
Path Following in Simulated
Environments using the A3C
Reinforcement Learning Method

Emil Andreas Lund

Master of Science in Cybernetics and Robotics

Supervisor: Anastasios Lekkas, ITK

Department of Engineering Cybernetics

Submission date: June 2018

Norwegian University of Science and Technology

Abstract

Using reinforcement learning as a part of a Guidance, Navigation and Control
(GNC) system is a relatively unexplored field. This thesis explores the use of deep
reinforcement learning in a path following control algorithm in a realistic simulated
environment. A reinforcement learning method called the Asynchronous Advantage
Actor-Critic (A3C) method has been implemented using artificial neural networks
to model the learning, making it deep reinforcement learning. In addition, the
software needed to use the V-REP robot simulator together with the A3C algorithm
was developed. This was used to successfully learn to control a vehicle model in a
path following situation in the V-REP simulator. In addition, the algorithm was
used to learn to control a much simpler ship model simulated without V-REP. It
was found that the learned behavior from the ship model could be transferred and
used to control the vehicle model in the more complex environment, substantially
speeding up the total time of learning process for the vehicle.

i

Sammendrag

Bruk av forsterkende læring (reinforcement learning) i fartøystyring er et nytt og
lite utforsket felt. Denne oppgaven utforsker bruken av dyp forsterkende læring i
stifølging. En forsterkende lærings-metode kalt A3C ble implementert. Kunstige
nevrale nett ble brukt sammen med metoden, og det er det som gjør det til dyp
forsterkende læring. I tillegg ble det utviklet programvare nødvendig for å bruke
robotsimulatoren V-REP sammen med A3C algoritmen. Ved bruk av disse var det
mulig å lære å kontrollere et kjøretøy i stifølging i V-REP simulatoren. I tillegg
ble algoritmen brukt til å lære å kontrolere en simplere skipsmodell simulert uten
V-REP. Det ble funnet ut at kunskapen man lærte ved å trene på skipet kunne
overføres til kjøretøyet, og at man på denne måten kunne senke tiden det tar å
trene seg opp til å styre kjøretøyet.

ii

Preface

This master thesis was written during the spring semester of 2018 at the De-
partment of Engineering Cybernetics at the Norwegian University of Science and
Technology.

I would like to thank my supervisor Anastasios Lekkas for all the guidance, and
for letting me work on a very interesting topic. Working in parallel with his thesis
on a similar topic, I want to thank Andreas Bell Martinsen who has been a good
discussion partner and always available for help. He aided me with the ship model
used in this thesis and came up with a way of formulating the reward function of
the reinforcement learning algorithm implemented.

The following tools have been used for this project:

• The Linux distribution Ubuntu 16.04

• Computer with processor Intel(R) Core(TM) i7-4790 CPU 3.60GHz, without
GPU

• Python 3.5 programming language

• V-REP simulation software [7]

The actor-critic reinforcement learning algorithm implemented in my project
work preceding this master thesis was used as a basis when implementing the A3C
algorithm.

iii

Problem Description

The task is to implement a reinforcement learning method and train a vehicle to
navigate in a simulated environment by path-following using this method. Explore
how different design choices influences the performance and learning.

iv

CONTENTS

Contents

1 Introduction 2

2 Theory 4
2.1 The Reinforcement Learning Problem 4
2.2 Supervised, unsupervised and evaluative learning 4
2.3 Markov Decision Process . 5

2.3.1 Model-free vs. Model-based reinforcement learning 5
2.4 Returns . 6
2.5 Policy . 6
2.6 Value functions . 7
2.7 Policy gradient . 8

2.7.1 REINFORCE algorithm . 9
2.7.2 REINFORCE with baseline 10

2.8 Actor-Critic Method . 10
2.9 Asyncronous Advantage Actor-Critic Method 11

2.9.1 The Advantage . 11
2.9.2 Entropy . 12

2.10 Neural Networks . 12
2.10.1 Learning in a neural network 13
2.10.2 Activation functions . 13
2.10.3 Regularization: Dropout and L2 15

2.11 Gradient descent optimizer . 16
2.11.1 Batch gradient descent . 16
2.11.2 Stochastic gradient descent 16
2.11.3 Minibatch gradient descent 16
2.11.4 Moment . 17
2.11.5 Adam optimizer . 17

2.12 Bezier Curve . 18
2.13 Ackerman steering . 18

3 Guidance, Navigation and Control with Reinforcement Learning 20

4 Implementation 22
4.1 The vehicle . 22
4.2 The Mariner ship model . 22
4.3 About the models . 24
4.4 The path representation . 24
4.5 Reward function . 26

4.5.1 Penalty on turning rate . 26
4.6 The A3C algorithm implementation 27

4.6.1 Using Python and Green Threads 29
4.7 The Neural Network implementation 29
4.8 System overview . 31

v

CONTENTS

4.9 Simulator . 32
4.9.1 V-REP . 32
4.9.2 The Wrapper and OpenAi Gym 33

4.10 Setup . 33
4.11 The observable states . 34

5 Results and Discussion 37
5.1 The Manta vehicle path following . 37
5.2 Mariner path following . 42
5.3 Transfer learning . 46
5.4 Action penalty . 49
5.5 Time usage . 51

6 Conclusion 52
6.1 Taking it further . 53

Appendices 54

A Mariner Ship Model Equations 55

vi

LIST OF FIGURES

List of Figures

1 Image from the game in a five game match between the Go world
champion Lee Se-dol and DeepMind’s AlphaGo in 2016. The score
ended 4-1 to AlphaGo, making it the first artificial player to consis-
tently beat the best human player. 2

2 The agent is interacting with the environment, as defined by Markov
Decision Processes. This figure is taken from [29] 5

3 Plot of the sigmoid function and rectified linear (relu) function. . . . 14
4 Plot of the softplus function and rectified linear (relu) function. . . . 14
5 Model of a neuron, with inputs, summation and activation function. 14
6 A small artificial neural network with three inputs, one hidden layer

with four neurons, and two outputs. 15
7 Example of a curve defined by three other lines 18
8 A figure demonstrating the different turning angles of the wheels

used in Ackerman steering . 19
9 Illustration of a conventional of a guidance, navigation and control-

system. 20
10 A motion control system using Reinforcement Learning. 21
11 . 23
12 Illustration of the mariner model from the original paper [4] 23
13 Image of how the points of the bezier curve looks. Each point in-

cludes orientation, which here equals the path tangential angle. . . . 25
14 The different paths used. 25
15 Reward functions with respect to cross-track error, given that the

car is facing the right way down the path. There is two Gaussian
distributions, and one uniform distribution. 26

16 A visualization of the neural network used by the A3C algorithm. It
is separated in an actor and a critic network, with identical input.
The actor network outputs an Gaussian distribution, and the critic
a value estimation. Each node visualizes which activation function
is used: ReLu, tanh, softplus and linear. 30

17 Overview of the V-REP simulator environment with the robot and
a very short straight path. 31

18 Overview of the simulator environment with the robot and a curved. 32
19 The connection between the software components, from the learning

algorithm to the V-REP simulator. The colored area is highlighting
what is hidden as the V-REP Gym environment, working as a back
(blue) box. 34

20 Figure of the cross-track error e and difference in angle α. 35
21 Training reward response when agent is trained from scratch on the

displayed path . 37
22 The progress of learning with the Manta vehicle on a straight path. . 38
23 The performance by the Manta vehicle of a finished training agent

on a straight path. 39

vii

LIST OF FIGURES

24 The reward response when training on the curvy path 40
25 The performance by the Manta vehicle of a finished training agent

on a curved path. 41
26 The training reward of the Mariner model with 10 [s] time step on

the curved and the straight path. 42
27 Performance of mariner ship model on a straight path with 10 [s]

time step . 43
28 Performance of mariner ship model on curved path with 10 [s] time

step . 44
29 The training reward of the Mariner model with time step 1 [s] on a

straight path. 45
30 Performance of mariner ship model on a straight path with 1 [s] time

step. 45
31 The training response of the Manta vehicle after previously being

trained on the Mariner ship model. 46
32 The performance by the Manta vehicle when the model is only

trained on the Mariner ship . 47
33 The performance by the Manta vehicle when the model is first trained

on the Mariner ship, and then trained on the Manta vehicle. 48
34 The steering commands on the Manta vehicle trained with and with-

out a penalty on changes in steering commands. The penalty con-
stant β is chosen as 0.1. 49

35 An optimal behavior of the system with a too high steering rate of
change penalty. Here, β = 0.4 . 50

1

LIST OF FIGURES

1 Introduction

The field of reinforcement learning have developed rapidly over the last years, but
its history goes way back. The first major breakthrough was in 1963 when Donald
Michie managed to create a machine that could learn to play tic-tac-toe [20]. It
was a machine in the loosest of terms because it only consisted of matchboxes and
beads. Each possible position in the game had its own matchbox, and the more
beads it was in a box, the better this position was. This worked for a simple game
as tic-tac-toe, but for more complicated games with more positions, it becomes
exponentially many boxes. In 1995, Gerald Tesauro developed TD-gammon [32],
a program which learns to play backgammon. An important part of TD-gammon
was a breakthrough in how the learning was represented. Instead of using match
boxes as Donald Michie, it successfully used a simple artificial neural network to
learn how to play the game.

Figure 1: Image from the game in a five
game match between the Go world cham-
pion Lee Se-dol and DeepMind’s AlphaGo
in 2016. The score ended 4-1 to AlphaGo,
making it the first artificial player to con-
sistently beat the best human player.

As computational power has grown
over the last decade, complex neural
networks have been proven more and
more successful in fields like image and
speech recognition. Larger and deeper
networks are now feasible to train and
is used more and more also in rein-
forcement learning, so-called deep rein-
forcement learning. The Google Deep-
Mind group was able to learn to play
Atari games with only the raw screen
pixels as input to the algorithm, us-
ing reinforcement learning and a neu-
ral network, see [22]. They have also
successfully learned to play the games
chess and Go entirely from self-play
with the new AlphaZero algorithm [28].
Not only does AlphaZero learn to play
by itself from only knowing the rules,
but have proved to learn to play bet-
ter than the previously strongest chess
computer. These previously mentioned
examples are all learning simulated environments, but reinforcement learning has
also been applied in robotics with impressive results, for example, playing games
such as table tennis [16], and flying a helicopter upside down [23].

The usage of deep reinforcement learning in path following is a relatively un-
explored field. The goal of this thesis is to explore if reinforcement learning can
be used to learn this kind of motion control. Can it learn a behavior superior to
the previous path following algorithms? The focus of this thesis is on real-world
applications, and it was therefore chosen to build the applications to interact with a
simulator called V-REP to make the model as realistic as possible. Both the simu-

2

1 Introduction

lations and the interaction by having to send commands and receive sensor readings
is realistic and gives some of the challenges that would have been encountered by
working with a real-world model. At the same time, since it is a simulation, it is
possible to achieve in the time frame of this thesis.

