
Robust Volumetric 3-D Reconstruction in
a Dynamic Environment

Roy Konrad Angelsen

Master of Science in Cybernetics and Robotics

Supervisor: Annette Stahl, ITK

Department of Engineering Cybernetics

Submission date: May 2018

Norwegian University of Science and Technology



 







Problem description

Neodroid is a research project at SINTEF Ocean with the purpose of developing a general
purpose humanoid robot that is able to perform complex repetitive tasks that are generally
performed by humans today.

This study aims to develop a basis for the Neodroid vision system. More precisely,
this task is broken down into two main parts. The first part consists of reconstructing the
volume in which the robot is to operate, referred to as workspace, from multiple viewing
angles. The second part consists of detecting where changes have occurred in the volume
as seen from an overview camera, and determining where to place the cameras mounted
on the robots’ arms, to obtain a close-up view of these novel regions of interest.





Abstract

As a part of a research project at SINTEF Ocean AS named Neodroid aiming at devel-
oping a general purpose humanoid robot to execute a variety of complex tasks, the need
for perceptive ability arises. The robot consists of two robotic manipulators and is inten-
ded to solve tasks demonstrated by a human in a virtual environment. This study aims
at developing a vision system that is capable of keeping an accurate reconstruction of
the robot workspace. To achieve this, a volumetric representation method consisting of
a three-dimensional grid of voxels is used. To keep this reconstruction up to date, the
changing regions of the volume need to be scanned. This is achieved by performing no-
velty detection with RDE1 on depth images from a camera viewing the entire volume in
a top-down configuration. The novel regions are then reconstructed in three dimensions
and clustering is performed to draw bounding boxes around these. Camera viewpoints are
generated on a circular path around each novel region to obtain an accurate measurement.

1Recursive Density Estimation

i



Sammendrag

Denne studien er gjort i forbindelse med et forskningsprosjekt på SINTEF Ocean AS der
formålet er å utvikle en generell humanoid robot kalt Neodroid, som består av to robot-
armer og tre dybdesensorer. Denne roboten har som formål å utføre komplekse oppgaver
som den får demonstrert av et menneske ved hjelp av virtuell virkelighet (VR). Behovet
for en presis forståelse av omgivelsene den opererer i er derfor essensiell. Denne studien
tar sikte på å utvikle og implementere en metode for å la roboten holde en oppdatert repre-
sentasjon av det tredimensjonale rommet den opererer i. For å oppnå dette, rekonstrueres
roboten arbeidsområde som et vokselbilde. For å holde rekonstruksjonen oppdatert be-
nyttes et kamera med evne til å oppfatte dybde til å måle arbeidsområdet. Ett kamera er
montert slik at det får overblikk over arbeidsområdet. Endringer i arbeidsområdet finnes
fra bildestrømmen fra dette kamera med algoritmen RDE (Recursive Density Estimation).
Disse regionene tilnærmes som tredimensjonale bokser ved å analysere grupperingene av
endringene som sett fra oversiktskamera, før de deretter skal bli fotografert med dybde-
kamera montert på robotens armer fra nært hold og forskjellige vinkler.

ii



Preface

This report is the result of a study performed at the 10th semester towards the degree of
Master of Technology at the Department of Engineering Cybernetics at the Norwegian
University of Science and Technology. The study has been completed in collaboration
with SINTEF Ocean AS as part of an ongoing research project.

The result of this study is largely in the form of software implementations. These imple-
mentations are to a large degree developed independently, with exceptions in the from of
some third-party open source software libraries listed in chapter 4. Equipment that has
been used include one Intel R© RealSenseTM SR300 and one D415, both provided by SIN-
TEF Ocean AS.

Supervision of scientific work has been provided by John Reidar Mathiassen at SINTEF
Ocean AS during the entire course of the study.

Supervisor: Anette Stahl, ITK
Co-supervisor: John Reidar Mathiassen, SINTEF Ocean AS

iii



iv



Contents

Problem description 3

Abstract i

Sammendrag ii

Preface iii

Table of Contents vii

List of Tables ix

List of Figures xiii

1 Introduction 1
1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Background theory 5
2.1 Mean and variance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Rigid body kinematics . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2.1 Rotations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2.2 Homogeneous transformations . . . . . . . . . . . . . . . . . . . 7

2.2.3 Robotic manipulator modelling . . . . . . . . . . . . . . . . . . 7

2.3 Camera model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3.1 Extrinsic camera calibration . . . . . . . . . . . . . . . . . . . . 9

v



3 Method 11
3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.2 Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.2.1 Hardware setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.2.2 Scene measurement . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.2.3 Sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.2.4 Intel RealSense API . . . . . . . . . . . . . . . . . . . . . . . . 15

3.3 Workspace reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.3.1 Regular 3-D voxel grid . . . . . . . . . . . . . . . . . . . . . . . 17

3.3.2 Oct-Trees as a 3-D modelling technique . . . . . . . . . . . . . . 18

3.4 Integrating new measurements . . . . . . . . . . . . . . . . . . . . . . . 19

3.4.1 Direct depth map projection . . . . . . . . . . . . . . . . . . . . 20

3.4.2 Truncated Signed Distance Function . . . . . . . . . . . . . . . . 20

3.5 Novelty Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.5.1 Available streams . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.5.2 Technique overview . . . . . . . . . . . . . . . . . . . . . . . . 24

3.6 Post-processing and novelty segmentation . . . . . . . . . . . . . . . . . 27

3.7 3-D reconstruction of novelties . . . . . . . . . . . . . . . . . . . . . . . 27

3.7.1 Determining three-dimensional regions . . . . . . . . . . . . . . 28

3.8 Generating camera poses . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4 Implementation 37
4.1 Software architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.2 Third-party software . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.3 Sensor interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.4 Workspace reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.4.1 Regular 3-D voxel grid . . . . . . . . . . . . . . . . . . . . . . . 41

4.4.2 Octree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.5 Measurement integration . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.6 Novelty detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.7 Post-Processing and novelty segmentation . . . . . . . . . . . . . . . . . 42

4.8 Novelty reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.9 Camera pose generation . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.10 Visualization software . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.11 Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

vi



5 Experimental Results 47
5.1 Workspace reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.2 Integrating new measurements . . . . . . . . . . . . . . . . . . . . . . . 50
5.3 Novelty Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.4 Post-Processing and novelty segmentation . . . . . . . . . . . . . . . . . 54
5.5 Novelty reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.6 Camera pose generation . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

6 Conclusion 61

Bibliography 62

Appendix 67

vii



viii



List of Tables

5.1 Memory consumption in bytes of Octree and voxel grid representation of
the same scene . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

ix



x



List of Figures

1.1 Overview of the modules that constitute the Neodroid system. Arrows
indicate data flow. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2.1 Camera pinhole model . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.1 Hardware setup of the Neodroid consisting of two robotic manipulators
with depth sensors eye-in-hand and an overview sensor. . . . . . . . . . . 12

3.2 Intel R© RealSenseTM SR300 component layout (front view) (Intel R©Corporation,
2016) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.3 Regular 3-D voxel grid . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.4 3-D scene representation as octree. Note that ”free space” regions are
represented with larger cubes thus limiting the number of leaf nodes. . . . 18

3.5 The signed distance to voxel x and truncation distance relative to the surface 21

3.6 Novelty detection on a stream of IR images. In spite of the distance from
the surface to the camera sensor being different in the two frames, there
is not a considerable change in the IR intensity values to flag the entire
surface as novelty. This results in important information loss. . . . . . . . 23

3.7 Clustering example. AHC produces the output dendrogram (left) from
the input data set (right) . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.8 Optimal clustering configuration using the approach by Jung et al. (2003) 34

3.9 Camera poses are placed at a distance r from the centroid of the novelty
bounding box on a circular path . . . . . . . . . . . . . . . . . . . . . . 35

3.10 Frustum geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

xi



4.1 Class diagram of the software developed in this study. Dotted directional
arrows shows dependency by source class on target class. Solid direc-
tional lines with diamond at the source class indicate that the target class
is aggregated by the source. Core operations and data types are shown as
contents of the class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.1 Color and depth image of scene 1 . . . . . . . . . . . . . . . . . . . . . . 48

5.2 Color and depth image of scene 2 . . . . . . . . . . . . . . . . . . . . . . 48

5.3 Camera setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.4 Sample of scene measurement used to in this experiment . . . . . . . . . 50

5.5 Direct projection of a depth measurement onto the volume . . . . . . . . 51

5.6 Direct projection of a depth measurement with filtering based on number
of observations where voxels with less than 50 observations over the 9
images captured, are dropped. . . . . . . . . . . . . . . . . . . . . . . . 51

5.7 Integration of measurements based on the TSDF update scheme . . . . . 51

5.8 The scene change from which the following results are obtained . . . . . 52

5.9 Novelty image with the Cauchy kernel and novelty threshold 0.1σ . . . . 52

5.10 Novelty image with the Gaussian kernel and novelty threshold 0.25 . . . . 52

5.11 The scene measurement in the IR spectrum from which the following res-
ults are obtained. The box is raised 10 cm in order to isolate performance
in the zk direction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.12 Novelty image with the Cauchy kernel and novelty threshold 0.1σ . . . . 53

5.13 Novelty image with the Gaussian kernel and novelty threshold 0.25 and
α = 0.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.14 Novelty detection of a series of depth images. The correspondng IR
frames (left) and novelty image (right). The initial frame is shown at the
top and subsequent frames are shown chronologically under. Note how
sensitivity to regions with persistent change is reduced. . . . . . . . . . . 54

5.15 Erosion by a square structuring element of width 9 pixels . . . . . . . . . 55

5.16 The 5 first (from the top) frames of the novelty detection with IR meas-
urement to the right and corresponding novelty image to the left. The
objects in the image include a cardboard box and a clear glass vase. . . . 57

5.17 Reconstruction with optimal clustering based on the approach by Jung
et al. (2003). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.18 The first 2 frames (left) from the top with corresponding novelty image
(right) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

xii



5.19 Reconstruction of the measurements shown in figure 5.18 with bounding
boxes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.20 3 frustums (rendered in white) are placed around each novelty bounding
box as close as possible . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

xiii



Chapter 1
Introduction

1.1 Overview

Robotic systems play an increasingly important role in modern industry. By performing
tasks such as machining, milling or moving objects from point A to point B, industrial
robotic systems have proven their use in solving tasks that require high precision motor
abilities (Spong et al., 2006). However, there is still a lot of improvement to be done if
robots are to reliably perform tasks that seem simple to a human such as inspection of raw
materials in food- and agricultural industry, certain house chores or inspection and sorting
of miscellaneous objects. These are tasks that seem simple to a human being but may be
quite complex in light of today’s technology.

The research project named Neodroid at SINTEF Ocean AS aims to develop such a
robot. The purpose of the Neodroid robot is to be able to perform complex tasks that can
be solved by two human arms. In order to solve such tasks, the robot is equipped with
two robotic manipulators, each equipped with a depth sensor mounted in eye-in-hand
configuration. In addition, a depth sensor with a large field of view mounted in top-down
configuration relative to the workspace is used for overview of the scene. For the robot to
be able to perform tasks such as the ones mentioned above in environments that are subject
to frequent change, the need for robust and accurate perception arises. This study aims
to develop software that creates a reconstruction of the workspace volume from a series
of depth images captured from different angles as well as determine camera viewpoints
from where novel regions are to be viewed.

The task to be solved by the robot is specified in the form of a demonstration by a
human in virtual reality (VR). Synthetic examples over the problem domain is then ran-

1



domly generated and solved in a virtual environment by the machine learning and decision
mechanism of the robot. In order for this learning process to be effective, the learning
and decision mechanism of the robot has to have access to a three-dimensional (3-D)
reconstruction of the workspace volume. This constitutes the main motivation for the
development of the custom volumetric reconstruction software in this study i.e. to have
full control over how the reconstruction is generated and the ability to alter this procedure.

Another requirement on the vision module is that the workspace reconstruction is to
be a voxel-based reconstruction. That is, the volume is represented as a grid of volume
elements (voxels) which is the three-dimensonal counterpart of a picture element (pixel).
This requirement is stated to maintain compatibility with the decision mechanism of the
robot.

Use-cases of the vision module include providing the decision mechanism with a re-
construction of the volume. Additionally, whenever the decision mechanism issues com-
mands to the manipulators, the manipulator controller module needs an accurate repres-
entation of the workspace volume in order to generate the security parameters to avoid
surface collision.

Figure 1.1: Overview of the modules that constitute the Neodroid system. Arrows indicate data
flow.

2



1.2 Contribution

The combination of depth sensors mounted on robotic manipulators has been around for
some time. One such system is the ATOS (GOM, 2018) which includes high-precision
sensors for measurement of three-dimensional space and is used to automate inspection
for quality control in e.g. industrial manufacturing.

A similar application of robotic manipulators used to perform general tasks similar to
those a human might perform, is the Moley robotic kitchen (Moley, 2018). This system
of robotic manipulators with end-effector grippers emulating human hands, is designed
to perform a wide range of cooking tasks while suspended from a rail over the kitchen
top. This is a highly complex task that involves problems encountered in design of the
Neodroid system such as three-dimensional perception.

Although similar systems to the Neodroid robot have been developed, this particular
combination of the system components to perform general tasks have not been success-
fully implemented to the author’s knowledge. What separates the Neodroid from exisiting
systems such as those mentioned above lies in the generality. Whereas other systems have
successfully been implemented to perform a set of specific tasks, the Neodroid is planned
to perform a vast amount of tasks that two human arms can. Additionally, the use of VR
to demonstrate tasks that are to be solved autonomously, is a novel aspect of the Neodroid.
However, when it comes to the vision system which is the scope of this study, the Neo-
droid is planned to implement functionality that has already been implemented in a large
amount of other systems included the ones mentioned above. These vision-related tasks
include three-dimensional reconstruction (Newcombe et al., 2011) and novelty detection
(Morris and Angelov, 2014).

3



4



Chapter 2
Background theory

In order to aid the understanding of the techniques employed in this study, an overview
of relevant theory will be presented. The reader is assumed to have a fundamental un-
derstanding of the concepts and notations associated with calculus, linear algebra, and
modelling of dynamic systems.

2.1 Mean and variance

In order to understand some of the concepts related to statistical background modelling
in a images, some essential formulas in the field of probability theory are introduced.
One important attribute to obtain from a collection of data points referred to as a data
set, is a measure of how much the data points vary. A measure of variability in a data
set consisting of n points is the population variance (Walpole et al., 2012). This is the
average squared deviation from the mean

σ2 =
1

n

n∑
i=1

(xi − µ)2 (2.1)

where mean is defined as

µ =
1

n

n∑
i=1

xi (2.2)

The image pixels can be considered as a data set on which variance can be calculated.

