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Abstract

Short-term forecasting of power consumption is an important tool for decision makers in the

energy sector. Power load forecasting is a challenging multi-step ahead time series forecasting

problem since the power load is dependent on a number of different factors, e.g. temperature,

time of day, time of week and recent power consumption. The goal of this master thesis was

to develop a model that predicts the power consumption in Nord-Trøndelag for each hour of

the next day. Several different models based on artificial neural networks were developed and

tested on a historical data set consisting of hourly observations of power loads and tempera-

tures in Nord-Trøndelag from 2011 to 2017. The data set was provided by Nord-Trøndelag Elek-

trisitetsverk (NTE). The performance of the models was compared to NTE’s current model and

several other types of models that are commonly used for short-term load forecasting. The fi-

nal proposed model is an ensemble average of the two best performing multilayer perceptrons

tested and a time-varying linear regression model that uses Kalman filtering for weight esti-

mation. The proposed model is very efficient in terms of time usage and a large improvement

compared to NTE’s current model.
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Sammendrag

Prediksjon av strømforbruk er et viktig verktøy for beslutningstakere i energisektoren. Strømfor-

brukspredikering er et utfordrende problem ettersom strømforbruket er avhengig av en rekke

ulike faktorer, b.a. temperatur, tidspunkt på dagen, hvilken ukedag det er og hva strømfor-

bruket var de siste par dagene. Målet med denne masteroppgaven var å utvikle en metode

som predikerer strømforbruket i Nord-Trøndelag for hver time neste dag. Flere ulike modeller

basert på kunstige nevrale nettverk ble utviklet og testet på et historisk datasett som består av

timeobservasjoner av strømforbruket i Nord-Trøndelag fra 2011 til 2017 og temperaturdata fra

den samme perioden. Datasettet kommer fra Nord-Trøndelag Elektrisitetsverk (NTE). Nøyak-

tigheten til modellene ble sammenlignet med NTEs nåværende modell og et par andre typer

modeller som ofte brukes til å produsere strømforbruksprognoser. Den foreslåtte modellen

bruker gjennomsnittet av prediksjonene fra de to beste nevrale nettverkene som ble testet og en

tidsvarierende lineær regresjon modell som bruker Kalmanfiltrering. Den foreslåtte modellen

er tidsmessig effektiv og en stor forbedring sammenlignet med NTEs nåværende modell.
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1 Introduction

In Norway electricity provision and distribution within a region was historically handled by the

same company. In 1991 the power system was liberalized, meaning that consumers in Norway

got to freely choose who their energy provider is, regardless of who owns the power distribution

network in their local area. Today consumers in Norway pay two separate actors for electricity.

They pay their power provider for the electricity they use and they pay their distribution network

operator for the cost of transporting the electricity to their house. Most power companies in

Norway still provide both services, but they are legally required to not give preferential treatment

to their own electricity. For instance the distribution price is legally required to be the same

regardless of who the power provider is.

In addition to the consumer market where power providers sell electricity to consumers

there also exists a wholesaler market where power producers sell electricity to power providers.

Most of this trading is done through Nord Pool, an energy exchange that operates in multiple

countries in Northern Europe. Most of the trade on Nord Pool is done on the day-ahead market,

which closes at noon each day. Before this deadline power producers and providers lay in bids to

Nord Pool that specify how much power they are willing to sell or buy at different price levels for

each hour of the next day. Nord Pool then calculates the price at each hour based on the supply

and demand and settles the trades. Starting at midnight the power is then physically delivered

from the power producers to the power providers according to the agreed upon contracts.

When the hour of delivery comes the power provider may discover that the customers are

using dP more electricity than the power provider bought for that hour. This deficit then has

to be made up for by buying electricity on the reserve market, also called the regulating power

market, at a price R that is different from the price S of the day-ahead market. If R > S the

money lost for the supplier will be dP · (R–S), whereas if R < S the supplier will earn the same

amount. Similarly, if the power provider’s customers use less electricity than anticipated the

excess electricity has to be sold on the regulating power market, which will result in a net gain

for the power provider if R > S or a net loss if R < S. Although the power supplier may sometimes

earn money by buying or selling on the reserve market instead of on the day-ahead market,

on average they can expect to loose money by doing so and the larger the imbalance of the

power provider is the more likely they are to loose money. Part of the reason for this is that the

imbalance of the power provider impacts the imbalance of the market. E.g. if the power supplier

has an excess supply of electricity that they need to sell on the reserve market, then the more

excess electricity they have, the higher the total supply in the market becomes, which reduces

the price. Because of this a power supplier ideally wants to predict the power load as accurately

as possible. Since the amounts of electricity traded between power producers and providers

is typically very large, even a relatively small reduction in the forecast error can result in large
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financial savings for the company.

Nord-Trøndelag Elektrisitetsverk (NTE) acts both as a distribution network operator that

runs the power grid in Nord-Trøndelag, an area that is populated by around 130.000 people,

and as the primary power provider in the same area. The main goal of this thesis was to develop

a model that accurately predicts the power consumption in Nord-Trøndelag for each hour of

the next day based on information available on the morning of the current day. E.g. if the cur-

rent time is Tuesday morning then we want to predict the power load on each hour of Wednes-

day. Ideally this model should be able to significantly outperform NTE’s current model, which is

based on Kalman filtering and is known to be inaccurate at times. Another goal of the thesis was

to investigate whether a model based on neural networks would be a significant improvement

to one based on Kalman filtering or not.

The data set used to test the different models was provided by NTE. It contains hourly obser-

vations of the power consumption in Nord-Trøndelag from 2011 to 2017 as well as weather data

from the same period.

Power load forecasting can be viewed as a multi-step ahead time series forecasting problem.

It is a challenging problem since power loads are not only heavily dependent on temperatures,

but also exhibit both daily, weekly and yearly cyclical patterns. Special days like public holidays

also have to be accounted for.

Section 2 of this thesis will give a detailed description of the data set provided by NTE, while

section 3 will provide the necessary theoretical background to understand the models that are

presented in section 4. Section 5 describes the test approaches used to test the different models

and the results are reported in section 6. The results are discussed in section 7.
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2 Data set

As mentioned in the introduction, the data set was provided by Nord-Trøndelag Elektrisitetsverk

(NTE) and consists of hourly observations of the power consumption in Nord-Trøndelag, Nor-

way from January 1st 2011 to December 31st 2017. The unit of measurement is MWh/h, mean-

ing the average power load in MW over the preceding hour, although from now on it will sim-

ply be referred to as MW. The data set also contains weather data from the same period in the

form of hourly measurements of temperature, wind speed and solar irradiation from three of the

largest town in Nord-Trøndelag, namely Steinkjer, Stjørdal and Namsos. Additionally, since day-

ahead forecasts must be made before the exact weather conditions of the next day are known,

the data set also includes day-ahead weather forecasts made the morning before for the same

three locations. Finally the data set also contains the day-ahead power load predictions made by

NTE’s current model, which is based on Kalman filtering. In total the data set contains 20 time

series, each of which consists of 61.368 measurements. The data set is very close to complete,

with only a dozen or so missing values from the power and temperature time series, which was

rectified by using the average of the previous and subsequent measurements to fill in the gaps.

2.1 Cyclical patterns

Figure 1 shows the entire power load time series. The power load includes all public power

usage in Nord-Trøndelag except for a handful of industrial actors. We observe that there is a

strong yearly seasonality in the time series. Power consumption is much higher in the winter

than in the summer. This is primarily because a lot more electricity is needed to heat buildings

during the winter when the weather is cold.

Figure 1: Hourly power consumption in Nord-Trøndelag from 2011 to 2017.
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Note that there has been a very slight increasing trend in the power load over the seven years.

In general power load patterns will slowly change over time due to changes in population size

and consumer patterns, which is something that must be considered when fitting a forecasting

model, although in the case of this data set the changes have been very small.

Figure 2: Close-up of the power load from Monday October 9th to Sunday October 30th, 2017.
Weekends are shaded with a darker background than workdays.

Figure 3: Mean daily power load pattern for each weekday over the entire data set.

Figure 2 shows a close-up of the power load from Monday October 9th to Sunday October
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30th, 2017, while figure 3 plots the mean daily power load pattern for each weekday over the

entire data set. We observe that in addition to the yearly cyclical pattern in the power loads

there are also strong daily and weekly cyclical patterns. Power consumption is generally much

higher in the daytime than during the night and higher on workdays than during the weekend.

Another thing to note is that the shape of the daily power load curve changes throughout the

year. In the winter half of the year workdays usually have a big spike in power consumption in

the morning and a smaller one in the afternoon around the time people come home from work,

whereas in the summer half of the year there is no second spike during the afternoon (see e.g.

figure 4), which is why the shape of the power load curve on workdays is a bit different in figures

2 and 3.

2.2 Public holidays

An additional factor that complicates power demand forecasting is public holidays. There are

12 public holidays in Norway each year. Table 1 lists them all. Five of the holidays fall on the

same date each year and thus the weekday they fall on varies from year to year, while the other

seven are always a set amount of days from Easter Sunday and fall on the same weekday each

year.

Public holiday Date

New Year’s Day January 1st

Maundy Thursday Three days before Easter Sunday

Good Friday Two days before Easter Sunday

Easter Sunday First Sunday after first new moon after spring equinox

Easter Monday Day after Easter Sunday

Labor Day May 1st

Norwegian Constitution Day May 17th

Ascension Thursday 40 days after Easter Sunday

Whit Sunday 50 days after Easter Sunday

Whit Monday 51 days after Easter Sunday

First day of Christmas December 25th

Second day of Christmas December 26th

Table 1: List of Norwegian public holidays

Figure 4 shows a close-up of the power load from Monday April 29th to Monday May 21st,

2013. This period contains five public holidays, namely Labor Day on Wednesday May 1st, As-

cension Thursday on May 9th, Constitution Day on Friday May 17th and Whit Sunday and Mon-
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day on May 20th and 21st. As can be seen in the plot public holidays experience power demand

curves similar to those of Saturdays and Sundays regardless of which day of the week they fall

on.

Figure 4: Close-up of power load from Monday April 29th to Tuesday May 21st, 2013. Weekends
are shaded darker than workdays and public holidays are shaded green.

2.3 Temperature dependence

The temperature data that is included in the data set is the same temperature data that NTE’s

current model uses. NTE’s current model uses a weighted average of the weather measurements

from each site. The formula for the weighted average temperature time series is

T (t ) = 0.51 ·TSt j ør d al (t )+0.3 ·TStei nk j er (t )+0.19 ·TN amsos(t ). (1)

These weights are motivated by the fact that Namsos is the least populous of the three towns

and lies in the northern part of Nord-Trøndelag, which is less populated than the south, while

Stjørdal is the most populous of the three and lies in the south. Figure 5 is a scatter plot that

shows the relationship between the daily average temperature and the daily average power load

over the entire data set. The temperatures used are those from formula 1, although the scatter

plots for each of three individual temperature time series are practically identical. Note that only

regular workdays (Mondays to Fridays) are shown due to the different load pattern exhibited

during weekends. We observe that the relationship between power and temperature is relatively

linear with power consumption decreasing as the temperature increases. However, upon closer

inspection we observe that the relationship is a bit more complicated than that. In particular, if

the temperature is already above 15◦C then increasing it further will not have much of an impact

on the power load. This is presumably because heating of buildings no longer becomes a factor.

In fact, in countries with warmer climates than Norway it is common to see something closer to

a reverse j-shape or even a u- or v-shape where power loads increase when air temperatures go
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beyond room temperature because of the large amount of energy consumed by air conditioning

systems in hot weather.

Figure 5: Scatter plot of daily average power loads versus daily average temperatures. Only reg-
ular workdays are included. Warmer colors indicate a higher density of observations.

2.4 Temperature forecasts

Figure 6 shows four histograms that display the residuals between the actual and predicted tem-

peratures for each of the three locations in the data set as well as for the weighted average tem-

perature time series. A positive residual means that the actual temperature is higher than the

prediction. The temperature predictions were made the morning before at approximately 10

am. E.g. the temperature predictions for April 16th from 1 am to midnight were made on April

15th at 10 am. The forecasting residuals from Namsos and Steinkjer follow a normal distribu-

tion with a mean close to zero, but the forecasts from Stjørdal are a bit skewed. A somewhat

surprising thing which is not shown in the figure is that the uncertainty of the forecasts does not

increase significantly from 1 am to midnight even though the forecasts are made further and

further into the future.
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Figure 6: Histograms of the differences between predicted and actual temperatures for each of
the three locations as well as the aggregate time series.
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3 Background

3.1 Power load forecasting

According to Hong and Fan [1] approximately 2500 journal papers in the field of power load

forecasting were published from 1970 to 2014. Out of these around 1300 papers were published

between 2010 and 2014. The field of electric power load forecasting can be roughly grouped into

three categories: point load forecasting, spatial/hierarchical load forecasting and probabilistic

load forecasting.

Point load forecasting is usually grouped into short-term or long-term load forecasting, with

short-term typically meaning that the forecast horizon is less than one-two weeks, although

there is no universally agreed upon cut-off point between the two subcategories. Approximately

800 out of the 2500 papers found by by Hong and Fan were in the field of short-term point load

forecasting, while around 1150 concerned long-term point load forecasting. Note that short-

term load forecasting is sometimes further divided up into very short-term and short-term fore-

casting with very-short term typically meaning less than a day ahead.

