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Abstract

The advancements in technology have made it possible to create a network of im-
plant and wearable nodes around the human body known as wireless body area net-
work (WBAN). These communication systems have potentially great applications
in areas such as health monitoring, sports activities, and specialized occupations
such as paramedics, fire-fighters, and military personals. However, networking
of these wearable devices is a challenging task due to the complex propagation
mechanisms of radio frequency (RF) signals in the vicinity of the human body.
The movement of the body components causes time-varying shadowing and fad-
ing effects, and signal reflection/scattering from objects around the human body
result in multipath fading effects. Reliable communication in such time-variant
channel conditions can only be achieved with a greater understanding of the com-
munication channel.

In this Ph.D. project, dynamic channel models for WBANs were developed with
focus on on-body, off-body, and body-to-body communication scenarios. We star-
ted with physical channel modeling by utilizing a dynamic human walking model,
which provides a detailed description of the movement of the different body parts,
and the uniform theory of diffraction (UTD) to accurately calculate the time-
varying shadowing and scattering effects due to the movements of the body parts.
A physical model for the signal affected by moving human bodies in an indoor
environment was developed. Further, standard statistical distribution was added to
the model to represent the multipath fading effects by the scatterers around the hu-
man body, and a physical-statistical model for off-body wireless communications
channels was obtained. Both the physical and the physical-statistical models were
validated in terms of first- and second-order statistics utilizing measurement data
and showed good agreements.
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For body-to-body communications, a measurement campaign was conducted for
different scenarios of running and cycling activities. Among others, the results
indicated the presence of good and bad states with each state following a spe-
cific distribution for the considered propagation scenarios. The empirical channel
model developed here was based on the two-state semi-Markov model. Further, a
lognormal mixture shadowing model based on a cluster concept was utilized in the
modeling of the first-order statistics of the channels. The mixture model addresses
the inaccuracies observed using a single distribution that may not accurately rep-
resent the measurement data set. The accuracy of the proposed mixture model
was compared to other commonly utilized single distributions showing significant
improvement in representing the measurement results.

The application of propagation channel fingerprints to improve the security of
WBANs was also investigated. More specifically, the usage of received signal
strength indicator (RSSI) as a source of gait recognition was proposed. The RSSI
approach does not require additional sensors (hardware) or sampling of them but
uses the RSSI values already available on all radio devices. Radio channel features
were extracted from the unique signature of the RSSI in relation to the correspond-
ing subject. The extracted features were then used together with classification
learners to evaluate the method in which an accuracy of up to 98% was achieved.

Lastly, the channel characteristics during walking for on-body, off-body, and body-
to-body communication were investigated together in the same conditions so that
a complete picture of the overall network could be observed and compared. The
finite-difference time-domain (FDTD) was used as it could separate the channel
gain into propagation loss and antenna gain, which cannot be achieved through
measurement since the body is within the near field of the antenna. Correlation
between the channels and the application of multivariate normal distributions in
the modeling of WBAN channels was also investigated.

The developed channel models and the measurement results in this Ph.D. study can
be used for accurate planning and deployment of WBANs in various applications.
They can be used for simulating different capacity enhancing techniques, and for
exploring new methods for the air interference, multiple access, and architectural
approaches.
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Chapter 1

Introduction

1.1 Background
The advancements in the miniaturization of hardware, signal processing tech-
niques, software and biomedical engineering have made it possible to create a
network of implant and wearable nodes around the human body known as wire-
less body area network (WBAN) [1]. These communication systems have poten-
tially great applications in areas involving monitoring and transmission of human
physiological data such as health monitoring, sports activities, as well as import-
ant data for specialized occupations such as paramedics, fire-fighters, and military
personals [2]. For example, health monitoring may involve the on-body nodes in
real-time monitoring of heart activities, blood pressure, breathing rate etc., or bio-
medical implant devises to fine-tune medical treatments (e.g., an artificial pancreas
which regulates the dose of insulin for diabetic patients) over an extended period
of time [3]. Other applications include data file transfer, video/audio streaming
for specialized occupations, training aids for sports persons, gaming, and social
networking applications (e.g., automatic exchange of digital profile or business
card) [4]. The placement of the nodes varies considerably from one application
to the other depending on the information to be transferred or the physiological
attributes being monitored.

The WBANs have considerable challenges. They require a low-power communic-
ation approach due to their need for long battery life and the proximity of body
surface nodes to human tissue [6]. In addition to this challenge, the networks are
subjected to varying signal shadowing caused by relative human body orientation
between the communicating nodes which vary with human body movement. In
addition to the shadowing of the signal by moving body components, signal re-

3



4 Introduction

Figure 1.1: WBAN architecture of medical applications [5].

flection/scattering from objects around the human body result in multipath fading
effects [7]. The body itself also affects the antenna performance by altering the ra-
diation pattern and polarization [8], and the angular variations of the antenna gains
during motion give rise to time-varying channel conditions [9].

Understanding the radio channel is a fundamental requirement for designing robust
and reliable WBANs. Channel models can then be used for simulating different
capacity enhancing techniques such as adaptive coding and modulation, and for
exploring new methods for the air interface, multiple access, and architectural ap-
proaches that include cooperation and interference mitigation techniques.

1.2 The Scope of Thesis
The main objective of this Ph.D. work is to develop dynamic channel models for
WBANs with focus on on-body, off-body, and body-to-body wireless communic-
ations. Three different approaches were utilized in the modeling of the WBANs
channels.

• Physical modeling: This kind of modeling gives a deeper understanding
of the channel characteristics. However, to achieve good accuracy with this
approach, one needs a good approximation of the shapes of the obstacles,
and their position in the propagation environment. In complex propagation
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environments with a large number of obstacles, the method requires large
computation time and resources, and hence it is limited to simple propaga-
tion scenarios.

• Physical-statistical modeling: This kind of modeling enables the physical
models to be applied in more complex propagation environments. It com-
bines the physical model with a statistical approximation to form a channel
model which can be applied in various environments by adjusting the ap-
propriate parameters. For example, the channel contribution from the main
obstacle (the human body) could be modeled physically, while the contribu-
tions from the environment could be modeled using standard distributions
(Rayleigh, Ricean, etc.) leading to a physical-statistical channel model.

• Empirical modeling: This kind of modeling is based on measurements.
The model is derived by observing the results of the measurements con-
ducted for a specific scenario. The load of such modeling process lies on
the necessary measurement campaign, however, the resulting models are
normally simple and straightforward to use in similar links under similar
constraints. In addition to the model, the measurement results also provide
practical channel statistics which could be used independently.

In addition to that, the developed channel models, and the measurement results
were used in the following applications

• Comparison analysis with existing models: Comparison between models
developed in this Ph.D., and models currently used in similar propagation
environments were done in terms of first- and second-order statistics.

• System performance analysis: Channel capacity and outage probabilities
of different body-to-body radio channels were compared.

• Propagation channel fingerprinting for subject identification: The chan-
nel characteristics observed in the measurement results were used for gait
authentication method. The method does not require additional hardware
or sampling of sensor data making it more energy efficient compared to the
popular accelerometer based gait recognition systems.

The remaining part of this thesis is organized as follows: Chapter 2 describes
the type of WBANs considered in this Ph.D. study, Chapter 3 focuses on the
propagation channel modeling of on-body, off-body, and body-to-body channels,
Chapter 4 focuses on the application of propagation channel fingerprinting in sub-
ject identification, and Chapter 5 concludes the thesis with a short presentation of
the included papers, and future works.
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Chapter 2

Wireless Body Area Network

2.1 Introduction
Wireless body area network is the interconnection of multiple intelligent, low-
power, micro and nano-technology sensors and actuators, which can be placed in,
on, or around the surface of the body, and are capable of wireless communication.
These nodes allow simple and unobtrusive measurements of physiological para-
meters of a subject, or other data of the surrounding environment, and transmit the
data to the remote server if needed [10]. The nodes which are located inside the
body are normally called implants, and those located outside the body as wear-
ables [11]. This research was limited to WBANs which do not involve implants.

WBANs applications span in a wide area, and they can be categorized into medical
and non-medical applications [1]. The ability of WBANs nodes to continuously
monitor physiological attributes such as blood pressure, heartbeat and body tem-
perature, is the key solution in various medical application. The applications can
range from early diagnosis, monitoring to the treatment of patients with diseases
such as diabetes, hypertension and cardiovascular-related diseases. Further, the ac-
companying sensors could be set to monitor the environment for health-affecting
substances such as harmful gases and smoke for specialized professionals such as
firefighters, or allergic agents for patients suffering from asthma [10]. In the ambi-
ent assisted living (AAL), continuous and often real-time monitoring of the living
environment, and the human body, enables people with disabilities and elderly to
maintain a more independent lifestyle. It facilitates assistance which is triggered
by events, and user-specific support within the home environment [12, 13]. In
sports training, the monitoring can be extended to capture motion, which enables
the athletes to fine-tune their technique and hence improve their performance. The

7



8 Wireless Body Area Network

monitoring could also be used in rehabilitation and injury prevention to the ath-
letes.

In addition to medical applications, WBANs have a great potential in the enter-
tainment area. It can enable avid video game players to have a total immersion,
and make the gaming experience more natural. Instead of traditional interfaces
such as joysticks, keyboards, and mice, video games could be controlled with a
hand gesture, and body motion [14]. WBANs also find its use in mobile real-
time audio/video streaming. Audio/Video streaming is used in team sports such
as cycling, search and rescue in army and emergency personnel, tour guidance in
museum and many other areas. WBANs has also found application in the area of
secure authentication. They can be used in providing both physiological and beha-
vioral biometrics of the human body in a noninvasive way and without the subject
intervention [15].

2.2 Communication Architecture
The independent devices with communication capabilities present in a WBAN are
known as nodes. The nodes can be classified into three different groups based on
their role in the network [16].

• Coordinator: The coordinator node is in charge of collecting information
from sensors and actuators, and acts as body gateway to the outside world,
or another WBAN.

• End Nodes: The end nodes are the sensors and actuators, limited to per-
forming their embedded application. They are neither capable of performing
the duties of coordinator nor relay messages from one node to another.

• Relay: Relay nodes are capable of relaying messages from one node to
the other. The relay nodes are necessary when the distance between the
coordinator and the end node is too large for reliable communication. They
can be sensors or actuators, at critical locations with capabilities of acting as
a relay for those nodes in extreme locations.

These nodes operate in either a one-hop or two-hop star topology with the node
in the center of the star as the coordinator [17]. The use of multi-hop assists in
reducing the concentration of the transmission power from the source to its des-
tination which is important considering the proximity of the nodes to the human
tissue. The coordinator could control the communication by transmitting periodic
beacons enabling device synchronization. In asynchronous WBANs a node in the
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Figure 2.1: WBANs implants communication channels.

network is capable of sending data to the coordinator using carrier sense multiple
access with collision avoidance (CSMA/CA) when required [18].

The communication channels of WBANs can be divided into two categories, those
which involve implants, and those which do not. Implant communication channels
are shown in Figure 2.1. They can either be implant-to-implant or implant-to-
wearable radio channels. These channels were not the focus of this Ph.D. project.
As for those which do not involve implants, the communication architecture can
be separated into three communication channels as shown in Figure 2.2.

• On-body communication: The communication between the end nodes, re-
lays and the coordinator present on the body, is known as on-body commu-
nication see Figure 2.2(a).

• Off-body communication: The communication between the coordinator
present on the body, and the access point present away from the body is
known as off-body communication see Figure 2.2(b).

• Body-to-body communication: The communication between two coordin-
ators of different WBANs present on different bodies is known as body-to-
body communication see Figure 2.2(c).

These channels were the focus of this Ph.D. project, and hence in the rest of this
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(a)

(b)

(c)

Figure 2.2: The communication architecture of WBANs. (a) On-body communication.
(b) Off-body communication. (c) Body-to-body communication.
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Table 2.1: Frequency Bands and Bandwidths for WBANs.

Frequency Range Bandwidth Standard Communications
16 MHz 4 MHz - Human-Body
27 MHz 4 MHz - Human-Body
402–405 MHz 300 KHz MICS Narrowband
420–450 MHz 300 KHz WMTS Narrowband
863–870 MHz 400 KHz - Narrowband
902–928 MHz 500 KHz - Narrowband
950–956 MHz 400 KHz - Narrowband
2360–2400 MHz 1 MHz - Narrowband
2400–2483.5 MHz 1 MHz ISM Narrowband
3.2–4.7 GHz 499 MHz - Ultra-wideband
6.2–10.2 GHz 499 MHz - Ultra-wideband

thesis, WBAN refers to on-body, off-body, and body-to-body communications.

Three propagation methods were proposed in WBAN standard [4].

• Narrowband communications: This is the propagation method which is
better suited to a greater number of applications. Its lower carrier frequen-
cies suffer less attenuation from the human body, and its smaller bandwidth
(1 MHz or less) reduces inter-symbol-interference caused by multipath [10].

• Ultra-wideband communications: This propagation method offers higher
throughput due to its larger bandwidth (499 MHz) and it could be used when
extremely high data are required in the application [14].

• Human-body communications: This propagation method is through gal-
vanic coupling of signals over the surface of the human body, and transmis-
sion is over the medium of human skin by an electrode, rather than by an
antenna [19].

This Ph.D. thesis focuses on narrowband communications due to its greater num-
ber of suitable applications. The available frequency bands for WBANs are given
in Table 2.1. Medical Implant Communication Service (MICS) and Wireless Med-
ical Telemetry Services (WMTS) bands are licensed bands used for implants com-
munication and medical telemetry system respectively. MICS frequency band
(402–405 MHz) lead to better penetration through the human tissue compared
to higher frequency bands, and high-level integration which is difficult at lower
frequencies [2]. Another popular band is the Industrial, Scientific and Medical
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(ISM) band which can support high data rate applications, however, there are high
chances of interference since it is an unlicensed band, and hence many wireless
devices operate in this band. To tackle interference a band close to the ISM band
(2360–2400 MHz) was assigned to medical device use [10]. In this Ph.D. pro-
ject, all measurement were conducted in these two band (ISM and 2360–2400
MHz) due to popularity and the size of devices operating at these frequencies.
The choice was also influenced by the availability of radio technologies which
meet the WBAN requirements such as Bluetooth Low Energy (BLE), ZigBee, and
ANT, already available at these frequencies [20].

2.3 Communication Challenges
Radio wave propagation in WBANs is significantly affected by human body tis-
sue and frequency of transmission. Even in the line-of-sight (LOS), the on-body
communication channels were found to have the path-loss exponent between 3 and
4, depending on the position of the device [16]. This is quite large compared to
the path-loss exponent value of 2 normally observed in free space propagation. In
non-line-of-sight (NLOS), the penetration through the body is negligible and in-
stead the signal is diffracted around the body. This brings the diffraction losses,
raising the path-loss exponent in the range of 5 to 6. In addition to that, fading due
to multipath is more noticeable [21]. Additional losses occur due to the proximity
of the antennas to the body. A difference of more than 20 dB was found between
an antenna placed at 5 and 50 mm from the body [22], with the former expected in
most of the aforementioned applications.

In addition to power losses, the WBANs channel is regularly changing due to
movement of the body parts. Take for example an on-body channel between a
coordinator placed on the chest and an end node placed at the arm wrist, the
periodic movement of the arm back and forth while walking changes the chan-
nel periodically from LOS to NLOS. Similar effects can be found in off-body and
body-to-body channels in which a body limb between the transmitter and receiver
was found to cause shadowing of up to 20 dB [23]. When the body parts do not
bring periodic shadowing to the channel, they act as moving reflectors which could
contribute to fast fading effects, in which the multipath components reflected from
different body parts sum-up in phase or out of phase at the receiver. The move-
ments of body parts may also have an impact on the antenna as they may lead to
a periodic change of the direction of maximum radiation [8]. The dynamic nature
of WBANs communication channels is also contributed by the movement of the
whole body from one location to the other, resulting in a change in environmental
factors. A WBAN of a regular subject, on a regular day easily move from indoor
environment (home, office, etc.), to outdoor environment (walking, jogging, etc.)
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as the subject goes through his daily activities. These environments bring different
challenges, to the performance of WBANs.

In addition to all those challenges, WBANs have power constraints due to their
need for long battery life, and proximity of body surface nodes to human tissue.
This makes the study and modeling of WBAN channel characteristics even more
important [24]. There is a need to find simple and reliable models for prediction
of WBAN channel properties in order to facilitate the design of robust and reli-
able WBANs. Channel models can then be used for simulating different capacity
enhancing techniques such as adaptive coding and modulation, and for exploring
new methods for the air interference, multiple access, and architectural approaches
that include cooperation and interference mitigation techniques.
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Chapter 3

Propagation Channel Modeling

For the design, simulation, and planning of WBAN systems, propagation chan-
nel models are needed. Propagation channel properties influence the develop-
ment of communication systems including the WBANs. For system design, chan-
nel properties are required for the selection of suitable air interface such as cen-
ter frequency, bandwidth, modulation method, and the multiple access scheme.
The comparison and assessment of different solutions are possible by the use of
propagation channel models. The models reflect the important properties of the
propagation channels, that have an impact on system performance. Further, chan-
nel models provide valuable inputs for optimization of network parameters [25].

Different channels encounter different propagation mechanism, and the overall ef-
fect is what differentiates one channel from the other. When propagation takes
place close to obstacles like the human body in an indoor environment, differ-
ent propagation mechanisms occur. There is reflection, diffraction, and scattering
from the human body as well as objects in the surrounding environment. This is in
addition to the free space propagation between the two communicating terminals.
This means that in this scenario the transmitted signal can reach the receiver via
different paths, known simply as multipath propagation [26]. In addition to that,
these multiple paths do not remain constant as the human body parts move. As
the receiver adds up different multipath components, they form constructive and
destructive interference, resulting in rapid changes in signal strength over a small
movement of body parts called small-scale fading. Furthermore, body parts can
block one or several multipath components, and any wave going around the body
part is greatly attenuated, this effect is known as shadowing, and it gives rise to
gradual fading known as large-scale fading. On top of all that there is path-loss
which is the losses related to the separation distance between the transmitter and

15
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the receiver [27].

The main purpose of propagation channel modeling is to have a model which can
produce the aforementioned propagation properties involved in a channel so that
they can be used in the simulation of the system in hand. The model could be
a mathematical formulation such as path-loss models, or statistical characteriza-
tion such as probability density function (PDF). For the dynamic channels in hand
(WBAN), it is the second order statistics which are of more considerable import-
ance as they provide information on the dynamic propagation characteristics of
the channel. As mentioned in Section 1.2, propagation channel modeling may be
classified into three main categories; physical, physical-statistical, and empirical.
Physical modeling requires a detailed description of the propagation environment
to achieve a precise modeling of the power attenuation at a specific location and
time [26]. For dynamic channels, the power attenuation has to be recalculated at
every sampling instance to obtain the channels’ multipath effects. This limits the
approach to simple scenarios, despite the fact that it is more accurate and gives a
deeper understanding of the channel in hand. For more complex scenarios some
of the burdens of physical calculations can be put on statistical approximation in-
stead. This method is known as the physical-statistical modeling, which is more
effective for simulating large scenarios while retaining some of the positive traits
of the physical modeling. Empirical modeling, on the other hand, is achieved by
foreseeing the propagation characteristics based on a given set of measurements.
Thus, making them more suitable for complex environments and applications, but
are applicable only to propagation scenarios with similar characteristics [14]. In
this Ph.D. project, all three methods were used to achieve propagation channel
models for various WBAN propagation scenarios.