The theory in the following chapter about reinforcement learning is primarily
found in Reinforcement Learning: An Introduction by Richard S. Sutton and An-
drew G. Barto [29]. They provide an excellent explanation of the different parts of
Reinforcement Learning. The books Dynamic Programming and Optimal Control
by Dimitri P. Bertsekas [1] provides a more in-depth mathematical explanation of
topics than Sutton & Barto and has worked as a supplement. The following chap-
ter starts with explaining the Reinforcement Learning problem, the theory needed
to implement the algorithms and the neural networks, and some explanations of
terms used in this thesis. The method section describes the setup, the models used,
and the software implementation choices made. The results are then presented and
discussed.

3

LIST OF FIGURES

2 Theory

This section starts with a high-level explanation of reinforcement learning, and
where it stands compared to other machine learning algorithms. Then the more in-
depth theory is explained. Following this, three reinforcement learning methods are
presented: Policy gradient, REINFORCE, and Actor-Critic. This is done because
they build on top of each other, and it was natural to include them even though
it is the Actor-Critic method that is in focus. Theory on neural networks and
optimization is then presented before some terms used is explained.

2.1 The Reinforcement Learning Problem
Reinforcement learning is a method in machine learning inspired by the learning
witnessed in humans and animals. As an example, we can look at a person trying
to shoot a basketball through the hoop. When a person is trying to learn this, he
or she would repeatedly throw the ball at the hoop. For each throw, the person
would do an observation by looking where the ball went, and get a reward if they
scored. In the human case, this reward would be dopamine released by the brain
[6] leaving the thrower feeling good about the throw, and understanding that how
they threw the ball this time worked well. If they had missed, the thrower would be
left without a reward, and understand that they would have to change something
if to score.

The thrower, or agent, in this example could just as well be a robot manipulator.
In contrast to the human agent, the robot has no natural way of understanding if
an action is good or bad. Instead, we can introduce a reward function to the robot.
This function would return a value, quantifying how good an action is. If it was the
robot trying to score in the basketball case, the reward function could be defined
as returning 10 for scoring, and -1 for missing. Defining the reward function is a
crucial and difficult part of designing a reinforcement learning algorithm, as this
is what will lead the change in the behavior of the agent. This is also the most
impressive part of reinforcement learning. It enables an agent to autonomously
explore an environment, without having its behavior explicitly programmed. This
is extremely useful when the environment is complicated, or when the programmer
lacks essential information about the environment.

2.2 Supervised, unsupervised and evaluative learning
Machine learning algorithms can often be classified as either supervised or unsu-
pervised, but although reinforcement learning as a machine learning algorithm is
somewhat related to both it cannot fit into any of the categories. Supervised learn-
ing occurs when the model is training on labeled data. For example, when trying
to teach a model to recognize a cat in a picture, we would need a lot of pictures
labeled as "cat", and a lot of pictures labeled "not cat". When training on these,
the feedback we get would be instructive, as opposed to evaluative. Instructive
feedback tells us how to achieve a goal, while evaluative feedback is how well we
achieve a goal. Reinforcement learning is relying on evaluative feedback on each

4

2 Theory

Figure 2: The agent is interacting with the environment, as defined by Markov
Decision Processes. This figure is taken from [29]

action. It is important to notice that one action cannot be evaluated on its own,
but only in relation to other actions.

When a reinforcement learning agent is initialized, it does not know anything
about its environment. It has to explore, and label actions with the reward function
by itself. In this sense, reinforcement learning is related to unsupervised learning.
In unsupervised learning, there is also no labeled data. The goal for unsupervised
learning is to model the underlying structure or distribution in the data in order
to learn.

2.3 Markov Decision Process
To be able to describe reinforcement learning mathematically, a formal decision-
making modeling called Markov Decision Processes (MDP) is used. In reinforce-
ment learning, the agent is interacting with an environment through actions. The
agent observes the state of the environment and receives a reward. This is visual-
ized in Figure 2. As explained in [29], all of these are key elements in MDPs, as it
can be fully described by the following four variables:

• S is the set of all possible states, and st is the state of the agent at timestep
t.

• A is the set of possible actions.

• T is the state transition probability distribution of a given state and action.
The probability of arriving in a state s’ is given by T(s, a, s’)

• R is the reward function.

To be able to model a system as an MDP, it needs to fulfill the Markov property.
This is achieved if the agent at each step can observe the full state, such that no
memory of earlier observations is needed to understand the current state.

2.3.1 Model-free vs. Model-based reinforcement learning

The goal of the agent in an MDP is to find a policy (explained in Section 2.5)
that maximizes the expected future reward. If all of the four elements of an MDP

5

LIST OF FIGURES

are available, the optimal policy can be calculated before having to execute an
action in the environment. In these cases, the task is more a planning problem
than a reinforcement learning problem. The challenge in most real-world tasks
is that the state transition probability T is unknown. However, it is possible to
find the optimal policy by learning the transition probabilities T , called model-
based methods, or to avoid them, called model-free methods. Policy Gradient and
Actor-Critic (Section 2.7 and 2.8) are examples of model-free methods.

2.4 Returns

The goal when choosing an action is to maximize the cumulative reward. The
cumulative reward is called the return, and is denoted Gt. Here, t is the timestep
of a certain return. The return is then defined as the following:

Gt := rt+1 + rt+2 + rt+3 + ... =

∞∑
k=0

rt+k+1

In the case where the timesteps goes to infinity, this does not make much sense
since the return would go to infinity. It would only work if the task is limited
by an upper time limit. When this is the case, the task is called episodic. But in
both episodic and continuous cases, it is beneficial to introduce a discount factor γ,
where 0 ≤ γ ≤ 1 The expression for the discounted return becomes the following:

Gt := rt+1 + γrt+2 + γ2rt+3 + ... =

∞∑
k=0

γkrt+k+1 (1)

The intuition behind the discount factor is simple. The further into the future
you see, the less certain is it that you will receive the reward. Since the processes
include some uncertainty, it is beneficial to weight the rewards far in the future less
than what follows immediately. The edge case is when γ = 0. This would make the
agent extremely short-sighted, and only consider the reward nearest in the future,
unable to take into account if it is good in the long run.

2.5 Policy

A policy describes a way of acting. It can be understood as the rules of choosing an
action. If you are stuck in a labyrinth, a trivial policy could be "always go to the
right", and you would get out in the end. In the sense of reinforcement learning, the
policy can be defined as the function π(s), that returns the probability distribution
for choosing each possible action in the state s. The goal is to find the optimal
policy π∗(s). The optimal policy is the policy that tells us what action to choose
to maximize the return in each state. There are several different algorithms that
try to optimize the policy, and we will later discuss both value-based and policy
gradient-based methods.

6

2 Theory

2.6 Value functions

The exact expected return for a state or an action can be difficult to know, especially
for high-dimensional problems, however, it is possible to approximate. As earlier
explained, reinforcement learning uses evaluative feedback to learn, and this means
that we need a notion of how good a state or an action is. This is where the value
function enters. As given in [29], the value function estimates the expected return
given a state. The value function given a state s is called the state-value function
V π(s), and given state-action pair it is called the action-value function Qπ(s, a).
The superscript π tells us that this is the resulting value functions when following
a policy π(s). Even for the same environment, the value function will change if you
change the policy. This is because a state will have a different expected return for
different behaviors. When the policy is stochastic, the expectation E is necessary
to formulate the equation. The state-value and action-value function is defined eq.
2 and eq. 3 as in [29]. Notice that the definition of the return as defined in eq. 1
is used.

V π(s) =E[Gt|St = s] = E[

∞∑
k=0

γkrk+t+1|St = s] (2)

Qπ(s, a) =E[Gt|St = s,At = a] = E[

∞∑
k=0

γkrk+t+1|St = s,At = a] (3)

These functions can be estimated from experience. There exist several ways of
updating the value function, and here the focus is on Temporal-Difference (TD).
TD is a combination of the idea behind Monte Carlo methods and dynamic pro-
gramming (DP). Like in DP, learning is possible even when we have not finished
the environment, but without having a model of the system (model-free). This is
related to Monte Carlo methods, but Monte Carlo methods need to wait until the
episode is finished, and the return for each state is known, before updating the
value function. Monte Carlo and DP are further explained in [29].

The TD learning comes from having the state value reflect the value of the
next state after taking an action. For a tabular value function V (S), the update
function wolud be:

V (S) = V (S) + α(rt + γV (s′)− V (s)) (4)

Here, α is the learning rate, rt is the reward at timestep t, s and s’ is the current and
next state, and γ is a discount factor. As a special case with α = 1, V(s) cancels
out, and the state value is only dependent on the next state value. Equation 4 is
the special case of Temoral Difference-error called TD(0), or one-step TD, because
it only takes into account one step into the future. The TD-error δ, which is more
suited for parameterized value functions and will return later, is given by

δ = rt + γV (s′)− V (s) (5)

7

LIST OF FIGURES

2.7 Policy gradient
The policy gradient is a method that differentiates itself from the previously men-
tioned algorithms. Instead of choosing a policy by using a value-function, we can
parameterize a policy function directly. The difference is that the algorithm does
not choose greedily the action which seemingly has the highest reward from the
value function, but instead tries to learn a function π that directly map a state
to a probability distribution over the actions. For each action a we can define the
policy function in the following way as in [29]:

π(a|s,θ) = p(At = a|St = s,θt = θ)

Here s is a given state and θ is the learned weights. If the parametrization is an
artificial neural network, then θ is the weights in the network. The p() function is
the probability function, and At, St and θt is the action, state and weights at a given
timestep t. In this method, the policy weights θ is learned by using the gradient
of a performance measure J(θ) as given in [29]. Since one want to maximize the
performance, gradient ascent can be performed on J(θ). The update step is defined
as

θt+1 := θt + α∇̂J(θt) (6)

Here α is the learning rate, and ∇̂J(θt) is a stochastic estimate of ∇J(θt). The
use of stochastic estimates is often used in optimization problems where the actual
function cannot be computed directly, and data is only available through noisy
measurements. In the case of policy gradient, the measurements are not necessary
noisy, but is however built on data with uncertainty as the return is not exact.

An important part of the policy gradient algorithm is that the action choice
is non-deterministic. By having the policy function output a distribution over the
actions and choosing an action by sampling from this distribution, the algorithm is
exploring the action space by itself. This is in contrast to the value or policy itera-
tion where we need to apply exploration through ε-greedy. ε-greedy is a technique
where instead of the calculated action, a random action is chosen with a proba-
bility ε and thus ensuring exploration. The non-deterministic factor also makes
an important difference in environments where stochastic behavior is needed, for
instance in a board game where the opponent could take advantage of deterministic
behavior.