Spatial/hierarchical load forecasting concerns methods that can be used in situations where

the electric load can be split up into several geographical subareas, while probabilistic load fore-

casting deals with methods that forecast a probability distribution of the expected power de-

mand. Around 300 of the papers found by Hong and Fan concerns the former, while around

250 concerns the latter. Although the data set used in this thesis contains weather data from

several geographic locations the historical power loads are only available for the whole of Nord-

Trøndelag. Thus spatial load forecasting methods will not be relevant in this case study. Gen-

erating a probability distribution for the power demand may sometimes be useful, but in the

context of energy exchanges point forecasts is what we are primarily interested in, thus proba-

bilistic forecasts will not be dealt with in this thesis.

Hong and Fan [1], Srivastava et. al. [2], and Chheepa and Manglani [3] give detailed reviews

of the different types of models that are commonly used for short-term point load forecasting.

They are often divided into two groups, namely statistical models and artificial intelligence-

based models, although the distinction between the two groups is very loose. Common statis-

tical models used include multiple linear regression, adaptive load forecasting models based

on Kalman filtering, semi-parametric additive models and traditional time series models like

ARIMA models and exponential smoothing. Although ARIMA and exponential smoothing mod-

els tend to perform well compared to other types of models in situations where temperature

information is not available or where there is little temperature fluctuation they are in most

situations ill-suited for short-term power load forecasting because they do not incorporate tem-

perature information into the model. Instead ARIMAX models, an extension of ARIMA models
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that are able to incorporate exogenous time series, are sometimes used. Among artificial intelli-

gence methods artificial neural networks (ANN) have received the most attention, especially in

later years as computing power has increased, although other methods such as support vector

regression are also sometimes used. Multi-layer perceptrons are the most commonly used type

of ANN. Recurrent neural network are a type of ANN that are particularly well suited to prob-

lems where the data is of a sequential nature. Despite this they have not been used much for

load forecasting, although they have received some attention lately, see e.g. Bianchi et. al. [4].

Finally, hybrid methods that combine several different types of models are also commonly used.

3.2 Multi-step ahead time series forecasting strategies

One way to view short-term power load forecasting is as a multi-step ahead time series fore-

casting problem where we want to predict the next H observations yt+1, ..., yt+H of a time series

using the previous L observations yt , ..., yt−L+1 of the same time series and a vector of exogenous

information xt . In this case the time series y is the power load and xt is a vector of external fac-

tors that affect future power loads, e.g. past temperatures, forecasts of future temperatures, the

current hour and the current day of the week.

Subsections 3.2.1 to 3.2.4 will present a number of general strategies that can be used to

produce multi-step ahead time series forecasts.

3.2.1 Recursive strategy

Perhaps the simplest strategy for producing a H step ahead forecast is to fit a single model that

produces one-step ahead forecasts and use this model recursively H times to produce the de-

sired predictions. Stated more precisely: we fit a function f so that that the k-step ahead predic-

tions are given by the formula

ŷt+k =


f (yt , ..., yt−L+1, xt ) if k = 1

f (ŷt+k−1, ..., ŷt+1, yt , ..., yt+k−L , xt ) if 1 < k ≤ L

f (ŷt+k−1, ..., ŷt+k−L , xt ) if L < k ≤ H .

(2)

The biggest issue with this strategy is that it is sensitive to accumulating forecast errors, es-

pecially when H is large [5, p.7]. For instance, if the model has a slight tendency to overpredict

in each step, then this overprediction might propagate leading to increasingly worse overpre-

dictions the further ahead that we predict.
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3.2.2 Direct strategy

Alternatively we can fit a separate function fk for each of the future data points that we want to

predict. That is, we fit the models

ŷt+k = fk (yt , ..., yt−L+1, xt ), 1 ≤ k ≤ H . (3)

This is called a direct strategy. The direct strategy avoids the error propagation problem that the

recursive strategy can suffer from, but fitting the model is often more computationally expen-

sive. Additionally the predicted data points will be conditionally independent, unlike the data

points in the actual time series, since we are using a separate model to predict each future data

point, which may lead to decreased accuracy in certain situations [5, p.8].

3.2.3 Multiple-input multiple-output (MIMO) strategy

Unlike the two first strategies where each fitted model only has a single ouput the idea of the

MIMO strategy is to fit a single model that outputs all the predictions that we want. That is, we

fit the model

ŷt+1, ..., ŷt+H = f (yt , ..., yt−L+1, xt ). (4)

This model does not have the accumulating error problem that the recursive strategy suffers

from nor the conditionally independent predictions problem that the direct strategy suffers

from. However, the fact that we are using only one model to predict all future data points may

make the model less flexible than if we used a direct strategy [5, p.10].

3.2.4 Hybrid strategies

Finally, a hybrid of two or more of the above strategies can be used. E.g. we can use a direct-

recursive hybrid strategy where a separate model is fitted for each time step that we want to

predict, but the model that predicts ŷt+k takes ŷt+k−1 as an input [5, p.8-9].

3.3 Supervised learning

In addition to choosing a strategy for producing the multi-step ahead forecasts we also need to

choose the method for fitting the forecasting function f . One approach is to view the search for

f as a supervised learning problem. Let {(x1,y1), ..., (xN ,yN )} be a training set that consists of N

samples where each sample consists of a feature vector xi and a corresponding response vector

yi . E.g. if we are using the MIMO strategy from equation 4 then xi = [yt , ..., yt−L+1,xt ]T and yi =
[yt+1, ..., yt+H ]T . A supervised learning algorithm seeks a function f from the space of feature

vectors to the space of response vectors. The function is chosen by solving the optimization

problem
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argmin
f ∈F

1

N

N∑
i=1

E(yi , f (xi )), (5)

where E is an error function and F is the hypothesis space, meaning that it is the space of

possible functions f .

A supervised learning problem where the values in the response vector are discrete is called

a classification problem. If the values are continuous it is called a regression problem. In the

rest of this theory section we will focus solely on regression problems where xi = [xi 1, ..., xi m] ∈
Rm and yi = [yi 1, ..., yi n] ∈ Rn . Common choices for the error function in regression problems

include the mean squared error

MSE = 1

n

n∑
j=1

(yi j − f (xi ))2 (6)

and the mean absolute error

MAE = 1

n

n∑
j=1

|yi j − f (xi )|. (7)

3.4 Multiple linear regression

Multiple linear regression (MLR) is a supervised learning model where the hypothesis space F

is the space of all possible linear functions and the error function E is the mean squared error.

MLR seeks a linear function

f (xi ) =β0 +xi 1β1 + ...+xi mβm = xT
i β (8)

that approximates yi ∈ R. For the sake of convenience the notation xi = [1, xi 1, ..., xi m]T is

used. The parameters β= [β0, ...,βm]T ∈Rm+1 are found by minimizing the mean squared error

MSE = 1

N

N∑
i=1

(yi − f (xi ))2. (9)

To derive an estimator forβ first note that equation 8 can be rewritten using matrix notation

as

f (X) = Xβ, (10)

where f (X) = [ f (x1), ..., f (xN )]T and X = [x1, ...,xN ]T . Similarly equation 9 can be rewritten as

MSE = 1

N
(y−Xβ)T (y−Xβ) = 1

N
(yT y−2βT XT y+βT XT Xβ), (11)
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where y = [y1, ..., yN ]T . The coefficients that minimize the MSE are found by setting the

derivative of the MSE with respect to β equal to 0, as such:

∂MSE

∂β
= 1

N
(−2XT y+2XT Xβ̂) = 0 (12)

and thus the value of β that minimizes the MSE is

β̂= (XT X)−1XT y (13)

[6, p.68-69].

3.5 Artificial neural networks

3.5.1 Single-layer perceptrons

Artificial neural networks (ANNs) are a large and important group of supervised learning mod-

els. One of the simplest types of ANN is the single-layer perceptron (SLP). A single-layer percep-

tron is a supervised learning model that fits a function of the form f (xi ) = g (b+wxi )), where g

is called the activation function and can be any arbitrary function, while w ∈Rm×n and b ∈Rn×1

are called the weight matrix and the bias vector and are parameters in the model. Note that a

multiple linear regression model is a special case of single-layer perceptron where n = 1 and the

activation function is the identity function g (x) = x. Just like MLR models the parameters are

typically found by minimizing the mean squared error, although other error functions may also

be used. However, unlike with MLR models there is in general no analytical formula that can

be used to find the exact parameters that minimize the error function. Instead an optimization

algorithm must be used to find an approximate solution. In section 3.5.4 one such algorithm,

stochastic gradient descent (SGD), is described in detail. Two extensions of SGD, namely SGD

with momentum and the Adam algorithm, will be shown in sections 3.5.6 and 3.5.7.

3.5.2 Multilayer perceptrons

A multilayer perceptron (MLP) is an artifical neural network that consists of several single-layer

perceptrons arranged in succession, where the output of each SLP is used as input to the next

one. Each SLP is said to constitute a layer. The final layer in the chain is called the output layer,

whereas the others are called hidden layers. In particular: a multilayer perceptron with one

hidden layer is a function of the form

f (xi ) = g2(b(2) +w(2)g1(b(1) +w(1)xi )), (14)

where g1 and g2 are the activation functions of the hidden and output layers respectively
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and θ = {w(1),w(2),b(1),b(2)} are the parameters of the model.

Figure 7 shows an illustration of a multilayer perceptron with one hidden layer visualised

as a directed computational graph. To the left in the graph there is one node for each of the m

inputs xi 1, ..., xi m to the MLP. The number of nodes in the hidden layer is equal to the output

dimension of the first SLP in the chain. The input nodes and the nodes in the hidden layer

are fully connected with one edge directed from each of the input nodes to each of the nodes

in the hidden layer. Each edge between the two layers is associated with a weight w (1)
j k , which

corresponds to the element in row j and column k of w(1). The output of node k in the hidden

layer is g1(b(1)
k +∑m

j=1 w (1)
j k xi j ), where bk is the k-th element of the bias vector b(1). That is, each

node in the hidden layer takes the weighted sum of all nodes that have an edge pointed at it and

applies an activation function to this sum to produce its output. The next layer then performs a

similar operation using the outputs of the hidden layer as input to produce the final outputs of

the model, which in the figure are labeled yi 1, ..., yi n [7, p.227-230].

Figure 7: Illustration of a multilayer perceptron with one hidden layer.

Note that in the context of artificial neural networks the nodes are often referred to as neu-

rons, while the edges are often referred to as synapses, due to vague superficial similarities they

have with the neurons and synapses in the human brain. These superficial similarities is also

where the name artificial neural network comes from.
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Figure 8: Plots of three commonly used activation functions. Left: rectified linear unit function,
center: sigmoid function, right: hyperbolic tangent.

3.5.3 Activation functions

Figure 8 plots three of the most commonly used activation functions: the Sigmoid function

h(x) = σ(x) = ex/(ex +1), the hyperbolic tangent h(x) = tanh(x) = (1− e−2x)/(1+ e−2x) and the

rectified linear unit function h(x) = max(0, x), commonly called the ReLU function.

There are several reasons why these particular activation functions are commonly used. First

of, they are non-linear. From equation 14 it is obvious that if we were to only use linear activation

functions in the hidden layers then the model would simplify to a single-layer perceptron. Thus

the entire point of stacking several hidden layers after each other would be gone. Furthermore if

we also use a linear activation function in the output layer then the model will simplify to ordi-

nary linear regression and the fitted function will only be able to represent linear combinations

of the input.

The second reason that these three functions are commonly used is that they all have deriva-

tives that are very easy to calculate. The derivative of σ(x) is σ(x)(1−σ(x)), the derivative of

tanh(x) is 1− tanh2(x) and the derivative of the ReLU function is 0 if x is negative and 1 other-

wise. As we shall see in sections 3.5.4 and 3.5.5, training a MLP involves calculating the deriva-

tives of the outputs of the activation functions in the network with respect to different inputs

many many times over. Thus to ensure that training times remain reasonably low it is very help-

ful if these gradients are easy to calculate. Note however that the ReLU function is slightly faster

than the other two as it and its derivative consists only of a simple if-statement, whereas the

Sigmoid and hyperbolic tangent functions require exponential functions to be computed.

The third reason is that all three of these functions squash their input to within a certain

range. As can be seen in figure 8 the output of the Sigmoid function is always between 0 and

1, the output of the hyperbolic tangent is always between -1 and 1 and the output of the ReLU

function is always non-negative. This can be useful both to ensure that the output of the model

is within a certain range and to increase training stability.

Note that it is common to use different activation functions in different layers, but it is very
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rare to use different activation functions in the same layer due to potential training instability

problems that this may cause. Although linear activation functions cannot be used in the hidden

layers, they are often used in the output layer in regression problems where we want the output

to be able to represent any real number.

3.5.4 Stochastic gradient descent

Stochastic gradient descent (SGD) is the optimization algorithm that is most commonly used

to fit the parameters θ in multilayer perceptrons. SGD is an iterative algorithm where in each

epoch the training data is randomly split into B non-overlapping and roughly equal-sized sub-

sets called batches. Then for each batch the errors of the training examples in the batch are

calculated and used to calculate the gradient of the total error of the batch with respect to the

parameters θ. The algorithm then updates the parameters by taking a step in the direction of the

gradient, where the step size is dependent on the hyperparameter η, which is called the learning

rate. Pseudocode for the algorithm is shown below.

Algorithm 1 Stochastic gradient descent

Choose η (learning rate/step size)
Initialize parameters θ0

Set initial iteration number: t = 0
for epoch e = 1 to n_epochs do

Randomly split the training data into B batches of roughly equal size
for batch b = 1 to B do

Initialize the search direction: dt = 0
for element i = 1 to nb in batch do

Forward pass: Calculate the error Ei = E( f (xi ),yi )
Backward pass: Calculate the gradient of the error ∇∇∇θt Ei

Update the search direction: dt = dt +∇∇∇θt Ei

end for
Update the parameters: θt = θt−1 −ηdt

end for
end for
return θt

There are a few things that should be noted about the above algorithm. First off, in the

special case where B is equal to 1 the algorithm simplifies to regular gradient descent. Secondly,

some authors only use the term stochastic gradient descent when the batch size is equal to 1

and otherwise call the above method mini-batch gradient descent. Thirdly, if the size of the

training set is not a multiple of the batch size then the last batch will be smaller than the others.