3.1 Physical Channel Modeling
Physical channel modeling is a process of characterizing a channel, using electro-
magnetic wave propagation concepts. It takes into account the propagation in the
considered media, together with reflections, transmissions, refraction, diffraction,
and scattering produced by the objects present in the considered channel. This ap-
proach makes it easier to understand the role of each factor in the channel behavior,
and hence a deeper understanding of the channel [25]. For the case of WBANs,
the physical channel modeling process depends on two important factors.

• The moving bodies: Since the WBAN channels are in the vicinity of the
moving bodies, modeling of the channels depends on the modeling of the
bodies. A good approximation of the shape, movement, and electromagnetic
properties of the bodies are needed for a more accurate channel model.
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Figure 3.1: The Thalmann human model with translations and rotations [28].

• The appropriate electromagnetic theory: Considering the objects present
in the channel, the appropriate electromagnetic theory has to be selected for
calculating the dynamic total received signal. The choice will also depend
on the accuracy needed and the complexity involved when such a theory is
used in such a channel.

The discussion on the choice of the human model, as well as the electromagnetic
theory used in relation to physical modeling of the WBAN channels in this thesis
is considered in the following.

3.1.1 The Human Walking Model

There have been various physical channel models which include the effect of
movement of a human body [29, 30]. The human in these studies was modeled
as a metallic circular cylinder as proposed in [31]. However, the model proposed
in [31] could be an oversimplification of shape and movement. This is precisely
the case for WBANs, in which the human body is the centerpiece of the channel.
The importance of more sophisticated human model could also apply to millimeter
waves in which attenuation due to shadowing is so large that reflection from vari-
ous body parts become significant. There is a need for a detailed information on
the movement of the human body parts in characterizing the time-varying WBAN
channels. Such description of the human gait has been studied extensively in the
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Table 3.1: Human Body Parts Translations and Rotations Description.

Parameter Symbol
Lateral translation TL(t′)
Horizontal translation TH(t′)
Vertical translation TV (t′)
Forward/backward angle θFB(t′)
Left/right angle θLR(t′)
Shoulder angle θS(t′)
Elbow angle θS(t′)
Hip angle θS(t′)
Knee angle θS(t′)
Ankle angle θS(t′)

biomechanics and robotics [32, 33], and has lead to one of the commonly used
model known as the Thalmann walking model [28, 34, 35].

In the Thalmann walking model, the human body is comprised of 12 body parts in
which 11 of them (legs, arms, trunk, etc.) are represented by cylinders of various
size, and the head by a sphere as shown in Figure 3.1. These body parts are connec-
ted to each other by translation and rotation (see Table 3.1 for description) which
are time-dependent. In the model, the movement of the body parts are expressed
in terms of relative velocity vr of walking, and relative time t′ given by

vr =
v

Hth
(3.1)

and

t′ =

∣∣∣∣ tT
∣∣∣∣
mod 1

(3.2)

where v is the velocity of walking, Hth is the height of the thigh, t is the time and
T is the period of walking cycle.

For modeling the trajectories of flexing of the knee, hip, and elbow, cubic spline
passing through control points located at the extremities of the trajectories are
used. These control points define the angle of rotations and relative time and are a
function of relative velocity. The cubic spline used is a basic Hermit spline given
by

h = −2s3 + 3s2 (3.3)

where s is the increased portion of the relative time. The trajectories of flexing of
the shoulder are found by using

θs(t
′) = −3− 9.88vr(0.5 + cos(2πt′)) (3.4)
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Figure 3.2(a) shows angular variations of the knee, hip, and elbow for the left side
of the body during one walking cycle with a relative velocity of unity obtained us-
ing the cubic spline passing through control points. Similarly, angular variation of
the left shoulder obtained using (3.4) are shown in Figure 3.2(b). The trajectories
of the right part of the body are obtained by performing phase displacement of half
a cycle given by

t′r =

∣∣∣∣ tT + 0.5

∣∣∣∣
mod1

(3.5)

These angular variations together with human dimensions can be used to estimate
the exact location of each body part during walking.

3.1.2 The Finite-Difference Time-Domain

Finite-difference time-domain (FDTD) is a numerical analysis technique used in
finding approximate solutions of electromagnetic wave interactions with mater-
ial structures. The FDTD method employs finite difference as approximations to
both the spatial and temporal derivatives that appear in Maxwell’s equations [36].
Consider a simple one-dimensional propagation in free space, with a plane wave
traveling in the z-direction represented by

∂Ex
∂t

= − 1

ε0

∂Hy

∂z
(3.6)

∂Hy

∂t
= − 1

µ0

∂Ex
∂z

(3.7)

The finite difference approximation of 3.6 and 3.7 are

E
n+1/2
x (k)E

n−1/2
x (k)

∆t
= − 1

ε0

Hn
y (k + 1/2)−Hn

y (k − 1/2)

∆z
(3.8)

Hn+1
y (k + 1/2)−Hn

y (k + 1/2)

∆t
= − 1

µ0

E
n+1/2
x (k + 1)− En+1/2

x (k)

∆z
(3.9)

where n is the sample number in discrete time, and k is a sample number in discrete
space. The accuracy of the method depends on the time and spatial resolution ∆t
and ∆z respectively. The rule of thumb is to have

∆z ≤ λ

10
(3.10)

and
∆t ≤ ∆z

c0
(3.11)
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(a)

(b)

Figure 3.2: Angular rotations of body joints with vr = 1. (a) knee, hip, and elbow
obtained using cubic spline passing through control points. (b) Shoulder obtained using
(3.4).
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Figure 3.3: A three-dimensional FDTD computational space composed of (I × J ×K)
cells.

where λ is the wavelength and c0 is the speed of light in free space [37]. The
approach can be extended to three-dimensional propagation through various kinds
of medium, in which the number of equations to be approximated by finite differ-
ence is tripled, and the propagation environment is divided into cubic cells of ∆z3

dimension. Figure 3.3 illustrates an FDTD grid composed of (I × J ×K) cells.
As the dimensions of the propagation environment increase so does the number
of cells needed and hence the computation time and the amount of memory used
becomes very large [36]. This confines the realistic application of FDTD to the
environments with volumes of a few cubic meters. However, its alluring factor
towards WBANs is the fact that heterogeneous phantom with different tissues hav-
ing different dielectric properties, can be naturally and easily modeled. FDTD was
used together with Thalmann walking model in Paper VI in which the channel
gains were separated into propagation and antenna gain, for on-body, off-body,
and body-to-body channels during walking. This could not be achieved through
measurements since the body is within the near field of the antenna. Further, the
study investigated the correlation between the channels and the application of mul-
tivariate normal distributions in the modeling of WBANs channels.
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Figure 3.4: Ray tracing on a cylinder with both the transmitter and receiver away from
the cylinder.

3.1.3 The Uniform Theory of Diffraction

The Thalmann model describes the human body parts in terms of cylinders and
spheres. The propagation mechanisms on these kinds of shapes (canonical shapes)
are different from those of plain surface. To be able to account for the reflected
and diffracted waves in canonical shapes, we need to use the uniform theory of
diffraction (UTD). UTD can account for the phenomenon of creeping waves which
can not be predicted with geometrical optics, and Kirchhoff diffraction equation
[38, 39]. In addition to that, it can also solve the radiation problem when a source is
mounted on the body, or coupling problem when both the transmitter and receiver
are on the same body part.

Figure 3.4 shows a typical application of UTD with both the transmitter and the
receiver away from the cylinder. It shows three types of rays namely the direct
ray, a reflected ray, and two diffracted rays, one going in clockwise and the other
in anticlockwise direction. In this setup, the receiver is considered to be in the lit
region since there is LOS between the transmitter and receiver. When the cylinder
is blocking the LOS, only the diffracted rays remain and the receiver is considered
to be in the shadow region. The direct field can be expressed as

Ei(Rx) = C0
e−jks0

s0
(3.12)
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where s0 is the distance between the point of transmission and the point of obser-
vation, andC0 is a constant associated with incident field power [38]. The reflected
field can be expressed as

Er(Rx) =

√
ρr1.ρ

r
2

(ρr1 + sr)(ρr2 + sr)
R‖⊥.Ei(Qr).e

−jksr (3.13)

where sr is the distance between the reflection point and the receiver, ρr1 and ρr2
are the radius of curvature of the reflected field, which can be expressed as [38]

ρr1 =

[
1

sri
+

2(sin θ0)
2

a cos θi

]−1
(3.14)

ρr2 = sri (3.15)

Here sri is the distance between the transmitter and the point of reflection, θ0 is
the angle between the axis of the cylinder and the reflected field, a is the radius of
the cylinder and θi is the angle of incident. The polarization dependent reflection
coefficient R‖⊥ in 3.13 is given by [40]

R‖⊥ = −
√
−4

ξl
.e−j(ξl)

3/12.

[
e−jπ/4

2ξl
√
π

[1− F (XL)] + P̂‖⊥(ξl)

]
(3.16)

where ξl is the Fock parameter associated with the reflected field in the lit region,
F (XL) is a UTD special function, and P̂‖⊥(ξL) is the Pekeris function used to
describe the phenomenon of creeping waves. Typical values calculated with a
cylinder of radius a = 20 cm and relative permittivity of human muscle at 2.45
GHz frequency are shown in Figure 3.5. The diffracted field can be expressed as

Ed(Rx) =

√
ρd2

sd(ρ
d
2 + sd)

.D‖⊥.

√
dη(Qan)

dη(Qdn)
.Ei(Qan).e−jksd (3.17)

where ρd2 is the second radius of curvature of the diffracted field, which is ex-
pressed as

ρd2 = si + d (3.18)

Here si is the distance between the transmitter and the attachment point, d is the
distance along the curved surface between attachment and detachment points, sd
is the distance between the detachment point and the receiver, Qan and Qdn are
the attachment and the detachment points. The polarization dependent diffraction
coefficient D‖⊥ of 3.17 is expressed as [40]

D‖⊥ = −m
√

2

k
.e−jkd.

[
e−jπ/4

2ξd
√
π

[1− F (Xd)] + P̂‖⊥(ξd)

]
(3.19)
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(a)

(b)

Figure 3.5: Plot of the Pekeris function with a cylinder of radius 20 cm, and permittivity
of human tissue at 2.45 GHz. (a) Parallel polarization. (b) Perpendicular polarization
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Figure 3.6: Ray tracing on a cylinder with the transmitter on the cylinder while the re-
ceiver is away from the cylinder.

where ξd is the Fock parameter associated with diffracted rays, m is the curvature
parameter depending on the radius of the cylinder, and k is the wave number. The
conservation of energy flux in the surface ray strip from attachment to detachment
point

√
dη(Qan)/dη(Qdn) of 3.17 can be expressed as [38]√

dη(Qan)

dη(Qdn)
=

√
si

si + d
(3.20)

When the transmitter is mounted on the cylindrical surface itself, with observation
point off the surface (e.g., off-body communication) as shown in Figure 3.6, the
radiation principles of UTD can be used instead. Here the direct field can be
expressed as

Ei(Rx) = C0.H‖⊥
e−jks0

s0
(3.21)

and the diffracted field can be expressed as

Ed(Rx) = C0.H‖⊥.e
−jkd e

−jksd

sd
(3.22)

where H‖⊥ is the polarization dependent radiation function expresses as

H‖ =

{
G‖(ξ).e

−j(ξ)3/3, ξ ≤ 0

G‖(ξ), ξ ≥ 0
(3.23)



26 Propagation Channel Modeling

(a)

(b)

Figure 3.7: Plot of the radiation function with a cylinder of radius 20 cm, and permittivity
of human tissue at 2.45 GHz. (a) Parallel polarization. (b) Perpendicular polarization
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Figure 3.8: Example of a physical-statistical channel model. The variable b(t) is calcu-
lated physically while the rest are statistical approximations.

H⊥ =

{
−j
m G⊥(ξ).e−j(ξ)

3/3, ξ ≤ 0
−j
m G⊥(ξ), ξ ≥ 0

(3.24)

Here ξ is the Fock parameter, and G‖⊥(ξ) is the Fock radiation function. Typ-
ical values for H‖⊥ calculated with a cylinder of radius a = 20 cm and relative
permittivity of human muscle at 2.45 GHz frequency are shown in Figure 3.7

The UTD scattering and radiation principles were used in this research together
with the Thalmann walking model in the modeling of the indoor wireless channels,
and off-body communication channels (details are given in Paper I and Paper II).

3.2 Physical-Statistical Channel modeling
The physical channel models give a deeper understanding of the channels, how-
ever, they are difficult to use in simulation of large scenarios. Take for example
tracing every ray in a highly reflective environment takes a lot of time and calcu-
lation power, and when the channel is dynamic these calculations have to be re-
peated again and again. One of the solutions to this problem is the use of physical-
statistical channel modeling approach. Physical-statistical modeling take some
of the burdens of physical calculations away by using statistical approximations,
making them more effective for simulating large scenarios, while retaining some
of the positive traits of physical modeling.

Figure 3.8 shows an example of a physical-statistical model for off-body chan-
nel conducted in the Ph.D. research (see Paper II for details). In this model, the
position dependent contributions from the human body b(t) are calculated using
UTD, in which the movement and position of the body parts are determined using
the Thalmann walking model. This contributes to the physical part of the channel
modeling. The contributions from the environment are described statistically using
a Rayleigh distribution. The Rayleigh distribution is obtained by passing a com-
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plex white Gaussian process with zero mean and unity standard deviation through
a Doppler filter for spectrum shaping. The resulting complex series is multiplied
by the standard deviation, σ to represent the multipath contributions from the en-
vironmental scatterers. The overall model is a physical-statistical model, with con-
tributions from the human body modeled physically, while the contributions from
the environment modeled statistically.

3.3 Empirical Channel Modeling
Empirical propagation channel modeling is a process of characterizing a channel,
by observing a given set of measurement data. This makes them more suitable for
complex environments and applications in which physical models tend to be too
complicated. The process of obtaining them requires a measurement campaign
conducted specifically for that purpose. In other words, empirical channel mod-
eling starts with the properly designed measurement campaign, followed by the
analysis of the measurement results [2]. The resulting empirical models tend to
be simple and provide practical channel statistics, however, they do not always
provide meaningful insights to the physical phenomena associated with the chan-
nels, and the resulting models are applicable only to propagation scenarios with
similar characteristics.

3.3.1 Measurement Campaign

There have been measurement campaigns for WBANs involving on-body, off-
body, and body-to-body channels [24, 41, 42]. For on-body channels, studies were
conducted in [41] in the frequency range of 3-5 GHz and in [43] for ultrawideband
3.1-10.6 GHz to develop models for fading in various on-body links. For off-body
channels, path-loss was modeled in [44] from the measurements conducted in an
indoor environment. The lognormal distribution proved to be a good fit in describ-
ing normalized signal amplitude. For body-to-body channels, a study to assess the
impact of rotation, tilt, walking in LOS and NLOS conditions on the indoor en-
vironment was conducted in [42, 45] and at the ultra-wide frequency band of 2-8
GHz in [46]. The studies highlighted how movement affected the channel dynamic
properties. This was confirmed by the study in [47] which was conducted in both
indoor and outdoor environments to obtain the mean path-loss and the standard
deviation for different body motion scenarios and antenna placements.

The aforementioned studies [41–47] were performed using antenna on the human
body connected to the vector network analyzers (VNAs) through long cables. This
restricted the movement of the subjects involved and suffered from cable para-
sitic effects. To increase mobility and achieve realistic scenarios, other research-
ers [48–52] used small wearable devices, which do not hinder any movement and
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have capabilities of collecting data for long periods. Nevertheless, the studies
were restricted to everyday activities and did not focus on specific applications
such as sports activities. In this Ph.D. work, for the first time, a measurement
campaign designed for body-to-body channel characterization during running and
cycling in an outdoor environment was conducted. Naturally, these kinds of activ-
ities provide their own unique set of channel dynamics due to the movements and
posture changes at both ends of the link.

The measurement campaign was conducted in 500 meters’ outdoor stretch, which
is part of a common running and cycling route in Gjøvik, Norway. The stretch
was bounded by a road on one side and well-spaced industrial buildings on the
other. The campaign was intended to represent communication channels between
subjects performing sports activities. The body-to-body communication channel
was implemented using one transmitting and one receiving node attached to the
side of the upper arm of two male adults of height 1.80 m and mass 80 kg (sub-
ject A) and 1.85 m and mass 75 kg (subject B) respectively, using a small strip of
Velcro. The location of the nodes on the body was chosen as it is commonly used
for monitoring devices such as mobile phones during sports activities. The sports
activities performed were running at a jogging pace (12 km/h), and cycling at a
normal speed (18 km/h). The activity selected were meant to represent not only
a small group of professional athletes, but also semi-professionals, and hobbyist.
Two different scenarios, which could give an overall representation of the chan-
nel dynamics existing in these kinds of activities, as shown in Figure 3.9, were
considered:

• Scenario 1, subject behind the other, Figure 3.9(a).

• Scenario 2, subject beside the other, Figure 3.9(b).

The test-bed was a programmable radio transceiver with non-volatile data stor-
age, small enough to be attached to the test subjects, see Figure 3.10. It was
made by integrating microSD memory card to a target board (eZ430-RF2500T)
from Texas Instrument comprises a radio transceiver, antenna, microcontroller,
and battery [53]. The radio transceiver in the board was CC2500, connected to
omnidirectional chip antenna with a low profile which is a typical example of an-
tennas to be used in body-mounted transceivers. The node was attached in such a
way that the antenna was horizontally polarized. The device was set to transmit a
packet every 4 ms with a constant transmission power of 1 dBm and carrier fre-
quency of 2.425 GHz. This sampling period is way below the estimated coherence
time of such channels [54]. At the receiving end, the packet number together with
its received signal strength indicator (RSSI) was stored on the MicroSD memory
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(a)

(b)

Figure 3.9: Investigated scenarios of the body-to-body measurement campaign. Activities
involved were running and cycling. (a) Scenario 1, subject behind the other. (b) Scenario
2, subject beside the other. The nodes are attached to the side of the upper arms with
radiation pattern away from the body
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Figure 3.10: Wearable radio transceiver. The device is approximately 50 mm x 20 mm x
20 mm.

card. After completion of the measurement campaign, the data were exported from
the memory card of the receiver node to a computer running MATLAB software
for analysis. A total of four datasets (two scenarios for each, running and cyc-
ling) were collected, in which each had at least 25 kilo-samples, which is enough
samples for statistical analysis.

3.3.2 First-order Statistical modeling

There are two most common types of empirical channel models. Those which de-
scribed the relationship between the power loss and distance between the transmit-
ter and receiver, simply known as path-loss models, and those which characterize
the multipath propagation in term of first-order statics [14]. While the path-loss
models have significant importance in the determination of coverage area and link
budget, characterization of multipath propagation is essential in the performance
analysis of a given network.

The characterization of the multipath propagation of a channel in terms of first-
order statics is achieved by fitting statistical distributions that are commonly used
to describe fading to the measured data. For WBAN, lognormal, Weibull, and
Gamma distributions are often found to be the best fit, while the Rayleigh distri-
bution is a poor fit for almost every scenario and environment for which it was
attempted [19]. To obtain even better fits some attempts have been taken to deviate
away from the standard distributions and the use of composite fading models in-
stead [55, 56]. The approach was motivated by the presence of multiple peaks and
skewed distribution curves in various empirical data [57, 58]. This may suggest
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the existence of distinct scattering clusters, contributed by the movements of the
different body components of the involved subjects at both ends of the commu-
nication channel. This kind of clustering behavior cannot be accurately modeled
using a single distribution.

3.3.3 Lognormal Mixture Model

WBAN channels, particularly body-to-body channels, contain a large number of
factors that contribute to the attenuation of the transmitted signal. These include
reflection, diffraction, shadowing etc., which are additive in the logarithm domain
and hence log-normally distributed. When the factors are caused by distinct scat-
tering clusters, it results in distinct lognormal distributions, in which together they
form a mixture. The resulting mixture can be modeled using the lognormal mixture
model [59].

