


4.2 Generating an Equation Based on Mean Grain Size and Standard Deviation

grain sizes are varied between 150-250µm. For each mean grain size the standard devia-
tion is varied between 15-75. Minimum and maximum grain size was defined to be µ±2σ.
The complete simulation set up can be seen in table B.1 in appendix B.

Before starting the simulations, a set of configurations must be set. The first configura-
tion to be determined is the model type. e-Core offers different model types that mimic
distinct deposition styles. For the simulation the laminated model was chosen. The simu-
lation set up above includes only a single lamina. The number of grid cells (x) was chosen
to be 500, while the grid cell size was set to 5 µm. The grid cell size was chosen based
on the desire of having 5-10 grid cells per grain, as the smallest grains approach 25µm.
Further, grain bed properties must be determined. In e-Core, four common parameters
defining the grain bed composition was configured. These parameters were; amount of el-
liptical grains, maximum sphericity factor, amount of feldspars and amount of unsolvable
feldspars. The values was set to, 0%, 1.0, 0% and 0%, respectively.

4.2 Generating an Equation Based on Mean Grain Size
and Standard Deviation

With all properties set as described in the previous section, the created grain size distri-
butions from Excel was imported into e-Core and sedimentation of the sphere packs was
conducted. After the sedimentation, flow simulations was performed in order to obtain
absolute permeability for each sand pack. All parameters were kept at default for the flow
simulations. The flow simulation computes absolute permeability using the Lattice Boltz-
mann method. With the acquired absolute permeabilities from e-Core, an equation using
statistical properties of grain size distributions was pursued using the solver package in
Excel. Plots of acquired properties from flow simulations served as a tool for investigating
relationships and dependencies.

4.3 Calculating Pore Area and Approximating Permeabil-
ity

As earlier described the major ambition of this thesis is to express the transport properties
using the pore area constructed by three tangent circles, where the circles is a 2D cross
section of grains. For calculating the pore area, the theory presented in section 3.1 served
as basis. The calculation requires three grains. These three grains was randomly picked
from the grain size distribution. This would create a realistic void space constituent of
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Figure 4.2: Visualization of a cube with spheres.

three independently chosen grain sizes. Calculating the pore area of a representative num-
ber of grain constellations would give a useful approximation of flow potential. The mean
grain sizes and standard deviations that served as basis for generating the sphere packs can
be viewed in appendix B, table B.1, but this time the smallest grain size, 150µm, was not
included. Modeling and visualization was performed in e-Core, while calculations was
performed in MATLAB. The MATLAB code is presented in appendix A.2 and A.3.

The first approach of utilizing pore area as a descriptor of permeability was based on
grain size distribution properties and flow and computational simulations in e-Core and
MATLAB, respectively. Flow simulations in e-Core were performed on a cubic system. If
we consider one of the sides of this cube, there will be a certain area that would permit
flow as visualized in figure 4.2. This area equals the porosity. Mean grain size and lengths
of the system served as estimation on the number of pore throats.

nthroats = System Length
Mean Grain Size

, (4.1)

thus, the total number of throats in a cube is n3
throats. Each of the pore throats contributes to

the total fluid transport and has conductivity, g, dependent on the pore area. The conduc-
tivity of each throat can be calculated using equation 2.9 as seen in section 2.5, resulting
in a set of conductivities. In equation 2.9 the length, l, is put to be the mean grain size
diameter, lmean, such that:
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4.4 Implementing Shape Factor

g = A2

8 · π · lmean
. (4.2)

The conductivity was calculated for each throat and for each layer (i.e a horizontal slice
with a height equal to the radius) the harmonic mean was calculated. Total conductivity
was found by summing up the conductivity for each of these layers. This conductivity
calculation is shown in appendix A.4. With the conductivity known, one can use the Darcy
equation to express and calculate the permeability.

k =
∑
g

lsys
, (4.3)

where lsys is the length of the simulated system. This procedure gives an approximate per-
meability value and was performed for the pore area and the inscribed grain area.

The calculation of the inscribed grain diameter, as seen in section 3.2, was performed
with a random choosing of three grains from a grain size distribution. Using the randi
function in MATLAB, generating n3 number of constellations of three random grains and
calculating the inscribed diameter of each. This gives a representative number of pore
throats for calculating the mean inscribed diameter. The MATLAB-codes performing these
operations can be seen in appendix A.6. With conductivities for the different approaches,
an equation was pursued using the solver package in Excel.

4.4 Implementing Shape Factor

The implementation of a shape factor is to account for angular pores. As the Hagen-
Poiseuille equation is valid for cylindrical pipes, a factor to replicate and represent the
essential features of a pore space would make it more suitable for natural porous media.
By the definition of Øren et al. (1998), the shape factor for a cylinder becomes:

G = A

s2 = πr2

(2πr)2 = 1
4π . (4.4)

For triangular pores Øren et al. (1998) defined the shape factor as seen in equation 2.11.
The length in the denominator is now the mean grain size, and we write:

K = 3
5
A2G

lmean
. (4.5)

With the shape factor implemented, the permeability was calculated in the same manner
as above. The conductivity calculation with shape factor can be seen in appendix A.5.

33



Chapter 4. Methodology

4.5 Pursuing Permeability Using Katz-Thompsons Rela-
tionship

In the process of investigating properties of the pore area and their relation to permeabil-
ity, Katz and Thompson’s (1986) relationship, as described in section 2.11.7, was studied.
Katz-Thompson relationship utilizes mercury intrusion experiments for defining the char-
acteristic length of the pore space. With no data on this, other characteristic lengths of the
pore space were pursued, such as pore diameter. These were tried using trial and error. In
addition to this, some adjustment to the constant was necessary.