E.g. if N, the training set size, is 1050 and the batch size B is 100, then the training set will be

split into 10 batches with 100 elements each and one batch with 50 elements. Fourthly, note
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that one epoch constitutes one forward pass of all the training examples and is different from

an iteration, which constitutes one parameter update. E.g. if the training data is split into 11

batches, then each epoch consists of 11 iterations. Finally, the convergence criterion that was

used in the pseudocode was that a certain number of epochs has been performed, but other

convergence criteria can also be used, like stopping training when the total error of an epoch

become lower than a certain threshold. [8, p.290-292]

3.5.5 Backpropagation

The most computationally expensive part of stochastic gradient descent is the backward pass

where the partial derivatives of the error of a training example with respect to each of the weights

in the neural network are calculated. The most common way to calculate the derivatives is to

use the backpropagation algorithm. The backpropagation algorithm first calculates the partial

derivatives of the error with respect to the weights in the output layer. Then it uses the chain

rule to work its way backwards through the neural network layer by layer while computing the

partial derivatives of the error with respect to the weights in each layer.

In the derivation below we will for the sake of simplicity assume that the error function used

is the mean squared error. Let us number the layers from 1 to M , where layer 1 is the first hidden

layer and layer M is the output layer. Furthermore let a(L)
k denote the input to the activation

function of neuron k in layer L. The formula for a(L)
k is

a(L)
k =

nL−1∑
j=1

w (L)
j k o(L−1)

j +b(L)
j =

nL−1∑
j=0

w (L)
j k o(L−1)

j , (15)

where nL−1 is the number of neurons in layer L − 1 and o(L−1)
j is the output of neuron j in

layer L−1. Note that in the second step we simplified the expression a little bit by writing b(L)
k as

w (L)
0k . The derivative of the above expression with respect to one of the network weights is

∂a(L)
k

∂w (L)
j k

= o(L−1)
j . (16)

Using the chain rule we can now write the derivative of the error of training sample number

i with respect to a certain weight in the neural network as

∂Ei

∂w (L)
j k

= ∂Ei

∂a(L)
k

· ∂a(L)
k

∂w (L)
j k

= δ(L)
k ·o(L−1)

j , (17)

where we have introduced the notation

δ(L)
k ≡ ∂Ei

∂a(L)
k

. (18)
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The o(L−1)
j ’s can easily be computed by propagating the feature vector of the training sample

forward through the network. Thus to compute 17 we now only need to find a way to calculate

δ(L)
k for all neurons in the network. The easiest ones to compute are those in the output layer.

Let gL denote the activation function of layer L. If the mean squared error is used as the error

function then the error of training sample number i can be written as

Ei = 1

2

nM∑
k=1

(o(M)
k − yi k )2 = 1

2

nM∑
k=1

(gM (a(M)
k )− yi k )2 (19)

and thus

δ(M)
k = ∂Ei

∂a(M)
k

= (gM (a(M)
k )− yk ) · g ′

M (a(M)
k )

= (o(M)
k − yk ) · g ′

M (a(M)
k ).

(20)

To calculate the δ(L)
j ’s in the other layers we first use the chain rule to find that

δ(L)
j = ∂Ei

∂a(L)
j

=
nL+1∑
k=1

∂E

∂a(L+1)
k

∂a(L+1)
k

∂a(L)
j

=
nL+1∑
k=1

δ(L+1)
k

∂a(L+1)
k

∂a(L)
j

(21)

for 1 ≤ k < m. To find the partial derivative at the end of the last expression we observe from

equation 15 that

a(L+1)
k =

nL∑
j=0

w (L+1)
j k ·o(L)

j =
nL∑
j=0

w (L+1)
j k · gL(a(L)

j ) (22)

and thus

∂a(L+1)
k

∂a(L)
j

= w (L+1)
j k g ′

L(a(L)
j ). (23)

By plugging this into equation 21 we get the backpropagation formula

δ(L)
j = g ′

L(a(L)
j )

nL+1∑
k=1

δ(L+1)
k w (L+1)

j k . (24)

The backpropagation algorithm consists of two main parts. The first part is called the for-

ward pass and is shown in algorithm 2 and the second part is called the backward pass and is

shown in algorithm 3. In the forward pass the feature vector xi = [xi 1, ..., xi m]T of a training sam-

ple is propagated through the network and the inputs a(L)
k and outputs o(L)

k of all the neurons in

the network are calculated using equation 15 and the formula o(L)
k = gL(a(L)

k ), starting with the

first hidden layer and proceeding forward layer by layer to the output layer. Then in the back-
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ward pass the algorithm first calculates δ(L)
j for all neurons in the output layer using equation

20, then it uses equation 24 to work its way backwards through the network layer by layer calcu-

lating the δ(L)
j ’s for all neurons in each layer until it reaches the input layer. Finally, now that all

the δ(L)
j ’s and o(k)

j have been calculated, the partial derivatives of the error function with respect

to each layer in the neural network can easily be computed from formula 17.

For batch methods the derivatives of the total batch error Eb can be calculated by repeating

the above algorithm for all the training examples in the batch and summing over the errors Ei

of each training sample, in other words by using the formula

∂Eb

∂w (L)
j k

=
nb∑

i=1

∂Ei

∂w (L)
j k

(25)

[7, p.241-245] [9].

Algorithm 2 Forward pass in backpropagation algorithm

for neuron k = 1 to n1 do
a(1)

k =∑m
j=0 w (1)

j k xi j

o(1)
k = g1(a(1)

l )
end for
for layer L = 2 to M do

for neuron k = 1 to nL do
a(L)

k =∑nL−1
j=0 w (L)

j k o(L−1)
j

o(L)
k = gL(a(L)

k )
end for

end for

Algorithm 3 Backward pass in backpropagation algorithm

for output neuron j = 1 to nM do
δ(M)

j = (o(M)
j − y j ) · g ′

M (a(M)
j )

∂Ei /∂w (M)
j k = δ(M)

j o(M)
k

end for
for layer L = M −1 to 1 do

for neuron j = 1 to nL do
δ(L)

j = g ′
L(a(L)

j )
∑nL+1

k=1 δ
(L+1)
k w (L+1)

j k

∂Ei /∂w (L)
j k = δ(L)

j o(L)
j

end for
end for
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3.5.6 SGD with momentum

The black line in figure 9 illustrates a weakness of regular stochastic gradient descent. When

navigating through a ravine (an area where the gradient of the error is much steeper in one

dimension than in another) the algorithm will oscillate from one side of the ravine to the other,

while only slowly making progress towards the bottom.

Figure 9: Comparsion of convergence of stochastic gradient descent with and without momen-
tum. The black line illustrates regular SGD and the orange line illustrates SGD with momentum.
Darker contour lines indicate lower errors. Note that the effect of adding momentum is exag-
gerated for illustrative purposes.

One way to deal with this problem is to introduce momentum [8, p.292-296] into the algo-

rithm. Let t denote the current iteration. For regular stochastic gradient descent the update

vector is

mt = η∇θt E(θt ), (26)

while for stochastic gradient descent with momentum it is

mt = γmt−1 +η∇θt E(θt ), (27)

where the hyperparameter γ is called the momentum term. In both cases the new parame-

ters are given by the equation

θt = θt−1 −mt . (28)

The potential benefit and main drawback of adding momentum are both shown in figure 9

by the orange line. Since the x-component of the update vector points in the same direction

each step the learning algorithm gradually builds up momentum in the x-direction leading to

faster convergence. A drawback of this is that adding momentum to SGD can make the model

prone to overshooting its target if it builds up too much momentum.
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3.5.7 Adam algorithm

Algorithm 4 Adam algorithm

Choose exponential decay rates β1,β2 ∈ [0,1]

Choose learning rate η (≥ 0)

Choose ε (≥ 0)

m0 = 0 (Initialize 1st moment vector)

v0 = 0 (Initialize 2nd moment vector)

t = 0 (Set initial iteration number)

Initialize the parameters θ0

for epoch e = 1 to n_epochs do

Randomly split the training data into B batches of roughly equal size

for batch b = 1 to B do

t = t +1 (Increment iteration number)

gt = 0 (Initialize batch gradient)

for training example i = 1 to nb in batch do

Calculate Ei = E( f (xi ),yi ) (Forward pass)

Calculate ∇∇∇θt Ei (Backward pass)

gt = gt +∇∇∇θt Ei (Update batch gradient)

end for

mt =β1mt−1 + (1−β1)gt (Update biased 1st moment estimate)

vt =β2vt−1 + (1−β2)g2
t (Update biased 2nd moment estimate)

m̂t = mt /(1−βt
1) (Compute bias-corrected 1st moment estimate)

v̂t = vt /(1−βt
2) (Compute bias-corrected 2nd moment estimate)

θt = θt−1 −η ·m̂t /(
√

v̂t +ε) (Update parameters)

end for

end for

return θt

The adaptive moment estimation algorithm, popularly called the Adam algorithm [10], takes the

idea behind SGD with momentum one step further by constantly keeping track of exponentially

decaying averages of previous gradients mt and squared gradients vt . These moving averages

are estimates of the 1st moment (the mean/momentum) and the 2nd moment (the variance)

of the gradient. The details are shown in algorithm 4. When the algorithm starts the moment

estimates are initialized to zero vectors. This causes the moment estimates to be biased towards

0, especially during the first few iterations and when the decay rates β1 and β2 are close to 1.

Thus each iteration the moment estimates have to be corrected for bias. The derivation of the
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bias correction formulas will not be shown here, instead see [10, p.3] for a full proof. The step

size in direction i is the learning rate η times the i -th component of the biased mean vector esti-

mate m̂ divided by the square root of the i -th component of the biased variance vector estimate

v̂ plus a small constant ε. The basic idea behind dividing the moment by the standard deviation

is that the smaller the variance is in one direction, the larger the step taken in that direction is.

The purpose of ε is to prevent the step size from becoming infinitely large when the variance is

close to zero. The authors of the Adam algorithm suggest using ε= 10−8,η= 0.001,β1 = 0.9 and

β2 = 0.999 as default settings for the different hyperparameters. [10, p.2]

3.5.8 Recurrent neural networks

As mentioned in section 3.5.2, a neural network can be thought of as a directed computational

graph. A directed computational graph contains a cycle if there exists at least one node that is

reachable from itself, meaning that by starting in that node and following arrows it is possible

to return to the same node. A neural network without any cycles is called a feedforward neural

network. By looking at figure 7 we can see that multilayer perceptrons are a type of feedforward

neural network.

A recurrent neural network (RNN) is a neural network that contains at least one cycle. The

cycles allow recurrent neural networks to have internal state or "memory". Recurrent neural

networks are commonly used to solve problems where the data has a sequential property such

as machine translation, speech recognition, handwriting recognition or time series forecasting.

3.5.9 Elman and Jordan RNNs

The two most basic types of RNNs are Elman and Jordan networks, both of which are commonly

refered to as simple RNNs. Let {xt }N
t=1, where xt ∈ Rm , and {yt }N

t=1, where yt ∈ Rn , be two time

series and assume that we want to fit a function ŷt = f ({xi }t
i=1), meaning that we want to predict

the value of time series y at time step t based on the values of time series x at all time steps up

to and including t . The basic idea of an Elman RNN is to fit a multilayer perceptron with one

hidden layer from xt to yt with the twist that the hidden layer ht−1 from the previous time step

is also fed into the hidden layer of the current time step ht . The formula for the hidden layer in

an Elman RNN is thus

ht = gh(Uxt +Wht−1 +bh), (29)

where ht ∈Rh ,U ∈Rmxh ,W ∈Rhxh and bt ∈Rh , while the formula for the output layer is

yt = g y (Vht +by ), (30)
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where Vt ∈Rhxn . Figure 10 shows an illustration of an Elman RNN. Note that to avoid clutter

each node in the graph represents a single layer, not a single neuron, which is different from the

notation used in figure 7.

Figure 10: Left: Illustration of an Elman RNN. Right: Unrolled version of the illustration to the
right.

Jordan RNNs are similar to Elman RNNs, but with one twist. While Elman RNNs feed the

output of the hidden layer of the previous timestep into the hidden layer of the current timestep,

Jordan RNNs instead feed the output of the output layer of the previous timestep into the hidden

layer of the current timestep. Thus the formula for the hidden layer in a Jordan RNN is

ht = gh(Uxt +Wyt−1 +bh), (31)

where W now has the dimension Rnxh , while the formula for the output layer is the same as

for an Elman RNN.
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Figure 11: Left: Illustration of a Jordan RNN. Right: Unrolled version of the illustration to the
right.

Recurrent neural networks can be trained by unrolling them into feedforward neural net-

works as shown in figures 10 and 11 and training them just like you would for a many-layered

feedforward neural network.

3.5.10 LSTM RRNs

Although Elman and Jordan RNNs theoretically have the ability to remember information over

an infinite number of timesteps, in practice they struggle with remembering long-term depen-

dencies. Long short-term memory (LSTM) networks are a type of RNN that were designed pri-

marily with this problem in mind.

Figure 12: Illustration of an unrolled LSTM recurrent neural network.

