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3.5.7 Adam algorithm

Algorithm 4 Adam algorithm

Choose exponential decay rates β1,β2 ∈ [0,1]

Choose learning rate η (≥ 0)

Choose ε (≥ 0)

m0 = 0 (Initialize 1st moment vector)

v0 = 0 (Initialize 2nd moment vector)

t = 0 (Set initial iteration number)

Initialize the parameters θ0

for epoch e = 1 to n_epochs do

Randomly split the training data into B batches of roughly equal size

for batch b = 1 to B do

t = t +1 (Increment iteration number)

gt = 0 (Initialize batch gradient)

for training example i = 1 to nb in batch do

Calculate Ei = E( f (xi ),yi ) (Forward pass)

Calculate ∇∇∇θt Ei (Backward pass)

gt = gt +∇∇∇θt Ei (Update batch gradient)

end for

mt =β1mt−1 + (1−β1)gt (Update biased 1st moment estimate)

vt =β2vt−1 + (1−β2)g2
t (Update biased 2nd moment estimate)

m̂t = mt /(1−βt
1) (Compute bias-corrected 1st moment estimate)

v̂t = vt /(1−βt
2) (Compute bias-corrected 2nd moment estimate)

θt = θt−1 −η ·m̂t /(
√

v̂t +ε) (Update parameters)

end for

end for

return θt

The adaptive moment estimation algorithm, popularly called the Adam algorithm [10], takes the

idea behind SGD with momentum one step further by constantly keeping track of exponentially

decaying averages of previous gradients mt and squared gradients vt . These moving averages

are estimates of the 1st moment (the mean/momentum) and the 2nd moment (the variance)

of the gradient. The details are shown in algorithm 4. When the algorithm starts the moment

estimates are initialized to zero vectors. This causes the moment estimates to be biased towards

0, especially during the first few iterations and when the decay rates β1 and β2 are close to 1.

Thus each iteration the moment estimates have to be corrected for bias. The derivation of the
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bias correction formulas will not be shown here, instead see [10, p.3] for a full proof. The step

size in direction i is the learning rate η times the i -th component of the biased mean vector esti-

mate m̂ divided by the square root of the i -th component of the biased variance vector estimate

v̂ plus a small constant ε. The basic idea behind dividing the moment by the standard deviation

is that the smaller the variance is in one direction, the larger the step taken in that direction is.

The purpose of ε is to prevent the step size from becoming infinitely large when the variance is

close to zero. The authors of the Adam algorithm suggest using ε= 10−8,η= 0.001,β1 = 0.9 and

β2 = 0.999 as default settings for the different hyperparameters. [10, p.2]

3.5.8 Recurrent neural networks

As mentioned in section 3.5.2, a neural network can be thought of as a directed computational

graph. A directed computational graph contains a cycle if there exists at least one node that is

reachable from itself, meaning that by starting in that node and following arrows it is possible

to return to the same node. A neural network without any cycles is called a feedforward neural

network. By looking at figure 7 we can see that multilayer perceptrons are a type of feedforward

neural network.

A recurrent neural network (RNN) is a neural network that contains at least one cycle. The

cycles allow recurrent neural networks to have internal state or "memory". Recurrent neural

networks are commonly used to solve problems where the data has a sequential property such

as machine translation, speech recognition, handwriting recognition or time series forecasting.

3.5.9 Elman and Jordan RNNs

The two most basic types of RNNs are Elman and Jordan networks, both of which are commonly

refered to as simple RNNs. Let {xt }N
t=1, where xt ∈ Rm , and {yt }N

t=1, where yt ∈ Rn , be two time

series and assume that we want to fit a function ŷt = f ({xi }t
i=1), meaning that we want to predict

the value of time series y at time step t based on the values of time series x at all time steps up

to and including t . The basic idea of an Elman RNN is to fit a multilayer perceptron with one

hidden layer from xt to yt with the twist that the hidden layer ht−1 from the previous time step

is also fed into the hidden layer of the current time step ht . The formula for the hidden layer in

an Elman RNN is thus

ht = gh(Uxt +Wht−1 +bh), (29)

where ht ∈Rh ,U ∈Rmxh ,W ∈Rhxh and bt ∈Rh , while the formula for the output layer is

yt = g y (Vht +by ), (30)
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where Vt ∈Rhxn . Figure 10 shows an illustration of an Elman RNN. Note that to avoid clutter

each node in the graph represents a single layer, not a single neuron, which is different from the

notation used in figure 7.

Figure 10: Left: Illustration of an Elman RNN. Right: Unrolled version of the illustration to the
right.

Jordan RNNs are similar to Elman RNNs, but with one twist. While Elman RNNs feed the

output of the hidden layer of the previous timestep into the hidden layer of the current timestep,

Jordan RNNs instead feed the output of the output layer of the previous timestep into the hidden

layer of the current timestep. Thus the formula for the hidden layer in a Jordan RNN is

ht = gh(Uxt +Wyt−1 +bh), (31)

where W now has the dimension Rnxh , while the formula for the output layer is the same as

for an Elman RNN.
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Figure 11: Left: Illustration of a Jordan RNN. Right: Unrolled version of the illustration to the
right.

Recurrent neural networks can be trained by unrolling them into feedforward neural net-

works as shown in figures 10 and 11 and training them just like you would for a many-layered

feedforward neural network.

3.5.10 LSTM RRNs

Although Elman and Jordan RNNs theoretically have the ability to remember information over

an infinite number of timesteps, in practice they struggle with remembering long-term depen-

dencies. Long short-term memory (LSTM) networks are a type of RNN that were designed pri-

marily with this problem in mind.

Figure 12: Illustration of an unrolled LSTM recurrent neural network.

Figure 12 shows an illustration of an unrolled LSTM recurrent neural network while figure

13 shows the inside of a LSTM cell. The key difference between a LSTM and an Elman network

is the addition of the cell state ct ∈ Rh . The cell state acts as a motorway where information
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Figure 13: Close-up of a LSTM cell.

can flow through many time steps with minimal degradation. To update the cell state the LSTM

utilizes three gates, namely the forget gate ft , the input gate it and the candidate gate c̃t . The

cell state has the formula

ct = ft ◦ct−1 + it ◦ c̃t , (32)

where the operator ◦ denotes the Hadamard product, which is an operation that takes two

equally sized matrices and returns a matrix of the same dimension as the inputs where the el-

ement at row i and column j in the output matrix is the product of the elements at the same

position in the input matrices. As an example:[
4 3

3 6

]
◦
[

1 3

8 5

]
=

[
4 9

24 30

]
.

The forget gate has the formula

ft =σ(U f xt +W f ht−1 +b f ), (33)

where σ denotes a Sigmoid activation function. The forget gate outputs a matrix with the

same size as ct where each element is a number between 0 and 1. 1 means that the correspond-

ing element in ct is to remain unchanged, while 0 means that the element is to be completely

forgotten. The input gate has the formula

it =σ(Ui xt +Wi ht−1 +bi ), (34)
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while the candidate gate has the formula

c̃t = tanh(Uc xt +Wc ht−1 +bc ). (35)

The input gate decides which values in the cell state to update and the candidate gate gen-

erates candidates for new additions.

The hidden state ht of each time step is computed by the formula

ht = ot ◦ tanh(ct ), (36)

where ot is (confusingly) called the output gate and has the formula

ot =σ(Uoxt +Woht−1 +bo). (37)

The hidden state ht is thus a combination of the newest input xt , the previous hidden state

ht−1 and the current cell state ct .

Finally, just as for an Elman or a Jordan RNN the final ouput of the RNN at each time step is

simply

yt =σy (Vht ) (38)

[8, p.404-407] [11] [12].

3.6 Support vector regression

Let {(x1, y1), ..., (xN , yN )} be a set of N training samples where each sample consists of a feature

vector xi ∈Rn and a response yi ∈R. Support vector regression is a supervised learning method

where the basic idea is to fit a linear function f (xi ) = wT xi +b on the data set, where the regres-

sion weights w ∈Rn and b ∈R are found by solving the following convex optimization problem:

minimize
w,b

1

2
wT w

subject to |yi −wT xi −b| ≤ ε, i = 1, . . . ,m,
(39)

where ε is a parameter that specifies the maximum deviation that f (xi ) can have from yi .

[13, p.6] [14, p.1-2] Obviously, sometimes a solution to the above problem will not exist. That

is, sometimes it is not possible to fit a function where the deviation between f (xi ) and yi is less

than ε for all i . To account for situations like that we add a non-negative slack variable ξi to each

inequality and add a penalty term to the objective function that punishes potential solutions for

each non-zero slack variable as shown below:
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minimize
w,b,ξ

1

2
wT w+C

m∑
i=1

ξi

subject to |yi −wT xi −b| ≤ ε+ξi ,

ξi ≥ 0, i = 1, . . . , N .