4.6 Expected Diameter

Descartes theorem as described in equation 3.11 was used to find the expected value of the
inscribed diameter. We can start with the expected value of the complete expression and
simplify:

dinsc = E

(
2

k1 + k2 + k3 ± 2 ·
√
k1 · k2 + k2 · k3 + k3 · k1

)
, (4.6)

note that the numerator is multiplied with two to get the diameter. This expression can
now be simplified and broken up. Lets focus on the denominator:

E

(
1
r1

+ 1
r2

+ 1
r3

+ 2 ·
√

1
r1
· 1
r2

+ 1
r2
· 1
r3

+ 1
r1
· 1
r3

)
, (4.7)

which can be further simplified to:

E

(
1
r1

)
+ E

(
1
r2

)
+ E

(
1
r3

)
+ 2 · E

(√
1
r1
· 1
r2

+ 1
r2
· 1
r3

+ 1
r1
· 1
r3

)
. (4.8)

For the denominator we end up with:

⇒ 3 · E
(

1
X

)
+ 2 ·

(√
1
X2

)
= 3 · E

(
1
X

)
+ 2
√

3 · E
(√

1
X2

)

' (3 + 2
√

3) · E
(

1
X

)
.

(4.9)

The expected value for the inscribed diameter can thus be expressed as:

dinsc = 2
(3 + 2

√
3) · E

( 1
X

) . (4.10)
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4.6 Expected Diameter

It is worth noting that between equation 4.8 and 4.9 the denominators are changed from
radius to a common X. This is a valid assumption as the radii are gathered from the same
distribution and is thus interchangeable. The computation of the expected value for the
inscribed radius was done in MATLAB and is presented in appendix A.7.

In the same manner as before, we can develop a relationship based on the expected diam-
eter and the variance of the mean inscribed diameters. A best-fit equation was developed
using the solver package in Excel.

35



Chapter 4. Methodology

36



CHAPTER 5

RESULTS

Characteristics from a grain size distribution and how they can be applied in describing
transport properties of porous media are investigated. The equations developed are pre-
sented along with supporting figures. Lastly, the equations validity and application is
depicted.

5.1 Volume Weighting

The first sets of sphere packs generated in e-Core based on the default normal distribution
provided a grain size distribution as can be seen as the black curve in figure 5.1. e-Core
provides a cumulative distribution of the grains that is weighted by number. Thus, it yields
a rock where there is very few of the smaller grains compared to larger grains volume wise.
Performing a volume weighting on the distribution results in a distribution constituent of a
higher number of small grains compared to larger ones. In figure 5.1 the volume-weighted
distribution is represented by the blue curve. A volume-weighted distribution is viewed as
more representative of a realistic rock because the ratio of small to large grains is better
characterized. The higher amount of small grains has two main effects. Firstly, porosity
will decrease due to the occupation of pore space by small grains in between larger ones.
Secondly, the presence of fine-grained material in pore throats will decrease the rocks abil-
ity for flow.

One of the indicators supporting a volume-weighted distribution was the effect of standard
deviation on porosity. In table 5.1, the effect can be studied. Initially, with the non-volume
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Figure 5.1: Cumulative plot showing grain size distribution weighted by number of grains versus
volume weighted. The volume weighted distribution has a higher amount of small grains compared
to the non volume weighted.

Case MGS(µ) SD(σ) φ(not VW)[%] φ(VW)[%] k(not VW)[mD] k(VW)[mD]
1 175 25 39.05 39.27 29407 30436
2 175 50 38.13 36.26 35278 18523
3 175 75 37.77 33.83 44967 14651

Table 5.1: Study on the effect of standard deviation on porosity and permeability.

weighted (VW) distribution the porosity decreases slightly when standard deviation is in-
creased, while the permeability increases with increasing standard deviation. Thus, we
have a coarse medium, where the porosity is decreasing, but lack of small grains gives rise
to increasing permeability.

5.2 Equation Based on Mean Grain Size and Standard
Deviation

As seen earlier, there have been proposed a multiple of equations describing flow in porous
media. A common feature for all of these equations have been the diameter squared mul-
tiplied with porosity relation. Hazen (1895) was one of the earliest describing flow using
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5.2 Equation Based on Mean Grain Size and Standard Deviation

Figure 5.2: Porosity plotted against the coefficient of variation, showing a linear relationship.

this relation. Later, Krumbein and Monk (1943) and others proposed equations utilizing
this relation. Thus, it is meaningful to start with this relation and develop further:

k = R · φµ2, (5.1)

here R is a constant that includes properties affecting flow, and will be described later.
After studying the graph, figure 5.2, effect of mean grain size and standard deviation on
porosity, it became clear that porosity could be described as a linear function of the coeffi-
cient of variation. Also worth noting from figure 5.2 is that zero standard deviation gives
a porosity of 41.125. This sounds plausible as Graton and Fraser (1935) concluded that a
cubic packing of spheres yields a porosity of 47.6%. We can write the equation as:

k = R · µ2 ·
[
a ·
(
σ

µ

)
+ b

]
= R · (aµσ + bµ2). (5.2)

Further, the equation was developed by relating R to mean grain size and standard de-
viation. This was done by plotting σ

µ against k
µ2φ , see figure 5.3. By employing linear

regression, the equation is written as:

k =
[
aµσ + bµ2] · [c(σ

µ

)
+ d

]
. (5.3)

The constants a, b, c and d is extracted from the linear regression seen in figure 5.2 and
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Figure 5.3: A linear representation approximating the constant, R.

5.3. The equation from linear approximation for the porosity and R are respectively:

φ = −16.733 ·
(
σ

µ

)
+ 41.125, (5.4)

k

µ2φ
= −0.0261 ·

(
σ

µ

)
+ 0.0249, (5.5)

yielding the final equation based on the simulation set up in table B.1:

0.4367 · σ2 + µ · (1.024µ− 0.4167σ − 1.073). (5.6)

5.3 Equation Based on Pore Area

The idea of the second approach was similar to the first approach, but properties of the
pore area were chosen as basis for expressing the permeability. The theory that serves as
a basis for the results presented can be found in chapter 3. Also, chapter 4 describes the
procedure and idea of the calculation.

First, the conductivity of the whole pore area was investigated and permeability calcu-
lated as described in section 4.3. Secondly, the pore area with the included shape factor as
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5.3 Equation Based on Pore Area

described in section 2.6 and 4.4 was calculated. From the obtained conductivities, perme-
ability was calculated using Hagen-Poiseuilles equation as described in section 2.4. The
results of this calculation can be seen in figure 5.4 and 5.5. These plots show that these two
approaches is overestimating the permeability of the sphere packs. Another aspect worth
noting is the apparent decrease in permeability when the shape factor proposed by Øren
et al. (1998) is implemented.