Figure 12 shows an illustration of an unrolled LSTM recurrent neural network while figure

13 shows the inside of a LSTM cell. The key difference between a LSTM and an Elman network

is the addition of the cell state ct ∈ Rh . The cell state acts as a motorway where information
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Figure 13: Close-up of a LSTM cell.

can flow through many time steps with minimal degradation. To update the cell state the LSTM

utilizes three gates, namely the forget gate ft , the input gate it and the candidate gate c̃t . The

cell state has the formula

ct = ft ◦ct−1 + it ◦ c̃t , (32)

where the operator ◦ denotes the Hadamard product, which is an operation that takes two

equally sized matrices and returns a matrix of the same dimension as the inputs where the el-

ement at row i and column j in the output matrix is the product of the elements at the same

position in the input matrices. As an example:[
4 3

3 6

]
◦
[

1 3

8 5

]
=

[
4 9

24 30

]
.

The forget gate has the formula

ft =σ(U f xt +W f ht−1 +b f ), (33)

where σ denotes a Sigmoid activation function. The forget gate outputs a matrix with the

same size as ct where each element is a number between 0 and 1. 1 means that the correspond-

ing element in ct is to remain unchanged, while 0 means that the element is to be completely

forgotten. The input gate has the formula

it =σ(Ui xt +Wi ht−1 +bi ), (34)
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while the candidate gate has the formula

c̃t = tanh(Uc xt +Wc ht−1 +bc ). (35)

The input gate decides which values in the cell state to update and the candidate gate gen-

erates candidates for new additions.

The hidden state ht of each time step is computed by the formula

ht = ot ◦ tanh(ct ), (36)

where ot is (confusingly) called the output gate and has the formula

ot =σ(Uoxt +Woht−1 +bo). (37)

The hidden state ht is thus a combination of the newest input xt , the previous hidden state

ht−1 and the current cell state ct .

Finally, just as for an Elman or a Jordan RNN the final ouput of the RNN at each time step is

simply

yt =σy (Vht ) (38)

[8, p.404-407] [11] [12].

3.6 Support vector regression

Let {(x1, y1), ..., (xN , yN )} be a set of N training samples where each sample consists of a feature

vector xi ∈Rn and a response yi ∈R. Support vector regression is a supervised learning method

where the basic idea is to fit a linear function f (xi ) = wT xi +b on the data set, where the regres-

sion weights w ∈Rn and b ∈R are found by solving the following convex optimization problem:

minimize
w,b

1

2
wT w

subject to |yi −wT xi −b| ≤ ε, i = 1, . . . ,m,
(39)

where ε is a parameter that specifies the maximum deviation that f (xi ) can have from yi .

[13, p.6] [14, p.1-2] Obviously, sometimes a solution to the above problem will not exist. That

is, sometimes it is not possible to fit a function where the deviation between f (xi ) and yi is less

than ε for all i . To account for situations like that we add a non-negative slack variable ξi to each

inequality and add a penalty term to the objective function that punishes potential solutions for

each non-zero slack variable as shown below:
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minimize
w,b,ξ

1

2
wT w+C

m∑
i=1

ξi

subject to |yi −wT xi −b| ≤ ε+ξi ,

ξi ≥ 0, i = 1, . . . , N .

(40)

The parameter C decides how harshly non-zero slack variables are punished. It can be

shown [14, p.2-3] [15] that the above problem has a different but equivalent formulation called

the dual problem:

minimize
α,α∗

1

2

N∑
i=1

N∑
j=1

(αi −α∗
i )xT

i x j (α j −α∗
j )+ε

N∑
i=1

(αi +α∗
i )−

N∑
i=1

yi (αi −α∗
i )

subject to
N∑

i=1
(αi −α∗

i ) = 0,

0 ≤αi ,α∗
i ≤C , 1 ≤ i ≤ N ,

(41)

where the solution of the dual problem is related to the solution of the original problem

through the formula w =∑N
i=1(αi −α∗

i )xi .

An obvious limitation of linear support vector regression is that it can only represent linear

functions. However, support vector regression can be used to fit non-linear functions by us-

ing the "kernel-trick", where we replace the dot product xT
i x j with a non-linear inner product

K (xi ,x j ). This inner product, which is called a kernel, is a distance function that calculates how

"different" xi is to x j . The formula of the fitted function for non-linear support vector regression

is thus

f (x) =
N∑

i=1
(αi −α∗

i )K (xi ,x)+b (42)

[13, p.6]. A commonly used kernel function for non-linear support vector regression is the

radial basis function

K (xi ,x j ) = exp(−γ||xi −x j ||2), (43)

where γ is a free parameter.

A number of different algorithms can be used to fit support vector regression models. One

of the main issues in solving the non-linear version of the dual problem in equation 41 is that

the kernel matrix K is dense and may be too large to be stored. As a workaround to this issue the

open-source LIBSVM library uses a decomposition method called sequential minimal optimiza-

tion (SMO) that only modifies two α’s per iterations so that only two elements of K are needed

each iteration. Then in each iteration the algorithm only needs to solve a simple two-variable

convex optimization problem. See [13, p.11-15, 26-29] for details.
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3.7 Kalman filtering

3.7.1 Kalman filter algorithm

The Kalman filter algorithm

Let us consider a state space model where the observation Yt ∈ Rm×1 (e.g. the power load

at a certain hour or the 24 power load measurements for a certain day) at timestep t is a linear

combination of an internal system state St ∈Rn×1 and a measurement error bt ∈Rn×1, that is, it

is given by the equation

Yt = HSt +bt , (44)

where H ∈ Rm×k is a fixed matrix. Furthermore let us assume that the internal system state

is represented in such a way that it follows an AR(1) process, meaning that it is a linear combi-

nation of the previous system state and a system error at ∈ Rn×1. In other words that it follows

the equation

St+1 = ASt +Gat+1, (45)

where A ∈ Rn×n and G ∈ Rk×n are fixed matrices. Finally, assume that both at and bt are

independent and identically distributed Gaussian white noise processes with zero mean and

covariance matrices ΣΣΣ and ΩΩΩ respectively. It follows from equation 45 that the k-step ahead

forecast of the state vector is given by the recursion

Ŝt+k|t := E(St+k |Y1, ...,Yt ) = AŜt+k−1|t , (46)

while the k-step ahead variance of the state vector can be calculated from

Vt+k|t := Var(St+k |Y1, ...,Yt ) = AVt+k−1|t AT +GΣΣΣGT . (47)

Furthermore it then follows from equation 44 that the k-step ahead forecast of the observa-

tion vector is given by the equation

Ŷt+k|t := E(Yt+k |Y1, ...,Yt ) = HŜt+k|t = HAk Ŝt |t (48)

and that the uncertainty of the k-step ahead forecast is

Var(Ŷt+k |Y1, ...,Yt ) = HVt+k|t HT +Ω. (49)

Kalman filtering is an algorithm for iteratively estimating the system state and updating it

as more data becomes available. Each iteration consists of two steps. The first step is the pre-
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diction step where the next state Ŝt+1|t is forecasted and the variance Vt+1|t of the forecast is

calculated based on the current system state estimate Ŝt |t and the current state variance Vt |t us-

ing equations 46 and 47. The second step is the update step, also called the filtering step, where

the system state estimate Ŝt+1|t+1 and the system variance Vt+1|t+1 are updated based on the

newest observation Yt+1. The details are shown in algorithm 5. [16, p.478-482]

Algorithm 5 Kalman filter

Choose initial state estimate Ŝ0|0 and variance V0|0.
for t = 0 to n −1 do

Forecast the next state: Ŝt+1|t = AŜt |t
Calculate the variance of the state forecast: Vt+1|t = AVt |t AT +GΣGT

Calculate the Kalman gain: Kt+1 = Vt+1|t HT (HVt+1|t HT +ΩΩΩ)−1

Update the state estimate using new observation: Ŝt+1|t+1 = Ŝt+1|t +Kt+1(Yt+1 −HŜt+1|t )
Update the state variance: Vt+1|t+1 = (I−Kt+1H)Vt+1|t

end for

3.7.2 Derivation of the filtering equations

This section is dedicated to deriving the update equations for the state estimate Ŝt+1|t+1 and the

state variance Vt+1|t+1 that are shown in algorithm 5.

The one step ahead observation forecast error is given by the equation

et+1 = Yt+1 − Ŷt+1|t
= Yt+1 −HŜt+1|t
= Yt+1 −HAŜt |t
= HSt+1 +bt+1 −HAŜt |t
= H(St+1 −AŜt |t )+bt+1

(50)

and thus the distribution of the one step ahead observation forecast error is

(et+1|St+1,Yt ) ∼ N (H(St+1 −AŜt |t ),ΩΩΩ). (51)

Assume that the distribution of the next system state St+1 if the observation forecast error

et+1 is known is

(St+1|et+1,Yt ) ∼ N (Ŝt+1|t+1,Vt+1|t+1). (52)

We want to find formulas for Ŝt+1|t+1 and Vt+1|t+1. To do this we first note that two variables

X1 and X2 follow a joint normal distribution
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[
X1

X2

]
∼ N

([
µµµ1

µµµ2

]
,

[
ΣΣΣ11 ΣΣΣ12

ΣΣΣ21 ΣΣΣ22

])
(53)

if and only if X1 ∼ N (µµµ1,ΣΣΣ11)

X2|X1 ∼ N (µµµ2 +ΣΣΣ21ΣΣΣ
−1
11 (X1 −µµµ1),ΣΣΣ22 −ΣΣΣ21ΣΣΣ

−1
11ΣΣΣ12).

(54)

See [17] for a full proof. Now, let X1 correspond to St+1 and X2 correspond to et+1. Clearly

µµµ1 = AŜt andΣΣΣ11 = Vt+1|t . Furthermore, by equating the two expressions for the mean of (et+1|St+1)

from equations 51 and 54 we get that µµµ2 = 0, ΣΣΣ12 = Vt+1|t HT and ΣΣΣ21 = HVt+1|t . Similarly, by

equivalating the two expressions for the variance of et+1 we get thatΣΣΣ22 = HVt+1|t HT +ΩΩΩ. Thus

the joint distribution of St+1 and et+1 is([
St+1

et+1

]∣∣∣∣Zt

)
∼ N

([
AŜt

0

]
,

[
Vt+1|t Vt+1|t HT

HVt+1|t HVt+1|t HT +ΩΩΩ

])
. (55)

Obviously, the opposite of equation 54, obtained by interchanging X1 with X2, also holds.

And thus by comparing equation 52 with equation 54 we obtain that

Ŝt+1|t+1 =µ1 +ΣΣΣ12ΣΣΣ
−1
22 (X2 −µµµ2)

= Ŝt+1|t +Vt+1|t HT (HVt+1|t HT +ΩΩΩ)−1et+1

= Ŝt+1|t +Kt+1(Yt+1 −HŜt+1|t )

(56)

and

Vt+1|t+1 =ΣΣΣ11 −ΣΣΣ12ΣΣΣ
−1
22ΣΣΣ21

= Vt+1|t −Vt+1|t HT (HVt+1|t HT +ΩΩΩ)−1HVt+1|t
= (I−Kt+1Ht )Vt+1|t ,

(57)

where for convenience we have introduced the shorthand

Kt+1 := Vt+1|t HT (HVt+1|t HT +ΩΩΩ)−1 (58)

[16, p.480-482].
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4 Models

This section describes the different models that were tested on the data set provided by NTE. All

the models were implemented using the programming language Python, except NTE’s current

Kalman filter model. The neural networks were implemented using Keras, a neural network

library for Python, while the linear regression and support vector regression models were im-

plemented using sklearn, a general machine learning library for Python. Sklearn itself uses the

ε-SVR implementation from the LIBSVM library [13]. The direct Kalman filter model was writ-

ten from scratch, although it relies on the NumPy library for matrix multiplications. The pandas

library was used for reading data and for general data manipulation and analysis, while the mat-

plotlib and seaborn libraries were used to generate the plots in this thesis. All of these libraries

are open-source. The exception to all of this is NTE’s present Kalman filter model, which was

not programmed by me. It is proprietary and not owned by NTE or me, thus I only had access to

the predictions made by the model for 2011-2017, not to the actual source code.

4.1 Multilayer perceptrons

4.1.1 MIMO model

Let us denote the current hour by t and the most recent power load measurement by Pt−K ,

where K is the number of hours since it was made. The lag K is included because it may take a

few hours before accurate power load measurements become available. Next, assume that we

want to predict the power loads for each hour of the next day: Pt+M ,Pt+M+1, ...,Pt+M+23, where

1 ≤ M ≤ 24. As an example: if the current time is 10 am on a Tuesday and the most recent

power load measurement was made five hours ago at 5 am and we want to predict tomorrow’s

(Wednesday’s) power loads from 1 am to 12 pm then K = 5 and M = 15.

The first model presented is a multilayer perceptron that uses a multiple-input multiple-

output (MIMO) strategy. It outputs the predictions P̂t+M , P̂t+M+1, ..., P̂t+M+23 as a single vector.

The inputs to the neural network are:

• The 24 most recent power load measurements available: Pt−K , ...,Pt−K−23.

• Temperature measurements for the current and previous K +23 hours: Tt , ...,Tt−K−23.

• Temperature predictions for the next M +23 hours: T̂t+1, ..., T̂t+M+23.

• 7 binary variables, one for each day of the week, where the current weekday is equal to 1

and the others are equal to 0: D1,t , ...,D7,t .

