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Abstract—Extended object tracking (EOT) plays an important
role when creating autonomous systems like self-driving cars or
surface vehicles. For accurate estimation of the target extent,
it is important to have a sensor with high resolution and low
measurement noise. In this paper we use the LIDAR sensor to
track a single elliptical target in clutter with a contour mea-
surement model. The model enables the use of extended Kalman
filter (EKF) which is combined with a generalized probabilistic
data association (GPDA) filter. The EKF method comes favorably
out of a comparison with a random matrix parametrized EOT
approach. The testing is done through simulation studies and on
real LIDAR data from a passenger boat.

I. INTRODUCTION

Autonomous systems emerge rapidly in several industries.
In the maritime industry there is a growing interest in devel-
oping autonomous surface vehicles (ASVs) to do various tasks
that are time consuming for human operators. When designing
such vehicles it is important to give the system an accurate
representation of the surroundings by using different sensors
like radar, LIDAR, camera and infrared light.

In traditional target tracking the point target assumption is
made, which means that at most one measurement comes from
the target at each time step. When using sensors with high
resolution this assumption is likely not valid, and the concept
of extended object tracking (EOT) is relevant. When receiving
several measurements from a target it is possible to calculate
the extent shape in addition to the kinematic properties.

An approach for tracking elliptically shaped objects by
using random matrices was first presented in [[1] as a method
for tracking a single extended target or a group of point targets
from radar data. It was later modified in [2]] by introducing
sensor noise in the measurement modelling.

A method for tracking both elliptical and rectangular ex-
tended objects using laser range sensors was presented in [J3]],
and further studied for car tracking in [4]. The measurement
pattern along the target contour was modelled by introduc-
ing so-called predicted measurements, which were used as
the expectation for the measurements in a Gaussian mixture
distribution. The Gaussian mixture PHD filter introduced in
[5] was used for multi-target tracking in both [3]] and [4]. The
PHD filter was introduced in [6], and is based on the random
finite set (RFS) formalism. A more recent RFS approach is
the Poisson multi-Bernoulli mixture (PMBM) filter in [7]] and
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[8], and stochastic optimization is used to handle the data
association problem.

The probabilistic data association (PDA) filter presented in
[9] is a popular method for tracking a single point target
in clutter. The filter was later generalized to handle multiple
target detections (MD-PDA) in [10]], and further extended into
a MD-JPDA filter in [11]] to handle the multi-target tracking
problem. Another generalization of the PDA was presented
in [12] as the Generalized PDA (GPDA) for single-target
tracking. In [13]] the GPDA filter was used with the random
matrix approach from [2]] to track a boat with both radar and
LIDAR.

The main contribution of this paper is to combine the
EKF contour tracking approach from [3]] with the GPDA data
association scheme in order to develop a single-target tracking
method suitable for boats of various sizes with LIDAR data.
We compare it with the random matrix method in [[13]] through
simulations and tracking a boat from real world data recorded
at Trondheim Harbor, Norway. The modelling of the GPDA
filter is slightly different from [12], and this will result in other
association weights.

The paper is organized as follows: in section II we briefly
present the state and measurement model and in section III we
present the concept of GPDA. Section IV and V contains the
results from simulations and real data, and section VI gives
concluding remarks and suggestions for further work.

II. STATE AND MEASUREMENT MODELLING

The target state vector describes position, velocity and
extent of the elliptical target at time step k, and is given by
Xk = [Ikaykav.’r,k’avy,k7ak7bk’]T k: 17"'7T' (1)

)

Here (xy,yx) is the ellipse center position, (vy g, vy k) is the
velocities, and (ay,by) are respectively the major and minor
axes of the ellipse illustrated in Figure [l We assume that the
target evolves according to the linear dynamic model equation
X = F_1Xp—1 + qj_y, where q;_; ~ N(q;_1;0,Qp_y) is
the Gaussian process noise with covariance matrix Qj_. The
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Fig. 1: Illustration of EOT with LIDAR. State variables,
measurement generating points yj, (squares) along the target
ellipse connected with associated measurements zfc (circles)
are shown.