Figure 5.4: Permeability calculated from raw pore area as expressed in section 3.1.

It became clear that using the raw pore area or in combination with the shape factor pro-
vided permeabilities higher than the actual values. After this the mean inscribed pore
diameter as presented in section 3.2 was investigated and conductivities calculated. The
obtained permeabilities found from this approach are presented in figure 5.6. When com-
paring figure 5.4 and 5.5 to figure 5.6, the method using mean inscribed pore diameter
estimate permeabilities closest to those obtained from e-Core. Based on these results it
was chosen to further investigate and develop a relationship for the approach using the
mean inscribed diameter of the pore area.
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Figure 5.5: Permeability calculated from raw pore area with implemented shape factor. This is
described in section 2.6 and 4.4.

Figure 5.6: Permeability calculated from inscribed diameter as illustrated in figure 3.3.
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5.4 Katz-Thompson Relationship Investigated

5.4 Katz-Thompson Relationship Investigated

As mentioned in section 4.5, the Katz-Thompson relationship was studied in the process
of developing an equation using pore area characteristics. Katz and Thompson (1986)
relationship uses a characteristic length of the pore space, as is described in detail in section
2.11.7. This length was determined from mercury injection experiments, and as this was
not available for the sphere packs in question, other characteristic lengths of the pore area
was pursued. Using the mean inscribed pore diameter of a data set, as described in section
4.3, and changing Katz and Thompson’s (1986) proposed constant from 1

226 to 17
100 . Using

another measure for the characteristic length will understandably affect the pre-factor c in
the Katz-Thompson’s equation. We obtained the resulting values shown in figure 5.7.

Figure 5.7: Katz-Thompson relationship tested on the sphere packs. It estimates permeabilities with
some accuracy, but underestimates permeability for the packs with lowest initial permeability.

From the plot, we see that Katz and Thompson’s (1986) relationship estimate permeabil-
ities with a decent accuracy. The packs that have an initial low permeability is underesti-
mated using this relationship. Although this plot shows some misalignment, there seem to
be a relation between the mean inscribed pore diameter and permeability. This observation
further substantiates a pursue of an equation using the mean inscribed pore diameter from
a grain size distribution.
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5.5 Further Investigation of Area of Inscribed Diameter

As we saw from section 5.3 and 5.4 there was indications that the mean inscribed pore di-
ameter provided permeabilities with the highest accuracy. This support a pursue of relating
inscribed pore diameter to transport properties of porous media. The mean inscribed diam-
eter was found using the method described in section 4.3. This diameter will vary around
a short interval for each data set due to the randomizing of the calculation. With a value of
the mean inscribed diameter in combination with the variance of the randomized inscribed
diameters, one has two useful values. These two values were found for each combina-
tion presented in table B.1. Based on these two values one is able to develop a meaningful
relationship with permeability. This was done using the Excel add-in, solver.xlam, in com-
bination with plotting. After performing optimization using the solver in Excel, we end up
with the following equation:

k[mD] = 35.89 · d2
insc + 5491.6 ·

(
σ

dinsc

)0.95
, (5.7)

where dinsc [µm] is the average inscribed diameter and σ is the variance of the inscribed
diameters. The constants in the equation are found after tuning the equation using Excel.
The standard deviation of data must be seen in context with the mean of the data; hence
the use of the coefficient of variation, as this describes the dispersion of the probability
function.

Figure 5.8: Permeability calculated from equation 5.7 plotted versus absolute permeability from
e-Core.
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5.6 Expected Inscribed Diameter

Equation 5.7 requires the use of the randomizer as presented in appendix A.6.2. The
randomizer, in combination with the script in appendix A.6.3, finds the mean inscribed
diameter, dinsc, and the variance, σ. It would have been desirable to express both dinsc
and σ as expected values without the need of the randomizer. The expected value of dinsc
was expressed using statistical procedure as is outlined in section 4.6. The expected value
of the variance proved to be complex and not feasible. Although, we are now able to
express the expected inscribed diameter without the randomizer, the variance still requires
the use of it. In figure 5.9 the expected inscribed diameter is plotted versus the actual
calculated mean inscribed diameter for each sphere pack and it shows that it predicts the
inscribed diameter to a satisfactory degree.

Figure 5.9: The actual mean diameter plotted versus the expected value. There are some discrepan-
cies for the smallest diameters and a general trend of slightly smaller diameters from the expected
value compared to the actual.

Figure 5.10 and 5.11 substantiates the use of the expected inscribed diameter and it’s vari-
ance. As can be seen, the inscribed expected diameter converges and shows limiting be-
havior. The same apply to the variance. This was reassuring as we could say that both
expected inscribed diameter and the variance of the mean inscribed diameters converges
as number of grains increase.
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Figure 5.10: Expected inscribed diameter converging as number of grains increase.

Figure 5.11: Variance of the expected inscribed diameter converging as number of grains increase.
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5.7 Formula Applied to Sand Packs

With the expected inscribed diameter and variance known, we can perform iterations and
optimization in the same manner as described earlier. This results in the following equa-
tion:

k[mD] = 36 · d2.02
exp + 5491.1 ·

(
σ

dexp

)0.945
, (5.8)

where dexp [µm] is the expected inscribed diameter. In SI-units the equation becomes:

k[m2] = (4.88E-2) · d2.02
exp + (2.61E-6) ·

(
σ

dexp

)0.945
, (5.9)

where the expected inscribed diameter, dexp [m], now is metric.

5.7 Formula Applied to Sand Packs

For testing the equation presented above, equation 5.9, a few sand packs was acquired
from Imperial College London (2017). Sand packs resemble sphere packs, but texture
effects such as sorting, packing, grain size, shape and orientation are more prominent.
The preliminary tests showed that equation 5.9 overestimated permeability for these sand
packs as can be seen in figure 5.12. It is believed that a combination of texture properties
affect the permeability estimation. A pre-factor was added to the equation to reduce the
permeability closer to the actual value of the sand packs. This factor was found using
manual optimization in Excel, and was determined to be:

c = 0.57

.
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Figure 5.12: Preliminary test of equation 5.9 on three sand packs from Imperial College London
(2017), LV60C LV60A and F42B.