The probability density function (PDF) of lognormal mixture distributions can be
described as

f(x) =

∞∑
k=1

wkLN (µk, σk) (3.25)

where µk and σk are the distribution parameters of the kth mixture component (for
k = 1, 2, ...). Parameter wk is weighting proportion of the kth component such
that

∑∞
k=1wk = 1. The PDF of each component of (3.25) is lognormal and is

given by

LN (µk, σk) =
1

xσk
√

2π
exp

[
− (lnx− µk)2

2σ2k

]
(3.26)

The expectation maximization algorithm (EM) was utilized to estimate all the mix-
ture model parameters. The algorithm is a technique that is used to simplify dif-
ficult maximum likelihood estimates (MLE) problems, which are encountered in
mixture models and cannot be analytically solved. Although it was originally de-
veloped for normal mixture models, it can be expanded to lognormal mixtures by
considering the fact that if X is distributed log-normally with parameters µ and σ,
then ln(X) is distributed normally with mean µ and standard deviation σ [60]. The
algorithm begins with some initial estimates of µk, σk, and wk. This is followed
by performing the probabilistic assignment of each data sample to some mixture
component based on the current parameters. This step is known as expectation
step (E-step). The mixture model parameters (µk, σk, and wk) are then updated
based on the new data assignments, done in the E-step. This step is known as the
maximization step (M-step). The EM algorithm repeats E-step followed by M-step
until the desired convergence level is reached [61].
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(a)

(b)

Figure 3.11: PDF of received signal amplitude of Scenario 2 normalized to its RMS value.
(a) Running. (b) Cycling.
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Figure 3.11 shows the overall model obtained from a mixture of four lognormal
distribution together with the PDF of the measurement results. The approach takes
care of the multiple peaks and the skew present in the measured data. The effect
is less pronounced in the cycling activity due to the relatively stable arms and
hence transceivers. For comparison with single standard distributions (lognormal,
Gamma, and Nakagami) See Paper IV for more details.

3.3.4 Second-order Statistical modeling

The first-order statistical modeling of Section 3.3.3, gives a good approximation
of the fading distribution in the channel and hence can be used in performance
analysis of the wireless communication system. However, the model does not
always provide the sequence of occurrence of the fade. Quantification of how
often the signal crosses a certain threshold and how long it stays below it cannot be
obtained from PDF alone. These statistics, known as level crossing rate (LCR) and
average fade duration (AFD), are important time-varying property of the channel,
and so is the simulation model which can produce them.

The channel model which can produce both first and second-order statistics can be
obtained by analyzing the time series of the empirical data collected through the
measurement campaign more closely. Our collected data has shown that the re-
ceived signal power of body-to-body channels oscillate between interval where it
is above certain threshold namely the ’good’ state, and interval where it is below it
namely the ’bad’ state, as shown in Figure 3.12(a). Even when the arms where the
transceivers were attached appear to be stationary as in cycling activity, the peri-
odic movement of the body as the subjects pedal gives a similar effect as shown in
Figure 3.12(b). The period of oscillation depends on the activity involved and can
be approximated to be constant. These kinds of channels can be represented using
the two-state semi-Markov model as done in land mobile satellite links [62, 63].
In addition to periodicity, we can also observe the change in the local mean, calcu-
lated from approximately 3 cycles of body motion as shown in Figure 3.13. This
change is a result of the shadowing and fading effects caused by the change in the
surrounding environment as well as the changes in the relative position between
the subjects. Since these changes are relatively slow, they are normally considered
as large-scale fading effects and are modeled using lognormal distribution [26, 64].
Finally, the simulation model can be completed by observing the power spectral
density (PSD) of the channel. The PSD provides useful information on the fre-
quency components of the signal, and hence the appropriate Doppler filter to be
used in the simulations. For the case of running activity, shown in Figure 3.14(a),
we can observe lowpass characteristic consistent with a radio channel having mov-
ing scatterers [65], in which the PSD decreases exponentially in logarithmic scale
with the increase in frequency. As for the case of cycling activity shown in Figure
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(a)

(b)

Figure 3.12: Example of measured time series collected in Scenario 1, (subject behind the
other). (a) Running. (b) Cycling.
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Figure 3.13: Example of measured time series collected in Scenario 2, (subject beside the
other), running.

3.14(b), the PSD tends to settle between 20 and 50 Hz before it starts to decrease
again, resulting in a local turning point at around 50 Hz. This phenomenon can be
explained by the presence of the off-body scatterer (bicycle) in the cycling activ-
ity, which was absent in the running activity. Similar effects of off-body scatterers
have been observed for on-body radio channels in [66]. A first-order Butterworth
filter gives a good spectrum shape approximation for running, while for cycling
a third-order Butterworth filter, with a cutoff frequency around the turning point
could be used instead.

Figure 3.15 summarizes the simulation model for the body-to-body channels dur-
ing running and cycling. In the simulation model, samples of good and bad states
are generated from the corresponding Dg and Db distributions for the specified
Tg and Tb periods of time respectively. The outputs are then multiplied by L(t),
which is the large-scale fading component. The time series is then passed through
the lowpass filter with appropriate cutoff frequency for spectrum shaping. The out-
put from the simulator is a signal envelope which incorporates the overall fading
characteristics of body-to-body channels under sporting activities. The resulting
simulation model is capable of not only producing first-order statistics of the chan-
nel but also the second-order as shown in Figure 3.16, in which a good agreement
is observed between the measurement results and the developed simulation model.
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(a)

(b)

Figure 3.14: Example of measured PSD collected in Scenario 2, (subject beside the other).
(a) Running. (b) Cycling.
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Figure 3.15: A simulation model for the body-to-body channels during running and cyc-
ling. L(t) is the component of the large-scale fading, Tg and Tb are the periods of good
and bad states respectively.
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(a)

(b)

Figure 3.16: Comparison of first- and second-order statistics of the measurement results,
and the developed simulation model results.(a) Cumulative distribution function. (b) Level
crossing rate.
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Chapter 4

Propagation Channel
Fingerprinting

4.1 Introduction
The propagation channel models whether being physical, physical-statistical or
empirically derived, are the fundamental requirement for designing robust and re-
liable WBANs. Channel models allow the designer to ensure that the channel
behavior is well known prior to the system development and hence ensure that the
device used provides robust performance against the full range of fading condi-
tions likely to be encountered. Furthermore, for the already developed network,
channel models allow engineers to validate crucial design parameters, and when
possible, find ways to optimize them [26]. Take for example, the knowledge on the
PDF of channel fading is essential in performance analysis of a network in terms
of capacity, outage probability, bit error rates etc. This enables the engineers to
choose the appropriate transmission power, as well as modulation techniques to
meet the required performance threshold. Another good example is the impact of
the LCR and AFD in the designing of error control codes and diversity schemes.
The AFD helps determine the most likely number of bits that may be lost during a
fading event and hence has a direct impact on the determination of the inter-leaver
depth [67].

The aforementioned applications of propagation channel modeling are well es-
tablished in the engineering world, however, the study of channel characteristics
has lead to new areas of applications. It was demonstrated in [68] that the radio
of wireless sensor nodes can be identified through its radio characteristics known
as radio fingerprinting. In [69] the heterogeneous channel characteristics was ex-
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ploited in secret key extraction scheme for intra-WBAN communication. Further,
the authors in [70–72] attempt to exploit propagation characteristics or wireless
channel to obtain behavioral fingerprint and use it for authentication. It uses the
channel state information (CSI) of Wi-Fi signal to extract features that identify in-
dividuals by their intrinsic body movement during walking without attachments to
the body. In this Ph.D. study, similar attempts were made to exploit radio propaga-
tion characteristics, in the improvement of security of WBANs. Specifically, RSSI
based gait authentication method was proposed.

4.2 RSSI Based Gait Authentication
Various WBAN applications are known to involve sensitive and personal data,
hence security and privacy measures are vital to their success [73]. Due to the
difficulty for biometrics counterfeit, biometrics authentication has been proposed
as a solution to improve security in the communication of such personal data [74].
One of the biometric traits which are attractive in WBAN applications security is
gait. Unlike other biometrics traits such as voice, fingerprints, and facial recogni-
tion, gait is non-invasive and can be measured without subject intervention. This
makes it more user-friendly especially in continuous identity re-verification [75].
Although the first gait recognition systems used video, the current trend is to use
accelerometers included in wearables or portable smart devices [76]. Accelero-
meter based gait recognition systems have a lot of positive traits, however, they suf-
fer from high energy consumption due to continuous accelerometer data sampling.
Researcher in [77] tried to solve this problem by proposing a kinetic energy har-
vesting device and used its output voltage signal as the source of gait recognition.

In this Ph.D. work, an RSSI based gait authentication method was proposed. This
method does not require hardware upgrades as it only relies on regular commu-
nication between body mounted sensors (e.g. smartwatch) and body mounted
coordinator (e.g. smartphone). The gait information available in these kinds of
channels can be extracted, processed and used for authentication by the coordin-
ator. If processing power is a concern at the coordinator, the raw gait information
could simply be forwarded to the server together with the rest of the data, and the
authentication process could be performed there. This kind of authentication will
ensure that the data uploaded to the server are indeed from the intended subject and
will prevent impersonation attacks. Since it can be measured without subject inter-
vention, it could be used as a continuous authentication method and set to trigger
other security measures whenever it fails. This could add another security layer
for applications in which one-time validation of the users’ identity is insufficient.
Unlike accelerometer based gait recognition systems, it does not require sampling
of sensor data, making it more energy efficient. Moreover, it does not require any
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additional packet transmission but instead makes use of the RSSI values already
available in regular wireless communications.

4.3 Gait Radio Features
The gait information available in the radio channels can be extracted from the
measurement of the power present in the received signal. This measurement is
already being conducted by wireless radio transceivers and is indicated by their
RSSI values [78]. The RSSI values are used to obtain radio features such as the
variation of power received with time (the time series), the measure of the degree of
time dependency (the auto-correlation function), and how often the signal crosses
a certain threshold (the level crossing rate). It is through these radio features that
one subject can be differentiated from the other.

4.3.1 The Time Series

It has been shown that the power received in WBANs is related to the dynamics in-
volved with the specific activity of the subject. For the case of walking, the power
received is periodic to the relative movement of the body parts where the nodes
are attached to. The period of the signal tends to correspond to the period of the
limb swinging, and the amplitude variation depends on the size of the limbs, dis-
tance from its rest position, and the amount of shadowing the body provide during
walking [79]. Figure 4.1. shows the time series of the received signal power of 3
subjects during walking for the duration of 3 seconds. The transceivers were placed
on the right wrist and the waist, and the fast fading effects in the received signal
power were removed using a sliding window of length of 0.15 seconds. Although
the time series of all 3 subjects are periodic with a period of around 1 second which
is consistent with the oscillatory movement of the corresponding arms, the overall
patterns have enough features to distinguish them from one another.

4.3.2 The Auto-Correlation Function

The Auto-correlation function (ACF) is a measure of the degree of time depend-
ency among the observations of signals. It is used to characterize the periodicity in
a fading signal envelope. For real discrete sampled data x(t), it can be calculated
using [67, 80]:

rxx(τ) =

N−τ∑
t=1

(x(t)− µ)(x(t− τ)− µ) (4.1)

where τ is the time delay, N is the length and µ is the mean of the sampled data.
The normalized ACF can then be obtained by using (4.2) to give an output with a
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Figure 4.1: Example of time series of the received signal power of WBANs of 3 different
subjects during walking. The transmitter was attached to the waist, and the receiver was
attached to the right wrist.

maximum value of 1 at τ = 0

ρxx(τ) =
rxx(τ)

rxx(0)
(4.2)

since the received signal power is different from one subject to the other during
walking, the normalized ACF has the potential of being different. Figure 4.2 shows
the normalized ACF of the signals shown in Figure 4.1. The ACF of the 3 subjects
show properties of a signal composed from a number of periodic signals, with
the main envelope having a period of around 1s (0.92 s for Subject 1, 1.02 s for
Subject 2, and 0.96 s for Subject 3), consistent with the oscillatory movement
of the corresponding arms. However, the compositions of these periodic signals
are different from one subject to the other, making the overall pattern of the ACF
significantly different and hence could be used in gait recognition. In addition to
that, ACF can be used as an indicator of change in activity. This is from the fact
that, for a perfect periodic signal, the normalized ACF oscillates with its period
corresponding to the period of the signal, and tends to decay exponentially If the
signal is limited to a specific number of periods (it does not go to infinity). Such
as, the normalized ACF of periodic signal limited to 3 periods will have a peak of
1 at τ = 0, a peak of 2

3 at τ = 1 period, and a peak of 1
3 at τ = 2 periods as

shown in Figure 4.3 for sinusoid, square, and triangle signals. These peaks values
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Figure 4.2: The normalized ACF of the signals shown in Figure 4.1. The ACFs show
properties of periodic signals with significantly different patterns.

Figure 4.3: Example of normalized ACF of periodic signals of length of 3 periods. The
ACF of all the signals have peaks at τ = 1 of 2

3 , and at τ = 2 of 1
3
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Figure 4.4: LCR representation of signals shown in Figure 4.1.

tend to decrease as the noise in the periodic signal increase. Take for example
if a walking subject stops in the middle of sampling, the peak value at τ = 1
period will be significantly smaller than the expected value and hence the change
in activity could be detected.

4.3.3 The Level Crossing Rate

Another manner of quantifying periodic signals is using the LCR, which is the
measure of how often a signal crosses a certain threshold going in a positive direc-
tion [67]. LCR represent signals in such a way that the primary focus is on power
levels and frequency of crossing them. It emphasizes the location of the high-
frequency component of the signal and clearly shows the signal range. Figure 4.4
shows the LCR representation of the signals shown in Figure 4.1. As expected the
LCR of the 3 subjects are different due to the difference in the subjects’ gait, and
the size of their bodies. The LCR shows clearly the minimum and the maximum
power level received by each subject. LCR could be too simple as a differentiat-
ing factor on its own, however, it could have a good contribution as an additional
feature.



4.4. Method Evaluation 47

4.4 Method Evaluation
The dataset used to evaluate the RSSI based gait recognition consist of 20 healthy
subjects (14 males and 6 females), with different age, height, and weight. Dur-
ing the data collection phase, 3 transceivers were attached on the participants, a
transmitter on the right side of the waist representing devices such as smartphones,
and a receiver on the wrist of the right and left arms representing devices such as
smartwatches. The participants were asked to walk at their normal speed in both
indoor and outdoor environments in order to capture the influence of different en-
vironment. The indoor environment was a cafeteria with a tiled surface, while the
outdoor environment was a parking lot with an asphalt surface. Each participant
walked for approximately 4 minutes outdoors followed by 4 minutes indoors to
include natural gait changes over time and environments.

The collected data was split into segments of 3 seconds giving us a total of 150
segments from each subject. In each segment, 3 radio channel features namely the
time series, ACF, and LCR were extracted. The radio features were later used in
classification learners for testing the performance of the RSSI based gait authen-
tication system. For the case of time series, the signal was shifted on time axis so
that all the segments have their peaks at t = 0 as in Figure 4.1. Whenever ACF
was used as a radio feature, an additional process of eliminating segments with
periodicity noise was used. The process was set to eliminate any segment in which
its ACF does not have a peak greater than 0.3 at τ = 1 period.

The following 3 success criteria were used to measure the performance of the
method [77].

• True positive rate (TPR): Also know as sensitivity, is the probability that
the authentication system correctly accepts the access request from the genu-
ine users.

• True negative rate (TNR): Also known as specificity, is the probability
that the authentication system correctly rejects the access request from an
imposter.

• Recognition accuracy: It represents the percentage of correct classifica-
tions which is simply the number of true classifications (acceptance from
genuine users and rejection from imposter) over the total number of tests.

For each radio channel feature obtained from the channel between the right wrist
and the waist (one channel), the performance of each classification learner in terms
of TPR, TNR, and accuracy was evaluated independently, and in combination with
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Table 4.1: Performance Results Using Artificial Neural Networks

Radio features Performance metric One channel Two channels
TPR 67.8% 80.8%

Time series TNR 70.9% 82.5%
Accuracy 73.9% 83.6%

TPR 85.1% 89.6%
ACF TNR 86.1% 90.6%

Accuracy 85.8% 90.5%
TPR 72.9% 80.8%

LCR TNR 74.1% 80.9%
Accuracy 75.8% 83.1%

TPR 89.9% 95.1%
Time series+ACF TNR 90.8% 95.6%

Accuracy 91.3% 95.9%
TPR 84.5% 92.7%

Time series+LCR TNR 85.2% 93.3%
Accuracy 87.2% 94.3%

TPR 92.6% 96.1%
ACF+LCR TNR 93.6% 96.2%

Accuracy 93.9% 96.6%
TPR 94.4% 97.5%

Time series+ACF+LCR TNR 95.2% 97.6%
Accuracy 95.3% 97.9%

each other. The same analyses were repeated when additional radio features were
extracted from the channel between the left wrist and the waist and used together
with those from the channel between the right wrist and the waist (two channels).

Table 4.1 shows the performance of the artificial neural networks classifier using
time series, ACF, LCR, and different combination of those features, obtained from
one and two radio channels. When only a single radio feature is used, LCR has
shown to give the worst results, while ACF gave the best performance. When the
radio features are used in pairs, ACF+LCR pair gives the best results, while the
combination of all 3 features archives an accuracy of 95.3%. When additional ra-
dio features are extracted from the channel between the left wrist and the waist and
are used together with those from the channel between the right wrist and the waist,
we notice improvements in all performance metric, with the most improvement in
accuracy of 9.7% achieved when time series is used as a single radio feature, and
the least of 2.6% achieved when all the radio features (Time series+ACF+LCR)
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are used together. This suggests that if all 3 radio features are used in the RSSI
based gait authentication, the features extracted from a single radio channel could
be enough to provide good performance and that the addition of similar features
from the second channel does not provide significant improvement.
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Chapter 5

Summary

This chapter summarizes the research contributions of the thesis work and dis-
cusses the future works.

5.1 Short Presentation of the Included Papers
A brief summary of the included papers is as follows:

Physical Channel Modeling Using UTD

Paper I: M. Mohamed, M. Cheffena, F. P. Fontan, and A. Moldsvor, "A dynamic
channel model for indoor wireless signals: Working around interference caused by
moving human bodies," IEEE Antennas and Propagation Magazine, vol. 60, no.
2, pp. 82-91, 2018.

Paper II M. Mohamed, M. Cheffena, A. Moldsvor, and F. P. Fontan, "Physical-
statistical channel model for off-body area network," IEEE Antennas and Wireless
Propagation Letters, vol. 16, pp. 1516-1519, 2017.

These papers utilized a dynamic human walking model, which provides a detailed
description of the movement of the different body parts, and UTD to accurately
calculate the time varying shadowing and scattering effects due to the movements
of the body parts. A dynamic channel model for the signal affected by moving
human bodies in an indoor environment was developed. The developed model was
validated using RF measurements at 2.45 GHz at two different heights to study the
effects on the channel from the movement of both lower and upper body parts. The
results were also compared with those obtained with a simpler model being used to
tackle similar problems, and showed significant difference for the lower body parts
at measured frequency, and for both lower and upper body parts at millimeter-wave
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region.

Further the method was used to develop a physical-statistical channel model for
off-body communication. Here, a Rayleigh distribution was used to represent the
multipath fading effects by the scatters around the human body. The model was
validated in terms of first- and second-order statistics using 2.36 GHz measurement
data, showing good agreement.

