
Automatic Notification and Execution of
Security Updates in the Django Web
Framework

Magnus Nermark

Master of Science in Computer Science

Supervisor: Jingyue Li, IDI
Co-supervisor: Tosin Daniel Oyetoyan, Sintef

Department of Computer Science

Submission date: July 2018

Norwegian University of Science and Technology

Abstract

Frameworks are actively used today as a tool to simplify development pro-
cesses and to create secure and robust tailor made solutions. Using frame-
works as the foundation when developing web solutions reduce the time it
takes to go from an idea to a finished product, meanwhile allowing the frame-
work to handle potential log-in processes. Problems occur if a security breach
is identified in such a framework. If the flawed framework is utilized by mul-
tiple websites, these users will be vulnerable to malware or malicious actions
by third parties. If the update process for the framework is simplified, it
would mean an increase in the update rate by any admin.

In this thesis, research by interviews and observations have been made to
identify possible improvements in the update process of the Python-based
framework Django. Since 2010, more than 50 holes in the security of this
framework have been discovered. Due to a complicated update process, there
is reason to assume that there are multiple users on the web today with vul-
nerable versions of the framework. Therefore, in the work on this thesis, a
tool that can be installed on existing Django-applications has been developed
and tested. This tool will alert an admin if the current version of the frame-
work is outdated. The tool includes a user interface to help the administrator
installing any updates and uncover potential risks by installing the newest
version of the framework.

Sammendrag

Rammeverk brukes i dag aktivt som verktøy for å forenkle utviklingspros-
esser, og til å lage sikre og robuste løsninger fra bunnen av. Ved å bruke et
rammeverk som grunnstein n̊ar en skal utvikle en webløsning, vil en kunne
redusere tiden det tar å g̊a fra en idé til et produkt, samtidig som man lar
rammeverket h̊andtere eventuelle innloggingsprosesser. Problemer oppst̊ar
dersom det blir oppdaget et sikkerhetshull i et slikt rammeverk. Dersom
rammeverket brukes av mange ulike nettsider, betyr dette i praksis at alle
som bruker den s̊arbare versjonen av rammeverket, ansees som potensielle
mål for en ondsinnet bruker. Dersom prosessen for å oppdatere rammeverket
er gjort enkel, vil dette medføre hyppigere oppdatering av rammeverket fra
en administrator sin side.

I denne oppgaven er det blitt gjort undersøkelser i form av intervjuer og
observasjoner for å avdekke mulige forbedringer i oppdateringsprosessen til
det Python-baserte rammeverket Django. Siden 2010 har det blitt avduket
over 50 sikkerhetshull i rammeverket, og det antas, p̊a bakgrunn av en kom-
plisert oppdateringsprosess, at det finnes mange s̊arbare versjoner av Django
ute p̊a nettet i dag. Undertegnede har gjennom arbeid med denne opp-
gaven utviklet og testet et verktøy som kan installeres i en allerede eksis-
terende Django-applikasjon, og som vil gi administrator beskjed dersom den
gjeldende installasjonen av rammeverket er utdatert. Det er ogs̊a laget et
brukergrensesnitt i denne applikasjonen for å hjelpe administrator til å in-
stallere en ny oppdatering, samt for å avdekke eventuelle farer ved å installere
nyeste versjon av rammeverket.

Preface

This thesis is submitted as the final of a five-year M.Sc. in Computer Science
at the Department of Computer Science (IDI) to the Norwegian University
of Science and Technology (NTNU). The work has been carried out in con-
sultation with Jingyue Li as my supervisor and Tosin Daniel Oyetoyan as the
external supervisor. I would like to thank my supervisors for good discussions
through the last semester and for pushing me to make my work possible. I
would also like to thank my roommates for motivating me through the final
weeks of the project, and my family and friends for all the support through
the last five years. Finally, I would like to thank the board of Spire Consult-
ing for the distribution of work over the last six months, making it possible
for me to combine a startup company together with my masters thesis.

Contents

List of Figures x

List of Tables xii

Glossary xiv

1 Introduction 1
1.1 Motivation . 2
1.2 Goal . 3
1.3 Research Question . 3
1.4 State of the Art . 4

1.4.1 Notify users when a new update is available 4
1.4.2 Verify impact of an update 5
1.4.3 Installing a new update in Django 6

1.5 Outline . 6

2 Background theory 7
2.1 Web Application Framework 7

2.1.1 Framework vs. web framework 7
2.1.2 Open Source Software 9
2.1.3 MVC pattern . 9

2.2 Python . 11
2.3 The Django Framework . 12

2.3.1 Overview . 12
2.3.2 Features . 13
2.3.3 Why Django? . 14
2.3.4 The architecture of Django 14
2.3.5 Security policy and vulnerabilities 16

2.4 Virtual Environment . 19
2.5 PIP . 20
2.6 SSH Access . 21

vi

2.7 Security Issues Related to the Use of a Framework 22
2.8 CVE . 22

2.8.1 Classification of CVE data available 23
2.8.2 Brief description of different vulnerabilities listed in CVE 25

2.9 Crawling websites . 26
2.10 Notifications . 28
2.11 Mailgun . 29
2.12 Cron . 30

3 Research Approach and Similar Solutions 33
3.1 Research Question and Research Methodology 33
3.2 Approach and Process . 36
3.3 WordPress . 37

3.3.1 Security in WordPress 38
3.3.2 Updating WordPress 38

3.4 PyUp-Django . 39

4 Results of the Observations and Interviews 43
4.1 Pre-phase Interview . 43
4.2 Design . 44

4.2.1 First iteration and interviews 44
4.2.2 Second iteration and interviews 47

5 Implementation 51
5.1 Assumptions . 51

5.1.1 Python version . 51
5.1.2 Dependencies . 53
5.1.3 Django version base . 53

5.2 Example application . 54
5.3 Updating service application 56

5.3.1 update-script.py . 56
5.3.2 Models . 58
5.3.3 Views . 61
5.3.4 Templates . 68

5.4 Requirements . 69
5.5 Development Environment . 70

5.5.1 Installing Python . 71
5.5.2 Setting up virtual environment 72
5.5.3 Installing the requirements 72
5.5.4 Setting up a Django Project 73
5.5.5 Installing the Updating Service application 74

vii

5.6 WebFaction . 74
5.6.1 VirtualEnv . 75
5.6.2 Let’s Encrypt . 77
5.6.3 Cron . 78

6 Evaluation and further development 81
6.1 Methodology . 81
6.2 Evaluation of solution . 82
6.3 Further development . 83

7 Conclusion and further work 85
7.1 Conclusion . 85
7.2 Further Work . 85

Bibliography 87

A Code-Classes 93
A.1 update-script.py . 93
A.2 views.py . 95

A.2.1 imports . 95
A.2.2 update page(request) 96
A.2.3 get current django version() 97
A.2.4 get all cve on given version(VERSION NUMBER) . . 97
A.2.5 add base and supported to database() 98
A.2.6 get django supported and lts versions() 99

A.3 Crontab . 101
A.4 requirements.txt . 101

viii

ix

List of Figures

2.1 MVC pattern overview . 10
2.2 Trending programming language on Stack Overflow 12
2.3 Architecture overview [16] . 15
2.4 Distribution of security vulnerabilities in Django 17
2.5 Visualization of a virtual environment 20
2.6 Illustration of SSH tunneling 21
2.7 Web scraping illustrated by MyDataCareer [33] 27

3.1 Distribution of the vulnerabilities in WordPress from 2010 to
2017 gathered from CVEdetails.com 38

3.2 Notification given to the administrator in WordPress 39
3.3 One-click update in the WordPress admin panel 39
3.4 PyUP-Django - Example of the administrator panel 40

4.1 Old design of the application 45
4.2 New design of the application 48

5.1 PyCharm survey from 2016 52
5.2 PyCharm survey from 2017 53
5.3 Models in the example application 54
5.4 Main page of the example application 55
5.5 A typical blog post page of the example application 56
5.6 Example of an E-mail sent to the administrator 58
5.7 Model overview of the updating application 59
5.8 Overview of views.py . 62

x

xi

List of Tables

2.1 Advantages and disadvantages of the MVC pattern 11
2.2 Attributes allowed in crontab 31

5.1 Variables and values returned to the template 63
5.2 Brief description of requirements in the project 70
5.3 Useful terminal commands . 71

xii

xiii

Glossary

API Application Programming Interface

Base version The base version of the Django installation, e.g. 5.4

Current version The current subversion of the base version, e.g. 5.4.3

CVE Common Vulnerabilities and Exposures (CVE)

DRY Don’t repeat yourself

HTTP Hyper Text Transfer Protocol

HTTPS Hyper Text Transfer Protocol Secure

JSON JavasScript Object Notation. Language independent lightweight data-
interchange format.

MVC Model-View-Controller. A software architectural pattern.

NTNU Norwegian University of Science and Technology

PIP The PyPA recommended tool for installing Python packages.

PyPA The Python Packaging Authority.

xiv

Chapter 1

Introduction

The purpose of this chapter is to provide a short overview of the thesis, as
well as present the motivation, goal, and research area of this thesis.

Web pages today are made available to everyone. One who desires to create
a blog, online store, or an information page does not need to have coding
knowledge to get a fully working web page platform to serve its purpose.
Today, people could, and are most likely to use a framework, regardless of
whether they know coding or not. A framework is a pre-made set of sites
which, in many cases serves content from a database to the front page. De-
pending on the framework used, there are differences in how the framework
is set up, what the framework provides, and what kind of programming skills
are required by the user.

Common for all frameworks is the handling of user authentication, exchange
of information between front-end, e.g. a web form, and back-end, e.g. a
database. Some frameworks are template based, either developed by the cre-
ator of the framework, or by an external source. Some frameworks make a
skeleton site in which the user can place the content into a predefined tem-
plate, and some only provide functionality regarding secure communication
and exchange of information inside the application.

Today there exist many different frameworks to choose from, and the se-
lection is primarily dependent on the programming language that the devel-
oper is familiar with. The framework also depends on the site’s purpose;
however, in recent years, there have been good initiatives to close the gap
between frameworks as much as possible. Choosing the appropriate frame-
work mainly depends on the need of the user. Here are a couple of popular
frameworks that is in use on the internet today:

1

• WordPress - PHP-based framework suited for Blogs and Online Stores.

• Struts - Action-based framework in Java with an MVC mindset for
creating Java web applications.

• Django - A Python-based framework with an MVC-like architecture
for creating a scalable website that can handle heavy traffic.

1.1 Motivation

A framework is a good way to get started when developing a web platform.
However, if a framework is vulnerable, e.g., either information can get stolen
or an authentication fails, this generally means that every web page that uses
that particular framework is vulnerable to the given weakness. Providers or
owners of frameworks take security issues seriously. Fixing weakness in the
framework as soon as they are discovered is highly prioritized among them.
However, industries using the framework are not always quick to update to
the latest version. The updating process primarily depends on the framework
and how easy it is to patch the system whenever a security fix is released.
Some frameworks do this automatically, such as WordPress; however, doing
this manually can be a cumbersome and time-consuming process.

After using Django on a personal basis for the last couple of years, my per-
sonal experience is that the updating process tends to be forgotten. As the
administrator of a Django-powered site, one goes through the setup process
when the site is created, and tend to push code to the application whenever
a change is made. In Django, if one want to update to the latest version, the
process involved is to log on to the server either by SSH or physically access-
ing the server through a terminal window. Then you would have to check
whether there is any update available for your application, pull the whole
application to a local repository, and apply the update locally to make sure
that the website is working as expected when the update is complete. If the
update is successful, one would have to do the same process on the server and
hope that the application does not break. This process is complicated and
time-consuming. As stated by the Django Software Foundation, by doing an
update regularly, the complexity of the updating process decreases and it is
easier to do small changes as they come rather than doing a major update
after a longer period of time. [1]

The motivation for this thesis is to make the web application patching pro-
cess easier for the administrator. If the process of installing a new security

2

patch is made simpler, the threshold for updating the web application to the
latest version should be significantly reduced. By doing so, both the users of
the web application and the administrator of the site can rely on the service
to be up-to-date and safe to use.

1.2 Goal

Security is a common issue for all web-based systems. This study aims to
gather information about the most common vulnerabilities in the Django
framework and focuses on how the end users can cope with the vulnerabil-
ities by making the updating process for their existing software as easy as
possible.

The overall goal for this thesis is to raise awareness about the importance of
security patching, and to make the patching process easier for Django users.
By providing detailed research in the field of security patching and the up-
dating process, this thesis will hopefully help administrator users of Django
in the process of keeping their website up-to-date with the latest security
and performance patches. With an automated updating process lowering
the threshold for the administrator, the users of the site can trust the ser-
vice they are using and not to be concerned over the site been outdated or
vulnerable.

1.3 Research Question

The pre-study for this research was to gather information from the last
eight years and create an overview of the most common vulnerabilities in
the Django framework. Now, the concerned area is shifted towards the up-
dating process and how to make it easier for the stakeholders to ensure that
the web page is secure and up-to-date. The stakeholders for this study are
primarily the system administrators; however, users of the website might also
be interested to know that the site itself is as secure and updated as possible.
The focus of this research is centered around the Django Web Framework.

RQ1: How to automatically inform web framework users when
a new security update is available?

The first area of this work is to notify the stakeholders that their site is

3

outdated. As of today, Django takes security vulnerabilities seriously and
releases security patches for the supported version of their framework when-
ever a vulnerability or a weakness is discovered. By default, there is no
notification mechanism built into Django that tells users that their version
of the framework has some security vulnerabilities. The goal is to notify the
user whenever a new security patch is released for that given version of the
framework.

RQ2: How to analyze the impact of web framework’s update on
the application using the framework

The second area of this work is to analyze and warn the system adminis-
trator of the critical part of an update. The goal is to give the user an
overview of what is necessary to complete the update. After giving this
overview, the administrator can justify whether the update is necessary, and
decide whether he or she wants to invest time to make the update possible.

RQ3: How to perform automatic update of the web framework
and the application using the framework

The updating process in Django is a cumbersome process. To lower the
threshold for the administrator to keep the site up-to-date, this process
should be made easier. The final part of this work is related to automat-
ing the updating process as much as possible. Many web frameworks on the
market have an easy updating process; however, this is lacking in the Django
web framework. By performing security patching regularly, the adminis-
trator is one step closer to securing their applications and to maintaining
trustworthy applications for the end users.

1.4 State of the Art

The usage of Django has increased significantly in recent years. The setup
process has been simplified and the framework has become more reliable than
ever. This section describes the state of the art of the Django Web Framework
with a focus on the research questions listed in the previous section.

1.4.1 Notify users when a new update is available

Django places security on the top of their priority list. If a security vul-
nerability is detected in the framework, Django is quick to release a patch

4

for that security vulnerability if the version is still in the supported range.
However, if the user is not reading the development blog on the djangopro-
ject.com website every week, he or she might miss out on a newly released
patch for that vulnerability. One can request a subscription to a low traffic
notification list that is used whenever Django releases a new security patch
[2]. The process of attending such a list is quite extensive, and placement is
not guaranteed.

The request is done by sending a detailed email to the Django organization
describing your organization and how it meets the requirements for place-
ment on the notification list. By being on this list, the administrator and
the organization are the first to know about upcoming security releases and
receive detailed information about a security breach.

Another way to get the information is through a more trafficked list called
Django-announce. Everyone who is subscribed to this list, will be receiv-
ing information directly from Django. However, one does not know whether
the information received is relevant to one’s application. The messages sent
through this mailing list might also be information about new alpha releases,
which in many cases is not relevant when concerned about security.

There exists an additional tool that one can use to gather security informa-
tion about a Django project. The tool is called pyup-django and is described
in Section 3.4.

1.4.2 Verify impact of an update

As of today, there is no default impact analysis tool for Django to detect the
impact of a change. If a system administrator wants to evaluate the impact
of a security update, he or she must have a complete overview of the appli-
cation and know which part of the Django core is been used, either directly
or partially, by his or her own developed application.

