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Summary

There have been many and varied attempts describing the relation between transport and
rock properties for porous materials, including the work of Kozeny (1927), Carman (1938),
and Berg (1970). Common features of these efforts are that the developed equations all
contain adjustable parameters that need to be determined for a given data set. Despite that
these equations are approximations, they are widely used for engineering calculations due
to the importance of linking transport and rock properties.

Pore scale modeling and simulation offers the possibility to investigate the relation be-
tween grain size distribution and transport properties in a controlled environment. Two
different strategies for expressing permeability were used in this study. The first approach
was to express permeability using statistical characteristics of the grain size distribution.
We used the e-Core software to generate a set of sphere packs with grain size distributions
described by a volume-weighted mean and standard deviation. The obtained transport de-
scription yields reasonable results for sphere packs, while it has limited applicability to
natural porous media.

The second approach relies on describing the inscribed diameter between three grains of
a pore throat. Three points from a grain size distribution was randomly chosen, and the
inscribed diameter determined. From this, a cumulative pore throat area distribution was
developed. Assuming that the number of pore throats along a streamline between the inlet
and outlet of the porous medium can be approximated as the length of the medium divided
by the average grain size, we found an effective pore throat size as the harmonic mean
of a set of random inscribed diameters. The variance of these diameters and the expected
inscribed pore diameter was employed to estimate the permeability.

Both approaches have been compared to earlier attempts correlating transport and pore
structure. Although all the methods are approximations, they give valuable insight into the
relation between pore structure and transport.
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Sammendrag

Gjennom historien har det vært flere forsøk på å beskrive relasjonen mellom transport-
og bergartsegenskaper for porøse medier. Dette inkluderer arbeidene utført av Kozeny
(1927), Carman (1938) og Berg (1970). Fellesnevneren for disse arbeidene har vært at
hver ligning har inneholdt en parameter som må justeres i henhold til dataene. Selv om
disse ligningene er tilnærminger, brukes de i vid utstrekning i ingeniørberegninger. Dette
indikerer viktigheten av å koble bergarts- og transportegenskaper sammen.

Simulering og modulering på poreskalanivå gir muligheten til å utforske relasjonen mel-
lom kornstørrelsesfordelinger og transportegenskaper i et kontrollert miljø. I denne stu-
dien er det benyttet to ulike fremgangsmåter. Den første innebærer å beskrive perme-
abilitet ved å bruke statistiske karakteristikker fra en kornstørrelsesfordeling. Vi brukte
programvaren, e-Core, for å generere et sett med sfærepakker. Disse ble generert med
en kornstørrelsesfordeling som var volumvektet basert på datasettets gjennomsnittlige ko-
rnstørrelse og standardavvik. Den utviklede ligningen gir gode resultater for sfærepakkene,
men har begrenset anvendbarhet på ekte porøse medier.

Den andre fremgangsmåten beskriver den inskriberte diameter mellom tre korn i en pore-
hals. Tre tilfeldige punkter fra en kornstørrelsesfordeling ble valgt og den inskriberte
diameteren beregnet. Dette gir en kumulativ porehalsdistribusjon. Om vi antar at an-
tall porehalser langs en strømlinje mellom inn- og utløp for det porøse mediet kan bli
tilnærmet som lengden til modellen delt på gjennomsnittlig kornstørrelse, finner vi en
effektiv porehals. Denne er beskrevet som det harmoniske gjennomsnittet av et sett av til-
feldige inskriberte porediametre. Variansen til disse diametrene og den forventede verdien
av inskribert porediameter ble anvendt for å estimere permeabilitet.

Begge fremgangsmåtene har blitt sammenlignet med tidligere forsøk på å korrelere pore-
struktur med transportegenskaper. På tross av at alle disse metodene er tilnærminger, gir
de verdifull innsikt i relasjonen mellom transportegenskaper og porestruktur.
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CHAPTER 1

INTRODUCTION

A proper understanding of the transport properties of fluid in porous media is of great
importance in science and technology. Transport properties in porous media are not only
a central part in establishing producibility of petroleum reservoirs. Flow in porous me-
dia also governs fuel cells, thermoelectric cells, gels and even the human body (Katz and
Thompson, 1986; PoreLab, 2018). Therefore, one can say that description of flow in
porous media is important for geological, technological and biological purposes. This the-
sis aims to give a better description of transport properties from a geological point of view.

It is the microscopic features of porous media that determine several of the macroscopic
properties such as permeability and formation factor (Øren et al., 1998). Based on this it
should be possible to describe the macroscopic properties using a precise description of
the physical processes on a pore scale level. Throughout history there have been many
attempts to derive a general relationship relating permeability to reservoir rock proper-
ties. The existing equations are empirical descriptors of flow in porous media and no
proven theoretical relationship is developed (Fatt, 1956; Scheidegger, 1957). Equations
have in general been developed based on quite elementary geometrical models from the
pore space. The two most common models has been the bundle of tubes and the sphere
pack model.

Poiseuille and Darcy were two of the pioneers doing research of flow in porous media.
They did not relate their equations directly to rocks, but relied on theoretical models. In
1846, Poiseuille described fluid flow through small pipes (as restated in Sutera and Skalak
(1993)), while Darcy (1856) described flow through capillary tubes filled with sand. Later,
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Chapter 1. Introduction

in 1892 Hazen derived an expression relating flow to a constant multiplied with grain ra-
dius squared (Hazen, 1895). This was later supported by Slichter (1899) who concluded
that permeability should be proportional to the square of grain diameter and to a factor that
was based on the packing of the grains.

In more modern times, Krumbein and Monk (1943) studied the size parameters and de-
rived an equation for permeability. Beard and Weyl (1973) studied the effect of texture
on porosity and permeability and concluded that both vary with sorting, and that low
sphericity and high angularity increases them. Berg (1970) derived an equation valid for
clean quartz rich sandstones as a function of porosity and mean grain diameter, resem-
bling Slichters equation from 1899. Hence, the structure of the equations has not changed
much the last 100 years. In The physics of flow through porous media, Scheidegger (1957)
concludes that no generic relationship between porosity and permeability has yet been re-
vised. The empirical equations existing fail to give satisfactory results due to their narrow
applicability. A generic relationship is believed to have a great theoretical and practical
application.

The work to be reported in this thesis is undertaken with the belief that studying a pore
scale model that more realistically describes porous media will give a better understanding
of flow and on the factors that affect it. We propose an approach of randomly distributed
inscribed pore-diameters mimicking flow channels of porous media. From these diame-
ters we find the variance and an expression for the expected inscribed pore diameter. To
evaluate the transport properties requires use of appropriate software. The final result is
an equation describing the permeability using expected inscribed pore diameter and the
variance of a set of mean inscribed diameters.

1.1 Thesis Overview

This master thesis is a continuation of the specialization project from the fall of 2017
(Engeskaug, 2017). Therefore, some of the material presented is revised from the special-
ization project.

In chapter 2 and 3 the needed theory is presented. Chapter 2 focuses on basic theory
and gives an overview of terms and basic properties, while chapter 3 is more specified
directly to the work in this thesis. Section 2.1-2.3 along with section 2.8-2.10 and 2.12.1
in the background is revised from the project thesis. The methodology and approach is
described in chapter 4, where section 4.1 is methodology revised from the project thesis.
Results of the work is presented in chapter 5 and discussed in 6. At last the conclusion of

2
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the study is presented in chapter 7 and recommendations for further work can be found in
chapter 8.
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CHAPTER 2

BACKGROUND

In this section theory and background for the objective and ambition of this thesis is pre-
sented. It includes basic concepts of pore scale measurements and parameters as well as
preceding methods for estimating transport properties in porous media.

2.1 Reservoir Rock Properties

Most reservoir rocks are sedimentary in origin, meaning, they were deposited as sedi-
ments accumulated over time. Sedimentary rocks that contain oil and gas are most usually
clastic, chemical or organic sedimentary rocks (King, 2017). Chemical and organic sed-
imentary rocks include limestone and dolomite among others, formed from dissolution,
precipitation or accumulation of organic materials, while clastic rocks are clasts or frag-
ments of existing minerals and rock. Sandstones are a clastic sedimentary rock, and is
today the most common petroleum reservoir. A sandstone is defined to constitute of more
than 50% of sand-sized (≤1-2mm) rock grains and minerals (Hu et al., 2017). It is well es-
tablished that reservoir rocks, such as sandstones, are characterized by a broad distribution
of grain sizes, and thus pore sizes. All clastic rocks have three main properties; composi-
tion, sedimentary structure and texture. In his paper, Berg (1970) declares composition as
fundamental and that it decides the texture, while the sedimentary structures controls the
homogeneity of the distribution of the elements of texture and composition. The elements
of texture are sorting, grain size, shape, packing and orientation (Berg, 1970). More eas-
ily, one can say that the texture describes the framework, structure and arrangement of the
rock.
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Chapter 2. Background

Texture and composition has a vital influence on the main reservoir properties; poros-
ity and permeability. Knowing the texture of a reservoir rock is key as it can help interpret
mechanisms and environments at deposition. The physical properties of reservoir rocks
are relying on the framework of the grains, particularly on grain composition and texture
of the rock. Knowledge of these properties for a reservoir rock is thus of importance for a
reservoir engineer. Another important aspect is the ability to connect geology to reservoir
properties, to be able to build realistic reservoir models.

2.2 Grain Size Distribution (GSD)

Results of a grain size sieve analysis are commonly displayed graphically, but sometimes
presented in a table. Usually it’s presented as is displayed in figure 2.1. The illustration is
of cumulative distribution curves.

One of the key properties from a grain size distribution is the sorting. It is a measure of the
range or dispersion of grain sizes present in the rock. A low standard deviation indicates
that the grain sizes are close to the mean grain size (or expected grain size) of the rock.
When a GSD is presented as cumulative, the incline of the curve portrays the sorting of
the rock: A steeper curve reflects a more uniform grain size, while a gentle slope reflects
a less homogeneous grain size.

Sieve Analysis and Statistical Properties

The most traditional and best-known method for determining the particle size distribution
is sieve analysis. This method divides the grains into size fractions, and determines the
weight of them. Sieve analysis is known to be reliable and quick.

Figure 2.1: Grain size distributions for different siltstones presented through cumulative distribution
curves (Hu et al., 2017).
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Figure 2.2: Apparatus used in traditional sieve analysis (Jualbatusplit, 2014).

During a sieve analysis, the sample is first crushed, then subjected for shaking (Retsch
GmbH & Co. KG , 2004). Depending on their size, the grains will either pass through the
sieve or retain on the sieve surface. The final result is a distribution representing the size
fractions and their weight. A simple schematic of the apparatus used in a sieve analysis is
illustrated in figure 2.2.