Empirical Channel Modeling

Paper III: M. Mohamed, M. Cheffena, and A. Moldsvor, "Characterization of the
body-to-body propagation channel for subjects during sport activities," Sensors,
vol. 18, no. 2, p. 620, 2018.

Paper IV: M. Cheffena and M. Mohamed, "The application of lognormal mixture
shadowing model for B2B channels," IEEE Sensors Letters, vol. 2, no. 3, pp. 1-4,
2018.

These papers present the results of the measurement campaign of the body-to-body
channels during sports activities. The sports activities considered were running at
a jogging pace, and cycling at a normal speed to represent not only a small group
of professional athletes but also semi-professionals and hobbyist. The PDF of the
measured data showed mixture and skewed distribution curves, which suggested
the existence of distinct scattering clusters, due to the movements of the differ-
ent body components of the involved subjects at both ends of the communication
channel. This motivated the use of a mixture of lognormal distributions in the
first-order statistical modeling of the body-to-body channel. The resulting model
outperformed single lognormal, Gamma, and Nakagami distributions by having
much smaller error parameters.

To be able to simulate the second-order statistics, further analysis of the measured
data was conducted. The time series showed periodic transitions between a good
state, where the received signal power is above a certain threshold, and a bad state
in which the signal is below it. This motivated the use of a two-state semi-Markov
model approach in the design of the simulation model of the body-to-body chan-
nels. The resulting simulation model showed good agreement with the measured
data in terms of first- and second-order statistics.

Further, the first-order statistics obtained were used to conduct performance ana-
lysis of the channels in terms of channel capacity and outage probability. Cycling
activities sowed better performance than running activities for having higher chan-
nel capacity and lower outage probability regardless of the speed of cycling being
significantly higher. This is mainly because, during cycling, the arms were the
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transceivers were attached are more stable.

Propagation Channel Fingerprinting

Paper V: M. Mohamed and M. Cheffena, "Received signal strength based gait
authentication," IEEE Sensors Journal, vol. 18, no. 16, pp. 6727-6734, 2018.

An RSSI based gait authentication method was proposed in this paper. The method
could be used together with other authentication approaches, to add another secur-
ity layer for applications in which one-time validation of the users’ identity is
insufficient. The method has advantages over other gait authentication systems, as
it does not require additional hardware or sampling of sensor data making it more
economical and energy efficient. The method extracts gait features from the radio
signal namely, the time series, ACF, and LCR through the RSSI values available
in regular communications and use them as input in classification learners. The
evaluation of the method showed some promising results, with an accuracy of up
to 98%.

Physical Channel Modeling Using FDTD

Paper VI M. Mohamed, W. Joseph, G. Vermeeren, E. Tanghe, and M. Cheffena,
"Characterization of dynamic wireless body area network channels during walk-
ing," Submitted to EURASIP Journal on Wireless Communications and Network-
ing, 2018.

In this paper, FDTD was used in the investigation of WBAN channel character-
istics during walking for on-body, off-body, and body-to-body communication, in
the same conditions so that a more complete picture of the overall network can
be observed and compared. FDTD was used as it could separate the channel gain
into propagation loss and antenna gain, which cannot be achieved through meas-
urement since the body is within the near field of the antenna. Correlation between
the channels and the application of multivariate normal distributions in the model-
ing of WBAN channels was also investigated in the paper.

5.2 Future Work
A lot of work can be done to further extend the research results obtained in this
Ph.D. research, e.g,

• Technological advancements in agriculture and livestock farming are expec-
ted to play a significant role in ensuring adequate food supply for a rap-
idly increasing world population which is estimated to reach 9.7 billion by
2050 [81]. Typical examples include precision feeding systems, milking ro-
bots, and stable farm management systems. In addition to that, monitoring
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the health of the individual animals is important in order to prevent animal
epidemics and for early treatment of sick animals. In this regard, animal
WBANs can provide the cost-effective solutions for monitoring the well-
being of livestock. The current WBAN standard is primarily tailored for
human use. The air interface technologies are designed taking into account
the characteristics of the propagation channel utilizing excessive RF meas-
urement results from human bodies. Thus, it may not provide the desired
quality of service requirement when used for animals as the propagation
characteristics of RF signals on animals might be completely different to
that of humans.

• The large bandwidth available at millimeter wave spectrum can open the
way for various new indoor and outdoor WBAN applications. For example,
in search and rescue, the bandwidth could facilitate a three-dimensional
video streaming necessary for augmented reality and hence could provide
more details in the running of the operation. The same could be applied to
the entertainment area, such as live music performance, sports etc. so that
the distant spectators could get a full experience. The impact of human bod-
ies and their movement can cause additional challenges in communication
at such frequencies. Thus, further studies and measurements are required to
fully characterize the propagation channel of WBANs over the millimeter
wave spectrum.

• The role of WBANs in detecting human activities such as gait, exercises,
and emergencies such as fall for elderly, through the sensing devices at-
tached to the body is unquestionable. However, the sensing device with a
limited battery, has to allocate power for the process of sampling of sensor
data (e.g., accelerometer for gait). Radio fingerprinting has a potential of
removing the need of using sensors for activity detection. This could result
in compact, cheaper and energy efficient devices. The study of propagation
channel characteristics should be expanded beyond the purpose of increas-
ing performance of the investigated network. The role of the radio channels
in complementing or even replacing sensors for activity monitoring and ra-
dio fingerprinting needs further investigation.
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Paper I

A Dynamic Channel Model for
Indoor Wireless Signals:
Working Around Interference
Caused by Moving Human
Bodies

Marshed Mohamed, Michael Cheffena, Fernando P. Fontán, and Arild Moldsvor

1 Introduction
The use of indoor wireless devices has substantially increased in recent years. This
escalation is due to the expansion of traditional communication devices such as
mobile phones and laptop computers, to less traditional ones such as wirelessly
communicating sensor nodes present in smart homes, office buildings, and indus-
trial environments. The placement of these nodes varies considerably from one ap-
plication to the next, but when the nodes are placed indoors and within the vicinity
of human height, a body’s movement can cause significant time-varying channel
conditions. The movement is even more compelling in such networks because of
the power constraints involved [1]. Thus, an accurate study on the impact of a
moving body and the characteristics of indoor propagation channels is important.

Many of the studies on the effects of human bodies on radio propagation in an in-
door environment are purely statistically based as in [2–5]. These types of studies
provide empirical insights about the channel based on the conducted measure-
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ments. To gain a deeper understanding, however, a deterministic approach must
be taken. To do this, a good approximation of the shapes of obstacles and their
positions in the propagation environment is needed. M. Ghaddar et al. [6] demon-
strated that a conducting cylinder at microwave frequencies can approximate the
presence of a human body. With the canonical shape of a conducting cylinder,
the uniform theory of diffraction (UTD) can be used to compute the total received
field. The UTD can account for the reflected waves and, more importantly, the
phenomenon of creeping waves, which cannot be predicted with geometrical op-
tics and the Kirchhoff diffraction equation [7, 8].

A single-cylinder human model presented in [6] together with ray tracing and UTD
was used in [9] and [10] to study the fading effects caused by the movement of a
human body in an indoor environment. However, the cylindrical human model
proposed in [6] could be an oversimplification of shape and movement, especially
when it comes to the lower part of the human body. This is because neither the
human shape nor the movement is as uniform as assumed in the model. A more ac-
curate model of representing a human body and its movement is presented in [11]
and [12]. We used this model in conjunction with ray tracing and UTD calculations
to determine a more accurate characterization of the propagation mechanisms of
indoor radio channels as they are affected by moving human bodies, which is im-
portant for the design of robust indoor wireless systems in crowded environments.

We investigated the effect of a moving human body crossing the line-of-sight
(LOS) link of the transmitter and receiver at different heights, and we developed
a dynamic channel model to account for this interference (Figure 1). Unlike the
scenarios reported in [8–10], we used a human body model with 12 body parts
represented by dielectric cylindrical volumes of different radii, except for the head,
which was represented as a sphere. We also utilized a human walking model to
describe the movement of the different body parts [11, 12]. We used ray tracing
and UTD to accurately calculate the received direct, reflected, and diffracted rays
during time-varying channel conditions caused by the movement of the human
body parts. We compared our developed model to one reported in [6] with radio-
frequency (RF) measurements at different heights of the transmitting and receiving
antennas.

2 The Human Walking Model
The human gait has been studied extensively in bio-mechanics and robotics, lead-
ing to the development of computer-animated walking models as reported in [13]
and [14]. Such models provide detailed information on the movement of human
body parts, which is necessary to characterize the impact of such movement on
time-varying wireless channels. One commonly used computer-animated walking
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Figure 1: An indoor propagation scenario for a signal affected by a moving human body.
The height of Tx and Rx was varied so that the effect of the upper body (the trunk and
arms) and the lower body (the legs) on the radio propagation channel could be studied in
similar conditions.

sequence is the Thalmann model [11, 12, 15].

In the Thalmann model, the human body is composed of 12 body parts (legs, arms,
trunk, head, and so on), 11 of which can be represented by cylinders of various
sizes. The head is represented by a sphere, as shown in Figure 3 [11, 15]. These
body parts are connected to each other by translations and rotations (see Table 1
for descriptions) that are time dependent.

In the Thalmann model a walking cycle is defined as the portion of motion between
two successive contacts of the left heel with the floor, as shown in Figure 2 [11,
15]. While the temporal structure is normalized by performing modular arithmetic
between the time and period, the spatial values are normalized by the height of the
thigh (Hth). We will be using relative velocity, vr, and relative time, tr, which can
be expressed as shown in (1) and (2) where v is velocity, t is time, and T is the
period of one cycle.

vr =
v

Hth
(1)

and

tr =

∣∣∣∣ tT
∣∣∣∣
mod 1

(2)

There is an important relationship between the relative velocity of a normal walk-
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Figure 2: The temporal structure of the walking cycle. HS: heel strike; TO: toe off; Dds:
duration of double support; Db: duration of balance [15].

Figure 3: The human body model with translations and rotations [15].

Table 1: Human Body Parts Translations and Rotations Description.

Parameter Symbol
Lateral translation TL(t′)
Horizontal translation TH(t′)
Vertical translation TV (t′)
Forward/backward angle θFB(t′)
Left/right angle θLR(t′)
Shoulder angle θS(t′)
Elbow angle θS(t′)
Hip angle θS(t′)
Knee angle θS(t′)
Ankle angle θS(t′)
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ing person and its cycle period, T, given by (3) [11, 12, 15] as

T =
1.346
√
vr

(3)

All of the trajectories in [12] are expressed as a function of relative time, which
ranges between zero and one. They are synchronized with the left leg motion, and
the left heel strike is the origin [12, 15]. The trajectories of the right part of the
body are obtained by performing phase displacement of half a cycle given by

trr =

∣∣∣∣ tT + 0.5

∣∣∣∣
mod1

(4)

For modeling the trajectories of flexing at the knee, hip, and elbow, a cubic spline
that passes through control points located at the extremities of the trajectories is
used. These control points define the angle of rotations and relative time and are
a function of the relative velocity. The cubic spline used is a basic Hermit spline
given by [12] as

h = −2s3 + 3s2 (5)

where s is the increasing portion of relative time.

On the other hand, the trajectories of flexing the shoulder are found by using

θs(tr) = −3− 9.88vr[0.5 + cos(2πtr)] (6)

Figure 4 shows the variation of the elbow and the knee (for the left side of the body)
for one walking cycle with relative velocity of unity obtained using the described
method. Details of the human walking model can be found in [12]. The time
dependent body part translations and rotations are used with ray tracing and UTD
calculations to characterize the time varying channel conditions of indoor wireless
systems caused by moving human bodies.

3 Ray Tracing and UTD
A method where diffraction can be incorporated into a geometrical strategy and
phrased in geometric terms forms the basis for what has become known as the
geometrical theory of diffraction. The original form of this theory, however, suf-
fers from the shadow boundaries problems. The UTD was developed to solve this
problem [16, 17]. The first step before applying the UTD is to use ray tracing tech-
niques to find different paths for the electromagnetic waves [7]. We first considered
circular cylinders to represent two human legs crossing the LOS path between the
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Figure 4: The angular rotation of the elbow and knee with vr = 1 obtained using a cubic
spline passing through control points.

transmitter and the receiver as shown in Figure 5(a). A maximum of four types of
rays could exist depending on the relative position between the cylinders and the
transmission link: a direct ray that exists when none of the cylinders are blocking
the LOS, in which case the receiver is considered to be in a lit region; a reflected
ray from each cylinder that can only exist when laws of reflection can be satisfied
and neither the incident nor the reflected ray is blocked from its path; and two dif-
fracted rays from each cylinder that can only exist if neither the incident ray nor
the diffracted ray from one cylinder is blocked from its direct path by the other
cylinder. Higher orders of reflected and diffracted rays are neglected. A similar
ray-tracing method is used for the upper body, using three cylinders representing
the two arms and the trunk [Figure 5(b)].

If we consider transmission in an indoor environment, reflections from the floor,
ceiling, and walls will contribute to the total received signal. The total received
electric field, ET, can then be found by summing the contributions given by each
ray as in [7, 16]:

ET (Rx) = Ei(Rx) +

K∑
n=1

Ern(Rx) +

M∑
n=1

Edn(Rx) +

N∑
n=1

Erfn(Rx) (7)

where Ei is the incident field, K is the total number of cylinder reflected fields
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(a)

(b)

Figure 5: Ray tracing. (a) Two cylinders representing two legs. (b) Three cylinders
representing two arms and the trunk. In the current position, the arm’s clockwise diffracted
rays are blocked by the trunk.
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Ern, M is the total number of diffracted fields Edn, and N is the total number of
the flat surface-reflected fields Erfn.

The incident field can be expressed as

Ei(Rx) = C0
e−jks0

s0
(8)

where s0 is the distance between the point of transmission and the point of obser-
vation, and C0 is a constant associated with incident field power [7, 16].

The cylinder-reflected field can be expressed as

Ern(Rx) =

√
ρr1n.ρ

r
2n

(ρr1n + srn)(ρr2n + srn)
Rn‖⊥.Ei(QRn).e−jksrn (9)

where srn is the distance between the reflection point and the receiver, ρr1n and
ρr2n are the radii of curvature of the reflected field, and Rn‖⊥ is the polarization-
dependent reflection coefficient as given in [7, 16], where the diffracted field can
be expressed as

Edn(Rx) =

√
ρd2n

sdn(ρd2n + sdn)
.Dn
‖⊥.

√
dη(Qan)

dη(Qdn)
.Ei(Qan).e−jksdn (10)

Here, ρd2n is the second radius of curvature of the diffracted field, sdn is the distance
between the detachment point and the receiver, Qan and Qdn are the attachment
and the detachment points, respectively,Dn

‖⊥ is the polarization dependent diffrac-

tion coefficient, and
√
dη(Qan)/dη(Qdn) is the conservation of energy flux in the

surface ray strip from attachment to detachment point [7, 16].

The flat surface-reflected field is given by

Erfn(RX) = Ei(QRFn)Rnf‖⊥.
e−jksrn

srn
(11)

where QRFn is a reflection point on a flat surface and Rnf‖⊥ is the reflection coef-
ficient of the flat surface [8, 18].

During the walking sequence, the overall signal fading is caused by the position-
dependent reflection, diffraction, and shadowing of direct fields related to the
movement of specific body parts. These body parts are represented by cylinders,
and their movement and position are determined using the human walking model
discussed in the section, "The Human Walking Model." The total field is obtained
by summing the contributions from these dynamic body parts calculated using the
UTD along with first-order contributions from the environment.
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Table 2: The Human Model Parameters.

Human Element Length Symbol Length Value Radius Value
Head RH - 0.11
Torso HT 0.72 0.13
Upper leg HUL 0.45 0.09
Lower leg HLL 0.45 0.06
Upper arm HUA 0.30 0.05
Lower arm HUA 0.40 0.04
Feet HF 0.18 0.06

4 Measurement Setup
Indoor RF measurements were taken to validate the developed channel model and
to compare it with existing models. The principal measurement setup is shown
in Figure 6. The vector network analyzer was used to transmit and receive an
RF signal at 2.45 GHz with a power of 10 dBm at the transmitting port. Ver-
tically polarized omnidirectional antennas were used at both the transmitting and
the receiving ports. The received signal was measured for a period of 8 s, with a
sampling time of 1 ms between two adjacent points. The transmitting and receiv-
ing antennas were separated by a distance of 206 cm, both adjusted to a height of
25.5 cm to represent crossing of the LOS path by the lower body (the legs), and
then at a height of 128.5 cm to represent crossing of the LOS path by the upper
body (the trunk and arms) as shown in Figure 6.

The selected low heights are common in wireless sensor networks found in smart
homes and offices, and industrial environments where the position of the sensor
depends on the phenomenon being monitored (e.g., machine health monitoring,
greenhouse monitoring, geofencing of robots, and so on). A single person with
parameters given in Table 2 walked past the antennas during the experiments at a
continuous speed of approximately 1.1 m/s along a path that was perpendicular to
the LOS direction, as shown in Figure 1. A complex permittivity of the materials
involved is given in Table 3 [18, 19]. At frequencies where attenuation through the
body is quite large, the dielectric properties of the human body can be assumed to
be equal to that of the outer layer of the body; hence, the permittivity of human
muscle tissues was used [20].

5 Model Validation
To validate the developed model explained in the section "Ray Tracing and UTD,"
measurements were taken at two different heights to represent crossing of the LOS
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(a)

(b)

Figure 6: The measurement setup at different antenna heights: (a) 25.5 cm and (b) 128.5
cm.

Table 3: The Relative Permittivity of Different Materials.

Material Relative Permittivity Relative Permittivity
at 2.45 GHz at 31.8 GHz

Plasterboard 2.94− 0.1607i 2.94− 0.07591i
Concrete 5.31− 0.4947i 5.31− 033036i
Ceiling board 1.50− 0.0104i 1.50− 0.0158i
Ceiling muscle 52.73− 13.0410i 19.01− 23.7125i
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path by the lower body (the legs) and the upper body (the trunk and arms) and
compared with the results obtained from the simulation of the scenario shown in
Figure 1. The results were also compared with simulation results obtained when a
human body is modeled as a single, vertically oriented, dielectric cylinder (i.e., a
single cylinder model) as proposed in [6].

We started the comparison in the time domain where the overall shape of the signal
and its fading was established. It is important to note that, in both models, the
received signal could be categorized into two regions: 1) a lit region where no
obstacle is blocking the LOS path and 2) a shadow region where an obstacle blocks
the LOS path. Although the different models yield different magnitudes, shapes,
and duration of fades, these two regions can easily be observed in both models and
in the measurements. The distribution of the signal and its fading can be further
observed using the cumulative distribution function (CDF), which provides the
probability of a signal being below a certain value. The CDF is commonly used
in the performance evaluation of a channel with regard to the channel capacity,
outage probabilities, and so on.

Figure 7 shows the comparison between the developed model, a single-cylinder
model, and measured data when the transmitter and the receiver are set at a height
of 25.5 cm. The results reveal agreement between the developed model simu-
lation’s results and the measurements. We also observed that the single-cylinder
model over predicted the magnitude of fading in the shadow region. The difference
is caused by the physical interaction of the electromagnetic waves when the legs
are represented using two swaying cylinders with small radii (6 cm) [see Figure
5(a)] instead of a single cylinder with a large radius (13 cm) moving at a constant
speed.