dynamic model matrix is given by

1 0 At, 0 0 0

01 0 Aty 0 0

00 1 0 00
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The measurements for each time step k£ are given by the
set Z;, = {zi};nzkl where the measurement vector consist of
two-dimensional position coordinates given by zi = [xi, yi]T
for all 7 =1, ..., my. The cumulative measurement set Z.;, =
{Zl, e Zk} is defined to be a set of measurements for all time
steps up to k. Each of the measurements in Zj are assumed
conditionally independent, and the likelihood can be expressed
as

P(Zi|xy) = H p(z}|xx). 3)
j=1

The LIDAR sensor sweeps the surveillance area and mea-
sures the bearing 6 = arctan2(y],x7) and range r] =

(z1)2 + (y})? for the closest object reflecting the laser

beam. A target generated measurement zi can be seen as a
realization from a random measurement generating point yj,
that is measured with some noise. The measurement generating
points are given as nonlinear functions yj (-) : R™ — R*m*
of the target state vector. We assume that each measurement
is generated by exactly one measurement generating point as
shown in Figure |1} Now the measurement likelihood p(z],|Xy)
for each measurement can be written as the convolution

Pzl ixe) = / Py (%) (x0) ki) dy (xi). (4)

To find an analytical expression for this likelihood that corre-
sponds with the distribution of real world data is challenging.
However, we have assumed that each measurement comes

from exactly one predicted measurement, and the density is
simplified to

p(z]|xk) ~ N (z}; y),(x), RL), 5)

where we have assumed a Gaussian likelihood for each
measurement. The measurement generating points yi (x)) are
computed by using properties of the ellipse geometry, which is
described in more detail in [3]. To calculate the covariance ma-
trices R), we use a diagonal noise matrix Ry, = diag[oZ,07],
and rotate it along the tangent line of the target ellipse. Hence
it is given by R}, = Ry(¢7)RiRy(¢7,)7, where the angle ¢,
is the rotation angle corresponding to the tangent line through
y}.» and Ry is the counterclockwise rotation matrix.

The likelihood of the measurements Z;,, under the assump-
tion that all are target originated, can now be expressed as

p(Zilxi) ~ [ V(2L ¥l (%), RY). (6)

j=1
III. GENERALIZED PROBABILISTIC DATA ASSOCIATION

In this section we introduce clutter measurements. The
measurement set is defined as Z, = O, UK}, = {z},...,z;'* },
where ©f, and K}, are the sets of measurements from target and
clutter, respectively. We define the number of target measure-
ments as |©| = n!, and the number of clutter measurements
as |Ky| = n¢, such that my, = n}, + n.

The MD-PDA filter from [[10]] is based on the assumptions

o There is only one target of interest.

o The track has been initialized.

o The past information of the target is approximately sum-

marized as

P(Xk|Z1g—1) = N (Xp; my 1, Prjr_1). )

o At each time step a validation region I'; is set up to
validate each measurement.

o Among the validated measurements, one or more can
originate from the target.

o The clutter measurements are modelled with uniform spa-
tial distribution and Poisson cardinal distribution within
the validation region.

o Target detections occur independently over time with
known probability Pp.

These assumptions are similar to the traditional PDA, except
for the number of points generated from target. In addition
we assume that not more than n%* measurements are gen-
erated from target. This assumption is valid in the real data
experiments, because we will use K-means clustering on the
measurements, which gives my = K.

The validation region is an elliptical region where every
measurement that is inside the region is included in the filter-
ing step. We choose it to be a scaling of the predicted target
state my,_; in the extension variables with the validation
region scale parameter 7. The volume of this validation region
is

Vie = T2 po—1bkj—1- (®)



We define the set of mutually exclusive association hypotheses,
when my < n"%", in the same way as in [12]

E° = {E{ no detection from target
E} z; from target
B =
E}. z'* from target
E? zi, z; from target
&= E3 z;, z; from target
B =4,
2 mr—1 _myg
E(,,;k) z, """, z,* from target
EmE = {E7™ all detections from target.

