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Abstract

An Internet of Things (IoT) environment uses information gathering and sharing to draw con-
clusions, make decisions and predict future occurrences. The technology connects devices such
as mobile phones and sensors in private homes and elsewhere into a network of communication
with joint operational purpose. Continuously collecting information is often infeasible due to
factors such as sensor-availability, memory capacity and power efficiency. Decision making
within the IoT network is however based on accurate variable information and a reduction in
the measurement frequency must be done thoughtfully. Additionally, a system with battery-
powered devices that simultaneously harvest energy from the environment by e.g. solar panels
can contribute with surplus energy to the IoT network. Continuous measurements would limit
the accumulated energy contribution, and we therefore seek to replace the measurements by
predictions, allowing greater accumulated energy surplus to be transferred.

This thesis presents solutions for making energy efficient data collection from solar panels
with battery-powered sensors by applying a monitoring algorithm. Decisions within the al-
gorithm are based on event- and self-triggering controls by looking at the value contribution at
each data-collecting time step. Energy surplus is measured as the accumulated effort to avoid
battery discharge, and prediction accuracy is computed as a joint probability where uncertainty
increases with the consecutive number of predictions. A multivariate Seasonal Autoregressive
Moving Average (SARMA) model is fitted with temperature and humidity data collected from
solar panels at NTNU and transformed to a state space representation. The conversion is used
to obtain predictions from a multivariate Kalman filter, which is an approach to on-line filter-
ing and prediction problems. Because there are two objectives to be satisfied, a multicriteria
constraint with weighted average on prediction accuracy and energy surplus is applied to ana-
lyse the performance. After monitoring, a trade-off between the objectives is needed, since, the
result depends on the decision makers preference, which could be either to have confident data
collection or high amount of accumulated energy surplus.
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Sammendrag
Et tingenes internett (IoT) system bruker informasjonsinnhenting og -deling til å trekke kon-
klusjoner, ta avgjørelser og forutsi fremtidige hendelser. Denne teknologien forbinder enheter
som mobiltelefoner og sensorer i og utenfor private hjem i et kommunikasjonsnettverk med
et felles operasjonelt mål. Kontinuerlig datainnhenting er begrenset av faktorer som sensor-
tilgjengelighet, lagringskapasitet og strømforsyning. Fordi beslutningstaking i IoT-systemet ba-
serer seg på nøyaktig variabel-informasjon, må en reduksjon i målefrekvens være gjennomtenkt.
Et batteridrevet system som henter inn energi fra omgivelsene som f.eks. solceller kan i tillegg
bidra med overskuddsenergi til IoT-nettverket, men kontinuerlig måling begrenser det akku-
mulerte energibidraget. Det er dermed ønskelig å erstatte målinger med prediksjoner, slik at et
større energioverskudd kan overføres.

Denne masteroppgaven presenterer løsninger for å etablere energieffektiv datainnsamling
fra solcellepaneler med batteridrevne sensorer ved å anvende en overvåkningsalgoritme. Avgjør-
elser i algoritmen er basert på hendelses- eller selvbestemte triggerpunkter og ser på verdibi-
draget ved hvert tidssteg i datainnsamlingen. Energioverskudd er målt som akkumulert energi-
bidrag til nettverket uten batteriutladning, og prediksjonsnøyaktighet beregnes som en simultan
sannsynlighet hvor usikkerheten øker med antall etterfølgende prediksjoner. En multivariat se-
songavhengig Autoregressive Moving Average modell er tilpasset innhentet data om temperatur
og luftfuktighet fra solceller på NTNU, og konvertert til en tilstandsromrepresentasjon. Trans-
formasjonen blir så anvendt av et Kalmanfilter som er en metode for å filtrere og predikere
under overvåkningen. Fordi det er to målsettinger som skal tilfredsstilles anvendes et multikri-
terie med vektet gjennomsnitt på prediksjonsnøyaktighet og energioverskudd for å analysere
oppførselen til systemet. Etter overvåkningen er det behov for å gjøre en avveining, hvor det er
en beslutningstaker som vil bestemme om det er ønskelig med sikker datainnsamling eller høyt
akkumulert energioverskudd.
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Chapter 1
Introduction

Internet of Things (IoT) is an emerging technology that tries to connect the knowledge we have
of the physical world into an internet-based information architecture (Teixeira et al., 2011).
The goal of such a system is to make the different parts of the IoT architectures interact and
communicate with each other, so they mutually can build a better understanding of the system
as a whole, and operate towards a common goal. This characterisation of IoT as a sensor-based
system collecting information is the principle used daily by most of our electrical equipment
that is connected to the Internet. Ideally we would like to collect information continuously and
extract knowledge from all of the gathered data. However, collecting data continuously could be
infeasible because of constraints on memory and power (Bandyopadhyay and Sen, 2011). The
latter will commonly be connected to energy consumption and thus, collecting data will also
be related to power expenses. A solution to this problem could be to collect, analyse and store
information, as an on-line monitoring approach, where a decision maker can decide whether to
continue gathering more information or postpone the collection until later (Eidsvik et al., 2017).
In this context, monitoring means a process that collects, observes and checks the performance
or quality of a system over a period of time.

Considering battery-powered devices, much effort has been made to accomplish efficient
usage of energy in batteries, in order to support an enduring operation. One approach is to ex-
plore the possibility of harvesting energy from the environment, where solar cells is an example
of a harvesting node that can be used (Kansal et al., 2007). Including a sensor network with
several nodes would impact the energy usage and workload in the total system. Thus, a power
management system designed with a specified goal, to minimise the energy consumption, is
important to satisfy constraints to the system (Sinha and Chandrakasan, 2001).

One practical example where energy monitoring can be applied is with employment of IoT
in private homes. Such homes become smart when allowing intelligent automatic adminis-
tration of collected analysed data. This could improve the living conditions with categories
such as room brightening and thermal comfort (Al-Kuwari et al., 2018). Figure 1.1 presents
the principle behind a simple smart house where environmental information on temperature
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Figure 1.1: Smart house with roof-mounted solar panels. Information, such as temperature and humidity,
collected into a cloud by the solar panels, is analysed and used to optimise the indoor environment by
adjusting heating and lighting.

and humidity is collected and the battery percentage in the solar panel is charged by sunlight.
Information is collected based on triggering events and shared in a cloud that further decide
where to apply this knowledge. Hence, with the collected information on energy surplus and
environmental information, heating and brightening within the house can be arranged. Based
on the two presented goals, restricting data collection and requiring efficient use of energy, it
is important to have a model to consider the value of information that is collected and how this
can help us to plan ahead and draw conclusions about the future (Eidsvik et al., 2015).

In this thesis temperature and humidity data have been collected from a solar panel stationed
in Trondheim. Based on these observations a model has been fitted and used to draw conclusions
about future temperature and humidity, in addition to acquire the greatest amount of energy
surplus from the solar panels. The predictions have been applied to the principles of event- and
self-triggered control presented by Heemels et al. (2012). The triggering is established with
respect to goals that can be interesting to certain industries and technology equipment such as
health care services (Xu et al., 2014) or smart houses, which is from the basis for the principles
of IoT explained by Weber and Weber (2010). The problem that will be addressed in this thesis
is to find methods that restrict devices from repeatedly linear savings, collect data when needed,
and transfer energy surplus to other instances.

The implemented on-line monitoring model with the event- and self-triggering control is
built on predictions that have been computed from estimation and filtering methods. Gross-
windhagera et al. (2011) propose the Kalman filter as one efficient way of predicting time series
data. These processes have to be represented on a multivariate state space form as both humid-
ity and temperature observations are considered. Hence, in this thesis a multivariate Seasonal
Autoregressive Moving Average (SARMA) model have been adapted to the observations from
the solar panels in Trondheim and phrased into state space representation.

2



Firstly the background and a brief analysis of the data will be presented in Chapter 2 and 3.
Then the theory behind multivariate SARMA models and how to select appropriate values in the
models is presented in Chapter 4. This chapter also presents the fitted model to the temperature
and humidity observations. The motivation behind this project was primarily to find smart and
efficient methods of on-line monitoring. Though, to arrive at this, the theory and approach of
predicting humidity and temperature observations have to be presented. After this presentation,
Chapter 5 describes the Kalman filter, seasonal Kalman filter, and how to define a bivariate
seasonal Kalman filter. Chapter 6 present two different objectives with respect to i) energy
surplus and ii) prediction accuracy. The objectives have been combined into a multicriteria
optimisation problem with a weighted average. Three instances with distinctive event- and self-
triggering situations based on how the objectives are weighted will be presented before testing
to find an optimal solution with both constraints fulfilled. Finally, the project is wrapped up in
Chapter 7 with closing remarks around the performance of the models and filtering methods.
Some ideas for further investigation will also be considered.
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Chapter 2
Background

Data are collected from Libellium Waspmotes Solar panels placed at the rooftop at the Nor-
wegian University of Science and Technology (NTNU) in Trondheim. The solar panels are
pointing in two different directions, north and south, and have in total 8 solar panels conducting
measurements. For clarity, the solar panels are merged together and form one data set, respect-
ively for their direction. Thus, when talking about different solar panels it means either solar
panels facing north or south. Figure 2.1 presents a picture of how the solar panels are placed and
how they look like. During operation the solar panels are exposed to real weather conditions
such as temperature, humidity and pressure, and the panels have sensor nodes providing data
on the mentioned weather conditions as well as energy-related variables such as battery status
on the panels. The data are measured irregularly over a 9-10 month period ending in January
2018.

The raw data variables will first be presented by exploring the distribution of number of

Figure 2.1: Picture of the north- and south-facing solar panels placed at the rooftop at NTNU.
Photo courtesy of Frank Alexander Kraemer.
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observations and correlations between some of the variables. The analysis and processing is
conducted in R with developed source code for this particular instance. Information and obser-
vations obtained from the raw and processed data from NTNU is presented in this chapter and
in Chapter 3.

2.1 Variables

The raw data variables that will be investigated further in this thesis are temperature, humid-
ity, pressure and battery percentage. Temperature and pressure are measured in ◦C and atm
respectively. The two other variables are measured as a ratio presented as a percentage. Relat-
ive humidity explains the ratio of water vapour in the air compared to the maximum possible
concentration and battery percentage indicate the battery status where 100% is a fully charged
battery.

Table 2.1 presents summary statistics of the variables with data collected in September.
The computed mean and standard deviation for both panels are deviating from each other with
little consistency. The difference in standard deviation for temperature is only about 1◦C, while
higher for the other variables.

Table 2.1: Presenting computed average µ and standard deviation σ for the variables with data measured
in September. Here index with 1 is computed for data observed at the north-facing panel while 2 are for
the south-facing.

Variable Unit µ1 µ2 σ1 σ2

Temperature [◦C] 13.07 13.22 4.29 3.21
Relative Humidity [%] 61.89 70.90 25.40 17.14
Pressure [atm] 88196.59 100631.60 31153.64 1472.22
Battery [%] 52.96 90.64 14.35 8.30

The minimum temperature in September is calculated to be 0◦C and 5.36◦C for north- and
south-facing panels respectively. The temperature calculations from September are not coherent
with the weather statistics from The Norwegian Meteorological Institute and NRK (2018) as
minimum observed temperature in September is above 5◦C. Similarly, the calculated minimum
humidity in September is 0% and 34.47% for north- and south-facing panels. Normal behaviour
for relative humidity during a day is between 50 − 100%, and 0% would mean that there is
no water in the air which is not possible (Smith et al., 2018). From these observations and
the irregularities observed in Table 2.1 it appears that the raw data contains some values with
abnormal behaviour.

6



2.2 Visualising Data

During an operational time of a year, the north- and south-facing solar panel have large differ-
ences on number of observations. The north-facing panel have measured observations 92502

times while the south-facing panel have measured 180486 times. The distribution of the number
of measurements in the respective solar panels for each month is presented in Figure 2.2. It can
be seen that observations are more frequent in months that normally have higher temperatures.
Because the solar panels are rotated in opposite directions it is expected that the two of them
will have some differences in the number of observations. Differences are especially notable
during winter when temperature is lower. One explanation could be the consumption of solar
energy which during the winter will be higher towards south, because of decreased hours of
daylight and how much the sun has risen. From Figure 2.2 it can be seen that the number of
observations in June and July are almost the same for both panels. The total number of observa-
tions for these months are 45649 and 48596 for the north- and south-facing panels respectively.
Thus, it can be presumed that measurements mostly have been conducted at the same time.

It is known that the battery may discharge at extreme temperatures (Waspmote Technical
Guide v7.6, 2018). Figure 2.2 shows that the number of measurements in colder months are
less than warmer months, and it can be assumed that operating the sensors at such times is more
difficult. Nevertheless, it is still important to have information about the environment and to
save battery until needed. One of the trigger points in this thesis are chosen with respect to the
prediction accuracy and to get enough information about boundary observations. Therefore, the
month that will be studied further in this project are the coldest month with enough observations.
The number of observations in September are above 10000 for both stations and is thus the most
preferred month to look further into.

Figure 2.3 presents the distribution of the number of observations during September, with
Figure 2.3a and 2.3b as observations respectively in the north- and south-facing panels. Ob-

0

10000

20000

30000

 1  2  3  4  5  6  7  8  9 10 11 12

Month

O
cc

ur
en

ce
s

Figure 2.2: Data from north and south Waspmote are plotted with the number of occurrences in each
month. South is plotted in red while north in blue.
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Figure 2.3: Number of occurrences of data points in September each day, where (a) is from the north-
facing solar panel while (b) is the south-facing solar panel.
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Figure 2.4: Temperature data from Waspmotes are plotted hourly for observations collected in Septem-
ber. North-facing solar panel, here (a), is plotted in blue and south-facing panel, here (b), is plotted in
red. Number of observations are respectively with 10774 and 25040.
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servations in the south-facing panel are uniformly distributed with more than 750 observations
each day, while the number of observations in the north-facing panel have a general diminishing
trend finishing below 200 observations at the final day. The total number of observations during
this month are 10774 for the north-facing panel and 25040 for the south-facing panel. Because
of the large number of observations and also the difference in the number of observations, visu-
alising the collected data at each solar panel are presented in separate figures. Figure 2.4 present
the performance in September, with the north- and south-facing solar panels plotted in Figure
2.4a and 2.4b respectively. The temperature data is plotted hourly for 720 hours, meaning,
if there are multiple observations conducted during an hour then the observations are plotted
at the same hour with their respective temperature. It can be seen that observations from the
north-facing solar panel have more noise as there are oscillations between each measurement.
In addition to reaching 0◦C several times there are also some observations forming a shadow
below the leading trend of the data. The remark from Figure 2.3a with the reduced number of
observations in the end of September is confirmed in Figure 2.4a as observations are sparsely
distributed. However, generally both sensors have the same behaviour when only looking at the
observations following the superior trend in Figure 2.4a. Figure 2.4b does not include temper-
ature observations below 5◦C. Thus, there are some inconsistency with the raw data, which also
was stated from Table 2.1.