When using a direct parameterization of the policy function, the action proba-
bility distribution will change smoothly with regard to the learned parameters θ.
In contrast, for value-based algorithms, the distribution can change dramatically
for small changes in the action-values. For physical applications, this is an impor-
tant property. If our agent is a robot arm trying to learn a task, sudden dramatic
changes in the policy can result in unexpected and extreme behavior which can
lead to dangerous situations. It can also lead to extreme utilization of the action
space, and may then damage the actuators and the rest of the robot. For the same
reason, policy search algorithms are also shown to have better convergence prop-
erties [17]. Even though value-based algorithms may converge quicker to good,

8

2 Theory

possibly globally optimal solutions, such learning processes often prove unstable
under function approximation [17].

The policy gradient theorem as derived in [29] is defined as the following:

∇J(θ) ∝
∑
s

µ(s)
∑
a

∇π(a|s)qπ(s, a) (7)

This proportionality gives us a connection between the gradient of the cost function,
and the gradient of the policy function. This is important for the derivation of the
REINFORCE algorithm.

2.7.1 REINFORCE algorithm

The REINFORCE algorithm was first proposed by Williams in 1992 [35]. Following
is the algorithm derived as in [29]. The policy gradient theorem given in Equation 7
is now formulated with the expected value, and leave us with a stochastic estimation
of the gradient:

∇J(θ) = E[
∑
a

∇π(a|s)qπ(s, a)]

Here, the gradient is given as a sum over the actions. By multiplying and
dividing by the policy function, the summation can be removed, and we end up
with the gradient of the logarithm of the policy function π(a|s).

∇J(θ) = E[
∑
a

π(a|s)qπ(s, a)
∇π(a|s)
π(a|s)

]

∇J(θ) = E[qπ(s, a)
∇π(a|s)
π(a|s)

]

The action value can be changed to the return of the state, since qπ(s, a) =
E[Gt|s, a] from Equation 2. Since the derivative of the logarithm of the policy
function is given as ∇ lnπ = ∇π

π , the equation can be given as

∇J(θ) = E[Gt∇ lnπ(a|s)] (8)

This expression used in the update step for gradient methods explained in
Section 2.11 is then given as

θt+1 := θt + E[Gt∇ lnπ(a|s)] (9)

When implementing this, the expected value is approximated by the mean of a
N-sized batch of estimates:

θt+1 := θt +
1

N

N∑
i=0

[Gt∇ lnπ(a|s)] (10)

9

LIST OF FIGURES

2.7.2 REINFORCE with baseline

The update step in Equation 9 can be generalized by adding a baseline function
b(s)

θt+1 := θt + (Gt − b(s))∇ lnπ(a|s) (11)

where Equation 9 is the special case when b = 0. It is possible to add this term
because it does not change the expected value of the estimation of ∇J , the proof
is given in [29]. What the baseline can change, is the variance of the update. One
can use multiple different versions of baseline functions. One example is the mean
of the returns:

b :=
1

N

N∑
i=0

Gt (12)

As stated in Barto & Sutton, the estimated value function V (s) is also a natural
choice for the baseline. In this case, the update function becomes the following:

b(s) := V (s) (13)
θt+1 := θt + (Gt − V (s))∇ lnπ(a|s) (14)

2.8 Actor-Critic Method

Algorithms using parameterized policies from Section 2.5, as in the policy gradient
methods, is called Actor-only methods. When using only the value function ap-
proximations from Section 2.6, it is called Critic-only methods. Combining these
methods gives us Actor-Critic methods. The naming convention is as defined in
[18]. The aim of these methods is to combine the strong points of both Actor-
only and Critic-only methods. Here, the critic is learning an approximation of the
return, and then using this to update the policy approximation of the actor. As
characterized by deep reinforcement learning, the Actor and Critic are parameter-
ized by neural networks with parameters Θ and Θv respectively. When discussing
baseline, the possibility of using the value function as a baseline was mentioned,
thus using both a parameterized policy and a value function. But as given in [29],
this is not seen as an Actor-Critic Method, as it is only using the estimated value as
the baseline, and not as the estimated return. The REINFORCE algorithm can be
turned into an Actor-Critic method. Starting with the policy update in equation
14, the one step Temporal-Difference-error is used instead of Gt, the discounted
return:

θt+1 := θt + δ∇ lnπ(a|s) (15)
δ = Rt + γV (s′)− V (s) (16)

10

2 Theory

Here, Rt is the reward, γ is the discount factor, and s and s’ is the current and next
state. δ is recognized as the TD-error from Equation 5, and since the TD-error is
defined by the value-function V(s), it is an Actor-Critic method. The value function
approximator is updated by minimizing the TD-error using gradient descent.

2.9 Asyncronous Advantage Actor-Critic Method

The Asynchronous Advantage Actor-Critic method, popularly called A3C, is a
highly computational efficient way of utilizing the Actor-Critic method [21]. The
efficiency comes from using separate learner agents executed in parallel. Each agent
runs its own version of the environment and its own copy of the Actor-Critic neural
networks. Each agent asynchronously updates a global network, using stochastic
gradient descent optimization methods. Every time the agent finishes an episode,
it will overwrite the local version of the network with the global version. The
agents now have the ability to independently explore the environment, giving a
more diverse training data. Since the processes are parallel, distributing the work
on multiple CPU cores or on the GPU will decrease training time.

2.9.1 The Advantage

In Section 2.8 on the Actor-Critic method, it was explained how the combination
of the Policy and state-value function was utilized. In A3C, the actor is still
represented by the policy π(at|st; θ), but the critic is instead an estimate of the
advantage function A(s, a; θ) [21]. The advantage function is defined as

A(st, at) = Q(st, at)− V (st) (17)

This is an evaluation of the advantage in performing an action, the difference
between the action value function Q(st, at) and the state-value function V (st).
By inserting the definition of the action-value function from Equation 3, we can
represent this by

A(st, at; θ) =

k−1∑
i=0

γirt+1 + γkV (st+k; θ)− V (st; θ) (18)

Here V (s; θ) is the neural network approximated state-value function with param-
eters θ. Using the definition for return from Equation 1, the advantage function
formulation can be simplified to

A(st, at) = G(st, at)− V (st) (19)

The objective function for the actor is then represented as the following:

J(θ, θv) = lnπ(at|st; θ)(Gt − V (st; θv)) (20)

11

LIST OF FIGURES

Practically, the representation of the policy π and value function V can be repre-
sented by two separate neural networks with parameters θ and θv. It is also possible
to use one neural network for both functions, with a shared input and initial layers,
but is later split to have separate output layers. For more on neural networks, see
Section 2.10.

2.9.2 Entropy

To help the exploration when following a certain policy, we can make it add a higher
measure of stochastic in action selection. This can be done by using the entropy
of the policy π, as done in [21]. For this, we introduce the Shannon entropy H(π)
given as

H(π(at|st; θ)) = −
M∑
i=1

p(ai|st; θ) log p(ai|st; θ) (21)

where π(at|st; θ) = [p(a1|st; θ), ..., p(am|st; θ)] for a set of M actions, and p(a|s; θ) is
the probability of action a given state s and parametrers θ. The Shannon entropy
is maximized for a policy where the probability of a given action comes from a
uniform distribution, since this is the least deterministic behavior. The entropy
H(π(at|st; θ)) can then be included in the objective function of the actor from
Equation 20:

J(θ, θv) = lnπ(at|st; θ)(Gt − V (st; θv)) + βH(π(at|st; θ)) (22)

where β is the hyperparameter dictating how much to weigh the entropy. For an
optimal β, the policy solution should be able to leave local minimums and explore,
while being able to converge to an optimal solution.

2.10 Neural Networks

Artificial neural networks have since Hinton et al. wrote A fast learning algorithm
for deep belief nets [11] revolutionized the world of machine learning, even though
the idea of these networks has been around a long time. It is used as a function
approximator, to mimic some function or model mapping an input to the desired
output. It has surpassed other models in both image recognition, speech recog-
nition, and reinforcement learning. The latter was shown as mentioned with the
breakthrough of DeepMind, where an agent learns to play Atari games only from
visual pixel input [22]. The idea behind artificial neural network has been around
since the 1940s and was from the start a way of trying to mimic how the brain
neurons function. The brain uses extremely large connected networks of neurons
to process the vast information available to us. Each neuron gets input from other
neurons and fires an output signal itself if the sum of input is above some threshold
[12]. The artificial neural network is a simplification of what can be seen in the

12

2 Theory

brain. The basic consists of a summation of the inputs and the output is an activa-
tion function on that summation, as can be seen in Figure 5. Each signal between
the neurons is multiplied by a weight of w. These weights can be tuned to fit
different functions. The neurons can be stacked together in both width and layers,
creating large interconnected neural networks. In Figure 6 a small artificial neural
network with three inputs, one hidden layer with four neurons, and two outputs
can be seen. What architecture to choose depends on the problem at hand. For
instance, if the problem is complex, a larger number of neurons is needed to model
the problem, than if the problem is simple. The universal approximation theo-
rem states that a sufficiently large neural network actually can approximate any
function mapping a finite dimensional discrete input to finite dimensional discrete
output, as explained by Ian Goodfellow et al. in [10]. However, as also explained
in [10], even though a neural network can represent any function, it does not mean
that it is possible for the neural network to learn it.

2.10.1 Learning in a neural network

To be able to model a system using a neural network, one needs a training set
of input with corresponding target outputs. Learning starts out by having a cost
function that one want to minimize. This cost function is, for example, the squared
error between the model output ŷ and the target output y.

E =
∑

(ŷ − y)2 (23)

With backpropagation as explained in [10], the weights can be updated to minimize
the cost function using gradient descent. Gradient descent is explained in Section
2.11.

2.10.2 Activation functions

The important part of the activation function is that it is non-linear. This is
important, as a neural network with only linear activation function, only can model
linear functions, see [10]. Three common activation functions is the rectified linear
(relu) function:

g(z) = max(0, z) (24)

the softplus function:

f(z) = ln(1 + ez) (25)

and the sigmoidal function:

σ(z) =
1

1 + e−x
(26)

A plot of the sigmoid and the relu functions is seen in Figure 3 and the softplus
and the relu in Figure 4.

13

LIST OF FIGURES

Figure 3: Plot of the sigmoid function and rectified linear (relu) function.

Figure 4: Plot of the softplus function and rectified linear (relu) function.

Figure 5: Model of a neuron, with inputs, summation and activation function.

14

2 Theory

Figure 6: A small artificial neural network with three inputs, one hidden layer with
four neurons, and two outputs.

