull parameters. As exhibited in Figure 6.27 (a), all the CDFs follow
the same distribution trend which is evidence of a constant Weibull modulus in the brittle
region as it defines the flaw distribution and the slope of the Weibull cumulative distribu-
tion function. However, the transition region CDFs illustrated in Figure 6.27 (b) exhibit
a slightly steeper distribution trend. Thus, the Weibull modulus is evidently increasing
when entering the transition region as larger Weibull modulus promotes steeper Weibull
cumulative distribution functions.

Figure 6.27: Failure probability vs Weibull stress calculated with the Beremin-Gurson model
MLE CDFs as stippled lines. (a) -90◦C and -60◦C, (b) -30◦C and 0◦C
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PF (σw) = 1− exp
[
−
(σw
σu

)m]
(6.5)

The Weibull modulus, m in Equation 6.5 characterises the flaw distribution of second-
phase particles and defects which may yield cleavage fracture initiation as described in
Section 2.3. The likelihood of changing the flaw distribution in the microstructure just by
increasing the temperature is not the most probable scenario when equal heat treatment and
weld simulation are assumed. However, the scale parameter, σu might change accordingly
as the dislocation movement changes with temperature. σu as a temperature dependent
parameter may describe the changing stress state, material flow properties, and Weibull
stress throughout the ductile-to-brittle transition. The scale parameter characterises the
steel’s resistance to cleavage fracture which in turn means large σu is equivalent with
higher resistance to cleavage fracture. However, the σu temperature dependence becomes
quite ambiguous as the brittle crack initiation barriers change from second-phase particles
and defects at low temperatures to grain boundaries at high temperatures. Hence, there
might exist a non-unique Weibull parameter set as the material might exhibit changes in
the defect population with shifting temperature.

Figure 6.28: Scale parameter DBT. Temperature independent Weibull modulus, m = 17.6
SENB05 at -60◦C marked as red due to deviating Weibull stress population

The constitutive scale parameter, σu can from the CDFs in Figure 6.27 readily be defined
as the Weibull stress yielding PF = 1− e−1 = 0.632, and Figure 6.28 exhibits all the
scale parameters from the SENB02 and SENB05 CDFs as a function of temperature. The
SENB02 scale parameter remains relatively constant in the brittle region and increases
when entering the transition region, and the SENB05 scale parameter decreases in the
brittle region before it increases in the transition region. The scale parameters almost
coincide at -90◦C which is reasonable as the Weibull parameters are fitted at this tempera-
ture. However, the scale parameter deviates moderately at -60◦C even though most of the
rank probabilities with corresponding Weibull stresses coincide at this temperature which
in turn is due to the deviating Weibull stress population as shown in Figure 6.27. On the
assumption the SENB05 series at -60◦C follows a projected two-parameter Weibull distri-
bution, the resulting SENB05 scale parameter would decrease at the same rate as SENB02.
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Thus, the scale parameter remains somewhat constant in the brittle region and increases
with increasing temperature in the transition region. Nevertheless, it is worth noticing the
scale parameters do not change more than 1.8% between -90◦C and 0◦C for SENB05, and
2,7% between -90◦C and -30◦C for SENB02 which is slightly diminishing. The resulting
resistance to cleavage fracture will thus increase with increasing temperature by assuming
constant flaw distribution (m = constant) which is reasonable as the material is less likely
to yield cleavage fracture at high temperatures.

The Beremin-Gurson model is unable to constraint-correct the two fracture geome-
tries at high temperatures by assuming constant flaw distribution which in turn means the
Weibull modulus may change with shifting temperature. The constitutive critical Weibull
stresses from the two fracture geometries are thus toughness scaled respectively at all the
test temperatures to find the best Weibull modulus estimates throughout the DBT. As ex-
hibited in Figure 6.29 (a), the best toughness scaling prevails at m = 17 for the critical
Weibull stresses at -90◦C, m = 22.5 at -60◦C, and m = 25 at -30◦C. The corresponding
scale parameter changes accordingly as larger Weibull modulus yield smaller scale param-
eters at the respective temperatures.

Figure 6.29: Temperature dependent Weibull parameters fitted at all the test temperatures
(a) Toughness scaling, (b) m and σu temperature trends