(40)

The parameter C decides how harshly non-zero slack variables are punished. It can be

shown [14, p.2-3] [15] that the above problem has a different but equivalent formulation called

the dual problem:

minimize
α,α∗

1

2

N∑
i=1

N∑
j=1

(αi −α∗
i )xT

i x j (α j −α∗
j )+ε

N∑
i=1

(αi +α∗
i )−

N∑
i=1

yi (αi −α∗
i )

subject to
N∑

i=1
(αi −α∗

i ) = 0,

0 ≤αi ,α∗
i ≤C , 1 ≤ i ≤ N ,

(41)

where the solution of the dual problem is related to the solution of the original problem

through the formula w =∑N
i=1(αi −α∗

i )xi .

An obvious limitation of linear support vector regression is that it can only represent linear

functions. However, support vector regression can be used to fit non-linear functions by us-

ing the "kernel-trick", where we replace the dot product xT
i x j with a non-linear inner product

K (xi ,x j ). This inner product, which is called a kernel, is a distance function that calculates how

"different" xi is to x j . The formula of the fitted function for non-linear support vector regression

is thus

f (x) =
N∑

i=1
(αi −α∗

i )K (xi ,x)+b (42)

[13, p.6]. A commonly used kernel function for non-linear support vector regression is the

radial basis function

K (xi ,x j ) = exp(−γ||xi −x j ||2), (43)

where γ is a free parameter.

A number of different algorithms can be used to fit support vector regression models. One

of the main issues in solving the non-linear version of the dual problem in equation 41 is that

the kernel matrix K is dense and may be too large to be stored. As a workaround to this issue the

open-source LIBSVM library uses a decomposition method called sequential minimal optimiza-

tion (SMO) that only modifies two α’s per iterations so that only two elements of K are needed

each iteration. Then in each iteration the algorithm only needs to solve a simple two-variable

convex optimization problem. See [13, p.11-15, 26-29] for details.
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3.7 Kalman filtering

3.7.1 Kalman filter algorithm

The Kalman filter algorithm

Let us consider a state space model where the observation Yt ∈ Rm×1 (e.g. the power load

at a certain hour or the 24 power load measurements for a certain day) at timestep t is a linear

combination of an internal system state St ∈Rn×1 and a measurement error bt ∈Rn×1, that is, it

is given by the equation

Yt = HSt +bt , (44)

where H ∈ Rm×k is a fixed matrix. Furthermore let us assume that the internal system state

is represented in such a way that it follows an AR(1) process, meaning that it is a linear combi-

nation of the previous system state and a system error at ∈ Rn×1. In other words that it follows

the equation

St+1 = ASt +Gat+1, (45)

where A ∈ Rn×n and G ∈ Rk×n are fixed matrices. Finally, assume that both at and bt are

independent and identically distributed Gaussian white noise processes with zero mean and

covariance matrices ΣΣΣ and ΩΩΩ respectively. It follows from equation 45 that the k-step ahead

forecast of the state vector is given by the recursion

Ŝt+k|t := E(St+k |Y1, ...,Yt ) = AŜt+k−1|t , (46)

while the k-step ahead variance of the state vector can be calculated from

Vt+k|t := Var(St+k |Y1, ...,Yt ) = AVt+k−1|t AT +GΣΣΣGT . (47)

Furthermore it then follows from equation 44 that the k-step ahead forecast of the observa-

tion vector is given by the equation

Ŷt+k|t := E(Yt+k |Y1, ...,Yt ) = HŜt+k|t = HAk Ŝt |t (48)

and that the uncertainty of the k-step ahead forecast is

Var(Ŷt+k |Y1, ...,Yt ) = HVt+k|t HT +Ω. (49)

Kalman filtering is an algorithm for iteratively estimating the system state and updating it

as more data becomes available. Each iteration consists of two steps. The first step is the pre-
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diction step where the next state Ŝt+1|t is forecasted and the variance Vt+1|t of the forecast is

calculated based on the current system state estimate Ŝt |t and the current state variance Vt |t us-

ing equations 46 and 47. The second step is the update step, also called the filtering step, where

the system state estimate Ŝt+1|t+1 and the system variance Vt+1|t+1 are updated based on the

newest observation Yt+1. The details are shown in algorithm 5. [16, p.478-482]

Algorithm 5 Kalman filter

Choose initial state estimate Ŝ0|0 and variance V0|0.
for t = 0 to n −1 do

Forecast the next state: Ŝt+1|t = AŜt |t
Calculate the variance of the state forecast: Vt+1|t = AVt |t AT +GΣGT

Calculate the Kalman gain: Kt+1 = Vt+1|t HT (HVt+1|t HT +ΩΩΩ)−1

Update the state estimate using new observation: Ŝt+1|t+1 = Ŝt+1|t +Kt+1(Yt+1 −HŜt+1|t )
Update the state variance: Vt+1|t+1 = (I−Kt+1H)Vt+1|t

end for

3.7.2 Derivation of the filtering equations

This section is dedicated to deriving the update equations for the state estimate Ŝt+1|t+1 and the

state variance Vt+1|t+1 that are shown in algorithm 5.

The one step ahead observation forecast error is given by the equation

et+1 = Yt+1 − Ŷt+1|t
= Yt+1 −HŜt+1|t
= Yt+1 −HAŜt |t
= HSt+1 +bt+1 −HAŜt |t
= H(St+1 −AŜt |t )+bt+1

(50)

and thus the distribution of the one step ahead observation forecast error is

(et+1|St+1,Yt ) ∼ N (H(St+1 −AŜt |t ),ΩΩΩ). (51)

Assume that the distribution of the next system state St+1 if the observation forecast error

et+1 is known is

(St+1|et+1,Yt ) ∼ N (Ŝt+1|t+1,Vt+1|t+1). (52)

We want to find formulas for Ŝt+1|t+1 and Vt+1|t+1. To do this we first note that two variables

X1 and X2 follow a joint normal distribution
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[
X1

X2

]
∼ N

([
µµµ1

µµµ2

]
,

[
ΣΣΣ11 ΣΣΣ12

ΣΣΣ21 ΣΣΣ22

])
(53)

if and only if X1 ∼ N (µµµ1,ΣΣΣ11)

X2|X1 ∼ N (µµµ2 +ΣΣΣ21ΣΣΣ
−1
11 (X1 −µµµ1),ΣΣΣ22 −ΣΣΣ21ΣΣΣ

−1
11ΣΣΣ12).

(54)

See [17] for a full proof. Now, let X1 correspond to St+1 and X2 correspond to et+1. Clearly

µµµ1 = AŜt andΣΣΣ11 = Vt+1|t . Furthermore, by equating the two expressions for the mean of (et+1|St+1)

from equations 51 and 54 we get that µµµ2 = 0, ΣΣΣ12 = Vt+1|t HT and ΣΣΣ21 = HVt+1|t . Similarly, by

equivalating the two expressions for the variance of et+1 we get thatΣΣΣ22 = HVt+1|t HT +ΩΩΩ. Thus

the joint distribution of St+1 and et+1 is([
St+1

et+1

]∣∣∣∣Zt

)
∼ N

([
AŜt

0

]
,

[
Vt+1|t Vt+1|t HT

HVt+1|t HVt+1|t HT +ΩΩΩ

])
. (55)

Obviously, the opposite of equation 54, obtained by interchanging X1 with X2, also holds.

And thus by comparing equation 52 with equation 54 we obtain that

Ŝt+1|t+1 =µ1 +ΣΣΣ12ΣΣΣ
−1
22 (X2 −µµµ2)

= Ŝt+1|t +Vt+1|t HT (HVt+1|t HT +ΩΩΩ)−1et+1

= Ŝt+1|t +Kt+1(Yt+1 −HŜt+1|t )

(56)

and

Vt+1|t+1 =ΣΣΣ11 −ΣΣΣ12ΣΣΣ
−1
22ΣΣΣ21

= Vt+1|t −Vt+1|t HT (HVt+1|t HT +ΩΩΩ)−1HVt+1|t
= (I−Kt+1Ht )Vt+1|t ,

(57)

where for convenience we have introduced the shorthand

Kt+1 := Vt+1|t HT (HVt+1|t HT +ΩΩΩ)−1 (58)

[16, p.480-482].
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4 Models

This section describes the different models that were tested on the data set provided by NTE. All

the models were implemented using the programming language Python, except NTE’s current

Kalman filter model. The neural networks were implemented using Keras, a neural network

library for Python, while the linear regression and support vector regression models were im-

plemented using sklearn, a general machine learning library for Python. Sklearn itself uses the

ε-SVR implementation from the LIBSVM library [13]. The direct Kalman filter model was writ-

ten from scratch, although it relies on the NumPy library for matrix multiplications. The pandas

library was used for reading data and for general data manipulation and analysis, while the mat-

plotlib and seaborn libraries were used to generate the plots in this thesis. All of these libraries

are open-source. The exception to all of this is NTE’s present Kalman filter model, which was

not programmed by me. It is proprietary and not owned by NTE or me, thus I only had access to

the predictions made by the model for 2011-2017, not to the actual source code.