5.8 Final Equation and it’s Validity

With the pre-factor found in section 5.7, we end up with the final equation:

k = c ·

[
(4.88E-2) · d2.02

exp + (2.61E-6) ·
(

σ

dexp

)0.945
]
, (5.10)

where:
k = permeability [m2]
c = 0.57, a pre-factor adjusting for the overestimation of permeability on sand packs
dexp = expected inscribed diameter [m]
σ = variance
The equation is based on a clean sphere pack of good sorting, clean quartz with no
feldspars and a high-energy sedimentation. Hence, the constant c is restricted to use on
sand packs and other sandstones.

The precision of equation 5.6, 5.9 and 5.10 can be seen in figure 5.13. The black dots
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5.9 Formation Factor

represent the simulated sphere packs as described in section 4.1.2 and in appendix B, ta-
ble B.1. These are clearly linearly distributed as the equation was developed with these
as a basis. Further, we see that equation 5.6 based on mean grain size and standard de-
viation and equation 5.9 based on expected inscribed diameter closely match each other.
Although, matching each other they are quite inaccurate overestimating the permeability
by a factor of two to three. Also, the equation based on expected inscribed diameter is
slightly more off than equation 5.6. With the included pre-factor, c, as described in section
5.7, the permeability is considerably closer to the actual permeability. This indicates that a
factor should be added to the equation when applied to actual porous media, such as sand
packs.

Figure 5.13: Precision of equation 5.6 and 5.9 on sand packs and equation 5.10 on sand packs.
Equations are tested on sand packs from Imperial College London (2017); LV60C LV60A and F42B.
Note the addition of the constant, c=0.57, and it’s effect.

5.9 Formation Factor

As with the permeability, the formation factor of each of the sphere packs was found from
e-Core. The simulated formation factors are presented in table 5.2. e-Core calculates the
formation factor solving the Laplace equation with conservation of electrical charge. From
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the table we note that for each increase in standard deviation the formation factor increases
along. This applies to each of the mean grain sizes. The increase is due to the enhanced
complexity of the pore structure when the standard deviation increases. This gives a rise
in the resistivity of the rock filled with water and thus a higher formation factor.

Another aspect worth noting from the simulated formation factors is the little to no fluc-
tuation of the values. The difference between the largest and smallest value is 0.86. Berg
(2017) arrived at the following equality in his paper:

F = C

τ2φ
, (5.11)

where C is the constriction factor, τ is the tortuosity and φ is the porosity. Since the
porosity and formation factors of the sphere packs are known, we are able to express
C
τ2 . This relation characterizes the pore structure and says something about the structural
variation of the porous medium. From all the sphere packs we end up with values that are
close to consistent and showing stable behavior. This indicates that the structural variation
of the model is modest. This was expected as one understand that the possible variation in
the pore structures of sphere packs is limited.
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5.9 Formation Factor

MGS SD F φ C
τ2

175 15 4.11 39.5 162.1
175 30 4.27 38.5 164.4
175 45 4.54 36.8 167.0
175 60 4.81 35.2 169.3
175 75 5.03 34.0 171.0
200 15 4.05 39.6 160.3
200 30 4.16 38.8 161.4
200 45 4.34 37.7 163.5
200 60 4.56 36.2 165.0
200 75 4.83 34.7 167.2
225 15 4.00 39.7 158.6
225 30 4.06 39.1 159.0
225 45 4.22 38.2 161.1
225 60 4.46 36.6 163.1
225 75 4.66 35.3 164.6
250 15 3.97 39.8 157.7
250 30 4.07 39.0 158.9
250 45 4.12 38.5 158.8
250 60 4.26 37.6 160.1
250 75 4.49 36.2 162.5

Table 5.2: Simulated formation factors of the sand packs performed in e-Core. The ratio between
the constrictions and tortuosity has little variation, indicating little structural variation.
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CHAPTER 6

DISCUSSION

In the following chapter the results obtained and procedures performed to achieve the re-
sults will be discussed. The two approaches are assessed and parameters used in both
methods will be evaluated. Further, rock transport and geological properties will be dis-
cussed. Lastly, the applicability and the equations restrictions will be deliberated.

6.1 Comparison with Other Empirical Equations

The Darcy equation has served as a basis for nearly all equations calculating flow in porous
media. The equations developed from it are usually altered and the findings have been
based on data provided by experiments. Empirical factors have been added to the equa-
tions to better fit observed data. Other scientists have expressed transport properties relat-
ing it to size parameters. In table 6.1 below, some of the existing empirical equations are
used to compare it’s accuracy versus equation 5.6 and 5.10.

From the table we can see that equation 5.10 performs very well compared to the other
equations. It has the highest degree of precision. For sand pack LV60C Krumbein and
Monk’s (1943) equation outperforms all the others.
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Case k.abs Eq. 5.6 Eq. 5.10 Krumbein Berg Hazen Katz-T
F42B 52000 81429 47638 31336 59205 60778 51725
LV60A 35300 61115 35798 23591 83809 45009 61533
LV60C 19400 55735 32751 21647 73193 40825 46939

Table 6.1: Comparison with some of the empirical equations existing. All permeabilities are ex-
pressed in millidarcies.

6.2 Implications of the Results and Findings

The results obtained from the simulations and calculations performed yielded two equa-
tions that deliver permeabilities within a reasonable accuracy. By studying the relation-
ships developed and the details of the methodology used to obtain these relationships,
there are a few elements that may cause inaccuracies. These may be inaccuracies involv-
ing constants, use of different statistical measures, and basic workflow. When evaluating
the equations, one of the elements that appear to affect the relationship between a grain
size distribution and permeability is the standard deviation.

For the sand packs from Imperial College London (2017) the cumulative raw grain size
distribution was extracted and compared to the cumulative distribution generated from
it’s volume-weighted mean and standard deviation. In appendix C this is showcased for
each sand pack. It became evident that the raw distribution and the distribution volume
weighted based on mean and standard deviation, did not match each other to a degree of
acceptable precision. By increasing the standard deviation we visually got a better match
between the curves as shown in figure 6.1.