As exhibited in Figure 6.29 (b), the same temperature trend prevails as a small Weibull
modulus yields a large scale parameter and vice versa. The Weibull modulus increases
with increasing temperature which in turn means the flaw distribution increases and the
Weibull CDF becomes steeper. The temperature trend is somewhat reasonable as the crit-
ical Weibull stresses become somewhat constant during ductile tearing which in turn pro-
motes steep CDFs in the transition region. However, the Weibull modulus at -90◦C and
-60◦C deviate considerably even though the SENB05 specimens are in the brittle region
without any significant ductile damage. As some of the SENB02 specimens experience
ductile tearing prior to cleavage at -60◦C, the Weibull modulus must be changed accord-
ingly in order to constraint-correct the different stress states. Also, SENB05 at -60◦C
constitute a deviating Weibull stress population which does not follow the two-parameter
Weibull distribution (see Figure 6.27) and might also bias the toughness scaling and the
resulting Weibull modulus at -60◦C. Thus, a projection of the two-parameter Weibull dis-
tribution function is established for SENB05 at -60◦C in order to further investigate the
Weibull parameter temperature trends. As shown in Figure 6.29 (a), the best toughness
scaling of the projected distribution prevails at m = 18 which in turn largely affects the
scale parameter as exhibited in Figure 6.29 (b).
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By considering the bias-corrected Weibull modulus at -60◦C and the Weibull parameter
trends in Figure 6.29, the Weibull modulus is seemingly increasing when entering the
transition region and remains relatively constant throughout the transition region. How-
ever, the same trends prevail at different magnitudes when considering the temperature
dependent Weibull modulus and scale parameter independently. The scale parameter de-
creases from -90◦C to -60◦C in both the analyses due to the inconsistent SENB05 Weibull
stress population and moderately increases throughout the transition region with somewhat
constant Weibull modulus. The decreasing scale parameter trend from -90◦C to -60◦C is
also due to the different stress states of the two fracture geometries where the SENB02
specimens are in the lower transition region, and the SENB05 specimens are still in the
brittle region at -60◦C. The projected parameter trends in Figure 6.29 (b) demonstrate
somewhat constant Weibull parameters in the brittle region which is expected as the ma-
terial behaviour is rather consistent. However, the Weibull modulus increases as the spec-
imens enter the transition region where the scale parameter decreases accordingly. Both
parameters remain relatively constant throughout the transition region, and the projected
Weibull modulus trend is the opposite of the scale parameter trend as larger Weibull mod-
ulus yields smaller scale parameter and vice versa. Thus, the parameter temperature trends
in Figure 6.29 (b) are quite distinctive as they remain relatively constant in both the brittle
region and the transition region where the parameters exhibit a brittle-to-transition shift.

6.4.3 Final Beremin-Gurson Model: DBT

The Beremin-Gurson model with temperature independent Weibull parameters is able to
constraint-correct SENB02 and SENB05 in the brittle region and demonstrates relatively
constant Weibull parameters at -90◦C and -60◦C. The temperature independent Weibull
parameters are unable to describe the lower bound confidence intervals accurately in the
transition region and do not constraint-correct the fracture geometries properly at -30◦C
(1.86% deviation). The Beremin-Gurson model is nonetheless able to describe the upper
bound limit of the fractured specimens throughout the ductile-to-brittle transition from
-90◦C to 0◦C.

A temperature dependent Weibull parameter study is thus conducted as the temper-
ature independent Weibull parameters are unable to constraint-correct the two fracture
geometries in the transition region. The parameter study discloses rather conclusive tem-
perature dependent Weibull parameter trends when toughness scaling the fracture data at
the respective test temperatures. The Weibull modulus is relatively constant in the brittle
region and increases accordingly as the fracture test series enter the transition region. The
resulting Weibull parameters are then utilised to establish Weibull cumulative distribution
functions by maximum likelihood estimation in Matlab (see Appendix B.1). As exhibited
in Figure 6.30, the constitutive MLE CDFs are used to establish confidence intervals at all
the test temperatures in order to examine the applicability of the temperature dependent
Weibull parameters to concurrently constraint-correct the fracture geometries and predict
the appropriate fracture toughness values throughout the ductile-to-brittle transition. The
MLE confidence intervals in Figure 6.30 (b) can describe the whole ductile-to-brittle tran-
sition within a [10%, 90%] confidence interval which is expected as all the fracture test se-
ries follow the two-parameter Weibull distribution and are toughness scaled accordingly.
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Figure 6.30: DBT with MLE confidence intervals. Temperature dependent Weibull parameters
(a) SENB05, (b) SENB02

However, the SENB05 confidence intervals in Figure 6.30 (a) follow a somewhat volatile
trend due to the inconclusive fracture mechanics test series at -60◦C which comprises
several fracture specimens deviating from the two-parameter Weibull distribution as fre-
quently discussed in Chapter 6. The insufficient fracture mechanics data at -60◦C is pre-
sumably due to experimental errors or flawed weld simulation. The MLE confidence in-
tervals are nevertheless able to describe the ductile-to-brittle transition from -90◦C to 0◦C
which in turn means the constitutive Weibull parameters can describe the transition at
0◦C accurately without toughness scaling. Nonetheless, the lower 5% confidence inter-
val at 0◦C is somewhat overestimating the steel’s brittleness as the lowest fracture point
largely biases the MLE CDF. In conclusion, the Beremin-Gurson model with temperature
independent parameters can describe the fracture toughness scatter in the brittle region
but are only to some extent able to describe the fracture toughness values in the transi-
tion region as the lower bound limit overestimates the steel’s brittleness. However, the
Beremin-Gurson model with temperature dependent Weibull parameters can constraint-
correct fracture geometries and demonstrate the ductile-to-brittle transition accurately. The
constitutive Weibull parameters are seemingly following distinctive temperature trends as
the specimens leave the brittle region and enter the transition region.

6.4.4 Discussion: The Beremin-Gurson Model

The current Beremin-Gurson model comprises two separate material characterisation mod-
els and is developed to among other things reduce the required laboratory work needed to
describe the ductile-to-brittle transition of structural steels. The simulation scheme must
constitute precise fracture toughness characterisations at a low-cost level with low time
consumption and must be able to describe both ductile and brittle material characteristics.
The constitutive models are also required to describe the appropriate fracture toughness
values for bi-modal grain size distributed steels throughout the ductile-to-brittle transition,
and should ideally only need fracture mechanics testing at one temperature in the brit-
tle region and one temperature in the ductile region. Keeping the scope and objective in
mind when evaluating the combined Beremin-Gurson model features several challenges
and controversial aspects. The models are first assessed separately before reviewing the
combined simulation model since the Beremin model as a post-processing routine is con-
ducted independently of the Gurson model.

