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Summary

Atomic force microscopy (AFM) has become a key enabling technology for high-
precision study of materials and biological processes over the last few decades.
Since its invention in 1986, it has undergone rapid developments and has been
adapted for novel applications. High-speed AFM has enabled video-rate imaging,
and the first ever direct evidence of several biological processes. Furthermore,
its ability to mechanically interact with samples has enabled AFM to be used
for revealing nanomechanical properties of samples. The rapidly developing field
of multifrequency AFM has enabled fast acquisition times for nanomechanical
properties. This thesis provides further contributions to these topics, in large
part by the employment of online parameter identification techniques. The thesis
is divided into three parts.

Part I presents a novel imaging method for revealing true topography and tip-
sample interaction forces in dynamic mode atomic force microscopy. An observer-
based approach is used to estimate the interaction force, while the true topography
is obtained by inverting a nonlinear model of the tip-sample interaction force.
Due to the nonlinear relationship between the force and the tip-sample distance,
a nonlinear state- and parameter estimation approach is employed to guarantee
near-global exponential stability of the error dynamics.

Part II concerns amplitude and phase demodulation for high-speed AFM. State-
of-the-art techniques are compared and evaluated in terms of several performance
criteria, including bandwidth, attenuation of noise, and rejection of frequency
components away from the carrier frequency. The latter is particularly important
for the application of demodulators to multifrequency AFM. A novel demodulator
based on a Lyapunov estimator is proposed, and implemented experimentally. It
achieves a particularly attractive combination of performance in terms of band-
width and noise attenuation, low implementation complexity, and rejection of
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frequency components away from the carrier frequency.

Part III introduces the model-based identification approach for resolving nanome-
chanical sample properties in AFM. This approach is particularly attractive com-
pared to recent multifrequency AFM approaches, since it avoids complicated re-
lationships between the observables and the properties to be determined. Instead
of depending on stationary signals such as amplitude and phase, possibly at mul-
tiple frequencies, the model-based approach uses the entire transient information
of the measured signals to directly identify the parameters of the sample model.
This approach can be operated in two modes. The DIVE mode indents into the
sample at regular intervals, while the SVE mode continuously scans the surface
while modulating the cantilever. The DIVE mode is implemented experimentally
and successfully resolves the mechanical properties of the samples investigated,
including online identification of both elastic and viscous properties. The SVE
mode can achieve higher imaging speeds than DIVE mode, possibly surpassing
those of recent multifrequency AFM approaches as it does not rely on demodu-
lated signals.
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Chapter 1

Introduction

Over the recent decades, there has been an explosive development of technologies
and tools for studying and manipulating matter at the nanoscale. The results of
this development can be widely observed in today’s society; in particular, in fields
such as materials and manufacturing, nanoelectronics, medicine, and healthcare
[14, 194]. While still in its infancy, nanotechnology is expected to have a profound
impact on our economy and society over the coming century.

One of the earliest tools for studying and manipulating matter at the nanoscale,
was the scanning tunneling microscope (STM), invented in 1981 [17]. This was
the first technology to enable true 3d topographic imaging at atomic resolutions,
and is routinely being used for manipulation of individual atoms [83]. A major
limitation of the STM is the necessity of the sample to be conductive. Later
efforts in overcoming this limitation, spawned the invention of atomic force mi-
croscopy (AFM) in 1986 [16]. Together, STM and AFM can be considered the
main innovations behind the birth of nanotechnology [28].

Since its invention, AFM has become one of the key enabling technologies for
studying materials and biological processes at the nanoscale [3]. The technology
is enjoying an ever-increasing number of applications, and a continuous expansion
of capabilities. The high adoption of AFM can be attributed to the advantages it
enjoys over comparable techniques. In particular, it has the ability to image the
topography of most materials, including both insulators and conductors, at up
to atomic resolutions. Additionally, it can measure interaction forces accurately
at high spatial resolutions in most media, including air, water and solutions. It
can also be employed in ultra-high vacuum, and at a wide range of temperatures.
These attributes have made AFM the preferred tool for many applications, in
particular in fields such as cell- and molecular biology, solid-state physics, and
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surface chemistry [21, 73, 88, 128].

Some of the major active research efforts in the AFM community can be organized
into two main objectives.

Improving the scanning performance. Due to the fundamental operating
principles of AFM, typical imaging speeds require minutes or longer for a
single image scan. There is an enduring ambition in the AFM community
to increase the imaging speed [5].

Revealing nanomechanical sample properties. Due to the ability of AFM
to apply forces to a sample and measure the resulting mechanical response,
it has become one of the prime tools for studying nanomechanical sample
properties at up to molecular resolutions. Recent innovations demonstrate
increased image acquisition rates, while simultaneously allowing for increas-
ingly number of characteristics of a material to be quantified [26, 112, 151].

In this thesis, several topics within AFM are covered, mainly concerning these
two objectives.

In the remainder of this chapter, background material on the working principles
of AFM in a variety of operating modes is given, and the interaction between the
sample and cantilever tip is described. Then, an overview of recent efforts in the
research community concerning the two stated objectives is provided. Finally, an
outline on the thesis is given, relating the contributions to the proposed objectives.

1.1 Operating Modes in AFM

Since the invention of AFM, a variety of operating modes have been developed
for different applications. A fundamental working principle is the feedback loop,
which renders the microscope particularly interesting for control engineering. Its
working principle is best described by the static mode, which serves as a founda-
tion for the other modes.

1.1.1 Static Mode

The working principles of AFM [3] in static mode (or contact mode, constant-
force mode) is shown in Fig. 1.1. A central component in AFM is the sharp tip
attached to the end of a cantilever. The cantilever will deflect as soon as the tip
is brought into contact with the sample, and this deflection can be measured in a
photodetector setup at high precision. A feedback loop ensures that the deflection
of the cantilever is kept constant by adjusting the vertical piezo actuator. The
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Figure 1.1: Working principles of AFM operating in static mode. (a) The cantilever
deflection is kept constant in a feedback loop, such that (b) the tip follows the sample
contour, while (c) the tip is scanned across the sample in a raster pattern.
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sample is then scanned in the lateral directions, typically in a raster pattern.
By keeping the deflection constant, the cantilever tip follows the contour of the
sample surface. Thus, by mapping the vertical piezo position against the lateral
position, the topography of the sample is revealed.

In the static sense, the cantilever deflection is proportional to the tip-sample inter-
action force in accordance with Hooke’s law. Thus, the atomic force microscope
acts as a highly precise force sensor interacting with the sample. By utilizing
this principle, the nanomechanical properties of the sample can be determined by
applying a force to the sample and measuring its response [21].

A challenge with the static mode is the large lateral forces (or frictional forces)
arising during scanning, which can cause damage to the cantilever tip or the
sample, especially for fragile samples such as in biology [36]. Furthermore, soft
cantilevers may snap to the surface due to attractive tip-sample forces, creating
an instability in the feedback loop [191]. These are the main motivations for the
development of dynamic mode AFM [87].

1.1.2 Dynamic Mode

In dynamic mode AFM, the cantilever is oscillated typically using a dither piezo
located at the base of the cantilever [55, 174], as seen in Fig. 1.2. The amplitude,
phase, or frequency of the deflection will change as the cantilever is brought closer
towards the sample. Thus, by demodulating the deflection signal, and keeping
it constant in a feedback loop, the distance between the tip and the sample is
maintained at some constant setpoint. As in the static mode, the sample is then
typically scanned in a raster pattern, and the topography of the sample is revealed
by mapping the vertical actuator position to the lateral position of the sample.

Dynamic mode AFM can be further classified. In tapping mode (or intermit-
tent contact mode), the cantilever tip is oscillated at larger amplitudes, thereby
crossing into both the attractive and repulsive force regions of the tip-sample
interaction. In non-contact mode, smaller amplitudes are applied, and the tip
is primarily located in the attractive force region at a small distance from the
sample. In either mode, the tip-sample interaction and frictional forces are much
lower than in static mode. For this reason, the dynamic modes of AFM are partic-
ularly well suited for studying soft biological materials [36, 87]. Over the last few
decades it has increasingly been applied to studies of soft and biological matter
at cellular and molecular scales [8, 197].
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1.1.3 Multifrequency

In dynamic mode AFM, the cantilever is driven at a single frequency component,
and its response measured at the same frequency. The dynamics of the cantilever
are often approximated by a simple harmonic oscillator [55]. If the tip-sample
interaction force is linear with respect to the distance, all information about the
sample is contained in the driven frequency component. However, nature is more
complicated; rather, in general the interaction force is highly nonlinear with re-
spect to the sample, as discussed in the next section. This nonlinearity excites
the cantilever motion at higher harmonics – that is, at multiples – of the driv-
ing frequency [189]. The interaction force can be time-resolved by considering all
the higher harmonics [188]. Thus, by measuring the cantilever response only at
a single frequency component, information about the sample is irreversibly lost.
These insights spawned the field of multifrequency AFM, where the cantilever is
driven or measured at multiple frequencies simultaneously [58].

For a full understanding of multifrequency AFM, the dynamics of the cantilever
must be considered. The motion of the cantilever can be found using Euler-
Bernoulli beam theory [39, 56, 140, 191]. An approximation can be found using
a discrete lumped mass model of order n, whose transfer function from applied
tip force Fts to deflection D, for a beam fixed at one end. This gives the transfer
function [41]

D

Fts
(s) =

1

M

n∑
i=1

βi
s2 + ωi

Qi
s+ ω2

i

(1.1)

where M is the cantilever mass, and ωi, βi, Qi are the resonance frequency, gain
determined by the modal shape function, and Q factor for each mode i, respec-
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Table 1.1: Characteristics of the first four modes of a rectangular cantilever∗.

Eigenmode
i

Resonance frequency
ωi

Quality factor
Qi

Force constant
ki

1 (Fundamental) ω1 Q1 k1

2 6.27ω1 6.27Q1 39.3 k1

3 17.6ω1 17.6Q1 308 k1

4 34.4ω1 34.4Q1 1180 k1

∗Adapted from [56].

tively. For a co-located actuator and sensor placed at the freely oscillating end
of the cantilever, βi = 4∀i. Relationships between the parameters of the first
mode and higher modes can be found, a subset of which is given in Table 1.1 [56,
61, 152]. The frequency response of the cantilever dynamics from (1.1) is shown
in Fig. 1.3. Note that the higher harmonic components arising from the nonlin-
ear interaction force do not necessarily coincide with the modes of the cantilever.
Thus, the cantilever will be more sensitive to some harmonic components than
others.

An overview of the developments in multifrequency AFM is given in [57, 58, 116,
138, 172]. Early efforts were mainly concerned with measuring the amplitude and
phase at higher harmonics, while driving the cantilever at a single frequency [63,
190]. Later, the bimodal multifrequency approach was introduced [120, 121, 139],
where the cantilever is driven at the first two resonance modes, resulting in an
increased imaging contrast compared to single-frequency excitation. A theoretical
justification for the increased contrast was soon developed [116]. A host of imaging
modes in multifrequency AFM rapidly followed. In intermodulation AFM [133],
the cantilever frequency is driven at two frequencies in the vicinity of a resonance.
In the band excitation approach [90], a band of frequencies is excited and detected
simultaneously. In torsional harmonic AFM [162], special cantilevers are used to
induce a flexural response, which can further enhance the ability to resolve the
tip-sample interaction force.

The introduction of multifrequency AFM came with the realization that the key
to a full understanding of the tip-sample interaction is located in the complex mo-
tion of the cantilever. With the introduction of new imaging methods, and new
observable signals being available for measurement, the focus has shifted towards
using these signals to reveal spatially resolved, nanomechanical properties of the
sample. In particular, relating the multifrequency amplitude and phase compo-
nents to the sample elasticity, viscosity, and their gradients along the vertical
direction [26, 59, 151].
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Figure 1.3: Frequency response of the first three modes of a rectangular and uniform
cantilever. The harmonics of the fundamental frequency are marked by vertical lines.

1.2 Tip-Sample Interaction Models

The interaction between the cantilever tip and sample is an important considera-
tion for several purposes in AFM, including simulations, theoretical understand-
ing of the cantilever-sample interaction, and revealing nanomechanical properties
of the sample. A variety of interaction models have been utilized in the AFM
community. In general, the models commonly originate either from the study of
inter-molecular forces [85], or from the field of contact mechanics [91]. The for-
mer is especially suitable when some distance between the tip and the sample is
considered (non-contact), while the latter is suitable when an indentation occurs
from the tip into the sample (contact). Thus, as the cantilever approaches the
sample, one could consider two different regimes determining the nature of the
tip-sample interaction. During approach of the tip onto the sample (non-contact),
the interaction force can be described using the Lennard-Jones potential [85, 173].
As the tip comes in contact with the sample and starts indenting it, the mechani-
cal response of the sample due to its deformation determines the interaction [91].
The various topics of this thesis considers either the contact, non-contact, or both
regimes.

1.2.1 Non-Contact Model

The Lennard-Jones potential is typically used to describe the tip-sample interac-
tion force for AFM operating in non-contact mode, or in general for rigid samples.
Fundamentally, the potential describes the interaction between two molecules. It
combines attractive van der Waals forces, with repulsive forces originating from
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the Pauli exclusion principle preventing the collapse of the molecules. For appli-
cation in AFM, the Lennard-Jones potential is typically summed over molecules
in a half-sphere, representing the cantilever tip, and a half-space, representing
the sample. By taking the distance-derivative of the summed energy potential,
the interaction force between the tip and the sample in the non-contact regime is
found to be [3, 173]

FLJ(d) = k1

[
σ2

d2
− 1

30

σ8

d8

]
, (1.2)

where k1, σ are physical parameters and d is the tip-sample distance.

1.2.2 Contact Models

A wide variety of contact models exist, incorporating physical phenomena such
as elasticity, viscosity, adhesion and plasticity. Traditionally, the Hertz contact
model has been widely used in the AFM community to describe elasticity of soft
samples [24, 141]. This approach assumes small indentations, no friction, and
continuous, non-conforming surfaces. For a spherical tip with radius R indenting
into an elastic half-space, the contact force as a function of indentation δ is given
by

FHertz(δ) = 4
3E
∗R

1
2 δ

3
2 (1.3)

where E∗ is the reduced elastic modulus,

E∗ =

(
1− ν2

tip

Etip
+

1− ν2

E

)−1

(1.4)

and νtip, ν are the Poisson ratios of the tip and sample, respectively, and Etip, E
are the elastic moduli of the tip and sample. Since the cantilever tip is made of
a stiff material, then, for soft samples it can safely be assumed that Etip � E,
which simplifies (1.4) to

E∗ =
E

1− ν2
. (1.5)

Extensions of the Hertz model often incorporate adhesion effects. Common mod-
els include the Derjaguin-Muller-Toporov (DMT) and Johnson-Kendall-Roberts
(JKR) contact models [29, 92, 108, 195]. For the DMT model, the interaction
force is modified by including a constant long-range adhesive force,

FDMT(δ) = 4
3E
∗R

1
2 δ

3
2 − 2πR$ (1.6)

where $ is the work of adhesion. On the other hand, the JKR model introduces
a surface energy term which describes the adhesion. However, in this case there
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is no analytical solution for the interaction force, but it can be found numerically
[35, 37, 113, 207]. Other variations include the Sneddon model [71, 183] which
generalizes the Hertz model to additional tip geometries, thereby enabling the use
of non-spherical cantilever tips.

These and related models are often used for top-down approaches for measuring
cell mechanics and other biological applications in AFM [13, 24, 71, 72, 86, 185,
186], but can be used for any material that displays elasticity or adhesion.

As demonstrated by the given models, the tip-sample interaction force is nonlin-
ear. For this reason, in dynamic mode AFM, the tip-sample interaction force will
excite higher harmonics of the driven modulation frequency. In order to build
a theoretical understanding of how the cantilever interacts with the sample, the
provided nonlinear interaction models, or variations of them, are typically com-
bined with a linear cantilever model [20, 54, 107, 161, 181, 191]. However, general
interaction forces have also been considered [44].

Note that the two regimes considered here are not always clearly distinguishable.
For instance, a stiff contact model with adhesion would behave similarly to the
model based on the Lennard-Jones potential. They are also sometimes mixed,
such as van der Waals attractive forces combined with the DMT model [107], or
the Lennard-Jones potential combined with the Hertz model [175].

1.3 Objective I: Scanning Performance

In commercial atomic force microscopes, the imaging speeds typically require
minutes or higher for a single complete scan. There has been an enduring effort
in the research community to improve the imaging speed [7]. Some of the benefits
of this objective, is the improved productivity of the operator, as well as the ability
to image biological and chemical processes that occur at high speeds, and observe
their changes as they occur over time [5]. This thesis aims to provide further
contributions for improved performance in AFM. In the following, an overview of
existing approaches on this topic is presented.

The challenges in scanning speeds are attributed to the fundamental working
principles of AFM. In AFM, a physical probe must be moved over the entire
sample and visit each point of the area of interest. This creates an immense
demand on the bandwidth of every component involved in the scanning operation.
The research in this area can be separated into bandwidth improvements for
positioning in the lateral axes, and the feedback loop in the vertical axis.
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1.3.1 Lateral Positioning

Achieving a high bandwidth in the lateral positioner is essential for high-speed
AFM. In particular, considering the raster scan pattern shown in Fig. 1.1(c), the
scanning rate can become very high along the fast-scanning direction. There is a
desire to achieve the fastest possible bandwidth, however, at higher bandwidths,
the challenges involved for control of the actuator becomes apparent, and can
result in a severely distorted image due to inaccurate positioning.

Increasing the bandwidth in the lateral positioning has been the topic of a large
amount of research on the topic of nanopositioning [31, 41, 49, 69]. The results
are typically applicable to any scanning probe microscopy technique, including
AFM, STM, and a wide range of related techniques [14]. Some of the challenges
involved in nanopositioning include the vibration dynamics of the piezoelectric ac-
tuator, and its sensitivity to environmental changes such as temperature. These
sensitivities introduce uncertainties in the model and associated parameters. Ad-
ditionally, the piezoelectric actuator displays nonlinear effects such as hysteresis
and creep.

Several approaches have been taken to overcome the preceding challenges. The
mechanical design of the positioner is fundamental to achieving high resonance
frequencies [203], which ultimately constraints the achievable bandwidth. Since
the resonance frequency is typically dependent on the achievable range of the
actuator, dual stacked actuators with distinct ranges, have been used to simulta-
neously achieve high bandwidth and long range [9, 104]. Several feedforward and
feedback techniques have been proposed to increase the achievable bandwidth,
with a particular emphasis on robustness due to the uncertainties in the model
[27, 30, 40, 47, 48, 169, 175, 180, 198, 199]. The raster scanning approach is
particularly demanding along the fast scanning axis. Since the typical triangle-
shaped reference trajectory contains strong harmonic components, modifications
to the reference trajectory can attenuate such higher frequency components [46,
177]. Alternatively, completely different reference trajectories such as spiral or
Lissajous trajectories can be utilized [12, 118]. However, these approaches typi-
cally come at the expense of a higher lateral speed and thus higher demand on
the vertical feedback loop [196]. For compensating creep and hysteresis, nonlinear
feedforward approaches can be employed [42, 106, 126].

1.3.2 Vertical Feedback Loop

In order to ensure fast scanning speeds, every part of the vertical feedback loop
in AFM, as shown in Fig. 1.4, needs to be developed for high bandwidths. In
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Figure 1.4: Vertical feedback loop in dynamic mode AFM. The scanning speed is limited
by the slowest component in the loop. The sample height acts as an unknown disturbance
to the system. Adapted from [3, 5].

static mode AFM, the scanning speed limit can be determined by the cantilever
properties and sample stiffness, in addition to the vertical actuator bandwidth [23].
However, due to the high tip-sample forces arising in static mode, in particular
high lateral forces, more recent high-speed applications utilize dynamic mode
AFM [7].

In dynamic mode AFM, the bandwidth of the deflection sensor typically exceeds
the other components [43, 51, 52], while the feedback controller, typically imple-
mented by a PID controller, uses the highest possible gain while maintaining an
acceptable imaging quality [7]. Thus, the main limitations for the closed loop
bandwidth in dynamic mode AFM to be studied are the vertical actuator, can-
tilever, and demodulator.

Vertical Actuator

As in lateral positioning, the vertical actuator bandwidth is limited by its first
resonance mode. Its mechanical design is therefore of high significance [176]. A
counter-weight can be used to attenuate the first resonance mode [204], and dual-
stage piezo actuators can be used for simultaneous long range and high bandwidth
[98, 205]. The bandwidth of the vertical actuator can be bypassed altogether by
operating the cantilever in constant height mode [23]. However, this sacrifices
some flexibility, as the sample must lay very flat within the scanning area, and
cannot display considerable topographic variability, unless large tip-sample inter-
action forces are acceptable.
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Cantilever

The bandwidth of the cantilever is proportional to both its first mode resonance
frequency and damping ratio [5]. Often the quality (Q) factor of the cantilever
is reported, which is inversely proportional to the damping ratio. Thus, for high-
speed dynamic mode AFM applications, the cantilever is constructed for high
resonance frequencies and low Q factors. However, the Q factor needs to be
considered carefully, as a lower Q factor results in a lower force sensitivity and
higher tip-sample interaction forces which can cause damage to the sample [154,
174]. Due to these trade-offs, the Q factor can be modified through feedback
control to suite the application [45, 124, 154, 193]. Current state-of-the-art in
high-speed AFM has enabled the construction of cantilevers with a bandwidth
near 100 kHz. It has been suggested that this is the upper limit, as going beyond
must sacrifice the stiffness of the cantilever [5].

Another source of time delay in high-speed AFM is due to the parachuting effect
[7]. This effect describes the event where the cantilever is lifted off from the
sample surface, such as after a sudden drop in the topography. A dynamic PID
controller can be used to mitigate this effect [100], where the gain is increased at
downhill regions when the cantilever almost starts parachuting, and reduced at
uphill regions in order to reduce the tip-sample force.

Demodulator

For demodulation in dynamic mode AFM, the lock-in amplifier has become widely
adopted [3]. However, it is not suitable for high-speed applications, as its band-
width is severely limited by a low-pass filter required to suppress the mixing
products occurring at twice the resonance frequency of the cantilever. In [6], the
peak-hold method was introduced, allowing a substantial improvement in band-
width. However, this approach is very prone to measurement noise and unsuitable
for multifrequency applications. To enable high-speed, low-noise, and multifre-
quency applications, the Kalman filter was adopted for demodulation [155, 159].
However, the Kalman filter is practically limited in terms of sampling times, due
to its high implementation complexity.

Other approaches avoid the demodulator altogether by using observer-based ap-
proaches [95, 165, 167, 168, 178]. This makes it possible to increase imaging
speeds by exploiting the transient behavior of the deflection signal, instead of
using stationary signals such as amplitude, phase, and frequency. Typically, the
tip-sample interaction force is estimated and used for feedback control.
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Prospect

Clearly, high-speed AFM is a fairly mature field, and has achieved many notable
results, including imaging speeds well beyond 10 frames per second [5, 6, 7].
A celebrated result is the video-rate imaging of walking myosin V [101], the first
visual evidence for such molecular behavior in biology. However, these approaches
require a very rigorous setup and do not seem to have been adopted in commercial
AFM. Instead, it can be argued, that there is a need to improve performance
under existing setups, by employing simple approaches which do not introduce
additional constraints. Furthermore, the application of some of the high-speed
approaches to novel imaging modes, such as multifrequency AFM, also needs to
be studied.

1.4 Objective II: Revealing Nanomechanical Proper-
ties

Nanomechanical properties of samples are of wide interest to researchers in several
fields, such as cell- and molecular biology, solid-state physics, and surface chem-
istry. In living cells, their elasticity and adhesion are important in several cellular
processes [151]. In particular, cellular deformability can play a critical role in the
development and progression of various diseases [111]. Furthermore, adhesion or
stiffness maps can be used to visualize material contrast, such as for identification
of materials, or for investigation of local properties of a given material [21].

Since the invention of the atomic force microscope, it has clearly proven itself
to be one of the foremost tools for measuring sample topography at high reso-
lutions [53, 131]. In addition, it is capable of measuring tip-sample interaction
forces in the piconewton range, due to its highly sensitive laser-cantilever setup.
The ability of the microscope to probe the sample during operation, and mea-
sure the mechanical response at high precision, has made it a prominent tool for
determining nanomechanical sample properties [21].

The techniques for studying nanomechanical properties using AFM have been un-
der immense development since its introduction, from traditional force-distance
curves, to more recent multifrequency AFM approaches. This thesis aims to con-
tribute to the topic, including new approaches for identification of nanomechanical
properties using AFM. In the following, a brief overview of existing approaches is
presented.



14 Introduction

Force-Distance Curves

By Hooke’s law, the static response of the cantilever deflection is proportional to
the interaction force. This principle can be utilized for determining the proper-
ties of the sample, by slowly indenting the cantilever tip into the sample, while
measuring the cantilever deflection. The elastic properties of the sample can
then be revealed from the resulting force-distance curves, fitted to some contact
model [21, 105, 123]. Recently, viscous properties can also be gathered in this
approach by considering the time-history of the tip-sample interaction [19, 38].
In force-volume imaging mode [135, 185], indentations are repeated across the
sample, which allows its elastic modulus to be spatially resolved along the lateral
axes. A variation of force-volume imaging includes the peak-force quantitative
nanomechanical mode, which forcibly oscillates the cantilever at below resonance
frequency, allowing for faster and higher-resolution gathering of force-distance
curves [35, 195].

Dynamic Mode Force-Distance Curves

In dynamic mode AFM, the interaction forces are typically lower, which makes it
more suitable for fragile samples such as in biology. Early results demonstrated
the correlations between amplitude and elasticity, and between phase and viscosity
[141]. However, the observables in this mode, including amplitude and phase, are
gathered over a single or several oscillation cycles. Thus, they cannot directly
reveal force-distance curves [132]. Instead, by recording the amplitude and phase
as a function of distance to the sample, the force-distance curve can be found [79,
80, 97]. Furthermore, by applying one of the tip-sample interaction models such
as from Section 1.2, the elasticity of the sample can be revealed.

Multifrequency Nanomechanics

In order to speed up the gathering of the force-distance curves, a method for in-
verting the complete transient signal in dynamic mode AFM was sought. Then,
the higher harmonics of the cantilever motion need to be considered [188]. This
development made multifrequency AFM approaches closely associated with re-
vealing nanomechanical properties. Typically, the observables in either single- or
multifrequency dynamic modulation are related to the mechanical properties of
the sample [25, 26, 59, 77, 151, 163]. However, these relations are often quite com-
plicated and are still under development [36]. Furthermore, existing approaches
are limited in terms of the properties that can be extracted from the sample, typ-
ically isolated to viscoelastic properties and their gradient along the depth axis.
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Avoiding such complicated relations, and allowing for additional properties to be
identified, would be beneficial.

Another challenge in multifrequency AFM, is the insensitivity of the cantilever to
the higher harmonics. In the torsional harmonic approach [162], special cantilevers
are used to induce a torsional response, allowing for a better sensitivity of the
higher harmonics and effective reconstruction of force-distance curves. Recent
approaches also allow for mapping frequency-dependent sample elasticity at a
broad band of frequencies simultaneously [112].

1.5 Thesis Outline and Rationale

This thesis is divided into three separate parts. An overview of the thesis is given
in this section, along with the rationale for each part. Chapter 2 is separated
from the main parts and contains background information on recursive parameter
identification, a concept which is used throughout the thesis. In closing of this
thesis, conclusions and suggestions for future work are given in Chapter 9.

1.5.1 Part I: Topography Estimation in AFM

This part contains Chapter 3, where the non-contact regime in dynamic mode
AFM is considered. In dynamic mode AFM, the topography image is gathered by
ensuring that the demodulated signal, such as amplitude, is constant. However, as
the sample properties may change across the scanning area, a constant amplitude
image does not necessarily represent the true topography. Instead, we develop a
method for recursive estimation of the time-resolved tip-sample interaction force
and true topography in dynamic mode AFM.

In the presented method, the interaction force is estimated using observer tech-
niques. The estimated force is simultaneously used to invert the force model of the
sample, revealing its true topography. Furthermore, by utilizing the entire tran-
sient information of the cantilever deflection signal, it is not necessary to rely on
stationary signals such as amplitude and phase, which may increase the imaging
speed.

Two distinct observer approaches are provided as a solution to this problem. The
first is based on a nonlinear state- and parameter estimator, which guarantees
exponentially stable error dynamics. The second approach is based on an extended
Kalman filter where the state-vector is augmented to include the parameters to
be estimated. Numerical results demonstrate the feasibility of the technique using
both observers, and their differences are outlined.
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1.5.2 Part II: Demodulation for High-Speed Dynamic Mode
AFM

In this part, the demodulator in dynamic mode AFM is considered. In order
to improve the scanning performance in AFM, every component of the vertical
feedback loop must be designed for high bandwidths, including the demodulator.
Furthermore, due to the emerging field of multifrequency AFM, the demodulator
should be able to isolate single frequency components for demodulation. Existing
methods are either limited in terms of bandwidth, very sensitive to measurement
noise, unable to operate on multifrequency signals, and/or complicated in terms of
implementation complexity, thereby unable to operate in real-time in a high-speed
setting.

In Chapter 4, the Lyapunov estimator is proposed for amplitude and phase de-
modulation in high-speed dynamic mode AFM. Implementation details are given,
and the estimator is experimentally compared to a state-of-the-art lock-in am-
plifier (LIA) commonly used in AFM applications. In a high-speed setting, the
Lyapunov estimator outperforms the LIA in terms of bandwidth and noise atten-
uation. Additionally, it allows for multifrequency applications, and is simple in
terms of implementation complexity.

A comparison of state-of-the-art demodulation techniques in AFM, including the
Lyapunov estimator, is given in Chapter 5. The various techniques are numerically
compared in terms of bandwidth, sensitivity to noise, implementation complexity,
and suitability for multifrequency AFM applications. Suggestions for choosing
a particular technique are given for a variety of use-cases: low implementation
complexity, low noise and high accuracy, and high imaging speed.

1.5.3 Part III: Mechanics of Cells and Soft Samples: Modeling
and Identification by AFM

The use of AFM for identification of nanomechanical properties of samples is
rapidly increasing, in part due to the development of multifrequency AFM. How-
ever, in multifrequency AFM, complicated relationships are necessary to relate the
observables, such as amplitude and phase, to nanomechanical properties. Instead,
we propose a modeling and identification approach to this problem. Here, the
system dynamics are modeled, containing unknown parameters representing the
sample properties. Then, a parameter estimation technique is employed, in order
to recursively identify the unknown parameters, which represent nanomechanical
properties such as elasticity and viscosity. This approach separates the observed
signals and identified properties, thus, complicated relationships are avoided. Fur-
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thermore, instead of relying on stationary signals such as amplitude and phase,
the entire transient response of the signal is used. Thus, a faster imaging through-
put may be achieved, while avoiding the additional complexity of employing and
tuning a multifrequency demodulator.