4.1 Multilayer perceptrons

4.1.1 MIMO model

Let us denote the current hour by t and the most recent power load measurement by Pt−K ,

where K is the number of hours since it was made. The lag K is included because it may take a

few hours before accurate power load measurements become available. Next, assume that we

want to predict the power loads for each hour of the next day: Pt+M ,Pt+M+1, ...,Pt+M+23, where

1 ≤ M ≤ 24. As an example: if the current time is 10 am on a Tuesday and the most recent

power load measurement was made five hours ago at 5 am and we want to predict tomorrow’s

(Wednesday’s) power loads from 1 am to 12 pm then K = 5 and M = 15.

The first model presented is a multilayer perceptron that uses a multiple-input multiple-

output (MIMO) strategy. It outputs the predictions P̂t+M , P̂t+M+1, ..., P̂t+M+23 as a single vector.

The inputs to the neural network are:

• The 24 most recent power load measurements available: Pt−K , ...,Pt−K−23.

• Temperature measurements for the current and previous K +23 hours: Tt , ...,Tt−K−23.

• Temperature predictions for the next M +23 hours: T̂t+1, ..., T̂t+M+23.

• 7 binary variables, one for each day of the week, where the current weekday is equal to 1

and the others are equal to 0: D1,t , ...,D7,t .

The power, temperature and temperature prediction time series were standardized before

they were fed into the network, meaning that they were transformed by subtracting the mean
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and dividing by the standard deviation of the time series. The temperature time series used was

a weighted sum of the temperature measurements from Namsos, Steinkjer and Stjørdal using

formula 1. Note that the data set provided by NTE only includes day-ahead temperature pre-

dictions from 1 am to 12 pm based on information available at 10 am on the current day. This

means that the temperature predictions for 11 am to 12 pm on the current day that the model

uses were made the previous day at 10 am and are thus "outdated". This may seem like a prob-

lem that would lead to worse test forecasting accuracy than if newer temperature predictions

were available, however as discussed in section 7.2, the errors of day-ahead temperature fore-

casts are so low that there is no significant difference in forecasting accuracy between using

temperature forecasts or actual temperatures and thus this is not a problem in practice.

A manual search was used to find good values for the hyperparameters in the network. In

general the model is not very picky with what the values of the hyperparameters are, many dif-

ferent configurations give very similar results.

The Adam algorithm was used to fit the weights in the neural network. Kingma and Ba [10]

suggests that good default values for the parameters in the Adam algorithm are α = 0.001,β1 =
0.9,β2 = 0.999 and ε= 10−8, however a learning rate ofα= 0.001 was found to give a non-smooth

learning curve, so it was lowered to 0.0001. Stochastic gradient descent gave equally good results

as the Adam algorithm, but training times were more than twice as long. There was no no-

ticeable difference between using the mean absolute error or the more commonly used mean

squared error as the error function, so the latter was chosen. Bengio [18, p.9] suggests that 32 is

a good default value for the batch size, however this was found to give a non-smooth learning

curve even when the learning rate was reduced significantly further. Increasing the batch size

all the way to 256 gave a smoother learning curve while giving equally good results.

During the hyperparameter optimization the model was trained until 100 epochs had gone

by without any improved performance on the valdation set. In the testing phase this was changed

to initially training the model for 2000 epochs.

It was found that adding more than one hidden layer to the model did not improve model

performance and that a single hidden layer with 40 neurons is sufficient. All weights in the neu-

ral network were initialized before training by drawing random values from a standard normal

distribution. Sigmoid, ReLU and hyperbolic tangent activation functions were all tested in the

hidden layer and all three gave equally good predictions. ReLU was chosen since it is slightly

faster than the other two. A linear activation function was used in the output layer because the

target values in the standardized power load time series can theoretically take any real value and

thus the range of the activation function in the output layer must be the set of real values.

Regularization techniques such as L1/L2 regularization or dropout that punish model com-

plexity were not used as the model is not sufficiently complex to warrant their use.
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4.1.2 Direct model

The basic idea of the direct model is that instead of training one multilayer perceptron with 24

outputs that predicts the power load for each hour the next day we can instead train 24 separate

models, each of which is trained to predict the power load for a different hour.

The inputs to the model are the exact same as for the MIMO model, except that we do not

include the temperature predictions for future time steps. E.g. the model that predicts Pt+M+n

uses the temperature predictions T̂t+1, ..., T̂t+M+n as input, but does not use T̂t+M+n+1, ..., T̂t+M+23.

All other aspects of the models like the neural network architecture, the optimization technique

and the hyperparameters used are the exact same as in the MIMO model.

4.1.3 SMSO model

The single model single output (SMSO) MLP is a variation of the MIMO model where instead of

returning 24 predictions, one for each hour of the next day, the hour that we want to predict is

sent as an argument to the model and only the prediction for that hour is returned. The inputs

to the MISO model are the exact same as those to the MIMO model except that 24 extra binary

variables are added that specify which hour of the day the target value is for. Otherwise the

model is identical to the MIMO model, with the exception that the number of training epochs

was reduced from 2000 to 200 because now that there is one training example for each hourly

measurement in the power time series, instead of one for each day, the size of the training set

is 24 times larger and thus since the number of iterations per epoch is increased 24-fold fewer

epochs are needed for the model to be fitted. Some experimentation was done to see if changing

the other hyperparameters would lead to better performance, but no noticeable improvements

were observed, so the other hyperparameters were kept the same.

4.2 Recurrent neural networks

4.2.1 LSTM encoder-decoder

Like with the MLP models let us denote the current hour by t and the most recent power load

measurement available by Pt−K and assume that we want to predict the power loads for each

hour of the next day: Pt+M ,Pt+M+1, ...,Pt+M+23, where 1 ≤ M ≤ 23.

An illustration of the LSTM encoder-decoder model is shown in figure 14. The model con-

sists of two recurrent neural networks, one called the encoder and one called the decoder. The

job of the encoder is to take the last 24 power load measurements and the temperature mea-

surements from the same period and encode them in a vector that is used as the first hidden

state in the decoder. The decoder first predicts P̂t−K+1 using the inputs from the encoder as

well as a vector of exogenous information xt−K+1, then in the second step the decoder predicts
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P̂t−K+2 using xt−K+2 as well as the hidden state from the previous step. This process is repeated

recursively up to P̂t+M+23. The exogenous vector x has 32 dimensions. 24 of the variables are

binary variables that specify the hour of the day, while seven others are binary variables that

specify the day of the week. The final variable specifies either the weighted average temperature

for that hour or the predicted weighted average temperature depending on whether the time

step is in the past or in the future.

Figure 14: Illustration of an unrolled encoder-decoder LSTM model.

A possible variation of this model would be to feed Pt+a−1 as an input to the decoder when

predicting P̂t+a during training and to replace Pt+a−1 with P̂t+a−1 during testing. The problem

with this approach is that since the power load usually does not change enormously from one

hour to the next the decoder might be overly prone to learning the naive mapping P̂t+a = Pt+a−1,

which could lead to poor forecasting accuracy. In fact, preventing the model from learning the

naive mapping was the main motivation behind using an encoder-decoder model instead of a

vanilla LSTM model.

The model was trained for 1000 epochs using the Adam algorithm with a learning rate ofα=
0.0005 and a batch size of 256. The two recurrent neural networks are trained simultaneously as

one model, meaning that during training the errors are backpropagated all the way from the last

LSTM unit of the decoder to the first LSTM unit of the encoder. Like with the MLP models 40

hidden units were used, since there doesn’t appear to be any benefit in adding more units than

that.

4.2.2 Elman encoder-decoder

The Elman encoder-decoder RNN model is the exact same as the LSTM encoder-decoder model

except that the LSTM units were replaced with Elman hidden layers. It was tested primarily to

see how large of a performance increase we get from using LSTM layers over Elman layers.
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4.3 Direct linear regression model

The direct linear regression model is similar to the direct MLP model described in section 4.1.2.

24 seperate linear regression models are trained to predict each of the day-ahead power loads.

The formulas for the models are

Pt+M+n =α+
23∑

i=0
βi Pt−K−i +

7∑
i=1

Di ,t

+
K+24∑

i=0
γi Tt−K−23+i +

M+n∑
i=1

γi+K+24T̂t+i

+
K+24∑

i=0
δi T 2

t−K−23+i +
M+n∑
i=1

δi+K+24T̂ 2
t+i

+
K+24∑

i=0
εi T 3

t−K−23+i +
M+n∑
i=1

εi+K+24T̂ 3
t+i , 0 ≤ n ≤ 23.

(59)

See section 4.1.1 for explanations of what the different covariates stand for. Note that all the

inputs are standardized before they are fed into the model. The inputs of each singleton model

are the same as for the direct MLP model except that in addition to feeding the temperature

measurements (and forecasts) into the model it is also fed the square and the cube of the tem-

peratures measurements (and forecasts). The reason for this is that we want the model to be

able to represent non-linear relationships between power and temperature.

Using 24 separate singleton models, one for each hour of the day, is a crucial part of the

model. Many linear regression STLF models are based on a single model that uses the hour of

day as a covariate. The problem with that approach is that because the relationship between the

other covariates and the power load is highly dependent on the hour of day we then need to add

a ton of interaction terms of various orders to the model to get good forecasting accuracy. With

this in mind it might be tempting to take the idea further and have 168 separate models, one for

each hour of the week, however this degrades the forecasting accuracy because the training set

becomes too small. Besides, it was found empirically that simply treating the day of the week as

an additive term in the model in equation 59 works quite well and that adding interaction terms

between the day of the week and other variables like e.g. the temperature is unnecessary.

