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Abstract

Extended object tracking (EOT) have numerous applications and can be integrated in au-
tonomous systems like self-driving cars or autonomous surface vehicles. These systems
can be improved by using robust tracking algorithms that accurately estimate the position,
velocity and extent of surrounding targets from sensor data. EOT is relevant for many dif-
ferent sensors, and the methods developed are based on which sensor that is used. In this
thesis LIDAR is used to track a single target in a maritime environment that have a shape
which can be approximated by an ellipse. The sensor detections of the target will often be
noisy, and it is crucial to model the measurement uncertainties in a proper way. Both mea-
surements from target and other objects (clutter) need to be included in the probabilistic
modelling, where the data association problem is important to solve.

In this thesis we present and implement two different methods designed for tracking a
single target from LIDAR data. To model clutter measurements the generalized proba-
bilistic data association (GPDA) filter is used together with the filter methods. Through
simulations of a single elliptical target with and without clutter measurements, it is found
that the method using contour measurement modelling is performing considerably better
than the random matrix method. This result is obtained by considering both absolute error
and covariance consistency of the two methods. The contour measurement method is also
superior when testing the methods on real LIDAR data of the Munkholm boat taken from
Ravnkloa in Trondheim, by looking at track plots, extent estimation errors and innovation
statistics.
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Sammendrag

Målfølging av utvidede objekter (EOT) har mange anvendelser og kan bli integrert i au-
tonome systemer som for eksempel selvstyrte biler eller båter. Disse systemene kan
forbedres ved å bruke robuste algoritmer som nøyaktig estimerer posisjon, fart og ut-
strekning på andre mål fra sensordata. EOT er relevant for mange forskjellige sensorer,
og metodene som er utviklet er basert på hvilken sensor som er brukt. I denne oppgaven
brukes LIDAR til å følge et enkelt mål til sjøs som har en form som kan tilnærmes en
ellipse. Sensorens målinger av målet vil ofte ha støy i seg, og det er viktig å modellere
måleusikkerhetene på en korrekt måte. Både målinger fra mål og andre objekter (falske)
må inkluderes i den probabilistiske modelleringen, der data-assosiasjonsproblemet er vik-
tig å løse.

I denne oppgaven presenteres og implementeres to forskjellige metoder som er designet
for å følge et enkelt mål fra LIDAR-data. For å modellere falske målinger brukes det gen-
eraliserte probabilistiske data-assosiasjon-filteret (GPDA) sammen med filtermetodene.
Gjennom simuleringer av et enkelt elliptisk mål, med og uten falske målinger, blir det
vist at metoden basert på konturmodellering av målingene er betydelig bedre enn tilfeldig
matrise-metoden. Dette er et resultat basert på absoluttfeil og kovarians konsistenthet hos
de to metodene. Konturmetoden er også best når man tester metodene på ekte LIDAR-data
fra Munkholm-båten i Ravnkloa, Trondheim, ved å se på målfølgingsfigurer, estimerings-
feil for utstrekning og innovasjonsstatistikker.
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Chapter 1
Introduction

This chapter provides background and motivation for the thesis, a presentation of sen-
sors, description of target tracking, a problem description, and an outline of the different
chapters in the thesis.

1.1 Background and motivation
Automation of manual labor has entered several industries over the last couple of years, for
instance with robots in production processes, trading stocks, filling out forms and so on.
These robots are made to do specific tasks in a restricted environment and are mostly rule-
based. In recent years new types of autonomous systems have emerged, that require no
human interaction and are self-governing. Examples of these systems are the autonomous
cars of Google, Tesla and Uber.

The work with developing autonomous ships has also come a long way, and Norwegian
companies like DNV GL, Kongsberg Maritime and Maritime Robotics are leading play-
ers in this field. An example is the container ship Yara Birkeland (see Kongsberg [2017])
that will have control systems delivered by Kongsberg Maritime and is planned to be fully
autonomous in 2020. The purpose of the ship is to move containers from the Yara facility
at Herøya to the ports of Brevik and Larvik. Other vessels that have been developed is the
DNV GL Revolt model ship and the Telemetron by Maritime Robotics. Both these ships
have been used in testing of tracking and collision avoidance systems for autonomous
ships, for instance in Wilthil et al. [2017].

This thesis is written as a contribution to the Autosea and Autoferry projects at NTNU.
These projects focuses on developing technology for autonomous ships. The Autosea
project belongs to the department of engineering cybernetics and is about sensor fusion
and collision avoidance for autonomous surface vehicles (ASVs). The Autoferry project
is a collaboration between the departments for engineering cybernetics, electronic systems
and marine technology to create methods that will enable the development of autonomous
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Chapter 1. Introduction

passenger ferries. The project has so far come up with the concept ferry depicted in Figure
1.1, which is a 1:2 scaled model of the autonomous passenger ferry that will be built. Ex-
periments with collision avoidance with LIDAR and other sensors will probably happen
in the spring 2019.

Figure 1.1: Autonomous pilot ferry Milliampere in 1:2 scaled model of the autonomous ferry that
will be built in the Autoferry project. Courtesy of Kai Dragland.

The autonomous ferry is supposed to travel in the Trondheim canal between Ravnkloa and
Vestre Kanalkai shown in Figure 1.2. The idea behind this ferry is to transport pedestrians
and cyclists across the canal, which is about 95 metres wide, instead of building a foot-
bridge over it. The ferry will be operational during most of the daytime and carry up to 12
passengers.

To be able to operate autonomously between the two piers in Figure 1.2 the ferry needs to
have a good understanding of what is happening around it in the canal. The information it
gathers of the surroundings comes through sensors that are mounted on the ferry to give it
a visual perception. It is of importance to have accurate sensors and software that interpret
the sensor data correctly such that the steering algorithms can operate with estimates of
the surroundings close to the true situation.

1.2 Sensors

On the ferry there will be four different sensors: camera, radar, LIDAR and infrared (IR).
All these will give different types of detections and capture the surrounding features of
the canal in four different ways. Hence it is essential to both have good algorithms for
each sensor, but also have robust sensor fusion algorithms that gather the results from all
sensors into a consistent world picture of the reality around the ferry. Even though LIDAR
data will be the main focus of the current work, all sensor data types will be presented for
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1.2 Sensors

Figure 1.2: Planned route for the autonomous ferry. Courtesy of Egil Eide.

completeness. There are two types of sensors: active and passive. Active sensors works by
transmitting a signal s(t) and receiving a reflected signal r(t) from a target, as shown in
Figure 1.3. Radar and LIDAR are active sensors that use different electromagnetic signals
to get information about the surroundings. Camera is a passive sensor that only receives
signals in the form of visible light. IR can be both an active and a passive sensor.

Figure 1.3: Signal transmission between a sensor and a point target. The transmitted and reflected
signal is denoted s(t) and r(t) respectively. Courtesy of Rødningsby [2010].

The camera sensor takes several pictures per second and give a lot of image data to pro-
cess. For a camera to capture objects in an image properly it needs at least some light that
comes through the lens. An image is represented by a 2D array consisting of pixels that can
take RGB vector values in the spectrum from 0 to 255. For instance, the vectors [0, 0, 0]
and [255, 255, 255] represents a black and white pixel respectively. The scientific field of
extracting information from image data is called computer vision, and there are numerous
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methods to find interest points and feature descriptors that can be used with machine learn-
ing algorithms to detect objects. Methods like neural networks are typically used for object
detection in images because of the ability to recognize patterns in the nonlinear image data.

Radar uses radio-waves to detect objects and it determines the range, angle or velocity
of the objects. It works by sending out electromagnetic pulses from a transmitting an-
tenna, and then receive reflected pulses through a receiving antenna (usually the same as
the transmitting antenna). The received signals are then processed to extract information
about the detected objects. When the transmitted signals hits an object, most of them
are reflected or scattered in different directions. However, some of them penetrate into
the object. The radar detection image of an object will thus be scattered over the object
rather than just detections along the contour of the object. The radar signals have a low
frequency which gives longer wavelengths and thus higher uncertainties in the received
signals. Materials of considerable electric conductivity reflects radar signals well, which
makes it well suited on aircraft and ship detection for instance. If the detected object is
moving either towards or away from the transitter, the reflected waves will have a slight
equivalent change in frequency caused by the Doppler effect.

LIDAR stands for light detection and ranging, and is a laser-range sensor that transmits
laser beams and recieves reflected signals. The beams sweep over the surveillance area
with a small angular distance between them, and they are reflected by the first surface they
hit. This gives a different structure to the data compared to a radar, because the LIDAR
measurements are distributed along the object surface and not penetrating into the object.
It is used in mapping of terrain because of its 3D reconstruction of the surroundings.

The infrared (IR) sensor transmits electromagnetic rays in the infrared spectrum and re-
ceives the reflected rays, but it can also just detect IR waves without transmitting signals
(Chilton [2014]). The result is an image with color codes where objects that emit heat
waves will be highlighted. IR sensors also work when it is dark, and computer vision al-
gorithms are used to detect objects in the images that are obtained from the sensor.

1.3 Target tracking
Target tracking refers to the situation where one or several sensors, for instance radars,
LIDARs, cameras or infrared sensors are used to determine the kinematical properties like
position, velocity and/or acceleration of one or multiple remote targets. Tracking one tar-
get is referred to as single-target tracking, and multi-target tracking when there are more
than one target. In this thesis we will focus on single-target tracking, and not consider
multiple targets in the surveillance area.

Single target tracking is done over some time span with one or multiple measurements
for each time step. The standard assumption is that the target generates at most one mea-
surement per time step, and we refer to this as point object tracking. When the target gen-
erates multiple measurements per time step it is called extended object tracking (EOT).
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1.4 Problem description

The difference is therefore caused by both the sensor resolution and the spatial extent of
the target. If the sensor resolution is poor, a target with extent may only generate one mea-
surement per time step, while a sensor with better resolution would detect dozens of points.

Traditionally, tracking methods have been developed with the point target assumption,
but over the years as the sensor resolution has gotten better, this assumption has become
more and more invalid. From these advances in sensor technology the field of EOT has
emerged, and an extensive amount of work has been done to develop tracking methods
for targets with extent. EOT was not treated as a separate discipline until 2008, and most
existing tracking systems do not use this technology. The target extent can be modelled as
different geometrical shapes like a rectangle, ellipse or a line, dependent on which approx-
imation that fits the true target shape best. There have been numerous different approaches
when it comes to modeling the EOT problem mathematically, and some of them will be
presented in the next chapter.

When it comes to tracking extended objects at sea the targets are typically ships, boats,
pleasure crafts, kayaks or other vessels. For most of these targets, a good approximation
of the extent will be an ellipse as shown in Figure 1.4b with major axis a and minor axis
b. The extended target tracking scenario is illustrated in Figure 1.4a where an observer
typically positioned in the origin of a Cartesian coordinate system observes the elliptical
target. The center of the target ellipse (x, y) is located a distance r from the observer,
which is called the range. The angular position of the target is given by the bearing θ, and
together with the range it gives the target position in polar coordinates (r, θ). In addition
to position away from the observer, the target has velocities vx and vy , which determine
its heading. Figure 1.4a, shows the course γ. If the target has side-slip the course will be
different from the heading, otherwise they will be the same. The course thus determines
where the target is going, and is a function of the position (x, y) and velocities (vx, vy).

1.4 Problem description
In the setting of the autonomous ferry that is supposed to travel over the canal in Figure
1.2, it is important to have good estimates of the boat traffic around the planned ferry route.
The aim is to accurately estimate the vessels’ position, velocity and extent by elliptical ap-
proximations, such that the ferry can maneuver according to these estimates. In the canal
there is one vessel that travels regularly in and out from the pier at Ravnkloa, and that is
the MS Nidarholm boat travelling to the small island of Munkholmen. It is also referred
to as the Munkholm boat, and it departs every hour during summer season. Hence it is
of importance that the ferry is able to track this vessel with great precision every time it
arrives and departs at Ravnkloa.

The problem of tracking the Munkholm boat can be formulated as a single target EOT
problem as described in the previous section. To give the ferry a best possible understand-
ing of where this boat is going, it needs a sensor with high resolution. This is provided by
the LIDAR, and the one that we use has a range of 100 metres which means that it will
cover the whole ferry route shown in Figure 1.2. Hence the goal of this thesis is to find
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Figure 1.4: Illustration of the EOT setting for a single target approximated by an ellipse.

robust methods that can track a single extended target, more specifically the Munkholm
boat, by using data from a LIDAR sensor that is mounted to the pier at Ravnkloa. When
using a sensor like the LIDAR, it will detect many points that is not from the target we
want to track. These measurements are called clutter, and the tracking methods need to
filter them out such that the target generated measurements are used in the estimation.

1.5 Outline
The thesis is organized in the following way:

• Chapter 2 is a literature survey of relevant papers and books on target tracking and
EOT.

• Chapter 3 presents the theory behind EOT with the extended Kalman filter (EKF),
contour EKF and random matrix filter. It is assumed that all measurements come
from the target.

• Chapter 4 presents the theory behind the general probabilistic data association (GPDA)
filter when assuming that measurements can be both from target and clutter.

• Chapter 5 presents the simulation experiments and gives simulation results for the
GPDA filter with contour EKF and random matrix when generating LIDAR mea-
surements both with and without clutter.

6



1.5 Outline

• Chapter 6 gives results from real LIDAR data of the Munkholm boat which is
tracked by using the GPDA filter with contour EKF and random matrix.

• Chapter 7 discusses the results from simulations and real LIDAR data, and presents
alternative implementation choices.

• Chapter 8 gives concluding remarks and discusses further research topics.
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Chapter 2
Literature Review

In this chapter the relevant papers and books written on point target tracking and EOT are
summarized and discussed. First the traditional point target approaches for both single-
and multi-target will be presented, followed by extended single target and multi-target
contributions.

Point target tracking have been around for some time and after Kalman [1960] developed
the Kalman filter, there were several contributions concerning both single- and multitar-
get tracking in a cluttered environment, for instance Reid [1979]. A lot of these papers
was summarized in the book by Bar-Shalom and Li [1995], where the probabilistic data
association (PDA) is a key method when tracking with clutter measurements. Later, in
Bar-Shalom et al. [2001] further advances in point target tracking was summarized, and
the field was then a well established research area.

The first contribution in EOT can be traced back to Drummond et al. [1988], but there
were few contributions that came after it. In the 2000s the sensor technology had devel-
oped significantly, and the traditional point target assumption seemed more inappropriate.
One of the methods developed were based on the extended Kalman filter (EKF), for in-
stance in Salmond and Ristic [2004], which introduced the minor and major axes of the
target ellipse as a part of the state vector. Another approach that modelled the ellipse by a
random matrix was first introduced by Koch [2008], and it was developed to track a sin-
gle target or a target group from radar data. The random matrix approach was developed
further in Feldmann et al. [2011], where the sensor noise was included in the model which
was not the case in the original paper by Koch [2008]. However, this made the mathe-
matical derivation of the filter less correct, and more based on assumptions than analytical
probabilistic results. This problem was handled in the contribution by Lan and Li [2012]
and later in Granström and Orguner [2014]. The random matrix filter was now generalized
to handle rotational motion of the target ellipse, but most of the work were done using
radar data.
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Chapter 2. Literature Review

In Schuster and Reuter [2015] the random matrix filter were used on LIDAR data from
a boat with a GPS tracker, and compared it to a similar experiment with the radar sensor.
The general probabilistic data association (GPDA) filter was used to handle clutter mea-
surements in the sensor data. The GPDA was introduced in Schubert et al. [2012] as a
method to deal with clutter measurements in an extended target situation, and thus gener-
alizing the original PDA filter from Bar-Shalom and Li [1995]. The GPDA was built on
the same idea as the multiple detection PDA first presented by Habtemariam et al. [2011],
which allowed multiple detections to originate from target.

In Mahler [2003] a new modelling of the measurements were introduced using the rig-
orous formulation of finite set statistics (FISST). This set theoretic approach solves the
multi-target tracking problem by using random finite sets (RFS) to model the targets and
measurements. The first-order moment of an RFS is called probability hypothesis density
(PHD), and it is an intensity function defined over the target states. The filter that arise
from the PHD has been thoroughly studied, for instance in Granström et al. [2011a] where
a Gaussian mixture approach is used to limit the number of set partitions. This approach
resulted in further work by Granström et al. [2011b] who presented the contour measure-
ment modelling of LIDAR measurements on both rectangular and elliptical targets in a
multi-target tracking scenario with the PHD filter. In Granström et al. [2014] this method
was further investigated and tested on LIDAR data from cars under an assumed rectan-
gular shape. One of the advantages with the Gaussian mixture modelling of the LIDAR
measurements is that it enables the use of EKF, which is a well-known tracking method.
More recent RFS approaches using the Poisson multi-Bernoulli mixture (PMBM) filter are
given in Granström et al. [2017a] and Granström et al. [2017b]. Together with the most
recent approach in Granström et al. [2018], these contributions represent the state-of-the-
art methods in multi-target extended object tracking.

In this thesis we will study the contour EKF for elliptical targets developed by Granström
et al. [2011b], and use it in a single target case instead of the multi-target case it originally
was developed for. To handle the clutter measurements, we could have used the PHD filter
from the original approach, but we choose to apply the GPDA filter akin to Schubert et al.
[2012] instead. When doing this, we avoid the rigorous RFS modelling, and are able to
create a simple tracking algorithm for LIDAR data. This has not been done before as far
as the authors know, and is a new contribution to the EOT field. To compare the method
with an existing GPDA method, the random matrix filter from Schuster and Reuter [2015]
is reconstructed.
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Chapter 3
Extended object tracking

In this chapter we present theory for dealing with EOT, where multiple measurements
originates from target. First, the extended Kalman filter (EKF) theory is presented together
with the contour EKF (CEKF) for tracking an elliptically shaped object. The random
matrix approach is then presented as an alternative way of dealing with the EOT problem.
Both the CEKF and random matrix are presented with the underlying assumption that all
the measurements comes from the target.