In Chapter 6, the modeling and identification approach for revealing nanomechan-
ical properties in AFM is presented, employing a recursive least squares estimator.
Two distinct operation modes are developed for this approach, the dynamic inden-
tation viscoelastic (DIVE) mode which resembles the operation in force volume
imaging, and the scanning viscoelastic (SVE) mode which resembles the operation
in recent multifrequency approaches. A simulation environment is constructed to
evaluate the proposed approach.

In recursive parameter estimation, the time sufficient for convergence of the pa-
rameters are not typically evaluated. However, it would be highly beneficial to
know exactly how fast the proposed modeling and identification approach can
be operated, while being able to guarantee convergence of the parameters. A
solution to this problem is given in Chapter 7, in the general framework of the
recursive least squares estimator. The results are applied to the DIVE mode, and
provides the sufficient operating time interval which guarantees the convergence
of the parameters to any given degree of accuracy.

Finally, in Chapter 8, experimental results are provided for the modeling and
identification approach in DIVE mode. Several aspects of the previous results
in this thesis are employed, including the new Lyapunov demodulator, and the
sufficient time interval for parameter convergence. Implementation considerations
are given in detail, and the approach is employed on multiple samples. The
method successfully reveals their nanomechanical properties, including elasticity
and viscosity.

1.6 Experimental Equipment

Some of the experiments contained in this thesis were performed in the Nanopo-
sitioning Lab at the Dept. of Engineering Cybernetics, NTNU. A commercial
atomic force microscope (Park Systems XE-70) is available, and all aspects of
the microscope can be controlled with custom signals. A variety of supporting
equipment is also available, some of which are shown in Fig. 1.5, including a pro-
grammable dSpace (DS1103) and an xPC target computer, as well as a variety of
signal generators and filters. Other experiments of this thesis were performed at
the Precision Mechatronics Lab at the University of Newcastle [136].



18 Introduction

(a) Park Systems XE-70 AFM

(b) Supporting equipment

(c) AFM sample image

Figure 1.5: Lab equipment used for experiments.
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1.7 Notation

The following notational conventions are used throughout the thesis. Filters and
signals are occasionally mixed, e.g., the expression w(t) = W (s)y(t) should be
understood as w(t) = L−1 [W (s)L(y(t))] where L is the Laplace transformation.
The time-dependency of a signal is often not explicitly stated for ease of notation.
Vector signals are given in italic bold such as θ(t), while matrices are denoted
uppercase bold, e.g. A. Additionally, the Euclidean norm of a vector is written
as | · |, while diag(·) and col(·) denote a diagonal matrix and column vector of
elements, respectively. The Lp-norm of a signal x(t) for 1 ≤ p ≤ ∞ is defined as

‖x‖p ,


(∫ ∞

0
|x(τ)|pdτ

)1/p

, 1 ≤ p <∞,

sup
t≥0
|x(t)|, p =∞.

(1.7)

Furthermore, x(t) is said to belong to the Lp-space – that is, x(t) ∈ Lp – when
‖x‖p is finite.
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Chapter 2

Recursive Parameter
Identification: Preliminaries

A fundamental topic in science and engineering is the understanding of how a
system behaves. Many physical systems can be described by a dynamic model.
Typically, these models are expressed as a plant with inputs and outputs, cor-
responding to the actuators and sensors of the system. A situation often arises,
where parts of the model contain unknown parameters. A parameter estimator
can then be tasked with finding the unknown values, such that an equivalent input-
output response as the physical plant is produced. However, sometimes multiple
parameter values can produce the same observed input-output response. If the
parameters themselves are of prime concern, it is necessary to guarantee that the
parameter estimates are equivalent to those of the physical system. In this thesis,
the term parameter identification is used to indicate that the parameter estimates
are guaranteed to converge to their unique physical counterparts.

In this thesis, parameters are estimated by recursive methods. Employing a re-
cursive estimator has several advantages over offline approaches. First, it makes
it possible to use the parameter estimates in a feedback loop if desired. Secondly,
even if the parameters are not used in a closed loop, it allows online identifica-
tion of the parameters, enabling the operator to see real-time conditions. Finally,
it allows the determination of time-varying changes of the parameters. Observ-
ing time-varying changes can be intrinsically useful; in addition, it can be used
to reveal erroneous conditions or unmodeled dynamics, as such conditions may
dramatically affect the estimated parameters over time.

In this chapter, a modeling framework suitable for parameter estimation is pre-
sented. Then, various parameter estimators are given. Finally, conditions for
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identification of the estimated parameters are discussed, guaranteeing conver-
gence to their real values. The material in this chapter is collated from [18, 39,
64, 84, 103, 114, 129].

2.1 Linear Parametric Model

A dynamic model often relates the inputs to the outputs of the plant. Examples
of this is a transfer function, which relates the inputs to outputs in the frequency
domain; or a state-space model, where the inputs, outputs and some internal state
variables are related by first-order differential equations. In parameter estimation,
a particularly useful structure is the linear parametric model (or linear regression
model), given by

w′ = θTφ′, (2.1)

where w′ is a known signal, θ is the parameter vector with unknown constant
values, and φ′ is the signal (or regressor) vector. Note that, w′ and φ′ are typically
filtered versions of both the inputs and outputs of the plant. Thus, the linear
parametric model often abstracts away the physical plant, as opposed to input-
output descriptions such as transfer functions and state-space models. However,
the system can often be transformed to the form (2.1), as long as the parameters
appear linearly in the signals.

Remark 2.1. Even though the parameters appear linearly in the signal vector, the
signals themselves can represent nonlinear dynamics.

Remark 2.2. The parameter vector is assumed constant for now. As time-varying
parameters are of interest in this thesis, this case is discussed in Section 2.6.

An important implementation consideration concerns the case where derivatives of
some signals, such as inputs or outputs, appear in w′ or φ′. In order to avoid pure
differentiation of the signals in (2.1), both sides of the equation can be filtered by
a low-pass filter 1/Λ(s) of sufficiently high relative degree. Let the filtered signals
be given by

w =
w′

Λ
, φ =

φ′

Λ
. (2.2)

Then, by applying the low-pass filter to each side of (2.1), we have

w = θTφ, (2.3)

which is now suitable for implementation of the parameter estimators.
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2.2 Estimation Model

In the subsequent sections, various recursive parameter estimators are presented
for estimation of the unknown parameters θ. The vector of estimated parameters
are denoted θ̂, and the estimation model used to generate a signal ŵ, is given by

ŵ = θ̂Tφ. (2.4)

Furthermore, the estimation error ε is given by

ε =
w − ŵ
m2

(2.5)

where m2 is a normalization signal. The signal vector φ may represent unsta-
ble dynamics or unbounded input signals. By using a normalization signal, the
parameter estimates can be guaranteed to be bounded even in these conditions.
One common normalization signal is given by

m2 = 1 + αφTφ (2.6)

for some constant α > 0, typically unity. If no normalization is needed, m2 = 1
can be used. Furthermore, it will be used that the parameter estimate error is
given by

θ̃ = θ̂ − θ. (2.7)

In the following sections, several estimation laws are presented for updating θ̂,
such that the error ε becomes small in some sense as t→∞. Later it is discussed
how to additionally guarantee that |θ̃| → 0 as t → ∞, such that the parameters
are identified.

2.3 Gradient Estimator

The gradient estimator (also called gradient method or steepest descent method)
originates from optimization theory. Consider the quadratic cost function

J(θ̂) = 1
2ε

2m2. (2.8)

Since J(θ̂) is convex in θ̂, there is only a single global minimum corresponding
to ε = 0. Thus, the optimal value can be approached by descending along the
gradient of the cost function, that is

˙̂
θ = −Γ∇J(θ̂) (2.9)



24 Recursive Parameter Identification: Preliminaries

for some constant, positive definite gain matrix Γ. Solving (2.9) in terms of the
observable signals, gives the update law

˙̂
θ = Γεφ, (2.10)

which can be implemented for estimation of the parameters.

Remark 2.3. Note that the gradient approach does not itself guarantee that the
error ε → 0 as t → ∞. This can be explained by the situation where the
estimate approaches the minimum of the cost function. Then, the error

ε becomes small, which implies that
˙̂
θ also becomes small, such that any

further convergence may stall. However, a Lyapunov analysis can be used
to show that ε becomes small in some sense, as discussed in the following
section.

2.4 Lyapunov Estimator

The Lyapunov estimator is a generalization of the gradient estimator where an
additional strictly positive real (SPR) transfer function W (s) is used in the linear
parametric model. The modified parametric model is written as

w = W (s)θTφ, (2.11)

where notation is kept consistent with the previous model for simplicity. The
transfer function W (s) can either represent a part of the plant such as a measuring
device, or alternatively be implemented as a signal processing filter as part of
the estimator, such as for noise attenuation. The filter can be assumed unitary
W (s) = 1 if not desired.

The estimation model and normalization signal also need to be modified, such
that

ŵ = W (s)θ̂Tφ, (2.12)

m2 = 1 + αW (s)φTφ, (2.13)

or m2 = 1 if normalization is not needed. The estimation error ε uses the same
expression as previously, from (2.5).

A necessary condition for the stability of the estimator requires the transfer func-
tion W (s) to be SPR. Positive realness of a transfer function is related to the
passivity of a system. The SPR property can be stated by the following defini-
tions:
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Definition 2.1. A rational proper transfer function W (s) is positive real (PR) if

• W (s) is real for real s.

• Re [G(s)] ≥ 0 for all Re[s] > 0.

Definition 2.2. Assume that W (s) is not identically zero for all s. Then W (s)
is called strictly positive real if W (s− ε) is PR for some ε > 0.

Remark 2.4. If the desired W (s) is not SPR, it can be modified by introducing a
transfer function L(s) such that the new filter W ∗(s) = W (s)L(s) is SPR
and replaces W (s). If no proper L(s) can be found, the signals w and φ
themselves can be filtered to allow the estimator to be realizable.

The update law for the Lyapunov estimator is given by

˙̂
θ = Γεφ, (2.14)

which is equivalent to the gradient estimator, except that the modified estimation
model and normalization signal must be used (2.12)-(2.13).

The update law (2.14) applies for a wide range of problems and guarantees bound-
edness of the error ε and the estimate θ̂. The stability properties of the estimator
can be shown using the Lyapunov-like function

V (θ̃, e) =
eTPce

2
+
θ̃TΓ−1θ̃

2
(2.15)

for some constant matrix Pc = PT
c > 0. Additionally, e is the state vector for

the state-space representation of the error signal, which can be written on the
form ε = W (s)u with u = −θ̃Tφ − εαφTφ applied as input. The SPR property
of W (s) is exploited in the derivation of the update law (2.14), canceling the
indefinite terms of V̇ such that it becomes negative semidefinite. This immediately

guarantees boundedness – that is L∞-stability of ε, θ̂, and L2-stability of ε,
˙̂
θ.

However, this does not yet guarantee convergence of the parameters which is
essential for the parameter identification problem. An additional persistency of
excitation property of the signal φ is necessary, as discussed later.

Remark 2.5. Note that, by setting W (s) = 1, the Lyapunov analysis used here
can be applied to the gradient estimator. Then, the first term in (2.15) can
be omitted, and the stability properties of the Lyapunov estimator can be
established for the gradient estimator.
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2.5 Least Squares Estimator

Another popular technique is the recursive least squares (RLS) estimator. In this
approach, the time-history of the error is considered, and minimized in a least-
squares sense. As such, the estimator should perform better in conditions with
noise and disturbances. Consider the quadratic cost function

J(θ̂) = 1
2

∫ t

0
e−β(t−τ)ε2(τ)m2(τ)dτ + 1

2e
−βt(θ̂ − θ̂0)TQ0(θ̂ − θ̂0), (2.16)

where the first term involves an exponentially decreasing forgetting factor con-
trolled by β > 0, and the second term involving Q0 = QT

0 > 0 provides a penalty

on the initial estimate θ̂0 of θ. Since J(θ̂) is a convex function in θ̂, the global
minimum of the cost function satisfies

∇J(θ̂) = 0, ∀ t ≥ 0 (2.17)

which can be solved in both recursive and non-recursive form.

The solution to (2.17) in recursive form gives the update law for the least-squares
estimator,

˙̂
θ = Pεφ, (2.18)

Ṗ = βP− PφφTP

m2
, (2.19)

where P is called the covariance matrix, and P(0) = P0 = Q−1
0 . Additionally,

β > 0 is the main tunable for the update speed of the estimator.

Note that, the last term in (2.19) may be negative semidefinite. Thus, since β > 0,
then P may grow without bounds. In this case, the update law for the covariance
matrix can be modified such that

Ṗ =

{
βP−PφφT

m2 P, if ‖P‖ ≤ R0

0, otherwise
(2.20)

for some R0 > 0. However, this modification is not necessary if φ is persistently
exciting, defined in the next section. Then, P is guaranteed to be bounded without
modifications, since the time-integral of φφT is positive definite.

If β = 0, then the update law (2.18)-(2.19) is called the pure least squares esti-
mator. In this situation, the covariance matrix P may become small after some
time, slowing down the estimation rate. A solution in this case is to perform a
covariance reset, that is

P(t+r ) = P0 (2.21)
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at some time tr, e.g. at regular intervals or when the smallest eigenvalue of P
becomes smaller than some threshold. However, one should instead consider using
β > 0 to ensure a more consistent update speed, especially if the time-varying
nature of the parameters are of prime interest.

2.6 Convergence of Parameters

Although the three parameter estimators presented seem well motivated, they do
not necessarily guarantee that the estimation error approaches zero. And even
if this was the case, they would not necessarily guarantee the convergence of the
parameter estimates θ̂ to the real parameters θ. The latter property is essential for
identification of the parameters, which is the primary motivation for this thesis.
The convergence of the parameters is discussed in this section.

First, some formal stability properties are provided for the three methods.

Theorem 2.1. The update laws for the gradient estimator, Lyapunov estimator,
and least squares estimator, given by (2.10),(2.14),(2.18)-(2.19), respect-
fully, guarantee that

(i) θ̂, ε ∈ L∞,

(ii)
˙̂
θ, ε ∈ L2.

Thus, the estimation error ε is bounded and becomes small in the L2-sense. How-
ever, the convergence of θ̂ → θ has not yet been established, which is of prime
importance in this thesis. In order to guarantee this property, the signal vector φ
needs to be persistently exciting (PE), defined next.

Definition 2.3 (Persistency of excitation). The signal vector φ is said to be PE
if there exist constants, α0, α1, Tp > 0 such that

α0I ≤
1

Tp

∫ t+Tp

t
φφTdτ ≤ α1I, ∀t ≥ 0, (2.22)

where I is the identity matrix and α0 is known as the level of excitation.

Now, the main result for convergence of the parameters can be stated.

Theorem 2.2. Let φ be PE, and φ, φ̇ ∈ L∞. Then, the update laws for the gra-
dient estimator, Lyapunov estimator, and least squares estimator, given by
(2.10),(2.14),(2.18)-(2.19), respectfully, guarantee that θ̂ → θ exponentially
fast.

Consequently, a main consideration throughout this thesis is to establish the PE
property of φ.
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The results given in this chapter only consider a constant parameter vector. How-
ever, sometimes the time-varying properties of the parameters are of interest in
this thesis. It is challenging to establish formal stability and convergence results
in this case. However, as long as the conditions of Theorem 2.2 are satisfied, we
have exponential convergence in the constant parameter case. In general, it can be
established that exponential convergence in the constant parameter case, guaran-
tees some degree of tracking for a sufficiently slowly-varying signal [4, 122]. Thus,
the estimators presented can be used for tracking time-varying signals, typically
as long as the parameters represent dynamics which are slower than the internal
dynamics of the estimator.
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Topography Estimation in
AFM
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Chapter 3

Topography Estimation by
Force Inversion

A novel imaging method for revealing true topography and tip-sample interaction
forces in dynamic mode atomic force microscopy is presented. The method utilizes
observers for estimation of state and parameters. The cantilever dynamics are
modeled as a linear system augmented by the tip-sample interaction force. The
states of this augmented system are observed. The tip-sample force function is
based on the Lennard-Jones potential with a nonlinearly parameterized unknown
topography parameter. By estimating this parameter together with the tip-sample
force using a nonlinear observer approach, the true topography of the sample can
be found. The observer and parameter estimator is shown to be exponentially
stable. A more conventional extended Kalman filter is also implemented for the
same system, for comparison to the nonlinear observer. Numerical results are
presented to demonstrate the approach.

Publications The material in this chapter is based on [145].

3.1 Introduction

Dynamic modes of AFM can be limited in terms of spatial resolution due to
their dependency on steady-state signals, such as amplitude and phase. Instead,
the error signal in the feedback loop of the vertical piezo scanner demonstrate
an improved resolution, but the physical interpretation of the error signal is not
immediately clear [7]. However, the error signal can been utilized together with
the deflection signal and an observer in static mode for improved topography
reconstruction [170, 171]. Some studies have used higher harmonics to exploit
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additional information in the available signal [78, 163], and demonstrates an im-
proved spatial resolution by utilizing the time-varying interaction force. Other
studies try to exploit the transient response for more information [168]. Such
methods are often observer-based, and can be used for directly controlling the
interaction force [89], or for active Q-control [164, 165]. In active Q-control the
cantilever stiffness – or quality factor – is virtually controlled. This can be ex-
ploited to reduce the time it takes for the transient to vanish, and allows for higher
resolution and increased scanning bandwidth.

Furthermore, in dynamic mode AFM, the topography is typically mapped by en-
suring that the demodulated deflection signal, such as the amplitude, remains
constant in a feedback loop. However, since the chemical and mechanical prop-
erties of the sample are often spatially varying, a constant amplitude does not
necessarily reveal the true topography of the sample [10, 99]. The true topog-
raphy of the sample can be found through force-distance curves [202]. However,
any new method for revealing the true topography in dynamic mode AFM would
be beneficial, as it could enable improved resolution and imaging speed for true
topography.

3.1.1 Contributions

In this chapter, a novel approach is used for topography imaging. The true to-
pography and interaction force signals are estimated directly by using a state-
and parameter estimator based on the results of Grip et al. [68], with guaran-
teed exponentially stable error dynamics. To achieve this, the linear cantilever
dynamics is placed in a closed loop with a model of the tip-sample interaction
force. This interaction force is described by the nonlinear Lennard-Jones poten-
tial, which depends on the position of the cantilever and the sample topography.
Thus, the system can be described as a linear system augmented by a nonlinearly
parameterized topography signal, which is applicable for the methodology in [68].

Similarly, an extended Kalman filter is also investigated for estimation of true
topography and interaction force, for comparison to the nonlinear observer. How-
ever, it does not guarantee exponential stability, but rather demonstrates a lower
sensitivity to measurement noise.

The presented method is designed for noncontact mode where the tip of the can-
tilever is located in the attractive region of the interaction force. This method
does not rely on steady-state signals, thus, the transient information is exploited.
Additionally, the presented scheme also provides an estimate of the interaction
force, which can allow for more direct force feedback control such as in [89]. This
force measurement can also be used for applications such as force spectroscopy
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[127]. Estimation of interaction forces by use of observers has been investigated
in optical probing systems [81], but to the authors’ best knowledge no previous
observer-based techniques for true topography estimation have included a model
of the tip-sample interaction force.

3.1.2 Notation

The symbols used in this chapter are sometimes distinct from the rest of the
thesis; rather, the notation in this chapter emphasizes an easy comparison to the
notation and methodology used in [68].

3.1.3 Outline

This chapter is organized as follows. In Section 3.2 the modeling of the system is
presented. The state- and parameter estimation scheme is presented in Section 3.3.
The simulation setup is described in Section 3.4. In Section 3.5 the simulation
results are presented. The overall imaging scheme is discussed in Section 3.6.
Finally, conclusions are given in Section 3.7.

3.2 System Modeling

3.2.1 Cantilever Dynamics

The cantilever deflection subjected to the nonlinear interaction forces can be de-
scribed by a Luré feedback system [179]. This model has proven effective for
describing several properties – including stability – of the cantilever loop [181].
The model can be seen in Fig. 3.1, where Fexc controls the force applied to the
cantilever for oscillation, Fts is the tip-sample interaction force, and θ represents
the topography of the sample.

The motion of the cantilever deflection can be described by a second-order har-
monic oscillator [168] given by the transfer function

G(s) =
1
m

s2 + 2ω0ζs+ ω2
0

(3.1)

where ω0 is the resonance frequency, ζ is the damping ratio, and m is the effective
mass of the cantilever.
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Fexc x1
G

θ
Fts(·)

D

Figure 3.1: Block diagram of the cantilever system. Fexc is controllable, while the can-
tilever deflection x1 is the only measurable signal. The sample topography is represented
by the signal θ.

D

-x1

θ

Sample

Cantilever

Fts

Figure 3.2: Interaction between cantilever and sample, D = x1 + θ.
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3.2.2 Tip-Sample Interaction Force

The interaction force between the probe tip and sample surface is nonlinear. Ad-
ditionally, it has both an attractive region at large distances due to van der Waals-
forces, and a repulsive region at very short distances due to electrostatic forces
[173]. The attractive force can lead to an undesirable effect where the tip suddenly
jumps into contact with the repulsive region of the force [62].

The interaction force between tip and sample can be described using the Lennard-
Jones potential [3]

Fts(D) = k1

[
σ2

D2
− 1

30

σ8

D8

]
(3.2)

where D , x1 +θ is the tip-sample distance, x1 is the cantilever deflection, θ is the
unknown topography to be estimated, and k1 < 0, σ are parameters which depend
on the physical and geometrical properties of the tip and the sample assumed to
be known. The cantilever interaction with the sample is illustrated in Fig. 3.2.

3.2.3 Noncontact Mode

As we operate the cantilever in noncontact mode, the following assumption intro-
duces a monotonically increasing version of the Lennard-Jones potential, valid in
this operating mode:

Assumption 3.1. The modified force profile g is given by

g(D) =

{
Fts(D) D > Dcut

S(D) otherwise
(3.3)

S(D) = er(D−Dcut) [Fts(Dcut)− Fts(D0)] + Fts(D0) (3.4)

where

D0 , min
D

Fts(D)

= σ 6
√

2/15 (3.5)

and Dcut > D0 is a user-defined constant ideally set close to D0.

To ensure sufficient smoothness of g, r needs to be solved from

∂S

∂D

∣∣∣∣
Dcut

=
∂Fts

∂D

∣∣∣∣
Dcut

(3.6)



36 Topography Estimation by Force Inversion

0 1 2 3 4 5

0

1

2

Tip-sample distance, D (nm)

F
o
rc
e
(n
N
)

Fts

g

Figure 3.3: The tip-sample interaction force resulting from the Lennard-Jones potential
between a half-sphere and a flat surface, plotted with the modified force profile g employed
by the nonlinear observer in noncontact mode.

which gives

r = k1
−2σ2D−3

cut + 8
30σ

8D−9
cut

Fts(Dcut)− Fts(D0)
(3.7)

The interaction force Fts is plotted with the modified force g(D) in Fig. 3.3 as a
function of tip-sample distance for a given set of parameters.

Remark 3.1. The purpose of introducing a monotonically increasing modified
force profile is to guarantee exponential stability of the nonlinear observer
according to Theorem 3.1. Function S(D) in (3.4) was chosen to provide a
monotonically increasing force profile in the contact regime with a smooth
transition to the traditional Lennard-Jones force curve Fts(D) in (3.2).

The operation in noncontact mode can be achieved either by feedback control
of the z-piezo in the AFM or by controlling the cantilever oscillation amplitude.
Alternatively, one can assume sufficiently small changes in the topography. Em-
ploying feedback control is outside the scope of this work, but will be briefly
presented in the simulations in Section 3.4–3.5. As such, we will make use of the
following assumption:

Assumption 3.2. The topography is assumed to be bounded, that is, there exists
a known Θ̄ ∈ [θmin, θmax] such that θ ∈ Θ̄.

Additionally, the frequency of the driving signal for the cantilever oscillation
should be set equal to or larger than the resonance frequency. When the tip
approaches the surface, the attractive tip-sample force will effectively lower the
resonance frequency of the cantilever. Thus, the amplitude will be reduced as the
tip comes closer to the sample and is less inclined to approach the repulsive region
[174].
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3.3 State- and Parameter Estimator

3.3.1 Overview

We utilize the methodology in [68] for estimation of states and parameters. The
system depicted in Fig. 3.1 can be written in an extended state-space form as[

ẋ

φ̇

]
=

[
A E
0 0

] [
x
φ

]
+

[
B
0

]
u+

[
0
1

]
d (3.8)

y = Cx (3.9)

where the interaction force g(x1 + θ) has been introduced as a state φ and its
time-derivative denoted as d(x, θ) , φ̇, the input u is the driving force of the
cantilever, and y = x1 as the only measurable signal.

The states x , (x1, x2)T of the system represent the cantilever deflection and the
deflection velocity respectively, and the system matrices are given by

A =

[
0 1
−ω2

0 −2ζω0

]
, B = E =

[
0
1
m

]
, C =

[
1 0

]
. (3.10)

Let us also introduce the definition ν , col(u, y) to simplify notation. The time-
derivative of the interaction force can be found as

d(x, θ) =

{
k1

[
−2σ2D−3 + 8

30σ
8D−9

]
x2 D > Dcut

rer(D−Dcut) [Fts(Dcut)− Fts(D0)]x2 otherwise
(3.11)

where we have used θ̇ = 0 which assumes that θ is slowly-varying compared to
the rest of the dynamics. This will ultimately introduce a limitation to the lateral
scanning speed that can be employed in order for the observer to properly track
the topography. However, this will always be the case when imaging using any
type of scanning probe microscope.

The modified high-gain observer of [68] is employed to estimate the states of this
extended system, while the parameter estimator provides estimates for θ in (3.2)
as depicted in Fig. 3.4. Estimates are denoted by a hat, e.g. θ̂.

The estimation scheme in [68] contains several assumptions that must be satisfied
in order to guarantee stability.

Assumption 3.3. The time derivative u̇ is well defined and piecewise continuous;
there exist compact sets X ∈ Rn, U ⊂ Rm, and U ′ ⊂ Rm such that for all
t ≥ 0,x ∈X, u ∈ U , and u̇ ∈ U ′.

Assumption 3.4. The triple (C,A,E) is left-invertible and minimum-phase.
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Figure 3.4: Structure of the state- and parameter estimator. Modified from [68].

Assumption 3.5. There exists a number β > 0 such that for all (ν, ν̇,x, θ, φ) ∈
V × V ′ ×X ×Θ× Φ and for all (x̂, θ̂, φ̂) ∈ Rn ×Θ× Rk,∣∣∣d(ν, ν̇,x, θ, φ)− d(ν, ν̇, x̂, θ̂, φ̂)

∣∣∣ ≤ β ∣∣∣col(x− x̂, θ − θ̂, φ− φ̂)
∣∣∣.

The preceding assumptions are satisfied as follows:

• A sinusoidal input signal u will be employed for oscillating the cantilever.
The states x1, x2 are bounded due to the damped nature of the cantilever
dynamics (3.1). Thus, Assumption 3.3 is satisfied.

• The system G(s) has no invariant zeros, so it is left-invertible and minimum-
phase and Assumption 3.4 is satisfied.

• Due to the smooth saturation introduced on g in (3.3), d becomes globally
Lipschitz in terms of both x1 and θ. Additionally, x2 appears only linearly
in (3.11), thus Assumption 3.5 is satisfied.

3.3.2 Modified High-Gain Observer

By following the methodology in [68] a modified high-gain observer will be de-
signed next where the estimated parameters are assumed to be available.

The observer is implemented as

˙̂x = Ax̂+Bu+Eφ̂+Kx(ε)(y −Cx̂)

ż = −∂g
∂θ

˙̂
θ − ∂g

∂x
Kx(ε)(y −Cx̂) +Kφ(ε)(y −Cx̂) (3.12)

φ̂ = g(x̂1, θ̂) + z

where the gains Kx(ε),Kφ(ε) are to be determined. By defining the errors x̃ ,

x − x̂, φ̃ , φ − φ̂, we can find the error dynamics from (3.12). Our goal is to
design the gains K(ε) , col(Kx(ε),Kφ(ε)) such that for a sufficiently small ε

the error dynamics are input-to-state stable with respect to θ̃ , θ − θ̂.
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The error dynamics are found as[
˙̃x
˙̃
φ

]
=

0 1 0
0 0 1
0 −ω2

0 −2ζω0

[ x̃
φ̃

]
+

0
0
1

 d̃− [Kx(ε)
Kφ(ε)

]
ỹ (3.13)

The error dynamics are then transformed to the special coordinate basis (SCB).
The Maple program developed in [67] was used for this purpose, resulting in the
transformation matrices

Λ1 =

 1 0 0
0 1 0
ω2

0 2ζω0 1

 , Λ2 = [1] , Λ3 = [m]

which transforms the system to the SCB in accordance with

col(x̃, φ̃) = Λ1χ, ỹ = Λ2γ, d̃ = Λ3δ

The observer gains can now be designed. Let K̄q = col(K̄q1 , . . . , K̄q3) be chosen
such that the matrix

H ,

 1 0 0
0 1 0
0 0 0

− K̄q

[
1 0 0

]
(3.14)

is Hurwitz using a pole-placement technique [68]. Then for our special case with-
out any invariant zeros, the resulting gain is found from Kq(ε) = col(K̄q1/ε, . . .
, K̄q3/ε

3) and the transformation K(ε) = Λ1Kq(ε)Λ
−1
2 . The poles of H were

placed at −1± 0.2i and −2, resulting in the gain

K(ε) =

 4.0ε−1

5.04ε−2

4.0ω2
0ε
−1 + 10.08ζω0ε

−2 + 2.08ε−3

 (3.15)

The following Lemma from [68] ensures that this procedure for determining the
gains will provide a stable estimate of the states with respect to θ̃:

Lemma 1. Assuming θ̂ ∈ Θ, there exists 0 < ε∗ ≤ 1 such that for all 0 < ε ≤ ε∗,
the error dynamics (3.13) are input-to-state stable with respect to θ̃.

3.3.3 Parameter Estimator

In the previous section a high-gain observer was designed based on known param-
eters. Next, we will design a parameter estimator for the topography signal which
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will be provided to the observer. An update law for the topography estimate θ̂,

˙̂
θ = uθ(ν, x̂, φ̂, θ̂) (3.16)

must be found satisfying the following assumption from [68]:

Assumption 3.6. There exist a differentiable function Vu : R≥0×(Θ−Θ)→ R≥0

and positive constants a1, . . . , a4 such that for all (t, θ̃) ∈ R≥0 × (Θ−Θ),

a1

∣∣∣θ̃∣∣∣2 ≤ Vu(t, θ̃) ≤ a2

∣∣∣θ̃∣∣∣2
∂Vu
∂t

(t, θ̃)− ∂Vu

∂θ̃
(t, θ̃)uθ(ν,x, φ, θ − θ̃) ≤ −a3

∣∣∣θ̃∣∣∣∣∣∣∣∂Vu
∂θ̃

(t, θ̃)

∣∣∣∣ ≤ a4

∣∣∣θ̃∣∣∣
Furthermore, the update law (3.16) ensures that if θ̂(0) ∈ Θ, then for all
t ≥ 0, θ̂ ∈ Θ.

Assumption 3.6 guarantees that the origin of the error dynamics

˙̃
θ = −uθ(ν, x̂, φ̂, θ − θ̃) (3.17)

where θ̃ , θ − θ̂, is uniformly exponentially stable whenever x̂ = x and φ̂ = φ.