5



2.2 Rigid body kinematics

2.2.1 Rotations

Mathematical representation of orientation is an important task in modelling of dynamic
systems. A method for representing three-dimensional orientation of frame a with respect
to frame b, is by Euler angles. Euler angles parameterize orientation with the three angles
Θba = [φ θ ψ]T around the xa, ya, and za axes respectively (Fossen, 2011). In order to
rotate vectors in frame a to frame b, the notion of rotation is introduced. Rotation can
be represented by a rotation matrix Rab which transforms points in frame b into frame a;
va = Rabv

b. Note that the inverse, reverses the rotation source and destination frames
(Rab )

−1 = (Rab )
T = Rba (Egeland and Gravdahl, 2002).

Rotation around x, y and z are expressed by the following rotation matrices respect-
ively

Rx(φ) =

1 0 0

0 cosφ − sinφ

0 sinφ cosφ

 (2.3)

Ry(θ) =

 cos θ 0 sin θ

0 1 0

− sin θ 0 cos θ

 (2.4)

Rz(ψ) =

cosψ − sinψ 0

sinψ cosψ 0

0 0 1

 (2.5)

and are referred to as the principal rotation matrices (Fossen, 2011). Composite rota-
tions are performed by simply ordering the rotation matrices in such a way that rotation
carried out first is applied first e.g. vd = RdcR

c
bR
b
av

a (Fossen, 2011).

A matrix is a rotation matrix if an only if R ∈ SO3 (Fossen, 2011) where SO3 is the
third order special orthogonal group

SO3 = {R|R ∈ R3×3, R is orthogonal and det R = 1}

6



2.2.2 Homogeneous transformations

When reconstructing a three-dimensional space with a collection of two-dimensional
depth images, the definition of several coordinate frames is necessary. An essential oper-
ation in this study is the transformation of points in one frame into another. This is carried
out by multiplication with a homogeneous transformation matrix

Tab =

[
Rab tab
0T 1

]
∈ SE3 (2.6)

where SE3 is the Special Euclidean three-dimensional group (Egeland and Gravdahl,
2002)

SE3 = {R, t|R ∈ SO3, t ∈ R3} (2.7)

Rab is the rotation matrix from frame b to frame a and tab is the position of the origin
of frame b expressed in frame a. A position vector in frame b pb is then transformed
to a position in frame a pa by ṗa = Tab ṗ

b where ṗ denotes the homogeneous vector
ṗ = [pT |1]T (Newcombe et al., 2011).

2.2.3 Robotic manipulator modelling

In applications involving robotic manipulators, it is essential to determine the pose of the
end-effector relative to some reference frame. Because the links of the robotic manipu-
lator is assumed to be rigidly attached to each other, the pose of any given link can be
computed in terms of the poses of the previous links. That is, given the link numbering
where link 0 is the base frame and increasing numbers are subsequent links, the pose of
link n in the base frame 0 is expressed as

T0n = A1(q1) · · · An(qn) (2.8)

Ai(qi) represents the joint homogeneous transformation matrix of joint i with respect
to the previous link, with the joint variable qi of the link which is

qi =

θi, for revolute joints,

di, for prismatic joints
(2.9)

θi is the rotation around the joint axis of the revolute joint and di is the translation
distance along the joint axis of the prismatic joint (Spong et al., 2006).

7



2.3 Camera model

The measurements used in this study are expected to be in the form of a depth image.
The depth to each image pixel u ∈ N2

0 is defined as the distance along the zk axis and is
encoded in each image pixel D(u).
In order to transform a camera pixel together with it’s corresponding depth measurement
to a three-dimensional point pk in the camera frame, the camera matrix of intrinsic para-
meters also referred to as the camera calibration matrix is used.

K =

fx s x0

0 fy y0

0 0 1

 (2.10)

(Hartley and Zisserman, 2004) The intrinsic parameters are sensor-specific parameters
and the meaning of these can be better understood when explained in the context of the
camera pinhole model (Gonzalez and Woods, 2010). Consider the camera pinhole model
in figure 2.1. Light is captured on the film on the image plane through the pinhole of the
camera.

Figure 2.1: Camera pinhole model

The focal length f is the distance from the image plane to the pinhole and is repres-
ented by the intrinsic parameters fx and fy measured in pixels. In a true pinhole camera
fx = fy is true. However, due to factors such as flaws in the sensor or lens distortion
effects these may differ.

The skew coefficient s represents the skew between the image plane x and y axis.
Lastly, the principal point (x0, y0) represent the xy position of the pinhole in the camera
frame.

A an image pixel u together with it’s corresponding depth measurement D(u) is then
transformed to a point in the camera coordinate frame by

pk = D(u)K−1u̇ (2.11)

8



2.3.1 Extrinsic camera calibration

Extrinsic camera calibration refers to the task of determining the camera’s extrinsic para-
meters, namely the pose (position and orientation) relative to the global coordinate frame
g denoted as the homogeneous tranformation matrix T

g
k. In spite of the camera being

mounted in eye-in-hand configuration the pose of the camera is not the same as the pose
of the end-effector due to offset of the mounting point of the camera from the end-effector
position. Since the links in the robotic manipulator are considered to be rigid, the camera
pose relative to the end-effector Tek can be used to calculate the pose of the camera relative
to the global frame. This can be calculated as the composite homogeneous transformation
matrix

T
g
k = TgeT

e
k (2.12)

where Tge is the pose of the end-effector of the robotic manipulator which is obtained
from the manipulator controller. So the task of performing extrinsic camera calibration
thus becomes the task of estimating the camera pose relative to the manipulator end-
effector Tek. A detailed description of this task is beyond the scope of this report, but
further information may be found in Tsai and Lenz (1989).

9



10



Chapter 3
Method

3.1 Overview

In this chapter, a detailed description of the methods employed to solve the task at hand
will be given. The description given in this chapter is concerned with the conceptual
approach to the solution of the problem, while implementation details are reserved for
the subsequent chapter. Essentially, this means that the discussion of different available
methods for solving sub-problems or mathematical analysis of these - where necessary -
will be carried out in this chapter.

To begin with, the planned hardware setup of the application discussed in this study
will be described. Then, a closer look will be taken at different options for how 3-D scene
measurement can be carried out as well as sensors available to realize these. Furthermore,
methods for representing the 3-D scene and how new measurements are to be integrated
into this reconstruction will be presented. Novelty detection being one of the core topics
in this study will be discussed extensively in the subsequent sections with the most prom-
ising alternatives for performing this being evaluated. Another core topic of this study
is the grouping of novel regions in the 3-D reconstruction of novelties. This motivates
the introduction of cluster analysis in this study and thus several appropriate methods for
performing this analysis will be covered.

11



3.2 Measurement

3.2.1 Hardware setup

In order to better understand the context of this study, an overview of the hardware setup
will be given in this section. This is to aid the understanding of the Neodroid application
itself as well as the options available for solving several of the sub-problems encountered
in this study.

The hardware setup of the Neodroid application consists most fundamentally of two
robotic manipulators, each mounted with a 3-D scene measurement device in eye-in-hand
configuration with small field-of-view. Eye-in-hand configuration refers to vision sensors
mounted at the end of the robotic manipulator close to the manipulator end-effector (Lip-
piello et al., 2005). This is to allow the robot to non-intrusively view objects from different
angles since the alternative involves to manipulate the objects themselves. The base of the
robotic manipulators are mounted outside of the 1 m × 1 m × 1 m workspace volume on
either side as shown in the figure 3.1

Figure 3.1: Hardware setup of the Neodroid consisting of two robotic manipulators with depth
sensors eye-in-hand and an overview sensor.

The manipulators are of the type Franka Emika and are shipped with an open source
API (Application Programming Interface) to control these. The task of operating the
manipulators are beyond the scope of this study, but the reader may consult the vendor
website 1 for more information.

1https://franka.de/

12

https://franka.de/


The robot is also equipped with what will be referred to as an overview 3-D scene
measurement device with a large field-of-view which is intended to be mounted at a fixed
location above the workspace volume. This is - as the name implies - to provide the robot
with an overview of the contents in workspace volume. The device is to be mounted in a
top-down fashion allowing for maximum awareness in the scene as objects are less likely
to be occluded by other parts of the scene as for example is the case if it was mounted to
view the volume from the side. Note that this does not restrict the overview camera to a
90◦ viewing angle downwards from the horizontal plane.

3.2.2 Scene measurement

Central to the task of reconstructing a 3-D scene is the task of measuring 3-D space.
Measurement here refers to the acquisition of information on occupancy of the volume as
well as color and texture of objects in the scene. Vital to the task at hand is the acquisition
of occupancy information of a fixed-sized volume and therefore appropriate measurement
techniques needs to be determined.

There are several approaches available to obtain depth measurements form a 3-D scene
(including ultrasound, RADAR, LIDAR, etc.) but this study calls for these to be commer-
cially available and mountable on a robotic manipulator. Even with the set of relevant
sensors limited in this way, there are still several viable techniques available to obtain the
needed information from a scene.

Color-sensitive cameras have been around for a long time, but a single such sensor
alone does not produce any information on the depth to the pixels in the frame. It is only
when multiple such sensors are combined that information on the depth to each pixel is
made available by doing stereo-correspondence (Lazaros et al., 2008). This is much like
the human vision system works, where the two eyes act as individual sensors and the brain
performs the stereo-correspondence (Marr and Poggio, 1979). This is referred to as stereo
vision and is one of several approaches available to obtain depth measurement of a 3-D
scene.

The introduction of Kinect by Microsoft Corporation in late 2010, signalled the dawn
of a new age of commercially available depth sensing devices (Han et al., 2013). By
commercially available it is meant that the price is bearable on an average private con-

13



sumer budget. These sensors employ the infrared (IR) spectrum to project a know pattern
known as structured light (Scharstein and Szeliski, 2003), onto the scene directly in front
of the sensor with an IR projector. The depth to the scene is determined by interpreting
the reflection of the projected pattern and the range to each pixel is encoded as a scalar
value at the pixel location in the image frame. This eliminates the necessity of multiple
color cameras to determine the distance from the sensor and thus provide a more compact
solution to the scene measurement problem.

One drawback with using only pure range sensors is that color measurement of the
scene is absent. Consequently, perception of a vast amount of textures that have a weak
signature in the IR spectrum are unobservable.

The importance of having a perceptive ability that includes color in this application
can be questioned. This doubt is raised as a result of the assumption that the ability to
percieve the relative location of surfaces in the scene takes presedence over the ability to
percieve color and texture. The reasoning behind this is that the vital piece of information
needed for the robotic manipulators to avoid collision with the scene and being able to
grip the intended objects, is the location of the scene surface.

Given the above discussion on different sensor types, this study proceeds to utilize
the 3-D scene measurement technique involving active range sensors. These sensors are
available in a variety of differing sizes suitable for the Neodroid application. Some of
the devices containing such sensors are even produced with a color camera in the same
device which allows for doing stereo-correspondence with the IR image frame to obtain
the corresponding color information to each pixel in the IR frame.

3.2.3 Sensors

With the decision made to use active range sensors, there is still a variety different sensors
on the market. The most relevant attributes in a camera product for use in this application
are size, pricing, quality, and ease of use. The device suitable for use in this application is
found by balancing these four attributes in such a way that the size allows for mounting on
a robotic manipulator, the price of the device is as low as possible to allow for reasonably
good depth measurements, and that the API provides a set of low-level basic functionality
related to image acquisition in different streams to reduce setup time.

14



Some relevant sensors on the market at the time of this study include

• Stereolabs ZED2 is a stereo depth camera with high resolution, wide field of view
and integrated motion tracking. It comes with wide support for third-party software
and is priced at around $450 .

• Intel RealSense depth cameras3 are a series of modern, easy to use depth cameras
that come with a multi-platform SDK and are sold at a price of around $140. The
Intel RealSense SDK include a wide range of tools related to sensor control and
image processing.

• Zivid4 is a high-end, high precision stereo depth and color camera that focuses on
quality of measurement and provides an easy and intuitive API for major vision
programming tasks. The price is estimated to be at least one order of magnitude
higher than the two cameras mentioned above.

The sensors used in this study belong to a class of active range sensors produced by
Intel R© Corporation, namely the Intel R© RealSenseTM SR300 and D415 models. These are
chosen based on how they trade-off the attributes mentioned above; size, pricing, qual-
ity, and ease of use. Even though there are sensors on the market that provide higher
quality measurements, the Intel R© RealSenseTM cameras are at their most attractive in their
quality-to-price ratio.

On the Neodroid, two SR300 will be used, one mounted on each arm. This is to
provide a high-resolution reconstruction of regions of interest (ROI). By moving closer
and thus covering a smaller surface area, the surface area to number-of-pixels ratio is
maximized, and the resolution of the reconstruction is maximized.

3.2.4 Intel RealSense API

The Intel R© RealSenseTM API known as librealsense, is a collection of software that is used
to interact with the camera sensors in the D400 series and the SR300 model. It is written
in the C++ programming language but provides wrapper functions and classes for Python,
C, .NET languages, Node.js and integration with third-party software such as MATALB,

2https://www.stereolabs.com/
3https://www.intel.com/content/www/us/en/architecture-and-technology/

realsense-overview.html
4https:://zividlabs.com

15

https://www.stereolabs.com/
https://www.intel.com/content/www/us/en/architecture-and-technology/realsense-overview.html
https://www.intel.com/content/www/us/en/architecture-and-technology/realsense-overview.html
https:://zividlabs.com


Point Cloud Library, OpenNI, OpenCV, ROS, LabVIEW, and Unity.

Essential functionality in the Intel RealSense API include the extraction of scene
measurement in the for of an image frame from different streams available in the device.
The streams available in both of the camera models used in this study include infrared
(IR), depth, and color. The depth stream refers to a stream of IR images that have been
processed internally by the device to provide frames that have the depth to the nearest
object along the axis perpendicular to the camera face encoded into each pixel (as shown
in figure 3.1). This differs from the IR frame in the sense that only the intensity in the IR
spectrum is encoded into each pixel in the IR frame.

Caution is advised when using both the IR sensor and the RGB color sensor. Given
the same resolution in the IR frame and the depth frame, a pixel in either frame overlaps
with the same 3-D scene position as the other since both frames are captured with the
same sensor. However, with the color frame, this pixel correspondence is not the same
since the RGB color frame is not obtained with the same sensor and thus there is an offset
between the IR sensor and the RGB color sensor in the device.

Figure 3.2: Intel R© RealSense
TM

SR300 component layout (front view) (Intel R©Corporation, 2016)

3.3 Workspace reconstruction

As previously mentioned, the workspace volume is expected by other parts of the system
to be represented in terms of a voxels indicating occupancy. Given this information, two
representation alternatives are chosen for further investigation, namely the regular 3-D
grid of voxels and the octree representation.

16



3.3.1 Regular 3-D voxel grid

The regular 3-D voxel grid is best described by the illustration shown in figure 3.3.