2.10.3 Regularization: Dropout and L2

When training a model with a neural network, the interesting part is how the model
performs on new, unseen data. The ability to perform well on these data is called
generalization [10]. If our model is to generalize well, overfitting must be avoided.
(See chapter on overfitting in [10]). This can occur when our model is trained
too long on one set of data and becomes modeled especially to that set. Neural
networks are complex models. If the network is capable to model something of a
higher complexity than the actual model itself, it is also prone to overfitting ([10]).

Regularization techniques is applied to the network to battle overfitting. The
L2-regularization (see [10]) is a weight decaying teqchnique. By adding a term with
the L2 norm of the weights to the cost function in Equation 23, a lower absolute
value of the weights is expected:

E =
∑

(ŷ − y)2 + λ|w|2 (27)

The λ is a hyperparameter chosen in advance to weight the importance of small
weights w.

Dropout [10] is a technique meant to achieve the same as bagging. That is,
training multiple models and use the average result in hopes for a better general-
ization. In dropout, each neuron in a layer of the network has a probabilistic chance
of being taken out for that epoch of training. The network now only consists of the
neurons not taken out, and a different subset of the network will then be trained

15

LIST OF FIGURES

in each epoch. This forces the network to not rely on only some neurons, and each
neuron will be forced to participate in modeling.

2.11 Gradient descent optimizer

Gradient descent is the most common way to optimize neural networks. Through
backpropagation the gradient of the cost function w.r.t. the weights θ can be ob-
tained. These gradients are then used to update the weights θ to find the minimum
of the cost function. In reinforcement learning the problem is often formulated as
a gradient ascend problem, where the goal is to find the maximum of some per-
formance measure function. However, exactly the same algorithms can be used in
both cases, as the maximum of the function J is the same as the minimum of −J .

2.11.1 Batch gradient descent

The most straightforward way of updating the weights of a neural network is the
vanilla gradient descent, also called batch gradient descent:

θt+1 := θt − α∇J (28)

Here α is the learning rate, a scaling of how much to update the weights, and
∇J is the average gradient of the cost function w.r.t. the parameters θ for the
whole training set. This is computationally costly, especially memory wise, as for
each update all of the gradients must be calculated. On the other hand, a more
consistent gradient is obtained with batch gradient descent than with stochastic
gradient descent. It is also shown to have better convergence properties [10]

2.11.2 Stochastic gradient descent

Instead of calculating the gradients for the whole training set, it is with stochastic
gradient descent (SGD) possible to update the network for each training sample.

θt+1 := θt + α∇̂J (29)

The variance of the updates will fluctuate more than for batch gradient descent.
This means that it is possible for SGD to jump to a different and possibly better
local minimum than where it started, something that will not happen with batch
gradient descent.

2.11.3 Minibatch gradient descent

Trying to merge Batch and Stochastic gradient descent, Minibatch gradient descent
tries to minimize the variance as in Batch gradient descent, while utilizing the
efficiency of still being SGD. Instead of training on the whole data set, a smaller
batch size of n elements is chosen. Common batch sizes are between 50 and 256.

16

2 Theory

2.11.4 Moment

There are multiple challenges with SGD. It is very important to find a suitable
learning rate. A small one will slow down the learning, and a too large one might
hinder convergence. With SGD, the same learning rate is applied to all the weight
updates. Since some weights change less often than other, it is often smart to apply
a larger update step to those. Another challenge is getting stuck in a non-optimal
local minimum. As discussed in Dauphin et al. [5], the largest problem might in
fact not be local minima, but saddle points. They are often followed by a plateau,
that makes progress hard as the gradients go towards zero.

A way to battle this is with momentum [26]. It helps to accelerate the SGD in
the relevant direction by using the previous update step in addition to the current
one. The term momentum comes from that it is closely related to momentum from
physics. It can easily be visualized as a ball rolling down a hill. The ball starts
rolling and builds up speed. If you try to apply a force on the ball to change its
course, it will be hard because it still got the momentum from rolling down the
hill. When you apply momentum to SGD, you apply a term looking back at the
previous updates, and add a part of that gradient to the current update. Just as a
ball would be able to roll over a flat surface using its momentum from the previous
hill, the SGD with momentum would be able to overcome both saddle points and
plateaus.

2.11.5 Adam optimizer

The Adam optimizer as proposed in [15] is utilizing both momentum and adaptive
learning rates. The notation used is from [15], but changed to fit the previous
notation in this paper. The update rule is given as the following:

θt+1 = θt −
α√
v̂t + ε

m̂t (30)

Here m̂t and v̂ are both vectors and can be interpreted as the mean and the
variance of the moment. As can be seen in 30, the update term is divided on
the variance v̂. This results in that the weights that are updated less get a boost
compared to the weights that are updated often. This is what is called adaptive
learning rates. The moments are both exponentially decaying based on previous
moments as given in 31, added with the current gradients gt w.r.t. the network
weights θ. β1 and β2 is the decay rates of the previous moments. Both m and v is
initialized to zero, and it is proved in [15] that they are biased towards that initial
value. A bias correction term is therefor added as in Eq. 32, and this gives us m̂t

and v̂.

17

LIST OF FIGURES

mt = β1mt−1 + (1− β1)gt

vt = β2vt−1 + (1− β2)g2t
(31)

m̂t =
mt

1− βt1
v̂t =

vt
1− βt2

(32)

2.12 Bezier Curve
Bezier curves ([13]) is a type of parametric function. It is heavily used in com-
puter graphics and design. To a computer, straight lines are easy to represent
as functions, but to mathematically represent complex curves can be unfeasible.
The Bezier Curve, named after Pierre Bezier, is a way of representing curves using
straight, easily represented lines, see Figure 7. For a mathematical definition, see
the source [13].

Figure 7: Example of a curve defined by three other lines

2.13 Ackerman steering
Ackerman steering [14] is a way to link the wheels of a vehicle to reduce the sideway
slip. It was invented already in 1817, and used on horse-driven carriages. The
geometrical solution, as shown in Figure 8, is to give the wheels different turning
radius to correct for the fact that they are placed at a different length away from
the turning point of the car.

18

2 Theory

Figure 8: A figure demonstrating the different turning angles of the wheels used in
Ackerman steering

19

LIST OF FIGURES

3 Guidance, Navigation and Control with Rein-
forcement Learning

This section will explain how reinforcement learning can be implemented in the
context of guidance, navigation, and control.

A motion control system can often be split into three parts denoted the guid-
ance, the navigation and the control system. [9]. These are shown in Figure 9.
The guidance part deals with the system that computes the reference signals used.
This can be the desired position and velocity. In our path-following case, it gets
data from a path planner about the desired path and calculates the reference sig-
nals. Navigation is the system that determines the position, attitude, course, and
distance traveled. This can be done by using a global navigation satellite system
in addition to motion sensors as accelerometers and gyros. The control module
is the part responsible for determining the necessary control forces to follow the
objective set by the guidance system. This is where path-following algorithm such
as Line-of-Sight (LOS) or other objectives can be implemented. As we can see in
Figure 9 the estimated positions and velocities from the observer are taken into the
control system, so that it is able to implement feedback control laws. The output
from the control is then applied to the vehicle to be controlled. The figure shows
that there is a feedback signal to the guidance part. This makes the whole system
a closed-loop guidance system since it makes use of the measured positions and
velocities. Even though the paths are static, feedback can be used to for example
avoid obstacles based on the current positions [3]. Systems without this feedback
become an open-loop guidance system as it only uses the feedforward reference.

The motion control task of this thesis is path-following of an underactuated ve-
hicle and underactuated marine craft. To understand how these systems are mod-
eled, we need to explain some terms [9]. A configuration space is the n-dimensional
space of which position and orientation a vehicle or craft can attain. It is also
called the degree-of-freedom (DOF) of a system. The vehicle is modeled with 6
DOF ηv = [x, y, z, φ, θ, ψ], which is the position in x, y and z-direction, and roll,

Figure 9: Illustration of a conventional of a guidance, navigation and control-
system.

20

3 Guidance, Navigation and Control with Reinforcement Learning

Figure 10: A motion control system using Reinforcement Learning.

pitch, and yaw respectively. We are here following the notation from [24] for ma-
rine vessels. The marine craft has 3 DOF, ηm = [x, y, ψ], that is position in x
and y-direction, and yaw angle ψ. The workspace of a system is the reduced m-
dimensional space where m < n. As we later describe, the workspace of our two
systems is m = 1, since we are only controlling the yaw motion.

Instead of using the classical approach to path-following with a method as LOS
[9], this thesis develops a reinforcement learning-based methodology to control the
vehicles under consideration. In Figure 10 it is shown how the original guidance,
navigation, and control-system from Figure 9 can be altered to include a reinforce-
ment learning system. As can be seen, the reinforcement learning system has taken
the place of the guidance and the control systems. The sensor data is used together
with the path planner to create the states of the reinforcement learning system.
These are fed to the learning representation, in this case the neural networks, to
get actions to apply to the environment. An important aspect is that the reinforce-
ment learning agent does not care about what kind of vehicle or ship model it is
controlling, or how external forces are affecting the model. It could for example
learn to steer a ship on a path and compensate for the current, without knowingly
do so. It learns the complete model of the ship and the environment around it,
without discriminating between the two.

21

LIST OF FIGURES

4 Implementation

This section will explain the vehicle and the ship model used to test the learn-
ing algorithm. We explain the implementation details about the A3C algorithm,
the paths and the simulator used. The experiments were done using the V-REP
simulator setup explained in Section 4.8.

4.1 The vehicle

The vehicle used in the simulator can be seen in Figure 11. The vehicle is called
Manta and comes natively with the V-REP simulator. The Manta is a relatively
complex car model, having implemented both suspension and Ackerman steering.
This gives us a realistic vehicle to use for our experiments. The speed is indirectly
controlled by setting the torque on the motor, so by trial and error, an appropriate
torque was found to minimize loss of traction, while still giving a quite high resulting
speed.

• Maximum torque of the motor: 60 [Nm]

• Wheel radius: 0.09 [m]

• Width between wheels: 0.35 [m]

• Length between wheels: 0.6 [m]

For the experiments, the motor torque of the vehicle was set constant. This gives
a maximum speed of 3.5 m/s. Vehicle settings:

• Maximum steering angle: 30°(turning radius: 1.2 [m])

• Constant torqe: 30 [Nm]

• Maximum speed: 3.5 [m/s]

4.2 The Mariner ship model

The ship model [4] is implemented in the Marine Systems Simulator (MSS) matlab
toolbox [8]. It was translated to Python by Andreas Bell Martinsen. It is a classic
ship model used extensively in the Marine Craft handbook by Fossen [9].