3.1 Extended Kalman filter

In the target tracking problem which includes EOT, the target typically moves in some
time span from k = 1 to k = T . During this movement its position, velocity and extent
can be described by the state vector xk of size nx for each time step k. The goal is to
estimate the hidden state xk in time step k from the measurements Z1:k = {z1, ..., zk},
where each zk has size nz . This is supposed to happen in real time at time step k and thus
an efficient algorithm needs to be constructed. The marginal posterior, also referred to as
the filtering density, is given by

p(xk|Z1:k) =
p(Z1:k|xk)p(xk)

p(Z1:k)
, (3.1)

where p(xk) is the prior density defined by the dynamic model and p(Z1:k|xk) is the like-
lihood model for the measurements. To compute this posterior as k increases will be a
computationally complex problem, and not an efficient way of solving the filtering prob-
lem. Hence we make a first order Markov assumption on the dependence between the
states and the measurements. We assume that the current state xk only depends on the
previous state xk−1, and that each measurement vector zk only depends on the state vector
xk as shown in Figure 3.1.
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Chapter 3. Extended object tracking

...x0 x1 x2 xT

z1 z2 zT

Figure 3.1: Conditional dependence structure for estimating states from observations.

Now the filtering density from (3.1) can be written as

p(xk|Z1:k) =
p(zk|xk)p(xk|Z1:k−1)

p(zk|Z1:k−1)
, (3.2)

The prior density p(xk|Z1:k−1), also referred to as the predicted density, is given by the
Chapman-Kolmogorov equation

p(xk|Z1:k−1) =

∫
p(xk|xk−1)p(xk−1|Z1:k−1)dxk−1, (3.3)

where p(xk|xk−1) is the transition density or dynamic model, and p(xk−1|Z1:k−1) is the
filtering density for time step k − 1. The extended Kalman filter (EKF) is based on the
assumption that the dynamic model is given by

xk = f(xk−1) + qk−1, where p(qk−1) = N (qk−1; 0,Qk−1), (3.4)

which means that the transition model p(xk|xk−1) is Gaussian with mean vector f(xk−1)
and covariance matrix Qk−1. Here the three slot notation N (x;µ,Σ) means that the
vector x has a multivariate normal density with mean vector µ and covariance matrix Σ.
The function f(xk−1) is the dynamic model function that describes how the state vector
evolves, and we assume it is a linear function represented by the matrix Fk−1. The vector
qk−1 ∈ Rnx is called the process noise and Qk−1 ∈ Rnx×nx is the corresponding noise
covariance matrix. The previous filtering density at time step k − 1 is given by

p(xk−1|Z1:k−1) = N (xk−1; mk−1,Pk−1), (3.5)

and when using the Chapman-Kolmogorov equation (3.3) on these two Gaussian densities
we get that the predicted density is

p(xk|Z1:k−1) =

∫
N (xk; Fk−1xk−1,Qk−1)N (xk−1; mk−1,Pk−1)dxk−1

= N (xk; mk|k−1,Pk|k−1).

(3.6)

Here the predicted mean vector and covariance matrix are given by

mk|k−1 = Fk−1mk−1 (3.7)

Pk|k−1 = Fk−1Pk−1FTk−1 + Qk−1. (3.8)

12



3.1 Extended Kalman filter

The full derivations of these results can be found in Särkkä [2013].

To calculate the filtering density in (3.2) we need the measurement model p(zk|xk), also
referred to as the likelihood density. In the EKF it is given by

zk = h(xk) + rk, where p(rk) = N (rk; 0,Rk), (3.9)

which means that p(zk|xk) = N (zk; h(xk),Rk), where h(xk) is the measurement model
function and rk ∈ Rnz and Rk ∈ Rnz×nz are the measurement noise vector and covari-
ance matrix respectively. Both the functions f(xk) and h(xk) needs to be differentiable,
and we have already assumed that f(xk) = Fk−1 is linear which makes it differentiable.
We do not assume that h(xk) is linear, and we need to linearize it so that we can write the
filtering density as the approximation

p(xk|Z1:k) ' N (xk; mk,Pk), (3.10)

where mk and Pk are the filtered mean vector and covariance matrix respectively. These
approximations are obtained through Taylor series expansion of the mean and covariance
of the non-linear function h(xk). We will drop the time indexing k in this derivation.

A first order approximation of the measurement function h(·) can be written like

h(x) = h(m + δx) ≈ h(m) + Hx(m)δx, (3.11)

where x = m + δx and δx ∼ N(0,P). The Jacobian matrix Hx(m) =

[
∂hj(x)
∂xi

]
x=m

for

i = 1, .., nx and j = 1, ..., nz , is given by the partial derivatives of the function h(·), and
hence it needs to be differentiable. If we do not have a closed form expression of h(),
we can calculate the Jacobian numerically. This is the case in the Gaussian mixture EKF
presented in the next section. The expectation of the measurement model function with
respect to x can be approximated as

Ex[h(x)] ' h(m) + Hx(m) Ex[δx] = h(m) (3.12)

The covariance matrix approximation of h(x) then becomes

Covx[h(x)] = Ex[(h(x)− Ex[h(x)])(h(x)− Ex[h(x)])T ]

' Ex[(h(x)− h(m))(h(y)− h(m))T ]

' Ex[(Hx(m)δx)(Hx(m)δx)T ]

= Hx(m) Ex[δxδxT ]HT
x (m) = Hx(m)PHT

x (m).

(3.13)

Here, the equations (3.11) and (3.12) are used to find the approximation. In terms of the
measurement model, the approximation of h(·) can be used to obtain the EKF prediction
and filtering step. Since the dynamic model is assumed linear, the prediction step becomes
the same as in the linear Kalman filter given by (3.7) and (3.8). To obtain the filtering
equations, the joint distribution for xk and zk is derived by using the filtering density
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Chapter 3. Extended object tracking

(3.10), the likelihood density p(zk|xk) given by (3.9), and the lemma presented in Särkkä
[2013] about joint normal densities. From these results the joint density becomes

p(xk, zk|Z1:k−1) = p(xk|Z1:k−1)p(zk|xk)

= N (xk; mk|k−1,Pk|k−1)N (zk; h(mk|k−1),Rk)

= N
([

xk
zk

]
;

[
mk|k−1

h(mk|k−1)

]
,

[
Pk|k−1 Pk|k−1HT

x
HxPk|k−1 HxPk|k−1HT

x + Rk

])
,

(3.14)

where the Jacobian is denoted Hx = Hx(mk|k−1). From this result the conditional density
p(xk|Z1:k) ' N (xk; mk,Pk) is found by using known formulas for conditional Gaussians
on the joint density (3.14). The result yields

Sk|k−1 = HxPk|k−1HT
x + Rk (3.15)

Wk|k−1 = Pk|k−1HT
x S−1

k|k−1 (3.16)

mk = mk|k−1 + Wk|k−1[zk − h(mk|k−1)] (3.17)

Pk = Pk|k−1 −Wk|k−1S−1
k|k−1WT

k|k−1 (3.18)

as the filtering equations for EKF. The matrices Wk|k−1 and Sk|k−1 are called the gain
and innovation covariance matrices respectively. The filtering equations (3.17) and (3.18)
are a local linearization of the non-linear measurement model h(xk), and are used in the
implementations for EOT later in this thesis.

Example 3.1:
Let us consider a case where we track a target ellipse and the state vector is

xk = [xk, yk, vx,k, vy,k, ak, bk]T .

The dynamic model matrix Fk−1 is given by

Fk−1 =


1 0 ∆tk 0 0 0
0 1 0 ∆tk 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 . (3.19)

The positional measurements are given in polar coordinates, and the minor and major axes
of the target ellipse is also observed. Then the measurement model function is h(yk) =
[r(xk), θ(xk), ak, bk]T , where the range and bearing functions are given by

r(xk) =
√
x2
k + y2

k (3.20)

θ(xk) = arctan(yk/xk). (3.21)

Hence the Jacobian matrix expressed by the predicted mean vector

mk|k−1 = [xk|k−1, yk|k−1, vx,k|k−1, vy,k|k−1, ak|k−1, bk|k−1]T (3.22)
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3.1 Extended Kalman filter

is given by

Hx(mk−1) =


xk|k−1√

(xk|k−1)2+(yk|k−1)2

yk|k−1√
(xk|k−1)2+(yk|k−1)2

0 0 0 0

− yk|k−1

(xk|k−1)2+(yk|k−1)2
yk|k−1

(xk|k−1)2+(yk|k−1)2 0 0 0 0

0 0 0 0 1 0
0 0 0 0 0 1

 . (3.23)

This can be used in the filtering equations (3.17) and (3.18) to obtain estimates of the state
vector. The parameter values are

T = 100, Qk−1 = diag[0.012, 0.012, 0.012, 0.012, 0.0012, 0.0012],

Rk = diag[0.12, (
3

360
· 2π)2, 0.012, 0.012], x0 = [10, 10, 1, 1, 5, 1.5]T , ∆tk = 1,

where the notation diag[·] means a diagonal matrix. We simulate a target process from
the dynamic equation (3.4) and the measurements from (3.9). We initialize the filter with
the ground truth, i.e. m0 = x0, and estimate the predicted and filtered values with the
parameters above. The results are shown in Figure 3.2. We have plotted the position and
extent for both the true target process and the filter estimate, together with the positional
measurements. Observe that the measurements deviates more the longer away from the
origin the ellipse is, and the filter becomes less accurate. This is because of the uncertainty
in the θ-measurement gives higher deviance for increasing r. �

Figure 3.2: Dynamic process, measurements and filtered estimate for the target ellipse in example
3.1.
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Chapter 3. Extended object tracking

3.2 Contour EKF

With the EKF equations given in (3.17) and (3.18) we have a filtering method that handles
a non-linear measurement function h(·), and we want to apply this to LIDAR measure-
ments of an ellipse-shaped object. We assume the same dynamics model as in (3.4) for the
state vector xk = [xk, yk, vx,k, vy,k, ak, bk]T with the linear dynamic function f(·) = Fk−1

given in (3.19).

The measurements for each time step k are given by the set Zk =
{

zjk
}mk

j=1
where the

measurement vector consist of two-dimensional positional coordinates given by zjk =

[xjk, y
j
k]T for all j = 1, ...,mk. The cumulative measurement set Z1:k =

{
Z1, ...,Zk

}
is defined to be a set consisting of each measurement set for all time steps up to k. Each
of the measurements in Zk are assumed to be independent of each other and the likelihood
can be expressed as

p(Zk|xk) =

mk∏
j=1

p(zjk|xk). (3.24)

The LIDAR sensor sweeps the surveillance area with time sampling interval ∆tk and

measures the bearing θjk = arctan2(yjk, x
j
k) and range rjk =

√
(xjk)2 + (yjk)2 for the

closest object reflecting the laser beam. A target generated measurement zjk can be seen
as a realization from a random measurement generating point yjk that is measured with
some noise rjk. The measurement generating points are given as nonlinear functions
yjk(·) : Rnx → R2mk of the target state vector. It is assumed that each measurement
is generated by exactly one measurement generating point as shown in Figure 3.3.

xk

yk

bk

ak

vx,k

vy,k

LIDAR

Figure 3.3: Illustration of EOT with LIDAR. State variables, measurement generating points yj
k

(squares) along the target ellipse connected with associated measurements zjk (circles) are shown.
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3.2 Contour EKF

Now the measurement likelihood p(zjk|xk) can be written as the convolution

p(zjk|xk) =

∫
p(zjk|y

j
k(xk))p(yjk(xk)|xk)dyjk(xk). (3.25)

To find an analytical expression for this likelihood that corresponds with the distribution of
real world LIDAR data is challenging, and thus we approximate it by a Gaussian mixture
given by

p(zjk|xk) ≈
NL∑
l=1

wlN
(
zjk; ylk(xk),Rlk

)
,

NL∑
l=1

wj = 1. (3.26)

Here, wl are the weights for each Gaussian density and Rlk is the corresponding measure-
ment noise covariance matrix. Each measurement zjk can be associated with NL different
predicted measurements ylk. However, we have already assumed that each measurement
comes from exactly one predicted measurement, i.e. NL = 1, and the mixture density in
(3.26) is simplified to

p(zjk|xk) ≈ N
(
zjk; yjk(xk),Rjk

)
. (3.27)

This likelihood enables the use of well known filtering methods like the EKF, and is the
main motivation behind using Gaussian mixture approximation.

The measurement generating points yjk(xk) are computed by using properties of the ellipse
geometry, and we switch to a more convenient notation without the timestep subscript k
and using (x0, y0) and φ to respectively denote the center and rotation of the ellipse. First,
given that the sensor is located in (0, 0) in the Cartesian plane, we can calculate the bear-
ing interval [θ1, θ2] where the target measurements can occur. This is done by using the
reference coordinates (xe, ye) for the ellipse coordinate system, which can be expressed
by the regular Cartesian coordinates as[

xe

ye

]
=

[
cos(φ) sin(φ)
− sin(φ) cos(φ)

] [
x− x0

y − y0

]
(3.28)

In the target ellipse coordinate system we have the ellipse equation

(xe)2

a2
+

(ye)2

b2
= 1. (3.29)

In addition, the tangent through the point (xet , y
e
t ) is given by the equation

xet
a2
xe +

yet
b2
ye = 1. (3.30)

By inserting the coordinate expressions from (3.28) in (3.30) and rewriting the tangent
equation (3.30) such that we get an expression of the form y = Ax + B, we get that the
slope and constant term are

A =

(
− b2xe

t

a2yet
cos(φ)− sin(φ)

)
cos(φ)− b2xe

t

a2yet
sin(φ)

, (3.31)

B =

b2

yet
− b2xe

t

a2yet

(
− x0 cos(φ) + y0 sin(φ)

)
+ x0 sin(φ) + y0 cos(φ)

cos(φ)− b2xe
t

a2yet
sin(φ)

. (3.32)
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Chapter 3. Extended object tracking

To find the solution for the two tangent points laying on a line through the origin we use
that the constant term B = 0 in (3.32) and that the ellipse equation (3.29) must hold for
the tangent points (xet , y

e
t ). Rewriting these two equations gives

yet =
b2

C2
− b2C1

a2C2
xet = ±b

√
1−

(xet
a

)2
, (3.33)

where C1 = −x0 cos(φ) − y0 sin(φ) and C2 = x0 sin(φ) − y0 cos(φ). This second
degree polynomial equation has two solutions for xet and we find the corresponding yet -
coordinates from the right hand side of (3.33). This could also have been done by express-
ing xet in terms of yet in (3.33), and solve for yet . This is done in the implementation when
C2 is close to zero. The corresponding angles θ1 and θ2 are calculated from the slope A in
(3.31) and we get the different cases

θ1 =


min{arctan2(A1, 1), arctan2(A2, 1)} xmin > 0

min{arctan2(−A1,−1), arctan2(−A2,−1)} xmax < 0

max{arctan2(A1, 1), arctan2(A2, 1)} − π xmin < 0, xmax > 0, ymax > 0

max{arctan2(A1, 1), arctan2(A2, 1)} xmin < 0, xmax > 0, ymax < 0

θ2 =


max{arctan2(A1, 1), arctan2(A2, 1)} xmin > 0

max{arctan2(−A1,−1), arctan2(−A2,−1)} xmax < 0

min{arctan2(A1, 1), arctan2(A2, 1)} xmin < 0, xmax > 0, ymax > 0

min{arctan2(A1, 1), arctan2(A2, 1)}+ π, xmin < 0, xmax > 0, ymax < 0

for the two desired angles in all possible configurations of the ellipse. Here we have de-
fined (xmin, xmax) and (ymin, ymax) as the minimum and maximum values of all the
points on the ellipse in each Cartesian coordinate. For an ellipse centered in (4, 5), a = 4,
b = 1.5, and rotated with φ = π/4 the angle span is shown in Figure 3.4.

Figure 3.4: Target ellipse and the two tangent lines through the origin that give the two bearings θ1
and θ2.
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3.2 Contour EKF

When the angle span [θ1, θ2] is calculated we can decide the bearing of each predicted
measurement yjk(xk) by assigning equally spaced angles with distance (θ2 − θ1)/mk be-
tween them in the angle span. To calculate the corresponding range for each angle, such
that the predicted measurements are located on the contour of the ellipse, we use the same
formulas given in Granström et al. [2011b]. This is done by expressing the Cartesian
coordinates as polar coordinates given by[

x
y

]
=

[
r cos(θ)
r sin(θ)

]
. (3.34)

Inserting this in (3.28) and using the resulting coordinates (xe, ye) in (3.29), we obtain a
second degree polynomial in r. The result yields

1 =

(
C2

3

a2
+
C2

4

b2

)
r2+2

(
C1C3

a2
+
C2C4

b2

)
r+

(
C2

1

a2
+
C2

2

b2

)
= A∗r2+2B∗r+C∗, (3.35)

where C1 and C2 is the same as before and the other constants are given by C3 =
cos(θ) cos(φ) + sin(θ) sin(φ) and C4 = − cos(θ) sin(φ) + sin(θ) cos(φ). The solution to

(3.35) is r = −BA ±
√

B2

A2 − C−1
A , and since we want the solution that is closest to the

sensor we use the negative solution.

Finally, we obtain the predicted measurements yjk(xk) = [rjk, θ
j
k]T for j = 1, ...,mk

from the equations above. When we obtain measurements from real world targets they are
unsorted in terms of range and bearing, and we need to associate each measurement to its
correct predicted measurement. This is done by sorting the measurements according to
their bearing, and each zjk are associated with the predicted measurement yjk(xk) that has
the same position in the sorted bearing set.

The covariance matrices Rjk represent ellipses that are centered in the predicted measure-
ment points and can be rotated in two different ways. The first alternative is to use the
formula

Rjk = JjkRJjk, Jjk =

[
cos(θjk) −rjk sin(θjk)

sin(θjk) rjk cos(θjk)

]
, (3.36)

where R = diag[σ2
x, σ

2
y] is the measurement covariance matrix and (rjk, θ

j
k) is the range

and bearing of each measurement generating point yjk(xk). The Jacobian matrix Jjk is
computed from the polar coordinate function h(rjk, θ

j
k). The second alternative is to rotate

the ellipse along the tangent line of the target ellipse, and the formula is given by

Rjk = Rφ(φjk)RRφ(φjk)T , Rφ(φjk) =

[
cos(φjk) − sin(φjk)

sin(φjk) cos(φjk)

]
, (3.37)

where the angle φjk is the rotation angle corresponding to the tangent line through yjk, and
Rφ is the counterclockwise rotation matrix. An example for a target ellipse with state vec-
tor xk = [5, 5, 3, 1, 5, 1.5]T and measurement covariance matrix R = diag[0.42, 0.252],
is shown in Figure 3.5a and 3.5b for the Jacobian and tangent rotation respectively. The
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difference is clearly significant where the Jacobian rotation gives more uncertainty per-
pendicularly to the target contour as opposed to the tangent uncertainty which is along
the contour. How the tangent angles φjk are computed is similar to finding the predicted
measurements, where the slope of the tangent line from (3.30) is used with the arctan2-
function as shown previously.