If the system administrator detects that one component of Django is critical
for the application to be operative, he or she must check whether the new
changes made by Django can cause the already existing application to not
functioning properly. This can be done by searching through information in
either the Django documentation, the release notes or the source code. Seek-
ing this information can be a time-consuming process, and it is not displayed
in one place. Searching many different sources takes time, and the system
administrator must have a good overview of where in the documentation or

5

code base he or she should search for the relevant information.

1.4.3 Installing a new update in Django

The Django team takes security issues seriously, and is quick to patch their
framework when a new security vulnerability is detected. However, the pro-
cess of installing the update is cumbersome, involving many different steps.
If a web application, e.g. a web blog, running in a live environment has a
known vulnerability, the steps involved in performing the update are many.

First, the system administrator must log on to the server either through
an SSH-connection, or by accessing a terminal on the physical server in an-
other way. Then, as suggested by the documentation of Django, the system
administrator must clone the installed version on the server and install it
in a local environment. After the local environment is up and running, the
system administrator must apply the update locally, and check whether the
application is still working after the update. If everything works as expected,
the administrator must go back to the server and perform the update in the
live environment. This can be done by pulling down and installing the latest
version of Django through PIP and specifying the preferred version to be
installed. Ideally nothing goes wrong in the updating process, and the server
should be patched after the new installation.

1.5 Outline

The outline of the thesis is as follows; Chapter 1 is the introduction chap-
ter describing the motivation behind the research as the research question.
Chapter 2 describes the background theory needed for understanding the
research better, and to have a basic knowledge of the topic. Chapter 3 de-
scribes the method used in the research as well as the questions been targeted
followed by the results of the different interviews in Chapter 4. Chapter 5
gives a detailed explanation of the implemented solution as well as how to
use it. Chapter 6 shows the evaluation of the solution, method and recom-
mendations for further development. The final chapter, Chapter 7, gives the
conclusion of the thesis as well as a recommendation for further research.

6

Chapter 2

Background theory

The purpose of this chapter is to give a brief introduction to the necessary
background theory needed to understand how the challenges related to the
research questions are solved.

2.1 Web Application Framework

As mentioned in the introduction, using a framework might help the devel-
opers to write components or systems with fewer lines of code, instead of
having to write the same thing repeatedly. But the advantage of using a
framework is not only to speed up the developing process - there is more to
it.

2.1.1 Framework vs. web framework

It takes time to develop a dynamic web application. Fortunately, today there
exists software in different forms that already know how to organize a web
application in a given format. The most popular architecture pattern used
in web frameworks is the MVC-pattern. The goal is to encapsulate data to-
gether with its processing and computation (the model) and isolate it from
the user interaction (the controller) and different data presentations (the
views).

A framework is an integrated set of components that collaborate to produce
a reusable architecture for a family of applications. Areas that are specific
must be refined by application developers by means of extending existing
framework objects to provide application-specific features.

7

A web application framework is a software framework specifically designed to
support the creation of web-based applications. A framework provides archi-
tectural guidance by partitioning the design into abstract classes and defining
their responsibilities and collaborations. A developer customizes the frame-
work to a specific application by sub-classing and composing instances of
framework classes. The goal of the web application framework should be the
ability for rabid and quality development of a dynamic web application. [3]

Design

Frameworks codify expertise in the form of reusable algorithms, component
implementations, and extensible architectures. A good framework can re-
duce the cost of developing an application by an order of magnitude because
it allows for reuse of both design and code. [3]

Benefit

There are some benefits involved when using a framework. According to
Mohamed Fayad and Douglas C. Schmid, the primary benefits is Modularity,
Reusability, Extensibility, and the Inversion of Control to the developers [4]:

• Modularity - Frameworks enhance modularity by encapsulating volatile
implementation details behind stable interfaces. Framework modular-
ity helps improve software quality by localizing the impact of design
and implementation changes.

• Reusability - The stable interfaces provided by frameworks enhance
reusability by defining generic components that can be reapplied to
create new applications. Framework reusability leverages the domain
knowledge and prior effort of experienced developers to avoid re-creating
and re-validating common solutions to recurring application require-
ments and software design challenges. Reuse of framework components
can yield substantial improvements in programmer productivity, as well
as enhance the quality, performance, reliability, and interoperability of
software.

• Extensibility - A framework enhances extensibility by providing explicit
hook methods that allow applications to extend its stable interfaces.

• Inversion of control - The run-time architecture of a framework is char-
acterized by an inversion of control. When events occur, the frame-
work’s dispatcher reacts by invoking a hook method, which performs
application-specific processing on the event.

8

2.1.2 Open Source Software

Open-source software (OSS) is a software for which the programming code
is available on the Web so that developers can modify and redistribute it [5].
This contrasts with most commercial software, for which the source code is
a closely guarded trade secret for a company or organization. The basic idea
behind OSS is that, when developers on the Web can read and modify the
source code as freely as they wish, the software itself evolves.

For students who are studying computer science, for example, OSS is im-
portant for multiple reasons. Most of the OSS out there is free, and students
can create an exciting development environment on their personal comput-
ers. It is a beneficial way for students to see how the different components of
the system communicate with each other and to see how programmers have
organized the code. Open-source software is among the best ways for young
software developers recieve international recognition for their work by partic-
ipating in the OSS community. For companies, organizations, governments,
and students, OSS provides a way to prevent the widespread illegal copying
of software, and an opportunity to raise the level of software development to
international standards. [3]

2.1.3 MVC pattern

The model-view-controller (MVC) pattern, was addressed by Glenn E. Kras-
ner and Stephen T. Pope in 1988. They presented the equine of MVC pro-
gramming in the application as a three-way factoring, whereby objects of
different classes take over the operations related to the application domain
(the model), the display of the application’s state (the view), and the user’s
interaction with the model and the view (the controller). This application
structuring paradigm of thinking about interactive components was devel-
oped where they saw the possibility of updating one of the components sep-
arately to get the interactive aspect. [6]

The model in an application is the implementation of the main structure
of the application data. The model represents the data of the application.
The model holds the information of the necessary fields with the technical
specification, as well as the relation between other models.

The view deals with everything graphical. The view requests data from
the model and display this data to the user. A view is likely to be dynamic,
meaning that if an entrance or data in the model is changed, the added or

9

modified data can be fetched to the view and the view is updated without
needing to refresh the page. For example, a button click is registered through
the view and the view sends the user action to the controller.

The final part of the MVC pattern is the controller. It is used to communi-
cate between the model and the view. The controller handles input from the
user through the view, places this in the model and database, and can give
feedback to the view regarding whether the communication was successful or
not. The controller handles any computation or gathering of data from, for
example, a sensor or an API endpoint. The MVC pattern is illustrated in
Figure 2.1.

Figure 2.1: MVC pattern overview

As an example of using the MVC-pattern, consider a user who wants to create
a Blog application that everyone can access unsing an URL. As soon as the
user sends a request to the URL, the server returns the view to the user. This

10

is what the user will interact with while reading the articles presented by the
Blog application. If the user wants to read the next article, the user clicks
inside the view. This triggers the controller, which retrieves the data from
the database and returns it to the view. Some benefits and disadvantages of
using such a pattern are listed in Table 2.1.

Table 2.1: Advantages and disadvantages of the MVC pattern
Advantages Disadvantages
Makes it easy to have multiple
views of the same model, which
can be connected and discon-
nected at run-time.

Increases complexity. May lead
to many unnecessary updates for
user actions.

2.2 Python

Python is an interpreted, interactive, object-oriented programming language.
It provides high-level data structures, such as list and associative arrays
(called dictionaries), dynamic typing and dynamic binding, modules, classes,
exceptions, automatic memory management, etc. It has a remarkably simple
and elegant syntax and yet is a powerful and general purpose-programming
language.

Python was designed in 1990 by Guido van Rossum. Like many other script-
ing languages, Python is free, even for usage in commercial purposes, and it
can be run on virtually any modern computer. A Python program is com-
piled automatically by the interpreter into platform-independent byte code,
which is then interpreted. We are running unmodified components written
in Python under Linux, Windows NT, 98, 95, IRIX, SunOS, OSF. [7]

An article published in 2017 by data scientist David Robinson illustrates
the incredible growth of Python over the last 5 years. [8] The article is
based on data gathered from the Stack Overflow database and shows how
technologies have trended over time, based on their tags, since 2008, when
Stack Overflow was founded. Stack Overflow serves as a platform where
users can ask and answer technical computer science questions. The article
shows rapid growth in high-income countries such as United States, United
Kingdom, and Germany. As shown in Figure 2.2, Python has been growing
rapidly in the last few years, and the popularity is still increasing [].

11

Figure 2.2: Trending programming language on Stack Overflow

The article points out that Java has a popularity spike in the Spring and in
the Fall, and has a small drop in the Summer. Robinson suggests that this
is due to students that are learning Java at their schools and universities.
Python, on the other hand, is stable throughout the year. The trend only
shows the frequency of questions asked about that particular programming
language; however it is a good indicator of which programming language the
users are using.

2.3 The Django Framework

This section provides a brief introduction to the Django framework, its ar-
chitecture, and its worldwide usage.

2.3.1 Overview

Django is described as follows by the creators:
“The Web framework for perfectionists (with deadlines). Django makes

it easier to build better Web apps more quickly and with less code. Django
is a high-level Python Web framework that encourages rapid development

12

and clean, pragmatic design. It lets you build high-performing, elegant Web
applications quickly. Django focuses on automating as much as possible and
adhering to the DRY (Don’t Repeat Yourself) principle” [9].

It is one of the most popular external packages in Python, and has been
downloaded over 34 million times [10]. The framework is known globally
and is used by many major companies, including Instagram, Pinterest, and
National Geographic [11], for running their service. Django was released in
2005 and has since been available to everyone as an open-source project [12].

2.3.2 Features

Django has many features, including templating and automatic generation
of database, database access layer, and admin interface generation from a
model description given in straight Python code. At the Python Wiki page,
they have listed and summarized some functionalities and requirements for
using Django [13]. They are shortened and listed as follows:

Deployment Platforms:

mod python. Has full WSGI support. Comes with a standalone Web service
for development purposes.

Suitability:

Django serves many different sites such as Instagram, Pinterest, and National
Geographic. Due to its many features, Django can be used, e.g., as a content-
management system.

URL dispatching:

URLs are mapped to request handler functions using simple regular expres-
sions.

Environment Access:

Accessed through an HTTP Request object that contains metadata about
the request.

Session, Identification, and Authentication:

Sessions are created and managed using cookies. The cookies and the request
object are stored in a dictionary.

13

Persistence Support:

The automatic creation of database tables and database abstraction layer
from Pythonic model definition is quite elegant and likely Django’s most
distinctive feature.

Presentation Support:

Django is using a template language such as: {% block jumbatron %}.

Documentation:

Documentation of Django is phenomenal, and the team behind it updates
the documentation continuously.

2.3.3 Why Django?

The team behind The Django Project gives an overview of why a developer
should consider Django when developing a web application [14]. Django is
a high-level Python Web framework that encourages rapid development and
clean, pragmatic design.

Django has been developed and used, since its beginning in 2005, by a Web
newspaper operation, The Washington Post, and is well-suited for devel-
oping content-management systems [15]. It was designed from scratch to
handle the intensive deadlines of a newsroom and the stringent requirements
of experienced Web developers. It focuses on automating as much as pos-
sible and adhering to the DRY principle. It includes a template system,
object-relational mapper, and a framework for dynamically creating admin
interfaces. [13]

Ruby on Rails is similar to it, but Django is written in Python and has
a few more advanced conveniences for a rapid Web development.

2.3.4 The architecture of Django

Django uses a “shared-nothing” architecture, which means one can add hard-
ware at any level – database servers, caching servers, or Web/application
servers. The framework cleanly separates components such as its database
layer and application layer. It addition, it ships with a simple-yet-powerful
cache framework [12].

14

Django is an MVC framework (MTV- model, template, view). The model is
the database structure, the view is the template (how content is shown), and
the controller is the view (how and which information flows with an URL
dispatcher). An overview is shown in Figure 2.3.

Figure 2.3: Architecture overview [16]

Caching Framework

If caching is enabled, the caching framework is used. When a request is made,
the view can check the cache to see whether a version is already stored there.
If so, it can skip all other steps involved and return the cached version back
to the web browser.

15

URL Dispatcher

The URL Dispatcher is used to map the requested URL to the associated
view function and calls it.

Template

A template returns an HTML page. It contains a Simple-to-Learn syntax and
provides programmable HTML for the users, such as if and for statements.

View

The view performs the action requested by the URL Dispatcher. This typi-
cally involves operations such as reading or writing to the database.

Model

The model defines the data in Python and interacts with it. In Django, the
model-instances are created and can be accessed as objects by the application.

Web Browser

The web browser is what the user is using when interacting with a web page.
The web browser initiates the handshake with the server and makes a request
to the URL Dispatcher.

Database

The database is where all user data is stored and accessed when needed. This
is an external part, and is not implemented directly by the Django team.

2.3.5 Security policy and vulnerabilities

Django has a solid security protocol. The protocol states that the security
issues should be reported through email, and not through the public Trace
instance. This is due to the sensitive nature of security issues [17]. The
Django Project has its own priority of security levels, which are as follows:

• High: Remote code execution and SQL injection

• Moderate: Cross site scripting (XSS), Cross site request forgery (CSRF),
and Broken authentication

16

• Low: Sensitive data exposure, Broken session management, Invalidated
redirects/forwards, and Issues requiring an uncommon configuration op-
tion

The Django team provides official security support for several versions of
Django. They are supporting the two most recent version released, meaning
that if Version 5.5 is the latest release, Versions 5.3 and 5.4 will also get
security updates. Django also releases an LTS (long-term support), which
will receive security updates for 3 years from its first release. As mentioned
in a blog post in 2015, the team at Django have a feature release scheduled
every 8 months, meaning that they will evolve from, e.g., 5.3 to 5.4, and will
have a new long-term support release every 2 years [18]. Security updates
are released to the supported versions as soon as they are patched and evolve
from, e.g., 5.3.4 to 5.3.5.

Despite the fact that Django takes security seriously, they have had num-
bers of security vulnerabilities, like many other frameworks. Data gathered
from the CVEDetails website [19] from 2010 through October of 2017 show
that Django has suffered through over 50 different vulnerabilities and weak-
nesses over recent years. The main vulnerabilities and weaknesses have been
related to DoS – Denial of Service - and XSS – Cross-site Scripting. This is
shown in Figure 2.4.

Figure 2.4: Distribution of security vulnerabilities in Django

17

This means that potentially thousands of websites that are running Django
have most likely been vulnerable to these attacks. The only way to ensure
that the sites are not suffering from these weaknesses is to always patch the
application, either to the latest version, or at least to the latest LTS version.

Structure in a project

If a project is developed from scratch, or reused from another developer, the
project should have the following structure:

1 myproject /
2 . . . app1/
3 t emplates /
4 app1/
5 base . html
6 content . html
7 s t a t i c /
8 c s s /
9 img/

10 j s /
11 admin . py
12 apps . py
13 forms . py
14 models . py
15 t e s t s . py
16 u r l s . py
17 v iews . py
18 . . . app2/
19 . . . myproject /
20 s e t t i n g s . py
21 u r l s . py
22 . . . manage . py

myproject is the name of the root folder. manage.py is the file used for run-
ning the test server, make the migrations between models and the database
and can be used to run tests on. This file uses all the settings that are
listed inside settings.py. If an external app, in this case, app1, is going to
be installed, all one have to do is to add ’app1’ into the settings file variable
named INSTALLED APPS. This is a dictionary containing all the installed
apps connected to the application. The urls.py file located inside myproject
keeps track of all the URLs allowed in the application. If app1 is installed,
the URLs from that application should be included into the main urls.py file

18

of the project. An example of this is demonstrated in subsection 5.5.5.