• Length: 160m

• Maximum rudder angle: 40°

• Cruising speed: 7.7 m/s

The equation of the mariner model is given in appendix A. The Mariner model was
simulated by its equations directly in the python code using basic Euler integration.

22

4 Implementation

The Manta car model

Figure 11

Figure 12: Illustration of the mariner model from the original paper [4]

23

LIST OF FIGURES

4.3 About the models
The Manta vehicle model was the main model when starting this thesis. It is
complex, and since it must be simulated in V-REP it is computationally heavy
to test on. What we wanted to do, was to make a simple mathematical model
to see if we were able to transfer some of the learning from the computationally
light mathematical model to the Manta vehicle. As the Institute of Cybernetics
in Trondheim is very involved in marine technology, we have been introduced to a
wide variety of ship models during the years. We were interested if we could find
some similarities between the control of the ship and control of the car model.

An interesting aspect of the models is testing whether or not the learned dy-
namics from the ship can be used to control the vehicle. Therefore, it was focused
on making the dynamics of the two as equal as possible. The size difference be-
tween the two types of models is large, as the ship is about 200 times the car.
The path to follow was therefore scaled up 200 times when training on the ship.
However, the cross track-error state had to be scaled down again before sent to the
neural network, for it to be indifferent to which model it was training on. The cross
track-error is the only state affected by the scale. More on the states in Section
4.11.

The speed of the ship is however not 200 times the speed of the vehicle. To
approximately make the dynamics equal, that is, make the actions on the ship have
the same impact as actions on the vehicle, we scale the simulation time step of the
ship simulation. The speed of the car is approximately 3.5 m/s, a little less than
half of the speed of the ship. Since the ship should travel 200 times longer than
the car after the scaling of the path, the time step is set 100 times longer than for
the car. From testing, we found that the minimum timestep we could have on the
car was 0.1 seconds. Less than this, and the time per simulation became too high.
The V-REP recommended timestep is 0.05 second. We therefore ended up with a
timestep of 0.1 seconds on the car, and 10 seconds on the ship.

4.4 The path representation
Several paths were created to train the agent, and two is presented here. The
paths were created inside the V-Rep simulator environment, by utilizing a path
creation tool. The paths are created by setting waypoints and then producing the
smooth bezier-curve (Section 2.12) of these points. Plots of the resulting paths
can be seen in Figure 14. The paths have increasing difficulty. As can be seen
in Figure 13, each bezier-point includes an orientation, which is aligned with the
curve tangential angle of the path. Therefore, both position and angle can be
extracted directly from the path points. Defining the paths this way, compared
to creating them by defining mathematical curves, makes it easier to make and
tweak the paths. It is also more probable that this is how paths in a map program
would be defined. However, it poses some practical problems when calculating the
information needed for the car to follow. These are explained in Section 4.10.

24

4 Implementation

Figure 13: Image of how the points of the bezier curve looks. Each point includes
orientation, which here equals the path tangential angle.

Paths

(a) (b)

Figure 14: The different paths used.

25

LIST OF FIGURES

Figure 15: Reward functions with respect to cross-track error, given that the car
is facing the right way down the path. There is two Gaussian distributions, and
one uniform distribution.

4.5 Reward function

The reward function, defining the return as explained in Section 2.4, is a very
important and difficult part of any reinforcement algorithm. This is where we have
to define to the agent what we want to achieve, by setting a reward for certain
behavior.

The reward functions for the path following case is made to be as simple as
possible, as it is deemed as important to avoid the unforeseen behavior. By setting
the motor torque constant, and only controlling the steering of the vehicle, it is
possible to build a reward function based on the cross-track error of the vehicle
with respect to the path. If we were to include control of the speed of the car to
be learned, we would probably also have to include path progress as an element in
the reward function.

The reward functions used is as shown in Figure 15, but only given that the
difference in angle α between the heading of the car and the path tangential angle
satisfy −90° < α < 90°. In other words, the car must face in the correct direction,
heading down the path. Since the motor torque of the car is constant, we then
know that the car will be progressing down the path.

4.5.1 Penalty on turning rate

When designing an optimal solution to a control problem, we have to ensure that
the solution is feasible to execute for a realistic model. A solution that might
perform well in a simulated environment, might not work well in a real-world
application. In an optimal control setting, a solution will often involve excessive
chattering in the steering control. In a real-world application, it would result in
reduced durability.

The solution in reinforcement learning is to penalize overuse of the steering,
and it must be reflected in the wanted behavior defined by the reward function.
The proposed solution is to add a penalty p to the reward function defined by the

26

4 Implementation

rate of change in the commanded steering given as the following equation:

r(t) = N(e(t), σ2) + p(t) (33)
p = −βȧ(t) (34)

r(t) is the reward at timestep t, N is the Gaussian distribution with variance σ2

as visualized by Figure 15. e(t) is the cross track-error at timestep t. The penalty
constant β is a hyperparameter to be set, scaling the influence of the penalty on
the reward. a(t) is the action at timestep t. The p term is expected to encourage
the agent to have a smoother usage of the steering. Choosing the term β correctly
is important since a too high value will probably discourage changing the steering
angle altogether, while a too low value will probably give no effect at all. Different
β must be tested.

4.6 The A3C algorithm implementation

The A3C algorithm implemented in this task is built from the actor-critic algorithm
from the project thesis which preceded this master thesis. The formulation of the
algorithm 1 is taken from the original paper [21]. The algorithm describes one
parallel learner agent. Each agent has a local step counter t, and share the global
step counter T . In the implementation, the entropy regularization is also used, but
as in the original paper, it is omitted in the algorithmic formulation.

Each learner synchronizes their local copy of the global network at the start
of each episode. The episode is tmax steps. After each episode, the accumulated
gradients of the weights are applied to the global network asynchronous. This
is done via the Hogwild-approach [27], a method used for parallelized stochastic
gradient descent. The approach is based on that multiple workers can update a
shared memory, in this case, the weights of the network, without locking it. It
runs the risk of having race conditions and overwriting other updates, but it is
proved that it is not only fast for the program to run, but also mathematically
efficient. The algorithm runs until the sum of timesteps run by all workers exceeds
the number of maximum timesteps Tmax.

The environments dealt with in this thesis has both continuous action space
and state space. The continuous state space can be used just as a discrete states as
inputs to the neural networks, but a continuous action space is more challenging for
the reinforcement algorithm and must must be treated different. The challenge is to
implement exploration of the environment when an action is chosen. If the actions
is discrete, that is given a finite number of possible actions, a certain probability
to be chosen can be given to each action. In the continuous case, there is infinitely
many actions. One solution is to partition the action space to make it artificially
discrete, but this limits the accuracy of the actions. Instead, we use a different
solution. As proposed in [29], we introduce a random noise which is applied to
the continuous action. A gaussian distribution was used to model the noise, as

27

LIST OF FIGURES

Algorithm 1 Asynchronous advantage Actor-Critic for continuous actions with
batch training
1: Initialize global actor and value network with weights θ and θv
2: Assume thread specific network weights θ′ and θ′v
3: repeat
4: Reset gradients: dθ ← 0, dθv ← 0
5: Synchronize thread-specific parameters θ′ = θ and θ′v = θv
6: tstart = t
7: Get state st
8: repeat
9: perform at according to policy π(at|st; θ′)

10: Receive reward rt and a new state st+1

11: t← t+ 1
12: T ← T + 1
13: until terminal st or t− tstart == tmax
14: R = V (st, θ

′)
15: for i in {t− 1, ..., tstart} do
16: R← ri + γR
17: Accumulate gradients: dθ ← dθ +∇θ′ log π(ai|s|i; θ′)(R− V (si; θ

′
v))

18: Accumulate gradients: dθv ← dθv +
∂(R−V (si;θ

′
v))

2

∂θ′v

19: Update θ and θv using dθ and dθv
20: until T > Tmax

28

4 Implementation

proposed by [33]. A Gaussian distribution is given in Equation 35.

N(x|µ, σ2) =
1

σ
√

2π
e−(x−µ)

2/2σ2

(35)

Here µ is the mean of the distribution, σ2 is the variance and π is in this case the
mathematical constant. Here the output of our policy function approximator is
used as the mean of the distribution, and the Gaussian noise is added to ensure
exploration. How to choose the variance of the noise is an open topic. It is possible
to set it to a decaying or constant variable, as proposed by [33], or to try to learn
it by parameterizing it as a part of the neural network. The latter was chosen and
is explained more in Section 4.7.

4.6.1 Using Python and Green Threads

It is important to address the use of Python in the implementation of the al-
gorithm. Python is the most popular programming language for implementing
machine learning algorithms [34], much because of its simplicity and readability,
and was therefore chosen for this project. It was the programming language I had
the most previous experience with, and it gave the possibility to reuse software
made during the project thesis. However, using Python also poses some chal-
lenges. Python has its own library implementing multithreading, threading, but
unlike languages like C++, the threads cannot run in true parallel [25], [30]. This
type of threads are called green threads and is only run on one processor core. The
A3C algorithm is made specifically to be run in parallel and utilize the multiple
cores of the CPU and is of course hindered by this as shown in the results section.
But as we have earlier mentioned, the advantage of this algorithm is not only the
parallel part but also that it is mathematically efficient. So the results will be the
same as if the algorithm was run in true parallel, but it will be slower. This does
however not so much affect the running of simultaneous V-REP simulations. These
are separate processes and will benefit by speeding up the algorithm by running
in parallel. Other options were also explored. Python has a library called Multi-
processing which enables the use of multiple processor cores. The difference from
threading is that this library creates a completely new process with its own private
memory. This makes sharing objects hard, and to us, it makes the update of the
global networks complicated to implement. The solution was to implement the
algorithm with the threading library, and settle with the longer simulation speed.

4.7 The Neural Network implementation

The neural networks in this implementation are made with the Tensorflow library
[31]. Tensorflow is an open-source machine learning software specially designed
for making neural networks and is originally developed by the Google Brain team.
Tensorflow enables you to make neural networks by setting them up as compu-
tational graphs, separate from the programming language used to implement the
algorithm. This makes it highly efficient because even though you might use a

29

LIST OF FIGURES

Figure 16: A visualization of the neural network used by the A3C algorithm. It is
separated in an actor and a critic network, with identical input. The actor network
outputs an Gaussian distribution, and the critic a value estimation. Each node
visualizes which activation function is used: ReLu, tanh, softplus and linear.

slower language like Python, the neural network and the computation required is
implemented in C++.

The actor and the critic are implemented as two separate neural networks, as
shown in Figure 16 The input to each network is identical and is the states defined
in Figure 4.11. In the original A3C paper [21], a different architecture is used. Here
they implemented both the actor and critic as one network. The first layers are
here shared and then split up so that each has one layer separate before the output.
As the actor and critic network in our experience is likely to have to learn some
of the same features from the environment, it could be efficient to share the first
layers. However, it does presume and expect this to be the case without making
grounds for it. Having two networks is a more general solution, and is therefore
implemented.