The Complete Gurson Model is able to describe the crack growth and material soft-
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ening throughout the DBT by fitting the simulated resistance curve to the experimental
results in the solely ductile region. Only the true plastic flow curves are temperature de-
pendent material parameters, and f0, fc, and n are temperature independent parameters.
f0 is a material dependent parameter fitted in the ductile region and determines the slope
of the resistance curve where smaller initial void volume fractions yield steeper resistance
curves and vice versa. The temperature independent initial void volume fraction is not
unconditionally able to simulate the correct resistance curve slope of the low constraint
geometry which in turn means the current nucleation model might be biased when sim-
ulating several constraint levels with somewhat different mesh even though the size of
the smallest elements are the same. The initial void volume fraction, f0 as a tempera-
ture independent parameter is also questionable as the void growth and void coalescence
are temperature dependent in the current simulation scheme. The Gurson model depends
considerably on the mesh element size as each element comprises a void which in turn is
treated as a nucleation site. The length scale of the mesh elements, lc represents the size
of the cracked segments and the direction of the crack propagation and controls the inte-
gration points of the crack extension. The length scale is reduced to 0.05mm in order to
get a better resolution of the plastic blunting and the principal stresses ahead of the crack
tip. The attempt fails as the Gurson user subroutine is unable to achieve convergence be-
tween the time increments with mesh element size 0.05x0.05mm2. The underlying Gurson
user subroutine must be improved to make it versatile and adaptable in order to establish
meshes with any given element size. As each element in the FE-model represents a nucle-
ation site for the void-induced damage model, the element length should ideally be equal
to the average void distance in order to describe the appropriate void distribution. The un-
derlying user subroutine markedly limits the adaptability of The Complete Gurson Model
to high-resolution meshes, but the convergence problem is solvable by rewriting the con-
stitutive Gurson UMAT by incorporating adequate material input from the true plastic flow
curve. Thus, the most efficient Gurson UMAT comprises thirty-one (31) data points from
the Ramberg-Osgood estimated true plastic flow curve, but as the material yields at consid-
erable lower σys and σUTS with increasing temperature, the Ramberg-Osgood estimation
procedure may not be accurate when utilising similar true strain data points. Hence, the
model may be optimised by either estimating the constitutive material input directly from
the experimental true plastic flow curves or by reducing the true strain interval between
each data point at higher temperatures.

The Beremin model is able to constraint-correct and describe the fracture toughness
in the brittle region but is unable to constraint-correct nor calculate appropriate Weibull
stresses in the transition region. The in-house Weibull stress calculation program LINKpfat
demonstrates several controversial features as the program is initially designed to calcu-
late fatigue lifetime. The principal stresses in all the elements contribute to the simu-
lated Weibull stress yielding severely biased Weibull stress calculations. The fundamental
weakest-link principles in the Beremin model is based on a fracture process zone (FPZ)
consisting of only the elements which exceed certain threshold stress usually defined as the
yield strength. Thus, the Weibull stress will be markedly biased compared to the original
criterion when several elements exhibit intermediate stresses below the threshold limit.
The LINKpfat weakest-link limitation is partly solved by sectioning the weld zone and
model body separately which in turn will exclude all the Weibull stress contributions in
the model body. However, the remaining elements in the weld zone are somewhat biased
when considering the original Beremin principles even after the model sectioning are prop-
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erly conducted. In order to get unbiased Weibull stress calculations, LINKpfat must either
be further improved by incorporating a threshold limit characterisation of the fracture pro-
cess zone or by substituting LINKpfat with another Weibull stress calculation tools such
as WSTRESS [121] [124] and Weibull++ [109].

The Beremin-Gurson model is able to constraint-correct different fracture geometries
and describe the fracture toughness values throughout the DBT when considering tem-
perature dependent Weibull parameters where the mean least square method is used to
calibrate the representative Weibull modulus in the brittle region by only considering one
constraint level. Nevertheless, the constitutive calibration methods are somewhat biased
by the Weibull stress calculations in LINKpfat which in turn leads to large Weibull pa-
rameter confidence intervals. The combined model is nevertheless able to simulate both
constraint effects and constraint relaxation accurately and to constraint-correct the fracture
geometries throughout the DBT. The resulting temperature dependent Weibull parameters
can describe the appropriate fracture toughness values, but the relatively low mesh reso-
lution is a priori inadequate to calculate appropriate Weibull stresses. The lower bound
confidence interval in the DBT is markedly affected as the stress field must be immensely
detailed ahead of the crack tip in order to simulate accurate Weibull stresses during plastic
blunting. The current 4-node 2D plane strain elements should ideally be either 8-node 2D
elements or 20-node 3D bricks which in turn requires extensive computing power com-
pared to the current FE-model mesh. As the Beremin model is used as a post-processing
routine independently of the Gurson simulation, the competing void-induced ductile dam-
age from the Gurson model and the brittle failure probability from the flaw distribution
in the Beremin model do not characterise a representative probability of voids. Thus, the
Weibull stress calculation should ideally contain a probability of void nucleation factor
Pvoid which takes the void nucleation from second-phase particles into account. On the
assumption the applicable void is nucleated from a defect, the element which contains
the defect will not promote cleavage fracture and hence diminish the Weibull stress con-
tribution of the applicable element by a factor of (1 − Pvoid), Pvoid ∈ [0, 1]. Thus, the
competing flaw distribution of defects as cleavage initiation sites and the voids as nucle-
ation sites might contradict the underlying weakest-link principles if there is no common
probability factor in the Weibull stress calculation.