The power, temperature and temperature prediction time series were standardized before

they were fed into the network, meaning that they were transformed by subtracting the mean
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and dividing by the standard deviation of the time series. The temperature time series used was

a weighted sum of the temperature measurements from Namsos, Steinkjer and Stjørdal using

formula 1. Note that the data set provided by NTE only includes day-ahead temperature pre-

dictions from 1 am to 12 pm based on information available at 10 am on the current day. This

means that the temperature predictions for 11 am to 12 pm on the current day that the model

uses were made the previous day at 10 am and are thus "outdated". This may seem like a prob-

lem that would lead to worse test forecasting accuracy than if newer temperature predictions

were available, however as discussed in section 7.2, the errors of day-ahead temperature fore-

casts are so low that there is no significant difference in forecasting accuracy between using

temperature forecasts or actual temperatures and thus this is not a problem in practice.

A manual search was used to find good values for the hyperparameters in the network. In

general the model is not very picky with what the values of the hyperparameters are, many dif-

ferent configurations give very similar results.

The Adam algorithm was used to fit the weights in the neural network. Kingma and Ba [10]

suggests that good default values for the parameters in the Adam algorithm are α = 0.001,β1 =
0.9,β2 = 0.999 and ε= 10−8, however a learning rate ofα= 0.001 was found to give a non-smooth

learning curve, so it was lowered to 0.0001. Stochastic gradient descent gave equally good results

as the Adam algorithm, but training times were more than twice as long. There was no no-

ticeable difference between using the mean absolute error or the more commonly used mean

squared error as the error function, so the latter was chosen. Bengio [18, p.9] suggests that 32 is

a good default value for the batch size, however this was found to give a non-smooth learning

curve even when the learning rate was reduced significantly further. Increasing the batch size

all the way to 256 gave a smoother learning curve while giving equally good results.

During the hyperparameter optimization the model was trained until 100 epochs had gone

by without any improved performance on the valdation set. In the testing phase this was changed

to initially training the model for 2000 epochs.

It was found that adding more than one hidden layer to the model did not improve model

performance and that a single hidden layer with 40 neurons is sufficient. All weights in the neu-

ral network were initialized before training by drawing random values from a standard normal

distribution. Sigmoid, ReLU and hyperbolic tangent activation functions were all tested in the

hidden layer and all three gave equally good predictions. ReLU was chosen since it is slightly

faster than the other two. A linear activation function was used in the output layer because the

target values in the standardized power load time series can theoretically take any real value and

thus the range of the activation function in the output layer must be the set of real values.

Regularization techniques such as L1/L2 regularization or dropout that punish model com-

plexity were not used as the model is not sufficiently complex to warrant their use.
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4.1.2 Direct model

The basic idea of the direct model is that instead of training one multilayer perceptron with 24

outputs that predicts the power load for each hour the next day we can instead train 24 separate

models, each of which is trained to predict the power load for a different hour.

The inputs to the model are the exact same as for the MIMO model, except that we do not

include the temperature predictions for future time steps. E.g. the model that predicts Pt+M+n

uses the temperature predictions T̂t+1, ..., T̂t+M+n as input, but does not use T̂t+M+n+1, ..., T̂t+M+23.

All other aspects of the models like the neural network architecture, the optimization technique

and the hyperparameters used are the exact same as in the MIMO model.

4.1.3 SMSO model

The single model single output (SMSO) MLP is a variation of the MIMO model where instead of

returning 24 predictions, one for each hour of the next day, the hour that we want to predict is

sent as an argument to the model and only the prediction for that hour is returned. The inputs

to the MISO model are the exact same as those to the MIMO model except that 24 extra binary

variables are added that specify which hour of the day the target value is for. Otherwise the

model is identical to the MIMO model, with the exception that the number of training epochs

was reduced from 2000 to 200 because now that there is one training example for each hourly

measurement in the power time series, instead of one for each day, the size of the training set

is 24 times larger and thus since the number of iterations per epoch is increased 24-fold fewer

epochs are needed for the model to be fitted. Some experimentation was done to see if changing

the other hyperparameters would lead to better performance, but no noticeable improvements

were observed, so the other hyperparameters were kept the same.

4.2 Recurrent neural networks

4.2.1 LSTM encoder-decoder

Like with the MLP models let us denote the current hour by t and the most recent power load

measurement available by Pt−K and assume that we want to predict the power loads for each

hour of the next day: Pt+M ,Pt+M+1, ...,Pt+M+23, where 1 ≤ M ≤ 23.

An illustration of the LSTM encoder-decoder model is shown in figure 14. The model con-

sists of two recurrent neural networks, one called the encoder and one called the decoder. The

job of the encoder is to take the last 24 power load measurements and the temperature mea-

surements from the same period and encode them in a vector that is used as the first hidden

state in the decoder. The decoder first predicts P̂t−K+1 using the inputs from the encoder as

well as a vector of exogenous information xt−K+1, then in the second step the decoder predicts
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P̂t−K+2 using xt−K+2 as well as the hidden state from the previous step. This process is repeated

recursively up to P̂t+M+23. The exogenous vector x has 32 dimensions. 24 of the variables are

binary variables that specify the hour of the day, while seven others are binary variables that

specify the day of the week. The final variable specifies either the weighted average temperature

for that hour or the predicted weighted average temperature depending on whether the time

step is in the past or in the future.

Figure 14: Illustration of an unrolled encoder-decoder LSTM model.

A possible variation of this model would be to feed Pt+a−1 as an input to the decoder when

predicting P̂t+a during training and to replace Pt+a−1 with P̂t+a−1 during testing. The problem

with this approach is that since the power load usually does not change enormously from one

hour to the next the decoder might be overly prone to learning the naive mapping P̂t+a = Pt+a−1,

which could lead to poor forecasting accuracy. In fact, preventing the model from learning the

naive mapping was the main motivation behind using an encoder-decoder model instead of a

vanilla LSTM model.

The model was trained for 1000 epochs using the Adam algorithm with a learning rate ofα=
0.0005 and a batch size of 256. The two recurrent neural networks are trained simultaneously as

one model, meaning that during training the errors are backpropagated all the way from the last

LSTM unit of the decoder to the first LSTM unit of the encoder. Like with the MLP models 40

hidden units were used, since there doesn’t appear to be any benefit in adding more units than

that.

4.2.2 Elman encoder-decoder

The Elman encoder-decoder RNN model is the exact same as the LSTM encoder-decoder model

except that the LSTM units were replaced with Elman hidden layers. It was tested primarily to

see how large of a performance increase we get from using LSTM layers over Elman layers.
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4.3 Direct linear regression model

The direct linear regression model is similar to the direct MLP model described in section 4.1.2.

24 seperate linear regression models are trained to predict each of the day-ahead power loads.

The formulas for the models are

Pt+M+n =α+
23∑

i=0
βi Pt−K−i +

7∑
i=1

Di ,t

+
K+24∑

i=0
γi Tt−K−23+i +

M+n∑
i=1

γi+K+24T̂t+i

+
K+24∑

i=0
δi T 2

t−K−23+i +
M+n∑
i=1

δi+K+24T̂ 2
t+i

+
K+24∑

i=0
εi T 3

t−K−23+i +
M+n∑
i=1

εi+K+24T̂ 3
t+i , 0 ≤ n ≤ 23.

(59)

See section 4.1.1 for explanations of what the different covariates stand for. Note that all the

inputs are standardized before they are fed into the model. The inputs of each singleton model

are the same as for the direct MLP model except that in addition to feeding the temperature

measurements (and forecasts) into the model it is also fed the square and the cube of the tem-

peratures measurements (and forecasts). The reason for this is that we want the model to be

able to represent non-linear relationships between power and temperature.

Using 24 separate singleton models, one for each hour of the day, is a crucial part of the

model. Many linear regression STLF models are based on a single model that uses the hour of

day as a covariate. The problem with that approach is that because the relationship between the

other covariates and the power load is highly dependent on the hour of day we then need to add

a ton of interaction terms of various orders to the model to get good forecasting accuracy. With

this in mind it might be tempting to take the idea further and have 168 separate models, one for

each hour of the week, however this degrades the forecasting accuracy because the training set

becomes too small. Besides, it was found empirically that simply treating the day of the week as

an additive term in the model in equation 59 works quite well and that adding interaction terms

between the day of the week and other variables like e.g. the temperature is unnecessary.

Note that the model in equation 59 can be also be written in matrix notation as

Pt+M+n = Htβ, 0 ≤ n ≤ 23, (60)

where
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Ht =[1,Pt−K , ...,Pt−K−23,D1,t , ...,D7,t ,

Tt−K−23, ...,Tt , T̂t+1, ..., T̂t+M+n ,

T 2
t−K−23, ...,T 2

t , T̂ 2
t+1, ..., T̂ 2

t+M+n ,

T 3
t−K−23, ...,T 3

t , T̂ 3
t+1, ..., T̂ 3

t+M+n]

(61)

and

β= [α,β0, ...,β23,γ1, ...,γK+M+24+n ,

δ1, ...,δK+M+24+n ,ε1, ...,εK+M+24+n ,1, ...,1]T .
(62)

This second notation will be useful in section 4.5.2.

4.4 Direct support vector regression model

The direct support vector regression (SVR) model is similar to the direct MLP model described

in section 4.1.2 and the direct linear regression model described above. One support vector

regression model is trained to predict each of the day-ahead power loads Pt+M , ...,Pt+M+23. The

inputs to each of the models are the exact same as for the direct MLP model.

A two-step grid search was used to determine the optimal values of the hyperparameters

C ,γ and ε. In the first step the parameter values for C that were tried were {0.01,0.1,1,10,100},

while for γ and ε they were {0.0001,0.001,0.01,0.1,1}, which results in a total of 53 = 125 com-

binations. After it was found that the best out of these combinations was 10i with i = 0 for C

and 10i with i =−2 for γ and ε a further 33 −1 = 26 combinations were investigated by trying all

possible combinations of {3 ·10i−1,1 ·10i ,3 ·10i } for all three parameters. The optimal values of

the hyperparameters were thus determined to be C = 3,γ= 0.01 and ε= 0.01.

4.5 Kalman filters

4.5.1 NTE’s current model

NTE’s current model is based on Kalman filtering. It is proprietary and was made by Powel AS

in 1997. Because the model is proprietary I did not have access to the source code of the model,

nor do I know the exact details of the model, I only had access to the model’s predictions from

2011 to 2017. However, as mentioned in section 2.3, I do know that the model uses the exact

same weather data as I have access to to make its predictions.
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4.5.2 Direct Kalman filter model

For comparison purposes I also created my own Kalman filter model. The model is essentially

the same as the direct linear regression model except that the regression coefficients are treated

as the internal state of a state space model and are determined by recursively using Kalman

filtering instead of choosing the coefficients that minimize the mean squared error on a training

set. The model uses a direct strategy and consists of 24 separate Kalman filters, each of which

predicts the power load on a certain hour of the day. The state space model used isPt+M+n = Ht+M+nβ
∗+bt+M+n

βt+M+n =βt+M+n−24 +at+M+n , 0 ≤ n ≤ 23,
(63)

where Pt denotes the power load at hour t , at ∼ N (0,ΣΣΣ) and bt ∼ N (0,ω) are random vari-

ables, while HHH t is the same as in equation 61 and βββt has the same form as in equation 62. β∗

denotes that we use the most recent state vector estimate for the correct hour that is available,

which may vary depending on i and M . By comparing equation 45 with 63 you may note that

the state-transition matrix A is absent, or more precisely it has been turned into an identity ma-

trix. This is because the estimate of the coefficients β is only updated during the filtering step of

the Kalman filter algorithm, not during the forecasting step.

4.6 Ensemble average model

The predictions of the ensemble average model is simply the average of the predictions from

the three best performing models, namely the MIMO MLP model, the SMSO MLP model and

the direct Kalman filter model.

4.7 Naive model

The naive model simply predicts that the power consumption during a certain hour on a certain

day is equal to the power consumption during the same hour on the previous day of the same

type where we know the actual power consumption, where the two types of days we distinguish

between are workdays and weekends.

As an example: If we want to forecast the power load for each hour on a Tuesday based on

the data we have available at 5 pm on the day before (Monday), then the predictions from 1 am

up to 5 am on Tuesday will simply be the power loads from 1 am to 5 am on Monday, while the

predictions from 6 am to 12 pm will be the power loads during the same hours on the preceding

Friday.

The purpose of the naive model is to provide a baseline of what a useful model is. In a nut-

shell; a model that does not outperform the naive model is completely useless.
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4.8 Dealing with public holidays

As can be seen in figure 4 in section 2.2, Norwegian public holidays tend to have load patterns

that are similar to those of weekends even if they fall on a regular workday. Thus a simple trick

to deal with public holidays is to treat them as Sundays. E.g. if December 25th falls on a Tuesday

then instead of setting the Tuesday binary variable to one we set the Sunday variable to one.

This trick was used in all the models.

4.9 Dealing with daylight savings time

In Norway the clock is turned forward one hour each year on the last Sunday in March from 2

am to 3 am and back one hour on the last Sunday in October at 2 am to 1 am. Thus there is

one power load observation less than usual on the former day and one more than usual on the

latter day. The way this is dealt with varies a bit from model to model. The MIMO model for

instance always outputs 24 predictions, but on the last Sunday in March the 2 am prediction is

discarded, while on the last Sunday in October the 2 am prediction is duplicated. Similarly, for

the direct models, the 2 am model is used twice on the last Sunday in March and zero times on

the last Sunday in October. The daily power load pattern is primarily dependent on consumer

behavior, not on natural cycles (apart from temperature variations), thus for the direct models 9

am in the Summer is predicted using the same singleton model that predicts 9 am in the Winter,

even though one is in Summer time and the other is not.
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5 Test method

To test the models we will look at the special case where the current time is 10 am and we want

to predict the power load for each hour of the next day. E.g. if today is Tuesday then based

on the information available at 10 am today we want to predict the power load on Wednesday

for each hour from 1 am to midnight. This is the special case that is of most relevance to NTE

and it is the case that allows us to compare the performance of the different presented mod-

els directly to those of NTE’s current model. Note however that accurate power loads for the

last couple of hours are typically not available and a typical scenario is that the last power load

measurement available is from five hour previously at 5 am. Thus even though relative to the

current time we are predicting the power loads 15-38 hours ahead using 15-38 hours ahead tem-

perature forecasts, if we look at it relative to the last available power load measurement we are

actually predicting 20-43 hours ahead. In other words, using the terminology of section 4.1.1 we

are looking at the special case where K = 5 and M = 15.