Note that the model in equation 59 can be also be written in matrix notation as

Pt+M+n = Htβ, 0 ≤ n ≤ 23, (60)

where
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Ht =[1,Pt−K , ...,Pt−K−23,D1,t , ...,D7,t ,

Tt−K−23, ...,Tt , T̂t+1, ..., T̂t+M+n ,

T 2
t−K−23, ...,T 2

t , T̂ 2
t+1, ..., T̂ 2

t+M+n ,

T 3
t−K−23, ...,T 3

t , T̂ 3
t+1, ..., T̂ 3

t+M+n]

(61)

and

β= [α,β0, ...,β23,γ1, ...,γK+M+24+n ,

δ1, ...,δK+M+24+n ,ε1, ...,εK+M+24+n ,1, ...,1]T .
(62)

This second notation will be useful in section 4.5.2.

4.4 Direct support vector regression model

The direct support vector regression (SVR) model is similar to the direct MLP model described

in section 4.1.2 and the direct linear regression model described above. One support vector

regression model is trained to predict each of the day-ahead power loads Pt+M , ...,Pt+M+23. The

inputs to each of the models are the exact same as for the direct MLP model.

A two-step grid search was used to determine the optimal values of the hyperparameters

C ,γ and ε. In the first step the parameter values for C that were tried were {0.01,0.1,1,10,100},

while for γ and ε they were {0.0001,0.001,0.01,0.1,1}, which results in a total of 53 = 125 com-

binations. After it was found that the best out of these combinations was 10i with i = 0 for C

and 10i with i =−2 for γ and ε a further 33 −1 = 26 combinations were investigated by trying all

possible combinations of {3 ·10i−1,1 ·10i ,3 ·10i } for all three parameters. The optimal values of

the hyperparameters were thus determined to be C = 3,γ= 0.01 and ε= 0.01.

4.5 Kalman filters

4.5.1 NTE’s current model

NTE’s current model is based on Kalman filtering. It is proprietary and was made by Powel AS

in 1997. Because the model is proprietary I did not have access to the source code of the model,

nor do I know the exact details of the model, I only had access to the model’s predictions from

2011 to 2017. However, as mentioned in section 2.3, I do know that the model uses the exact

same weather data as I have access to to make its predictions.
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4.5.2 Direct Kalman filter model

For comparison purposes I also created my own Kalman filter model. The model is essentially

the same as the direct linear regression model except that the regression coefficients are treated

as the internal state of a state space model and are determined by recursively using Kalman

filtering instead of choosing the coefficients that minimize the mean squared error on a training

set. The model uses a direct strategy and consists of 24 separate Kalman filters, each of which

predicts the power load on a certain hour of the day. The state space model used isPt+M+n = Ht+M+nβ
∗+bt+M+n

βt+M+n =βt+M+n−24 +at+M+n , 0 ≤ n ≤ 23,
(63)

where Pt denotes the power load at hour t , at ∼ N (0,ΣΣΣ) and bt ∼ N (0,ω) are random vari-

ables, while HHH t is the same as in equation 61 and βββt has the same form as in equation 62. β∗

denotes that we use the most recent state vector estimate for the correct hour that is available,

which may vary depending on i and M . By comparing equation 45 with 63 you may note that

the state-transition matrix A is absent, or more precisely it has been turned into an identity ma-

trix. This is because the estimate of the coefficients β is only updated during the filtering step of

the Kalman filter algorithm, not during the forecasting step.

4.6 Ensemble average model

The predictions of the ensemble average model is simply the average of the predictions from

the three best performing models, namely the MIMO MLP model, the SMSO MLP model and

the direct Kalman filter model.

4.7 Naive model

The naive model simply predicts that the power consumption during a certain hour on a certain

day is equal to the power consumption during the same hour on the previous day of the same

type where we know the actual power consumption, where the two types of days we distinguish

between are workdays and weekends.

As an example: If we want to forecast the power load for each hour on a Tuesday based on

the data we have available at 5 pm on the day before (Monday), then the predictions from 1 am

up to 5 am on Tuesday will simply be the power loads from 1 am to 5 am on Monday, while the

predictions from 6 am to 12 pm will be the power loads during the same hours on the preceding

Friday.

The purpose of the naive model is to provide a baseline of what a useful model is. In a nut-

shell; a model that does not outperform the naive model is completely useless.
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4.8 Dealing with public holidays

As can be seen in figure 4 in section 2.2, Norwegian public holidays tend to have load patterns

that are similar to those of weekends even if they fall on a regular workday. Thus a simple trick

to deal with public holidays is to treat them as Sundays. E.g. if December 25th falls on a Tuesday

then instead of setting the Tuesday binary variable to one we set the Sunday variable to one.

This trick was used in all the models.

4.9 Dealing with daylight savings time

In Norway the clock is turned forward one hour each year on the last Sunday in March from 2

am to 3 am and back one hour on the last Sunday in October at 2 am to 1 am. Thus there is

one power load observation less than usual on the former day and one more than usual on the

latter day. The way this is dealt with varies a bit from model to model. The MIMO model for

instance always outputs 24 predictions, but on the last Sunday in March the 2 am prediction is

discarded, while on the last Sunday in October the 2 am prediction is duplicated. Similarly, for

the direct models, the 2 am model is used twice on the last Sunday in March and zero times on

the last Sunday in October. The daily power load pattern is primarily dependent on consumer

behavior, not on natural cycles (apart from temperature variations), thus for the direct models 9

am in the Summer is predicted using the same singleton model that predicts 9 am in the Winter,

even though one is in Summer time and the other is not.
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5 Test method

To test the models we will look at the special case where the current time is 10 am and we want

to predict the power load for each hour of the next day. E.g. if today is Tuesday then based

on the information available at 10 am today we want to predict the power load on Wednesday

for each hour from 1 am to midnight. This is the special case that is of most relevance to NTE

and it is the case that allows us to compare the performance of the different presented mod-

els directly to those of NTE’s current model. Note however that accurate power loads for the

last couple of hours are typically not available and a typical scenario is that the last power load

measurement available is from five hour previously at 5 am. Thus even though relative to the

current time we are predicting the power loads 15-38 hours ahead using 15-38 hours ahead tem-

perature forecasts, if we look at it relative to the last available power load measurement we are

actually predicting 20-43 hours ahead. In other words, using the terminology of section 4.1.1 we

are looking at the special case where K = 5 and M = 15.

Although this is the special case that we will look at, the models from section 4 were designed

and written in such a way that they can easily be modified to work in other similar situations.

5.1 Test strategies

When evaluating the performance of a supervised learning model it is important that the fore-

casting accuracy of the model is evaluated on different data than it was trained on. This is pri-

marily to ensure that the model has not overfitted the training data. Overfitting means that the

model has not only captured the underlying patterns in the training data, but also the noise,

resulting in a model that generalizes poorly to new data.

The simplest way to do this is to split the data set into two non-overlapping subsets, a train-

ing set and a test set, and only evaluate the performance of the model based on its performance

on the test set. A more sophisticated approach is to use k-fold cross validation, where the origi-

nal data set is randomly split into k non-overlapping subsets of roughly equal size, called folds.

One of the folds is designated as the holdout fold and the model is trained on the k − 1 other

folds before the forecasting accuracy is evaluated on the holdout fold. This process is repeated

k times using each fold as the holdout fold exactly once. The k results can then be averaged or

otherwise combined to produce a single estimate of the forecasting accuracy. An advantage of

this method is that all observations in the data set are used for validation exactly once. A disad-

vantage is that this validation process is more time consuming than using a simple training/test

set split.

Two problems arise when cross-validation is used on problems where the data set is a time

series. The first is that, because subsequent measurements in the time series are usually cor-

related with each other, randomly splitting the data set can lead to artificially good forecasting
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accuracy. As an example consider the power load data set from section 2. In the real world,

when we forecast the power load on a day, e.g. on the 12th of May, we will know the power load

on the 10th of May, but we will not know the power load on the 13th of May and on most of

11th of May. If however we use k-fold cross validation with random splits then it is quite likely

that the power load on those two days will be a part of the training set. Because the power load

on subsequent days is highly correlated the model will then have been trained on two days that

are very similar to the 12th of May that it wouldn’t have been trained on in the field, which may

result in artificially good forecasting accuracy. This problem can be avoided by using folds of

continous data, e.g. by splitting the data set into one fold for each year, as shown in figure 15.

The second problem is that we are subjecting the evaluation to look-ahead-bias by training

the model on future data. An alternative approach that avoids this second problem is to only

train the model on past years. That is, we first train the model on 2011 and test it on 2012,

then we train it on 2011 and 2012 and test it on 2013 and so on. This is called an expanding

window approach and is illustrated in figure 16. Another name for this approach is forward

chaining. One thing to note about an expanding window approach is that the amount of data

that the model is trained on increases each year, unlike with k-fold cross-validation where it

stays the same. The downside of this is that the forecasting accuracy of different years cannot be

compared directly because the quality of the forecast can usually be expected to increase as we

train on more data, as long as we don’t train on data that is so far back in the past that changes

in consumer patterns has made it irrelevant. The upside is that we get an estimate of the impact

that the training set size has on the forecasting accuracy.