(a) Jacobian rotation (b) Tangent rotation

Figure 3.5: Example of a target ellipse (blue) with measurement generating points yj
k (magenta)

together with the corresponding covariance matrices Rj
k from (3.36).

The likelihood of the measurements Zk from (3.9) combined with the approximation in
(3.27) can now be expressed as

p(Zk|xk) ≈
mk∏
j=1

N (zjk; yjk(xk),Rjk) = N (z∗k; y∗k,R
∗
k), (3.38)

where z∗k and y∗k are vertical vectorial concatenations of the measurements and predicted
measurements respectively. The noise covariance matrix R∗k is a 2mk × 2mk block di-
agonal matrix with all the 2 × 2-matrices Rjk as the blocks. Now the filtering density
becomes

p(xk|Z1:k) =
1

Cp
p(Zk|xk)p(xk|xk−1,Z1:k−1) (3.39)

=
1

Cp
N (z∗k; y∗k,R

∗
k)N (xk; mk|k−1,Pk|k−1) = N (xk; mk,Pk), (3.40)

where mk|k−1 and Pk|k−1 are computed in the EKF prediction equations (3.7) and (3.8),
and Cp is the normalization constant.

To find the filtered mean and covariance in (3.40), the same procedure as in (3.14) is used.
However, the Jacobian Hk is computed numerically since we do not have a closed form
expression of the predicted measurements. This is done by adding a small perturbation
constant ε to the measurement function yk(xk) for each variable in the state vector xk and
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calculate the 2mk × 1 vector

hik =
yk(xk[i+ ε])− yk(xk)

ε
(3.41)

for each i = 1, ..., nx and put them together in the 2mk × nx-matrix Hk = [hik]nx
i=1. Here

the notation xk[1 + ε] = [xk + ε, yk, vx,k, vy,k, ak, bk]T for i = 1. This yields the contour
EKF (CEKF) equations

Sk|k−1 = HkPk|k−1HT
k + R∗k (3.42)

Wk|k−1 = Pk|k−1HT
k S−1

k|k−1 (3.43)

mk = mk|k−1 + Wk|k−1[z∗k − y∗k] (3.44)

Pk = Pk|k−1 −Wk|k−1S−1
k|k−1WT

k|k−1, (3.45)

which is used to obtain estimates of the state vector and its covariances. These equations
are almost identical to the regular EKF equations in (3.17) and (3.18), the only difference
comes from the concatenated vectors z∗k, y∗k and block diagonal matrix R∗k. The filtering
algorithm is shown in Algorithm 1.

input : Data from target Z1:T , parameters Q, R, ∆tk
output: Filtered mean mk and covariance Pk for k = 1, ..., T
Initialize filter state vector estimate m0 and covariance matrix P0 ;
for k = 1 to T do

Compute predictions mk|k−1 and Pk|k−1 ;
Find mk = |Zk| predicted measurements yjk on the predicted ellipse ;
Calculate the Jacobian matrix Hk numerically from y∗k ;
Compute the block diagonal noise covariance matrix R∗k from R and yjk ;
Compute the filtered values mk and Pk.

end
Algorithm 1: Contour EKF algorithm.

3.3 Random matrix
In this section we present an alternative filtering method where the extent ellipse is treated
as a random matrix, and the kinematic variables are modelled in the same way as before.
The random matrix method was first introduced by Koch [2008], and the total state consists
of the kinematic state vector

xk = [xk, yk, vx,k, vy,k]T , (3.46)

and Xk which is a symmetric positive definite (SPD) random matrix that describes the
extent of the target ellipse. This matrix has dimensions 2 × 2 in the case of a 2D-plane
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tracking problem, and this case is used from now on. The main idea is to estimate xk
through linear Kalman filtering, and Xk from its own filtering equations, hence they are
treated separately. The target ellipse is represented by the points (x, y) given by the equa-
tion

([x, y]T −Hxk)TX−1
k ([x, y]T −Hxk) = 1, (3.47)

where H = [I2, 02] is the measurement model matrix not to be confused with the matrix
Hk for CEKF which is changing for each time step k. The position (xk, yk) is the center
of the ellipse and Xk can be viewed as a covariance matrix defining the extent. We will
present the random matrix approach from Feldmann et al. [2011] because Schuster and
Reuter [2015] used it for single target tracking with clutter, and we want to reproduce this
filter.

3.3.1 Prediction

The transition density of the kinematic state in (3.46) is given in the same way as in (3.4),
but without the extent variables ak and bk which results in the dynamic model matrix

Fk−1 =


1 0 ∆tk 0
0 1 0 ∆tk
0 0 1 0
0 0 0 1

 . (3.48)

Hence the kinematic prediction becomes the same as in (3.7) and (3.8), but with four in-
stead of six state variables.

In the extent process model, the transition density p(Xk|Xk−1) is a Wishart density, be-
cause it ensures that the extent matrix Xk stays SPD for all time steps k. It is given by

p(Xk|Xk−1) =W2(Xk; ηk|k−1,Xk−1/ηk|k−1)

∝ |Xk|(ηk|k−1−3)/2 exp{− tr(X−1
k−1Xk)/2},

(3.49)

for the two dimensional case (hence W2(·)) where |Xk| is the determinant of Xk and
tr(A) =

∑n
i=1 Ai,i is the trace of the n × n matrix A = (Ai,j)ni=1,j=1. The degrees of

freedom is given by the update ηk|k−1 = η∗e−∆tk/τ where η∗ and τ are constant exten-
sion evolution parameters. Note that with constant time interval ∆tk = ∆t the degrees of
freedom also becomes a constant in time, hence ηk|k−1 = η∗e−∆t/τ = η. When simulat-
ing the extent matrix this parameter will determine the uncertainty in the process, because
the variance is given as VarXk

[Xk|Xk−1] ∝ 1/ηk|k−1. This is a result from the variance
of the Wishart density (3.49) (see Gupta and Nagar [2000] for more details).

Example 3.2:
By using the transition density for the kinematics and extent (3.49), it is possible to sample
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3.3 Random matrix

a target ellipse process. The parameter settings are

T = 20, ∆tk = 2.5, Q = diag[0.12, 0.12, 0.012, 0.012], (3.50)

x0 = [0, 0, 1, 1]T , X0 = Rφ(φ0)

[
52 0
0 1.52

]
Rφ(φ0), (3.51)

and the degrees of freedom is ηk|k−1 = η because the time interval is a constant. The
initial heading angle is φ0 = arctan2(1, 1) = π/4. The simulation results are shown in
Figure 3.6a and 3.6b for η = 10 and η = 1000 respectively, and it is evident what impact
the degrees of freedom has to the extent process. For η = 10 the target is changing extent
in an irregular pattern, while for η = 1000 it has approximately the same extent for each
sample. �

(a) η = 10 (b) η = 1000

Figure 3.6: Sampled target process for random matrix approach with two values for η from example
3.2.

For the object extension part it is assumed that the filtering density at the previous time
step is given by

p(Xk−1|Z1:k−1) = IW2(Xk−1; νk−1,Mk−1)

∝ |Xk−1|−νk−1/2 exp{− tr(Mk−1X−1
k−1)/2},

(3.52)

where Mk−1 is the filtering estimate of the random extent matrix at time step k − 1 and
νk−1 is the estimated degrees of freedom. The notation p(X) = IWp(X; ν,A) means that
the p× p random matrix X is inverse Wishart distributed with ν degrees of freedom. The
expectation of the extent matrix is thus E[Xk−1|Z1:k−1] = Mk−1/(νk−1− 3) from Gupta
and Nagar [2000] for an inverse Wishart distribution. In Koch [2008] it is postulated that
the expectation of the predicted density should be equal to the expectation of the previous
filtering step

Mk|k−1/(νk|k−1 − 3) = Mk−1/(νk−1 − 3). (3.53)

In addition it is stated that the degrees of freedom νk|k−1 should be decreasing with in-
creasing length of each time interval ∆tk. This is because the variance in the estimates
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should be larger when fewer samples are obtained from the sensor per time unit. The
approach in Feldmann et al. [2011] is slightly different and it is assumed that the extent
matrix is constant. This gives the random matrix extent prediction equations

Mk|k−1 = Mk−1 (3.54)

αk|k−1 = 2 + (αk−1 − 2)e−∆tk/τ , (3.55)

where the degrees of freedom are defined as αk−1 = νk−1 − 3 where νk−1 is the degrees
of freedom in (3.52). To make sense with the inverse Wishart distribution in (3.52) and
expectation matching in (3.53) the degrees of freedom for the prediction step should be
equal to the filtered value at the previous time step, i.e.

Mk|k−1 = Mk−1 ⇔ αk|k−1 = αk−1. (3.56)

The reason why Feldmann et al. [2011] assume that the predicted degrees of freedom
αk|k−1 in (3.55) is different from αk−1 is because the variance of the extension estimate
Mk−1 is approximately proportional to 1/(αk − 2). This is inconsistent with the inverse
Wishart distribution of Xk−1 in (3.52), but is justified by the exponential increase of vari-
ance over time. The variance of the inverse Wishart distribution in (3.52) at time step k is
given by

Vk = VarXk
[Xk|Z1:k] =

αk(tr Mk)Mk + (αk + 2)M2
k

(αk + 1)(αk − 2)
, (3.57)

and this expresses the uncertainty of the filtering estimate Mk.

3.3.2 Filtering

In the filtering step, Feldmann et al. [2011] assume that the object extension Xk is not
part of the estimation problem for the kinematic vector xk. Hence the kinematic filtering
equations are similar to the ordinary Kalman filter given in (3.17) and (3.18), but the
likelihoods are different and thus give different filtering equations. The random matrix
measurement likelihood is given by

p(Zk|mk, xk,Xk) =

mk∏
j=1

N (zjk; Hxk,Yk|k−1), (3.58)

where Yk|k−1 = zMk|k−1 + RRM is the predicted covariance of a single measurement.
The scaling factor z allows us to account for different spreads of measurements around the
target ellipse, and with a value of z = 1/4 the measurement spread is close to an uniform
distribution. The random matrix measurement covariance matrix RRM models the sensor
noise in the measurements, and it was not included in the original random matrix approach
by Koch [2008].
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3.3 Random matrix

Two important measurement quantities in the random matrix method are the centroid mea-
surement and corresponding spread matrix defined as

z̄k =
1

mk

mk∑
j=1

zjk =
1

mk

[ mk∑
j=1

xjk,

mk∑
j=1

yjk

]T
(3.59)

Z̄k =

mk∑
j=1

(zjk − z̄k)(zjk − z̄k)T . (3.60)

The centroid measurement is supposed to capture the target center, and with a measure-
ment spread over the whole target, the expression in (3.59) will give a reasonable center
position. In a tracking problem with LIDAR as measurement sensor this centroid measure-
ment will not give a good measure of where the target center is located. This is because
the mean in (3.59) over the contour measurements from a LIDAR will be located close to
the edge of the target as shown as the green point in Figure 3.7. The corresponding spread
matrix in (3.60) is represented by the green ellipse, and it surrounds the detections. Hence
we need a method to find a better centroid measurement from Zk, and from Schuster and
Reuter [2015] we have

z̄∗k =

[
min{minθ Zk[1],maxθ Zk[1]}+ |maxθ Zk[1]−minθ Zk[1]|/2
min{minθ Zk[2],maxθ Zk[2]}+ |maxθ Zk[2]−minθ Zk[2]|/2

]
, (3.61)

where the notation minθ Zk[1] means the x-coordinate of the measurement point in Zk
with lowest bearing θ. The centroid measurement is thus given as the center of the line
connecting the maximum and minimum values in the θ-coordinate. We take the minimum
of these points in both x and y-coordinate so that we get a general rule for computing
z∗k = [x∗k, y

∗
k]T in all four quadrants. This is shown as the blue point in Figure 3.7, and

is generally a better estimate of the target center. The blue ellipse represents the spread
matrix Z̄∗k which is given by

Z̄∗k =

mk∑
j=1

(zjk − z̄∗k)(zjk − z̄∗k)T , (3.62)

i.e. the spread matrix from (3.60) computed with the new centroid measurement from
(3.61).

In the paper by Koch [2008] the likelihood is given as

p(Zk|mk, xk,Xk) =

mk∏
j=1

N (zjk; Hxk,Xk)

∝ N (z̄k; Hxk,Xk/mk)W2(Z̄k;mk − 1,Xk), (3.63)

but with the likelihood in (3.58) it is not possible to find an analytical solution to the
posterior density p(xk,Xk|Zk). Hence the assumption about a constant extent matrix is
made, and the uncertainty coming with the estimation of Xk is ignored. The kinematic
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Chapter 3. Extended object tracking

Figure 3.7: Original centroid measurement (symmetric point) from (3.59) and LIDAR centroid mea-
surement (center of gravity) from (3.61) with corresponding target ellipses. The detections comes
from a LIDAR in (0, 0), and the true target size and shape is outlined as well. Figure is from Schuster
and Reuter [2015].

filtering equations are thus given by

S∗k|k−1 = HPk|k−1HT +
Yk|k−1

mk
(3.64)

Kk|k−1 = Pk|k−1H(S∗k|k−1)−1 (3.65)

mk = mk|k−1 + Kk|k−1(z̄∗k −Hmk|k−1) (3.66)

Pk = Pk|k−1 −Kk|k−1S∗k|k−1KT
k|k−1, (3.67)

where z̄∗k is used as the centroid measurement instead of z̄k. These are similar to the
EKF filtering equations, but the innovation covariance and gain are denoted by S∗k|k−1 and
Kk|k−1 in the random matrix filter.

The limiting case of a non-random Xk is maintained in the extent filtering and to ob-
tain the estimate Mk, Feldmann et al. [2011] uses the innovation matrix Nk|k−1 given by
Koch [2008]

Nk|k−1 = (z̄k −Hmk|k−1)(z̄k −Hmk|k−1)T . (3.68)

Here the original centroid measurement is used because it gives the expected value of
Nk|k−1 to be

ENk|k−1
[Nk|k−1|Z1:k−1,Xk = Mk|k−1] = S∗k|k−1. (3.69)
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3.3 Random matrix

This is not the case if we use z̄∗k in (3.68) instead of z̄k, and which is not accounted for
by Schuster and Reuter [2015]. Similarly for the scattering matrix Z̄k given in (3.60) the
expectation is

EZ̄k
[Z̄k|Z1:k−1,Xk = Mk|k−1] = (mk − 1)Yk|k−1, (3.70)

and if we use Z̄∗k from (3.62) instead, the result will not be the same. Hence we have
a problem with these two expectations, when using the derivation from Feldmann et al.
[2011] with the new centroid measurement z̄∗k. This can give tracking results that have
high absolute errors and are not consistent. Also the rule for computing the centroid mea-
surement will give more deviant results for other target headings than shown in Figure
3.7. For instance if only the side or rear part is visible to the LIDAR, the centroid will be
computed to be on the target contour.

Now two quantities N̂k|k−1 and Ŷk|k−1 are generated such that they are proportional to
Xk = Mk|k−1 and are SPD matrices. This is done by using the Cholesky decomposition
of matrices, so that we can write Mk|k−1 = (Mk|k−1)1/2(Mk|k−1)T/2 where AT/2 means
A1/2 transposed for an arbitrary SPD matrix A. The generated values are given by

N̂k|k−1 = (Mk|k−1)1/2(Sk|k−1)−1/2Nk|k−1(Sk|k−1)−T/2(Mk|k−1)T/2 (3.71)

Ẑk|k−1 = (Mk|k−1)1/2(Yk|k−1)−1/2Z̄∗k(Yk|k−1)−T/2(Mk|k−1)T/2 (3.72)

and from this the extent filtering equations are given as

αk = αk|k−1 +mk (3.73)

Mk = (αk|k−1Mk|k−1 + N̂k|k−1 + Ẑk|k−1)/αk. (3.74)

These are in close analogy to the original filtering equations in Koch [2008], but are more
a result of constructed quantities than derived from the distributions assigned to the vari-
ables. Although the method of Feldmann et al. [2011] is based on several assumptions and
generated values, it does not ignore the measurement noise given by the covariance matrix
Rk in (3.58), which is an important parameter because the sensor most likely gives noisy
measurements. The final random matrix filter is given in Algorithm 2.
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input : Data from target Z1:T , parameters τ , η, Q, ∆tk, z
output: Filtered mean mk, covariance Pk, extent matrix Mk and variance Vk for

k = 1, ..., T
Initialize filter state vector estimate m0, covariance matrix P0, degrees of freedom
α0 and extent matrix M0 ;

for k = 1 to T do
Compute predictions mk|k−1, Pk|k−1, αk|k−1 and Mk|k−1 ;
Calculate the centroid position z̄∗k and Z̄∗k from the measurements ;
Compute the generated values N̂k|k−1 and Ẑk|k−1 from the innovation matrices
and gain matrix ;

Compute the kinematic filtered mean mk and covariance Pk. ;
Compute the extent filtered matrix Mk and degrees of freedom αk ;
Compute the extent variance Vk.

end
Algorithm 2: Random matrix algorithm.
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Chapter 4
Extended object tracking with
clutter

The filtering methods presented in the previous chapter are based on the assumption that no
clutter measurements appear in the set Zk. In this chapter we describe the more realistic
situation where measurements can represent clutter. The measurement set is defined as
Zk = Θk ∪ Kk = {z1

k, ..., z
mk

k }, where Θk and Kk are the sets of measurements from
target and clutter, respectively. We define the number of target measurements as |Θk| =
ntk and the number of clutter measurements as |Kk| = nck, such that mk = ntk + nck.
The chapter is beginning with an introduction of GPDA followed by a presentation of the
GPDA filter for CEKF and random matrix. In the last section, algorithms for initialization
of the target ellipse and shrinking the hypothesis space are presented.

4.1 Generalized Probabilistic Data Association
Traditionally the probabilistic data association (PDA) filter have been used in point target
tracking as presented in Bar-Shalom and Li [1995], where it is assumed that the target
gives at most one measurement for each time step. In the following we will extend this as-
sumption and allow that multiple measurements can originate from target. This idea was
first presented as the multiple detection PDA (MD-PDA) in Habtemariam et al. [2011].
Later, the generalized probabilistic data association (GPDA) filter was derived in Schubert
et al. [2012]. The GPDA was later implemented with the random matrix filter presented
in section 3.3 by Schuster and Reuter [2015]. In this section the GPDA will be derived in
a slightly different way than done before.