The cumulative distribution function (CDF) from the normal distribution is expressed as
follows:

F (x) = 1
2

[
1 + erf

(
x− µ
σ
√

2

)]
, (2.1)

where x is the observed grain size values, µ is the mean and σ is the standard deviation.
The error function (erf) is described as:

erf(x) = 2√
π

∫ x

0
e−t2dt, (2.2)

And the arithmetic mean and standard deviation is expressed respectively as:
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µ = 1
n

n∑
i=1

ci, (2.3)

σ =

√∑N
i=1(xi − x)2

N − 1 . (2.4)

Lastly, the harmonic mean is expressed as:

µ = n∑n
i=1

1
xi

, (2.5)

A general understanding of grain size distributions and it’s statistical properties will make
it easier to interpret results obtained from simulations.

2.3 Mercury Intrusion Porosimetry

There exist different methods for determining the pore sizes of a rock, such as gas adsorp-
tion and use of a scanning electron microscope (SEM), while the most common method is
mercury intrusion porosimetry. Mercury intrusion porosimetry, in addition to give a mea-
sure of porosity, provides a pore size distribution. The apparatus is illustrated in figure 2.3.
First, a core is dried to remove any fluid present within the core. The sample is weighed
and placed in a chamber, which is then evacuated, and mercury is introduced surrounding
the core sample. The pressure is increased step-wise, and the intrusion of mercury is mon-
itored for each step. The monitored volumes of intruded mercury and the pressure steps
provide the required data for a pore size distribution (Diamond, 2000).

To obtain a pore size distribution the measured data must be inserted in an appropriate
model. For every step of applied pressure, the diameter of the intruded pores is deter-
mined by the Young-Laplace equation for cylindrical tubes.

d = −4γcos(θ)
p

, (2.6)

where d is the diameter of the pore cylinder, γ is the surface tension of mercury, θ is
the contact angle of mercury on the solid and p is the applied pressure. By applying this
equation, a pore size distribution is obtained from the pressure versus the intrusion data.
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Figure 2.3: Volumetric mercury displacement pump (American Petroleum Institute, 1998).

2.4 Hagen-Poiseuille

Jean Léonard Marie Poiseuille performed a series of experiments on flow in tubes in the
early to mid 1800’s. He pursued to find a functional relationship between four variables.
These were the volumetric flow rate out of a tube, Q, the driving pressure p and the diam-
eter, d and length of the tube, l (Sutera and Skalak, 1993). From his experiments he was
able to express the volumetric flux as:

Q = κ∆pd4

l
, (2.7)

where κ is a function of temperature and the liquid. In 1839, Gotthilf Heinrich Ludwig
Hagen, published his work on flow in cylindrical pipes. His results were closely related
to Poiseuilles, but were less accurate, although they included entry effects and distinction
between laminar and turbulent flow (Sutera and Skalak, 1993). The results of Hagen and
Poiseuille closely agreed and the law of laminar flow was formed, and it was called the
Hagen-Poiseuille law. Today, the majority know it as Poiseuilles law and it is similar to
equation 2.7, but the constant κ is not included and d is exchanged with r:

∆p = 8µQl
πr4 , (2.8)

where ∆p is the pressure difference between inlet and outlet, µ is the viscosity, Q is the
flow rate, l is the cylinder length and r is the cylinder radius. The equation is valid for
laminar flow, and is thus suitable for describing flow in porous media (Xiong et al., 2016).
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2.5 Hydraulic Conductance

Hydraulic conductivity of a rock is the property that describes the ease of fluids, such as
oil or water, to move through it’s pores (Mualem, 1976). The conductivity, g, is depen-
dent on the permeability of the rock, saturation and the density and viscosity of the fluid.
Hagen-Poiseuilles law can be used to express conductivity, by describing the relationship
between the flow rate, Q, and the driving force, ∆p. By assuming that the pore throat can
be modeled as a cylindrical tube with a constant cross sectional area, we can rearrange
equation 2.8, and substitute πr4 = A2

π :

g = πr4

8µl
µ=1= A2

8πl , (2.9)

where the viscosity is assumed to be µ=1. This is a sound assumption as this is the value
of water, but is also within the range of oil viscosities (Beal, 1946).

2.6 Shape Factor

The approach presented in this thesis regards one-phase flow in porous media, but it is evi-
dent that reservoirs experience multiphase flow. This may be oil, water and gas or chemical
injection fluids. A general feature common for all porous media is the occurrence of an-
gular pores and crevices. The wetting fluid of the pores is retained in the corners allowing
flow of other fluids simultaneously through the pore. This effect is due to capillary be-
havior and regards for multiphase flow. With a one-phase flow the supporting reason to
implement a shape factor is the effect of velocity through different geometrical shapes.
If we consider two pores with exact same area, but different shape and that the surface
velocity is zero, we will have different velocities through each of them depending on av-
erage distance from the pore wall. In early research, experiments where cylinders were
filled with loose sand were common practice, such as Darcy’s (1856) experiment. A more
realistic approach is to model the cross section of the pores as non-circular shapes. This
incorporates the effect of angularities and crevices (Øren et al., 1998). A complete inclu-
sion of the effect of angular pores and crevices is not possible, but by utilizing the shape
factor a more representative model of the porous media is obtained. Mason and Morrow
(1991) defined the dimensionless shape factor, G, as:

G = A

s2 , (2.10)

where A is the cross section area of the pore and s is the pore circumference. From the
equation it is obvious that the shape factor value will be reduced as the pores become more
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irregular. For triangles, the shape factor ranges from zero for a slit based pore to 0.048 for
an equilateral triangle shaped pore. For a circle the shape factor is 1

4π , while it is 1
16 for

rectangles.

Øren et al. (1998) did conductance computations on a multiple of triangular pores. They
discovered that there was a functional dependency between the shape factor, G and con-
ductance. The dependence is close to linear and is approximated as:

g = 3
5
A2G

µ
= 3

5A
2G, (2.11)

where A is the cross sectional area of the pore body.

2.7 Formation Factor and Electrical Conductance

In his article, Archie (1942) studies the electrical resistivity log and how this can be applied
to characterize some reservoir properties. An essential part of electrical resistivity log
interpretation is the electrical conductivity of brine filled sedimentary rock, as this is vital
for petroleum exploration (Berg, 2012). Archie studied the resistivities of a large number
of brine-saturated cores from various formations. The cores ranged from 10 to 40 percent
porosity and with a salinity of the electrolyte ranging from 20000 to 100000 milligrams
NaCl/liter. From his experience, Archie (1942) found the simple relation:

F = Ro
Rw

, (2.12)

where F is the formation resistivity factor, Ro is the electrical resisitivity of the rock
saturated with brine and Rw is the resistivity of the brine. From his data Archie (1942)
also formulated an empirical relation between the porosity φ and formation resistivity
factor F to describe the conductivity of a porous medium. It is given as:

F = φ−m (2.13)

where m is the cementation exponent. This exponent is found to range from 1.8-2.0 for
consolidated sandstones (Archie, 1942).

2.8 Tortuosity, τ

The formation factor described in the previous section measures the influence of pore
structure on resistivity. Another property describing the pore structure is the tortuosity.
Tortuosity is the measure of the geometric complexity in a porous medium. It characterizes
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the tangled pathways of fluid diffusion and electrical conduction through porous media and
is a measure of deviation from the shortest possible path (Bellini et al., 2018). When con-
sidering fluid dynamics, tortuosity is expressed as the length of the porous medium (∆s)
divided by the streamline (S) length (lS) (Berg, 2014), i.e:

τ(S) = ∆s/lS . (2.14)

If considering an ideal porous media with one single circular pipe of constant cross-
sectional area, where ls is the length connecting the opposite sides and the length of the
cube is ∆s. Then, one can express the formation factor, F as (Berg, 2012):

F = 1/(τ2φ), (2.15)

where φ is the porosity.

2.9 Constriction Factor

The tortuosity as described above accounts for the circuitous path through a rock, while
the constriction factor accounts for the decrease in permeability due to variations in local
fluid velocities as an effect of the pore constrictions within a rock. Berg (2014) defined the
constriction factor as:

C(S) = 1
l2S

∫
S

∇h · u
u

ds

∫
S

u

∇h · u
ds = 1

l2S
∇h
∫
S

u

∆h · uds, (2.16)

where u is the interstitial velocity. Both tortuosity and the constriction factor are only
dependent on pore structure and overall direction of flow.

2.10 Size Parameters and Their Effect on Permeability
and Porosity

On a pore scale level, the primary properties of a detrital rock are texture, composition and
sedimentation. Of these three properties, texture has the largest influence when determin-
ing a rocks ability to contain and transmit fluids. The elements of texture are sorting, grain
size, shape, orientation and packing (Berg, 1970). There are several factors governing both
porosity and permeability. Some factors have a larger impact on the one than the other.
The following theory highlights some of the factors regarding porosity and permeability
conditions in assemblages of uniform spheres, and comparison with natural deposits. It
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is important to remember that such an assemblage of spheres is a simplification of real
porous media and will never replicate nature exactly.

Grain size influences the porosity of natural assemblies. As grain size decreases, the ratio
of surface area to volume and mass becomes higher, making friction, adhesion and bridg-
ing (fines migrate to create ”bridges” between grains) important (Fraser, 1935). Therefore,
the smaller the grain size, the greater the porosity. Slichter (1899) was one of the earliest
to quantify the effect of grain size on permeability. He concluded that the rate of flow
through a column of spheres is directly proportional to the square of the diameter of the
spheres and to a factor based on the packing. The diameter squared relationship has later
been substantiated by Krumbein and Monk (1943) and Berg (1970).

(a) (b)

Figure 2.4: (a) Cubic packing, (b) Orthorhombic packing (Graton and Fraser, 1935).

(a) (b)

Figure 2.5: (a) Rhombohedral packing, (b) Tetragonal packing (Graton and Fraser, 1935).

Packing refers to the arrangement of grains where each grain is held in place by gravita-
tional forces and contact with neighboring grains (Graton and Fraser, 1935). There are
four basic arrangements of packing of spheres, these are cubic, orthorhombic, rhombohe-
dral and tetragonal, as illustrated in figure 2.4 and 2.5. The enclosed void within each of
the arrangements is unique. Thus, each of the fundamental packing’s has different porosi-
ties independent of sphere size as long as they are uniform. Porosities of the different
packing’s are; cubic 47,6% (2.4a), orthorhombic 39,5% (2.4b), rhombohedral 26% (2.5a)
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and tetragonal 30,2% (2.5b). Packing is vital for the permeability, as permeability is de-
pendent on the porosity of the porous medium. Through a column of sand the pore throat
cross sections vary considerably and it is the narrowest portion (constrictions) of the chan-
nelways that governs flow. In a porous medium, blockage of flow channels is not unusual,
and it is important to note that not all porosity aid fluid flow (Fraser, 1935). A high effec-
tive (connected) porosity gives a higher permeability.

The grain size uniformity is of significant importance concerning porosity and permeabil-
ity. The highest values of porosity are obtained for rocks that are perfectly sorted, while
permeability vary for each unique sorting. If we consider a perfect assembly of spheres
that experience addition of larger or smaller spheres, this will affect both porosity and
permeability of the medium. This situation is illustrated in figure 2.6. Graton and Fraser
(1935) suggest that the effect is directly proportional to the added amount. The effect of a
larger sphere within an otherwise uniform assembly of spheres will influence the porosity
and permeability as follows:

• The large sphere will occupy a volume that could have been filled with uniform
spheres and voids for fluid transport, thus reducing porosity and permeability.