The critic network is chosen to be a two-layer deep network, with 200 nodes
in each layer using the ReLu activation function. It has one linear output, which
represents the value of a given state. The actor-network is also two layers, but
have 400 nodes in each layer with the ReLu activation function. The number of
outputs is proportional to the number of actions the agent needs. Because we are
dealing with a continuous action space, each action is represented by a Gaussian
distribution, that is, a mean µ and a standard deviation σ. Since we have a one-
dimensional action space, the network has two outputs. The µ-output is truncated
by the tanh-function, while the σ has a softplus activation function. The Adam

30

4 Implementation

Parameter Value
Learning rate actor network 0.001
Learning rate critic network 0.001
Number of hidden layers 2
Number of neurons pr layer actor 400
Number of neurons pr layer critic 200
Discount factor γ 0.95
Entropy β 0.01

Table 1: Hyperparameters for the neural networks

Figure 17: Overview of the V-REP simulator environment with the robot and a
very short straight path.

optimization is used by the networks when learning.
The hyperparameters chosen is as given in Table 1.

4.8 System overview

This section aims at giving an overview of how different parts of the software sys-
tem interacted. The two main parts are the reinforcement learning algorithm and
the simulated environment. The reinforcement learning algorithm is the simplest,
consisting only of the implementation of the algorithm. The environment part is
split into several smaller parts, as shown in Figure 19. The most important is the
simulator part, the remote API, Wrapper, and Gym environment is functioning as
layers to interact with the simulator.

31

LIST OF FIGURES

Figure 18: Overview of the simulator environment with the robot and a curved.

4.9 Simulator

4.9.1 V-REP

V-REP (Virtual Robotic Experimentation Platform) [7] is a simulation framework
specifically built for robotic applications developed by Coppelia Robotics. It is a
commercial product, but the educational version can be obtained for free. It is a
feature-rich framework, that includes a scene and model editor, a large library of
models and real-time mesh manipulation. V-REP has support for seven different
programming languages, including C++, Python, and Matlab. The default lan-
guage is however Lua. There is support for both local and remote control of a
simulation in the V-REP environment. One can make scripts in Lua that is run
inside the simulator, or one can use the remote API made to work with the other
languages mentioned. You can then run your program separate, and call functions
that will send messages over socket communication. Separate in this case can mean
just a separate process or a separate computer. An important aspect of using this
kind of communication is whether or not each call is blocking or nonblocking. A
blocking call is when the remote program sends a message to the simulator, and
then waits until it gets an answer before proceeding with the program. A non-
blocking call would proceed before an answer is received. In our implementation,
we need to know that simulating, reading sensors and setting joints happens se-
quential, so most communications are made blocking. E. g., it is important to know
that the simulator is finished simulating one timestep before reading the states for
the next.

32

4 Implementation

4.9.2 The Wrapper and OpenAi Gym

The wrapper is an important part of the software. It facilitates the usage of the
remote API of V-REP, for instance by wrapping the API functions in more intu-
itive objects, easily used in a higher level program. Each object controlled in the
simulator can now be accessed by using this objects get- and set-functions, instead
of calling the remote API functions directly with the object ID specified. The
wrapper adds the following functionality:

• Start an instance of V-REP and set up communication on a free port

• Load premade scene

• Start/pause/stop and reset a simulation episode in V-REP

• Process return and error codes

• Print debug and logging messages

• Treat objects in V-REP (e.g. vehicles, robots) as objects in Python, simpli-
fying reading sensors and controlling objects.

The OpenAI Gym-environments [2] is originally a collection of simulators cre-
ated by the OpenAI team. However, it is possible to set up your own simulator as
a Gym-environment. The environments are specifically made for interacting with
a reinforcement learning agent, and therefore perfect for our task. Setting the sim-
ulator up, and being able to treat it as it as such, makes the simulator intuitive
to use, and easy to reuse in future implementations of reinforcement-learning al-
gorithms. Practically, an OpenAI Gym-environment sets a layout of function you
must implement for the environment, and should work as a black box in interaction
with the reinforcement learning agent.

4.10 Setup

For each episode, the vehicle is placed at the start of the path. To introduce some
uncertainty, the initial position varies from 0 to 5 meters (0 to 100 for the ship) to
each side of the starting point of the path, and in an angle from -45°to 45°relative
to the tangent of the path. The reasoning behind this is that the vehicle is forced
to deal with a randomness that will help it explore more of the environment. Even
though the path might be straight, the vehicle must not only learn to keep the
wheels straight to master the path, but also steer and converge to the path.

For each episode, one path is chosen to follow, either by random or not. The
agent does not know which path but is only getting input from the world through
the observable states. During these experiments, two different sets of states where
tested.

33

LIST OF FIGURES

Figure 19: The connection between the software components, from the learning
algorithm to the V-REP simulator. The colored area is highlighting what is hidden
as the V-REP Gym environment, working as a back (blue) box.

4.11 The observable states
The observable states used was the cross-track error e, the difference in angle α
between the heading of the vehicle and the line tangential to the path on the point
closest to the vehicle on the path, and the derivative of these, see Figure 20. The
states and their limits are shown in Figure 4.11.

States: Min Max
e [m] -∞ ∞
ė[m/s] -∞ ∞
α -π π
α̇ −∞ ∞

As explained in Section 4.4, the paths are not curves defined by mathematical
functions but defined by its bezier-points. This is practical when creating and
manipulating the paths, but gives us a lower precision when reading the information
from the path. To minimize this precision problem, we do the following. For each
timestep, the algorithm calculates the two closest bezier points on the curve with
respect to the car. As explained in section 4.4, each point contains an orientation,
which is aligned with the path tangential angle. This makes it easy to calculate an
estimate of the difference in orientation between the car and the path. To get the
cross-track error, it is possible to get an estimate just by calculating the distance
from the car to the closest bezier point on the curve. This, however, would give
you a low precision when the space between the points is significant, especially
on the straight parts of the path. Even though the vehicle would follow the path
perfectly, it would be reading a wave-like signal on the cross-track error, with the

34

4 Implementation

Figure 20: Figure of the cross-track error e and difference in angle α.

35

LIST OF FIGURES

high points being when you are directly between two points on the path. Instead,
we use the line defined by the closest point on the path and one of the adjacent
points on the path, whichever is closest to the car. Using the distance to the car
to this line gives us a smoother and more precise representation of the cross-track
error. The formula for calculating the distance from a point P0 : (x0, y0) to a line
L : ax+ by + c is defined as the following ([19], p 452):

distance(ax+ by + c = 0, (x0, y0)) =
|ax0 + by0 + c|√

a2 + b2
(36)

Since we do not have the function for the line L, the definition can be rewritten
to define the line by the two points P1 : (x1, y1) and P2(x2, y2) that we already
have:

distance(P1, P2, (x0, y0)) =
|(y2 − y1)x0 + (x2 − x1)y0 + x2y1 − y2x1|√

(y2 − y1)2 + (x2 − x1)2
(37)

36

5 Results and Discussion

5 Results and Discussion

This section will present the results obtained when running the reinforcement learn-
ing simulations. It includes results from training on the Manta car vehicle and the
Mariner ship model, and transfer learning from the Mariner to the car. At last fol-
lows a discussion around the time usage. All of the following results are obtained
with a Gaussian reward function with amplitude = 2 (see Figure 15. The uniform
reward function was not able to converge nearly as good as the Gaussian, while
there was no difference in learning between different amplitudes of the Gaussian.

5.1 The Manta vehicle path following

The agent was able to learn to control the Manta vehicle to follow a predefined
path. For a straight path, the learning process is shown in Figure 22. Here, the car
starts at the top of the path and tries to follow it, and it is clear that it manages
to learn the environment. As explained in the previous section, an initial offset
of the vehicle is due to it being placed randomly around the start of the path to
induce some randomness to the environment, and it can be seen that it is able to
converge to the path anyways. The episode reward is plotted in Figure 21. Here
the reward is scaled to have a maximum of 1 independently of how many steps the
episode is. The figure shows that the reward has flattened out on about 0.8 after
400 episodes.

Figure 21: Training reward response when agent is trained from scratch on the
displayed path

In Figure 23 the cross track-error, actual and commanded steering action, and
the difference between path tangential angle and vehicle heading angle of an agent
trained on the Manta vehicle are presented. The vehicle is performing well, as seen
in Figure 23a, but the steering commands in Figure 23c is quite violent. Because

37

LIST OF FIGURES

(a) After 1 episode (b) After 120 episodes

(c) After 310 episodes (d) After 501 episodes

Figure 22: The progress of learning with the Manta vehicle on a straight path.

the vehicle cannot change the steering angle instantaneously, the actual steering is
not as violent. The steering commands are a direct output from the actor neural
network. There is, however, no penalty on the rate of change in the steering, so
this result is not surprising.

For a path with turns, the training response is comparable to the straight path,
as can be seen in Figure 24. It shows that learning to follow a turning path takes
almost twice as long as to follow a straight path and that it is not able to achieve
as high a reward. The path and cross-track error of the curved path is plotted in
Figure 25a and 25b. The cross-track error is clearly larger than for the straight
path, and explains why the curved path is receiving less reward. In can be seen
that the vehicle is not able to follow the path when turning sharply.

38

5 Results and Discussion

(a) Path of the vehicle (b) Cross track-error

(c) The actual steering actions on the ve-
hicle (d) The steering commands to the vehicle

(e) The angle difference between vehicle
heading and path tangental angle

Figure 23: The performance by the Manta vehicle of a finished training agent on a
straight path.

39

LIST OF FIGURES

Figure 24: The reward response when training on the curvy path

40

5 Results and Discussion

(a) Path of the vehicle (b) Crosstrack-error

(c) The actual steering actions on the ve-
hicle (d) The steering commands to the vehicle

(e) The angle difference between vehicle
heading and path tangential angle

Figure 25: The performance by the Manta vehicle of a finished training agent on a
curved path.

41

LIST OF FIGURES

5.2 Mariner path following

Figure 26: The training reward of the Mariner model with 10 [s] time step on the
curved and the straight path.

The reward from training the Mariner ship model on a curved path and straight
path is shown in Figure 26. Here, the steering is updated once every 10 seconds.
It is clear that the agent is able to learn the environment in both cases. As can be
seen, the agent scores higher on the straight path, and this is as expected since it
should be easier to follow a straight path than a curved one. This can also be seen
by comparing the cross-track of the performance of the two paths in Figure 27b
and 28b. Just as for the Manta vehicle, the cross-track error on the straight path
shows that the ship does not converge perfectly to the path. Two different solutions
to this were tested on the Mariner training. In Figure 30 the path was changed
from being represented by multiple points as explained in Section 4.4, to being a
single mathematically defined line. In addition, the length of the time step that is
used to update the steering command was lowered to 1 s from 10 s. Even then,
the ship does not converge perfectly. This might come from not being sensitive
enough for the small cross-track errors. Therefore, the trained mariner model was
trained again with a Gaussian function with a smaller variance than before, with
the hope that it would learn to be more precise. This, however, did not improve
the performance, probably because the new reward function being too sparse.