The GPDA filter is based on the same assumptions as the MD-PDA given by

• There is only one target of interest.

• The track has been initialized.
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• The past information of the target is approximately summarized as

p(xk|Z1:k−1) ≈ N (xk; mk|k−1,Pk|k−1). (4.1)

• At each time step a validation region Γk is set up to validate each measurement.

• Among the validated measurements, one or more can originate from the target.

• The clutter measurements are modelled with uniform spatial distribution and Pois-
son cardinal distribution within the validation region.

• Target detections occur independently over time with known probability PD.

These assumptions are similar to the traditional PDA, except for the number of points
generated from target. In addition, the GPDA assumes that we maximally can have nmax

points from target. This can be set prior to the tracking process, but when the measure-
ments are given, we know that ntk ≤ mk. However, if nmax < mk we know that some of
the measurements are not from target.

The validation region is an elliptical region where every measurement that is inside the
region is validated. Originally it was defined in Bar-Shalom and Li [1995] as

Γk = {(x, y) : ([x, y]T −Hmk|k−1)TS−1
k|k−1([x, y]T −Hmk|k−1) < γ}, (4.2)

where H is the measurement model matrix used in the random matrix filtering. Here γ is
the gate threshold that determines the size of the validation region. In the random matrix
approach this region is well defined since we have a 2 × 2 innovation covariance matrix
S∗k|k−1 at each time step. For the GMEKF method it is more problematic since this matrix
has dimensions 2mk × 2mk with calculated covariances in all entries, so we can not use
the 2× 2 block diagonal matrices because it will exclude the covariances from the rest of
the columns.

Considering the difficulties outlined above we need to choose the validation region Γk
in another way. We choose to use a scaling of the predicted target ellipse in the extension
variables, represented by the state vector

[xk|k−1, yk|k−1, vx,k|k−1, vy,k|k−1, γsak|k−1, γsbk|k−1]T . (4.3)

Here γs is the validation region scale parameter, and it determines the extent of Γk which
again decides the validated measurements. The reason why we choose this validation
region is that the predicted ellipse mk|k−1 is available before the filtering step and give a
good measure of where the measurements should appear. By increasing its size with the
scaling γs > 1 we account for the noise in the measurements, and remove distant clutter
points. Hence this method will validate the measurements in a good manner as long as the
predicted ellipse don’t get too small. The volume of this validation region is

Vk = πγ2
sak|k−1bk|k−1, (4.4)

which is given by the area of an ellipse. For the random matrix filter we can use the orig-
inal validation region in (4.2) but to get a good comparison of the methods we choose the
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4.1 Generalized Probabilistic Data Association

scaled predicted ellipse for both.

After the measurement validation we have the set Zk = {zjk}
mk
j=1 of validated measure-

ments, and we use mk to denote the number of measurements that are validated. The
challenge now is to find out which of the measurements that come from target and clutter.
This is referred to as the data association problem, and the GPDA filter is designed to solve
it. We define the set of mutually exclusive association hypotheses when mk ≤ nmax to be

E =



E0 =
{
E0

0 no detection from target

E1 =


E1

1 Detection z1
k originated from target

...
E1
mk

Detection zmk

k originated from target

E2 =



E2
1 Detections z1

k, z2
k originated from target

E2
2 Detections z1

k, z3
k originated from target

...
E2

(mk
2 )

Detections zmk−1
k , zmk

k originated from target
...

Emk =
{
Emk

1 all detections originated from target.

A hypothesis Eji can from this definition be treated as a set of target generated points. The
posterior pdf is defined according to the total probability theorem to be a weighted sum
over all association hypotheses

p(xk|Z1:k) =
∑
Ej

i∈E

p(xk|Eji ,Z1:k)P (Eji |Z1:k), (4.5)

where the hypothesis conditional filtering density p(xk|Eji ,Z1:k) needs to be computed
from the filtering method for each hypothesis Eji , and this is presented in the next sections
of this chapter. When not considering E0

0 , the index j = 1, ...,mk is the number of target
generated points and i = 1, ...,

(
mk

j

)
is the hypothesis index within the hypothesis space

Ej . We will assume that P (E0
0) = 0 because in the simulated and real LIDAR data the

target always exists and give at least one detection. This assumption makes the GPDA
derivation different from the approaches in Schubert et al. [2012], where it is possible that
the target do not exist or is not detected. When the number of measurements is a large
number, the computation of all the association pdf’s becomes intractable. Hence it is im-
portant to narrow down the hypothesis space so that the algorithms run efficiently.

The association probabilities P (Eji |Z1:k) are denoted as the weights βi,jk for each time
step k, and can be written as

βi,jk = P (Eji |Zk,mk,Z1:k−1). (4.6)
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We write it in this form because it enables probabilistic inference on the number of mea-
surements mk and their positions. Rewriting using Bayes’ formula yields

βi,jk =
1

Cβ
p(Zk|Eji ,mk,Z1:k−1)P (Eji |mk,Z1:k−1), (4.7)

where Cβ is the normalization constant such that β0
0 +

∑mk

j=1

∑(mk
j )

i=1 βi,jk = 1. As a result
of this normalization, all constant terms that do not depend on the association hypothesis
Eji can be neglected because they will cancel out. The association likelihood in (4.7) can
be expressed by

p(Zk|Eji ,mk,Z1:k−1) = psp(Θk|Eji ,mk,Z1:k−1)psp(Kk|Eji ,mk,Z1:k−1), (4.8)

where it is assumed that the target generated measurements are independent of the clutter
measurements. Both the densities in (4.8) are spatial densities (psp), because we have
conditioned on mk and Eji which leaves no uncertainty about the cardinalities ntk and nck.
When the hypothesis Eji is given, we know how many target and clutter measurements
we have, from the index j. In the original formulation of the GPDA in Schubert et al.
[2012], these cardinalities are modelled as a uniform and Poisson, and this represents the
difference in our approach. However, it is assumed that both ntk and nck have prior densities
given by

P (ntk) =
1

nmax
, for ntk ≥ 1 (4.9)

P (nck) =
(λVk)mk−j

(mk − j)!
e−λVk . (4.10)

Here we have assumed that the target generated points follow a discrete uniform distribu-
tion, while the number of clutter measurements are Poisson distributed with parameter λ.
The clutter measurements are modelled as a Poisson point process, which means that the
spatial density is given by

psp(Kk|Eji ,mk,Z1:k−1) = (Vk)−(mk−j). (4.11)

This means that the clutter points are distributed uniformly over the validation region vol-
ume Vk. Since this expression is dependent on the hypothesis Eji it will be a part of
the association weights βi,jk in (4.7). The spatial density psp(Θk|Eji ,mk,Z1:k−1) will be
given in the next sections for each of the filtering methods.

The prior density in (4.7) will also be equal in the two filtering methods. A simple
way to model it is to assume a discrete uniform distribution, i.e. P (Eji |mk,Z1:k−1) =
(
∑mk

j=0

(
mk

j

)
)−1 = 2−mk . This is done in both Schubert et al. [2012] and Schuster and

Reuter [2015], and in our case this will make the association weights only dependent on
the association likelihood in (4.8), and not the Poisson parameter λ from (4.10). The prior
densities given in (4.9) and (4.10) will influence the association hypothesis prior density in
(4.7) given the number of measurements mk, and we can find this expression by making
inference on mk.
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First we assume that the prior density is independent of past measurements, i.e.

P (Eji |mk,Z1:k−1) = P (Eji |mk). (4.12)

Then we observe that the joint density P (Eji , n
t
k = j|mk) = P (Eji |mk) because the event

Eji will be inside the event ntk = j. This can be used to obtain an expression for the prior
density by using Bayes’ rule, and we get that

P (Eji |mk) = P (Eji , n
t
k = j|mk) =

P (Eji |ntk = j,mk)P (mk|ntk = j)P (ntk = j)

P (mk)

=
1

Cm

(
mk

j

)−1
(λVk)mk−j

(mk − j)!
e−λVk

1

nmax
∝ j!

(λVk)j

(4.13)

Here we have assumed that the density P (Eji |ntk = j,mk) is uniform over the hypothesis
space Ej , which contains

(
mk

j

)
hypotheses. The density P (mk|ntk = j) is recognized as

the clutter cardinal density P (nck = mk − j) because of the relation mk = ntk +nck. If we
take the product of all the densities discussed so far, and excluding the constant terms, we
get that the association probabilities in (4.7) are

βi,jk ∝ psp(Θk|Eji ,mk,Z1:k−1)
j!

λj
. (4.14)

These weights will prefer hypotheses with a high j because the factor j! increases more
rapidly than λj for j = 1, ...,mk and λ < mk. This can happen if the spatial density term
has the same magnitude as the prior term, but if psp(Θk|Eji ,mk,Z1:k−1) is much higher
it will be less significant. In the next sections we will present this target density and the
corresponding association weights βi,jk for both filtering methods presented in Chapter 3.

4.2 Contour GPDA filter
First we present the filtering equations for the GPDA algorithm using the CEKF from
section 3.2. This will be referred to as the C-GPDA from now on. The target generated
density is the likelihood of the concatenated measurements z̃i,jk that are assumed generated
by the target in Eji . In the same way as p(zjk|xk) from (3.25) it is given by the convolution

psp(Θk|Eji ,mk,Z1:k−1) =

∫
p(z̃i,jk |E

j
i ,mk,Z1:k−1, xk)p(xk|Eji ,mk,Z1:k−1)dxk

=

∫
N (z̃i,jk ; ỹjk(xk),Rjk)N (xk; mk|k−1,Pk|k−1)dxk,

(4.15)

where z̃i,jk ∈ R2j , ỹjk(xk) : Rnx → R2j and R̃
j

k ∈ R2j×2j are the concatenated mea-
surement vector for the target measurements zi,jk ∈ E

j
i , and corresponding measurement
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model function and noise covariance matrix. To deal with the nonlinear measurement
function ỹjk(xk) we do a linearization akin to (3.11), and the expectation and covariance is
found from (3.12) and (3.13). Hence we end up with a joint density similar to (3.14) and
when we do the integral over xk from (4.15) the result becomes

psp(Θk|Eji ,mk,Zk) = N (z̃i,jk ; ỹjk(mk|k−1),Hj
kPk|k−1(Hj

k)T + R̃
j

k), (4.16)

where the covariance term is the 2j × 2j innovation covariance matrix

Sjk|k−1 = Hj
kPk|k−1(Hj

k)T + R̃
j

k. (4.17)

This normal density will give higher probabilities to points that are close to the predicted
measurements ỹjk, and distant clutter points will be assigned to lower values using this
pdf. Now that we have obtained all the densities in (4.7), we get the final expression for
the association weights

βi,jk =
1

Cβ
N (z̃i,jk ; ỹjk(mk|k−1),Sjk|k−1)

j!

λj
(4.18)

where the 2j × 2j innovation covariance matrix is given by

Sjk|k−1 = Hj
kPk|k−1(Hj

k)T + R̃
j

k. (4.19)

Observe that the innovation covariance is dependent on the hypothesis index j, which gives
mk different sized matrices dependent on how many target generated points we consider.

The next step is to find the hypothesis conditional posterior density p(xk|Eji ,Z1:k) from
(4.5). It is given by the mean vector and covariance matrix from the EKF equations (3.17)
and (3.18), but for the measurements z̃i,jk . From this we can write

p(xk|Eji ,Z1:k) = N (xk; mi,j
k ,P

i,j
k ) (4.20)

Wj
k|k−1 = Pk|k−1(Hj

k)T (Sjk|k−1)−1 (4.21)

mi,j
k = mk|k−1 + Wj

k|k−1(z̃i,jk − ỹjk) (4.22)

Pi,jk = Pk|k−1 −Wj
k|k−1Sjk|k−1(Wj

k|k−1)T , (4.23)

where Sjk|k−1 is given in (4.19). These equations are analogous to the CEKF equations in

(3.44) and (3.45), but for the measurement vector z̃i,jk which gives different innovation and
gain quantities.

To ensure that the filtering distribution from (4.5) is one single Gaussian, it is necessary to
do a mixture reduction of the Gaussian densities p(xk|Eji ,Z1:k). The expectation of the
resulting filtering density N (xk; mk,Pk) is given by

mk = E
[
xk|Z1:k

]
=

mk∑
j=1

(mk
j )∑
i=1

E
[
xk|Eji ,Z1:k

]
P (Eji |Z1:k)

=

mk∑
j=1

(mk
j )∑
i=1

mi,j
k β

i,j
k .

(4.24)
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This can be used to find the filtered covariance matrix as

Pk = E
[
(xk −mk)(xk −mk)T |Z1:k

]
=

mk∑
j=1

(mk
j )∑
i=1

E
[
(xk −mk)(xk −mk)T |Eji ,Z1:k

]
P (Eji |Z1:k)

=

mk∑
j=1

(mk
j )∑
i=1

βi,jk

∫
(xk −mk)(xk −mk)TN (xk; mk,Pk)dxk

=

mk∑
j=1

(mk
j )∑
i=1

βi,jk
(
Pi,jk + mi,j

k (mi,j
k )T

)
−mkmT

k .

(4.25)

These values are used in the C-GPDA filter for the estimated mean and covariance respec-
tively. The full derivation of the covariance in (4.25) can be found in Bar-Shalom and Li
[1995]. The final algorithm is shown in Algorithm 3.

Example 4.1
Let us start with an easy example at an arbitrary time step k where ntk = |Θk| = 3
measurements are from target and the number of clutter measurements nck = 1 is fixed.
This gives mk = 4 measurements, and we will see how the GPDA filter finds the most
likely hypothesis from the spatial coordinates of the measurements. Since we know ntk =
3 it is only necessary to investigate E3, where there are

(
4
3

)
= 4 different association

hypotheses given by

E3 =


E3

1 = Detection z1
k, z2

k, z3
k from target

E3
2 = Detection z1

k, z3
k, z4

k from target
E3

3 = Detection z1
k, z2

k, z4
k from target

E3
4 = Detection z2

k, z3
k, z4

k from target.

From the prediction step we have mk|k−1 = [20, 20, 2, 2, 5, 1.5]T and Pk|k−1 = 0.01I6.
The spatial density of the clutter measurement is assumed to be uniform over the square
Λ = [15, 25] × [15, 25], while the validation region scale is set to γs = 4. This gives the
association weights from (4.18) to be

βi,3k ∝ N (z̃i,3k ; ỹ3
k(mk|k−1),S3

k|k−1), (4.26)

where the cardinal clutter density is removed because we know that nck = 1. We sample
the target measurements zjk = [(xjk, y

j
k)]T for j = 1, 2, 3 by adding noise to the predicted

measurements, i.e.

zjk = yjk + rjk where p(rjk) = N (rjk; [0, 0]T ,Rjk). (4.27)

The covariance matrix Rk is rotated according to the Jacobian rotation from (3.36), and
R = diag[0.12, 0.12]. The clutter measurement is the last measurement in Zk, so that the
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Chapter 4. Extended object tracking with clutter

hypothesis E3
1 is the correct one. In Figure 4.1 the results from the C-GPDA filter are

shown. The calculated association weights are β1,3
k = 1 and βi,3k = 0 for i = 2, 3, 4,

which means that the filter chose the correct hypothesis. This can be seen from the dot-
ted cyan ellipse and the underlying red filtered ellipse in Figure 4.1, and they are close to
the prediction and target measurements. Observe that the three other ellipses are moved
towards the clutter measurement, and the shapes are shorter and wider than the E3

1 -ellipse
which is close to the predicted ellipse. �

Figure 4.1: Filtered target ellipse (red) from Example 4.1 plotted with the four association hypothe-
ses ellipses (dotted) and the measurements from target (blue *) and clutter (red *).

4.3 Random matrix GPDA filter

The GPDA filter is similar for the random matrix approach but the association probabilities
βi,jk becomes slightly different because of the extent matrix Xk. The filter will be presented
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4.3 Random matrix GPDA filter

input : Data from target and clutter Z1:T , parameters Q, R, ∆tk, γs
output: Filtered mean mk and covariance Pk for k = 1, ..., T
Initialize filter state vector estimate m0 and covariance matrix P0 ;
for k = 1 to T do

Compute predictions mk|k−1 and Pk|k−1 ;
Validate measurements by scaling the predicted ellipse with γs, and check if zjk

is inside it for all j = 1, ...,mk ;
Calculate the number of association hypotheses |E| ;
if |E| = 1 then

Perform regular CEKF as in Algorithm 1 ;
else

for j = 1, ...,mk do
Find j predicted measurements ỹjk on the predicted target ellipse ;
Calculate the Jacobian matrix Hj

k numerically from ỹjk ;

Compute the block diagonal noise covariance matrix R̃
j

k from R and ỹjk
;

for i = 1 to
(
mk

j

)
do

Compute the association weights βi,jk ;
Compute the filter association values mi,j

k and Pi,jk ;
end

end
Find the filtered values mk and Pk from the association weights and filter

association values ;
end

end
Algorithm 3: C-GPDA filter algorithm.

in the same way as in Schuster and Reuter [2015], and the posterior density is given by

p(xk,Xk|Zk) =
∑
Ej

i∈E

p(xk,Xk|Zk, Eji )β
i,j
k . (4.28)

We will present the kinematic and extent filtering equations for p(xk,Xk|Zk, Eji ) in the
same way as in section 3.3, but first we find the association weights.

The random matrix association weights βi,jk can be written in the same way as for the
C-GPDA in (4.18). However, the target generated density is different and can be written
as

psp(Θk|Eji ,mk,Z1:k−1) =
∏

zi,jk ∈E
j
i

N (zi,jk ; Hmk|k−1, zMk|k−1 + RRM), (4.29)

where the vector zi,jk = [xjk, y
j
k]T denotes each single measurement inEji that is generated

by the target. Putting the target density together with the spatial clutter density gives the
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association probabilities

βi,jk =
1

Cβ

∏
zi,jk ∈E

j
i

N (zi,jk ; Hmk|k−1, zMk|k−1 + RRM)
j!