In addition to temperature, Table 2.1 also presents the variables humidity, pressure and bat-
tery percentage. To see how these variables interact with each other their correlations with
observations from September are computed and visualised in Figure 2.5. Interestingly the cor-
relations from both solar panels are quite different from each other and have dissimilar size
of correlation. Some are also correlated with inverted sign. One important remark is that the
correlation with humidity and temperature is insignificant in the north-facing solar panel, while
south-facing has a considerable correlation between these variables.
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Figure 2.5: Correlation between temperature, humidity, pressure and battery percentage with all of the
data collected in September. Here (a) is from the north-facing solar panel while (b) is collected from the
south-facing solar panel.
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Figure 2.6: Battery percentage for the 300 first hours of data collected in September. Here (a) is from
the north-facing solar panel while (b) is the south-facing solar panel.

The data measured in September is obtained from solar panels which are solely operated
on battery recharged by the environment. Behaviour of the battery percentages measured at
the first 300 hours in September for both panels are presented in Figure 2.6. In Figure 2.6b
the percentage is increasing and decreasing almost like a sine wave. While in Figure 2.6a,
the wave is also linearly declining. The seasonal trend seen for both batteries correspond to
when the battery is charging or the system is consuming energy. In addition, the observed
battery percentages for both solar panels have several instances of oscillations reaching battery
percentage at 40%.

In Table 2.1 it was pointed out that computed mean and variance from both solar panels
are deviating from each other. Additionally, the variance for all variables is too large to be
realistic. When visualising data from the north- and south-facing solar panels it appears to
include unreasonable observations with inconsistent correlations. Therefore, the measured data
will be adapted into a processed data set that can be used further in the monitoring. In the
following chapter some data analysis and adjustment to the data will be conducted.
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Chapter 3
Data Analysis

Before advancing into model adaption and on-line monitoring it is necessary to perform some
analysis and modification on the data. First of all, it is essential to diminish the variance for all
variables which will be obtained by removing outliers and errors. Secondly, sensor data from
both solar panels should be consistent as this verifies the environmental information.

Moreover, it is useful to have one observation each hour which is achieved by interpolating
in the processing step. As a result of this adaption and the information acquired previously, the
data that will be used further is comparable with the observations from the solar panels.

3.1 Processing Data

The aim of processing the data set is to develop a multivariate sequence with observations every
hour explaining the behaviour of the variables as good as possible. It was presented in Figure
2.4a that there are variations between the observations. When comparing temperature data
from both solar panels in Figure 2.4, observed maximum temperature is consistent between the
panels. Thus, the misgiving observations around 0◦C in the north-facing solar panel should be
removed in the processing.

Additionally, when studying frequencies of observations during a day, the number of ob-
servations appeared to decrease towards the end of the month. Figure 3.1 presents the number
of observations for respectively the 10th and 20th of September. While Figure 3.1a have at
least one observation each hour, Figure 3.1b reveals that some hours lack observations. Thus, it
appears that there is a need for some interpolation to complete the hourly sequence of observa-
tions.

The implemented method to construct the processed data set, looks at the first four observa-
tions in each hour and chooses the highest measured temperature. If the number of observations
is less than four, it chooses the highest of the accounted temperatures. This method is a result
of the observations from Figure 2.4a with temperatures at 0◦C and observations shadowing the
superior trend. However, if there is no observations at a given hour this is constructed using lin-
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Figure 3.1: Number of occurrences of data points in the 10th and 20th of September, where (a) is from
the 10th while (b) is the 20th.

ear interpolation. The processed temperature data after interpolation can be seen in Figure 3.2.
Here both solar panels are plotted together as time interval for both observations are equal and
with less data points. The behaviour of the processed data is consistent with little difference.
The processed data have only been plotted until the 20th of September because of the reduced
number of observations in the end of the month as seen in Figure 2.3a, 2.4a and 3.1b.

To visualise the deviation between the two solar panels, temperature observations from Fig-
ure 3.2 are subtracted and presented in Figure 3.3. Here observations from the south-facing
panel are subtracted with the north-facing which have a standard deviation of σDiff = 0.35.
It turns out that temperature measurements in the north-facing solar panel are higher as mean
value, µDiff = −0.11 is below 0. It could be assumed that there is a calibrating difference
between the two solar panels from a bias in temperature measurements during September, and
a hypothesis test testing µDiff = 0 would not be rejected as it is within the confidence interval.
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Figure 3.2: Temperature data constructed with respect to data collected from Waspmotes in September.
The data from north-facing solar panel is plotted in blue while south-facing panel in red. Here data are
plotted until the 20th of September.
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Figure 3.3: Observations from September from south-facing solar panels are subtracted with observa-
tions from the north-facing solar panels. Here the result is plotted in orange over a time span of 480
hours and the dotted blue lines are the standard deviation σDiff = ±0.35 computed from the subtracted
temperatures.

It can be seen that the battery percentage in the north-facing panels in Figure 2.6a is os-
cillation while decreasing linearly towards zero. This is because the workload on the sensor
is greater than normal operation and causes a reduction on the battery percentage. From the
south-facing solar panel in Figure 2.6b it can be observed that reduction on battery percentage
during night is the workload when there is no energy contribution from the environment. To
obtain a sustainable battery and a consistency between the two solar panels, the workload in the
north-facing solar panel should be adjusted. Figure 3.4 presents the linear decreasing battery
and an adjusted battery percentage. This adjustment is updated with respect to a linear slope,
y = a + b−a

480
x, computed with the minimum and maximum value from the measured percent-

ages, respectively as a = 36.76 and b = 91.65, and x ∈ {1, . . . , 480}. The new adjusted battery
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Figure 3.4: The adjusted battery percentage for the solar panel in direction north. The plotted points
in orange are the measured percentage while blue points show the adjusted after adding the line y =
a+ b−a

480 x, where a and b is respectively the minimum and maximum value from the measured percentage
and x ∈ {1, . . . , 480}.
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performance is now similar to the workload and charging as observed in the south-facing solar
panel. The relationship between the batteries is presented in Figure 3.5. The best fit would be
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Figure 3.5: Battery percentage for north- and south-facing solar panels are plotted against each other
with blue points. Here battery percentage for the north-facing panel is plotted on x-axis while south-
facing is plotted on y-axis. The black dotted line would be the best fit on the data, implying that they are
identical.

to have all observations on the straight line, meaning that observations are identical. In this case
most of the observations lie between 80 − 100% giving a huge accumulation to the top right
corner. This is expected based on the observations from Figure 2.6 and 3.4.

To see how the variables after adaption interact with each other, the correlations are com-
puted and presented in Figure 3.6. The correlations are still unequal, but when comparing this
with the correlations obtained in Figure 2.5 these correlations are more in accordance with each
other. One important modification is that humidity with the processed data is equally correlated
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Figure 3.6: Correlation of temperature, humidity, pressure and battery percentage from the processed
data. Figure (a) is from the north-facing solar panel while (b) is the south-facing solar panel.
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with temperature for both solar panels, which was not the case with the raw data. Some of
the correlations are still opposite correlated, but with little weight. The correlations between
pressure and the other variables in Figure 3.6 are 0 or insignificance. Thus, pressure will not be
considered further when constructing the predictive models.

For additional verification mean and variance with the processed data are computed and
presented in Table 3.1. In Figure 3.3 the mean was computed to µDiff = −0.11 which is coherent
with the results in this table. The problem in Table 2.1 was mostly related to the large variance
and inconsistency with the two solar panels. This is not the case with these measurements as
the variance is smaller and expectations are more similar.

Table 3.1: Presenting computed µ and σ for the variables with the new processed data. Here index with
1 is computed for data observed at the north-facing panel while 2 are for the south-facing.

Variable Unit µ1 µ2 σ1 σ2

Temperature [◦C] 13.00 12.89 3.17 3.29
Relative Humidity [%] 73.51 74.87 19.72 18.13
Battery [%] 87.93 91.21 7.23 8.07

Based on these observations it appears that the processed data from the north- and south-
facing solar panels are more consistent. Because battery percentage in the north-facing solar
panel have a slightly higher correlation with temperature and humidity this data set will be used
when adapting models and performing on-line monitoring.

It could be suggested to reduce the number of measurements at the sensors. This would help
when adapting models in the future and reduce the accumulation of measurements. Further-
more, when talking about north- and south-facing solar panels it applies to the new processed
data if no other is specified.
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Chapter 4
Time Series

Time series are data collected over time with each observation depending on time of measure.
The data can explain growth or trends, and examples include changing stock prices or tem-
perature observations. Previous observations can be used as guidance for decision making, by
forecasting new events. Combining numerous observations into a multivariate representation
might increase the insight of the development.

This chapter will start by explaining the Seasonal Autoregressive Moving Average (SARMA)
model, which is a method widely used when forecasting future behaviour on time series. Where
a seasonal time series is data with a repetitive pattern occurring at regular intervals. The next
section will look into properties of the time series and how to select suitable weights when
choosing forecasting models. The methods will first consider the univariate instance before
introducing the bivariate procedure with temperature and humidity observations. After the gen-
eral theory has been explained the data will be analysed and an appropriate multivariate seasonal
autoregressive moving average model will be fitted.

The SARMA model is often used in order to get an understanding of the data, and to predict
future behaviour. Additionally, since SARMA models can be transformed into state space rep-
resentation it is suitable for the prediction model, Kalman filter (Durbin and Koopman, 2001).
Before model fitting it is important to understand the behaviour and dependencies of the vari-
ables. Following this, a suitable bivariate model with preferred weights can be used when
implementing a model for the on-line monitoring.

4.1 Seasonal Autoregressive Moving Average Model (SARMA)

There are various methods to use when predicting in time series. Two attractive methods are
autoregressive (AR) and moving average (MA) models, where both depend linearly on the past
data points. Adding a new data point into the model will cause a removal of the last, such
that only the specified amount of data points will be considered in the model. To distinguish
between them, AR looks at the previous values in the data while MA uses a linear combination
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of independent variables of previous time steps. Combining these methods gives the autore-
gressive moving average (ARMA) model. Considering an ARMA model, then a data point Xt

at time t can be formulated as,

Xt = φ1Xt−1 + φ2Xt−2 + . . .+ φpXt−p + Zt − θ1Zt−1 − θ2Zt−2 . . .− θqZt−q, (4.1)

where Xt−i is the i’th previous data point, φi for i = 1, 2, ..., p and θj for j = 1, 2, ..., q are
parameters respectively of the AR and MA model, where p corresponds to the lagged factor for
AR and q is the order of the MA model. The ARMA model can then be written as ARMA(p, q).
We assume in this project that Xt is a mean zero and variance as σ2

Xt−i
, and Zt−j is Gaussian

independent and identically distributed with zero mean and variance σ2
Z (Everitt, 2014). One can

shift the process to another mean level, or include a non-stationary mean, for instance by using
covariates. For the model to be stationary and invertible there are certain requirements on φi

and θj which in return increases the certainty and possibilities when forecasting future values
(Brockwell and Davis, 2002). Some special cases with these requirements will be discussed
further below.

The simplest models would be the AR(0) and MA(0). However, this would imply that there
are no dependencies in the process. Increasing the models to AR(1) and MA(1) would give a
dependence with the previous data point and the equations can be written as,

AR(1): Xt = φ1Xt−1 + Zt (4.2)

MA(1): Xt = θ1Zt−1 + Zt. (4.3)

Here, φ1 6= 0 and θ1 6= 0 correspond to how dependent Xt is to the variables at the previous
time values. The two models have been simulated in R and are presented in Figure 4.1 and 4.2
for parameters either as a) φ1 = θ1 = 0.5 or b) φ1 = θ1 = 0.98.

Let us first consider the first case with AR(1) presented in Figure 4.1. A model is sta-
tionary if the mean and variance is independent of time. Assuming a stationary model, then
Var[Xt] = Var[Xt−1]. The expected value and variance for the AR(1) model from Equation
(4.2) are formulated as,

E[Xt] = φ1E[Xt−1] + E[Zt]

= 0

Var[Xt] = φ2
1Var[Xt−1] + Var[Zt]

= φ2
1Var[Xt−1] + σ2

Z

⇒ σ2
Z = (1− φ2

1)σ2
X . (4.4)

Here the mean is zero and the variance is independent of time. Because σ2
Z > 0 it follows

that 1 − φ2
1 > 0, and thus we have the requirement, |φ1| < 1 to make the model stationary. In
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(a) AR(1) model with φ1 = 0.5, with simulated
values in the interval [-2,2].
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(b) AR(1) model with φ1 = 0.98, with simulated
values in the interval [-1,3].

Figure 4.1: Simulated data over 200 time units for AR(1) models, with respect to Equation (4.2).

addition to being stationary, an AR model is always invertible because it can be expressed on
finite form, meaning that p <∞ (Brockwell and Davis, 2002).

Considering the two models with different values of φ1. In Figure 4.1a the simulated values
are quite jagged with little dependency. Moving to Figure 4.1b, the dependency with the pre-
vious data is higher and have little variation between the simulated variables. The variance in
Equation (4.4) with the values of φ1 gives,

φ1 = 0.5, σ2
Z = 0.56σ2

X

φ1 = 0.98, σ2
Z = 0.04σ2

X .