This suggests that a higher standard deviation will give a better match. The standard devi-
ation utilizes the mean grain size as an input. Mean is known to be sensitive when applied
to a distribution that has ”outliers” or extreme values, either small or large (Campbell and
Swinscow, 2009). It is also sensitive to skewed distributions, which might be the case for a
grain size distribution (Blott and Pye, 2001). The possibility of extreme values or skewed
distribution might be the explanation to the discrepancy in standard deviation when mean
value is applied. A better value for such distributions could have been the median. The me-
dian handles extreme values and better describe the central tendency (Manikandan, 2011).
This belief was confirmed when the mean and the median of the sand packs was compared.
By changing the mean with the median, there is a slight increase in the standard deviation.
Although there is an apparent effect, this is of a rather small impact.
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Figure 6.1: The actual grain size distribution is seen as the black curve, while the volume weighted
distribution based on mean and standard deviation is blue. By increasing the standard deviation, σ,
we are able to get a closer match (green).

6.3 Pore Scale Defects

As presented in section 5.7, a pre-factor was added to the equation to reduce the error of
permeability when applied to sand packs. A further investigation was done on a pore scale
level to study the texture properties and their effect on pore throats. First, the sand packs in
regard were simulated through sedimentation in e-Core. From this simulation a 2D model
of the rock was examined to find a pore throat for inspection. This was done moving up
and down through the rock in the x-direction. When a pore throat was located, it was
made sure that this was at the point where the grains had their largest cross section, i.e.
the largest diameter. The section of interest was imaged using the snipping tool. Inkscape
was used for outlining the grains and pore area, and color them with an individual color,
as seen in figure 6.2. Secondly, the picture was imported into ImageJ, where the picture
was transformed into a 8-bit monochrome and it’s pixel count extracted. From the pixel
count extracted one is able to calculate the ratio of grains to pore area and compare this to
the pore area estimated from the MATLAB code (A.2) for the same grains.

Preliminary tests of equation 5.9 showed that it was overestimating permeability when
applied to real sand packs, as seen in section 5.7. The samples in regard have different
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sorting and packing than the sphere packs, and the grains have different size, shape and
orientation. The overestimation was interpreted to be an effect of a combination of these
factors. By conducting a simple test, as described above, on a pore throat from the sand
pack-LV60C, we found the ratio between the real pore throat area and the calculated. From
this we are able to propose a constant accounting for the difference.

From the analysis it became clear that the green pore space in figure 6.2 was estimated
to have a higher area than the one calculated when using the MATLAB code presented in
appendix A.2. This implies that there are properties of the pore space in the sand packs
that affect the size of the pore area making it bigger than the one estimated from MAT-
LAB. One of the aspects that is believed to be of considerable impact is the massive grain
contacts seen in the thin section (fig. 6.2). They are not remotely close to the one-point
grain contacts in the sphere packs. The texture effects of the grains, angularity and orien-
tation, will also influence the formation of pores as these properties will not let the grains
create the small pores we see in the sphere packs. Based on the simple test described, the
ratio between the pore throats was found to be 0.85. This supports the pre-factor that was
added in section 5.7 and substantiates the believed effect of the grain contacts and texture
properties.

Figure 6.2: Thin section of three grains in a sand pack. Blue is pore space, yellow is grains, the
three red grains are the ones analyzed along with the green pore area. Picture is taken from the 2D
representation given by e-Core when sand packs are simulated.
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6.3 Pore Scale Defects

The factor of 0.85 is based on a raw and simplistic analysis and interpretation. The main
issue of this factor is that analysis was only performed on a single pore throat in a single
sand pack. By conducting an analysis on a larger number of sand packs and with numer-
ous of pores in each sand pack the factor would have been more representative. Outlining
of the three grains was done thoroughly, but it is likely that some of the grain area have
been excluded using the marker. These minor discrepancies may lead to some error in the
proposed constant. Another aspect is the grain contacts, which were done solely by inter-
pretation. The contacts might be incorrect or grains might overlap and the interpretation
was done in two dimensions only. Thus, there are many uncertainties and inaccuracies
regarding the calculation of this factor.

Fatt (1956) stated in his paper that the ones that had previous developed equations de-
scribing flow in porous media had found ”agreement between theory and observation (...)
by inserting parameters of doubtful physical significance”. Although, the constant pro-
posed in this thesis is based on the fact that the massive grain contacts, angularity and
orientation do affect the pore throat, it may be seen as a parameter of doubtful physical
significance. This is understandable, as we used it as a fitting factor. Fraser (1935) states
that well-rounded grains pack with a minimal pore space, but when angularity increases
the porosity and permeability should expect an increase as well. Further, Beard and Weyl
(1973) propose that this increase can be due to bridging of pores because of higher an-
gularity and looser packing. Both papers support the idea of a factor as they say that the
pore throat of sphere packs will have a smaller area than of sands with angular grains, as
is the understanding stated in section 5.7. This supports the proposed factor and defends
it’s physical significance.

From section 5.9 and table 5.2 we saw that the structural variation of the created sphere
packs was moderate. This was suspected, as there can be little variation in such simple
porous media. The fifth column in table 5.2, representing C

τ2 , shows stable behavior, and
indicates that the tortuosity and constrictions for the different sphere packs is relatively
constant. From Berg and Held (2016), we can use the following equation:

k = τ2
s l

2
hφs

8Cs
, (6.1)

where τs is the average tortuosity of streamline lengths, lh is the hydraulic characteristic
length, φs is the pore space that is accessible for fluid flow and Cs is the constriction factor
defining the variation in pore sizes along the flow paths. Thus, the only property that differs
between the sphere packs controlling the ability for flow is the pore throat diameter, here
expressed as lh.
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Chapter 6. Discussion

6.4 Testing Equation on Discontinuous GSD

Equation 5.9 showed to cope well with the large grain size distributions, as the sand packs
contained up to 14000 values. These and the sphere packs are all distributions with a
cumulative grain size distribution that is smooth. This means that they do not have any
large transition from one bin size to another. In other words the bin sizes show continuous
behavior. What if a rough and stair-like volume weighted distribution was used as input?