• The large sphere will create higher porosity and permeability in it’s vicinity as the
smaller spheres are unable to pack as closely as they would have due to the curvature
of the large sphere.

So the two effects work in opposite directions for both permeability and porosity. The net
result is a decrease in porosity, while the effect on permeability caused by sorting will vary
for each case.
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Figure 2.6: Illustrated effect of a uniform assemblage of spheres experiencing addition of larger
spheres, and how this effect the surrounding pore space (Fraser, 1935).

2.11 Empirical Equations and Methods for Estimating Per-
meability

Since Darcy proposed his equation for flow in porous media a bunch of equations have
been developed and modified based on his equation and research. Empirical factors have
been added to fit observed data, while others have expressed permeability using size pa-
rameters. Below, methods for describing flow in porous media and existing equations are
presented.

2.11.1 Sphere Pack Model

The sphere pack model was used in the earliest studies on flow in porous media (Fatt,
1956). This approach models the porous medium as a pack of spheres of either different
or equal size, randomly or systematically distributed. Equations developed from the sphere
pack model have been based on the geometrical shape of the pore space (Fatt, 1956). The
disadvantages of this model are that spheres does not replicate the nature of real grains in
a porous media. Thus, this model is a simplistic approximation of flow in porous media.
In his paper, Fatt (1956) explains the sphere pack model to yield acceptable results when
accompanied with parameters of ”doubtful physical significance”.
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2.11.2 Bundle of Tubes

The bundle of tubes model; aim to replicate porous media by modeling flow in a collection
of circular cylinders. All of the circular cylinders are of equal length, and radii occur
with a frequency such that it gives the same volume probability density function as the
medium (Hunt, 2014). This model account for multiphase flow, and it assumes that all
tubes with radius r<A/h are filled with the wetting phase. This results from the capillary
equation when there is a given solid, a pair of fluids with constant surface energy and
density difference (Hunt, 2014). Where the capillary equation is given as:

h = 2γcos(θ)
(ρw − ρa)gr , (2.17)

where h is the height of rise, g the gravitational acceleration, r is the tube radius, γ the
surface tension, θ the contact angle and ρw and ρa are fluid densities. The hydraulic
conductivity of the fluid-filled tubes is calculated, and permeability determined (Hunt,
2014). It is worth noting that this model does not take factors as tortuosity and constrictions
into consideration. Another weakness of the bundle of tubes is that it models the flow as
anisotropic, although flow in porous media is known to be more or less isotropic (Fatt,
1956). Despite the bundle of tubes shortcomings it is widely applied, and Fatt (1956)
states that it has been used with decent success for correlating properties of porous media.

2.11.3 Hazen - 1892

In 1892, Hazen developed an empirical equation based on grain size distribution indices, as
stated in his book The Filtration of Public Water-Supplies, Hazen (1895). His equation was
developed with the purpose to develop and design sandfilters to use in water purification
and his experiments were conducted on graded sands (Carrier, 2003). The equation is one
of the most used equations in the literature when determining permeability:

k[cm/sec] = c · (D10)2, (2.18)

k is the coefficient of permeability, while, D10 is the grain size corresponding to 10%
weighting [mm] in accordance to sieve analysis described in section 2.2. The constant, c,
ranges from 0.4 to 1.2, but is usually set to 1.0.

2.11.4 Kozeny-Carman - 1937

Kozeny (1927) developed an equation including the effect of tortuosity, to account for the
circuitous path for fluids through a rock and assumed that porous media could be modeled
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as a bundle of streamtubes, as described in section 2.11.2. His equation is semi-empirical
and is as follows:

k = τ
φ3d2

(1− φ)2 , (2.19)

where φ is the porosity, d the grain diameter, τ is the tortuosity and k is the absolute per-
meability. Ten years later, Carman (1937) modified Kozeny’s (1927) equation, accounting
for the surface irregularity of pores, yielding the more general Kozeny-Carman equation:

k = c0τ
2 φ

3

S2
0

= c0τ
2r2
hφ, (2.20)

where S0 is the specific surface area, rh= φ
S0

is the hydraulic radius and c0 is the Kozeny
constant (Carman, 1937). The Kozeny-Carman equation is widely used and gives results
with reasonable accuracy.

2.11.5 Krumbein and Monk - 1942

In their paper, Krumbein and Monk (1943) analytically investigate the relation between
sorting and permeability, and study the effect of size parameters on flow in porous media.
Previous of their investigation others had proposed the use of parameters based on loga-
rithmic moments. The symmetry of logarithmic plotting make these parameters ready for
geometrical interpretation. In his paper, Krumbein (1936) introduces a logarithmic trans-
formation, where traditional statistical concepts is related to logarithmic moments. It is
called the Φ distribution function, and is a conversion for computational purposes.

Φ = −log2(d), (2.21)

where d is the grain diameter in millimeters. Krumbein (1936) defines Φ as the Went-
worth exponent, due to it’s application to the Wentworth grade scale, which is a scale
for grain size classification. Krumbein and Monk (1943) performed experiments on sand
packs with porosity of 40±0.5%, an average value of 0.75 sphericity and with a roundness
of approximately 0.50 (Krumbein and Monk, 1943). From their experimental data, they
ended up describing permeability for an unconsolidated sand with a lognormal grain size
distributions as:

k = 760d2e−1.31σΦ , (2.22)

where d is the diameter [mm], and σΦ is the standard deviation of the Φ distribution func-
tion. The equation proposed, should yield permeabilities within an acceptable accuracy
for clean, well sorted and quartz rich sandstones of 30-45% porosity.
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2.11.6 Berg - 1970

Berg (1970) related porosity and permeability of reservoir rocks to the primary rock prop-
erties as described in section 2.1. In his paper he highlights the importance of accounting
for the different systematic packing’s, and this forms the basis for his investigation. For
the four different systematic packing’s, as described in section 2.10, Berg (1970) expresses
what he calls the rectilinear pore. This is defined as the pores that penetrates the unit cell
without change in shape or direction. Where the unit cell is the smallest unit of symme-
try, formed by the lines connecting the eight spheres in a packing. The rectilinear pores
dimensions and numbers is unique for each packing (Berg, 1970).

By assuming that the ability for flow in porous media is mainly a function of the recti-
linear pore size, Berg (1970) developed an equation. The rectilinear pore size is a function
of the mean grain size, sorting, packing of the grains and the mean grain shape. When
considering laminar flow through the systematic packing’s a general equation was devel-
oped:

k = 5.1 · 10−6φ5.1Md2e−1.385PDΦ , (2.23)

where φ is the porosity, Md is the weighted median grain size and PDΦ is the phi per-
centile deviation. The equation has a narrow applicability, and yields permeabilities within
an acceptable accuracy for clean sands with a porosity between 30-40%, well rounded
grains and excellent sorting. This is similar applicability as with Krumbein and Monk’s
(1943) equation. Berg (1970) concludes that his equation should not be used as a basis for
engineering calculations.

2.11.7 Katz-Thompson Relationship - 1986

Katz and Thompson (1986) proposed the following relationship for permeability of a
porous media saturated with a single fluid phase:

k = cl2c

(
σo
σw

)
, (2.24)

where c is a constant on the order of 1
226 , σo is the effective rock electrical conductance

filled with brine, σw is the brine conductivity and lc is some characteristic length of the
pore space. And since σo

σw
= 1

F , we can rewrite it as:

k = cl2c

(
1
F

)
. (2.25)

Katz and Thompson (1986) highlight the importance of determining the characteristic
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length of the pore space. They state that the characteristic length dominates the magni-
tude of the permeability for porous media. Katz and Thompson (1986) determined the
characteristic length for a numerous of rock samples by performing mercury injection ex-
periments. For every step of the external applied pressure, the diameter of the pore space
intruded by mercury is determined by the Young-Laplace equation for cylindrical tubes
as presented in section 2.3. The pore diameters found can be plotted versus the applied
pressure, and we get the characteristic mercury injection curve as seen in figure 2.7. Katz
and Thompson (1986) designated the inflection point of the rapidly rising curve to be the
threshold pressure pt for the porous medium. They concluded that the pore widths l of the
pores intruded at pt satisfy l > −4γcos(θ)/pt. As the early part of the intrusion curve are
effects of surface defects, the characteristic length is defined by lc = −4cos(θ)/pt.

Figure 2.7: Mercury injection curve, as presented in Katz and Thompson (1986). The dashed
vertical line represents threshold pressure and the characteristic length, lc, of the pore space.
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2.12 Digital Rock Technology

As we have seen there are many properties governing determination of reservoir pro-
ducibility and flow in porous media. Traditionally, these properties have been determined
in the lab using time-consuming methods. In recent times, the evolution of digital rock
technology have made determination of these properties a lot more simple and accessible.
Digital rock technology encapsulates the digitization of equipment making it possible to
better understand and model rocks. Digital rock physics (DRP) is imaging and digitization
of the pore space, minerals and matrix, and then numerically simulate physical processes
in order to find macroscopic properties (Andrä et al., 2013). By performing high resolution
imaging of the pore space, commonly a micro computed tomography (CT), and simula-
tions providing properties as permeability, elastic-wave velocity and elastic deformation,
DRP has become an industry standard (Berg et al., 2017). The available techniques offer
2D and 3D imaging of the rock and it’s pore space. With the vacant image processing
methods, it is also possible to do a 3D-reconstruction of 2D-images. Analysis of the im-
ages provides us with grain size distribution, irreducible water saturation, mineralogy and
classification of porosity (Berg et al., 2017). From simulations one obtains relative and
absolute permeability, electrical conductance, steady-state diffusion and elastic properties
(Andrä et al., 2013).

2.12.1 Software

Simulations performed during this investigation have been utilizing digital rock physics,
studying the properties of the pore space. This was conducted in the pore scale rock model-
ing software, e-Core. From simulations performed on grain size distributions, we obtained
a 3D-model representing clean sand and results such as permeability and porosity. Calcu-
lation of pore area and inscribed diameter was executed in MATLAB.

The e-Core software is developed by Numerical Rocks AS, which later became Lithicon
and was bought by FEI company (Field Electron and Ion Company) in 2014. The com-
pany’s name is now Thermo Fisher Scientific, and has an office in Trondheim.

The software is an electronic rock core laboratory. This laboratory models petrophysi-
cal properties and simulates flow within the pore space of sedimentary rocks. The process
of making a 3D numerical rock model includes the natural mechanisms of sedimentation,
compaction and diagenesis.

Different sedimentation methods can be chosen, vertical and horizontal compaction ap-
plied and numerous of diagenetic processes can be mimicked. By thorough characteri-
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zation of the pore network, multiphase flow can be simulated. The macroscopic transport
properties such as the absolute permeability can also be calculated. This operation is CPU-
intensive. Simulations in this thesis was done on a single work station, but more complex
and larger systems require calculations externally on a supercomputing cluster (Numerical
Rocks AS, 2012).
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CHAPTER 3

THEORY

Below is the theory for the method presented in this thesis. The equations applied to
express the geometrical properties of the pore area are presented, and important concepts
illustrated.