2.4 Virtual Environment

When developing a Python application, the need for external packages and
modules that are not part of the standard library is often the case. The
developer can use external libraries to, e.g., pull data from an API, send an
email through an external provider, or transform data into the preferred for-
mat. Sometimes the application will need a specific version of that external
package or module to work properly with, for example, a specific bug fix in
that given version.

If, for example, a server contains two different Python-based applications,
and both are using the external library requests which allows the users to
send organic, grass-fed HTTP/1.1 requests, without the need for manual la-
bor [20], the scenario might be that application 1 might need Version 1.0 of
the external library, and application 2 might need Version 2.0 to work prop-
erly. This will cause conflict in the requirements for running the applications,
and installing either Version 1.0 or 2.0 will leave one application unable to
run [21].

By creating a virtual environment for each of the applications, the conflict
in the requirements is eliminated, and each of the applications will be able
to have their external packages and modules installed separately inside that
virtual environment. This is illustrated in Figure 2.5.

19

Figure 2.5: Visualization of a virtual environment

If application 2 needs to upgrade the library to Version 3.0, this could be
done inside the virtual environment and will not affect application 1, as this
application is running Version 1.0 inside the virtual environment.

2.5 PIP

PIP is a package management system used for installing and managing exter-
nal packages in Python [22]. PIP is installed by default in the latest release
of Python 2 and Python 3. Most of the packages that can be installed are
found on the official third-party software repository for Python, the Python
Package Index (PyPI).

PIP can be used from the command line when it is installed by the following
commands:

1 $ pip i n s t a l l PACKAGENAME

This installs the latest version available for the package. PACKAGENAME
can be changed to any packages listed in the repository [23], e.g., Django. If

20

a user wants to install a specific version of a given package, this can be done
by specifying the version number:

1 $ pip i n s t a l l Django =”1.11.13”

2.6 SSH Access

The Secure Shell Protocol (SSH) is a protocol for secure remote login and
other secure network services over an insecure network [24]. Secure Shell
is a multi-channel security protocol running over the Transmission Control
Protocol (TCP), which offers channels for several services over a secured con-
nection, such as remote shells and connection forwarding [25].

After Taty Ylönen and his university were victims of a password sniffing
attack in the early 1990s, Ylönen started the development of SSH [26]. The
first release came in July of 1995, and the response in the security community
was positive. By the end of the year, SSH had around 20,000 users [27].

To create the secure connection using SSH, we need to have 1. a target
server, typically offering services such as HTTP, VPN, etc., 2. an SSH server
for the user to connect to, and 3. an SSH client which forwards the traffic
through the SSH tunnel [28].

This is illustrated in Figure 2.6, provided from Berkeley University.

Figure 2.6: Illustration of SSH tunneling

21

As the figure above illustrates, the connection between the SSH server and
the target server is a non-encrypted connection, meaning that the SSH server
and the target server must either be on the same server, or placed in a secure
internal network.

Typical usage of SSH is when a user wants to manage his or her external
web server. The user can securely access the server through SSH and is able
to run shell commands or to configure the server as he or she wants. The
syntax for connecting to an external server is:

1 $ ssh username@example . com

2.7 Security Issues Related to the Use of a

Framework

As mentioned in the introduction, the use of frameworks has grown over re-
cent years, becoming a common approach when wanting to create a webpage
or platform. This is to speed up the developing process and not have to write
everything from scratch every time one wants to create a new web page or
platform. The framework makes the process of creating a web page or plat-
form easier, and handles the issue of authentication/authorization, rendering
web pages, and storing data efficiently and securely in a database.

However, if a framework has a vulnerability associated with it, this vul-
nerability is distributed among all of the services using this framework and
potentially many millions of websites across the Internet.

As part of the pre-study for this thesis, I gathered data from the CVEde-
tails.com website. The data was gathered from 2010 to October 2017, and
focuses on the four most used frameworks for web development. To under-
stand the data that was gathered, let us have a look at the classification of
CVEs given by the CVEdetails website.

2.8 CVE

Common Vulnerabilities and Exposures (CVE) is a list of common identifiers
for publicly known cybersecurity vulnerabilities [29]. The goal of CVE is to
make it easier to share data across separate vulnerability capabilities such as
tools, databases, and services with these definitions.

22

In 1999, most cybersecurity tools used their own database with their own
naming of vulnerabilities and security exposures. This lead to a lack of cov-
erage and no unified method for keeping track of different security errors.
Each tool used different metrics to state the number of vulnerabilities or
exposures they detected, which meant there was no standardized basis for
evaluation among the tools. Common Vulnerabilities and Exposures, with its
standardized identifiers, provided a solution for these problems [29]. Com-
mon Vulnerabilities and Exposures is now the industry standard for exposure
and vulnerability identification.

2.8.1 Classification of CVE data available

Whenever a vulnerability is discovered and reported, that vulnerability gets
a CVE tag, and the CVE is broken down and classified. The classification of
a vulnerability listed on the CVEdetalis.com website [19] is as follows:

#

This is a counter for the total number of vulnerabilities in the framework.
Depending on sort filters, this number is not unique for each CVE in the
framework or software.

CVE ID

This is a unique ID that the vulnerability has been assigned. The ID is
generated based on when the vulnerability is detected, e.g., CVE-2017-7233,
where CVE-2017 indicates that the CVE was listed in year 2017, and the
number after, 7233, is assigned as the number in the series of CVE weaknesses
that year. In this case, this CVE is the number 7233 detected in 2017.

Vulnerability Type(s)

This is the classification done by the CVE organization. The classification
does not distinguish between weakness, vulnerability, and impact. See sub-
section 2.8.2 for a complete description of the different vulnerabilities.

Publish Date

This is the date when the CVE was first announced and listed on their
website.

23

Update Date

The date the CVE was last updated; in most cases, it gives an idea of when
the vulnerability or exploit was fixed.

Score

After a CVE is issued, it is computed a score based on the vulnerability that
the weakness or attack provides. There are many factors that go into the
process of computing the score, such as access level, complexity of the exploit,
and the level of confidentiality, integrity, and/or availability the vulnerability
provides. The score ranges from 1 to 10.

Gained Access Level

This gives a description of the gained access level an attacker gets if the given
vulnerability is exploited. In most cases the Gained Access Level is None,
but it might also be User or, in some rare cases, even Admin.

Access

What kind of access is necessary to perform or exploit the given CVE. Typ-
ically, the Access needed is Remote.

Complexity

Complexity is how complex the vulnerability is to exploit, ranging from low
to high. If there is low complexity involved, it means that, potentially, people
with less technical skills can exploit and take advantage of this vulnerability.

Authentication

What kind of authentication is needed to exploit this vulnerability. Typically
distinguished between Not required and Single system.

Confidentiality

This describes whether the confidentiality of the application is compromised,
and to what extent. Confidentiality has one of the following attributes: None,
Partial, and Complete.

24

Integrity

Is the integrity of the application compromised, and to what extent? Integrity
has one of the following attributes: None, Partial, and Complete.

Availability

Is the availability of the application compromised, and to what extent? Avail-
ability has one of the following attributes: None, Partial, and Complete.

Comment

Comment is the official description provided to classify the vulnerability, and
to give a short summary of the problem.

2.8.2 Brief description of different vulnerabilities listed
in CVE

The vulnerability is also assigned to a Vulnerability type as part of the clas-
sification. Definitions of the different vulnerabilities are gathered from the
OWASP 2013 project [30].

• DoS: Attack that focused on making a resource unavailable for the
purpose it was designed.

• Code Execution: Run code on the remote server/platform through, e.g.,
filename, arguments, etc.

• Overflow: Writing outside the bounds of a block of allocated memory
can corrupt data, crash the program, or cause the execution of malicious
code.

• Memory Corruption: Occurs in a computer program when the con-
tents of a memory location are unintentionally modified; this is termed
violating memory safety.

• SQL Injection: Insertion of SQL query via the input data from the
client to the application.

• XSS: Cross-Site Scripting is a type of injection in which malicious
scripts are injected into otherwise benign and trusted websites.

• Directory Traversal: Aims to access files and directories that are stored
outside the web root folder.

25

• Http Response Splitting: Might happen if some data is included in an
HTTP response header sent to a web user without being validated for
malicious characters.

• Bypass something: This is when an attacker can bypass a check of some
kind, e.g., bypass using https in browser.

• Gain Privileges: Allows a malicious user to modify his or her privileges
or roles inside the application to gain unauthorized access.

• CSRF: An attack that forces an end user to execute unwanted actions
on a web application in which they’re currently authenticated.

• File Inclusion: Allows an attacker to include a file, usually exploiting
”dynamic file inclusion” mechanisms implemented in the target appli-
cation. The vulnerability occurs due to the use of user-supplied input
without proper validation.

2.9 Crawling websites

Web scraping is the set of techniques used to automatically obtain infor-
mation from a website instead of manually copying it. The goal of a Web
scraper is to look for certain kinds of information, extract it, and aggregate
it into new web pages [31]. Web scraping automatically extracts data and
presents it in a format one can easily make sense of.

In the application that has been developed in this thesis, a Python library
is used for scraping web pages. The library is named BeautifulSoup4 and is
used for pulling data out of HTML and XML files [32].

By scraping a website, we should be careful not to break the Terms and
Conditions of the site we are scraping. Generally, the data we are scraping
should not be used for commercial purposes. We should “act like a human”
when completing the requests, and be sure not to request data from the web-
site too aggressively with our program. Finally, the layout of a website may
change in the future, and it is important to keep this in mind and revisit the
site to check, and possible rewrite, our code if necessary. This is illustrated
in Figure 2.7.

26

Figure 2.7: Web scraping illustrated by MyDataCareer [33]

How to use it

BeautifulSoup4 (bs4) can be installed through PIP. After the installation,
we must import bs4 along with urllib into the file we want to process our
crawled data. The process involved when crawling a webpage is as follows:

1 from bs4 import Beaut i fu lSoup
2 from u r l l i b . r eque s t import Request , ur lopen
3

4 req = Request (” https : //www. example . com/” , headers ={ ’
User−Agent ’ : ’ Moz i l l a /5 . 0 ’})

5 webpage = ur lopen (req)
6 soup = Beaut i fu lSoup (webpage , ’ html . parser ’)
7 value = soup . f i n d (’ div ’ , a t t r s ={ ’ c l a s s ’ : ’ wanted−

in formaiton ’ })

First a request is opened towards the preferred website. Then the opened
request is parsed into BeautifulSoup and stored in the soup variable as a
bs4 object. Finally, one can search through the soup variable using .find()
method which will search through the HTML, looks for a ‘div’ with the
preferred class name, in this case ’wanted-information’.

27

2.10 Notifications

In modern information systems, notifications or notification systems is a
software that has the task of delivering vital information or messages to a set
of recipients [34]. Notifications, or alerts, can be delivered to the recipients
in many ways such as text message, push notifications, email, letter, a phone
call, and so on. The methods for reaching the correct person are numerous,
and it is valuable to understand when to use the different methods.

Text message

The first text message that was sent between two devices occurred in De-
cember in 1992. The message was sent between two computers, and one year
later the first SMS was sent from a phone. Despite the fact that text mes-
sages were discovered in early 1990, it was not until early-mid 2000 that text
messaging really took off. In 2002, more than 250 billion SMS messages were
sent throughout the year, and the service peaked in 2010 when 6.1 trillion
were sent over the entire year [35].

Today, the number of text messages has decreased signigicantly, and other
instant message (IM) services have taken over. However, text messaging is
still present, and advertisers and service provides use direct text marketing to
send messages to their users about information, promotions, and reminders.

Push notification

Push notifications are a way for an app publisher to speak directly to the user.
In 2009, Apple launched the first push service to their users’ smartphones.
The response was positive and the support later extended to support other
devices in their ecosystem. Google released their version of push notification
a year after Apple.

Today, push notification is used in smartphones, smart watches, on com-
puters, and even in cars. The notification is triggered and pushed to the
users, typically whenever an event triggers the notification. An example of
such an event could be when someone follows another person on Facebook -
the Facebook app on one’s phone sends out a push notification on the phone
or smart watch if the user has allowed this feature.

28

Email

Email is an electronic postal service which can send and receive documents
and messages from one computer device to another over a computer network.
Email is sent between parties through an email service, typically SMTP, and
it is widely used today on the Internet [36].

Email is a central part of our everyday life, and it is used in many different
scenarios. In advertisements, email is used to promote products and services
that the recipient might find interesting and hopefully wants to buy after
having been exposed to them through email. In a work environment, email
is an efficient and structural way to communicate with internal or external
parties. Since email is a central part of the business industry, emails tend to
be used actively in cyber-attacks against companies. Digital guardian states
that as much as 91% of cyber-attacks begin with a phishing email [37].

2.11 Mailgun

Mailgun is a Transactional Email API Service For Developers [] which helps
with the process of sending out emails. The emails are sent using a POST
request to a server located at Mailgun. The API allows up to 10,000 emails
to be sent through the service for free every month. Below is an example of
how to use it. The request is made towards the API server and authenticated
with an API key. The data is then extracted from the request and put into
an email format, to then be sent from their mail servers:

1 de f send s imple message () :
2 r e turn r e q u e s t s . post (
3 ” https : // api . mailgun . net /v3/ samples . mailgun .

org / messages ” ,
4 auth=(” api ” , ”key−3

ax6xn jp29 jd6 fd s4gc373sgv jx t eo l0 ”) ,
5 data={”from ” : ” Excited User <excited@samples .

mailgun . org >”,
6 ” to ” : [” devs@mailgun . net ”] ,
7 ” sub j e c t ” : ” He l lo ” ,
8 ” text ” : ” Test ing some Mailgun

awesomeness ! ”})

29

2.12 Cron

Cron, also called cronjob or crontab, is the name of program that enables
Unix users to execute commands or scripts automatically at a specified time
[38]. The cron, or the job itself, is driven by the crontab file which holds a
table over the cron jobs that are scheduled to be executed. When working
with web servers, a cron can ensure that the Apache service is started every
20 minutes in case the service has gone down. This gives the system admin-
istrator and the people relying on the service a lower possibility for downtime.

The syntax of a cron job has not changed since the ’90s and is in the following
format:

+ −−−−−−−−−−−−−−−− minute
| + −−−−−−−−−−−−− hour
| | + −−−−−−−−−− day o f month
| | | + −−−−−−− month
| | | | + −−−− day o f week
| | | | |
∗ ∗ ∗ ∗ ∗ command to be executed
∗ ∗ ∗ ∗ ∗ command −−arg1 −−arg2 f i l e 1 f i l e 2 2>&1

Given the specification above, a typical cron can look something like this:

1 5 18 ∗ ∗ 0 /path/ to / f i l e

This means that the file located at /path/to/file is executed every Monday
at 18:05. A full list of the allowed commands is provided in Table 2.2.

30

Time-variable Allowed format
minute This controls what minute of the hour the command will

run on, and is between ’0’ and ’59’

hour This controls what hour the command will run on, and
is specified in the 24-hour clock; values must be between
0 and 23 (0 is midnight)

day of month This is the Day of Month that one wants the command
run on; e.g., to run a command on the 19th of each
month, the dom would be 19

month (1 - 12) OR jan, feb, mar, apr...

day of week (0 - 6) (Sunday = 0 or 7) OR sun, mon, tue, wed, thu,
fri, sat

Table 2.2: Attributes allowed in crontab

31

32

Chapter 3

Research Approach and Similar
Solutions

The purpose of this chapter is to give an overview of the research, method
as well as an introduction of similar solutions to the one that is developed in
this thesis. The examples are partially or directly related to the use of Django
as a Web application framework.

3.1 Research Question and Research Method-

ology

One of the first activities in performing this thesis is the process of defin-
ing the research questions. Three research questions were created for this
thesis. The first one is “How to automatically inform web framework
users when a new security update is available?”. The second research
question that was defined is “How to analyze the impact of web frame-
work’s update on the application using the framework?”. The third
and final research question is “How to perform automatic update of
the web framework and the application using the framework?”