Hyndman and Athanasopoulos [19, ch.2.5] recommend using an expanding window ap-

proach for time series prediction problems where the window expands for each new observa-

tion. That is, if k previous observations are needed to make a reliable forecast, then the model

is first trained on the first k observations in the time series and tested on observation k + 1.

Then observation k +1 is added to the training set and the model is retrained and tested on ob-

servation k + 2 and so on. They refer to this as time series cross-validation or alternatively as

“evaluation on a rolling forecasting origin”. The advantage of this approach is that the next pre-

diction is always made using all available past information. The disadvantage is that for some

models retraining or updating the model for each new observation that comes along can be very

time intensive.
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Figure 15: Illustration of k-fold cross validation with continous folds

Figure 16: Illustration of an expanding window approach.

5.2 Tests performed

5.2.1 Expanding window test run

The primary approach that was chosen for testing the performance of the different models was

the one suggested by Hyndman and Athanasopoulos, where the models are continously up-

dated as new data becomes available, since this is the approach that most closely mimics a real-

world situation, however the precise way this was done varies a bit from model to model. The

Kalman filter models were tested using an expanding window with a window size of a single day

where each day the models predict the power loads for the next day and then when the actual

power loads for that day become available the forecasting errors are calculated and the internal

states of the Kalman filters are updated accordingly. The support vector regression and linear re-

gression models were trained using an expanding window approach with a window size of seven

days, meaning that they were completely retrained each seven days using all past available data

and then tested on the next seven days and so on.

The MIMO and direct MLP models were first trained for 2000 epochs on the data from 2011

and tested on the data from 2012. Each day the previous day’s data is added to the training set
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and the models were updated by training for a further five epochs on the new training set, a

technique which will henceforth be referred to as rehearsing. Then the models predicted the

power loads for the next day. By the end of 2012 each of the two models had been trained for

roughly 2000+ 5 · 363 = 3815 epochs. At the end of 2012 the models were then completely re-

trained from scratch for 2000 epochs using all data from both 2011 and 2012 and the cycle was

repeated for 2013. The encoder-decoder and SMSO neural network models were tested using

the exact approach except that the encoder-decoder models were first trained for 1000 epochs

instead of 2000 each year, while the SMSO MLP model was first trained for 200 epochs and only

rehearsed for one epoch each day.

For a discussion of why these update strategies were chosen see section 7.3.

5.2.2 Cross validation test run

In the cross validation test run the test approach from figure 15 was used. That is, first the mod-

els were trained on all years except 2011 and tested on 2011, then they were trained on all years

except 2012 and tested on 2012 and so on. Note however that the models were continuously

updated as new information became available in the same manner as in section 5.2.1. E.g after

the SVR and linear regression models had been trained on data from all years except 2011 and

tested on the first week of 2011, the first week of 2011 was then added to the training set and the

models were retrained before being tested on the second week of 2011 and so on.

Note that, as discussed in subsection 5.1, when using this test approach the test results are

subject to look-ahead bias since we are training the model on future data. Thus the cross val-

idation test results should be taken with a grain of salt and be viewed as less reliable than the

expanding window test results.

5.2.3 Varying the number of training years

To investigate how the accuracy of a forecast varies depending on the number of training years

the MIMO MLP, SMSO MLP and direct Kalman filter models were additionally tested by training

on varying numbers of previous years. E.g for 2014 each of these models were tested three times,

once by training on 2013 and testing on 2014, once by training on both 2012 and 2013 and testing

on 2014 and once by training on 2011, 2012 and 2013 and testing on 2014. Once again note

that the models were continuously updated throughout the year as new information became

available in the same manner as described in section 5.2.1.

5.2.4 Testing temperature input sensitivity

Finally I tested how the accuracy of the MIMO MLP model changes when different temperature

inputs are used. The testing approach used was once again an expanding window approach
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with continuous updating using the rehearsal technique. The reason why only the MIMO MLP

model was tested is that testing the forecasting accuracy for all years using a large number of

different temperature inputs would be quite time consuming for most of the models.
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6 Results

6.1 Expanding window test results

6.1.1 Errors broken down by year

Figure 17 shows the mean absolute errors of all the models from section 4 for each year except

the naive model, whose errors are shown in table 2. The precise error numbers are shown in

table 11 in the appendix, while table 12 in the appendix shows the mean absolute percentage

errors.

Figure 17: Mean absolute errors (MAE) in MW for each of the different models from section 4,
broken down by year.

Model 2012 2013 2014 2015 2016 2017

Naive model 17.46 18.54 16.78 16.37 17.66 18.26

Table 2: MAEs in MW for the naive model.
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6.1.2 Errors broken down by the hour of day

Figure 18 shows how the errors of seven of the models tested varied throughout the day in 2017,

the year where the models were trained on the largest amount previous of data. The shape of the

daily error curves for the different models look very similar for the other years, except for NTE’s

Kalman filter model, whose curve varies a lot from year to year. The four other models were left

out to avoid cluttering the graph too much. The direct MLP and linear regression models have

a daily error curve similar to most of the other models, while the curve of the Elman encoder-

decoder is a bit different as it becomes very high at the end of the day. The error of the naive

model increases drastically from 5 am to 6 am, but before and after this dramatic increase the

error is relatively constant throughout the day.

Note that the error at 01:00 is for a 20 hours ahead forecast, relative to the last available power

load measurement, whereas the error at 24:00 is for a 43 hours ahead forecast. Furthermore note

that the power load measurement at e.g. 02:00 is actually the average power load between 01:00

and 02:00 and thus the error at 02:00 in the figure is actually the average error between 01:00 and

02:00.

Figure 18: Mean absolute error at different hours of the day for 2017 for seven of the tested
models.
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6.1.3 Errors broken down by weekday

Table 3 compares the errors of the same seven models as in subsection 6.1.2 for different days

of the week. The table also shows the average error on public holidays. Again, only the fore-

casts for 2017 are considered, although the corresponding errors for the other years look similar

(although apart from 2016 they are a bit higher in general).

Model Mon Tue Wed Thu Fri Sat Sun Holidays

Mean of three best models 6.15 5.79 6.60 6.10 5.59 5.49 5.39 8.13

MIMO MLP 6.28 6.24 7.06 6.45 5.77 6.10 6.10 8.62

SMSO MLP 6.44 6.33 7.20 6.45 6.23 5.56 6.13 8.69

LSTM (encoder-decoder) 7.06 6.93 7.28 7.13 5.42 6.54 6.14 10.44

Direct SVR 7.06 6.71 7.17 6.80 6.83 5.99 5.47 8.74

Kalman filter (NTE) 8.52 9.18 8.54 9.37 7.70 7.44 8.01 9.50

Direct Kalman filter 6.38 6.00 7.14 6.70 6.33 6.21 6.21 9.33

Naive model 23.93 23.15 14.62 14.17 15.32 19.69 19.65 24.66

Table 3: Mean absolute errors for different weekdays in 2017. The measurement unit is MW.

6.1.4 Training and update times

Table 4 shows the training times of each model. The times are for an Intel Core i5-6600K Skylake

3.5GHz processor, which is a mid-range desktop processor from 2015.

Model 2012 2013 2014 2015 2016 2017

Direct linear regression 00:28 00:30 00:31 00:32 00:34 00:34

Direct SVR 00:32 00:32 00:28 00:31 00:38 00:44

MIMO MLP 00:20 00:32 00:42 01:02 01:15 01:19

Direct Kalman filter 00:32 00:36 00:56 01:11 01:26 01:27

SMSO MLP 00:49 01:14 01:51 02:33 03:21 03:41

Elman encoder-decoder 01:31 02:05 03:11 03:51 04:59 05:17

Ensemble average 01:53 02:22 03:29 04:46 06:02 06:47

LSTM encoder-decoder 04:08 05:56 09:16 11:10 14:32 15:56

Direct MLP 11:16 12:29 14:19 20:28 23:15 28:45

Table 4: Training times in minutes and seconds for each of the different models.

Table 5 shows the daily update times for the neural network models and the direct Kalman

filter model. Note that the table only shows the time needed to update the models and does not
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include the time needed to load a trained model from memory, which might add a couple of

extra seconds of overhead, depending on the implementation, when a model is used in a real

world situation.

Model 2012 2013 2014 2015 2016 2017

Direct Kalman filter 0.08 0.10 0.13 0.15 0.18 0.16

MIMO MLP 0.04 0.08 0.09 0.16 0.18 0.18

SMSO MLP 0.17 0.27 0.43 0.61 0.80 0.73

Ensemble average 0.29 0.45 0.65 0.92 1.16 1.07

Elman encoder-decoder 0.35 0.56 0.81 1.05 1.31 1.47

Direct MLP 1.30 1.93 2.50 2.97 3.32 3.81

LSTM encoder-decoder 1.19 1.91 2.64 3.36 4.24 4.64

Table 5: Daily update times in seconds.