The posterior pdf is defined according to the total probability
theorem to be a weighted sum over all association hypotheses

Pk Z1k) = > p(xk|EL, Zok) P(E! | Zok), 9
Eleg

where the hypothesis conditional filtering  density
p(Xk|Ef,Z1:k) needs to be computed for each hypothesis
E?. When not considering E{, the index j = 1,...,my, is the
number of target generated points and i = 1,..., ("*) is the
hypothesis index within the hypothesis space E7. If the target
has a big extent and is within range of the LIDAR, it will
most likely give at least one detection per time step, and we
can write Pp ~ 1. In this paper we track a large passenger
boat in a small harbor, and will assume that P(EJ) ~ 0. This
assumption makes the GPDA derivation different from the
approach in [12]], where it is possible that the target does not
exist or is not detected. N

The association probabilities are denoted as the weights /3,
for each time step k, and can be written as

/Blic’j

We prefer the last expression in (10) because it enables
probabilistic inference on the number of measurements my.

= P(E}|Z1.1) = P(E!|Zy,, my, Zy 1) (10)

Proposition 1. Let the hypothesis conditional spatial
densities be given as pyp(Ok|E], my,Z1x—1) and
Psp(Kk|El ,mp,Z1.k—1) for the target and  clutter
measurements respectively, and let P(n}) and P(n)
be their corresponding prior cardinal densities. Then the
association probability weights are given by
= Cl,ﬂpsp(@HEf,mk,Zl:k—l)
-1 (11)
J mg c t

Xpsp(KkEwmle:kl)( i ) P(ng)P(ny),

for 3 = 1,...,my and i =
normalization constant.

17...,(";’“), where Cg is the

Proof: We start by rewriting (I0) using Bayes’ formula

ij _ L j '
By = ?ﬁp(lk\Eg,mk,Zkal)P(Eﬂmk’Zl:kfl)’ (12)

The association likelihood in can be expressed by
P(Zi|E] my, Zysp—r) =
Psp(Ok| B, mue, Lo k—1)psp (Ki | By g, Lk 1),

where it is assumed that the target generated measurements are
independent of the clutter measurements. Both the densities in
are spatial in the sense that we condition on my, and EY
which leaves no uncertainty about the cardinalities n}, and nf.

The predicted density in (II) is assumed independent of
past measurements [12], i.e.

13)

P(E!|my, Zy.1—1) = P(E!|my,). (14)

Then we observe that the joint density P(Ef7 ni = jlmg) =
P(E!|my) because the event EY will be inside the event n}, =
7. Using Bayes’ rule, we then get

P(E}|my,) = P(E],n}, = jlmy,) =
P(E]|n}, = j,my)P(my|n, = j)P(n} = j)
P(my)

1 mp -1 c . .
_C’m(j> P(n§, = my — j)P(n}, = j).

15)

Here we have assumed that the density P(E?|nk, = j,my,) is
uniform over the hypothesis space EY, which contains (")
hypotheses. The density P(mg|n} = j) is recognized as the
clutter cardinal density P(n{ = my—j) because of the relation
my = nk +ng. Putting together with yields (I1). m

In the original formulation of the GPDA in [12], the cardinal
densities P(n}|E!,my,Z1.—1) and P(n§|E), my, Z1.x—1)
are modelled as a discrete uniform and Poisson respectively,
which differs from our approach. We assume that n}, and n¢
have prior densities given by

P(ni) = W, for n}; Z 1 (16)
: (AVi)™ 7y,
P(ny) = -—"——e "'k, 17

That is, the target generated points follow a discrete uniform
distribution, while the number of clutter measurements are
Poisson distributed with parameter A. The value n™%" is
given by n™** = my, when my is known. We assume that
my < n'*" in all experiments.

The clutter measurements have a spatial density over the
validation region volume given by the uniform

Pep(Ki| B g, Zyg—1) = (Vi) ~ (M=), (18)

By using Proposition 1 on the densities discussed so far, and
excluding the constant terms, the association probabilities in
(11)) are

. , i
7 o Doy (O B i, Zgor) = (19)

N



These weights will prefer hypotheses with a high j be-
cause the factor j! increases more rapidly than A for j =
1,...,m; and A < my. This can happen if the spatial
density term has the same magnitude as the prior term, but
if psp(Ok|E], my,Z1.x—1) is much higher it will be less
significant.