After defining the research questions, the process of finding a good research
method began. There are numerous of ways of doing research, however, to
target the questions in the right form creating the best possible answer, it is
important to select the correct method. The method could be either observ-
ing how people are acting in the real world, interviewing people and asking
them how they are coping with certain problems and challenges, surveying to
measure many recipients and try to discover a trend, and finally, performing
tests to measure the skills and knowledge of a group of people.

33

The four different approaches have their advantages and drawbacks [39]:

Observation:

An observation is when one blends in and observes how a task is done, or how
people act in the given environment. By observing, one does not influence
the person been observed, and tries to map their behavior. Observation can
be used in all parts of the research process; however, it is time-consuming
and does require some data to be gathered and analyzed.

Interview:

Interview is used when one wants a deeper understanding of what the person
is doing or thinking. It is a deeper conversation in which the subject is ques-
tioned more in detail than, e.g., in a survey. Interviews can be conducted in
three different ways: fully-structured, semi-structured, and unstructured [39]:

A fully-structured interview is done when a set of predefined question is
asked in the same sequence for all of the interviews and with limited oppor-
tunity in the interview to improvise or ask follow-up questions.

A semi-structured interview typically has an interview guideline; however,
the questions do not need to be asked in the same way as in a fully-structured
interview. A semi-structured interview opens for discussion and follow-ups.
This interview form has a more dynamic flow to it.

In an unstructured interview, there are no prepared questions for the in-
terviewer to ask the subject; however, a theme for the interview is set. It is
worth mentioning that in semi- or non-structured interviews, it is important
for the interviewer to have good knowledge of the topic at hans. A fully-
structured, interview on the other hand, can be performed by someone who
barely has prior knowledge of the topic in the interview.

Surveys

Surveys or questionnaires are used when one wants to know what people feel,
think, or believe. A survey consists of many questions and, in most cases,
predefined answers. The survey can be handed out in person, sent by mail
or email, or even performed over a phone call. [40]

34

Tests

Testing is a method that measures different dimensions of persons, qualities,
skills, and other traits that separate people from each other. Tests typically
focus on individual differences in answers, achievements, and responses. The
test situations are standardized, meaning that everyone taking the test does
so under the same test conditions [41]

The method that was best suited for each of the research questions is dis-
cussed below. The method that was applied consisted of first observing and
researching the questions to see what is already present today, followed by
face-to-face interviews.

RQ1: How to automatically inform web framework users when a
new security update is available?

The wording of the question is quite accurate, and the goal is to discover
a method of notifying the administrator whenever a new security update
is available. This can be done either by observing what people generally
prefer as their notification method, conducting a survey questioning their
perspective, interviewing people for a deeper understanding of their behav-
ior regarding the different notification methods, or performing tests on the
users. The tests can be automatic tests detecting the click rate on a noti-
fication, or giving the user a task to perform with the notification. In this
research, a combination of first observing what kind of notification systems
work and which do not, and after the observation conducting interviews to
get a deeper understanding about people’s preferences, was used. The inter-
views gave some useful indicators of what kind of notification is preferred by
the users. It is worth mentioning that the stakeholders for this question are
typically system administrators; however, because of limited resources and
networks, the interviews were conducted with students at IDI – Department
of Computer Science, NTNU.

RQ2: How to analyze the impact of web framework’s update on
the application using the framework?

This question is a more advanced one of “identifying the potential conse-
quences of a change, or estimate what needs to be modified to accomplish a
change” [42]. The process can be automated, however, developing a reliable
system for automatically analyzing the impact of a change is beyond the
scope of this thesis. However, the research method for this question was at
the beginning of the process to see what kind of software already existed and

35

to see whether such a tool was available or possible to adapt to the Django
framework. As this research method did not give any noteworthy results, the
focus shifted from automating the process to informing the user of the poten-
tial risk for changes that might cause the application to not function properly.
In the first round of interviews, this topic was only partially mentioned, and
was given more focus in the second and third round of interviews.

RQ3: How to perform automatic update of the web framework and
the application using the framework?

Like the first research question, the final area of this research is quite ac-
curate. To find the best way of performing the update of the application,
the method used was again observation of what other similar solutions were
doing, followed by face-to-face interviews to map the preferred updating
method. Before the research began, the idea of always having the applica-
tion perform an update was present. However, by doing the time-consuming
process of conducting interviews to discuss this with the users, this idea
quickly changed, and a more satisfying solution was developed.

3.2 Approach and Process

From the beginning of the process, the focus was to have an iterative process,
so that by getting continuously feedback from users, the final solution would
satisfy the need and expectation. By following the principle of “Testing one
user early in the project is better than testing 50 near the end” [43], the final
solution could adapt more to the user feedback early in the process, rather
than towards the end. The work-flow and development process of this thesis
was done in iterative way containing three different phases:

Pre-phase

The first phase of the process was to first observe and research what has
already been done on the topic of the research question, and then to con-
duct semi-structured interviews around the subject. The subjects who were
interviewed were fellow students and other people at the university with a
technical background. The purpose of the interviews was to test the idea
of simplifying the updating process, and to display information to the user
through a panel. Each interview took approximately 15 minutes. The sub-
jects were asked open-ended questions, and had to think of solutions on their
own relating to different scenarios that they were given. This phase resulted
in a deeper look at WordPress and how they are notifying and making the

36

updates available to their users. An external software called PyUP was also
explored and was useful when looking at what kind of information to display
to the users.

First iteration:

After the first interviews, the development process started. Based on the
feedback from the users, it was clear that they wanted information and for
it to be displayed in a good way. The development continued for 2 months.
After this period, another round of interviews was done, this time focusing
on the solution that was developed. The same persons who were asked in the
first round were questioned again, this time in a more structured way. The
feedback was evaluated and a plan for the second and final iteration started.

Second iteration

The last step of the process was the second iteration, where the feedback
from the interviews after the first development phase was evaluated and
considered for implementation. Because of the inverviews, a new design
was implemented to display the data in a more convenient way, since the
feedback from the users mentioned the design numerous times. After the
final implementation, the same four people were questioned once again, and
were given the chance to try out the solution.

3.3 WordPress

As a result of the observation part of the pre-phase of the project, WordPress
quickly became a good comparison of a similar framework to look at. Word-
Press is a free and open-source content management system (CMS) based on
PHP and MySQL. Their mission is to provide great software, which should
work with minimum setup process, so that the users can focus on sharing
their story, product, or services freely on the internet [44]. The repository is
available online to everyone, meaning that everyone who wants to contribute
some functionality or improvements to the software are welcome to do so by
either submitting a patch of their changes, or through the discussion com-
munity.

The journey of WordPress started in 2003 when Mike Little and Matt Mul-
lenweg wanted an elegant, well-architected personal publishing system. As
of today, WordPress is the platform of choice for over 30% of all sites across
the world [45] [46].

37

3.3.1 Security in WordPress

Compared to Django, WordPress has, since 2010, had 174 different vulnera-
bilities, 146 of them classified on the CVE website [47]. The numbers suggest
that WordPress is 3 times more insecure than Django. This can be for a nu-
merous reasons; PHP is very ubiquitous, meaning that it is attractive for an
attacker to seek weaknesses in the software. Given the popularity, PHP is
used by a lot of novice programmers. This can again lead to more insecure
code if the application e.g. includes third party libraries. A figure showing
the distribution of vulnerabilties is illustrated in Figure 3.1.

Figure 3.1: Distribution of the vulnerabilities in WordPress from 2010 to
2017 gathered from CVEdetails.com

3.3.2 Updating WordPress

Like other web frameworks, WordPress is also vulnerable to security-related
issues and needs to be updated. However, the updating process in WordPress
is simplified compared to, e.g., Django. Whenever a new update is available
for WordPress, the user receives a notification in the admin panel, as shown
in Figure 3.2.

38

Figure 3.2: Notification given to the administrator in WordPress

By getting this notification, the administrator can do a “one-click update”
with a push of a button. The updating process then starts, and the site
is going to be temporarily unavailable. The framework also gives the user
instructions on how to back up the files and database of the application
before performing the update, in case something breaks. This is illustrated
in Figure 3.3.

Figure 3.3: One-click update in the WordPress admin panel

3.4 PyUp-Django

Along with discovering WordPress as a similar framework, the focus shifted
slightly towards finding a solution that might be implemented into Django.
It was at this time that I came across the solution PyUP.

39

PyUP is a developed software that can help with automated security and
dependency updates in Python []. PyUP consists of two main parts: the
bot and Safety. They, combined, can notify users whenever a dependency or
security update is available. The bot keeps the dependencies updated, and
Safety warns the user about insecure dependencies.

PyUP can be configured and authenticated against a GitHub repository.
Whenever Safety detects an outdated dependency, it notifies the bot, which
then creates a pull request on the repository suggesting the updates.

PyUP-django is a package designed to be used in a Django project. The
package can be installed through PIP and added in the INSTALLED APPS
dictionary inside the settings file of the Django project. PyUP-django is an
extension of the Safety module provided in PyUP and displays a warning in
the administrator panel if the Django dependency is outdated. This is shown
in Figure 3.4. The image is taken from the documentation on GitHub [].

Figure 3.4: PyUP-Django - Example of the administrator panel

PyUP can also be used to generate reports about the vulnerabilities of the
outdated dependencies in the project. This is done by installing Safety in
the project, then running:

40

1 s a f e t y check −−f u l l−r epo r t

The limitation of PyUP is the pricing of the software; the free version is
only limited to one repository, and it does not provide all of the features.
A user pays between 15 and 50 dollars a month, depending on whether the
software is used on a personal basis or in an organization. Another limitation
of PyUP is that it will recommend the latest version of all dependencies, and
disregards the possibility that, for example, one version of Django requires
a specific version of dependency X, while another version of Django requires
another version of the same dependency X: It will only recommend the latest
version of dependency X.

41

42

Chapter 4

Results of the Observations and
Interviews

The purpose of this chapter is to give a summary of the interviews before
moving onto the details of the implementation.

4.1 Pre-phase Interview

The result of the pre-phase was an understanding of how WordPress pre-
sented and notified their users of a new update. WordPress also had an
effortless way of installing the latest updates to keep their software up-to-
date. It was also interesting to see the solution provided by PyUP, and how
they decided to give the users a feedback straight into the administrator view
if the application was outdated. PyUP also provided a detailed level of in-
formation about each vulnerability gave an idea for a solution of displaying
the information easier to the end users. After learning about the existing
solutions, the interviews were performed. As mentioned previously, the in-
terviews were conducted among 4 candidates who all were students in the
Department of Computer Science at NTNU. The interviews were held in an
unstructured way, in which the topic was based on the research questions.
None of the recipients had any experience using Django as their framework;
however, they had all taken a security and software development courses at
NTNU and were using devices and applications that received regular updates.

As the discussion continued, it quickly become apparent that this field of
research was necessary, and by explaining the current situation of Django,
some good discussions were had.

43

The first topic that had been discussed was their preference on notifica-
tions. As all of the students had smartphones, they were quick to mention
the push notification they received when their smartphone needed to be up-
dated. However, none of them wanted another app on their phone for re-
ceivnig notifications from their web application. They were positive toward
the idea of receivnig an email containing information whenever their appli-
cation had a possible vulnerability. During the interview, I mentioned the
public mailing list that a user could subscribe, to and they reacted positively
to this list. Despite the positivity, 2 out of the 4 recipients wanted a more
targeted information concerning their application, rather than getting the
public statement from Django.

Regarding the topic of performing the update, all of them pointed out that
they would probably not update their application very often if they had to
log on to the server and do the steps involved by pulling the software into a
local environment and performing the update there. In one of the interviews,
the other person asked why not just have the update installed automatically.
After discussing this back and forth, the student concluded that by having
an update done automatically, without the guarantee of a successful installa-
tion, the application might become unstable and control would be lost over
the update. The resulting solution of the other discussions was to have a
button one could press that would do the update itself at the administrator’s
request.

4.2 Design

As the process for this thesis have been an iterative process, this section
shows the evolution of the development and feedback from the users after
each of the two iterations.

4.2.1 First iteration and interviews

After the development had gone on for approximately 2 months, the in-
terviewees were questioned a second time. This time the results from the
first interviews was evaluated and a temporary solution was presented to
the students. The interface that the candidates was presented, is shown in
Figure 4.1

44

Figure 4.1: Old design of the application

45

In the old design, the view is divided into three main parts: Information
about current version and recommendation for updating to a newer version
along with the changelog and a button for doing the installation. Informa-
tion about the CVEs related to the current installed version of Django. And
finally, a model graph overview of the models that are used in the applica-
tion. The idea was, based on the feedback from the pre-phase, to display all
relevant information to the administrator.

The top part of the view shows information about the current installed ver-
sion of Django, and which version that it is recommended updating to. It
also includes a link to the different critical parts of the Django core that
is going to be updated when the recommended version is installed. When
clicking on the link, it opens a new tab displaying the changelog released
from Django and documentation of that module. Under the changelog is a
small button for installing the recommended version when clicked on.

Middle part of the site displays information about the exposed vulnerabili-
ties that is associated with the installed version. Each of the CVEs could be
clicked on, and a new tab would lead to the CVEDetails website where more
information about the vulnerability could be found.

The final part of the view is the overview of the model graph. This section
contains a picture with the relations among the models that is been used in
the application. This picture is generated based on the INSTALLED APPS
variable inside the settings.py file of the project.

As the interviewees was given the opportunity to play around with the solu-
tion, and to see the flow of it, they provided some useful pointers that has
been addressed in the next development phase. Key points of the feedback
are as follows:

• The webpage displayed too much information at once.

• The separation of the various parts should be more distinct.

• Would like to see the information about changes in the changelog.

• Should be able to view the changes in the code caused by fixing the
CVEs.

• Updating button is to small.

• Not sure of how to use the model graph since its too small.

46

After evaluating and discussing with the interviewees how to cope with the
challenges and feedback that they gave, the development continued in im-
proving the solution too satisfy the users as much as possible.

4.2.2 Second iteration and interviews

When evaluating the feedback from the second interview, it looked like it
would improve the solution a lot if the design was better, and the informa-
tion was clearer. Because of the feedback, a process of finding a clever design
started, and a choice of using Bootstrap as an external framework on front-
end was made. After the development process was completed, the finishing
view that was presented to the users in a final interview is presented in Fig-
ure 4.2.

As the figure shows, a more distinct separation of the various parts has
been made. At the top of the view a summary of the most key details is dis-
played. Here the users get an overview of what version they currently have
installed, how many vulnerabilities that is associated with the current ver-
sion, whether the current version is supported by Django, a recommendation
for an updated version to be installed, and the updating button displayed
with a greater size than after the first iteration.

The second part of the developed web interface is displaying the CVEs. Since
the interviewees pointed out that the site contained too much information,
I decided to place each of the CVEs as an entry in a list, and to update the
main section of that row whenever a new CVE is selected in the list at the
right-hand side. As requested by the interviewees, a possibility for looking
up the fixed code was added as a link to the fixing commit at GitHub.

Feedback from the last interview suggested that the relevant information
for critical modules, when concerning about installing a new update, is dis-
played, the section below the CVEs follows the same principle as the CVE
section. The critical modules are looked up in the change log and the in-
formation is extracted and placed into the view. A link to the complete
changelog is also provided.

The last part containing the model graph has not changed that much since
the second interviews. However, the interviewees complained about the im-
age been too small. This is now improved in a way that allows users to click
on the image and the image will enlarge and fill the whole screen.

47

Figure 4.2: New design of the application

48

The overall feedback from the users were good, and all the interviewees man-
age to install a new update. Here is a list of feedback that can be taken from
the interviews:

• The application does not have the support of been displayed on a mobile
device.

• The model graph is not showing the direct link of a critical area of the
code.

• It would be helpful if the components listed in the changelog section
were linked to the changes been made in the code. A simular solution
as the one that is provided to the CVEs.