This is also representative for what can be seen in Figure 4.1, the simulations are stable within
the interval of [−2, 2] and [−1, 3]. However, the variability between each time step in Figure
4.1a is high because the variance for the white noise is multiplied with a large factor. In Figure
4.1b the variability between each time step is smaller as the factor is only 0.04. Of course, on
could enforce σ2

Z to be the same in both cases. Then σ2
X would be much smaller for the case

with small φ1.

Further, addressing the other model in Equation (4.3), simulations with two values for θ are
presented in Figure 4.2. A MA model, when

∑∞
j=−∞ |θj| < ∞, is always stationary, hence

MA(1) is stationary (Brockwell and Davis, 2002). When |θ1| < 1 the model is said to be
invertible. It can be difficult to see if a model is invertible or not, but when a MA model is
invertible it means that this model can be converted and expressed as an AR model. In this case,
from Equation (4.2) and (4.3), the inverted equation then becomes,

Xt = Zt + θ1Xt−1 − θ2
1Xt−2 + θ3

1Xt−3 − . . . .

In order to keep the dependency within close the closest point should have more significance
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(a) MA(1) model with θ1 = 0.5, with simulated
values on the interval [-3,3].
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(b) MA(1) model with θ1 = 0.98, with simulated
values on the interval [-4,4].

Figure 4.2: Simulated data over 200 time units for MA(1) models, with respect to Equation (4.3).

|θ1| < 1, if not the weight will increase when moving infinitely (Wei, 2006). Thus we have the
requirements on θ1, and also an invertible model. In conclusion, the AR and MA models will
be stationary and invertible if fulfilling the requirements |φ1| < 1 and |θ1| < 1.

The data might have observations with repetitive and periodic intervals, explained as a sea-
sonal behaviour. Figure 3.2 gives an example of data containing a seasonal trend. If the data
include seasonality it can be modelled as a seasonal ARMA process. This SARMA model is
written as ARMA(p, q)× (P,Q)s, where p and q are the same as previously explained, and cap-
ital letter corresponds to the same effect in the seasonality with s as the periodic order. Figure
4.3 shows two simulated SAR(1) × (1) models with a 24 hour seasonality term added to the
model. The equation for the SAR(1)× (1) model can be expressed as,

SAR(1)× (1): Xt = φ1Xt−1 + φ24Xt−24 − φ1φ24Xt−25 + Zt, (4.5)

where φ1 and φ24 are respectively the previous and 24 hour seasonal dependency for the current
point Xt. The model will also be slightly dependent on the data that are 25 hours behind, as the
two dependencies are multiplied together to give an additional lagged value. However, as φ1

and φ24 are both smaller than 1, the 25 hour dependence will be of a smaller size and not that
significant. In Figure 4.3 the values for φ1 and φ24 are the same as previously given in Figure
4.1, a) φ1 = φ24 = 0.5 and b) φ1 = φ24 = 0.98. The simulated models are stationary and
invertible, as the constraints on φ1 and φ24 still holds. Solving Equation (4.5) with respect to
the white noise variance this becomes,

σ2
Z =

(
1− φ2

1 − φ2
24 + φ2

1φ
2
24

)
σ2
X .

The simulations in Figure 4.3 are stationary with a higher variability between time steps in
Figure 4.3a. Because Figure 4.3b have a smaller variability the seasonality is better presented
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in this model. There are visible peaks for every 24hour, while in Figure 4.3a it seems to be more
random and with almost the same behaviour as in Figure 4.1a. However, the SAR(1)×(1) model
in a) is not as jagged as in the AR(1) model.
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(a) SAR(1)× (1) model with φ1 = φ24 = 0.5.
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(b) SAR(1)× (1) model with φ1 = φ24 = 0.98.

Figure 4.3: Simulated data over 200 time units for SAR(1)× (1) with respect to Equation (4.5).

Considering a seasonal process Xt, writing this on a general form with respect to an AR and
MA term, the equation becomes,

Φ(Bs)φ(B)Xt = Θ(Bs)θ(B)Zt, (4.6)

φ(B), θ(B), Φ(B) and Θ(B) can all be expressed as,

ΦP (Bs) =1− Φ1B
s − Φ2B

2s − . . .− ΦPB
Ps

φp(B) =1− φ1B
1 − φ2B

2 − . . .− φpB
p

ΘQ(Bs) =1−Θ1B
s −Θ2B

2s − . . .ΘQB
Qs

θq(B) =1− θ1B − θ2B
2 − . . .− θqBq,

where φ(B), θ(B),Xt and Zt are the same as in Equation (4.1) with p = q = 1, Φ(B) and Θ(B)

are the dependency with respect to the seasonality. B are the so called back shift operator which
indicate if Xt is dependent on the i’th previous point, i.e. BXt = Xt−1, B2Xt = Xt−2, etc..
Φ(B) and Θ(B) have the same constraints as were presented for φ(B) and θ(B), as they also
need stationary and invertible requirements on the model (Wei, 2006). In addition, φ(B), θ(B),
Φ(B) and Θ(B) can be expressed on respectively p’th, q’th, P ’th and Q’th degree polynomials.
Now B is changed with z, and establish the polynomials for φ(z), θ(z), Φ(z) and Θ(z). This
can be used when computing for the causality and invertibility requirements, |φ(z)| 6= 0 and
|Φ(z)| 6= 0 with |z| ≤ 1 (Brockwell and Davis, 1991).

From Equation (4.5) we had φ1 and φ24, with the latter value weighting on the seasonality
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s = 24. With Equation (4.5) and (4.6), SAR(1)× (1) becomes,

(1− Φ1B
24)(1− φ1B)Xt =Zt

(1− φ1B − Φ1B
24 + Φ1φ1B

25)Xt =Zt.

The simulated AR(1) and MA(1) models defined in Equation (4.2) and (4.3) have known
dependencies, p = q = 1. However, when data, such as the data from the solar panels in
this project, are given, the values of q and p will have to be determined based on information
stored in the data. The following methods are used when analysing the behaviour, and selecting
preferred values.

4.2 Data Analysis of Time Series, and Relation to ARMA

4.2.1 Autocovariance and Autocorrelation Function (ACF)

The models presented, AR(1), MA(1) and SAR(1) × (1), have all been assigned a weight and
dependency with the simulated data. This is normally not the situation and we will have to find
the dependencies within the temperature and humidity data. Hence, the idea of finding a useful
ARMA(p, q) × (P,Q) model is to identify suitable values for p, q, P and Q, and associated
parameter weights on φ1, ..., θ1, .., Φ1, ... and Θ1, .... The identification is based on information
possessed in the data, and autocorrelation function (ACF) is one method that can estimate some
of the underlying dependency within the data. The autocorrelation is a scaled version of the
autocovariance function. Considering two different times, t and t + k for observation Xt+i,
i = 0, k, then the covariance and correlation are given as,

γk =Cov[Xt, Xt+k] = E[(Xt − µ)(Xt+k − µ)]

ρk =
Cov(Xt, Xt+k)√

Var[Xt]
√

Var[Xt+k]
=
γk
γ0

. (4.7)

Here, γk and ρk represents the covariance and correlation between Xt and Xt+k from the same
process and are called the autocovariance function and autocorrelation function (Madsen, 2008).
The higher value the autocorrelation becomes the more dependent are the different times.

In Section 4.1 it was pointed out that an AR(1) model with φ closer to 1 means the current
observation is highly dependent on the previous time, and this can be observed in Figure 4.4a
and 4.4b. The dotted blue lines are computed as bounds of ±1.96n−1/2 with n = 200 (Brock-
well and Davis, 1991). The latter figure have a slowly decaying curve and reaches the horizontal
line after 25 lags, while in the first figure the line is reached after 6 lags. From Wei (2006) a
model can be assumed to have weights in an AR model if it is either tailing off exponentially or
decaying as a damped sine wave pattern. In this case, the two AR(1) models are tailing of ex-
ponentially. The performance of the two MA(1) models are presented in Figure 4.4c and 4.4d.
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(a) AR(1) model with φ = 0.5.
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(b) AR(1) model with φ = 0.98.
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(c) MA(1) model with θ = 0.5.
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(d) MA(1) model with θ = 0.98.

Figure 4.4: Autocorrelation functions plotted with the simulated data for AR(1) and MA(1) models,
with different weights of dependency. The horizontal dotted blue lines are the coverage probability of
95% confidence interval computed as ±1.96n−1/2 with n = 200.

In these figures it can be seen that the first two lags have high values while in the following lags
almost all of them are within the interval, meaning the correlation is insignificant for q + 1. In
this case q + 1 would be 2, as the two preceding lags are placed at 0 and 1. This was expected
because of the initialised simulated MA(1) model.

4.2.2 Partial Autocorrelation Function (PACF)

It can also be useful to look at the Partial Autocorrelation Function (PACF) when looking at
the dependency between two observations, Xt and Xt+k. The PACF at lag k, α(k), can be
considered as the conditional correlation between the two observations and are defined as,

α(1) =Corr(Xt+1, Xt) = ρ(1)

α(k) =Corr(Xt+k+1 − Ps̄p{1,X2,...,Xt+k}Xt+k+1, Xt+k − Ps̄p{1,X2,...,Xt+k}Xt+k) k ≥ 2,

(4.8)

where Ps̄p{1,X2,...,Xt+k} are the projection of Xt+i+1, for i = 0, k, spanned in {1, X2, . . . , Xt+k}.
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(a) AR(1) model with φ = 0.5.
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(b) AR(1) model with φ = 0.98.

−0.2

0.0

0.2

0.4

0 10 20 30 40 50

lag

pa
cf

(c) MA(1) model with θ = 0.5.
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(d) MA(1) model with θ = 0.98.

Figure 4.5: Partial autocorrelation functions plotted with the simulated data for AR(1) and MA(1) mod-
els, with different weights of dependency. The horizontal dotted blue lines are the coverage probability
of 95% confidence interval computed as ±1.96n−1/2 with n = 200.

The PACF is the correlation of two residuals obtained after regressing Xt+k and Xt on
the intermediate observations Xt+1, . . . , Xt+k−1, when k ≥ 2 (Brockwell and Davis, 1991).
The same observations explained in the previous section with MA and ACF can be used when
looking at lags and values for p in AR-models. In Figure 4.5a and 4.5b the lags after 1 are
below the confidence interval and can be considered as insignificant. For an AR(1) model the
theoretical PACF is 0 for lags k ≥ 2. Thus, we have an AR(1) model for both simulations with
different φ1. When it comes to Figure 4.5c and 4.5d the lags decline exponentially towards the
boundary, and are behaving as MA-models (Wei, 2006).

4.2.3 ACF and PACF with SARMA model

In the two previous sections, Section 4.2.1 and 4.2.2, ACF and PACF have been considered
for AR(1) and MA(1) models. The remaining model that were presented in Section 4.1 is the
SAR(1) × (1) model which have a seasonality term that will give an impact to the behaviour
of ACF and PACF. The same principles presented in Equation (4.7) and (4.8) are used and the

24



0.0

0.5

1.0

0 10 20 30 40 50

lag

ac
f

(a) ACF of SAR(1)× (1) model with
φ = 0.5.
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(b) ACF for SAR(1)× (1) model with
φ = 0.98.
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(c) PACF for SAR(1)× (1) model with
φ = 0.5.
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(d) PACF for SAR(1)× (1) model with
φ = 0.98.

Figure 4.6: Autocorrelation and partial autocorrelation functions are plotted with the simulated data for
SAR(1) × (1) models, with different weights of dependency. The horizontal dotted blue lines are the
coverage probability of 95% confidence interval computed as ±1.96n−1/2 with n = 200.

computed ACF and PACF for a SAR(1)× (1) can be seen in Figure 4.6.
It can be seen that there is a seasonality term that should be kept in consideration because

all four figures have an increased value after 24 lags. The size and number of lags that are
increased depends on how correlated the different times are with each other. Take for example,
SAR(1) × (1) in Figure 4.6b. This model have lags with higher dependency with lags tailing
off slower compared to the lags in Figure 4.6a. Looking at Figure 4.6c and 4.6d both give an
indication that p = 1 as the lags at p ≥ 2 are insignificant compared to the size in the first lag.

The observations presented in Section 4.1 and 4.2 demonstrate convenient methods to un-
derstand the data and processes to formulate models. At first it is important to look at the data to
get a picture of the behaviour and if there is any seasonal behaviour that should be considered.
After this the ACF and PACF can be plotted and studied to find suitable values for p and q.
These observations will give guidance and limit the model fitting. The appropriate model will
further on be used for predicting future behaviours of the data in the monitoring.
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4.3 Multivariate SARMA model and Cross-Correlation

The theory presented in the previous sections is presented with respect to univariate observa-
tions. When considering the outcome of several variables in a univariate model for each of
them could be presented independently. However, if these variables are correlated and seasonal,
considering two separate univariate models would most likely ignore important dependencies
(Härdle and Simar, 2015). One could therefore select appropriate weights and use a seasonal
multivariate ARMA model to deal with the dependency within the outcome. Figure 4.7 demon-
strates two highly correlated simulated times series. The performance of the simulations are
following each other closely which is expected as ρ = 0.9.
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Figure 4.7: Simulated multivariate time series that are correlated with factor ρ = 0.9. Both simulations
have φ = 0.9.

The theory presented in Section 4.1 and 4.2 is still relevant, and will be extended for mul-
tivariate instances. Simulations are presented as a bivariate instance because model fitting will
eventually be applied on temperature and humidity data from Chapter 3. Nevertheless, the
theory can be increased to m-variate instances.