3.1 Describing the Pore Throat Area Between Three Grains

Porous media constituent of sphere packs creates unique voids for the different packing’s,
as seen in section 2.10. The unique throats control the ability for flow in the medium, and
quantification of these would improve the understanding of transport properties. There
exist a number of different pore shapes in porous media, and in this thesis we have chosen
to investigate triangular pore throats between grains. Assume that three spheres touch one
another and are self-supported by each other, and surrounding spheres. In figure 3.1 the
desired pore throat area is displayed in green. It becomes obvious that this area can be ex-
pressed as the area of the triangle formed by the grain centers, minus the red circle sectors
of each grain. This is better displayed in figure 3.2.

The first step of describing the pore throat area was to express the angles α, β and γ. As
we only know the sides of the triangle we used the law of cosine for expressing the angles.
This resulted in the following expressions:

α = cos−1
(

(r1 + r2)2 + (r1 + r3)2 − (r3 + r2)2

2 · (r1 + r2) · (r1 + r3)

)
, (3.1)
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Figure 3.1: Sketch displaying three circles, representing grains, creating the pore throat area (as
seen in green).

β = cos−1
(

(r1 + r2)2 + (r3 + r2)2 − (r1 + r3)2

2 · (r1 + r2) · (r3 + r2)

)
, (3.2)

γ = cos−1
(

(r1 + r3)2 + (r3 + r2)2 − (r1 + r2)2

2 · (r1 + r3) · (r3 + r2)

)
. (3.3)

As it was desirable to find the area of the triangle, we needed to express the height of the
triangle. This was done by simple trigonometry, and the height was expressed as:

h = (r1 + r3) · sin(γ). (3.4)

Thus, the area of the triangle is:
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Figure 3.2: Circle sectors of the three grains and the resulting pore area.

Atriangle = 1
2 · b · h = 1

2 · (r3 + r2) · (r1 + r3) · sin(γ). (3.5)

To get the pore throat area one must subtract the area of the three circle sectors from
Atriangle. The circle sectors can be expressed as follows:

Si = π · r2
i ·

θ

2π = r2
i θ

2 , (3.6)

such that:

S1 = r2
1 · α
2 , S2 = r2

2 · β
2 , S3 = r2

3 · γ
2 . (3.7)

The area of the pore throat can thus be expressed as:

Apore throat = Atriangle − S1 − S2 − S3. (3.8)

3.2 Finding the Inscribed Radius

The inscribed radius of the black grain seen in figure 3.3 can be expressed using Descartes’
theorem, also known as the kissing circle theorem. Soddy (1936) generalized this in his
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poem, ”The Kiss Precise”, as can be seen in appendix D. This theorem describes the con-
figuration of four mutually tangent circles where three of the circles have a common tan-
gent circle (Lagarias et al., 2002). This situation corresponds to that in figure 3.3. The radii
of the circles are r1, r2, r3 and rinsc. Thus, the curvature of the circles can be written as
ki = 1

ri
. From the theorem a quadratic equation is provided. When solved, it determines

the possible values for the radius of the fourth circle tangent, in this case the inscribed ra-
dius. In a Descartes configuration of four mutually tangent circles, the curvatures satisfy:

4∑
i=1

k2
i = 1

2

( 4∑
i=1

ki

)2

, (3.9)

thus, with regard to figure 3.3, we can write:

k1 = 1
r1
, k2 = 1

r2
, k3 = 1

r3
, kinsc = 1

rinsc
, (3.10)

with this defined , we can state Descartes theorem as:

(k1 + k2 + k3 + k4)2 = 2 (k2
1 + k2

2 + k2
3 + k2

4). (3.11)

From this, one can solve for the inscribed radius, rinsc, resulting in the following expres-
sion:

rinsc = 1
k1 + k2 + k3 ± 2 ·

√
k1 · k2 + k2 · k3 + k3 · k1

. (3.12)
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Figure 3.3: Visual representation of the pore area with an inscribed grain, with radius rinsc
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CHAPTER 4

METHODOLOGY

In the following chapter the methodology used in this thesis is presented. Calculations and
experimental work performed is described and illustrated.

4.1 Generating Sphere Packs Using e-Core

As this thesis aims to investigate the relation between a grain size distribution and transport
properties, classical sandstones was studied in order to get an overview of typical proper-
ties. One of the sandstones that is typically studied regarding transport properties is the
Fontainebleau sandstone. A micro-CT image of a Fontainebleau sandstone, obtained from
Digital Rocks Portal (Berg, 2017), was imported into e-Core. The imported CT-image
provided a 3D-model of the rock as illustrated in figure 4.1. By using grain recognition,
the grain size distribution was extracted. From the grain size distribution the mean and
standard deviation (non VW) was found to be µ = 148,9 ≈ 150µm and σ = 36,7 ≈ 40.
These values represent a fairly clean; quartz rich and well sorted sandstone, and was used
as basis for the generation of sphere packs.

4.1.1 Volume-Weighting Grain Size Distribution

In section 2.12.1, the e-Core software used in this thesis is presented. e-Core offers differ-
ent distribution models; Min-Max distribution, Normal distribution and Existing distribu-
tion. The normal distribution was used for the first simulations. In addition to using this
embedded model, existing distribution model was used. This model utilizes an existing
grain size distribution. For this purpose an ascii file is needed. Hence, such a file must be
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Figure 4.1: 3D-model view of the Fontainebleau sandstone. Side lengths of 2500µm and voxels of
5µm

generated. This was done using Excel as described below.

By defining a value for mean grain size and standard deviation a volume weighting of
the distribution was pursued. From these values a maximum and minimum grain size was
determined as µ±2σ. Number of bins was chosen to be 100. A list of grain sizes was then
generated based on the input values. The grain sizes were then distributed according to the
cumulative distribution function. From the CDF, the distribution was represented volume
wise. With the volumes, the number of grains per bin size could be found. Thus, creating
a volume weighted grain size distribution.

A script was made for transforming the distribution from Excel to a readable format for
e-Core. The script can be seen in Appendix A.1.

4.1.2 Simulation Process

As mentioned, e-Core offers three different grain size distributions. For the simulations the
existing distribution was chosen. For generating these distributions we chose to determine
a set of parameters. These were: mean grain size, standard deviation, minimum grain size
and maximum grain size.

For the simulations, five mean grain size values and standard deviations was chosen to
generate a representative distribution similar to the Fontainebleau sandstone. The mean
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grain sizes are varied between 150-250µm. For each mean grain size the standard devia-
tion is varied between 15-75. Minimum and maximum grain size was defined to be µ±2σ.
The complete simulation set up can be seen in table B.1 in appendix B.

Before starting the simulations, a set of configurations must be set. The first configura-
tion to be determined is the model type. e-Core offers different model types that mimic
distinct deposition styles. For the simulation the laminated model was chosen. The simu-
lation set up above includes only a single lamina. The number of grid cells (x) was chosen
to be 500, while the grid cell size was set to 5 µm. The grid cell size was chosen based
on the desire of having 5-10 grid cells per grain, as the smallest grains approach 25µm.
Further, grain bed properties must be determined. In e-Core, four common parameters
defining the grain bed composition was configured. These parameters were; amount of el-
liptical grains, maximum sphericity factor, amount of feldspars and amount of unsolvable
feldspars. The values was set to, 0%, 1.0, 0% and 0%, respectively.

4.2 Generating an Equation Based on Mean Grain Size
and Standard Deviation

With all properties set as described in the previous section, the created grain size distri-
butions from Excel was imported into e-Core and sedimentation of the sphere packs was
conducted. After the sedimentation, flow simulations was performed in order to obtain
absolute permeability for each sand pack. All parameters were kept at default for the flow
simulations. The flow simulation computes absolute permeability using the Lattice Boltz-
mann method. With the acquired absolute permeabilities from e-Core, an equation using
statistical properties of grain size distributions was pursued using the solver package in
Excel. Plots of acquired properties from flow simulations served as a tool for investigating
relationships and dependencies.

4.3 Calculating Pore Area and Approximating Permeabil-
ity

As earlier described the major ambition of this thesis is to express the transport properties
using the pore area constructed by three tangent circles, where the circles is a 2D cross
section of grains. For calculating the pore area, the theory presented in section 3.1 served
as basis. The calculation requires three grains. These three grains was randomly picked
from the grain size distribution. This would create a realistic void space constituent of
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Figure 4.2: Visualization of a cube with spheres.

three independently chosen grain sizes. Calculating the pore area of a representative num-
ber of grain constellations would give a useful approximation of flow potential. The mean
grain sizes and standard deviations that served as basis for generating the sphere packs can
be viewed in appendix B, table B.1, but this time the smallest grain size, 150µm, was not
included. Modeling and visualization was performed in e-Core, while calculations was
performed in MATLAB. The MATLAB code is presented in appendix A.2 and A.3.

The first approach of utilizing pore area as a descriptor of permeability was based on
grain size distribution properties and flow and computational simulations in e-Core and
MATLAB, respectively. Flow simulations in e-Core were performed on a cubic system. If
we consider one of the sides of this cube, there will be a certain area that would permit
flow as visualized in figure 4.2. This area equals the porosity. Mean grain size and lengths
of the system served as estimation on the number of pore throats.

nthroats = System Length
Mean Grain Size

, (4.1)

thus, the total number of throats in a cube is n3
throats. Each of the pore throats contributes to

the total fluid transport and has conductivity, g, dependent on the pore area. The conduc-
tivity of each throat can be calculated using equation 2.9 as seen in section 2.5, resulting
in a set of conductivities. In equation 2.9 the length, l, is put to be the mean grain size
diameter, lmean, such that:
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4.4 Implementing Shape Factor

g = A2

8 · π · lmean
. (4.2)

The conductivity was calculated for each throat and for each layer (i.e a horizontal slice
with a height equal to the radius) the harmonic mean was calculated. Total conductivity
was found by summing up the conductivity for each of these layers. This conductivity
calculation is shown in appendix A.4. With the conductivity known, one can use the Darcy
equation to express and calculate the permeability.

k =
∑
g

lsys
, (4.3)

where lsys is the length of the simulated system. This procedure gives an approximate per-
meability value and was performed for the pore area and the inscribed grain area.

The calculation of the inscribed grain diameter, as seen in section 3.2, was performed
with a random choosing of three grains from a grain size distribution. Using the randi
function in MATLAB, generating n3 number of constellations of three random grains and
calculating the inscribed diameter of each. This gives a representative number of pore
throats for calculating the mean inscribed diameter. The MATLAB-codes performing these
operations can be seen in appendix A.6. With conductivities for the different approaches,
an equation was pursued using the solver package in Excel.