Figure 3.3: Regular 3-D voxel grid

The computer representation of this data structure is in the form of a 3-D (triply sub-
scripted) space array of indivisible unit cubes (voxels). The edges of each cube are equal
in size, and all cubes within the grid are of equal size and are referred to as the cube dia-
meter dv. Each voxel contains information indicating occupancy in the form of a binary
flag. The defining properties of this representation data structure is the number of voxels
per any one side of the grid n and the resolution, defined as the diameter dv of the voxels.

The main attriactive quality with this representation method of 3-D space is simplicity.
It is extremely easy to index into such a data structure to obtain the voxel containing any
given point within the boundary of the workspace. The position of the voxel is inferred
from its index within the grid p = dv · [i, j, k]T where i, j, k are non-negative integers
0 ≤ i, j, k < n.

However, with a total of n3 number of voxels within a grid, the regular 3-D grid of
voxels consumes a rather large amount of memory. This is because the grid creates an
equally high-resolution representation of the entire volume regardless of the contents.
Given that most likely the volume to be reconstructed will contain large amounts (70-

17



90%) empty space (transparent voxels) (Lacroute and Levoy, 1994), this can lead to sub-
optimal usage of memory. Therefore, techniques to reduce the memory footprint of a
space array representation will be investigated.

3.3.2 Oct-Trees as a 3-D modelling technique

Proposed by Jackins and Tanimoto (1980) is an alternative modeling approach for three-
dimensional objects called oct-tree (commonly referred to as octree). This approach aims
to reduce the memory space footprint of the regular voxel grid data structure and oper-
ations performed on these. The proposed method for representing this data structure as
octrees consists of partitioning the volume into eight equally sized octants. Much like the
voxels in the 3-D grid, each of these octants holds a label indicating the content of voxels
in the octant:

• FULL indicating that all unit cubes contained within the octant are occupied.

• VOID indicating that all unit cubes contained within the octant are empty.

• MIXED indicating that the octant contains unit cubes that are labelled FULL and
VOID

The octree is a tree structure where the root node represents the entire volume which
is a cube of diameter d. This node may be divided into 8 octants, each with diameter d/2.
The subdivision process may be continued successively for each octant until either each
octant is a unit cube, or all unit cubes within an octant have the same label (either FULL
or VOID). The result of such a process is illustrated in figure 3.4.

Figure 3.4: 3-D scene representation as octree. Note that ”free space” regions are represented
with larger cubes thus limiting the number of leaf nodes.

18



The root is said to be at level 0 and the unit cubes at level n. To generalize the notion
of levels in the octree a node is said to be at level i if it contains 2i × 2i × 2i unit cubes
(Jackins and Tanimoto, 1980).

The voxels in the octree are indexed by a 3-D vector of non-negative integers ι =

[i, j, k]. The elements of ι represent the number of unit cubes along each dimension of the
reconstruction, exactly similar to how indexing is done in the regular voxel grid. Since
the octree creates leaf nodes (unit cubes) only if space is occupied, there may not exist
a leaf node at the given index, and thus a null value is returned. Further implementation
details are described in chapter 4.

One useful operation on the octree to reduce the memory space usage, is the Condense()
operation. This procedure traverses the octree and removes all cases where eight siblings
have identical labels and sets the label of the parent equal to the child labels.

The octree data structure trades off memory consumption with complexity. That is,
the octree may produce less nodes to represent the same scene compared to a regular
3-D voxel grid, at the cost of keeping track of the relation between the nodes in the
tree. Experiments were carried out to determine the impact of the more complex octree
structure versus the regular 3-D voxel grid on memory (see chapter 5). Another drawback
with the octree is that the resolution depends on the volume diameter and the number of
levels in the tree

dv =
d

2n

The fact that the number of levels n is required to be a non-negative integer, results in
the user not necessarily being able to realize the desired combination of resolution dv and
volume diameter d. Being able to specify the exact resolution of the reconstruction is an
essential feature of the reconstruction method as this is needed by the decision mechanism
of the robot and thus the regular 3-D voxel grid is selected as the representation method.

3.4 Integrating new measurements

After obtaining a way to represent the reconstruction of the workspace volume, the next
task that presents itself is integrating new measurements from different viewpoints into
this reconstruction.

19



3.4.1 Direct depth map projection

The simplest way to integrate a scene measurement in the form of a depth image into
the reconstruction is by directly transforming image points to voxel indices, and marking
these as occupied. This is done by using the location of the image pixel in the image
frame u together with the depth in meters encoded into the image at this location Di(u).
The corresponding camera frame position of this point is expressed as pk = Di(u)K−1u̇.
The point pk is then transformed to the global coordinate frame g by multiplication with
the homogeneous transformation matrix T

g
k,i which represents the camera pose for the

i-th depth observation ṗg = T
g
k,iṗ

k. The point pg is then used to generate a 3-D space
array index ι ∈ N3

0 that corresponds to the voxel in which the depth map observation is
contained. ι is computed by simply dividing pg by the length of the unit cube edges dv
and flooring the result ι = bpg/dvc. ι is then used to index into the representation and
mark the voxel as occupied. If pg is not a point within the bounds of the volume, the
observation is dropped.

Note that this method implements no noise reduction as measurements are directly
projected onto the 3-D representation. Therefore, the direct projection approach to meas-
urement integration can be improved by applying a filtering of voxels based on the num-
ber of observations. This is done simply by letting each voxel in the reconstruction hold
a counter that is incremented each time a surface is observed within it.

3.4.2 Truncated Signed Distance Function

Another method for measurement integration is based on the truncated signed distance
function (TSDF). An analysis of this approach is presented by Werner et al. (2014) which
provides an overview of how the TSDF can be used to extract object surfaces from a volu-
metric scene, and how multiple depth images from different viewpoints can be integrated
into one single reconstruction. This is done through the TSDF update scheme

TSDFi(x) =
Wi−1(x)TSDFi−1(x) + wi(x)tsdfi(x)

Wi−1(x) + wi(x)
(3.1)

Wi(x) = Wi−1(x) + wi(x) (3.2)

for all voxel positions x in the reconstruction where TSDFi and Wi denote the total
TSDF update and weight after observation i respectively. tsdfi and wi denote the TSDF

20



value and weight for the new observation. Furthermore,

sdfi(x) = ds − dx (3.3)

tsdfi(x) = max(−1,min(1,
sdfi(x)

t
)) (3.4)

wi(x) = 1 (3.5)

where ds and dx denote the depth along the zk axis to the surface point and the voxel
x respectively.

Figure 3.5: The signed distance to voxel x and truncation distance relative to the surface

To estimate the surface of the scene, the zero-level set of the reconstruction is extrac-
ted. This consists of searching for voxels in the reconstruction that have a TSDF value that
evaluates to zero. This surface estimation procedure also acts as noise reduction. Since the
TSDF value of a voxel may be the weighted average of several measurements, the effect
of bad measurements may be reduced with increasing number of depth measurements.

3.5 Novelty Detection

To be able to keep an accurate reconstruction of the workspace volume, even after changes
have occurred, the system is required to update the current reconstruction in some way.
When we humans intend to further visually inspect an object of interest, we might want
to get closer to the object and/or view it from a different vantage point or orientation.
Our muscular system makes this possible by movement of the neck, our entire body, or

21



by manipulating the object with our limbs e.g. picking it up or turning it over so that
different sides of the object is exposed to our vision system i.e. our eyes. For a humanoid
robot such as the Neodroid, most of these motions are in violation of the premise stating
that the robot is stationary. In addition, movement of the overview camera sensor acting
as the Neodroid’s eyes, is eliminated. This translates to neck motion in humans. Con-
tinuing on the human analogy, the only remaining options in order to generate a different
vantage point of an object of interest, is to use the robotic manipulators to grip the object
and bring it closer to the robot’s overview camera. This option has several drawbacks. It
limits the objects of which new vantage points can successfully be realized to those that
can be picked up by the manipulators. This has potential to severely impair the robot’s
awareness within it’s own workspace volume. Consider the scenario when a large object
is placed in front of several other smaller objects as seen from the camera. The smaller
objects will stay occluded since the robot is unable to realize new vantage points. This
is the main motivation behind the mounting of a camera on each of the robotic manipu-
lators in what is known as eye-in-hand configuration. This enables the Neodroid to move
it’s eyes, allowing for more adaptive awareness schemes in the workspace volume. The
task of staying aware of the contents of the workspace thus becomes finding out where
to move the eyes. Here is where novelty detection becomes relevant. Objects that are of
interest to the vision system are objects that are not already incorporated into the work-
space reconstruction i.e. novel objects. If the system can detect where novel objects are, it
can integrate them into the workspace reconstruction by moving the eyes-in-hand to scan
these regions of interest (ROI), instead of scanning the entire workspace. It is desirable
that both placing new objects in the workspace as well as removing them should require
a close-up scan by the eye-in-hand cameras of the region where an object was placed or
removed. This is because other objects may be covered/uncovered upon placement/re-
moval of objects. By updating the reconstruction from a vantage point that is closer to
some surface than the overview camera, a more detailed perception of that surface may
be obtained. The reconstruction of the scene is in the form of a regular 3-D voxel grid
where each voxel has a binary label indicating whether or not that voxel is occupied by
some solid. The voxel grid and voxels are constant in size and so are the images and
pixels used to measure the scene. Due to perspective distortion, the closer to a surface an
image is captured, the fewer voxels are overlapped by each image pixel. Therefore, the
need for an accurate novelty detection scheme arises. By having a good bearing on where
the novel sub-volumes within the workspace are, new vantage points may be realized by
the eye-in-hand cameras.

22



3.5.1 Available streams

For the sake of simplicity, novelty detection is done using the overview camera by avoid-
ing the more complex task of doing novelty detection on image streams from cameras that
are not stationary i.e. the eye-in-hand cameras.

From the overview camera used in this study, the Intel R© RealSenseTM D415, there
are three available streams, namely the infrared stream, the depth stream, and the RGB
color stream. For reasons previously discussed, the need for depth information from
each image frame is decided to be of grater importance than color features. Therefore
the relevant streams for novelty detection are reduced to the depth stream and the infrared
stream, since these streams are obtained from the same sensor within the device, while the
color sensor is in a separate sensor as shown in figure 3.2. An example of how performing
novelty detection in the IR frame is not desirable is shown in figure 3.6.

Figure 3.6: Novelty detection on a stream of IR images. In spite of the distance from the surface
to the camera sensor being different in the two frames, there is not a considerable change in the IR
intensity values to flag the entire surface as novelty. This results in important information loss.

23



3.5.2 Technique overview

Since novelty detection will be done on the image streams obtained from the overview
camera, probabilistic novelty detection schemes using background subtraction can be
used since the background is stationary. Such techniques have shown great promise and
are suitable under the conditions of this application as recorded by Sobral and Vacavant
(2014).

These techniques are used to extract the foreground containing objects of interest in
images by subtracting the background. In order to do this, a decision has to be made on
what is background and what is foreground. The way this is done is by keeping a model
of the background (Sobral and Vacavant, 2014). For every new frame, the background
model is subtracted to extract the foreground. The background model is then updated
with the new frame to adapt to changes in the image.

Recursive Density Estimation

Probabilistic novelty detection using background subtraction methods are used in this
study based on the widespread success that has been recorded with such methods. One
such approach addresses the need for real-time novelty detection with constant memory
footprint and is known as Recursive Density Estimation (RDE) (Morris and Angelov,
2014). RDE estimates the probability density for each image pixel recursively. That is,
each new frame is incorporated into the background model before it is discarded. The
background model is represented as an image of probability densities. The intensity in
each pixel is computed pixel-wise based on previous frames and thus RDE is a mono-
modal technique (Morris and Angelov, 2014). The densities for each pixel are computed
by recursively updating the mean and the average squared intensity of each data sample
for every frame, which raises the need for a recursive update scheme.

Formula (2.2) can be adapted to fit a recursive update of the new mean when a new
sample arrives by writing

µk =
k − 1

k
µk−1 +

1

k
xk (3.6)

µ1 = x1 (3.7)

where xk is the image pixel intensity at frame k.

24



For the average squared pixel intensities

sk =
k − 1

k
sk−1 +

1

k
x2k (3.8)

s1 = x21 (3.9)

These parameters can be used to estimate the probability density of the pixel with the
Cauchy type kernel function

D =
1

1 + ‖xk − µk‖+ s2k − ‖µk‖2
(3.10)

(3.11)

The reason for using the Cauchy type kernel is described by Morris and Angelov (2014)
as to provide a probability density estimation scheme that does not make any assumption
on the probability distribution of the pixel intensities. This allows for more flexibility in
what types of footage that may be used. When there is no change in density between the
background model and the current frame, the pixel is considered to belong to the back-
ground. If the difference is larger than some threshold the pixel is considered to belong to
the foreground.

if ‖Dk −Dk−1‖ > cσk then
pixel is foreground;

else
pixel is background;

end

where c is a user specified constant.

The threshold proposed by Morris and Angelov (2014) is chosen to be a multiple of
the standard deviation of all previously recorded frames, usually 2σk or 3σk. A higher
multiple of the standard deviation results in a loss of sensitivity to change, whereas a
smaller threshold results in increased sensitivity.

One of the major strengths of the RDE novelty detection approach is that it does
not need to keep any of the images in the stream in memory after the image has been
processed. This is tremendously advantageous for applications where memory is scarce
and for applications using large datasets e.g. surveillance videos. Frames can thus be pro-
cessed on-the-fly and discarded. The RDE algorithm requires relatively little computation

25



with its only pixel-wise calculation being the recursive background model update and the
Cauchy kernel evaluation. Since the image traversal is a task that is highly parellelizable,
real-time implementations are well within reach without quality-sacrificing optimizations.
This allows for implementation on hardware suitable for unmanned vehicles or other em-
bedded applications. Additionally, RDE is a pixel-wise novelty detection scheme and thus
it is able to adapt certain regions subject to persistent change, by adjusting the pixel-wise
probability of novelty in the given region. Experiments have been performed in this study
to illustrate this (see section 5.5). This differs from the more simplistic difference image
detection where the previous frame in the stream is subtracted from the current frame in
order to detect novelties. Other benefits of the RDE approach is that it is a fully autonom-
ous technique that does not require any user input which can prove to be useful when used
on a large data set.

Aspects of the RDE algorithm that are not desirable include luminescence having a
very large impact on the output. Areas of an image that are subject to change in lighting
conditions are picked up as novelties. This makes RDE error-prone when used in applic-
ations where sudden changes in lighting conditions may occur.