4.3.1 Multivariate SARMA

From Section 4.1, instead of considering Xt as one data point, it should be defined as a vector
representation of several variables. Let Xt be a m-variate vector at time t. Then, a multivariate
ARMA(p, q)× (P,Q) model can be formulated as,

Φ(Bs)φφφ(B)Xt = Θ(Bs)θθθ(B)Zt, (4.9)

which is almost the same as Equation (4.6). However, Φ(Bs), φφφ(B), Θ(Bs) and θθθ(B) could
previously be reformulated and defined as linear polynomials. In the multivariate process these
equations are matrix-valued polynomials with m × m matrices, where m is the number of
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variables. In addition, Zt is the multivariate white noise, Zt ∼ WN(0,ΣWhite) (Brockwell and
Davis, 1991).

For simplicity, disregard the seasonality term in Equation (4.9) and define separatem-AR(1)

and m-MA(1) models. With m = 2, Xt = [x1, x2]Tt and Zt = [z1, z2]Tt the bivariate models
become,

2− AR(1) :

[
x1

x2

]
t

=

[
φ

(1)
11 φ

(1)
12

φ
(1)
21 φ

(1)
22

][
x1

x2

]
t−1

+

[
z1

z2

]
t

2−MA(1) :

[
x1

x2

]
t

=

[
θ

(1)
11 θ

(1)
12

θ
(1)
21 θ

(1)
22

][
z1

z2

]
t−1

+

[
z1

z2

]
t

.

On a compressed form the equations can be written as,

2− AR(1) : Xt =φφφ1Xt−1 + Zt (4.10)

2−MA(1) : Xt =θθθ1Zt−1 + Zt. (4.11)

The off diagonal elements in both models represents how much one variable can be explained
by the other variables at different times. The diagonal elements explain the dependency with
their respective variables. Equation (4.10) and (4.11) can be merged together and extended to a
seasonal multivariate model as in Equation (4.9).

The requirements to keep a multivariate SARMA model stationary and invertible are based
on the previous requirements for an AR- and MA-model. Nevertheless, as we are extending
to matrix-polynomials the definitions should be presented on this form. Chapter 3 and 11 in
Brockwell and Davis (1991) provide with necessary criteria and proof for a multivariate ARMA
model to have causal and invertible representation. The requirements are defined as,

Causality Criterion: detφφφ(z) 6= 0 ∀z ∈ C s.t. |z| ≤ 1 (4.12)

Invertibility Criterion: detθθθ(z) 6= 0 ∀z ∈ C s.t. |z| ≤ 1. (4.13)

Changing φφφ(z) and θθθ(z) with respectively ΦΦΦ(z) and ΘΘΘ(z) contribute with necessary require-
ments for the seasonal polynomial. Thus, Equation (4.12) and (4.13) present the requirements
on causality and invertibility for a multivariate SARMA model.

4.3.2 Auto- and Cross-Correlation

As presented in Section 4.2.1, autocorrelation measure how a series is correlated with itself at
distinctive lags, and would visualise which lags are more dependent on each other. This would
suggest which lags should be included in the SARMA model to predict future values. It is still
relevant to apply this on a multivariate model, to see how each feature is dependent with itself.
Furthermore, as the observations are correlated with each other, an auto and cross-correlation
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should be studied to see the degree of correlation, and at which lags the series are most cor-
related. From Section 4.2.1 the autocorrelation ρk at lag k is defined as in Equation (4.7).
Extending and defining Γ(k) and P(k) as respectively the autocovariance and autocorrelation
matrices. Then Harvey (1990) presents Γ(k) and P(k) at lag k ≥ 0 as,

Γ(k) =φφφkΓ(0)

P(k) =D−1
0 Γ(k)D−1

0 , (4.14)

where φφφ is the same as presented earlier and D2
0 = diag[γ11(0), . . . , γmm(0)] with m corres-

ponding to the m-variate model. The cross-correlation between the ij’th element in P(k) at lag
k becomes,

ρij(k) =
γij(k)√

γii(0)γjj(0)
. (4.15)

The same application and determination considering model selection of an AR(p) and MA(q)
model is used for a multivariate model. In addition, cross-correlation will help in determining
which and how much features are correlated with each other. Figure 4.8 presents the auto- and
cross-correlated function for the simulated bivariate ARMA(1, 0) model from Equation (4.9)
and Figure 4.7. The simulated data is exponentially decreasing towards the dotted blue lines.
Because of the heavy weight on φ the closer to lag 1 the more correlated are time lags with each
other. As ρ = 0.9 it can be seen that the first lags in the off diagonal plots are high as the two
features are correlated. Additionally, there are no contribution from a MA-model which make
sense as θ in the simulated data is 0.

4.3.3 Partial Auto Cross-Correlation

Partial autocorrelation in a univariate setting looks at how the time series at one lag is correlated
with itself at other previous lags, i.e. how Xt alone is correlated with Xt−1 and not looking
at how Xt−1 is explained by other previous correlations as well. Thus, extending this to a
multivariate model would compute the partial autocorrelation with a matrix with m number of
features. The partial autocorrelation on matrix form are similar to Equation (4.14), except linear
dependence at intervening lags are removed. Wei (1985) define it as,

P(k) = Dv(k)−1Vv,u(k)Du(k)−1, (4.16)

where Dv(k)−1 and Du(k)−1 are the diagonal matrices presented in Section 4.3.2 with the
i’th diagonal element as the square root of respectively the i’th element in var(vk−1,t) and
var(uk−1,t+k). Vv,u is the covariance between vk−1,t and uk−1,t+k, which are residuals from a re-
gression of Xt and Xt+k after removing the linear dependence on the vectors at the intervening
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Figure 4.8: Auto- and cross-correlation functions are plotted with simulated bivariate data that are cor-
related with ρ = 0.9. The data are simulated with φ = 0.9 and θ = 0.1. Plotted figures placed diagonal
from top left are ACF with itself while figures placed diagonal left bottom are the cross-correlation.
The horizontal dotted blue lines are the coverage probability of 95% confidence interval computed as
±1.96n−1/2 with n = 200.

lags, Xt+1, . . . , Xt+1−k (Wei, 1985, 2006).
Figure 4.9 presents the partial auto- and cross-correlation for the simulated data in Figure

4.7. In Section 4.2.2 values for respectively an AR(p) model can be verified by looking at the
partial autocorrelation. In the diagonal plots we have high values at the first lag, indicating that
the simulations certainly have dependency with the previous lag which suggests that we have an
AR(1) model for both simulations. The partial cross-correlation on the off-diagonal elements
suggest how much information in one simulation is explained by the other. It can be seen that
there are some lags outside the confidence interval, but this behaviour can be considered as
random as there are no clear trend of these occurrences.
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Figure 4.9: Partial auto- and cross-correlation functions are plotted with simulated bivariate data that
are correlated with ρ = 0.9. The data are simulated with φ = 0.9 and θ = 0.1. Plotted figures placed
diagonal from top left are PACF with itself while figures placed diagonal left bottom are the partial cross-
correlation. The horizontal dotted blue lines are the coverage probability of 95% confidence interval
computed as ±1.96n−1/2 with n = 200.

4.4 Model Fitting on Data

The principles presented in Section 4.2 and 4.3 are applied to the data presented in Chapter 3.
To establish suitable values for p and q, ACF and PACF are plotted to analyse the dependence
between hours. After identifying the preferred values for the data different models will be fitted
to analyse the prediction quality of the model and its performance. The optimal model will be
selected based on computed log likelihood, Akaike Information Criterion (AIC) and Residual
Sum of Squares (RSS).

4.4.1 ACF and PACF

ACF and PACF are plotted in Figure 4.10 and 4.11 for humidity and temperature data measured
in September. Figure 4.10 shows that the data have a seasonal trend for each 24 hour in both
observations, s = 24. Addition to the seasonality, the data are tailing of as an exponential
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decay. This imply that the data should include an AR term. The cross-correlation term seems to
imply that there are some correlation between the observations, which was expected based on
the analysis from Figure 2.5.

In Figure 4.11 temperature and humidity data cut off after different lags. Considering tem-
perature, the data cut-off right after lag 1, whereas humidity after lag 3. This indicate that the
model should have at most p ≤ 3. Lag 3 is close to the boundary of the confidence interval and
thus it could be assumed that p ≤ 2. The cross-correlation term when temperature is correlated
with humidity have little significance. However, the cross-correlation between humidity and
temperature have some lags outside the confidence interval, and it can be assumed that there
might be some dependency with the variables when constructing models.

To include MA terms into the model the observations in ACF and PACF should be the
opposite as was presented for AR, meaning a cut-off in PACF and tail-off in ACF (Wei, 2006).
As this is not the case in Figure 4.10 and 4.11 it can be assumed that q = 0. Therefore, these
observations suggest that the temperature and humidity data is a seasonal AR model with p ≤ 2.
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Figure 4.10: Auto- and cross-correlation functions are plotted with humidity and temperature data
collected at NTNU in September. ACF for each observation are plotted on the diagonal while cross-
correlation are on the off-diagonal. Temperature are plotted top left and humidity bottom right. The hori-
zontal dotted blue lines are the coverage probability of 95% confidence interval computed as±1.96n−1/2

with n = 200.
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Figure 4.11: Partial auto- and cross-correlation functions are plotted with humidity and temperature
data collected at NTNU in September. PACF for each observation are plotted on the diagonal while
cross-correlation are on the off-diagonal. Temperature are plotted top left and humidity bottom right.
The horizontal dotted blue lines are the coverage probability of 95% confidence interval computed as
±1.96n−1/2 with n = 200.

4.4.2 Model Fitting

In this thesis two different ways of verifying the model fitting will be considered. One is to
see how the model explains the variation in the data which it is fitted on, while the other looks
at how well the model predicts new data. Various models are fitted with the principles behind
Occam’s razor and computed log-likelihood, Aikaike Information Criterion(AIC) and Residual
Sum of Squares(RSS). The log-likelihood and AIC measure of how well the model explains
the variation and RSS its predictive performance. The observations in Figure 4.10 and 4.11,
and suggested values of p, q and s, gives an indication of how large the models should be.
Hence, the previous observation helps to narrow possibilities into a limited course of action. In
Figure 4.12, 4.13 and 4.14 some models with different p, q, P and Q are presented. Table 4.1
summarise the results from these figures and also include additional results from other models.

When evaluating the model performance, the estimated error needs to be unbiased of the
model fitting. Therefore, to construct the preferred and final model data from the 100 first
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observations collected in September is selected. These observations are separated into data
used for model fitting and validation. Models are fitted with the function marima included in
marima R package. To verify the performance of the model, respecting how it explains the
variation in the data, log-likelihood and AIC is computed,

loglik =
N∑
i=1

logP (µ̂µµ|Y = yi), (4.17)

AIC =− 2

N
loglik + 2

d

N
. (4.18)

Where P (µ̂µµ|Y = yi) is the conditional probability when µ̂µµ = f(φ̂φφ, θ̂θθ), yi as observations at
time i, N is number of observations and d correspond to number of fitted parameters (Hastie
et al., 2001). However, log-likelihood compute the sum over all probabilities leaving aside the
complexity of the model. Therefore, using AIC that include a penalising factor gives more
weight to models with large d. In R this is obtained with dmvnorm from emdbook package
used with estimated µ̂µµ and Σ̂ computed from the marima-model.

To verify the model performance, when considering the prediction accuracy, the observed
data is used to compare with the predicted values. This is computed as,

RSS =
m∑
i=1

(yi − ŷi)2, (4.19)

with yi and ŷi respectively as the observed and predicted value and summing over m total num-
ber of predictions. Equation (4.19) is a general representation and can be used for validating
both temperature and humidity. In addition to compute RSS for both observations the aver-
aged RSS is also calculated. The preferred model, with respect to model fitting and validation,
will be the one having smallest values of AIC and averaged RSS. Table 4.1 presents results of
various combinations of p and q, with p, q ≤ 1. Isolating performance on the AIC and RSS
gives ARMA(1, 1) × (1, 1) and ARMA(0, 0) × (1, 0) as preferred models with AIC= −20.95

and RSSAvg = 1053.45 respectively. The models and their performance are plotted in Figure
4.12. Even though ARMA(0, 0) × (1, 0) performed well with the prediction accuracy it ap-
pears that the model explains the variation bad, and have the second worst AIC in Table 4.1.
Considering ARMA(1, 1) × (1, 1), this model explains the data variation finest. Nonetheless,
when considering the model complexity, there are other less complex models with a similar
prediction accuracy. Therefore, some of the other models should be studied for additional veri-
fication. Figure 4.13 presents two simple models without seasonality, ARMA(1, 0) × (0, 0)

and ARMA(0, 1) × (0, 0). Both instances have high RSSAvg and AIC, seen in Table 4.1. Per-
formance of the predictions are also bad as they do not capture the seasonal behaviour. Thus,
models with dependency purely on the previous time are even worse than the models presented
in Figure 4.12.
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Table 4.1: Presenting performance of different adapted models. Output of results from R with AIC,
log-likelihood and RSS from Equation (4.17), (4.18) and (4.19) are presented.