• No feedback after one clicks the button to initiate the update. Should
be a progress bar or similar graphics.

49

50

Chapter 5

Implementation

This chapter gives an overview of the developed application, assumptions
made before developing, and how the system is operating on a real server.

5.1 Assumptions

Before beginning the development process, some assumptions were made to
simplify the example application and the new updating application. This
section elaborates on these assumptions, gives a brief overview of the conse-
quences, and justifies why the assumptions were made in the first place.

5.1.1 Python version

As of today, there are two main versions of Python used: Python 2 and
Python 3. In 2016, JetBrains, a software development company whose tolls
are targeted towards software developments and project managers [48], dis-
tributed a survey to the community. This survey was conducted among more
than 1,000 Python developers to identify the latest trends and gather insight
into what the Python development world looks like today [49]. One of the re-
sults from this survey was the distribution of the different versions of Python
used by developers. The results are presented in Figure 5.1, and reveal that
Python 2 was used by 60%, while Python 3 was used by 40%. The distribu-
tion was confirmed with a correlation with external research and their own
PyCharm internal statistics.

51

Figure 5.1: PyCharm survey from 2016

Based on the results of both the survey and their internal statistics, Jet-
Brains saw rapid growth in the usage of Python 3, and expected it to over-
take Python 2 in the near future.

One year later, in late 2017, JetBrains performed another survey out to
the community. This survey got over 9,500 developers from over 150 dif-
ferent countries to participate, and was useful for mapping out an accurate
landscape of the Python community [50]. In an evaluation of the results,
the interesting part was that Python 3 had overtaken most of the users by
a stunning 75%, while 25% of the respondents used Python 2 the most, as
shown in Figure 5.2. This is likely to be due to the decrease in support for
Python 2. The version is not going to get new features, will not actively
develop, and its maintenance will be stopped in 2020 [51].

52

Figure 5.2: PyCharm survey from 2017

By looking at the results from the two surveys and the fact that the support
for Python 2 is going to be dropped in 2020, the application that has been
developed in this thesis is using Python 3 as the supported version.

5.1.2 Dependencies

By using PIP in the developing process in Django, users can easily install and
manage software packages written in Python. many of these packages can
be found, installed, and updated using PIP. These packages are sometimes
outdated and need to be updated to work properly.

In the example application all of the external packages and their depen-
dencies are left untouched. By performing an upgrade in Django, some of
the dependencies must be updated. However, scanning through every de-
pendency of the application is likely to be a cumbersome process that will
take much time to develop and perform. The application relies on the user
to update the necessary packages and to make sure that the usage of these
packages is correct.

5.1.3 Django version base

Django has, since their beginning, released several new versions and releases
of their framework. The releases follow an 8-month interval where a new
subversion of the framework is being released. This is not to be confused
with security patches for any given version, but the release might introduce
new or deprecate old features in the framework. In some cases, Django has

53

released a completely new version, going from, e.g., Version 4.7 to Version
5.0. Common for these updates is a change in syntax or structure of the
framework. These changes are major, and in the example application, this
major update has not been prioritized and is likely to cause an error if used
to perform this kind of update.

5.2 Example application

To test the implementation of the Updating Service application, I created a
simple test application. The goal is for it to be used in production to see
the update in a live environment. The application is a simple blog where
the administrator can create new, edit, and delete posts. It has a simple
model structure with a post and comment table. As showed in Figure 5.3,
the comment has a foreign key in post. The relation between Post and
Comment is a one-to-many, where as one Post can have many Comments.

Figure 5.3: Models in the example application

The blog application is installed through the INSTALLED APPS attribute
in the settings file and is migrated with the database. Only a user with pub-

54

lishing rights should be able to create a new Post. This is done by providing
an extra layer of security in which the user must log in with a username and
password to publish a new Post.

Every post has an “author”, which is related to their username. The author
field has a foreign key ‘auth.User ’ which is the built-in database handling the
userbase. This module makes a relation between the logged-in user and the
creator of the Post whenever a new Post is created. The example application
was created based on a tutorial provided by Django Girls as inspiration, and
it consists of two different pages. The main page, which is directly accessed
by the root of the URL, is shown in Figure 5.4.

Figure 5.4: Main page of the example application

The second page containing the blog post itself is shown in Figure 5.5. This
page also contains the comment section for users to interact, discuss, and
leave feedback on a specific post.

55

Figure 5.5: A typical blog post page of the example application

5.3 Updating service application

This section explains the updating service application, how it was created,
and how it is intended to be used. The updating service application consists
of two parts to cope with the research questions mentioned in section 1.3.
The first part is related to RQ1, and the second part is related to RQ2 and
RQ3.

5.3.1 update-script.py

Based on feedback gathered from the first interviews, the subjects mentioned
that they would prefer an alternative notification method more specified to
their solution. The suggestion of an app for this notification part was quickly
tossed away, and they felt that an email would suite this purpose well. The
implementation of an email notification method is described in this section.
This is a result of the first research question, RQ1.

A full overview of the class can be found in section A.1

56

Finding all CVEs related to their version

The first step involved in the notification system is to gather information
about CVEs that is related to the currently installed version. This is done
by using an external library called pycvesearch. This library makes a request
to the CVE server and returns a JSON file with the associated data that
is connected to the unsecure version. A list containing the CVE id and a
summary of the vulnerability is returned by the class:

1 de f g e t a l l c v e o n g i v e n v e r s i o n (VERSION NUMBER) :
2 cve = CVESearch ()
3 r e turned data = cve . search (’ d j angopro j e c t / django

: ’ + VERSION NUMBER)
4 c v e l i s t = []
5

6 f o r element in re turned data :
7 c v e l i s t . append (element . get (’ id ’))
8 c v e l i s t . append (element . get (’ summary ’))
9

10 r e turn c v e l i s t

A help class was also created for gathering information about the current
version of Django running on the server:

1 de f g e t c u r r e n t d j a n g o v e r s i o n () :
2 vers ion number = s t r (django .VERSION) . s t r i p (’ () ’) .

s t r i p (’ ’) . s p l i t (’ , ’) [: 3]
3 r e turn vers ion number [0] + ” .” + vers ion number

[1] + ” .” + vers ion number [2]

Sending email to the administrator

After gathering the CVEs related to the installed version, the application
checks whether there are any CVEs in the list that have been returned. If
there are CVEs in the list, then the method starts to generate the message.
Finally, the message is sent by posting a request to the Mailgun service as
shown in section 2.11. Due to privacy concerns, the API key and correct
mail server are not provided in the code examples:

1 de f f i n d o u t d a t e d v e r s i o n a n d s e n d e m a i l () :
2 #CHECK IF THERE IS ANY CVEs
3 .
4 .

57

5 # GENERATE MESSAGE
6 .
7 .
8

9 r e turn r e q u e s t s . post (
10 ” https : // api . mailgun . net /v3/

sandboxc176XXXXXXXXXXXXXXXX. mailgun . org /
messages ” ,

11 auth=(” api ” , ”key−8866−YOUR−API−KEY−
HEREXXXXXXXXXX”) ,

12 data={”from ” : ”Updating S e r v i c e <
postmaster@sandboxc176XXXXXXXXXXXXXXXX .
mailgun . org >”,

13 ” to ” : ”Admin <YOUR@EMAIL.COM>”,
14 ” sub j e c t ” : ”Update Django ! ” ,
15 ” text ” : text message })

In Figure 5.6 is shown an example of an email that is been sent to the
administrator if a vulnerability is detected. In order to use the sending
email part, it is necessary to register an account at Mailgun, and provide the
mailbox-details that is given to you by them into the script above.

Figure 5.6: Example of an E-mail sent to the administrator

5.3.2 Models

When it comes to Django, a model is the single, definitive source of informa-
tion about one’s data. It contains the essential fields and behaviors of the

58

data being stored. Generally, each model maps to a single database table
[52]. The application for doing the update has been developed with four
models that are interconnected. The four modules are as follows:

• InfoCVE - Table that contains the information of a given CVE.

• DjangoVersionLTS - Table that holds the information of a base version
of Django.

• DjangoVersionCVE - Relation table between a given CVE and a Django
version.

• DjangoVersion - Relation table between a specific version and a base
version in Django.

The relations between the different models are displayed in Figure 5.7.

Figure 5.7: Model overview of the updating application

59

InfoCVE:

This table in the database holds the information about a given CVE. The
CVE ID is the actual ID collected from the CVE website, e.g., CVE-2016-
12345. Along with the CVE ID, the comment regarding the summary of that
given CVE is also added to the table. This is the comment attribute selected
to be a TextField.

DjangoVersionLTS:

The DjangoVersionLTS table contains information about the base version
released by Django. The base version and latest version released are as their
names suggest, the base version of Django, e.g., Version 4.5, and the latest
version that has been released within that base version, e.g., 4.5.11. Extended
and mainstream are when the ended mainstream and extended support will
end, meaning when the version is cut by the Django team. The last two
fields in the table, lts and supported version, are both Boolean fields, which
indicates whether a version is supported, and whether that version is a long-
time supported version of Django.

DjangoVersion:

The DjangoVersion table is used to relate a given version of Django, e.g.,
version 4.5.9, to the correct base information about that release. This is to
prevent attributes, such as the LTS and end of mainstream support from
being stored on each subversion of a base version. The relation between this
table and the DjangoVersionLTS is a one-to-many relation in which a base
version can have many DjangoVersions.

DjangoVersionCVE:

The final table is a relation table to connect a specific version of Django to
a given CVE ID. The relation table has two relations, including a one-to-
many relation with DjangoVersion in which a given version can only have
one Django version. The other relation is a many-to-many-relation in which
a CVE can be related to many Django versions.

60

5.3.3 Views

In Django, a view is a callable which takes a request and returns a response.
The callable can be more than just a function, and is accessed with a call from
a URL request. Django provide examples of some classes which can be used
as views [53]. In the Updating Service application, there are three different
URL endpoints that can be accessed by the user. They are as follows:

• /update/ - Displays the interface presented in Figure 4.2

• /update/perform/ - An endpoint for initiating and starting the instal-
lation of a new update

• /update/pushdata/ - An endpoint to ensure that the database is up-
dated

The view class is quite complex and is using many different methods with in
it. An overview of the class is given in Figure 5.8.

/update/

The /update/ page is the main page that the user will be interacting with.
It combinds and covers the second and the third research questions. When
a request is sent to the /update/ site, this triggers the function update page
in the views. This function will first try to access the available CVEs for
the current version of Django and will later return the list of CVEs to the
template and show this to the user. This is completed with the following
code:

1 cves = DjangoVersionCVE . o b j e c t s . get (
d j ang o d j ang o ve r s i on=g e t c u r r e n t d j a n g o v e r s i o n
()) . cve . a l l () . order by (’ cve id ’) . r e v e r s e ()

If no CVEs exist for that given version in the database, a help function is
applied to gather the CVE information from the CVE website and pushes
this to the database. The function get cves for version(request) is the same
function that is used when pushing data to the database. This one is de-
scribed in the /update/pushdata/ section.

A few other variables such as the base version, current version, and changelog-
data are collected and returned with the CVE-list to the template and dis-
played to the user. The list of returned variables is displayed in Table 5.1.

61

Figure 5.8: Overview of views.py

62

Variable-name Value
’cves’ cves
’django version info’ django version info
’current django version’ get current django version()
’ids to look closer at changelog’ ids to look closer at changelog
’recommended version’ get recommended version(django version info)
’recommended base version’ recommended base version
’changelog info’ changelog info
’changelog url’ changelog url

Table 5.1: Variables and values returned to the template

Variable description of Table 5.1:

’cves’

’cves’ is a list of all of the CVEs related to the given version of Django that
the application is running.

’django version info’

’django version info’ is a list of all of the Django versions that are listed on
their website. Each object in the list contains information on whether the
version is supported, when the support is scheduled to be dropped, and the
version number.

’current django version’

’current django version’ is a string containing the current version of Django
that is installed and running the application.

’ids to look closer at changelog’

ids to look closer at changelog contains a list of different classes that are rec-
ommended to look closer at when doing an update.

’recommended version’

’recommended version’ contains the version number that is recommended
based on a long-time supported version, and is still getting updates whenever
a new CVE is introduced. The value is returned as a string.

63

’recommended base version’

’recommended base version’ is a string containing the base of the recom-
mended version. This variable is used when linking to the different changes
in the documentation of Django.

’changelog info’

’changelog info’ contains a list of information based on the ’ids to look closer at changelog’
list. It is used to display the changes that have been made to the specific
class in the core code of Django.

’changelog url’

’changelog url’ is a string containing the changelog URL to link to the
changelog in my application.

A full overview of the class can be found in subsection A.2.2. The usage of
these variables is shown in Figure 4.2.

64

/update/perform/

The sub-URL /perform/ is the endpoint that the user is accessing when he
or she wants to do the update. This endpoint makes it possible for the user
to perform an update, and is an answer to the third and final research ques-
tion. As demonstrated in Figure 4.2, the user can perform an update of the
framework with the click of a green button button. When the user clicks
the button, a request is made to the endpoint, which triggers the function
approve update. If the request is successful, the installation will then be ini-
tiated with the recommended version that the application has proposed.

To perform the update, the subprocess package in Python is used. The pack-
age makes it possible to do system calls as a subprocess. Since the installation
is encapsulated inside a virtual environment, we can do the following call to
perform the update:

1 subproces s . c a l l ([sys . executable , ’−m’ , ’ pip ’ , ’
i n s t a l l ’ , ’ django==’+vers ion number])

This is the equivalent of performing the update inside a shell with the fol-
lowing command:

1 $ pip i n s t a l l django==vers ion number

The Version number is decided by the application with the following com-
mand:

1 vers ion number = get recommended vers ion (
DjangoVersionLTS . o b j e c t s . a l l () . order by (’
ba s e ve r s i on ’))

After doing this, the update will begin in the background and the site will
be up-to-date in a couple of minutes. Since the application is running on
top of an instance of Apache, the site will not go down as Apache caches the
site. However, when the application is updated, a crown job will restart the
Apache instance and the cache will be reset within the next 20 minutes.

65

/update/pushdata/

The pushdata URL is an endpoint used for gathering information and up-
dating the database with the newest data pulled from various sources. This
includes checking the current version up against the CVE database, updating
information such as the current support for the currently installed Django
version. This section breaks down the calls and gives an overview of the
various processes involved when gathering the data and putting it to the
database.

Pushdata is an endpoint makes makes it possible for the cron job to ac-
cess the endpoint as a logged-in user. The URL is hidden behind a login to
prevent other users from triggering the event of updating the database with
the function get cves for version(request). The function contains numerous
other functions, and as the cron job executes, the first method that it exe-
cutes is the add base and supported to database(). This method triggers the
function get django supported and lts versions(), which makes a request to
the Django download page. By using the library of BeautifulSoup to parse
the request, I was able to crawl the web page to gather information about the
different versions of Django and see whether they were supported versions.

1 de f g e t d j a n g o s u p p o r t e d a n d l t s v e r s i o n s () :
2 req = Request (” https : //www. d jangopro j e c t . com/

download /” , headers ={ ’User−Agent ’ : ’ Moz i l l a
/5 . 0 ’})

3 webpage = ur lopen (req)
4 soup = Beaut i fu lSoup (webpage , ’ html . parser ’)
5 t ab l e = soup . f i n d (’ tab le ’ , a t t r s ={ ’ c l a s s ’ : ’

django−supported−ve r s i ons ’ })
6 ve r s i on suppo r t = {}
7 f o r row in tab l e . f i n d A l l (’ tr ’ , { ’ c l a s s ’ : ’ ’}) :
8 # l o g i c f o r f i n d i n g in fo rmat ion in the html

and adding i t to ve r s i on suppo r t
9 .