Although this is the special case that we will look at, the models from section 4 were designed

and written in such a way that they can easily be modified to work in other similar situations.

5.1 Test strategies

When evaluating the performance of a supervised learning model it is important that the fore-

casting accuracy of the model is evaluated on different data than it was trained on. This is pri-

marily to ensure that the model has not overfitted the training data. Overfitting means that the

model has not only captured the underlying patterns in the training data, but also the noise,

resulting in a model that generalizes poorly to new data.

The simplest way to do this is to split the data set into two non-overlapping subsets, a train-

ing set and a test set, and only evaluate the performance of the model based on its performance

on the test set. A more sophisticated approach is to use k-fold cross validation, where the origi-

nal data set is randomly split into k non-overlapping subsets of roughly equal size, called folds.

One of the folds is designated as the holdout fold and the model is trained on the k − 1 other

folds before the forecasting accuracy is evaluated on the holdout fold. This process is repeated

k times using each fold as the holdout fold exactly once. The k results can then be averaged or

otherwise combined to produce a single estimate of the forecasting accuracy. An advantage of

this method is that all observations in the data set are used for validation exactly once. A disad-

vantage is that this validation process is more time consuming than using a simple training/test

set split.

Two problems arise when cross-validation is used on problems where the data set is a time

series. The first is that, because subsequent measurements in the time series are usually cor-

related with each other, randomly splitting the data set can lead to artificially good forecasting



5 TEST METHOD 40

accuracy. As an example consider the power load data set from section 2. In the real world,

when we forecast the power load on a day, e.g. on the 12th of May, we will know the power load

on the 10th of May, but we will not know the power load on the 13th of May and on most of

11th of May. If however we use k-fold cross validation with random splits then it is quite likely

that the power load on those two days will be a part of the training set. Because the power load

on subsequent days is highly correlated the model will then have been trained on two days that

are very similar to the 12th of May that it wouldn’t have been trained on in the field, which may

result in artificially good forecasting accuracy. This problem can be avoided by using folds of

continous data, e.g. by splitting the data set into one fold for each year, as shown in figure 15.

The second problem is that we are subjecting the evaluation to look-ahead-bias by training

the model on future data. An alternative approach that avoids this second problem is to only

train the model on past years. That is, we first train the model on 2011 and test it on 2012,

then we train it on 2011 and 2012 and test it on 2013 and so on. This is called an expanding

window approach and is illustrated in figure 16. Another name for this approach is forward

chaining. One thing to note about an expanding window approach is that the amount of data

that the model is trained on increases each year, unlike with k-fold cross-validation where it

stays the same. The downside of this is that the forecasting accuracy of different years cannot be

compared directly because the quality of the forecast can usually be expected to increase as we

train on more data, as long as we don’t train on data that is so far back in the past that changes

in consumer patterns has made it irrelevant. The upside is that we get an estimate of the impact

that the training set size has on the forecasting accuracy.

Hyndman and Athanasopoulos [19, ch.2.5] recommend using an expanding window ap-

proach for time series prediction problems where the window expands for each new observa-

tion. That is, if k previous observations are needed to make a reliable forecast, then the model

is first trained on the first k observations in the time series and tested on observation k + 1.

Then observation k +1 is added to the training set and the model is retrained and tested on ob-

servation k + 2 and so on. They refer to this as time series cross-validation or alternatively as

“evaluation on a rolling forecasting origin”. The advantage of this approach is that the next pre-

diction is always made using all available past information. The disadvantage is that for some

models retraining or updating the model for each new observation that comes along can be very

time intensive.
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Figure 15: Illustration of k-fold cross validation with continous folds

Figure 16: Illustration of an expanding window approach.

5.2 Tests performed

5.2.1 Expanding window test run

The primary approach that was chosen for testing the performance of the different models was

the one suggested by Hyndman and Athanasopoulos, where the models are continously up-

dated as new data becomes available, since this is the approach that most closely mimics a real-

world situation, however the precise way this was done varies a bit from model to model. The

Kalman filter models were tested using an expanding window with a window size of a single day

where each day the models predict the power loads for the next day and then when the actual

power loads for that day become available the forecasting errors are calculated and the internal

states of the Kalman filters are updated accordingly. The support vector regression and linear re-

gression models were trained using an expanding window approach with a window size of seven

days, meaning that they were completely retrained each seven days using all past available data

and then tested on the next seven days and so on.

The MIMO and direct MLP models were first trained for 2000 epochs on the data from 2011

and tested on the data from 2012. Each day the previous day’s data is added to the training set
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and the models were updated by training for a further five epochs on the new training set, a

technique which will henceforth be referred to as rehearsing. Then the models predicted the

power loads for the next day. By the end of 2012 each of the two models had been trained for

roughly 2000+ 5 · 363 = 3815 epochs. At the end of 2012 the models were then completely re-

trained from scratch for 2000 epochs using all data from both 2011 and 2012 and the cycle was

repeated for 2013. The encoder-decoder and SMSO neural network models were tested using

the exact approach except that the encoder-decoder models were first trained for 1000 epochs

instead of 2000 each year, while the SMSO MLP model was first trained for 200 epochs and only

rehearsed for one epoch each day.

For a discussion of why these update strategies were chosen see section 7.3.

5.2.2 Cross validation test run

In the cross validation test run the test approach from figure 15 was used. That is, first the mod-

els were trained on all years except 2011 and tested on 2011, then they were trained on all years

except 2012 and tested on 2012 and so on. Note however that the models were continuously

updated as new information became available in the same manner as in section 5.2.1. E.g after

the SVR and linear regression models had been trained on data from all years except 2011 and

tested on the first week of 2011, the first week of 2011 was then added to the training set and the

models were retrained before being tested on the second week of 2011 and so on.

Note that, as discussed in subsection 5.1, when using this test approach the test results are

subject to look-ahead bias since we are training the model on future data. Thus the cross val-

idation test results should be taken with a grain of salt and be viewed as less reliable than the

expanding window test results.

5.2.3 Varying the number of training years

To investigate how the accuracy of a forecast varies depending on the number of training years

the MIMO MLP, SMSO MLP and direct Kalman filter models were additionally tested by training

on varying numbers of previous years. E.g for 2014 each of these models were tested three times,

once by training on 2013 and testing on 2014, once by training on both 2012 and 2013 and testing

on 2014 and once by training on 2011, 2012 and 2013 and testing on 2014. Once again note

that the models were continuously updated throughout the year as new information became

available in the same manner as described in section 5.2.1.

5.2.4 Testing temperature input sensitivity

Finally I tested how the accuracy of the MIMO MLP model changes when different temperature

inputs are used. The testing approach used was once again an expanding window approach
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with continuous updating using the rehearsal technique. The reason why only the MIMO MLP

model was tested is that testing the forecasting accuracy for all years using a large number of

different temperature inputs would be quite time consuming for most of the models.
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6 Results

6.1 Expanding window test results

6.1.1 Errors broken down by year

Figure 17 shows the mean absolute errors of all the models from section 4 for each year except

the naive model, whose errors are shown in table 2. The precise error numbers are shown in

table 11 in the appendix, while table 12 in the appendix shows the mean absolute percentage

errors.

Figure 17: Mean absolute errors (MAE) in MW for each of the different models from section 4,
broken down by year.

Model 2012 2013 2014 2015 2016 2017

Naive model 17.46 18.54 16.78 16.37 17.66 18.26

Table 2: MAEs in MW for the naive model.
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6.1.2 Errors broken down by the hour of day

Figure 18 shows how the errors of seven of the models tested varied throughout the day in 2017,

the year where the models were trained on the largest amount previous of data. The shape of the

daily error curves for the different models look very similar for the other years, except for NTE’s

Kalman filter model, whose curve varies a lot from year to year. The four other models were left

out to avoid cluttering the graph too much. The direct MLP and linear regression models have

a daily error curve similar to most of the other models, while the curve of the Elman encoder-

decoder is a bit different as it becomes very high at the end of the day. The error of the naive

model increases drastically from 5 am to 6 am, but before and after this dramatic increase the

error is relatively constant throughout the day.

Note that the error at 01:00 is for a 20 hours ahead forecast, relative to the last available power

load measurement, whereas the error at 24:00 is for a 43 hours ahead forecast. Furthermore note

that the power load measurement at e.g. 02:00 is actually the average power load between 01:00

and 02:00 and thus the error at 02:00 in the figure is actually the average error between 01:00 and

02:00.

Figure 18: Mean absolute error at different hours of the day for 2017 for seven of the tested
models.
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6.1.3 Errors broken down by weekday

Table 3 compares the errors of the same seven models as in subsection 6.1.2 for different days

of the week. The table also shows the average error on public holidays. Again, only the fore-

casts for 2017 are considered, although the corresponding errors for the other years look similar

(although apart from 2016 they are a bit higher in general).

Model Mon Tue Wed Thu Fri Sat Sun Holidays

Mean of three best models 6.15 5.79 6.60 6.10 5.59 5.49 5.39 8.13

MIMO MLP 6.28 6.24 7.06 6.45 5.77 6.10 6.10 8.62

SMSO MLP 6.44 6.33 7.20 6.45 6.23 5.56 6.13 8.69

LSTM (encoder-decoder) 7.06 6.93 7.28 7.13 5.42 6.54 6.14 10.44

Direct SVR 7.06 6.71 7.17 6.80 6.83 5.99 5.47 8.74

Kalman filter (NTE) 8.52 9.18 8.54 9.37 7.70 7.44 8.01 9.50

Direct Kalman filter 6.38 6.00 7.14 6.70 6.33 6.21 6.21 9.33

Naive model 23.93 23.15 14.62 14.17 15.32 19.69 19.65 24.66

Table 3: Mean absolute errors for different weekdays in 2017. The measurement unit is MW.

6.1.4 Training and update times

Table 4 shows the training times of each model. The times are for an Intel Core i5-6600K Skylake

3.5GHz processor, which is a mid-range desktop processor from 2015.

Model 2012 2013 2014 2015 2016 2017

Direct linear regression 00:28 00:30 00:31 00:32 00:34 00:34

Direct SVR 00:32 00:32 00:28 00:31 00:38 00:44

MIMO MLP 00:20 00:32 00:42 01:02 01:15 01:19

Direct Kalman filter 00:32 00:36 00:56 01:11 01:26 01:27

SMSO MLP 00:49 01:14 01:51 02:33 03:21 03:41

Elman encoder-decoder 01:31 02:05 03:11 03:51 04:59 05:17

Ensemble average 01:53 02:22 03:29 04:46 06:02 06:47

LSTM encoder-decoder 04:08 05:56 09:16 11:10 14:32 15:56

Direct MLP 11:16 12:29 14:19 20:28 23:15 28:45

Table 4: Training times in minutes and seconds for each of the different models.

Table 5 shows the daily update times for the neural network models and the direct Kalman

filter model. Note that the table only shows the time needed to update the models and does not
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include the time needed to load a trained model from memory, which might add a couple of

extra seconds of overhead, depending on the implementation, when a model is used in a real

world situation.

Model 2012 2013 2014 2015 2016 2017

Direct Kalman filter 0.08 0.10 0.13 0.15 0.18 0.16

MIMO MLP 0.04 0.08 0.09 0.16 0.18 0.18

SMSO MLP 0.17 0.27 0.43 0.61 0.80 0.73

Ensemble average 0.29 0.45 0.65 0.92 1.16 1.07

Elman encoder-decoder 0.35 0.56 0.81 1.05 1.31 1.47

Direct MLP 1.30 1.93 2.50 2.97 3.32 3.81

LSTM encoder-decoder 1.19 1.91 2.64 3.36 4.24 4.64

Table 5: Daily update times in seconds.

6.1.5 Ensemble average residuals

Figure 19 shows the residuals of the ensemble average model for 2017. The predictions of the en-

semble average model is the mean of the predictions from the three best performing individual

models, namely the MIMO MLP, SMSO MLP and direct Kalman filter models.

Figure 19: Hourly forecasting residuals of the ensemble average model for 2017.

Figure 20 shows the predictions of the ensemble average model plotted against the actual

power loads for the same period as figure 2, while figure 21 shows the predictions of the model

around Easter 2017, which is typically one of the hardest periods of the year to predict accurately.
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Finally, figure 22 shows the predictions of the model for a challenging period of 2017 where the

temperature changed rapidly several times over a short period. The temperatures for this period

are plotted in figure 23.

Figure 20: Predictions from the ensemble average model plotted against the actual power loads
for the period from Monday October 9th to Sunday October 29th 2017. Weekends are shaded
with a darker background than workdays. The MAE during this period was 5.40 MW, which is
slightly better than the yearly average, which was 5.97 MW.

Figure 21: Predictions from the ensemble average model plotted against the actual power loads
for the period from Monday April 3rd to Sunday April 23rd 2017. Weekends are shaded with a
darker background than workdays and the Easter holidays are shaded in green. The MAE during
this period was 8.04 MW. This was the model’s worst performing three week period in 2017.
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Figure 22: Power load predictions from the ensemble average model versus actual power loads
for the period from Monday November 13th to Sunday December 3rd 2017. Weekends are
shaded with a darker background than workdays. The MAE during this period was 6.26 MW,
which was slightly worse than the yearly average.