Model LogLik AIC RSSTemp RSSHumi RSSAvg

ARMA(1, 0)× (0, 0) −170.11 −13.53 338.34 2198.06 1268.20
ARMA(0, 1)× (0, 0) −194.00 −15.44 5494.76 325870.08 165682.42
ARMA(1, 1)× (0, 0) −171.92 −13.59 367.57 2176.29 1271.93
ARMA(2, 0)× (0, 0) −172.83 −13.67 362.03 2206.96 1284.50
ARMA(2, 1)× (0, 0) −178.84 −14.07 571.23 5932.06 3251.64
ARMA(0, 0)× (1, 0) −152.10 −12.09 308.24 1798.66 1053.45
ARMA(0, 0)× (0, 1) −194.73 −15.50 904.28 19145.40 10024.84
ARMA(0, 0)× (1, 1) −151.18 −11.93 1200.78 2194.34 1697.56
ARMA(1, 0)× (1, 0) −210.63 −16.69 498.61 2919.20 1708.91
ARMA(0, 1)× (0, 1) −192.94 −15.28 5494.08 65598.47 35546.27
ARMA(1, 1)× (1, 0) −241.70 −19.10 311.29 4500.00 2405.65
ARMA(1, 1)× (0, 1) −181.02 −14.24 55.71 6409.54 3232.63
ARMA(1, 1)× (1, 1) −265.94 −20.95 315.21 2948.71 1631.96

5

10

15

20

0 10 20 30 40 50

Hour

Te
m

pe
ra

tu
re

 [°
C

]

(a) Temperature, ARMA(0, 0)× (1, 0)

30

60

90

120

0 10 20 30 40 50

Hour

R
el

at
iv

e 
hu

m
id

ity
 [%

]

(b) Humidity, ARMA(0, 0)× (1, 0)

10

15

20

0 10 20 30 40 50

Hour

Te
m

pe
ra

tu
re

 [°
C

]

(c) Temperature, ARMA(1, 1)× (1, 1)

25

50

75

100

0 10 20 30 40 50

Hour

R
el

at
iv

e 
hu

m
id

ity
 [%

]

(d) Humidity, ARMA(1, 1)× (1, 1)

Figure 4.12: Models selected with AIC and RSS from results in Table 4.1. Selected model with AIC is
plotted to the bottom while the averaged RSS is plotted to the top. Dotted lines are the 95% prediction
interval, black lines are the performance of the model, the dark colours are observations and light colours
are predictions.
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(d) Humidity, ARMA(0, 1)× (0, 0)

Figure 4.13: Model performance when inspecting simple models. Dotted lines are the 95% prediction
interval, black lines are the performance of the model, the dark colours are observations and light colours
are predictions.

From Table 4.1 the second best model with respect to AIC is ARMA(1, 1) × (1, 0). How-
ever, RSSAvg is high, and would not contribute to a well enough model. The next best is
ARMA(1, 0) × (1, 0) with AIC = −16.69. In this model RSSAvg = 1708.91 which is close
to the RSSAvg for ARMA(1, 1) × (1, 1). Figure 4.14a and 4.14b present the performance of
ARMA(1, 0) × (1, 0), and have the same behaviour as ARMA(1, 1) × (1, 1). Therefore, Oc-
cam’s razor and RSSAvg would suggest ARMA(1, 0)× (1, 0) as the best possible model.

It was assumed from PACF in Figure 4.11, that the data should be a seasonal AR model
with p ≤ 2. Figure 4.14 compares the current most suitable model, ARMA(1, 0)× (1, 0), with
an increased model ARMA(2, 0) × (1, 0). The two models have both similar behaviour to the
observed temperature and humidity. Table 4.2 present the performance of the two models. The
increased model have an AIC slightly better, however, RSSAvg is huge. The preferred model
with respect to AIC and RSSAvg is still ARMA(1, 0)× (1, 0).

When fitting ARMA(1, 0) × (1, 0) in marima it is possible to adjust the degree of penalty.
This penalty is used in order to reduce the complexity of the model. To verify the penalty size,
data from the 96 first observations were divided into 4 different data set with 24 hours in each.
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(d) Humidity, ARMA(2, 0)× (1, 0)

Figure 4.14: Comparing model performance when p is increased. Dotted lines are the 95% prediction
interval, black lines are the performance of the model, the dark colours are observations and light colours
are predictions.

Table 4.2: Presenting performance of different adapted models. Output of results from R with AIC,
log-likelihood and RSS from Equation (4.17), (4.18) and (4.19) are presented.

Model LogLik AIC RSSTemp RSSHumi RSSAvg

ARMA(1, 0)× (1, 0) −210.63 −16.69 498.61 2919.20 1708.91
ARMA(2, 0)× (1, 0) −226.36 −17.87 356.84 4671.29 2514.07

This is because time series are dependent on the order they are measured and information would
be lost if changing the order of time steps. Nevertheless, data can be divided into subgroups
as the data have a seasonality of 24 hours. Models will be fitted with three subgroups forming
the training data, while the latter subgroup will test the performance of the fitted model and
compute RSSAvg. Each penalty factor, fpen ∈ {0, 2, 4, 6, 8, 10, 12, 14}, is calculated four times
to let all subsets form test data. The computed averaged RSSAvg for fpen are presented in Table
4.3.
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Table 4.3: Presenting performance of ARMA(1, 0) × (1, 0) when different intensity on the penalty
factor fpen. Output are the averaged RSSAvg from the four different test data formed from the 96 first
observations collected in September.

fpen RSSAvg

0 1673.575
2 1525.989
4 1527.445
6 1503.274
8 1503.274
10 1401.485
12 1550.395
14 1550.395

The preferred model with respect to intensity of penalty factor would give the lowest RSSAvg,
which in this case is with fpen = 10. Thus, ARMA(1, 0) × (1, 0) with fpen = 10 is the model
that will be used further when adapting the seasonal Kalman filter in Chapter 5 and monitoring
in Chapter 6.
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Chapter 5
Filtering

Filtering is one common approach used in time series when predicting variables or estimating
new observations that will occur in the future. When the variables are non-observable the model
should look at an approach for describing the latent system. State space representations are
based on the Markov property, meaning that the future of an observation is independent of the
past knowledge, given the current state. In our case, with seasonality, it looks at previous data
points in a specified time window (Wei, 2006). Additionally, extending into multivariate data
would mean that all variables should be considered in the time window.

Kalman filter is one method that uses state space representation when estimating and fore-
casting for future states. Thus, this section will start with explaining the state space representa-
tion before introducing the Kalman filter for an univariate non-seasonal model. After explaining
the theory the model is first increased into a seasonal model before extending the Kalman filter
into a multivariate seasonal model. This is to make sure that the results obtained in Section
4.4.2 can be used in the on-line monitoring with temperature and humidity data.

5.1 State Space

Models built on the relationship between input and output are said to have an external descrip-
tion of the system. However, extracting information from the system can be challenging and
not that transparent. In such manner would a state space representation that study the dynamics
of the system and use the internal description of the system be more beneficial (Madsen, 2008).

A system with this challenge, and represented on state space form, have an observed ran-
dom variable Yt that want to estimate the hidden unknown variable Xt. The relationship
between Xt and Yt is investigated with the statistical inversion. With the Bayesian way of
thinking, this means that we want to compute the joint posterior distribution of all the states
x0:T = {x0, . . .xT}, given all of the measurements y1:T = {y1 . . .yT}, and can be accom-
plished by using Bayes rule (Särkkä, 2002). If this were to be used in a dynamical system for
on-line monitoring, computing the distribution would soon be complex and difficult. This is
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because each time a new observation is registered the distribution need to be computed, which
generate an increased complexity when escalating the time step. One solution is to only look at
the marginal distribution of the current state and apply Markov sequence to the dynamic state
model. The properties of a Markov sequence is that it only looks at the present state and not the
past history when predicting future states (Everitt, 2014). A probabilistic way of expressing the
state space model using density functions can be as,

x0 ∼ p(x0)

xt ∼ p(xt|xt−1) (5.1)

yt ∼ p(yt|xt),

where x0 is the initial distribution, xt is the dynamical model described as a first-order Markov sequence
and yt is the measurement where conditional independence is assumed to hold for the measure-
ment model i.e. p(yt|x1, . . . xt, y1 . . . yt−1) = p(yt|xt) (Särkkä, 2002).

With some modifications a linear state space representation can be formulated on a matrix-
vector form, with a system and observation equation,

System equation: Xt =AXt−1 + e1,t (5.2)

Observation equation: Yt =CXt + e2,t. (5.3)

Here Xt is a stochastic m-dimensional state vector based on latent states, Yt is the observation
vector. Both e1,t and e2,t are noise terms, respectively for the system and observation, and are
random vectors described by,

E[e1,t] =E[e2,t] = 0

C[e1,t, e1,s] =

Var[e1,t] = Σ1, for s = t

0, for s 6= t
(5.4)

C[e2,t, e2,s] =

Var[e2,t] = Σ2, for s = t

0, for s 6= t
(5.5)

C[e1,t, e2,s] =0 ∀s, t

Lastly, the matrices A, C, Σ1 and Σ2 are known matrices (Madsen, 2008).

Särkkä (2002) suggests in Bayesian filtering and smoothing to use some marginal distribu-
tions for the three different procedures in state space representation; filtering, prediction and
smoothing. Using marginal distributions will only require a constant number of predictions,
and are solving the complex problem. In this project the two first marginal distributions, filter-
ing and prediction, will be presented and used further as this is what Kalman filter apply in its
recursive procedure. These distributions can be explained as,
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• Prediction: Try to predict the future state Xt+i while being in the current state, Xt.
The marginal distribution for the i’th future state when being in state t is given as,
p(xt+i|y1,y2, . . . ,yt).

• Filtering: The prediction in the current position, Xt, can be corrected based on the know-
ledge obtained in the observed data, Yt. The marginal distribution in state t is given as,
p(xt|y1,y2, . . . ,yt).

In the Kalman filter, working for linear systems as in Equation (5.2) and (5.3), the correction is
a linear combination between the old prediction and the current prediction error which will be
seen in the next section.

5.2 Kalman Filter

The marginal distribution p(xt|y1:t) that solves the filtering problem in Section 5.1 should be
computed at time t for state Xt. Each time step is computed with respect to the previous obser-
vation until the current time t. The Bayesian filtering can be arranged as a Kalman filter which
is a closed form solution to the filtering problem, and uses the same equations from the state
space representation, Equation (5.2) and (5.3).

To obtain the optimal reconstruction and prediction with Kalman filtering, and also other
closed form solutions for the Bayesian inference, prediction and reconstruction steps access the
previous estimations. Before starting the recursion of these steps the prior knowledge in the
model is defined as,

Initialisation:


X̂1|0 = E[X1] = µµµ0

Σxx
1|0 = V[X1] = V0

Σyy
1|0 = CΣxx

1|0CT + Σ2

(5.6)

Here µµµ0 and V0 are respectively the mean and covariance of X1, and Σ2 is the same as defined
in Equation (5.5).

The prediction of a future value of Xt uses Equation (5.2) when updating for the next time
step. In addition to predicting the next step the covariance in this step should also be updated
and the updates are,

Prediction:


X̂t+1|t = AX̂t|t

Σxx
t+1|t = AΣxx

t|tA
T + Σ1

Σyy
t+1|t = CΣxx

t+1|tC
T + Σ2

(5.7)

where X̂t+1|t is the prediction for the next time step, Σxx
t+1|t and Σyy

t+1|t are the covariances for
the variable Xt and observation Yt respectively.
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After prediction of the states, the estimates should be revised by adding a correction to the
update. This is achieved by using the Kalman gain. The equations for the optimal reconstruction
of the system X̂t|t and covariance Σxx

t|t are,

Reconstruction:


Kt = Σxx

1|t−1CT
(
Σyy

t|t−1

)−1

X̂t|t = X̂t|t−1 + Kt

(
Yt − CX̂t|t−1

)
Σxx

t|t = Σxx
t|t−1 −KtΣ

yy
t|t−1K

T
t

, (5.8)

where Kt is the Kalman gain correcting the estimated state.

The prediction and reconstruction step in Equation (5.7) and (5.8) are used together when
there are observations in the system. The reconstruction step uses Yt when correcting the pre-
diction. Therefore, when observations are missing, or we are predicting future states, the pre-
diction step will only be considered. This is relevant when monitoring on-line processes that
are predicting future states. Based on these predictions the model can plan ahead and decide
because of the knowledge obtained in current time step.

5.3 Seasonal Kalman Filter

Before introducing the multivariate seasonal Kalman filter, an univariate seasonal model with
the augmented formulations should be presented. Section 4.1 present a 24 hour seasonal uni-
variate ARMA model in Equation (4.6). This model look back at observations 24 hours earlier,
and also at observations one hour earlier. The seasonal model is put into state space form and
formulated with principles from (4.1),

(1− Φ24B24)(1− φ1B)Xt =ut

(1− φ1B− Φ24B24 + φ1Φ24B25)Xt =ut

Xt − φ1Xt−1 − Φ24Xt−24 + φ1Φ24Xt−25 =ut, (5.9)

where φ1 and Φ24 are respectively the weights for one hour and 24 hour terms. The state space
equation have to be transformed to make it accessible and understandable for the algorithm
presented in Section 5.2. Equation (5.2) and (5.3) need to be studied in order to fit the season-
ality. The adjustment is that A, e1,t and C are matrices. The first two are respectively 25 × 25

and the latter matrix is 25× 1. The reason for expansion into matrices is in order to keep track
of the seasonality seen in Equation (5.9). For the system equation, with respect to Xt−1, Xt−24
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and Xt−25, the recursion 24 hours back is formulated as,

Xt = φ1Xt−1 + Φ24Xt−24 − φ1Φ24Xt−25

Xt−1 = Xt−1

Xt−2 = Xt−2

...

Xt−24 = Xt−24.

Hence, by defining Xt = (Xt, Xt−1, . . . , Xt−24), A is a 25 × 25 matrix due to the seasonality.
This also impacts the observation variables at the given time, so C will be 25× 1. The matrices
become,

A =



φ1 0 0 . . . 0 Φ24 −φ1Φ24

1 0 0 . . . 0 0 0

0 1 0 . . . 0 0 0
... . . . ...
... . . . ...
0 0 0 . . . 1 0 0

0 0 0 . . . 0 1 0



C =
[
1 0 0 . . . 0 0

]
In addition to the matrices corresponding to the state space model the variance of the random

noise should also be written with respect to the augmented form with seasonality. The variance
to the process is of the size 25× 25 as it consider the uncertainty in the system we are working
on. Because the variance of the process should be counted for one time, at the current time t,
σ2

Pro will only be mentioned in position (1, 1) in the matrix. The other variance σ2
Obs are with

respect to the observation and of the size 1× 1 as it is only one observation for each time step.

Σ1 =


σ2

Pro 0 . . . 0 0

0 0 . . . 0 0
... . . . ...
0 0 . . . 0 0



Σ2 = σ2
Obs

Finally, the seasonal ARMA model from Equation (4.6) can be formulated on a state space
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form with 25 latent variables at each time step. The values that are used for φ1 and Φ24 can
be chosen from a fitted ARMA(1, 0) × (1, 0) model. Additionally, the seasonal representation
of Kalman filter with the augmented version can be extended further to a multivariate seasonal
Kalman filter.