4.4 Implementing Shape Factor

The implementation of a shape factor is to account for angular pores. As the Hagen-
Poiseuille equation is valid for cylindrical pipes, a factor to replicate and represent the
essential features of a pore space would make it more suitable for natural porous media.
By the definition of Øren et al. (1998), the shape factor for a cylinder becomes:

G = A

s2 = πr2

(2πr)2 = 1
4π . (4.4)

For triangular pores Øren et al. (1998) defined the shape factor as seen in equation 2.11.
The length in the denominator is now the mean grain size, and we write:

K = 3
5
A2G

lmean
. (4.5)

With the shape factor implemented, the permeability was calculated in the same manner
as above. The conductivity calculation with shape factor can be seen in appendix A.5.
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4.5 Pursuing Permeability Using Katz-Thompsons Rela-
tionship

In the process of investigating properties of the pore area and their relation to permeabil-
ity, Katz and Thompson’s (1986) relationship, as described in section 2.11.7, was studied.
Katz-Thompson relationship utilizes mercury intrusion experiments for defining the char-
acteristic length of the pore space. With no data on this, other characteristic lengths of the
pore space were pursued, such as pore diameter. These were tried using trial and error. In
addition to this, some adjustment to the constant was necessary.

4.6 Expected Diameter

Descartes theorem as described in equation 3.11 was used to find the expected value of the
inscribed diameter. We can start with the expected value of the complete expression and
simplify:

dinsc = E

(
2

k1 + k2 + k3 ± 2 ·
√
k1 · k2 + k2 · k3 + k3 · k1

)
, (4.6)

note that the numerator is multiplied with two to get the diameter. This expression can
now be simplified and broken up. Lets focus on the denominator:

E

(
1
r1

+ 1
r2

+ 1
r3

+ 2 ·
√

1
r1
· 1
r2

+ 1
r2
· 1
r3

+ 1
r1
· 1
r3

)
, (4.7)

which can be further simplified to:

E

(
1
r1

)
+ E

(
1
r2

)
+ E

(
1
r3

)
+ 2 · E

(√
1
r1
· 1
r2

+ 1
r2
· 1
r3

+ 1
r1
· 1
r3

)
. (4.8)

For the denominator we end up with:

⇒ 3 · E
(

1
X

)
+ 2 ·

(√
1
X2

)
= 3 · E

(
1
X

)
+ 2
√

3 · E
(√

1
X2

)

' (3 + 2
√

3) · E
(

1
X

)
.

(4.9)

The expected value for the inscribed diameter can thus be expressed as:

dinsc = 2
(3 + 2

√
3) · E

( 1
X

) . (4.10)
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4.6 Expected Diameter

It is worth noting that between equation 4.8 and 4.9 the denominators are changed from
radius to a common X. This is a valid assumption as the radii are gathered from the same
distribution and is thus interchangeable. The computation of the expected value for the
inscribed radius was done in MATLAB and is presented in appendix A.7.

In the same manner as before, we can develop a relationship based on the expected diam-
eter and the variance of the mean inscribed diameters. A best-fit equation was developed
using the solver package in Excel.
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CHAPTER 5

RESULTS

Characteristics from a grain size distribution and how they can be applied in describing
transport properties of porous media are investigated. The equations developed are pre-
sented along with supporting figures. Lastly, the equations validity and application is
depicted.

5.1 Volume Weighting

The first sets of sphere packs generated in e-Core based on the default normal distribution
provided a grain size distribution as can be seen as the black curve in figure 5.1. e-Core
provides a cumulative distribution of the grains that is weighted by number. Thus, it yields
a rock where there is very few of the smaller grains compared to larger grains volume wise.
Performing a volume weighting on the distribution results in a distribution constituent of a
higher number of small grains compared to larger ones. In figure 5.1 the volume-weighted
distribution is represented by the blue curve. A volume-weighted distribution is viewed as
more representative of a realistic rock because the ratio of small to large grains is better
characterized. The higher amount of small grains has two main effects. Firstly, porosity
will decrease due to the occupation of pore space by small grains in between larger ones.
Secondly, the presence of fine-grained material in pore throats will decrease the rocks abil-
ity for flow.

One of the indicators supporting a volume-weighted distribution was the effect of standard
deviation on porosity. In table 5.1, the effect can be studied. Initially, with the non-volume
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Figure 5.1: Cumulative plot showing grain size distribution weighted by number of grains versus
volume weighted. The volume weighted distribution has a higher amount of small grains compared
to the non volume weighted.

Case MGS(µ) SD(σ) φ(not VW)[%] φ(VW)[%] k(not VW)[mD] k(VW)[mD]
1 175 25 39.05 39.27 29407 30436
2 175 50 38.13 36.26 35278 18523
3 175 75 37.77 33.83 44967 14651

Table 5.1: Study on the effect of standard deviation on porosity and permeability.

weighted (VW) distribution the porosity decreases slightly when standard deviation is in-
creased, while the permeability increases with increasing standard deviation. Thus, we
have a coarse medium, where the porosity is decreasing, but lack of small grains gives rise
to increasing permeability.

5.2 Equation Based on Mean Grain Size and Standard
Deviation

As seen earlier, there have been proposed a multiple of equations describing flow in porous
media. A common feature for all of these equations have been the diameter squared mul-
tiplied with porosity relation. Hazen (1895) was one of the earliest describing flow using
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5.2 Equation Based on Mean Grain Size and Standard Deviation

Figure 5.2: Porosity plotted against the coefficient of variation, showing a linear relationship.

this relation. Later, Krumbein and Monk (1943) and others proposed equations utilizing
this relation. Thus, it is meaningful to start with this relation and develop further:

k = R · φµ2, (5.1)

here R is a constant that includes properties affecting flow, and will be described later.
After studying the graph, figure 5.2, effect of mean grain size and standard deviation on
porosity, it became clear that porosity could be described as a linear function of the coeffi-
cient of variation. Also worth noting from figure 5.2 is that zero standard deviation gives
a porosity of 41.125. This sounds plausible as Graton and Fraser (1935) concluded that a
cubic packing of spheres yields a porosity of 47.6%. We can write the equation as:

k = R · µ2 ·
[
a ·
(
σ

µ

)
+ b

]
= R · (aµσ + bµ2). (5.2)

Further, the equation was developed by relating R to mean grain size and standard de-
viation. This was done by plotting σ

µ against k
µ2φ , see figure 5.3. By employing linear

regression, the equation is written as:

k =
[
aµσ + bµ2] · [c(σ

µ

)
+ d

]
. (5.3)

The constants a, b, c and d is extracted from the linear regression seen in figure 5.2 and
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Figure 5.3: A linear representation approximating the constant, R.

5.3. The equation from linear approximation for the porosity and R are respectively:

φ = −16.733 ·
(
σ

µ

)
+ 41.125, (5.4)

k

µ2φ
= −0.0261 ·

(
σ

µ

)
+ 0.0249, (5.5)

yielding the final equation based on the simulation set up in table B.1:

0.4367 · σ2 + µ · (1.024µ− 0.4167σ − 1.073). (5.6)

5.3 Equation Based on Pore Area

The idea of the second approach was similar to the first approach, but properties of the
pore area were chosen as basis for expressing the permeability. The theory that serves as
a basis for the results presented can be found in chapter 3. Also, chapter 4 describes the
procedure and idea of the calculation.

First, the conductivity of the whole pore area was investigated and permeability calcu-
lated as described in section 4.3. Secondly, the pore area with the included shape factor as
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5.3 Equation Based on Pore Area

described in section 2.6 and 4.4 was calculated. From the obtained conductivities, perme-
ability was calculated using Hagen-Poiseuilles equation as described in section 2.4. The
results of this calculation can be seen in figure 5.4 and 5.5. These plots show that these two
approaches is overestimating the permeability of the sphere packs. Another aspect worth
noting is the apparent decrease in permeability when the shape factor proposed by Øren
et al. (1998) is implemented.

Figure 5.4: Permeability calculated from raw pore area as expressed in section 3.1.

It became clear that using the raw pore area or in combination with the shape factor pro-
vided permeabilities higher than the actual values. After this the mean inscribed pore
diameter as presented in section 3.2 was investigated and conductivities calculated. The
obtained permeabilities found from this approach are presented in figure 5.6. When com-
paring figure 5.4 and 5.5 to figure 5.6, the method using mean inscribed pore diameter
estimate permeabilities closest to those obtained from e-Core. Based on these results it
was chosen to further investigate and develop a relationship for the approach using the
mean inscribed diameter of the pore area.
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Figure 5.5: Permeability calculated from raw pore area with implemented shape factor. This is
described in section 2.6 and 4.4.

Figure 5.6: Permeability calculated from inscribed diameter as illustrated in figure 3.3.
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5.4 Katz-Thompson Relationship Investigated

As mentioned in section 4.5, the Katz-Thompson relationship was studied in the process
of developing an equation using pore area characteristics. Katz and Thompson (1986)
relationship uses a characteristic length of the pore space, as is described in detail in section
2.11.7. This length was determined from mercury injection experiments, and as this was
not available for the sphere packs in question, other characteristic lengths of the pore area
was pursued. Using the mean inscribed pore diameter of a data set, as described in section
4.3, and changing Katz and Thompson’s (1986) proposed constant from 1

226 to 17
100 . Using

another measure for the characteristic length will understandably affect the pre-factor c in
the Katz-Thompson’s equation. We obtained the resulting values shown in figure 5.7.

Figure 5.7: Katz-Thompson relationship tested on the sphere packs. It estimates permeabilities with
some accuracy, but underestimates permeability for the packs with lowest initial permeability.

From the plot, we see that Katz and Thompson’s (1986) relationship estimate permeabil-
ities with a decent accuracy. The packs that have an initial low permeability is underesti-
mated using this relationship. Although this plot shows some misalignment, there seem to
be a relation between the mean inscribed pore diameter and permeability. This observation
further substantiates a pursue of an equation using the mean inscribed pore diameter from
a grain size distribution.
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5.5 Further Investigation of Area of Inscribed Diameter

As we saw from section 5.3 and 5.4 there was indications that the mean inscribed pore di-
ameter provided permeabilities with the highest accuracy. This support a pursue of relating
inscribed pore diameter to transport properties of porous media. The mean inscribed diam-
eter was found using the method described in section 4.3. This diameter will vary around
a short interval for each data set due to the randomizing of the calculation. With a value of
the mean inscribed diameter in combination with the variance of the randomized inscribed
diameters, one has two useful values. These two values were found for each combina-
tion presented in table B.1. Based on these two values one is able to develop a meaningful
relationship with permeability. This was done using the Excel add-in, solver.xlam, in com-
bination with plotting. After performing optimization using the solver in Excel, we end up
with the following equation:

k[mD] = 35.89 · d2
insc + 5491.6 ·

(
σ

dinsc

)0.95
, (5.7)

where dinsc [µm] is the average inscribed diameter and σ is the variance of the inscribed
diameters. The constants in the equation are found after tuning the equation using Excel.
The standard deviation of data must be seen in context with the mean of the data; hence
the use of the coefficient of variation, as this describes the dispersion of the probability
function.