Additional comparisons were performed by processing the data of both models
and the measurements to obtain their second-order statistics. More specifically,
we measured the rapidity of the fading by quantifying how often the signal crosses
a certain threshold and how long it stays below it. These statistics, known as level
crossing rate and average fade duration, respectively, are important in comparing
the time-varying properties of the received signals. Figure 8 shows the comparison
of level crossing rate and the average fade duration of the received signal normal-
ized to their root mean square (rms) values when the transmitter and receiver are
set at a height of 25.5 cm. As in Figure 7, we observed an agreement between
the developed model simulation’s results and the measurements and a significant
difference with the results of the single-cylinder model.

When the height of the transmitter and the receiver is changed to 128.5 cm, repres-
enting the upper body crossing the LOS path, the difference between the single-
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(a)

(b)

Figure 7: A comparison of a normalized received signal obtained from a developed model
simulation, a single-cylinder simulation, and collected data when both the transmitter and
receiver are at a height of 25.5 cm. (a) shows the time series, and (b) shows the CDF.
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(a)

(b)

Figure 8: A comparison of second-order statistics obtained from a developed model sim-
ulation, a single-cylinder simulation, and collected data when both the transmitter and
receiver are at a height of 25.5 cm. (a) shows the level crossing rate, and (b) shows the
average fade duration.
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cylinder model and the developed model is decreased. This is because, at this
height, the only difference between the two models is the inclusion of the arms
and their movement in the developed model. Comparison between the two models
and measurement values when the transmitter and receiver are set at a height of
128.5 cm are shown in Figure 9 (time domain and CDF) and in Figure 10 (second-
order statistics). Again, we observed excellent agreement between the developed
model simulation and the measurements.

At the measured frequency of 2.45 GHz, the differences at the 128.5 cm height
are relatively small between the two models. However, at higher frequencies, e.g.,
the millimeter-wave region, the differences are much more pronounced. At these
frequency bands, the attenuation of the diffracted rays is quite large, causing very
deep fades in the non-LOS (NLOS) region when a single-cylinder model is used.
The addition of arms and their relative movement in the developed model signific-
antly increased the overall power received in the NLOS region due to the overall
contribution (through reflection and diffraction) from these body parts and thus
became more important to include. Figure 11 shows the results of a simulation of
the two models performed at a frequency of 31.8 GHz, which is relevant for fu-
ture fifth-generation systems. There is a clear difference between the results of the
single-cylinder model and those of the developed model for the effects of upper
body parts.

The measured results validate the model and show the large difference in radio
link characterization in the presence of human disturbances when the height of the
transmission link is changed [Figure 12(a)]. When the transmission link is set at
a height where an upper body crosses the LOS path, there are deeper fades in the
shadow region. These fades are two-times lower in the decibel scale compared to
fades that occur when the transmission link is set at a height where the lower body
crosses the LOS path. This is because the size and movement of the body parts
involved are significantly different for these two heights.

The difference in the fading characteristics is emphasized even more by looking at
the average fade duration of the two transmission links. In addition to the presence
of deeper fading, the links obstructed by the upper body also have longer average
fade duration in the shadow region. In the lit region, however, the average fade
duration are approximately the same regardless of the link height, and they are
determined primarily by the walking velocity. This is shown in Figure 12(b) when
the level normalized to the rms is greater than -3.5 dB. These results show how
significant the height of the transmission link is in an indoor environment. Addi-
tionally, the validation obtained here encourages the use of the developed model to
be applied to similar studies and not limited to the propagation scenario of Figure
1.
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(a)

(b)

Figure 9: A comparison of a normalized received signal obtained from a developed model
simulation, a single-cylinder simulation, and collected data when both the transmitter and
receiver are at a height of 128.5 cm. (a) shows the time series, and (b) shows the CDF.
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(a)

(b)

Figure 10: A comparison of second-order statistics obtained from a developed model
simulation, a single-cylinder simulation, and collected data when both the transmitter and
receiver are at a height of 128.5 cm. (a) shows the level crossing rate, and (b) shows the
average fade duration.
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(a)

(b)

Figure 11: A comparison of fading characteristics of a normalized received signal ob-
tained from a developed model simulation and a single-cylinder simulation when both the
transmitter and receiver are at a height of 128.5 cm with a transmission frequency of 31.8
GHz. (a) shows the CDF, and (b) shows the average fade duration.
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(a)

(b)

Figure 12: A comparison of fading characteristics of a normalized measured received
signal obtained when both the transmitter and receiver are at a height of 25.5 cm and then
at 128.5 cm. Transmission frequency was set at 2.45 GHz. (a) shows the CDF, and (b)
shows the average fade duration.
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6 Conclusions
We have presented a dynamic channel model for the signal affected by moving
human bodies in an indoor environment. We modeled the human body as a com-
bination of 11 vertically oriented, dielectric, cylindrical volumes and a spherical
head. The received signal was composed of a direct component, together with
first-order reflected and diffracted components from the human body, which were
subjected to time-varying shadowing effects in relation to the dynamic movement
of body parts. The diffracted field from the canonically shaped body parts was cal-
culated using UTD. First-order reflected components from the environment were
also taken into consideration.

The developed model was validated using RF measurements at 2.45 GHz. The
measurement was conducted at two different heights to study the effects on the
channel from the movement of both lower and upper body parts. The results
showed a strong agreement between the developed model and the measurements
at both heights. We also compared these results with those obtained with a simpler
model consisting of only one vertical cylinder moving with a constant speed. As
expected, the differences between the two models were quite large for the lower
body parts, while the differences were smaller for the upper body parts at the meas-
ured frequency. When we increased the frequency into the millimeter-wave re-
gion (i.e., from 2.45 to 31.8 GHz), the simulations showed a substantial difference
between the two models.

The measurements and the conducted simulations also showed that there is a sig-
nificant difference on the propagation channel characteristics with different trans-
mitter and receiver antenna heights and that a more accurate model is increas-
ingly important for future applications where the frequency will increase into the
millimeter-wave region.
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Paper II

Physical-Statistical Channel
Model for Off-Body Area
Network

Marshed Mohamed, Michael Cheffena, Arild Moldsvor, and Fernando P. Fontán

Abstract
In this letter, a physical-statistical-based channel model for off-body wireless com-
munications is presented. The model utilizes a dynamic human walking model,
which provides detailed description of the movement of the different body parts.
The received signal is composed of a direct component, which might be subject to
shadowing by the body parts, and a multipath component due to reflections from
the environmental scatterers. The uniform theory of diffraction (UTD) is utilized
to accurately calculate the time-varying shadowing and scattering effects of the
direct signal due to the moving of body parts. A Rayleigh distribution is used
to represent the multipath fading effects by the scatterers around the human body.
The model is validated in terms of first- and second-order statistics using 2.36 GHz
measurement data, showing good agreement.

Index Terms
Fading channels, indoor propagation, off-body communication, time varying chan-
nels, wireless body area network (WBAN).
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1 Introduction
In recent years, there has been substantial research on wireless body area net-
work (WBAN) due to its potential applications in health monitoring, sports activ-
ities, and any other application that requires monitoring and transmission of human
physiological data. The communication could involve among others the transmis-
sion between nodes mounted on the human body (body surface node) and a node
away from the human body (external node) acting as an access point [1]. This kind
of communication is known as off-body communications, and is subjected to peri-
odic signal shadowing caused by the human body movement, between the body
surface node and the external node. Due to the close proximity of body surface
nodes, and their need for a long battery life, WBAN requires a low-power com-
munication approach. This demands a close understanding of the wireless channel
characteristics [2].

There have been several studies on improvement of the performance of an off-body
communication system. For example, in [3], diversity gain for various off-body
channels was investigated, and its importance in off-body communication was
noted. Measurement conducted in [4] showed that using multiple-input-multiple-
output antennas drastically improves the reliability of the off-body link. A meth-
odology for determining the optimal positions of these antennas, independent of
frequency or communication standard used, was presented in [5].

The performance improvement methods presented in, e.g., [3–5] rely on good un-
derstanding of the propagation channel characteristics. An empirical characteriz-
ation of off-body wireless channels is presented in [6]. The measurements were
conducted in an anechoic chamber, and lognormal and Ricean distributions were
used to model the path loss. In [7], similar studies were conducted in an indoor
environment, where lognormal distribution proved to be a good fit in describing
the normalized signal amplitude. Further studies were conducted in [8] in which
also the impact of antenna polarization on channel characteristics was investigated.
Nakagami distribution was used to describe the fading component.

Unlike the models in [6–8], which are purely empirically based and applicable only
in the environments similar to the measurement site, we propose a more accurate
physical-statistical-based channel model for off-body communications. Generally,
physical-statistical models are more accurate than merely empirical models as they
rely on electromagnetic-based methods for calculating the needed model paramet-
ers. They are also more effective for simulating large scenarios compared to purely
physical models [9].
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Fig. 1: Considered propagation scenarios where a person walks: A) with direction of
motion perpendicular to the receiver; B) direction of motion parallel to the receiver.

2 Physical-Statistical Off-Body Channel Model
The considered propagation scenarios are shown in Fig. 1. In both scenarios, the
transmitter is on the right wrist of the subject’s body walking on the spot. The
two scenarios are differentiated by orientation and motion of the transmitter (Tx)
relative to the receiver (Rx). To obtain the locations of the body parts during move-
ments, a human walking model, described in [10], is used. In the model, the human
body is represented by 12 dielectric cylindrical volumes of different radii, except
for the head that is represented by a sphere. Due to their canonical shapes, the
uniform theory of diffraction (UTD) will be used to calculate, by electromagnetic
computation (physically), the time-varying signal contributions from the human
body. UTD can also account for the creeping waves that cannot be predicted with
geometrical optics and Kirchhoff diffraction equation [9, 11]. The environmental
contributions to the total received signal causes multipath fading, and will be de-
scribed statistically using a Rayleigh distribution.

2.1 Contribution From the Human Body

Based on our propagation scenario shown in Fig. 1, the most significant signal
contributions from the human body come from the two arms and the trunk. Con-
sidering the three cylinders representing the two arms and a trunk as shown in Fig.
2, three types of rays will exist depending on the relative position between the
cylinders and the receiver. From the right arm where the transmitter is positioned,
there will be diffracted rays. These rays can only exist if the trunk is not blocking
their path to the receiver. From the trunk, there will be diffracted-reflected rays
that only exist when the laws of reflection are satisfied, and diffracted-diffracted
rays, see Fig. 2. Like the trunk, the left arm will have similar rays, but will only
exist when the trunk is not blocking the left arm.
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Fig. 2: Ray tracing of three cylinders. Small circles represent arms, and the large circle
represents the trunk. For clarity, only one ray from each type is shown in the figure. Left
arm is shadowed by the trunk from the transmitter at current position.

The diffracted field can be expressed as [12, 13]

Ed(Rx) = C.H‖⊥.e
−jkx.

e−jksd

sd
(1)

where sd is the distance between the detachment point and the receiver, and x is the
distance along the surface of the cylinder between the transmitter location and the
detachment point, C is a constant associated with the transmission field power, and
H‖⊥ is intermediate function depending on hard and soft Fock radiation functions.
The diffracted-reflected field can be expressed as in [11]

Edr(Rx) =

√
ρr1.ρ

r
2

(ρr1 + sr)(ρr2 + sr)
R‖⊥.Ed(QR).e−jksr (2)

where sr is the distance between the reflection point and the receiver, ρr1 and ρr2 are
the radii of curvature of the reflected field, QR is the reflection point, Ed(QR) is
the diffracted field given by (1), and R‖⊥ is the polarization-dependent reflection
coefficient as given in [11]. The total diffracted-diffracted field can be expressed
as

Edd(Rx) =

√
ρd2

sd(ρ
d
2 + sd)

.T‖⊥.

√
dη(Q1)

dη(Q2)
.Ed(Q1).e

−jksd (3)
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Fig. 3: Channel simulator for off-body communication. The parameter σ is the standard
deviation of the multipath component, and b(t) is the time-varying contribution from the
human body.

Here, ρd2 is the second radius of curvature of the diffracted field, Q1 andQ2 are the
attachment and detachment points, respectively, T‖⊥ is the polarization-dependent
diffraction coefficient, and

√
dη(Q1)/dη(Q2) is the conservation of energy flux

in the surface ray strip from the attachment to the detachment point [11]. The
summation of all these fields makes up the human contribution b(t) on the overall
received signal, as illustrated by Fig. 3.

2.2 Contributions From the Environment

The reflection of the signal from objects around the human body results in mul-
tipath fading effects, which is described statistically using a Rayleigh distribution.
The movement of the transmitter as well as the movements of people in the envir-
onment create time-varying channel conditions. Characterizing the Doppler spec-
tra is thus important for the determination of the variance of the off-body wireless
channel. The Doppler spectrum associated with this kind of movement is given
by [14]

S(f) =
1

f2 + e
(4)

where e is a model constant of a value 0.094

2.3 Overall Simulation Model

The proposed physical-statistical channel model for simulating the off-body wire-
less channel is shown in Fig. 3. In the model, a complex white Gaussian process
with zero mean and unity standard deviation is passed through a Doppler filter
given in 4 for spectrum shaping. The resulting complex series is multiplied by
the standard deviation σ to represent the multipath contributions from the envir-
onmental scatterers. Then, the position-dependent contributions from the human
body b(t), as described in Section 2.1, are added. The movement and position of
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the body-worn transmitter is determined using the human walking model presented
in [10].

3 Experimental Data
Publicly available experimental data collected by the National ICT Australia [2] is
used for validating the developed channel model. For off-body measurements, a
commercial wearable antenna was strapped to the right wrist of a 181.5-cm/78-kg
male test subject and used as a transmitting antenna. Due to large movement of
the arm during walking, the location is ideal for testing the performance of the
proposed model under high signal dynamic conditions. The antenna was worn
such that the E-plane of the antenna was perpendicular to the floor of the envir-
onment. The receive antenna was placed on an aluminum tripod 2 m away from
the test subject. Both the transmitting and receiving antenna were omnidirectional
and were considered as channel parts. A vector signal analyzer (VSA) was used to
transmit a tone of 2.36 GHz and measure the received signal. The received signal
amplitude was recorded for every 1 ms over a period of 20 s. The measurements
were taken while the subject walked on a treadmill with the receiver on his left
side in scenario A, and the receiver behind him in scenario B, as shown in Fig. 1.
See [2] for more information on the measurement setup.

4 Model Validation and Discussion
Two different scenarios (shown in Fig. 1) are considered for validating the model
developed in Section II. The resulting simulation data were then compared to the
measurement data collected in [2]. The simulation parameters are shown in Table
1, where εr is obtained from [15], σA and σA were selected such that the sim-
ulations results fits the measured data, and the remaining parameters were ob-
tained from the experimental setup [2]. Figs. 4(a) and 5(a), show good agreements
between the measured and modeled cumulative distribution functions (CDFs) of
the received signal for the two scenarios shown in Fig. 1. To validate the model
further, the time-varying properties of the signal were compared by observing their
level crossing rates and average fade duration for the two scenarios; see Figs. 4(b),
4(c), 5(b), and 5(c). These second-order statistics quantify how often the signal
crosses a certain threshold and how long it stays below the threshold. Good agree-
ment between the developed model simulation results and the measurement results
is observed.

The agreement of both first- and second-order statistics with the measured data
illustrates the accuracy of the proposed channel model. The model proposed is
not limited to the location of transmitter on the arm, but can be adjusted to suit
other node locations, considering their movement in relation to the human body
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(a)

(b)

(c)

Fig. 4: Scenario A. Comparison between simulation and measurement data statistics. (a)
CDF. (b) Level crossing rate. (c) Average fade duration.
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(a)

(b)

(c)

Fig. 5: Scenario B. Comparison between simulation and measurement data statistics. (a)
CDF. (b) Level crossing rate. (c) Average fade duration.
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Table 1: Simulation Parameters.

Parameter Value
Frequency (f ) 2.36 GHz
Relative permittivity of human skin (εr) 38.0630− 10.5847i
Relative velocity (vr) 1.6 m/s
Length of the upper and lower arms (la) 0.30 m
Radius of the arms (ra) 0.04 m
Radius of the trunk (rt) 0.20
σ of scenario A (σA) 0.0032
σ of scenario B (σb) 0.3700

is known. This gives an advantage over empirical models in which measurement
results of one node in a given environment may not be similar or applicable to
another node location or another environment.

5 Conclusion
A physical-statistical-based channel model for off-body wireless communications
was developed. In this method, the detailed description of the movement of the
different body parts were obtained from a dynamic human walking model. The re-
ceived signal was composed of a direct component subjected to time-varying shad-
owing, reflection, and diffraction effects in accordance with the dynamic move-
ment of the body parts, and a multipath component due to reflection from envir-
onmental scatterers. The human walking model together with UTD was used to
calculate time-varying contributions from the body parts, and the multipath com-
ponents from the environment were represented by a Rayleigh distribution. The
developed model was validated in terms of first- and second-order statistics util-
izing 2.36-GHz measurement data for two different propagation scenarios. The
simulations showed good agreement with the measured data.
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Paper III

Characterization of the
Body-to-Body Propagation
Channel for Subjects During
Sport Activities

Marshed Mohamed, Michael Cheffena and Arild Moldsvor

Abstract
Body-to-body wireless networks (BBWNs) have great potential to find applica-
tions in team sports activities among others. However, successful design of such
systems requires great understanding of the communication channel as the move-
ment of the body components causes time-varying shadowing and fading effects.
In this study, we present results of the measurement campaign of BBWN during
running and cycling activities. Among others, the results indicated the presence
of good and bad states with each state following a specific distribution for the
considered propagation scenarios. This motivated the development of two-state
semi-Markov model, for simulation of the communication channels. The simula-
tion model was validated using the available measurement data in terms of first and
second order statistics and have shown good agreement. The first order statistics
obtained from the simulation model as well as the measured results were then used
to analyze the performance of the BBWNs channels under running and cycling
activities in terms of capacity and outage probability. Cycling channels showed
better performance than running, having higher channel capacity and lower outage
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probability, regardless of the speed of the subjects involved in the measurement
campaign.

Keyword
body area networks; body-to-body communication; personal communication net-
works; radio propagation; time-varying channels; performance analysis

1 Introduction
The aspiration to share information in real-time between co-located body area net-
works has led to the creation of body-to-body wireless networks (BBWNs). In
such a network, wireless devices worn by one person will transmit information
wirelessly to a device worn by another person. This kind of communication will
find applications in a range of areas such as team sports, emergency services, milit-
ary as well as other social networking experiences [1]. As in on-body and off-body
communications, BBWNs are subject to time-varying body movement and shad-
owing effects at both ends of the link as all transceivers will be attached to the user
in one way or the other. To ensure reliable communication in such time-variant
channel conditions, robust hardware and correct decision making tools throughout
the protocol stack should be carefully engineered. Such engineering can only be
achieved with a greater understanding of the communications channel [2].

An empirical study on the signal characteristics of outdoor body-to-body commu-
nication channels was conducted in [3] to assess the impact of typical human body
movements. The movements taken into consideration are rotation, tilt, walking
in line-of-sight (LOS) and non-line-of-sight (NLOS) conditions. A similar study
in an indoor environment was conducted in [4] and it highlighted how a specific
movement resulted in different effects on the channel dynamic properties. The
study in [5] takes it further, by comparing deterministic and semi-deterministic
approaches in the simulation of on-body and body-to-body networks, a semi-
deterministic approach was found to be the best option. A more specific study was
conducted in [6] to analyze body-to-body communications channels susceptible to
shadowed fading. The statistical model proposed in [6] showed an improved fit to
the signal fading compared to established models such as Lognormal, Nakagami
and Rice. Unlike [6], the work in [2] focused on LOS cases in different indoor en-
vironments and showed that the communication channels have considerable vari-
ability depending on the local propagation conditions. To mitigate human body
shadowing in outdoor body-to-body communication, diversity combining schemes
were investigated in [7] and have shown some promising results.