In [66, Ch. 6], four propositions are stated in order to satisfy Assumption 6.
Being a rational function with an 8th-degree polynomial in the denominator, it is
difficult to solve g(x1 + θ) in terms of θ. Instead, a numerical search is performed
to find the solution. We restate the following proposition from [66]:

Proposition 3.1. Suppose that there exist a positive-definite matrix P and a
function M : V × Rn × Θ → Rp×k, such that for all (ν,x) ∈ V × Rn and
for all pairs θ1, θ2 ∈ Θ,

M(ν,x, θ1)
∂g

∂θ
(ν,x, θ2) +

∂g

∂θ

T

(ν,x, θ2)MT (ν,x, θ1) ≥ 2P (3.18)

Then Assumption 3.6 is satisfied with the update law

uθ(ν, x̂, φ̂, θ̂) = Proj
(

ΓM(ν, x̂, θ̂)(φ̂− g(ν, x̂, θ̂)
)
, (3.19)

where Γ is a symmetric, positive-definite gain matrix.

Next, we need to choose anM such that (3.18) is satisfied. LetM(D̂) = M(ν, x̂, θ̂)
where D̂ , x̂1 + θ̂. We then choose

M(D̂) = 1
2Mmax

[
tanh(Mrate(D̂ −DM )) + 1

]
(3.20)
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where Mmax,Mrate, DM are tunable positive constants and M(D̂) > 0 for any
finite value of D̂. Since our g and θ are scalar values, we have from (3.18),

2M(ν,x, θ1)
∂g

∂θ
(ν,x, θ2) ≥ 2P (3.21)

To satisfy this inequality for some positive P , we want to show that ∂g/∂θ is
strictly positive in the domain of the arguments. We have

∂g

∂θ
(x, θ) =

{
k1

[
−2σ2D−3 + 8

30σ
8D−9

]
D > Dcut

rer(D−Dcut) [Fts(Dcut)− Fts(D0)] otherwise
(3.22)

The first case in (3.22) has only one real, positive root at the point D = D0.
Thus, ∂g

∂θ never switches sign in D > Dcut > D0. Above this point the negative
D−3 term dominates, and since k1 < 0, the result is positive. For the second case,
we have that Fts(Dcut)− Fts(D0) > 0, the exponential function is positive for all
real, finite values, and r has the same sign as in the first case as evident from
(3.7). Additionally, ∂g

∂θ 6= 0 for any finite value of D, assuming k1, σ 6= 0.

Thus, the conditions of Proposition 3.1 are satisfied, and we can use the update
law (3.19)–(3.20). The projection function in (3.19) ensures that the parameters
θ̂ never leave Θ. For implementation details of this function we refer to [66].

Remark 3.2. Another feasible candidate for M is the choice M = ∂g
∂θ as discussed

in [66]. We found this choice to give wildly varying estimation speeds as the
cantilever tip approached the sample. At the minimum tip-sample distance
the update was very quick – limiting the update gain – while very slow
anywhere else. The new choice of M in (3.20) gives a smoother transition
of the estimation speed which allows us to increase the overall gain of the
update law, providing better performance. Because the tip-sample force
at large distances is very small, its detection will be dominated by noise.
Thus, M is saturated by Mmax to limit the update speed at large tip-sample
distances.

3.3.4 Stability of Interconnected System

The interconnection between the modified high-gain observer (3.12) and the pa-
rameter estimator (3.16) also needs to be considered.

Assumption 3.7. The parameter update law uθ(ν, x̂, φ̂, θ̂) is Lipschitz continu-
ous in (x̂, φ̂), uniformly in (ν, θ̂), on V × Rn × Rk ×Θ.

This assumption can be satisfied as follows:
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• Consider the update law (3.19). We have that M in (3.20) is a saturated
Lipschitz continuous function because of its dependency on the tanh(·)-
function. We also have that ∂g/∂x1 = ∂g/∂θ given in (3.22) is continuous
and bounded. Thus g is Lipschitz continuous both in terms of x1 and θ.
The projection function in the update law does not change the Lipschitz
properties as discussed in [66]. Thus, Assumption 3.7 is satisfied.

Finally, the following theorem based on [68, Thm. 1] establishes the stability of
the interconnected system:

Theorem 3.1. If Assumption 3.1 – 3.7 are satisfied and θ̂(0) ∈ Θ, there exists
0 < ε∗ ≤ 1 such that for all 0 < ε ≤ ε∗, the origin of the error dynamics of
the observer (3.13) and parameter estimator (3.17) are exponentially stable.

Remark 3.3. Note that the system is globally exponentially stable with respect to
the observer error states, i.e. it is only the parameter estimates that have
limitations on their initial values.

3.3.5 Extended Kalman Filter

In order to provide a more detailed discussion on the performance of the nonlinear
approach, an extended Kalman filter (EKF) was implemented for comparison.
EKF is a well-established method for estimating the states of a nonlinear system,
see e.g. [182].

The system as described in Section 3.2 can be modeled by the following set of
equations:

ẋ1 = x2

ẋ2 = −ω2
0x1 − 2ζω0x2 + 1

mu+ 1
mFts(D)

Ḋ = x2 + w

y = x1 + v

(3.23)

where the zero-mean white process noise w models the changes in topography
with covariance Q, and v is zero-mean white measurement noise with covariance
R.

The observer was implemented by using the continuous-time extended Kalman
filter described in [182]. From the state estimates, the topography θ can be found
from θ = D−x1 and the estimated interaction force is found by calculating Fts(D).
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3.4 Simulation Setup

A simulation of the system has been set up with the system dynamics and esti-
mation laws described in the previous sections. The parameters used in the sim-
ulation are given in Table 3.1. A sinusoidal input signal is used for the cantilever
giving it a freely oscillating amplitude of 100 nm. An oscillating cantilever is cho-
sen in order to avoid the jump-to-contact behavior thereby satisfying Assumption
1. Initial distance to the sample is set to 105 nm from the resting position of the
cantilever, while the topography is modeled as a square-like wave. The interaction
force parameters σ, k1 in (3.2) are based on values and formulas from [173].

The cantilever position is only controlled by a feedforward signal. Thus, over
cavities in the sample the tip-sample distance will increase, and ultimately reduce
the interaction force. This does affect the performance of the observers. To
compensate for this, one simulation was run with a feedback controller to illustrate
some possibilities for actual implementation. The feedback controller uses the
estimated tip-sample distance D̂ = x̂1 + θ̂ to find the closest approach distance
each cycle. A P-controller on the error between this signal and a reference distance
is then used to control the amplitude of the cantilever oscillations.

Simulations were run both with and without additive white noise on the output
of the cantilever deflection measurement, in order to discuss the effects of noise on
the system. Note that the actual force Fts in (3.2) is used in the plant dynamics
to provide a more physically accurate simulation.

Table 3.1: Simulation Parameters

Param. Value Param. Value

ω0 1000 Hz Mmax 10−5

ζ 0.005 Mrate 5× 104

m 1.5728× 10−9 kg DM 10−5

σ 3.41× 10−10 m Dcut D0 + 10−10 m

k1 −2.2242× 10−10 N Q 10−6

ε 10−5 R 10−16

Γ 5× 104 u(t) 6.21× 10−11 sin(ω0t) [N]

3.5 Results

The simulation results are plotted in Fig. 3.5 – Fig. 3.10.

Fig. 3.5 shows the estimated topography parameter θ̂ plotted together with the
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actual topography. It can be seen that the estimates from both the nonlinear ob-
server and the extended Kalman filter (EKF) are reasonably accurate. In Fig. 3.6
it can be seen that the estimates have a staircase-like behavior. The steps occur
when the cantilever position is at the bottom of its oscillation cycle, where the
force interaction is the strongest. Far from the sample, the force field is so weak
it does not provide any information on the distance.

After adding output noise to the simulations, we had to increase the ε-value and
reduce the gain Γ of the nonlinear observer to give sufficiently accurate estima-
tions. However, this resulted in some loss in performance as seen in Fig. 3.7,
noticeable by the slightly slower response and small drifting when the cantilever
oscillates far from the surface over the sample cavities. The closest tip-sample dis-
tance each oscillation cycle is plotted in Fig. 3.8, which varies with the topography
due to the lack of feedback control.

With the feedback controller turned on the nonlinear observer regains some of its
lost performance after adding output noise, as seen in Fig. 3.9. Both observers
also provide an estimate of the tip-sample interaction force as seen in Fig. 3.10.

3.6 Discussion

The results demonstrate the efficiency of both the nonlinear observer (NLO)
scheme and extended Kalman filter (EKF). The advantage of the NLO is its
near-global exponential stability results as given in Theorem 3.1. The results
suggest that the EKF provides a somewhat better trade-off between noise atten-
uation and response time. However, this could possibly be due to the tuning of
the parameters.

The choice of M in (3.20) was based on an improvised approach after studying
the observed characteristics of the NLO. Possibilities for further improvements to
this function is considerable, as it is only required to be positive definite and to
satisfy the Lipschitz conditions of Assumption 3.7.

For studying highly inhomogeneous samples the parameters in the Lennard-Jones
potential in (3.2) would need to be estimated simultaneously. This can be achieved
by including them in the parameter estimator of the nonlinear observer. This
should be possible with relative ease, as a reformulation of these parameters will
make them appear linearly in (3.2).
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Figure 3.5: Topography estimate.
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Figure 3.6: Zoom of topography estimate. Position offset by 4.4 nm.
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Figure 3.7: Topography estimate with output noise. To attenuate the effects of noise ε
was increased by a factor of 15 and Γ reduced by a factor of 4, which results in a slower
response especially at large tip-sample distances.
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Figure 3.8: Closest tip-sample distance D each oscillation cycle with and without feed-
back control.

0 1 2 3 4 5 6 7 8 9 10

0

5

10

Position (nm)

H
ei
g
h
t
(n
m
)

θ

θ̂

θ̂ekf

Figure 3.9: Topography estimate with output noise and feedback control. This allows
for scanning larger height differences and reduced gains which attenuates some of the
noise.
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Figure 3.10: Estimated interaction force φ with noise.
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3.7 Conclusions

In this chapter, a novel imaging technique for noncontact operation mode in AFM
based on observers, is introduced. Two distinct observer schemes are presented
to show the viability of this approach, both of which directly estimates the tip-
sample interaction force and topography of the sample. The nonlinear observer
shows well-defined exponential stability results. A simulation study confirms the
stability and convergence properties of the analysis. The second observer, based
on an extended Kalman filter, shows good performance in terms of accuracy and
noise tolerance, but the nonlinear observer has stronger stability properties.
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Part II

Demodulation for High-Speed
Dynamic Mode AFM

49





Chapter 4

Amplitude and Phase
Demodulation by Lyapunov
Estimator

In dynamic mode atomic force microscopy (AFM), the imaging bandwidth is gov-
erned by the slowest component in the open-loop chain consisting of the vertical
actuator, cantilever and demodulator. While the common demodulation method
is to use a lock-in amplifier (LIA), its performance is ultimately bounded by the
bandwidth of the post-mixing low-pass filters. This chapter proposes an am-
plitude and phase estimation method based on a strictly positive real Lyapunov
design approach. The estimator is designed to be of low complexity while allowing
for high bandwidth, and is suitable for multifrequency AFM applications. Addi-
tionally, suitable gains for high performance are suggested such that no tuning
is necessary. The Lyapunov estimator is experimentally implemented for ampli-
tude demodulation and shown to surpass the LIA in terms of tracking bandwidth
and noise performance. High-speed AFM images are presented to corroborate the
results.

Publications The material in this chapter is primarily based on [148]. The
parts on multifrequency are based on [75].

51
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4.1 Introduction

In dynamic mode AFM, the imaging bandwidth is limited by the slowest com-
ponent in the control loop consisting of the vertical actuator, cantilever, and de-
modulator, as outlined in Chapter 1. A high bandwidth demodulator is necessary
to complete the control loop, which is the primary focus of this chapter.

A typical imaging setup of a demodulator used in amplitude modulated AFM is
shown in Fig. 4.1. The most common demodulator in AFM applications is the
lock-in amplifier, which is a type of synchronous demodulator where the carrier
reference signal is known. In their simplest form, these amplifiers consist of a mul-
tiplier followed by a low-pass filter [130]. Although lock-in amplifiers can provide
a high noise rejection, the performance is ultimately limited by the bandwidth of
the post-mixing low-pass filters.

Several high-bandwidth amplitude demodulation techniques have been proposed
for increasing the overall imaging bandwidth. The high-speed AFM results pre-
sented in [6] introduce the peak hold method which measures the amplitude once
or twice every oscillation cycle. However, this method is prone to noise and dis-
turbances from unwanted harmonics. Thus, it cannot be used in multifrequency
AFM applications since frequency components outside the vicinity of the modu-
lating signal are not rejected.

Recent developments include the low-latency coherent demodulator [1], the high-
bandwidth lock-in amplifier [93], and the Kalman filter [94, 159]. The latter has
also been extended for multifrequency AFM imaging [155, 156]. Although the
Kalman filter is shown to be effective in terms of performance, the complexity of
implementing a complete Kalman filter in a high-speed setting can be challenging.
In fact, the computational complexity of the update law can ultimately become
a limiting factor in terms of allowable bandwidth. Additionally, with simpler
update laws the sampling speed can be increased, which will reduce the overall
noise floor of the system [117]. Thus, a simpler estimator is sought with similar
performance characteristics.

4.1.1 Contributions

In this chapter, a new method for amplitude and phase demodulation in AFM is
presented. The method employs an adaptive law based on a strictly positive real
Lyapunov design approach [84], or Lyapunov estimator, and demonstrates a good
balance between performance and complexity. This estimator can be seen as a
simplification of the Kalman filter in terms of the update laws and computational
complexity, without sacrificing significant performance.
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Figure 4.1: Amplitude modulated operating mode in AFM.

The Lyapunov estimator is described in detail, including convergence properties,
implementation, and tuning details. Its relationship to the Kalman filter is out-
lined, demonstrating that the Kalman filter converges to the Lyapunov estimator
for some special cases. The extension of the estimator to multifrequency appli-
cations is provided. The Lyapunov estimator is experimentally implemented and
compared to a state-of-the-art lock-in amplifier, demonstrating an improved per-
formance for high-speed demodulation. Furthermore, the Lyapunov estimator is
used in a high-speed AFM imaging experiment, in addition to a multifrequency
AFM imaging experiment for determination of higher harmonics phase compo-
nents.

4.1.2 Outline

The remainder of the chapter proceeds as follows. In Section 4.2 the amplitude
and phase estimation problem is formulated. Background material for the general
Lyapunov estimator is provided in Section 4.3, and stability properties and con-
vergence rates are established. In Section 4.4 the Lyapunov amplitude estimator
is presented. Section 4.5 provides procedures for tuning the estimator. Exper-
imental results are discussed in Section 4.6. Finally, conclusions are drawn in
Section 4.7.
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4.2 Problem Formulation

The problem can be formulated as estimating the amplitude A(t) and phase ϕ(t)
using only past and present measurements of the signal

y(t) = A(t) sin(ω0t+ ϕ(t)) + v(t), (4.1)

where ω0 is the known angular frequency and v(t) represents a zero-mean noise
process. Optionally, the signal is measured through a device or filtered through a
transfer function W (s) such that

w = W (s)y (4.2)

where w is the input signal exposed to the estimator. Furthermore, W (s) is
strictly positive real (SPR) and can be used to describe a measuring device or
alternatively, a signal processing filter for noise attenuation. The transfer function
can be assumed unitary W (s) = 1 if not desired.

4.3 Estimator Background

In this section, the measurement signal is transformed to a model suitable for
implementation of the Lyapunov estimator given in Chapter 2. Furthermore,
for the given problem, it is shown that the estimator guarantees convergence of
the parameter estimates in exponential time due to the persistently exciting (PE)
property of the signal vector. Additionally, a conservative limit on the convergence
speed of the method is found for the given signal vector. This allows easy tuning
of the gain γ later.

4.3.1 Linear Parametric Model

The sinusoidal signal (4.1) can be written in terms of its in-phase and quadrature
component by applying trigonometric identities such that

y = A sin(ω0t+ ϕ) (4.3)

= A cos(ϕ) sin(ω0t) +A sin(ϕ) cos(ω0t) (4.4)

= φTθ, (4.5)

where noise has been disregarded, and

θ = [θ1, θ2]T = [A cos(ϕ), A sin(ϕ)]T (4.6)

φ = [sin(ω0t), cos(ω0t)]
T . (4.7)
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The system is now in a linear parametric form, which permits the direct appli-
cation of estimation methods such as from Chapter 2. By comparing (4.4) and
(4.5) the amplitude and phase can be recovered from

A = |θ|, (4.8)

ϕ = atan2 (θ2, θ1) , (4.9)

where atan2(·) is the four-quadrant tangent inverse function.

The linear parametric model (4.2),(4.5) is now in a form suitable for application
of the Lyapunov estimator.

4.3.2 Persistency of Excitation

Although the Lyapunov estimator is guaranteed to be stable in some sense, an
additional PE property of the signal vector φ is required for convergence of the
parameters. In the following, it is shown that φ given in (4.7) is PE.

From Definition 2.3, the signal is PE if there exist constants Tp, α0, α1 > 0 such
that

α1I ≥ S ,
1

Tp

∫ t+Tp

t
φ(τ)φT (τ)dτ ≥ α0I ∀ t ≥ 0. (4.10)

Evaluating S with φ from (4.7) gives

S =
1

4Tpω0

[
2ω0Tp − sin (2ω0 (Tp + t)) + sin (2ω0t)
− cos (2ω0 (Tp + t)) + cos (2ω0t)

− cos (2ω0 (Tp + t)) + cos (2ω0t)
2ω0Tp + sin (2ω0 (Tp + t))− sin (2ω0t)

]
(4.11)

and choosing
Tp = 1

2f
−1
0 = πω−1

0 (4.12)

results in

S =

[
1
2 0
0 1

2

]
= 1

2I ∀ t ≥ 0 (4.13)

with a level of excitation α0 = 1
2 . Thus, φ from (4.7) is PE and guarantees

exponential convergence of θ̂ → θ, as seen by applying Theorem 2.2.

4.3.3 Convergence Rate and Gain γ

Given the PE property of the signal vector φ, the parameter estimates are guaran-
teed to converge in exponential time. In fact, the rate of convergence can be found
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in terms of the gain γ. An expression for γ can then be found which optimizes
the rate of convergence as shown in the following.

For ease of analysis, assume here that W (s) = 1 which makes the update law
(4.17)-(4.18) equivalent to the update law of the gradient estimator, given in
Chapter 2, which can be considered a special case of the Lyapunov estimator.
Then, the convergence of the parameter estimate error θ̃(t) is determined by [84]

θ̃T θ̃ ≤ knθ̃T0 θ̃0, ∀ t ≥ nTp, n = 0, 1, . . . (4.14)

for θ̃0 = θ̃(0) and 0 < k < 1 given by

k = 1− 2α0Tpγ

2 + β4T 2
p γ

2
(4.15)

where β = supt |φ(t)| = 1 for φ in (4.7). Thus, the convergence rate is given by k
such that a smaller value gives faster convergence.

The gain γ minimizing k in (4.15) can now be found. Inserting for Tp from (4.12)
and α0 found from (4.13) results in

arg min
γ

k = 2
√

2f0. (4.16)

This expression for γ reveals that the optimal gain is inherently tied to the carrier
frequency f0. The given value for γ in (4.16), serves as a suitable initial choice.
However, since the convergence rate in (4.14) represents a conservative limit due
to the inherent conservative nature of Lyapunov analysis, a faster solution may
be found through simulations.

4.4 Lyapunov Amplitude and Phase Estimator

4.4.1 Update Law

The Lyapunov estimator allows the estimated parameters θ̂ to be found from the
input signal w and the known signal vector φ. Since the signal vector is bounded,
no normalization of the error is necessary. Then, by applying the estimator from
Chapter 2 to the system (4.5)-(4.7), the update law can be written as

˙̂
θ = γφ (w − ŵ) , (4.17)

ŵ = W (s)φT θ̂ (4.18)

where γ is a constant gain parameter. Finally, the estimated amplitude Â and
phase ϕ̂ can be found by applying the parameter estimate θ̂ into (4.8)-(4.9).
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[
sin(ω0t)
cos(ω0t)

]

w
Â| · |

e
γ 1

s−

ŵ
W (s)

θ̂

φ

ϕ̂
atan2(·)

Figure 4.2: Block diagram of the estimator. The blocks ’·’ and ’×’ represent vector dot
product and matrix multiplication respectively.

Since θ̂ converges in exponential time, it is clear that (Â, ϕ̂) → (A,ϕ) in expo-
nential time considering (4.8)-(4.9). Some implementations of atan2 may not be
defined for θ̂ = 0. However, because of the exponential convergence properties,
the estimator cannot stay identically in θ̂ = 0 unless y ≡ 0. Thus, the issue is
resolved in finite time for a well-posed problem. A block-diagram of the update
law is shown in Fig. 4.2.

4.4.2 Relationship to the Kalman filter

Under certain conditions the Kalman filter for amplitude estimation [159] is equiv-
alent to the Lyapunov estimator, as will be demonstrated in the following. First,
it is shown that the two methods are equivalent when the covariance matrix of the
Kalman filter, P, is constant. Then, certain conditions under which the covariance
matrix approaches constant is given, thus showing equivalence.

With a system matrix A = 0 and no input signal, B = 0, the continuous-time
Kalman filter can be written as

˙̂
θ = PφR−1(w − φT θ̂), (4.19)

Ṗ = Q−PφR−1φTP (4.20)

where the process covariance Q and measurement covariance R are assumed to
be on the form Q = qI,R = rI for some positive constants q, r.

Note that for Ṗ = 0,P = pI, the Kalman filter (4.19) is equivalent to the Lyapunov
estimator (4.17)–(4.18) with W (s) = 1 and γ = pr−1. Thus, in cases where P
is constant, the Kalman filter can be reduced to the Lyapunov estimator with
mathematical equivalency. In the following, solutions to the Kalman equations
with constant P are found and investigated.
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Consider a particular solution to (4.20) of the form

P =

[
A sin(2ω0t+ ϕ) + C A cos(2ω0t+ ϕ)
A cos(2ω0t+ ϕ) −A sin(2ω0t+ ϕ) + C

]
(4.21)

for some constants A,C, ϕ. The real, positive solution to these constants in terms
of ω0, r, q are given by

A =
q

2ω0
, (4.22)

C =

√
q
√
q + 4ω0

√
r2ω2

0 + qr + 4rω2
0

2ω0
, (4.23)

ϕ = 2atan

√q − 4ω0

√
r2ω2

0 + qr + 4rω2
0

q − 8rω2
0

 . (4.24)

In some cases the covariance matrix P approaches a constant, consider

lim
ω0→∞

A/C = 0. (4.25)

Thus, with increasing oscillation frequency the amplitude A in the covariance
matrix is dominated by the constant offset term C and can be approximated
by P = CI. In this case the Kalman filter can be simplified to the Lyapunov
estimator with W (s) = 1 and

γ = C/r. (4.26)

In fact, this equation can be used to tune the Lyapunov estimator if the measure-
ment and process noise covariances are known. Additionally,

lim
q→0

A/C = 0, (4.27)

lim
r→∞

A/C = 0. (4.28)

Thus, the Kalman filter behaves identically to the Lyapunov estimator in the cases
where

• the oscillation frequency ω0 is large

• the process noise covariance q is small

• the measurement noise covariance r is large

In these cases, by replacing the Kalman filter with the Lyapunov estimator, the
estimator can be run at higher update speeds possibly allowing for a higher band-
width and improved noise response, due to the simpler implementation of the
latter.
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4.4.3 Multifrequency Lyapunov Estimator

Multifrequency AFM (MF-AFM) is a rapidly developing area of research. Here,
it is shown how the Lyapunov estimator can be extended to multifrequency de-
modulation, for use in MF-AFM applications.

Consider a signal consisting of a sum of sinusoids,

ym(t) =

n∑
i=1

Ai sin(ωit+ ϕi) (4.29)

where i ∈ {1, 2, . . . , n} denotes the ith modeled frequency. Then, through the
same procedure as in Section 4.3, the signal (4.29) can be rewritten as the linear
parametric model

ym = φTmθm (4.30)

θm = [A1 cos(ϕ1), A1 sin(ϕ1), . . . , An cos(ϕn), An sin(ϕn)]T (4.31)

φm = [sin(ω1t), cos(ω1t), . . . , sin(ωnt), cos(ωnt)]
T . (4.32)

By employing the Lyapunov estimator, the amplitudes Ai and phases ϕi can be
estimated, strictly by the measurement of ym. The estimator update law for this
multifrequency model, for simplicity assuming W (s) = 1, is given by

˙̂
θm = Γmφm (ym − ŷm) (4.33)

ŷm = φTmθ̂m (4.34)

where θ̂m is the estimated parameter vector analogous to θm in (4.31), and

Γm = diag(γ1, γ1, . . . , γn, γn) (4.35)

where γi determines the estimation tracking bandwidth for the ith sinusoid com-
ponent.

The estimates of the amplitude and phase for each frequency component can then
be retrieved from

Âi =
√
θ̂2
m,2i−1 + θ̂2

m,2i (4.36)

ϕ̂i = atan2(θ̂m,2i, θ̂m,2i−1) (4.37)

where θ̂m,j is the jth element into the vector θ̂m.

Remark 4.1. Even though additional parameters are estimated in the multifre-
quency Lyapunov estimator, it can be shown that φm is PE as long as
the frequency components are distinct. Thus, the multifrequency estima-
tor retains the exponential convergence properties of the single frequency
Lyapunov estimator.
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4.5 Tuning and Simulations

4.5.1 Simulation Results

Simulations for both amplitude and phase demodulation are plotted in Fig. 4.3 for
different values of γ, measurement noise, and low-pass filter W (s), implemented
at a sampling rate of 4 MHz. In general, it can be seen that for higher values of
γ the estimator converges faster but at some point it starts to overshoot. When
noise is added in Fig. 4.3(b) it can be seen that high values of γ are more prone
to noise. However, by applying a low-pass filter for W (s) on the measured signal
y(t), some of the high-frequency noise is attenuated even at high γ values. The
performance of the phase demodulation closely follows that of the amplitude de-
modulation, which is expected as they are both immediate calculations from the
same estimated in-phase and quadrature components (θ̂). Thus, the dynamics of
the two demodulation modes should be equivalent.

4.5.2 Choosing the Transfer Function W (s)

The strictly positive real transfer function W (s) can either represent any device
or system between the sinusoidal signal y(t) as in (4.1) and the estimator, and/or
be designed as a post-measurement filter for reducing high-frequency noise. Oth-
erwise, it can be assumed that the measurement w(t) closely resembles that of the
signal y(t) by setting W (s) = 1. If instead, a low-pass filter is used, the bandwidth
should be set high enough such that the oscillation frequency of the sinusoid in
y(t) is not attenuated.

4.5.3 Choosing the Gain γ

With an initial estimate of γ given by (4.16), further adjustments can be made
by investigating the transient effect in the step response simulations in Fig. 4.3.
It can be seen that for the highest value of the gain, γ = 24f0 the transient
overshoots considerably, while at γ = 9f0 (red) it is seemingly close to critically
damped. For lower values of γ the convergence rate is noticeably slower. The
simulations thus suggest a value of

γ = 9f0 (4.38)

which, as expected, is slightly higher than the initial conservative estimate from
(4.16).

Note that this evaluation is based on finding a gain primarily for achieving the
highest possible estimation bandwidth. In some cases this may result in a noisy
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(b) Amplitude, Noise, W (s) = 1
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(c) Amplitude, Noise, W (s) = WLP(s)
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Figure 4.3: Step response simulation of the Lyapunov estimator for amplitude demodu-
lation (a)-(c) and phase demodulation (d), with carrier frequency f0 = 50 kHz. Measure-
ment noise with RMS = 4 nm added to (b)-(c) demonstrating difference in W (s) filters,
where WLP(s) = 1/(0.8ω−1

0 s + 1). Real amplitude/phase ( ), input signal ( ), de-

modulated amplitude Â or phase ϕ̂ with γ = 0.6f0 ( ), γ = 2f0 ( ), γ = 9f0 ( ),
γ = 24f0 ( ).
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amplitude estimate. As demonstrated in the simulation results, by reducing the
value of γ the estimator essentially acts as a low-pass filter on the noise, improving
the noise rejection.

4.5.4 DC-Offset

In dynamic mode AFM there is typically a DC-offset in the measured cantilever
deflection. A constant offset in the input signal w can affect the output response
of the estimator, as demonstrated in Fig. 4.4. In general, this problem is most
prominent at higher demodulator bandwidths. One solution for handling this is
to use AC-coupling on the experimental measurement equipment, or equivalently
adding a high-pass filter at the measured input signal. Another solution is to
augment the Lyapunov estimator to simultaneously estimate the offset. This
can be performed by adding a third state in θ̂ representing estimated offset, and
adding a third constant element to φ – typically 1. Finally, γ is modified to accept
a different gain for the offset than for the amplitude/phase estimates, replacing it
with the diagonal matrix

Γ = diag(γ, γ, γDC) (4.39)

where γDC is the DC-offset update gain, and (4.17) now assumes matrix mul-
tiplication. Since the offset is by definition slowly-varying, the DC-gain can be
set relatively low to avoid affecting the performance of the demodulated signals.
This implementation is demonstrated in Fig. 4.4 (purple line). It is seen that
the oscillations in tracking response introduced with the DC-step is reduced once
the DC-estimate converges. Conversely, the amplitude estimate of the original
Lyapunov estimator continues with standing oscillations after the DC-offset is
introduced.

4.6 Experimental Results

4.6.1 Implementation Details

The Lyapunov estimator was implemented on a National Instruments USB-7855R
with Kintex-7 70T FPGA using dedicated DSP blocks, achieving a sample fre-
quency of 300 kHz. The performance of the implemented Lyapunov estimator
was experimentally assessed and compared with a state-of-the-art lock-in ampli-
fier (LIA, Zürich Instruments HF2LI) which provides flexible post-mixing low-pass
filter (LPF) settings.
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Figure 4.4: Lyapunov estimator simulated with a step in DC-offset at the input signal,
with carrier frequency f0 = 50 kHz, gain γ = 9f0, and DC-gain γDC = 20 k for the
augmented Lyapunov estimator with DC-estimation.

4.6.2 Amplitude Tracking Bandwidth

To determine the amplitude tracking bandwidth, a laboratory function generator
(Agilent 33521A) is employed, providing a carrier frequency of 50 kHz amplitude
modulated by a swept sine signal. This FM-AM concept directly reveals the LPF
characteristic of the Lyapunov estimator and of the post-mixing filters of the LIA
and allows for a direct extraction of the −3 dB tracking bandwidth.

The tracking bandwidth frequency responses of a slow LIA with LPF cut-off
frequency fc = 500 Hz, fast LIA with fc = 50 kHz, slow Lyapunov estimator with
γ = 20 k and fast Lyapunov estimator with γ = 700 k are shown in Fig. 4.5(a).
The slow settings achieve a −3 dB bandwidth of around 500 Hz for both the LIA
and Lyapunov estimator, while the fast settings achieve a −3 dB bandwidth of
48.2 kHz and 50.0 kHz for the LIA and Lyapunov estimator, respectively.