Figure 5.8: Permeability calculated from equation 5.7 plotted versus absolute permeability from
e-Core.
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5.6 Expected Inscribed Diameter

Equation 5.7 requires the use of the randomizer as presented in appendix A.6.2. The
randomizer, in combination with the script in appendix A.6.3, finds the mean inscribed
diameter, dinsc, and the variance, σ. It would have been desirable to express both dinsc
and σ as expected values without the need of the randomizer. The expected value of dinsc
was expressed using statistical procedure as is outlined in section 4.6. The expected value
of the variance proved to be complex and not feasible. Although, we are now able to
express the expected inscribed diameter without the randomizer, the variance still requires
the use of it. In figure 5.9 the expected inscribed diameter is plotted versus the actual
calculated mean inscribed diameter for each sphere pack and it shows that it predicts the
inscribed diameter to a satisfactory degree.

Figure 5.9: The actual mean diameter plotted versus the expected value. There are some discrepan-
cies for the smallest diameters and a general trend of slightly smaller diameters from the expected
value compared to the actual.

Figure 5.10 and 5.11 substantiates the use of the expected inscribed diameter and it’s vari-
ance. As can be seen, the inscribed expected diameter converges and shows limiting be-
havior. The same apply to the variance. This was reassuring as we could say that both
expected inscribed diameter and the variance of the mean inscribed diameters converges
as number of grains increase.
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Figure 5.10: Expected inscribed diameter converging as number of grains increase.

Figure 5.11: Variance of the expected inscribed diameter converging as number of grains increase.
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5.7 Formula Applied to Sand Packs

With the expected inscribed diameter and variance known, we can perform iterations and
optimization in the same manner as described earlier. This results in the following equa-
tion:

k[mD] = 36 · d2.02
exp + 5491.1 ·

(
σ

dexp

)0.945
, (5.8)

where dexp [µm] is the expected inscribed diameter. In SI-units the equation becomes:

k[m2] = (4.88E-2) · d2.02
exp + (2.61E-6) ·

(
σ

dexp

)0.945
, (5.9)

where the expected inscribed diameter, dexp [m], now is metric.

5.7 Formula Applied to Sand Packs

For testing the equation presented above, equation 5.9, a few sand packs was acquired
from Imperial College London (2017). Sand packs resemble sphere packs, but texture
effects such as sorting, packing, grain size, shape and orientation are more prominent.
The preliminary tests showed that equation 5.9 overestimated permeability for these sand
packs as can be seen in figure 5.12. It is believed that a combination of texture properties
affect the permeability estimation. A pre-factor was added to the equation to reduce the
permeability closer to the actual value of the sand packs. This factor was found using
manual optimization in Excel, and was determined to be:

c = 0.57

.
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Figure 5.12: Preliminary test of equation 5.9 on three sand packs from Imperial College London
(2017), LV60C LV60A and F42B.

5.8 Final Equation and it’s Validity

With the pre-factor found in section 5.7, we end up with the final equation:

k = c ·

[
(4.88E-2) · d2.02

exp + (2.61E-6) ·
(

σ

dexp

)0.945
]
, (5.10)

where:
k = permeability [m2]
c = 0.57, a pre-factor adjusting for the overestimation of permeability on sand packs
dexp = expected inscribed diameter [m]
σ = variance
The equation is based on a clean sphere pack of good sorting, clean quartz with no
feldspars and a high-energy sedimentation. Hence, the constant c is restricted to use on
sand packs and other sandstones.

The precision of equation 5.6, 5.9 and 5.10 can be seen in figure 5.13. The black dots
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represent the simulated sphere packs as described in section 4.1.2 and in appendix B, ta-
ble B.1. These are clearly linearly distributed as the equation was developed with these
as a basis. Further, we see that equation 5.6 based on mean grain size and standard de-
viation and equation 5.9 based on expected inscribed diameter closely match each other.
Although, matching each other they are quite inaccurate overestimating the permeability
by a factor of two to three. Also, the equation based on expected inscribed diameter is
slightly more off than equation 5.6. With the included pre-factor, c, as described in section
5.7, the permeability is considerably closer to the actual permeability. This indicates that a
factor should be added to the equation when applied to actual porous media, such as sand
packs.

Figure 5.13: Precision of equation 5.6 and 5.9 on sand packs and equation 5.10 on sand packs.
Equations are tested on sand packs from Imperial College London (2017); LV60C LV60A and F42B.
Note the addition of the constant, c=0.57, and it’s effect.

5.9 Formation Factor

As with the permeability, the formation factor of each of the sphere packs was found from
e-Core. The simulated formation factors are presented in table 5.2. e-Core calculates the
formation factor solving the Laplace equation with conservation of electrical charge. From
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the table we note that for each increase in standard deviation the formation factor increases
along. This applies to each of the mean grain sizes. The increase is due to the enhanced
complexity of the pore structure when the standard deviation increases. This gives a rise
in the resistivity of the rock filled with water and thus a higher formation factor.

Another aspect worth noting from the simulated formation factors is the little to no fluc-
tuation of the values. The difference between the largest and smallest value is 0.86. Berg
(2017) arrived at the following equality in his paper:

F = C

τ2φ
, (5.11)

where C is the constriction factor, τ is the tortuosity and φ is the porosity. Since the
porosity and formation factors of the sphere packs are known, we are able to express
C
τ2 . This relation characterizes the pore structure and says something about the structural
variation of the porous medium. From all the sphere packs we end up with values that are
close to consistent and showing stable behavior. This indicates that the structural variation
of the model is modest. This was expected as one understand that the possible variation in
the pore structures of sphere packs is limited.
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MGS SD F φ C
τ2

175 15 4.11 39.5 162.1
175 30 4.27 38.5 164.4
175 45 4.54 36.8 167.0
175 60 4.81 35.2 169.3
175 75 5.03 34.0 171.0
200 15 4.05 39.6 160.3
200 30 4.16 38.8 161.4
200 45 4.34 37.7 163.5
200 60 4.56 36.2 165.0
200 75 4.83 34.7 167.2
225 15 4.00 39.7 158.6
225 30 4.06 39.1 159.0
225 45 4.22 38.2 161.1
225 60 4.46 36.6 163.1
225 75 4.66 35.3 164.6
250 15 3.97 39.8 157.7
250 30 4.07 39.0 158.9
250 45 4.12 38.5 158.8
250 60 4.26 37.6 160.1
250 75 4.49 36.2 162.5

Table 5.2: Simulated formation factors of the sand packs performed in e-Core. The ratio between
the constrictions and tortuosity has little variation, indicating little structural variation.

51



Chapter 5. Results

52



CHAPTER 6

DISCUSSION

In the following chapter the results obtained and procedures performed to achieve the re-
sults will be discussed. The two approaches are assessed and parameters used in both
methods will be evaluated. Further, rock transport and geological properties will be dis-
cussed. Lastly, the applicability and the equations restrictions will be deliberated.

6.1 Comparison with Other Empirical Equations

The Darcy equation has served as a basis for nearly all equations calculating flow in porous
media. The equations developed from it are usually altered and the findings have been
based on data provided by experiments. Empirical factors have been added to the equa-
tions to better fit observed data. Other scientists have expressed transport properties relat-
ing it to size parameters. In table 6.1 below, some of the existing empirical equations are
used to compare it’s accuracy versus equation 5.6 and 5.10.

From the table we can see that equation 5.10 performs very well compared to the other
equations. It has the highest degree of precision. For sand pack LV60C Krumbein and
Monk’s (1943) equation outperforms all the others.
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Case k.abs Eq. 5.6 Eq. 5.10 Krumbein Berg Hazen Katz-T
F42B 52000 81429 47638 31336 59205 60778 51725
LV60A 35300 61115 35798 23591 83809 45009 61533
LV60C 19400 55735 32751 21647 73193 40825 46939

Table 6.1: Comparison with some of the empirical equations existing. All permeabilities are ex-
pressed in millidarcies.

6.2 Implications of the Results and Findings

The results obtained from the simulations and calculations performed yielded two equa-
tions that deliver permeabilities within a reasonable accuracy. By studying the relation-
ships developed and the details of the methodology used to obtain these relationships,
there are a few elements that may cause inaccuracies. These may be inaccuracies involv-
ing constants, use of different statistical measures, and basic workflow. When evaluating
the equations, one of the elements that appear to affect the relationship between a grain
size distribution and permeability is the standard deviation.

For the sand packs from Imperial College London (2017) the cumulative raw grain size
distribution was extracted and compared to the cumulative distribution generated from
it’s volume-weighted mean and standard deviation. In appendix C this is showcased for
each sand pack. It became evident that the raw distribution and the distribution volume
weighted based on mean and standard deviation, did not match each other to a degree of
acceptable precision. By increasing the standard deviation we visually got a better match
between the curves as shown in figure 6.1.

This suggests that a higher standard deviation will give a better match. The standard devi-
ation utilizes the mean grain size as an input. Mean is known to be sensitive when applied
to a distribution that has ”outliers” or extreme values, either small or large (Campbell and
Swinscow, 2009). It is also sensitive to skewed distributions, which might be the case for a
grain size distribution (Blott and Pye, 2001). The possibility of extreme values or skewed
distribution might be the explanation to the discrepancy in standard deviation when mean
value is applied. A better value for such distributions could have been the median. The me-
dian handles extreme values and better describe the central tendency (Manikandan, 2011).
This belief was confirmed when the mean and the median of the sand packs was compared.
By changing the mean with the median, there is a slight increase in the standard deviation.
Although there is an apparent effect, this is of a rather small impact.
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Figure 6.1: The actual grain size distribution is seen as the black curve, while the volume weighted
distribution based on mean and standard deviation is blue. By increasing the standard deviation, σ,
we are able to get a closer match (green).

6.3 Pore Scale Defects

As presented in section 5.7, a pre-factor was added to the equation to reduce the error of
permeability when applied to sand packs. A further investigation was done on a pore scale
level to study the texture properties and their effect on pore throats. First, the sand packs in
regard were simulated through sedimentation in e-Core. From this simulation a 2D model
of the rock was examined to find a pore throat for inspection. This was done moving up
and down through the rock in the x-direction. When a pore throat was located, it was
made sure that this was at the point where the grains had their largest cross section, i.e.
the largest diameter. The section of interest was imaged using the snipping tool. Inkscape
was used for outlining the grains and pore area, and color them with an individual color,
as seen in figure 6.2. Secondly, the picture was imported into ImageJ, where the picture
was transformed into a 8-bit monochrome and it’s pixel count extracted. From the pixel
count extracted one is able to calculate the ratio of grains to pore area and compare this to
the pore area estimated from the MATLAB code (A.2) for the same grains.

Preliminary tests of equation 5.9 showed that it was overestimating permeability when
applied to real sand packs, as seen in section 5.7. The samples in regard have different
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sorting and packing than the sphere packs, and the grains have different size, shape and
orientation. The overestimation was interpreted to be an effect of a combination of these
factors. By conducting a simple test, as described above, on a pore throat from the sand
pack-LV60C, we found the ratio between the real pore throat area and the calculated. From
this we are able to propose a constant accounting for the difference.