6.1.5 Ensemble average residuals

Figure 19 shows the residuals of the ensemble average model for 2017. The predictions of the en-

semble average model is the mean of the predictions from the three best performing individual

models, namely the MIMO MLP, SMSO MLP and direct Kalman filter models.

Figure 19: Hourly forecasting residuals of the ensemble average model for 2017.

Figure 20 shows the predictions of the ensemble average model plotted against the actual

power loads for the same period as figure 2, while figure 21 shows the predictions of the model

around Easter 2017, which is typically one of the hardest periods of the year to predict accurately.
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Finally, figure 22 shows the predictions of the model for a challenging period of 2017 where the

temperature changed rapidly several times over a short period. The temperatures for this period

are plotted in figure 23.

Figure 20: Predictions from the ensemble average model plotted against the actual power loads
for the period from Monday October 9th to Sunday October 29th 2017. Weekends are shaded
with a darker background than workdays. The MAE during this period was 5.40 MW, which is
slightly better than the yearly average, which was 5.97 MW.

Figure 21: Predictions from the ensemble average model plotted against the actual power loads
for the period from Monday April 3rd to Sunday April 23rd 2017. Weekends are shaded with a
darker background than workdays and the Easter holidays are shaded in green. The MAE during
this period was 8.04 MW. This was the model’s worst performing three week period in 2017.
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Figure 22: Power load predictions from the ensemble average model versus actual power loads
for the period from Monday November 13th to Sunday December 3rd 2017. Weekends are
shaded with a darker background than workdays. The MAE during this period was 6.26 MW,
which was slightly worse than the yearly average.

Figure 23: Temperature measurements from the same period as figure 22.
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6.2 Cross validation test results

6.2.1 Errors broken down by year

Figure 24 shows the mean absolute errors of the different models for each year when using a

cross validation test approach where the models are trained on an equal amount of data for

each test year. The precise errors numbers are shown in table 13 in the appendix.

Figure 24: Mean absolute errors (MAE) in MW for the different models for each year when a
cross validation test approach was used.

6.2.2 Errors broken down by the hour of day

Figure 18 shows how the errors of seven of the models change at different hours of the day when

a cross validation test approach is used. Unlike in section 6.1.2 the predictions from all the years

were used to produce the plot, not just those for 2017.
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Figure 25: Mean absolute error at different hours of the day calculated from all predictions from
2011 to 2017.

6.2.3 Errors broken down by weekday

Table 6 shows the errors from the cross validation test run broken down by weekday. Once again

note that unlike in section 6.1.3 the predictions from all the years were used to produce the table.

Model Mon Tue Wed Thu Fri Sat Sun Holidays

Mean of three best models 7.20 6.64 6.71 6.59 6.20 6.23 5.77 8.70

MIMO MLP 7.41 6.93 7.18 6.97 6.44 6.50 6.16 8.95

SMSO MLP 7.44 7.09 7.13 6.97 6.64 6.51 6.26 8.86

LSTM encoder-decoder 7.98 7.08 6.90 7.13 6.92 7.15 6.27 9.40

Direct SVR 9.00 8.30 8.03 8.18 7.95 8.12 8.08 10.00

Kalman filter (NTE) 10.03 9.97 10.20 10.19 9.78 9.29 9.53 11.04

Direct Kalman filter 7.83 6.93 6.90 6.95 6.79 7.20 6.37 9.47

Table 6: Mean average errors for different weekdays, as well as for public holidays. The mea-
surement unit is MW.
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6.3 Varying the number of training years

Tables 7 shows the forecasting accuracy of the ensemble average model when the model is

trained on different years using an expanding windows strategy where the model is constantly

updated throughout the year with different numbers of initial training years. E.g. the cell in

column 2016 and row three years back shows the mean absolute error in MW when the model

was initially trained on 2013, 2014 and 2015 before it was tested on 2016. Too see the individual

errors of each of three models that make up the ensemble average model see tables 14, 15 and

16 in the appendix.

Training years 2012 2013 2014 2015 2016 2017

One year back 7.61 7.86 7.13 6.79 6.27 6.34

Two years back X 7.62 6.93 6.52 6.21 6.13

Three years back X X 6.69 6.42 5.98 6.05

Four years back X X X 6.31 5.89 5.90

Five years back X X X X 5.89 6.08

Six years back X X X X X 6.01

Table 7: MAE of ensemble average model in MW when tested on different years using a contin-
uously updating forecasting strategy with different numbers of initial training years.

6.4 Temperature input sensitivity

Figures 8 and 9 show how the average forecasting error of the MIMO MLP model changes when

different temperature inputs are used. In all cases the MIMO MLP model was tested using the

same approach as the one used in section 6.1.

Temperature time series used MAE [MW]

Weighted average 7.06

All three time series 7.27

Steinkjer only 7.41

Namsos only 7.63

Stjørdal only 7.89

Table 8: Mean absolute error of MIMO MLP model when different temperature time series are
used as input. The error is the average of the errors from each year from 2012 to 2017.
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Temperature inputs MAE [MW]

Tt−K−23, ...,Tt ,Tt+1, ...,Tt+M+23 7.03

Tt−K−23, ...,Tt , T̂t+1, ..., T̂t+M+23 7.06

T̂t+1, ..., T̂t+M+23 7.85

Tt−K−23, ...,Tt 11.22

No temperature information 12.29

Table 9: Mean absolute error of MIMO MLP model when using different temperature inputs.
All the temperature measurements are from the weighted average temperature time series, not
from a single location. The error is the average of the errors from each year from 2012 to 2017.
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7 Discussion

7.1 Discussion of test results

By comparing figure 17 in section 6.1.1, which shows the forecasting accuracy of the different

models for each year when using an expanding window test approach, with table 2, which shows

the forecasting accuracy of the naive model, we observe that all the models tested outperform

the naive model by a large margin. Overall the multiple-input multiple output multilayer per-

ceptron (MIMO MLP) model and the direct Kalman filter model have the lowest errors of any

of the individual models tested, but the two other MLP models and the direct linear regression

model follow very closely behind.

When looking at tables 4 and 5 in section 6.1.4 we observe that the training and update times

of the direct MLP model are roughly 20 times longer than for the MIMO MLP model since the

former essentially consists of 24 neural networks of roughly the same size as the latter. Since

the direct MLP model is both a lot slower than the MIMO MLP model and gives slightly higher

errors the MIMO MLP model is clearly the preferable one.

Similarly, although the direct linear regression and direct Kalman filter models give very sim-

ilar results, since they are essentially the exact same model except that they use different meth-

ods to estimate the model parameters, the Kalman filter model can be updated very easily and

quickly each day, whereas the linear regression model has to be retrained from scratch to be

updated. Thus the direct Kalman filter model is clearly the preferable one.

NTE’s Kalman filter model performed decently on 2012 compared to the other models, since

it is the only model that has been trained on data from before 2011, but overall the accuracy of

the model is bad compared to most of the others. The model has a tendency to behave errati-

cally at times and the accuracy of the model fluctuates wildly from year to year. In particular it

was observed that the model struggles to adapt during periods where the temperature changes

rapidly. The strong performance of the direct Kalman filter model suggests that this is due to

a poorly implemented model rather than a flaw of Kalman filtering itself. Part of the reason

for the comparatively bad performance might be that NTE’s model is from 1997, when power

consumption patterns were quite different from now. However considering that the covariates

that are relevant for predicting the power consumption are unlikely to change much over time,

a well-implemented Kalman filter model should have been able to adapt to the changes in con-

sumer patterns.

Compared to the other models the direct support vector regression (SVR) model performs

well on the last three years, but poorly on the first three. Upon closer inspection of the errors it

was observed that the poor performance on the first three years is actually a result of the model

catastrophically failing during one week in 2012, two in 2013 and a further two in 2014. Other-
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wise the model performance is similar to the best models. These five weeks were ones that ex-

perienced quick shifts in temperature and/or temperatures that were lower or higher than what

the model had seen before. Whether this problem is due to poorly chosen hyperparameters or

something else is unclear.

As expected the LSTM encoder-decoder model appears to significantly outperform the El-

man encoder-decoder, however the performance of these two models is overall disappointing

compared to the others, especially when you consider the fact that these two models are both

harder to implement and slower to train than the others. During the writing this thesis quite

a lot of time was spent trying out different neural network models that use a recursive strategy

where a single neural network is trained to predict the power load one hour ahead and then this

model is used recursively to produce multiple hours ahead forecasts up to 43 hours ahead, like

the encoder-decoder models do. The motivation behind this was that a recursive model, es-

pecially a recurrent neural network, might achieve better forecasting accuracy than the MIMO,

SMSO and direct MLP models by exploiting the sequential nature of the data, which the others

only utilize implicitly. For instance, a MLP model that produces one-hour ahead forecasts was

implemented and used to recursively produce forecasts up to 43 hours ahead. Although that

model occasionally gave day-ahead MAEs as low as 6.5 on 2017, it tended to give very different

results each time it was trained, even when using the exact same hyperparameters, making the

model very unstable. The problem appears to be that, as mentioned in section 3.2.1, models that

utilize a recursive strategy tend to suffer from accumulating forecasting errors. As an example,

lets say that we train the recursive MLP model twice and calculate the three hour ahead forecast

on the same day each time and that the forecasting error is a tiny bit higher the second time than

the first. What will then happen is that when that forecast is fed back into the neural network

and used to recursively produce load forecasts further and further into the future this tiny extra

error will blow up into a larger error. Vanilla Elman and LSTM RNNs had the same issue. Only by

using a combination of an encoder-decoder architecture that encourages the model to produce

good multi-step ahead forecasts, not just good one-step ahead forecasts, and LSTM cells, that

allow valuable information to propagate over many time steps without degradation, was I able

to get results that were consistently close to those of the best models.