10 f o r row in tab l e . f i n d A l l (’ tr ’ , { ’ c l a s s ’ : ’
unsupported ’ }) :

11 # l o g i c f o r f i n d i n g in fo rmat ion in the html
and adding i t to ve r s i on suppo r t

12 .
13 r e turn ve r s i on suppo r t

66

get django supported and lts versions() returns a dictionary containing the
version number as the key, in addition to the following values:

• information about whether the version is supported

• whether the version is an LTS version

• information about the latest released version

• when the mainstream support is scheduled to end

• when the extended support is scheduled to end

The dictionary is returned to add base and supported to database(), and
added to the database.

After updating the database with the Django versions, the next step is to
gather all of the CVEs for the given version of Django. This is done by
calling the method get all cve on given version(VERSION NUMBER). By
using the library pycvesearch and importing CVESearch(), a request could
be made to search for the CVEs to a specific version by applying the method
CVESearch().search(’project:version’).

1 de f g e t a l l c v e o n g i v e n v e r s i o n (VERSION NUMBER) :
2 cve = CVESearch ()
3 r e turned data = cve . search (’ d j angopro j e c t / django

: ’ + VERSION NUMBER)
4 c v e l i s t = []
5

6 f o r element in re turned data :
7 c v e l i s t . append (element . get (’ id ’))
8 c v e l i s t . append (element . get (’ summary ’))
9

10 r e turn c v e l i s t

Every CVE gathered from the search is added to a list, returned to
get cves for version(request), and stored as a local variable.

67

When requesting /update/pushdata/, the model graph is also regenerated
with the following method:

1 de f g e n e r a t e d o t a n d p n g f i l e () :
2 subproces s . c a l l ([sys . executable , ’ . / manage . py ’ , ’

graph models ’ , ’−a ’ , ’−g ’ , ’−o ’ , ’
u p d a t i n g s e r v i c e / s t a t i c /img/
m y p r o j e c t v i s u a l i z e d . png ’])

5.3.4 Templates

The templates developed for this project contains two files. First out is the
base.html file. This file loads the skeleton of an HTML following by the
HEAD and BODY tag. The goal of this file is to load all the internal and
external static files such as the styling in the .css file, and the programmable
JavaScript in the .js file of the project. Here is a snippet of the base.html
file:

1 {% load s t a t i c f i l e s %}
2 <! doctype html>
3 <html lang=”en”>
4 <head>
5 <meta name=”viewport ” content=”width=device−

width , i n i t i a l −s c a l e =1, shr ink−to− f i t=no”>
6

7 <t i t l e >Django Updating Serv i ce </ t i t l e >
8 < l i n k r e l =”s t y l e s h e e t ” h r e f = ” . . . ” >
9 < l i n k r e l =”s t y l e s h e e t ” h r e f=”{% s t a t i c ’ c s s /

u p d a t i n g s e r v i c e . css ’ %}”>
10 </head>
11 <body>
12 {% block content %}
13 {% endblock %}
14

15 <s c r i p t type=”text / j a v a s c r i p t ” s r c =”...”></
s c r i p t >

16 <s c r i p t type=”text / j a v a s c r i p t ” s r c=”{% s t a t i c
’ j s / j a v a s c r i p t . j s ’ %}”></s c r i p t >

17

18 </body>
19 </html>

68

In the process of improving the interface of the application, a decision of
using bootstrap as an external library was made. Bootstrap helps to divide
the page into sections and have a grid system where content can be presented
in. Bootstrap provides styled buttons and lists, which has been used when
improving the layout.

The second, and most important part of the template is the information
that is put into the body tag of the html tag. This is done in a Django way
where all the content located in the info page.html is loaded into the tag {%
block content %} as displayed in the example abobe.

The idea is to use the variables that is rendered by the update page() method,
and extract the information from the returned variables. One example of this
is the extraction of CVEs from the returned value ’cves’ that is available from
the view:

1 {% i f cves %}
2 {% f o r cve in cves %}
3 <h5><a t a r g e t=” blank ” h r e f=”https : //www.

c v e d e t a i l s . com/ cve /{{ cve . c v e i d }}”>{{
cve . c v e i d }}</h5>

4 <p>{{ cve . comment | l i n e b r e a k s b r }}</p>
5 {% endfor %}
6 {% e n d i f %}

In the example above, the cves-variable is treated as a list, and iterated over
in a Django fashion way using {% for cve in cves %}. This is equivalent
of a for each-loop in any programming language. In this case; for each cve
element inside the cves list, the example is extracting the information from
each cve object that exists in the cves list.

As the updating service.html file contains too much configuration, it is not
to be shown in the thesis. Please have a look at the source code for a further
inspection of the code and how the different elements are displayed in the
view.

5.4 Requirements

This project has made use of external libraries. A full overview of the re-
quirement file can be found in section A.4. Please note that the file contains
an insecure version of Django. In Table 5.2, the external libraries that have

69

been used are listed:

Requirement Description
beautifulsoup4 Used for crawling web pages by creating a collection

of the content on the web page
Django Web framework used on the web server
django-extensions Package for generating the model graph
pycvesearch A library in Python that returns a list of CVEs when

queried
pydotplus Makes it possible to generate .DOT files and .PNG

files
requests Used to create a request with a web server
urllib3 Library for making requests with beautifulsoup4 in

Python 3

Table 5.2: Brief description of requirements in the project

5.5 Development Environment

By following the steps in this section, you will be able to set up and run
the application in a development environment from scratch. The setup is
completed on a Windows computer with a Linux-based terminal. The setup
process should be fairly similar to the Windows installation, with a few mod-
ifications on Linux. A summary of the commands that are used for setting
up the local development environment is listed in Table 5.3.

70

List of terminal commands

Command Description
python --version Shows the Python version installed

on the system (or virtual environ-
ment)

py -3 -m venv env Creates a new virtual environment
inside the env-folder

env\Script\activate Activating the virtual environment
located in env folder of the project

django-admin startproject mysite Initiates a new Django project inside
the mysite folder

python manage.py makemigrations Prepares the migrations of the
Django models if any changes have
been made

python manage.py migrate Migrates the changes of the models
in the database

python manage.py createsuperuser Creates a superuser used for logging
into the admin panel of the applica-
tion

python manage.py runserver Runs a local server for testing the
application. The default location
of the development server is at
http://127.0.0.1:8000/

Table 5.3: Useful terminal commands

5.5.1 Installing Python

The first thing we need to do is to download and install Python on our
computer.

Step 1: Go to https://www.python.org/downloads/ and download the latest
version of Python 3.

Step 2: Install it to the default location suggested by the installer.

Step 3: Make sure to select the option ”to add Python to PATH variable”

Step 4: Restart the computer if necessary.

Step 5: Ensure that the installation was successful by opening the terminal
and typing python -V. The response should look something like this:

71

c :\>python −V
Python 3 . 7 . 0

5.5.2 Setting up virtual environment

Now that Python is installed it is time to setup the virtual environment.

Step 1: Open the terminal.

Step 2: Navigate to where you want to store your project, e.g.:

1 c :\myproject>

Step 3: Create the virtual environment by entering the following command
in the terminal:

c :\myproject>py −3 −m venv env

This will create a new folder named env containing the virtual environ-
ment and based on the Python version we just installed.

Step 4: Activate the virtual environment by typing the following in the ter-
minal:

c :\myproject>env\ S c r i p t \ a c t i v a t e
(env) c :\myproject>

5.5.3 Installing the requirements

Step 1: Download or import the Updating Service application either from
the Zip file or from GitHub [54]. The folder structure should look
something like this:

Step 2: Navigate into the Updating Service folder:

1 (env) c :\myproject\>cd updating−s e r v i c e
2 (env) c :\myproject\updating−s e r v i c e>

Step 3: Install the requirements located in the folder:

1 (env) c :\myproject\updating−s e r v i c e>pip i n s t a l l −
r requ i rements . txt

72

Step 4: Install PyCVESearch package:

1 (env) c :\myproject\updating−s e r v i c e>cd
PyCVESearch

2 (env) c :\myproject\updating−s e r v i c e \PyCVESearch>
pip i n s t a l l .

5.5.4 Setting up a Django Project

If you already have a Django project, please feel free to skip this step. Now
it is time to initiate a new Django project.

Step 1: Make sure that you are inside the virtual environment.

Step 2: Install Django through PIP. This will install an unsecure version of
Django:

1 # UNSECURE VERSION FOR TESTING PURPOSES
2 pip i n s t a l l Django ==”1.10.1”

Step 3: Start a new Django project and navigate into the newly created
project:

1 (env) c :\myproject>django−admin s t a r t p r o j e c t
mysite

Step 4: Navigate into the root folder of the Django project that was created
in the previous step:

1 (env) c :\myproject>cd mysite
2 (env) c :\myproject\mysite>

Step 5: Migrate the installed apps:

1 (env) c :\myproject\mysite>python manage . py
makemigrations

2 (env) c :\myproject\mysite>python manage . py
migrate

Step 6: Create a superuser:

1 (env) c :\myproject\mysite>python manage . py
c r e a t e s u p e r u s e r

Step 7: Run the server and try the login at 127.0.0.1:8000/admin.

73

5.5.5 Installing the Updating Service application

Step 1: Download or import the Updating Service application either from
Zip file or from GitHub [54].

Step 2: Add it to the INSTALLED APPS dictionary in the settings.py file:

1 INSTALLED APPS = [
2 . .
3 ’ updat ing s e rv i c e ’ ,
4 . .
5]

Step 3: Make migrations and migrate:

1 (env) c :\myproject\mysite>python manage . py
makemigrations

2 (env) c :\myproject\mysite>python manage . py
migrate

Step 4: Add the service to the urls.py-fil:

1 from django . conf . u r l s import inc lude , u r l
2

3 u r l p a t t e r n s [
4 u r l (r ’ ˆ update / ’ , i n c lude (’ u p d a t i n g s e r v i c e .

u r l s ’)) ,
5]

Step 5: Run the server and check that the service is up and running by
visiting 127.0.0.1:8000/update in your web browser.

1 (env) c :\myproject\mysite>python manage . py
runse rve r

5.6 WebFaction

As a proof of concept, the example application, along with the developed
updating service application, was installed in a live production environment
on a web server served by WebFaction. This section gives an overview of
how the application is set up on the server and what is required to have the
application up and running.

74

WebFaction is a complete web hosting service based in the UK. They provide
everything a user needs when it comes to Web Hosting, Email, Database
Hosting, Backups, Monitoring and System Administration, and Support.
The team at WebFaction has done an amazing job of simplifying the hosting
experience for their users and documenting their service in a good fashion.
They bring everything together into one complete system for their users, and
have three data centers available for usage: one in the U.S., one in Singapore,
and one in Europe. The data center in Europe has been used in this case.

Since WebFaction was already hosting a website for me in a personal project,
the choice of hosting the example application along with my personal page
was made. By doing this, it was possible to prove that this updating method
would not influence or conflict with other applications that the server might
run; additionally, I did not have to pay for another hosting plan. Other
services that provide Django hosting, such as BlueHost [55], HostGator [56],
LiquidWeb [57], and DigitalOcean [58], should also be good alternatives to
WebFaction.

5.6.1 VirtualEnv

As mentioned in section 2.4, by creating a virtual environment on the server,
I could keep the installation of Django and its dependencies separate from
the rest of the server. Since WebFaction does not do this automatically when
creating a new Django application in the Dashboard, I had to set up the in-
stallation manually. The following installation process is based on a blog post
published by Michal Karzynski [59] and is summarized with the key points
in this section.

The first step was to create a new application through the WebFaction con-
trol panel as a generic mod WSGI application running Python 3.6. Since this
was the newest version of Python, virtual environment was already installed
on the server and was ready to be set up.

After verifying that the mod WSGI application, hereby called master app,
was set up and running, it was time to SSH into the server and set up the
virtual environment.

1 $ cd ∼/webapps/ master app
2 $ python3 . 6 −m venv env

75

This created a virtual environment inside the folder env. Note that the
Python version specified should match the version of Python used when
created the mod WSGI application. By activating the virtual environment
by the following line:

1 $ source env/ bin / a c t i v a t e
2 (env) $

Every new installation of libraries was now installed inside the environment.
PIP was also installed automatically inside the environment. I was then
able to install the requirements for the Django application by importing a
requirements.txt file and installing it through PIP:

1 (env) $ pip i n s t a l l −r requ i rements . txt

A detailed description of the requirements file can be found in section 5.4.

Since the requirements file contained the specific Django version that we
wanted for the example application, Django is now ready to be used inside
the virtual environment. By navigating to the root of the project, I could
create a new Django project named mysite:

1 (env) $ django−admin s t a r t p r o j e c t mysite
2 (env) $ chmod +x mysite /manage . py

The Django-project was now created, and I made sure that it was possible
to execute the manage.py file so that the application could run.

After creating a Django project and ensuring that the files were executable,
it was time to set up a virtual host to serve the site. This was done by editing
the httpd.conf file located in /webapps/yourapp/apache2/conf/httpd.conf.
The first step was to remove DirectoryIndex, DocumentRoot, and <Direc-
tory>:

1 DirectoryIndex index . py
2 DocumentRoot /home/USERNAME/webapps/ master app / htdocs
3 <Direc to ry /home/USERNAME/webapps/ master app / htdocs>
4 Options +ExecCGI
5 AddHandler wsgi−s c r i p t . py
6 </Directory>

Then, a virtual host was created and the log settings, along with WSGI-
variables, were put inside the virtual host as follows:

76

1 <Virtua lHost ∗>
2 ServerName USERNAME. web fac t i ona l . com
3

4 # Logging c o n f i g
5 LogFormat . . .
6 CustomLog . . .
7 ErrorLog . . .
8

9 # Django WSGI s e t t i n g s
10 WSGIDaemonProcess master app p r o c e s s e s=2 threads

=12 python−path=/home/USERNAME/webapps/
master app / mysite : / home/USERNAME/webapps/
master app /env/ l i b /python3 .6/ s i t e−packages : /
home/USERNAME/webapps/ master app /env/ l i b /
python3 . 6

11 WSGIProcessGroup master app
12 WSGIScriptAlias / /home/USERNAME/webapps/

master app / mysite / mysite / wsgi . py
13 </VirtualHost>

Note that the WSGIDeamonProcess originally pointed to the lib that Web-
Faction first created, which does not contain anything. I had to update this
to point to the root of the project and to the lib-folder inside the virtual
environment. The WSGIScriptAlias directive was also added to match the
wsgi.py-file inside the Django project.

5.6.2 Let’s Encrypt

The principal goal of Let’s Encrypt [60] and the ACME protocol [61], [62]
is to make security accessible to everyone. The strategy for doing so is a
service for websites to obtain a browser-trusted certificate without any hu-
man intervention by the Certificate Authority, and with minimal effort from
the server’s administrator. This occurs by running a certificate management
agent on the web server. The procedure happens in two steps. First, the
agent proves to the CA that the web server controls a domain. Then, the
agent can request, renew, and revoke certificates for that domain [63].

The example application and updating service app is running HTTPS on
WebFaction. This is done by using an open source project on GitHub named
acme-webfaction [62]. acme-webfaction is easy to set up and works perfectly.

77

The process of installing Let’s Encrypt on the server involved the following
steps given in the repository:

1. First, we need to install acme.sh on our server:

1 $ c u r l https : // get . acme . sh | sh

2. Then, we need to download the tool provided in the repository, place
it in the correct location, and make sure we are able to run the file:

1 $ wget https : // raw . g i thubuse rcontent . com/
g r e g p l a y s g u i t a r /acme−webfact ion / master /
acme webfact ion . py

2 $ cp . / acme webfact ion . py ∼/ bin /
3 $ chmod +x ∼/ bin / acme webfact ion . py

3. Finally, we can issue the certificate:

1 $ acme . sh −−i s s u e −w /path/ to /webroot −d example .
com −d www. example . com

A certificate from Let’s Encrypt is only valid for 90 days before a new certifi-
cate must be issued. As the repository suggests, the renewal should be set
as a cronjob and by using the acme webfaction.py file.

The application instance on WebFaction is also set to serve the site as
HTTPS. This was done in the user dashboard on WebFaction.