Note, that the fast LIA shows significant spikes at 2f0 and 4f0 due to insufficient
filtering of the mixing products. To further highlight this point, time-domain
tracking experiments of a square-modulated sine wave are shown in Fig. 4.5(b).
Using the fast bandwidth setting for both demodulators, the LIA amplitude es-
timate is dominated by 2f0 oscillations, making this demodulator impractical at
these tracking bandwidths.

The results emphasize the fact that the Lyapunov estimator is superior to the LIA
when carrier frequencies are small compared to the necessary tracking bandwidth.
While the tracking bandwidth of the LIA can be increased by choosing a large
LPF cut-off frequency, the amplitude estimate becomes increasingly distorted by
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Figure 4.5: Amplitude tracking experiment using the lock-in-amplifier and Lyapunov es-
timator with a carrier frequency of 50 kHz. (a) Frequency response at different bandwidth
settings. (b) Time-domain tracking of a square-modulated sine wave.
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Figure 4.6: Tracking response of Lyapunov estimator for increasing gain γ.
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the mixing products.

The −3 dB tracking bandwidth of the Lyapunov estimator is plotted against the
gain γ in Fig. 4.6, and compared to simulated values. The bandwidth increases
approximately linearly with increasing γ until the bandwidth approaches the can-
tilever oscillation frequency f0. There is a constant gain discrepancy between
simulations and experiments, this can possibly be attributed to internal gains in
the experimental setup not accounted for.

4.6.3 Noise Analysis

In this experiment, the RMS noise of the amplitude estimate of the Lyapunov
estimator and LIA is evaluated as a function of tracking bandwidth. For this
purpose, the four channel acquisition front-end of a micro system analyzer (Polytec
MSA-050-3D) is used to capture time-domain data passed through a high order
anti-aliasing LPF with cut-off frequency of 1.2 MHz and sampled at fs = 2.56 MHz
for T = 13.11 s. We use the total integrated noise (TIN) (see Appendix A) as the
performance metric which is obtained by integrating the noise density estimate
from DC to fs/2 using Welch’s method [137] without averaging nor overlap.

The total integrated noise of the amplitude estimate obtained from the Lyapunov
estimator is compared with the demodulated amplitude of the LIA as a function
of the tracking bandwidth in Fig. 4.7. The RMS noise of the Lyapunov estimator
estimate only increases slightly from 1.21 mV for the smallest bandwidth of 500 Hz
to 5.6 mV for the largest bandwidth of 50 kHz. In contrast, the RMS noise of the
demodulated amplitude using a LIA, increases exponentially when the LPF cut-
off frequency is increased above approximately 10 kHz. While the LIA is better
at very low bandwidths, above 7 kHz the Lyapunov estimator shows significantly
lower noise. In other words, for the same TIN of 5.6 mV, the LIA only achieves a
10 kHz bandwidth compared to almost 50 kHz achieved by the Lyapunov estima-
tor. Thus, during high-speed experiments, the Lyapunov estimator could either
track at the same bandwidth for a lower total integrated noise compared to the
LIA – or at higher bandwidths for the same total integrated noise.

The improved LIA noise response at low bandwidths can be attributed to its
higher order low-pass filtering. In fact, the Lyapunov estimator can be seen to act
as a first-order LPF in the 1–10 kHz range based on its 20 dB/decade roll-off in
Fig. 4.5(a), while the commercial LIA employs a fourth order Butterworth filter.
As shown in Appendix A, the TIN of the LIA is expected to be ∼ 0.56 times
the TIN of the Lyapunov estimator purely due to the different filter orders, while
the experimental TIN ratio was measured to be 0.73. This may suggest that the
Lyapunov estimator would outperform the LIA at the same filter order. However,
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Figure 4.7: Measured total integrated noise of amplitude estimate from LIA and Lya-
punov estimator, with curve fit, as a function of tracking bandwidth.

other sources for the difference should be considered, including noise not being
completely white, or measurement noise at higher frequencies not being filtered
out. Additionally, the LIA has a fixed sampling rate about 3 orders of magnitude
faster than the Lyapunov estimator, and the two estimators use different signal
input ranges. This will in total result in some differences partly attributable to
the experimental setup.

4.6.4 High-Speed AFM Imaging

Finally, the Lyapunov estimator and LIA is used in a high-speed constant-height
tapping-mode AFM experiment for demonstrating the effect of increased demod-
ulator bandwidth. The common z-axis actuator bandwidth limitation is circum-
vented by reducing the z-axis controller bandwidth to the point where the sample
features during scanning entirely appear in the amplitude error image, thus re-
ducing the bandwidth-limiting components of the AFM z-axis feedback loop to
the cantilever and demodulator exclusively.

The cantilever bandwidth is limited by its resonance frequency f0 and quality (Q)
factor by f0/(2Q) [7]. In order to render the demodulator the bottleneck of the
open-loop AFM chain, a fast cantilever is necessary. Due to the sample frequency
limitation of the Labview FPGA, we employ a cantilever with fundamental res-
onance frequency of f0 ≈ 50 kHz. The piezoelectric integrated actuation of the
cantilever allows for model-based Q factor control to reduce the Q factor to Q0 = 8
[160], resulting in an experimentally verified tracking bandwidth of 3.3 kHz (not
shown) which adequately matches the first order approximation f0/(2Q0).

AFM images of a calibration grating (NT-MDT TGZ3) with periodic features
of heights h = 520 ± 3 nm were obtained on an NT-MDT NTEGRA AFM. The
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Figure 4.8: AFM scanning results over a 10×10 µm2 area of the sample. (A) LIA with
fc = 100 Hz, (B) LIA with fc = 200 Hz, (C) LIA with fc = 400 Hz and (D) Lyapunov
estimator with γ = 60× 103, providing a tracking bandwidth of ∼1.6 kHz.
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Figure 4.9: Multifrequency Lyapunov estimator implemented for phase demodulation
used in an AFM imaging experiment. The phase is demodulated at the first five harmonic
frequencies of the cantilever.

sample was scanned at a speed of 627.45 µm/s in a 10× 10 µm2 area at a scanner
rate of 31.37 Hz and resolution of 256× 256 pixels, while recording the amplitude
estimates of the LIA and the Lyapunov estimator in parallel. As only the forward
trajectory is recorded, the entire image is acquired in 8.16 seconds.

The γ of the Lyapunov estimator could have been set according to (4.38) for the
highest demodulator bandwidth. However, this initial value allows the Lyapunov
estimator to track the amplitude at a much higher bandwidth than that of the
cantilever tracking bandwidth. Instead, γ was reduced in order to improve the
overall noise response of the system. The resulting gain was set to γ = 1.2f0

which results in a −3 dB bandwidth at approximately 1.6 kHz.

The high-speed constant height imaging results are presented in Fig. 4.8. Every
experiment is performed at the same imaging speed, and each row represents
increasing demodulator bandwidths. By setting a larger demodulator bandwidth,
the sharp sample features are more accurately tracked as demonstrated by the
consecutive rows, with the highest bandwidth here performed by the Lyapunov
estimator in the last row.

4.6.5 Multifrequency Phase Imaging

In order to demonstrate the multifrequency Lyapunov estimator, AFM phase
images were obtained from the first five harmonics of the cantilever simultane-
ously. The experiment was implemented on an NT-MDT NTEGRA AFM, using
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a Bruker DMASP cantilever with resonance frequency 46.1 kHz. A two-component
polymer sample (PS-LDPE-12M) was used, due to its highly contrasting material
properties between the two polymers. The multifrequency Lyapunov estimator
(4.29)–(4.35) was implemented for demodulation at five frequencies, on a high-
speed FPGA (Xilinx Kintex-7 KC705) achieving a sampling rate of 3.5 MHz.

The result of the higher harmonics phase imaging is shown in Fig. 4.9. Both the
topography, and phase of the first five harmonics of the cantilever, are shown. The
contrasting elements of the sample are clearly visible. A detailed analysis of the
performance characteristics of the multifrequency Lyapunov estimator is given in
[75].

4.7 Conclusions

In this chapter, an amplitude and phase estimator designed for use in high-speed
dynamic mode atomic force microscopy has been introduced. The Lyapunov es-
timator is designed for high-bandwidth, yet low complexity for ease of implemen-
tation, and is suitable for multifrequency applications. It requires no tuning by
using the suggested gain for high-bandwidth performance in (4.38). However,
the noise response can be improved by reducing the gain, such as by matching
the resulting demodulator bandwidth to the bandwidth of the cantilever or z-axis
actuator. It has also been demonstrated that the Kalman filter reduces to the
Lyapunov estimator under certain conditions. Experimental results, including
AFM imaging with the estimator used for amplitude demodulation, demonstrate
the high-bandwidth performance of the method.
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Chapter 5

Comparison of Demodulation
Techniques in AFM

Amplitude estimation, or demodulation, plays a vital part in the control loop of
dynamic mode high-speed atomic force microscopy (AFM). The closed-loop band-
width is limited by the convergence rate of the estimator. Recent developments
have introduced new approaches for demodulation of the measured deflection sig-
nal. This chapter reviews and compares state-of-the-art techniques for AFM am-
plitude demodulation. The performance of the techniques is discussed in terms
of bandwidth, convergence time, rejection of other frequency components, bias,
noise attenuation, and implementation complexity. Based on the results, recom-
mendations for the most appropriate technique are given for various criteria.

Publications The material in this chapter is based on [143]. However, all nu-
merical results are new, with additional performance metrics based on [148, 157,
158]. The new simulations provide additional insights into the performance of
each method, and the recommendations provided for various desired properties
have been updated to reflect the new results. Additionally, another method is im-
plemented for comparison (mean absolute deviation). Experimental results based
on the original work have been presented in [157, 158].

5.1 Introduction

Increasing the imaging rate has been an enduring ambition in the AFM community
[7]. Several strategies have been proposed for increasing the imaging rate, ranging
from improvements to mechanical design [98], virtually controlling the stiffness of
the cantilever with active Q-control [45, 193], to improving the feedback controller
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[100].

Amplitude modulated AFM (AM-AFM) is well suited for imaging biological sam-
ples since the interaction forces generated can be very small, preventing damage
to the sample [5]. However, AM-AFM has generally been slower than traditional
contact mode. By increasing the bandwidth of the amplitude estimator, it is pos-
sible to increase the bandwidth of the entire closed-loop system and ultimately
allow for faster imaging speeds. Additionally, by improving the estimator’s noise
response and attenuation of unwanted frequency components, the resulting image
can be improved.

Traditionally, amplitude estimation has been performed by mean absolute devi-
ation or lock-in amplifier techniques, requiring up to ten carrier wave periods to
converge. The high-speed AFM results presented in [6] introduce the much faster
peak hold method which converges in half an oscillation cycle. However, this
method is prone to noise and disturbances from unwanted harmonics. Recent de-
velopments include the high-bandwidth lock-in amplifier [93], Kalman filter [94,
159], and coherent demodulator [1]. Additionally, the Lyapunov estimator from
Chapter 4 is also included for comparison.

5.1.1 Contributions

In this chapter, common online demodulators for amplitude estimation in dynamic
mode AFM, as well as recent state state-of-the-art developments, are numerically
implemented and compared. Using these results and a properly defined set of per-
formance indicators, recommendations are provided on the most suitable method
for various application scenarios.

Recommendations are given for the following scenarios: low implementation com-
plexity, low noise and high accuracy, and high imaging speed. In order to make
proper recommendations, the various demodulators are compared in several as-
pects. Due to the inherent nonlinearity of demodulation, a step response plot
gives a qualitative insight into the behavior of each method. The methods are
compared in the frequency domain, and their bandwidths are measured. The re-
jection of frequency components away from the carrier frequency is essential for
multifrequency AFM, and the methods are also compared in this aspect. Then,
for accuracy, the bias of each method is given as a function of bandwidth. Finally,
the methods are compared in terms of their total integrated noise against their
bandwidth, which indicates their true practical bandwidth for implementation in
high-speed AFM.
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5.1.2 Outline

The chapter is organized as follows. In Section 5.2 the amplitude estimation
problem is presented and performance indicators for comparing such estimators
are suggested. Section 5.3 introduces the various estimation techniques that have
been implemented for comparison. In Section 5.4 simulation results are presented.
Considering these results, the proper choice of a method for various scenarios is
discussed in Section 5.5, before concluding in Section 5.6.

5.2 Problem Formulation

The goal is to track the amplitude modulation signal A(t), considering the mea-
sured time-varying signal

y(t) = A(t) sin(ω0t+ ϕ) + v(t), (5.1)

where ω0 is a known angular carrier frequency, ϕ is an unknown phase contribu-
tion, and v(t) is a noise process representing measurement noise. Additionally,
it will be used that f0 = ω0/(2π) is the carrier frequency, and T0 = f−1

0 is the
period of the carrier wave.

The performance of the various amplitude estimation techniques are evaluated in
terms of the following performance indicators:

Bandwidth In dynamic mode high-speed AFM applications, every part of the
closed-loop cycle must maintain a large bandwidth, including the amplitude
estimator. The amplitude tracking bandwidth can be determined from the
magnitude response plotted against the frequency of the modulation signal.

Convergence time The various estimation schemes are very different in their
behavior, and due to the nonlinearity of the problem, the magnitude plot
needs to be supplemented with a description of qualitative behavior. Some
methods converge in finite time, others in exponential time. This will be
discussed in addition to a helpful step response plot.

Bias and noise rejection Measurement noise is a limiting factor in the reso-
lution of the deflection measurement, and is dominated by thermal noise
[22]. Accurate measurements of amplitude require a low bias and low noise.
There is typically a trade-off between these metrics and tracking bandwidth,
as such, measurements of bias and total integrated noise are provided as a
function of bandwidth.

Rejection of other frequency components Due to the nonlinear nature of
the interaction force between the cantilever and sample while imaging, fre-
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quencies other than the carrier frequency will also be excited. This interac-
tion can excite higher harmonics or higher modes of the cantilever dynam-
ics, and ultimately affect the resulting amplitude estimate. Furthermore,
in multifrequency and multi-harmonic AFM, the demodulator must be able
to demodulate each harmonic frequency component separately. Thus, the
off-mode frequency components of the signal must be rejected.

Complexity Since speed is emphasized in AFM, the complexity must be kept
low enough for the method to be implementable. Some methods can be
implemented in simple analog circuits while others require digital imple-
mentations with computationally demanding arithmetics. In general, by
using a simpler method the sample rate can be increased, which will reduce
the overall noise floor of the system [117].

In the rest of this chapter, various estimation techniques are implemented for com-
parison of these performance metrics. The performance indicators are quantified,
such that we can make recommendations for different scenarios.

5.3 Amplitude Estimation Techniques

In this section traditional and recent methods for amplitude estimation will be
briefly introduced, with emphasis on those used in the AFM field. The pur-
pose here is to introduce their mode of operation, with a brief overview of their
implementation. All methods are implementable online, preferably with short
convergence time. Traditional offline amplitude estimation methods such as least
squares [192] are not suitable for feedback control and are not discussed here.
Note that the naming convention for the various methods is not always consistent
across the literature.

Notation

For the sake of clarity, in this chapter, methods are described in either a continuous
or discrete form depending on their most suitable method of implementation.
Discrete signals are written as uk, defined by

uk , u(kTs) = u(t), for kTs ≤ t < (k + 1)Ts (5.2)

where Ts is the sampling time. Discrete filters are denoted using the z-transform
transfer function H(z) while continuous filters are described by a transfer function
H(s) where s is the Laplace-variable. Furthermore, the amplitude estimate is
given by Â(t).
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Quadrature Based Methods

Before presenting the various methods, a concept shared among several techniques
will be introduced here. These amplitude estimation methods are based on the
multiplication of an in-phase and a quadrature sinusoidal signal

y(t) = A(t) sin(ω0t+ ϕ) + v(t) (5.3)

I(t) = y(t) sin(ω0t) (5.4)

Q(t) = y(t) cos(ω0t). (5.5)

By disregarding the noise term for now by setting v = 0, the following relations
can be found using trigonometric identities

I(t) = A
2 [cosϕ− cos(2ω0t+ ϕ)] (5.6)

Q(t) = A
2 [sinϕ+ sin(2ω0t+ ϕ)] . (5.7)

By attenuating or removing the 2ω0 contribution in (5.6)-(5.7), the amplitude can
be recovered from

i(t) = A
2 cosϕ (5.8)

q(t) = A
2 sinϕ (5.9)

Â(t) = 2
√
i(t)2 + q(t)2 = A(t). (5.10)

5.3.1 Mean Absolute Deviation

Mean absolute deviation is possibly the simplest method to implement, and has
been used for amplitude demodulation in the AFM literature [7]. It can be con-
structed using a rectifier circuit, low-pass filter, and scaling factor, such that

Âk =
π

2
Hlp(z) |yk| , (5.11)

where Hlp(z) is a low-pass filter with unit gain. The chosen bandwidth of the
low-pass filter determines the trade-off between bandwidth and noise attenuation.
In our implementation, a 4th-order Butterworth filter is employed.

5.3.2 Peak Detector

A variation to the mean absolute deviation method is the peak detector. It uses a
rectifier circuit in combination with a leaking low-pass filter in feedback loop. This
approach is characterized by a slowly reducing estimate, and then quickly rising as
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the measured signal becomes larger than the current estimate. Thus, increasing
amplitudes are captured faster than decreasing amplitudes. The method can be
written as

xk = max
(
|yk| , Âk−1

)
(5.12)

Âk = Hlp(z)xk, (5.13)

where Hlp(z) is a low-pass filter with gain 0� K < 1.

5.3.3 RMS-to-DC

The amplitude of a sinusoidal signal is related to its root mean square (RMS) yrms

by the relation A =
√

2yrms, assuming that the RMS is taken over any integer
number of half-periods of the signal. By utilizing this relationship, the amplitude
can easily be found. Both analog and digital implementations are commercially
available, which are typically made to remove DC-offset. Our implementation is
given by

Âk =

√√√√ 2

MN

MN−1∑
n=0

y2
k−n, (5.14)

where N is the number of samples in one half-period, and M is the number of
half-periods. The choice of M will be a trade-off between bandwidth and noise
attenuation.

5.3.4 Peak Hold

This method was presented in [6] to enable high-speed imaging in dynamic mode
AFM. The signal is sampled as it reaches its peak, allowing one or even two
samples per oscillation period. It works by introducing a 90◦ phase-delay to the
measured signal which is then used to trigger a sample and hold. The method
can be described by

xk = SH(|yk| , yk⊥) (5.15)

Âk = Hlp(z)xk, (5.16)

where yk⊥ is a 90◦ phase-shifted version of yk, SH(·, ·) is a sample and hold function
where the first argument is the output and the second argument triggers a new
sample on crossing zero, and Hlp(z) is a high-bandwidth low-pass filter used to
smooth out the noise from the triggering.
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5.3.5 Coherent Demodulator

This is a quadrature based method utilizing the definite integral of I(·), Q(·) from
(5.6)-(5.7) over one or multiple periods to remove the 2ω0 frequency component,

i(t) =

∫ t

t−T0
I(τ)dτ (5.17)

q(t) =

∫ t

t−T0
Q(τ)dτ (5.18)

Â(t) = 2
√
i(t)2 + q(t)2. (5.19)

Accurate knowledge of the oscillation period and timing is required. In [1, 2]
these equations are implemented using the trapezoidal integration method, and it
is discussed how to handle the case where the sampling frequency is not an exact
integer multiple of the carrier frequency. This technique is also referred to as the
Fourier method [102] as it is equivalent to determining the first coefficients from
the Fourier series.

5.3.6 Lock-in Amplifier

The second quadrature-based method uses a low-pass filter with bandwidth ωc �
ω0 to suppress the frequency component at 2ω0 from (5.6)-(5.7). It is simpler
to implement than the coherent demodulator since accurate timing is not needed
and it can be implemented using analog circuitry. However, the method is limited
in terms of bandwidth due to the necessary low-pass filter. The method is given
as

ik = Hlp(z)Ik (5.20)

qk = Hlp(z)Qk (5.21)

Âk = 2
√
i2k + q2

k, (5.22)

where Hlp(z) is a low-pass filter with unit gain and bandwidth ωc � ω0. A
4th-order Butterworth filter is used in our implementation of the technique.

5.3.7 High-Bandwidth Lock-in Amplifier

The bandwidth of the lock-in amplifier is severely limited by the 2ω0 frequency-
components contributions seen in (5.6)-(5.7), as this requires a low-pass filter with
a bandwidth significantly lower than the carrier frequency in order to attenuate
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these components. The high-bandwidth lock-in amplifier was introduced in [93]
where the 2ω0 components are eliminated by phase cancellation allowing for a
much larger bandwidth on the low-pass filter.

A 90◦ phase-shift is introduced to the measured signal y, denoted by y⊥. This is
equivalent to switching the sin(·) with a cos(·) in (5.3). By repeating the steps of
(5.3)-(5.7) with the phase-shifted signal y⊥ the relations

I⊥ = A
2 [sin(2ω0t+ ϕ)− sinϕ] (5.23)

Q⊥ = A
2 [cos(2ω0t+ ϕ) + cosϕ] (5.24)

are found, where the time-dependency has been dropped for simplicity. By phase
cancellation and trigonometric identities this results in

I +Q⊥ = A cos(ϕ) (5.25)

Q− I⊥ = A sin(ϕ) (5.26)

Â =
√

(I +Q⊥)2 + (Q− I⊥)2 = A. (5.27)

In practice the phase-cancellation will not be perfect and a low-pass filter is still
necessary to remove the resulting residues. However, these residues will be severely
reduced compared to the lock-in amplifier which allows for a much greater band-
width on the low-pass filter. A 4th-order Butterworth filter is again used for this
purpose.

5.3.8 Kalman Filter

Recent studies have investigated the use of a Kalman filter for amplitude estima-
tion [94, 159] with promising results. The states are modeled as the amplitude of
in-phase and quadrature sinusoidal signals. The state-space model is given by

xk = xk−1 +wk−1 (5.28)

yk = ckxk + vk (5.29)

ck = [sin(ω0kTs), cos(ω0kTs)] , (5.30)

where xk is the state vector, yk is the measured variable, wk is white noise with
covariance Q describing how fast the amplitude changes, and vk is white mea-
surement noise with covariance R.

The well-established Kalman filter equations [182] are used for estimation of the
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states, rewritten here for convenience and simplified for the problem at hand:

x−k = xk−1 (5.31)

P−k = Pk−1 + Q (5.32)

Kk = P−k c
T
k (ckP

−
k c

T
k + R)−1 (5.33)

xk = x−k + Kk(yk − ckx−k ) (5.34)

Pk = (I−Kkck)P
−
k (I−Kkck)

T + KkRKT
k (5.35)

Âk = |xk|. (5.36)

The Kalman filter is the optimal linear state estimator given white, uncorrelated
noise [182]. However, the process noise is unlikely to be white since this will
depend on the sample being scanned and overall feedback loop. Additionally, in
this case the modeled states are the amplitude of the quadrature sinusoidal signals,
not the unknown amplitude itself. The amplitude is found through a nonlinear
transformation. Thus, optimality cannot easily be concluded.

5.3.9 Lyapunov Estimator

Finally, the Lyapunov estimator from Chapter 4 is implemented for comparison to
the other methods. The method is implemented using a unitary filter W (s) = 1,
which results in the update law

˙̂
θ = γφ (y − ŷ) , (5.37)

ŷ = φT θ̂, (5.38)

where φ = [sin(ω0t), cos(ω0t)]
T , and γ is a tuning parameter which determines

the bandwidth of the estimator. Finally, the amplitude can be recovered from

Â = |θ|. (5.39)

The method can easily be tuned either to emphasize low noise (small γ) or high
bandwidth (large γ).

Summary

A summary of the characteristics of each method is given in Table 5.1. The various
techniques can broadly be categorized into rectification approaches, or mixing
approaches where synchronous reference sinusoids are mixed with the measured
signal. The latter class can further be divided into open-loop or closed-loop,
depending on how the mixing products are eliminated.
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Table 5.1: Characteristics of demodulation techniques.

Technique Classification
Phase
est.

Reference
sines

required

Accurate
timing

necessary

Mean abs. dev. Rectification No No No

Peak detector Rectification No No No

RMS-to-DC Rectification No No Yes

Peak hold Rectification No No Yes

Coherent Mixing (open-loop) Yes Yes Yes

Lock-in amp. Mixing (open-loop) Yes Yes No

HB Lock-in amp. Mixing (open-loop) Yes Yes No

Lyapunov Mixing (closed-loop) Yes Yes No

Kalman filter Mixing (closed-loop) Yes Yes No

5.4 Simulation Results

The methods described in the previous section have been implemented in Simulink
for simulation. A test environment has been setup according to Fig. 5.1 with
parameters given in Table 5.2. The phase shift and amplitude A represent the
cantilever deflection response as the tip interacts with the sample, or any general
plant. For simulation purposes, the amplitude is modulated such that

A(t) = A0 + Ā(t), (5.40)

where the constant A0 > 0 represents the baseline amplitude, and Ā(t) represents
the modulation signal.

Several simulation results are presented in order to evaluate the performance of
each demodulation technique, by the criteria stated in Section 5.2. For read-
ability, the various methods are divided into two groups corresponding to their
classification category. In the presentation of the results, each group is plotted
separately.

5.4.1 Step Response

Since the demodulation techniques are inherently nonlinear, their estimates can
display different qualitative behavior as a function of time. A step response plot
demonstrates this. The results from a step-up and step-down amplitude change
are plotted in Fig. 5.2. It can be observed that the methods converge fastest near
the peaks of the measured signal (twice per period T0). Most of the information
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sin(ω0t)

cos(ω0t)

Â

Ā

y Amplitude
estimator

A

Phase
shift

Plant

A0

Figure 5.1: Block diagram of test environment. The objective of the amplitude estimator
is to recover a constant or time-varying A from the measurement of y, in the presence of
noise and harmonics of the carrier frequency.

Table 5.2: Simulation parameters

Carrier frequency f0 50 kHz

Signal phase ϕ 15◦

Reference amplitude A0 100 nm

Sampling rate Fs 2.4 MHz
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Figure 5.2: Step response of the various amplitude estimation techniques.

in the signal is located at these points, because the error between two sinusoidal
signals of different amplitudes will be greatest here. This will ultimately limit the
convergence rate of any amplitude estimator to one half-period, unless a great
influence from the measurement noise is acceptable.

5.4.2 Tracking Frequency Response

The tracking bandwidth of each method can be determined by the frequency re-
sponse of the estimates to the modulation signal Ā(t). Since the various demod-
ulation techniques involves nonlinear operations, system identification techniques
based on white noise or chirp signal excitation are rendered less usable. Instead,
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the modulation signal is implemented as a single sinusoid at step-wise increasing
frequency. Between each step-change, we let the transients come to rest in or-
der to measure the stationary behavior of the demodulation techniques. Finally,
the response at a given frequency is determined by the Goertzel algorithm [137],
which resolves the discrete Fourier transform at the given frequency.

The results for two different bandwidth settings of each demodulator are given by
Fig. 5.3. At the high bandwidth setting several methods display a sharp magni-
tude rise at 2f0, which severely limits their usability at this bandwidth setting.
This occurs due to insufficient attenuation of the 2ω0-components arising from
either mixing of the signals (lock-in amplifier), or the absolute value operation
(mean absolute deviation, peak detection). The other mixing techniques either
use feedback to cancel the 2ω0-components (Kalman filter, Lyapunov estimator),
phase cancellation (high-bandwidth lock-in amplifier), or accurate timing (coher-
ent demodulator). At lower bandwidth settings the peaks are effectively filtered
out for all methods.

5.4.3 Rejection of Other Frequency Components

In multi-frequency or multi-harmonic AFM, several frequency components in a
single signal are demodulated simultaneously. It is then necessary to attenuate
frequency components other than the one of interest. In order to evaluate this for
every technique, the carrier wave frequency was swept from low to high frequen-
cies, while the mixing signals (φ) stayed at 50kHz. Then, the magnitude of the
response was recorded at each carrier frequency. The tracking bandwidth was set
to near 1 kHz.

The results are shown in Fig. 5.4. The ideal filter would rejection all components
outside the 1 kHz bandwidth window. The rectification methods, which are all
shown in Fig. 5.4(a), demonstrate a near-flat response. Thus, these methods
are unsuitable when rejection of other frequency components is an important
consideration. The mixing methods, as seen in Fig. 5.4(b), all perform rejection,
but at different rates. Due to the 4th-order low-pass filter used in the lock-in-
and high-bandwidth lock-in amplifier, they have a very sharp drop-off near f0

and overlap each other. The Kalman filter, Lyapunov estimator, and coherent
demodulator all act as a first-order filter, and drops off by similar rates. The
difference between the Kalman filter and Lyapunov estimator could be attributed
to small differences in tracking bandwidth settings.
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Figure 5.3: Tracking frequency response to a modulated amplitude signal A(t), per-
formed at different bandwidth settings for each method. (a)-(b) High bandwidth ∼50 kHz.
(c)-(d) Low bandwidth ∼10 kHz.
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Figure 5.4: Rejection of frequency components away from the carrier frequency f0 =
50 kHz, where each technique is tuned to a tracking bandwidth of approximately 1 kHz.
The circles mark the magnitude at 47 kHz.
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Figure 5.5: Bias as a function of tracking bandwidth, with a reference amplitude of
100 nm.

5.4.4 Bias and Noise Analysis

For accurate determination of the amplitude, the amplitude estimate should be
unbiased. The bias was gathered for each method, at various tracking bandwidth
settings. The bias is plotted as a function of bandwidth in Fig. 5.5.

Finally, in order to provide an accurate and low-noise amplitude estimate, the
estimator should attenuate the noise as much as possible. A study for determining
the response of the demodulators to noise was performed. Here, band-limited
white noise was used as the modulation signal Ā(t). The resulting total integrated
noise (TIN) of the estimated amplitude is used as a performance metric, after
subtracting the baseline amplitude A0. A large TIN value describes a lack of
noise attenuation, thus a lower value is beneficial. The TIN is related to the RMS
value, and further described in Appendix A. The TIN for each technique over
increasing bandwidth settings, is shown in Fig. 5.6. The methods are compared
to an ideal filter, modeled as a second-order low-pass filter directly connected to
the noise.

Generally, the TIN increases with increased bandwidth. The mean absolute devi-
ation technique and lock-in amplifier demonstrates very low TIN at lower band-
widths. This can be attributed primarily to the implementation using a 4th-order
low-pass filter, which attenuates noise at higher frequencies more effectively than
lower-order filters. However, at higher bandwidths, the 2ω0-components starts
getting mixed with the signal, and the resulting TIN increases rapidly. This ul-
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Figure 5.6: Total integrated noise versus demodulation bandwidth. The maximum
practical bandwidth is marked by ‘×’.



88 Comparison of Demodulation Techniques in AFM

timately limits the usable bandwidth. For these reasons, the reported maximum
bandwidths of each method is recorded just before a rapid increase in TIN is
observed, as marked in Fig. 5.6.