The spatial density in (T9) is given by the convolution

pSP(®k|Ez"j7mkaZ1:kfl) =

/p(iZ’”Ef,mk,Zl:k—l,Xk)p(XklEf,mle;k—l)dxk (20)
= /N(if;j;S’i(xk%Ri)/\/(xk;mk|k—1,Pk|k—1)ka,

where Z;7 € R¥, §/(x;) : R*™ — R* and R;, € R¥*?%
are the conclatenated measurement vector for the target mea-
surements z,” € E/, and corresponding measurement model
function and noise covariance matrix. To deal with the nonlin-
ear measurement function yj (x;) we use a first order Taylor

expansion. The result of the integral in (20) then becomes

PO i Z) = N (@ ¥ (1), 8]y, 2D)
where the 2j X 2j innovation covariance matrix is
Stiio1 = HiPy 1 (H)T + Ry, (22)

The GPDA filter with random matrix is presented in
[13], but we use Proposition 1 to define the association
weights. In the experiments we use the traditional Kalman
filter to compute the predicted mean my;_; and covariance
Pyix—1. The likelihood in (6) enables the use of extended
Kalman filter (EKF), which computes the hypothesis condi-
tional p(xx|E?,Zy.x). To compute the filtered mean my, and
covariance Py, we do a moment-based mixture reduction akin
to [9]. Since we do not have a closed form expression of the
predicted measurement function, the Jacobian H, is computed
numerically using finite differences instead of being derived
analytically. This method is referred to as the contour GPDA
(C-GPDA).

IV. SIMULATION RESULTS

We simulate a target over 7' = 200 time steps with a time
sampling interval of Aty = 0.1, which is also the true LIDAR
sensor frequency used in the real data (Section V). The rest
of the parameters are set as

R = diag[0.1%,0.1%], xo = [20,20,2,2,5,1.5], (23)
my=xp, Pp=Q, =4, (24)
and the process noise covariance is
1075/3 0 5-107° 0 0 0
0 107°/3 0 5-107° 0 0
Q- 5-107° 0 1073 0 0 0
o 0 5-107° 0 1073 0 0
0 0 0 0 10~ 0
0 0 0 0 0 10~*

(25)

The target generates 10 measurements in each time step,
and we distribute them along the visible target contour by
using (). The clutter points are from a Poisson distribution
with parameter A = 2/V, = 1/800 and spatial window
Ak = [z — 20,z + 20] X [yr — 20, yx + 20], with volume
Va = 1600. The filter assumes that the target generated points
follow the uniform distribution from , but to narrow down
the hypothesis space £ we use an algorithm to bound the
j-indices we want to investigate from below. This is done
by removing outliers that are three scaled median absolute
deviations (MADs) away from the rest of the validated mea-
surements in x- or y-coordinates. Then we take the number
of measurements that are left, and subtract it by the parameter
g to find the lower bound n™ for j. In the simulation
experiments we set g = 3.

We use the root-mean squared error (RMSE) to measure the
absolute error of the filters. It is given by

i 1 Z . .
RMSE! = N;(mZ[z]—xZ[z])Q, (26)

where i = 1,...,n,. The notation m} is the filtered value
at time step k in the n-th Monte Carlo run, and xj is the
corresponding true state vector with size n, = 6. In addition
we use the normalized estimation error squared to measure the
filter consistency. It is given by

N
NEES, = ) (mj —x;)"(P}) " (mf —x3),

n=1

27)

which is a x2 -distributed variable. To measure the consis-
tency we create a 95 % confidence interval and observe how
many of the time steps the NEES is inside it. The formula for
NEES in the random matrix estimates is given in [2].

The results from N = 100 Monte Carlo runs are sum-
marized in Table [l for both methods. We observe that the
C-GPDA method has low absolute errors, while the random
matrix estimates deviates more and are not consistent. This
difference in estimation accuracy is probably caused by the
measurement modelling of the two methods. The C-GPDA
method is specifically designed for tracking with measure-
ments along the target contour, while the random matrix
method from [13] is a slightly modified version of the radar-
based approach from [2]]. The ag-errors are a little bit higher
than the by-errors because the target is initialized with only the
rear end visible to the LIDAR. The NEES for C-GPDA lies
inside the 95 % confidence interval for 95.41 % of the time,
which means that it is covariance consistent with significance
level 0.05. This type of NEES consistency analysis has not
been done before when using the GPDA filter.