In order to investigate the effects of different settings of the novelty detection scheme,
a series of modifications are introduced. This is done to find out if other options may
perform better in the given application. The first modification introduced is to change the
kernel function to estimate the pixel-wise intensity probability. On advice from the co-
supervisor of this study, the assumption that the intensities are approximately distributed
according to the Gaussian distribution. The reasoning behind this assumption lies in the
central limit theorem stating that the normalized sum of independent random variables
tend towards a Gaussian distribution even if the random variables themselves are not
Gaussian (DasGupta, 2010). This leads to replacement of the formula (3.10) with the
Gaussian function

f(x|µ, σ) =
1√

2πσ2
e−

1
2

(x−µ)2
σ (3.12)

In order to enable a larger degree of freedom when it comes to tuning of the novelty
detection scheme, the ability to adjust the learning rate of the background model is in-
troduced. That is, adjusting how fast new raw scene measurements in the form of IR or
depth stream images are integrated into the mean and variance estimation used in RDE.
This is done using a scalar weight α ∈ [0, 1] that is introduced into the background model
update scheme in the following way

26



µk = (1− α)µk−1 + αxk (3.13)

σ2
k = (1− α)(sk−1 − µk−1) + α(x2k − xk) (3.14)

The new thresholding scheme to determine if pixels are background or foreground
was modified to

if f(xk|µk, σk)/f(µk|µk, σk) > c then
pixel is foreground;

else
pixel is background;

end
The division by f(µk|µk, σk) is done for the purpose of normalization relative to σk.

3.6 Post-processing and novelty segmentation

Given the results of the novelty detection stage in the form a binary image seen in figures
5.9 and 5.10, it is seen that the presence of noise is significant. Integrating this directly
into a 3-D model of the robot’s workspace results in the appearance of novelties in areas
where there in reality are none. Therefore, some form of processing of the output of the
novelty detection needs to be applied if the results are not to be rendered completely use-
less.

One approach to reduce these noise artifacts may be the simple approach deduced
from intuition involving finding the contour around the of the artifacts an then threshold-
ing on the areas of the contours. That is, discaring all contours that have an area less than
some given threshold defined by the user.

Another available approach to use the morphological operation erosion (Haralick
et al., 1987).

3.7 3-D reconstruction of novelties

As previously mentioned, the goal of this study is to determine what sub-volumes of the
workspace need further inspection in order to generate an accurate reconstruction of the
entire volume. The logical next step after obtaining novel regions in the image plane is
to convert these 2-D regions to 3-D regions before integrating them into the workspace

27



reconstruction. In this section, a closer look will be taken at the task of converting 2-D
into 3-D regions.

In order to convert 2-D regions into 3-D, a pixel-wise transformation can be performed
on all pixels contained in the region. This pixel-wise transformation takes as input the 2-
D image space location of the pixel u together with the depth in meters encoded in that
pixel D(u) and outputs the 3-D position of the corresponding point in the camera frame
as shown in equation (2.11).

The depth encoded in each pixel is represented as an integer value in the image frames
obtained through the librealsense API. This value can be scaled to a metric value through
a sensor-specific scaling factor determined by the intrinsic parameters of the sensor.

Pixels that do not represent any surface observation e.g. the surface is positioned
closer to the sensor than the near clipping plane or further away than the far clipping plane,
are represented as D(u) = 0. This gives rise to a problem whenever two-dimensional re-
gions are to be transfered to their three-dimensional representation. Since the novelties in
the scene are represented as white regions in a binary black-and-white image, there may
not always be a non-zero depth value encoded in the corresponding pixel in the depth
frame. To solve this problem, novel pixels that have a pixel depth D(u) = 0 are simply
omitted by not calculating the corresponding three-dimensional points.

The points obtained from the transformation described in (2.11) are defined in the
overview camera frame. These points are transferred to points in the global frame by a
multiplication with the homogeneous transformation matrix

ṗg = T
g
kṗ

k (3.15)

3.7.1 Determining three-dimensional regions

The desire to identify separate novel regions and create bounding boxes around them,
warrants some form of detection of where these regions are. The options for performing
detection of novel regions include doing so both before and after integrating the novel
regions into the 3-D reconstruction of the workspace. However, since the regions are to
be expressed as bounding boxes around novel sub-volumes of the workspace, techniques
performing this detection in the 3-D workspace reconstruction are considered more suit-
able.

28



One such approach include the use of cluster analysis (clustering), referring to the task
of grouping similar objects based on some attribute (Willett, 1988). In the context of the
task at hand, clustering in this application is done based on the positions of all points in the
reconstruction that represents a novel surface observation. Two common algorithms for
performing clustering on a data set include agglomerative hierarchical clustering (AHC)
and k-means (Steinbach et al., 2000).

Agglomerative hierarchical clustering refers to a clustering approach which is initial-
ized with each data point in the data set constituting its own cluster. Clusters are then
merged into one another based on similarity of some chosen attribute. While the merging
of clusters is done, a log is kept of every merge in the form of a tree data structure referred
to as dendrogram. An example dendrogram of the agglomerative clustering of a data set
of two-dimensional data objects is shown in 3.7. First, the data points p3 is merged with
p5 to form the first cluster C1. Then, p1 is merged with p2 to form cluster C2. C2 and the
point p4 are merged into C3 before merging the entire data set into a single cluster C4.

Figure 3.7: Clustering example. AHC produces the output dendrogram (left) from the input data
set (right)

The algorithm terminates when there is only one cluster (Steinbach et al., 2000).

The k-means clustering algorithm on the other hand, takes as input the data set as well
as the desired number of clusters in which the set is to be divided. The algorithm then
proceeds to assign data points to the cluster in which the mean of the data points is closest.

29



A clustering technique found to be suitable in this study is agglomerative hierarchical
clustering. This choice is made based on the the fact that it is one of the main clustering
approaches (Steinbach et al., 2000) while maintaining simplicity.

Determining the number of clusters

A problem that arises with either of these clustering algorithms is that the ”optimal” num-
ber of clusters - referring to the cluster configuration that is as close as possible to the
grouping of the original data set (Halkidi and Vazirgiannis, 2001)- is not an output. This
is obvious for the k-means algorithm since it takes k number of desired clusters as an
input. For the AHC algorithm, the dendrogram produced allows the user to select the l
top clusters for further analysis, requiring the user to have a level of a priori insight into
the data set that may not be available.

One way to determine the number of clusters in a dataset could be to obtain a meas-
ure of how spread out or varied the data points are from the centroid. A common way
to measure this in statistical analysis is with the use of population variance (2.1). The
intention is that the variance of the data set around its centroid can be used to slice the
dendrogram returned by AHC to obtain the l top clusters. To perform this estimation of
number of clusters the centroid and variance of the input dataset is computed as

pc =
1

n

n∑
i=1

pi (3.16)

σ2 =
1

n

n∑
i=1

[p2
i ]− p2

c (3.17)

respectively for n number of data points in the data set. The variance is represented as
a vector σ2 ∈ R3 where each entry represent the variance in each respective dimension.
A positive scalar measure of the variation in the data set is obtained by taking the scalar
product with a user-specified scaling factor c ∈ R3 weighting each dimension as desired.
The result is floored to obtain a positive integer number l to represent the number of
clusters in the data set

l = bc · σ2c (3.18)

In this application this was set to c = 0.002. l is then used to select the top clusters in the
dendrogram. This approach has severe limitations in the sense that finding the number of
clusters in a dataset based on variance is not a suitable approach. This is because variance

30



only takes into account the deviation from the centroid with no regard to the number of
points included in the calculation. That is, a small number of points can result in high
variance of the data set and thus a large number of clusters. Even if the formula (3.18)
were to be adapted to take into account the number of points in the data set, it would still
be a rough approximation of the clustering in the original data set.

However, methods have been proposed to determine the optimal number of clusters in
a data set including ISODATA (Ball and Hall, 1967), DYNOC (Tou, 1979), and several
more as summarized by (Omran et al., 2007). These methods take an interative approach
to minimize the inter-cluster distance and maximize intra-cluster distance involving sev-
eral executions of a clustering algorithm such as k-means or AHC.

Due to the complexity of these methods, an alternative approach to perform clustering
is desired. A method deemed more suitable for this application based primarily on its
more intuitive approach is described in (Jung et al., 2003). The approach in question is
built around the notion that a scalar number referred to as clustering gain is sufficient in
measuring the optimality of a given cluster configuration. The clustering configuration
that yields the highest clustering gain, is the optimal clustering configuration. This ap-
proach can be integrated into AHC by calculating the clustering gain after each cluster
merge is performed and storing the configuration that has the maximum gain.

As previously mentioned, the clustering gain is used as a measure for optimality of a
given clustering configuration. This measure is therefore supposed to represent any given
configuration’s similarity to the underlying grouping in the input data set. The similarity
of some given cluster configuration is defined as the sum of the gains for each individual
cluster

∆ =
k∑
j=1

∆j (3.19)

for k number of clusters in the configuration. This quantity is expressed in terms
of the input data set and will be defined here to maintain clarity through the following
definitions. Let pi represent data point i ∈ {1, 2, 3, ..., n} in the data set containing n data
points. The global centroid p0 of the entire data set is defined as

p0 =
1

n

n∑
i=1

pi (3.20)

Let Cj represent cluster j ∈ {1, 2, 3, ..., k} where k ∈ {1, 2, 3, ..., n} is the number of

31



clusters in the data set according to some clustering method. The data points in cluster Cj
are denoted Cj = {p(j)1 , p

(j)
2 , p

(j)
3 , ..., p

(j)
nj } and the centroid of cluster Cj is defined as

p
(j)
0 =

1

nj

nj∑
i=1

p
(j)
i (3.21)

∆j is defined as the difference between the inter-cluster error sum γj compared to the
initial configuration of the input data set, and the intra-cluster error sum λj .

γj =

nj∑
i=1

‖p(j)i − p0‖22−‖p
(j)
0 − p0‖22 (3.22)

λj =

nj∑
i=1

‖p(j)i − p
(j)
0 ‖22 (3.23)

respectively and thus ∆j becomes

∆j = γj − λj (3.24)

= (nj − 1)‖p0 − p(j)0 ‖22 (3.25)

The total cluster gain defined in (3.19) thus becomes

∆ =
k∑
j=1

(nj − 1)‖p0 − p(j)0 ‖22 (3.26)

Note that for singleton clusters (nj = 1) the contribution to the total gain is ∆j = 0

and thus the initial configuration of AHC (containing only singleton clusters) results in
∆ = 0. This leads to the conclusion that ∆ > 0 given that the initial configuration is not
the optimal configuration.

A problem arises due to the search for the optimal cluster configuration is intended to
be integrated into the clustering algorithm itself, thus raising the need to implement the
clustering algorithm itself with this feature integrated. This presents a severe drawback
for this application in the sense that it may not be possible to take advantage of existing
optimized implementations of agglomerative hierachical clustering algorithms (such as
ALGLIB5. It is very desirable to use an existing implementation since clustering is con-
sidered a computationally intensive task (Jung et al., 2003) and thus one stand to gain

5http://www.alglib.net/dataanalysis/clustering.php (last visited 21.05.18)

32

http://www.alglib.net/dataanalysis/clustering.php


much from such optimized implementations). However, by inspection of the dendrogram
returned by AHC, it is possible to devise an algorithm that outputs the optimal cluster
configuration based on the clustering gain described in (Jung et al., 2003). This is done
by reconstructing every single merge performed by AHC which is documented in the
dendrogram, calculating the clustering gain for the cluster configuration after the merge
is applied, and finally storing the cluster configuration that has the maximum clustering
gain as well as the gain itself for further comparison. The initial clustering gain is set to
an arbitrary negative number. This is to guarantee that any cluster configuration will be
chosen since the minimum value of the clustering gain is ∆ ≥ 0. Consider the dendro-
gram returned by AHC shown in 3.7 together with its representation in ALGLIB

Listing 3.1: Dendrogram representation

1 a h c o u t p u t = ” [ [ 2 , 4 ] , [ 0 , 1 ] , [ 3 , 6 ] , [ 5 , 7 ] ] ” ;

By starting at the bottom level of the dendrogram, the first merges applied by the
AHC algorithm are applied sequentially and the corresponding clustering gain is com-
puted based on the resulting cluster configuration. If the clustering gain is greater than the
current maximum recorded gain, the current maximum gain is updated and the clustering
configuration is stored. This processed is repeated until the top level of the dendrogram is
reached (every data point is merged into one single cluster).

As it turns out, this approach has one deal-breaking drawback; the user has no control
over how large the clusters in the optimal cluster configuration are or how far the clusters
are from each other. The cluster configuration is based solely upon optimality represented
as the clustering gain that gives a measure of how close the clustering configuration fits
the clustering in the original data set. To point out exactly how this is troublesome for this
application, consider figure 3.8.

As specified in the problem description and introduction, each novelty is to be closely
investigated by the eye-in-hand cameras. Considering the eye-in-hand cameras’ range an
field of view together with the size and and inter-cluster proximity, a lot of redundant
camera poses will potentially be generated if each of the clusters in figure 3.8 are to be
inspected. Redundant in this context, it is referred to the measurement of the same sub-
volume of the workspace more than once. A solution to this problem could be to merge
smaller clusters into each other based on proximity. This is in fact exactly what the AHC
clustering scheme already does and thus it is unreasonable to implement yet another layer
of post-processing on top of the output of the AHC output to achieve this.

33



Figure 3.8: Optimal clustering configuration using the approach by Jung et al. (2003)

The desired outcome is that the bounding boxes around each clusters are to be as close
to a specified box size as possible but not larger. The box size is chosen so that one box
can easily fit inside the camera view frustum. An alternative to the approach described
above, is to use the AHC output dendrogram to extract the first cluster from the top that
fits within the specified box size. This procedure consists of recursively traversing the
dendrogram from the top, generating bounding boxes that fits tightly around each cluster
and checking whether the box dimensions are smaller than the specified box threshold. If
so, the search along the current dendrogram branch terminates and that cluster is chosen
to represent the novelty. Through experimentation, this approach was concluded to be
suitable for this application (see section 5.5).

3.8 Generating camera poses

With novelties approximated as bounding boxes around a collection of novel pixels, the
final task in this study presents itself. The task is to generate poses to realize with the
eye-in-hand cameras to obtain a close-up measurement of the novelties. As specified in
the problem description, these poses are to be generated in a fixed pattern around each
novelty so that these can be observed from multiple different angles. Note that there ex-
ists some techniques for solving the problem of finding the best possible camera poses to
maximize exposure of unseen surfaces to the camera. This is known as the Next Best View

34



(NBV) problem (Pito, 1997). One such technique is the solution algorithm to the NBV
problem proposed by (Banta et al., 1995) which autonomously calculates the viewpoint
that maximizes the information gain of the surface of some object. This technique is not
implemented as part of this study due to the fact that this is currently a separate research
project at SINTEF Ocean and thus resources are better spent elsewhere in this study.