A few distributions were made constituent of between 132 and 20 grains with a discon-
tinuous cumulative grain size distribution. The cumulative grain size distributions can be
seen in figure 6.3. These distributions were then tested using the code finding expected
inscribed diameter as seen in appendix A.7 and permeabilities calculated using equation
5.9. The result of the test is shown in figure 6.4.

The permeabilities calculated from equation 5.9 for the broken distributions align pretty
well with each other. They end up being a little underestimated compared to the sphere
packs with a smooth distribution. Although, underestimating permeabilities, we can say
that this supports the relation discovered as they all are affected similarly.

Figure 6.3: Discontinuous cumulative grain size distributions.
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6.5 Volume Weighting

Figure 6.4: Permeability of discontinuous grain size distributions as presented in figure 6.3 calcu-
lated using equation 5.9.

6.5 Volume Weighting

As described earlier a volume weighting of the grain size distributions was performed.
This was done with a belief that it would create a more realistic distribution of the grains.
Main contributor for this was that the smallest grains were underrepresented volume wise.
By volume weighting the aim was to better represent natural porous media consisting of
throats and pore space filled with smaller grains.

In figure 6.5, equation 5.9 is tested on a non-volume weighted grain size distribution.
As one can see from the figure we end up with four horizontal trends, one for each mean
grain size. The movement leftwards from the linear trend is due to increasing standard
deviation. Thus, we can say that increasing standard deviation increases the error of the
calculated permeability versus the absolute. This is interpreted to be due to the increased
amount of large grains compared to smaller volume wise, such a situation is described
in section 2.10. With a high standard deviation larger grains dominate the pore structure
giving favorable properties for fluid flow. The smallest standard deviation practically falls
on top of the linear trend due to a more uniform grain size distribution. The believed
hypothesis is further strengthened from this investigation.
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Chapter 6. Discussion

Figure 6.5: Test of equation when applied to a non volume weighted distribution. Note the horizon-
tal trend of each grain size for the non VW distribution, for every increase in standard deviation the
error becomes larger.

6.6 Applicability

Fatt (1956) stated in his paper that equations describing flow in porous media ”are only
as valid as is the model used in their development”. The sphere pack model that forms
the basis of this study also shapes the applicability of the proposed equation. Equation 5.9
gives permeability of high accuracy for the volume weighted sphere packs, but is not as
precise for real sand packs. Thus, the equation is most precise when used on the model
itself and this confirms Fatt’s statement. Hence, the proposed factor as described in section
5.7. One can say that creating a general model constricts the final equation to the model
that the equation was developed from.

Another parameter that constrains the equation is that all of the simulated packs is within
five porosity percent, between 34-39%. Such a small variation in the porosity may lead to
an equation that is not applicable to reservoirs constituent of rocks with a porosity higher
or lower than these. An additional element to consider is that a larger span of porosities
could have revealed possible non-linearity effects.
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6.7 Sphere Packs as Analogs for Rock Samples

6.7 Sphere Packs as Analogs for Rock Samples

The sphere packs that the equations are based on are well sorted and constituent of ideal
spheres. In reality there are no rocks like that, and the sphere pack model thus creates a
very simplistic rock. A relative realistic rock would have included clays and angular grains
of various sorting. Compaction is excluded in the creation of the sphere packs leading to
loose packing. Another aspect of excluding compaction is that the grains will not experi-
ence compression and pressure solution. The net result of excluding these effects is that
porosity and permeability is higher than for typical oil reservoirs.

After sedimentation and compaction, burial of the geological area begins and tempera-
ture and pressure increases and one reach the region where diagenesis occurs. Diagenesis
is a process altering the rock and where growth of new minerals (authigenesis), such as
clay and cements occur. Cementation of the pore space drastically reduces porosity and
kills pore throats, leading to no fluid flow. Clay is known to reduce the permeability, as it’s
minerals may break loose from it’s host grains when there are high flow rates. The broken
minerals migrate with the flow, blocking pore throats. Understandably, the effects of diage-
nesis are multiple and it has a great impact on a rocks ability to contain and transmit fluids.

If the two factors above had been accounted for and implemented into the equation, it
is expected that the permeabilities would have been lower and the equation more precise
when applied to sand packs. The problem with these factors is that they are hard to quan-
tify. If quantified and implemented the applicability of the equation had been wider.
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Chapter 6. Discussion
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CHAPTER 7

CONCLUSION

The objective of this thesis was to study the transport properties of porous media and inves-
tigate the relation between a grain size distribution and permeability. Further, the ambition
was to express permeability as a function of grain size distribution properties and charac-
teristics of the pore area. The base of the experimental investigation was that permeability
was expected to be correlated to mean grain size, standard deviation and characteristics of
the pore area. The main findings of this investigation are:

• The results show that there is a relationship between transport properties of porous
media and both a grain size distribution and the expected inscribed diameter of the
pore area.

• Expressing permeability as a function of mean grain size and standard deviation
proved to better estimate permeability than using pore area characteristics. Both
equations yields results within a reasonable accuracy for clean sandstones of good
sorting.

• Manual optimization of the equation expressing permeability through pore area
characteristics suggest a factor c ' 0.57 should be included. Image analysis of
pore throats supports this. With the factor included the equation yields permeabili-
ties with a high degree of precision for sand packs.

• Equation 5.9 does not break down when applied to discontinuous grain size distri-
butions.
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Chapter 7. Conclusion

• The equations developed has a narrow field of applicability.

• The outcome of this investigation supports the believed correlation between mean
grain size, standard deviation and characteristics of the pore area and permeability.
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CHAPTER 8

FURTHER WORK

The relationships developed in this thesis showed to give satisfactory results for simple
sphere packs, but did not perform to a satisfactory degree when applied to natural porous
media. With an included factor, the equation performed well. Further research and devel-
opment is needed, and for further work the following should be considered:

• Further investigate texture properties that may impact the pore throats. This in-
cludes, sphericity, grain contacts and overlapping. These properties and their effect
should also be quantified and included in the equation.

• Look into use of other models for quantifying flow in porous media, for example, a
network model.

• Investigate the possibilities of including compaction in the model that serves as basis
for developing the equations. This would make the equations more realistic, but may
restrict the equations applicability.