Observe that the lower bound algorithm is finding n™" to

“be below or equal to the true number of measurements from

target in all time steps. This is important because it should
not exclude the true association hypothesis when finding this
lower bound.



Measure C-GPDA | Random matrix GPDA

Mean x RMSE 0.0271 9.1145
Mean y RMSE 0.0256 3.3116
Mean v, RMSE 0.0508 0.9654
Mean v, RMSE 0.05 0.5965
Mean a RMSE 0.0358 0.8301

Mean b RMSE 0.0221 0.9717

Mean NEES 607.4672 36458, 1321

% confidence 0.9541 0.0051, 0

% where n™"" < 10 100 100

TABLE I: Results from simulation experiments. The random
matrix method has two entries in the NEES and confidence
cell for kinematic and extent NEES defined in .

V. REAL LIDAR DATA RESULTS

In this section we track a passenger boat departing from
a pier in Trondheim, Norway. The LIDAR is placed on the
pier which is the origin of the coordinate system. In Figure
the target vessel is depicted and from the picture we see
that it is elliptically shaped in the front, but more rectangular
in the rear end. The true length and width is 19.9 and 4.2
metres respectively, which gives the true major and minor
axes as ar = 9.95 and b, = 2.1. We have no ground truth
for the kinematical part of the target. The original LIDAR
data set contains an average of 364 points per time step,
and we need to reduce this number to narrow down the
number of hypotheses. The K-means clustering algorithm is
used with K = 10 because it maintains much of the original
target information, while keeping |£| tractable in the GPDA
algorithm. To initialize the target ellipse we used the least-
squares ellipse fitting method from [14]).

Fig. 2: Picture of the Munkholm boat MS Nidarholm in
Ravnkloa, Trondheim.

The results of the C-GPDA tracking are shown in Figure
The lower bound n™™ is found with ¢ = 1 and the
clutter intensity parameter is A = 1. The results show that
the C-GPDA method gives a reasonable estimate of the target
position, heading and extent in all plotted time steps except for
the last one, where only the rear end is visible to the LIDAR
and it is difficult to get a good estimate of the full length.
This can be seen in the RMSE for a; in Figure @ as well,
and Figure [4b] shows that the minor axis estimates is getting
better because the LIDAR gives information about the width.
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Fig. 3: Tracking plot of C-GPDA estimates m; with target
position and ellipse (red) together with the measurements and
cluster centroids. Measurements and centroids are from k& =
2 (blue, red), 172 (purple, beige), 342 (burgundy, blue), and
490 (purple). The predicted measurements y;, are plotted in
magenta for all time steps.

RMSE [m]
RMSE [m]

Time

(a) a, C-GPDA (b) bx C-GPDA

RMSE [ml |
RMSE [m]

) WJ\ My
bt I“ Y A
Ty |

i
R 0 R PP Vs
b o s w0

0 w1 = w0

m
Time

(d) by random matrix

(c) ax random matrix

Fig. 4: RMSE plots for the extent estimates for aj, and by
in the C-GPDA and random matrix GPDA methods on real
LIDAR data. The red line is the mean RMSE.

In Figure [3] track results for the random matrix method with
GPDA are shown. These are more deviant than the C-GPDA
as we would expect from the simulation studies. The track is



irregular, and the extent estimate at & = 172 when the boat
is turning is clearly wrong. From the extent RMSE plots in
Figure [Ac|and [fd] this can be seen as the peaks above the mean.
In time steps k£ = 250, ...,400 the extent estimates stabilizes
more.
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Fig. 5: Plot of random matrix estimated track and target ellipse
on the cluster centroids. Measurements are from k = 2 (blue,
red), 172 (beige, purple), 342 (green, cyan), and 490 (blue).

VI. CONCLUSION

In this paper we have combined the contour modelled EKF
method with GPDA to track a single extended target in clutter
using the LIDAR sensor. It has proven to be an accurate
and consistent method in simulation experiments, and when
tracking from real data. It outperforms the random matrix
filter from [13] in all test cases. Further work could be to
test the C-GPDA filter robustness to wake clutter akin to what
was did for the PDA in [15]. It could also be compared
against a point target tracking method using clustering on
the measurements. To generalize C-GPDA into a multi-target
method the framework of JPDA or the more general PMBM
can be used.
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