λj
. (4.30)

The random matrix filtering method is similar to the C-GPDA when it comes to the com-
putation of the filtered mean vector mk, which is given by the mixture reduction in (4.24).
However, the association filter update mi,j

k for the hypothesis Eji is given by (3.66) as

mi,j
k = mk|k−1 + Kk|k−1(z̄i,jk −Hmk|k−1). (4.31)

The centroid measurement z̄i,jk is computed from (3.61), but with zi,jk ∈ E
j
i as the mea-

surements. This gives different centroids for each hypothesis Eji , but the other quantities
in (4.31) are equal in each hypothesis. The covariance matrix Pi,jk is given by (3.67) and
will stay the same for each association hypothesis because the gain and innovation ma-
trices in (3.64) and (3.65) are not dependent on the measurements used. This is because
H is the same regardless of the measurements that are used in the filtering. The mixture
reduction quantity Pk from (4.25) then becomes

Pk = Pk|k−1 −Kk|k−1S∗k|k−1KT
k|k−1 +

mk∑
j=1

(mk
j )∑
i=1

βi,jk
(
mi,j
k (mi,j

k )T
)
−mkmT

k , (4.32)

which is used in the kinematical update of the random matrix GPDA.

In the extent filtering for random matrix GPDA the association innovation matrix for hy-
pothesis Eji is given by

Ni,jk|k−1 = (z̄i,jk −Hmk|k−1)(z̄i,jk −Hmk|k−1)T , (4.33)

which analogous to (3.68) but with the association centroid measurement z̄i,jk . The corre-
sponding generated values akin to (3.71) and (3.72) are then given by

N̂
i,j

k|k−1 = (Mk|k−1)1/2(S∗k|k−1)−1/2Ni,jk|k−1(S∗k|k−1)−T/2(Mk|k−1)T/2 (4.34)

Ẑ
i,j

k|k−1 = (Mk|k−1)1/2(Yk|k−1)−1/2Z̄i,jk (Yk|k−1)−T/2(Mk|k−1)T/2. (4.35)

Here the scattering matrix Z̄i,jk needs to be calculated according to (3.60) for the measure-
ments zi,jk ∈ E

j
i , which is time consuming and clearly a weakness of the random matrix

GPDA. The association extent update is given by (3.73) and (3.74) but with the new gen-
erated values in (4.34) and (4.35). The degrees of freedom update from (3.73) will also be
dependent on Eji , and we get

αi,jk = αk|k−1 + j (4.36)

Mi,j
k = (αk|k−1Mk−1 + N̂

i,j

k|k−1 + Ẑ
i,j

k|k−1)/αjk, (4.37)
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4.3 Random matrix GPDA filter

as the association updates for the extent state. To obtain a final estimates αk and Mk we
use the mixture reduction technique from the mean mk in (4.24). The degrees of freedom
and filtering estimate then becomes

αk =

mk∑
j=1

(mk
j )∑
i=1

αi,jk β
i,j
k (4.38)

Mk =

mk∑
j=1

(mk
j )∑
i=1

Mi,j
k β

i,j
k . (4.39)

The GPDA filter with random matrix is summarized in Algorithm 4.

input : Data from target and clutter Z1:T , parameters Q, RRM, ∆tk, γs, τ , z
output: Filtered mean mk, covariance Pk, extent matrix Mk and variance Vk for

k = 1, ..., T
Initialize estimates m0, P0, M0 and α0 ;
for k = 1 to T do

Compute predictions mk|k−1 and Pk|k−1 ;
Validate measurements by scaling the predicted ellipse with γs, and check if zjk

is inside it for all j = 1, ...,mk ;
Compute Yk|k−1, Sk|k−1 and Kk|k−1 ;
Calculate the number of association hypotheses |E| ;
if |E| = 1 then

Perform regular random matrix filter as in Algorithm 2 ;
else

for j = 1, ...,mk do
for i = 1 to

(
mk

j

)
do

Calculate z̄i,jk and Z̄i,jk from zi,jk ∈ E
j
i ;

Compute the association weights βi,jk ;
Compute the kinematic association values mi,j

k and Pi,jk ;

Compute the association generated values N̂
i,j

k|k−1 and Ẑ
i,j

k|k−1 ;
Compute the extent association values αi,jk and Mi,j

k ;
end

end
Compute mk and Pk from βi,jk , mi,j

k and Pi,jk ;
Compute Mk and αk from βi,jk , αi,jk and Mi,j

k ;
end
Compute the variance Vk from Mk and αk ;

end
Algorithm 4: Random matrix GPDA algorithm.
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Chapter 4. Extended object tracking with clutter

4.4 Implementation methods
The filtering methods presented above will be able to handle LIDAR data with clutter, but
not without an initialization method. Also in the GPDA filters the computation of all as-
sociation hypotheses in E will make the algorithms slow and unable to be applied to a real
life tracking scenario where the filtering needs to happen fast. Hence we need to provide
the filters with a robust initialization algorithm and a procedure to reduce the association
hypothesis space.

When initializing the target ellipse we need an estimate of m0 in the C-GPDA method.
In the random matrix method we will use the same kinematic vector and compute the ex-
tent estimate M0 = Rφ(φ0) diag[a2

0, b
2
0]Rφ(φ0)T where the heading φ0 are given by the

velocities in m0. To obtain this state vector estimate the measurements in Z1 and Z2 will
be used, which means that in a real tracking scenario we need data from at least two con-
secutive time steps to initialize the target.

LIDAR data gives points along the surface of the objects that reflects the laser beams,
and thus have a structure around the visible parts of the target. The clutter points breaks
this structure and can be thought of as outliers in the data. If we are able to remove the
clutter measurements from Z1 and Z2, it is possible to fit an ellipse to the target gener-
ated points that are left. This will give the positional coordinates (x1, y1) and the major
and minor axes lengths a and b when using Z1 as the measurement set. When removing
outliers from Z2 we can use the mean values x̄2 and ȳ2 to calculate the velocities

vx,1 =
x̄2 − x̄1

∆tk
, vy,1 =

ȳ2 − ȳ1

∆tk
, (4.40)

where x̄1 and ȳ1 are the mean values of the measurements in Z1 after removal of outliers.
This is why we need at least two time steps of observations to initialize the ellipse, and
with just Z1 it would be difficult to give an estimate of the velocities.

To remove clutter points from the measurement set Z1 we use the median absolute de-
viation (MAD) method, implemented in the function isoutlier() in MATLAB. This
method computes the values

MADx = median(|x̃1 − xmed1 |), (4.41)

MADy = median(|ỹ1 − ymed1 |), (4.42)

where xmed1 is the median of the x-coordinates in Z1, and correspondingly for ymed1 . The
notation x̃1 means a vector of all the x-values in Z1, and correspondingly for ỹ1. The
method is removing points that are outside three scaled MADs from the median in both
x- and y-coordinates. A scaled MAD is defined as c ×MAD where the scaling constant
is given by c = −1/

√
2erfc−1(3/2). The function in the denominator is the inverse com-

plementary error function which is defined as erfc−1(1 − ξ) = erf−1(ξ) for an arbitrary
input ξ. After the outliers in x- and y-direction are detected, we keep the points that are not
classified as outliers in both coordinates. This gives a higher chance of removing all clutter
points, and it is important in the ellipse-fitting to not have extreme values that affects the
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4.4 Implementation methods

initialization.

After the removal of outliers in Z1, hopefully we are left with only the target generated
points, but there is no guarantee that there still are clutter measurements in the set. This
will affect the ellipse-fitting method, but it is difficult to avoid this problem because there
will always be some cases when outlier detection algorithms will struggle. To fit an ellipse
to the measurements Zv1 = {(xj1, y

j
1)}m

v
1

j=1 that are not removed, we will use the least-
squares method from Fitzgibbon et al. [1999], which results in an eigenvalue problem
which is easy to solve. This method will be presented in the following paragraphs.

The ellipse is defined as a general conic section given by

F (a, c) = a · c = Ax2 +Bxy + Cy2 +Dx+ Ey + F = 0, (4.43)

where a = [A,B,C,D,E, F ]T and c = [x2, xy, y2, x, y, 1]T . We have a set of measure-
ments Zv1 and want to minimize the algebraic distance F (a, cj1) for j = 1, ...,mv

1 where
cj1 = [(xj1)2, xj1y

j
1, (y

j
1)2, xj1, y

j
1, 1]T . From this we get the optimization problem

min
a

mk∑
j=1

F (a, cjk)2, (4.44)

which is a least-squares problem where the trivial solution is a = 0. To get an ellipse
solution it is necessary to introduce the constraint

4AC −B2 = 1 (4.45)

which can be expressed in matrix form as aTCa = 1 where the matrix C is given by

C =


0 0 2 0 0 0
0 −1 0 0 0 0
2 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 . (4.46)

Now the ellipse-fitting problem can be written as the minimization problem

min
a
||Da||2, subject to aTCa = 1, (4.47)

where the design matrix D is given by the coordinate vectors x̃ = [x1
1, ..., x

mv
1

1 ]T and
ỹ = [y1

1 , ..., y
mv

1
1 ]T as

D = [x̃ ◦ x̃, x̃ ◦ ỹ, ỹ ◦ ỹ, x̃, ỹ, 1]. (4.48)

Here we have used ◦ to denote the elementwise product of two vectors, also referred to
as the Hadamard product. To solve the problem in (4.47) we introduce the Lagrange
multiplier λL, and we get the objective function

L(a, λL) = aTDTDa− λLaTCa. (4.49)
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After differentiating this function we get the system of simultaneous equations

2DTDa− 2λLCa = 0, (4.50)

aTCa = 1. (4.51)

The equation (4.50) can be rewritten to

Sa = λLCa, (4.52)

where the scatter matrix is given by S = DTD. The system is solved by the general-
ized eigenvectors of the rewritten equation (4.52), but we need to find which eigenvector
that solves (4.51). If the eigenvalue-eigenvector pair (λi,ui) solves (4.52), then so does
(λi, µui) for any µ. This allows us to construct a µi for each pair (λi, µiui) such that
µ2
iuTi Cui = 1, and we have that

µi =

√
1

uTi Cui
=

√
1

uTi Sui
. (4.53)

This gives the final solutions âi = µiui of (4.51) for i = 1, ..., 6. Each of the pairs (λi,ui)
represents local minima if the square root in (4.53) is real. The scatter matrix S is positive
definite so that uTi Sui is positive for all ui. Hence the generalized eigenvalues λi needs to
be positive for the square root in (4.53) to be real. In Fitzgibbon et al. [1999] it is proved
that the minimization problem in (4.47) has exactly one solution âi which is given by the
eigenvector ui that has eigenvalue λi > 0. From the solution âi we can find the ellipse
values x, y, φ, a and b by using known formulas for the generalized ellipse parameters
from (4.43).

Now we have found methods to remove clutter points from the initial measurement set
Z1 and fit an ellipse to the remaining points. The full initialization is given in Algorithm
5.

input : Data from first two time steps Z1 and Z2, parameters ∆tk
output: Initial estimate m0 = [x0, y0, vx,0, vy,0, a0, b0]T

Calculate the scaled median absolute deviation in both x- and y-direction ;
Remove outliers from Z1 that are outside three scaled MADs ;
Construct C-matrix, design matrix D and scatter matrix S from the validated

measurements Zv1 ;
Solve the eigensystem for S and C and choose the positive eigenvalue λi and the

corresponding eigenvector ui ;
Use the solution âi = µiui to find x1, y1, a1 and b1 ;
Calculate vx,1 and vy,1 from Z1 and Z2 ;

Algorithm 5: Initialization algorithm.

Another important problem is to reduce the association hypothesis space E which has
210 = 1024 different hypotheses initially with mk = 10. First we assume that we get at
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least one measurement from the target at each time step and that the target always exists.
Hence we can remove E0

0 from the hypothesis space E . The measurement validation re-
gion Γk will reduce the number of measurements mk in some time steps, but there will
still be too many hypotheses to investigate in most of the time steps.

To further reduce E we need to remove some of the hypothesis spacesEj for j = 1, ...,mk

from E . This means that we need to find which numbers of measurements that can be tar-
get generated, without excluding any hypotheses that can be the true association. We have
assumed earlier in (4.9) that ntk follow a discrete uniform distribution between 1 and nmax.
Now we introduce the parameter nmin which bounds ntk from below in this uniform dis-
tribution. Then we can write ntk ∼ U{nmin, nmax}, and by finding a reasonable value for
nmin in each time step, the hypothesis space size will shrink to a more tractable value.

There are many possible ways to find nmin from the measurement set Zk, but it is crucial
that the method gives results lower than or equal to the true ntk so that the true associ-
ation hypothesis is maintained in E . A simple way to do this is to perform the outlier
detection routine with MAD, and see how many points are left in Zk. Then we can set
nmin = |Zvk| − g, where Zvk is the measurement set after outlier removal and g is a sub-
traction parameter to be sure that the true ntk is not removed. This method is summarized
in Algorithm 6, and will be used in the simulations and real data experiments. In the GPDA
filter algorithms we will run the for-loop j = nmin, ...,mk instead.

input : Data from time step Zk, subtraction parameter g
output: Lower bound nmin

Calculate the scaled median absolute deviation in both x- and y-direction ;
Remove outliers from Zk that are outside three scaled MADs ;
Return nmin = |Zk| − g ;

Algorithm 6: Hypothesis reduction algorithm.
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Chapter 5
Simulation results

In this chapter we give a description of the simulation studies that are done, and we present
simulation results from experiments with CEKF and random matrix. The methods are first
tested with only target measurements and filtering with Algorithm 1 and 2 from Chapter
3. Then the GPDA filter algorithms from Chapter 4 is applied on simulated LIDAR data
both with and without clutter. To get a good comparison of the two methods we use the
same parameters when simulating the single target process.

5.1 Simulation setup
The target ellipse in the CEKF simulation experiments is represented by the state vector
xk = [xk, yk, vx,k, vy,k, ak, bk]T and the dynamic model function is the matrix Fk−1 given
in (3.19). The process noise covariance matrix Q is computed through discretization of a
white noise acceleration model presented in Li and Vilkov [2003] using the method of
Loan [1978] to evaluate the integral. From the experiments in Wilthil et al. [2017] we
have that the acceleration noise σa should be between 0.05 and 0.5, and in the following
experiments we use σa = 0.1. The process noise covariance matrix then becomes

Q =


10−5/3 0 5 · 10−5 0 0 0

0 10−5/3 0 5 · 10−5 0 0
5 · 10−5 0 10−3 0 0 0

0 5 · 10−5 0 10−3 0 0
0 0 0 0 10−4 0
0 0 0 0 0 10−4

 , (5.1)

where the variances for ak and bk are set manually and added after the discretization. The
other parameters in the CEKF simulation experiments are set as

T = 200, R = diag[0.12, 0.12], ∆tk = 0.1, x0 = [20, 20, 2, 2, 5, 1.5], (5.2)
P0 = Q. (5.3)
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Chapter 5. Simulation results

These parameters are chosen when considering a medium-sized boat travelling in a straight
line away from the LIDAR sensor in (0, 0) which has a measurement standard deviation
of 10 cm. The sampling time interval ∆tk is the same as for the LIDAR used in the
real data experiments presented in the next chapter. This gives 20 seconds of total track-
ing time with 200 discrete time steps. When setting the initial estimate m0 we have the
choice of providing it with the true target state x0, or use the initialization procedure from
Algorithm 5. To explore the differences between these two cases, we will try both of them.

When simulating the target ellipse in the random matrix framework, the kinematic pro-
cess for xk = [xk, yk, vx,k, vy,k]T becomes the same as above, but with a 4 × 4 dynamic
model matrix Fk−1 and Q without the entries for ak and bk. The extent process for Xk
is simulated like in Example 3.2 by using the Wishart density in (3.49), with η = 2000
degrees of freedom and the initial extent matrix X0 = Rφ(φ0) diag[52, 1.52]Rφ(φ0). This
will initially give the same process ellipse as in the CEKF, but not evolve in the same man-
ner. However, when the degrees of freedom are so high, the extent matrix will not change
much and be very similar to the CEKF simulated ellipse. This can be seen in Figure 5.1a
and 5.1b where examples of processes for both methods are simulated with the parameter
values above. Observe that the CEKF process moves faster in the x-direction than in the
y-direction, and ends up with a higher x-coordinate than y-coordinate. It is opposite in
the random matrix process, and this illustrates the randomness in the simulations. The
processes are similar because of the low acceleration noise, but will not be identical. To
test the methods on different target processes we run N = 100 Monte Carlo simulations
of the tracking case with T = 200 time steps.

(a) CEKF process (b) Random matrix process

Figure 5.1: Simulated processes for the CEKF and random matrix method plotted with a blue line
for the position (x, y) and blue ellipse at time steps k = 1, 50, 100, 150, 200.

The number of target measurements ntk will either be fixed, or be drawn from a discrete
uniform distribution U{nminsim , n

max
sim } in the simulation experiments. The lower and upper

limit of this distribution will not be provided to the GPDA filters, and they find the nmin

parameter by using Algorithm 6 from section 4.4. The nmax-parameter from (4.9) will
be set to a high value so that mk < nmax in all experiments. Then the hypothesis space

46



5.1 Simulation setup

E is well defined, and the GPDA filters will use mk as the maximum number of target
measurements.

The target measurements Θk = {zjk}
nt
k
j=1 are simulated in the same way as in (4.27) in

Example 4.1, but the predicted measurements are along the contour of the process ellipse
and not the predicted ellipse. After calculating each predicted point along the ellipse that
are visible to the LIDAR in (0, 0), the measurement noise rjk is added. In the simulation
cases we use the tangent rotation of Rjk given in (3.37). We could also have chosen the
Jacobian rotation because we simulate and filter with the same rotation method, but since
the real data problem in the next chapter gives tangential uncertainty we choose the tan-
gent rotation. The measurements in the random matrix experiments are also sampled in
this way because we want to test it on simulated LIDAR data.

The clutter measurements Kk = {zjk}
mk

j=nt
k+1

are simulated from (4.10) and (4.11) with
simulation Poisson parameter λsim = 2/VΛ = 1/800 in the square region Λk = [xk −
20, xk+20]× [yk−20, yk+20]. This means that we expect 2 clutter points in the 40×40
square region around the target, which has the volume VΛ = 1600. This region is set quite
large so that the clutter measurements can occur far away from the target, and the Poisson
intensity is low such that the number of total measurements stays low. It is more realistic
to generate the clutter measurements independent of the validation region Γk because in
a real life tracking scenario there will most likely be clutter outside the validation region.
In the following experiments the scaling factor in (4.3) is set to γs = 4. The GPDA algo-
rithms will expect 2 clutter points in the validation region Γk, because we set λ = 2/Vk in
the filter. When comparing the volume of Λk and Γk we see that the validation region vol-
ume Vk from (4.4) will be smaller than VΛ, when the predicted values ak|k−1 and bk|k−1

are not much higher than 5 and 1.5 respectively. Hence the GPDA filters expect 2 clutter
points in the validation region, which is smaller than the true clutter region. We set the
parameter λ in this way, because the GPDA filters should expect that all simulated clutter
points are within the validation region.