5.6.3 Cron

As mentioned in section 2.12, a cron is used when one wishes to execute a file
at a given time. In this project, the following cron is added to the cron table
to execute the script for sending out an email notification if there are any
CVEs connected to the currently installed version of Django. The following
cron job is set up:

1 20 13 ∗ ∗ Tue ”/home/magnusnn/webapps/ master /env/ bin /
python” ”/home/magnusnn/webapps/ master /update−
s c r i p t . py”

This means that the file update-script.py is executed every Tuesday at 13:20.

78

Two more entities were added to the cron tab as well to ensure that the
application is restarted frequently and to renew the certificate provided by
Let’s Encrypt. They are listed in section A.3

79

80

Chapter 6

Evaluation and further
development

This chapter contains the evaluation of the methodology used in this project,
evaluation of the solution as well as a recommendation for further develop-
ment of the solution presented.

6.1 Methodology

The methodology for performing this research has been to observe which
solutions that are out on the market today, followed by conducting unstruc-
tured and semi-structured interviews, and using the feedback in an iterative
process to continuously improve the solution. Looking at the process with
a retrospective view, I feel that the interviews should have had a bit more
structure to it. If the interviews have had predefined questions, it would have
been easier to evaluate each resonance against each other. With the lack of
structure, the process after the interviews got a lot harder than it should
have been as the results was so different.

The number of interviewing subjects should have been much higher than
it was for this project. As mentioned earlier, the interviews were conducted
with 4 students at the Department of Computer Science. By only testing the
application on this small user group, one would not know whether the appli-
cation is good enough for used in the Django community or not. However,
the lack of network and connections prevented the process of interviewing
different audiences that might have an interest of using this product.

Another point one can learn from this process is the importance of eval-

81

uating the interviews right after it happened. The interviews should also
have been recorded to make post processing a lot easier. If a recording de-
vice had been used, one could after the interviews, transcripted the dialog,
and had the opportunity to catch vital details that might have been missed
in this process. Finally, but not least, the application should have been user
tested with the students testing out the application in a task-driven way.
The interviewing subjects should have been given the same set of tasks to
evaluate if the application is confusing the users, or the users get lost when
using it. If a set of tasks have been given during the interview, it would have
been easier to see if the user got stuck while trying to perform a task.

6.2 Evaluation of solution

As mentioned in the previous section, the solution was tested on a small au-
dience and to give a good evaluation on how well the solution is performing
can be difficult. However, when concerning about the research questions, the
developed solution is fulfilling the questions in a way that the users would
prefer. As we have seen by the results of the interviews, the preferred noti-
fication method in this case was by email. An email notification system was
developed, and feedback from the students were positive. The simplicity as
well as the targeted information related to their application was a key point
for the students.

When looking at the research question regarding the impact analysis, the
provided solution helps the user understand critical parts that might not
function properly after been updated. However, since none of the intervie-
wees had any experience in using Django, they were not familiar with struc-
ture of the software and it was difficult for them to find the critical parts of
the application that had a considerable risk when installing an update. I do
believe that this part of the application can be improved to help users with
a lower knowledge of the Django domain. The suggested improvements are
listed in the next section.

Finally, when looking at the final part of this research concerning simpli-
fying the updating process, the application allows for users to install and
patch their system with a click of a button. When questioned about whether
the users would use this feature, they all replied that they believed so as
this simplified the process a lot. One limitation of this solution is the lack
of feedback while doing an update, and the lack of backup done before an
update is started. An idea for a solution is provided in the next section.

82

6.3 Further development

Since the time scope of the thesis was quite limited, and a time-consuming
process with interviews was followed the solution might not be ready for
release quite yet. However, based on the user feedback and tests, I believe
that the finishing product is not fair away with some minor changes.

Error handling

One of the first thing to mention when talking about making the final touches
on the solution is the error handling when installing an update with a click
of a button. There is no backup solution in case the installation fails, or
the installation causes the application to fail. The implementation of such a
solution was not prioritized, because it would take some time to understand
which errors that usually might occur when installing new updates.

An idea for such a solution could be to make a copy of the existing virtual
environment, and performing the update in the duplicated environment. If
the update is successful, the original virtual environment is replaced with the
newly updated one. Time will show if this is possible in practice, or if there
is a better solution suited for this purpose.

Feedback when installing an update

This is partially related to the previous problem of error handing. There
feedback to the administrator should be improved when performing an up-
date. When a user clicks the button, no feedback is given, and the user might
get confused whether the update is installing. If the installation fails, there
is no way of showing this to the user.

There should be implemented a log or progress bar displayed whenever an
update is initiated to show to the user that the application is currently in-
stalling a new update. The updating-button should also be deactivated while
a new update is being installed.

API request instead of individual databases

As the solution developed based on the research of how to notify, perform
and evaluate impact of an update in Django was created, it has come to the
attention that the application might have a drop in performance when used
at a low network bandwidth. This is because whenever the application is
displayed in the browser, a new request is made to multiple websites and

83

services to gather information and display this to the users. It is also un-
necessary for every parties that is using the provided updating application
to have their own database containing the information about the Django re-
lease information and the CVEs related to that version. A solution for this
to create an API endpoint which users can query to retrieve the necessary
information about their version. This might also ensure that the data stored
at the API endpoint is up to date. Another benefit from this is the saved
computational power needed on each of the application, this will probably
also speed up the loading time of the application.

Use internal mail service

Since the project started out from scratch, the choice of using an external
mail provider was made. However, as the project evolved, it soon became
noticeable that the users would have more trust in the system if the email
came directly from the application, and not through Mailgun as the solution
does now. Before the final interviews, I made a custom setup for sending
mails through Mailgun using a custom mail server located on Webfaction.
As it turns out, the users felt more confident in receiving notification from
this mail server.

Another argument for getting rid of Mailgun in the process of sending out
emails is the limitation of the service. In the free plan that this project is
using, the restriction of only sending out one email at the time could cause a
problem when wanting to notify many system administrators at once. It also
turns out that the process of setting up the mail serve provided by Python
is not that hard, however, for testing purposes it was more convenience to
use Mailgun, especially in the local environment.

Design

When it comes to design, the solution provided has not been tested for a
usability score. The feedback from the interviews were good; however, the
interviews did not follow a usability testing process to detect design flaws of
the application. Another aspect when it comes to design is the model graph.
The implemented solution generates a .PNG picture based on a .DOT file,
however, there should be some indication with either colors or arrows to help
the administrator to locate critical parts of the application that might cause
an error when the update is installed. By coloring the path between critical
parts of the models, I believe that the administrator would be able to look
at the model graph alone and decide if the update is worth doing.

84

Chapter 7

Conclusion and further work

This chapter summarize and conclude this thesis and has a recommendation
for further research in this field.

7.1 Conclusion

As frameworks are more and more commonly used when developing a web
application, the importance of an easy and quick way of patching the frame-
work for the end users is important. The updating process of Django is a
cumbersome and time-consuming process. The research of this thesis has
shown through interviews and observations that an easier and more conve-
nient way of patching a Django application is possible and preferred.

A developed application for this purpose is provided, and has been tested
on end users. The evaluation of the developed software shows that the appli-
cation is in an early stage of development and would need some modifications
before been ready for a release. It would need to be tested on a broader au-
dience, and a code refactoring process for optimizing the application would
be much valued before a release is provided.

7.2 Further Work

One recommendation for further research besides improvements of the ap-
plication is to evaluate the statement coming from Django itself where they
ensure that a security update will have no impact on the already existing
application when installing a patch. It would be interesting to see if this
statement is valid, and to see if the improvements that has been made might
cause a security vulnerability further down the line.

85

86

Bibliography

[1] Django Software Foundation. Django Upgrading process. url: https:
//docs.djangoproject.com/en/2.0/howto/upgrade-version/.

[2] Django Software Foundation. Who Receives Advance Notification. url:
https://docs.djangoproject.com/en/dev/internals/security/

#who-receives-advance-notification.

[3] V Okanović and T Mateljan. “Designing a new web application frame-
work”. In: MIPRO 2011 - 34th International Convention on Informa-
tion and Communication Technology, Electronics and Microelectronics
- Proceedings. 2011, pp. 1315–1318. isbn: 9789532330670. url: http:
//www.scopus.com/inward/record.url?eid=2-s2.0-80052287599&

partnerID=40&md5=529f2409502f80b4ed25c7dc39ca9450.

[4] Mohamed Fayad and Douglas C. Schmidt. “Object-oriented application
frameworks”. In: Communications of the ACM 40.10 (1997), pp. 32–38.
issn: 00010782. doi: 10.1145/262793.262798. url: http://portal.
acm.org/citation.cfm?doid=262793.262798.

[5] David A. Wheeler. “Why open source software / Free Software (OS-
S/FS, FLOSS, or FOSS)? Look at the Numbers!” In: Challenges (2014),
pp. 1–145.

[6] Glenn E Krasner and Stephen T Pope. “A Description of the Model-
View-Controller User Interface Paradigm in the Smalltalk-80 System”.
In: Journal of object oriented programming (1988). issn: 0896-8438.
doi: 10.1.1.47.366.

[7] M F Sanner. “Python: a programming language for software integration
and development.” In: Journal of molecular graphics & modelling 17.1
(1999), pp. 57–61. issn: 1093-3263. doi: 10.1016/S1093-3263(99)
99999-0.

[8] David Robinson. The Incredible Growth of Python. 2017. url: https:
//stackoverflow.blog/2017/09/06/incredible-growth-python/.

87

[9] Django Software Foundation. Djangoproject. 2017. url: https://www.
djangoproject.com/.

[10] PePy. Django Download Stats. url: http://pepy.tech/project/
django.

[11] Asad Jibran Ahmed. Django Project Blueprints. Packt Publishing, 2016.
isbn: 1783985429, 9781783985425.

[12] Django Software Foundation. FAQ: General. url: https://docs.

djangoproject . com / en / 2 . 0 / faq / general / #why - does - this -

project-exist.

[13] Python Wiki. Django. url: https://wiki.python.org/moin/Django.

[14] Django Software Foundation. Why Django? url: https://www.djan
goproject.com/start/overview/.

[15] Django Software Foundation. Django in use at washingtonpost.com.
url: https://www.djangoproject.com/weblog/2005/dec/08/

congvotes/.

[16] Bala Kumar. Django Archirecture. 2013. url: https://www.slidesh
are.net/balakumarp/django-framework/6.

[17] Django Software Foundation. Django’s security policies. url: https:
//docs.djangoproject.com/en/dev/internals/security/.

[18] Tim Graham. Django’s Roadmap. url: https://www.djangoproject.
com/weblog/2015/jun/25/roadmap/.

[19] CVE Details - The ultimate security vulnerability datasource. CVEde-
tails.com. 2017. url: https://www.cvedetails.com/.

[20] Kenneth Reitz. Requests: HTTP for Humans. url: http://docs.

python-requests.org/en/master/.

[21] Python Software Fundation. Virtual Environments and Packages. url:
https://docs.python.org/3/tutorial/venv.html.

[22] Mark Lutz. Programming Python. O’Reilly Media, Inc., 2006.

[23] Python Software Foundation. PiPY - the Python Package Index. url:
https://pypi.org/.

[24] T. Ylonen and C. Lonvick. RFC 4252: The Secure Shell (SSH) Authen-
tication Protocol. 2006.

88

[25] Robin Seggelmann, Michael T??xen, and Erwin P. Rathgeb. “SSH over
SCTP - Optimizing a multi-channel protocol by adapting it to SCTP”.
In: Proceedings of the 2012 8th International Symposium on Commu-
nication Systems, Networks and Digital Signal Processing, CSNDSP
2012. 2012. isbn: 9781457714733. doi: 10.1109/CSNDSP.2012.6292659.

[26] D J Barrett and R Silverman. SSH, The Secure Shell - The Definitive
Guide. 2001. isbn: 9780596008956. doi: 10.1016/S1361-3723(05)
00151-X.

[27] Nicholas Rosasco and David Larochelle. “How and Why More Secure
Technologies Succeed in Legacy Markets: Lessons from the Success of
SSH”. 2003.

[28] Berkeley University of California. Securing Network Traffic With SSH
Tunnels. url: https://security.berkeley.edu/resources/best-
practices-how-articles/system-application-security/securi

ng-network-traffic-ssh.

[29] mitre.org. Common Vulnerabilties and Exposures. url: https://cve.
mitre.org/about/.

[30] Owasp. “OWASP Top 10 - 2013”. In: OWASP Top 10 (2013), p. 22.
issn: 13514180. doi: 1. url: http://owasptop10.googlecode.com/
files/OWASP%20Top%2010%20-%202013.pdf.

[31] Eloisa Vargiu and Mirko Urru. “Exploiting web scraping in a collabo-
rative filtering- based approach to web advertising”. In: Artificial Intel-
ligence Research (2012). issn: 1927-6982. doi: 10.5430/air.v2n1p44.

[32] Leonard Richardson. Beautiful Soup documentation. url: https://
www.crummy.com/software/BeautifulSoup/bs4/doc/.

[33] MyDataCareer. Python Web Scraping With BeautifulSoup: A How To
Guide On Web Scraping. url: https://mydatacareer.com/pythonw
ebscraping/.

[34] wiseGEEK. What Is a Notification System. url: https://www.wiseg
eek.com/what-is-a-notification-system.htm.

[35] Chris Gayomali. The text message turns 20: A brief history of SMS.
url: https://theweek.com/articles/469869/text- message-

turns-20-brief-history-sms.

[36] Craig Partridge. “The technical development of internet email”. In:
IEEE Annals of the History of Computing (2008). issn: 10586180. doi:
10.1109/MAHC.2008.32.

89

[37] Anas Baig. 91% of cyber attacks start with a phishing email. 2017.
url: https://digitalguardian.com/blog/91- percent- cyber-
attacks-start-phishing-email-heres-how-protect-against-

phishing.

[38] CogNiTioN. Newbie: Intro to cron. 1999. url: http://www.unixgeek
s.org/security/newbie/unix/cron-1.html.

[39] Colin Robson. “Real world research”. In: Edition. Blackwell Publishing.
Malden (2011). issn: 08954356. doi: 10.1016/j.jclinepi.2010.08.
001.

[40] Ole T. Berg. Spørreskjemametode. 2012. url: https://snl.no/sp%
C3%B8rreskjemametode.

[41] Frode Svartdal. Test: psykologi. 2018. url: https://snl.no/test_-
_psykologi.

[42] Robert Arnold and Shawn Bohner. Software Change Impact Analysis.
Wiley-IEEE Computer Society Press, 1996, p. 392. isbn: 978-0-8186-
7384-9.

[43] Steve Krug. Don’t Make Me Think! 2006. isbn: 0321344758. doi: 10.
1098/rspb.2009.1614.

[44] WordPress. About. url: https://wordpress.org/about/.

[45] Glenn Leibowitz. This CEO Runs a Billion-Dollar Company With No
Offices or Email. 2016.

[46] W3Techs. Usage of content management systems for websites. url:
https://w3techs.com/technologies/overview/content_manageme

nt/all/.

[47] MITRE Corporation. Wordpress: CVE security vulnerabilities, versions
and detailed reports. url: https://www.cvedetails.com/product/
4096/Wordpress-Wordpress.html?vendor_id=2337.

[48] JetBrains s.r.o. JetBrains: Developer Tools for Professionals and Team.
url: https://www.jetbrains.com/.

[49] JetBrains. Python Developers Survey 2016: Findings. 2016. url: htt
ps://www.jetbrains.com/pycharm/python-developers-survey-

2016/.

[50] JetBrains. Python Developers Survey 2017: Findings. 2017. url: http
s://www.jetbrains.com/research/python-developers-survey-

2017/.

90

[51] Python Software Fundation. PEP 373 – Python 2.7 Release Schedule.
2008. url: https://www.python.org/dev/peps/pep-0373/.