While the studies performed in [2–7] cover everyday activities, there has not been
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significant research into more specific applications such as sport activities. In this
paper, for the first time, the body-to-body communication channel characteristics,
particularly during running and cycling in an outdoor environment, are investig-
ated. Naturally, these kinds of activities provide their own unique set of channel
dynamics due to the movements and posture changes at both ends of the link.
This paper presents statistical channel characteristics of two different running and
cycling scenarios at the 2.4 GHz Industrial, Scientific, and Medical (ISM) band
that is utilized in several standards, which are suitable for short range BBWNs.
Due to the imperfection of utilizing single standard distributions in modeling BB-
WNs channels, [4, 8], we investigate the application of the two-state semi-Markov
model (TSSMM) in the characterization of such channels. A simulation model
based on TSSMM is developed and validated using the measurement data. The
measurement results could also provide physical layer parameters for network sim-
ulators such as those developed in [5]. Furthermore, we analyze the performance
of the investigated scenarios in terms of channel capacity and outage probability
and present the results.

The rest of the paper is organized as follows: Section 2 describes the measure-
ment campaign, presenting the body worn transceivers used and the investigated
scenarios. Experimental data analysis are discussed in Section 3, followed by sim-
ulation model and its validation in Section 4. Performance analysis is presented in
Section 5, Section 6 concludes the paper.

2 Measurement Campaign
The BBWN was implemented using one transmitting and one receiving node at-
tached to the upper arm of two adult males of height 1.80 m and mass 80 kg (Sub-
ject A) and 1.85 m and mass 75 kg (Subject B), respectively, using a small strip
of Velcro. The body location was chosen as it is commonly used for monitoring
devices such as mobile phones during sport activities. The experiments conducted
in this study were performed in a 500 m’ outdoor stretch, which is part of a com-
mon running and cycling route in Gjøvik, Norway. The stretch was bounded by a
road on one side and well-spaced industrial buildings on the other. The testbed was
a programmable radio transceiver with non-volatile data storage, small enough to
be attached on the test subjects (see Figure 1).

It is comprised of a radio transceiver, antenna, microcontroller, microSD memory
card and battery. The radio transceiver is CC2500 from Texas Instruments [9].
The nodes use Wurth Electronik Group’s omni-directional chip antenna with a
low profile, which is a typical example of antennas to be used in body-mounted
transceivers. The device was set to transmit a packet every 4 ms with a constant
transmission power of 1 dBm and carrier frequency of 2.425 GHz. This sampling
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Figure 1: Wearable radio transceiver at 2.4 GHz ISM band. The device is approximately
50 mm × 20 mm × 20 mm.

period is way below the estimated coherence time (e.g., 31 ms was reported in [10])
of such channels [10]. At the receiving end, the packet number together with its re-
ceived signal strength indicator (RSSI) was stored on the MicroSD memory card.
The measurement was conducted during two different activities, running at an av-
erage speed of 3.33 m/s, and cycling at an average speed of 5 m/s for 500 m. With
these conditions, at least 25 kilo-samples for each data set were obtained, which
is enough samples for statistical analysis. In each activity, the subjects tried to
maintain a separation distance of 1 m between each other. Two different scenarios,
which could give an overall representation of the channel dynamics existing in
these kind of activities, as shown in Figure 2, were considered:

• Scenario 1, subject behind the other, Figure 2(a).

• Scenario 2, subject beside the other, Figure 2(b).

3 Measurement Results and Analysis
A total of four data sets (two scenarios for each, running and cycling) were col-
lected and analyzed separately. The data set were normalized to their correspond-
ing mean values before they were processed. The data accuracy is limited by the
sampling of the RSSI every 4 ms with step size of 0.5 dB. In this section, the time
and frequency dynamic characteristics of the measurement results are presented
using the time series, auto-correlation functions (ACF) and power spectral density
(PSD).
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(a)

(b)

Figure 2: Investigated scenarios of the BBWN measurement campaign. Activities in-
volved were running and cycling. (a) Scenario 1, subject behind the other; (b) Scenario
2, subject beside the other. The nodes are attached to the side of the upper arms with a
radiation pattern away from the body.
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3.1 The Time Series

In body-to-body communications, it is hard to categorize the communication link
as LOS or NLOS, but more as a periodic transition between the two states. The
periodicity depends on the dynamics involved with the specific activity, related to
the movements of the body parts and posture changes [11] of the subjects involved.
Our collected data has shown that there is a periodic fluctuation of received signal
power regardless of the scenario or activity involved. Even when the arms where
the transceivers are attached appear to be stationary as in cycling activity, the peri-
odic movement of the body as the subject pedals gives a similar effect. This un-
derlines the significance of the movement of the body in BBWN channels. Figure
3 shows the measured results for Scenario 1, where the periodicity is seen in both
running and cycling activities, in which running shows sharper transitions due to
movements of the arms. Similar observations are seen in Scenario 2 performed in
this measurement campaign. Other contributing factors in the channel properties
are the changes in the local environment, and the relative position of the subjects
as they perform their activities. This leads to a large scale fading observed by the
change in local mean as shown in Figure 4. The local mean was calculated using
a sliding window with length of 750 samples, corresponding to 3 s (approximately
three cycles of body motion).

3.2 The Auto-correlation Function

One method of characterizing the periodicity in a fading signal envelope is to
calculate the auto-correlation function (ACF) of the signal. The ACF provides
a useful measure of the degree of time dependency among the observations of sta-
tionary signals. For real discrete sampled data x(n), the empirical ACF is given
as [12, 13]:

rxx(τ) =

N−τ∑
n=1

(x(n)− µ)(x(n− τ)− µ), (1)

where τ is the time delay, N is the length and µ is the mean of the sampled data.
The correlation was performed over the entire data sample, and was normalized
using rxx(0) to give ρxx(τ). Figure 5 shows plots of the normalized ACF ρxx(τ),
for lags of up to 3 s (τ = 750 samples). It can be observed that the ACFs resemble
exponentially decreasing sinusoids with an approximately constant period. For
running activity, the period is consistent with the oscillatory movement of the up-
per arms where the transceivers are attached, and was found to be approximately
0.7 s. For the case of cycling activity, where there is no backward and forward
movement of the upper arm, there still exists a minor periodic movement from
leaning and tilting of the body as the subjects pedal the bicycles. This movement
is comparatively smaller, and hence can only dominate the ACF in the presence of
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(a)

(b)

Figure 3: Example of measured time series collected in Scenario 1, (subject behind the
other). (a) running; (b) cycling.
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(a)

(b)

Figure 4: Example of measured time series collected in Scenario 2, (subject beside the
other). (a) running; (b) cycling.
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Figure 5: The auto-correlation function of all measured scenarios with a delay of up to
three seconds.

Table 1: Coherence Time: Time Before Auto-correlation Crosses the Value of 0.7

Coherence time (ms)
Scenario Running Cycling
Scenario 1 48 80
Scenario 2 48 92

a permanent LOS condition. In the absence of permanent LOS, such as in Scen-
ario 2 (subject beside the other), other factors such as change in the surrounding
environment and subjects’ relative positions start to dominate.

Another important piece of information that can be deduced from the figures de-
picting ACFs is the channel coherence time TC . It is used to describe the time-
varying nature of the channel caused by relative motion between the transceivers,
and characterizes the frequency selectivity of the channel in time domain. It gives
us the lower limit on the transmission rate for the channel not to cause distortion
due to motion. It can be defined as the time lag for which the channel correlation
coefficient remains above 0.7 [13]. The channel coherence time TC for each scen-
ario and activity are given in Table 1. When the subjects’ motion dominates (e.g.,
running all scenarios), we observe smaller coherence times. The largest coherent
time was 92 ms observed in Scenario 2 (subject beside the other) of cycling.
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3.3 The Power Spectral Density

Another method of characterizing dynamic channels is by observing their power
spectral density (PSD). The PSD provides useful information on the frequency
composition of the signal. It describes how the power of the signal is distributed
over the frequency range. Figures 3.14(a) and 3.14(b) show the PSD for running
activity and cycling activities, respectively. We can observe that there is a strong
spectral components with high power at 0 Hz followed by other components at
higher frequencies in both activities. In addition to that, the PSD tends to decrease
exponentially in the logarithmic scale. This lowpass characteristic of the spectrum
is consistent with a radio channel having moving scatterers [14], and has been ob-
served in on-body WBAN [15]. As for the case of cycling activity (see Figure 7),
the PSD tends to settle between 20 and 50 Hz before it start to decrease again, res-
ulting in a local turning point at around 50 Hz. This phenomenon can be explained
by the presence of the off-body scatterer (bicycle) in the cycling activity, which
was absent in the running activity. Similar effects of off-body scatterers have been
observed for on-body radio channels in [16].

4 The Channel Model
It has been observed in Section 3 that the received signal power for BBWNs oscil-
lates between intervals where it is above a certain threshold, and an interval where
it is below it (see Figures 3). In addition, the oscillations can be approximated to
have a constant period depending on the activity involved. These kinds of channels
can be represented using the two-state semi-Markov model (TSSMM) as done in
land mobile satellite links [17, 18]. In this section, a TSSMM for BBWN channels
under various running and cycling scenarios is developed.

We start the modeling process by obtaining the appropriate type of amplitude dis-
tribution for the ’good’ state Dg, representing an interval in which the received
signal is above the local mean, and for the ’bad’ states Db, representing an interval
in which the received signal is below the local mean. For simplicity, the choice
was restricted to the use of same type of distribution for both states. The distri-
bution was determined by obtaining the maximum likelihood (ML) estimates of
the measured received signal amplitudes of the two states for Gamma, Lognormal,
Nakagami-m, Rayleigh, Rician, and Weibull distributions, and comparing their
total negative-log-likelihood. The distribution which gave the largest value of the
total negative-log-likelihood was chosen as the best representation of the fading
distributions of the two states [19]. It should be noted though that only Scenario
1 (subject behind the other) of cycling activity experience regular line of sight and
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(a)

(b)

Figure 6: The PSD of running activity. (a) Scenario 1; (b) Scenario 2.
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(a)

(b)

Figure 7: The PSD of cycling activity. (a) Scenario 1; (b) Scenario 2.
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hence Nakagami-m given by

f(x|m,ω) =
2mm

ωmΓ(m)
x2m−1e−

mx2

ω (2)

gave the best representation of the fading distributions for the two states in that
scenario. As the LOS path was subjected to shadowing in the other scenarios,
Lognormal distribution given by

f(x|µ, σ) =
1

xσ
√

2π
e−

(ln x−µ)2

2σ2 (3)

gave the best representation of the fading distributions for the two states instead.

To obtain the time period of each state, we use the obtained ACF shown in Figure
5. From the ACF, one can determine the total period of the two states, which is
equal to the oscillation period of the ACF. The ratio of the time period of each state
can then be obtained by using the ratio between the samples present in each state.
The resulting state periods obtained, Tg and Tb, control the time spent in each
state as the state machine alternates between the two states. The simulation model
also included the shadowing and fading effects caused by the change in the sur-
rounding environment as well as the changes in the relative position between the
subjects (see Figures 4). Since these changes are relatively slow, they are normally
considered as large scale fading effects and are modelled using Lognormal distri-
bution [20, 21]. The parameters of the distribution were determined by performing
ML from the samples of the local mean.

Lastly, to ensure the presence of the right frequency composition, the simulated
envelope has to pass through an appropriate filter. The PSD of the measured data
shown in Figures 6 and 7 can in general be modeled using a lowpass filter. For
the case of running activity, where the PSD decreases exponentially in logarithmic
scale (see Figure 6), a first-order Butterworth filter with cutoff frequency around
10 Hz gives a good approximation. For the case of cycling activity, the PSD tend
to settle between 20 and 50 Hz before it start decreasing again (see Figure 7).
This motivated the use of a third-order Butterworth filter instead, with cutoff fre-
quency around the turning point (50 Hz). Figure 8 summarizes the simulation
model for BBWN channels during running and cycling, and the corresponding
parameters used in the simulation are given in Tables 2 and 3. In the simulation
model, samples of good and bad states are generated from the corresponding Dg

and Db distributions for the specified Tg and Tb periods of time respectively. The
outputs are then multiplied by L(t), which is the large-scale fading component.
The time series is then passed through the lowpass filter with appropriate cutoff
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Figure 8: Channel simulator for BBWNs during running and cycling. L(t) is the compon-
ent of the large scale fading, Tg and Tb are the period of good and bad states, respectively.

Table 2: Parameters Used for Simulation of Running Activity

Parameters Scenario 1 Scenario 2
Good Lognormal Lognormal
distribution, Dg µ = 0.54, σ = 0.61 µ = 1.01, σ = 0.16

Bad Lognormal Lognormal
distribution, Db µ = −1.72, σ = 1.32 µ = −1.42, σ = 0.93

Large-scale Lognormal Lognormal
distribution, L µ = −0.23, σ = 0.26 µ = −0.29, σ = 0.26

Good period, Tg 312 ms 256 ms
Bad period, Tb 392 ms 432 ms
Filter order First First
Cutoff frequency, fc 8 Hz 15 Hz

frequency for spectrum shaping. The output from the simulator is a signal envel-
ope that incorporates the overall fading characteristics of body-to-body channels
under sporting activities.

To validate the proposed model, TSSMM channel simulations were performed us-
ing parameters given in Tables 2 and 3, and the first and second order statistics
of the received signal power were calculated from the simulation results. The
resulting statistics were then compared with the statistics obtained from the meas-
urement data. We start the comparison with the cumulative distribution function
(CDF), which is the probability of a signal being below a certain value. This in-
formation is commonly used in performance evaluation of the channel with regard
to the channel capacity and outage probability. Figure 9 shows a good agreement
between the measurement results, and the proposed simulation model results for all
scenarios and activities. For second order statistics, the level crossing rate (LCR)
and the average fade duration (AFD) were used for comparison. These statist-
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Table 3: Parameters Used for Simulation of Cycling Activity

Parameter Scenario 1 Scenario 2
Good Nakagami-m Lognormal
distribution, Dg m = 5.5, ω = 1.99 µ = 0.29, σ = 0.04

Bad Nakagami-m Lognormal
distribution, Db m = 1.79, ω = 0.23 µ = −0.59, σ = 0.73

Large-scale Lognormal Lognormal
distribution, L µ = −0.05, σ = 0.15 µ = −0.14, σ = 0.3

Good period, Tg 436 ms 376 ms
Bad period, Tb 460 ms 392 ms
Filter order Third Third
Cutoff frequency, fc 45 Hz 50 Hz

Figure 9: Comparison of CDF of the measurement results, and the developed simulated
model results.
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Figure 10: Comparison of LCR of the measurement results, and the developed simulated
model results.

ics are important in comparing the time-varying properties of a channel, as they
quantify how often the signal crosses a certain threshold and how long it stays
below it. Figures 10 and 11 show the comparison of the LCR and AFD of the
received signal normalized to their root mean square (RMS) values. We observe
a good agreement between the measurement results and the developed simulation
model results.

5 Performance Analysis
In this section, the TSSMM simulation model of Section 4 is utilized to con-
duct performance analysis of BBWNs. The analysis is achieved by evaluating
the network performance measurement parameters for the two scenarios and the
two activities, in terms of channel capacity and outage probability.

5.1 Channel Capacity

Channel capacity is the maximum rate at which information can be transmitted
reliably over a communication channel. Normalized to the bandwidth, it can be
expressed in bps/Hz as [22, 23]

CN = log2(1 + SNR), (4)
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(a)

(b)

Figure 11: Comparison of AFD of the measurement results, and the developed simulated
model results.(a) running; (b) cycling.
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Table 4: Parameters Used in Performance Analysis Simulations

Parameter Value
Average received power (P r) [4 16 64] pW
Boltzmann constant (k) 1.38× 10−23 JK−1

Temperature in Kelvin (T ) 290 K
Noise bandwidth (B) 300 kHz
Receiver noise figure (Nf ) 6.3

where SNR is the received signal to noise ratio that can be expressed as

SNR =
Pr

kTBNf
. (5)

Here, Pr is the received power, k is the Boltzmann constant, T is the temperat-
ure in Kelvin, B is the signal bandwidth in Hz and Nf is the receiver linear noise
figure. Due to the time-varying fading effects of the received signal power Pr in
BBWNs, the SNR in (4) varies accordingly, making the channel capacity a ran-
dom variable. Using the CDFs obtained in Section 4 from the simulation model
as well as the measured results, the capacity of the channel in different scenarios
and activities were simulated and analyzed. Parameters used to calculate the noise
power are given in Table 4. Figure 12 shows the CDFs of the instantaneous chan-
nel capacity for different average received power P r. Considering the running
activity in Figure 12(a), it can be observed that Scenario 1 (subject behind the
other) gives the best instantaneous channel capacity most of the time. However, it
is interesting to notice that, with equal average received power, the instantaneous
channel capacity of the given two possible scenarios is almost equal for more than
25% of the time. This is indicated by the convergence of the two curves in their
upper part. With relatively stable transceivers achievable during cycling activity,
the instantaneous channel capacities obtained has steeper slopes as seen in Figure
12(b). Here, Scenario 1 gives the best instantaneous channel capacity most of the
time due to the presence of the LOS component, while Scenario 2 (subject beside
the other) gives the worst due to its absence.

The effect of the stability of the arms and hence the transceivers can be observed
further in Figure 13, where CDFs of instantaneous channel capacity for all scen-
arios are plotted together. It can be observed that, with similar average received
power, cycling where the arm is more stable, outperform running by having larger
values in similar scenarios. This is regardless of the fact that the velocity of the
subjects during cycling is more than 50% larger than that of running.
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(a)

(b)

Figure 12: CDFs of channel capacity C for different average received power P r. (a)
Running. (b) Cycling.
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Figure 13: CDFs of channel capacity C for all scenarios during running and cycling
activities with average received power P r = 16 pW.

5.2 Outage Probability

The outage probability pout is defined as the probability that a receiver will not
be able to decode the transmitted information correctly. This happens when the
received signal has a SNR below a threshold value SNR0, required for correct
decoding, and can be expressed as [23]

pout = Pr(SNR ≤ SNR0). (6)

The threshold value SNR0, depends on the sensitivity of the receiver Sr, and can
be expressed as

SNR0 =
Sr

kTBNf
. (7)

As in channel capacity, the SNR in (6) varies with the received signal power Pr,
making the outage probability pout, a random variable. Again, we use the CDFs
obtained in Section 4 from the simulation model as well as the measured results,
and values in Table 4 to simulate and analyze the outage probability, relative to the
receiver sensitivity Sr.

Figure 14 shows outage probabilities for different average received powers (P r) in
relation to the receiver sensitivity. Considering the running activity in Figure 14a,
we can observe the same trend as in instantaneous channel capacity with Scenario 1
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(a)

(b)

Figure 14: Outage probabilities pout relative to receiver sensitivity Sr for different average
received power P r. (a) running; (b) cycling.
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Figure 15: Outage probabilities pout in relation to the receiver sensitivity Sr for all scen-
arios during running and cycling with average received power P r = 16 pW.

(subject behind the other) having lower outage probability than Scenario 2 (subject
beside the other), with the same average received power and receiver sensitivity.
This is the same for the cycling activity in which Scenario 1 (subject behind the
other) has the lowest outage probability under the same conditions, Figure 14b. As
with channel capacity, the effect of the stability of the arms on the performance
of the channels is seen in Figure 15, where the outage probabilities of the two
activities are plotted together. Cycling shows lower outage probabilities for all
scenarios under the same receiver sensitivity.