To measure the performance of the filtering methods it is necessary to specify an error
measure, and the root mean squared error (RMSE) is a good measure for the actual error.
This is given at time step k for each state variable by

RMSEik =

√√√√ 1

N

N∑
n=1

(mn
k [i]− xnk [i])2, (5.4)

where i = 1, ..., nx. The notation mn
k means the filtered value at time step k in the n-th

Monte Carlo run, and xnk is the corresponding true state vector with size nx = 6. By look-
ing at the RMSE for all the time steps we can determine if the filter estimates are close to
the actual process values, but it does not include the estimated covariance matrix Pk.

A common statistical test for filter consistency is given by the normalized estimation error
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square (NEES), defined in Bar-Shalom et al. [2001] as the scalar quantity

NEESk =

N∑
n=1

(mn
k − xnk )T (Pnk )−1(mn

k − xnk ), (5.5)

where the variables are the same as in (5.4), and Pnk is the filtered covariance matrix in
Monte Carlo run n. We are interested in the NEES because it shows if the filter estimates
mn
k and Pnk corresponds in the way they should. For instance if the absolute error given by

the RMSE is low, and the covariance entries are high, the filter is not consistent.

The average NEES given in Salmond and Ristic [2004] can also be used, and the only
difference is the scaling by (nxN)−1. The NEES in (5.5) is a χ2

nxN
-distributed variable,

and thus a (1−α)-confidence region is given by [χ2
nxN,1−α/2, χ

2
nxN,α/2

]. With the values
nx = 6, N = 100 and significance level α = 0.05 the interval is [534.0186, 669.7692].
This gives a measure of consistency and the NEES should not be outside this confidence
region for more than 5% of the time steps. If the NEES values are above the upper con-
fidence limit we say that the filter is too optimistic because the covariance matrix Pnk
contains low values, and the filter estimates should have higher estimated covariance. It
can also happen when the absolute error is too high, or when both is the case. When the
NEES is below the lower confidence limit we say that the filter is pessimistic, and it can
happen when Pnk is too high and/or when the absolute error is low.

A similar consistency measure, referred to as the separate NEES, is used for each compo-
nent in the state vector, and is defined for the xk-position as

NEESxk
=

N∑
n=1

(mn
k [1]− xnk [1])T (Pnk [1, 1])−1(mn

k [1]− xnk [1]), (5.6)

where mn
k [1] is the first element in the filtered mean vector mn

k and Pjk[1, 1] is the filtered
variance for the x-estimate. This is done for all the elements in the filtered vector mn

k .
This error measure is distributed as a χ2

N variable, and the confidence region is given by
[74.2219, 129.5612] for N = 100 and significance level α = 0.05.

In the random matrix filtering the RMSE and NEES for the extent ellipse is given in Feld-
mann et al. [2011] as

RMSEXk
=

√√√√ 1

N

N∑
j=1

tr((Mj
k − Xjk)2) (5.7)

NEESXk
=

N∑
j=1

tr[(Mj
k − Xjk)2]

tr Vjk
, (5.8)

where Vk is the filter estimate variance given in (3.57). The NEESXk
measure will be a

χ2
N -distributed variable with the 95 % confidence interval [74.2219, 129.5612]. Also the

kinematic NEES from (5.5) will now have 400 degrees of freedom rather than 600, which
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5.2 Results with no clutter

gives the confidence interval [346.4818, 457.3055].

We construct simulation experiments by starting simple, and increasing the difficulty even-
tually. This means that the first experiments will be with only a fixed number of target
generated measurements, and no clutter. The filtering methods presented in Chapter 3 will
be tested on these data, and GPDA will not be used. Then the C-GPDA filter is used on
the same data, to see how it performs without clutter. The next step is to introduce clutter
measurements following the Poisson distribution in (4.10), and the C-GPDA and random
matrix GPDA filters will be applied in these experiments. To further increase the difficulty
we simulate the number of target generated points as a uniform between nmin and nmax.
Finally, we introduce a non-homogeneous clutter case that reconstructs wakes behind the
target. This clutter pattern is not assumed by the C-GPDA filter, but it will be useful to see
how robust the method is.

In addition to the different simulation cases, we have two methods of initializing the filter.
To make it easy for the filter to estimate consistent, we can provide the initial ground truth
initially by setting m0 = x0. The other alternative is to use the initialization in Algo-
rithm 5, which will be less accurate but it requires no other information than the two first
measurement sets. We will use the ground truth initialization in all experiments, but also
investigate how the automated method performs in two of the experiments.

5.2 Results with no clutter
In this section the filtering methods are tested on simulated data with mk = ntk = 10
measurements from target only. Hence the filtering equations given in section 3.2 and 3.3
are used for GMEKF and random matrix respectively. In addition, the C-GPDA will be
tested on the same measurements with the initialization in Algorithm 5 to see how the
filter performs with no information about the true process. The method for finding nmin

in Algorithm 6 is also applied with the subtraction parameter set as g = 0.

5.2.1 Contour EKF
When initializing with m0 = x0 it took 35.2 seconds to do all the simulations for the CEKF
method. Plots of the RMSE for each individual state variable are shown in Figure 5.2 for
each time step k = 1, ..., 200. We observe that the absolute errors are low and the estimates
mk are close to the ground truth xk in all time steps, which is expected since the filter is
provided with prior target information. Observe that the errors are a bit higher for vy than
vx, which may be caused by the high velocity covariance entries in the Q-matrix given
in (5.1). When the covariance is higher for a state variable, the simulated process values
for this variable will be more noisy, and the filter will struggle more to estimate it correctly.

The ak-estimates in Figure 5.2 have slightly higher errors than bk, which is probably the
lack of information from the measurements along the major axis of the ellipse. The target
is moving away from the LIDAR, and it only captures the rear end which gives more in-
formation about the width than the length of the ellipse.
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Figure 5.2: RMSE plot for each state variable for CEKF simulation with mk = 10 and no clutter
measurements.

In Figure 5.3a the NEES from (5.5) is plotted for the CEKF together with the 95 % con-
fidence limits, and the errors are within the confidence region 92.35% of the time. This
is calculated without the initial 4 time steps it takes for the errors to stabilize, which we
refer to as the burn-in period. This indicates that the errors are close to being consistent
with the theoretical significance level α = 0.05, which is acceptable. In Figure 5.3b the
separate NEES given in (5.6) is plotted for all the state vector variables together with the
95 %-confidence limits for the χ2

N -distribution. Here we can observe that all the estimates
are consistent as expected from the total NEES.

When providing the filter with no information about the true target process, and running
the same experiment with the C-GPDA filter in Algorithm 3, it takes 73.16 seconds to
do the simulations. This increase in time is caused by the hypothesis investigation in the
C-GPDA filter. The Poisson parameter was set to λ = 1 in the association weights βi,jk in
(4.18). We apply the initialization method in Algorithm 5, and calculate nmin in each time
step. Thus we expect to get considerably higher errors because the filter don’t know if the
measurements are from target or clutter. We do this experiment to see how the C-GPDA
filter will work when there are no clutter measurements. This case is not assumed in the
derivation of the C-GPDA filter, and it is interesting to see how this model mismatch af-
fects the filter.

The results are shown in the RMSE plots in Figure 5.4, and the errors are way higher
than in the previous experiment shown in Figure 5.2. This is mainly caused by the ini-
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5.2 Results with no clutter

(a) Average NEES (b) Separate NEES

Figure 5.3: NEES plots for CEKF experiment with mk = 10 and no clutter measurements.

tialization process which estimates the initial estimates inaccurately. All state variables
deviates from the true state x1 which will be close to the initial state in (5.2). The posi-
tional errors are high in the beginning and then follow a decreasing trend throughout the
tracking process. In the velocity estimation the errors are lower in the beginning, and also
decreases afterwards. The ak-estimates have high initial error, but they also get smaller
eventually. This is because only the rear end is visible in the beginning of each track, and
after a few time steps more of the full contour will be detected in some of the runs. The
minor axis bk will be visible for most of the time, and the errors are low throughout the
tracking process.

The C-GPDA estimates are not consistent when the filter gets no information about the
true process, if we use the process parameter Q and measurement covariance R in the
filter. This is because the absolute errors are high, and the entries of these covariance ma-
trices are low. As a result of this, the filtered covariance matrix Pk will contain values that
are too small and the NEES in (5.5) will get high. However, if we create some new tuning
parameters σtuna , Σtuna,b for the kinematic and extent noise respectively, we can create a new
process noise covariance matrix Qtun, and set the initial filter covariance as P0 = Qtun.
In addition we can use this in the prediction and filtering equations with the tuned mea-
surement noise Rtun as well. This will be similar to a filter tuning when tracking a target
from real data without knowing the ground truth.

To find Qtun we construct a new 4 × 4 kinematic noise matrix Qtun
kin by using the same

method as for Q described above, but with the tuning acceleration noise σtuna instead.
Adding the diagonal matrix Σtuna,b gives the 6 × 6 tuning covariance matrix Qtun that
are used in the filter. Then it is possible to get more consistent results, after some trial
and error we found that with the acceleration noise σtuna = 2.9, extent noise Σtuna,b =

diag[0.52, 0.12] and Rtun = diag[1.42, 1.32] improved the NEES values to some degree.

The results are shown in Figure 5.5a to not be consistent in the first 100 time steps, but
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Figure 5.4: RMSE plots from estimation with the C-GPDA filter when no information about the
true process xk is given. The filter is only provided with mk = 10 target generated measurements
at each time step.

then it gets inside the confidence interval more often the last 100 steps. In total the NEES
is outside the confidence interval 86.22 % of the time, which is a long time, but it shows
that the C-GPDA filter can give consistent results when no information about the target is
given, with some tuning of the filter. The separate plots in Figure 5.5b show that the po-
sitional estimates are inside the confidence interval the last 100 time steps, while velocity
estimates actually are pessimistic and lies beneath the lower confidence limit. This show
that the velocity variance entries in Pk are a bit too high.

5.2.2 Random matrix
In the random matrix simulation, all the parameters are given above, and we start by ini-
tializing the filter with m0 = x0 and M0 = X0. We have three tuning parameters that can
be adjusted to give better results, and after looking at the RMSE and NEES plots we get
that the optimal parameters are

RRM = diag[0.52, 0.52], z = 1/2, τ = 0.01. (5.9)

It took 23.45 seconds to run all the simulations, which is considerably faster than the
CEKF simulations. This is probably caused by the calculations of the predicted measure-
ments yjk, the numerical Jacobian matrix Hk and the covariance matrices Rjk in the CEKF
method.
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(a) Average NEES (b) Separate NEES

Figure 5.5: NEES plots when C-GPDA have no information about the true process, just the mk =
10 target generated measurements at each time step.

The kinematic RMSE results for the random matrix filter are plotted in Figure 5.6a, and
show that the position and velocity estimates have relatively high errors considering the
low process and measurement noise in the experiment. The errors are much higher than for
the CEKF in Figure 5.2, and show that the random matrix method has some weaknesses in
the kinematic estimation. The centroid position calculated in (3.61) is probably the main
reason why the positional estimates deviates from the ground truth.

Also in Figure 5.6a we have added the ak and bk error plots for comparison with the CEKF
results. These quantities are found from the eigenvalues of the filtered extent matrix Mk.
The RMSE is computed from (5.4) with the ground truth values as the eigenvalues of Xk.
We observe that the absolute errors are considerably higher than in the CEKF experiment.
In Figure 5.6b the extent RMSE from (5.7) is plotted, and it confirms that the random
matrix method struggles to estimate the extent correctly. In the first time steps it is rising
rapidly, but eventually it stabilizes more. These plots show that the random matrix is not
preferable when considering absolute error compared to the CEKF.

The kinematic NEES results from the random matrix method are shown in Figure 5.7a
for the average quantity and the separate measures are plotted in Figure 5.7b. From the
plots we observe that the filter is not consistent for most of the time, but for the last 100
time steps the velocity estimates are inside the confidence interval. This indicates that the
kinematic estimation can be consistent in some cases, and this makes sense because the
filtering process is similar to the regular Kalman filter. However, the positional estimation
is not consistent at all, and shows that the centroid calculation in (3.61) gives inaccurate
results.

In the extent estimation the random matrix estimate Mk is actually giving consistent re-
sults in most of the time steps as shown in the NEES plot in Figure 5.8. It is outside the
confidence interval in 8.96 % of the time steps, which is almost theoretically consistent
with the 95 % confidence interval. Comparing it to the extent RMSE in Figure 5.6b we
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(a) RMSE kinematics (b) RMSE extent

Figure 5.6: RMSE plots of kinematics and extent estimates from the random matrix filter with
mk = 10 and no clutter measurements.

(a) Average NEES (b) Separate NEES

Figure 5.7: NEES plots for the kinematic estimates mk in the random matrix filter with mk = 10
and no clutter measurements.

see that the filter is not consistent when the RMSE is increasing in the beginning, but
when the RMSE stabilizes the NEES is inside the interval. Hence the variance Vk also
stabilizes because the NEES in (5.8) and the RMSE (5.7) consists of the same quantity∑N
n=1 tr[(Mn

k − Xnk )2]. If the RMSE increases and the variance Vk increases at the same
rate, the NEES will remain constant.

By tuning the filter parameters and looking at the RMSE and NEES plots, we have found
that a higher value of the parameter τ gives less consistent extent estimates. This param-
eter has an impact on the evolution of the predicted degrees of freedom αk|k−1 in (3.55)
and a higher τ gives a higher αk|k−1 each time step. In the filtering step this will make
αk in (3.73) higher, and thus the filtering variance in (3.57) lower. A lower variance will
increase the NEES value if the RMSE stays the same or increases. Hence the τ -parameter
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can be tuned such that the NEES lies more inside the 95 %-confidence interval, and this is
why we have set τ = 0.21.

Figure 5.8: NEES plot for the extent estimate Mk in the random matrix filter with mk = 10 and no
clutter measurements.

When considering the results above for the random matrix method, especially the high
absolute errors, we will not get any better results when using the initialization method in
Algorithm 5, and there will be no point in testing the random matrix GPDA filter like we
did with the C-GPDA.

5.3 Results with homogeneous clutter

In this section we simulate a single target where the measurement vector contains clutter
measurements from a homogeneous Poisson point process, and use the elliptical validation
region Γk from section 4.1. The GPDA filters will be used in all experiments, and they
will use the same λ-parameter as the simulated clutter measurements in the association
weights. We study two different cases with increasing difficulty when it comes to find the
correct association hypothesis. First we let the clutter cardinality be Poisson distributed,
while keeping ntk = 10 fixed. Secondly we let both target and clutter measurements have
random cardinalities and the target measurements follow a discrete uniform distribution.
We initialize the target estimate by using the ground truth in all experiments, except for
the last case. The method for finding nmin will be used in all experiments with subtraction
parameter g = 3.
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5.3.1 10 target measurements, random clutter measurements

The first step is to let the clutter measurements be random according to a Poisson dis-
tribution given in (4.10) and uniform spatial distribution from (4.11). We set the target
measurements to ntk = 10, and sample the clutter points with λ = 2/VΛ = 1/800 and
spatial window Λk given in section 5.1. The filters do not know that there are 10 target
measurements each time step, and it will search through all the possible hypotheses Eji
from j = nmin to j = mk. The other parameters have the same values as before.

The results from the 100 Monte Carlo runs are summarized in Table 5.1 for both C-GPDA
and random matrix GPDA. The high running time difference is probably caused by the
calculation of the scatter matrix Z̄i,jk in the random matrix GPDA. We observe that the
C-GPDA method has low absolute errors around the same values as in Figure 5.2. This
shows that even though clutter is added, the C-GPDA filter is able to find the correct asso-
ciation hypothesis or a good mixture at each time step. It is also consistent in over 95 % of
the time, which is slightly better than the no clutter case. This is probably caused by the
randomness in the simulations, and if we tried to change the parameter settings a bit, the
results would get different. Observe that in both cases the nmin is found below or equal to
the true ntk in all time steps, and does not exclude the correct hypothesis.

Measure C-GPDA Random matrix GPDA
Time [s] 691.8 14246

Mean x RMSE 0.0271 9.1145
Mean y RMSE 0.0256 3.3116
Mean vx RMSE 0.0508 0.9654
Mean vy RMSE 0.05 0.5965
Mean a RMSE 0.0358 0.8301
Mean b RMSE 0.0221 0.9717
Mean NEES 607.4672 36458, 1321
% confidence 0.9541 0.0051, 0

% where nmin ≤ ntk 100 100

Table 5.1: Results from GPDA estimation in experiments with nt
k = 10 and nc

k from a Poisson dis-
tribution. Random matrix has two entries in the NEES and confidence cell for kinematic and extent
NEES. The last row tells if the nmin parameter is found such that it keeps the correct hypothesis in
each time step.

From the previous no clutter simulation for random matrix we have the values ¯RMSE =
[1.3455, 1.0775, 0.1995, 0.1805, 0.4499, 0.2986], NEES kinematics mean 8255.7, and ex-
tent mean 97.4003. By looking at the values in Table 5.1 we see that all these values
have increased, which is what we would expect when adding clutter. The random matrix
method did struggle in section 5.2 with only target generated measurements, so there was
no reason to believe that it would do better with clutter added. Hence we will focus on the
C-GPDA method in the following experiments, and revisit the random matrix method in
the real LIDAR data chapter.
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5.3.2 Random target measurements, random clutter measurements

Now we extend the experiment to give a random number of target measurements, and we
set that ntk ∼ U{7, 11} when simulating. This discrete uniform distribution ensures that
there is a limit to how many target generated points we can have, such that the association
hypothesis space E stays small. At the same time we need a sufficiently number of target
points to be able to get an accurate estimate of the ellipse, and this is why we set 7 points
minimum. We will only test the C-GPDA algorithm in this subsection. The clutter mea-
surements are simulated in the same way as before.