From the analysis it became clear that the green pore space in figure 6.2 was estimated
to have a higher area than the one calculated when using the MATLAB code presented in
appendix A.2. This implies that there are properties of the pore space in the sand packs
that affect the size of the pore area making it bigger than the one estimated from MAT-
LAB. One of the aspects that is believed to be of considerable impact is the massive grain
contacts seen in the thin section (fig. 6.2). They are not remotely close to the one-point
grain contacts in the sphere packs. The texture effects of the grains, angularity and orien-
tation, will also influence the formation of pores as these properties will not let the grains
create the small pores we see in the sphere packs. Based on the simple test described, the
ratio between the pore throats was found to be 0.85. This supports the pre-factor that was
added in section 5.7 and substantiates the believed effect of the grain contacts and texture
properties.

Figure 6.2: Thin section of three grains in a sand pack. Blue is pore space, yellow is grains, the
three red grains are the ones analyzed along with the green pore area. Picture is taken from the 2D
representation given by e-Core when sand packs are simulated.
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6.3 Pore Scale Defects

The factor of 0.85 is based on a raw and simplistic analysis and interpretation. The main
issue of this factor is that analysis was only performed on a single pore throat in a single
sand pack. By conducting an analysis on a larger number of sand packs and with numer-
ous of pores in each sand pack the factor would have been more representative. Outlining
of the three grains was done thoroughly, but it is likely that some of the grain area have
been excluded using the marker. These minor discrepancies may lead to some error in the
proposed constant. Another aspect is the grain contacts, which were done solely by inter-
pretation. The contacts might be incorrect or grains might overlap and the interpretation
was done in two dimensions only. Thus, there are many uncertainties and inaccuracies
regarding the calculation of this factor.

Fatt (1956) stated in his paper that the ones that had previous developed equations de-
scribing flow in porous media had found ”agreement between theory and observation (...)
by inserting parameters of doubtful physical significance”. Although, the constant pro-
posed in this thesis is based on the fact that the massive grain contacts, angularity and
orientation do affect the pore throat, it may be seen as a parameter of doubtful physical
significance. This is understandable, as we used it as a fitting factor. Fraser (1935) states
that well-rounded grains pack with a minimal pore space, but when angularity increases
the porosity and permeability should expect an increase as well. Further, Beard and Weyl
(1973) propose that this increase can be due to bridging of pores because of higher an-
gularity and looser packing. Both papers support the idea of a factor as they say that the
pore throat of sphere packs will have a smaller area than of sands with angular grains, as
is the understanding stated in section 5.7. This supports the proposed factor and defends
it’s physical significance.

From section 5.9 and table 5.2 we saw that the structural variation of the created sphere
packs was moderate. This was suspected, as there can be little variation in such simple
porous media. The fifth column in table 5.2, representing C

τ2 , shows stable behavior, and
indicates that the tortuosity and constrictions for the different sphere packs is relatively
constant. From Berg and Held (2016), we can use the following equation:

k = τ2
s l

2
hφs

8Cs
, (6.1)

where τs is the average tortuosity of streamline lengths, lh is the hydraulic characteristic
length, φs is the pore space that is accessible for fluid flow and Cs is the constriction factor
defining the variation in pore sizes along the flow paths. Thus, the only property that differs
between the sphere packs controlling the ability for flow is the pore throat diameter, here
expressed as lh.
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6.4 Testing Equation on Discontinuous GSD

Equation 5.9 showed to cope well with the large grain size distributions, as the sand packs
contained up to 14000 values. These and the sphere packs are all distributions with a
cumulative grain size distribution that is smooth. This means that they do not have any
large transition from one bin size to another. In other words the bin sizes show continuous
behavior. What if a rough and stair-like volume weighted distribution was used as input?

A few distributions were made constituent of between 132 and 20 grains with a discon-
tinuous cumulative grain size distribution. The cumulative grain size distributions can be
seen in figure 6.3. These distributions were then tested using the code finding expected
inscribed diameter as seen in appendix A.7 and permeabilities calculated using equation
5.9. The result of the test is shown in figure 6.4.

The permeabilities calculated from equation 5.9 for the broken distributions align pretty
well with each other. They end up being a little underestimated compared to the sphere
packs with a smooth distribution. Although, underestimating permeabilities, we can say
that this supports the relation discovered as they all are affected similarly.

Figure 6.3: Discontinuous cumulative grain size distributions.
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6.5 Volume Weighting

Figure 6.4: Permeability of discontinuous grain size distributions as presented in figure 6.3 calcu-
lated using equation 5.9.

6.5 Volume Weighting

As described earlier a volume weighting of the grain size distributions was performed.
This was done with a belief that it would create a more realistic distribution of the grains.
Main contributor for this was that the smallest grains were underrepresented volume wise.
By volume weighting the aim was to better represent natural porous media consisting of
throats and pore space filled with smaller grains.

In figure 6.5, equation 5.9 is tested on a non-volume weighted grain size distribution.
As one can see from the figure we end up with four horizontal trends, one for each mean
grain size. The movement leftwards from the linear trend is due to increasing standard
deviation. Thus, we can say that increasing standard deviation increases the error of the
calculated permeability versus the absolute. This is interpreted to be due to the increased
amount of large grains compared to smaller volume wise, such a situation is described
in section 2.10. With a high standard deviation larger grains dominate the pore structure
giving favorable properties for fluid flow. The smallest standard deviation practically falls
on top of the linear trend due to a more uniform grain size distribution. The believed
hypothesis is further strengthened from this investigation.
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Chapter 6. Discussion

Figure 6.5: Test of equation when applied to a non volume weighted distribution. Note the horizon-
tal trend of each grain size for the non VW distribution, for every increase in standard deviation the
error becomes larger.

6.6 Applicability

Fatt (1956) stated in his paper that equations describing flow in porous media ”are only
as valid as is the model used in their development”. The sphere pack model that forms
the basis of this study also shapes the applicability of the proposed equation. Equation 5.9
gives permeability of high accuracy for the volume weighted sphere packs, but is not as
precise for real sand packs. Thus, the equation is most precise when used on the model
itself and this confirms Fatt’s statement. Hence, the proposed factor as described in section
5.7. One can say that creating a general model constricts the final equation to the model
that the equation was developed from.

Another parameter that constrains the equation is that all of the simulated packs is within
five porosity percent, between 34-39%. Such a small variation in the porosity may lead to
an equation that is not applicable to reservoirs constituent of rocks with a porosity higher
or lower than these. An additional element to consider is that a larger span of porosities
could have revealed possible non-linearity effects.
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6.7 Sphere Packs as Analogs for Rock Samples

The sphere packs that the equations are based on are well sorted and constituent of ideal
spheres. In reality there are no rocks like that, and the sphere pack model thus creates a
very simplistic rock. A relative realistic rock would have included clays and angular grains
of various sorting. Compaction is excluded in the creation of the sphere packs leading to
loose packing. Another aspect of excluding compaction is that the grains will not experi-
ence compression and pressure solution. The net result of excluding these effects is that
porosity and permeability is higher than for typical oil reservoirs.

After sedimentation and compaction, burial of the geological area begins and tempera-
ture and pressure increases and one reach the region where diagenesis occurs. Diagenesis
is a process altering the rock and where growth of new minerals (authigenesis), such as
clay and cements occur. Cementation of the pore space drastically reduces porosity and
kills pore throats, leading to no fluid flow. Clay is known to reduce the permeability, as it’s
minerals may break loose from it’s host grains when there are high flow rates. The broken
minerals migrate with the flow, blocking pore throats. Understandably, the effects of diage-
nesis are multiple and it has a great impact on a rocks ability to contain and transmit fluids.

If the two factors above had been accounted for and implemented into the equation, it
is expected that the permeabilities would have been lower and the equation more precise
when applied to sand packs. The problem with these factors is that they are hard to quan-
tify. If quantified and implemented the applicability of the equation had been wider.
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CHAPTER 7

CONCLUSION

The objective of this thesis was to study the transport properties of porous media and inves-
tigate the relation between a grain size distribution and permeability. Further, the ambition
was to express permeability as a function of grain size distribution properties and charac-
teristics of the pore area. The base of the experimental investigation was that permeability
was expected to be correlated to mean grain size, standard deviation and characteristics of
the pore area. The main findings of this investigation are:

• The results show that there is a relationship between transport properties of porous
media and both a grain size distribution and the expected inscribed diameter of the
pore area.

• Expressing permeability as a function of mean grain size and standard deviation
proved to better estimate permeability than using pore area characteristics. Both
equations yields results within a reasonable accuracy for clean sandstones of good
sorting.

• Manual optimization of the equation expressing permeability through pore area
characteristics suggest a factor c ' 0.57 should be included. Image analysis of
pore throats supports this. With the factor included the equation yields permeabili-
ties with a high degree of precision for sand packs.

• Equation 5.9 does not break down when applied to discontinuous grain size distri-
butions.
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Chapter 7. Conclusion

• The equations developed has a narrow field of applicability.

• The outcome of this investigation supports the believed correlation between mean
grain size, standard deviation and characteristics of the pore area and permeability.
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CHAPTER 8

FURTHER WORK

The relationships developed in this thesis showed to give satisfactory results for simple
sphere packs, but did not perform to a satisfactory degree when applied to natural porous
media. With an included factor, the equation performed well. Further research and devel-
opment is needed, and for further work the following should be considered:

• Further investigate texture properties that may impact the pore throats. This in-
cludes, sphericity, grain contacts and overlapping. These properties and their effect
should also be quantified and included in the equation.

• Look into use of other models for quantifying flow in porous media, for example, a
network model.

• Investigate the possibilities of including compaction in the model that serves as basis
for developing the equations. This would make the equations more realistic, but may
restrict the equations applicability.

• Thoroughly study the effects of volume weighting the grain size distribution and
look at other possible approaches.

• A further development of the method expressing permeability using expected in-
scribed diameter of the pore area. Possibly look at other geometrical properties of
the pore area.