The peak detector and peak hold method effectively takes very few samples per
carrier period. Thus, very little filtering is done, and the resulting TIN values
are large. The high-bandwidth lock-in amplifier also uses a 4th-order low-pass
filter. Nevertheless, it demonstrates a large TIN at lower bandwidths. This can
primarily be attributed to its large bias as seen in Fig. 5.5, which ultimately
increases the TIN value.

Finally, a summary of the observed performance properties of each method is
given in Table 5.3. The convergence time of each method can be determined from
their update laws, as well from knowledge on how their filters need to be tuned if
appropriate.

5.5 Making a Choice

Based on the simulation results and general advantages and disadvantages of each
method, the following suggestions can be made for the desired properties:

5.5.1 Low Implementation Complexity

The mean absolute deviation method and peak detector distinguishes themselves
by not requiring reference sinusoidal signals or accurate timing information. This
makes them simple to implement and suitable for analog implementation. The
RMS-to-DC implementation in this work requires accurate knowledge of the car-
rier wave period, although simpler implementations of this method are possible.
However, simpler implementations will need to average for longer thus decreasing
the bandwidth.

If a simple estimator with high bandwidth is desired, the peak hold method is
a suitable candidate. However, if digital implementations are available, the Lya-
punov estimator is also simple to implement and achieves a much better response
to noise and off-mode rejection. If accuracy and low noise is preferable, the mean
absolute deviation method or lock-in amplifier can be used at lower bandwidths.
Otherwise a simpler RMS-to-DC method with longer averaging is suitable. Peak
detector is one of the simpler methods to implement, but is not suitable for
feedback control due to its oscillatory nature from peak to peak, and very low
convergence rate as the amplitude decreases. This will magnify the problem of
parachuting in dynamic mode AFM which is already a challenge for high scanning
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Table 5.3: Performance metrics of demodulation techniques∗.

Technique Convergence time
BW

(kHz)

Off-mode
mag.
(dB)

TIN
Low BW

(nm)

TIN
High BW

(nm)

Bias
(nm)

Mean abs. dev. Exponential (slow) 33.0 0.0 0.9 4.8 −0.2

Peak detector
Exponential
(fast up/slow down)

30.3 −0.5 3.2 — −1.5

RMS-to-DC Finite time (T0) 45.2 0.0 1.1 — 0.4

Peak hold
Exponential (fast)
+ Constant ( 1

2
T0)

44.0 0.0 4.6 — −0.9

Coherent Finite time (T0) 45.2 −13.4 1.0 — 0.0

Lock-in amp. Exponential (slow) 27.8 −38.2 1.0 6.3 0.0

HB Lock-in amp. Exponential (fast) 56.9 −37.9 3.0 3.7 3.3

Lyapunov Exponential (fast) 55.3 −12.7 1.2 2.9 0.0

Kalman filter Exponential (fast) 52.2 −10.8 1.2 3.4 0.0

∗Bandwidth (BW) determined using a carrier frequency of 50 kHz, and chosen either at
maximum bandwidth or where TIN rises sharply, see Fig. 5.6. Off-mode magnitude measured
at 47 kHz, as seen in Fig. 5.4. TIN measured at low (10 kHz) and high (55 kHz) bandwidths,
respectively. Bias measured at a bandwidth of 10 kHz, with a 100 nm reference amplitude.
Exponential fast/slow: approximated time constant smaller/larger than one carrier wave period.

speeds [7].

5.5.2 Low Noise and High Accuracy

If a non-biased estimator is desired, the peak detector and the high-bandwidth
lock-in amplifier should be avoided. However, for closed-loop control this is rarely
a major concern. Attenuation of noise on the other hand will affect the complete
control loop. From Table 5.3 it can be seen that the mean absolute deviation
method, coherent demodulator, and lock-in amplifier have the smallest TIN at
lower bandwidths.

At high bandwidths, the amplitude estimates from the mean absolute deviation
method and lock-in amplifier is affected by the 2ω0 components, severely limiting
their usability and resulting in high TIN values. Instead, the Lyapunov estimator
and Kalman filter have the lowest TIN values at high bandwidths. Of the two, the
Lyapunov estimator is less computationally demanding, which allows it to run at
faster sampling rates. This is an advantage since it will reduce the overall noise
floor of the system [117].

Due to the nonlinear interaction forces occurring in AFM, higher harmonics of the
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carrier frequency will also be excited, even in the case where only one frequency
component is applied for modulation. Such higher modes should be rejected in
order to provide an accurate amplitude at the given carrier frequency. All tech-
niques based on rectification provide no rejection of other frequency components,
and should be avoided. The lock-in amplifier and high-bandwidth lock-in ampli-
fier provide the strongest rejection, which can be attributed to their 4th-order
low-pass filter implementations. Thus, these methods are highly suitable for mul-
tifrequency demodulation.

5.5.3 High Imaging Speed

Only a selection of the techniques are able to reach the highest bandwidths. Fur-
thermore, at very high bandwidths, the estimates may become very noisy and
practically unusable. This is certainly true for the lock-in amplifier and mean ab-
solute deviation method. The high-bandwidth lock-in amplifier provides a better
noise response at high bandwidths. However, in practice it may struggle with non-
perfect phase cancellation resulting in a frequency component most prominently
at 2ω0. Thus a low-pass filter is needed to attenuate this component, limiting its
bandwidth in practice.

The Lyapunov estimator and Kalman filter provides the lowest noise at the highest
bandwidths. The arithmetics involved in the Lyapunov estimator is a lot simpler
than the Kalman filter, since it does not need to calculate the covariance matrix
and Kalman gain. This should allow for a faster sampling rate which may lead to
better noise response and higher bandwidth in practice.

The Kalman filter and the high-bandwidth lock-in amplifier represent state-of-
the art for high-bandwidth amplitude estimation. The Lyapunov estimator is
comparable in terms of performance with the additional benefit of ease of imple-
mentation. In fact, these three methods seem to be at the limit of what is attain-
able in terms of bandwidth. Most of the amplitude information in the measured
signal is located around the signal peak since the error between two sinusoidal
signals of different amplitudes will be greatest here. As a result, the estimation
techniques generally converge faster near the peak than near zero values of the
signal. Thus, a bandwidth of greater than 2ω0 will be difficult if not impossible
to achieve. It is then preferable to add a low-pass filter or otherwise reduce gains
in order to attenuate high-frequency measurement noise and disturbances from
higher harmonics.
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5.6 Conclusions

Several traditional and state-of-the-art techniques for amplitude estimation have
been implemented and compared. The results allow us to provide clear suggestions
for choice of method based on emphasis for either low complexity, high accuracy, or
high imaging speeds. The various methods display vast differences in the metrics
being measured.

In general there is a clear trade-off between the bandwidth and noise attenua-
tion of the amplitude estimation methods. At the very highest bandwidths, the
Kalman filter and Lyapunov estimator provides the best performance in terms of
noise attenuation. Of these two methods, the Lyapunov estimator is the simplest
to implement. At lower bandwidths, the coherent demodulator, lock-in amplifier,
and mean absolute deviation method give the best performance. Of these three
techniques, the lock-in amplifier provides the strongest rejection of unwanted fre-
quency components.
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Chapter 6

Cell Mechanics Modeling and
Identification by AFM

Identification of mechanical properties of cells has previously been shown to have a
great potential and effectiveness on medical diagnosis. As a result, it has gathered
increasing interest of researchers over the recent years. Atomic force microscopy
(AFM) has become one of the prime technologies for obtaining such properties.
Traditionally, local variations in elasticity has been obtained by mapping contact
force during sample indentation to static Hertzian contact models. More recently,
multifrequency AFM has allowed for both viscous and elastic measurements of soft
samples. In this chapter, a new technique is presented based on dynamic modeling
and identification of the sample. Essentially, the measured signals are mapped to
the sample properties of the model in a least-square sense. This approach allows
for easy extensibility beyond pure viscoelastic measurements. Furthermore, an
iterative modeling approach can be used to best describe the measured data. The
technique can be operated in either dynamic indentation viscoelastic mode, or
scanning viscoelastic mode. First, a dynamic, viscoelastic model of the sample
is presented. Then, the parameter identification method is described, showing
exponential convergence of the parameters. Numerical results demonstrate the
effectiveness of the approach in both modes of operation.

Publications The material in this chapter is based on [142, 146, 149].

6.1 Introduction

In the beginning, AFM was applied almost exclusively to characterize the sur-
faces of nonbiological materials [65], and even today, its major applications are
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still in the visualization of microcircuits, material sciences and nanotechnology
[153]. However, application of AFM to biological and biomedical research has
increased exponentially during the recent years [197], since AFM enjoys several
advantages over conventional optical microscopes and electron microscopes, espe-
cially concerning studies of biological samples [200].

The main beneficial feature of AFM in the study of biological samples is its abil-
ity to study the objects directly in their natural conditions. Other advantages
include: [184] 1) AFM can get information about surfaces in situ and in vitro,
if not in vivo, in air, in water, buffers and other ambient media, 2) it has an
extremely high scanning resolution, up to nanometer (molecular) resolution, and
up to 0.01 nm vertical resolution, 3) it provides true 3D surface topographical in-
formation, 4) it can scan with a wide range of forces, starting from virtually zero
to large destructive forces, 5) it allows measuring various biophysical properties
of materials including elasticity, adhesion, hardness, and friction.

In order to improve early diagnosis of cancer there is an urgent need to increase
understanding of cancer biology on a cellular level. Single cell deformability has
been studied for a long time using various techniques. The driving force for such
studies is the assumption that, depending on disease type, the altered cellular
deformability should play a critical role in the development and progression of
various diseases [111]. So far, several approaches have been investigated, including
methods such as micro-pipette manipulation [34], magnetic bead twisting [11], and
optical tweezers [70]. With these techniques, local variations in the viscoelastic
power law parameters have been observed [76].

Several recent efforts are trying to discover the potential of AFM in cancer de-
tection [13, 32, 76, 109, 110, 111, 184, 197, 200]. Any research result that would
provide the possibility of an early and easy diagnosis of carcinoid cells with ac-
curacy is of extreme interest to specialists that deal with the diagnosis and cure
of the disease. In [134], AFM measurements of the human breast biopsies reveal
unique mechanical fingerprints that help define the stages of cancer progression.
High-resolution stiffness mapping shows that in addition to matrix stiffening, tu-
mor progression is due to softening of the tumor cells.

Clearly, mechanical properties of cells and other samples are of high interest to
the research community. The usage of AFM for identifying such properties has
matured over the recent years, as outlined in Chapter 1. Several techniques are
available, such as force-distance curves and multifrequency AFM. However, force-
distance curves [21] are typically only able to determine static properties of the
sample, such as elasticity. Additionally, the gathering of such curves is a very
slow process. On the other hand, multifrequency approaches can resolve nanome-
chanical properties at high acquisition rates [26]. However, they require the use of
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complicated relationships between the observables and the nanomechanical prop-
erties of the sample, which are still under development [36]. Furthermore, they
typically depend on stationary signals such as amplitude and phase at higher har-
monics or higher modes. Instead, utilizing the entire transient information of the
signal could potentially increase the acquisition rates further and possibly be less
susceptible to measurement noise.

6.1.1 Contributions

In this chapter, a new technique for the identification of viscoelastic properties of
soft samples in AFM is presented. Here, the sample is modeled as a dynamic model
with unknown parameters, in terms of a laterally spaced grid of spring constants
and damping coefficients. The parameters are identified from the measurable
signals, using tools from the control literature. Essentially, the measurable signals
are mapped to the parameters of the sample model recursively in a least squares
sense, making it possible to observe changes over time. The estimated parameters
are guaranteed to converge to the real values exponentially fast provided a suitable
control input is chosen.

Two distinct modes are suggested for the operation of the approach taken in this
chapter. In dynamic indentation viscoelastic (DIVE) mode, mechanical properties
of the sample are identified at a discrete number of points by indenting in and out
of the sample. In the scanning viscoelastic (SVE) mode, viscoelastic properties
are gathered in a continuous fashion as the sample is scanned along the lateral
axes at constant depth.

A simulation environment is constructed to evaluate the effectiveness of the pro-
posed technique, for both modes of operation. The simulation results demonstrate
the feasibility of the approach.

6.1.2 Outline

This chapter is organized as follows. In Section 6.2 a system model description
of the viscoelastic sample is designed, suitable for parameter identification. The
two modes of operation, DIVE and SVE, are presented in Section 6.3. Next,
Section 6.4 presents the identification techniques for the unknown parameters of
the system. Results are given in Section 6.5. In Section 6.6 the technique is
discussed in the context of previous approaches and future considerations, and in
Section 6.7 final conclusions are reached.
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6.2 System Modeling

In this section, the system modeling is presented. This includes the dynamics of
the sample, the cantilever dynamics, the geometry of the tip and their combina-
tions, in order to acquire a full system description. The purpose of the modeling
is to provide a description of the interaction between the cantilever and a gen-
eral viscoelastic sample material, while allowing for identification of the model
parameters by the usage of an atomic force microscope.

6.2.1 Sample Dynamics

The modeled sample is considered as a system of discrete spring-damper elements,
as illustration in Fig. 6.1. The elements are evenly distributed in the lateral xy-
axes, and can be compressed in the vertical z-direction.

The interaction between the AFM cantilever and the sample is analytically pre-
sented, and illustrated in Fig. 6.2. The position of the tip along the xyz-axes is
denoted by (X,Y, Z). The vertical tip position Z, the cantilever deflection D, and
the controllable cantilever base position Uz are related by

Z = Uz +D. (6.1)

Since the deflection D is measurable and Uz is controllable, all three signals are
assumed to be available.

The dynamics between the cantilever and the sample can be described by three
main components as seen in Fig. 6.3. The cantilever dynamics are subject to an
external sample force which generates a deflection along the vertical axis. The
tip geometry and position is then used to determine the (possibly compressed)
positions of each sample spring-damper element. The compressed elements in
turn creates a restoration force acting on the cantilever tip. The details of each
of these components will be described in the following.

6.2.2 Cantilever Dynamics

The cantilever dynamics can be approximated by its first resonance mode [166],
resulting in the spring-damper system

MZ̈ +KD + CḊ = Fts (6.2)

where M is the effective mass of the cantilever [15], K,C are the cantilever spring
and damping constants respectively, and Fts is the force from the sample acting
on the cantilever tip.
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Figure 6.1: The sample is modeled as spring-damper elements evenly spaced along the
lateral axes.
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Figure 6.3: Block diagram of the cantilever-sample dynamics and parameter estimator.
The parameter estimates are based solely on measurements of the deflection output D
and the vertical position control input Uz.
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6.2.3 Tip Geometry

The cantilever tip is modeled as a sphere with tip radius R. The vertical position
zi of the spring-damper element i in contact with the tip is then given by

zi = Z −
√
R2 − (X − xi)2 − (Y − yi)2 (6.3)

żi = Ż (6.4)

where xi, yi are the position of the element along the lateral axes, and żi is the
element velocity. It has been assumed that Ẋ and Ẏ are much smaller than Ż.
This is justified by the fact that the cantilever is oscillated at a high frequency
near resonance resulting in a significant rate of change in Z, while the sample is
scanned comparatively slow in the lateral directions.

A spherical tip can be advantageous in use with soft, fragile samples [185], al-
though if desired the equations (6.3)-(6.4) can be modified to handle different tip
geometries. The tip geometry is only necessary for simulation purposes, as the
parameter identification scheme does not require a tip model. However, the scal-
ing of the identified parameters are dependent on the tip. Thus, if the radius or
geometry is not known, the identified values will be scaled inaccurately. However,
this inaccuracy will be consistent across the sample.

6.2.4 Sample Force

The sample is modeled by viscoelastic elements. Thus, each element in contact
with the tip provides spring and damping forces. The force from element i can be
described by

Fi = kiδi + ciδ̇i (6.5)

where ki is the spring constant of element i, ci is the damping coefficient, and δi
is the indentation of the tip into the element,

δi = hi − zi (6.6)

where hi is the rest-position of the element, or equivalently the sample height
(topography) at the position of the element. The sample is assumed not to display
permanent deformations. Thus, δ̇i = −żi since the sample height is constant.

The sample elements in contact with the tip is denoted by the active set
W(X,Y, Z) which changes as the tip scans over the sample,

W =
{
i : δi > 0 ∧ (X − xi)2 + (Y − yi)2 < R2

}
. (6.7)
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The element i is thus only added to the active set if the tip is indenting it. This
method could be extended to model the attractive forces near the surface by
including elements with a small negative value of δi.

The sum of the forces acting on the cantilever tip from the sample is then given
by

Fts =
∑
i∈W

Fi. (6.8)

In the following, the vectors k, c,h are used to refer to the family of elements, e.g.
k = {k1, ..., km} where m is the number of spring-damper elements in the sample.

6.3 Modes of Operation

The modeling and identification approach described in this chapter can be oper-
ated in two distinct modes, both of which identify the unknown sample parameters
of the dynamic sample model.

6.3.1 Dynamic Indentation Viscoelastic Mode

In DIVE mode, the cantilever moves across the sample surface without contact.
At discrete points in space, the lateral movement is paused and the tip is lowered
into the sample and identifies the sample properties at this single point. The
cantilever is then raised and the procedure is repeated across the sample to form
an N ×N grid of identified parameters.

In this mode, the tip is lowered sufficiently such that the entire tip is submerged
into the sample. This is not strictly necessary, although for consistent measure-
ments the scaling of the parameters, as discussed later, would need to be revised
to account for this case.

6.3.2 Scanning Viscoelastic Mode

In SVE mode, the cantilever is always in contact with the sample, scanning con-
tinuously at constant depth across the surface of the sample in a raster pattern.
The sample parameters are identified continuously resulting in an N ×M grid of
resolved parameters, where N is the number of discrete lines and M is the number
of samples of the continuous signal at each line.
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6.4 Parameter Identification

In this section it is shown how the unknown parameters of the system, k, c,h,
can be estimated. As seen in Fig. 6.3 the parameter estimator is separated from
the system and only the cantilever deflection D and vertical control input signal
Uz is assumed available for measurement.

6.4.1 Parametric System Model

The system equations needs to be on a form suitable for parameter identification.
Rewriting (6.2) and inserting for (6.5),(6.8) gives

MZ̈ +KD + CḊ =
∑
i∈W

kiδi + ciδ̇i (6.9)

where the signals on the left hand side are known, and the right hand side contains
the parameters to be estimated. It would be very challenging to determine all the
sample parameters of each element individually. The problem is therefore simpli-
fied by rather trying to estimate the aggregated spring constant k and damping
constant c at the current tip position. The system can thus be approximated by

MZ̈ +KD + CḊ = kδ + cδ̇ (6.10)

where c, k are now slowly-varying parameters as a function of the current lateral
tip position (X,Y ). By continuously estimating and logging c, k as the tip is
scanned or tapped across the sample, the local viscoelastic properties of the sample
are determined.

The indentation depth of the tip into the sample is given by

δ = h− Z (6.11)

where h is the unknown sample topography at the current tip position.

In DIVE mode, the topography h can be found from a simplified approach by
recording the first point of contact during a tap, thus δ is assumed known in this
mode. However, in SVE mode this approach does not work because the can-
tilever moves in the lateral directions while being indented. Thus, the topography
parameter h will change after first point of contact.

Due to the difference in assumption of known δ, the parametric system model will
have to differ between the two modes.
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DIVE Mode System

The system equations (6.10) can be rearranged and rewritten in the complex
s-domain as

Ms2Z + CsD +KD = (cs+ k) δ (6.12)

which can be formulated as

w′D =

[
c
k

]T [
sδ
δ

]
(6.13)

= θTDφ
′
D (6.14)

where the known w′D is the left hand side of (6.12), θD is the unknown parameter
vector to be estimated, and φD is the known signal vector.

SVE Mode System

Using (6.10), and inserting for (6.1) and (6.11), the system equations can be
rewritten as

Z(Ms2 + Cs+K)− Uz(Cs+K) = k(h− Z)− csZ (6.15)

where it has been used that h is a slowly-varying parameter, thus ḣ can be ap-
proximated by zero. The parametric system equations can now be represented
by

w′S =

 c
k
kh

T  −sZ−Z
1

 (6.16)

= θTSφ
′
S (6.17)

where w′S is the left hand side of (6.15), and θS,φS are the parameter and signal
vector respectively.

Filtered System Equations

In order to avoid pure differentiation of the signals in (6.13),(6.16), both sides
of each equation is filtered by a second-order low-pass filter such as 1/Λ(s) =
1/(λs+ 1)2,

w′
Λ

= θT
φ′
Λ

(6.18)

w = θT φ. (6.19)
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for  ∈ {D, S}.
This linear-in-the-parameters form is suitable for implementation of various pa-
rameter estimation methods such as given in [84]. The objective of the estimator
is thus to find the unknown θ given the signals w and φ.

6.4.2 Parameter Estimator

Several estimation methods for the system (6.19) can be employed with similar
stability and convergence properties, as outlined in Chapter 2. We have chosen the
least squares estimator with forgetting factor. Due to the slowly varying nature
of the parameters, a forgetting factor is useful. The method is restated here for
completeness,

ŵ = θ̂T φ (6.20)

ε = (w − ŵ)/m2
 (6.21)

m2
 = 1 + αφT φ (6.22)

˙̂
θ = Pεφ (6.23)

Ṗ = βP −P

φφ
T


m2


P (6.24)

P(0) = P,0 (6.25)

for  ∈ {D,S}, where α, β,R0 are positive constants, and PD ∈ R2×2,PS ∈ R3×3

are the covariance matrices.

This method guarantees convergence of the error ε to zero given constant param-
eters θ as in DIVE mode. The parameters in SVE mode are slowly-varying, but
the error can be made arbitrarily small by reducing the scanning speed.

For the parameter vector θ̂ to converge to θ, the signal vector φ needs to be per-
sistently exciting (PE) [84]. Indeed, this is a sufficient condition for exponential
convergence of θ̂ → θ, by Theorem 2.2. The following theorem provides condi-
tions for PE and exponential convergence in DIVE mode. Equivalent conditions
can be shown in the case of SVE mode.

Theorem 6.1 (Exponential convergence). Apply the cantilever input signal

Uz = U0 +A sin (ω0t) (6.26)

for any positive constants A,ω0, and let the constant U0 be small enough
for the cantilever tip to be in contact with the surface, i.e. δ > 0, ∀ t. Then
φD is persistently exciting (PE) and θ̂D → θD exponentially fast.
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Proof. Expand the signal vector φD such that

φD = H(s)δ, H(s) =

[
s

(1+λs)2
1

(1+λs)2

]
.

Define the matrix A such that

A(jω1, jω2) ,
[
H(jω1) H(jω2)

]
=

[
jω1

(1+λjω1)2
jω2

(1+λjω2)2
1

(1+λjω1)2
1

(1+λjω2)2

]
.

Taking the determinant of A gives

|A(jω1, jω2)| = 1

(1 + λjω1)2(1 + λjω2)2
(jω1 − jω2)

6= 0 ∀ {ω1, ω2 ∈ R : ω1 6= ω2} .

Thus H(jω1),H(jω2) are linearly independent on C2 ∀ {ω1, ω2 ∈ R : ω1 6= ω2}.
By Theorem 5.2.1 in [84] φD is then PE if and only if δ is sufficiently rich of order
2.

By Definition 5.2.1 in [84] the signal Uz = U0 + A sin(ω0t) is sufficiently rich
of order 2. The transformation from Uz to δ is seen to be linear and stable
by considering (6.1),(6.11),(6.12), which means that a sinusoidal input on Uz

results in a sinusoidal output on δ with amplitude
∣∣∣ δUz (jω0)

∣∣∣, phase ∠ δ
Uz

(jω0)

and frequency ω0. The signal δ is thus sufficiently rich of order 2. Thus, φD is
PE. Additionally, φD is bounded since U̇z is bounded and H(s), δ

Uz
(s) are stable.

Then, by Corollary 4.3.1 in [84] the parameter vector θ̂D → θD exponentially
fast. �

Although exponential convergence of θ̂D → θD is guaranteed, some error is ex-
pected in the identified parameters at a given point because of the model approx-
imation from (6.9) to (6.10).

6.4.3 Indentation Depth and Topography

As discussed earlier in this section, the two modes differ in how the identified
topography ĥ is found. However, for each mode, when ĥ is found, the depth is
given by

δ̂ = ĥ− Z. (6.27)

In the following, identification of the topography is described for each mode.
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DIVE Mode

In the identification scheme for DIVE mode, the depth was assumed known in
(6.12). This signal can be generated by identifying ĥ at each tap and using (6.27)
during the tap. The procedure is described in the following.

As the tip enters the sample the cantilever will start to deflect. This point is
recorded and used as the topography estimate ĥ at the current tip position. The
topography estimate is stored after each tap `, generating the estimate of the
complete sample topography ĥ` ∀ `. Additionally, a low-pass filter Glp for attenu-
ation of measurement noise and a hysteresis loop for avoiding retriggering during
sample penetration is used in the implementation. The procedure is summarized
as follows:

• Record the time t1 = t at rising edge of the boolean signal GlpD > γ, for
some positive constant γ.

• Create a hysteresis loop for t1 by disabling retriggering until GlpD > γ+

where γ+ > γ.

• Then ĥ = Z(t1) and δ̂(t) = ĥ−Z(t), where as previously Z(t) = Uz(t)+D(t).

• Store ĥ` = ĥ for the current tap `.

SVE Mode

In SVE mode, the topography is estimated as part of the identification scheme
as seen in (6.16). The topography ĥ is found after division by k̂ in θ̂S,3. As such,

the estimator should make sure k̂ does not become zero. Since k is known to
be strictly positive, a projection function such as from [103] can be used in the
update law (6.23) to ensure k̂ stays within provided limits.

6.4.4 Depth Controller

In SVE mode, an additional depth controller is required. Due to the spherical
nature of the tip geometry, the submerged parts of the tip into the sample will
vary based on the depth of the tip. The spring and damping forces are effectively
nonlinear functions of depth. Thus, constant depth is necessary to enforce con-
sistent measurements across the sample. For this reason, a depth controller has
been designed.

A simple I-controller is used to maintain desired depth δref, given by

Uδ = ki

∫ t

0

(
δref − δ̂(τ)

)
dτ. (6.28)



108 Cell Mechanics Modeling and Identification by AFM
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Figure 6.4: The indentation depth δ is larger than the average of the element depths,
δi. This introduces a bias in the identified spring constant, which can be corrected for in
post-processing.

This signal is applied to the system according to Fig. 6.3.

Note that due to the soft, heterogeneous sample material, traditional scanning ap-
proaches such as amplitude modulated AFM is not sufficient for constant depth.
This is because the varying spring and damping parameters will ultimately affect
the amplitude response of the cantilever. Thus, by controlling for constant am-
plitude, changes in the material properties is indistinguishable from changes in
depth. This would ultimately lead to errors in the identified parameters.

6.4.5 Corrected Spring Constant

The indentation of the tip into the sample, δ, is defined as the distance from the
edge of the tip to the surface. However, the indentation of each sample element
δi is smaller or equal to δ as seen in Fig. 6.4. This creates a discrepancy between
the sum of the spring force of each element, and the spring force identified in the
approximated model for parameter identification. In the following, it is shown
how to correct for this discrepancy.

Assuming homogeneous spring constants, ki ≡ k0, and completely submerged tip
as in DIVE mode, δ ≥ R. From (6.5),(6.8) the total spring force acting on the tip
is then given by

Fk =
∑
i

k0δi = kδ (6.29)

where k is the aggregate spring constant from the approximated model (6.10),
and δ from (6.11) is the depth into the sample measured at the end of the tip.
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The scaling between k0 and k can then be found as

k0 =
δ∑
i δi

k

=
δ

nδ − (
∑

i δ − δi)
k (6.30)

where n = |W| is the number of elements under the tip. An expression for the
summation term can be found by considering the spherical tip geometry:

1

n

∑
i

δ − δi = R− 1

n

∑
i

√
R2 − (X − xi)2 − (Y − yi)2

≈ R− 1

πR2

∫ 2π

0

∫ R

0
ρ
√
R2 − ρ2dρdθ

= R− 2

3
R

=
1

3
R. (6.31)

The only approximation is due to moving from the discrete case to the continuous
case. Inserting the last line into (6.30) gives

k0 ≈
1

n

δ

δ − 1
3R

k

Since k and δ are not available, they can be replaced by their identified versions.
In summary, the corrected spring constant for a completely submerged tip is given
by

k̂c =
1

n

δ̂

δ̂ − 1
3R

k̂ (6.32)

6.5 Simulation Results

6.5.1 Setup

Simulations have been setup according to Fig. 6.3 for the DIVE and SVE modes
respectively. The cantilever dynamics and sample properties are identical in both
modes for the purpose of comparing the results.

The sample properties have been defined over a grid of 5 × 5 µm2 with 50 × 50
evenly spaced elements. The number of grid elements determines the smoothness
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of the force versus depth-response of the cantilever as it indents the sample. A
high number gives a smooth curve, while a low number gives a piecewise linear
approximation to the curve. On the other hand, a high number of elements is more
computationally demanding. The 50 × 50 grid results in a fairly smooth curve
as seen in Fig. 6.10 at reasonable computation times. The number of elements
should be scaled by the area the cantilever tip covers for consistent results.

Each grid element i is represented by its topography hi, damping coefficient ci, and
spring constant ki. The given sample properties plotted over the spatial domain
can be seen in Figs. 6.5(a), 6.6(a) and 6.7(a) respectively. The properties have
been designed to resemble a cell, but could represent any soft sample material.

A cantilever with a resonance frequency of 20 kHz was chosen with a spring
constant 0.18 N/m, a damping coefficient 1.48× 10−8 Ns/m, an effective mass
1.18× 10−11 kg, and tip a radius 300 nm. This equates to a quality (Q) factor of
100.

DIVE mode was setup to perform a total of 20 × 20 indentations evenly spaced
across the grid, with 0.2 s spent during each indentation for a total imaging time
of 80 s. The sample parameters were recorded once towards the end of each tap.

In SVE mode, a total of 20 scanlines were performed across the sample, with a
periodicity of 2 s for a total imaging time of 40 s. The sample properties were
continuously sampled across the fast scanning direction, and resampled in post-
processing to generate a 50 × 20 resolution image. A horizontal resolution of 50
was chosen to correspond to the number of defined elements. Due to phase-lag
of the parameter identification scheme, the values across a backward and forward
scan were averaged. Otherwise each consecutive line would appear slightly offset
from the previous line.

Although the input signal from (6.26) is sufficient for PE conditions, the following
excitation signal was implemented for both modes,

Uexc = U0 +A1 sin(f12πt) +A2 sin(f22πt) (6.33)

where U0, A1, A2 are suitably chosen constants, f1 is near resonance frequency
of the cantilever, and f2 is below resonance frequency. The last term is used to
provide additional excitation of the signal vector for faster parameter convergence.

In DIVE mode, the excitation amplitudes A1, A2 were set to oscillate the can-
tilever tip with amplitudes of 100 nm and 25 nm respectively. The total vertical
positioning signal is then given by Uz = Uexc +Uin, where Uin is a repeated signal
actually performing the indentation.