The current Weibull calibration procedures constitute several biases as they are highly
limited to negligible ductile damage and the size of the fracture dataset at any given tem-
perature. Also, none of the fracture toughness values are censored which in turn may result
in markedly biased Weibull parameter estimates. LINKpfat is unable to identify the appli-
cable fracture process zone with corresponding Vp which in turn might yield inconsistent
Weibull stress calculations. The material in question follows a two-parameter Weibull dis-
tribution, but the current Beremin-Gurson model is not sufficient in case of three-parameter
Weibull distributed materials nor bi-modal grain size distributed materials. Even though
the model is able to describe the characteristic Weibull parameter DBTs, it cannot iden-
tify the appropriate transition temperature without utilising competing ductility criteria.
However, by using the same competing criteria as the Gurson-RKR model in Section 4.3,
the SENB05 transition region starts at about -15◦C which is reasonable within the 90%
fracture confidence interval. In conclusion, the current Beremin-Gurson model is adequate
to describe the ductile-to-brittle transition from -90◦C to 0◦C but the constitutive Weibull
stress computation and several model parameters remain uncertain and questionable.
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Conclusion and Future Work

Conclusion

The master’s thesis discloses the Gurson-RKR and Beremin-Gurson models in order to de-
scribe the ductile-to-brittle transition (DBT) of structural steels by considering experimen-
tal results from uniaxial tensile tests and two different single edged notched three-point
bending (SENB) specimens ( aW equal to 0.2 and 0.5) conducted from -90◦C to 21◦C.
The Gurson-RKR model is established in a preliminary study and is thus separately dis-
cussed and evaluated in Section 4.4.1. The Gurson-RKR model is able to visualise and
describe the DBT regions by utilising the RKR Criterion as a post-processing routine to
predict cleavage fracture initiation, and The Complete Gurson Model to describe ductile
mechanisms and void-induced material damage. The Beremin-Gurson model is unlike the
distance-based Gurson-RKR model based on statistically independent volume elements
where the Beremin model is used as a post-processing routine by considering principal
stresses in the volume elements ahead of the crack tip. A separate discussion of the com-
bined Beremin-Gurson model are described in Section 6.4.4, and only the concluding ar-
guments and future work is presented in this section.

The fracture toughness values from all the fracture mechanics tests of both fracture
geometries follow a two-parameter Weibull distribution. The experimental fracture tough-
ness values are ranked in ascending order of mean rank probabilities as a function of frac-
ture toughness which in turn fit the maximum likelihood estimated (MLE) two-parameter
Weibull cumulative distribution functions (CDF) at all temperatures. The SENB02 and
SENB05 specimens are both in the brittle region at -90◦C and just the SENB05 specimens
are unambiguously in the brittle region at -60◦C. The scale parameter which describes the
resistance to cleavage fracture increases with increasing temperature, and the shape pa-
rameter which represents the failure rate is seemingly region dependent as it is constant in
the brittle region and shifts to another value in the transition region.

The original Beremin model with temperature independent Weibull parameters is un-
able to compute appropriate Weibull stresses in the transition region but can constraint-
correct the fracture geometries in the brittle region. The model is able to describe the
distinctive ductile-to-brittle transition with temperature independent Weibull parameters
for the individual specimens but cannot constraint-correct them in the transition region.
The Weibull parameters is fitted at the lowest temperature (-90◦C) where the specimen is
assumed to be in the brittle region with negligible ductile damage which in turn makes the
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flaw distribution unbiased. The original Beremin model overestimates the steel’s brittle-
ness in the transition region as it computes high Weibull stresses and no crack extension
nor constraint effects. The mean least square linear regression and maximum likelihood
estimation methods are unable to calibrate the Weibull modulus at -90◦C by just con-
sidering one fracture geometry, and only the toughness scaling method can estimate an
appropriate Weibull modulus with a fracture dataset comprising ten fracture specimens.

The Complete Gurson Model with temperature independent Gurson parameters and
temperature dependent true plastic flow curves is fitted to the experimental resistance curve
at the highest temperature (21◦C) in the ductile region with solely ductile characteristics.
The model is able to simulate perfect resistance curves for the whole ductile-to-brittle
transition for the high constraint specimens ranging from -90◦C to 21◦C when assuming
constant plastic blunting rate prior to ductile tearing initiation. Both the experimental and
simulated resistance curves follow the same linear trend function during ductile tearing re-
gardless of temperature. The low constraint specimen (SENB02) has a steeper resistance
curve and larger blunting zone than the high constraint specimen (SENB05), but the Gur-
son model is unable to simulate the appropriate resistance curve slope of the low constraint
specimen when assuming geometry independent Gurson parameters.