5.4 Multivariate Seasonal Kalman Filter

The data used in this project are multivariate with two observations, temperature and humidity.
Additionally, the results in Section 4.4.2 suggest a multivariate ARMA(1, 0) × (1, 0) model.
Thus, a multivariate seasonal Kalman filter should be implemented in the on-line monitoring.
This requires the results in Section 5.3 to be augmented further. Equation (5.9) present the
seasonal ARMA(1, 0)× (1, 0) model on state space form with Xt = (Xt, Xt−1, . . . , Xt−24) for
respectively one variable.

Before introducing the full system with complete extension of matrices a simple case with
dependency only on the previous lag is considered, meaning a bivariate AR(1) model. Define
Xj,t with j ∈ {A,B} at time t as,

Xt =

[
XA,t

XB,t

]
. (5.10)

The computed weights with dependency to the previous lag are defined as φj,1 and φj′j,1 with
j′ ∈ {A,B} 6= j. The latter weight resemble the contribution of the alternate variable j′ when
predicting the status on variable j. Defining the observations Yj,t similarly as Equation (5.10).
Then the total set of system and observation equations for a bivariate AR(1) model are similar
to Equation (5.2) and (5.3) and becomes,[

XA,t

XB,t

]
=

[
φA,1 φAB,1

φBA,1 φB,1

][
XA,t−1

XB,t−1

]
(5.11)[

YA,t

YB,t

]
=

[
1 0

0 1

][
XA,t

XB,t

]
. (5.12)

The weights in A are computed when fitting a model with marima in R. Further, the recursion
in Equation (5.7) and (5.8) require covariances for Xt and Yt, the uncertainty in process and
observation, respectively Σ1 and Σ2,

Σ1 =

[
σ2
A,Pro σ2

AB,Pro

σ2
BA,Pro σ2

B,Pro

]
(5.13)

Σ2 =

[
σ2
A,Obs 0

0 σ2
B,Obs

]
(5.14)
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To accommodate the requirements from Section 4.3 the bivariate model should increase
number of dependent lags into a 24 hour seasonality. Including the seasonal dependency Xt

should be extended to,

Xt =



XA,t

XB,t

XA,t−1

XB,t−1

...
XA,t−24

XB,t−24



The size of A in Equation (5.11) is 2 × 2 because the two variables are only depending on
the previous lag. If number of dependent lags is increased, then each time step for a bivariate
system will have a sub-matrix of size 2 × 2 together forming A. Thus, with the increase of
Xt into a 50 × 1 matrix A becomes 50 × 50. For simplicity, assume A can be organised with
sub-matrices of 2× 2 as,

ai =

[
φA,i φAB,i

φBA,i φB,i

]
(5.15)

with i indicating which lag current time are dependent on and how much weighted it is. Adding
these matrices together would form A,

A =



a1 0 . . . 0 a24 a1a24

I 0 . . . 0 0 0

0 I . . . 0 0 0
... . . . ...
... . . . ...
0 0 . . . I 0 0

0 0 . . . 0 I 0


(5.16)

with I and 0 as respectively the identity and zero matrix with size 2× 2.

Then C in the observation equation becomes 2× 50,

C =

[
1 0 0 . . . 0 0 0

0 1 0 . . . 0 0 0

]

The covariances for Xt and Yt follow the same procedure as when increasing into a seasonal
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univariate model and use the covariances from Equation (5.13) and (5.14),

Σ1 =



[
σ2
A,Pro σ2

AB,Pro

σ2
BA,Pro σ2

B,Pro

] [
0 0

0 0

]
. . .

[
0 0

0 0

]
[

0 0

0 0

] [
0 0

0 0

]
. . .

[
0 0

0 0

]
... . . . ...[

0 0

0 0

] [
0 0

0 0

]
. . .

[
0 0

0 0

]



Σ2 =

[
σ2
A,Obs 0

0 σ2
B,Obs

]

In summary, the bivariate SAR(1)× (1) model can be formulated on a state space form with
25 latent observations for both variables at each time step. Recall Section 4.4.2 with model
fitting and constructing models. The values that are used in the Kalman filter were chosen from
the fitted multivariate ARMA(1, 0)× (1, 0) with the 100 first data points from the north-facing
solar panel. The weights are,

a1 =

[
−1.002 −0.029

0.0 −0.866

]

a24 =

[
−0.389 0.023

0.0 −0.360

]

This shows that following observations are more dependent on the previous time step than 24

hours earlier. In addition, the two variables are mostly explained by their previous observations,
and φAB,1 and φAB,24 are small so most probably insignificant during monitoring. The linear
state space model makes it possible for us to use methods, such as the Kalman filter, when
studying on-line monitoring schemes.
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Chapter 6
Monitoring

The models and methods that have been presented in the previous chapters are based on collec-
ted data and have been implemented into an on-line monitoring process, with a goal of reducing
the number of observations and maximising energy output. Collecting information is done by
either measuring observations or predicting observations using the predictive model from Sec-
tion 5.4. This on-line monitoring can possibly take part in a bigger IoT system to obtain efficient
data collection and monitoring of devices in systems such as smart houses.

In this chapter we will look into what happens when monitoring an on-line process with
criteria to obtain i) energy surplus and ii) accuracy on predictions. The criteria use a threshold
to tell when to observe the temperature and humidity rather than just predicting future obser-
vations without conducting measurement at the current time. To have models with a specific
purpose, that make decisions based on the value of information, can assist the data collecting
and make the monitoring more energy efficient (Eidsvik et al., 2015). Because there are multiple
preferences in this monitoring the threshold could be combined into a multicriteria optimisation
with a trade-off between the different objectives. As there are possibilities to obtain various
optimal solutions, similar principles as in a Pareto optimal solution is considered (Doumpos
and Zopounidis, 2014).

In all scenarios the principles and equations from Section 5.2 and 5.4 are used, Equation
(5.6), (5.7) and (5.8). Temperature and humidity observations from the first 100 hours in the
north-facing solar panel collected in September have been used to construct the model. The pro-
ceeding data are used for monitoring over a 7 days interval. Because the model is implemented
with respect to an energy surplus, no energy will be saved to charge the battery, thus, the battery
percentage will either be constant or diminish. This on-line monitoring has been implemented
to a general bivariate case and any data with a 24-hour seasonal trend could in principle be used
in this optimisation.

This chapter will start by presenting the two different objectives, maximising energy output
and reducing the number of observations, and how they are computed. Further, three scenarios
with different weights will be examined; close to the different objectives, i) or ii), and a case
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with both objectives treated equally. The last part in this chapter will consist of a comparison
between the different constraints. The solutions will be compared with the total amount of
energy surplus and RSS defined in Equation (4.19) computed for temperature and humidity.

6.1 Objectives

Composing energy efficient processes with required performance accuracy depend on how the
system is defined and the given constraints. Because the two objectives, prediction accuracy and
energy surplus, have different goals their constraints are defined individually in the following
sections. A generic flow of the on-line monitoring is presented as a decision tree in Figure 6.1.
The tree visualise the process handled at each time step during the monitoring. The first step

Λ

Measurement

Prediction

λ1

λ2

Figure 6.1: Visualising the behaviour of the monitoring and how decisions are managed based on the
comparison with the threshold values Λ, λ1 and λ2. Green circle indicate if a prediction is executed and
red circle if an observation is made, and some battery percentage is transmitted.

at threshold Λ decides whether to a) measure temperature and humidity or b) predict the next
observations. Prediction is indicated by a point coloured green. The model will always give a
surplus of energy when predicting, which is symbolised with a red point in the figure. However,
if the decision is to measure the next temperature and humidity there are several outcomes, a
surplus of energy, no surplus of energy or a diminishing level on the battery charging percentage.
The latter case arises when the intake on the battery is lower than what is required to operate
the system. The red coloured point for measurements is also representing the surplus of energy
in this instance. Table 6.1 presents the four different scenarios during monitoring from Figure
6.1 which will be used when presenting the results in the on-line monitoring in the following
sections.

Table 6.1: Table presenting the information that can be read from Figure 6.1. Here Red and Green
correspond to the decisions that are not coloured.

Circle Description
◦Red Transferred energy surplus
◦Red Less or just enough energy to operate the system
◦Green Predicting
◦Green Measuring
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During monitoring, the two objectives will activate threshold Λ at different performances.
Nevertheless, the consequence of reaching the threshold is similar, and a generic process for
all monitoring cases is outlined in Algorithm 1. The same threshold values from Figure 6.1 are
also used in this representation. This monitoring is repeated until iteration length T is reached,
which in this case is 7 days.

Algorithm 1 Pseudo code for on-line monitoring
Initialise:

Iteration length T
Threshold Λ, λ1 and λ2

Time step t0
Data points for XTemp and XHumi at t0
Gradient on battery, GradBat, at t0

while t < T do
if P (XTemp, XHumi) and/or GradBat < Λ then

Measure XTemp and XHumi at t+ 1 and t+ 2
Compute GradBat

if GradBat is < λ2 then
Battery is reduced

else if GradBat is > λ1 then
Energy transfer
Battery is constant

else
No energy transfer
Battery is constant

t←− t+ 2
else

Use predictive model to predict XTemp and XHumi at t+ 1
Compute predicted GradBat

t←− t+ 1

In the following sections the two objectives will be illustrated and defined separately. Their
respective activation thresholds, P (XTemp, XHumi) and GradBat, will be presented more in depth.
Additionally, results on the monitoring is commented and compared with each other before
combining them into a monitoring with multicriteria constraints.

6.1.1 Energy Surplus

Energy surplus appears when the solar panel system produces more energy than it takes to keep
the battery discharging at a constant level. One looks at whether the battery status increases
or decreases, without considering the uncertainty in the predictions. The threshold Λ will be
activated if the predicted battery status increases sufficiently to obtain energy surplus in addition
to measure observations. To avoid confusion, in this section Λ = ΛBat. From Chapter 2 it
was specified that humidity and temperature are correlated with the battery status in the solar
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panel. Thus, we can formulate a linear model on the battery, XBat, with respect to measured or
predicted temperature and humidity, XTemp and XHumi. The linear model is,

XBat = 99.39− 0.31XTemp − 0.10XHumi. (6.1)

To verify the variation on the previous and current battery status, either measured or predicted,
temperature and humidity observations are inserted into the model and the current and previous
battery status are divided on each other. DefineXBat1 and XBat2 as respectively the previous and
current computed battery percentage, and ΛBattery = 1 as the threshold for activation as in Figure
6.1 and Algorithm 1. The threshold can be formulated as,

XBat1

XBat2
< ΛBattery. (6.2)

Hence, the division explains the relationship between the current and previous battery status,
i.e. if current battery is lower than the previous battery status we have a decreasing slope and
would request to use the predictive model as presented in Algorithm 1.

In addition to this division, as the threshold is activated when the division indicates an
increase in the battery, the computation has to look at the battery amount used in operating the
sensor as well. In Figure 6.2 three intervals on battery status from randomly selected nights are
plotted. These instances follow a slope aslope more or less with 0.99 reduction per time step and
correspond to the battery usage of the system when there is no possibility of charging.
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5 10

Time

B
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Figure 6.2: Three selected night intervals with a decreasing trend are plotted together in different col-
ours. The dashed line has a reduction of 0.99 percentage points each time step, and are plotted to visualise
the decrease in the battery percentage.
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Energy output is computed at each hour with the discovery from Figure 6.2 and Equation
(6.1) and (6.2), computed as,

XSurplus =
XBat2

XBat1
− 0.99β, with β ∈ {0, 1}. (6.3)

The binary variable β indicate if a prediction(0) or a measurement(1) is conducted. The rela-
tionship between the customised energy surplusXSurplus in this thesis and the true energy surplus
is unknown. Here energy surplus is measured as the accumulated effort to avoid the battery to
discharge. The battery discharging is measured as a relative change in the battery charging and
as such is measured as a percentage. Based on this assumption, energy surplus will then be
dependent on the battery characteristics that is not investigated further in this thesis. Hence, any
inference done on energy output and surplus is solely based on a comparison between different
scenarios studied here.

If threshold in Equation (6.2) is not activated it suggests using the predictive model. This
will always give an energy surplus, as there are no operational costs on the system. However, if
the threshold is activated it should be verified that the slope is large enough to measure temper-
ature and humidity and also get some energy surplus. Thus, an additional threshold is added,

XBat2

XBat1
< λ2, (6.4)

here λ2 = aslope and the inequality sign verify if the decrease is lower than operating the system.
XBat1 and XBat2 are now computed with the new observations. In Figure 6.1 another threshold
was also mentioned, λ1, and are the same value as ΛBattery and verify if there is some energy
output after getting the new observations. The final instance, when neither of the thresholds are
activated, indicate that we have just enough energy to operate the system.

The monitoring and results are obtained from various assumptions on the battery. Some
of the assumptions have already been presented and verified, such as the linear model from
Equation (6.1) and aslope in Figure 6.2. Additionally, some other assumptions are presented in
the following.

Battery Assumptions
• The battery percentage will never increase during this monitoring.
• Transfer of energy surplus from battery charging percentage is 1 : 1.
• Conducting a prediction would mean that 100% of the energy from the solar panels

is energy surplus.
• Battery performance can be presented as a linear model with respect to humidity

and temperature observations.
• Battery usage when it is not charging has a slope of 0.99 reductions per time step.
• Battery percentage cannot go above 100%.
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In this display, we have chosen the uncertainty of the battery status computed from the
temperature variance introduced in Section 5.4, with a 95% prediction interval increasing with
expanding the number of predictions. Simulations are computed with 150 iterations and the
presented thresholds from (6.2) and (6.4). The red and green dots in Figure 6.1 are taken into
consideration and are also plotted when showing the performance of the simulations.