• Thoroughly study the effects of volume weighting the grain size distribution and
look at other possible approaches.

• A further development of the method expressing permeability using expected in-
scribed diameter of the pore area. Possibly look at other geometrical properties of
the pore area.

• Utilize optimization techniques for minimizing the possible errors when generating
the equation.
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Chapter 8. Further Work

• Conduct tests on a larger amount of thin sections acquired from both digital rock
physics and real rocks for different rock samples. A larger amount of sand packs
would make the proposed pre-factor more representative.
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APPENDIX A

PROGRAMMING

A.1 Script Generating Readable File for e-Core, binGener-
ator2.py

1 # i m p o r t numpy as np
2 i m p o r t math as m
3 i m p o r t s y s
4

5 i n p u t f i l e = s y s . a rgv [ 1 ]
6 i n p u t =open ( i n p u t f i l e , ’ rU ’ )
7 l i n e s = i n p u t . r e a d l i n e s ( )
8 o u t p u t f i l e = s y s . a rgv [ 2 ]
9 o f i l e =open ( o u t p u t f i l e , ’w’ )

10

11 f o r i i i n r a n g e ( 0 , l e n ( l i n e s ) ) :
12 l i n e = l i n e s [ i i ]
13 f o r j j i n r a n g e ( 0 , i n t ( l i n e . s p l i t ( ) [ 1 ] ) ) :
14 # p r i n t i n p u t [ i i ] [ 0 ]
15 o f i l e . w r i t e ( l i n e . s p l i t ( ) [ 0 ] + ’\n ’ )
16

17 o f i l e . c l o s e ( )
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A.2 Calculating Pore Area

1 f u n c t i o n p o r e a r e a = a r e a 2 ( r1 , r2 , r3 )
2 %a = ( ( r1 + r2 ) ˆ 2 + ( r1 + r3 ) ˆ2−( r3 + r2 ) ˆ 2 ) / ( 2 ∗ ( r1 + r2 ) ∗ ( r1 + r3 ) )
3 %acos ( a )
4 %E x p r e s s i n g t h e a n g l e s o f t h e t r i a n g l e
5 a l p h a = acos ( ( ( r1 + r2 ) ˆ 2 + ( r1 + r3 ) ˆ2−( r3 + r2 ) ˆ 2 ) / ( 2 ∗ ( r1 + r2 ) ∗ ( r1 +

r3 ) ) ) ;
6 b e t a = acos ( ( ( r1 + r2 ) ˆ 2 + ( r3 + r2 ) ˆ2−( r1 + r3 ) ˆ 2 ) / ( 2 ∗ ( r1 + r2 ) ∗ ( r3 + r2

) ) ) ;
7 gamma= acos ( ( ( r1 + r3 ) ˆ 2 + ( r3 + r2 ) ˆ2−( r1 + r2 ) ˆ 2 ) / ( 2 ∗ ( r1 + r3 ) ∗ ( r3 +

r2 ) ) ) ;
8 %C a l c u l a t i n g t h e h e i g h t o f t h e t r i a n g l e
9 A= 0 . 5∗ ( r3 + r2 ) ∗ ( r1 + r3 ) ∗ s i n ( gamma ) ;

10 %B , C and D a r e t h e c i r c l e s e c t o r s o f each g r a i n
11 B=( r1 ˆ 2 / 2 ) ∗ a l p h a ;
12

13 C=( r2 ˆ 2 / 2 ) ∗ b e t a ;
14

15 D=( r3 ˆ 2 / 2 ) ∗gamma ;
16 %F u l l po re t h r o a t a r e a
17 p o r e a r e a =A−B−C−D
18

19 %C a l c u l a t i n g c i r c u m f e r e n c e , s
20 b1= r1 ∗ a l p h a ;
21 b2= r2 ∗ b e t a ;
22 b3= r3 ∗gamma ;
23 c i r c =b1+b2+b3
24

25 %C a l c u l a t i n g Shape f a c t o r
26 G shape= p o r e a r e a / ( ( c i r c ) ˆ 2 )
27

28 %C a l c u l a t i n g i n s c r i b e d r a d i u s
29 k1 =1/ r1 ;
30 k2 =1/ r2 ;
31 k3 =1/ r3 ;
32 r i n s c = 1 / ( k1+k2+k3 +2∗ s q r t ( k1∗k2+k2∗k3+k3∗k1 ) )
33 %I n s c r i b e d a r e a :
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34 A r e a i n s c r i b e d = p i ( ) ∗ r i n s c ˆ2
35

36

37 end

A.3 Random Area Matrix Generator

1 f u n c t i o n a r e a = randArea ( da t avek , n )
2 %c r e a t i n g a m a t r i x o f z e r o e s wi th d i m e n s i o n s n ˆ2∗ n
3 a r e a = z e r o s ( n ˆ 2 , n ) ;
4 %Double f o r−loop , c a l c u l a t i n g t h e d i f f e r e n t a r e a s from

area2 , by p i c k i n g
5 %random v a l u e s from d a t a v e k
6 f o r i =1 : n ˆ2
7 f o r j =1 : n
8 a r e a ( i , j ) = a r e a 2 ( d a t a v e k ( r a n d i ( [ 1 l e n g t h ( d a t a v e k ) ] ) )

, d a t a v e k ( r a n d i ( [ 1 l e n g t h ( d a t a v e k ) ] ) ) , d a t a v e k (
r a n d i ( [ 1 l e n g t h ( d a t a v e k ) ] ) ) ) ;

9 end
10 end
11 end

A.4 Conductivity for Pore Area

1 meand=2∗mean ( d a t a v e k ) ;
2 n= round (2500E−6/meand ) ;
3 H=( randArea ( da t avek , n ) ) . ˆ 2 . / ( 8 . ∗ p i ( ) . ∗meand ) ;%c a l c u l a t i n g

t h e C o n d u c t i v i t y u s i n g Hagen−P o i s e u i l l e
4 C=sum ( harmmean (H, 2 ) .∗ n ) / ( n∗meand ) ;%Harmonic mean of each

row , t h e n summing t h e c o n d u c t i v i t i e s from each
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A.5 Conductivity for Pore Area with Shape Factor