In order to better explain the procedure developed for camera pose generation, con-
sider figure 3.9

Figure 3.9: Camera poses are placed at a distance r from the centroid of the novelty bounding
box on a circular path

The idea is to place viewing frustums on a circular path centered at the centroid of the
novelty bounding boxes, pointing 45◦ downwards from the horizontal plane as shown in
figure 3.9. The bounding box centroid is computed using forumla (3.20) with the 8 corners
of the bounding box as the input data set. The distance r in figure 3.9 desired to be as
small as possible while still allowing all the corners of the bounding box to be contained
within the frustum. This is done in order to get as close as possible to the novelties and
thus obtaining the most accurate representation. In order to achieve this, the eye-in-hand
cameras’ frustum need to be defined. Sufficient information to reconstruct this frustum is
the near znear and far zfar clipping planes, the vertical field-of-view angle ψ, and the aspect
ratio a of either of the clipping planes (see figure 3.10). The procedure starts by placing n
number of frustums at the centroid of the novelty boxes with the Euler angle orientation
Θ = (0, π/2 + kδ, π/4)T with δ = 2π/n for the k ∈ {0, 1, ..., n− 1} frustums using the
ZYX rotation order. The reason for temporarily placing all the frustums at the centroid
of the bounding box is to evaluate the location of the xy-position of the corners of the
bounding box in the frustum frame defined in figure 3.10.

35



Figure 3.10: Frustum geometry

This is in order to calculate the exact z-displacement of the frustum in the frustum
frame. Furthermore, for each frustum, the corners of the bounding box in the global
frame pgb,i where i ∈ {0, 1, ..., 7} are the enumerated corners of the bounding boxes.
These are transformed to the frustum frame (see figure 3.10) by multiplication with the
inverse frustum pose ṗfkb,i = T−1

fk
ṗgb,i. Note that the distance r is measured along the

frustum frame z axis. The corner points of the bounding box in the frustum frame ṗfkb,i
can then be used to determine the maximum height and width to fit the entire box inside
the frustum. The relationship between the height h and the width w of the frustum sliced
at depth z is derived from the frustum geometry

h(z) = 2z tan
ψ

2
(3.27)

w(z) = ah(z) (3.28)

The maximum height hmax and width wmax are found by iterating through all the ṗfkb,i
for the given frustum k and the maximum x and y values are stored in xmax and ymax. The
relationship (3.27) can be rearranged so that z is obtained from hmax and wmax

z(h) =
h

2 tan ψ
2

(3.29)

The translation distance along the negative z axis of the frustum is then calculated as

r = max(z(hmax), z(
wmax

a
)) (3.30)

36



Chapter 4
Implementation

The result of this study is largely in the form of software implementation of the solution to
the task at hand. Therefore, an overview of the software will be presented in this chapter.
First, an overview of the software architecture will be presented before implementation-
specific details of the steps described in chapter 3 will be given. Finally, a description of
the 3-D visualization software developed for this study will be given.

4.1 Software architecture

The software developed in this study is divided into modules according to the object-
oriented design approach where each module has a specific area of responsibility. Note
that object-oriented design does not imply object-oriented programming. An overview of
the software modules and the interaction between these are shown in figure 4.1 A brief
description of each module is given below.

• CameraSensor acts as the rest of the system’s interface to the depth sensor. An in-
terface to the camera hardware is provided by the librealsense (Intel R© RealSenseTM

API) library but this interface provides access to a large amount of functions that
are not needed to solve the task at hand. This module is built on top of libreal-
sense in order to extract only the relevant data from the sensor and in the desired
format. Another purpose of introducing this extra layer between librealsense and
the developed software in this study is the minimization of dependency. libreal-
sense is still in development and has changed dramatically several times during this
study and will likely be subject to some change in the future. Having a buffer layer
between the vendor API and the rest of the system ensures that only this module
needs to be accomodated to changes in librealsense.

37



• SurfaceReconstructor handles the integration of depth measurements into the de-
sired form of reconstruction. This module implements only independent operations
on the data supplied and stores no internal state. These operations include updating
a reconstruction method of choice with a given measurement.

• VoxelGrid is a data structure that represents the triply indexed space array of
voxels. It keeps much information on the dimensions of the represented volume
and resolution and a reference to the start of the memory area in which the voxel
array is stored.

• Visualization implements all functionality related to visualizing the relevant data
structure by executing the specified draw calls and applying the correct view- and
perspective transformation and lighting.

• Viewpoint implements the necessary functions to generate camera poses around a
given bounding box around a novel region given the camera viewing frustum.

• Frustum is a data structure that defines a viewing frustum.

• Detection implements the RDE novelty detection scheme given an input image
stream and produces a black-and-white output novelty image.

38



Figure 4.1: Class diagram of the software developed in this study. Dotted directional arrows
shows dependency by source class on target class. Solid directional lines with diamond at the
source class indicate that the target class is aggregated by the source. Core operations and data
types are shown as contents of the class

39



4.2 Third-party software

In order to avoid time consuming implementation of basic functions related to mathem-
atical operations and representation, low-level graphics hardware interaction, low-level
system I/O hardware interaction, and operations and representations related to image pro-
cessing and storage, a series of third-party software has been utilized. An overview of
these and a brief summary of their use in this study i given below.

• Intel RealSense SDK 2.0 is - as mentioned above - used to generate measurements
from the camera sensor.

• OpenCV 2.4 provides a practical way to handle a variety of different image formats
and display these.

• Eigen 3.3 is a header-only mathematics library that is used to carry out linear al-
gebra operations.

• OpenGL 3.0 is a graphics library that provides an API that is used to interact with
the GPU. This is used to achieve fast and customizable hardware accelerated ren-
dering.

• OpenGL Mathematics 0.9 is a mathematic library that is based on the OpenGL
Shader Language and thus provides a practical representation of vertex data in the
context of rendering.

• SDL 2.0 (Simple Direct Media Layer) is used for OpenGL context creation, win-
dow creation, and as an interface to the computer’s keyboard and mouse.

• ALGLIB1 is a numeric analysis and data processing library used in this study to
perform clustering analysis.

• tup2 is the build system used to compile the source code. This is a fast build system
that emphasizes speed and correctness over brevity.

4.3 Sensor interface

An interface to the camera hardware is provided by the librealsense (Intel R© RealSenseTM

API) library but this interface provides access to a large amount of functions that are not
1www.alglib.net
2www.gittup.org

40

www.alglib.net
www.gittup.org


needed to solve the task at hand. The interface is built on top of librealsense in order to
extract only the relevant data from the sensor and in the desired format. The most central
task of this interface is to issue commands to the sensor to start streaming IR and depth
and provide easy access to the frames streamed by these. Code for activation of these
streams and acquisition of frames from these are shown in listings 6.4 and 6.5. Another
purpose of introducing this extra layer between librealsense and the rest of the software
in this study is the minimization of dependency. librealsense is still in development and
has changed dramatically several times during this study and will likely be subject to
some change in the future. Having a buffer layer between the vendor API and the rest
of the system ensures that only this module needs to be accommodated to changes in
librealsense.

4.4 Workspace reconstruction

4.4.1 Regular 3-D voxel grid

The regular 3-D voxel grid is represented as a C-style structure as shown in listing 6.6.
Upon instantiation of the VoxelGrid structure, a simple allocation is made to reserve the
considerably large amount of memory needed to store the voxel array.

As seen from the VoxelGrid data structure, each voxel is stored in a flat (1-D) array
and thus the effect of 3-D indexing needs to be simulated. That is, in order to obtain
the voxel at index ι = [x, y, z] where each entry represent the integer position along the
respective dimension, the transformation i = x+ n(y + nz) needs to be applied where n
is the number of voxels per side in the grid. i is then used directly to index into the 1-D
array that holds the voxels in the VoxelGrid structure.

4.4.2 Octree

With the octree representation of the volume, things are somewhat different. The class
definitions of the octree and octree node are shown in listing 6.7. Upon instantiation of
the octree only the root node is created. Each leaf node is lazily-instantiated under the
root node as desired. This is done by recursively subdividing each node into 8 octants
until the predefined level of division is reached. This procedure is shown in listing 6.8.

41



4.5 Measurement integration

As discussed in section 3.4, integration of new measurements in the form of depth images
is done by directly projecting the depth image onto the 3-D volume. This is done by
transformation of each pixel depth D(u) along with its location in the image plane u, to a
voxel index on the form ι = [x, y, z]. Each time a depth image pixel is mapped to a voxel,
a counter within that voxel is incremented. All voxels that have a counter value grater than
some threshold are then labeled as occupied. The implementation of this functionality is
shown in listing 6.9. The transformation functions shown in this procedure are simple
matrix multiplications with homogeneous transformation matrices.

4.6 Novelty detection

Being one of the most essential tasks in this study, novelty detection with the Cauchy type
kernel is implemented as shown in listing 6.10. Novelty detection with the assumption
that the pixel intensity distributions are Gaussian, have also been implemented. Since
novelty detection may be done on several different images, a list of DetectionState is
kept for each new image, storing the state of the detection scheme on that specific image
(which is referred to by its memory address). This allows for more flexibility when test-
ing novelty detection performance on different image streams such as the IR stream, and
comparing it to depth stream novelty detection at run time.

The density estimate obtained by evaluation of the Cauchy kernel at the pixel in the
previous frame is subtracted from the density estimate at the current frame and com-
pared to a user defined threshold (here 0.1σ). If the change in density is larger than this
threshold, the pixel is considered to be foreground, and is marked in white in the novelty
image.

4.7 Post-Processing and novelty segmentation

Post-processing of the novelty images remains quite simple in this study. Only the math-
ematical morphology operation erosion being used with a quadratic structuring element.
This is motivated by the experimental success that was recorded with this approach (see
5.4). The implementation is handled by the OpenCV library that provides simple function
signatures to perform this.

42



Listing 4.1: Function signature provided by OpenCV for performing erosion

1 vo id e r o d e ( I n p u t A r r a y s r c , Ou tpu tAr ray d s t , I n p u t A r r a y k e r n e l ) ;

4.8 Novelty reconstruction

The first stage of the novelty reconstruction implementation is simply achieved by put-
ting together the results of the novelty detection (black and white novelty image) and the
measurement integration. That is, the black and white novelty image is used as a mask
for incrementing the voxel counters in listing 6.9. White pixels in the novelty image are
transformed to voxels and the counters incremented. Black pixels are ignored.

The next stage is performing cluster analysis to approximate novel ROIs. First, clus-
tering is performed with the third-party software named ALGLIB. The output of the clus-
tering algorithm of choice (AHC) is a dendrogram in the shape of a 2-D array of size
n× 2 where n is the number of merges performed by AHC. In either of the two columns
in the output dendrogram representation are indices of the clusters merged. The merges
(rows) appear chronologically in the 2-D array, that is, the first row represents the first
two clusters merged and the last row represents the last two clusters merged.

The source code for extraction of the largest cluster from the root node of the dendro-
gram as described in section 3.7.1, is shown in listing 6.11. This procedure starts by
generating a list of all voxel positions defined as the least corner (closest to the volume
origin) of the voxel. The bounding boxes around the clusters are defined by their least
corner and the lengths in each direction (x, y, and z) in the form of a 3-D vector, and thus
the output of the clustering algorithm is an array of box positions and lengths. These ar-
rays along with an array of occupied voxel positions, and the desired cluster size is passed
to the clustering algorithm and the bounding box positions and lengths are returned. The
core of the clustering algorithm is shown in listing 6.12. This procedure traverses the
dendrogram from the root node, and terminates the search along each branch once the
cluster bounding box is less than the threshold.

4.9 Camera pose generation

Implementation details for generating a set of camera poses around a single bounding box,
mirror the description given in section 3.8. The source code for doing this is shown in list-

43



ing 6.13. No external third-party software is used in this module. This is largely because
the approach is derived from intuition and requires only simple geometric calculations.

4.10 Visualization software

Essential to this study has been the task of visualizing the concepts related to 3-D recon-
struction and representation, clustering, camera pose generation, and other spatial fea-
tures. In order to provide a versatile and flexible visualization tool that is easily extendable
to accommodate future visualization needs, the software used in this study was developed
from the ground up solely for this purpose.

Several existing software packages were considered as alternatives. A criterion for
these in addition to the ones mentioned above is that these tools have to be free. Alternat-
ives that satisfy these criteria are listed below

• Unity 3D3 is a 3-D game engine that offers a wide range of functionality related to
graphics rendering and 3-D digital art creation. Unity is however an extremely large
software collection that includes so much functionality that is largely irrelevant to
the 3-D visualization needs of this study. In addition, unity does not support the
target platform which is the GNU/Linux distribution Ubuntu 17.10.

• VTK4 (The Visualization Toolkit) is an advanced open-source software package for
3-D computer graphics and image processing. Although VTK seems suitable for
this application it is not used due to it being too high-level to offer the necessary
flexibility.

The main rendering tasks required by the visualization module is rendering of the reg-
ular 3-D voxel grid and octree. Since all the information on the contents of the volume
are stored in the data structure representing that reconstruction (voxel grid or octree), the
respective representation is fully responsible for generating and placing the vertices to
be rendered into vertex buffer objects. Additionally, the draw call to execute rendering
of the reconstruction is defined in the same module as the reconstruction. Following the
object-oriented design principle, all the information required by visualization module is
then packed into a data structure referred to as a render bundle. The prototype for this
data structure is shown in listing 6.1. The variable entity is a pointer to the instance of the

3https://www.unity3d.com (last visited 12.05.2018)
4https://www.vtk.org (last visited 12.05.2018)

44

https://www.unity3d.com
https://www.vtk.org


entity to be rendered e.g. VoxelGrid or Octree. The member render procedure is a func-
tion pointer to the function that executes the draw call for the given entity. This function
takes as argument a pointer to the entity itself, and a pointer to a structure containing all
the necessary information on how the entity is viewed. The content of this structure is
shown in listing 6.2. The variable view proj is the 4×4 matrix product of the view matrix
and the projection matrix Mp ·Mv where Mv ∈ SE3 is the virtual camera view matrix and
Mp ∈ R4×4 is the projection matrix, in this application is the perspective projection. The
remaining variables of the RenderInfo structure are the light’s position and the camera’s
position respectively. The variable destroy procedure of the Render Bundle structure is
the a function pointer to the function that deallocates the given entity (passed in as a void
pointer). Each entity that wants to be rendered is responsible for filling out all the inform-
ation in the RenderBundle. An example of creation of the RenderBundle for the regular
3-D voxel grid is shown in listing 6.3.

Rendering using the approach described above ensures that the visualization module
and the objects to be rendered are decoupled. The benefit of this is that as the objects to
be rendered changes, the change is completely irrelevant to the visualization module as
long as a complete RenderBundle is produced.

4.11 Documentation

Documentation for software developed in this study is created using the automatic source
documentation generation tool doxygen5. Doxygen automatically generates documenta-
tion in the form of PDF documents, HTML documents and contains graphical dependency
trees etc.

Instruction for compiling the source code can be found in the attached software repos-
itory in the README.md file.

5http://www.stack.nl/˜dimitri/doxygen/

45

http://www.stack.nl/~dimitri/doxygen/


46



Chapter 5
Experimental Results

To evaluate the performance of the methods employed to solve the task at hand, experi-
ments were performed on the solutions to the sub-problems. The experimental results of
these methods are described in this chapter and appear chronologically. The most suitable
techniques for solving each sub-problem is used when considering the next sub-problem.
This is done whenever it is reasonable to assume that the subsequent sub-problem is un-
affected by the result of the previous. For example, the first task is to decide a volumetric
reconstruction representation. The two representation methods are evaluated before tak-
ing a closer look at the different approaches to integrating depth measurements. When
a representation method is chosen, this method is assumed to be used in the subsequent
experiments on integration schemes, since the integration schemes do not depend on the
representation method used.