Figure 6.3 shows the performance of the observations and predictions respectively for tem-
perature and humidity, and Figure 6.4 presents the status on the battery and the energy surplus
development. It can be seen that the battery remains constant during the whole monitoring.
This is because the threshold would allow for measurements exclusively when battery slope is
increasing, which only happens at the beginning of the monitoring. The monitoring decides,
after 75 hours, to only include predictions causing large uncertainty and unreliable model per-
formance. This could be because temperature and humidity are inverse correlated and after 75

hours the contrast between them become smaller. Then, computing the relationship between
current and previous predictions with Equation 6.1 becomes less distinctive. Thus, the model
would decide to predict and transfer energy. Additionally, the only instance that would cause
a decrease is if the new measured observations is lower than what is required in operating the
system causing a reducing slope. In this monitoring it occurs one time, at around 75 hours.

The red dots plotted in all figures represent the surplus of energy and a blank space between
indicating that there is only enough to operate the system. This monitoring seems to transfer
energy to other instances most of the time, which is the purpose of the model as no other
requirements are specified, and total amount of transferred energy is above 100. However, the
uncertainty in the battery status also increases when the number of predictions increases. Thus,
there is a reason to doubt if the battery really is constant during the 7 days of monitoring.
Additionally, the green dots represent if predictions take place and blank spaces are when the
threshold is activated and an observation is added. The total RSS from Equation (4.19) from
Section 4.4.2 becomes RSSTemp = 896.41 and RSSHumi = 90871.88, which is too high, and is
because this model lack in tracking the performance of temperature and humidity. Therefore, it
should be considered to include some constraints on the uncertainty.
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Figure 6.3: Predicted temperature and relative humidity plotted in orange with a 95% prediction interval
presented in dotted blue lines. The black line is the real data collected from the solar panel. The red and
green circles represent the decisions presented in Figure 6.1 and Table 6.1.
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Figure 6.4: Behaviour of the battery when threshold (6.2) and (6.4) are used as activation threshold.
Orange line in the upper plot is assumed battery status while lower plot is the development of accumu-
lated energy surplus. Dotted blue lines are 95% prediction interval computed from the variance of the
temperature. The red and green circles represent the decisions presented in Figure 6.1 and Table 6.1.

53



6.1.2 Prediction Accuracy

One method to obtain energy-efficient processes would be to reduce the number of measure-
ments as presented in Section 6.1.1. The optimal procedure would be to have accurate pre-
dictions most of the time and ignore the possibility of measuring. However, this would result
in a significant weakness of the performance as visualised in Figure 6.5. This can be solved
with a trade-off between measurements and predictions, to make sure that enough information
is stored in the model.
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Figure 6.5: Performance of the Kalman filter when predicting 100 hours ahead. The black line is the
observed temperature while the orange is the predicted temperatures. The dashed blue lines are the
corresponding 95% prediction interval.

To validate the future actions, whether to predict or measure temperature and humidity
observations, a multivariate normal distribution is introduced. The multivariate probability in
this scenario computes the probability of staying in a specified interval and compare with the
threshold Λ = ΛPrediction from Figure 6.1. The probability with a threshold is formulated as,

XProb = P (XTemp ∈ [ξT1 , ξT2 ], XHumi ∈ [ξH1 , ξH2 ]) < ΛPrediction. (6.5)

ξ with either T or H indicate boundary of respectively temperature and humidity with 1 and 2
representing the lower and upper bound. ΛPrediction is the activation threshold when the probab-
ility of staying within the interval is too low. The dynamic variance with respect to number of
predictions is also considered for each computation. The goal of the monitoring constraint is to
predict an event that is outside defined boundaries ξ, i.e. if the probability of being inside ξ is
less than ΛPrediction observations should be added into the model.

The sizes of the two boundaries ξT and ξH are chosen from the data seen in the 100 first hours
when constructing the model, and try to capture the area where most of the normal behaviour is
occurring. The boundaries are seen in Figure 6.6 with the 100 first hours plotted for temperature
and humidity, and are respectively ξT ∈ [12, 18] and ξH ∈ [35, 75]. If the computed probability
is below ΛPrediction it means that the predictions or observations could be outside this domain and
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Figure 6.6: Presenting the 100 first hours with the chosen intervals for [ξT1 , ξT2 ] and [ξH1 , ξH2 ] to capture
the typical tendency.

we should collecte measurements the next time.

To visualise the performance of Equation (6.5) temperature and humidity have been pre-
dicted using a different number of prediction length and is seen in Figure 6.7. The predictions
are terminated at the same time step, and it can be seen that they have different predicted temper-
ature and humidity. The difference between the plots emphasises how the uncertainty increase
with increased prediction length. Looking at the first instance with one prediction, the predic-
tion has more than 0.5 expectation of being in the interval. Further, the red density plot with 5

predictions is closer within the interval. As the uncertainty increases when raising the number
of prediction the density cover a bigger region. This also applies to the latter example with 20

predictions plotted in green.

Based on the three predictions in Figure 6.7, increasing the number of predictions from one
to 5 increases the uncertainty a lot, while going from 5 to 20 does not impact the uncertainty that
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Figure 6.7: Three instances with their respective densities when predicting 1, 5 or 20 hours ahead with
the Kalman filter and ending at the same time. The dashed lines are the two intervals, [ξT1 , ξT2 ] and
[ξH1 , ξH2 ] presented in Figure 6.6, and are used when predicting the probability in Equation (6.5).
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much. Nevertheless, increasing number of consecutively predictions above 5 will only occur
with small values of ΛPrediction because of the large uncertainty.

To validate the monitoring performance Algorithm 1 is used with constraint from Equation
(6.5) with chosen criteria for ΛPrediction = 0.8. The boundaries as presented in Figure 6.6 still
applies in this constraint. The other thresholds, λ1 and λ2, are the same as presented in Figure
6.1 and Section 6.1.1. The red and green dots from Figure 6.1 and Table 6.2 are also presented
in the following figures to demonstrate the performance. The results after monitoring with these
constraints can be seen in Figure 6.8 and 6.9, with respectively the performance on temperat-
ure and humidity, and the development on battery during monitoring and increased status on
transferred energy.

The objective in this section is constructed to keep prediction accuracy at a stable level and
measure observations only when the temperature and humidity are expected to be outside the
boundaries. Thus, the performance of temperature and humidity in Figure 6.8 should follow the
real values more closely than in Figure 6.3, and also keep the uncertainty small. This is actually
the case as the green dots are fewer and more separate with this objective. For comparison,
the RSS for temperature and humidity in this scenario is RSSTemp = 108.83 and RSSHumi =

3221.84, which is remarkably reduced. As threshold (6.5) do not consider explicitly the battery
status, the battery performance in Figure 6.9 decrease at several situations. Additionally, even
though the amount of red points is high for both objectives the amount of transferred energy
is remarkably reduced when comparing with Figure 6.4. In Figure 6.4 the total amount of
transferred energy is above 100 while the amount in Figure 6.9 rarely reaches 30.
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Figure 6.8: Predicted temperature and relative humidity plotted in orange with a 95% prediction interval
presented in dotted blue lines. The black line is the real data collected from the solar panel. The red and
green circles represent the decisions presented in Figure 6.1 and Table 6.1.
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Figure 6.9: Behaviour of the battery when threshold (6.2) and (6.4) are used as activation threshold.
Orange line in the upper plot is assumed battery status while lower plot is the development of accumu-
lated energy surplus. Dotted blue lines are 95% prediction interval computed from the variance of the
temperature. The red and green circles represent the decisions presented in Figure 6.1 and Table 6.1.
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6.2 Multicriteria Constraint

The two scenarios presented in Section 6.1.1 and 6.1.2 both look at two relevant goals i) to
obtain energy output, and ii) to keep the certainty in the model. It was specified that they both
obtain their required objective, however, because of that, they disregard some other relevant
requirements. The two models combined together in a multicriteria constraint investigate the
possibility to hold a trustworthy model at the same time as obtaining energy surplus. A weighted
average α and (1− α) multiplied to the two objectives in the multicriteria constraint introduce
the possibility to investigate different performances with respect to i) and ii). The principles
from the decision tree in Figure 6.1 are used, here Λ = ΛMulti, and λ1 and λ2 are as presented in
Section 6.1.1.

In Section 6.1.1 and 6.1.2 the output from Equation (6.2) and (6.5) is either TRUE or
FALSE. This is not applicable when multiplying with weights. Thus, they have to be trans-
formed into a numeric value to verify if the threshold should be activated. In Equation (6.5)
the output is a probability with values between [0, 1], while the interval in Equation (6.2) is
[0.92, 1.02]. The latter instance is mapped to the first interval and applied to the weighted aver-
age. With this adjustment the inequality and multicriteria constraint becomes,

α
XBat1/XBat2 − 0.92

1.02− 0.92
+ (1− α)XProb ≤ ΛMulti. (6.6)

Here XBat1 , XBat2 and XProb are computed as presented in Equation (6.2) and (6.5) with the
same interval for ξT and ξH. The constraints presented in this section have threshold ΛMulti = 0.8.
However, the threshold could be selected to be any value between [0, 1]. Additionally, α ∈ [0, 1]

is the weight that carry out the trade-off between battery surplus and prediction accuracy, i.e.
α = 0.8 would weight energy surplus as more important.

The suggested multicriteria constraint in Equation (6.6) is added in Algorithm 1. Three cases
with different values of α = 0.2, 0.5 and 0.8 have been computed and their performances are
presented in Table 6.2, along with the results from Section 6.1.1 and 6.1.2 with α = 0.0, 1.0.
To verify their performance different realisations have been computed such as the RSS for

Table 6.2: Table presenting the results after monitoring over 150 time steps. RSS is computed from
Equation (4.19), Battery and XSurplus are computed as presented in Section 6.1.1 and # for respectively
Predictions and Transfers are the colouring from Table 6.1.

α 0.0 0.2 0.5 0.8 1.0
RSSTemp 108.83 76.29 156.34 148.94 881.42
RSSHumi 3221.84 2383.63 2373.54 3142.04 90207.68
Battery 77.07 77.31 81.35 78.62 82.26
XSurplus 29.28 23.36 21.39 34.21 103.47
#Predictions 28.00 22.00 22.00 36.00 104.00
#Transfers 140.00 140.00 44.00 142.00 146.00
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temperature and humidity, final status on battery and total accumulated energy surplus when
reaching iteration length T . To see the performance on the different monitoring schemes see
Appendix A.

The total performance on #Transfers is mostly the same for all instances except for α = 0.5

and correspond to the number of energy transfers represented as the red dots in Figure 6.3 and
6.8. A model with α = 0.5 would preferably add measurements, and still get surplus of energy,
as the increase in the battery is greater than the use of measurements. With RSSHumi = 2373.54

and RSSTemp = 156.34 the performance in the latter RSS is actually worse than monitoring
with α = 0.8. Even though the final battery percentage with weight on the battery is more
reduced than with α = 0.5 the amount of energy surplus is higher and fulfilling its purpose
from Equation (6.6). Nevertheless, the monitoring model with α = 0.8 seems to miss some of
the behaviours as the battery is reduced to 78%, and in several decisions, the model should have
selected the predictive model.

Looking at the model with smallest value on RSSTemp and RSSHumi this is with α = 0.2

and it is expected that the monitoring performance for this model is better. Monitoring with
α = 0.0 is actually worse than with α = 0.2. Surprisingly, the energy surplus with α = 0.2 is
greater than monitoring with α = 0.5, which actually is the model with the lowest surplus of all
constraints. It can be noted that the performance between α = 0.8 and α = 1.0 for all computed
results is very disparate. Hence, to obtain large amount of energy surplus, with ΛMulti = 0.8, it
requires an α close to 1. Without looking at α = 1, the predictive error represented with the
averaged RSS from the other constraints never reaches 2000. Hence, it can be assumed that a
model with RSSAvg > 50000 would not give enough prediction accuracy. From observations in
Table 6.2 it appears that there are several options to consider when finding the optimal weight
of α and it would be difficult to draw a conclusion from this table.

6.3 Comparing Models

Considering the multicriteria optimisation in Section 6.2, performance of constraints with dif-
ferent designated α can be seen in Table 6.2. It is difficult to draw a conclusion which model
would be the preferred and the optimal size of α. Nevertheless, it is possible to define ob-
jectives that can give guidance in finding optimal solutions. It would depend on the decision
makers preferences, preferred energy surplus or accuracy. With respect to prediction accuracy,
the criteria can be focused on RSS for temperature and humidity, and energy output would be
represented by the accumulated energy surplus. Thus, the requirements become,

min RSSTemp (6.7)

min RSSHumi (6.8)

max Energy Surplus. (6.9)
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Figure 6.10: Results after monitoring with different values of α and ΛMulti. Each graph have used
Equation (6.6) with different values of α = 0, 0.1, . . . , 0.9, 1. Left: The values used as a threshold
are ΛMulti = 0.5, 0.6, 0.7, 0.8, 0.9, 1.0 and have colours; black(0.5), orange(0.6), blue(0.7), green(0.8),
red(0.9) and yellow(1.0). Right; The colouring corresponds to total surplus after monitoring with red as
the highest and blue with the lowest amount.

To verify the performance of the monitoring over 150 time steps different values of α and
ΛMulti are used and plotted in Figure 6.10. In this figure, the realisation from RSSTemp and
RSSHumi are plotted against each other. Each colour corresponds to different threshold values
computed with an increasing value of α = 0, 0.1, . . . , 0.9, 1. The threshold is managed for
ΛMulti = 0.5, 0.6, 0.7, 0.8, 0.9. Additionally, to verify which constraint is optimal when also
looking at energy surplus a density plot with graded colouring can be seen in the right Figure.