The best results were obtained by the ensemble average model which is simply the mean

of the predictions from the MIMO MLP model, the direct Kalman filter model and the SMSO

MLP model. This ensemble average model took less than seven minutes to train on six years of

data and the time needed to update the model each day is only around a second when ignoring

overhead, which makes the model very convenient to use in a real world situation.

Figure 19 in section 6.1.5 shows the residuals of the ensemble average model for 2017. Al-

though the mean absolute errors of the model are relatively constant throughout the year, be-

cause power consumption is roughly twice as high in the winter as in the summer, the percent-
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age errors are actually considerably lower in the winter than in the summer. The reason that

absolute errors were used consistently throughout this thesis to measure forecasting accuracy

instead of percentage errors is that we did not want to punish absolute errors in the summer

harder than absolute errors in the winter.

Section 6.1.5 also contains some close-up comparisons of the predicted and actual power

loads. From these plots we observe that qualitatively the predictions look very good most of

the time. We observe that the model did a good job predicting the power consumption during

the Easter weekend of 2017. As mentioned in section 4.8 the way public holidays are dealt with

by the model is to treat them as if they were Sundays and qualitatively this has been observed

to work well most of the time. In 2017 the model actually had higher errors on the three days

preceding the Easter weekend than on the Easter weekend itself. The reason is that the power

consumption on these three days tends to be slightly lower than on regular workdays because

the days are located in the Easter vacation, when schools are closed. Similarly, the model tends

to be a bit inaccurate on Christmas eve and new year’s eve, especially if they fall on a work-

day, since the power consumption on these two days tends to be a bit lower than on regular

workdays, but still higher than on weekends. A solution to this problem is to treat these days as

special cases where the power load is first predicted normally and then downjusted a little bit

afterwards. Unfortunately because there are very few instances of each of these days in the data

set it is difficult to estimate precisely how much the power load should be downjusted, so it is

probably inevitable that the error on these days will be a bit higher than normal.

Another minor issue is that the model sometimes underpredicts the power consumption on

workdays that occur two days after a public holiday, as seen on the Wednesday after the Easter

weekend in 2017 in figure 21. The reason is that the model uses the power load on Monday to

predict the power load on Wednesday. Since Monday was a public holiday the power consump-

tion on that day was a lot lower than usual for a Monday. The model sees this and predicts that

this means that the power consumption on Wednesday will probably be a bit lower than usual

as well, which turns out to be false. A quick fix for this problem would be to tell the model that

this Wednesday is actually a Tuesday, so that it believes that the power loads from two days ago

are from a Sunday.

From figure 18 in section 6.1.2 and figure 24 in section 6.2.2 we observe that the average error

at different hours of the day is very similar for most of the models tested. The error is at its lowest

for the first few hours of the day, which is logical since these are the predictions that are made

the least far into the future. Then the error spikes at 7 am, most likely because, as can be seen in

figure 3 in section 2.1, this is the time of the day where the power load quickly rises on regular

weekdays as the day begins. A second spike occurs later around 4 pm when the workday ends.

As seen in tables 3 and 6 the errors do not vary much between different days of the week for

any of the models tested except the naive model. The errors on public holidays on the other
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hand are a bit higher than on other days, however, once again, considering that public holidays

are exceptions to the general rules and represent a small portion of the data set slightly higher

errors on these days should probably be considered inevitable and acceptable.

From figure 17 in section 6.1.1 we observe that in the expanding window test run the fore-

casting accuracy of all models except NTE’s Kalman filter model tended to gradually improve

each subsequent year. It is tempting to draw the conclusion that this is solely due to the models

being trained on more and more data each year, however by looking at figure 24 in section 6.2.1

we observe that when a cross validation test approach is used, where the models are trained on

an equal amount of data for all test years, the tendency for the forecasting accuracy to gradually

improve from 2012 to 2017 is still present. Furthermore from table 7 in section 6.3 we observe

that when the ensemble average model was only trained on the preceding year the error was

still highest in 2012 and 2013 and lowest in 2015 and 2016. However the same table also show

that the forecasting accuracy of the ensemble average model does indeed improve significantly

when the model is trained on multiple previous years of data. For 2013, 2014 and 2015 the best

results were obtained by training the model on the maximum number of previous years avail-

able, while for 2016 there was a tie between four and five previous years. For 2017 training only

on the previous four years of data actually gave a slightly lower error than using the previous five

or six yeas.

Considering that there hasn’t been any large changes in consumer patterns over the period

that the data set stretches the conclusion is thus that the tendency for the forecasting accuracy

to gradually drop from 2012 to 2017 in figure 17 is partially due to the accuracy of the models

improving as they are trained on more and more data and partially due to randomness. It ap-

pears that 2016 and 2017 happened to be relatively easy years to predict, whereas 2012 and 2013

happened to be relatively hard years predict.

It is hard to tell what the optimal number of training years is. Although some further testing

could be done on the data set to try to give an answer to this question, in a real world situa-

tion the optimal number is in all likelihood going to depend on how much consumer behavior

changed throughout the last couple of years, which is likely to fluctuate over time. A good solu-

tion in a real world situation might thus possibly be to train the same model several times using

training sets that go back a varying number of years, test each of the trained models on recent

data and use the version of the model that achieved the lowest errors.

As an aside, towards the end of writing this thesis I discovered that the MIMO MLP model

that I came up with in this thesis is actually very similar to a model called the third generation

ANNSTLF [20] (artificial neural network short-term load forecaster) that has been used by many

electric utilities in the United States since the 90s. The main difference is that the ANNSTLF

model does not use just a single MIMO MLP, but instead uses a weighted sum of the predictions

from two MIMO MLPs, one that predicts the power loads for the next day and one that predicts
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the difference between the power loads for today and tomorrow.

7.2 Temperature input sensitivity

From table 8 in section 6.4 we observe that feeding the MIMO MLP model a weighted average of

the temperature measurements from three different locations in Nord-Trøndelag gives a lower

forecasting error than feeding it only the temperatures from a single location, which is not sur-

prising. A bit more surprising is the observation that feeding the model all three temperature

time series also gives worse model performance, which holds true even if the size of the neu-

ral network is increased to account for the larger number of model inputs. The reason is likely

that, because the temperature measurements from the three different locations are highly cor-

related, feeding the model all three time series does not add much extra useful information to

the model. Thus doing so only makes it harder for the optimization algorithm to discern what

the useful information in the input is.

Interestingly enough, using only the temperatures from Stjørdal, the location whose tem-

perature forecasts are weighted the heaviest in the weighted average temperature time series,

produces higher errors than using only the temperatures from Steinkjer or Namsos. Part of the

reason might be found in figure 6 in section 2.4, which shows that the residuals of Stjørdal’s

temperature predictions are not quite normally distributed, but have a noticeable positive bias,

which might negatively affect the forecasting accuracy. In this thesis I have not looked deeply

into the weights used in the formula for the weighted average temperatures since the default

weights seamed to work quite well, however table 8 suggests that weighting the predictions from

Stjørdal the highest might not be a good idea and that either the weight for Stjørdal should be

lowered or less biased temperature forecasts for Stjørdal should be obtained somehow.

Another interesting observation from section 6.4 is that, as seen in table 9, there is no sig-

nificant change in forecasting accuracy between using actual or forecasted weighted average

temperatures. This is not that surprising when you consider that, as seen in figure 6, the resid-

uals of the weighted average temperature predictions are normally distributed with a mean of

0.24◦C and standard deviation of 1.31◦C, meaning that they are quite accurate. Still, this is ac-

tually a very useful result. It is easy to find historical temperature measurements for an area,

but historical day-ahead temperature forecasts can be a lot harder to find, so it is nice to know

that actual temperatures can be used as a substitute for temperature forecasts when training a

model without effecting the accuracy of the forecast much.