• Utilize optimization techniques for minimizing the possible errors when generating
the equation.
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Chapter 8. Further Work

• Conduct tests on a larger amount of thin sections acquired from both digital rock
physics and real rocks for different rock samples. A larger amount of sand packs
would make the proposed pre-factor more representative.
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APPENDIX A

PROGRAMMING

A.1 Script Generating Readable File for e-Core, binGener-
ator2.py

1 # i m p o r t numpy as np
2 i m p o r t math as m
3 i m p o r t s y s
4

5 i n p u t f i l e = s y s . a rgv [ 1 ]
6 i n p u t =open ( i n p u t f i l e , ’ rU ’ )
7 l i n e s = i n p u t . r e a d l i n e s ( )
8 o u t p u t f i l e = s y s . a rgv [ 2 ]
9 o f i l e =open ( o u t p u t f i l e , ’w’ )

10

11 f o r i i i n r a n g e ( 0 , l e n ( l i n e s ) ) :
12 l i n e = l i n e s [ i i ]
13 f o r j j i n r a n g e ( 0 , i n t ( l i n e . s p l i t ( ) [ 1 ] ) ) :
14 # p r i n t i n p u t [ i i ] [ 0 ]
15 o f i l e . w r i t e ( l i n e . s p l i t ( ) [ 0 ] + ’\n ’ )
16

17 o f i l e . c l o s e ( )
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A.2 Calculating Pore Area

1 f u n c t i o n p o r e a r e a = a r e a 2 ( r1 , r2 , r3 )
2 %a = ( ( r1 + r2 ) ˆ 2 + ( r1 + r3 ) ˆ2−( r3 + r2 ) ˆ 2 ) / ( 2 ∗ ( r1 + r2 ) ∗ ( r1 + r3 ) )
3 %acos ( a )
4 %E x p r e s s i n g t h e a n g l e s o f t h e t r i a n g l e
5 a l p h a = acos ( ( ( r1 + r2 ) ˆ 2 + ( r1 + r3 ) ˆ2−( r3 + r2 ) ˆ 2 ) / ( 2 ∗ ( r1 + r2 ) ∗ ( r1 +

r3 ) ) ) ;
6 b e t a = acos ( ( ( r1 + r2 ) ˆ 2 + ( r3 + r2 ) ˆ2−( r1 + r3 ) ˆ 2 ) / ( 2 ∗ ( r1 + r2 ) ∗ ( r3 + r2

) ) ) ;
7 gamma= acos ( ( ( r1 + r3 ) ˆ 2 + ( r3 + r2 ) ˆ2−( r1 + r2 ) ˆ 2 ) / ( 2 ∗ ( r1 + r3 ) ∗ ( r3 +

r2 ) ) ) ;
8 %C a l c u l a t i n g t h e h e i g h t o f t h e t r i a n g l e
9 A= 0 . 5∗ ( r3 + r2 ) ∗ ( r1 + r3 ) ∗ s i n ( gamma ) ;

10 %B , C and D a r e t h e c i r c l e s e c t o r s o f each g r a i n
11 B=( r1 ˆ 2 / 2 ) ∗ a l p h a ;
12

13 C=( r2 ˆ 2 / 2 ) ∗ b e t a ;
14

15 D=( r3 ˆ 2 / 2 ) ∗gamma ;
16 %F u l l po re t h r o a t a r e a
17 p o r e a r e a =A−B−C−D
18

19 %C a l c u l a t i n g c i r c u m f e r e n c e , s
20 b1= r1 ∗ a l p h a ;
21 b2= r2 ∗ b e t a ;
22 b3= r3 ∗gamma ;
23 c i r c =b1+b2+b3
24

25 %C a l c u l a t i n g Shape f a c t o r
26 G shape= p o r e a r e a / ( ( c i r c ) ˆ 2 )
27

28 %C a l c u l a t i n g i n s c r i b e d r a d i u s
29 k1 =1/ r1 ;
30 k2 =1/ r2 ;
31 k3 =1/ r3 ;
32 r i n s c = 1 / ( k1+k2+k3 +2∗ s q r t ( k1∗k2+k2∗k3+k3∗k1 ) )
33 %I n s c r i b e d a r e a :
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34 A r e a i n s c r i b e d = p i ( ) ∗ r i n s c ˆ2
35

36

37 end

A.3 Random Area Matrix Generator

1 f u n c t i o n a r e a = randArea ( da t avek , n )
2 %c r e a t i n g a m a t r i x o f z e r o e s wi th d i m e n s i o n s n ˆ2∗ n
3 a r e a = z e r o s ( n ˆ 2 , n ) ;
4 %Double f o r−loop , c a l c u l a t i n g t h e d i f f e r e n t a r e a s from

area2 , by p i c k i n g
5 %random v a l u e s from d a t a v e k
6 f o r i =1 : n ˆ2
7 f o r j =1 : n
8 a r e a ( i , j ) = a r e a 2 ( d a t a v e k ( r a n d i ( [ 1 l e n g t h ( d a t a v e k ) ] ) )

, d a t a v e k ( r a n d i ( [ 1 l e n g t h ( d a t a v e k ) ] ) ) , d a t a v e k (
r a n d i ( [ 1 l e n g t h ( d a t a v e k ) ] ) ) ) ;

9 end
10 end
11 end

A.4 Conductivity for Pore Area

1 meand=2∗mean ( d a t a v e k ) ;
2 n= round (2500E−6/meand ) ;
3 H=( randArea ( da t avek , n ) ) . ˆ 2 . / ( 8 . ∗ p i ( ) . ∗meand ) ;%c a l c u l a t i n g

t h e C o n d u c t i v i t y u s i n g Hagen−P o i s e u i l l e
4 C=sum ( harmmean (H, 2 ) .∗ n ) / ( n∗meand ) ;%Harmonic mean of each

row , t h e n summing t h e c o n d u c t i v i t i e s from each
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A.5 Conductivity for Pore Area with Shape Factor

1 meand=2∗mean ( d a t a v e k ) ;
2 n= round (2500E−6/meand ) ;
3

4 [A,G]= r a n d A r e a s h a p e ( da t avek , n ) ;
5 H=(A) . ˆ 2 . ∗G.∗3 . / ( 5 . ∗ meand ) ;%c a l c u l a t i n g t h e C o n d u c t i v i t y

u s i n g Hagen−P o i s e u i l l e
6 C=sum ( harmmean (H, 2 ) .∗ n ) / ( n∗meand ) ;%Harmonic mean of each

row , t h e n summing t h e c o n d u c t i v i t i e s from each

A.6 Inscribed Diameter

A.6.1 Calculating Inscribed Diameter

1 f u n c t i o n d i n s c = i n s c ( r1 , r2 , r3 )
2

3 %Using D e s c a r t e s Theorem
4 k1 =1/ r1 ;
5 k2 =1/ r2 ;
6 k3 =1/ r3 ;
7

8 d i n s c = 2 / ( k1+k2+k3 +2∗ s q r t ( k1∗k2+k2∗k3+k3∗k1 ) ) ;
9

10

11 end

A.6.2 Randomizer

1 f u n c t i o n a r e a = r a n d i n s c ( da t avek , n )
2

3 %c r e a t i n g a m a t r i x o f z e r o e s wi th d i m e n s i o n s n ˆ2∗ n
4 a r e a = z e r o s ( n ˆ 2 , n ) ;
5 %Double f o r−loop , c a l c u l a t i n g t h e d i f f e r e n t a r e a s from

area2 , by p i c k i n g
6 %random v a l u e s from d a t a v e k
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7 f o r i =1 : n ˆ2
8 f o r j =1 : n
9 a r e a ( i , j ) = i n s c ( d a t a v e k ( r a n d i ( [ 1 l e n g t h ( d a t a v e k ) ] ) ) ,

d a t a v e k ( r a n d i ( [ 1 l e n g t h ( d a t a v e k ) ] ) ) , d a t a v e k (
r a n d i ( [ 1 l e n g t h ( d a t a v e k ) ] ) ) ) ;

10 end
11 end
12 end

A.6.3 Variance and Mean Inscribed Diameter

1

2 meand=2∗mean ( d a t a v e k ) ;%mean d i a m e t e r o f gsd
3 n= round (2500E−6/meand ) ;%number o f c h a n n e l s
4 c h e c k v a r = r a n d i n s c ( da t avek , n ) ;%C r e a t i n g m a t r i x o f random

i n s c . d i a m e t e r s
5 [ nx , ny ]= s i z e ( c h e c k v a r ) ;%r e s i z i n g f o r c a l c u l a t i n g p u r p o s e s
6 vekcheck = r e s h a p e ( checkvar , [ nx∗ny , 1 ] ) ;%Reshap ing
7 v a r i a n s e n = v a r ( vekcheck ) ;%c a l c u l a t i n g v a r i a n c e o f t h e

i n s c r i b e d d i a m e t e r s
8 g j e n n o m s n i t t =10ˆ6∗mean ( vekcheck ) ;%mean
9 minsc=harmmean ( r a n d i n s c ( da t avek , n ) ) ;%harm . mean of each row

of i n s c r i b e d . . .
10 %d i a m e t e r s
11 m i n s c f i n a l =max ( minsc ) ;%i n s c r i b e d d i a m e t e r

A.7 Expected Value of Inscribed Diameter

1

2 n y d a t a v e k =10ˆ−6.∗ d a t a v e k . ˆ −1 ;%I n v e r t i n g t h e d a t a v e k
3 sumvec=sum ( n y d a t a v e k ) ;%sum of m a t r i x
4 a n t a l l =numel ( n y d a t a v e k ) ;%number o f v a l u e s i n m a t r i x
5

6 x inv = ( 1 / ( a n t a l l ) ) ∗ sumvec ;%Expec ted v a l u e o f 1 /X
7 i n s c d i a = 2 / ( ( 3 + 2∗ s q r t ( 3 ) ) ∗ x inv ) ;%Expec ted i n s c r i b e d d i a m e t e r
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APPENDIX B

TABLES

Table B.1: Simulation set up

Case Mean GS(µ) SD(σ) Min. GS(µm) Max. GS(µm)
1 150 15 120 180
2 175 15 145 205
3 200 15 170 230
4 225 15 195 255
5 250 15 220 280
6 150 30 90 210
7 175 30 115 235
8 200 30 140 260
9 225 30 165 285
10 250 30 190 310
11 150 45 60 240
12 175 45 85 265
13 200 45 110 290
14 225 45 135 315
15 250 45 160 340
16 150 60 30 270
17 175 60 55 295
18 200 60 80 320
19 225 60 105 345
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20 250 60 130 370
21 150 75 0 300
22 175 75 25 325
23 200 75 50 350
24 225 75 75 375
25 250 75 100 400

78



APPENDIX C

SAND PACKS - COMPARISON OF VW CUMULATIVE
DISTRIBUTION AND RAW CUMULATIVE

DISTRIBUTION

Figure C.1: F42B
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Figure C.2: LV60A

Figure C.3: LV60C
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APPENDIX D

THE KISS PRECISE

For pairs of lips to kiss maybe
Involves no trigonometry.
This not so when four circles kiss
Each one the other three.
To bring this off the four must be
As three in one or one in three.
If one in three, beyond a doubt
Each gets three kisses from without.
If three in one, then is that one
Thrice kissed internally.

Four circles to the kissing come.
The smaller are the benter.
The bend is just the inverse of
The distance form the center.
Though their intrigue left Euclid dumb
There’s now no need for rule of thumb.
Since zero bend’s a dead straight line
And concave bends have minus sign,
The sum of the squares of all four bends
Is half the square of their sum.

To spy out spherical affairs
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An oscular surveyor
Might find the task laborious, The sphere is much the gayer,
And now besides the pair of pairs
A fifth sphere in the kissing shares.
Yet, signs and zero as before,
For each to kiss the other four
The square of the sum of all five bends
Is thrice the sum of their squares.

in Nature, June 20, 1936 (Soddy, 1936).
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