Figure 23: Temperature measurements from the same period as figure 22.
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6.2 Cross validation test results

6.2.1 Errors broken down by year

Figure 24 shows the mean absolute errors of the different models for each year when using a

cross validation test approach where the models are trained on an equal amount of data for

each test year. The precise errors numbers are shown in table 13 in the appendix.

Figure 24: Mean absolute errors (MAE) in MW for the different models for each year when a
cross validation test approach was used.

6.2.2 Errors broken down by the hour of day

Figure 18 shows how the errors of seven of the models change at different hours of the day when

a cross validation test approach is used. Unlike in section 6.1.2 the predictions from all the years

were used to produce the plot, not just those for 2017.
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Figure 25: Mean absolute error at different hours of the day calculated from all predictions from
2011 to 2017.

6.2.3 Errors broken down by weekday

Table 6 shows the errors from the cross validation test run broken down by weekday. Once again

note that unlike in section 6.1.3 the predictions from all the years were used to produce the table.

Model Mon Tue Wed Thu Fri Sat Sun Holidays

Mean of three best models 7.20 6.64 6.71 6.59 6.20 6.23 5.77 8.70

MIMO MLP 7.41 6.93 7.18 6.97 6.44 6.50 6.16 8.95

SMSO MLP 7.44 7.09 7.13 6.97 6.64 6.51 6.26 8.86

LSTM encoder-decoder 7.98 7.08 6.90 7.13 6.92 7.15 6.27 9.40

Direct SVR 9.00 8.30 8.03 8.18 7.95 8.12 8.08 10.00

Kalman filter (NTE) 10.03 9.97 10.20 10.19 9.78 9.29 9.53 11.04

Direct Kalman filter 7.83 6.93 6.90 6.95 6.79 7.20 6.37 9.47

Table 6: Mean average errors for different weekdays, as well as for public holidays. The mea-
surement unit is MW.
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6.3 Varying the number of training years

Tables 7 shows the forecasting accuracy of the ensemble average model when the model is

trained on different years using an expanding windows strategy where the model is constantly

updated throughout the year with different numbers of initial training years. E.g. the cell in

column 2016 and row three years back shows the mean absolute error in MW when the model

was initially trained on 2013, 2014 and 2015 before it was tested on 2016. Too see the individual

errors of each of three models that make up the ensemble average model see tables 14, 15 and

16 in the appendix.

Training years 2012 2013 2014 2015 2016 2017

One year back 7.61 7.86 7.13 6.79 6.27 6.34

Two years back X 7.62 6.93 6.52 6.21 6.13

Three years back X X 6.69 6.42 5.98 6.05

Four years back X X X 6.31 5.89 5.90

Five years back X X X X 5.89 6.08

Six years back X X X X X 6.01

Table 7: MAE of ensemble average model in MW when tested on different years using a contin-
uously updating forecasting strategy with different numbers of initial training years.

6.4 Temperature input sensitivity

Figures 8 and 9 show how the average forecasting error of the MIMO MLP model changes when

different temperature inputs are used. In all cases the MIMO MLP model was tested using the

same approach as the one used in section 6.1.

Temperature time series used MAE [MW]

Weighted average 7.06

All three time series 7.27

Steinkjer only 7.41

Namsos only 7.63

Stjørdal only 7.89

Table 8: Mean absolute error of MIMO MLP model when different temperature time series are
used as input. The error is the average of the errors from each year from 2012 to 2017.
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Temperature inputs MAE [MW]

Tt−K−23, ...,Tt ,Tt+1, ...,Tt+M+23 7.03

Tt−K−23, ...,Tt , T̂t+1, ..., T̂t+M+23 7.06

T̂t+1, ..., T̂t+M+23 7.85

Tt−K−23, ...,Tt 11.22

No temperature information 12.29

Table 9: Mean absolute error of MIMO MLP model when using different temperature inputs.
All the temperature measurements are from the weighted average temperature time series, not
from a single location. The error is the average of the errors from each year from 2012 to 2017.
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7 Discussion

7.1 Discussion of test results

By comparing figure 17 in section 6.1.1, which shows the forecasting accuracy of the different

models for each year when using an expanding window test approach, with table 2, which shows

the forecasting accuracy of the naive model, we observe that all the models tested outperform

the naive model by a large margin. Overall the multiple-input multiple output multilayer per-

ceptron (MIMO MLP) model and the direct Kalman filter model have the lowest errors of any

of the individual models tested, but the two other MLP models and the direct linear regression

model follow very closely behind.

When looking at tables 4 and 5 in section 6.1.4 we observe that the training and update times

of the direct MLP model are roughly 20 times longer than for the MIMO MLP model since the

former essentially consists of 24 neural networks of roughly the same size as the latter. Since

the direct MLP model is both a lot slower than the MIMO MLP model and gives slightly higher

errors the MIMO MLP model is clearly the preferable one.

Similarly, although the direct linear regression and direct Kalman filter models give very sim-

ilar results, since they are essentially the exact same model except that they use different meth-

ods to estimate the model parameters, the Kalman filter model can be updated very easily and

quickly each day, whereas the linear regression model has to be retrained from scratch to be

updated. Thus the direct Kalman filter model is clearly the preferable one.

NTE’s Kalman filter model performed decently on 2012 compared to the other models, since

it is the only model that has been trained on data from before 2011, but overall the accuracy of

the model is bad compared to most of the others. The model has a tendency to behave errati-

cally at times and the accuracy of the model fluctuates wildly from year to year. In particular it

was observed that the model struggles to adapt during periods where the temperature changes

rapidly. The strong performance of the direct Kalman filter model suggests that this is due to

a poorly implemented model rather than a flaw of Kalman filtering itself. Part of the reason

for the comparatively bad performance might be that NTE’s model is from 1997, when power

consumption patterns were quite different from now. However considering that the covariates

that are relevant for predicting the power consumption are unlikely to change much over time,

a well-implemented Kalman filter model should have been able to adapt to the changes in con-

sumer patterns.

Compared to the other models the direct support vector regression (SVR) model performs

well on the last three years, but poorly on the first three. Upon closer inspection of the errors it

was observed that the poor performance on the first three years is actually a result of the model

catastrophically failing during one week in 2012, two in 2013 and a further two in 2014. Other-
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wise the model performance is similar to the best models. These five weeks were ones that ex-

perienced quick shifts in temperature and/or temperatures that were lower or higher than what

the model had seen before. Whether this problem is due to poorly chosen hyperparameters or

something else is unclear.

As expected the LSTM encoder-decoder model appears to significantly outperform the El-

man encoder-decoder, however the performance of these two models is overall disappointing

compared to the others, especially when you consider the fact that these two models are both

harder to implement and slower to train than the others. During the writing this thesis quite

a lot of time was spent trying out different neural network models that use a recursive strategy

where a single neural network is trained to predict the power load one hour ahead and then this

model is used recursively to produce multiple hours ahead forecasts up to 43 hours ahead, like

the encoder-decoder models do. The motivation behind this was that a recursive model, es-

pecially a recurrent neural network, might achieve better forecasting accuracy than the MIMO,

SMSO and direct MLP models by exploiting the sequential nature of the data, which the others

only utilize implicitly. For instance, a MLP model that produces one-hour ahead forecasts was

implemented and used to recursively produce forecasts up to 43 hours ahead. Although that

model occasionally gave day-ahead MAEs as low as 6.5 on 2017, it tended to give very different

results each time it was trained, even when using the exact same hyperparameters, making the

model very unstable. The problem appears to be that, as mentioned in section 3.2.1, models that

utilize a recursive strategy tend to suffer from accumulating forecasting errors. As an example,

lets say that we train the recursive MLP model twice and calculate the three hour ahead forecast

on the same day each time and that the forecasting error is a tiny bit higher the second time than

the first. What will then happen is that when that forecast is fed back into the neural network

and used to recursively produce load forecasts further and further into the future this tiny extra

error will blow up into a larger error. Vanilla Elman and LSTM RNNs had the same issue. Only by

using a combination of an encoder-decoder architecture that encourages the model to produce

good multi-step ahead forecasts, not just good one-step ahead forecasts, and LSTM cells, that

allow valuable information to propagate over many time steps without degradation, was I able

to get results that were consistently close to those of the best models.

The best results were obtained by the ensemble average model which is simply the mean

of the predictions from the MIMO MLP model, the direct Kalman filter model and the SMSO

MLP model. This ensemble average model took less than seven minutes to train on six years of

data and the time needed to update the model each day is only around a second when ignoring

overhead, which makes the model very convenient to use in a real world situation.

Figure 19 in section 6.1.5 shows the residuals of the ensemble average model for 2017. Al-

though the mean absolute errors of the model are relatively constant throughout the year, be-

cause power consumption is roughly twice as high in the winter as in the summer, the percent-
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age errors are actually considerably lower in the winter than in the summer. The reason that

absolute errors were used consistently throughout this thesis to measure forecasting accuracy

instead of percentage errors is that we did not want to punish absolute errors in the summer

harder than absolute errors in the winter.

Section 6.1.5 also contains some close-up comparisons of the predicted and actual power

loads. From these plots we observe that qualitatively the predictions look very good most of

the time. We observe that the model did a good job predicting the power consumption during

the Easter weekend of 2017. As mentioned in section 4.8 the way public holidays are dealt with

by the model is to treat them as if they were Sundays and qualitatively this has been observed

to work well most of the time. In 2017 the model actually had higher errors on the three days

preceding the Easter weekend than on the Easter weekend itself. The reason is that the power

consumption on these three days tends to be slightly lower than on regular workdays because

the days are located in the Easter vacation, when schools are closed. Similarly, the model tends

to be a bit inaccurate on Christmas eve and new year’s eve, especially if they fall on a work-

day, since the power consumption on these two days tends to be a bit lower than on regular

workdays, but still higher than on weekends. A solution to this problem is to treat these days as

special cases where the power load is first predicted normally and then downjusted a little bit

afterwards. Unfortunately because there are very few instances of each of these days in the data

set it is difficult to estimate precisely how much the power load should be downjusted, so it is

probably inevitable that the error on these days will be a bit higher than normal.

Another minor issue is that the model sometimes underpredicts the power consumption on

workdays that occur two days after a public holiday, as seen on the Wednesday after the Easter

weekend in 2017 in figure 21. The reason is that the model uses the power load on Monday to

predict the power load on Wednesday. Since Monday was a public holiday the power consump-

tion on that day was a lot lower than usual for a Monday. The model sees this and predicts that

this means that the power consumption on Wednesday will probably be a bit lower than usual

as well, which turns out to be false. A quick fix for this problem would be to tell the model that

this Wednesday is actually a Tuesday, so that it believes that the power loads from two days ago

are from a Sunday.

From figure 18 in section 6.1.2 and figure 24 in section 6.2.2 we observe that the average error

at different hours of the day is very similar for most of the models tested. The error is at its lowest

for the first few hours of the day, which is logical since these are the predictions that are made

the least far into the future. Then the error spikes at 7 am, most likely because, as can be seen in

figure 3 in section 2.1, this is the time of the day where the power load quickly rises on regular

weekdays as the day begins. A second spike occurs later around 4 pm when the workday ends.

As seen in tables 3 and 6 the errors do not vary much between different days of the week for

any of the models tested except the naive model. The errors on public holidays on the other
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hand are a bit higher than on other days, however, once again, considering that public holidays

are exceptions to the general rules and represent a small portion of the data set slightly higher

errors on these days should probably be considered inevitable and acceptable.

From figure 17 in section 6.1.1 we observe that in the expanding window test run the fore-

casting accuracy of all models except NTE’s Kalman filter model tended to gradually improve

each subsequent year. It is tempting to draw the conclusion that this is solely due to the models

being trained on more and more data each year, however by looking at figure 24 in section 6.2.1

we observe that when a cross validation test approach is used, where the models are trained on

an equal amount of data for all test years, the tendency for the forecasting accuracy to gradually

improve from 2012 to 2017 is still present. Furthermore from table 7 in section 6.3 we observe

that when the ensemble average model was only trained on the preceding year the error was

still highest in 2012 and 2013 and lowest in 2015 and 2016. However the same table also show

that the forecasting accuracy of the ensemble average model does indeed improve significantly

when the model is trained on multiple previous years of data. For 2013, 2014 and 2015 the best

results were obtained by training the model on the maximum number of previous years avail-

able, while for 2016 there was a tie between four and five previous years. For 2017 training only

on the previous four years of data actually gave a slightly lower error than using the previous five

or six yeas.

Considering that there hasn’t been any large changes in consumer patterns over the period

that the data set stretches the conclusion is thus that the tendency for the forecasting accuracy

to gradually drop from 2012 to 2017 in figure 17 is partially due to the accuracy of the models

improving as they are trained on more and more data and partially due to randomness. It ap-

pears that 2016 and 2017 happened to be relatively easy years to predict, whereas 2012 and 2013

happened to be relatively hard years predict.

It is hard to tell what the optimal number of training years is. Although some further testing

could be done on the data set to try to give an answer to this question, in a real world situa-

tion the optimal number is in all likelihood going to depend on how much consumer behavior

changed throughout the last couple of years, which is likely to fluctuate over time. A good solu-

tion in a real world situation might thus possibly be to train the same model several times using

training sets that go back a varying number of years, test each of the trained models on recent

data and use the version of the model that achieved the lowest errors.