We run experiments with both initialization methods of the target ellipse to test the dif-
ference in a cluttered environment. We refer to the experiment with initialization from Al-
gorithm 5 as the automated C-GPDA filter, and we used the tuning parameters σtuna = 3.5,
Σtuna,b = diag[1.52, 0.52] and Rtun = diag[1.52, 1.42] in this experiment. The results are
shown in Table 5.2, which shows that the automated filter has considerably higher absolute
errors. The different running times is probably caused by the validation regions in each
experiments, which depends on the predicted state vector. When fewer measurements are
validated because of a small predicted ellipse, the running time will go down. This is
what is happening in the automated C-GPDA, and by looking at track plots we see that
the extent estimates generally are lower than the ground truth. The x, y and a estimates
have approximately 100 times higher errors in the automated filter than in the ordinary
C-GPDA. This is probably caused by the initialization process and the fact that the full
length is not visible initially.

Measure C-GPDA C-GPDA automated
Time [s] 558.3 472.3

Mean x RMSE 0.0283 2.4927
Mean y RMSE 0.0265 2.5254
Mean vx RMSE 0.0511 0.3858
Mean vy RMSE 0.0501 0.4572
Mean a RMSE 0.037 3.5664
Mean b RMSE 0.0229 0.8515
Mean NEES 602.3924 2.4298 ·106

% confidence 88.78 0
nmin ≤ ntk 100 100

Table 5.2: Results from estimation with C-GPDA filter in experiments with nt
k ∼ U{7, 11} and nc

k

from a Poisson distribution.

The C-GPDA continues to have low RMSE when initializing with x0, regardless of the
random ntk. The consistency is a bit lower than in the previous experiment with 88.78 %
inside the confidence interval. However, the filter proves to be consistent most of the time,
which shows that the C-GPDA filter still works fine when increasing the difficulty in the
experiments.
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5.4 Results with non-homogenous clutter
In this section we want to test the C-GPDA filter on a more difficult case with structured
clutter, without changing the algorithm. By doing this we will see how robust the C-GPDA
method is to a clutter process that is not modelled in the filter. We want to simulate mea-
surements behind the target ellipse that are reconstructions of wake detections, which is a
case that is most probably going to happen in a real tracking scenario. In addition we keep
the existing target and clutter measurement case, but with ntk ∼ U{7, 9} to limit the size
of the hypothesis space.

The number of wake measurements nwake are simulated by drawing values from a Poisson
distribution with parameter λwake = 1. Then we draw nwake points from an exponential
distribution with parameter µwake = 1 behind the rear end of the target as shown in Fig-
ure 5.9. This means that the rear point of the target ellipse is the origin of the coordinate
system for the exponential distribution, and the positive direction is opposite of the target
heading. To distribute the points to each side we use a normal distribution with mean in the
position given by the exponential distribution, and variance σ2

wake = 1 which is illustrated
in Figure 5.9. This distributes the points perpendicular to the opposite heading direction.

Figure 5.9: Illustration of how the wake measurements are simulated with the target ellipse moving
upwards to the right. The exponential distribution is starting in the rear end of the target with
direction opposite of the target heading, and the normal distribution is perpendicular to this direction.
The stars * are simulated wake clutter points.

The results from N = 100 Monte Carlo simulations are shown in Figure 5.10 for the
RMSE. The simulations took 1130 seconds to run, which is probably caused by the high
number of points generated in some time steps. We observe that all absolute errors are
small like in the previous experiments, which shows a robustness in the C-GPDA filter.
Even though we have added more complex clutter, the method is still giving RMSE plots
like in the first experiments with no clutter.

The NEES plot in Figure 5.11a show that the C-GPDA filter is not consistent in almost
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Figure 5.10: RMSE plots for C-GPDA filter with non-homogeneous clutter measurements simulat-
ing a wake.

all time steps. However, in Figure 5.11b we observe that the separate measures are more
consistent than the average measure. This is probably caused by the off-diagonal covari-
ances in Pk, that are too low. We also see that the positional and major axis estimates have
NEES above the confidence interval in several time steps. This means that the filter is too
optimistic in the estimation, and should have given higher covariances in Pk.

(a) Average NEES (b) Separate NEES

Figure 5.11: NEES plots for C-GPDA with non-homogeneous clutter measurements simulating a
wake.
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In this simulation case we potentially can have many clutter points compared to target
generated points, and it is interesting to see if the C-GPDA filter chooses hypotheses that
have a high j. The prior density in (4.13) suggests that the C-GPDA filter will prefer
a high j, and we want to study if the filter actually does this. In Figure 5.12 we have
plotted the calculated mean nmin parameter over the Monte Carlo runs for each time step
k = 1, ..., 200, which we used g = 6 to find. This is why this value is lying around 2,
and can explain the high running time of the algorithm because the hypothesis space is not
narrowed down that much. The true target generated points ntk are plotted in blue, with the
filtered hypothesis j with highest association weight βi,jk in red. This shows that the filter
chooses the correct hypothesis space Ej in most of the time steps, and is not choosing
hypotheses that have a higher j than the ground truth.

Figure 5.12: Mean nt
k (blue) for true process plotted with mean nmin and mean j (red) for the

hypothesis Ej
i with maximum βi,j

k in the C-GPDA filter for each time step k. The means are taken
over N = 100 Monte Carlo runs.
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Chapter 6
Real LIDAR data results

In this chapter we will first present the LIDAR dataset of the Munkholm boat together with
techniques that are used to prepare the data for filtering. The GPDA filters are tested on the
resulting dataset and evaluated by looking at tracking plots and the normalized innovation
squared (NIS). We only have the ground truth of the target extent in this chapter, and can
look at RMSE or NEES for ak and bk, but not the other state variables.

6.1 Data processing
The LIDAR data is taken from the departing Munkholm boat, which is docking next to the
pier at Ravnkloa shown in Figure 6.1. The LIDAR is mounted in the outmost part of the
pier, giving it clear sight over the whole canal where the Munkholm boat is departing.

Figure 6.1: Picture from Ravnkloa, Trondheim taken by Google Maps.

61



Chapter 6. Real LIDAR data results

In Figure 6.2 the arriving Munkholm boat is depicted and from the picture we see that it
has an elliptical shape of in the front, but more squared in the rear end. The true length
and width given by Eide [2016] is 19.9 and 4.2 metres respectively, which gives the true
major and minor axes as ak = 9.95 and bk = 2.1.

Figure 6.2: Picture of the Munkholm boat MS Nidarholm in Ravnkloa, Trondheim.

The LIDAR that were used to get the data was a Velodyne VLP-16, which is a real-time
3D LIDAR with a range of 100 metres. It can detect 300.000 points per second, and gives
a 360 degree horizontal and ± 15 degree vertical view of the surroundings. The frequency
used to fetch data was 10 Hz, so the time sampling interval parameter is set to ∆tk = 0.1
in all experiments. In the dataset we have in total T = 1089 time steps, i.e. 108.9 seconds
in real time, of the Munkholm boat departing from the pier behind the statue in Figure
6.1. The resulting 3D pointcloud at timestep k = 257 is shown in Figure 6.3, where the
LIDAR is positioned at the pier in (0, 0), and the Munkholm boat in (10,−10) has just
departed. Here we observe how the LIDAR reconstructs the surroundings in the harbour
by detecting points for instance along the yellow house wall from (−20, 0) to (−20,−40)
in West-South coordinates.

The presented tracking methods are assuming that the data is two-dimensional, and not in
3D as shown in Figure 6.3. Hence we only use the West (x) and South (y) coordinates
from now on, which gives a lot of points on top of each other in the resulting 2D dataset.
This is because a lot of the points have the same West and South coordinates, but different
Height coordinates. The resulting 2D data are plotted in Figure 6.4 in four different time
steps. The first step k = 90 shown in blue colors is capturing the Munkholm boat starting
to back up out of the pier while doing a small turning maneuver such that it can turn around
and leave as shown in red, magenta and cyan. It is this track we want to capture by using
the C-GPDA and random matrix GPDA algorithms.
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Figure 6.3: 3D pointcloud at time step k = 257 of LIDAR detections from Ravnkloa, with the
LIDAR in (0, 0) and the Munkholm boat positioned around (10,−10) West-South coordinates.

There are a lot of data points that are stationary in the sense that they do not change posi-
tion, for instance the pier or the yellow house wall are examples of objects that generate
these measurements. We want to reduce the dataset such that it contains mostly detections
from the Munkholm boat. This is done by making a square ”cut” in the data and only using
the measurements that lie inside the region where x ∈ [−16, 30] and y ∈ [−2,−55]. By
doing this cut we can see from Figure 6.4 that most of the stationary points are removed,
but the detections in the early time steps like in k = 90 are also removed. So in the final
dataset the starting time is k = 250 and there are T = 500 time steps such that it ends at
k = 750. From now on we only refer to this dataset and thus k = 1 is at time step 250 in
the original dataset.

The mean number of measurements at each time step in the dataset is 364, and to in-
vestigate the resulting 2364 − 1 association hypotheses in the GPDA filter is an intractable
problem. Hence we need to narrow down the number of hypotheses and this is done
by clustering the measurement points together. By using the cluster centroids instead of
the original measurements, much of the information is maintained and the number of as-
sociation hypotheses is reduced. The K-means clustering algorithm is used because it
is efficient and let us control how many cluster centroids we want to make. The algo-
rithm works by iterating between two steps: assigning each data point to its nearest cluster
by calculating the Euclidean distance to each centroid position, and computing the cen-

63



Chapter 6. Real LIDAR data results

Figure 6.4: 2D plot of LIDAR detections when the Munkholm boat departs at four time steps:
k = 90 (blue), k = 490 (red), k = 610 (magenta) and k = 800 (cyan). The LIDAR sensor is
located at the pier in (0, 0).

troids by taking the mean position of all the data points assigned to that centroid. By
running this algorithm on the measurements in Zk, we get the set of centroid positions
Ck = {(xj , yj)}Kj=1, where K is the number of clusters in each time step. This set will be
used as the measurement set in the implementations on the LIDAR dataset.

The parameter K is convenient in the sense that it determines the number of total mea-
surements mk. Hence it gives an upper limit to the number of association hypotheses to
investigate. In the following experiments it is set to K = mk = 10, which is high enough
to capture most of the information in the original data, but not so high that we get an
infeasible number of association hypotheses. In Figure 6.5 the data are plotted for three
different time steps, together with the 10 cluster centroids from K-means clustering. Most
of the centroids are located along the boats edge, but observe that some are positioned
around detections from the center of the boat. In time step k = 203 there is clearly one
centroid that is not target generated, and should be removed by the validation procedure.
Also at k = 404 there are two centroids located behind the rest of the measurements, and
are most likely generated from the wake behind the boat. To remove cluster centroids lo-
cated far away from the target, the validation region Γk represented by the state vector in
(4.3) will be applied to the filters. The scale parameter is set to γs = 4 in all experiments,
and the clutter Poisson parameter is λ = 1/Vk. This is based on the plot in Figure 6.5,
where most of the measurements come from target. When finding the lower bound nmin

we use the method from section 4.4 with parameter g = 1.

64



6.2 C-GPDA results

Figure 6.5: Plot of LIDAR measurements from the Munkholm boat and K = 10 cluster centroids
calculated with K-means clustering. Measurements are from k = 2 (blue, red), 203 (beige, purple)
and 404 (green, cyan).

We need to provide the filters with the initial filtering estimate m0 and we use the procedure
in Algorithm 5 to find it. However, by using the original measurements Zk instead of the
clusters Ck when computing the velocities vx,0 and vy,0, we obtain estimates that are
more realistic than when using the cluster points. The result is shown in Figure 6.6, and
we observe that the ellipse is fitted accurately through the points on the visible side of the
target. The two clusters that are generated from measurements in the center of the boat are
also close to the ellipse contour, and makes the estimated minor axis b0 larger than it would
have been without these points. This is because the least squares ellipse fitting method is
biased towards smaller ellipses. We observe that the extent variables are relatively close to
the true extent a = 9.95 and b = 2.1.

6.2 C-GPDA results
Applying the C-GPDA method on the centroid data points Ck we get the track shown in
Figure 6.7, and the whole experiment with 500 time steps took 6.1 seconds to run in MAT-
LAB. This fast running time may come from the nmin found at each time step, which has
mean value around 8 over all time steps. This gives 56 association hypotheses on average
to investigate, which is much lower than the 1023 hypotheses we would have if we used
nmin = 1. This saves a lot of running time for the C-GPDA algorithm, and makes it more
efficient.

Initially at k = 2 the shape and heading of the ellipse is close to the estimate m0 from
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Figure 6.6: Initialized target ellipse m0 = [13.4,−12.89, 0.33,−1.04, 10.7, 1.57]T from the mea-
surements in Z1 and Z2 in the Munkholm boat LIDAR dataset.

Figure 6.6. This seems like a good estimate of position, heading and length, but the width
is a bit too small. For the next time steps it captures the true width of the boat better,
and in k = 490 it is close to the true width, but the length estimate is too small. The
measurement generating points yjk are from the hypothesis Eji with highest association
weight βi,jk . They seem to lie close to the centroids in all the time steps, which explains
why they are positioned on the filtered ellipse because the prediction is close to the update.

Observe in time step k = 172 that there are eight cluster centroids located on the contour
of the boat, while two of them are laying more in the middle. The predicted measurements
in the front part of the filtered ellipse are close to the front centroid from the middle of the
boat. This centroid makes the ellipse position slightly shifted away from the contour cen-
troids in the front, and shows that the C-GPDA filter can be sensitive to detections close
to the contour. In k = 342 we also see that the rearmost centroid generated by the wakes
gives the target ellipse a shift backwards.

Since we have the true extent parameters we can calculate the RMSE and separate NEES
measures for ak and bk. In Figure 6.8a and 6.8b we have plotted the RMSE together with
the mean as a red line. We clearly see higher errors in the major axis estimates, which
is probably because the LIDAR data gives less information about the length compared to
the width during the track. For instance in the last time steps the LIDAR only detects the
rear end, and therefore we get an increase in ak-errors while the bk-errors are relatively
stable. However, there are some peaks in the bk-errors that are over 1 meter, which occurs
during the backing (k = 20, ..., 90) and turning maneuver (k = 190, ..., 270). During the

66



6.2 C-GPDA results

-20 -15 -10 -5 0 5 10 15 20 25 30

West [m]

-60

-50

-40

-30

-20

-10

0

S
o

u
th

 [
m

]

k = 172

k =2

k = 342

k = 490

Figure 6.7: Tracking plot of C-GPDA estimates mk with target position and ellipse (red) together
with the measurements and cluster centroids. Measurements and centroids are from k = 2 (blue,
red), 172 (purple, beige), 342 (burgundy, blue), and 490 (purple). The predicted measurements ỹj

k,
for the hypothesis Ej

i with highest association weight, are plotted in magenta for all time steps.

turning maneuver we observe a decrease in the ak errors because the full length of the
boat gets visible. This shows that the C-GPDA algorithm is able to fit an accurate ellipse
to the measurements when they provide a sufficient amount of information about either
the major or minor axis of the ellipse.

In Figure 6.9a and 6.9b the NEES plots show that the ak- and bk-estimates are not consis-
tent for most of the time steps. The curves follow the RMSE pattern very closely, which
means that the estimated covariance Pk is not changing much during the track. The initial
estimate P0 is set to the process noise covariance matrix Q, which is created with acceler-
ation noise σa = 0.15 and extent noise Σa,b = diag[0.052, 0.042]. These values are tuned
by looking at the track plot and higher values of these variances would lead to a more ir-
regular track. The measurement noise covariance matrix were set to R = diag[1.12, 0.72],
which is also tuned from the track plot. The covariance matrices Rjk are rotated tangential
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(a) ak RMSE (b) bk RMSE

Figure 6.8: RMSE plots for the extent variables ak and bk in the C-GPDA method on LIDAR data
from the Munkholm boat. The red line is the mean RMSE.

to the predicted ellipse, because the cluster centroids have varying positions along the visi-
ble contour of the boat during the track. There are a lot of LIDAR measurements located at
the contour, which can be seen in Figure 6.6 for instance. Hence the uncertainty in cluster
centroid positions are tangential on the predicted ellipse.

(a) ak NEES (b) bk NEES

Figure 6.9: NEES plots for the extent estimates from the C-GPDA filter on LIDAR data from the
Munkholm boat.

In the kinematic process, we do not have the full true state to compare the estimates with,
and we need a way to measure the performance of the filter without using the RMSE and
NEES. To do this we use the Normalized Innovation Squared (NIS) from Bar-Shalom and
Li [1995] as

NIS = vTk S−1
k|k−1vk, (6.1)

where vk ∈ Rmk is the innovation vector, and Sk|k−1 ∈ Rmk×mk is the innovation co-
variance matrix. Since it is assumed that vk ∼ N (vk; 0,Sk|k−1), the NIS should follow
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6.2 C-GPDA results

a χ2-distribution. Hence there exists a (1 − α)-confidence interval similar to the NEESk
interval. In the original definition in (6.1) it will havemk degrees of freedom, wheremk is
the length of vk. However, when we have multiple innovations vi,jk ∈ R2j in the C-GPDA
filter, we get different degrees of freedom 2j for each hypothesis Eji . If we try to reduce
it to one χ2-distribution by mixture reduction, we get an unknown distribution. Hence we
look at the NIS for the hypothesis that have the maximal association weight, and only in
the time steps where βmaxk > 0.99. We define this quantity as βmaxk = maxi,j β

i,j
k , and

use the innovation vi,jk and covariance matrix Sjk|k−1 in (6.1). Here vi,jk = z̃i,jk − ỹjk is the

innovation vector for the time steps k where βmaxk > 0.99 and Sjk|k−1 is the corresponding
innovation covariance matrix given in (4.17).

Figure 6.10: Plot of the NIS (blue stars) for the C-GPDA estimated state vector mk, where
βmax
k > 0.99. The red circles represent the χ2

2j-confidence intervals that have 2j degrees of free-
dom depending on Ej

i .