The Beremin-Gurson model combines The Complete Gurson Model to describe the ap-
propriate ductile mechanisms and crack extension, and the Weibull-based Beremin model
as a post-processing routine to compute the probability of brittle failure throughout the
ductile-to-brittle transition. The whole simulation scheme is based on determining ma-
terial properties from uniaxial tensile tests, conducting and reviewing fracture mechanics
tests, developing ABAQUS models with Gurson user-defined materials (UMAT) consti-
tuting Gurson parameters and true plastic flow curves, and calibrating Weibull parame-
ters by considering rank probabilities and Weibull stresses. Both the mean least square
(LSQ) linear regression method and the maximum likelihood estimation (MLE) method
can calibrate appropriate Weibull modulus estimates at -90◦C. The LSQ estimate is able
to constraint-correct the fracture geometries at -90◦C, but the LINKpfat FE-model must
be separately sectioned with weld zone and model body in order to get accurate Weibull
stress calculations and proper constraint effects. LINKpfat calculates the Weibull stress
from all the elements in the model and somewhat contradicts the weakest-link principles
in the Beremin model. The Beremin-Gurson model can describe appropriate constraint
effects and constraint relaxation at the respective temperatures but the temperature in-
dependent Weibull parameters fitted at -90◦C is unable to describe the ductile-to-brittle
transition. The temperature independent Weibull parameters can constraint-correct the
fracture geometries in the brittle region and describe the upper limit transition from -90◦C
to 0◦C but the lower limit transition curve overestimates the steel’s brittleness. The scale
parameter remains constant in the brittle region and increases as the specimens enter the
transition region when constant Weibull modulus and flaw distribution are assumed. Thus,
temperature dependent Weibull parameters are estimated by toughness scaling the two
fracture geometries at all the test temperatures. The Weibull parameters are constant in the
brittle region and shifts as the specimens enter the transition region. The Weibull modu-
lus, m = 17 in the brittle region and changes to m = 25 in the transition region, and the
scale parameter is about 3500MPa in the brittle region and about 3150MPa in the transi-
tion region. The temperature dependent Weibull parameters can constraint-correct the two
fracture geometries throughout the ductile-to-brittle transition which means the underlying
criteria can illustrate geometry independent Weibull parameters.
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The current Beremin-Gurson model presents several advantages compared to the distance-
based preliminary Gurson-RKR model as it can be readily applied in LINKpfat to calculate
the Weibull stress by implementing the ABAQUS database file (.odb) directly. The model
is also able to constraint-correct fracture geometries and capture the fracture toughness
throughout the ductile-to-brittle transition by combining the ductile mechanisms from the
Gurson model and the probability of brittle failure calculation from the Beremin model.
However, the model parameters and the whole simulation scheme remains uncertain as the
LINKpfat program has proven to be highly biased as it somewhat contradicts the consti-
tutive weakest-link principles in the Beremin model. Even though the model fulfils some
of the intended objectives such as describing the geometry constraint effects, criteria for
application and qualification of steels and extending the application range, the objective
of reducing or substituting laboratory work is not unconditionally reached. The model can
reduce the required laboratory work to describe the DBT but only if the Weibull param-
eter temperature dependence trends are concluded as material independent. The current
simulation scheme can ease the material characterisation process if the Weibull parameter
temperature trends prevail in other materials as only one fracture geometry is necessary in
order to calibrate the geometry independent Weibull parameters.

Recommended Future Work

The following list comprises several approaches to further enhance the current Beremin-
Gurson model in order to make it more versatile, unbiased and cost-efficient:

• Make the LINKpfat Weibull stress calculation unbiased by incorporating a thresh-
old limit function in order to define the fracture process zone. Establish a script
which can extract all the Weibull stresses from all the time increments to make the
procedures less time-consuming

• Consider utilising J-integral and Charpy V-notch tests which in turn can lower the
laboratory costs in order to get the appropriate and unbiased fracture mechanics data

• Test the Beremin-Gurson model with three constraint levels in order to conclude the
geometry independent Weibull parameters and the toughness scaling procedure

• Identify the temperature dependent Weibull parameters from another material by
utilising the same simulation scheme in order to conclude the Weibull parameter
temperature trends

• Consider bias-correcting the Weibull parameter estimates and censor the fracture
toughness values before doing the finite element analyses

• Compare the applicability of the Beremin-Gurson model compared to the standard
master curve approach and the SINTAP procedure

• Conduct a temperature dependence study and examine the constraint effects of the
constitutive Gurson parameters in order to conclude them as geometry and temper-
ature independent parameters
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Appendix A

Equations

A.1 Effective and Mean Stress
The following stress parameters are utilised in Equation 2.11

Effective stress (von Mises)

σe =
1√
2

√
(σ1 − σ2)2 + (σ1 − σ3)2 + (σ3 − σ2)2 (A.1)

Mean (hydrostatic) stress

σm =
σ1 + σ2 + σ3

3
(A.2)

A.2 Void Radius and Intervoid Distance
Equation A.3 and A.4 deduce the void radius and the intervoid distance, respectively. εxx
and εzz are components of the strain tensor, R0 is the initial intervoid radius and f is the
void volume fraction. These parameters are used in Equation 3.16 and is referred to in
Section 3.2.1.

r =

√
f

π
eεxx+εzz (A.3)

R = R0e
εxx (A.4)
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Appendix B

Weibull Analysis

B.1 Constitutive Matlab Functions
This appendix section presents the most relevant Matlab functions used to calibrate and
analyse the Weibull distributed fracture mechanics data. All the constitutive Matlab func-
tions are from the MathWorks library and the Statistics and Machine Learning Toolbox.
[85] The Matlab functions are utilised to estimate the constitutive Weibull parameters and
the corresponding cumulative distribution functions as described in Section 5.3.

Maximum Likelihood Estimation (MLE) of Weibull Parameters

phat is a two-element vector where phat(1) is the Weibull scale parameter estimate, σu
and phat(2) is the Weibull shape parameter estimate, m (Weibull modulus). pci is a 2x2
matrix and returns the confidence intervals of the Weibull parameter estimates. Equation 1
and 2 yields the same maximum likelihood Weibull parameter estimates with 95% Weibull
parameter confidence intervals. Equation 3 can be utilised to return defined 100(1-alpha)%
Weibull parameter confidence intervals. The data input values can either be experimental
fracture toughness values or simulated Weibull stresses at fracture.