5.1 Workspace reconstruction

To obtain a performance measure of the two volumetric representation methods discussed
in this study, memory consumption is investigated. To clarify, memory consumption
refers to the amount of bytes needed to store the reconstruction of the workspace volume
expressed in terms of the byte size of each voxel sv. Each representation will reconstruct
a volume of dimension 1m× 1m× 1m with the number of voxels per side n = 128 and
resolution r = 0.01m. The volumes that are to be reconstructed in these experiments are
the ones measured by the images in figure 5.1 and 5.2

These purposely contain variable amount of objects to test how the reconstruction
handles different workspace contents. These images were captured by the the Intel R©

RealSenseTM D415 mounted on a tripod 1.4 m above the ground, facing 60◦ downwards

47



Figure 5.1: Color and depth image of scene 1

Figure 5.2: Color and depth image of scene 2

from the horizontal plane as shown in figure 5.3

The pose of the camera for this experiment was set manually in software as

T
g
k =


1 0 0 0.5

0 cos(2.1) − sin(2.1) 1.4

0 sin(2.1) cos(2.1) 1.5

0 0 0 1

 (5.1)

where 180◦ − 60◦ ≈ 2.1 rad

Memory

The memory consumed by the regular 3-D voxel grid is constant given n, more specific-
ally m = svn

3 = 2097152sv B where sv = 1B (one byte).

For the octree the memory consumption estimation is somewhat more involved. Since
the octree includes some overhead to allow for a more compact volumetric representation,

48



Figure 5.3: Camera setup

the memory consumption in measured in terms of the size in bytes of all the nodes in the
tree. That is, also non-leaf nodes are counted. The number of nodes in the octree is
obtained by traversal of the octree and incrementing a counter. Since each node in the
octree stores references to octants, and contain a label indicating occupancy, the size in
bytes of each node sn 6= sv. For the octree nodes, 8 · 8 = 64B (on a 64-bit system) are
used to store the references to the 8 octants the node can potentially be partitioned into,
and 1B to hold the label VOID, FILL, or MIXED.

For the two scenes considered in this experiment, the memory consumption of the two
volumetric representations are as follows.

Regular 3-D voxel grid Octree
Scene 1 2097152 75417 · 65 = 4902040
Scene 2 2097152 68985 · 65 = 4484025

Table 5.1: Memory consumption in bytes of Octree and voxel grid representation of the same
scene

This shows that the total number of nodes (including non-leaf nodes) of the octree
is considerably less than the number of unit cubes in the voxel grid. However, the extra
storage space required to keep track of how these nodes are related to each other result
in approximately double the amount of storage space consumed by the regular 3-D voxel
grid.

49



5.2 Integrating new measurements

The evaluation of the quality of the measurement integration is done by visual inspection.
That is, the reconstructed scene is visually compared to actual scene. This is done for
the direct depth map projection with and without observation count filtering, and with the
TSDF integration scheme.

The experiments are done on a series of 9 images of the scene shown in figure 5.4

Figure 5.4: Sample of scene measurement used to in this experiment

taken from 9 different camera poses with a robotic manipulator. The Intel R© RealSenseTM

SR300 is mounted on a robotic manipulator and calibrated so that the pose of the camera
sensor is known. The result of reconstruction of the scene is shown below.

From the figures 5.5, 5.6, and 5.7 it is concluded that the most suitable approach to
measurement integration is the method involving filtering based on number of surface
observations. As shown in figures 5.5 and 5.7, noise artifacts are present in a larger
degree. The approach chosen offers a simple and versatile scheme for integration of depth
measurements.

50



Figure 5.5: Direct projection of a depth measurement onto the volume

Figure 5.6: Direct projection of a depth measurement with filtering based on number of observa-
tions where voxels with less than 50 observations over the 9 images captured, are dropped.

Figure 5.7: Integration of measurements based on the TSDF update scheme

5.3 Novelty Detection

Below are the results of novelty detection with both the Cauchy and Gaussian kernels.

Another experiment is performed to investigate the ability of the novelty detection
scheme to pick up small changes in depth alone. This is done by simply raising the object

51



Figure 5.8: The scene change from which the following results are obtained

Figure 5.9: Novelty image with the Cauchy kernel and novelty threshold 0.1σ

Figure 5.10: Novelty image with the Gaussian kernel and novelty threshold 0.25

by placing another object underneath it. Another box of length 10 cm was used here.

In all experiments performed under this section, the background model has been
trained with 25 frames before starting the novelty detection in order to adapt to the scene.
However, when the assumption that the intensities are distributed with the Gaussian dis-
tribution, a large amount of noise is present in the novelty image as seen in figures 5.10
and 5.13.

The ability of the novelty detection schemes discussed in this study to adapt to persist-

52



Figure 5.11: The scene measurement in the IR spectrum from which the following results are
obtained. The box is raised 10 cm in order to isolate performance in the zk direction

Figure 5.12: Novelty image with the Cauchy kernel and novelty threshold 0.1σ

Figure 5.13: Novelty image with the Gaussian kernel and novelty threshold 0.25 and α = 0.2

ent change is a feature that increases robustness. Consider the image series in figure 5.14.
The cardboard box to the left is rotated each frame, resulting in a strong signature in the
novelty image. As time passes, the novelty signature fades for the left box in spite of the
constant rotation. However, this does not affect ability of the novelty detection scheme
to detect changes elsewhere in the frame. Since the RDE novelty detection scheme is a
pixel-wise scheme, the pixel-wise probabilities for novelty are adapted in regions subject
to persistent change.

53



Figure 5.14: Novelty detection of a series of depth images. The correspondng IR frames (left)
and novelty image (right). The initial frame is shown at the top and subsequent frames are shown
chronologically under. Note how sensitivity to regions with persistent change is reduced.

5.4 Post-Processing and novelty segmentation

From 5.9 it is seen that there is noise present but the areas of these artifacts are relatively
small and therefore the mathematical morphology operation erosion may effectively sup-

54



press these as described by Haralick et al. (1987). The result of applying erosion to the
raw novelty image are shown in 5.15

Figure 5.15: Erosion by a square structuring element of width 9 pixels

The result of the erosion operation shown to the right in figure 5.15 completely re-
moves the contour of the chair and noise present in the image to the left. The actual
novelties, referring to the movement of the box is successfully isolated. However, caution
has to be shown when using erosion as the edges of the actual novelty are eroded away.
This is acceptable when the structuring element is small enough.

5.5 Novelty reconstruction

The result of the optimal clustering approach proposed by Jung et al. (2003) is shown in
figure 5.17 The reconstruction with optimal clustering of the measurements in figure 5.16
is shown in figure 5.17. As previously mentioned, the clustering using the approach by
Jung et al. (2003) provides too small clusters according to what is reasonable to expect to
fit within one camera frame.

The result of the bounding box fitting approach based on recursive dendrogram tra-
versal to find first cluster that produces a bounding box that is smaller than the given
threshold, on the measurements in figure 5.18 is shown in figure 5.19. The clustering
shown in figure 5.18 is deemed satisfactory both due to a reasonable clustering size and
the fact that they fit relatively close to the novel voxels. The lower limit for the bounding
box lengths used in this experiment is set to 60 m in all three spatial dimensions.

Note that clusters with a small amount of voxels are dropped from the bounding box
fitting as these are likely to be noise artifacts that have made their way into the voxel-
based reconstruction.

55



Compared to the optimal clustering approach in (Jung et al., 2003), the larger clusters
are more suitable for this applications regardless if they are optimal. This is because this
cluster configuration promotes less redundancy when inspecting the novel sub-volumes.

56



Figure 5.16: The 5 first (from the top) frames of the novelty detection with IR measurement to the
right and corresponding novelty image to the left. The objects in the image include a cardboard
box and a clear glass vase.

57



Figure 5.17: Reconstruction with optimal clustering based on the approach by Jung et al. (2003).

Figure 5.18: The first 2 frames (left) from the top with corresponding novelty image (right)

58



Figure 5.19: Reconstruction of the measurements shown in figure 5.18 with bounding boxes

59



5.6 Camera pose generation

Application of this camera pose generation scheme is shown in figure 5.20

Figure 5.20: 3 frustums (rendered in white) are placed around each novelty bounding box as close
as possible

From the result in figure 5.20 it is seen that the reconstruction of the novelties and the
bounding box around them are of acceptable accuracy. This evaulated by visual inspec-
tion of the real-world scene, the measurements (raw and filtered), and the reconstruction
itself. This is because clusters with a small amount of voxels are not considered.

60



Chapter 6
Conclusion

Considering the results, this study is considered to accomplish the goals formulated in
the problem description. The first task of this study was to determine a voxel-based re-
construction method. The method that was found to be most suitable for this application
was to use a regular 3-D voxel grid to represent 3-D space. The conclusion to use the
voxel grid instead of octree is based on the experiments on memory space usage and in-
dexing speed. The regular voxel grid is a simpler structure that allows for faster indexing.
The memory space usage of the octree when counting the space needed to store the child
pointers to every node exceeds that of the voxel grid for the same sized volume, even
though there is considerably fewer nodes required (even fewer leaf nodes/voxels).

When integrating new measurements into the regular 3-D voxel grid, the three tech-
niques considered were a direct projection of a depth image onto the volume, a direct
projection with filtering of voxels based on number of observations, and the truncated
signed distance function. Although the TSDF approach has shown great promise in the
study by Newcombe et al. (2011) the more simplistic direct mapping with voxel counter
based filtering is used. Visual inspection and comparison of the resulting 3-D recon-
struction with the measurements used and the measured scene itself, have shown that this
results in a higher quality reconstruction.

The novelty detection scheme used in this study was the RDE approach by Morris and
Angelov (2014). The scheme was tested with the Cauchy type kernel used to estimate
the probability of the intensity occurring in the same pixel location based on all previous
frames. A modified version of the RDE scheme was adapted to the assumption that the
pixel intensities are distributed according to the Gaussian distribution. This approach was

61



found to be usable but the amount of noise present in the resulting novelty image do not
justify the choice of this approach over RDE with the Cauchy type kernel.

The novelty images contain some amount of noise that is not desirable to integrate
into the 3-D reconstruction of the novel ROIs. The two methods tested for suppressing
the presence of noise artifacts were thresholding the surface area of these artifacts, and
the erosion operation in mathematical morphology. With the Cauchy type kernel in the
novelty detection scheme, the noise artifacts in the novelty image are relatively small and
thus erosion by a square structuring element provides good noise suppression.

The grouping of novel voxels is performed to determine sub-volumes within the work-
space to further investigate with the eye-in-hand cameras mounted on the robotic manipu-
lators. The most suitable way to do this was to use an existing clustering algorithm known
as agglomerative hierachical clustering. The criterion for the groups to further investig-
ate, is that they need to be smaller than some pre-defined size (defined as lengths of a
bounding box), but large enough to avoid excess scanning. Therefore, in order to extract
from the AHC output the most suitable cluster configuration, the output is traversed from
the last merge performed, backwards and terminates when the first cluster that is smaller
than some desired box size is found. This box is then used to place a camera frustum so
that the entire box is contained within the frustum.

62



Bibliography

Ball, G. H., Hall, D. J., 1967. A clustering technique for summarizing multivariate data.
Systems Research and Behavioral Science 12 (2), 153–155.

Banta, J. E., Zhien, Y., Wang, X. Z., Zhang, G., Smith, M. T., Abidi, M. A., 1995. Best-
next-view algorithm for three-dimensional scene reconstruction using range images.
Proc.SPIE 2588, 418 – 429.

DasGupta, A., 2010. Normal Approximations and the Central Limit Theorem. Springer
New York, New York, NY, pp. 213–242.

Egeland, O., Gravdahl, J. T., 2002. Modeling and simulation for automatic control.
Vol. 76. Marine Cybernetics Trondheim, Norway.

Fossen, I. T., 2011. Handbook of Marine Craft Hydrodynamics and Motion Control. John
Wiley & Sons, Ltd.

GOM, 2018. Atos - industrial 3d scanning technology. https://www.gom.com/
metrology-systems/atos.html, last visited: 2018-05-25.

Gonzalez, R. C., Woods, R. E., 2010. Digital Image Processing, 3rd Edition. Pearson.

Halkidi, M., Vazirgiannis, M., 2001. Clustering validity assessment: finding the optimal
partitioning of a data set. In: Proceedings 2001 IEEE International Conference on Data
Mining. pp. 187–194.

Han, J., Shao, L., Xu, D., Shotton, J., 2013. Enhanced computer vision with microsoft
kinect sensor: A review. IEEE transactions on cybernetics 43 (5), 1318–1334.

63

https://www.gom.com/metrology-systems/atos.html
https://www.gom.com/metrology-systems/atos.html


Haralick, R. M., Sternberg, S. R., Zhuang, X., July 1987. Image analysis using mathem-
atical morphology. IEEE Transactions on Pattern Analysis and Machine Intelligence
PAMI-9 (4), 532–550.

Hartley, R. I., Zisserman, A., 2004. Multiple View Geometry in Computer Vision, 2nd
Edition. Cambridge University Press, ISBN: 0521540518.

Intel R©Corporation, 2016. Intel R© realsense TM camera sr300. embedded coded light 3d
imaging system with full high definition color camera. product datasheet.

Jackins, C., Tanimoto, S., 1980. Oct-trees and their use in representing three-dimensional
objects. Computer Graphics and Image Processing 14 (3), 249–270.

Jung, Y., Park, H., Du, D.-Z., Drake, B. L., 2003. A decision criterion for the optimal
number of clusters in hierarchical clustering. Journal of Global Optimization 25 (1),
91–111.

Lacroute, P., Levoy, M., 1994. Fast volume rendering using a shear-warp factorization of
the viewing transformation. In: Proceedings of the 21st Annual Conference on Com-
puter Graphics and Interactive Techniques. SIGGRAPH ’94. pp. 451–458.

Lazaros, N., Sirakoulis, G. C., Gasteratos, A., 2008. Review of stereo vision algorithms:
From software to hardware. International Journal of Optomechatronics 2 (4), 435–462.

Lippiello, V., Siciliano, B., Villani, L., 2005. Eye-in-hand/eye-to-hand multi-camera
visual servoing. In: Decision and Control, 2005 and 2005 European Control Confer-
ence. CDC-ECC’05. 44th IEEE Conference on. IEEE, pp. 5354–5359.

Marr, D., Poggio, T., 1979. A computational theory of human stereo vision. Proceedings
of the Royal Society of London B: Biological Sciences 204 (1156), 301–328.

Moley, 2018. Moley - the world’s first robotic kitchen. www.moley.com, last visited:
2018-05-25.