As an aside, towards the end of writing this thesis I discovered that the MIMO MLP model

that I came up with in this thesis is actually very similar to a model called the third generation

ANNSTLF [20] (artificial neural network short-term load forecaster) that has been used by many

electric utilities in the United States since the 90s. The main difference is that the ANNSTLF

model does not use just a single MIMO MLP, but instead uses a weighted sum of the predictions

from two MIMO MLPs, one that predicts the power loads for the next day and one that predicts
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the difference between the power loads for today and tomorrow.

7.2 Temperature input sensitivity

From table 8 in section 6.4 we observe that feeding the MIMO MLP model a weighted average of

the temperature measurements from three different locations in Nord-Trøndelag gives a lower

forecasting error than feeding it only the temperatures from a single location, which is not sur-

prising. A bit more surprising is the observation that feeding the model all three temperature

time series also gives worse model performance, which holds true even if the size of the neu-

ral network is increased to account for the larger number of model inputs. The reason is likely

that, because the temperature measurements from the three different locations are highly cor-

related, feeding the model all three time series does not add much extra useful information to

the model. Thus doing so only makes it harder for the optimization algorithm to discern what

the useful information in the input is.

Interestingly enough, using only the temperatures from Stjørdal, the location whose tem-

perature forecasts are weighted the heaviest in the weighted average temperature time series,

produces higher errors than using only the temperatures from Steinkjer or Namsos. Part of the

reason might be found in figure 6 in section 2.4, which shows that the residuals of Stjørdal’s

temperature predictions are not quite normally distributed, but have a noticeable positive bias,

which might negatively affect the forecasting accuracy. In this thesis I have not looked deeply

into the weights used in the formula for the weighted average temperatures since the default

weights seamed to work quite well, however table 8 suggests that weighting the predictions from

Stjørdal the highest might not be a good idea and that either the weight for Stjørdal should be

lowered or less biased temperature forecasts for Stjørdal should be obtained somehow.

Another interesting observation from section 6.4 is that, as seen in table 9, there is no sig-

nificant change in forecasting accuracy between using actual or forecasted weighted average

temperatures. This is not that surprising when you consider that, as seen in figure 6, the resid-

uals of the weighted average temperature predictions are normally distributed with a mean of

0.24◦C and standard deviation of 1.31◦C, meaning that they are quite accurate. Still, this is ac-

tually a very useful result. It is easy to find historical temperature measurements for an area,

but historical day-ahead temperature forecasts can be a lot harder to find, so it is nice to know

that actual temperatures can be used as a substitute for temperature forecasts when training a

model without effecting the accuracy of the forecast much.

7.3 Updating models

Table 10 shows the forecasting accuracy of the MIMO MLP model when using expanding win-

dow test approaches with daily, weekly, monthly or yearly window sizes. It also shows the ac-
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curacy when using the approach that was used in section 6.1, where the model is trained once

at the beginning of each year using all past data and then continuously updated throughout

the year. From the table we observe that as the window size gets smaller the error tends to de-

crease. Using the approach from section 6.1 gives test results that are roughly as good as using

an expanding window approach with weekly window sizes and slightly worse than an expand-

ing window approach with daily window sizes, although the difference between these three ap-

proaches is so small that it is unlikely to be statistically significant. The reason that the testing

strategy from section 6.1 was used for the neural network models instead of retraining the model

from scratch each day is time usage. From table 4 we observe that the average training time of

the direct MLP model is around 20 minutes. Thus from basic arithmetic, testing the direct MLP

model by retraining it from scratch every single day from 2012 to 2017 would take around 700-

800 hours, which isn’t practical. Furthermore in a real world situation having to spend 20 min-

utes each day updating a model is not ideal. Similarly the linear regression and support vector

regression models were only retrained once a week instead of every day to make training times

a bit more manageable.

Strategy 2012 2013 2014 2015 2016 2017 Avg

Expanding window (daily) 7.92 7.88 7.01 6.62 6.16 6.27 6.98

Method from section 5.2.1 8.14 8.01 6.98 6.79 6.20 6.25 7.06

Expanding window (weekly) 8.07 8.02 7.04 6.71 6.18 6.33 7.06

Expanding window (monthly) 8.42 8.10 7.17 6.95 6.33 6.30 7.21

Expanding window (yearly) 8.82 8.35 7.09 6.98 6.47 6.35 7.34

Table 10: Mean absolute error of the MIMO model when using an expanding window approach
with different window sizes.

There is a trade-off present when using an expanding window approach where the model

is regularly retrained from scratch. We want the model to be updated as often as possible to

incorporate the newest available data to get the best possible forecast, but since retraining a

model from scratch is time consuming we don’t want to retrain the model more often than is

necessary. The rehearsal technique used in this thesis to continuously update a neural network

model as new data becomes available is a simple way to obtain forecasting accuracy’s that are

very close to those obtained when retraining the model daily without having to spend an inor-

dinate amount of time updating the model each day. As can be seen from the tables in section

6.1.4, for 2017 updating the MIMO model by retraining it from scratch takes more than a minute,

whereas updating the model using the rehearsal technique only takes around 0.2 seconds on a

mid-range processor.
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8 Conclusion

In this thesis a number of different models, some based on neural networks and some based

on other methods, were applied to the problem of forecasting the power consumption in Nord-

Trøndelag for each hour of the next day. The best performing neural network model that was

tested was a multilayer perceptron (MLP) that uses a multiple-input multiple-output (MIMO)

strategy, while the best performing model that wasn’t a neural network was a Kalman filter

model that consists of 24 time-varying linear regression models, one for each hour of the day,

each of which uses Kalman filtering for parameter estimation. Even though these two models

are quite different, in terms of performance they are very similar, both in terms of accuracy,

training time and daily update times.

The lowest forecasting errors were obtained by using an ensemble average model whose

predictions are the mean of the predictions from the two above-mentioned models and a variant

of the MIMO MLP model that was referred to as the single model single output (SMSO) MLP.

The ensemble average model takes a couple of minutes to train on a modern computer, but

once it has been trained updating it each day as new data becomes available can be done in a

matter of seconds. It was also found that the model can likely be continuously updated in this

manner for a year without retraining without a significant drop in forecasting accuracy. In terms

of accuracy the model is a big improvement compared to NTE’s current model and unlike that

model it is able to quickly adapt to changing temperatures. The only real flaw of the model is

that it experiences slightly higher errors on and around public holidays and other special days

than on regular days, but this is likely to be the case for any model.

The ensemble average model can likely be fine-tuned to improve model performance a lit-

tle bit further, e.g. by fine-tuning how heavily it weights the temperature measurements from

the three seperate measurement locations, however considering how strong the model perfor-

mance already is, we have likely reached a point of diminishing returns where we are unlikely to

see any big reductions in the forecasting errors. Overall the model should thus be considered to

be ready for implementation.
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A Appendix

A.1 Detailed expanding window forecast errors

Model 2012 2013 2014 2015 2016 2017 Avg

Mean of three best models 7.60 7.56 6.75 6.35 5.82 5.97 6.67

MIMO MLP 8.14 8.01 6.98 6.79 6.20 6.25 7.06

Direct Kalman Filter 8.07 7.73 7.06 6.78 6.49 6.42 7.09

Direct Linear Regression 8.66 8.42 7.31 6.80 6.49 6.49 7.36

SMSO MLP 8.67 8.61 7.40 6.96 6.27 6.33 7.37

Direct MLP 8.28 8.48 7.79 6.96 6.50 6.41 7.40

LSTM Encoder-Decoder 9.83 9.47 7.32 7.41 6.99 6.34 7.89

Direct SVR 10.21 11.06 9.32 7.19 7.10 6.57 8.58

Elman Encoder-Decoder 10.04 10.09 8.20 8.20 7.91 7.54 8.66

Kalman Filter (NTE) 8.69 9.97 10.36 8.29 11.09 8.39 9.47

Naive model 17.46 18.54 16.78 16.37 17.66 18.26 17.51

Table 11: Mean absolute errors (MAE) in MW for all models for the years from 2012 to 2017 when
using the expanding window test approach described in section 5.2.1.

Model 2012 2013 2014 2015 2016 2017 Avg

Mean of three best models 3.06% 3.09% 2.82% 2.47% 2.22% 2.30% 2.66%

MIMO MLP 3.25% 3.28% 2.94% 2.64% 2.37% 2.41% 2.81%

Direct Kalman Filter 3.32% 3.18% 2.94% 2.65% 2.55% 2.51% 2.86%

SMSO MLP 3.48% 3.51% 3.12% 2.73% 2.40% 2.42% 2.94%

Direct Linear Regression 3.50% 3.46% 3.11% 2.65% 2.50% 2.51% 2.96%

Direct MLP 3.29% 3.46% 3.34% 2.73% 2.49% 2.47% 2.96%

LSTM Encoder-Decoder 3.80% 3.76% 3.08% 2.84% 2.56% 2.40% 3.07%

Elman Encoder-Decoder 3.94% 4.09% 3.52% 3.15% 2.96% 2.92% 3.43%

Direct SVR 3.88% 4.46% 4.39% 2.85% 2.64% 2.53% 3.46%

Kalman Filter (NTE) 3.45% 3.96% 4.17% 3.17% 4.33% 3.21% 3.71%

Naive model 6.74% 7.41% 6.79% 6.16% 6.52% 6.67% 6.71%

Table 12: Mean absolute percentage errors for the same test run as in figure 11.
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A.2 Detailed cross validation forecast errors

Model 2011 2012 2013 2014 2015 2016 2017 Avg

Mean of three best models 6.75 7.18 6.99 6.46 6.12 5.76 5.98 6.40

MIMO MLP 7.04 7.45 7.50 6.89 6.34 6.09 6.26 6.80

SMSO MLP 7.08 7.61 7.67 6.91 6.41 6.10 6.29 6.87

Direct MLP 7.09 8.28 8.48 7.79 6.96 6.50 6.41 6.87

Direct Kalman Filter 6.99 7.91 7.44 6.92 6.86 6.41 6.42 6.92

LSTM Encoder-Decoder 7.37 7.73 7.58 6.99 6.43 6.80 6.54 7.06

Direct Linear Regression 7.39 8.02 7.74 7.03 6.53 6.36 6.56 7.09

Elman Encoder-Decoder 8.16 8.18 8.87 7.99 7.31 7.54 7.47 7.93

Direct SVR 8.00 10.21 11.06 9.32 7.19 7.10 6.57 8.49

Table 13: Mean absolute errors (MAE) in MW for all models for the years from 2011 to 2017 when
using a cross validation approach for testing where the models are trained on an equal amount
of data for each year.

A.3 Varying the number of training years - Results for each submodel

Training years 2012 2013 2014 2015 2016 2017

One year back 8.19 8.60 7.84 7.90 6.76 6.93

Two years back X 8.08 7.49 7.17 6.59 6.50

Three years back X X 7.05 6.84 6.24 6.43

Four years back X X X 6.75 6.21 6.08

Five years back X X X X 6.19 6.44

Six years back X X X X X 6.31

Table 14: MAE of MIMO MLP model in MW.
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Training years 2012 2013 2014 2015 2016 2017

One year back 8.56 9.17 8.11 7.81 7.12 7.05

Two years back X 8.81 7.75 7.33 6.95 6.74

Three years back X X 7.26 7.17 6.51 6.43

Four years back X X X 6.94 6.47 6.32

Five years back X X X X 6.53 6.58

Six years back X X X X X 6.37

Table 15: MAE of SMSO MLP model in MW.

Training years 2012 2013 2014 2015 2016 2017

One year back 8.07 8.04 7.13 6.83 7.31 6.59

Two years back X 7.73 7.14 6.85 7.19 6.48

Three years back X X 7.06 6.87 6.79 6.55

Four years back X X X 6.78 6.56 6.43

Five years back X X X X 6.49 6.40

Six years back X X X X X 6.42

Table 16: MAE of direct Kalman filter model in MW.


	Introduction
	Data set
	Cyclical patterns
	Public holidays
	Temperature dependence
	Temperature forecasts

	Background
	Power load forecasting
	Multi-step ahead time series forecasting strategies
	Recursive strategy
	Direct strategy
	Multiple-input multiple-output (MIMO) strategy
	Hybrid strategies

	Supervised learning
	Multiple linear regression
	Artificial neural networks
	Single-layer perceptrons
	Multilayer perceptrons
	Activation functions
	Stochastic gradient descent
	Backpropagation
	SGD with momentum
	Adam algorithm
	Recurrent neural networks
	Elman and Jordan RNNs
	LSTM RRNs

	Support vector regression
	Kalman filtering
	Kalman filter algorithm
	Derivation of the filtering equations


	Models
	Multilayer perceptrons
	MIMO model
	Direct model
	SMSO model

	Recurrent neural networks
	LSTM encoder-decoder
	Elman encoder-decoder

	Direct linear regression model
	Direct support vector regression model
	Kalman filters
	NTE's current model
	Direct Kalman filter model

	Ensemble average model
	Naive model
	Dealing with public holidays
	Dealing with daylight savings time

	Test method
	Test strategies
	Tests performed
	Expanding window test run
	Cross validation test run
	Varying the number of training years
	Testing temperature input sensitivity


	Results
	Expanding window test results
	Errors broken down by year
	Errors broken down by the hour of day
	Errors broken down by weekday
	Training and update times
	Ensemble average residuals

	Cross validation test results
	Errors broken down by year
	Errors broken down by the hour of day
	Errors broken down by weekday

	Varying the number of training years
	Temperature input sensitivity

	Discussion
	Discussion of test results
	Temperature input sensitivity
	Updating models

	Conclusion
	Appendix
	Detailed expanding window forecast errors
	Detailed cross validation forecast errors
	Varying the number of training years - Results for each submodel