1 : [ pha t , p c i ] = mle ( da t a , ’ d i s t r i b u t i o n ’ , ’ Weibul l ’ ) ;

2 : [ pha t , p c i ] = w b l f i t ( d a t a ) ;

3 : [ pha t , p c i ] = w b l f i t ( da t a , a l p h a ) ;
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Calculate the Cumulative Distribution Function points with MLE

In order to calculate the data points for the Weibull cumulative distribution function,
the Weibull parameters must first be estimated with the integrated maximum likelihood
Weibull parameter estimation function wblfit(data) returning the 1x2 parameter vec-
tor phat. After the Weibull modulus and the scale parameter are estimated, the result-
ing cumulative distribution function data points, cdfpoints can be calculated with the
integrated wblcdf function.

c d f p o i n t s = wblcdf ( da t a , p h a t ( 1 ) , p h a t ( 2 ) )

Estimate Weibull Cumulative Distribution Functions

This Matlab script is used to estimate Weibull cumulative distribution functions. data is
either critical Weibull stresses or fracture toughness values from the respective fracture
mechanics test series. The fracture dataset is arranged in ascending order.

p h a t = w b l f i t ( d a t a ) ;
%C a l c u l a t e s Weibu l l p a r a m e t e r s
%S c a l e p a r a m e t e r = p h a t ( 1 ) , shape p a r a m e t e r = p h a t ( 2 )

m i n d a t a v a l u e = d a t a ( 1 ) − 200 ;
%S m a l l e s t c r i t i c a l Weibu l l s t r e s s − a r b i t r a r y c o n f i d e n c e v a l u e

m a x d a t a v a l u e = d a t a ( l e n g t h ( d a t a ) ) + 200 ;
%L a r g e s t c r i t i c a l Weibu l l s t r e s s + a r b i t r a r y c o n f i d e n c e v a l u e

x = [ m i n d a t a v a l u e : 1 0 : m a x d a t a v a l u e ] ; %G e n e r a t e s d a t a p o i n t s
y = x . ’ ; %C o n v e r t s v e c t o r t o column

c d f = wblcdf ( y , p h a t ( 1 ) , p h a t ( 2 ) )
%E s t i m a t e s t h e Weibu l l c u m u l a t i v e d i s t r i b u t i o n f u n c t i o n
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B.2 LINKpfat
This section briefly introduces LINKpfat and its constitutive modules used to calculate
Weibull stresses, and it is exclusively referred to in Section 5.3 as one of the segments in
the comprehensive Beremin model implementation scheme.

LINKpfat is an in-house finite element post-processor tool which uses information from
finite element analyses to calculate deterministic and probabilistic material features. The
model geometries and stresses are extracted directly from the finite element analysis result
file (.odb in ABAQUS), and LINKpfat is compatible with programs such as ABAQUS,
ANSYS, and NX. Nodal coordinates, element topology and principal stresses are some
of the extracted features used in the computations. The two deterministic modules in
LINKpfat are defined as the Local Stress Approach (LSA) and the Single Defect Approach
(SDA) which in turn can be used to predict the component fatigue lifetime by considering
simulated stresses and crack-like defects. The Random Defect Approach (RDA) is one of
the probabilistic modules and is based on finite element stresses and Poisson distributed
material defects and can be used to calculate the fatigue life distribution by determining
the required cycles needed for each defect to become critical.

The second probabilistic module is the Weakest-link Approach (WEAK). This module is
based on the weakest-link principles in Section 2.8.1 and assumes the component reliabil-
ity to be equivalent to the product of the reliability of each element in the finite element
analysis. Thus, the entire component fails if one of the finite elements fails, and the prob-
ability of failure of all the small element volumes is obtained from the two-parameter
Weibull cumulative distribution function

PF = 1− exp
[
−
( σa
σ∗A0(R,n)

)bσ]
(B.1)

bσ is the Weibull modulus (shape parameter), σ∗A0 is the scale parameter, and σa is the
Weibull stress. σ∗A0 is equivalent to the Weibull stress at 63.2% probability of failure and
represents the resistance to brittle failure. However, the scale parameter is dependent on
the number of cycles, n and the stress ratio, R = σmin/σmax which in turn makes the
parameter biased in fracture mechanics analyses. bσ determines the amount of scattering
in the Weibull distribution where low bσ-values are equivalent with large scatter bands,
and high bσ-values are equivalent with narrow scatter bands. The Weibull stress, σa is
defined as the stress amplitude

σa =

[
1

V0

∫
V

σbσ1 dV

]1/bσ

(B.2)

where V0 is the reference volume, and σ1 is the maximum principal stress extracted from
the element nodes. Thus, the resulting Weibull stress in Equation B.2 is calculated by
performing a summation of all the principal stresses in all the element nodes in the finite
element model and is the only parameter which is extracted from LINKpfat.
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Appendix C

Gurson Analysis

C.1 Run Input File
This commando script calls for the input file sequentially and creates a new job with cor-
responding output file, and is used in the Gurson implementation scheme in Section 5.4.
The commando script also defines how many CPU cores to initiate when running the com-
mando which in this case is four CPU cores.