6 Conclusion
This paper presents measurement results of body-to-body communication chan-
nels during sport activities. More specifically, the activities involved were running
and cycling in an outdoor environment, in which two possible scenarios, which
could represent the overall dynamics involved in these kinds of activities, were
considered. Due to the on-off nature of the channels in hand, a TSSMM approach
was used to develop a simulation model that was validated using the measured data
in terms of first and second order statistics, showing good agreement.

The CDFs obtained from the simulation model, as well as the measured results,
were then used to conduct performance analysis of the channels in terms of chan-
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nel capacity and outage probability. Cycling activities showed better performance
than running activities for having higher channel capacity and lower outage prob-
ability regardless of the speed of cycling being significantly higher. This is mainly
because, during cycling, the arms where the transceivers were attached are more
stable. The positive effect of the stability of the arms was also seen in LCR in
which cycling showed a smaller fading variation compared to running. In general,
these kinds of measurement campaigns and the analysis performed in this study are
important in characterizing the transmission channel in hand. They give an aspect
to the engineers on the challenges involved in communicating through such chan-
nels, and assist in deciding the appropriate solution. Furthermore, the performance
analysis completed gives insight, which is important for system design.
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Paper IV

The Application of Lognormal
Mixture Shadowing Model for
B2B Channels

Michael Cheffena and Marshed Mohamed

Abstract
In this article, a Lognormal mixture shadowing model based on a cluster concept
is utilized in the modeling of body-to-body (B2B) channels for different running
and cycling activities. The mixture model addresses the inaccuracies observed
using a unimodal distribution that may not accurately represent the measurement
dataset. Parameters of the mixture model are estimated using the expectation-
maximization (EM) algorithm. The accuracy of the proposed mixture model is
compared to other commonly utilized unimodal distributions showing significant
improvement in representing the empirical dataset. The measured data, as well
as the developed model, can be used for accurate planning and deployments of
wireless B2B networks for use in various sporting and other related activities.

Index Terms
Body-to-body (B2B) communications, cycling, fading distributions, Lognormal
mixture shadowing, running, sport, wireless body area networks (WBAN), wire-
less networks.
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1 Introduction
In recent years, there has been a growing interest on body-centric wireless com-
munications because of their great potential applications in various domains such
as health, entertainment, sports, or any other application that requires transmis-
sion of data from the human body [1]. Among other communication scenarios, the
transmission could involve between a device mounted on one person to a device
situated on another person in a different physical location. This kind of commu-
nication is known as B2B communications and is subject to time-varying shadow-
ing effects caused by the movements of the human bodies at both the ends of the
communication link [2]. The successful design of such networks requires a good
understanding of the propagation impairments affecting the wireless link.

The wave propagation characteristics of on-body and off-body channels have been
extensively studied in the past; see [3] and [4] for review. However, body-to-
body (B2B) propagation channels have not been extensively studied. Measurement
data at 2.45 GHz was utilized in [2] to assess the impact of typical human body
movements on the signal characteristics of outdoor B2B channels using flexible
patch antennas. A modified log-distance path loss model that accounts for body
shadowing and signal fading was proposed. Channel model characterization for
indoor B2B scenarios based on 2.45 GHz measurements was reported in [5]. The
shadowing and small-scale fading effects for line-of-sight (LOS) and non-LOS
conditions were evaluated. Similar studies were also conducted in [6–8].

For B2B wireless networks, shadowing is the dominant propagation impairment
causing partial or total blockage of the received signal due to environmental factors,
as well as due to the random (or periodic) movements of the body components at
both ends of the communication link. Existing studies utilize a unimodal distribu-
tion (usually a Lognormal or Gamma distribution) to characterize the shadowing
effects of B2B channels. However, such distributions may not be based on the ac-
tual underlying physical propagation process of such channels [9]. The Lognormal
distribution is a widely accepted physical-based model for modeling shadowing
effects in wireless links [10]. However, our histograms of measurement data for
different sports activity propagation scenarios of B2B channels show mixture and
skewed distribution curves, as also observed in other similar studies such as [5]
and [11]. This may suggest the existence of distinct scattering clusters for these
types of channels that can be modeled utilizing mixture distributions. In addition
to environmental effects, the movements of the different body components of the
involved subjects at both the ends of the communication link might contribute to
distinct scattering clusters. This kind of clustering behavior cannot be accurately
modeled using unimodal distributions.
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Fig. 1: Scenario 1: measurements for B2B wireless network under running and cycling
activities where one subject is behind the other [12].

In this article, a Lognormal mixture shadowing was used in modeling of B2B
propagation channels under different sporting activities. The letter aims to under-
line the potential improvement achieved by the model, over the commonly used
unimodal distribution approach, in representing B2B channels. The rest of the
letter is organized as follows. Section II describes the measurement campaign,
presenting the practical sensor nodes used as well as the investigated B2B propaga-
tion scenarios. Measurement data analysis and the proposed Lognormal mixture
shadowing model is discussed in Section III. Conclusions are given in Section IV.

2 Measurement Campaign
The measurement campaign was conducted utilizing practical sensor nodes for
characterizing the B2B propagation channel under various outdoor sporting activ-
ities. A transmitting and a receiving node were attached (using a small strip of
Velcro) to the upper arm of two adult males of height 1.80 m and mass 80 kg (sub-
ject A), and 1.85 m height and 75 kg mass (subject B). Two different scenarios for
running (average speed of 3.33 m/s) and cycling (average speed of 5 m/s) activities
were considered. Scenario 1) subjects behind each other as shown in Fig. 1, and
Scenario 2) subjects beside each other as seen in Fig. 2. The experiment were
conducted in 500 meter outdoor stretch, which is a common running and cycling
route in Gjøvik, Norway. In all activities, the subjects tried to maintain a separation
distance of 1 meter between them.

The test-bed is a programmable radio transceiver (CC2500) from Texas Instru-
ments. The device was set to transmit a packet every 4 ms with constant transmis-
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Fig. 2: Scenario 2: measurements for B2B wireless network under running and cycling
activities where subjects are beside each other [12].

sion power of 1 dBm at a carrier frequency of 2.425 GHz. At the receiving end,
the packet number together with its received signal strength indicator (RSSI) was
stored on the MicroSD memory card. The nodes use horizontal polarized Wurth
Electronik 7488910245 chip antenna. At least 25 kilo-samples for each scenario
were collected, which is high enough for conducting statistical analyses. Details
of the measurement campaign can be found in [12].

3 Measurement Results and Analysis

3.1 Lognormal Mixture Shadowing

The received signal power at a given separation distance, d, from the transmitter
that is subject to shadowing is defined in decibel scale as [10]

PRX(d) = PTX − 10n log (d) +Xσ (1)

where PTX is the transmitted power, n is the path loss exponent, which shows
the rate at which the received signal power decreases with distance. Parameter
Xσ ∼ N (0, σ2) , denotes the shadowing fading term with Normal distribution
random variable (i.e., Lognormal distribution in linear scale) with zero mean and
σ2 variance. Defining, Xσ = ln(Yσ), the Lognormal shadow fading implies Yσ ∼
LN (0, σ2) [13].
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The probability density function (PDF) of Lognormal mixture distributions can be
described as

Y ∼ fY (y) =

∞∑
k=1

wkLN (µk, σ
2
k) (2)

where µk and σ2k are the distribution parameters of the kth mixture component (for
k = 1, 2, ...), parameterwk is weighting proportion of the kth component such that∑∞

k=1wk = 1, and the Lognormal kernel PDF of the kth mixture is then given by

LN (µk, σ
2
k) =

1

y
√

2πσ2k

exp

[
− (ln y − µk)2

2σ2k

]
(3)

In a non-parametric estimation, the use of symmetric kernels is preferred as they
provide a convergent expansion according to the Mercer’s theorem [14]. The ex-
pression in (3) is not symmetric, however, since the logarithm of each observation
can be described as xi = ln(yi) (for i = 1, 2, ..., N , where N is the total sample
number), a univariate Gaussian distribution with mean µk and variance σ2k can be
utilized. Thus, all samples of xi can be modeled as a mixture of Gaussian distri-
butions as

X ∼ fX(x) =

∞∑
k=1

wkN (µk, σ
2
k) (4)

where the corresponding kernel PDF is given by

N (µk, σ
2
k) =

1√
2πσ2k

exp

[
− (x− µk)2

2σ2k

]
(5)

For a given shadow fading condition, an estimate of the actual PDF (with a meas-
urable error) can be made utilizing a finite number of K Gaussian kernels and the
resulting Lognormal mixture can be expressed as [13]

f̂Y (y) =

K∑
k=1

wk
1

y
√

2πσ2k

exp

[
− (ln y − µk)2

2σ2k

]
(6)

In this work, the value of K was set to 4, as higher values did not bring further
improvement in the results.
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3.2 Results and comparisons

Figs. 3 to 6 show the measured PDFs along with the estimated mixture of Lognor-
mal distribution (6) with K = 4 (Lognormal-4). The expectation-maximization
(EM) algorithm [13] was utilized to estimate the mixture model parameters and are
given in Tables 1 and 2. Also shown are comparisons with unimodal distributions
(Lognormal, Gamma, and Nakagami). We can observe that the measured PDFs
(in all scenarios) exhibit mixture and skewed distribution curves especially those
of running activity as shown in Fig. 3 and Fig. 5. Such characteristics has also
been observed in other similar studies e.g., [5, 11]. With relatively stable trans-
ceivers achievable during cycling activity, the distinction between clusters is less
pronounced as seen in Fig. 4 and Fig. 6. Tables 1 and 2 also show the mean error,
standard deviation of error, and the root mean square error of the corresponding
distributions compared to measured PDFs. The weighted mean relative difference
(WMRD) expressed as a percentage was also included for easier comparison

WMRD =

∑n
t=1 |Ft −At|∑n
t=1(Ft +At)

× 100 (7)

where At is the measured PDF, Ft is the estimated PDF, t is the fitted point and
n is the total number of fitted points. In all cases, we can observe that the best
estimation is achieved utilizing the mixture model. Naturally, the mixture model
will give better results due to a large number of involved parameters. However, the
improvements achieved here, especially for the case of running activity is signific-
antly large and hence, suggest the existence of distinct scattering clusters for B2B
propagation channels where in addition to the environment, the movements of the
different body components of each person at both ends of the communication link
contribute to distinct scattering clusters. Thus, utilizing a unimodal distribution
may not describe the underlying propagation process or give a good approxim-
ation of the channel in the B2B communication under sporting or other related
activities.
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Fig. 3: Measured histogram and estimated PDFs for Scenario 1 running.
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Fig. 4: Measured histogram and estimated PDFs for Scenario 1 cycling.



142 The Application of Lognormal Mixture Shadowing Model for B2B Channels

-20 -15 -10 -5 0 5 10

Received signal relative to RMS signal level (dB)

0

0.01

0.02

0.03

0.04

0.05

0.06
D

e
n
s
it
y

Data

Lognormal-4

Lognormal

Gamma

Nakagami

Fig. 5: Measured histogram and estimated PDFs for Scenario 2 running.
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Fig. 6: Measured histogram and estimated PDFs for Scenario 2 cycling.
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4 Conclusions
B2B wireless networks can support applications in various domains such as health,
entertainment, sports, or any other application that requires the exchange of data
among different persons. The design and reliable operations of such networks
require accurate characterization of the propagation channel utilizing practical
sensor devices. Inaccurate channel models may lead to poor decision making in the
deployment of such networks resulting in unreliable communications. Inaccurate
models may also result in poor energy efficiency of the wireless network.

In this article, the shadowing effects of B2B communications under various sport-
ing activities are investigated using extensive measurements at 2.425 GHz. Run-
ning and cycling activities where the subjects are behind and beside each other
are considered. Our histograms of measurement data for the different propaga-
tion scenarios show mixture and skewed distribution curves, as also observed in
other reported similar studies. This suggests the existence of distinct scattering
clusters for B2B propagation channels where in addition to the environment, the
movements of the body components of the persons involved at both ends of the
communication link contribute to distinct scattering clusters. A Lognormal mix-
ture shadowing model for B2B channels under different running and cycling activ-
ities based on a cluster concept is proposed. The mixture model addresses the
inaccuracies observed using a unimodal distribution that may not accurately rep-
resent the measurement dataset. Parameters of the mixture model are estimated
using the EM algorithm. The accuracy of the proposed model is compared to
other commonly utilized unimodal distributions showing significant improvement
in representing the empirical dataset.

The measured data, as well as the developed Lognormal mixture shadowing model,
can be used for accurate planning and deployments of wireless B2B networks for
use in various sporting and other related activities. Future works include conduct-
ing measurement campaign and analysis for varying distances between subjects.
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Paper V

Received Signal Strength Based
Gait Authentication

Marshed Mohamed and Michael Cheffena

Abstract
Expansion of wireless body area networks (WBANs) applications such as health-
care, m-banking, and others has lead to vulnerability of privacy and personal data.
An effective and unobtrusive natural method of authentication is therefore a ne-
cessity in such applications. Accelerometer-based gait recognition has become an
attractive solution, however, continuous sampling of accelerometer data reduces
the battery life of wearables. This paper investigates the usage of received signal
strength indicator (RSSI) as a source of gait recognition. Unlike the accelerometer-
based method, the RSSI approach does not require additional sensors (hardware) or
sampling of them, but uses the RSSI values already available in all radio devices.
Three radio channel features namely, the time series, auto-correlation function,
and level crossing rate were extracted from unique signature of the RSSI in rela-
tion to the corresponding subject. The extracted features were then used together
with 4 different classification learners namely decision tree, support vector ma-
chine, k-nearest neighbours, and artificial neural network, to evaluate the method.
The best performance was achieved utilizing artificial neural network with 95%
accuracy when the features were extracted from 1 on-body radio channel (right
wrist to waist), and 98% when the features were extracted from 2 on-body radio
channels (right wrist to waist, and left wrist to waist). The developed RSSI-based
gait authentication approach can complement high-level authentication methods
for increased privacy and security, without additional hardware, or high energy
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consumption existing in accelerometer based solutions.

Keywords
Wireless body area networks, physical layer security, wireless channel character-
istics, biometrics authentication, human gait.

1 Introduction
THE advances in microelectronics and wireless communications have led to the
availability of lightweight devices with wireless communication capabilities that
can be used to monitor the human body functions and its surrounding environ-
ment. Networks made of such devices are known as Wireless Body Area Net-
works (WBANs) and have found significant applications in health monitoring [1].
In such applications, WBAN sensors collect vital physiological parameters of a
subject, which serve as a reference in medical diagnosis, treatment and health in-
dicator in industry service as well. Due to the sensitivity of the data involved,
security and privacy measures are vital to the success of the WBANs [2].

Due to the difficulty for biometrics counterfeit, biometrics authentication has been
proposed as a solution to improve security in the communication of such personal
data [3]. One of the biometric traits which is attractive in health monitoring ap-
plications security is gait. Studies in medicine and psychology have shown that
each individual has a distinctive walking style that allows his recognition. Unlike
other biometrics traits such as voice, fingerprints, and facial recognition, gait is
noninvasive and can be measured without subject intervention. This makes it more
user-friendly especially in continuous identity re-verification [4].

Although the first gait recognition systems used video, the current trend is to use
accelerometers included in wearables or portable smart devices [5]. In [6] a real-
time gait recognition system using the wavelet transform was presented. The sim-
ulation results showed that the proposed method has reliable recognition accuracy
both in the real-time and in the long-term cases. Machine learning algorithms were
used in [7] to train the classifiers and authenticate the subjects. More specifically
their work concentrates on methods of segmentation of the accelerometer data and
compares between the fixed length and fixed cycle approach in which fixed length
showed better results. Further research was conducted in [8] on the influence of
walking speeds and surfaces on gait recognition. Different parameter settings in
dynamic time warping were evaluated to optimize the cycle extraction process.
Since most methods on accelerometer-based gait recognition suffer from cycle de-
tection failures, [4] proposed a novel algorithm which uses a multiscale signature
point extraction method, and has shown significant improvements.
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accelerometer-based gait recognition systems have a lot of positive traits, however,
they suffer from high energy consumption due to continuous accelerometer data
sampling. Researcher in [9] tried to solve this problem by proposing a kinetic
energy harvesting device and used its output voltage signal as the source of gait re-
cognition. In [10] capacitive coupled human body communication was presented
as a biometric authentication method instead. The method requires S-parameters
over wide range of frequencies to be able to function. With the use of current
available devices, [11–13] attempts to exploit propagation characteristics or wire-
less channel to obtain behavioral fingerprint and use it in authentication. They
make use of the channel state information (CSI) of Wi-Fi signal to extract features
that identify individuals by their intrinsic body movement during walking without
attachments to the body. It requires a multiple antenna transmitter and receiver
fixed in a certain environment.

In this work a received signal strength indicator (RSSI) based gait authentica-
tion method is proposed. Arm movement during walking has been chosen as the
gait identification feature as the body mounted sensors on the arm wrists (smart-
watches) are already popular. The method does not require hardware upgrades
as it only relies on regular communication between body mounted sensors (e.g.
smartwatch) and body mounted access node (e.g. smartphone). This makes the
system mobile and not bounded to a specific location, contrary to Wi-Fi-based gait
recognition systems. Unlike accelerometer-based gait recognition systems, it does
not require sampling of sensor data, making it more energy efficient. Moreover, it
does not require any additional packet transmission but instead, make use of the
RSSI values available in regular communications.

The paper begins in Section II by discussing the radio features that are applicable
in gait detection. In Section III, 4 different classification learners are presented for
use in RSSI based gait authentication. Experimental data and performance analysis
is presented in Section IV. Finally, the conclusion is given in Section V.

2 Gait Radio Features
The most common architecture of WBANs consist of body mounted sensors known
as nodes, and an access node such as smartphone also mounted on the body, known
as central coordinator as shown in Fig. 1 [14]. The nodes have sensors that measure
various physiological conditions, or other types of data and transmit it wirelessly
to the coordinator. The coordinator acts as an access point by collecting data from
the nodes, and transmit them to the data center through an off-body node acting
as a communication access point. It is in the radio channel between the nodes
and the coordinator that the gait information is available and could be extracted,
processed and used for authentication by the coordinator. If processing power is a
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Fig. 1: Example of WBAN with 3 nodes and 1 coordinator. The off-body node act as
communication access point.

concern at the coordinator, the raw gait information could simply be forwarded to
the server together with the rest of the data, and the authentication process could be
performed there. This kind of authentication will ensure that the data uploaded to
the server are indeed from the intended subject and will prevent impersonation at-
tacks. It could be used together with other authentication methods, to add another
security layer for applications in which one-time validation of the user’s identity is
insufficient. Since it can be measured without subject intervention, it could be used
as a continuous authentication method and set to trigger other security measures
whenever it fails.

The gait information available in the radio channels can be extracted from the
measurement of the power present in the received signal. This measurement is
already being conducted by wireless radio transceivers and is indicated by their
RSSI values [15]. This gives the RSSI method an edge over the accelerometer-
based systems, which needs sampling of sensor data specifically for gait recog-
nition purpose. The most commonly available accelerometers have been shown
to consume current of more than 130µA [16] as shown in Fig 2, and that the
sampling process consumes around 3 mW for low power processors [9] and 370
mW for smart phones [17]. The proposed method eliminates the sensor, and all
the power consumption related to it by relying on measurement which are already
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Fig. 2: Mean current consummation of common accelerometers connected to 3.3 V power
supply together with typical values given in their respective data sheets [16].

conducted by transceivers and are available for processing. This means the power
consumption on the sensor node (e.g., smartwatch) due to RSSI based method is
zero. The RSSI values are used to obtain radio features such as variation of power
received with time (time series), the measure of degree of time dependency (auto-
correlation function), and how often does the signal crosses a certain threshold
(level crossing rate). It is through these radio features that one subject can be
differentiated from the other. The considered radio features are discussed in the
following.