1 meand=2∗mean ( d a t a v e k ) ;
2 n= round (2500E−6/meand ) ;
3

4 [A,G]= r a n d A r e a s h a p e ( da t avek , n ) ;
5 H=(A) . ˆ 2 . ∗G.∗3 . / ( 5 . ∗ meand ) ;%c a l c u l a t i n g t h e C o n d u c t i v i t y

u s i n g Hagen−P o i s e u i l l e
6 C=sum ( harmmean (H, 2 ) .∗ n ) / ( n∗meand ) ;%Harmonic mean of each

row , t h e n summing t h e c o n d u c t i v i t i e s from each

A.6 Inscribed Diameter

A.6.1 Calculating Inscribed Diameter

1 f u n c t i o n d i n s c = i n s c ( r1 , r2 , r3 )
2

3 %Using D e s c a r t e s Theorem
4 k1 =1/ r1 ;
5 k2 =1/ r2 ;
6 k3 =1/ r3 ;
7

8 d i n s c = 2 / ( k1+k2+k3 +2∗ s q r t ( k1∗k2+k2∗k3+k3∗k1 ) ) ;
9

10

11 end

A.6.2 Randomizer

1 f u n c t i o n a r e a = r a n d i n s c ( da t avek , n )
2

3 %c r e a t i n g a m a t r i x o f z e r o e s wi th d i m e n s i o n s n ˆ2∗ n
4 a r e a = z e r o s ( n ˆ 2 , n ) ;
5 %Double f o r−loop , c a l c u l a t i n g t h e d i f f e r e n t a r e a s from

area2 , by p i c k i n g
6 %random v a l u e s from d a t a v e k
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7 f o r i =1 : n ˆ2
8 f o r j =1 : n
9 a r e a ( i , j ) = i n s c ( d a t a v e k ( r a n d i ( [ 1 l e n g t h ( d a t a v e k ) ] ) ) ,

d a t a v e k ( r a n d i ( [ 1 l e n g t h ( d a t a v e k ) ] ) ) , d a t a v e k (
r a n d i ( [ 1 l e n g t h ( d a t a v e k ) ] ) ) ) ;

10 end
11 end
12 end

A.6.3 Variance and Mean Inscribed Diameter

1

2 meand=2∗mean ( d a t a v e k ) ;%mean d i a m e t e r o f gsd
3 n= round (2500E−6/meand ) ;%number o f c h a n n e l s
4 c h e c k v a r = r a n d i n s c ( da t avek , n ) ;%C r e a t i n g m a t r i x o f random

i n s c . d i a m e t e r s
5 [ nx , ny ]= s i z e ( c h e c k v a r ) ;%r e s i z i n g f o r c a l c u l a t i n g p u r p o s e s
6 vekcheck = r e s h a p e ( checkvar , [ nx∗ny , 1 ] ) ;%Reshap ing
7 v a r i a n s e n = v a r ( vekcheck ) ;%c a l c u l a t i n g v a r i a n c e o f t h e

i n s c r i b e d d i a m e t e r s
8 g j e n n o m s n i t t =10ˆ6∗mean ( vekcheck ) ;%mean
9 minsc=harmmean ( r a n d i n s c ( da t avek , n ) ) ;%harm . mean of each row

of i n s c r i b e d . . .
10 %d i a m e t e r s
11 m i n s c f i n a l =max ( minsc ) ;%i n s c r i b e d d i a m e t e r

A.7 Expected Value of Inscribed Diameter

1

2 n y d a t a v e k =10ˆ−6.∗ d a t a v e k . ˆ −1 ;%I n v e r t i n g t h e d a t a v e k
3 sumvec=sum ( n y d a t a v e k ) ;%sum of m a t r i x
4 a n t a l l =numel ( n y d a t a v e k ) ;%number o f v a l u e s i n m a t r i x
5

6 x inv = ( 1 / ( a n t a l l ) ) ∗ sumvec ;%Expec ted v a l u e o f 1 /X
7 i n s c d i a = 2 / ( ( 3 + 2∗ s q r t ( 3 ) ) ∗ x inv ) ;%Expec ted i n s c r i b e d d i a m e t e r
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APPENDIX B

TABLES

Table B.1: Simulation set up

Case Mean GS(µ) SD(σ) Min. GS(µm) Max. GS(µm)
1 150 15 120 180
2 175 15 145 205
3 200 15 170 230
4 225 15 195 255
5 250 15 220 280
6 150 30 90 210
7 175 30 115 235
8 200 30 140 260
9 225 30 165 285
10 250 30 190 310
11 150 45 60 240
12 175 45 85 265
13 200 45 110 290
14 225 45 135 315
15 250 45 160 340
16 150 60 30 270
17 175 60 55 295
18 200 60 80 320
19 225 60 105 345
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20 250 60 130 370
21 150 75 0 300
22 175 75 25 325
23 200 75 50 350
24 225 75 75 375
25 250 75 100 400
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APPENDIX C

SAND PACKS - COMPARISON OF VW CUMULATIVE
DISTRIBUTION AND RAW CUMULATIVE

DISTRIBUTION

Figure C.1: F42B
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Figure C.2: LV60A

Figure C.3: LV60C
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APPENDIX D

THE KISS PRECISE

For pairs of lips to kiss maybe
Involves no trigonometry.
This not so when four circles kiss
Each one the other three.
To bring this off the four must be
As three in one or one in three.
If one in three, beyond a doubt
Each gets three kisses from without.
If three in one, then is that one
Thrice kissed internally.

Four circles to the kissing come.
The smaller are the benter.
The bend is just the inverse of
The distance form the center.
Though their intrigue left Euclid dumb
There’s now no need for rule of thumb.
Since zero bend’s a dead straight line
And concave bends have minus sign,
The sum of the squares of all four bends
Is half the square of their sum.

To spy out spherical affairs
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An oscular surveyor
Might find the task laborious, The sphere is much the gayer,
And now besides the pair of pairs
A fifth sphere in the kissing shares.
Yet, signs and zero as before,
For each to kiss the other four
The square of the sum of all five bends
Is thrice the sum of their squares.

in Nature, June 20, 1936 (Soddy, 1936).
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