In SVE mode, small oscillation amplitudes are used. This avoids exciting the
nonlinearities of the interaction force arising due to the spherical tip geometry.
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Additionally, in the case of lateral friction (not implemented) the tip would more
easily move across the surface. The amplitudes A1, A2 in this case are set to
oscillate the cantilever at 5 nm and 8 nm respectively. The reference depth δref for
the feedback controller is set to 150 nm. The input signal in this mode is given
by Uz = Uexc + Uδ.

6.5.2 Scaling the Parameters

The identified spring and damping constants are aggregate parameters, that is,
they are the sum of the individual spring-damper elements which the tip is in
contact with. Thus, they need to be scaled by the number of elements the tip
covers. That is, the corrected parameters are given by

k̂c = k̂/n, (6.34)

ĉc = ĉ/n. (6.35)

where n = |W| is the number of elements in the setW, or equivalently, the number
of sample elements the tip is in contact with.

Additionally, the non-flat tip geometry means that the indentation of individual
elements will vary across the tip, even in the case of flat topography. Ultimately,
this will affect the measurements of the spring constants.

In SVE mode only a small part of the tip is submerged. Thus, the error due to
the spherical tip geometry is small. Additionally, due to the constant depth the
error is consistent across the sample. For these reasons, the spring constant has
been left uncorrected.

On the other hand, in DIVE mode the tip is completely submerged and the depth
varies between each tap. In this case, the corrected spring constant is found by
applying (6.32) to the estimated parameters.

These corrections as discussed have been applied to the results. The subscripts
of the corrected parameters have been omitted for the sake of readability.

6.5.3 Results

Comparison of the identified topography for each mode to the given topography
is seen in Fig. 6.5. The identified damping coefficients are seen in Fig. 6.6, and
the identified spring constants are given in Fig. 6.7.

The error plots of the identified properties are given in Fig. 6.8. The errors are
given in percentages of the maximum value of each property, that is, hmax =
0.3 µm, cmax = 8× 10−7 Ns/m, and kmax = 5× 10−3 N/m respectively.
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Figure 6.5: Sample topography (a), versus identified topography (b)-(c).
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Figure 6.6: Sample viscosity (a), versus identified viscosity (b)-(c).
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Figure 6.7: Sample elasticity (a), versus identified elasticity (b)-(c).

In general, it is seen that both modes quite accurately represent the real sample
properties. The real properties have small details that are not captured by any of
the operating modes. This is expected for two reasons:

1. The large tip radius covers several sample elements essentially acting as an
averaging filter. Details smaller than the radius will be less distinguishable.

2. The resolution is essentially limited by the number of indentations (DIVE
mode) or scanlines (SVE mode), thus obfuscating high-resolution details.

From the error plots it can be seen that in general the errors are larger in the cases
where the topography gradient is large. This effect and other biases are discussed
in the next section.

Fig. 6.9 demonstrates the differences between the two modes of operation. For
each mode it is seen how the parameter identification scheme approaches the real
values across a complete cross section of the sample. Additionally, the vertical
positioning input Uz is plotted to further demonstrate the differences between the
modes.

The parameters presented in Fig. 6.9(b) experience a high-frequency oscillation.
This is possibly due to the forced high-frequency oscillation of the cantilever,
possibly combined with high gains in the parameter estimator. The frequencies
are higher than the horizontal resolution of the image and the number of defined
elements, thus the oscillations are not visible after resampling and anti-aliasing.



114 Cell Mechanics Modeling and Identification by AFM

0 1 2 3 4 5
0

1

2

3

4

5

x (µm)

y
(µ
m
)

DIVE mode

0 1 2 3 4 5

x (µm)

SVE mode

−5

0

5

%

(a) Topography, ĥ− h
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Figure 6.8: Error plots of identified parameters.
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Figure 6.9: Convergence of the identified parameters along the sample cross section
at y = 0.158 µm. In DIVE mode (a) lateral positioning of the tip pauses during each
indentation, thus the properties are shown in the time domain. In SVE mode (b) the
lateral tip speed is constant, thus all plots can be mapped to the spatial domain.
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6.6 Discussion

6.6.1 Comparison to Existing Techniques

Sample Modeling

The modeling approach presented in this chapter should be examined to evaluate
how it compares to previous experiments. In traditional Hertzian contact models
the indentation depth is correlated to the loading force Fk by Fk ∝ δ1.5 for a
spherical indenter. Experiments have shown exponents ranging between 1.5 and
2.0 depending on the bluntness of the tip [24]. In Fig. 6.10 it is seen that during
an indentation in our model the exponent is 1.72 which fits well within the range
of previous experiments.

Although classical Hertzian contact mechanics seems to correlate well with ex-
perimental observations [105], it is based on some inherently strong assumptions.
This includes small strains (indentations), homogeneous sample elasticity, and
frictionless surfaces [91, 185]. The model presented in this chapter however is not
inherently restricted by these limitations, or is easily extendable to account for
them.

• Longer indentation ranges can be accounted for, e.g. by introducing nonlin-
ear springs.

• The presented model allows for local variations in the elasticity at any spatial
resolution.

• Friction can easily be added to the model by forces.

In some cases, models based on horizontal coupled linear springs have been used to
describe the nanomechanics of lipid bilayers with a good fit to experimental data
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F
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Ffit = 1.6× 10−3δ1.72

Figure 6.10: Spring force over depth during indentation.
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[50, 60]. Such models could be a good fit for implementation with the approach
presented in this chapter.

In static Hertzian contact mechanics, identifying dynamic phenomena such as
damping is not possible or relevant. Since our presented model is dynamic in
nature, such phenomena appear effortlessly in the model. Other dynamic phe-
nomena can also be included in the model such as plasticity and hysteresis [187].
However, this will require some additional effort for identifying the relevant pa-
rameters.

Identification of Mechanical Properties

Recently, approaches based on multifrequency AFM have become increasingly
popular. In these approaches, the frequency components of the cantilever’s re-
sponse to interaction with the sample surface is mapped to the mechanical prop-
erties of the sample. The operation of the SVE mode is related to the operation in
multifrequency AFM. Both approaches scan across the surface at some indenta-
tion level with forced oscillations. However, the differences are clear when it comes
to mapping the measured signals to mechanical properties. The multifrequency
approaches evaluate several of the first few Fourier coefficients of the conservative
and dissipative parts of the tip-sample interaction force [151]. Then, these coeffi-
cients are mapped to local material properties through a Taylor expansion of the
interaction force around the indentation point.

Instead, in both modes presented in this chapter, the measured signals are mapped
to a dynamic model of the sample in a least square sense, using traditional param-
eter estimation techniques from the control literature. This approach has several
advantages:

1. The sample model can easily be extended for measurements of additional
sample properties. Even certain nonlinearities can easily be implemented in
the sample model and parameter estimator.

2. Errors in the dynamic model after mapping the parameters can easily be
seen. This allows the user to see how well the measured properties matches
the reality of the physical sample. Furthermore, these errors can be used
to improve the model in an iterative approach, possibly using a data-driven
modeling approach.

3. Such a dynamic model allows for predictive behavior of the material, and,
it can be argued, leads to a more intuitive description of how the sample
behaves.

DIVE mode can be considered a hybrid between the SVE mode and force-volume
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imaging. It is similar to the latter in how it indents into the sample at discrete
points along the lateral axes. However, it retains the advantages of SVE mode as
it excites the sample at higher frequencies and exploits this for measuring dynamic
properties of the sample.

6.6.2 DIVE Mode versus SVE Mode

The two modes of operation are both shown to be feasible candidates for identify-
ing mechanical properties of a soft sample. However, there are certain differences
between the two modes that should be emphasized.

DIVE mode indents deeper into the sample and assumes a completely submerged
tip. However, with revised scaling of the parameters this mode could also tap at
smaller indentation ranges. The pixel throughput of the two modes favors the
SVE method with twice the number of pixels at half the time.

Earlier studies have demonstrated a difference between elasticity measurements
in traditional force-distance curves and more recent multifrequency techniques,
by up to an order of magnitude [151]. Materials such as cells can display variable
elasticity and possibly damping as a function of both depth and frequency. Due
to the differences in indentation depth and operation of the two modes in this
chapter, they may essentially measure different physical properties of the sample.
As such, the two modes supplement each other.

In SVE mode, an additional depth controller was proposed. This controller has a
potential of replacing the traditional amplitude estimation feedback when scan-
ning soft materials. The viscoelastic measurements are known to change with
depth. By scanning at constant depth, consistency of the results is maintained.

6.6.3 Sources of Error

Some errors in the measured topography, viscosity, and elasticity can be explained
by considering how the tip intersects with a sample of varying topography, see
Fig. 6.11. A flat topography is the ideal case, in which the measured and actual
height is equivalent. When the tip is placed over the highest point of a concave
topography, the measured height will be correct. However, since the submerged
volume of the tip is smaller than in the ideal case, an error will be introduced
in the measured viscosity and elasticity. Lastly, in the case of steep topography,
the side of the tip will touch the sample first. Additionally, only small parts of
the tip will be submerged as the tip descends. This introduces errors in measured
topography (εh), elasticity, and viscosity.
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Figure 6.11: Errors due to varying topography.

These errors can be mitigated by using a tip with a smaller radius. Additionally,
the errors will be reduced when the gradient of the sample topography is smaller.

6.6.4 Implementability for Experiments

For experimental implementation, only the parameter estimator needs to be con-
sidered. The sample modeling part does not need to be considered, as its primary
purpose is to provide a foundation for design and analysis of the parameter esti-
mator, as well as simulation implementations.

Some complications may arise during experiments. DIVE mode registers the
height at the first point of contact, but some materials may not have a clearly
defined edge, i.e. h, because of varying and possibly attractive tip-sample forces
near the surface. If such forces are different between indentation points it may
influence the measurements, especially for topography and spring constants.

The DIVE mode assumes a completely submerged tip. Depending on the softness
and properties of the material being investigated, this may induce large stresses
and possibly permanently deform the sample. A possible solution is to reduce the
indentation depth and scale the measured parameters accordingly.
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DIVE mode should be simple to implement because only a feedforward signal
needs to be implemented online. The parameter estimator can be run offline as
a post-processing technique of the measured signals. However, in SVE mode, the
parameter estimator is used for depth estimation and feedback control. Thus,
at least parts of the parameter estimator need to run online. If issues arise due
to online implementability, the complexity of the solution could be reduced by
implementing the pre-filters for φ̂ and ŵ in analog circuitry and use the gradient
estimator for the parameter estimation. This would reduce the digital imple-
mentation to a few arithmetic operations plus an integrator, in addition to the
I-controller.

6.7 Conclusions

A new technique based on modeling and parameter estimation for simultaneously
identifying the topography, damping coefficients, and spring constants of soft
samples has been presented. The technique can be operated in two distinct modes,
both of which share advantages over existing approaches. The advantages of such
a modeling and identification approach include:

i) The transient signals are used directly, and do not rely on stationary sig-
nals such as amplitude and phase. Thus, faster imaging throughput may
be achieved compared to existing approaches. Furthermore, no multifre-
quency demodulators are necessary, thereby avoiding additional tuning and
complexity.

ii) The relationships between the observables and identified properties are eas-
ily recognized, and directly follows the dynamic modeling.

iii) The cantilever and contact models employed can easily be swapped for other
models with minor modifications. Thus, a model could be found which
more effectively explains the data for a given setup, such as to account for
additional physical phenomena including nonlinear springs.

iv) Since a dynamic model of the sample is obtained, the behavior of the ma-
terial can be predicted through simulations of the obtained model after
experiments.

The two modes of operation, DIVE and SVE mode, are compared and evaluated.
Both modes are shown to be feasible in simulation studies, and they could sup-
plement each other in experiments. DIVE mode may be easier to implement, as
it does not require any feedback signal from the parameter estimator. However,
SVE mode displays a faster pixel throughput.



Chapter 7

Convergence Time of
Parameter Estimates

In the previous chapter, recursive least squares estimation is used to identify the
viscoelastic properties of a sample in AFM. As long as the signal vector is persis-
tently exciting (PE), exponential convergence of the parameters to be identified
can be guaranteed. However, even exponential convergence can be slow. In this
chapter, upper bounds on the convergence rate of the estimated parameters are
found, completely determined by the PE properties and least squares update law
parameters. The results are developed in the general framework for recursive least
squares estimation. Furthermore, for a parameter vector which is piecewise con-
stant at regular intervals, the time interval sufficient for the error to converge to
any specified upper limit is determined. For a soft sample in AFM, the viscoelas-
tic properties can be spatially inhomogeneous. These properties can be spatially
resolved by periodically tapping at discrete points along the sample, such as in the
DIVE mode presented in the previous chapter. The results of this chapter then
allow us to determine the time interval sufficient at each tap, in order to guar-
antee convergence to any specified fraction of the step-change in the parameters.
Simulation results are presented, demonstrating the applicability of the approach.

Publications The material in this chapter is based on [144] with additional
results from [147]. Furthermore, new numerical results are provided, in order to
aid a more thorough discussion on the parameter convergence rate, specifically,
when a covariance reset is applied at regular intervals.
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7.1 Introduction

In Chapter 6, the DIVE mode for imaging viscoelastic properties of soft matter
using AFM is presented. The approach is based on modeling and parameter
identification by a recursive least squares (RLS) estimator with forgetting factor,
as given in Chapter 2. The sample is then modeled as a spatially distributed
grid of spring-damper elements to be identified. In DIVE mode, an oscillating
cantilever is employed. Then, the cantilever is periodically indented into the
sample, at discrete points across the scanning region to be examined.

In RLS, exponential convergence of the parameters can be guaranteed as long as
the signal vector is persistently exciting (PE). However, even exponential conver-
gence can be slow. Thus, for practical implementations, knowledge of a guaranteed
upper bound on the convergence rate is highly beneficial to the user. Furthermore,
such an upper bound would be a helpful tool in aiding the choice of update law
parameters. In this chapter, an upper bound is presented which depends only on
the PE properties and chosen update law parameters.

Another common practical consideration – often the reason for using recursive
estimation approaches – is the time-varying nature of parameters and its effect on
the parameter estimates. In general, exponential convergence in the constant pa-
rameter case, guarantees some degree of tracking for a sufficiently slowly-varying
signal [4, 122]. The topic of time-varying parameters has been the focus of sev-
eral studies [33, 115, 201, 208]. In DIVE mode identification using AFM, the
viscoelastic properties of the sample are considered spatially inhomogeneous but
constant in time. Accordingly, during each tap the parameters are constant, but
for subsequent taps they can attain different constant values. Furthermore, the
time interval between taps can be specified by the operator. Thus, a situation
arises where the parameters are time-varying, piecewise constant, at a user-defined
constant interval. In this chapter, by exploiting the exponential bounds that are
derived for a constant parameter vector, the time interval sufficient to converge
to any specified upper limit of the error is determined. The results are applicable
to any similar problem with a time-varying, piecewise constant parameter vector.

7.1.1 Contributions

In this chapter, the general framework for RLS is considered. An upper bound
on the exponential convergence rate of the parameter estimates are developed for
the constant parameters case. The bound strictly depends on the PE properties
of the signal vector, and chosen update law parameters. Furthermore, a sufficient
time interval in order to guarantee that the parameter error has been reduced to
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any given fraction of the initial error is found.

Then, the case where the parameters take on new constant values at regular
intervals is considered. An upper bound on the estimation error is given in this
case, which depends on the maximum step-change of the parameters at the regular
intervals. Additionally, a sufficient time interval for the error to be reduced to
any given fraction of the maximum step-change is found, in the case of piecewise
constant parameters.

The results are applied to the DIVE mode for identification of viscoelastic prop-
erties in AFM. Then, the sufficient time interval between each indentation into
the sample is found, in order to guarantee convergence to any specified value.
The choice of update law parameters is then discussed, using the upper bound on
the convergence error to ensure a fast convergence. Simulations results are given,
which demonstrate that the parameters converge within the time interval found
apriori. The usage of a covariance reset between intervals is also demonstrated,
which allows for tighter bounds on the convergence rate.

7.1.2 Outline

The chapter is organized as follows. First, the general framework for RLS is
briefly restated in Section 7.2. Intermediary results for parameter convergence
are given in Section 7.3. These results are used to provide an upper-bound on the
exponential convergence rate in the constant parameter case in Section 7.4, and
in the piecewise constant parameter case in Section 7.5. Additionally, a sufficient
time interval in order for the parameter estimation error to be reduced to any
desired degree, is given for both cases. The theoretical results are applied to the
viscoelastic identification problem in Section 7.6, before conclusions are given in
Section 7.7.

7.2 Recursive Least Squares Estimation

In this section, the general framework for RLS estimation is briefly summarized
from Chapter 2. The RLS estimator is applicable to a wide range of estimation
problems. By adhering to the following setup of the plant model, RLS can easily
be applied for estimation of the parameters. The described framework will be
used as the foundation for the results of this chapter.
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7.2.1 Parametric And Estimation Model

The system model is described by the linearly parametrized system

w = θTφ, (7.1)

where w ∈ R is the input signal, θ ∈ Rn is the vector of n unknown parameters,
and φ ∈ Rn is the known signal vector. Furthermore, the estimation model is
given by

ŵ = θ̂Tφ, (7.2)

where ŵ ∈ R is the estimated input signal, and θ̂ ∈ Rn is the vector of estimated
parameters. Furthermore, let the parameter estimation error be given by θ̃ =
θ̂ − θ.

7.2.2 Least Squares Estimator

Several methods exist for parameter estimation in models such as (7.1). The
results of this chapter focus on the least squares estimator as described in the
following. First consider the estimation error ε given by

ε =
w − ŵ
m2

(7.3)

m2 = 1 + αφTφ (7.4)

where m2 is a normalization signal which guarantees boundedness of the error,
and α > 0 is a design constant, typically unity.

The update law of the least squares estimator with forgetting factor is given by

˙̂
θ = Pεφ (7.5)

Ṗ = βP− PφφTP

m2
(7.6)

for some chosen value β > 0 and P(0) = P0 = PT
0 > 0. Additionally, the

definitions of α0, α1, Tp from Definition 2.3 are used in this chapter.

7.3 Covariance Bounds and Lyapunov-Like Conver-
gence

In this section, intermediate results are presented which are used to prove expo-
nential stability of the parameters later in this chapter. In particular, upper and



7.3. Covariance Bounds and Lyapunov-Like Convergence 125

lower bounds on P(t) are derived which depend only on the PE properties and the
chosen update law parameters. Then, these bounds are used to prove exponential
convergence of a Lyapunov-like function. In the subsequent sections, these results
are used to prove an exponential convergence rate of the parameter estimates in
the case of constant parameters and piecewise-constant parameters, respectively.

Lemma 7.1 (Bounds on P(t)). If m,φ ∈ L∞, φ is PE, and θ is constant, then
the least squares estimator given by (7.3)-(7.6) guarantees the following
bounds on P(t):

γ1I ≤ P(t) ≤ γ2I, ∀t ≥ 0 (7.7)

with

γ1 =
(
λmin(P0)−1 + (αβ)−1

)−1
(7.8)

γ2 = max

{
m̄2

α0Tp
, λmax(P0)

}
eβTp (7.9)

where m̄2 = suptm
2(t) and λmin(·), λmax(·) denotes the minimum and max-

imum eigenvalue, respectively.

Proof. The proof closely follows the proof of [84, Cor. 4.3.2]. However, the bounds
are here described in terms of P(t) instead of Q, and completely described by the
constants of the framework in Section 7.2. Specifically, (7.17) through (7.22) is
new.

Denote Q = P−1(t). Then, it can be shown that

Q̇ = −βQ +
φφT

m2
, Q(0) = QT (0) = Q0 = P−1

0 (7.10)

which gives

Q(t) = e−βtQ0 +

∫ t

0
e−β(t−τ)φ(τ)φ(τ)T

m2(τ)
dτ. (7.11)

Using the PE conditions stated in Definition 2.3 for φ, and m ∈ L∞, we have for
t ≥ Tp,

Q(t) ≥
∫ t

0
e−β(t−τ)φ(τ)φ(τ)T

m2(τ)
dτ

=

∫ t

t−Tp
e−β(t−τ)φ(τ)φ(τ)T

m2(τ)
dτ

+

∫ t−Tp

0
e−β(t−τ)φ(τ)φ(τ)T

m2(τ)
dτ (7.12)

≥ e−βTp α0Tp
m̄2

I. (7.13)
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For t ≤ Tp, we have

Q(t) ≥ e−βTpQ0 ≥ λmin(Q0)e−βTpI. (7.14)

Then, combining (7.13)-(7.14), the lower bound is given by

Q(t) ≥ η1I, ∀t ≥ 0 (7.15)

η1 , min

{
α0Tp
m̄2

, λmin(Q0)

}
e−βTp . (7.16)

Next, an upper bound on Q(t) is sought. First, consider

φφT

m2
≤
λmax

(
φφT

)
1 + αφTφ

I

=
φTφ

1 + αφTφ
I

≤ 1

α
I, (7.17)

where λmax

(
φφT

)
= φTφ because φφT is a rank one matrix with an eigenvector

given by φ, and the single eigenvalue follows. Combining (7.11) and (7.17) gives

Q(t) ≤ Q0 +

∫ t

0
e−β(t−τ) 1

α
Idτ

≤ λmax(Q0)I +
1

αβ
I

= η2I (7.18)

where η2 , λmax(Q0) + 1
αβ .

Combining (7.15) and (7.18), gives

η1I ≤ Q(t) ≤ η2I (7.19)

m
γ1I ≤ P(t) ≤ γ2I (7.20)

where

γ1 = η−1
2 =

(
λmin(P0)−1 + (αβ)−1

)−1
(7.21)

γ2 = η−1
1 = max

{
m̄2

α0Tp
, λmax(P0)

}
eβTp (7.22)

which concludes the proof. �
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In the following, the bounds on P(t) derived in Lemma 7.1 are used to prove
exponential convergence of the Lyapunov-like function

V =
θ̃TQθ̃

2
. (7.23)

Please recall that θ̃ , θ̂ − θ and Q = P−1(t).

Lemma 7.2 (Exponential convergence). If m,φ ∈ L∞, φ is PE, and θ is con-
stant, then the least squares estimator given by (7.5)-(7.6) guarantees that
V from (7.23) decreases according to

V (t+ Tp) ≤ γV (t), ∀t ≥ 0 (7.24)

with 0 < γ < 1, where

γ =
1− µ

1 + βTp
(7.25)

µ =
α0Tpγ1

2m̄2 + φ̄4T 2
p γ

2
2

(7.26)

and φ̄ = supt |φ|.

Proof. In [84, Sec. 4.8.3], the case of constant Q was solved to find (7.24) with a
different expression for γ. Here, the results are generalized to a time-varying Q
following a similar approach.

From the system description (7.1)-(7.4), the following relationships can be found

ε =
w − ŵ
m2

=
θTφ− θ̂Tφ

m2
= − θ̃

Tφ

m2
(7.27)

such that

ε2m2 =
1

m2

(
θ̃Tφ

)2
. (7.28)

Using V from (7.23) it can be shown that for a time-varying Q [84, p. 199],

V̇ = −ε
2m2

2
− β

2
θ̃TQθ̃. (7.29)

Now, inserting for (7.23) and (7.28) into (7.29) gives

V̇ = − 1

2m2

(
θ̃Tφ

)2
− βV. (7.30)
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Now, we have

V (t+ T ) = V (t)−
t+T∫
t

[
(θ̃(τ)Tφ(τ))2

2m2(τ)
+ βV (τ)

]
dτ. (7.31)

Following the same procedure as for the constant Q case [84, Sec. 4.8.3], but
replacing the constant Q by the bounds of Lemma 7.1 as appropriate, we have
that the first term of the integral with T = Tp is bounded by

t+Tp∫
t

(θ̃(τ)Tφ(τ))2

2m2(τ)
dτ ≥ α0Tpγ1

2m̄2 + φ̄4T 2
p γ

2
2

V (t)

, µV (t). (7.32)

Since V (t) is a non-increasing function, as seen from (7.29) with Q positive defi-
nite, the second term of the integral (7.31) is bounded by

t+T∫
t

βV (τ)dτ ≥ βTV (t+ T ). (7.33)

Inserting (7.32) and (7.33) with T = Tp into (7.31), we find

V (t+ Tp) ≤ V (t)− µV (t)− βTpV (t+ Tp) (7.34)

V (t+ Tp) ≤
1− µ

1 + βTp
V (t) (7.35)

= γV (t) (7.36)

which concludes the proof. Since µ, β, Tp > 0 and V (t) ≥ 0, it follows that
0 < γ < 1. �

7.4 Convergence for Constant Parameters

In this section, the exponential convergence rate in the case of constant parameters
is established. Furthermore, a time interval can then be found such that the
parameter error is reduced to any fraction of the initial error.

Since Q > 0 and V decreases exponentially by Lemma 7.1–7.2, it follows that
the parameter estimation error θ̃ also decreases exponentially, as will be properly
established in the following result.
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Figure 7.1: Upper-bound of V by an exponential function.

Theorem 7.1 (Convergence rate for constant parameters). Let m,φ ∈ L∞, φ be
PE, and θ constant. Then, the least squares estimator guarantees∣∣∣θ̃(t)

∣∣∣ ≤ ae−λ(t−t0)
∣∣∣θ̃(t0)

∣∣∣ , ∀t ≥ t0 (7.37)

for any t0 ≥ 0, where the constants a > 1, λ > 0 are given by

a = a1 ,
√

γ2

γγ1
, λ = − ln γ

2Tp
. (7.38)

Furthermore, if t0 = 0, or a covariance reset is performed at time t0, a
tighter bound is given by

a = a0 ,
√

γ2

γλmin(P0)
. (7.39)

Proof. By recursively applying (7.24) it is clear that

V (t+ t0) ≤ V (nTp + t0) ≤ γnV (t0), ∀t ≥ nTp, n = 0, 1, . . . (7.40)

for any t0 ≥ 0. Now, it can be shown that the discrete γn can be upper bounded
by the continuous expression

γn ≤ γ−1et/Tp·ln γ , (7.41)

as seen in Fig. 7.1. The discrete and continuous expression intersect at the points
t = (n+ 1)Tp, ∀n ∈ N. Thus,

V (t+ t0) ≤ γ−1et/Tp·ln γV (t0). (7.42)

Furthermore, using Lemma 7.1, consider

V =
θ̃TQθ̃

2
≥ 1

2η1θ̃
T θ̃ = 1

2η1

∣∣∣θ̃∣∣∣2 . (7.43)
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Then, isolating |θ̃| and using (7.42) gives∣∣∣θ̃(t′ + t0)
∣∣∣ ≤√2η−1

1 V (t′ + t0) (7.44)

≤
√

2γ2γ−1et
′/Tp·ln γV (t0) (7.45)

≤
√

2γ2γ−1et
′/Tp·ln γ 1

2 θ̃(t0)T η2θ̃(t0) (7.46)

=

√
γ2γ−1γ−1

1 et
′/(2Tp)·ln γ

∣∣∣θ̃(t0)
∣∣∣ (7.47)

= a1e
−λt′

∣∣∣θ̃(t0)
∣∣∣ , (7.48)

where a1, λ is given by (7.38). A change of coordinates by t = t′+ t0 gives (7.37).
If t0 = 0, or P(t+0 ) = P0 then η2 in (7.46) can be replaced by λmax(Q0) and the
tighter bound of a0 in (7.39) follows. Since 0 < γ < 1, we have ln γ < 0 and in
turn λ > 0. Furthermore, since γ1 ≤ γ2, γ < 1 then a > 1. �

Using the previous theorem, a time interval T can then be found such that the
parameter error is guaranteed to be reduced to some fraction q of the initial error.

Corollary 7.1 (Time interval for constant parameters). Given that the assump-
tions of Theorem 7.1 are satisfied. Then, for any 0 < q < 1, the recursive
least squares estimator guarantees that within the time interval

T =
1

λ
ln
a

q
(7.49)

the parameter error has been reduced to the fraction q, that is∣∣∣θ̃(T + t0)
∣∣∣ ≤ q ∣∣∣θ̃(t0)

∣∣∣ . (7.50)

Proof. Let T = t− t0, and rewrite (7.37) as∣∣∣θ̃(T + t0)
∣∣∣ ≤ ae−λT ∣∣∣θ̃(t0)

∣∣∣ , ∀T ≥ 0. (7.51)

Note that, since a > q and λ > 0, we have T > 0 using (7.49), thus, the condition
T ≥ 0 in (7.51) is automatically satisfied. Now, inserting for T from (7.49) gives∣∣∣θ̃(T + t0)

∣∣∣ ≤ ae−λ 1
λ

ln a
q

∣∣∣θ̃(t0)
∣∣∣ (7.52)

≤ a qa
∣∣∣θ̃(t0)

∣∣∣ (7.53)

≤ q
∣∣∣θ̃(t0)

∣∣∣ . (7.54)

which confirms (7.50). �

As long as the PE parameters are known, specifically α0, Tp from Definition 2.3,
then it is straightforward to find the time interval T using (7.38) and (7.49).
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Figure 7.2: Notation for piecewise constant parameters.

7.5 Convergence for Time-Varying Parameters

The exponential convergence of a constant parameter vector at an arbitrary initial
time was established in Theorem 7.1. In the viscoelastic identification in AFM
[149], the parameter vector is instead piecewise constant at regular intervals T̄ .
Convergence properties of the parameter estimates in this case, as well as insights
for determining the interval, is desired and established in the following.

The parameter vector can now be described by

θ(t) = θi, ∀{t, i} : t ∈ [ti, ti+1) , i ∈ N, ti = iT̄ (7.55)

vectors θi. The change between successive values of θi is assumed to be bounded
by some constant ∆θ,

|θi − θi−1| ≤ ∆θ, ∀i. (7.56)

Furthermore, the estimation error for θi is defined by

θ̃i , θ̂(ti + T̄ )− θi (7.57)

which is motivated by θ̂(ti + T̄ ) being the last value estimated for θ(t) = θi. An
example illustrating the notation used in this section is presented for a scalar case
in Fig. 7.2.