[52] Django Software Foundation. Django Models. url: https://docs.
djangoproject.com/en/dev/topics/db/models/.

[53] Django Software Foundation. Class-based views. url: https://docs.
djangoproject.com/en/dev/topics/class-based-views/.

[54] Magnusnn. GitHub Repository. url: https://github.com/magnusnn/
django-updating-service.

[55] BlueHost Inc. BlueHost. url: https://www.bluehost.com/.

[56] HostGator.com LLC. HostGator. url: https://www.hostgator.com/.

[57] LiquidWeb LLC. LiquidWeb. url: https://www.liquidweb.com/.

[58] DigitalOcean LLC. DigitalOcean. url: https://www.digitalocean.
com/.

[59] Michal Karzynski. Setting up Django in Virtualenv on WebFaction’s
Apache with mod wsgi. 2013. url: http://michal.karzynski.pl/bl
og/2013/09/14/django-in-virtualenv-on-webfactions-apache-

with-mod-wsgi/.

[60] Let’s Encrypt.

[61] Acme protocol. url: https://tools.ietf.org/html/draft-barnes-
acme-04.

[62] Acme git repository. url: https://github.com/letsencrypt/acme-
spec.

[63] Adwiteeya et al. “Shedding Light on the Adoption of Let’s Encrypt”.
In: (2016). url: http://arxiv.org/abs/1611.00469.

91

92

Appendix A

Code-Classes

A.1 update-script.py

1 import r e q u e s t s
2 from pycvesearch import CVESearch
3 import django
4

5

6 de f g e t a l l c v e o n g i v e n v e r s i o n (VERSION NUMBER) :
7 cve = CVESearch ()
8 r e turned data = cve . search (’ d j angopro j e c t / django

: ’ + VERSION NUMBER)
9 c v e l i s t = []

10

11 f o r element in re turned data :
12 c v e l i s t . append (element . get (’ id ’))
13 c v e l i s t . append (element . get (’ summary ’))
14

15 r e turn c v e l i s t
16

17

18 de f g e t c u r r e n t d j a n g o v e r s i o n () :
19 vers ion number = s t r (django .VERSION) . s t r i p (’ () ’) .

s t r i p (’ ’) . s p l i t (’ , ’) [: 3]
20 r e turn vers ion number [0] + ” .” + vers ion number

[1] + ” .” + vers ion number [2]
21

22

93

23 de f f i n d o u t d a t e d v e r s i o n a n d s e n d e m a i l () :
24 ALL CVE ON GIVEN VERSION =

g e t a l l c v e o n g i v e n v e r s i o n (
g e t c u r r e n t d j a n g o v e r s i o n ())

25 i f ALL CVE ON GIVEN VERSION:
26 counter = 0
27 text message = ”You are running ve r s i on ” +

g e t c u r r e n t d j a n g o v e r s i o n () + ” o f Django
.\n” \

28 ”The webs i te i s c u r r e n t l y vu lne rab l e to ” +
s t r (i n t (l en (ALL CVE ON GIVEN VERSION) /2))
+ ” CVE−l i s t e d v u l n e r a b i l i t i e s and should
be patched to the recommended ve r s i on !\n”
\

29 ” Please v i s i t the /update/− s i t e o f the
a p p l i c a t i o n .\n” \

30 ”Here i s a l i s t o f the g iven CVEs that the
webs i te i s vu lne rab l e to :\n\n”

31 f o r element in ALL CVE ON GIVEN VERSION:
32 i f (counter%2 == 0) :
33 text message +=

’−−−−−−−−−−−−−−−−−−−−−−−−−\n ’
34 text message += element + ”\n”
35 counter += 1
36

37 r e turn r e q u e s t s . post (
38 ” https : // api . mailgun . net /v3/

sandboxc176XXXXXXXXXXXXXXXX. mailgun .
org / messages ” ,

39 auth=(” api ” , ”key−8866−YOUR−API−KEY−
HEREXXXXXXXXXX”) ,

40 data={”from ” : ”Updating S e r v i c e <
postmaster@sandboxc176XXXXXXXXXXXXXXXX
. mailgun . org >”,

41 ” to ” : ”Admin <YOUR@EMAIL.COM>”,
42 ” sub j e c t ” : ”Update Django ! ” ,
43 ” text ” : text message })
44

45

46 f i n d o u t d a t e d v e r s i o n a n d s e n d e m a i l ()

94

A.2 views.py

A.2.1 imports

1 import django
2 import sys
3 import subproces s
4 from pycvesearch import CVESearch
5 from django . sho r t cu t s import render , r e d i r e c t ,

HttpResponse
6 from django . con t r i b . auth . de co ra to r s import

l o g i n r e q u i r e d
7

8 from bs4 import Beaut i fu lSoup
9

10 from u r l l i b . r eque s t import Request , ur lopen
11

12 from . models import DjangoVersion , InfoCVE ,
DjangoVersionCVE , DjangoVersionLTS

13 from mysite . s e t t i n g s import INSTALLED APPS as
INSTALLED APPS

95

A.2.2 update page(request)

1 @log in r equ i r ed
2 de f update page (r eque s t) :
3 t ry :
4 cves = DjangoVersionCVE . o b j e c t s . get (

d j an go d j ang o ve r s i on=
g e t c u r r e n t d j a n g o v e r s i o n ()) . cve . a l l () .
order by (’ cve id ’) . r e v e r s e ()

5 except DjangoVersionCVE . DoesNotExist :
6 g e t c v e s f o r v e r s i o n (r eque s t)
7 cves = DjangoVersionCVE . o b j e c t s . get (

d j an go d j ang o ve r s i on=
g e t c u r r e n t d j a n g o v e r s i o n ()) . cve . a l l () .
order by (’ cve id ’) . r e v e r s e ()

8

9 d j a n g o v e r s i o n i n f o = DjangoVersionLTS .
o b j e c t s . a l l () . o rder by (’ ba s e ve r s i on ’)

10 c u r r e n t d j a n g o v e r s i o n =
g e t c u r r e n t d j a n g o v e r s i o n ()

11 ba s e d j ango ve r s i o n = c u r r e n t d j a n g o v e r s i o n .
s p l i t (’ . ’) [0] + ” .” + c u r r e n t d j a n g o v e r s i o n .
s p l i t (’ . ’) [1]

12 c u r r e n t b a s e v e r s i o n i n f o = DjangoVersionLTS .
o b j e c t s . get (b a s e v e r s i o n=bas e d j ango ve r s i o n)

13 recommended version = get recommended vers ion (
d j a n g o v e r s i o n i n f o)

14 recommended base vers ion = s t r (
recommended version . s p l i t (’ . ’) [0] + ” .” +
recommended version . s p l i t (’ . ’) [1])

15 i d s t o l o o k c l o s e r a t c h a n g e l o g =
g e t i d s f r o m c h a n g e l o g b a s e d o n d o t f i l e (
recommended version , recommended base vers ion)

16 c h a n g e l o g i n f o = g e t c h a n g e l o g o n i d (
i d s t o l o o k c l o s e r a t c h a n g e l o g ,
recommended base vers ion)

17 change l og u r l = ” https : // docs . d j angopro j e c t . com/
en/” + recommended base vers ion + ”/ r e l e a s e s /”
+ recommended base vers ion + ””

18

96

19 r e turn render (request , ’ u p d a t i n g s e r v i c e /
i n f o p a g e . html ’ , {

20 ’ cves ’ : cves ,
21 ’ d j a n g o v e r s i o n i n f o ’ : d j a n g o v e r s i o n i n f o ,
22 ’ c u r r en t d j ango ve r s i on ’ :

g e t c u r r e n t d j a n g o v e r s i o n () ,
23 ’ c u r r e n t b a s e v e r s i o n i n f o ’ :

c u r r e n t b a s e v e r s i o n i n f o ,
24 ’ i d s t o l o o k c l o s e r a t c h a n g e l o g ’ :

i d s t o l o o k c l o s e r a t c h a n g e l o g ,
25 ’ recommended version ’ :

get recommended vers ion (
d j a n g o v e r s i o n i n f o) ,

26 ’ recommended base version ’ :
recommended base version ,

27 ’ change l og in f o ’ : change l og in f o ,
28 ’ change log ur l ’ : change log ur l ,
29 })

A.2.3 get current django version()

1 de f g e t c u r r e n t d j a n g o v e r s i o n () :
2 vers ion number = s t r (django .VERSION) . s t r i p (’ () ’) .

s t r i p (’ ’) . s p l i t (’ , ’) [: 3]
3 r e turn vers ion number [0] + ” .” + vers ion number

[1] + ” .” + vers ion number [2]

A.2.4 get all cve on given version(VERSION NUMBER)

1 de f g e t a l l c v e o n g i v e n v e r s i o n (VERSION NUMBER) :
2 cve = CVESearch ()
3 r e turned data = cve . search (’ d j angopro j e c t / django

: ’ + VERSION NUMBER)
4 c v e l i s t = []
5 f o r element in re turned data :
6 c v e l i s t . append (element . get (’ id ’))
7 c v e l i s t . append (element . get (’ summary ’))
8 r e turn c v e l i s t

97

A.2.5 add base and supported to database()

1 de f add base and supported to database () :
2 v e r s i o n l i s t =

g e t d j a n g o s u p p o r t e d a n d l t s v e r s i o n s ()
3 f o r element in v e r s i o n l i s t :
4 t ry :
5 d j a n g o v e r s i o n l t s o b j e c t = (

DjangoVersionLTS . o b j e c t s . get (
b a s e v e r s i o n=element))

6 d j a n g o v e r s i o n l t s o b j e c t .
suppor t ed ve r s i on = (v e r s i o n l i s t [
e lement] [’ supported ’])

7 d j a n g o v e r s i o n l t s o b j e c t . l t s = (
v e r s i o n l i s t [e lement] [’ LTS ’])

8 d j a n g o v e r s i o n l t s o b j e c t .
l a t e s t v e r s i o n r e l e a s e d = (
v e r s i o n l i s t [e lement] [’ l a t e s t ’])

9 d j a n g o v e r s i o n l t s o b j e c t . mainstream = (
v e r s i o n l i s t [e lement] [’ mainstream ’])

10 d j a n g o v e r s i o n l t s o b j e c t . extended = (
v e r s i o n l i s t [e lement] [’ extended ’])

11 d j a n g o v e r s i o n l t s o b j e c t . save ()
12 except DjangoVersionLTS . DoesNotExist :
13 d j a n g o v e r s i o n l t s o b j e c t =

DjangoVersionLTS . o b j e c t s . c r e a t e (
14 b a s e v e r s i o n=element ,
15 suppor t ed ve r s i on = v e r s i o n l i s t [

e lement] [’ supported ’] ,
16 l t s = v e r s i o n l i s t [e lement] [’ LTS ’] ,
17 l a t e s t v e r s i o n r e l e a s e d =

v e r s i o n l i s t [e lement] [’ l a t e s t ’] ,
18 mainstream = v e r s i o n l i s t [e lement] [’

mainstream ’] ,
19 extended = v e r s i o n l i s t [e lement] [’

extended ’]
20)
21 d j a n g o v e r s i o n l t s o b j e c t . save ()

98

A.2.6 get django supported and lts versions()

1 de f g e t d j a n g o s u p p o r t e d a n d l t s v e r s i o n s () :
2 req = Request (” https : //www. d jangopro j e c t . com/

download /” , headers ={ ’User−Agent ’ : ’ Moz i l l a
/5 . 0 ’})

3 webpage = ur lopen (req)
4 soup = Beaut i fu lSoup (webpage , ’ html . parser ’)
5

6 t ab l e = soup . f i n d (’ tab le ’ , a t t r s ={ ’ c l a s s ’ : ’
django−supported−ve r s i ons ’ })

7

8 ve r s i on suppo r t = {}
9

10 f o r row in tab l e . f i n d A l l (’ tr ’ , { ’ c l a s s ’ : ’ ’}) :
11 columns = row . f i n d a l l (’ td ’)
12 counter = 0
13 co lumn info = []
14 vers ion number = None
15 f o r column in columns :
16 co lumn info = column . g e t t e x t ()
17 pr in t (co lumn info . s p l i t (’ ’))
18 i f (counter == 0) :
19 vers ion number = co lumn info . s p l i t (’

’) [0]
20 i f l en (co lumn info . s p l i t (’ ’)) >= 2

and co lumn info . s p l i t (’ ’) [1] == ’
LTS ’ :

21 ve r s i on suppo r t [vers ion number] =
{ ’ supported ’ : True , ’LTS ’ :

True , ’ l a t e s t ’ : None , ’
mainstream ’ : None , ’ extended ’ :

None}
22 e l s e :
23 ve r s i on suppo r t [vers ion number] =

{ ’ supported ’ : True , ’LTS ’ :
False , ’ l a t e s t ’ : None , ’
mainstream ’ : None , ’ extended ’ :

None}
24 # break
25 e l i f (counter == 1) :

99

26 ve r s i on suppo r t [vers ion number] [’
l a t e s t ’] = co lumn info

27 e l i f (counter == 2) :
28 ve r s i on suppo r t [vers ion number] [’

mainstream ’] = co lumn info
29 e l i f (counter == 3) :
30 ve r s i on suppo r t [vers ion number] [’

extended ’] = co lumn info
31 counter += 1
32

33 f o r row in tab l e . f i n d A l l (’ tr ’ , { ’ c l a s s ’ : ’
unsupported ’ }) :

34 columns = row . f i n d a l l (’ td ’)
35 counter = 0
36 co lumn info = []
37 vers ion number = None
38 f o r column in columns :
39 co lumn info = column . g e t t e x t ()
40 pr in t (co lumn info . s p l i t (’ ’))
41

42 i f (counter == 0) :
43 vers ion number = co lumn info . s p l i t (’

’) [0]
44 i f l en (co lumn info . s p l i t (’ ’)) >= 2

and co lumn info . s p l i t (’ ’) [1] == ’
LTS ’ :

45 ve r s i on suppo r t [vers ion number] =
{ ’ supported ’ : False , ’LTS ’ :

True , ’ l a t e s t ’ : None , ’
mainstream ’ : None , ’ extended ’ :

None}
46 e l s e :
47 ve r s i on suppo r t [vers ion number] =

{ ’ supported ’ : False , ’LTS ’ :
False , ’ l a t e s t ’ : None , ’
mainstream ’ : None , ’ extended ’ :

None}
48

49 e l i f (counter == 1) :
50 ve r s i on suppo r t [vers ion number] [’

l a t e s t ’] = co lumn info

100

51 e l i f (counter == 2) :
52 ve r s i on suppo r t [vers ion number] [’

mainstream ’] = co lumn info
53 e l i f (counter == 3) :
54 ve r s i on suppo r t [vers ion number] [’

extended ’] = co lumn info
55 counter += 1
56

57 r e turn ve r s i on suppo r t

A.3 Crontab

1 16 ,36 ,56 ∗ ∗ ∗ ∗ ∼/webapps/ master /apache2/ bin / s t a r t
2 16 ,36 ,56 ∗ ∗ ∗ ∗ ∼/webapps/ master /apache2/ bin / r e s t a r t
3

4 20 13 ∗ ∗ Tue ”/home/magnusnn/webapps/ master /env/ bin /
python” ”/home/magnusnn/webapps/ master /update−
s c r i p t . py”

5 45 0 ∗ ∗ ∗ ”/home/magnusnn / . acme . sh ”/acme . sh −−cron
−−home ”/home/magnusnn / . acme . sh” >> /home/magnusnn
/ log / c e r t . l og 2>&1

A.4 requirements.txt

1 beaut i f u l s oup4 ==4.6.0
2 c e r t i f i ==2018.4.16
3 chardet ==3.0.4
4 Django ==1.10.1
5 django−ex t en s i on s ==2.0.7
6 idna==2.7
7 pydotplus ==2.0.2
8 pypars ing ==2.2.0
9 r e q u e s t s ==2.19.1

10 s i x ==1.11.0
11 u r l l i b 3 ==1.23

101