2.1 The Time Series

It has been shown that the power received in a WBANs is related to the dynamics
involved with the specific activity of the subject . For the case of walking, the
power received is periodic to the relative movement of the body parts where the
nodes are attached to. The period of the signal tends to correspond to the period of
the limb swinging, and the amplitude variation depends on the size of the limbs,
distance from its rest position, and the amount of shadowing the body provide
during walking [18]. This is normally different enough from one person to another
to a point that it could be used for individual identification.

Fig. 3 shows the time series of the received signal power of 3 subjects during walk-
ing for the duration of 3 seconds. The transceivers were placed at the right wrist
and the right side of the waist, and the received signal power was smoothed using
a sliding window of length of 0.15 seconds. The time series of all 3 subjects are
periodic with a period of around 1 second, consistent with the oscillatory move-



156 Received Signal Strength Based Gait Authentication

Fig. 3: Example of time series of the received signal power of WBANs of 3 different
subjects during walking. The transmitter was attached to the waist, and the receiver was
attached to the right wrist.

ment of the corresponding arms. However, the series also show that the received
signal power is different between the subjects and hence, the overall patterns have
enough features to distinguish them from one another. More discussions on the
measurement campaign and the subjects involved are provided in Section IV.

2.2 The Auto-Correlation Function

The Auto-correlation function (ACF) is a measure of the degree of time depend-
ency among the observations of signals. It is used to characterize the periodicity in
a fading signal envelope. For real discrete sampled data x(t), it can be calculated
using [19, 20]:

rxx(τ) =

N−τ∑
t=1

(x(t)− µ)(x(t− τ)− µ) (1)

where τ is the time delay, N is the length and µ is the mean of the sampled data.
The normalized ACF can then be obtained by using (2) to give an output with a
maximum value of 1 at τ = 0

ρxx(τ) =
rxx(τ)

rxx(0)
(2)
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Fig. 4: Example of normalized ACF of periodic signals of length of 3 periods. The ACF
of all the signals have peaks at τ = 1 of 2

3 , and at τ = 2 of 1
3

For a perfect periodic signal, the normalized ACF oscillates with its period corres-
ponding to the period of the signal. If the signal is limited to a specific number
of periods (it does not go to infinity), the envelope of the normalized ACF tends
to decay exponentially. Take for example the normalize ACF of periodic signal
limited to 3 periods will have a peak of 1 at τ = 0, a peak of 2

3 at τ = 1 period,
and a peak of 1

3 at τ = 2 periods as shown in Fig. 4.2 for sinusoid, square, and
triangle signals. These peaks values tend to decrease as the noise in the periodic
signal increase and hence can be used as an indicator of change in activity. Take
for example if a walking subject stops in the middle of sampling, the peak value at
τ = 1 period will be significantly smaller than the expected value and hence the
change in activity could be detected.

In addition to that, since the received signal power is different from one subject to
the other during walking, the normalized ACF has the potential of being different.
Fig. 5 shows the normalized ACF of the signals shown in Fig. 3. The ACF of the 3
subjects show properties of a signal composed from a number of periodic signals,
with the main envelope having a period of around 1s (0.92 s for Subject 1, 1.02 s
for Subject 2, and 0.96 s for Subject 3), consistent with the oscillatory movement
of the corresponding arms. However, the composition of these periodic signals
are different from one subject to the other, making the overall pattern of the ACF
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Fig. 5: The normalized ACF of the signals shown in Fig.3. The ACFs show properties of
periodic signals with significantly different patterns.

significantly different and hence could be used in gait recognition.

2.3 The Level Crossing Rate

Another manner of quantifying periodic signals is using the level crossing rate
(LCR), which is the measure of how often a signal crosses a certain threshold
going in a positive direction [20]. LCR represent signals in such a way that the
primary focus is on power levels and frequency of crossing them. It clearly shows
the signal range, and emphasizes the location of the high-frequency component of
the signal. Fig. 6 shows the LCR representation of the signals shown in Fig. 3.
As expected the LCR of the 3 subjects are different due to the difference in the
subjects’ gait, and the size of their bodies. The LCR shows clearly the minimum
and the maximum power level received by each subject. LCR could be too simple
as a differentiating factor on its own, however, it could have good contribution as
an additional feature.

3 Classification Learners
Four different classification learners were considered for distinguishing from the
walking pattern of one person to the other based on extracted radio features dis-
cussed in Section II. The radio features are presented by a vector with a length L,
taken from a period of 3 seconds. The vector length L, varies with the feature in
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Fig. 6: LCR representation of signals shown in Fig. 3.

hand where for time series L = 600, for ACF L = 300, and for LCR L = 60. All
the classification learners are implemented in MATLAB environment with a brief
introduction of each following in this section.

3.1 Decision Trees

Decision tree learners comprise a series of logical decisions taken at decision
nodes, in which each possible decision’s choice results in a tree branch. The tree
is terminated by the leaf nodes that denote the result of following a combination
of decisions. Data that is to be classified begin at the root node, where it is passed
through the various decisions in the tree according to the values of its features,
until it reaches a leaf node, which assigns it a predicted class [21]. To identify
which feature to split upon at the decision nodes, Gini’s diversity index was used
as a split criterion. For a data set S, Gini index G is defined as follows [22]:

G(S) = 1−
C−1∑
i=0

(si
S

)2
(3)

where C is the number of predefined classes, and si is the number of samples
belonging to class ci. The quality of a split on a feature into h subsets Sj is then
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computed as the weighted sum of the Gini indices of the resulting subsets:

Gsplit =

h−1∑
j=0

nj
n
G(Sj) (4)

where nj is the number of samples in subset Sj after splitting, and n is the total
number of samples in the given decision node. Thus, Gsplit is calculated for all
possible features, and the feature with minimum value is selected as a split point.
To limit the growth of the tree, so that the model does not get over-fitted to the
training data, the maximum number of splits was set to 100. Detailed description
of the decision tree classification learner is found in [21, 22].

3.2 Support Vector Machine

Support vector machine (SVM) is a type of machine learning algorithm in which
the classification of the outputs depend on explicit generalization, obtained from
analyses of the training data. In this algorithm, the training data items are put in a
P -dimensional space, and classification is performed by finding the hyper-planes
that differentiate the required number of classes very well. The obtained hyper-
planes are then used in the classification of test data. The hyper-planes are obtained
by maximizing functional margin which is the distances between the nearest data
point and the hyper-plane. This can be achieved by [23]:

min
u,b

H(u) =
||u||2

2
subject to cl(uT pl + b) ≥ 1

for l = 1, ..., P

(5)

where pl is the training example, cl represents the labels of the training examples,
P is the total number of features to be compared, u is the weight vector and b is
the bias of the optimal hyper-plane. The SVM can be extended to non-linear clas-
sification by the usage of kernel method to map the inputs into high-dimensional
feature space. In this work, a quadratic kernel function was used in the application
of SVM. See [23] for more details on the SVM classification learner.

3.3 K-Nearest Neighbors Classifier

k-nearest Neighbors (k-NN) algorithm is a type of machine learning algorithm in
which the classification of the output does not depend on explicit generalization,
but instead compares new problem instances with instances seen in training. More
specifically, it compares the new problem with k nearest neighbors, and assign
it to the class most common among them [24]. It is among the simplest of all
machine learning algorithms especially in its simplest form where k = 1. The
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nearest neighbors are identified by calculating the Euclidean distance d between a
training data pl and the test data ql as

d =

√√√√l=P∑
l=1

(pl − ql)2 (6)

Since (6) is dependent on how features are measured, the features values were re-
scaled so that each one contributes relatively equally to the distance formula [25].
The algorithm was implemented with k = 10, in which weight v were assigned to
the contributions of the neighbors using,

v =
1

d2
(7)

so that the nearer neighbors contribute more to the decision. A detailed description
of the k-NN classification learner is found in [24, 25].

3.4 Artificial Neural Network

An Artificial Neural Network (ANN) models the relationship between a set of
input data and the output class by the use of network of nodes known as artificial
neurons to solve learning problems. Each node takes M inputs of rm, weight
them with wm according to their importance, and then the summation is passed
on according to an activation function f(g). Mathematically the processes can be
represented by the formula [21]:

y(x) = f

(
M∑
m=1

wmrm

)
(8)

with a sigmoid activation function defined as:

f(g) =
1

1 + e−g
(9)

The nodes were grouped into 2 layers, hidden layer, and output layer. The hidden
layer processes the input data prior to reaching the output layer which does further
processing and generates a final prediction. The number of nodes in the output
layer is predetermined by the number of classes in the outcome, however, in the
hidden layer, there is no reliable rule to determine the number of nodes needed. In
this work, 25 nodes were used in the hidden layer as the addition of more nodes
in this layer did not give significant improvement in performance. The weights
wm were adjusted in the training process using scaled conjugate gradient back-
propagation algorithm. In this algorithm, the gradient of activation function is
used to determine which weight should be adjusted in order to reduce the error
between the actual and predicted class. See [21, 25] for more details on the ANN
classification learner.
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Table 1: Volunteers Details

# Gender Age Height (cm) Weight (kg)
1 Female 35 168 63
2 Female 23 174 69
3 Female 25 159 53
4 Female 29 171 66
5 Female 24 167 61
6 Male 29 180 83
7 Male 35 185 75
8 Male 25 178 67
9 Male 23 173 80
10 Male 27 168 65
11 Male 28 183 105
12 Male 26 165 66
13 Male 30 160 53
14 Male 21 175 80
15 Male 30 181 75
16 Male 26 175 83
17 Male 26 167 79
18 Male 49 178 75
19 Male 40 170 78
20 Female 60 170 75

4 Experimental Data and Analysis

4.1 Measurement Data

The experiments conducted in this study are preliminary towards the validation of
the proposed method. The dataset used to evaluate the RSSI-based gait recognition
consist of 20 healthy subjects (14 males and 6 females), with different age, height,
and weight detailed in Table 1. During the data collection phase, 3 transceivers
were attached on the participants, a transmitter on the right side of the waist rep-
resenting devices such as smartphones, and a receiver on the wrist of the right and
left arms representing devices such as smartwatches. The transceivers were at-
tached in such a way that the antennas were vertically polarized. The participants
were asked to walk at their normal speed in both outdoor and indoor environments
in order to capture the influence of different environment. The outdoor environ-
ment was a parking lot with an asphalt surface, while the indoor environment was a
cafeteria with a tiled surface. Each participant walked for approximately 4 minutes



4. Experimental Data and Analysis 163

Fig. 7: Wearable radio transceiver. The device is approximately 50 mm x 20 mm x 20
mm.

outdoors followed by 4 minutes indoors to include natural gait changes over time
and environments. The experiments were limited to single trial per subject, with
no donning/doffing of the transceivers. The transceivers (see Fig. 7) were made
using programmable radio CC2500 from Texas Instruments [26]. The transmitter
was set to transmit a packet every 5 ms with constant transmission power of 1 dBm
at the 2.425 GHz carrier frequency. The receiver was used to store the packet num-
ber together with RSSI on its MicroSD memory card. The data were later exported
from the memory card to a computer running MATLAB software for analysis.

In MATLAB, the collected data was split into segments of 3 seconds giving us a
total of 150 segments from each subject. In each segment, 3 radio channel features
(time series, ACF, and LCR) discussed in Section II were extracted. The radio
features were later used with classification learners discussed in Section III for
testing the performance of the RSSI-based gait authentication system. For the case
of time series, the signal was shifted on time axis so that all the segments have
their peaks at t = 0 as in Fig 3. Whenever ACF was used as a radio feature, an
additional process of eliminating segments with periodicity noise was used. The
process was set to eliminate any segment in which its ACF does not have a peak
greater than 0.3 at τ = 1 period.

4.2 Performance Metric Index

A reliable gait authentication algorithm has to make a decision whether the gait
measured is of the genuine user or an imposter. The following 3 success criteria
could be used to measure its performance [9].
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• True positive rate (TPR): Also know as sensitivity, is the probability that
the authentication system correctly accepts the access request from the genu-
ine users. If TP and FN represents the number of times the genuine user’s
access request is accepted and rejected respectively, then TPR can be calcu-
lated as follows

TPR =
TP

TP + FN
× 100 (10)

• True negative rate (TNR): Also known as specificity, is the probability
that the authentication system correctly rejects the access request from an
imposter. If TN and FP represents the number of times an imposter’s access
request is rejected and accepted respectively, then TNR can be calculated as
follows

TNR =
TN

TN + FP
× 100 (11)

• Recognition accuracy: It represents the percentage of correct classifica-
tions which is simply the number of true classifications (acceptance from
genuine users and rejection from imposter) over the total number of tests. It
can be calculated as follows

Accuracy =
TP + TN

TP + FN + TN + FP
× 100 (12)

In general, the system should minimize the FPs and FNs, however, greater em-
phasis could be set on minimizing FPs so that the imposter’s access request is
rejected all the times.

4.3 Results and Discussions

The objective of the analysis is to investigate which radio channel feature and
which classification learner are suitable for RSSI-based gait authentication system.
For each radio channel feature obtained from the channel between the right wrist
and the waist, the performance of each classification learner in terms of TPR, TNR,
and accuracy is evaluated independently, and in combination with each other. The
same analysis were repeated when additional radio features were extracted from
the channel between the left wrist and the waist, and used together with those from
the channel between the right wrist and the waist. From our experimental data,
150 of 3-second segments were extracted from each user, giving us a total of 2550
segments for testing. To protect the algorithm against over-fitting, a 10 folds cross-
validation method was employed. In this method, the data set is partitioned into
10 fold, in which 9 are used for training and 1 is used for validation purposes. The
training and testing process is repeated 10 times so that each of the 10 partition
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Table 2: Performance Results Using Data From One Radio Channel: Right Wrist to Waist

Radio Performance Decision Quadratic Weighted
feature metric tree SVM k-NN ANN

TPR 67% 86% 83% 68%
TS TNR 67% 88% 85% 71%

Accuracy 70% 88% 85% 74%
TPR 63% 81% 72% 85%

ACF TNR 64% 84% 77% 86%
Accuracy 66% 83% 75% 86%
TPR 57% 70% 64% 73%

LCR TNR 56% 72% 67% 74%
Accuracy 61% 74% 67% 76%
TPR 77% 92% 87% 90%

TS+ACF TNR 76% 93% 89% 91%
Accuracy 78% 93% 89% 91%
TPR 71% 89% 86% 85%

TS+LCR TNR 71% 89% 88% 85%
Accuracy 73% 89% 88% 87%
TPR 72% 88% 81% 93%

ACF+LCR TNR 72% 90% 85% 94%
Accuracy 73% 90% 84% 94%
TPR 76% 92% 89% 94%

TS+ACF+LCR TNR 76% 93% 91% 95%
Accuracy 78% 93% 91% 95%
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Fig. 8: Performance results using data from one radio channel: Right wrist to waist.

is used exactly once as the testing data. The results are then averaged over the 10
validations to yield the average performance.

Table 2 and Fig. 8 show the performance of the different classifiers using time
series (TS), ACF, LCR, and different combination of those features, obtained from
radio channel between the right wrist and the waist. For all the radio features,
the worst performance is shown by decision tree algorithm, with maximum accur-
acy of 78% obtained when all the radio features are used together. When only a
single radio feature is used, LCR has shown to give the worst results, and TS the
best results for all classification learners except ANN, in which TS gave the worst
results and ACF gave the best results. When the radio features are used in pairs,
ACF+LCR pair gives the best results when ANN is used, while TS+ACF pair gives
the best results for the remaining classification learners. The combination of all 3
features archives an accuracy of 95% using ANN as the classification learner. It
is also interesting to notice that, moving from the use of a single radio feature
(TS with SVM as classification learner) to radio features in pair (ACF+LCR pair
with ANN as a classification learner) improves accuracy by 6%, while from the
pair to the combination of all 3 radio features (TS+ACF+LCR with ANN as the
classification learner) the improvement is only 1%.

When additional radio features are extracted from the channel between the left
wrist and the waist, and are used together with those from the channel between
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Table 3: Performance Results Using Data From Two Radio Channels: Right Wrist to
Waist, and Left Wrist to Waist

Radio Performance Decision Quadratic Weighted
feature metric tree SVM k-NN ANN

TPR 69% 88% 81% 81%
TS TNR 69% 89% 83% 83%

Accuracy 73% 89% 84% 84%
TPR 66% 82% 75% 90%

ACF TNR 66% 85% 82% 91%
Accuracy 69% 85% 79% 91%
TPR 62% 78% 64% 81%

LCR TNR 63% 81% 69% 81%
Accuracy 66% 81% 69% 83%
TPR 78% 93% 90% 95%

TS+ACF TNR 78% 94% 92% 96%
Accuracy 81% 94% 92% 96%
TPR 75% 89% 84% 93%

TS+LCR TNR 75% 90% 87% 93%
Accuracy 77% 91% 86% 94%
TPR 72% 88% 83% 96%

ACF+LCR TNR 72% 90% 86% 96%
Accuracy 74% 90% 85% 97%
TPR 79% 94% 90% 98%

TS+ACF+LCR TNR 79% 94% 92% 98%
Accuracy 82% 95% 92% 98%
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Fig. 9: Performance results using data from two radio channels: Right wrist to waist, and
left wrist to waist.

the right wrist and the waist, we notice improvement in all performance metric
(see Table 3 and Fig. 9), with the most improvement in accuracy of 7% achieved
when LCR is used as a single radio feature, and the least of 1% achieved when TS
is used as a single radio feature. We also notice a similar trend in which moving
from the use of a single radio feature (ACF with ANN as classification learner)
to a pair of features (ACF+LCR pair with ANN as classification learner) accuracy
improves by 6%, while from the pair to the combination of all 3 radio features
(TS+ACF+LCR with ANN as classification learner) only 1% of improvement is
achieved. Here the accuracy reaches 98%.

Based on the above results, the use of ACF+LCR pair, extracted from a single
radio channel, with ANN as the classification learner is suggested for practical im-
plementations. This is due to the level of accuracy achieved (94%), despite the
number of predictors being 67% less than those used to achieve the best perform-
ance. Its confusion matrix is shown in Fig. 10 with positive predictive values in
green, and the false discovery rates highlighted in red.

5 Conclusion
In this study, an RSSI-based gait authentication algorithm was proposed. The
system is applicable when unobtrusive, natural method of authentication, with low
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Fig. 10: Confusion matrix showing positive predictive values in green, and false discovery
rates in red. The radio features used were ACF+LCR with ANN as the classification
learner.

hardware cost and power demands is needed. The system was based on extracting
features from the radio channels between the wrists and the waist, through RSSI
present in all wireless devices. The features extracted were time series, ACF, and
LCR from 20 subjects walking in outdoor and indoor environment. Four different
classification learners namely decision tree, SVM, k-NN, and ANN were used for
testing of the algorithm.

The overall best performance was achieved using all the radio features together
(TS+ACF+LCR), extracted from 2 radio channels, right wrist to waist, and left
wrist to waist, and using ANN as the classification learner. All the performance
metric namely TPR, TNR, and accuracy were above 97%, see Table 3. In a more
practical approach, where the radio features were extracted from just 1 radio chan-
nel (right wrist to waist), the best performance achieved was above 95% for all
performance metric, while using all the radio features, with ANN as the classific-
ation learner. This suggests that RSSI-based authentication system could be based
on just 2 devices, (for example a smartwatch and a smartphone) especially when
the system is used as a complementary to other security features.

In general the RSSI-based authentication method, using a pair of ACF+LCR ex-
tracted from a single radio channel, with ANN as the classification learner, achieved
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a good level of accuracy (94%), with comparatively small number of predictors
(67% less than the best performer), and hence has a good potential for practical
implementation.
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