In Figure 6.10 the NIS is plotted for the C-GPDA track of the Munkholm boat together
with the confidence intervals as red dots. There are 263 time steps where the NIS is defined
for βmaxk , and it is inside the confidence interval for 56.22 % of the time. The intervals
have varying upper and lower limit because of the different degrees of freedom 2j, but we
see that most of the intervals are [8.23, 31.53] which is the 95-% confidence interval for a
χ2

18-variable. This means that the C-GPDA filter chooses a hypothesis with j = 9 points
from target in most of the time steps. We observe that the NIS have some peaks above
the intervals, during the turning maneuver (k = 180, ..., 200) and in the final time steps
around k = 400 when the boat is leaving the harbor.
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Chapter 6. Real LIDAR data results

6.3 Random matrix GPDA results
The random matrix GPDA filter results from the same LIDAR data as in the previous sec-
tion are shown in Figure 6.11, and it confirms what we would expect from the simulation
chapter. The parameters used in the filter are given by

z = 1/2, τ = 0.21, η = 2000, σa = 0.1, (6.2)

RRM = diag[0.22, 0.12], (6.3)

which are set by tuning the filter. Initially the ellipse is close to the initialization estimate
in Figure 6.6. In time step k = 172 it seems to have lost the track, and it has an irregular
motion together with a wrong estimate of heading and extent. However, it gets better in
k = 342 were it has captured the true extent and position better, but there are still obvious
errors, especially in the heading. In the last time step it is clearly too small and wrong po-
sitioned, but it is hard to obtain a good estimate in this case as we saw for the C-GPDA too.
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Figure 6.11: Plot of random matrix GPDA estimated track and target ellipse on the cluster centroids.
Measurements are from k = 2 (blue, red), 172 (beige, purple), 342 (green, cyan), and 490 (blue).
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The RMSE plots in Figure 6.12a and 6.12b show what we would expect from the track
plot, which is high extent errors for the ak and bk estimates. These are found in the same
way as in the simulation studies, by calculating the eigenvalues of Mk. The magnitude of
the errors are much higher than in the C-GPDA filter, but in some time steps it drops to
zero. The mean values plotted as the red lines are also high because of the many peaks
during the track. We do not have an estimated variance for the ak and bk estimates used,
only the matrix Vk which is the variance for Mk, and hence we have no NEES for the
random matrix estimates.

(a) ak RMSE (b) bk RMSE

Figure 6.12: RMSE plots for the extent estimation in the random matrix GPDA on LIDAR data
from the Munkholm boat.

The NIS measure for random matrix GPDA is analogous to the C-GPDA NIS, but is de-
fined as

NISk = (z̄i,jk −Hmk|k−1)TS−1
k|k−1(z̄i,jk −Hmk|k−1) ∼ χ2

2. (6.4)

This measure has 2 degrees of freedom in each hypothesis Eji because the innovation vec-
tor has length 2 regardless of which hypothesis we investigate. However, we will only use
the NIS in time steps where βmaxk > 0.99, so it will only be used in time steps were the
filter is certain that it has chosen the right hypothesis. This we do to make it comparable
with the NIS for C-GPDA.

The NIS measure of the random matrix GPDA is plotted in Figure 6.13 and the measure is
defined in 42 time steps, which is far less than the C-GPDA filter. This indicates that the
random matrix GPDA filter is more uncertain in choosing one hypothesis compared to the
C-GPDA. The NIS is inside the confidence interval 66.67 % of the time, which indicates
that the filter think the innovations are consistent in most of the time steps. By consider-
ing the tracking results and extent absolute errors together with the NIS we can say that
the random matrix filter give deviant estimates and think it is estimating the target state
correctly.
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Figure 6.13: Plot of the NIS (blue stars) for the random matrix GPDA estimated state vector mk,
where βmax

k > 0.99. The red dots represent the χ2
2-confidence intervals.
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Chapter 7
Discussion

In this chapter we will discuss the tracking results from the simulation experiments and
real LIDAR data. Different implementation methods and other modelling choices are also
discussed.

7.1 Simulation experiments
From the experiments presented in chapter 5, there is no doubt that the CEKF and C-GPDA
filters are superior to the random matrix filters. Considering the theoretical background
for each method, as presented in Chapter 3, this comes as no surprise because the CEKF
method is specifically constructed to handle LIDAR data with predicted measurements
that are distributed along the predicted target contour.

In the random matrix framework, the data are assumed to be scattered on and around
the surface, which is typically the pattern we get from a radar. The centroid calculation
rule in (3.61) which is supposed to make the random matrix method able to track a single
target from LIDAR data, is not robust at all. When looking at different LIDAR data im-
ages from an elliptical target, it is obvious that this rule will fail to capture the true ellipse
center in some cases. By comparing the estimates with the ground truth we have found
that the random matrix method generally has so high errors that it is not competitive with
the CEKF or the C-GPDA method in any case tested. Hence the decision of choosing the
best method is easy, and we will focus on discussing the CEKF and C-GPDA experiments
from here.

It is evident that the C-GPDA filter is a consistent tracking method when the true state
is given initially. The absolute errors are low, and the NEES lies inside the confidence
interval in almost all time steps regardless of the clutter pattern that is around the target.
However, in the last simulation experiment with simulated wakes, it started to get too op-
timistic about its estimates, but the RMSE was still low. This showed us that the C-GPDA
is able to give low absolute errors, and consistent results up to a certain amount of clutter
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measurements. However, in a real life tracking scenario we can not expect to know the
ground truth initially, and thus the initialization algorithm were created.

In the automated C-GPDA filter the initialization in Algorithm 5 were used, and the results
gave higher estimation errors and was less consistent than with ground truth initialization.
This is as expected, but it is interesting to see how the method performs with no prior
knowledge of the target state. To prepare the C-GPDA algorithm for the real LIDAR data
case, it was important to check if the initialization method worked on simulated data. In
the case with no clutter measurements in subsection 5.2.1 the initial errors were high, but
eventually they got smaller throughout the the tracking period. The filter also got more
consistent in the last time steps. With the more difficult case in subsection 5.3.2 the au-
tomated C-GPDA struggled both with initialization and filtering correctly. It is a hard
problem to fit an ellipse correctly in a noisy environment, and this is shown in the initial
errors of the experiments. To find the ground truth state in the time steps after a wrong
initialization is also a hard problem when clutter measurements are present, and the filter
did not manage to do this.

When we compare the extent estimation results in Table 5.2 with the real data RMSE
plots in Figure 6.12a and 6.8b, we see that the mean values for a and b have approximately
the same values. This is interesting because it shows that the automated C-GPDA gives
approximately the same extent errors in all the 100 simulated tracks in addition to the
Munkholm boat track. This indicates a robustness in the algorithm, but the errors could of
course have been lower.

To say that the automated C-GPDA filter was given no information is not entirely correct,
because it is provided with the subtraction parameter g to find nmin, the true covariance
matrices Q and R and clutter parameter λ. The λ- and g-parameters are useful when we
have prior information about how much clutter there is in the data. In the simulation ex-
periments we knew how much clutter we would expect to get, and these parameters were
set accordingly. Also, if nmin > ntk in some time steps, the subtraction parameter was
lowered such that it did not exclude the correct hypothesis. As we have discussed earlier,
the true parameters Q and R will give the filter a wrong update of the covariances in Pk,
which is way lower than they should be. This is why we introduced the tuning parameters
Qtun and Rtun, which are set with higher values so that the filter gets a more realistic
covariance update. This also increased the chance of finding the ground truth state after
the deviant initialization, because of a higher variance in the estimates.

The parameter λ is set to a low value in the measurement simulations because we would
avoid getting too many association hypotheses. When using this in the C-GPDA filter it
will lead to high prior probabilities for hypotheses Eji with high j, because of the prior
term j!/(λVk)j from (4.13). By looking at the actual choice the algorithm makes in Fig-
ure 5.12 we found that it chooses the correct hypothesis in most cases, even though there
are several clutter points in the validation region. This indicates that the spatial density
psp(Θk|·) dominates the association weight expression in (4.18), and removes the bias
that the prior gives towards higher j.
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To avoid getting the factor j!/(λVk)j in the prior expression (4.13), we tried to change
the prior density for target generated measurements P (ntk). When modelling it as a Pois-
son distribution with parameter λt, we get the prior factor (λt/λ)j instead in (4.13). By
introducing this parametric prior we can control more of the prior association probability
by setting a realistic λt. However there are one obvious drawback with modelling ntk as a
Poisson distribution, because it is possible to get a huge amount of detections when sim-
ulating from it. This would have made the running time for the simulations much longer,
and we would not be able to control the minimum and maximum number of target mea-
surements like we did with the uniform distribution.

Another possibility for the ntk prior is a binomial distribution with probability pt and pa-
rameter nt. By doing this we have an upper limit for the number of target generated mea-
surements, but there is still a chance for getting low a low number of measurements in the
simulations. The resulting factor in the prior density (4.13) becomes pjt

(1−pt)jλVk(mk−j)! ,
given that nt = mk. By setting a realistic value for pt based on prior knowledge for ntk,
this prior expression would assign probabilities to hypotheses Eji accordingly. However,
when choosing the ntk-prior it is important to think of the tracking problem we want to
solve, and when tracking the Munkholm boat we found that a uniform distribution would
be the best. This is because of its simplicity and amount of control on the interval where
ntk should lie.

7.2 Real LIDAR data experiments

In the LIDAR data experiments we got the results that we expected based on the simula-
tion experiments. The C-GPDA filter performed better than random matrix GPDA, when
looking at track plots, extent RMSE and NIS. However, we can not be entirely sure how
the methods performed in the kinematic estimation, but by looking at the LIDAR measure-
ments we get the main idea of how they performed. The C-GPDA results were acceptable
in the extent estimation with not too high errors. It gave a good reconstruction of the
Munkholm boat departure, and did not give estimates that were a long way from the as-
sumed true state.

The K-means clustering algorithm on the original dataset enabled us to determine the
number of measurements mk prior to the filtering process. This is different from the sim-
ulation studies where we sampled the clutter measurements from a Poisson distribution
which gave different numbers each time step. In fact, the clustering could actually help
remove some clutter points, because the majority of the points will lie around the target
and thus move the centroids closer to the target. This is not always the case, as we have
seen from time step k = 203 in Figure 6.5 for instance. When we get a small number
of measurements each time step, this clustering procedure should not be used. Then it is
better to just use the original measurements, and this can happen in cases where the target
is small or the distance from target to LIDAR is longer.
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The predicted measurements of the C-GPDA method proved to be a good way to model
the cluster centroid positions. Throughout the whole tracking process they seemed to lie
close to the real measurements. Especially in the turning maneuver where the cluster cen-
troids only came from the front of the boat, and when measurements from the side began
to emerge the extent estimation adapted itself to the generated centroids. However, when
centroids were generated from other measurements around the target contour like the mid-
dle of the boat or wakes, we observed a shift in the ellipse estimates. It is difficult to deal
with these centroids because they are close to the predicted measurements and thus get
high association weights βi,jk . A solution to this would be to model this type of clutter in
the C-GPDA filter, so the ellipse estimate will not be biased towards these points.
When the boat left the canal, and only the rear end was visible, the earlier extent estimates
was passed through and made the major axis estimates gradually smaller. This was not the
case with the random matrix GPDA extent estimate, which got small almost immediately
after the target side was not visible anymore.

7.3 Other implementation techniques
In section 4.4 we tried different implementation methods for initialization and finding
nmin, and it was difficult to find a general method that worked in all the tracking scenarios
we tested. This is mainly caused by the infinitely many measurement configurations that
can arise when both target and clutter measurements are present. If we knew which points
that were target generated prior to the filtering, the job would be much easier.

The ellipse-fitting method described in section 4.4 is biased towards smaller ellipses, so
if the target generated measurements are found, the fitted ellipse may be small compared
to the true target size. This proved to be a problem when the random sample consensus
(RANSAC) was used as initialization procedure. This is a method that randomly samples
different permutations of the measurement set with size j, when j = 3, ...,mk. It then
tries to estimate an ellipse to the chosen points, and this is why j starts at 3, which is the
minimum number of points required to do this. The algebraic distance F (a, c) is com-
puted for the fitted ellipse, and this works as a score for how well the ellipse fit the data. If
this distance is better than in previous iterations, it is chosen as the new best solution. The
points that are sampled are called inliers, and we try to find as many of them as possible.
The ellipse with the lowest algebraic distance to the sampled inliers will be the output of
the algorithm.

The problem with the RANSAC method is that it often chooses clutter points as inliers
because they coincidentally fit in an ellipse with either target or other clutter measure-
ments. It also chooses small ellipses fitted to the target points because they often have
smaller algebraic distances than the larger ones. This makes the ellipse initialization de-
viant from the true target state and it will be difficult for the filters to deal with. Hence
we chose the method with MAD outlier removal, before fitting the ellipse to the resulting
points. This is not a flawless method, but it generally worked better than RANSAC.
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When finding nmin we also tried to set it as the number of inliers in the RANSAC method,
but it was too often excluding the correct hypothesis or were set too low such that the
hypothesis space remained large. Another approach that were tried was to first remove
outliers with MAD in the data points at each time step, and fit an ellipse to these points
using the least squares method. Then we calculated the tangent points (xtk, y

t
k) on the

ellipse that had tangent line through the origin, illustrated in Figure 3.4. From these two
tangent points we defined a line y = Ax+B that went through both points and separated
the measurement points. The number of measurement points that were on the side of the
line closest to the LIDAR were chosen as nmin. This proved to be a quite deviant method,
with estimates both too small, and way too large in the simulations.

In the end we found that none of the methods we tried for initialization and finding nmin

would give accurate estimates in all cases we tried to throw at them. Hence we settled with
a simple outlier detection algorithm using the MAD to remove points from the measure-
ment set. This proved to be an effective method in most cases, and got rid of the worst
outliers so that the ellipse-fitting algorithm got either only the target generated points, or
some clutter points in addition. The solution for nmin with the subtraction parameter g
was chosen based on the fact that it is better to set nmin too low than too high. This
is because the filter only gets slower when it is too low, but it will not find the correct
hypothesis Eji when it is too high.
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Chapter 7. Discussion
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Chapter 8
Conclusion

8.1 Concluding remarks

This thesis has presented a new approach for dealing with the single extended object track-
ing (EOT) problem in clutter by combining the contour extended Kalman filter (CEKF) in
Granström et al. [2011b] with the general probabilistic data association filter (GPDA) from
Schubert et al. [2012]. The modelling of the GPDA filter was done in a different way by
making inference on the association hypothesis prior as opposed to the target and clutter
likelihood that were done in the original approach. This new method called the contour
GPDA (C-GPDA) filter, was compared with the random matrix GPDA from Schuster and
Reuter [2015], which proved to be more deviant in all experiments.

Through simulation experiments of LIDAR measurements from an elliptical target we
have shown that the C-GPDA method is accurate and consistent in its estimates of the tar-
get position, velocity and extent. The CEKF tracks the single target with low errors without
clutter, and the C-GPDA filter handles clutter measurements in a robust way. Compared
to the random matrix approach there is no doubt that the C-GPDA is the best filter to use
when considering both efficiency and accuracy. This is because it is specifically designed
for tracking with LIDAR measurements, which are distributed along the target contour.
The random matrix method was originally developed for group target tracking, which
gives a measurement spread over the whole group of targets. The modification of random
matrix presented in Schuster and Reuter [2015] gives an intuitive rule to handle LIDAR
measurements, but we have seen that this rule does not always work.

When tracking with real LIDAR data from the Munkholm boat in Ravnkloa, the C-GPDA
filter proved to be the best method. It handled the departure track in a good manner, and
estimated the extent with low absolute errors in most of the time steps. The random matrix
GPDA filter struggled more with the extent estimation and was not able to give a reason-
able track of the boat. Considering the simulation results, this outcome was expected, and
shows again that the C-GPDA method is preferable.
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Chapter 8. Conclusion

In addition we have tried to make the filters more automated by finding an initialization
procedure and a way to cut down the association hypothesis space E . This proved to be a
difficult task, and the C-GPDA algorithm struggled to give correct estimates in a simulated
cluttered environment when using this, but in the real LIDAR data with small amount of
clutter the methods worked better. By combining the methods of CEKF and GPDA we
have found a simple alternative to the more complex random finite set framework. In this
sense we have made a contribution to the extended object tracking research field, by solv-
ing the problem of single target tracking in clutter with LIDAR in an easy way.

8.2 Future work
The next step in testing the C-GPDA filter will be to compare it with a point target method
using clustering of the measurements. This will show if the EOT modelling is beneficial
when dealing with single target tracking in clutter. The C-GPDA filter could also be ex-
tended to handle wake clutter by using a similar approach to what was done in Brekke
et al. [2012] for the traditional PDA filter. This will show how robust the C-GPDA method
is to a more advanced clutter pattern close to the target.

To generalize the GPDA further into a multi-target method the framework of joint PDA
(JPDA) or Poisson multi-Bernoulli mixture (PMBM) could be used. The PMBM frame-
work is a generalization of JPDA, which again is a generalization of PDA. Hence it is
reasonable to start by generalizing GPDA by using JPDA, and then generalize it further
with PMBM which represents the state-of-the-art in multi-target tracking.

To test the C-GPDA filter with different prior densities for the number of measurements
from target ntk, is also an interesting topic for future work. In this thesis we modelled it as
a discrete uniform distribution, but it is possible to use a Poisson or binomial distribution
as well. An analysis of how the C-GPDA filter performs when using these prior densities
for ntk will give more insight into how essential the prior term is in the association weights.

A further study of initialization algorithms and association hypothesis reduction with LI-
DAR data is a natural extension of this work. It is a hard problem to solve and there are
most likely more robust algorithms that can be used instead of the ones used in this the-
sis. Heuristic approaches for searching after the relevant hypotheses, or sampling methods
like the stochastic optimization used in Granström et al. [2018], is probably a better way
of solving this problem. If the C-GPDA algorithm were to be implemented on the au-
tonomous ferry it should have a more general procedure to remove all clutter points from
the surroundings as well. This was done manually in our real LIDAR data experiment, by
cutting the domain.
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Särkkä, S., 2013. Bayesian Filtering and Smoothing. Cambridge University Press, Cam-
bridge, England.

Schubert, R., Adam, C., Richter, E., Bauer, S., Lietz, H., Wanielik, G., 2012. Generalized
probabilistic data association for vehicle tracking under clutter. In: Intelligent Vehicles
Symposium. Alcal de Henares, Spain, pp. 962–968.

Schuster, M., Reuter, J., 2015. Target tracking in marine environment using automotive
radar and laser range sensor. In: IEEE 20th International Conference on Methods and
Models in Automation and Robotics. Midzyzdroje, Poland, pp. 965–970.

Rødningsby, A., 2010. Multitarget Multisensor Tracking in the Presence of Wakes. PhD
thesis, NTNU.
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