42

5 Results and Discussion

(a) Path of the vehicle (b) Crosstrack-error

(c) The steering commands to the vehicle
(d) The angle difference between vehicle
heading and path tangential angle

Figure 27: Performance of mariner ship model on a straight path with 10 [s] time
step

43

LIST OF FIGURES

(a) Path of the vehicle (b) Crosstrack-error

(c) The steering commands to the vehicle
(d) The angle difference between vehicle
heading and path tangential angle

Figure 28: Performance of mariner ship model on curved path with 10 [s] time step

44

5 Results and Discussion

Figure 29: The training reward of the Mariner model with time step 1 [s] on a
straight path.

(a) (b)

Figure 30: Performance of mariner ship model on a straight path with 1 [s] time
step.

45

LIST OF FIGURES

Figure 31: The training response of the Manta vehicle after previously being trained
on the Mariner ship model.

5.3 Transfer learning
In Section 4.2 it was explained that the mariner model was trained with a long
time step of 10 seconds to try to have the same dynamic as the Manta car, only
scaled up. By taking the neural network models trained on the mariner model
which produced the results from Figure 27 and then using it on the Manta car,
we get the performance in Figure 32. Looking at the cross-track error in Figure
32b there is some oscillations that also is visible in Figure 32a. If we compare this
cross track error to the one in Figure 23b, it is oscillating slower. However, it has a
larger error, almost half a meter even after it has had some time to stabilize. This
is compared to a maximum of 20 cm as the specially trained model achieved.

After training the agent on the Mariner model, it was again trained on the
vehicle model. In Figure 31 the reward of the training on the vehicle model is
presented. As we can see, the reward is increasing over the first 100 episodes.
When comparing this to the reward in Figure 21, it is converging to about the
same level of reward, but rather slowly. As presented in Figure 32, the basic
control is already learned, so the increase in reward is minor improvements. The
improvements is presented in Figure 33b. The cross-track error is clearly less than
before the specific training on the vehicle.

46

5 Results and Discussion

(a) (b) Crosstrack-error

(c) The steering commands to the vehicle
(d) The actual steering actions on the ve-
hicle

(e) The angle difference between vehicle
heading and path tangential angle

Figure 32: The performance by the Manta vehicle when the model is only trained
on the Mariner ship

47

LIST OF FIGURES

(a) Path of the vehicle (b) Crosstrack-error

Figure 33: The performance by the Manta vehicle when the model is first trained
on the Mariner ship, and then trained on the Manta vehicle.

48

5 Results and Discussion

Figure 34: The steering commands on the Manta vehicle trained with and without
a penalty on changes in steering commands. The penalty constant β is chosen as
0.1.

5.4 Action penalty
In Section 4.5 it was proposed to add a penalty on rapid changes in the steering
action. The result of this is presented in Figure 34, where the steering commands
of two cars following a straight path is plotted. The blue line is the commands of
an agent trained without the penalty, and the orange is with. Here, the penalty
constant β from equation 33 is chosen as 0.1. It is clear that the agent trained
with the penalty is keeping a lower average angle when following the straight line.
The maximum steering angle is not limited, as we can see even though it is trained
with a penalty, it is still able to utilize the full range of the steering.

With a high penalty constant β = 0.4, the behavior of the system changes. In
Figure 35 we can see the behavior the Mariner converges to. It has found a turn in
the path where it can circulate and get a relatively high reward without changing
the steering. This is a good example of how the agent can learn a behavior that
was not intended, because of an untuned reward function.

49

LIST OF FIGURES

(a) Path of the vehicle
(b) The actual steering actions on the ve-
hicle

Figure 35: An optimal behavior of the system with a too high steering rate of
change penalty. Here, β = 0.4

50

5 Results and Discussion

Timing diagram for a single timestep
Model threads Total [s] Algorithm[s] Simulation[s] Action [s] Sensors[s]

Manta 3 0.32±0.003 0.001 ±0.0002 0.04 ± 0.001 0.08 ± 0.001 0.18 ± 0.001
1 0.30±0.003 0.001 ±0.0002 0.04 ± 0.001 0.08 ± 0.001 0.16 ± 0.001

Mariner 8 0.066 ± 0.001
1 0.008± 0.0005

Table 2: Table to be fixed. The table shows the time usage of different part of the
algorithm.

5.5 Time usage

The following section presents the results from a time usage test of the algorithm.
In Table 2 we separate the Manta car model and the Mariner ship model, and test
for different number of threads running in parallel on the two simulations. The
Simulation column is the time taken to simulate one timestep on the simulator,
the Sensor column is the time taken to poll and receive a sensor reading from the
simulator, while the Action column is the time the program uses to send the action
to the simulator. The Algorithm column is the rest of the running time of the
Python program, including neural network training, state calculations, etc.

The difference in time between running the V-REP Manta model and running
the Mariner model is significant. The mariner model is 38 times faster per timestep
for one thread. What is interesting, though somewhat expected, is that while
multiple threads for the mariner model just scale the time linearly, the V-REP
simulation is almost just as fast. This is because while the Python part of the
algorithm is not running in true parallel, the V-REP simulation is. It is clear
that it is the blocking communication between the python script and the V-REP
simulator that is using the most time. The reason for this is unknown. It is a
low amount of data to be transported, and should from previous experience be
able to be done faster. When using multiple threads, it is the communication that
is affected timewise. This is probably because only one thread is running at each
time, and it is possible that a thread might miss its message because another thread
was currently active. This assumption is strengthened by the fact that instances
of the V-REP simulators start to time out when we use more than three parallel
simulators. When we tried with four or more concurrent V-REP instances, some
instances will time out when it fails to establish contact with its creator thread. It
then gives up and stops communicating.

We should also see an increase in time in the general algorithm because of the
python green threads, as we do for the mariner, but it was too small to play an
important role. The result was however quite clear on that running the simulation
in parallel had a big improvement on the V-REP model since it was able to actually
run the simulation on multiple processor cores. This is different from the Mariner
model, as the multiple threads were run on only one core, and therefore did not
experience any speedup in simulation time compared to running only one thread.
However, as explained in Section 4.6, the stochasticity we get when having parallel

51

LIST OF FIGURES

learners is mathematically efficient.
From Section 5.1 it is shown that the agent needs 400 episodes with 300

timesteps each, to learn to follow the straight path with the Manta vehicle. This
adds up to 120 000 timesteps in total. As this is run in parallel over three threads,
each thread runs 40 000 timesteps each. Using the total time from Table 2, it
takes 40 000*0.32 s = 12800 s, which approximates 3 hours and 33 minutes. Look-
ing at the mariner in Section 5.2, it has learned the straight path after about 500
episodes using 8 parallel threads. Making the same calculations as with the Manta,
it takes only 21 minutes to learn the environment with the Mariner model. As ex-
plained earlier, the important part is not the exact time usage, as this will vary
between different hardware, but the time usage of the models compared to each
other. To master the straight path, the Mariner model was 10 times faster than
the V-REP Manta model. From the transfer learning we found that it took 100
episodes to train the agent to control the Manta vehicle, when previously trained
on the Mariner. 100 episodes with 300 timesteps each give 30 000 timesteps, dis-
tributed over three threads. This results in 10 000 timesteps run which equals 10
000*0.32s = 3200 s ≈ 53 minutes. If we add this as a basis for calculating the time
to train the vehicle using the model trained on the Mariner, the total time adds
up to 1 hour 14 minutes. This is 2.9 times faster compared to training only on
the Manta vehicle. It is clear that using a simple model to speed up training of
a complex model is very effective. It is then inherently possible that this extends
also to real-world applications. That is, to train a simple mathematical model with
similar dynamics, and then transfer this learning to a real-world application.

6 Conclusion

An Asynchronous Advantage Actor-Critic (A3C) method to be used with the V-
REP simulator was successfully implemented. In addition, the implementation
was able to function with a ship environment implemented in Python. Using the
A3C method, the reinforcement learning agent was able to learn to follow a path
with both the Manta vehicle model and the Mariner ship model. However, the
accuracy of the models following the paths showed in the results was not perfect,
as we experienced some occilations in the cross-track error. The reason for this is
discussed, but not exactly clear.

The agent was able to follow both a straight and a curved path. Since the
vehicle model is simulated in the V-REP simulator, it is inherently slower than the
Mariner, as this is run by using its equation directly in Python. We found that the
mariner model could be run 10 times faster than the V-REP vehicle model for each
simulated timestep. The models could be learned at about the same number of
training episodes. The Mariner converged after an average of 500 episodes, versus
400 with the V-REP vehicle model. This resulted in that the agent could learn the
mariner path following in only 21 minutes on the given computer, while it took 3
hours and 33 minutes on average to learn the V-REP Manta path following. This
is about four times as slow as on the Mariner. The Mariner trained model can be
used to transfer learning to the Manta car model. Training an agent on the Mariner

52

6 Conclusion

and later training it on the vehicle gave a calculated total training time of 1 hour
14 minutes, 2.9 times faster than training only on the vehicle. It is concluded that
this property might extend to the real world, that is, a simple simulated model can
be used to transfer learning to a real-world application.

6.1 Taking it further
There are several interesting paths that can take this work further. For example,
the Manta vehicle could be given more challenging driving conditions, as the sur-
face could be made uneven or slippery. Obstacles could be introduced, together
with ways to observe and learn to avoid these. The Mariner ship model could be
introduced to wind and currents that it would have to learn to compensate for. It
would also be interesting to extend the input space, and find new states to take
into the network. An example is to take in the rate of change of the path tan-
gential angle, so that the vehicle could anticipate turns in the path. To make the
environments more realistic, a measurement noise should be added to the sensor
readings. The models would have to learn to compensate for this to be able to
control a vehicle in the real world.

53

Appendices

54

A Mariner Ship Model Equations

A Mariner Ship Model Equations

This appendix gives the equations for the ship dynamics of the Mariner ship model
as given originally in [4]. See [9] for more details on the notation. The equations
are given for the motion in x and y-direction given a body fixed coordinate system.
X is the force in x-direction, and Y is the force in y-direction. The moment about
the z axis is given by N. The input δ is the rudder angle. Following the equation
of motion, is the constants used by the Mariner ship model.