Theorem 7.2 (Convergence rate for piecewise constant parameters). Let m,φ ∈
L∞, φ be PE, and the parameter vector θ(t) be described by (7.55) and
satisfy (7.56). Then, the least squares estimator guarantees

∣∣∣θ̃i∣∣∣ ≤ (ae−λT̄)i+1 ∣∣∣θ̃(0)
∣∣∣+

(
ae−λT̄

)i
− 1

ae−λT̄ − 1
ae−λT̄∆θ, ∀i ∈ N. (7.58)
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Furthermore, if ae−λT̄ < 1, then, for large i,∣∣∣θ̃i∣∣∣ ≤ r∆θ (7.59)

where

r =
ae−λT̄

1− ae−λT̄
. (7.60)

Proof. Using (7.37) in the intervals for which θ(t) is constant,∣∣∣θ̃(ti + T̄ )
∣∣∣ ≤ ae−λT̄ ∣∣∣θ̃(ti)

∣∣∣ , ∀i (7.61)

which can be applied recursively as in the following. For ease of notation let
θ̂i , θ̂(ti), ∣∣∣θ̃i∣∣∣ =

∣∣∣θ̂i+1 − θi
∣∣∣

≤ ae−λT̄
∣∣∣θ̂i − θi∣∣∣ ,

= ae−λT̄
∣∣∣θ̂i − θi−1 + θi−1 − θi

∣∣∣
≤ ae−λT̄

∣∣∣∣∣∣θ̂i − θi−1

∣∣∣+ |∆θ|
∣∣∣

≤ ae−λT̄
∣∣∣ae−λT̄ ∣∣∣θ̂i−1 − θi−1

∣∣∣+ ∆θ

∣∣∣
≤ ae−λT̄

∣∣∣ae−λT̄ (∣∣∣θ̂i−1 − θi−2

∣∣∣+ ∆θ
)

+ ∆θ
∣∣∣

= ae−λT̄
∣∣∣ae−λT̄ ∣∣∣θ̂i−1 − θi−2

∣∣∣+
(

1 + ae−λT̄
)

∆θ

∣∣∣
= a2e−2λT̄

∣∣∣θ̃i−2

∣∣∣+
(
ae−λT̄ + a2e−2λT̄

)
∆θ (7.62)

Recursively applying this n times until the initial condition
∣∣∣θ̂0 − θ0

∣∣∣ =
∣∣∣θ̃(0)

∣∣∣
appears and using the sum formula for the geometric series, gives∣∣∣θ̃i∣∣∣ ≤ an+1e−(n+1)λT̄

∣∣∣θ̃(0)
∣∣∣+

ane−λnT − 1

ae−λT̄ − 1
ae−λT̄∆θ, (7.63)

which confirms (7.58). Furthermore, if ae−λT̄ < 1, and by letting n → ∞ such
that the initial condition vanishes,∣∣∣θ̃n∣∣∣ ≤ e−∞ ∣∣∣θ̂(t0)− θ0

∣∣∣+
ae−λT̄

1− ae−λT̄
∆θ (7.64)

=
ae−λT̄

1− ae−λT̄
∆θ (7.65)

, r∆θ (7.66)
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where r = ae−λT̄ /(1− ae−λT̄ ). �

Notably, for a sufficiently large interval T̄ , the initial condition vanishes to zero
after a sufficiently long time. Additionally, the estimation error reduces toward
zero as T̄ is increased.

The following converse result is particularly useful for implementation when the
time interval T̄ can be set by the operator.

Corollary 7.2 (Time interval for piecewise constant parameters). Given that the
assumptions of Theorem 7.2 are satisfied. Furthermore, for any r > 0, let
the time interval between subsequent values of θi be given by

T̄ = λ−1 ln
a (r + 1)

r
. (7.67)

Then, the recursive least squares estimator guarantees that, for large i,∣∣∣θ̃i∣∣∣ ≤ r∆θ. (7.68)

Proof. It can be shown that T̄ given by (7.67) automatically satisfies ae−λT̄ =
r/ (r + 1) < 1, such that (7.59) can be used. Then, (7.67) follows immediately
from solving (7.60) for T̄ . �

Thus, if T̄ can be controlled, the estimate for each θi can be guaranteed to stay
within any given fraction r of the maximum parameter step size.

Remark 7.1. Note that, by performing a covariance reset between each change
of parameters, that is P(nT̄+) = P0, n ∈ N, then, the less conservative
version of a = a0 from (7.39) can be used in (7.67).

7.6 Case Study: Viscoelastic Identification in AFM

7.6.1 Problem Description

The primary motivation for developing the theory in the previous sections was for
use in identification of viscoelastic sample properties in AFM operating in DIVE
mode, as detailed in Chapter 6. The sample properties are modeled as laterally
spaced spring-damper elements to be identified. The sample is tapped into by
the AFM tip at incrementing spatial coordinates, see Fig. 7.3, covering the entire
sample grid by the end of the scan. Each tap is being performed at a constant
lateral position for some chosen interval T̄ . The problem reduces to estimating
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a time-varying, piecewise constant single pair of spring constant and damping
coefficient.

In the following, the system dynamics are presented. The PE conditions for the
system are developed, and following the theory developed in Sections 7.3 to 7.5,
the choice of update law parameters for the least squares estimator is discussed.
Furthermore, the interval T̄ sufficient to guarantee convergence of the parameters
are presented as a function of the update law parameters.

7.6.2 System

Following Chapter 6, the system can be described by

Ms2Z + CsD +KD = (cs+ k) δ, (7.69)

where M,C,K are the effective mass, damping coefficient and spring constant of
the cantilever, respectively, and c, k are the unknown, piecewise constant param-
eters to be estimated. Furthermore,

Z = Uz +D, δ = h− Z (7.70)

where Z is the vertical position of the cantilever tip, Uz is the vertical control
input, D is the deflection of the cantilever, δ is the indentation of the tip into
the sample, and h is the topography height at the current lateral position of the
cantilever tip (X,Y ). The symbols are illustrated in Fig. 7.3. Additionally, there
is a linear time-invariant (LTI) transformation from Uz to δ,

δ(s) = − Cs+K

Ms2 + (C + c) s+ (K + k)
Uz(s) (7.71)

The parametric system (7.1) can now be set up as follows,

θ =
[
c k

]T
(7.72)

φ =
[
sδ δ

]T
/Λ(s) (7.73)

w =
(
Ms2Z + CsD +KD

)
/Λ(s) (7.74)

1/Λ(s) = 1/
(
ω−1
c s+ 1

)2
(7.75)

where 1/Λ(s) is a second-order low-pass filter with cut-off frequency ωc introduced
to make w,φ proper. Furthermore, Uz is a feedforward signal providing excitation
to the system according to

Uz(t) = A′ sin (ω0t) + U0, (7.76)
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Figure 7.3: Indentation of the cantilever tip into the sample. The tip size is exaggerated
for illustration purposes.

for some constants U0 and A′, ω0 > 0. For simplicity, in the following analysis
it will be assumed that the contribution of U0 to the PE conditions is negligible,
and thus we use U0 = 0.

Remark 7.2. The general case with a constant offset U0 is properly accounted for
in the experimental results presented in Chapter 8.

Using (7.71), (7.73), (7.75) it is seen that φ
Uz

(s) is LTI and strictly proper. Thus,
by using the excitation signal (7.76), there exist some constants A,ϕ such that

δ/Λ = A sin (ω0t+ ϕ) (7.77)

sδ/Λ = Aω0 cos (ω0t+ ϕ) (7.78)

where A =
∣∣∣φ2

Uz
(jω0)

∣∣∣A′ and ϕ = ∠φ2

Uz
(jω0). Thus,

φ =
[
Aω0 cos (ω0t+ ϕ) A sin (ω0t+ ϕ)

]T
. (7.79)
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7.6.3 Persistency of Excitation

First, consider the PE expression from Definition 2.3, and define

S ,
1

Tp

∫ t+Tp

t
φφTdτ. (7.80)

By choosing

Tp = πω−1
0 (7.81)

and using (7.79), it can be shown that the solution to (7.80) is given by

S =

[
1
2A

2ω2
0 0

0 1
2A

2

]
. (7.82)

Thus, φ is PE with level of excitation α0 and α1 given by

α0 = 1
2A

2 min
{
ω2

0, 1
}

(7.83)

α1 = 1
2A

2 max
{
ω2

0, 1
}

(7.84)

which satisfies the PE condition

α0I ≤ S ≤ α1I. (7.85)

7.6.4 Tuning and Convergence Rate

The RLS estimator (7.3)-(7.6) is implemented for the described system. Since φ
is PE, exponential convergence of the parameters is guaranteed. By employing
the theoretical results from Sections 7.3 to 7.5, the rate of convergence will be
investigated in the following. We choose

α = 1, P0 = p0I, (7.86)

and will further investigate the choice of β and p0 in the following. First, the
following properties can be determined already, considering φ from (7.79)

φ̄ = A
√
ω2

0 + 1, m̄2 = 1 + φ̄2, λmin(P0) = λmax(P0) = p0. (7.87)

Inserting these values and the constants from the PE conditions into (7.25),(7.26),
(7.38), the upper bound on the exponential convergence λ and a can be found in
terms of β, p0, A, ω0.
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Figure 7.4: The exponential convergence rate λ, and multiplier a, as a function of β, p0
of the least squares estimator.

Remark 7.3. Note that A is implicitly a function of the system coefficients and
transfer functions, including the unknown sample parameters. However,
since A is measurable through demodulation of the deflection signal D,
and A ∝ A′ with A′ being operator-defined, it can be controlled to any
desired value.

In the following, the upper limit of the convergence rate determined by a, λ will
be investigated by the parameter estimator constants β, p0. It will be used that
A = 50 nm, and ω0 = 2πf0 where f0 = 20 kHz, corresponding to the setup in
Chapter 6.

In Fig. 7.4, the exponential convergence rate λ and multiplier a are plotted in
terms of β, p0. This gives valuable information into how the RLS estimator be-
haves. In the long run, the exponential rate λ will dominate the multiplier a and
determine how fast the system converges. However, for a shorter run, a can in
several cases become very large and thus lead to slow convergence. In both plots,
a is plotted both for the conservative case a1 (any initial time) and less conserva-
tive case a0 (initial time zero), corresponding to (7.38),(7.39) respectively. In the
former case, a1 does not go lower than approximately 108, a very high number
which can be attributed to the necessity of considering the largest range in the
bounds of P(t). In the initial time zero a0 case, the lower bound can be controlled
by p0, allowing for a decreasing range in the bounds of P(t) and thus a smaller
value of a0 with increasing p0, as evident from Fig. 7.4(b). In fact, a becomes
very close to unity for large values of p0 and small values of β.

The plots in Fig. 7.4 can quickly be used to determine appropriate values of β, p0.
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Figure 7.5: Upper limit on convergence of parameter error after t = nTp, as a function
of β, with t0 = 0, p0 = 1018. Circles mark minimum points.
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Figure 7.6: Time-varying parameters: Minimum estimation interval T̄ sufficient to
guarantee parameter estimate to within r∆θ of real parameters, as a function of β. With
covariance reset at the regular intervals, tighter bounds can be guaranteed.
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In general, λ increases with increasing β, but at some point, around β = 104, a0, a1

starts to rapidly increase. On the other hand, λ does not change with p0, but a0

reaches its minimum at p0 = m̄2/(α0Tp) ≈ 3× 1019. Thus, β = 104, p0 = 3× 1019

are appropriate choices for this problem.

In Fig. 7.5, the upper limit of the parameter error relative to the initial condition,
or a0e

−λt from (7.37), is plotted as a function of β. Due to the rapid increase in
a0 for large values of β, but λ increasing for large β, there exists an optimal point
for β providing the fastest convergence after a given time. E.g. at t = 10Tp, the
error has reached about 1% of the initial error with β = 3× 105.

For the piecewise constant parameter case, the time interval needed for reaching
a given fraction r of the maximum parameter step size ∆θ can be plotted as in
Fig. 7.6(a). E.g., for β = 102, the time interval needed to reach 0.1% of ∆θ

is T̄ ≈ 0.55 s. If a covariance reset is performed and coincide with the regular
intervals T̄ , then the sufficient time interval is reduced due to the tighter bounds
of a0 in Theorem 7.1. Again at β = 102, r = 0.01, the time interval needed is now
only T̄ ≈ 0.13 s as seen in Fig. 7.6(b).

7.6.5 Simulations

Simulations are performed in order to evaluate the results of Sections 7.3 to 7.5.
Since the presented convergence bounds are based on an inherently conservative
approach, a simulation can establish how the actual performance compares to
the upper bounds. The convergence of the parameter estimates is evaluated in
the case of piecewise constant parameters. Two simulations were performed, one
without covariance reset, and another with covariance reset at regular intervals,
that is, P(nT̄+) = P0, n ∈ N.

Z

Uz

Least
squares

estimator

k̂, ĉ

D
Cantilever
dynamics

D

Uz

Sample
k, c

w

φ
Signal

filtering

Fts

Figure 7.7: Block diagram of the simulation setup, with cantilever-sample dynamics
and parameter estimator.
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The simulations were setup according to Fig. 7.7. The cantilever-sample dynamics
were modeled by (7.69), with physical parameters from Chapter 6. That is, M =
1.2× 10−11 kg, C = 1.5× 10−8 Ns/m, and K = 0.19 N/m, corresponding to a
resonance frequency of 20 kHz. The cantilever oscillations were performed at a
depth of 100 nm into the sample. The unknown spring constant and damping
coefficient of the sample to be estimated, were implemented as piecewise constant
corresponding to the lateral placement of the cantilever, with ∆θ = 0.01. Only the
vertical positioning Uz and deflection D were assumed available for measurement,
corresponding to an actual AFM experiment.

A practical experiment would need to take into account noise when determining
β. A very high value of β makes the estimator very sensitive to noise, since this
leads to a larger value of P(t) in general. To be representative of an experiment, a
relatively low value was chosen with β = 100. For the initial state of the covariance
matrix, we chose p0 = 1010. From Fig. 7.6(a), and by choosing r = 0.001, the
time interval between taps needs to be at least 0.55 s for the simulation without
covariance reset. We chose T̄ = 0.6 s for the nearest round number, and for
comparison, the same time interval was used in the simulation with covariance
reset. This should guarantee |θ̃i| ≤ 0.001∆θ by Theorem 7.2 in both cases. The
resulting convergence parameters for the two setups are then given by

a0 = 5.6× 104, a1 = 5.6× 108, λ = 49.9. (7.88)

The results of the simulation without covariance reset are shown in Fig. 7.8, and
with covariance reset in Fig. 7.9. The parameter estimation of ĉ and k̂ compared
to their real values, demonstrates the exponential convergence after each step-
change in the parameters. Additionally, they are seen to converge within the
given time interval T̄ .

In Fig. 7.8(c) the parameter error norm is plotted, and compared to the upper
limit between intervals as given by Theorem 7.1. It is seen that at the end of each
interval, the upper bound reaches below r∆θ, in correspondence with Theorem 7.2.
It is also seen that the real error stays below the upper bound, by a large offset.
This can predominantly be attributed to the large value of a1, which gives a very
large offset at the beginning of each interval.

With covariance reset however, the upper bound is much tighter due to its lower
value of a0, as seen in Fig. 7.9(c). Note also that the convergence rates of ĉ, k̂ are
highly different. This suggests that the initial covariance matrix P0 should use
distinct values along its diagonal, to control the initial convergence rate individ-
ually for the two parameters.
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0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4

1

1.5

2

2.5
·10−2

Time (s)

k̂
(N

/
m
)

Real

Estimated

(b) k̂

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4
10−12

10−8

10−4

100

104

108

Time (s)

|θ̃
(t
)|

Real error

Upper bound

∆θ

r∆θ

(c) Estimation error and upper bound

Figure 7.8: Simulated parameter estimation with parameters changing at regular inter-
vals without covariance reset. (a)-(b) Estimated parameters. (c) After each interval, the
upper bound guarantees convergence to less than r∆θ with r = 0.001.
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each interval, the upper bound guarantees convergence to less than r∆θ with r = 0.001.
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7.7 Conclusions

In this chapter, the recursive least squares (RLS) estimator with forgetting factor
is investigated. Upper bounds on the exponential convergence of the parameter
estimation error is found – completely determined by the RLS parameters and the
level of excitation of the signal vector. First, the upper bound is found in the case
of constant parameters. Then, the case of piecewise constant parameter vector
at regular intervals is considered. An upper bound in this case relates the initial
parameter error and maximum parameter step-size, to the parameter error.

Furthermore, for the constant parameter case, a sufficient time interval is given
such that the parameters are guaranteed to be reduced to any fraction of the
initial error. For the piecewise constant parameters case, a sufficient time interval
for the parameters to converge to any given fraction of the maximum parameter
step-change is found.

Finally, the theoretical results are applied to the problem of identification of vis-
coelastic properties using AFM in DIVE mode. Choices of RLS parameters are
discussed in terms of the convergence rate, and the minimum time interval suf-
ficient for guaranteed convergence to some specified value is found. It is demon-
strated that by performing covariance reset at regular intervals, tighter upper
bounds can be found. However, tighter bounds do not necessarily mean faster
convergence in practice, due to the inherently conservative nature of the Lya-
punov approach taken in this chapter. Simulations corroborate the results and
demonstrate the applicability of the approach.
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Chapter 8

Model-Based Identification of
Nanomechanical Properties:
Experiments

In Chapter 6, the DIVE mode was presented, a model-based identification tech-
nique for resolving nanomechanical properties in AFM. Both the sample and can-
tilever are represented by dynamic models. A recursive least squares estimator is
employed to identify the unknown parameters of the sample model, thus revealing
its nanomechanical properties. In this chapter, the method is expanded upon and
implemented experimentally. Two sample models are presented here, demonstrat-
ing the ability to swap sample models to best suit the material being studied. The
method has been experimentally implemented on a commercial AFM for online
estimation of elastic moduli, spring constants and damping coefficients. Addi-
tionally, the experimental results demonstrate the capability of measuring time-
or space-varying parameters using the presented approach.

Publications The material in this chapter is based on [147].

8.1 Introduction

Using AFM to resolve nanomechanical properties has already opened up a new
window into studying soft samples at the nano- to microscale. However, there is
clearly room for improvements. In Chapter 6, the dynamic indentation viscoelastic
(DIVE) mode was introduced. In DIVE mode, both the sample and cantilever are
represented by separate dynamic models. By employing identification techniques

145
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from the control literature, the parameters of the dynamic sample model can be
identified from the observable signals. The observables are mapped to the sample
parameters using a recursive least squares estimator.

In order to spatially resolve nanomechanical properties, DIVE mode operates by
indenting into the sample at regular intervals laterally spaced across the scanning
region. Between each indentation, the cantilever is raised and moved in a raster
pattern to the next indentation point, until the entire sample is covered. During
indentation, the cantilever tip is modulated in order to gain dynamic information
from the sample.

The modeling and identification approach taken by the DIVE mode, enjoys sev-
eral advantages over comparable techniques. Because the sample and cantilever
dynamics are separated, the complicated relationships between the observables
and the sample properties are circumvented. Instead, the observable signals are
fit to the sample model in a least squares sense. Furthermore, this separation
makes it easy to swap out, or expand, the sample model for one which could bet-
ter match the material, as demonstrated in this chapter. Additionally, since the
technique employs a recursive method, it can be implemented online and allows
for observing time- or space-varying changes of the parameters.

8.1.1 Contributions

In Chapter 6, the demonstration of DIVE mode was restricted to numerical results
with the sample modeled as spring-damper elements. In this chapter, several as-
pects of DIVE mode are expanded upon and experimental results are presented.
In particular, (i) improvements are introduced to the system model, making it
suitable for experiments. (ii) An additional sample model is introduced based on
the Hertz contact model, allowing for online estimation of elastic moduli. (iii) A
sufficient time interval during each indentation for guaranteed convergence of the
sample parameters to any accuracy, developed in Chapter 7, is employed, demon-
strating its practicability. (iv) In order to implement the experiments, the pa-
rameter estimator is combined with the demodulator from Chapter 4, an XYZ
controller, and novel control logic implemented by a state machine. (v) Exper-
imental results demonstrate the feasibility of the approach, using either of the
two sample models, allowing for online estimation of spring constants, damping
coefficients, and elastic moduli. Finally, (vi) experimental results additionally
demonstrate identification of time-varying sample parameters using the presented
approach.
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8.1.2 Outline

The chapter is organized as follows. In Section 8.2 the cantilever and sample
dynamics are modeled. The estimation procedure for the unknown sample pa-
rameters is presented in Section 8.3. Implementation details of the approach are
given in Section 8.4. System identification of the cantilever model and tuning of
the parameter estimator is demonstrated in Section 8.5. Experimental results are
presented in Section 8.6. Finally, conclusions are drawn in Section 8.7.

8.2 System Modeling

In this section, the dynamics governing the AFM cantilever interacting with the
sample are established. This is later used for developing appropriate parameter
identification laws for the sample mechanical properties.

The following is based on Chapter 6. However, previously, modulation of the
cantilever was generated by modulating the z-scanner. In a typical AFM setup,
this scanner is severely bandwidth-limited, and unable to oscillate the cantilever
near its resonance frequency. In this chapter, modifications are introduced by
instead employing the piezo modulator typically used in dynamic modes of AFM.
Additionally, in Chapter 6, only a spring-damper model was used to describe the
sample. In this work, contact mechanics are considered, resulting in a second,
nonlinear dynamic sample model.

8.2.1 System Overview

The AFM setup considered in this work is shown in Fig. 8.1, and the operating
procedure for DIVE mode is illustrated in Fig. 8.2. The coordinate system in the
xz-plane of the cantilever and sample is shown in Fig. 8.3. The position of the
tip along the xyz-axes is denoted by (X,Y, Z). The vertical tip position Z, the
cantilever deflection D, and the cantilever tip rest position Z0 are related by

Z = Z0 +D. (8.1)

The deflection D is typically measured through a photodetector setup, and as-
sumed available. The signal is positive along the z-direction with its origin placed
at Z0.

The interaction between the various components of the system is shown in Fig. 8.4,
with corresponding inputs and outputs assumed available. The cantilever dy-
namics are subject to an external tip-sample interaction force Fts, as well as a
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Figure 8.1: AFM dynamic mode setup considered in this chapter.
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Figure 8.2: Operation of DIVE mode in AFM, for a 4 × 4-resolution image. The tip
is indented into the sample at each red circle. The lateral movement is paused during
indentation. During the entire procedure, the cantilever is oscillated using the piezo
modulator, which enables identification of dynamical properties such as viscosity.
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Figure 8.3: AFM cantilever interacting with sample. The tip size and cantilever deflec-
tion is exaggerated for illustration purposes.
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modulating input force Fmod. The resulting cantilever deflection, as well as the
z-actuator position, determines the tip position Z. As the tip indents the sample
at depth δ, restoration and viscous forces from the sample are acting on the tip.
The cantilever dynamics and contact forces are discussed in the following sections.

The xy- and z-actuators are often implemented by piezo scanners along each axis,
as illustrated in Fig. 8.1. These actuators typically display vibration dynamics
as well as nonlinear effects, such as creep and hysteresis [31, 42, 187]. However,
these dynamics are not considered in this chapter, instead, any disturbances are
assumed suppressed through feedback control. Such control schemes have been
the topic of a large amount of research [40, 49, 180, 206]. The signals X,Y, Z0 are
considered measurable and controllable through actuators on each axis, by the
signals Ux, Uy, Uz, respectively.

Remark 8.1. In Chapters 6 and 7, it was assumed that the cantilever rest position
was controlled directly, thus, Uz was used directly in the development of the
system model. In this chapter, a distinction is made between the applied
actuator input Uz, and the response from the z-actuator dynamics Z0. For
practical considerations, this distinction is beneficial due to the inherent
dynamics displayed by the actuator.

8.2.2 Cantilever Dynamics

The cantilever dynamics can be approximated by its first resonance mode [55],
resulting in the spring-damper system

MD̈ +KD + CḊ = Fmod + Fts (8.2)

where M is the effective mass of the cantilever [15], K,C are the cantilever spring
and damping constants respectively, Fmod is the modulation force, and Fts is the
force from the sample acting on the cantilever tip. Furthermore, the cantilever
resonance frequency is denoted by ω0.

8.2.3 Indentation Depth

The indentation depth of the tip δ can be determined during the approach phase
for each indentation into the sample. The indentation is given by

δ = h− Z (8.3)

where h is the sample topography at the current tip position. As the origin of
the topography is arbitrarily placed along the z-axis, any constant terms, such as
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Figure 8.4: Plant dynamics and corresponding inputs and outputs. The sample prop-
erties – here k, c, h – are to be identified from the available signals.

the tip radius and height, can safely be disregarded. The topography h is found
by measuring and recording the first point of contact during approach, thus δ
is assumed known. Once contact is detected, the topography h at the current
indentation is set and used in the relevant computations.

8.2.4 Contact Mechanics

As the cantilever approaches the sample, two different regimes determine the
nature of the tip-sample interaction, as outlined in Chapter 1. During approach
(non-contact), the interaction force can be described using the Lennard-Jones
potential [173]. As the tip comes in contact with the sample and starts indenting
it, the mechanical response of the sample due to its deformation determines the
interaction. The latter interaction is of main interest in this chapter.

Traditionally, the Hertz contact model has been widely used in the AFM com-
munity to describe elasticity of soft samples [24, 141]. This approach assumes
small indentations, no friction, and continuous, non-conforming surfaces. For a
spherical tip with radius R indenting into an elastic half-space, the contact force
as a function of indentation δ is given by

FHertz = 4
3E
∗R

1
2 δ

3
2 (8.4)

where

E∗ =

(
1− ν2

tip

Etip
+

1− ν2

E

)−1

(8.5)
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and νtip, ν are the Poisson ratios of the tip and sample, respectively, and Etip, E
are the elastic moduli of the tip and sample. Since the cantilever tip is made of a
stiff material, it can safely be assumed that Etip � E, which simplifies (8.5) to

E∗ =
E

1− ν2
. (8.6)

In the following, two separate models are presented for modeling the sample. The
first one is the linear spring-damper model considered in Chapter 6, while the
second is based on the nonlinear Hertz model with an additional viscous term.
Using two such models demonstrate that the presented approach can operate with
various material descriptions, from a simple one which emphasizes implementation
simplicity, to increasingly complex descriptions emphasizing accuracy.

8.2.5 Sample Model A: Spring-Damper

A simplified approach to the sample interaction is achieved through modeling the
sample by a spring-restoration force and a damper. This is equivalent to the
Kelvin-Voigt model, considered one of the simpler models for viscoelasticity [73].
This model effectively captures viscoelastic effects such as creep, but may result in
widely varying parameters due to being dependent on the frequency or time scale
of the experiment. Additionally, due to the linearity of the elastic component of
the model, the spring constant will change with depth, as well as the radius of the
tip. The advantage of this approach is the simplicity of the equations, especially
with regards to the linearity in terms of the indentation depth. The interaction
force is given by

FAts = kδ + cδ̇ (8.7)

where k is the spring constant, c is the damping coefficient, and δ is the indentation
of the tip into the sample.

In the context of the Hertz contact model, the spring constant will change with
the indentation depth, thus k = k(δ). If the spring constant is already known,
the elastic modulus can be found offline by using (8.4), (8.6) and Hooke’s law
FHooke = kδ, which gives

E = 3
4k(1− ν2)R−

1
2 δ−

1
2 . (8.8)

8.2.6 Sample Model B: Modified Hertz Model

An alternative implementation of the sample model is obtained by directly using
the Hertz contact model (8.4),(8.6). By supplementing this approach with a linear
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damping force as in the Kelvin-Voigt model, a viscoelastic model of the sample is
obtained. The resulting tip-sample interaction force is given by

FBts = E′δ
3
2 + cδ̇ (8.9)

E = 3
4R
− 1

2 (1− ν2)E′ (8.10)

where E is the elastic modulus of the sample, E′ is the variable identified by the
parameter estimator and proportional to the elastic modulus, R is the cantilever
tip radius, and ν is the Poisson ratio of the sample – typically ν = 0.5 for soft and
biological samples [96]. The elastic modulus found by this approach should be
invariant in terms of indentation depth, as long as the assumptions of the Hertz
contact model hold.

8.3 Parameter Identification

In this section, an online estimation scheme for identification of the unknown
parameters of the system, k, c, E, is established. The approach follows the identi-
fication approach presented in Chapter 6. However, the new models given in the
previous section are employed.

First, the system dynamics are rewritten in a parametric form, suitable for esti-
mation. Here, the two sample models A and B are treated separately. The two
models are then applied in a generic recursive least squares estimator for identi-
fying the unknown parameters. Finally, convergence of the parameter estimates
is discussed.

8.3.1 Parametric System Model

For the spring-damper model A, by applying the interaction force (8.7) to the can-
tilever model (8.2), the equations can be rearranged and rewritten in the complex
s-domain as

Ms2D + CsD +KD − Fmod = (cs+ k) δ. (8.11)

Defining
w′ ,Ms2D + CsD +KD − Fmod (8.12)

the system (8.11) can be rewritten in parametric form as

w′ =
[
c
k

]T [
sδ
δ

]
(8.13)

= θTAφ
′
A (8.14)
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where θA is the unknown parameter vector to be estimated and φA is the known
signal vector.

By following the same procedure for the Hertz model B, the interaction force (8.7)
and cantilever model (8.2) can be written as

Ms2D + CsD +KD − Fmod = csδ + E′δ1.5. (8.15)

By using (8.12), the system can be written as

w′ =
[
c
E′

]T [
sδ
δ1.5

]
(8.16)

= θTBφ
′
B (8.17)

which gives the parametric formulation of the second sample model.

8.3.2 Filtered System Equations

In order to avoid pure differentiation of the signals w′,φ′i in (8.14), (8.17),
both sides of each equation are filtered by a second-order low-pass filter such as
1/Λ(s) = 1/(τs+ 1)2,

w′

Λ
= θTi

φ′i
Λ

(8.18)

w = θTi φi (8.19)

for i ∈ {A,B}. Since w′ is of degree two, and φ′i is of degree one, using a
second-order low-pass filter makes the transfer functions w,φi proper and thus
implementable.

This linear parametric form is suitable for implementation of various parameter
estimation schemes, such as given in Chapter 2. The objective of the estimator is
thus to find the unknown θi given the known signals w and φi.

8.3.3 Parameter Estimator

Several estimation methods for the systems (8.14),(8.17) can be employed with
similar stability and convergence properties. We have chosen the least squares
estimator from Chapter 2 with forgetting factor, due to its greater ability to
suppress measurement noise over many comparable techniques. Furthermore,
because of the slowly varying nature of the parameters, a forgetting factor is
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useful. The estimator is restated here for convenience,

ŵ = θ̂Tφ (8.20)

ε = (w − ŵ)/m2 (8.21)

m2 = 1 + αφTφ (8.22)

˙̂
θ = Pεφ (8.23)

Ṗ = βP−P
φφT

m2
P (8.24)

P(0) = P0 (8.25)

where the parameter estimate vector θ̂ = θ̂i, and signal vector φ = φi are im-
plemented for some i ∈ {A,B}. Additionally, α is a positive constant, typically
unity, β > 0 is the main tunable for the convergence speed of the estimates, and
P ∈ R2×2 is the covariance matrix.

8.3.4 Convergence of Parameters

The least squares estimator guarantees that the estimation error ε becomes small
in some sense, given constant parameters θ. However, for the parameter vector
θ̂ to converge to θ, which is of prime importance in parameter identification, the
signal vector φ needs to be persistently exciting (PE), as defined in Definition 2.3.
Indeed, this is a sufficient condition for exponential convergence of θ̂ → θ.

For a modulating cantilever, that is, by using a sinusoidal input signal

Fmod = A′ sin(ω0t) (8.26)

for some amplitude A′, the signal vector is PE as is demonstrated later. Thus, in
dynamic mode AFM the parameters will convergence in exponential time.

The estimation scheme guarantees exponential convergence only for constant pa-
rameters. However, exponential convergence in the constant parameter case, guar-
antees some degree of tracking even for slowly-varying parameters, as discussed in
Chapter 2. Thus, the estimation scheme can be used to track sample mechanical
changes over time, or as a function of another signal, such as the indentation
depth.