The desired model could have requirements purely on prediction accuracy and would prefer
a model to the bottom left corner. However, the best results with respect to the maximum and
minimum objectives seem to be the three constraints plotted inside the dotted black circle, which
also keeps the assumed requirements on RSSAvg < 50000. It can be seen that there are different
values for threshold ΛMulti, and when studying their respective α they are also different. The
results are with,

Black1 : ΛMulti = 0.5, α = 0.3 (6.10)

Black2 : ΛMulti = 0.5, α = 0.4 (6.11)

Orange : ΛMulti = 0.6, α = 0.5. (6.12)

Thus, it appears that there are more than one monitoring that could give results to consider
further. These thresholds, with their respective values for α, seem to be the best results when
solely considering the three objectives, RSS and energy surplus from Figure 6.10.
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The performance of the monitoring in Equation (6.10), (6.11) and (6.12) have the same
problem as was discussed in Section 6.1.1, the predictions do not follow the real data. Figure
A.7, A.9 and A.11 are included in the Appendix A for a completeness of verification. This
problem was also presented when discussing the prediction accuracy in Section 6.1.2, a large
number of consecutively predictions will occur with small values of ΛMulti because this will al-
low for large uncertainties. Small threshold values is a mutual incident for the three constraints.
Hence, it is advised to find a model with less prediction error, however, this will give a reduced
amount of energy surplus.

Another method of visualising performances is presented in Figure 6.11. In this figure,
the averaged RSS of temperature and humidity is computed and plotted against total energy
surplus. The black circle presented in Figure 6.10 encircle the same points with ΛMulti = 0.5,
and are presented to visualise the change on the axis. From Table 6.2 and Figure 6.10 it is
seen that the RSS for temperature and humidity are disparate. Hence, their respective RSS will
not represent the same magnitude of the error. To verify the best performance a situation that
would be similar to a Pareto optimal solution is studied, as we have two objective functions
and a trade-off is needed to find the preferred solution. A preferred model would maintain
the premise with a larger ΛMulti and have RSSAvg < 50000. Hence, with respect to maximising
energy output and minimising prediction error, the most preferable result is encircled with a
dashed red line and have ΛMulti = 0.7 and α = 0.4. A presentation of this monitoring is
displayed in Figure 6.12 and 6.13. It can be seen that with this constraint the predictions do
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Figure 6.11: Averaged RSS with temperature and humidity are plotted against amount of transferred
energy. Colours correspond to the same instances as presented in Figure 6.10, and the dashed black
circle encircle the same points in this figure. Red dashed circle encircle the model with ΛMulti = 0.7 and
α = 0.4.
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Figure 6.12: Predicted temperature and relative humidity plotted in orange with a 95% prediction inter-
val presented in dotted blue lines. The black line is the real data collected from the solar panel. The red
and green circles represent the decisions presented in Figure 6.1 and Table 6.1.

70

80

90

Hour

B
at

te
ry

 s
ta

tu
s 

[%
]

0

20

40

60

0 50 100 150

Hour

E
ne

rg
y 

S
ur

pl
us

Figure 6.13: Behaviour of the battery when threshold (6.2) and (6.4) are used as activation threshold.
Orange line in the upper plot is assumed battery status while lower plot is the development of accumu-
lated energy surplus. Dotted blue lines are 95% prediction interval computed from the variance of the
temperature. The red and green circles represent the decisions presented in Figure 6.1 and Table 6.1.
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not capture all of the behaviour withing the boundary that were presented in Section 6.1.2, but
it decides to measure observations when the probability of staying within the boundary is too
low. The general performance is acceptable with RSSAvg = 7898.6 and the accumulated energy
surplus as 65.9.

The obvious jump on energy surplus that could be seen in Table 6.2 can also be seen in
Figure 6.10 and 6.11. The large amount is obtained when ΛMulti = 0.5, 0.6, 0.7. When studying
the size on α this high energy surplus is obtained with α > 0.5, meaning weighting energy
surplus. Additionally, from Equation (6.5) the multivariate probability would only be activated
when the probability of staying within the interval is small. Hence, with small α and large
ΛMulti this would impose better prediction accuracy. In conclusion, the optimal constraint is
dependent on what the preferred goal is, whether this is to obtain a high amount of energy
surplus or minimising the predictive error.
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Chapter 7
Closing Remarks

The aim of this thesis was to describe energy efficient monitoring strategies that perform pre-
dictions with required certainty and thereby minimises the energy consumption for doing meas-
urements and data savings. These objectives have been combined together into a multicriteria
constraint. Because a trade-off between optimal solutions was required, a situation similar to a
Pareto optimal solution was considered in this study.

7.1 Conclusion

Sensors collect data continuously and share it on platforms that can draw knowledge from it.
The idea of monitoring time series online was motivated by discussions about IoT and how to
make measurements and information gathering from IoT sensors more energy efficient. The
goal was to find methods and develop models restricting devices from doing measurements
and data savings repeatedly in a linear fashion, and only saves data from measurements when
necessary. Despite limitations on data collection, such a smart model should predict future
states satisfactory, thereby optimising the transfer of surplus energy to other instances.

Data collected from solar panels placed at the rooftop at NTNU have been used to construct
multivariate time series models for temperature and humidity. The models have been adapted
into an on-line monitoring algorithm with predictions computed from a seasonal multivariate
Kalman filter. To restrain data collection, the model was able to work as a power management
system where we know the operational cost of the system and thus can optimise the energy that
can be harvested from the environment.

The two criteria to obtain i) energy surplus and ii) prediction accuracy have been combined
together into a multicriteria constraint and a weighted average multiplied to the two objectives
indicate what importance to contribute most during the monitoring. This constraint provides
information to the event- and self-triggering controls which decide what to do at the current
time. Several instances with different weights and triggering controls have been monitored, and
the predicted error for temperature and humidity have been compared with the total amount
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of transferred energy. The optimal solution would be to obtain maximised energy surplus and
minimise the prediction error. However, there were no obvious unique optimal solution and a
trade-off between the different monitoring results was considered.

At first it appeared to be three ideal solutions, however, their prediction error was too high
and some more constraint on prediction accuracy was considered. Thus, the most optimal
constraint was with threshold ΛMulti = 0.7 and α = 0.4, and obtained averaged Residual Sum
of Squares as RSSAvg = 7898.6 and total energy surplus 65.9. Moreover, the optimal trigger
and weight settings depends on the goals of the decision maker. As an example, there might
be energy optimisation in low absorption periods and high amount of data collection in surplus
periods.

7.2 Further Work

There are several possible extensions of the current work and the monitoring algorithm can
be developed further with additional features. With better domain knowledge and technical
information about the battery, solar panels and sensor communication, it would have been pos-
sible to set more accurate assumptions in the model. It is also possible to consider an extension
of the probability boundaries to get a broader specifications for the prediction accuracy.

It was specified in this monitoring that the battery percentage would continuously decrease.
This will be challenging when the battery percentage reaches a low percentage. One solution
could be to add a threshold when reaching a specific low percentage and force the model to
charge until reaching a specified high percentage again. To obtain models that could effectively
charge the battery would require more information about the battery characteristics in itself and
how temperature and humidity affect the charging status. This also includes knowledge about
whether there is some system delay when charging the battery and consuming energy from the
environment.

The solar panels placed at NTNU have no possibility to export the accumulated energy sur-
plus to other instances because they are not connected to any other system. Instead, the energy
surplus could be utilised for different tasks within the sensor that requires more energy than
usual operational cost, for instance collecting more information to develop the model or soft-
ware update on the sensor. Update on the multivariate seasonal Autoregressive Moving Average
model could for instance be to add weather forecasts that could improve the predictions. This
would require a new implemented model that weight on accuracy on the included forecasts. It
is also possible to increase the sensor network to include multiple sensors. This would require
another form of power management, because communication between the nodes would require
different workload on the system (Sinha and Chandrakasan, 2001). Based on information ob-
tained from the predictive models the sensor could plan ahead and save energy before carrying
out these tasks.

With some of these improvements in place we can foresee the possibility to connect such a
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monitoring algorithms into an IoT arrangement serving systems like a smart house (Vinodhan
and Vinnarasi, 2016). This would first of all constrain data collection even more and could
further save energy, both from reducing operational cost and also because energy surplus in
one device could share energy with other devices. Other systems where the communication
between sensors is relevant, and data collection have to be managed in order to obtain sustain-
able operation, could be when monitoring road network either as a traffic management system
(Sharif et al., 2018) or winter road maintenance when power supply is decreased (Chapman
et al., 2014). In this thesis it has been assumed that there is no energy loss transferring en-
ergy. However, in real life this is not the case. Hence, to get a broader understanding of the
total amount of transferred energy some additional analysis should be considered. This would
especially apply when selecting appropriate models with weight on how to utilise the energy
surplus.
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Härdle, W. K., Simar, L., 2015. Applied Multivariate Statistical Analysis. Springer, Berlin,
Heidelberg.

Kansal, A., Hsu, J., Zahedi, S., Srivastava, M. B., Sep. 2007. Power management in energy
harvesting sensor networks. ACM Trans. Embed. Comput. Syst. 6 (4).

Madsen, H., 2008. Time Series Analysis, 1st Edition. Chapmann & Hall /CRC Taylor & Francis
Group.
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Appendix A
Appendix

A.1 Multicriteria Constraints

A.1.1 Equally Weighted
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Figure A.1: Predicted temperature and relative humidity plotted in orange with a 95% prediction interval
presented in dotted blue lines. The black line is the real data collected from the solar panel. The red and
green circles represent the decisions presented in Figure 6.1 and Table 6.1.
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Figure A.2: Behaviour of the battery when threshold (6.2) and (6.4) are used as activation threshold.
Orange line in the upper plot is assumed battery status while lower plot is the development of accumu-
lated energy surplus. Dotted blue lines are 95% prediction interval computed from the variance of the
temperature. The red and green circles represent the decisions presented in Figure 6.1 and Table 6.1.

A.1.2 Weight on Energy Surplus
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Figure A.3: Predicted temperature and relative humidity plotted in orange with a 95% prediction interval
presented in dotted blue lines. The black line is the real data collected from the solar panel. The red and
green circles represent the decisions presented in Figure 6.1 and Table 6.1.
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Figure A.4: Behaviour of the battery when threshold (6.2) and (6.4) are used as activation threshold.
Orange line in the upper plot is assumed battery status while lower plot is the development of accumu-
lated energy surplus. Dotted blue lines are 95% prediction interval computed from the variance of the
temperature. The red and green circles represent the decisions presented in Figure 6.1 and Table 6.1.

A.1.3 Weight on Prediction Accuracy
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Figure A.5: Predicted temperature and relative humidity plotted in orange with a 95% prediction interval
presented in dotted blue lines. The black line is the real data collected from the solar panel. The red and
green circles represent the decisions presented in Figure 6.1 and Table 6.1.
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Figure A.6: Behaviour of the battery when threshold (6.2) and (6.4) are used as activation threshold.
Orange line in the upper plot is assumed battery status while lower plot is the development of accumu-
lated energy surplus. Dotted blue lines are 95% prediction interval computed from the variance of the
temperature. The red and green circles represent the decisions presented in Figure 6.1 and Table 6.1.

A.2 Comparing Models

A.2.1 Optimal with ΛMulti = 0.5 and α = 0.3
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Figure A.7: Predicted temperature and relative humidity plotted in orange with a 95% prediction interval
presented in dotted blue lines. The black line is the real data collected from the solar panel. The red and
green circles represent the decisions presented in Figure 6.1 and Table 6.1.
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Figure A.8: Behaviour of the battery when threshold (6.2) and (6.4) are used as activation threshold.
Orange line in the upper plot is assumed battery status while lower plot is the development of accumu-
lated energy surplus. Dotted blue lines are 95% prediction interval computed from the variance of the
temperature. The red and green circles represent the decisions presented in Figure 6.1 and Table 6.1.

A.2.2 Optimal with ΛMulti = 0.5 and α = 0.4
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Figure A.9: Predicted temperature and relative humidity plotted in orange with a 95% prediction interval
presented in dotted blue lines. The black line is the real data collected from the solar panel. The red and
green circles represent the decisions presented in Figure 6.1 and Table 6.1.
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Figure A.10: Behaviour of the battery when threshold (6.2) and (6.4) are used as activation threshold.
Orange line in the upper plot is assumed battery status while lower plot is the development of accumu-
lated energy surplus. Dotted blue lines are 95% prediction interval computed from the variance of the
temperature. The red and green circles represent the decisions presented in Figure 6.1 and Table 6.1.

A.2.3 Optimal with ΛMulti = 0.6 and α = 0.5
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Figure A.11: Predicted temperature and relative humidity plotted in orange with a 95% prediction inter-
val presented in dotted blue lines. The black line is the real data collected from the solar panel. The red
and green circles represent the decisions presented in Figure 6.1 and Table 6.1.
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Figure A.12: Behaviour of the battery when threshold (6.2) and (6.4) are used as activation threshold.
Orange line in the upper plot is assumed battery status while lower plot is the development of accumu-
lated energy surplus. Dotted blue lines are 95% prediction interval computed from the variance of the
temperature. The red and green circles represent the decisions presented in Figure 6.1 and Table 6.1.

79


	Preface
	Abstract
	Sammendrag
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	Background
	Variables
	Visualising Data

	Data Analysis
	Processing Data

	Time Series
	Seasonal Autoregressive Moving Average Model (SARMA)
	Data Analysis of Time Series, and Relation to ARMA
	Autocovariance and Autocorrelation Function (ACF)
	Partial Autocorrelation Function (PACF)
	ACF and PACF with SARMA model

	Multivariate SARMA model and Cross-Correlation
	Multivariate SARMA
	Auto- and Cross-Correlation
	Partial Auto Cross-Correlation

	Model Fitting on Data
	ACF and PACF
	Model Fitting


	Filtering
	State Space
	Kalman Filter
	Seasonal Kalman Filter
	Multivariate Seasonal Kalman Filter

	Monitoring
	Objectives
	Energy Surplus
	Prediction Accuracy

	Multicriteria Constraint
	Comparing Models

	Closing Remarks
	Conclusion
	Further Work

	Bibliography
	Appendix
	Multicriteria Constraints
	Equally Weighted
	Weight on Energy Surplus
	Weight on Prediction Accuracy

	Comparing Models
	Optimal with Multi = 0.5 and =0.3
	Optimal with Multi = 0.5 and =0.4
	Optimal with Multi = 0.6 and =0.5