X =Xuu+Xuuu
2 +Xuuuu

3 +Xvvv
2 +Xrrr

2 +Xrvrv

+Xδδδ
2 +Xuδδuδ

2 +Xvδvδ +Xuvδuvδ

Y =Yvv + Yrr + Yvvvv
3 + Yvvrv

2r + Yvuvu+ Yruru+ Yδδ

+ Yδδδδ
3 + Yuδuδ + Yuuδu

2δ + Yvδδvδ
2 + Yvvδv

2δ + (Y 0 + Y 0uu+ Y 0uuu
2)

N =Nvv +Nrr +Nvvvv
3 +Nvvrv

2r +Nvuvu+Nruru+Nδδ

+Nδδδδ
3 +Nuδuδ +Nuuδu

2δ +Nvδδvδ
2 +Nvvδv

2δ + (N0 +N0uu+N0uuu
2)

Xu̇ = −42e−5

Xu = −184e−5

Xuu = −110e−5

Xuuu = −215e−5

Xvv = −899e−5

Xrr = 18e−5

Xδδ = −95e−5

Xuδδ = −190e−5

Xrv = 798e−5

Xvδ = 93e−5

Xuvδ = 93e−5

Yuuδ = 278e−5

Yvδδ = −4e−5

Yvvd = 1190e−5

Y 0 = −4e−5

Y 0u = −8e−5

Y 0uu = −4e−5

Yv̇ = −748e−5

Yṙ = −9.354e−5

Yv = −1160e−5

Yr = −499e−5

Yvvv = −8078e−5

Yvvr = 15356e−5

Yvu = −1160e−5

Yru = −499e−5

Yδ = 278e−5

Yδδδ = −90e−5

Yuδ = 556e−5

Nuuδ = −139e−5

Nvδδ = 13e−5

Nvvδ = −489e−5

N0 = 3e−5

N0u = 6e−5

N0uu = 3e−5

Nv̇ = 4.646e−5

Nṙ = −43.8e−5

Nv = −264e−5

Nr = −166e−5

Nvvv = 1636e−5

Nvvr = −5483e−5

Nvu = −264e−5

Nru = −166e−5

Nδ = −139e−5

Nδδδ = 45e−5

Nuδ = −278e−5

Nuuδ = −139e−5

Nvδδ = 13e−5

Nvvδ = −489e−5

N0 = 3e−5

N0u = 6e−5

N0uu = 3e−5

55

REFERENCES

References

[1] Dimitri P. Bertsekas. Dynamic Programming and Optimal Control, Vol. II.
Athena Scientific, 3rd edition, 2007.

[2] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John
Schulman, Jie Tang, and Wojciech Zaremba. Openai gym. CoRR,
abs/1606.01540, 2016.

[3] Mauro Candeloro, Anastasios M. Lekkas, and Asgeir J. Sørensen. A voronoi-
diagram-based dynamic path-planning system for underactuated marine ves-
sels. Control Engineering Practice, 61:41 – 54, 2017.

[4] MS Chislett and J Strom-Tejsen. Planar motion mechanism tests and full-scale
steering and manoeuvring predictions for a mariner class vessel. International
Shipbuilding Progress, 12(129):201–224, 1965.

[5] Yann Dauphin, Razvan Pascanu, Çaglar Gülçehre, Kyunghyun Cho, Surya
Ganguli, and Yoshua Bengio. Identifying and attacking the saddle point
problem in high-dimensional non-convex optimization. CoRR, abs/1406.2572,
2014.

[6] Espen Dietrichs. Dopamin - store medisinske leksikon.
https://sml.snl.no/dopamin., 2018.

[7] M. Freese E. Rohmer, S. P. N. Singh. V-rep: a versatile and scalable robot
simulation framework. In Proc. of The International Conference on Intelligent
Robots and Systems (IROS), 2013.

[8] Perez Fossen. Marine systems simulator (mss). http://www.marinecontrol.
org, 2004.

[9] Thor I Fossen. Handbook of marine craft hydrodynamics and motion control.
John Wiley & Sons, 2011.

[10] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT
Press, 2016. http://www.deeplearningbook.org.

[11] Geoffrey E. Hinton, Simon Osindero, and Yee-Whye Teh. A fast learning
algorithm for deep belief nets. Neural Comput., 18(7):1527–1554, July 2006.

[12] Jan Jansen and Joel Glover. Synapse. i store medisinske leksikon.
https://sml.snl.no/synapse.

[13] Mike "Pomax" Kamermans. A primer on bezier curves, an online book. https:
//pomax.github.io/bezierinfo/, 2018. Accessed: 2018-05-05.

[14] Desmond King-Hele. Erasmus darwin’s improved design for steering
carriages—-and cars. Notes and Records, 56(1):41–62, 2002.

56

http://www.marinecontrol.org
http://www.marinecontrol.org
http://www.deeplearningbook.org
https://pomax.github.io/bezierinfo/
https://pomax.github.io/bezierinfo/

REFERENCES

[15] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimiza-
tion. CoRR, abs/1412.6980, 2014.

[16] J. Kober, K. Mülling, O. Krömer, C. H. Lampert, B. Schölkopf, and J. Pe-
ters. Movement templates for learning of hitting and batting. In 2010 IEEE
International Conference on Robotics and Automation, pages 853–858, May
2010.

[17] J. Kober and J. Peters. Reinforcement Learning in Robotics: A Survey, vol-
ume 12, pages 579–610. Springer, Berlin, Germany, 2012.

[18] Vijay R. Konda and John N. Tsitsiklis. On actor-critic algorithms. SIAM J.
Control Optim., 42(4):1143–1166, April 2003.

[19] Ron Larson and Robert Hostetler. Precalculus: A Concise Course. Cengage
Learning, 2007.

[20] Donald Michie. Experiments on the mechanization of game-learning part i.
characterization of the model and its parameters. The Computer Journal,
6(3):232–236, 1963.

[21] Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves,
Timothy Lillicrap, Tim Harley, David Silver, and Koray Kavukcuoglu. Asyn-
chronous methods for deep reinforcement learning. In Maria Florina Bal-
can and Kilian Q. Weinberger, editors, Proceedings of The 33rd International
Conference on Machine Learning, volume 48 of Proceedings of Machine Learn-
ing Research, pages 1928–1937, New York, New York, USA, 20–22 Jun 2016.
PMLR.

[22] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis
Antonoglou, Daan Wierstra, and Martin Riedmiller. Playing atari with deep
reinforcement learning, 2013. cite arxiv:1312.5602Comment: NIPS Deep
Learning Workshop 2013.

[23] Andrew Y. Ng, Adam Coates, Mark Diel, Varun Ganapathi, Jamie Schulte,
Ben Tse, Eric Berger, and Eric Liang. Autonomous inverted helicopter flight
via reinforcement learning. In Marcelo H. Ang and Oussama Khatib, editors,
Experimental Robotics IX, pages 363–372, Berlin, Heidelberg, 2006. Springer
Berlin Heidelberg.

[24] SNAME The Society of Naval Architects and Marine Engineers. Nomenclature
for treating the motion of a submerged body through a fluid. New York:
Technical and Research Bulletin, 1950.

[25] Jan Palach. Parallel Programming with Python. Packt Publishing, 2014.

[26] Ning Qian. On the momentum term in gradient descent learning algorithms.
Neural Netw., 12(1):145–151, January 1999.

57

REFERENCES

[27] Benjamin Recht, Christopher Re, Stephen Wright, and Feng Niu. Hogwild: A
lock-free approach to parallelizing stochastic gradient descent. In Advances in
neural information processing systems, pages 693–701, 2011.

[28] David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou,
Matthew Lai, Arthur Guez, Marc Lanctot, Laurent Sifre, Dharshan Kumaran,
Thore Graepel, Timothy P. Lillicrap, Karen Simonyan, and Demis Hassabis.
Mastering chess and shogi by self-play with a general reinforcement learning
algorithm. CoRR, abs/1712.01815, 2017.

[29] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning : An Intro-
duction. MIT Press, 1998.

[30] QuantStart Team. Parallelising python with threading and
multiprocessing. https://www.quantstart.com/articles/
Parallelising-Python-with-Threading-and-Multiprocessing, 2018.
Accessed: 2018-05-05.

[31] Tensorflow team. TensorFlow: Large-scale machine learning on heterogeneous
systems, 2015. Software available from tensorflow.org.

[32] Gerald Tesauro. Td-gammon: A self-teaching backgammon program. In Ap-
plications of Neural Networks, pages 267–285. Springer, 1995.

[33] H. van Hasselt and M. A. Wiering. Reinforcement learning in continuous action
spaces. In 2007 IEEE International Symposium on Approximate Dynamic
Programming and Reinforcement Learning, pages 272–279, April 2007.

[34] Christina Voskoglou. What is the best programming language
for machine learning? https://towardsdatascience.com/
what-is-the-best-programming-language-for-machine-learning-a745c156d6b7.
Accessed: 2018-05-06.

[35] Ronald J. Williams. Simple statistical gradient-following algorithms for con-
nectionist reinforcement learning. Mach. Learn., 8(3-4):229–256, May 1992.

58

https://www.quantstart.com/articles/Parallelising-Python-with-Threading-and-Multiprocessing
https://www.quantstart.com/articles/Parallelising-Python-with-Threading-and-Multiprocessing
https://towardsdatascience.com/what-is-the-best-programming-language-for-machine-learning-a745c156d6b7
https://towardsdatascience.com/what-is-the-best-programming-language-for-machine-learning-a745c156d6b7

	Introduction
	Theory
	The Reinforcement Learning Problem
	Supervised, unsupervised and evaluative learning
	Markov Decision Process
	Model-free vs. Model-based reinforcement learning

	Returns
	Policy
	Value functions
	Policy gradient
	REINFORCE algorithm
	REINFORCE with baseline

	Actor-Critic Method
	Asyncronous Advantage Actor-Critic Method
	The Advantage
	Entropy

	Neural Networks
	Learning in a neural network
	Activation functions
	Regularization: Dropout and L2

	Gradient descent optimizer
	Batch gradient descent
	Stochastic gradient descent
	Minibatch gradient descent
	Moment
	Adam optimizer

	Bezier Curve
	Ackerman steering

	Guidance, Navigation and Control with Reinforcement Learning
	Implementation
	The vehicle
	The Mariner ship model
	About the models
	The path representation
	Reward function
	Penalty on turning rate

	The A3C algorithm implementation
	Using Python and Green Threads

	The Neural Network implementation
	System overview
	Simulator
	V-REP
	The Wrapper and OpenAi Gym

	Setup
	The observable states

	Results and Discussion
	The Manta vehicle path following
	Mariner path following
	Transfer learning
	Action penalty
	Time usage

	Conclusion
	Taking it further

	Appendices
	Mariner Ship Model Equations