@echo o f f
REM CPUS can be between 1 and 4 . D e f a u l t i s 1
c a l l abaqus cpus =4 j o b =Gurson T RT i n p u t =Gurson T RT . i n p −seq
pause

C.2 Run UMAT
This code is compiled with the commando in Appendix C.1 in order to run the Gurson
user-defined material (UMAT) automatically in the simulation as described in Section 5.4.
The code must be in the same folder as the commando script and the input file. It locates
the Gurson UMAT .dll file and prints a message to indicate the UMAT initiation. The
UMAT code is a detailed and long document and is not presented due to redundant space
requirements. Abaqus v6.env prints the identification message while StandardU.dll and
usub lib dir represent the complete Gurson user subroutine code.

#
# s e t u s u b l i b d i r t o t h e d i r e c t o r y where StandardU . d l l
i s l o c a t e d .
#
u s u b l i b d i r =r ’C:\ABAQUS614’

p r i n t ’ H e l l o from a b a q u s v 6 . env : u s u b l i b d i r=%s ’
% ( u s u b l i b d i r )

112



C.3 State-Dependent Variables
The following list describes the state-dependent output variables from the user subroutine
called upon in Appendix C.2. SDV = State-Dependent Variable

• SDV1 - The equivalent plastic strain of the matrix material

• SDV2 - The void volume fraction at the end of the increment

• SDV3 - Stress triaxiality

• SDV4 - Controlling parameter for failure.

IF F > FMAX, STATVE( 4 ) = −FC < 0 . 0 ,
TOTAL FAILURE

IF F >= FC , STATEV( 4 ) = FC ,
BEFORE COALESCENCE .

IF F < FC , STATEV( 4 ) = 0 . 0 ,
NOT FAILED AT ALL .

• SDV5 - The plastic strain rate at loading initiation

• SDV6 - Temporary print controlling variable

C.4 Data Extraction: Output File
This commando calls upon the python script GetData.py and must define the local storage
location of the python script, the output file it is going to extract the data from, the yield
strength, the strain hardening exponent, and the node numbers for the CTOD, the crack
tip, and the adjacent crack tip node. The GetData.py script extracts the CTOD, J-integral
and crack growth from the output file (.dat), but is not presented in full due to excessive
space requirements. The data extraction is exclusively used in the Gurson implementation
scheme in Section 5.4.

@echo o f f
(
abaqus py thon C:\ABAQUS614\Henrik ABAQUS\ S c r i p t s \GetData . py
−f Gurson T RT . d a t −y 667 −n 0 . 1 −−node−c t o d 7
−−node− t i p 3000 −−node−c r a c k 0 21
pause
)
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Appendix D

Fracture Mechanics

D.1 Preliminary Experimental Force-CMOD Curves
The following figures illustrate the experimental Force-CMOD curves from the recent
SENB05 fracture mechanics test series as referred to in Section 4.1.

Figure D.1: Experimental Force-CMOD curves for specimen 1 to 6 at -60◦C.
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Figure D.2: Experimental Force-CMOD curves for specimen 9 to 14 at 0◦C.

Figure D.3: Experimental Force-CMOD curves for specimen 17 to 23 at 21◦C.
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D.2 DBT: Fractured and Unloaded Specimens
This section illustrates the experimental fracture toughness values from the fracture me-
chanics test series used to find the constitutive results in Chapter 6 and is exclusively re-
ferred to in Section 6.1.

Figure D.4: The ductile-to-brittle transition of valid SENB05 unloaded and fractured specimens.
Some fracture specimens are unloaded at desired CMODs, and some have invalid CTOD values.

Figure D.5: The ductile-to-brittle transition of valid SENB02 unloaded and fractured specimens.
Some specimens fractured at 0◦C but have invalid CTOD values
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D.3 Simulated and Experimental Force-CMOD Curves
This section is referred to in Section 6.1.1 and comprises all the simulated and experi-
mental Force-CMOD curves for SENB05 and SENB02. A few Force-CMOD curves are
additionally presented in Figure 6.5. As discussed in Section 6.1, some of the CMOD val-
ues might be incorrect as the red squares indicate initially measured fracture and unloading
points. See Appendix D.4 for all the valid fracture mechanics data.

Figure D.6: SENB05: Force-CMOD curves at -90◦C and -60◦C
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Figure D.7: SENB05: Force-CMOD curves at -60◦C, -30◦C and 0◦C

Figure D.8: SENB05: Force-CMOD curves at 0◦C and 21◦C
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Figure D.9: SENB02: Force-CMOD curves at -90◦C and -60◦C

Figure D.10: SENB02: Force-CMOD curves at -30◦C and 0◦C
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D.4 Fracture Mechanics Data
This section describes all the fracture mechanics test data from a recent SENB05 test
series and an Arctic Materials I project series. The recent SENB05 test series includes the
specimens from #1 to #23, and the Arctic Materials I test series comprises the specimens
from #520 to #673. The section is referred to in Section 6.1, and the following fracture
mechanics data are illustrated in Figure 6.2 and 6.4. The MOTE values are based on
fracture point characterisation according to BS 7910 [30] and Table D.1.