8.3.5 Estimation Time Interval for Convergence

Although the PE property guarantees exponential convergence of the parameters,
even exponential convergence can be slow. In Chapter 7 the rate of convergence of
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the parameters was investigated, specifically, when the parameters can be assumed
to take on new constant values at regular intervals. This is the case in DIVE mode
AFM, where new constant values are given from one indentation to the next.

By employing Theorem 7.1, we can establish the convergence rate of the parameter
estimates, given the PE properties and tuning values for an implementation of the
least squares estimator. In this chapter, we employ a covariance reset between
each indentation, which allows the use of tighter bounds on the upper limit of the
convergence error and thus faster guaranteed convergence time.

Remark 8.2. In Chapter 7, convergence rates and sufficient estimation times were
provided both in the cases where, (i) the error was described in terms of
the initial estimation error, and (ii) the error was described in terms of the
maximum step-change of the parameters. In this chapter, the results for
the first case (i) are used so that assumptions on the maximum step-change
can be omitted.

The following theorem is a summary and reformulation of Theorem 7.1 for the
specific case of covariance reset performed at the initial time t0. The theorem
provides an upper bound on the parameter error. Let the parameter estimation
error be given by θ̃ = θ̂ − θ.

Theorem 8.1. Let m,φ ∈ L∞, φ be PE, and θ constant. Then, by a covariance
reset at time t0 such that P(t0) = P0, the least squares algorithm guarantees∣∣∣θ̃(t)

∣∣∣ ≤ a0e
−λ(t−t0)

∣∣∣θ̃(t0)
∣∣∣ , ∀t ≥ t0 (8.27)

for any t0 ≥ 0, where the constants a0 > 1, λ > 0 are given by

a0 =

√
γ2

γλmin(P0)
, λ = − ln γ

2Tp
, (8.28)

and where

γ =
1− µ

1 + βTp
(8.29)

µ =
α0Tpγ1

2m̄2 + φ̄4T 2
p γ

2
2

(8.30)

γ1 =
(
λmin(P0)−1 + (αβ)−1

)−1
(8.31)

γ2 = max

{
m̄2

α0Tp
, λmax(P0)

}
eβTp . (8.32)

Additionally, m̄2 = suptm
2(t), φ̄ = supt |φ| and λmin(·), λmax(·) denote the

minimum and maximum eigenvalue, respectively.
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Proof. This theorem is a reformulation of Theorem 7.1. �

A sufficient time interval T can then be found such that the parameter error
is guaranteed to be reduced to some fraction q of the initial error, as shown in
Corollary 7.1. The corollary is restated here.

Corollary 8.1. Given that the assumptions of Theorem 8.1 are satisfied. Then,
for any 0 < q < 1, the recursive least squares estimator guarantees that
within the time interval

T =
1

λ
ln
a0

q
(8.33)

the parameter error has been reduced to the fraction q, that is∣∣∣θ̃(T + t0)
∣∣∣ ≤ q ∣∣∣θ̃(t0)

∣∣∣ . (8.34)

Proof. This corollary is a reformulation of Corollary 7.1. �

As long as the PE parameters are known, specifically α0, Tp from Definition 2.3,
then the time interval T can be found using (8.28) and (8.33).

8.4 Implementation

The control logic and parameter estimator is implemented according to the block
diagram shown in Fig. 8.5. The implementation details of the various components
are discussed in the following.

8.4.1 State Machine and Parameter Estimator

The state machine controls the logic of the operation. Its procedure is summarized
in Fig. 8.6 and the following:

1. Lower the cantilever until indenting into the sample, and record the initial
point of contact h (topography).

2. Pause the vertical movement of the cantilever when the mean deflection
reaches some Dmax.

3. Enable the parameter estimator. The duration of this step should be suffi-
cient to guarantee convergence of the parameters as discussed later.

4. Raise the cantilever until it is free from the sample.

5. Move the cantilever in the lateral directions to the next indentation coordi-
nate.
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Figure 8.5: Block diagram of the control logic and parameter estimator.

The above procedure is repeated n×n times for each indentation laterally spaced
across the sample, where n determines the resolution of the resolved nanome-
chanical properties. The parameter estimator implements (8.20)–(8.25) for either
sample model A or B. Between each indentation, all internal states of the param-
eter estimator are reset.

8.4.2 Demodulator

The cantilever deflection signal is demodulated using the Lyapunov estimator with
DC-estimation from Chapter 4, which provides the amplitude, phase and mean
of the signal. This demodulator was compared to state-of-the-art techniques and
demonstrates a high performance with simplicity of implementation in Chapter 5.

The demodulator is exclusively used for:

• Determination of the initial point of contact with the sample during the
approach phase – that is, the topography.

• Acquisition of the amplitude and phase for offline data analysis purposes.

Thus, only the state machine makes use of the demodulated signals. Contrarily,
the parameter estimator rather uses the oscillating signals directly. Therefore,
the performance of the demodulator does not directly influence the identified
parameters.

A new notation for the demodulator is used in this chapter, in order to avoid
confusion with the estimation of the sample parameters. Furthermore, it is used



8.4. Implementation 159

Lower Z

Raise ZMove XY

Indent sample

h = Z

Stationary

Enable estimator

DA < 10 nm D̄ > Dmax

after(1.2 s)

after(0.1 s)

dZ = −Zspeed

dZ = Zspeed

DA > 10 nm,

Set dX, dY
then, after(0.2 s)

dZ = −Zspeed

Figure 8.6: State machine controlling the overall operation of the procedure. One cycle
represents a single indentation and is repeated for each pixel across the sample. The
initial state is given by ‘•’, while ‘ ’ represents entry action. For other actions, their
signals are reset to zero at state exit.
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that W (s) = 1. Then, the demodulator from Chapter 4 can be implemented as

˙̂x = Γc(D − D̂), (8.35)

D̂ = cT x̂, (8.36)

where the constant diagonal matrix Γ = diag(γa, γa, γb), and γa, γb > 0 deter-
mine the bandwidth of the demodulation and the mean estimate, respectively.
Furthermore, the state vector x̂ and quadrature signal vector c are given by

x̂ = [x̂1, x̂2, x̂3]T , (8.37)

c = [sin(ω0t), cos(ω0t)]
T . (8.38)

The deflection amplitude DA, phase Dϕ, and mean D̄ can then be recovered from

DA =
√
x̂2

1 + x̂2
2, (8.39)

Dϕ = atan2 (x̂2, x̂1) , (8.40)

D̄ = x̂3, (8.41)

where atan2(·) is the four-quadrant inverse tangent function.

The Lyapunov estimator requires an exact knowledge of the frequency ω0 of the
modulated signal. The frequency is determined by the applied modulation signal
Fmod from (8.26). Thus, by feeding this signal into the demodulator, the frequency
will match trivially.

8.4.3 XYZ Controller

The XYZ controller positions the cantilever as commanded by the state machine.
The controller takes the rate of movement along each axis, dX, dY, dZ, as refer-
ence, and positions the cantilever/sample accordingly.

Hysteresis and creep in the lateral piezoscanners can negatively influence the
results. E.g., if the tip moves toward an area of higher topography during an
indentation in DIVE mode, the value of the initial contact point would become
invalid, and result in lower or even negative indentation depth values. This would
introduce an error or completely invalidate the estimated parameters, especially
for stiff samples and steep topography. In order to suppress such occurrences, a
feedback PI-controller is implemented for accurate positioning along the lateral
axes.

The vertical (z-axis) scanner on the other hand, is implemented using feedforward
only. This scanner also displays hysteresis and creep. However, the effects along
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this axis are negligible as the recorded initial contact point is still valid. This leads
to a correct measurement of indentation depth, and the estimated parameters
remain valid even when the sample creeps in the vertical direction.

8.4.4 Other Considerations

Contact point detection In order to determine the depth of the cantilever dur-
ing indentation, first the point of contact with the sample must be detected.
This additionally serves as a measurement of the topography h at the cur-
rent lateral position. A rigorous contact point detection can be challenging,
especially for soft samples with strong surface forces [21]. During approach,
attractive forces can result in a jump to contact, possibly causing sample
indentation in addition to adhesion forces. For these reasons, there is no
simple solution to determining the contact point. In our experiments the
contact point was determined by the deflection amplitude becoming less
than some predetermined value, chosen as DA < 10 nm. When this condi-
tion is reached, the topography is determined from the current vertical tip
position.

Calibration All signals are converted to SI units. For accurate indentation val-
ues, the deflection and vertical positioning need to be well calibrated. The
vertical positioning can be calibrated by performing a scan over a rigid
sample with a known step height. The deflection can be calibrated by per-
forming an indentation into a rigid sample with the same cantilever as used
in the experiment, and comparing this to the previously calibrated vertical
positioning.

Deflection creep It was observed that the resting, static deflection point of
the cantilever creeped slowly over time. This also appeared to change the
deflection calibration over time. This is believed to be due to temperature
changes, in particular from the reflective coating on the cantilever, which
can result in bending of the cantilever [21]. This effect was mitigated by
turning on the equipment some time before performing experiments, which
let the thermals come to equilibrium in operating conditions. Additionally,
the deflection zero-level was reset between each subsequent indentation.

8.5 System Identification and Tuning

In order to implement the parameter estimator, the cantilever dynamics (8.2) need
to be known. In particular, the system parameters M,K,C need to be identified
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in order to implement w using (8.12).

The experiments were implemented on a commercial AFM (Park Systems XE-70)
using a spherical carbon tip cantilever with 40 nm tip radius (B40 CONTR).

8.5.1 System Identification

The cantilever spring constant K was calibrated by the thermal noise method
[82] with modifications from [21]. In this method, first, the power spectral density
of the cantilever is recorded without any applied force. The spectral density is
then fit to a Cauchy distribution near the first resonance mode. The mean square
deflection 〈D2〉 can then be found through integration of the fit. Finally, the
spring constant is found by using

K = β∗
kBT

〈D2〉
(8.42)

where β∗ = 0.817 is a correction factor, kB is the Boltzmann constant and T is
the absolute temperature of the cantilever. The fit of the spectral density to the
Cauchy distribution, from our experiments, can be seen in Fig. 8.7(a).

In order to identify the cantilever effective mass and damping coefficient, the
frequency response of the cantilever deflection was found by applying white noise
to the piezo modulator. The resonance frequency of the first mode, ω0, was then
identified at peak magnitude. Furthermore, the effective mass was found using
the relationship

M =
K

ω2
0

. (8.43)

Finally, the transfer function was fitted to the frequency response data by ad-
justing C. A good fit near the resonance peak was emphasized, and the result
is seen in Fig. 8.7(b). Note that the cantilever is actuated from the base of the
cantilever fixture, which excites additional dynamics. Self-actuated cantilevers
are also available resulting in a cleaner frequency response [119].

The resulting system parameters are given by

K = 0.816 N/m, C = 7.86× 10−8 Ns/m,

M = 8.42× 10−11 kg, f0 = 15.7 kHz

with ω0 = 2πf0.

Additionally, a calibration for the piezo modulator voltage-to-force ratio need to
be determined. This was performed by applying a sinusoidal signal at cantilever
resonance frequency and comparing the deflection response with the expected
output from the previously found transfer function.



8.5. System Identification and Tuning 163

13 14 15 16 17 18 19 20
0

0.5

1

·10−5

Frequency (kHz)

M
a
g
n
it
u
d
e
(n
m

2
/
H
z) Freq. response

Fit

(a)

5 10 15 20 25 30 35 40 45 50

−200

−180

−160

−140

−120

Frequency (kHz)

M
a
g
n
it
u
d
e
(d
B
)

Freq. response

Identified model

(b)

Figure 8.7: System identification. (a) Cantilever spring constant calibration. (b) Can-
tilever frequency response and approximated second-order model, from piezo modulator
to deflection.



164 Model-Based Identification of Nanomechanical Properties: Experiments

8.5.2 Estimator Tuning

The parameter estimator needs to be appropriately tuned for the experimental
conditions. The main tunables are β and P0. Here, β determines the bandwidth
of the estimator, with very high values resulting in noisy estimates. The P0 matrix
determines the level of trust in the initial conditions of the parameter estimates,
with large values meaning low trust, and thus fast initial convergence.

The following values were determined which provided a reasonable bandwidth
with low noise:

β = 50, P0 = diag(5× 107, 1× 1018).

Additionally, α was set to unity.

8.5.3 Estimation Time Interval

By using the results from Corollary 8.1, the estimation time during each inden-
tation, for which the parameter error is guaranteed to be sufficiently small, can
be found. However, the PE properties of the signal vector need to be known in
order to apply the results. In the following, it is demonstrated how to find the
desired time interval when using sample model A, and the estimator tuning from
the previous section.

Consider the applied sinusoidal cantilever modulation force (8.26). Assuming that
the resulting cantilever deflection is dominated by a linear response, and that the
cantilever is in contact with the sample, we have

δ = A sin(ω0t+ ϕ) + δ̄ (8.44)

for some amplitude A, phase ϕ, and mean depth δ̄ ≥ A. While nonlinear tip-
sample interaction forces can induce a response at other frequencies, they would be
substantially attenuated due to the strong resonance effect of the cantilever near
ω0. Thus, (8.44) should be a close approximation to the experimental situation.
Inserting (8.44) into φA from (8.14) gives the signal vector

φA =
[
Aω cos (ω0t+ ϕ) A sin (ω0t+ ϕ) + δ̄

]T
. (8.45)

Next, consider the PE expression from Definition 2.3, and define

S ,
1

Tp

∫ t+Tp

t
φAφTAdτ. (8.46)

By choosing
Tp = 2πω−1

0 (8.47)
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and using (8.45), it can be shown that the solution to (8.46) is given by

S =

[
1
2A

2ω2
0 0

0 1
2A

2 + δ̄2

]
. (8.48)

Thus, φA is PE with level of excitation α0 and α1 given by

α0 = min
{

1
2A

2ω2
0,

1
2A

2 + δ̄2
}

(8.49)

α1 = max
{

1
2A

2ω2
0,

1
2A

2 + δ̄2
}

(8.50)

which satisfy the PE condition

α0I ≤ S ≤ α1I. (8.51)

Thus, with the PE condition found, Corollary 8.1 can then be used to find the
time interval T , within which the parameter error is guaranteed to be desirably
small. First, the following properties can be determined by considering φA from
(8.45)

φ̄2
A = A2ω2 +

(
A+ δ̄

)2
, m̄2

A = 1 + φ̄2
A, (8.52)

Using (8.28)-(8.33), the time interval can be plotted as a function of β at various
values of q, as seen in Fig. 8.8.

By using the tuned value of β, it was found that the time interval which guarantees
that the estimator error has been reduced to q = 0.001% of the initial value is
given by

T = 1.13 s. (8.53)

For the actual implementation, the time interval was rounded up to 1.2 s. This
value was used as the time spent in the Stationary state during each indentation,
see Fig. 8.6.
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8.6 Experimental Results

The method was implemented on the commercial AFM (Park Systems XE-70)
employed in the previous section, using the same cantilever (B40 CONTR). The
AFM was connected to an embedded computer (dSpace DS1103) controlling all
aspects of the operation. A Simulink program implements the necessary equa-
tions from the previous sections, as well as the scanning logic. The program was
transferred to the embedded computer before operation.

The parameter estimator and demodulator was implemented online at a sampling
rate of 200 kHz. The state machine and XYZ controller was run at a separate
sampling rate of 1 kHz. This separation allows for faster sampling speed for the
estimator. The XYZ controller was tuned for relatively low bandwidths, and its
sampling rate was thus sufficient.

8.6.1 Two-Component Polymer Film Sample

The first experiment was performed to demonstrate the normal operating pro-
cedure of DIVE mode AFM, revealing spatially varying viscoelastic properties
of the sample. A total of 30× 30 indentations into a PS-LDPE-12M film sample
were performed. This two-component polymer sample has specified elastic moduli
of around 0.1 GPa and 2 GPa for the two components. The sample is especially
suitable for measuring variations in elasticity due to its clear contrast between the
two polymer components.

In this experiment, sample model A was used for online estimation of spring
constants and damping coefficients. In order to find the elastic modulus, equation
(8.8) was used offline. The results of the scan can be seen in Fig. 8.9. The contrast
in elasticity between the two polymer components is clearly visible.

For each pixel in the scan results, the online estimator recursively estimates the
spring constant and the damping coefficient. The vertical tip position and corre-
sponding parameter estimates in the time-domain, during two subsequent inden-
tations, are shown in Fig. 8.10. It can be seen that the first indentation is located
in the softer region of the sample, while the second indentation near the stiffer
region. This results in the first indentation going deeper, as seen in Fig. 8.10(a).
Since the second indentation does not reach deep into the sample, it is conse-
quently more prone to noise in the depth estimate, resulting in somewhat more
noisy parameter estimates as seen in Fig. 8.10(b). To mitigate such noise, it is
emphasized that the spring constant and tip radius of the cantilever used, need to
be suitable for the sample being investigated. A very soft cantilever will deflect
too much before it sufficiently indents the sample, while a very stiff cantilever will
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Figure 8.9: AFM experiment for a two-component polymer sample.
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Table 8.1: Depth versus elasticity.

Indentation Spring constant Elastic modulus

100 nm 0.335 N/m 2.73 MPa

250 nm 0.435 N/m 2.31 MPa

Difference 26.0 % 16.7 %

indent the sample without sufficiently deflecting and can cause damage.

8.6.2 Homogeneous Gel Sample

In the second set of experiments, a soft gel sample (PDMS-SOFT-1-12M) was
used with a specified elastic modulus of about 2.5 MPa. Four experiments at
20 × 20 resolution were performed in order to compare sample model A and B
at different indentation depths, 100 nm and 250 nm, respectively. The resulting
identified spring constants (sample model A) and elastic moduli (sample model
B) are shown in Fig. 8.11.

The mean of the identified parameters from each experiment is given in Table 8.1.
The identified elastic modulus is close to the specified value of 2.5 MPa. If the
sample perfectly complies with the Hertz model, then the elastic modulus should
be invariant with regards to the indentation depth. However, the results indicate
some difference at the two depths. This suggests that the Hertz model is not
completely descriptive for the experimental setup. In particular, the indentation
is large compared to the radius of the cantilever, which violates the assumption
of small indentations. This could be mitigated by using a cantilever with a larger
tip radius, or lower spring constant. Additionally, adhesion effects could be large,
something which is further discussed in the next experiment.

Note that the difference in the mean spring constant is larger than for the elastic
modulus. This can be used as an argument in favor of implementation of the Hertz
sample model B, and demonstrates the necessity of a nonlinear sample model.

For many soft, biological materials it is not possible to calculate the elastic modu-
lus [96], as they do not even approximately behave in accordance with Hooke’s law
or its nonlinear variants, which is the basis of the elastic models presented in this
chapter. For such materials, a more suitable sample model could be developed,
and used in the modeling and identification approach as presented.
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Figure 8.11: Four AFM experiments demonstrating identification of (a)-(b) spring con-
stants (sample model A), versus (c)-(d) elastic moduli (sample model B), at different
indentation depths on a homogeneous gel sample.
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8.6.3 Time-Varying Estimation

Since the presented approach uses a recursive parameter estimation scheme, the
time-varying nature of the parameters can be recorded. This can be demonstrated
by performing a single indentation into a soft sample. If the sample complies with
the Hertz model, then the spring constant from sample model A should increase
with increasing indentation depth. Thus, if the cantilever tip is lowered and raised
again, experimental results should demonstrate time-varying parameters.

This experiment was performed on the same gel sample as previous (PDMS-
SOFT-1-12M). During the experiment, the cantilever was lowered until it reached
some specified depth into the sample, then raised again. Throughout the whole
procedure, while the tip was in contact with the sample, the parameter estimator
was enabled. The experiment was implemented at a slow vertical speed, to make
sure that the parameter estimates were accurate. The cantilever and experimental
setup from the previous experiments have otherwise been used.

The results of the experiment are given in Fig. 8.12. The parameter estimates
as shown in Fig. 8.12(a) demonstrate that the spring constant generally increases
with increasing indentation depth as expected, and decreases as the tip is raised
again. Thus, proper estimation of time-varying parameters by using the presented
approach is demonstrated.

The results also demonstrate several effects due to adhesion and deformation that
should be considered when performing experiments:

After initial contact. Initially after contact, the spring constant estimates be-
come negative. Negative spring constants make little physical sense unless
one considers the effect of adhesion. As the tip approaches the sample,
attractive adhesion forces pull the tip onto the sample, resulting in a neg-
ative cantilever deflection (Fig. 8.12(b)) which is interpreted as negative
interaction forces by the parameter estimator. The best fit of the positive
indentation depth signal onto the negative cantilever deflection using the
sample models implemented, results in negative parameter estimates.

Raising the cantilever. A similar effect is seen towards the end of the exper-
iment, just before the tip is freed from the sample. As the tip is raised,
adhesion forces will make the sample stick to the cantilever tip. This could
also result in deformation of the sample, by raising it towards the tip as it is
lifted. For these reasons, in the experiment, at some point the indentation
depth becomes zero and then negative. As it approaches zero depth, the
spring constant estimate grows toward either positive or negative infinity,
depending on the net force experienced by the cantilever. Generally, the
sample model and estimates in the adhesive regime is thus invalid.
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Figure 8.12: Time-varying parameter estimates. The estimated spring constant is shown
to change with the indentation depth. Unmodeled adhesion effects give rise to unreliable
results at the start and end of the experiment.
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These effects could explain the difference of the elastic modulus at different depths
in the previous experiment. To mitigate the effect of adhesion, the sample model
could be modified to include adhesion, such as by employing the Johnson-Kendall-
Roberts (JKR) or Derjaguin-Muller-Toporov (DMT) contact models [195].

8.7 Conclusions

A model-based identification technique is presented for determining spatially re-
solved nanomechanical properties in AFM. Both the cantilever and sample behav-
ior is described by dynamic models. The cantilever dynamics are assumed known
by identifying its parameters before performing the experiments, while the sample
dynamics incorporate the unknown parameters to be identified. A recursive least
squares estimator is used for identification of the sample parameters.

Employing a recursive estimator has several advantages over comparable tech-
niques. First, it allows online identification of the nanomechanical properties,
enabling the operator to see real-time conditions. Secondly, it allows the de-
termination of time-varying changes of the parameters as demonstrated by the
experiments. This could be useful by itself, such as for observing changing con-
ditions in cells or other biological material. Finally, observing such time-varying
changes could reveal erroneous conditions or unmodeled dynamics, as this could
dramatically affect the estimated parameters. An example of this is seen in the
last experiment, where negative and diverging spring constant estimates are seen
near the beginning and end of the experiment. This is believed primarily to occur
due to unmodeled adhesion effects.

Furthermore, the use of an analytical expression for the estimation time interval of
the recursive least squares estimator is demonstrated. Within this time interval,
the parameter error is guaranteed to have been reduced to any given fraction of
the initial error. The time interval can be determined a priori, and spending this
length of time at each indentation point then guarantees that the parameters will
converge to any desired accuracy. This is verified by the experiments, where the
parameters are seen to converge within the determined time interval.

Two sample models are developed and implemented for this approach – a linear
spring-damper model and a nonlinear Hertz model. It is demonstrated that only
minor modifications are needed to switch between the models. The experiments
show the Hertz model to be a better match. However, some materials may not
be well described by this model, and it is then a clear advantage of the proposed
modeling and identification approach that the sample model can be exchanged
for a more suitable dynamic model.
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Chapter 9

Conclusions and Future Work

This thesis consists of three parts mainly concerning performance improvements,
and novel methodologies for revealing nanomechanical sample properties in AFM.
Conclusive remarks to each part are given here, with suggestions for future work.

9.1 Part I

In Part I, a technique is developed for simultaneous estimation of the true topog-
raphy and the tip-sample interaction force, in noncontact dynamic mode AFM.
The cantilever dynamics are considered linear, while the distance between the
tip and the sample appears nonlinearly in the tip-sample interaction force con-
sidered. Thus, in order to resolve the tip-sample distance and consequently, the
true topography, a nonlinear estimation problem must be solved. Two distinct
observers are designed to solve this problem, one of which guarantees near-global
exponentially stable error dynamics. Numerical results are given in this work,
while experimental implementations of this approach remain to be performed.

Several extensions to this approach can be considered for future work. The simul-
taneous estimation of the Lennard-Jones parameters would increase the practical-
ity of the approach; and since they appear linearly in the tip-sample interaction
force, they should be identifiable under normal PE conditions. Since the approach
only considers the attractive force regime, it may be sufficiently accurate to only
consider the van der Waals term of the force model (the distance squared term),
resulting in a much simpler system to be observed. Otherwise, the method could
be extended to tapping mode, where both attractive and repulsive forces are con-
sidered. Finally, the robustness of the approach to modeling errors or disturbances
should be investigated. In particular, the tip-sample interaction force may not be
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as smooth as considered, and the cantilever model contains higher modes which
may need to be included for accurate representation of real world conditions.

9.2 Part II

In Part II, the demodulator in dynamic mode AFM is considered. A comparison
of state-of-the-art techniques for demodulation in AFM is presented. Further-
more, the Lyapunov estimator is introduced for demodulation of amplitude and
phase. Numerical and experimental results demonstrate that the Lyapunov esti-
mator achieves a particularly attractive combination of (i) performance in terms
of bandwidth and noise attenuation, (ii) low implementation complexity, and (iii)
rejection of frequency components away from the carrier frequency. Compared to
the widely used lock-in amplifier, the Lyapunov estimator demonstrates a better
performance at higher bandwidths, but is somewhat more sensitive to noise at
lower bandwidths and to other frequency components. This can mainly be at-
tributed to the usage of a fourth-order low-pass filter in the lock-in amplifier. In
future work, it could be investigated how the Lyapunov estimator performs when
augmented with an equivalent filter, and whether the W (s) pre-filter could be uti-
lized for increased noise attenuation without sacrificing performance. Compared
to the peak hold method used in some of the major high-speed AFM results,
the Lyapunov estimator performs similarly or better in terms of bandwidth, is
vastly improved in terms of sensitivity to noise, and can be used in multifre-
quency AFM applications. However, it is somewhat more complicated in terms of
implementation complexity. A future challenge is to investigate whether it can be
implemented at sampling times near those achieved with the peak hold method.
If successfully implemented as such, high-speed AFM imaging may be improved
in terms of noise and possibly better resolution or contrast.

9.3 Part III

Part III introduces the model-based identification approach for resolving nanome-
chanical properties in AFM. This approach is particularly attractive compared to
recent multifrequency AFM approaches for determination of such properties, since
it avoids complicated relationships between the observables and the properties to
be determined. Furthermore, the demodulation of the deflection signals at multi-
ple frequencies is completely avoided, as the model-based identification approach
directly uses the measured signals.

Two modes of operation are developed for the model-based identification ap-
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proach, DIVE mode and SVE mode. A numerical simulation environment is devel-
oped to investigate the performance of the two modes. Furthermore, DIVE mode
is implemented experimentally and successfully resolves the mechanical proper-
ties of the samples investigated, including online identification of elastic moduli.
SVE mode remains to be experimentally implemented. A particular challenge for
samples of highly varying elasticity is the use of the constant-depth controller.
However, the mode should be able to be adapted to avoid this component, and
rather rely on typical amplitude signals or similar for feedback control. SVE mode
is likely to produce vastly improved imaging rates compared to DIVE mode, and
rather comparable to those of recent multifrequency AFM approaches. It can even
be argued that it can be improved over multifrequency AFM, as the presented
approach does not rely on stationary signals such as amplitude and phase, but
rather uses the entire transient information of the signals.

In future work, the sample model can be augmented to include additional prop-
erties. The presented approach is easily extended for parameters that appear
linearly in the signals, the only requirement is then to ensure PE conditions.
Such properties may include the depth-gradients of elasticity and viscosity. Then,
one only needs to ensure that additional sinusoids appear in the cantilever deflec-
tion signal to ensure PE conditions. Single frequency excitation may be sufficient
if the higher harmonics are detectable, otherwise the cantilever can be excited
at multiple frequencies. Parallels to multifrequency AFM then start to become
apparent.

This brings an interesting viewpoint, or insight, into multifrequency AFM. The
ability to measure the properties that are measured in existing methods, can
essentially be considered a problem of ensuring persistency of excitation. That
is, the information in the recorded signals needs to be sufficiently rich to ensure
that the properties can be uniquely determined. This insight may be used as
a guideline for future research. Instead of pursuing complicated relationships
between the observables and the multifrequency components, rather pursue PE
conditions using the model-based identification approach.

Other improvements to the sample model would be highly attractive, such as
including adhesion effects. However, depending on how adhesion is modeled, its
parameters may not appear linearly in the model. It is also possible that such a
property cannot be uniquely determined without completely retracting from the
sample and approaching it again, such that it can only be determined in DIVE
mode. These efforts may not be as easy as ensuring PE conditions. However, for
some problems with nonlinearly parametrized properties, a solution may be found
by employing approaches such as the nonlinear state- and parameter-estimator
used in Chapter 3.
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For simulation purposes, one could consider replacing the grid of spring-damper
elements, and rather directly use a contact model with varying parameters. This
approach might lead to more physically accurate simulations, while being simpler
numerically.

Finally, this part also introduces upper bounds on the convergence rate of the
least squares estimator in the general sense. This makes it possible to guarantee
convergence of the parameters to any desired accuracy after a given time interval,
and was exploited during the experiments performed in DIVE mode. In future
work, it would be helpful to additionally develop a lower bound on the convergence
rate. Such a result could aid in tuning of the estimator, as the upper bound may
be rather conservative.



Appendix A

Total Integrated Noise

This chapter discusses total integrated noise (TIN), used to measure the noise
performance of various demodulation schemes given in Chapter 4 and Chapter 5.

The TIN given white noise filtered through a system G(s) is given by [49]

σ(G) =

√∫ fbw

0
A|G(j2πf)|2df (A.1)

where fbw is the measurement bandwidth, and A is the power spectral density of
the white noise. Consider the first order and second order low-pass filters

G1(s) =
1

(2πfc)−1s+ 1
, G2(s) =

1

((2πfc)−1s+ 1)2 ,

for some cut-off frequency fc > 0. Using (A.1) the TIN for each system is given
by

σ(G1) =
√
A

√
fc atan

(
fbw
fc

)
(A.2)

σ(G2) =
√
A

√
1

2
fc atan

(
fbw
fc

)
+

1

2

fbwf2
c

f2
bw + f2

c

. (A.3)

It can be shown that σ(G1) > σ(G2) for all fbw, fc > 0. Furthermore, consider the
case where the measurement bandwidth is much greater than the cut-off frequency,
fbw � fc. Then, the ratio between the TIN of each system is given by

lim
fbw→∞

σ(G2)

σ(G1)
= 1/

√
2.
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Table A.1: TIN Ratio for nth vs. first order low-pass filter.

n σ(Gn)/σ(G1)

2 0.7071

3 0.6124

4 0.5590

5 0.5229

Thus, the TIN of the second-order filter is a factor ∼ 0.71 the TIN of the first-order
low-pass filter. By following the above procedure for the higher order filters

Gn(s) =
1

((2πfc)−1s+ 1)n
, (A.4)

the TIN ratio between an nth order and a first order low-pass filter can be found.
Results are summarized in Table A.1. Note that the TIN is reduced with increas-
ing filter order.
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