Morris, G., Angelov, P., Oct 2014. Real-time novelty detection in video using background
subtraction techniques: State of the art a practical review. In: 2014 IEEE International
Conference on Systems, Man, and Cybernetics (SMC). pp. 537–543.

Newcombe, R. A., Izadi, S., Hilliges, O., Molyneaux, D., Kim, D., Davison, A. J., Kohli,
P., Shotton, J., Hodges, S., Fitzgibbon, A., 2011. Kinectfusion: Real-time dense surface
mapping and tracking. In: Proceedings of the 2011 10th IEEE International Symposium
on Mixed and Augmented Reality. IEEE Computer Society, pp. 127–136.

64

www.moley.com


Omran, M. G., Engelbrecht, A. P., Salman, A., 2007. An overview of clustering methods.
Intelligent Data Analysis 11 (6), 583–605.

Pito, R., 1997. Automated surface acquisition using range cameras. University of
Pennsylvania.

Scharstein, D., Szeliski, R., June 2003. High-accuracy stereo depth maps using structured
light. In: 2003 IEEE Computer Society Conference on Computer Vision and Pattern
Recognition, 2003. Proceedings. Vol. 1. pp. I–195–I–202 vol.1.

Sobral, A., Vacavant, A., 2014. A comprehensive review of background subtraction al-
gorithms evaluated with synthetic and real videos. Computer Vision and Image Under-
standing 122, 4 – 21.

Spong, M. W., Hutchinson, S., Vidyasagar, M., 2006. Robot Modeling and Control. John
Wiley & Sons, Inc.

Steinbach, M., Karypis, G., Kumar, V., et al., 2000. A comparison of document clustering
techniques. In: KDD workshop on text mining. Vol. 400. Boston, pp. 525–526.

Tou, J. T., Dec 1979. Dynoc—a dynamic optimal cluster-seeking technique. International
Journal of Computer & Information Sciences 8 (6), 541–547.

Tsai, R. Y., Lenz, R. K., Jun 1989. A new technique for fully autonomous and efficient 3d
robotics hand/eye calibration. IEEE Transactions on Robotics and Automation 5 (3),
345–358.

Walpole, E. R., Myers, H. R., Myers, L. S., Ye, K., 2012. Probability & Statistics for
Engineers & Scientists, ninth Edition. Pearson Education Inc.

Werner, D., Al-Hamadi, A., Werner, P., 2014. Truncated Signed Distance Function: Ex-
periments on Voxel Size. pp. 357–364.

Willett, P., 1988. Recent trends in hierarchic document clustering: A critical review. In-
formation Processing & Management 24 (5), 577 – 597.

65



66



Appendix

Write your appendix here...

Listing 6.1: Blueprint of the RenderBundle type which keeps the required information for render-

ing any entity by the visualization module

1 t y p e d e f s t r u c t RenderBundle {
2 vo id ∗ e n t i t y ;
3 vo id (∗ r e n d e r p r o c e d u r e ) ( vo id ∗ , R e n d e r I n f o ∗ ) ;
4 vo id (∗ d e s t r o y p r o c e d u r e ) ( vo id ∗ ) ;
5 } RenderBundle ;

Listing 6.2: Blueprint of the structure containing information on how the rendered entity is to be

viewed

1 t y p e d e f s t r u c t R e n d e r I n f o {
2 glm : : mat4 v i e w p r o j ;
3 glm : : vec3 l i g h t p o s ;
4 glm : : vec3 v iew pos ;
5 } R e n d e r I n f o ;

Listing 6.3: Example of generation of a Render Bundle for the voxel grid

1 RenderBundle ∗ v o x e l g r i d c r e a t e r e n d e r b u n d l e ( VoxelGr id ∗ v o x e l g r i d ) {
2 RenderBundle ∗ r b u n d l e = new RenderBundle ;
3 r b u n d l e−>e n t i t y = ( vo id ∗ ) v o x e l g r i d ;
4 r b u n d l e−>r e n d e r p r o c e d u r e = &v o x e l g r i d r e n d e r ;
5 r b u n d l e−>d e s t r o y p r o c e d u r e = &v o x e l g r i d d e s t r o y ;
6 r e t u r n r b u n d l e ;
7 }

67



Listing 6.4: Code for activation of depth or IR stream of Intel R© RealSense
TM

devices with libreal-

sense

1 r s 2 : : d e v i c e dev = GetDevice ( ” I n t e l ” ) ;
2 p i p e l i n e = r s 2 : : p i p e l i n e ( ) ;
3 A c t i v a t e S t r e a m ( ” d e p t h s t r e a m ” , &c o n f i g ) ;
4 A c t i v a t e S t r e a m ( ” i r s t r e a m ” , &c o n f i g ) ;
5 p i p e l i n e p r o f i l e = p i p e l i n e . s t a r t ( c o n f i g ) ;
6 Warmup(& p i p e l i n e , 5 0 ) ;
7
8 r s 2 : : d e v i c e CameraSensor : : GetDevice ( c o n s t s t d : : s t r i n g dev name ) {
9

10 r s 2 : : c o n t e x t c t x ;
11 r s 2 : : d e v i c e l i s t d e v i c e s = c t x . q u e r y d e v i c e s ( ) ;
12 r s 2 : : d e v i c e s e l e c t e d d e v i c e ;
13
14 i f ( d e v i c e s . s i z e ( ) == 0) {
15
16 s t d : : c e r r << ”No d e v i c e c o n n e c t e d ” << s t d : : e n d l ;
17
18 r s 2 : : d e v i c e h u b d e v i c e h u b ( c t x ) ;
19 s e l e c t e d d e v i c e = d e v i c e h u b . w a i t f o r d e v i c e ( ) ;
20 }
21 e l s e {
22 f o r ( r s 2 : : d e v i c e d e v i c e : d e v i c e s ) {
23
24 s t d : : s t r i n g c u r r d e v n a m e = GetDeviceName ( d e v i c e ) ;
25
26 i f ( dev name ==
27 c u r r d e v n a m e . s u b s t r ( 0 , dev name . l e n g t h ( ) ) ) {
28
29 s t d : : c o u t << ” Found d e s i r e d d e v i c e : ”
30 << c u r r d e v n a m e << s t d : : e n d l ;
31 s e l e c t e d d e v i c e = d e v i c e ;
32 b r e a k ;
33 }
34 }

68



35 }
36
37 r e t u r n s e l e c t e d d e v i c e ;
38 }
39
40 vo id CameraSensor : : A c t i v a t e S t r e a m ( c o n s t s t d : : s t r i n g s t ream ,
41 r s 2 : : c o n f i g ∗ c o n f i g ) {
42
43 r s 2 s t r e a m s t r e a m t y p e ;
44
45 i f ( s t r e a m == ” d e p t h s t r e a m ” )
46 s t r e a m t y p e = RS2 STREAM DEPTH ;
47 e l s e i f ( s t r e a m == ” i r s t r e a m ” )
48 s t r e a m t y p e = RS2 STREAM INFRARED ;
49
50 c o n f i g−>e n a b l e s t r e a m ( s t r e a m t y p e ) ;
51 }

Listing 6.5: Capture a depth frame.

1 r s 2 : : f r a m e s e t CameraSensor : : C a p t u r e ( ) {
2
3 r s 2 : : f r a m e s e t f r a me s = p i p e l i n e . w a i t f o r f r a m e s ( ) ;
4 r e t u r n f r a me s ;
5 }
6
7 vo id CameraSensor : : Cap tu reDep th ( cv : : Mat∗ image ) {
8
9 r s 2 : : d e p t h f r a m e frame =

10 C a p t u r e ( ) . f i r s t ( RS2 STREAM DEPTH ) . as<r s 2 : : d e p t h f r a m e > ( ) ;
11
12 ∗ image = cv : : Mat ( cv : : S i z e ( f rame . g e t w i d t h ( ) ,
13 f rame . g e t h e i g h t ( ) ) , CV 16UC1 ,
14 ( vo id ∗ ) f rame . g e t d a t a ( ) ) ;
15 }

Listing 6.6: Type definition of the data structures representing a voxel and a grid of these.

69



1 t y p e d e f enum {
2 VOID ,
3 FILL ,
4 MIXED
5 } Labe l ;
6
7 t y p e d e f s t r u c t Voxel {
8 Labe l l a b e l ;
9 f l o a t t r u n c a t e d s i g n e d d i s t a n c e ;

10 f l o a t t s d w e i g h t ;
11 u i n t 3 2 t n h i t s = 0 ;
12 } Voxel ;
13
14 t y p e d e f s t r u c t VoxelGr id {
15 Voxel∗ d a t a ;
16 f l o a t r e s o l u t i o n ;
17 u i n t 3 2 t n v o x e l s p e r s i d e ;
18 f l o a t d imens ion ;
19 u i n t 3 2 t n t o t a l ;
20 } VoxelGr id ;

Listing 6.7: Class definition of the octree representation. Only core function signatures are shown.

1
2 c l a s s O c t r e e {
3
4 p u b l i c :
5 O c t r e e ( f l o a t d i a m e t e r , f l o a t r e s o l u t i o n ) ;
6
7 ˜ O c t r e e ( ) ;
8
9 /∗ ∗

10 ∗ @brief Get v o x e l a t max o c t r e e d e p t h from i n d e x .
11 ∗ I f i t does n o t e x i s t , c r e a t e i t from n e a r e s t l e a f node .
12 ∗ /
13 Node∗ GetVoxelAt ( i n t i , i n t j , i n t k ) ;

70



14
15 /∗ ∗
16 ∗ @brief Mark v o x e l a t g i v e n i n d i c e s a s o c c u p i e d .
17 ∗ /
18 vo id Occupy ( i n t i , i n t j , i n t k ) ;
19
20 /∗ ∗
21 ∗ @brief Get i n d e x v o x e l a t l o w e s t l e v e l t h a t s u r r o u n d s a
22 ∗ g i v e n p o i n t i n wor ld s p a c e a l i g n e d wi th t h e v o x e l
23 ∗ /
24 Eigen : : V e c t o r 3 i Po i n tT oVo xe l Ind ex ( Eigen : : V e c t o r 3 f p o i n t ) c o n s t ;
25
26 /∗ ∗
27 ∗ @brief Mark a l l l e a f nodes wi th TSDF v a l u e l e s s
28 ∗ t h a n a g i v e n t h r e s h o l d t o FILL and a l l o t h e r s a s VOID
29 ∗ /
30 vo id OccupyTsdfSur faceNodes ( f l o a t t s d f t h r e s h o l d ) ;
31
32 /∗ ∗
33 ∗ @brief Grow t h e t r e e t o t h e maximum l e v e l by
34 ∗ s u b d i v i d i n g e v e r y node r e c u r s i v e l y u n t i l t h e
35 ∗ maximum l e v e l i s r e a c h e d
36 ∗ /
37 vo id Grow ( ) ;
38
39 p r i v a t e :
40 Node∗ r o o t ;
41 i n t n l e v e l s ;
42 f l o a t r e s o l u t i o n ;
43 } ;
44
45 c l a s s Node {
46
47 p u b l i c :
48 /∗ ∗
49 ∗ @brief C o n s t r u c t node a t a g i v e n wor ld s p a c e l o c a t i o n

71



50 ∗ @brief s i z e S i z e o f t h e s i d e s o f t h e node
51 ∗ /
52 Node ( Node∗ p a r e n t , f l o a t x , f l o a t y , f l o a t z , f l o a t s i z e ) ;
53
54 ˜ Node ( ) ;
55
56 /∗ ∗
57 ∗ @brief S u d i v i d e node i n t o e q u a l l y s i z e d o c t a n t s
58 ∗ /
59 vo id S u b d i v i d e ( ) ;
60
61 /∗
62 ∗ @brief Grow a g i v e n number o f l e v e l s unde r t h i s node .
63 ∗ /
64 vo id Grow ( i n t n l e v e l s ) ;
65
66 vo id D e s t r o y C h i l d r e n ( ) ;
67
68 vo id D e s t r o y ( ) ;
69
70 /∗
71 ∗ @brei f Get i n d e x of sub−o c t a n t i n which t h e
72 ∗ v o x e l w i th g i v e n i n d i c e s i s l o c a t e d
73 ∗ /
74 i n t Ge tOc tan t IndexOfVoxe l ( i n t i , i n t j , i n t k ,
75 c o n s t f l o a t& r e s o l u t i o n ) c o n s t ;
76
77 vo id Draw ( Camera∗ camera ) ;
78
79 /∗ ∗
80 ∗ @brief Get a l l l e a f nodes unde r t h e g i v e n node
81 ∗
82 ∗ @param l e a f n o d e s V e c t o r where a l l t h e l e a f nodes a r e
83 ∗ added i n c r e m e n t a l l y a s t h e y a r e d i s c o v e r e d
84 ∗ /
85 vo id GetLeafNodes ( s t d : : v e c t o r<Node∗>& l e a f n o d e s ) ;

72



86
87 boo l I sLeafNode ( ) c o n s t ;
88
89 /∗ ∗
90 ∗ @brief Apply TSDF u p d a t e scheme
91 ∗ /
92 vo id Upda teTsdf ( f l o a t t s d f , f l o a t we ig h t ) ;
93
94 p r i v a t e :
95 Node∗∗ c h i l d r e n ;
96 Labe l s t a t u s ;
97 Node∗ p a r e n t ;
98 f l o a t s i z e ;
99 f l o a t min x , min y , mi n z ;

100 f l o a t max x , max y , max z ;
101 Eigen : : V e c t o r 3 f c e n t e r ;
102
103 f l o a t t s d ;
104 f l o a t t s d w e i g h t ;
105 } ;

Listing 6.8: Implementation of the octree node subdivision

1
2 vo id Node : : S u b d i v i d e ( ) {
3
4 c h i l d r e n = new Node ∗ [ 8 ] ;
5
6 f l o a t h a l f s i z e = s i z e / 2 . 0 f ;
7
8 c h i l d r e n [ 0 ] = new Node ( t h i s , min x , min y + h a l f s i z e ,
9 m i n z + h a l f s i z e , h a l f s i z e ) ;

10
11 c h i l d r e n [ 1 ] = new Node ( t h i s , min x ,
12 min y + h a l f s i z e , min z , h a l f s i z e ) ;
13
14 c h i l d r e n [ 2 ] = new Node ( t h i s , min x , min y ,

73



15 m in z + h a l f s i z e , h a l f s i z e ) ;
16
17 c h i l d r e n [ 3 ] = new Node ( t h i s , min x , min y ,
18 min z , h a l f s i z e ) ;
19
20 c h i l d r e n [ 4 ] = new Node ( t h i s , min x + h a l f s i z e ,
21 min y + h a l f s i z e , m in z + h a l f s i z e , h a l f s i z e ) ;
22
23 c h i l d r e n [ 5 ] = new Node ( t h i s , min x + h a l f s i z e ,
24 min y + h a l f s i z e , min z , h a l f s i z e ) ;
25
26 c h i l d r e n [ 6 ] = new Node ( t h i s , min x + h a l f s i z e ,
27 min y , mi n z + h a l f s i z e , h a l f s i z e ) ;
28
29 c h i l d r e n [ 7 ] = new Node ( t h i s , min x + h a l f s i z e ,
30 min y , min z , h a l f s i z e ) ;
31 }
32
33 vo id Node : : Grow ( i n t n l e v e l s ) {
34
35 S u b d i v i d e ( ) ;
36
37 i f ( n l e v e l s > 1) {
38
39 f o r ( i n t i = 0 ; i < 8 ; i ++)
40 c h i l d r e n [ i ]−>Grow ( n l e v e l s − 1 ) ;
41 }
42 }

Listing 6.9: Procedure for integrating a depth image into a VoxelGrid by incrementing a voxel-

specific counter

1 vo id S u r f a c e R e c o n s t r u c t o r : : C o n s t r u c t S u r f a c e C o u n t (
2 c o n s t cv : : Mat& depth map ,
3 CameraSensor ∗ camera , VoxelGr id ∗ g r i d ) {
4
5 f l o a t m e t e r s c a l e = camera−>M e t e r S c a l e ( ) ;

74



6
7 f o r ( i n t i = 0 ; i < depth map . rows ; i ++) {
8
9 f o r ( i n t j = 0 ; j < depth map . c o l s ; j ++) {

10
11 f l o a t d e p t h = m e t e r s c a l e ∗
12 depth map . a t<u i n t 1 6 t >( i , j ) ;
13
14 Eigen : : V e c t o r 3 f camera f r ame =
15 camera−>P i x e l T o P o i n t ( i , j , d e p t h ) ;
16
17 Eigen : : V e c t o r 3 f w o r l d f r a m e =
18 camera−>TransformToWorldFrame ( camera f r ame ) ;
19
20 Voxel∗ v o x e l = v o x e l g r i d g e t v o x e l a t p o s i t i o n (
21 g r i d , w o r l d f r a m e ) ;
22
23 i f ( v o x e l != NULL)
24 voxel−>n h i t s ++;
25 }
26 }
27 }

Listing 6.10: RDE novelty detection with Cauchy type kernel.