Table D.1: MOTE according to BS 7910

Ranked value Data set size
of data set BS 7910

Minimum Value 3-5
2nd lowest value 6-10
3rd lowest value 11-15
4th lowest value N-A

Table D.2: SENB05 fracture mechanics data. F = Fracture, U = Unloaded
NV = Not valid, max force in italic and MOTE in bold

Specimen Temperature CTOD ∆a Force Mode Exceeded Max Force
# ◦C [mm] [mm] [kN] F/U Yes/No

549 -90 0.033 0.00 8.00 F No
550 -90 0.030 0.00 7.74 F No
551 -90 0.051 0.02 9.15 F No
552 -90 0.070 0.03 9.91 F No
553 -90 0.053 0.02 9.30 F No
554 -90 0.042 0.02 8.69 F No
555 -90 0.023 0.00 7.03 F No
556 -90 0.040 0.02 8.41 F No
557 -90 0.022 0.00 7.11 F No
558 -90 0.040 0.00 8.16 F No

1 -60 0.105 0.07 10.00 F No
2 -60 0.094 0.08 10.22 U No
3 -60 0.059 0.05 7.59 F No
4 -60 0.089 0.07 8.99 F No
5 -60 0.042 0.03 7.12 U No
6 -60 0.110 0.06 9.97 U No

539 -60 0.119 0.06 9.96 F No
540 -60 0.082 0.07 9.40 F No
541 -60 0.113 0.06 9.89 F No
542 -60 0.049 0.05 8.44 F No
543 -60 0.061 0.06 8.73 F No
544 -60 0.052 0.05 8.26 F No
545 -60 0.039 0.00 7.96 F No
546 -60 0.065 0.06 9.26 F No
547 -60 0.053 0.03 8.64 F No
548 -60 0.032 0.02 7.64 F No
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Table D.3: SENB05 fracture mechanics data. F = Fracture, U = Unloaded
NV = Not valid, max force in italic and MOTE in bold

Specimen Temperature CTOD ∆a Force Mode Exceeded Max Force
# ◦C [mm] [mm] [kN] F/U Yes/No

529 -30 NV NV 9.99 U No
530 -30 0.106 0.09 9.62 F No
531 -30 0.118 0.13 9.70 F No
532 -30 0.123 0.12 9.46 F No
533 -30 0.098 0.08 9.59 F No
534 -30 0.110 0.06 9.65 F No
535 -30 0.082 0.07 9.01 F No
536 -30 0.152 0.10 9.77 F No
537 -30 0.083 0.07 9.36 F No
538 -30 0.113 0.09 9.69 F No

9 0 0.205 0.23 9.33 U Yes
10 0 0.168 NV 8.62 F No
11 0 0.141 NV 9.48 F No
12 0 0.101 0.08 9.02 U No
13 0 0.133 0.11 9.42 U No
14 0 0.175 0.17 9.66 U No
15 0 0.253 0.38 9.52 U Yes
16 0 0.178 0.31 9.69 U No
519 0 NV NV NV U Yes
520 0 NV NV 7.87 U Yes
521 0 0.155 NV 9.68 F No
522 0 NV NV 9.11 F Yes
523 0 NV NV 9.24 F No
524 0 0.195 NV 9.50 F Yes
525 0 0.157 0.13 9.60 F No
526 0 0.098 NV 9.27 F No
527 0 0.203 0.15 9.85 F No
528 0 0.178 NV 9.77 F No
17 21 0.259 0.22 9.27 U Yes
19 21 0.538 0.89 7.48 U Yes
20 21 0.368 0.51 8.95 U Yes
21 21 0.458 0.77 7.62 U Yes
22 21 0.134 0.09 8.89 U Yes
23 21 0.190 0.19 9.31 U Yes
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Table D.4: SENB02 fracture mechanics data. F = Fracture, U = Unloaded
NV = Not valid, max force in italic and MOTE in bold

Specimen Temperature CTOD ∆a Force Mode Exceeded Max Force
# ◦C [mm] [mm] [kN] F/U Yes/No

624 -90 0.208 0.14 24.30 F No
625 -90 0.205 0.14 23.96 F No
626 -90 0.120 0.09 22.04 F No
627 -90 0.174 0.09 23.39 F No
628 -90 0.172 0.10 21.49 F No
629 -90 0.066 0.07 19.38 F No
630 -90 0.154 0.10 23.49 F No
631 -90 0.205 0.14 24.00 F No
632 -90 0.103 0.08 21.17 F No
633 -90 0.272 NV 25.85 F No
634 -90 0.213 0.14 23.38 F No
635 -90 0.130 0.09 22.73 F No
614 -60 0.343 0.43 23.66 F No
615 -60 0.304 0.36 24.20 F No
616 -60 0.202 0.18 23.36 F No
617 -60 0.212 0.18 23.37 F No
618 -60 0.227 0.23 23.85 F No
619 -60 0.232 0.15 23.22 F No
620 -60 0.353 0.31 23.76 F No
621 -60 0.384 0.39 24.23 F No
622 -60 0.445 0.45 24.24 F No
623 -60 0.483 0.40 24.69 F No
604 -30 0.530 0.46 24.53 F Yes
605 -30 0.484 0.64 23.47 F Yes
606 -30 0.400 NV 23.65 F No
607 -30 0.496 NV 22.72 F Yes
608 -30 0.313 0.35 23.01 F No
609 -30 NV NV 23.66 F No
610 -30 0.366 NV 22.93 F No
611 -30 0.674 NV 22.94 F Yes
612 -30 0.693 NV 22.99 F Yes
613 -30 0.551 NV 23.57 F Yes
594 0 NV NV 15.20 F Yes
595 0 NV NV 17.14 F Yes
596 0 NV NV 16.53 F Yes
597 0 1.420 NV 15.10 U Yes
598 0 NV NV 15.70 F Yes
599 0 2.320 NV 4.77 U Yes
600 0 2.786 NV 8.08 U Yes
601 0 NV NV 15.55 F Yes
602 0 1.994 NV 4.38 U Yes
603 0 NV NV 15.11 F Yes
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