7.3 Updating models

Table 10 shows the forecasting accuracy of the MIMO MLP model when using expanding win-

dow test approaches with daily, weekly, monthly or yearly window sizes. It also shows the ac-
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curacy when using the approach that was used in section 6.1, where the model is trained once

at the beginning of each year using all past data and then continuously updated throughout

the year. From the table we observe that as the window size gets smaller the error tends to de-

crease. Using the approach from section 6.1 gives test results that are roughly as good as using

an expanding window approach with weekly window sizes and slightly worse than an expand-

ing window approach with daily window sizes, although the difference between these three ap-

proaches is so small that it is unlikely to be statistically significant. The reason that the testing

strategy from section 6.1 was used for the neural network models instead of retraining the model

from scratch each day is time usage. From table 4 we observe that the average training time of

the direct MLP model is around 20 minutes. Thus from basic arithmetic, testing the direct MLP

model by retraining it from scratch every single day from 2012 to 2017 would take around 700-

800 hours, which isn’t practical. Furthermore in a real world situation having to spend 20 min-

utes each day updating a model is not ideal. Similarly the linear regression and support vector

regression models were only retrained once a week instead of every day to make training times

a bit more manageable.

Strategy 2012 2013 2014 2015 2016 2017 Avg

Expanding window (daily) 7.92 7.88 7.01 6.62 6.16 6.27 6.98

Method from section 5.2.1 8.14 8.01 6.98 6.79 6.20 6.25 7.06

Expanding window (weekly) 8.07 8.02 7.04 6.71 6.18 6.33 7.06

Expanding window (monthly) 8.42 8.10 7.17 6.95 6.33 6.30 7.21

Expanding window (yearly) 8.82 8.35 7.09 6.98 6.47 6.35 7.34

Table 10: Mean absolute error of the MIMO model when using an expanding window approach
with different window sizes.

There is a trade-off present when using an expanding window approach where the model

is regularly retrained from scratch. We want the model to be updated as often as possible to

incorporate the newest available data to get the best possible forecast, but since retraining a

model from scratch is time consuming we don’t want to retrain the model more often than is

necessary. The rehearsal technique used in this thesis to continuously update a neural network

model as new data becomes available is a simple way to obtain forecasting accuracy’s that are

very close to those obtained when retraining the model daily without having to spend an inor-

dinate amount of time updating the model each day. As can be seen from the tables in section

6.1.4, for 2017 updating the MIMO model by retraining it from scratch takes more than a minute,

whereas updating the model using the rehearsal technique only takes around 0.2 seconds on a

mid-range processor.
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8 Conclusion

In this thesis a number of different models, some based on neural networks and some based

on other methods, were applied to the problem of forecasting the power consumption in Nord-

Trøndelag for each hour of the next day. The best performing neural network model that was

tested was a multilayer perceptron (MLP) that uses a multiple-input multiple-output (MIMO)

strategy, while the best performing model that wasn’t a neural network was a Kalman filter

model that consists of 24 time-varying linear regression models, one for each hour of the day,

each of which uses Kalman filtering for parameter estimation. Even though these two models

are quite different, in terms of performance they are very similar, both in terms of accuracy,

training time and daily update times.

The lowest forecasting errors were obtained by using an ensemble average model whose

predictions are the mean of the predictions from the two above-mentioned models and a variant

of the MIMO MLP model that was referred to as the single model single output (SMSO) MLP.

The ensemble average model takes a couple of minutes to train on a modern computer, but

once it has been trained updating it each day as new data becomes available can be done in a

matter of seconds. It was also found that the model can likely be continuously updated in this

manner for a year without retraining without a significant drop in forecasting accuracy. In terms

of accuracy the model is a big improvement compared to NTE’s current model and unlike that

model it is able to quickly adapt to changing temperatures. The only real flaw of the model is

that it experiences slightly higher errors on and around public holidays and other special days

than on regular days, but this is likely to be the case for any model.

The ensemble average model can likely be fine-tuned to improve model performance a lit-

tle bit further, e.g. by fine-tuning how heavily it weights the temperature measurements from

the three seperate measurement locations, however considering how strong the model perfor-

mance already is, we have likely reached a point of diminishing returns where we are unlikely to

see any big reductions in the forecasting errors. Overall the model should thus be considered to

be ready for implementation.
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A Appendix

A.1 Detailed expanding window forecast errors

Model 2012 2013 2014 2015 2016 2017 Avg

Mean of three best models 7.60 7.56 6.75 6.35 5.82 5.97 6.67

MIMO MLP 8.14 8.01 6.98 6.79 6.20 6.25 7.06

Direct Kalman Filter 8.07 7.73 7.06 6.78 6.49 6.42 7.09

Direct Linear Regression 8.66 8.42 7.31 6.80 6.49 6.49 7.36

SMSO MLP 8.67 8.61 7.40 6.96 6.27 6.33 7.37

Direct MLP 8.28 8.48 7.79 6.96 6.50 6.41 7.40

LSTM Encoder-Decoder 9.83 9.47 7.32 7.41 6.99 6.34 7.89

Direct SVR 10.21 11.06 9.32 7.19 7.10 6.57 8.58

Elman Encoder-Decoder 10.04 10.09 8.20 8.20 7.91 7.54 8.66

Kalman Filter (NTE) 8.69 9.97 10.36 8.29 11.09 8.39 9.47

Naive model 17.46 18.54 16.78 16.37 17.66 18.26 17.51

Table 11: Mean absolute errors (MAE) in MW for all models for the years from 2012 to 2017 when
using the expanding window test approach described in section 5.2.1.

Model 2012 2013 2014 2015 2016 2017 Avg

Mean of three best models 3.06% 3.09% 2.82% 2.47% 2.22% 2.30% 2.66%

MIMO MLP 3.25% 3.28% 2.94% 2.64% 2.37% 2.41% 2.81%

Direct Kalman Filter 3.32% 3.18% 2.94% 2.65% 2.55% 2.51% 2.86%

SMSO MLP 3.48% 3.51% 3.12% 2.73% 2.40% 2.42% 2.94%

Direct Linear Regression 3.50% 3.46% 3.11% 2.65% 2.50% 2.51% 2.96%

Direct MLP 3.29% 3.46% 3.34% 2.73% 2.49% 2.47% 2.96%

LSTM Encoder-Decoder 3.80% 3.76% 3.08% 2.84% 2.56% 2.40% 3.07%

Elman Encoder-Decoder 3.94% 4.09% 3.52% 3.15% 2.96% 2.92% 3.43%

Direct SVR 3.88% 4.46% 4.39% 2.85% 2.64% 2.53% 3.46%

Kalman Filter (NTE) 3.45% 3.96% 4.17% 3.17% 4.33% 3.21% 3.71%

Naive model 6.74% 7.41% 6.79% 6.16% 6.52% 6.67% 6.71%

Table 12: Mean absolute percentage errors for the same test run as in figure 11.
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A.2 Detailed cross validation forecast errors

Model 2011 2012 2013 2014 2015 2016 2017 Avg

Mean of three best models 6.75 7.18 6.99 6.46 6.12 5.76 5.98 6.40

MIMO MLP 7.04 7.45 7.50 6.89 6.34 6.09 6.26 6.80

SMSO MLP 7.08 7.61 7.67 6.91 6.41 6.10 6.29 6.87

Direct MLP 7.09 8.28 8.48 7.79 6.96 6.50 6.41 6.87

Direct Kalman Filter 6.99 7.91 7.44 6.92 6.86 6.41 6.42 6.92

LSTM Encoder-Decoder 7.37 7.73 7.58 6.99 6.43 6.80 6.54 7.06

Direct Linear Regression 7.39 8.02 7.74 7.03 6.53 6.36 6.56 7.09

Elman Encoder-Decoder 8.16 8.18 8.87 7.99 7.31 7.54 7.47 7.93

Direct SVR 8.00 10.21 11.06 9.32 7.19 7.10 6.57 8.49

Table 13: Mean absolute errors (MAE) in MW for all models for the years from 2011 to 2017 when
using a cross validation approach for testing where the models are trained on an equal amount
of data for each year.

A.3 Varying the number of training years - Results for each submodel

Training years 2012 2013 2014 2015 2016 2017

One year back 8.19 8.60 7.84 7.90 6.76 6.93

Two years back X 8.08 7.49 7.17 6.59 6.50

Three years back X X 7.05 6.84 6.24 6.43

Four years back X X X 6.75 6.21 6.08

Five years back X X X X 6.19 6.44

Six years back X X X X X 6.31

Table 14: MAE of MIMO MLP model in MW.
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Training years 2012 2013 2014 2015 2016 2017

One year back 8.56 9.17 8.11 7.81 7.12 7.05

Two years back X 8.81 7.75 7.33 6.95 6.74

Three years back X X 7.26 7.17 6.51 6.43

Four years back X X X 6.94 6.47 6.32

Five years back X X X X 6.53 6.58

Six years back X X X X X 6.37

Table 15: MAE of SMSO MLP model in MW.

Training years 2012 2013 2014 2015 2016 2017

One year back 8.07 8.04 7.13 6.83 7.31 6.59

Two years back X 7.73 7.14 6.85 7.19 6.48

Three years back X X 7.06 6.87 6.79 6.55

Four years back X X X 6.78 6.56 6.43

Five years back X X X X 6.49 6.40

Six years back X X X X X 6.42

Table 16: MAE of direct Kalman filter model in MW.


	
	
	
	
	
	

	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	


	
	
	
	
	

	
	
	

	
	
	
	
	

	
	
	
	

	
	
	
	
	
	
	


	
	
	
	
	
	
	

	
	
	
	

	
	

	
	
	
	

	
	
	
	
	