1
2 t y p e d e f s t r u c t D e t e c t i o n S t a t e {
3
4 cv : : Mat∗ image ;
5 u i n t 3 2 t t ;
6 } D e t e c t i o n S t a t e ;
7
8 vo id d e t e c t i o n n o v e l t y r d e c a u c h y ( cv : : Mat∗ image ,
9 f l o a t ∗∗ mean , f l o a t ∗∗ var , c o n s t f l o a t s c a l e ,

10 c o n s t f l o a t a lpha , c o n s t f l o a t n o v t h r e s h ,
11 cv : : Mat∗ n o v e l t y ) {
12

75



13 u i n t 3 2 t n rows = image−>rows ;
14 u i n t 3 2 t n c o l s = image−>c o l s ;
15 s t a t i c f l o a t ∗ l a s t p r o b ;
16
17 i f (∗mean == NULL && ∗ v a r == NULL) {
18
19 ∗mean = new f l o a t [ n rows ∗ n c o l s ] ;
20 d e t e c t i o n c r e a t e s t a t e ( image ) ;
21 l a s t p r o b = new f l o a t [ n rows ∗ n c o l s ] ;
22 }
23
24 D e t e c t i o n S t a t e ∗ d s t a t e = d e t e c t i o n g e t s t a t e ( image ) ;
25
26 f o r ( u i n t 3 2 t i = 0 ; i < n rows ; i ++) {
27
28 f o r ( u i n t 3 2 t j = 0 ; j < n c o l s ; j ++) {
29
30 u i n t 3 2 t index2d = U t i l i t y : : Index2D ( i , j , n c o l s ) ;
31 c o n s t f l o a t i n t e n s i t y = s c a l e ∗
32 image−>a t<u i n t 1 6 t >( i , j ) ;
33
34 / / F i r s t p a s s
35 i f ( d s t a t e−>t == 1) {
36
37 l a s t p r o b [ index2d ] = 0 . 0 f ;
38 (∗mean ) [ index2d ] = i n t e n s i t y ;
39 (∗ ex2 ) [ index2d ] = pow ( i n t e n s i t y , 2 ) ;
40 }
41 e l s e {
42
43 (∗ ex2 ) [ index2d ] = ( d s t a t e−>t − 1 . 0 f ) /
44 d s t a t e−>t ∗ (∗ ex2 ) [ index2d ] + 1 . 0 f /
45 d s t a t e−>t ∗ pow ( i n t e n s i t y , 2 ) ;
46
47 (∗mean ) [ index2d ] = ( d s t a t e−>t − 1 . 0 f ) /
48 d s t a t e−>t ∗ (∗mean ) [ index2d ] + 1 . 0 f /

76



49 d s t a t e−>t ∗ i n t e n s i t y ;
50 }
51
52 i f ( n o v e l t y−>empty ( ) )
53 ∗ n o v e l t y = cv : : Mat ( cv : : S i z e ( image−>c o l s ,
54 image−>rows ) , CV 16UC1 ) ;
55
56 / / Cauchy k e r n e l
57 f l o a t prob = 1 . 0 f / ( 1 . 0 f + pow ( i n t e n s i t y −
58 (∗mean ) [ index2d ] , 2 ) +
59 (∗ ex2 ) [ index2d ] − pow ( ( ∗mean ) [ index2d ] , 2 ) ) ;
60
61 i f ( f a b s f ( prob − l a s t p r o b [ index2d ] ) >

62 f a b s f ( 0 . 1 f ∗ s q r t ( ( ∗ v a r ) [ index2d ] ) ) )
63 n o v e l t y−>a t<u i n t 1 6 t >( i , j ) = UINT16 MAX ;
64 e l s e
65 n o v e l t y−>a t<u i n t 1 6 t >( i , j ) = 0 ;
66
67 l a s t p r o b [ index2d ] = prob ;
68 }
69 }
70
71 d s t a t e−>t ++;
72 }

Listing 6.11: Procedure for obtaining and adding bounding boxes around clusters in the voxel

grid

1 s t d : : v e c t o r<Cube> v o x e l g r i d c l u s t e r i z e ( VoxelGr id ∗ g r i d ) {
2
3 s t d : : v e c t o r<Eigen : : Vec to r3 f> d a t a s e t = v o x e l g r i d g e t o c c u p i e d ( g r i d ) ;
4 s t d : : v e c t o r<Cube> o u t ;
5
6 s t a t i c c o n s t Eigen : : V e c t o r 3 f MAX BOX LENGTH = Eigen : : V e c t o r 3 f : : Ones ( ) ∗ 6 0 . 0 f ;
7 s t d : : v e c t o r<Eigen : : Vec to r3 f> min , l e n ;
8 c l u s t e r i n g g e t b o x e s (& d a t a s e t , &min , &len , MAX BOX LENGTH ) ;
9

77



10 s t a t i c c o n s t Eigen : : V e c t o r 3 f MIN BOX LENGTH = Eigen : : V e c t o r 3 f : : Ones ( ) ∗ 2 . 0 f ;
11
12 f o r ( u i n t 3 2 t i = 0 ; i < min . s i z e ( ) ; i ++) {
13
14 / / S c a l e f o r r e n d e r i n g
15 Eigen : : V e c t o r 3 f m i n a d j = min [ i ] ∗ 0 . 5 f ;
16 Eigen : : V e c t o r 3 f l e n a d j = l e n [ i ] ∗ 0 . 5 f ;
17
18 Cube cube = c u b e c r e a t e ( m i n a d j [ 0 ] , m i n a d j [ 1 ] ,
19 m i n a d j [ 2 ] , glm : : vec3 ( 0 . 3 f , 8 . 0 f , 0 . 0 f ) ,
20 l e n a d j [ 0 ] , l e n a d j [ 1 ] , l e n a d j [ 2 ] ) ;
21
22 v o x e l g r i d a d d b o u n d i n g b o x ( g r i d , cube ) ;
23 o u t . p u s h b a c k ( cube ) ;
24 }
25 r e t u r n o u t ;
26 }

Listing 6.12: Recursive traversal of dendrogram in search for largest bounding box under given

threshold

1 s t a t i c vo id c l u s t e r i n g g e t l a r g e s t u n d e r t h r e s h o l d (
2 u i n t 3 2 t dendrogram index , a l g l i b : : a h c r e p o r t ∗ rep ,
3 s t d : : v e c t o r<Eigen : : Vec to r3 f >∗ d a t a s e t ,
4 Eigen : : V e c t o r 3 f b o x t h r e s h o l d ,
5 s t d : : v e c t o r<Eigen : : Vec to r3 f >∗ mins ou t ,
6 s t d : : v e c t o r<Eigen : : Vec to r3 f >∗ l e n s o u t ) {
7
8 s t d : : v e c t o r<Eigen : : Vec to r3 f> c l u s t e r p o i n t s =
9 c l u s t e r i n g g e t p o i n t s b y d e n d r o i n d e x ( dendrogram index ,

10 rep , d a t a s e t ) ;
11
12 Eigen : : V e c t o r 3 f min , max ;
13 c l u s t e r i n g g e t m i n m a x (& c l u s t e r p o i n t s , &min , &max ) ;
14 Eigen : : V e c t o r 3 f l e n g t h = max − min + Eigen : : V e c t o r 3 f : : Ones ( ) ;
15
16 i f ( l e n g t h [ 0 ] > b o x t h r e s h o l d [ 0 ] | |

78



17 l e n g t h [ 1 ] > b o x t h r e s h o l d [ 1 ] | |
18 l e n g t h [ 2 ] > b o x t h r e s h o l d [ 2 ] ) {
19
20 c l u s t e r i n g g e t l a r g e s t u n d e r t h r e s h o l d (
21 rep−>z [ d e n d r o g r a m i n d e x − d a t a s e t−>s i z e ( ) ] [ 0 ] ,
22 rep , d a t a s e t , b o x t h r e s h o l d ,
23 mins ou t , l e n s o u t ) ;
24
25 c l u s t e r i n g g e t l a r g e s t u n d e r t h r e s h o l d (
26 rep−>z [ d e n d r o g r a m i n d e x − d a t a s e t−>s i z e ( ) ] [ 1 ] ,
27 rep , d a t a s e t , b o x t h r e s h o l d , mins ou t ,
28 l e n s o u t ) ;
29 }
30 e l s e {
31
32 mins ou t−>p u s h b a c k ( min ) ;
33 l e n s o u t−>p u s h b a c k ( l e n g t h ) ;
34 }
35 }

Listing 6.13: Procedure for generating a set of n frustums around the given Cube with the given

viewing frustum

1 s t d : : v e c t o r<Frustum> v i e w p o i n t g e n e r a t e ( Cube cube ,
2 u i n t 1 6 t n v i e w p o i n t s , Frus tum ∗ s e n s o r f r u s t u m ) {
3
4 s t d : : v e c t o r<Frustum> o u t ;
5 glm : : vec3 c u b e c e n t e r = cube . pos + cube . l e n g t h / 2 . 0 f ;
6
7 s t d : : v e c t o r<glm : : mat4> dummy poses =
8 v i e w p o i n t d i s t r i b u t e f r u s t u m s (
9 s t d : : v e c t o r<f l o a t >( n v i e w p o i n t s , 0 . 0 f ) , c u b e c e n t e r ) ;

10
11 s t d : : v e c t o r<f l o a t > a d j u s t e d f r u s t u m d i s t ;
12
13 f o r ( u i n t 3 2 t i = 0 ; i < dummy poses . s i z e ( ) ; i ++) {
14

79



15 glm : : vec3 c u b e c o r n e r s [ 8 ] ;
16
17 glm : : mat4 i n v m o d e l = glm : : i n v e r s e ( dummy poses [ i ] ) ;
18
19 f o r ( u i n t 8 t x = 0 ; x < 2 ; x ++) {
20 f o r ( u i n t 8 t y = 0 ; y < 2 ; y ++) {
21 f o r ( u i n t 8 t z = 0 ; z < 2 ; z ++) {
22
23 u i n t 8 t i n d e x = x + 2 ∗ ( y + 2 ∗ z ) ;
24 c u b e c o r n e r s [ i n d e x ] = glm : : vec3 ( i n v m o d e l ∗
25 glm : : vec4 ( cube . pos +
26 glm : : vec3 ( x , y , z ) ∗
27 cube . l e n g t h , 1 . 0 f ) ) ;
28 }
29 }
30 }
31
32 f l o a t z a d j = f r u s t u m g e t z c o n t a i n i n g p o i n t s (
33 s e n s o r f r u s t u m , c u b e c o r n e r s , 8 ) ;
34
35 i f ( z a d j < s e n s o r f r u s t u m−>f a r z ) {
36
37 z a d j = fmaxf ( z a d j , s e n s o r f r u s t u m−>n e a r z ) ;
38 a d j u s t e d f r u s t u m d i s t . p u s h b a c k ( z a d j ) ;
39 }
40 }
41
42 s t d : : v e c t o r<glm : : mat4> f r u s t u m p o s e s = v i e w p o i n t d i s t r i b u t e f r u s t u m s (
43 a d j u s t e d f r u s t u m d i s t , c u b e c e n t e r ) ;
44
45 f o r ( u i n t 3 2 t i = 0 ; i < f r u s t u m p o s e s . s i z e ( ) ; i ++) {
46
47 Frus tum f r u s t u m = ∗ s e n s o r f r u s t u m ;
48 f r u s t u m . m o d e l m a t r i x = f r u s t u m p o s e s [ i ] ;
49
50 o u t . p u s h b a c k ( f r u s t u m ) ;

80



51 }
52
53 r e t u r n o u t ;
54 }

81


	Problem description
	Abstract
	Sammendrag
	Preface
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	Overview
	Contribution

	Background theory
	Mean and variance
	Rigid body kinematics
	Rotations
	Homogeneous transformations
	Robotic manipulator modelling

	Camera model
	Extrinsic camera calibration


	Method
	Overview
	Measurement
	Hardware setup
	Scene measurement
	Sensors
	Intel RealSense API

	Workspace reconstruction
	Regular 3-D voxel grid
	Oct-Trees as a 3-D modelling technique

	Integrating new measurements
	Direct depth map projection
	Truncated Signed Distance Function

	Novelty Detection
	Available streams
	Technique overview

	Post-processing and novelty segmentation
	3-D reconstruction of novelties
	Determining three-dimensional regions

	Generating camera poses

	Implementation
	Software architecture
	Third-party software
	Sensor interface
	Workspace reconstruction
	Regular 3-D voxel grid
	Octree

	Measurement integration
	Novelty detection
	Post-Processing and novelty segmentation
	Novelty reconstruction
	Camera pose generation
	Visualization software
	Documentation

	Experimental Results
	Workspace reconstruction
	Integrating new measurements
	Novelty Detection
	Post-Processing and novelty segmentation
	Novelty reconstruction
	Camera pose generation

	Conclusion
	Bibliography
	Appendix

